

LIBRARY Michigan State University

This is to certify that the

dissertation entitled

Interpreting Crystal Growth Kinetics of Ancient Dolomites

presented by

Lisa Ann Kessels

has been accepted towards fulfillment of the requirements for

Fh.D. degree in

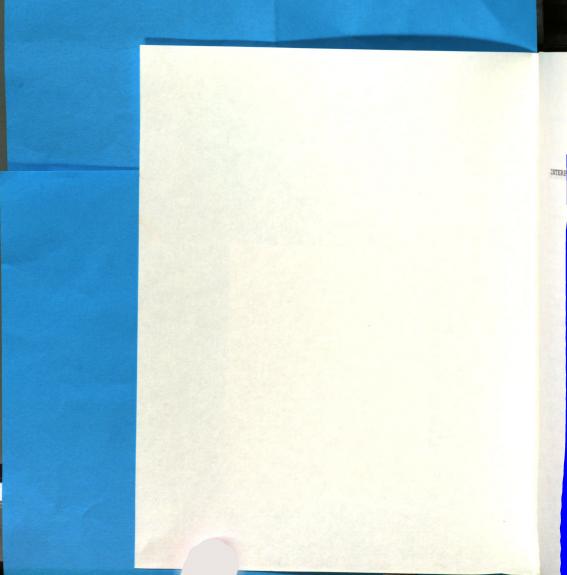
Geological Sciences

Auncau Thibley
Major professor

Date 8/8/01

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771


PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

PIAT DE LIZZ		- ASSE DUE
DATE DUE	DATE DUE	DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

Ву

Lisa Ann Kessels

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Geological Sciences

2001

INTERPR

X.

Lisa Ann Kessels

A DISSERTATION

Submitted to Michican State University in partial fullillment of the requirements for the degree of

DOCTOR OF PHILOSOPH

Department of Geological Sciences

rane

Ву

Lisa Ann Kessels

AN ABSTRACT OF A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Geological Sciences

2001

Professor Duncan F. Sibley

Barrhouse Tualoga, as entrange Rowers in a

H/Sacto din H

models; growth growth 1959, B models growth zoned,

crysta.

crystal

Format

KOLLY JUST A LINE OF THE PARTY ON

of majoriado. Valeravirto e tati don accom Majoria por apri to prestocio de com

erq at the second

dephased known or depression.

Coffee T - Company of

Ву

Lisa Ann Kessels

Crystal growth has been described by the following models; 1) mononuclear growth model, 2) birth and spread growth model, 3) polynuclear growth model, and 4) spiral growth model (Christian 1972, Nielson 1964, Ohara and Reid 1959, Burton et al. 1951). In order to apply these growth models to ancient dolomite reservoirs, an estimate of the growth rate is necessary. The zone width in concentricallyzoned, luminescent dolomites can be used to estimate growth rate (Nordeng and Sibley 1996, Carlson 1989, Kretz 1974, 1973). By rearranging the equations for the known growth models, crystal population trends on a zone-width vs. crystal-size plot can be constructed to distinguish between groups of crystals growing by mononuclear growth versus the following mechanisms: 1) polynuclear growth, 2) birth and spread growth, 3) diffusion-limited and 4) spiral growth mechanisms. To determine the extent that any group of crystals within a dolomite unit grew by the same crystal growth mechanism, samples were examined at regular intervals from three luminescent dolomites: 1) Saluda and Whitewater Formations (Ordovician), Indiana, U.S., 2) Burlington-Keokuk Formation (Mississippian) Missouri, U.S., and 3) Seroe Domi

TOAGTERA

INTERPRETING CRYSTAL GROWTH KINETICS OF ANCIENT DOLOMETES

1/3

isa Ann Kessels

Formation

each san

among sa

litholo litholo growth

relatio

not var age of dolomi

equation crystal adjace

format indica proces Formation (Miocene), Curacao, Netherland Antilles. Plots of zone-width vs. crystal-size for crystals in an individual sample were constructed. Crystal growth equations fitted to each sample's zone-width vs. crystal-size plot were compared among samples from: 1) the same lithology and formation, 2) different lithologies and the same formation, 3) the same lithology and different formations and 4) different lithologies and different formations. Analysis of crystal growth equations from all three dolomites indicate a linear relationship, dr/dt = k'r, where growth rate increases with crystal size (r) indicating crystal growth mechanism does not vary on the outcrop scale with lithology, δ^{13} C, δ^{18} O, or age of formation. The average slope (k') of all three dolomites was 0.181. Correlation coefficients for the equation dr/dt = kr ranged from 23% to 81%. Zone-width vs. crystal-size plots constructed for pairs of crystals adjacent to each other in the Saluda and Burlington-Keokuk formations revealed the same growth mechanism dr/dt = k'r, indicating growth was controlled by a crystal surface process instead of solution variability.

different lithologies and the same formation, 3) the same growth equations from all three dolomites indicate a linear relationship, dr/dt = k'r, where growth rate increases with not vary on the outerop scale with lithology, 5°C; 600, or age of formation. The average slope (M') of all three equation dr/dt = kr ranged from 23% to 81%. Zone-width vs. adjacent to each other in the Saluda and Eurlington-Reoluk

for his

Dave Lo

Domi Fo

ACKNOWLEDGMENTS

I would like to thank and acknowledge Duncan Sibley or his guidance and patience over the years. I would also ike to thank the members of my committee, Mike Velbel, ave Long and Tom Vogel. Their insights and comments have broved invaluable. I am also deeply indebted to Bruce Touke for thin section samples and locations for the Seroe comi Formation samples. Last, but not least, I would like to thank Eldon who saw me through to the end.

ROWN BUT TO THE WILLIAM

list of

list of

Reaction Crystal Combine

I would like to thank and ecknowledge Duncen Shiley
for his quidance and patience over; the years. I would also
like to thank the members of my committee, Mike Velbely
Dave Long and Tom Vogel. Their insights and comments have
proved invaluable. I am also deeply indebted to Broce
Fouke for thin section samples and locations for the Seroe
Domi Formation samples: bast, but not least, I would like
to thank Eldon who saw me through to the end.

TABLE OF CONTENTS

eratage utafferenturare dierent face bie immebabet migetalete int.

List of Tables	vii
List of Figures	xii
Introduction	1
Reaction Rate	10
Crystal Growth Mechanisms in Natural Systems	20
Combination of Crystal Growth and Solute Flux	25
Population Trends for Crystal Growth Mechanisms	27
Geologic Setting	35
Burlington-Keokuk Formation	35
Seroe Domi Formation	42
Saluda/Whitewater Formations	50
Methods	71
Zone Selection	71
Sampling locations	73
Zone Measurements	80
Geometric Corrections	86
Statistical Methods	90
Results	91
Comparison of Crystal Growth Rate Equation among Lithologies of the Same Dolomite	112
Comparison of Crystal Growth Rate Equation between Different Dolomites	113
Temporal Comparisons within the Seroe Domi	

TRREET OF CONTRIUTS

Form

Come Crys
Discussion
Crys
Mecci
Spa
Var
Conclusi
Appendix
Appendix
Bibliogr

1b	List of Figures
	Introduction
10	Reaction Rate
	Crystel Growth Mechanisms in Natural Systems
	Compination of Crystal Growth and Solute Flux
	Population Trands for Crystal Growth Machanisms
	Geologic Setting
	Burlington-Keokuk Formation
	Saluda/Whitewater Formations
	Zone Selection
	Lone Measurements
	Geometric Corractions
	Statistical Methods
91	
112	Comparison of Crystal Growth Rate Equation among Lithologies of the Same Dolomite
113	Comparison of Crystal Goowth Sale Equation between Different Dolomites

the Serve Domin

FOIMACION	114
Comparison of Crystal Growth Equations for Adjacent Crystals in Thin Section	114
Discussion	116
Crystal Growth Equation and Crystal Growth Mechanism	119
Spatial and Temporal Crystal Growth Trends	127
Variance in Crystal Growth Equations	130
Conclusions	132
Appendix A	135
Appendix B	145
Bibliography	237

Formation	
Comparison of Crystal Growth Equations for Adjacent Crystals in Thin Section	
Crystal Growth Equation and Crystal Growth Mechanism	
Spatial and Temporal Crystal Growth Trends	
Variance in Crystal Growth Equations	
A xibm	
8 ×1bns	
liography	

Table 1:

Table 1.

Table 3.

Table 4.

Table 6.

Table 8.

Table 10 Table 1:

Table 1:

Table 1

LIST OF TABLES

ble	1.	Radial Growth Rate Equations for Crystal Growth	8
able	2.	Summary of relationship between crystal size and increment of new precipitate	14
ble	3.	Carbon and Oxygen Isotope Data for Saluda and Whitewater Formations	58
able	4.	Samples with normal crystal size distributions at the 95% confidence interval	97
ble	5.	Samples with normal zone width distributions at the 95% confidence interval	98
able	6.	Samples with normal distributions at the 99% confidence interval	99
ble	7.	Slope and correlation coefficients for all samples	101
able	8.	Parameters to distinguish Case I, II and III	139
able	9.	Sample List for Saluda Formation Hwy 421 Outcrop	146
able	10.	. Sample M1 Measurements	147
able	11.	. Sample M2 Measurements	148
able	12.	. Sample M4 Measurements	149
able	13.	. Sample M8 Measurements	150
able	14.	. Sample M11 Measurements	151
able	15.	. Sample M20 Measurements	152
able	16.	. Sample M21 Measurements	153
able	17.	. Sample M26 Measurements	154
able	18.	. Sample M28 Measurements	155

tacle 19
face 11
face 11
face 11
face 12
face 12
face 13
face 13
face 14
face 15
face

Table 34

Atle 30 Atle 30 Atle 40 Atle 4

Table	19.	Sample	M30 Measurements	156
Table	20.	Sample	M34 Measurements	157
Table	21.	Sample	M42 Measurements	158
Table	22.	Sample	G1 Measurements	159
Table	23.	Sample	G3 Measurements	160
Table	24.	Sample	G4 Measurements	161
Table	25.	Sample	G5 Measurements	163
Table	26.	Sample	G6 Measurements	164
Table	27.	Sample	G7 Measurements	165
Table	28.	Sample	G8 Measurements	166
Table	29.	Sample	D6 Measurements	167
Table	30.	Sample	D8 Measurements	169
Table	31.	Sample	D10 Measurements	170
Table	32.	Sample	D12 Measurements	171
Table	33.	Sample	SD3 Measurements	172
Table	34.	Sample	SD7 Measurements	173
Table	35.	Sample	SD11 Measurements	175
Table	36.	Sample	SD13 Measurements	176
Table	37.	Sample	SD15 Measurements	177
Table	38.	Sample	SD23 Measurements	178
Table	39.	Sample	P2 Measurements	179
Table	40.	Sample	P5 Measurements	180
Table	41.	Sample	P17 Measurements	181
Table	42	Sample	P19 Measurements	182

	Table 22. Sample SI Measurements
	Table 23. Sample G3 Measurements
	Table 24. Sample 64 Measurements
	Table 25. Sample G5 Measurements
164	Table 26. Sample G6 Measurements
	Table 27. Sample G7 Measurements
	Table 28. Sample G8 Measurements
	Table 29. Sample D6 Measurements
169	Table 30. Sample D8 Measurements
	Table 31. Sample D10 Measurements
	Table 32. Sample Di2 Measurements
	Table 33. Sample SD3 Measurements
	Table 34. Sample SD7 Measurements
	Table 35. Sample SD11 Measurements
	Table 36. Sample SD13 Messurements
	Table 37. Sample Sn15 Measurements
	Table 38. Sample SD23 Measurements
	Table 39. Sample P2 Measurements
	Table 46. Sample P5 Maisurements
	Table 41. Sample Pl7 Reasurements
	Table 42, sample F13 Measurements

Table 43

Table 45
Table 46
Table 47

Table 48
Table 49
Table 50

Table 51
Table 52
Table 53

Table 54
Table 55
Table 56

Table 51 Table 58

Table 60 Table 61 Table 62

Table 63

labie	43.	Sample	PZI	measurements	103
Table	44.	Sample	P31	Measurements	184
Table	45.	Sample	P34	Measurements	185
Table	46.	Sample	P36	Measurements	186
Table	47.	Sample	P37	Measurements	188
Table	48.	Sample	P40	Measurements	189
Table	49.	Sample	P41	Measurements	190
Table	50.	Sample	P45	Measurements	191
Table	51.	_		for Saluda Formation Highway 7 y 56 Outcrops	192
Table	52.	Sample	Sal	R-1 Measurements	193
Table	53.	Sample	Sal	R-5 Measurements	194
Table	54.	Sample	Sal	R-10 Measurements	195
Table	55.	Sample	Sal	D-25 Measurements	196
Table	56.	Sample	Sal	D-34 Measurements	197
Table	57.	Sample	Sal	A-1d Measurements	198
Table	58.	Sample	Sal	A-5d Measurements	199
Table	59.	Sample	Sal	A-7d Measurements	200
Table	60.	Sample	Sal	A-5g Measurements	202
Table	61.	Sample	Sal	A-7g Measurements	203
Table	62.	Sample	Sal	56-1 Measurements	204
Table	63.	Sample	Sal	56-5 Measurements	205
Table	64.	Sample	Pay-	-1 Measurements	206
Table	65.	Sample	Pay-	-5 Measurements	207

	Table 43. Sample P27 Measurements
184	Table 44. Sample P31 Measurcments
	Table 45. Sample PGW Medgulenents
	Table 46. Sample P36 Measurements
	Table 47. Sample P37 Measurements
	Table 48. Sample P40 Measurgments
	Table 49. Sample P41 Massurements
	Table 50. Sample P45 Measurements
	Table 51. Sample List for Sairida Formation Highway T and Midnery 55 Outcomes
	Table 52. Sample Sal R-1 Measurements
	Table 53. Sample Sai 8-5 Mensurements
	Table 54. Sample Sai R-10 Measurements
	Table 55. Sample Sal Path Menduraments
	Table 56. Sample Sal B-34 Messurements
	Table 57, Sample Sal A-1d Measurements
iei	Table 58. Sample Sal A-5d Measurements
	Table 59. Sample Sai A-7d Measurements
	Table 56. Sample Sal A-Sq Measurements
	Table 61. Sample Sal A-Ve Measurements
	Table 62. Sample Sal 56-1 Measurements
	Table 63. Sample 581 36-5 Measurements
	Table 64. Sample Pay-1 Measurements
20	Table 65. Sample Pay-8 Measurements
	Lapte 60. games car ardines of eldel

Table 66 Table 67

Table 68
Table 69
Table 70
Table 71

Table 72 Table 73

Table 7 Table 7 Table 7

Table 7 Table 7

Table 7 Table 8

Table 8 Table 8 Table 8:

Table 8 Table 8

Table 8 Table 8

Table	66.	Sample Pay-	11 Measurements	208
Table	67.	Sample Ton-	11 Measurements	209
Table	68.	Sample Sal I	How-1 Measurements	211
Table	69.	Sample Sal I	How-6 Measurements	212
Table	70.	Sample Sal	7-8 Measurements	213
Table	71.	Sample List Hwy 61 Outc	for Burlington-Keokuk Formation rops	214
Table	72.	Sample DFS-	1 Measurements	215
Table	73.	Sample CAR-	5 Measurements	216
Table	74.	Sample MIN-	6 Measurements	217
Table	75.	Sample LAK-	10 Mesaurements	218
Table	76.	Sample MIN-	16 Measurements	219
Table	77.	Sample DFS-	15 Measurements	220
Table	78.	Sample DFS-2	24 Measurements	221
Table	79.	Sample LAK-2	22 Measurements	222
Table	80.	Sample MIN-2	29 Measurements	223
Table	81.	Sample LAK-	31 Measurements	224
Table	82.	Sample DFS-3	32 Measurements	225
Table	83.	Sample LAK-3	36 Measurements	226
Table	84.	Sample DFS-3	37 Measurements	227
Table	85.	Sample LAK-	40 Measurements	228
Table	86.	Sample DUNC-	-56 Measurements	229
Table	87.		for Seroe Domi Formation, Seru St. Michielsburg Outcrops	230

the control of the material excitation where the control of the co

	Table 66. Sample Pay-11 Measurements
	Table 67. Sample Ten-11 Measurements
	Table 68. Sample Sal How-1 Measurements
	Table 69. Sample Sal How-6 Measurements
	Table 70. Sample Sal 7-8 Measurements
	Table 71. Sample List for Burlington-Keckuk Formation
	Table 71. Sample 1381 101 Bullington George Hwy 61 Outcrops
	Table 72. Sample DFS-1 Measurements
	Table 73. Sample CAR-5 Measurements
	Table 74. Sample MIN-6 Measurements
	Table 75. Sample LAK-10 Messurements
	Table 76. Sample MiW-id Measurements
	Table 77. Sample DFS-15 Measurements
	Table 76. Sample DES-24 Measuraments
	Table 79. Sample LAK-22 Mensurements
	Table 80. Sample MIN-39 Heasukehents
P22	Table 81. Sample LAK-31 Measurements
	Table 82. Sample DFS-32 Measurements
	Table 83. Sample LAK-35 Meanurements
	Table 84. Sample DFS-37 Mesourements
	Table 85. Sample LAK-40 Meason ements
229	Table 96. Sample DUNC-36 Measurements
	Table 87, Sample List for Seros Dome Contection, Seru
	Table 57. Sample mid St. Michielsburg Unitrops

Table 88

Table 89 Table 90

Table 91 Table 92

Table 93

Table	88.	Sample	2B-1	zone	1 Measurements	23.
Table	89.	Sample	SB-1	Zone	II Measurements	232
Table	90.	Sample	SB-2	Zone	I Measurements	233
Table	91.	Sample	SB-2	Zone	II Measurements	234
Table	92.	Sample	SM-1	Zone	I Measurements	235
Table	93.	Sample	SM-1	Zone	II Measurements	236

Table 88. Sample SB-1 Zone I Measurements
Table 89. Sample SB-1 Zone II Measurements
Table 90. Sample SB-2 Zone I Measurementa
Table 91. Sample SB-2 Zone II Measurements
Table 92. Sample SM-1 Zone I Measurements
Table 93. Sample SM-1 Zone I Measurements

232

233

235

236

rigate

Figure

Figure

rigure

Figure

Figure

Figure

Figure

Figure

Figure

igure

Figure

îx

List of Figures

Figure	1.	Qualitative Comparisons of Growth Rate(after Sunagawa 1984)	11
Figure	2.	Population Trend for Mononuclear Crystal Growth	28
Figure	3.	Diffusion Limited Growth Model for a Crystal Through Time	29
Figure	4.	Population Trend for Polynuclear, Birth and Spread, Spiral and Diffusion-Limited Growth Models	31
Figure	5.	Family of Trends for Mononuclear Crystal Growth	33
Figure	6.	Family of Trends for Polynuclear, Birth and Spread, Spiral and Diffusion-Limited Growth Models	34
Figure	7.	Cathodoluminescent image of Burlington-Keokuk sample from the Dallas City Quarry. Arrows point to dissolution of dolomite cores (1 inch = 100 microns)	37
Figure	8.	Partially crossed polars view of Highway 61 Burlington-Keokuk sample (Missouri). Arrow points to crinoid fossil mold (1 inch = 200 microns)	39
Figure		Cathodoluminescent view of Highway 61 Burlington-Keokuk sample. Arrows point to slices of dolomite rhombs that exhibit all the zones encountered (0.75 inch = 100 microns)	40
Figure	10.	Burlington-Keokuk Isotope Data, $\pmb{\delta}^{18}$ O versus $\pmb{\delta}^{13}$ C (after Banner <i>et al.</i> 1988)	41
Figure	11.	Cathodoluminescent image of Seroe Domi Generation I dolomite crystals. Arrows point to crystals that exhibit all of the zones encountered (1 inch = 50 microns)	44

....e

Equie

î-j-se

l.;ize

Frate (

Figure

injure.

l_{ij-te}

Righte

ीन्द्रम्

::-:e

Figure	12.	Partially-crossed polars view of Seroe Domi unimodal planar dolomite (0.75 inch = 100 microns)	45
Figure	13.	Cathodoluminescent image of Seroe Domi sample showing brightly luminescent dolomite generation II replacing generation I dolomite (1 inch = 100 microns)	46
Figure	14.	Cathodoluminescent image of Seroe Domi sample exhibiting dissolution of dolomite cores. Arrows point to edge of interior dissolution of generation I dolomite crystals (1 inch = 50 microns)	f 47
Figure	15.	Cathodoluminescent image of Seroe Domi sample exhibiting inclusions and dissolution. Left arrow points to an inclusion. Right arrow points to dissolution (1 inch = 50 microns)	48
Figure	16.	Seroe Domi Isotope Data, $\delta^{\text{18}}\text{O}$ versus $\delta^{\text{13}}\text{C}$ after Fouke et al. 1996	51
Figure	17.	Cathodoluminescent view of Saluda dolomite crystal. Arrows point to crystals exhibiting all encountered zones (1 inch = 80 microns)	55
Figure	18.	Cathodoluminescent view of Whitewater dolomite crystal. Arrow points to crystal exhibiting all encountered zones (1 inch = 100 microns)	56
Figure	19.	Saluda and Whitewater Isotope Data $\pmb{\delta}^{\text{18}}\text{O}$ versus $\pmb{\delta}^{\text{13}}\text{C}$	57
Figure	20.	Plain light view of Saluda mudstone. Arrows point to top and bottom of lamination (1 inch = 200 microns)	60
Figure	21.	Partially crossed polars view of Whitewater peloidal grainstone. Arrow points to relict outline of peloid (1 inch = 100 microns)	61
Figure	22.	Plain light view of Whitewater peloidal grainstone. Dolomite rhomb (indicated by arrow) is replacing compacted ostracodes (1 inch = 100 microns)	62

1.jure î.ç.re Rigure liquie : Egure Lare : figure Equie figure figure figure figure Egre

Figure	23.	Closeup view of dolomite rhomb in Figure 22 (1 inch = 50 microns)	63
Figure	24.	Plain light view of Whitewater peloidal grainstone. Arrow points to dolomite rhomb replacing an ostracode (1 inch = 200 microns)	64
Figure	25.	Partially crossed polars view of Saluda packstone. Arrow points to fossil fragment (1 inch = 200 microns)	65
Figure	26.	Partially crossed polars view of Saluda packstone. Arrow points to fossil fragment (1 inch = 200 microns)	66
Figure	27.	Partially crossed polars view of Saluda wackestone. Arrows point to crinoid fragments (1 inch = 200 microns)	67
Figure	28.	Partially crossed polars view of Saluda wackestone. Arrow points to crinoid fragment (1 inch = 200 microns)	68
Figure	29.	Partially crossed polars view of Saluda wackestone. Arrow points to crinoid fragment (1 inch = 200 microns)	69
Figure	30.	Partially crossed polars view of Saluda wackestone. Arrow points to bryozoan fragment (1 inch = 200 microns)	; 70
Figure	31.	Isotope Data, $\pmb{\delta}^{18}$ O versus $\pmb{\delta}^{13}$ C	72
Figure	32.	Location Map	74
Figure	33.	Highway 421 Outcrop of Saluda and Whitewater Formations. Arrow points to coral layer at base of Saluda	75
Figure	34.	Highway 7 Outcrop of Saluda and Whitewater Formations. Arrow points to coral layer at base of Saluda	76
Figure	35.	Highway 56 Outcrop of Saluda and Whitewater Formations. Arrow points to coral layer at base of Saluda	77

î.;.re

Equie

Digure

Digure Digure

Digire Digire

Digure

Fig.re

Equie

Rate

Egre

Figure

figure

in the light

Figure

tiquite

Figure	36.	Highway 61 outcrop of Burlington-Keokuk Formation	78
Figure	37.	Seroe Domi, Seru Blandan and St. Michielsburg Outcrops, Curacao (after Fouke et al. 1996 an Fouke unpublished field notes)	
Figure	38.	Saluda Hwy 421 Outcrop Profile	81
Figure	39.	Saluda Hwy 7 Outcrop Profile	82
Figure	40.	Saluda Hwy 56 Outcrop Profiles	83
Figure	41.	Burlington-Keokuk Hwy 61 Outcrop Profile	84
Figure	42.	Zone measurements of rhombic slice (shaded band represents zone measured)	85
Figure	43.	Comparison of length measurements between two observers	87
Figure	44.	Comparison of replicate analyses for first observer	88
Figure	45.	Comparison of replicate analyses for second observer	89
Figure	46.	Saluda/Whitewater Formation crystal size frequency	93
Figure	47.	Burlington-Keokuk Formation crystal size frequency	94
Figure	48.	Seroe Domi Formation zone I crystal size frequency	95
Figure	49.	Seroe Domi Formation zone II crystal size frequency	96
Figure	50.	Saluda Mudstone (sample M20)	103
Figure	51.	Saluda Grainstone (sample G8)	104
Figure	52.	Saluda Packstone (sample A5g)	105
Figure	53.	Saluda Wackestone (sample Pay 5)	106

î we î litê i "rę î. Lie î. Le E. Ire î uş i. Je ii je i. te E: te in te Rg (e ig 'e iii e ₹q .e Eg. g

Figure	54.	Saluda Interbedded Mudstone (sample D12)	107
Figure	55.	Whitewater Peloidal Grainstone (sample P 27)	108
Figure	56.	Burlington-Keokuk Crinoidal Wackestone (sample DFS 24)	109
Figure	57.	Seroe Domi Dolomite, Zone I (sample SB1)	110
Figure	58.	Seroe Domi Dolomite, Zone II (sample SB1)	111
Figure	59.	Cathodoluminescent view of Saluda dolomite sample. Arrows point to adjacent (paired) crystals (1 inch = 100 microns)	115
Figure	60.	Saluda Paired Crystals	117
Figure	61.	Burlington-Keokuk Paired Crystals	118
Figure	62.	Partially crossed polars view of Burlington- Keokuk sample. Arrows point to large crystals near pore and within matrix (1 inch = 100 microns)	122
Figure	63.	Crystal A	128
Figure	64.	Crystal B	129
Figure	65.	Family of functions for dr/dt = k'r	133
Figure	66.	Slice Measurements	137
Figure	67.	Three cases of rotation with corrections	138
Figure	68.	Case II Solution	141
Figure	69.	Case I Solution	142
Figure	70.	Triangle A'B'C'	144

27 a.: ÷ ... Ę. ... #1 j#; 180 (±) Part of a 81. J#1 2 æ; y 100 to 数数数

20_{261 1}

机铁

Ting (

\$2 2 j

\$34.8

334

INTRODUCTION

Carbonate reservoirs are conservatively estimated to contain approximately 60 percent of recoverable oil globally (Roehl and Choquette 1985). Carbonate rocks also cover approximately 10% of the continents (Ehlers and Blatt 1982) and serve as productive aguifers in the subsurface (Domenico and Schwartz 1990). As a result, much effort has been devoted to the study of carbonate precipitation (Berner 1982, Lasaga 1981, Land 1980, Berner and Morse 1974). Carbonate precipitation and dissolution have been studied in every environment ranging from the surface to deep subsurface (Lucia and Major 1994, Negra at al. 1994, Purser et al. 1994, Feazel and Schatzinger 1985, Harris et al. 1985, Sandberg 1985, Walter 1985, Choquette and Steinen 1980, Mattes and Mountjoy 1980). In particular, much attention has been paid to dolomitization because of 1) the abundance of dolomite in the rock record compared to the modern day and 2) the reservoir potential of dolomite (Nordeng and Sibley 1996, Sibley et al. 1994, Sibley 1980).

The dolomitization reaction has been investigated extensively both from a microscopic and a macroscopic viewpoint resulting in identification of kinetic catalysts and inhibitors as well as formation-scale dolomitization models (Morrow and Abercrombie 1994, Nordeng and Sibley 1994, Sibley et al. 1994, Simo et al. 1994, Usdowski 1994,

11.121 Fee De I i. . 1 ite. : ÷ ::., \((*) _{***} :: :, E. W. Witt. $\Re z_{i,j}$ ६३ ४० $\pi_{i,j}J$ 4:5 $\mathfrak{S}_{2}|_{\mathfrak{S}_{2}}$ it ie 35134 363(46)

Vahrenkamp and Swart 1994, Whitaker et al. 1994, Fouke and Reeder 1992, Middleburg et al. 1990, Sibley 1990, Sibley et al. 1987, Sibley and Bartlett 1987, Bullen and Sibley 1984, Gregg and Sibley 1984, Saller 1984, Sibley 1982, Baker and Kastner 1981, McKenzie 1981, Carpenter 1980, Choquette and Steinen 1980, Gaines 1980, Land 1980, Lumsden and Chimahusky 1980, Muir et al. 1980, Zenger and Dunham 1980, Katz and Matthews 1977, Badiozamani 1973). However, very little is known about the mechanism of dolomite crystal growth because of two factors: 1) the lack of a modern analog for massive ancient dolomites, and 2) the inability to precipitate dolomite at standard temperature and pressures in the laboratory. The latter obstacle has been overcome by extrapolating high-temperature, laboratory crystal growth experiments to lower temperatures. From these experiments in dolomitization, researchers have found: 1) an induction period for dolomite precipitating on a calcite, aragonite or dolomite substrate (Sibley et al. 1994, Gaines 1980, Katz and Matthews 1977), 2) an increase in the rate of dolomitization with increasing temperature, surface area of substrate, and Mg/Ca ratio of solution (Sibley 1990, Sibley and Bartlett 1987, Katz and Matthews 1977), 3) a faster rate of reaction when aragonite is used as the substrate as opposed to calcite (Katz and Matthews 1977), and 4) a decrease in the rate of dolomitization with the addition of sulfate to solution (Baker and Kastner 1981). However,

: ::÷ 161137 :::::... ∷ ≟ ξ• ini..i: ï.....; HARTIE € ±.. No. 1948. Printer and E: 1: 14. Pag. \$12 (a) 140,6₆₁ 1375 E.Z. 350g ٩٥٤٤٤ 34

. .

these experiments have not demonstrated whether the growth mechanism is a diffusion-limited or surface reaction-limited process. Diffusion of ${\rm CO_3}^{2^-}$ ions or diffusion of dehydrated ${\rm Mg}^{2^+}$ are possibilities for a rate-limiting step. A surface reaction-limited process is also feasible.

The progression from a less than 50% molar Mg dolomite to a stoichiometric (50% molar Mg dolomite) allows for a change in surface free energy and a possible change in available nucleation sites. SEM images of partially dolomitized calcite show dolomite preferentially grows at substrate edges and corners (Kessels 1995 Figure 6, Sibley et al. 1987) suggesting either: 1) a higher concentration of CO₃²⁻ ions as a result of faster dissolution of calcite corners or 2) the development of favorable kink sites for nucleation and/or layer growth at the dissolving calcite edges. Thus, the question of diffusion-limited versus surface reaction-limited growth cannot be answered by ex situ observations. Kessels (1995) also indicates surface topographies consistent with a two-dimensional nucleation and layer growth mechanism. However, two-dimensional nucleation and layer growth can occur in both the diffusionlimited and surface reaction-limited growth cases since the method of attachment in diffusion-limited growth is independent of the rate-limiting step.

Recent methods of dolomite crystal growth mechanism determination include dolomite crystal size distributions

#11 TB Ett. iter) \$.70÷3 iner. 1.5111 1818:55 inere a NEE. termen. 1-01e3-Hen., Tysta. 18 à 3. 18.14. 2. \$\$\$₁₂₅. Pietz Royal Ytetz 2 2 = àt;_{50:}

Starl)

and cathodoluminscent zone-width vs. crystal-radius plots (Eberl et al. 1998, Nordeng and Sibley 1996, Sibley 1980). Eberl et al. (1998) generated crystal size distributions by successive iterations of known crystal growth models and then uses the crystal size distributions generated as a standard for each model. Thus, the crystal size distributions of actual crystal data can be compared to the model distributions and used as an indirect means to determine crystal growth mechanism of natural crystals. There are three assumptions that are necessary to use crystal size distributions to determine crystal growth mechanism: 1) the crystal growth mechanism does not change at any time during precipitation, 2) crystals do not nucleate at different times, and 3) no one crystal precipitates for a longer period of time than any other crystal. The extent to which any crystal size distribution is a determinant of crystal growth mechanism depends on the validity of these three assumptions.

A second approach is the measurement of zones as an estimate of growth rate (Carlson 1989, Kretz 1974, 1973).

Kretz (1974, 1973) and Carlson (1989) investigated the growth of garnet crystals by examining compositional zones.

Kretz (1974) considered growth rate as a change in radius, dR/dt=k, volume, dV/dt=k, and surface area, dA/dt=k.

Carlson (1989) plotted the normalized radius versus the normalized rate for garnet crystal measurements. The

measure the rad

lites a

crystal

con fo

Pigure

Cargo:

Hend :

ati Sil

cathod:

Section Fromth

5t atg

thin se

tor dol

sciate-

Stoley dojonia

sate do changes measurement technique outlined in Kretz (1973, 1974) uses the radial distance between any two compositional contour lines as the rate and the distance from the center of the crystal to the midway-point between the compositional contours as the radius. Kretz (1974) and Carlson (1989) both found actual measurements of garnet zones versus garnet crystal radius did not fit any of the three models (see Figure 3, Carlson 1989). Kretz (1974, 1973) identifies changing rates of nucleation as a possible problem for the models. Like Kretz (1974), Carlson (1989) attributes the trend to changes in nucleation rate caused by the increase in temperature (thermally-accelerated nucleation). Nordeng and Sibley (1996) followed a similar procedure using cathodoluminescence zones. Data for individual thin sections could be fit with a straight line, dr/dt=kr, where growth rate increased with crystal size, that also did not fit any of the known growth models. Nordeng and Sibley (1996) interpreted the size dependency of growth rate to thin section-scale, solute flux-limited growth.

Crystal zone data and crystal size distribution data for dolomite have been interpreted as an indicator of a solute-flux limited reaction (Eberl et al. 1998, Nordeng and Sibley 1996). This interpretation would suggest the dolomite growth rate of adjacent lithofacies exposed to the same dolomitizing fluid will vary with lithofacies type, or changes in porosity and permeability, that affect solute

i..... **;**erree Tat 3 litses •1...2 ----..:: ::. €23.<u>67</u>. i_{sia} HOE? Vita.

::

100 c Recip 33 52.4 liana Mara

2 /3ta ₹;;_€

1 202 (i) 1 (a) 1

flux. Thus, a lithofacies with an initially high permeability would undergo a faster rate of dolomite growth than adjacent lithofacies with initially low permeability. Consequently, in open and closed systems, porous lithofacies would grow faster than adjacent less porous lithofacies until the porosity of the adjacent, initially less-porous lithofacies, was reached. This evolution toward "porosity equilibrium" is one possible explanation for the consistency of dolomite rock textures.

In order to determine the variation in crystal growth mechanism spatially, cathodoluminscent zones widths and crystal radii are determined for samples from a regularly spaced grid. A body of rock that does not have a variable crystal growth rate mechanism can be described as a unit of rock in which: 1) the net rock-water interaction is precipitation and 2) the rate-limiting step in precipitation is the same throughout the unit of rock. Net rock-water interactions that add to a crystal are based on the amount of influence exerted by two processes in crystal growth; solute flux and solute uptake. Solute flux to a growing crystal surface in a formation is influenced by the amount of interface between crystal surface and solution (pore size) and transportation of solute to the crystal surface (hydraulic potential, pore geometry and interconnectivity). The latter affects the concentration of solute in the bulk solution that in turn affects the concentration and

>		
		W.Def
		were.
		Siring
		Netroer (
		# ₍ st _{e)}
		₹ŧţĸĘ. •
		iteory.
		ente. I
		Name :
		821.256
		42.71
		Si _{kt}
		11.4 gr
		^{1/2} 0:
		:\3ee
		17.0

		स्तिक है । स्ति
		90 E
		\$400e0
		*ক্ট

thickness of the interfacial solution. The interfacial solution is the fluid that is bound to the crystal surface where dangling ions and surface charge attract H_2O more strongly than surrounding molecules of H_2O in solution. The tendency for ions to attach and detach from the surface of a crystal is a result of the drive to maintain equilibrium between the interfacial solution and crystal surface. Precipitation results when the net ion surface exchange represents solute uptake.

The rate-limiting step in crystal growth can be dominated by either of the two processes, solute flux or solute uptake. For solute-flux limited growth, the ratelimiting step is delivery of ions to the surface. For an individual crystal in a stagnant solvent, this process is known as the diffusion limited growth model (Table 1) and the gradient in solute concentration projecting outward from the crystal surface results from the growth of the crystal itself. For a population of crystals growing by solute-flux limited growth, variation of the solute concentration may result from: 1) interaction of crystals with solution or 2) changes in the external source of the solution. two fluids, meteoric and marine, or introduction of an entirely new fluid would represent an external source for solute variation. On the scale of a crystal, when the rate-limiting step is attachment of ions to the surface, the process is referred to as surface-reaction limited growth.

There is a sector Table 1. Radial crowth Rate Equations for Crystal Growth A I S Stat Will were with

Kate Timiting Step Lat I dissent Growth Maket I

Radial Growth Rate Equations for Crystal Growth Table 1.

Rate Limiting Step for	Crystal Growth Model	Crystal Growth	Reaction order
Modeling Zone Widths		Equation	in r
ion delivery to surface	Diffusion Limited Growth	dr/dt = k/r	-1
ion uptake on surface	Mononuclear Growth	$dr/dt = kr^2$	2
ion uptake on surface	Polynuclear Growth	dr/dt = k	0
ion uptake on surface	Spiral Growth	dr/dt = k	0
ion uptake on surface	Birth and Spread Growth	dr/dt = k/r or	-1
		dr/dt = k	0
1. 2			

k is a constant representing solution concentration, solute diffusion and crystal form r is crystal radius

Fir a F

TO as S

TO as S

Freeze F

Freeze A

Freeze S

Gregge

Freeze S

Freeze S

Freeze S

Freeze S

S. Le

River

\$ 22.5

exercis

12.2

52,6

For a population of crystals, the process will be referred to as solute-uptake limited growth.

Previous surface-reaction limited mechanisms which have been proposed and mathematically modeled for the different styles of ion attachment to theoretical crystal surfaces include: 1) mononuclear growth, 2) birth and spread growth, 3) polynuclear growth and 4) spiral growth (Christian 1975, Ohara and Reid 1973, Nielsen 1964, Burton et al. 1951). A crystal growing by any one mechanism will fit the crystal growth rate equation:

$$dr/dt = f(x) = k_n r^n$$

where f(x) is a function of crystal size, r, or a constant, k, depending on the model type (Table 1, see Reaction Rate section for a detailed description of each model). Thus, a unit of rock could be described by one mechanism if the growth of the crystals in that unit of rock can be described by the same crystal growth rate equation.

The intention of this study is to determine: 1) the scale of rock units that can be described by one crystal growth mechanism and 2) if rock units characterized by a specific crystal growth mechanism coincide with lithofacies in dolomites. If a single lithofacies can be represented by more than one crystal growth mechanism, then the fluid is exerting a greater control on the rate of precipitation than variation in lithofacies. If different lithologies from the same dolomite share the same crystal growth mechanism, again

Teş teş e :::A::: 1...: 1111 Man to Tar.at. Serat | N the Reactio 1400.41 \$0 st. Prince. A. Moree | :::: المُرْدُونِ الْمُرْدُونِ الْمُرْدُونِ الْمُرْدُونِ الْمُرْدُونِ الْمُرْدُونِ الْمُرْدُونِ الْمُرْدُونِ £, ;; to a

देवहिंदु

ئار. ئار

the fluid exerts a greater control than the variation represented by the different lithologies. If only similar lithofacies from different dolomites share the same crystal growth mechanism then the lithology is exerting a greater control on the rate of precipitation than variation in the dolomitizing fluids. If different lithologies from different dolomites have the same crystal growth mechanism then the mechanism is: 1) independent of the lithology variation represented by the rock types compared and 2) operating over a range of fluid compositions as represented by the variation in dolomitizing fluids.

Reaction Rate

The rate of crystal growth is related to crystal growth mechanism (Sunagawa 1982). Mononuclear (dr/dt = kr²), birth and spread (dr/dt=k/r or dr/dt=k), and polynuclear (dr/dt=k) growth mechanisms represent a spectrum of growth mechanisms in which nucleation rate is increasing (Figure 1). The increase in nucleation rate leads to an increase in growth rate. Spiral growth, which is represented by dr/dt=k is independent of crystal size and nucleation rate (Burton et al. 1951). Nielson (1964) proposed the equation dr/dt=k/r for a combination of mononuclear and polynuclear growth based on the results of a probabilistic model. The equation dr/dt = k/r is a result of polynuclear growth occurring 60% of the time and mononuclear growth occurring 40% of the time

€.

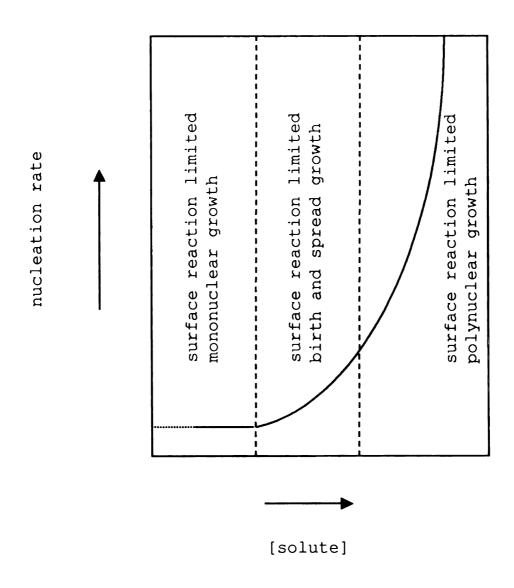


Figure 1. Qualitative Comparisons of Growth Rate (after Sunagawa 1984)

2005-à.

ا يُورِي اللهِ المراجعة الم

ing or |

Rower |

during any time period of growth. Ohara and Reid (1973) combined the physical models of mononuclear and polynuclear growth to define the birth and spread model, dr/dt = k. the latter version of the model, a layer is always generated by more than one nucleus and layer growth between the nuclei occurs at a finite rate. In review of the models, Nyvlt (1985) also indicates the equation for birth and spread should be independent of radius based on the physical assumptions behind the birth and spread growth mechanism. The two assumptions are: 1) nuclei can form anywhere and 2) the growth rate of faces is constant (Nyvlt 1985). If the assumption of a constant nucleation rate per unit area per unit time is true, then the rate of radial growth of a crystal growing by birth and spread growth is only dependent on factors affecting nucleation rate. By allowing nuclei to form anywhere on the surface and allowing more than one nucleus to form at a time, growth is independent of crystal This is in contrast to the mononuclear growth model where each layer grows laterally away from only one nucleus resulting in growth dependent on the surface area of the crystal.

Diffusion-limited growth (dr/dt=k/r) is treated separately since the way in which the ions attach to the surface is not the rate-limiting step. Fewer ions approach the crystal surface per unit time in diffusion-limited growth than necessary for any of the surface reaction

Little 1

Consequence

Finance

Parter |

\$15.12 <u>e 5</u>

Hing.

242,-

Realiza

1-55 a De

5255 62 6

Mer Wil

*** 925

limited growth models under the same conditions. Consequently, diffusion-limited growth has the slowest growth rate when comparing growth rates of any one mineral. The growth rate in the spiral growth (dr/dt = k) model, which is independent of nucleation rate, cannot be compared qualitatively to the other growth models.

For each of the different crystal growth mechanisms, relationships between growth rate and crystal size can be derived from the crystal growth equations and assumptions about ion attachment. By integrating the three crystal growth equations over one increment of growth, three crystal population trends emerge: 1) $zw=[kTr_1^2/(1-kTr_1)]$, the population trend for mononuclear growth, 2) zw=kT, the population trend for polynuclear growth, birth and spread growth, and spiral growth, and 3) $(zw)^2+2(zw)r_1=2kT$, population trend for diffusion-limited growth (Table 2) (the latter growth model trend will be rejected in favor of zw=kT, see discussion in Population Trends for Crystal Growth Mechanisms section). In the population trend equations, zw is the increment of precipitate added to the surface (or r_2-r_1), r_1 is the crystal size before the increment began precipitating, r_2 is the crystal size after the increment finished precipitating, T is the time interval over which precipitation occurred, and k represents solution and growth conditions. The increment of precipitation or

Table 1.

3:

Table 2. Summary of relationship between crystal size and increment of new precipitate

Mononuclear Growth	Spiral Growth and Polynuclear Growth	Any mechanism of ion attachment
surface-reaction- limited growth	surface- reaction- limited growth	diffusion-limited growth
dr/dt=kr ²	dr/dt=k	dr/dt=k/r
$dr(1/r^2)=kdt$	dr=kdt	rdr= kdt
$r^{-2}dr=kdt$	r2 t2	r2 t2
r2 t2	$\int dr = k \int dt$	∫ rdr = k∫ dt
$\int r^{-2} dr = k \int dt$	rl tl	rl tl
rl t1	$r_2-r_1=k(t_2-t_1)$	
	let T =t2-t1	1/2 $(r_2^2-r_1^2)=k(t_2-t_1)$
$(1/r_1) - (1/r_2) = k(t_2-t_1)$	$r_2-r_1=kT$	let $T = t_2 - t_1$
		$r_2^2 - r_1^2 = 2kT$
let $T = t_2 - t_1$		
$(1/r_1) - (1/r_2) = kT$		
$zw=[kTr_1^2/(1-kTr_1)]*$	zw=kT *	$(zw)^2 + 2(zw) r_1 = 2kT *$

^{*} zw is the width of the next increment of precipitate added, or r_2 - r_1 .

 $[\]boldsymbol{k}$ is a constant representing solution concentration, solute diffusion and crystal form.

 r_1 is the crystal radius before precipitation of the zone.

r2 is the crystal radius after precipitation of the zone.

::::

• • •

7487**:**

1.73

÷"÷".

1.00

Rec.p.

Set go.

Estia:

\$201₆₀

Stowers C

1(1) 1(1) 1(1) zone width (zw) can represent luminescent zones or other nonluminescent compositional zones.

As ions approach the crystal surface, each event can be described as: 1) ions contact the crystal surface and "bounce back" away from the surface, 2) ions contact the crystal surface and "stick", 3) ions contact the surface and then migrate laterally across the surface, or 4) an ion collides with another ion in solution or another ion migrating along the surface of the crystal. In the latter event, the ions may adhere to each other and the crystal surface or "bounce" away from each other and disperse either into the solution or across the surface. If the collision results in the ions adhering to the crystal surface, a nucleus is formed. A nucleus is a unit of the new precipitate inferred to have the shape of a half sphere laying on the crystal surface. The shape is deduced from surface area to volume ratios. A half sphere is the most energetically stable configuration ions could form on the surface. Ions that contact and adhere to the exposed nucleus form a layer of precipitate, which spreads laterally across the surface. This process is referred to as layer growth.

Crystal growth mechanisms have been modeled with relative rates of nucleation and lateral growth. In diffusion-limited growth, the relative rates of nucleation and layer growth across the crystal face vary as a result of

::<u>;</u> :::: :: · · · 1:-1: Parts: Strait \$\$401z. Single 13 344 Royal Rata / 100-27 No. tau ex Rowald

713

- :

:::

variable solute concentrations. Since the diffusion of ions to the surface is the rate-limiting step and the size of the diffusive layer surrounding the crystal increases as the crystal grows, the overall rate of crystal growth is inversely proportional to crystal size. As the crystal grows larger, it will grow more slowly since it has grown by diffusion-limited growth longer and has created a larger diffusion-depleted "halo". Thus, as an individual crystal grows, the rate of nucleation and layer growth decreases proportionately to its size. Mononuclear crystal growth is dominated by lateral growth in each growth layer. The rate of lateral layer growth is much greater than the rate of nucleation. Thus, an individual nucleus spreads laterally across the surface before another nucleus forms. formation of a nucleus is the rate-limiting step. Polynuclear crystal growth is the other end member of the spectrum between mononuclear and polynuclear growth. In the polynuclear case, the rate of nuclei formation greatly exceeds the rate of lateral growth. In Nielson's version (1964) of polynuclear growth, there is minimal lateral growth occurring as nuclei intergrow at a finite rate. Ohara and Reid's version (1973) there is zero lateral growth occurring between nuclei. Using either version, individual monolayers form almost entirely by accretion of nuclei rather than lateral growth. Both versions of polynuclear growth lead to dr/dt = k. Thus, the boundary between

-· -

:.. ā.;

3.2 ;:..<u>;</u>

: ÷ **:** :

:: <u>:</u> : :

-â, ÷ Rev.

ing;

:- dt

-351

-3/5**/**

Mieze |

1 :3 :

इस्त्_{रिक्}र £434.

34235

22 22 11.618

mononuclear and polynuclear growth is defined by the number of nuclei. In mononuclear growth, one nucleus gives rise to one growth layer (one d-spacing high or greater) and the time between individual nucleation events may be very long. In polynuclear growth, a single growth layer (one d-spacing high or greater) forms by accretion of nuclei on the surface. The intermediate case between mononuclear and polynuclear growth is described by a separate growth model referred to as birth and spread growth. In the birth and spread growth model, more than one nucleus forms per growth layer but lateral growth still occurs. As discussed previously, birth and spread growth has been tentatively represented by dr/dt = k/r and dr/dt = k. Nielson's model (1964) combining mononuclear and polynuclear growth resulted in dr/dt = k/r. In that study, a probabilistic model was used in which the average time for completion of a growth layer was defined as:

 $\tau = \tau_1 + 0.6 \ \tau_2$ (page 50, Nielson 1964) where τ_1 is the time between successive nucleation events and τ_2 is the time required to form a complete growth layer. In order to express the equation in terms of growth, τ_1 is substituted with the mononuclear growth equation and τ_2 is substituted with the polynuclear growth equation to result in dr/dt = k/r. While the analysis is straightforward, Nielson warns "such detailed conclusions are not justified

1813.55

BII.Ve

Pala 1

31-37-21

April,

Patt to

401811

Filel 6

3.24 jj

inese

#1 3 p p

STEEL N.

* k. .

tate p.

=1-at;

1994

823748

Ettyra (

2601

Stysta

-01e

itea I

orystal

363027

because so many approximations have been made in order to arrive at this point." (page 52, Nielson, 1964). Ohara and Reid (1973) combined the ideas of mononuclear and polynuclear growth to arrive at birth and spread growth. Again, in this model there is no intergrowth between nuclei. Each nucleus is modeled as if it will grow to the edge unobstructed. The other two critical assumptions of this model are: 1) lateral growth is constant regardless of the size of the layer growing and 2) nuclei can form anywhere. These assumptions result in the equation dr/dt = k for birth and spread growth. While no definitive equation exists for birth and spread growth, the analysis in this study will approximate birth and spread growth with the equation dr/dt This choice is based on the argument the nucleation rate per unit area per unit time is constant. Another equation has been tentatively proposed by Nordeng and Sibley (1996) from empirical evidence. Nordeng and Sibley (1996) suggest dr/dt = kr may represent a hybrid mononuclearpolynuclear crystal growth mechanism. This equation is also declined in favor of dr/dt = k. If each square unit of crystal surface has the same random chance of forming a nucleus on the surface, then the nucleation rate per unit area per unit time will not vary with crystal size. crystal size, given the model's assumptions is best described by dr/dt = k.

A growth model, which is not constrained by relative nucleation rates, is the Spiral Growth Model (Burton et al. 1951). The spiral growth model describes layer growth away from the crystal face expression of a slip plane. Since portions of the slip plane rise to different heights above the crystal face, adding ions to the leading edge (created by a slip plane) perpetuates the edge of the growth layer through time. This eliminates the need for nucleation, implying spiral growth can occur at saturations below the saturation state necessary for the formation of stable nuclei.

Factors such as solution composition, solute diffusion and crystal form affect nucleation and layer growth by changing surface free energy and free energy of formation of the new precipitate (Steefel and Van Cappellen 1990, Nielson 1964). The radial growth rate, dr/dt = k, for polynuclear growth is independent of the radius which intuitively follows from the fact layer growth is an absent to minor component in polynuclear growth. Spiral growth, like polynuclear growth, is also independent of radius. The spiral growth and polynuclear growth rates are both approximated by k (Nielsen 1964). In polynuclear and spiral growth the number of available sites to add an ion to the crystal surface are not constrained by the radius of the crystal when evaluating an individual crystal. Polynuclear growth involves multiple layers precipitating at one time.

::...

- · ·

ŧ.,

;; ·

ĖĮ,

: ţ,

[43_]

H: 3

stroe

124

Cryst

K. C.

212121

Spiral growth involves addition of ions along turns of a spiral defect. Thus, the growth rate of polynuclear and spiral growth are controlled respectively by the factors influencing the nucleation of simultaneous layers on a growth surface and the distance between adjacent turns of a spiral or collectively by k. Unlike spiral and polynuclear growth, mononuclear growth is a function of radius as well as k for an individual crystal. In mononuclear growth, the number of available sites is proportional to crystal size since only one layer grows across the surface at any point in time and the overall radial growth is limited by nucleation of the next layer. Thus, the larger the crystal, the greater the likelihood of a successful collision resulting in the formation of a nucleus. In birth and spread growth, nuclei may form on any size layer. Thus, there is more than one available nucleation site utilized per growth layer similar to the polynuclear case. Likewise, birth and spread growth is also independent of crystal size since the number of layers formed per unit area per unit time will not vary with crystal size.

Crystal Growth Mechanisms in Natural Systems

The determination of the mechanism and rate of crystal growth has included the use of many different techniques with unique approaches. Previous studies of carbonates used methods including but not limited to petrography, bulk

1111

1.777

ierșe:

Eté:1

iii.

3.t.e;

1944, 3

14113

1941, 3

ta

30.00 to

Sate

There

the do

\$010#. \$014#.

W1917

Secept.

E CO

ŝt à.

chemical analysis, weight of precipitate, crystal size distributions, cathodoluminscence zone data and crystal and fluid composition from crystals grown at different temperatures and solution compositions in the laboratory (Eberl et al. 1998, Nordeng and Sibley 1996, Nordeng and Sibley 1994, Sibley et al. 1994, Sibley and Bartlett 1987, Sibley et al. 1987, Bullen and Sibley 1984, Gregg and Sibley 1984, Saller 1984, Carlson 1983, Morse 1983, Sibley 1982, Carlson and Rosenfeld 1981, McKenzie 1981, Reddy et al. 1981, Choquette and Steinen 1980, Gaines 1980). Field approaches included measuring the extent and abundance of dolomite from outcrop and thin sections (Wilkinson et al. 1996, Sibley 1980). Sibley (1980) found dolomite often has sharp boundaries between dolomite and limestone. interprets the sharp contact as representing the extent that the dolomitizing solution was in contact with the limestone precursor for a time longer than the induction period of dolomite. Limestone in contact with the dolomitizing solution for any period shorter than the induction period would not begin dolomitization.

A more recent method applied to crystal growth determination is the *in situ* analysis of growing crystals with scanning force microscopy. This tool has provided substantial evidence for the growth models originally proposed by Nielsen (1964), Ohara and Reid (1973) and Burton et al. (1951). However, this particular method is best used

111

Set we s

1.2+1*2*

.....

8-12 t

1.565

Fitur E

÷: ±:.

5/24I1;

-11:11:

\$755<u>1</u>

1411₁₇

Tat Land

Five:

Stecition of

Pingles

1212

Setem |

2411.0 <u>1</u>

Set ett

for in situ analysis or ex situ analysis for differentiation between different surface reaction-limited crystal growth models and not as an ex situ tool to distinguish diffusionlimited growth from surface reaction-limited growth. situ growth of calcite and gypsum under a controlled fluid composition gives insight into the transition between the different surface reaction-limited mechanisms at different saturations (Stipp et al. 1994, Gratz et al. 1993, Hillner et al. 1992, Rachlin et al. 1992). However, these experiments determine the crystal growth mechanism for laboratory-grown crystals and only the last precipitation event in crystals from naturally occurring rocks. Sample surface alteration in natural rocks can etch this surface, altering growth features. In addition, surface analysis of natural crystals does not indicate if all crystals in a given lithofacies had contact with the last fluid.

Cathodoluminescence indicates extent and timing of precipitation from fluids of different Mn and/or Fe compositions. Zonal stratigraphy of an individual luminescent zone appearing in each crystal is used to determine the extent of the rock-water interaction for a particular cathodoluminscent zone. The concentric cathodoluminescent zoning in dolomites can be used to determine the crystal growth mechanism for each internal cathodoluminescent zone (Nordeng and Sibley 1996).

ī. i... Ēį, i i ž 3 1. 1. ÷.÷: î ê je Pe in [- 1 A ii.;e.; -5.2-3 if son \$7,2 G *1212 Party.

tone |

Châng

163.

2:78:

In carbonate rocks, cathodoluminescence is caused by Mn (Mn^{2+}, Mn^{4+}) , which is incorporated into the mineral. Ferrous and ferric iron has the opposite effect. crystals reflect variations in Mn and Fe concentrations in the precipitating solution through time (Machel 1989, 1983, Fairchild 1983, Pierson 1978). When Mn is incorporated into the Mg or Ca sites of dolomite, spectral analysis indicates a shift to longer wavelengths giving a range of colors from green to yellow to dark red depending on the valence state and concentration of the Mn incorporated (Pierson 1981). Pierson (1981) also found Mn concentration of only 100 ppm necessary to induce luminescence and a minimum of 10,000 ppm Fe needed to suppress luminescence. Sharp boundaries found between individual cathodoluminescent zones may result from threshold values for the substitution of Mg by Mn that induces jumps in the spectral shift as a result of changes in bond length (Pierson 1978, 1981).

The sharp boundaries and variable luminescent intensity of zonation in carbonates allows measurement of zone widths and correlation of zones within formations. To use a zone width as a measure of the rate of precipitation from a particular solution and the three-dimensional variation in zone width from crystal to crystal as a spatial indicator of changes in the rate of precipitation, the following is required: 1) concentric zones can be correlated from crystal to crystal and 2) individual zones are isochronous.

De fi of ory

ines,

sare o

Mire.

883 LT;

25% \$ 1 a

lave :

18 817

Cat, pa

Spaces

Diange.

\$15.25

30 th

207.50

3.2.8

11. 80 12.48.0

40.00

to ga

إزوعنا

The first requirement can be visually checked by inspection of crystals over the sampling interval. Crystals with the same zonal stratigraphy should have: 1) the same number of zones, 2) the same ordering of zones by intensity, and 3) correlated zones with similar intensities. The second assumption of isochronous zones is based on groupings by zonal stratigraphy and nucleation arguments. A group of crystals with the same zonal stratigraphy are assumed to have precipitated from similar solutions. This assumption is similar to assigning the same age to correlated lithofacies. In both cases, the assumption of isochronity can be stated with greater confidence for more closely spaced samples and only inferred for samples further apart. Changes in solution are assumed to have occurred nearly simultaneously (faster than the induction period for dolomite growth on dolomite) over the range of crystals with the same zonal stratigraphy. The latter assumption is based on the idea that an induction period should exist for compositional changes in dolomite. Experiments conducted by Sibley and Bartlet (1987) indicate an induction period for dolomite precipitating on dolomite when dolomite seeds are added as a reactant in the dolomitization process. Changes in solution that change the composition (% Mg) of the dolomite may be one cause for an induction period. However, to date, exact experiments investigating dolomite precipitation on dolomite have not been performed due to the difficulty of assaying the composition of initial, small quantities of precipitate.

Combination of Crystal Growth and Solute Flux

If a crystal growth unit is defined as a unit of rock that shares the same crystal growth equation, then a crystal growth unit can be defined theoretically by combining reaction rate with solute flux. Solute flux can be divided into high and low solute flux based on the rate of solute flux compared to the rate of solute uptake by crystal growth. High solute flux is when the rate of solute delivered to the surface is greater than the rate of solute uptake by crystal growth (Surface-Reaction-Limited Crystal Growth). Low solute flux is when the rate of solute delivered to the surface is less than the rate of uptake by crystal growth (Diffusion-Limited Crystal Growth). Since k is a function of solution composition, solute diffusion and crystal form; k will be assumed constant for any one crystal. K will also have a constant value for any lithofacies or portions therein containing a homogeneous solution. Since lithological heterogeneity is a function of scale, any heterogeneous rock unit can be described in terms of its homogeneous parts. Each growth model; diffusionlimited growth, mononuclear growth, birth and spread growth, spiral growth, and polynuclear growth represent their own spectrum of conditions under which that style of growth

takes place with threshold values at either end of the spectrum. Thus, a range of k values exist for each growth model (Sunagawa 1984). When k is considered to be roughly approximate to solute concentration, the threshold values become threshold saturation states between the different growth models as represented by vertical lines between growth models in Figure 1. Spiral growth can occur over the entire range of saturation represented in Figure 1 because it is independent of nucleation. Defects on the surface of the crystal provide an edge for attachment of ions. As ions attach to this edge, the defect (screw dislocation) propagates through time. The spiral growth rate will also increase with increasing solute concentration but its rate relative to other models is unknown.

By integrating the growth rate equations for diffusion-limited crystal growth and the end members of surface-reaction-limited crystal growth from r_1 to r_2 and rearranging the equations in terms of r_1 and the width of the next increment of precipitate (zone width) yields a function that relates the rate of precipitation to crystal size (Table 2). As stated earlier, in the integrated equations, r_1 is the crystal size at the onset of precipitation and r_2 is the crystal size at the end of precipitation. Thus r_2 - r_1 is equal to zone width or the increment of new precipitate added to the crystal surface.

Σŋ

::

ī:÷

ii

Verte

8.3. 8322

AST &

is the

वर्षेत्रस्य वर्षेत्रस्य

Population Trends for Crystal Growth Mechanisms

In order to determine crystal growth mechanism, plots of r_2 - r_1 (new precipitate added or zone width) versus r_1 (crystal size) for crystal populations can be used (Nordeng and Sibley 1996, Carlson 1989, Kretz 1974). The population trend will reflect the crystal growth equation of the ratelimiting process. The expected trend of zone width vs. crystal size for each of the possible growth mechanisms (Table 2) can be represented by a different family of functions. Mononuclear growth is a complex quadratic equation similar to a parabola except the distance from the vertex increases as distance along the x-axis increases (Figure 2). Rearrangement of the zone width-crystal size population equation for mononuclear growth yields the following equation:

$$r_1 = (1/k) - (r_1^2/zw)$$

A plot of (r_1^2/zw) vs. r1 will yield a slope of -1. Thus, a linear fit to the modified mononuclear plot describes how well a data set fits mononuclear growth. Diffusion-limited growth is an inverted hyperbolic function that asymptotically approaches zero (Figure 3). The relationship between zone width, or the thickness of new precipitate added to the surface, and r_1 , crystal size, is a function of time and increasing boundary layer thickness per unit time for that particular crystal. The equation does not describe a population of crystals because it does not describe any

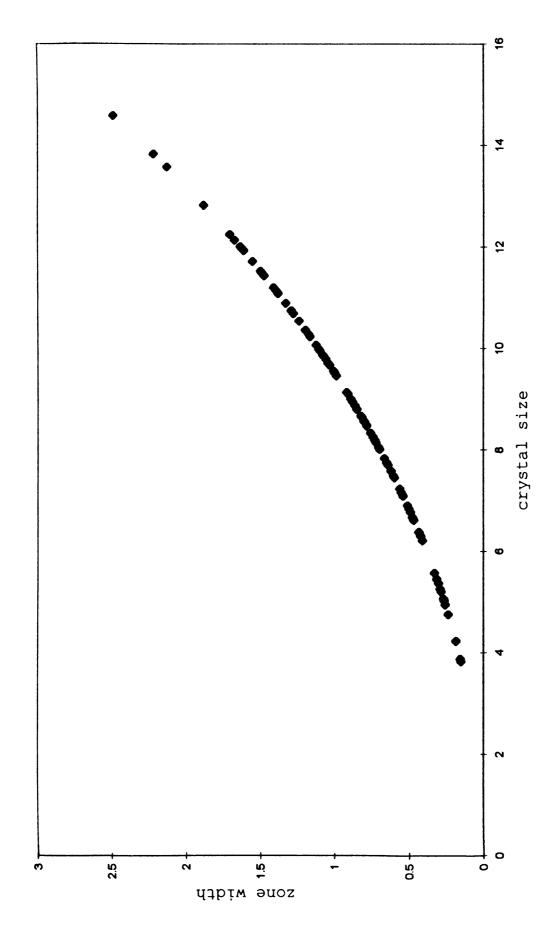


Figure 2. Population Trend for Mononuclear Crystal Growth

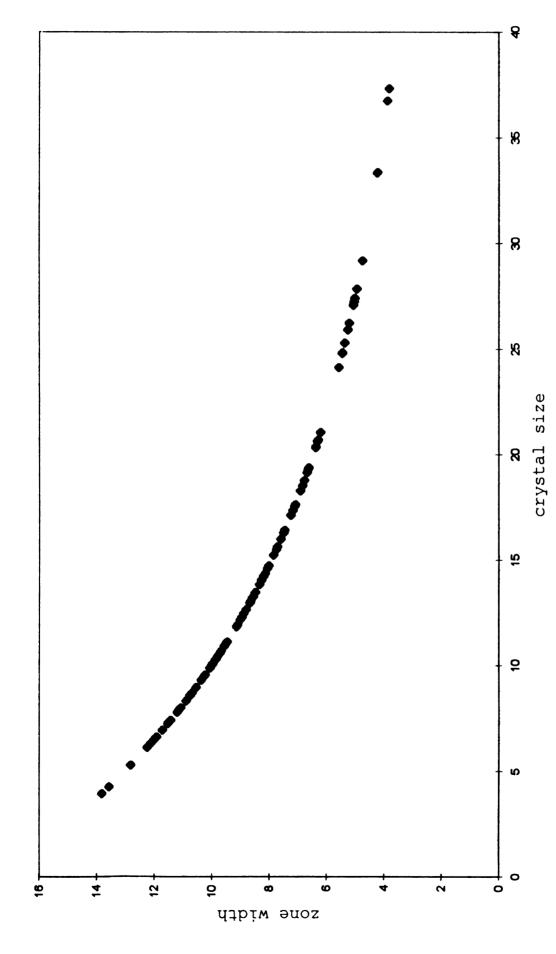


Figure 3. Diffusion Limited Growth Model for a Crystal Through Time

relati.

int in

18 15 34

⊒epran.

2 33 =

arysta. Rowth,

30.415.

int s

tier.

1 25

Size.

8800t

001,81 1401,6

10 kg

Tite |

tate

relationship between the initial crystal size and rate of boundary layer formation. If the crystals are precipitating from the same solution on the same substrate, the rate of the formation of boundary layer per unit area per unit time is independent of the initial crystal size when the mechanism switches to diffusion-limited growth. Therefore, dr/dt = k represents diffusion-limited growth as well as polynuclear growth and spiral growth for populations of crystals (Figure 4). In the case of birth and spread growth, a hybrid case between mononuclear and polynuclear growth, a population of crystals would also appear as a straight line, dr/dt = k, on a zone-width vs. crystal-size plot since the zone width, new precipitate added per unit of time (growth rate), does not change with crystal size. birth and spread growth, two critical assumptions result in a crystal growth equation that is independent of crystal The first assumption is that nuclei can form anywhere size. on the surface (Nyvlt 1985, Ohara and Reid 1973). second critical assumption is the rate of growth of faces is constant (Nyvlt 1985, Ohara and Reid 1973). nucleation is the rate-limiting step and nuclei are assumed to have an equal probability of forming anywhere on the surface, the rate of nuclei formation per unit area per unit time is independent of crystal size. Therefore, nucleation rate would not vary with crystal size even though it does

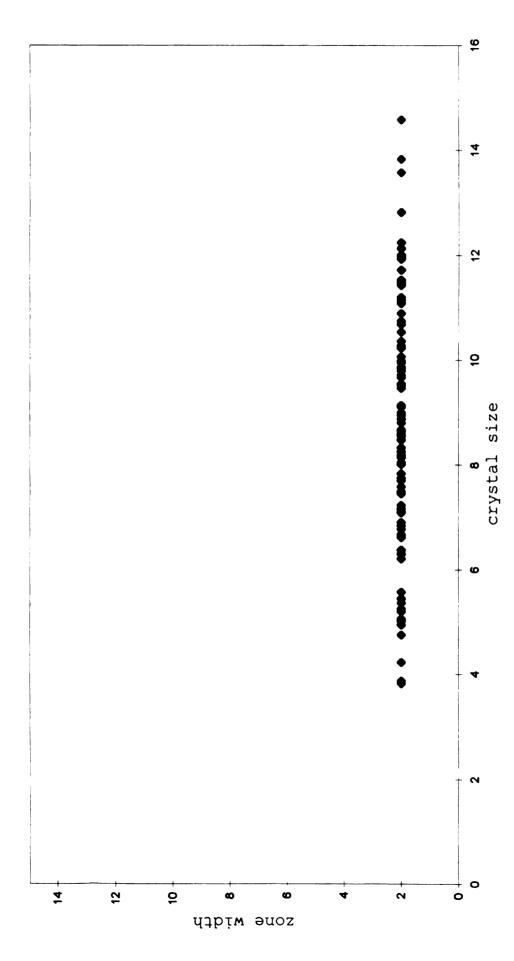


Figure 4. Population Trend for Polynuclear, Birth and Spread, Spiral and Diffusion-Limited Growth Models

S.CE

. 17212

41---

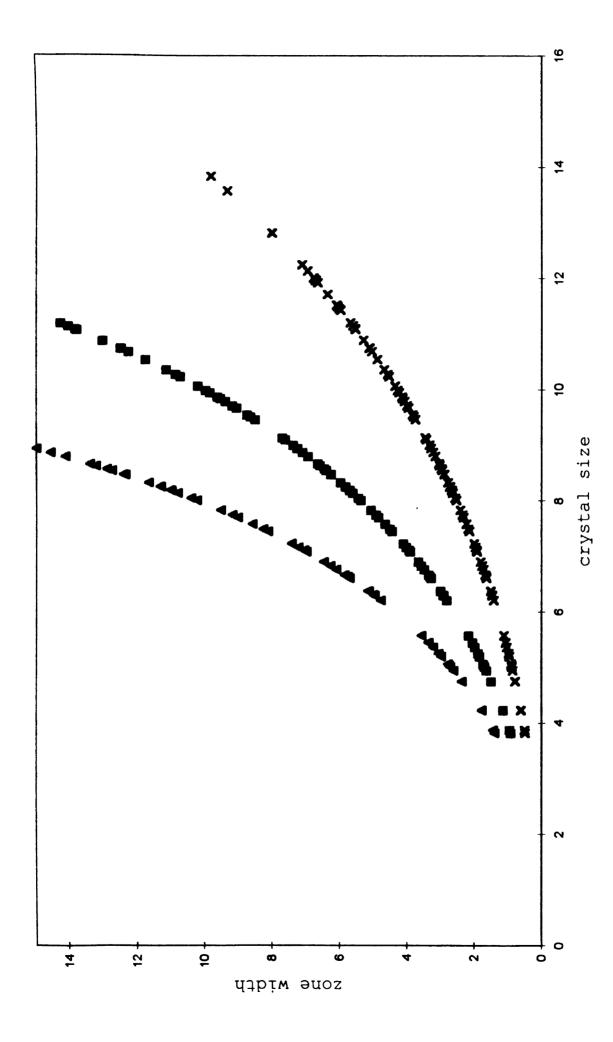
ite y

inot:

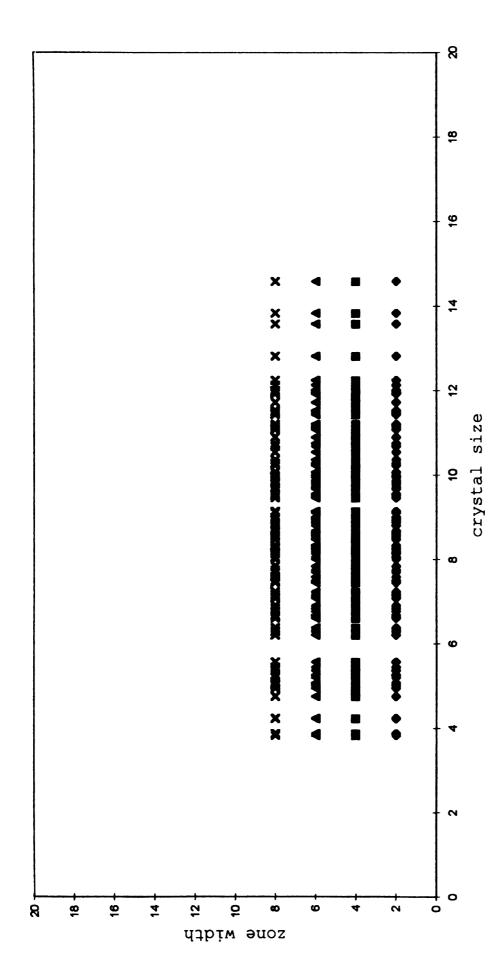
Rows

Signal Market

3: 3:


etys:

4.3.


vary with solute concentration for the birth and spread growth model similar to polynuclear growth.

For the two trends (mononuclear growth, Figure 2 and all other growth models, Figure 4), the crystal growth equation represented by the zone-width vs. crystal-radius plots would fit $dr/dt = kr^2$ or dr/dt = k. For mononuclear growth, a series of equations with a variable distance to the vertex would comprise the function family (Figure 5). For polynuclear, birth and spread, diffusion-limited or spiral growth, the series of equations would consist of horizontal lines (Figure 6).

If k is spatially heterogeneous, the expected trend would be different equations from one family of functions (one crystal growth mechanism) or multiple families of functions (multiple crystal growth mechanisms). If each mechanism can be represented by a range of k values, or growth conditions, and each mechanism has different k ranges (Sunagawa 1984), then k varies with mechanism as well as within a mechanism. Thus, the magnitude of variation in k, or growth conditions determines whether the trend is: 1) different equations from a family of functions representing one crystal growth mechanism, or 2) different equations from different families of functions representing multiple crystal growth mechanisms. The latter can be tested by comparing crystal growth mechanisms, or different zone width-crystal size trends, dr/dt=k or dr/dt=kr², spatially.

Family of Trends for Mononuclear Crystal Growth Figure 5.

Family of Trends for Polynuclear, Birth and Spread, Spiral and Diffusion-Limited Growth Models Figure 6.

For spa

l fir e

ā sing)

18 ext.

Geolog

-

Czdow

and Se

Pathon

Te :

lones

Acite.

tite

is at

i e

015 V: Sg: For spatial comparisons involving one crystal growth mechanism, the variation of the basic equation type, dr/dt = k for example, represents variable crystal growth rates from a single crystal growth mechanism. Intuitively, the latter is expected, since each crystal growth mechanism is expected to cover a range of growth conditions (Sunagawa 1984).

Geologic Setting

The Saluda Formation (Ordovician), Whitewater Formation (Ordovician), Burlington-Keokuk Formation (Mississippian) and Seroe Domi Formation (Miocene) exhibit concentric cathodoluminescent zoning with multiple light (Mn) and dark (Fe) zones. Zones can be correlated on the scale of an outcrop for the Burlington-Keokuk and Seroe Domi formations. Zones can be correlated between outcrops for the Saluda and Whitewater Formations. These formations exhibit intact, zoned rhombs with minimal subsequent alteration at one or more outcrops of each formation. Since zone width is used to approximate growth rate, the same zone needs to be measured within each formation. This condition constrains the choice of formations to dolomites with spatially consistent zonal stratigraphy.

Burlington-Keokuk Formation

The Burlington-Keokuk formation (Mississippian) crops out across northwestern Illinois, southeastern Iowa, and Missouri (Banner *et al.* 1988). The Burlington-Keokuk is

• •

Ēij

; -

;:::

2.03

ġ..

ii:te

741.

Stra

Pare:

Aatg

Sever ard 3

Scient Start

Paris

Çát.

Çat

conformably overlain by the Warsaw Shale Formation

(Mississippian) and unconformably overlies the Hampton

Formation (Mississippian) (Harris 1982). The Burlington
Keokuk consists of shallow marine deposits on an

intracratonic shelf, which was subsequently buried by a

prograding delta depositing the Warsaw Shale (Lane and

DeKeyser 1980). The unit is characterized as dolomitized

mudstones and crinoidal wackestones to packstones (Banner et

al. 1988, Cander et al. 1988).

The Burlington-Keokuk dolomites can be divided into three separate dolomite generations based on zonal stratigraphy: 1) a concentrically-zoned rhombic generation (generation I), 2) a brightly-luminescent, rhombic generation, which is not zoned (generation II), and 3) a dark nonluminescent generation (generation III) (Cander et al. 1988). Generation II dolomite replaced generation I, and generation III replaced both generation I and II. Generation I had undergone dissolution at most outcrops of dolomitized Burlington-Keokuk. Samples from the Dallas City Quarry (Illinois) and outcrops in Illinois and Missouri exhibit dissolution and replacement of Generation I to various degrees (Figure 7). The zonal stratigraphy also varies from outcrop to outcrop in detail and number of zones (Cander et al. 1988). The type of dissolution seen in Figure 7 is characteristic of most outcrops to some degree (Cander et al. 1988). A single outcrop in Eastern Missouri

	-	_	Marie Control	t e	4
The second secon					
			 	4	

Figure 7. Cathodoluminescent image of Burlington-Keokuk sample from the Dallas City Quarry. Arrows point to dissolution of dolomite cores (1 inch = 100 microns).

E. ;: •

mat e

lenera

113 17

site,

11.15

:: 34

:elat

347.7

\$454.

:.e :

Taria.

<u>v</u>.ss:

ii;

Ä2: 3:

âţę other.

3121

红玉

2522

::;

٤<u>+</u> _

٧÷٠

(Highway 61, north of Bowling Green, Missouri) was found that exhibits minimal to no evidence of dissolution of Generation I across the entire outcrop. This outcrop with its intact zones was used for the study. At this particular site, the Burlington-Keokuk consists of a unimodal, planar dolomite with fossil molds and is interpreted as a dolomitized crinoidal wackestone (Figure 8, 9).

The isotope values for the concentrically zoned rhombs of generation I indicate a depletion in δ^{13} C and δ^{18} O relative to expected marine dolomite of Mississippian age (Banner et al. 1988). This was interpreted to represent a meteoric component mixing with seawater after deposition of the Burlington-Keokuk. The variation in δ^{18} O without variation in δ^{13} C could also result from normal Mississippian marine waters with temperature fluctuations of approximately 20 degrees Celsius (Figure 10) (Tucker and Wright 1990). However, normal Mississippian marine waters are expected to result in dolomite crystals with higher Sr concentration and lower Fe and Mn concentrations than the Burlington-Keokuk generation I dolomite. Generation I has an Fe concentration range of 500 to 3000 ppm (expected marine value, 16 to 57 ppm), a Mn concentration range of 600 to 1100 ppm (expected marine value, 19 to 22 ppm), and a Sr concentration range of 108 to 123 ppm (expected marine value, 150 to >200 ppm) (Banner et al. 1988). The 87 Sr/ 86 Sr

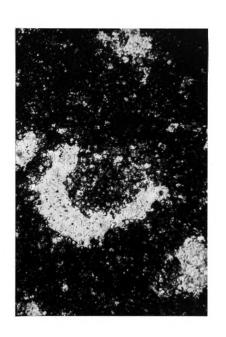


Figure 8. Partially crossed polars view of Highway 61 Burlington-Keokuk sample (Missouri). Arrow points to crinoid fossil mold (1 inch = $200~\rm microns$).

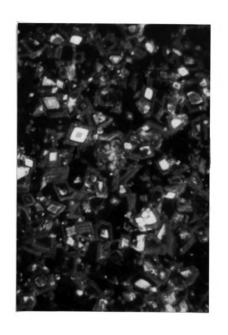


Figure 9. Cathodoluminescent view of Highway 61 Burlington-Keokuk sample. Arrows point to slices of dolomite rhombs that exhibit all the zones encountered. (0.75 inch = 100 microns).

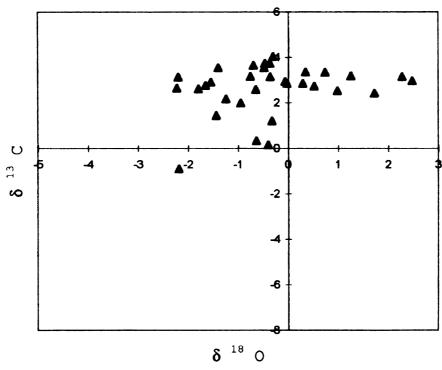


Figure 10. Burlington-Keokuk Isotope Data, δ^{18} O versus δ^{13} C (after Banner *et al.* 1988)

atti ii

nne:

i. 14-

Herip.

evilair Mar o

l tre

3:

in: :

*ilers

ilway at al.

Seroe

· • • · · ·

-630:

Sexo.

:-:::

₹.

D, 0

tei

E.

ratio of generation I (0.70757 to 0.70808) is only slightly higher than the expected marine value (0.7076) (Banner et al. 1988). Mixing meteoric water with seawater and precipitating dolomite from a high water/rock ratio would explain: 1) the depletion and range of δ^{18} 0 and δ^{13} C, 2) the high concentrations of Fe and Mn relative to seawater, and 3) the depleted Sr concentration and only slightly higher 87 Sr/ 86 Sr ratio (Banner et al. 1988). The latter results from the low concentration of Sr in freshwater and meteoric waters enriched in radiogenic Sr from interaction with the lower Paleozoic rocks of the Transcontinental Arch (Banner et al. 1988).

Seroe Domi Formation

The Seroe Domi formation represents a foreslope to lagoonal deposit overlying Cretaceous basalts at the Seru Blandan and St. Michielsberg outcrops, Curacao, Netherland Antilles (Miocene). The tops of the inclined beds of the Seroe Domi are partially dolomitized (Fouke et al. 1996, Lucia and Major 1994). Completely dolomitized sections of first generation Seroe Domi dolomite at the Seru Blandan and St. Michielsberg outcrops occur as lenses of dolomite that dip seaward (Fouke et al. 1996, Lucia and Major 1994, Sibley 1980). The Seroe Domi Formation includes foram wackestones, red algal packstones, coralgal grainstones and boundstones (Fouke et al. 1996). Three generations of dolomite have

IHHT I

[#1.#1.#

luia na

*17.7 S

1111.1

2...

::Els:

Tile i

340001

1113

Ras I

tick.

N.

been recognized in the Seroe Domi outcrops on the island of Curacao: 1) a yellow-orange, concentrically-zoned generation (generation I), 2) an orange-brown generation with sectoral zoning (generation I'), and 3) a dull orange luminescent generation (generation II) (Fouke et al. 1996). All three occur as both cements and replacement of calcium carbonate substrate (Fouke et al. 1996). Generation I dolomite was used for this study because of its zoned, planar rhombs (Figure 11). The yellow-orange concentrically zoned generation I occurs as dolomite lenses near the base of the section (Fouke et al. 1996). Generation I' which exhibits uniform zones most often occurs as a pore-lining cement and rarely exhibits complete rhombs and exhibits sectoral zoning. Generation II does occur as planar rhombs contains but does not have internal zones.

The first generation of dolomite is a unimodal planar dolomite that obliterates the texture of the precursor substrate (Figure 12). The dolomite (generation I) has also being partially replaced by generation II (Figure 13) and has undergone dissolution (Figure 14). The dissolution patterns in Figure 14 are consistent with dissolution of Carich cores and inclusions (Figure 15).

Isotope data have been interpreted as a freshwatermarine mixing zone (Fouke et al. 1996, Sibley 1980) and as

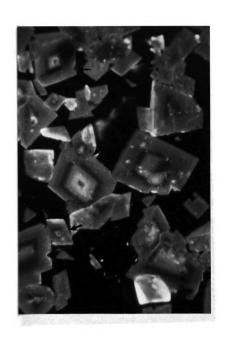


Figure 11. Cathodoluminescent image of Seroe Domi Generation I dolomite crystals. Arrows point to crystals that exhibit all of the zones encountered (1 inch = 50 microns).

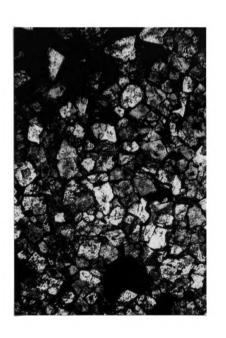


Figure 12. Partially-crossed polars view of Seroe Domi unimodal planar dolomite (0.75 inch = 100 microns).

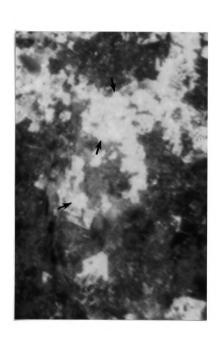


Figure 13. Cathodoluminescent image of Seroe Domi sample showing brightly luminescent dolomite generation II replacing generation I dolomite (1 inch = 100 microns).

dolomite cores. Arrows point to edge of interior dissolution of generation I dolomite crystals (1 inch = $50~{\rm microns}$). Figure 14. Cathodoluminescent image of Seroe Domi sample exhibiting dissolution of

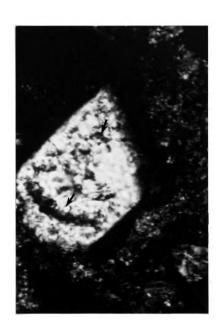


Figure 15. Cathodoluminescent image of Seroe Domi sample exhibiting inclusions and dissolution. Left arrow points to an inclusion. Right arrow points to dissolution (1 inch = 50 microns).

ć.,

34

<u>.</u>

. :

::

٤:

hypersaline seawater (Lucia and Major 1994). Evidence in favor of a mixed freshwater-marine interpretation include δ^{18} O values that are consistent with normal surface temperatures and δ^{13} C variation similar to modern seawaterfreshwater mixing environments (Fouke et al. 1996, Machel and Burton 1994, Machel 1989). Evidence in favor of hypersaline seawater dolomitization is based on the geometry of the dolomitized lenses. A zone of undolomitized limestone that should comprise the upper freshwater lens is absent. In addition, dolomitization does not crosscut beds as expected for a mixing lenses moving deeper into the section as regresssion of seawater occurred (Lucia and Major Evidence against hypersaline seawater dolomitization is that the shape of the dolomitized lenses is a result of dolomite selectivity (Fouke et al. 1996). Fouke et al. (1996) argue that precursor beds for the stratiform dolomite bodies were more readily dolomitized than the surrounding limestone precursor. In addition, concentrations of the trace elements Na, Cl and SO4 are lower than expected for a dolomite precipitating from evaporated seawater (Fouke et al. 1996). Further evidence in support of mixed seawater-meteoric dolomitization includes: 1) δ^{13} C and δ^{18} O values lighter than the estimated marine dolomite and 2) low Mg calcite cements encrusted by generation I dolomite (Fouke et al. 1996). The latter

: -2 : 17. Äât, j 74. à . €χ \$ } 51

suggests a period of subaerial exposure immediately prior to precipitation of generation I dolomite. The variation in $\delta^{13}C$ and $\delta^{18}O$ has also been suggested to represent mixing of marine and freshwater with different total dissolved carbon concentrations and soil-derived CO_2 (Fouke et al. 1996) (Figure 16). If the two fluids mixing had the same total dissolved carbon concentration, a plot of $\delta^{18}O$ vs. $\delta^{13}C$ values would fall on a line with a slope of 1. In this case, the freshwater has a higher total dissolved carbon concentration since it: 1) does not have a slope of 1 and 2) the $\delta^{13}C$ signature is lighter indicative a freshwater influence.

Saluda/Whitewater Formations

The Saluda Formation (Ordovician) is a massive dolomite overlain by partially dolomitized, marine limestones of the Whitewater Formation (Ordovician) and underlain by interbedded, marine limestones and shales of the Dillsboro Formation (Ordovician) (Brown and Lineback 1966). The Saluda and Whitewater Formations extend into southern Ohio and Kentucky. The Saluda Formation has also been recognized as a member of the Whitewater Formation based on its restricted extent (Gray 1972). The Saluda dolomite has been interpreted as a lagoonal deposit with dolomitization occurring from hypersaline solutions resulting from evaporation of seawater (Martin 1975, Hatfield

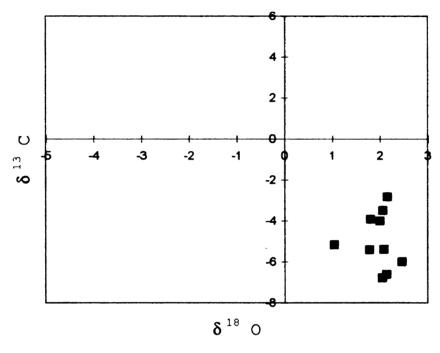


Figure 16. Seroe Domi Isotope Data, δ^{18} O versus δ^{13} C after Fouke *et al.* 1996

. • ÷. . . · -÷ : ::: **:**:: :: • <u>•</u> • • • • • • 1. Yan. \$40 203

> 0g (\$0) do

Ä.

âţţ

it;

Eq. (

à.,

1968). The depositional model is based on the presence of large corals, Tetradium and Favistella, which surrounded the dolomitized lens of the Saluda Formation off the Cincinnati arch, and acted as a barrier to seawater (Hatfield 1968). Further evidence in support of a hypersaline interpretation is the presence of the ostracodes, Leperditia and Leperditella, which prefer a hypersaline environment (Hatfield 1968). In the Madison, Indiana area, the Saluda formation varies from interbedded, partially dolomitized fossiliferous grainstones and dolomicrite near the base to a massive laminated dolomicrite comprising the upper portion of the Saluda formation. The overlying marine limestones of the Whitewater Formation are partially to completely dolomitized peloidal grainstones.

Three outcrops (Highway 421, Hwy 7 and Hwy 56 outcrops; Madison, Indiana) were compared (see Sampling Locations section for locator map). The Highway 421 outcrop has the most complete and thickest section of the Saluda and Whitewater Formations. At this locality, there is approximately 16 feet of vertical section of the Saluda Formation and 20 feet of vertical section of the Whitewater Formation. The transition between the Saluda (dolomicrite) and the Whitewater (peloidal grainstone with abundant ostracods) is gradational over 8 feet of section. The upper portion of the Whitewater changes from a massive partially dolomitized limestone to interbedded shales and limestones.

3;; ΫĖ: ; ; 21. • • • ֈş ::: e; 3.

•

-

•

:

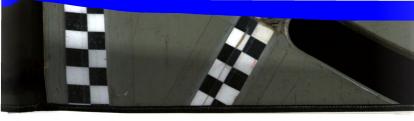
?

•

10

<u>.</u>..

:-


- 2

<u>.</u>.

The Saluda consists of the upper massive dolomicrite, which contains minor laminations and the lower interbedded partially dolomitized grainstones and dolomicrite at the base. The predominant fossils in the partially dolomitized grainstones are brachiopods, bryozoans, crinoids and trilobites. The massive dolomicrite represents approximately 10 feet of vertical section and the lower interbedded section represents 6 feet of vertical section. In the lower section, the interbedded dolomicrite persists laterally. The grainstones occur as irregular, discontinuous lenses ranging from 4 to 22 feet laterally. Both the interbedded grainstones and dolomicrites thickness vary between 1 and 3 feet vertically. There are sharp boundaries between the interbedded grainstones, interbedded dolomicrites, and massive dolomicrite.

At the Highway 7 and 56 outcrops, the total section is thinner. Cores of this section also indicate thinning eastward (Gray 1972, Brown and Lineback 1966). At the Highway 7 outcrop, formations above the Saluda have been eroded. There is approximately 10 feet of vertical section of the Saluda present. The interbedded grainstones and dolomicrites have the same lateral extent but do not exceed 1.5 feet vertically. The lower portion of the Saluda comprises only 4 vertical feet of section. At the Highway 56 outcrop, both the Saluda and Whitewater Formations are present. The Saluda at this outcrop is represented by 4

: -: -• Ä. : ::: ż. Ä. Per. 11. 11: 30 à, 3 |

vertical feet of section. Half of the Saluda section is represented by interbedded grainstones and dolomicrites. Individual beds range from a few inches to 2 feet thick. The transition between the Saluda and the Whitewater is gradational, similar to the 421 outcrop. Approximately 10 vertical feet of the Whitewater Formation (peloidal grainstone) overlies the Saluda Formation. At both the Highway 421 and 56 outcrops, the Whitewater Formation is overlain disconformably by Silurian limestones.

Dolomite crystals in the Saluda Formation and overlying Whitewater Formation share the same zonal stratigraphy (Figure 17, 18). The same zone patterns indicate the two formations were dolomitized by the same solution (Sibley et al. 1993, Meyers 1974). Dolomitization of the Saluda and Whitewater Formations concurrently is in direct contrast to the idea the Saluda Formation was dolomitized penecontemporaneoulsy with deposition of the fine lime mud in a hypersaline environment (Martin 1975, Hatfield 1968). This does not indicate the Saluda precursor limestone was not deposited in a hypersaline environment but that dolomitization occurred after deposition of both the Saluda and Whitewater formations. The linear covariance between d13C and d18O values is consistent with dolomitization from a mixed meteoric-marine water rather than hypersaline solution (Figure 19, Table 3) (Lu and Meyers 1998, Frank et al. 1995). In this particular case, the total dissolved carbon

Figure 17. Cathodoluminescent view of Saluda dolomite crystal. Arrows point to crystals exhibiting all encountered zones (1 inch = $80\ \mathrm{microns}$).

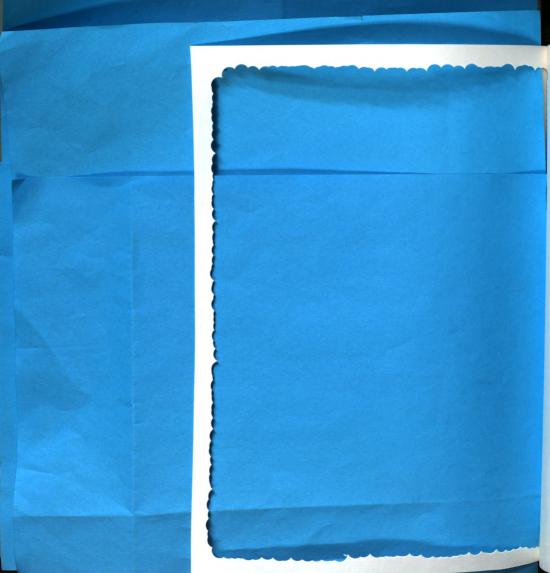



Figure 18. Cathodoluminescent view of Whitewater dolomite crystal. Arrow points to crystal exhibiting all encountered zones (1 inch = 100 microns).

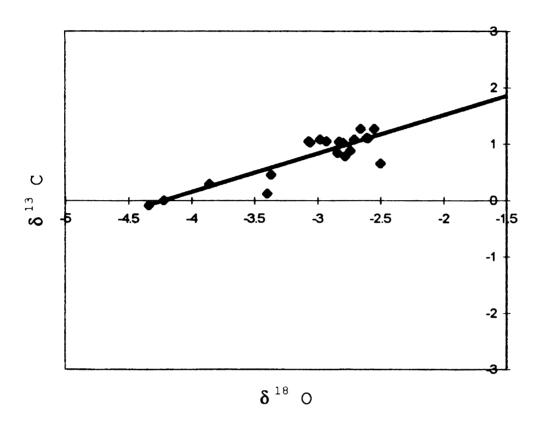
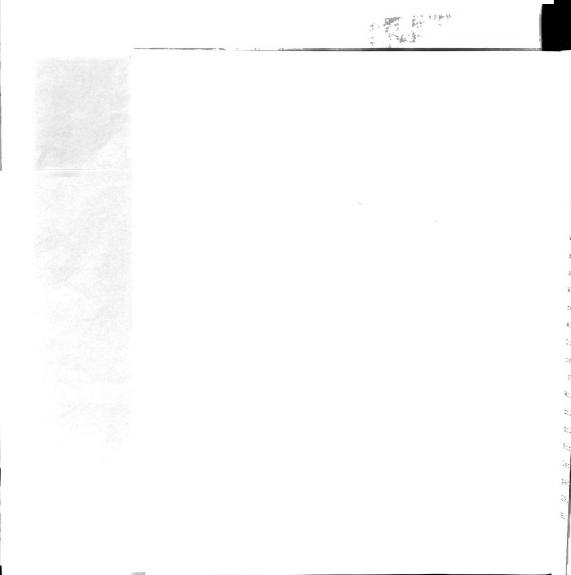
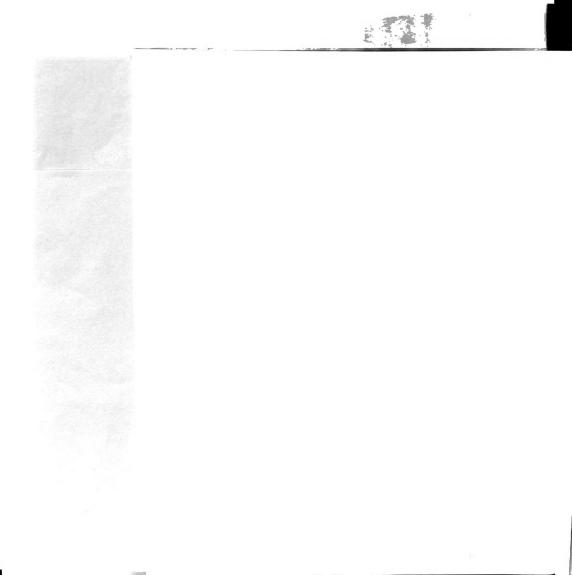



Figure 19. Saluda and Whitewater Isotope Data $\delta^{\text{18}}\text{O}$ versus $\delta^{\text{13}}\text{C}$

Table 3. Carbon and Oxygen Isotope Data for Saluda and Whitewater Formations


Sample ID	δ ¹³ C (VPDB)	δ ¹⁸ O (VPDB)
M34	0.78	-2.78
G8	1.05	-3.07
P37	.12	-3.40
SD13	1.03	-3.06
P27	-0.09	-4.34
P17	0.29	-3.86
SD23	0.45	-3.37
SD3	0.84	-2.84
M4	1.04	-2.83
M11	0.88	-2.74
M20	1.02	-2.80
G5	0.65	-2.50
G4	1.05	-2.93
D8	1.27	-2.55
D10	1.27	-2.66
G3	1.11	-2.61
G6	1.10	-2.60
D6	1.08	-2.98
P2	0.00	-4.22
M42	1.08	-2.71

concentrations of the two fluids would be the same. The $d^{13}C$ and $d^{18}O$ values also fall within the range expected for precipitation from late Ordovician seawater. However, this is inconclusive based on the large ranges in $d^{13}C$ and $d^{18}O$ (4 and 6 °/ $_{\circ \circ}$ ranges) obtained from brachiopods (Qing and Veizer 1994) and the general disagreement between workers on the best isotope values for Ordovician seawater.

The massive dolomicrite is a unimodal planar dolomite with minor bioturbation and lamination and is interpreted as a massive mudstone (Figure 20). The Whitewater Formation is also comprised of a unimodal planar dolomite. In the Whitewater, ostracodes are only partially replaced and relict outlines of peloids are common (Figure 21). The Whitewater is interpreted as a peloidal grainstone. Dolomite rhombs nonmimetically replacing compacted ostracodes indicates dolomitization was postdepositional (Figure 22, 23, 24). The boundary between the Saluda and Whitewater is marked by a transition from laminar dolomicrites lacking fossil evidence to the partially dolomitized peloidal grainstones in the Whitewater Formation. In the lower section of the Saluda, grainstone lenses grade eastward from the Highway 421 outcrop into packstones (Figure 25, 26) and wackestones (Figure 27, 28, 29, 30) interbedded with dolomitized mudstones at the Highway 56 and 7 outcrops.

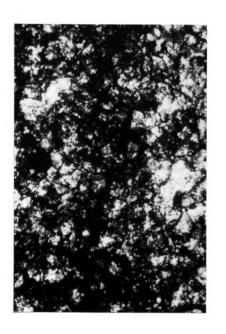


Figure 20. Plain light view of Saluda mudstone. Arrows point to top and bottom of lamination (1 inch = 200 microns).

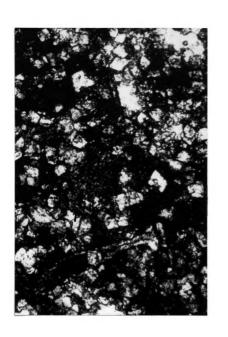


Figure 21. Partially crossed polars view of Whitewater peloidal grainstone. Arrow points to relict outline of peloid (1 inch = $100 \, \text{microns}$).



Figure 22. Plain light view of Whitewater peloidal grainstone. Dolomite rhomb (indicated by arrow) is replacing compacted ostracodes (1 inch = 100 microns).

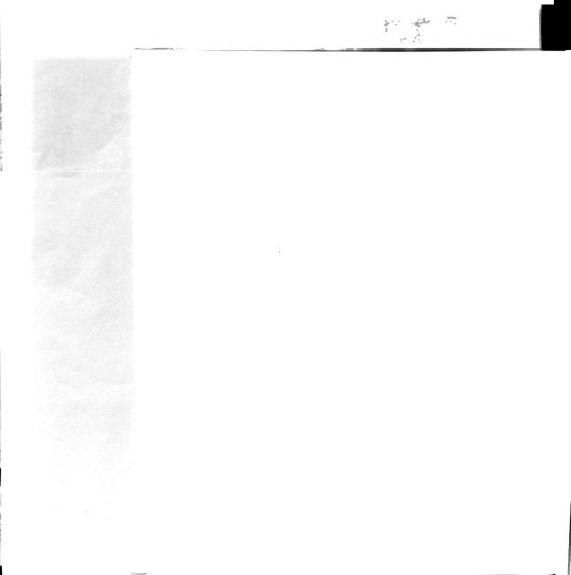
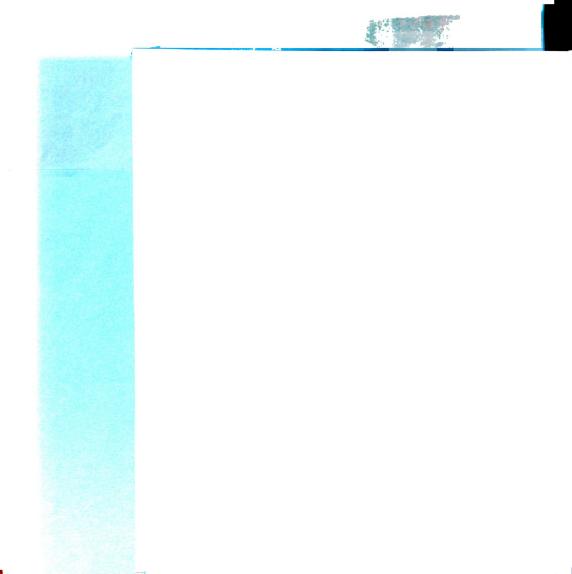



Figure 23. Closeup view of dolomite rhomb in Figure 22 (1 inch = 50 microns).

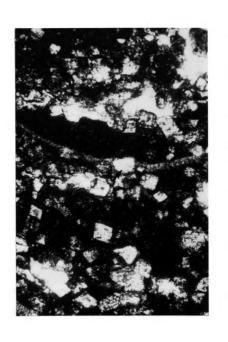


Figure 24. Plain light view of Whitewater peloidal grainstone. Arrow points to dolomite rhomb replacing an ostracode (1 inch = $200 \, \mathrm{microns}$).

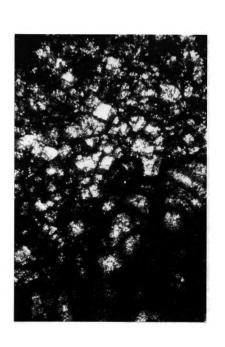


Figure 25. Partially crossed polars view of Saluda packstone. Arrow points to fossil fragment (1 inch = $200 \, \text{microns}$).

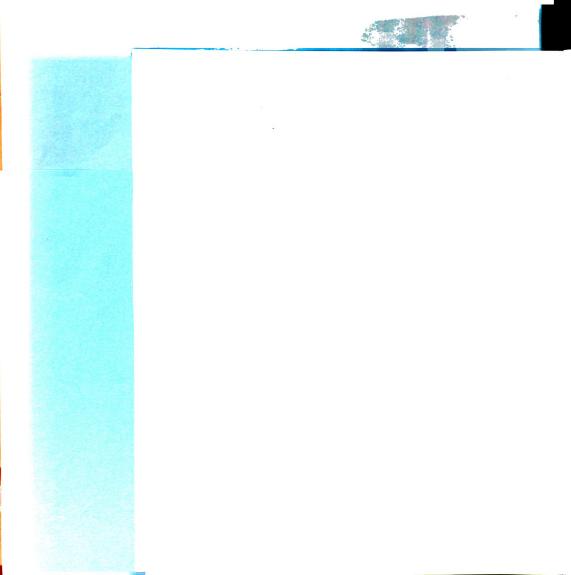
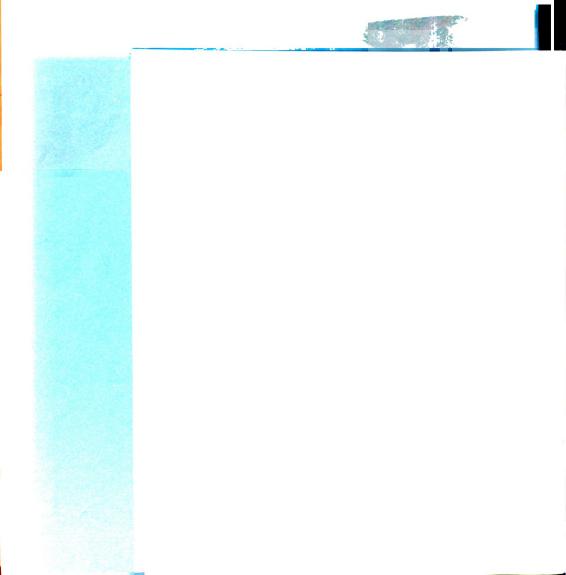



Figure 26. Partially crossed polars view of Saluda packstone. Arrow points to fossil fragment (1 inch = $200 \, \text{microns}$).

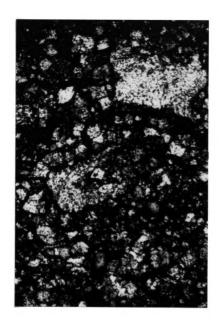


Figure 27. Partially crossed polars view of Saluda wackestone. Arrows point to crinoid fragments (1 inch = 200 microns).

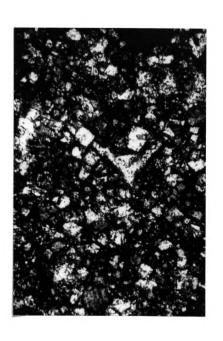


Figure 28. Partially crossed polars view of Saluda wackestone. Arrow points to crinoid fragment (1 inch = 200 microns).

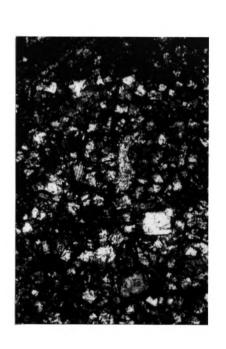


Figure 29. Partially crossed polars view of Saluda wackestone. Arrow points to crinoid fragment (1 inch = 200 microns).

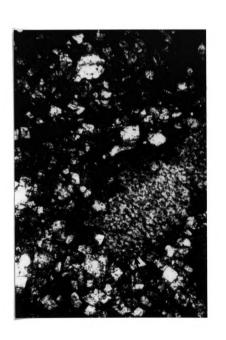
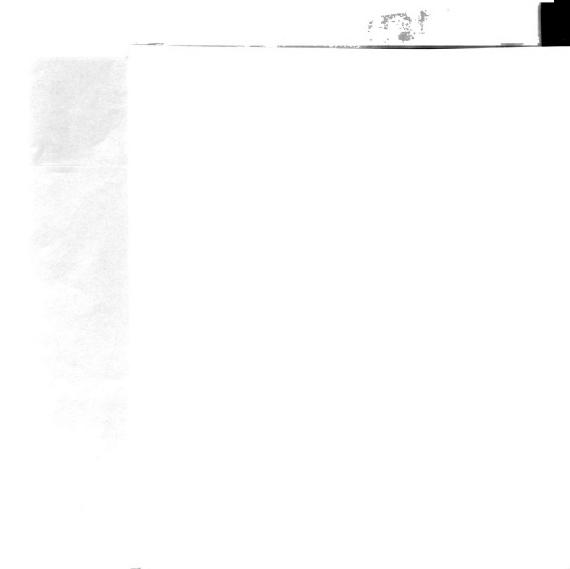


Figure 30. Partially crossed polars view of Saluda wackestone. Arrow points to bryozoan fragment (1 inch = $200 \, \text{microns}$).



Methods

Dolomites representing different lithologies, ages and stable isotope signatures were chosen to compare zone-width (growth rate) vs. crystal-size relationships (Figure 31). The consistent zonal stratigraphy between the Whitewater Formation and Saluda Formation allowed comparison of mudstones, grainstones, packstones and wackestones. Wackestones from the Burlington-Keokuk and Saluda, which have distinctly different dolomitizing fluids. (based on stable isotope signatures) were used for comparisons between similar precursor lithologies of different ages (Figure 8, 27-30). The Seroe Domi exhibited more than one concentric zone free of zonal unconformities (episodes of alteration or dissolution between precipitation of individual zones) bounded by at least one internal and external zone. This allowed comparison of zone width-crystal size relationships through time.

Zone Selection

A zone must represent the entire period of precipitation, or be free of zonal unconformities, and be preceded and succeeded by a zone to accurately reflect growth rate. If the central zone is chosen, differences in time for primary nucleation could account for differences in zone width since the type of substrate has been shown to affect the length of the induction period, or time to first

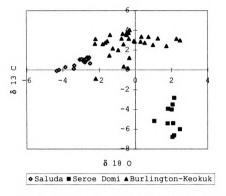


Figure 31. Isotope Data, δ 180 versus δ 13C

heterogeneous nucleation (Sibley et al. 1994). This effect is minimized during secondary nucleation of dolomite on dolomite. The outermost zone is commonly found to exhibit dissolution or intergrowth preventing an accurate measurement of zone width. In addition to these restrictions, only concentrically zoned, rhombic slices of the crystals in thin section are measured in order to convert apparent zone width to true zone width (see Geometric Corrections Section).

Sampling locations

Samples of the Saluda, Whitewater, and Burlington-Keokuk Formations were collected from four outcrops. Thin sections for the Seroe Domi Formation were provided by Bruce Fouke (see Fouke et al. 1996). The Saluda and Whitewater formations are represented by three outcrops along an east to west trend near Madison, Indiana (Figure 32). The Burlington-Keokuk Formation crops out along Highway 61 north of Bowling Green, Missouri (Figure 32). Samples were collected on a grid from the four outcrops (Figure 33, 34, 35 and 36). The Seroe Domi formation thin sections are from transits along two adjacent outcrops (Figure 37, after Fouke et al. 1996 and Fouke, unpublished field notes). Sample locations are indicated on the profiles of the three outcrops of the Whitewater and Saluda dolomite at the Highway 421, Hwy 7 and Hwy 56 outcrops in Southern Indiana

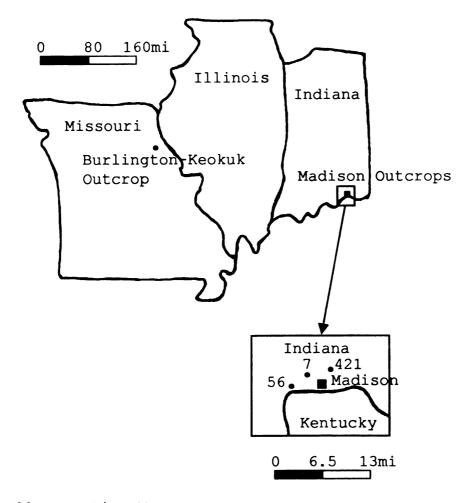
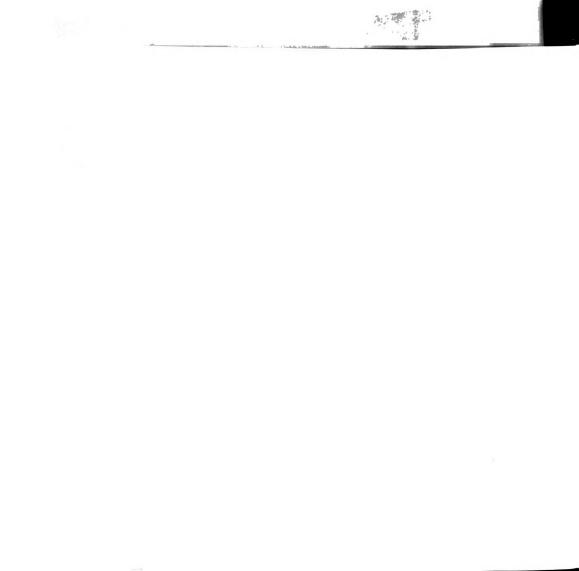



Figure 32. Location Map

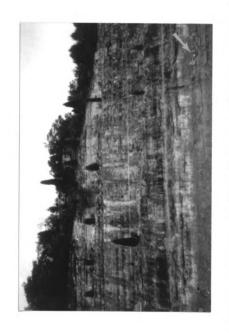


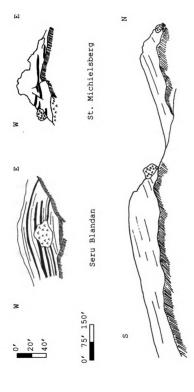
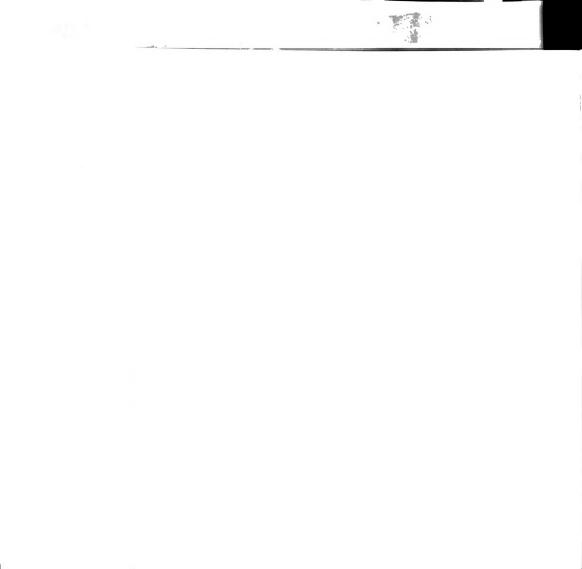
Figure 33. Highway 421 Outcrop of Saluda and Whitewater Formations. Arrow points to coral layer at base of Saluda.

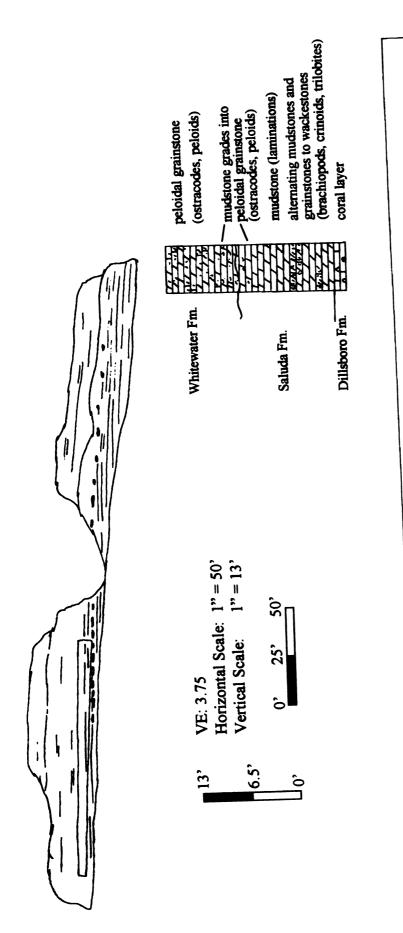
-		

Figure 34. Highway 7 Outcrop of Saluda and Whitewater Formations. Arrow points to coral layer at base of Saluda.

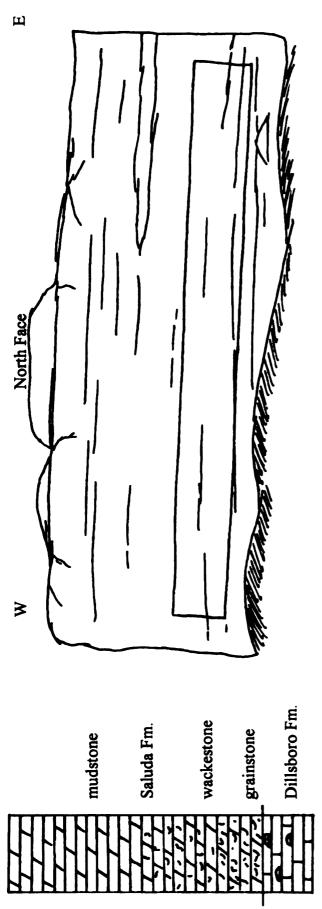
Figure 35. Highway 56 Outcrop of Saluda and Whitewater Formations. Arrow points to coral layer at base of Saluda.

Figure 36. Highway 61 outcrop of Burlington-Keokuk Formation.


Figure 37. Seroe Domi, Seru Blandan and St. Michielsburg Outcrops, Curacao (after Fouke et al. 1996 and Fouke unpublished field notes)

(Figure 38, 39 and 40). The three outcrops occur across a transect approximately 5.5 miles in length (Figure 32). At the largest outcrop, the Highway 421 outcrop, samples were collected along 435 feet of exposure. Samples were collected in grids at a spacing of 3-5 feet vertically and horizontally where possible as indicated on the outcrop profiles (Figure 38, 39 and 40). A similar grid sampling was employed for collection at the Hwy 61 outcrop of the Burlington-Keokuk in Eastern Missouri covering a distance laterally of 363 feet (Figure 41). Samples from the Seroe Domi represent three small dolomitic lenses less than 15 feet long and 3 feet thick (shaded beds in Figure 37). Only three widely spaced samples were analyzed due to significant replacement and dissolution of generation I dolomite in the Seroe Domi Formation.


Zone Measurements

A Luminoscope Model ELM 3.3 operating at 16kV was used to observe the cathodoluminescence of dolomite in polished thin sections of the four formations. Color slide pictures were taken from thin sections of the samples. The slides were then examined with a light microscope for rhombic slices of dolomite. Rhombic slices of dolomite that exhibited concentric zoning and parallel zone apexes were measured (Figure 42). The length measurements A, B, C and E are used to correct slices that cut the center of the

SD18 SD17-SD1 MI-M20 P19 - P1 P36 – P20 P40-P37

Figure 38. Saluda Hwy 421 Outcrop Profile

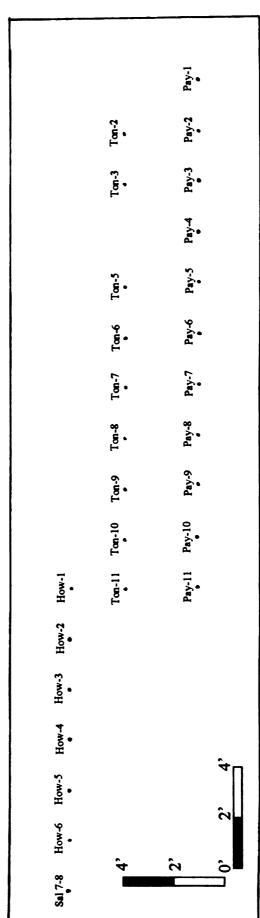


Figure 39. Saluda Hwy 7 Outcrop Profile

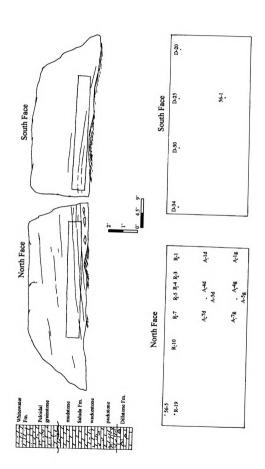
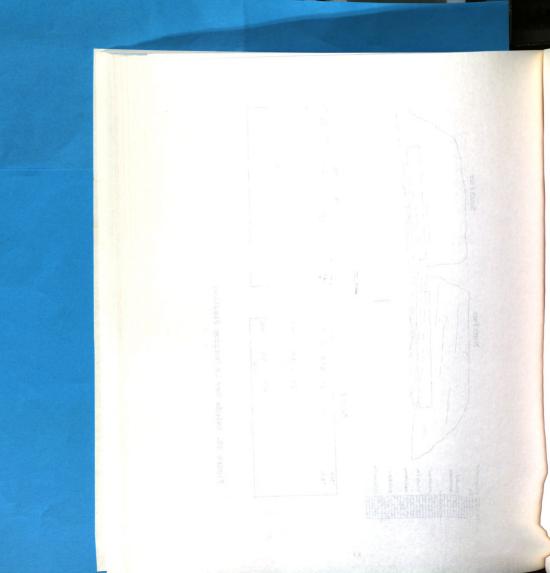



Figure 40. Saluda Hwy 56 Outcrop Profiles

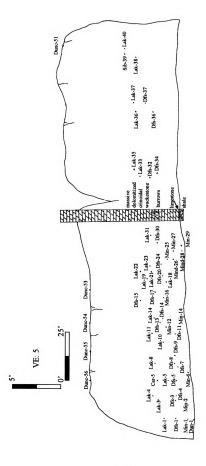


Figure 41. Burlington-Keokuk Hwy 61 Outcrop Profile

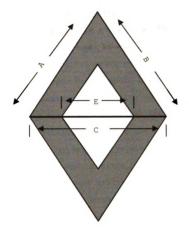
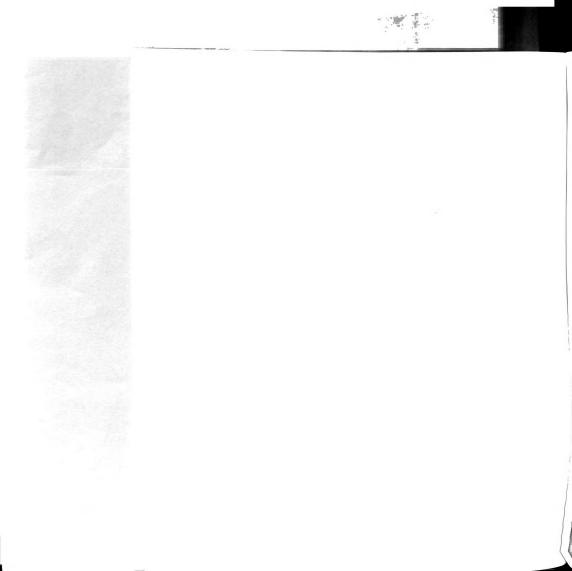



Figure 42. Zone measurements of rhombic slice (shaded band represents zone measured)

crystal but not parallel to the 1 0 1 4 face. Typically, zero to five crystals were found on each slide that cut through the center of the crystal at an angle to the 1 0 1 4 face that could be corrected back to the 1 0 1 4 reference plane (see Geometric Corrections section). Since all four formations lack an orientation of their crystals, each crystal has an equal probability of being cut in an orientation that allows measurement. Comparison for precision in length measurements between two independent observers indicates a correlation of 99% (Figure 43). The difference in measurements between the two observers is normally distributed indicating the error is not skewed towards smaller or larger crystals. Replicate analyses for the first independent observer have a 99% correlation (Figure 44). Replicate analyses for the second independent observer have a 98.5% correlation (Figure 45). precision error on any single length measurement is +/- 1 tic unit. The precision error on the corrected zone width and crystal radius values is also +/- 1 tic unit.

Geometric Corrections

Three categories of slice orientations can be used to calculate back to the 1 $\overline{0}$ 1 4 reference plane. Each of the three types of slices must cut through the center of the crystal. In order to insure this condition, samples from

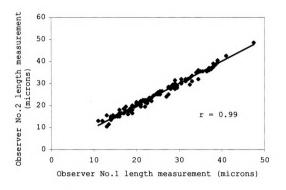
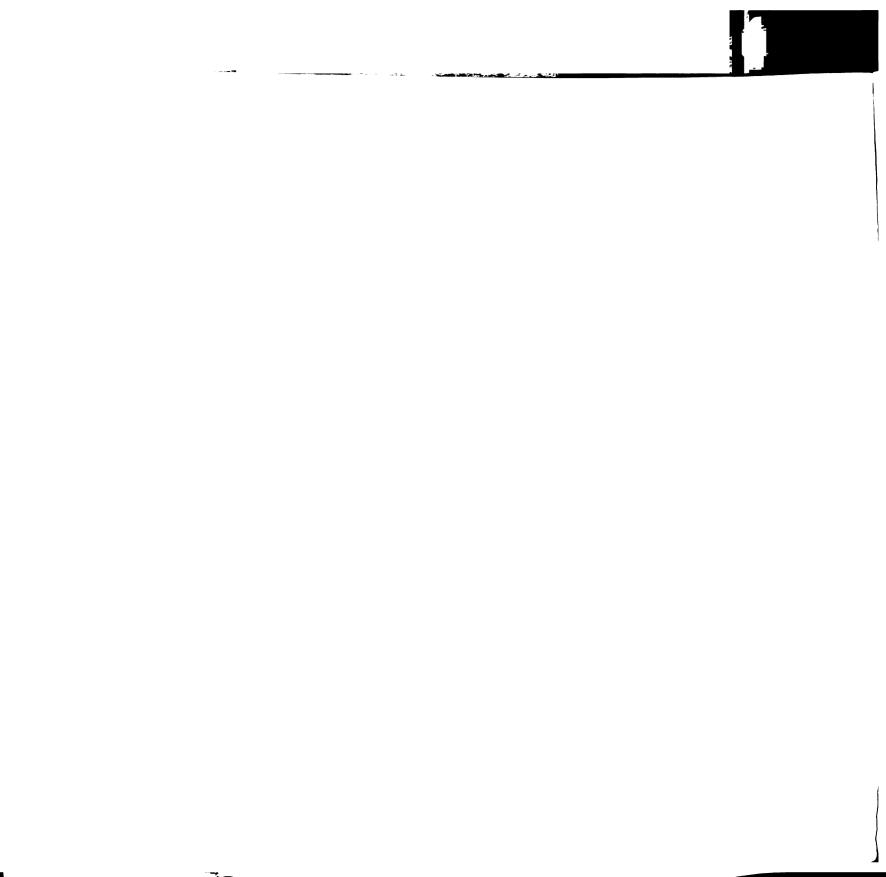



Figure 43. Comparison of length measurements between two observers $% \left(1\right) =\left(1\right) \left(1\right)$

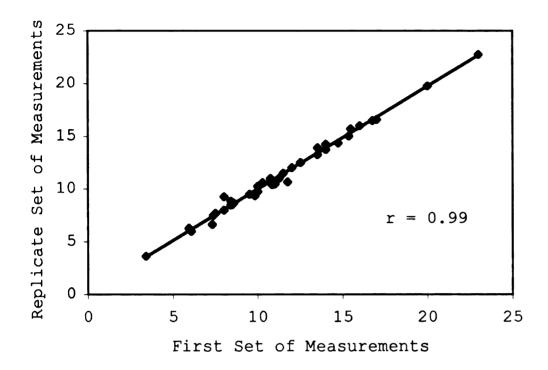


Figure 44. Comparison of replicate analyses for first observer

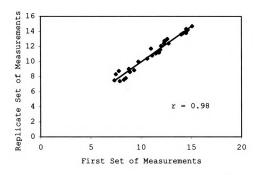


Figure 45. Comparison of replicate analyses for second observer $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

each formation were inspected for slices that included the greatest number of zones. Only slices that exhibited these zones were measured. Slices of crystals that did include all the zones and thus cut through the center could be divided into three general orientations: 1) rotation through the long diameter of a rhomb, 2) rotation through the short diameter of a rhomb, and 3) rotation through both the long and short diameter. From measurement of the apparent zone width (C-E, Figure 42), apparent crystal diameter (E, Figure 42) and zone boundaries (A and B, Figure 42), true zone width and crystal radius can be calculated. (See Appendix A for a detailed description of true zone width and radius calculations).

Statistical Methods

A minimum of 30 crystals from each sample with paired zone width and radius data were plotted. Normal probability plots were used to determine radius and zone width distributions. The Shapiro-Wilkes normality test was used to test for a normal distribution. Regression analysis included linear, quadratic, and exponential fits.

Rearrangement of the complex quadratic mononuclear growth model equation to a linear function was used to distinguish this case (see previous Population Trend Section for equation). To determine the goodness of fit of a sample to a regression line, the correlation coefficient was

		a, 10 kg;	

width and radius of crystals from a sample was statistically significant, an f test of the correlation coefficient was used with the null hypothesis of no correlation between zone width and radius, or no slope (Crow et al. 1960). To distinguish between different slopes generated from different samples, a t test of regression coefficients was used to compare variances of the radius populations between the two samples and the variances of zone width populations between the two samples (Crow et al. 1960). This t test is referred to as the significance of β t test and is used to determine if the slopes varied between samples at the 95 percent confidence interval (Crow et al. 1960). In the β t test, the null hypothesis was no variation between the two slopes, or a difference of slopes equal to zero.

Results

Paired zone-width vs. crystal-radius data from the Saluda, Whitewater, Burlington-Keokuk, and Seroe Domi Formations can be described by both normal and log normal distributions. Crystal measurements for each sample are reported in measured tic increments, conversion to microns can be obtained by multiplying Saluda, Whitewater and Seroe Domi data by 1.5 and multiplying Burlington-Keokuk data by 1.0 (or unity) (see Appendix B for measurements).

detectioned. To instrument to the most of the stretchest specially significantly and radius of the stretchest special significantly and the stretchest special special

Results

raired comes such as the second as the order order form whitewater, including the companies of the companies

Histograms of crystal sizes for each of the four formations indicate a near-normal coarse skew nature (Figure 46, 47, 48, 49). The characteristic coarse skew is often found in carbonate rocks as wells as other rock types (Eberl et al. 1998, Sibley et al. 1993). All of the samples can be characterized by a normal distribution at either the 95% or 99% confidence intervals, which permits the use of the significance of β t test and the f test of the correlation coefficient. The f test of the correlation coefficient is sensitive to the condition of normality. Deviations from normality result in lower coefficient correlations.

Eighty-one percent of sample crystal sizes (r₁) yielded normal distributions at the 95 percent confidence interval using the Shapiro-Wilkes normality test (Table 4). Eighty-five percent of sample zone widths yielded normal distributions at the 95 percent confidence interval (Table 5). Samples that did not meet the condition of normality at the 95 percent confidence interval, did meet the condition of normality at the 99 percent confidence interval (Table 6). Likewise, ninety-two percent of the sample crystal sizes yielded log normal distributions at the 95 percent confidence interval (Table 4, 5 and 6, samples denoted by *) and eighty-eight percent of sample zone widths yielded log normal distributions at the 95 percent confidence interval (Table 4, 5 and 6, samples denoted by *). All other samples can be described by a log normal distribution at the

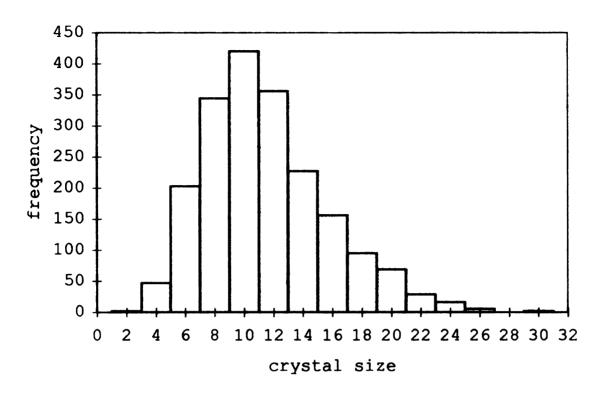


Figure 46. Saluda/Whitewater Formation crystal size frequency

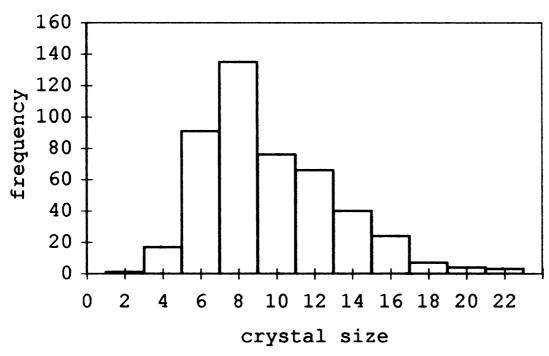


Figure 47. Burlington-Keokuk Formation crystal size frequency

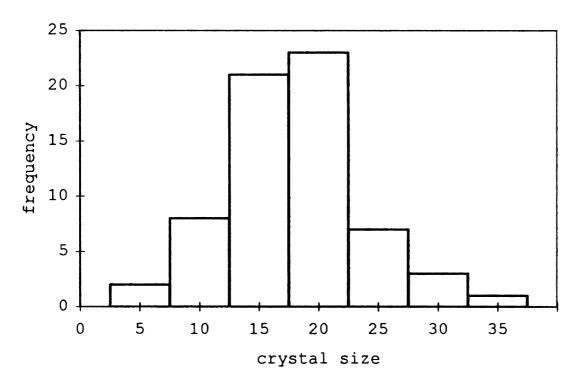


Figure 48. Seroe Domi Formation zone I crystal size frequency

	 	· · · · · · · · · · · · · · · · · · ·			
					:

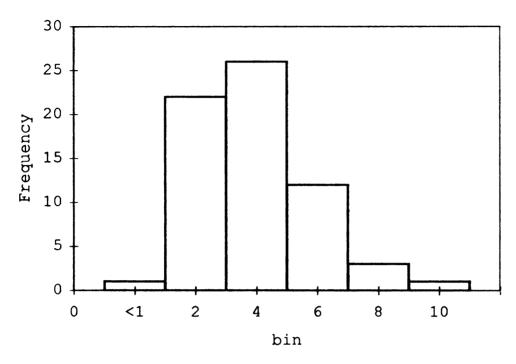


Figure 49. Seroe Domi Formation zone II crystal size frequency

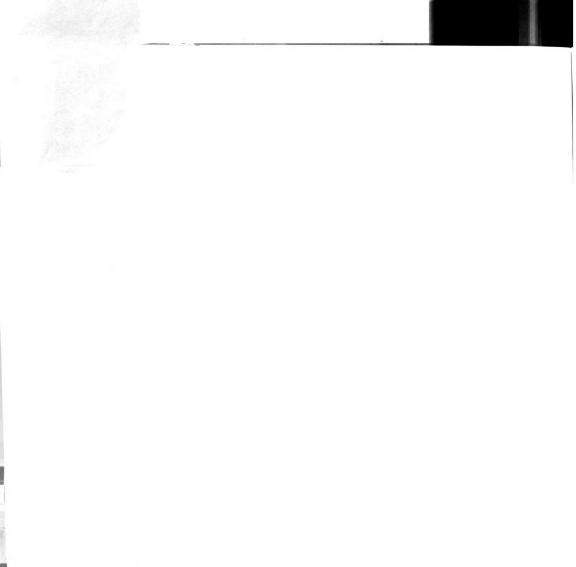


Table 4. Samples with normal crystal size distributions at the 95% confidence interval

(zone II)*	2 (zone I)*	1 (zone I)*	*(II euoz)	1 (zone I)*					
SB1	SB2	SM1	SM1	SB1					
26-5*	PAY 11*	*8-7 JAS	CAR 5*	LAK 22*	LAK 31*	LAK 40*	DFS 37*	LAK 10*	*9 NIW
D34*	A7d*	A5g*	PAY 1*	HOW 1*	*9 MOH	R 5*	R 10*	A7g*	56-1*
P31*	SD13*	SD7*	D10*	D8*	¥90	G8*	€6*	R1*	D25
SD11*	SD15*	P5*	P27*	P34*	P36*	P40*	P41*	P45*	P37*
M1*	M2	M4*	₩8*	M26*	M30*	M34*	G5*	*∠5	SD3*

					T	7	-			4
				1		-			1	. 1
										1
						21				
1										
	1									
					+					+
								À.		1
100		10		15					14	
	+-			+	-		1			4.
		1	ł		1		1			1
13							1			
	PG.									
										Ica
									100	1"
			1		1	I	1.			
					7			7	*	1
				1		i.	1			
	7	1 5	*		1 6		1			1 10
	-				1		10			
							1	1		
		-								-
4							1	4		
21		*		1		1 4			4	2
		5	40	30	10					
					10			17		
								Ť	-	-
								ł		
			14	14				1		
1	.7.			30*		* 8				
Shirt and	CJ.			M30*		N8.	Mex	200	242	

Table 5. Samples with normal zone width distributions at the 95% confidence interval

	SB2 (zone I)	SM1 (zone I)+	SM1 (zone II)+	SB2 (zone II)+	P17+				
1 3D1 (20116 11) T	SB2	SM1 (SM1 (SB2 (. –				
D34	A7d+	A5g	PAY 1+	HOW 1+	+9 MOH	P2+	D12+	G4+	M42+
DFS15+	MIN29+	M20+	M11+	CAR 5+	LAK 22+	LAK 31+	LAK 40	R1+	D25+
SD11+	SD15	P5+	P27+	P34+	P36+	P40	P41+	P45+	DFS1+
MI+	P19+	M4+	M8	M26+	M30+	M34	G5+	G7+	SD3+

Table 6. Samples with normal distributions at the 99% confidence interval

Crystal Size	Crystal Size Distributions	Zone Width Distr	Zone Width Distributions Samples	S
Samples		1170		
P19*	M21*	M2+	D10+	56-1
P17*	M20*	SD23+	D8+	56-5+
P2*	M11*	G3+	D6+	PAY 5+
SD23*	Ald*	G1+	G8+	PAY 11+
D12*	A5d*	M28+	+95	TON 11+
G4*	PAY 5*	M21+	R5+	SAL 7-8+
G3*	TON 11*	P37+	R10+	DFS 24+
G1	DFS 1	P31+	Ald+	DFS 32+
M42*	DFS 15	SD13+	A5d+	DUNC 56+
M28*	MIN 29*	SD7+	A7g+	MIN 16+
DFS 24	DUNC 56*	LAK 36+	49 NIW	SB1 (zone I)+
DFS 32*	MIN 16*	DFS 37+		5 6 7 6
LAK36*	SB2 (zone II)*	LAK 10+		

					450A			

99 percent confidence interval (Table 4, 5 and 6, samples not marked).

Zone width-radius scatter plots for 98% of all the samples indicate a statistically significant linear trend between zone width and crystal radius at the 95 percent confidence interval (Table 7). The slopes of individual samples from all four formations range from 0.05 to 1.53 with correlation coefficients ranging from 0.23 to 0.81 (Table 7). The mudstones, interbedded grainstones, packstones, wackestones and mudstones of the Saluda Formation each exhibit a linear correlation (Figure 50, 51, 52, 53, 54). Peloidal grainstones from the Whitewater Formation also exhibit a linear correlation (Figure 55). In addition, crinoidal wackestones from the Burlington-Keokuk and unimodal planar dolomites from the Seroe Domi exhibit a linear correlation (Figure 56, 57, 58). Plots of zone width-crystal radius (r₁) for all samples from each of the three dolomites (Saluda/Whitewater, Burlington-Keokuk, Seroe Domi) are fit best by the equation dr/dt = kr. The data is not best fit by the crystal growth equations for populations of crystals growing by mononuclear growth, polynuclear growth, spiral growth, diffusion-limited growth or birth and spread growth.

Sample	Slope	r	Sample	Slope	r
M1 Sm	0.15	0.62	HOW 1 Sm	0.15	0.62
M2 Sm	0.22	0.76	HOW 6 Sm	0.16	0.58
M4 Sm	0.14	0.64	SAL 7-8 Sm	0.14	0.41
M8 Sm	0.10	0.45	PAY 11 ^{Sw}	0.21	0.74
M26 Sm	0.11	0.52	56-1 ^{SW}	0.16	0.69
M 30 Sm	0.18	0.73	R10 ^{Wo}	0.16	0.43
M34 Sm	0.12	0.47	R5 ^{₩o}	0.21	0.45
G5 ^{Sg}	0.11	0.47	TON 11 Sm	0.22	0.63
G7 ^{sg}	0.15	0.65	PAY 5 ^{Sw}	0.16	0.61
SD3 Sm	0.11	0.66	A5d Sm	0.11	0.44
SD11 Sm	0.19	0.69	A1d Sm	0.21	0.62
SD15 Sm	0.13	0.44	56-5 * ^{#W} °	0.11	0.27
P5 ^{₩o}	0.08	0.45	A7g **Sp	0.12	0.35
P27 ^{Wo}	0.07	0.41	CAR 5 ^{Bc}	0.12	0.43
P36 ^{Wo}	0.16	0.65	LAK 22 ^{Bc}	0.13	0.37
P40 ^{Wo}	0.14	0.45	LAK 31 ^{Bc}	0.16	0.37
P41 ^W o	0.19	0.50	LAK 40 ^{Bc}	0.16	0.46
P45 ^{Wo}	0.12	0.38	DFS 37 ^{Bc}	0.23	0.42
G6 ^{Sg}	0.14	0.69	LAK 10 ^{Bc}	0.22	0.37
G8 ^{sg}	0.19	0.58	MIN 6 ^{Bc}	0.23	0.60
D6 Sm	0.26	0.81	DFS 24 ^{Bc}	0.21	0.68
D8 Sm	0.08	0.37	LAK 36 ^{Bc}	0.41	0.76
D10 Sm	0.12	0.43	MIN 16 ^{Bc}	0.14	0.37
SD7 Sm	0.17	0.71	DFS 1 ^{Bc}	0.18	0.44
P31 ^{Wo}	0.15	0.47	DFS 15 ^{Bc}	0.11	0.41
P37 ^{₩o}	0.21	0.67	DFS 32 * #Bc	0.11	0.26
P19 [₩] °	0.15	0.62	DUNC 56 * *Bc	0.05	0.23
P17 ^{Wo}	0.14	0.61	MIN 29 **Bc	0.10	0.28
P2 ^{₩o}	0.06	0.41	SB1 (zone II) Du	0.62	0.59
SD23 Sm	0.10	0.49	SB2 (zone I) Du	0.13	0.79

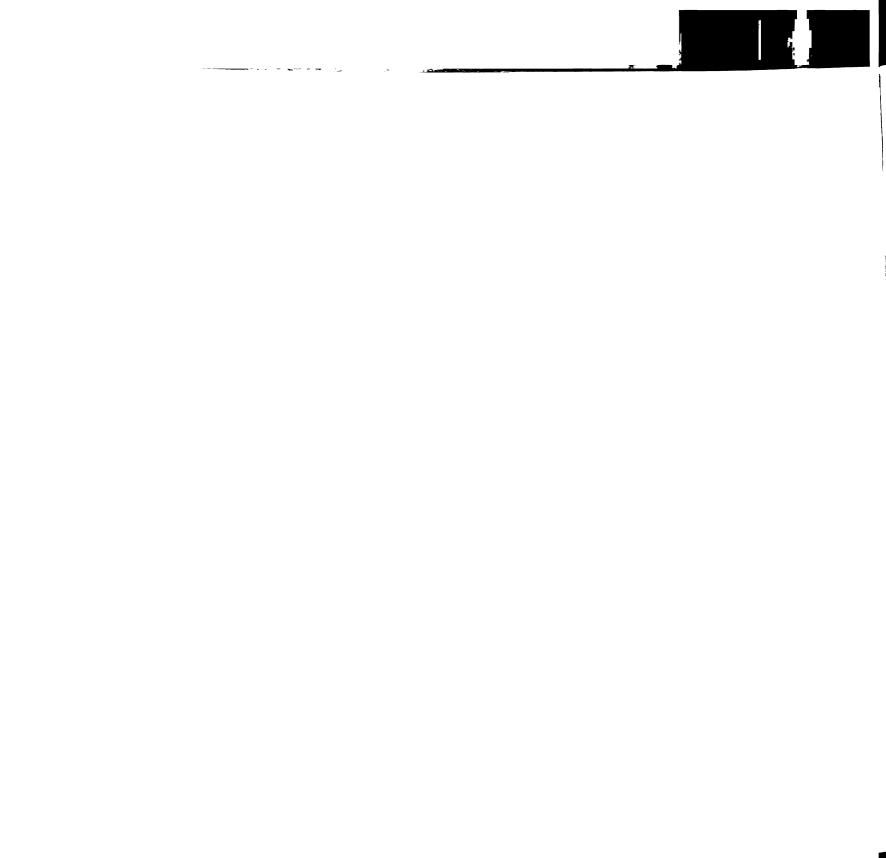


Table 7 (cont'd).

Sample	Slope	r	Sample	Slope	r
G4 ^{Sg}	0.11	0.47	SM1(zone I)*+Du	0.05	0.24
G1 ^{Sg}	0.15	0.78	SM1(zone II)*+Du	0.87	0.34
M42 Sm	0.07	0.39	SB2 (zone II) Du	1.53	0.78
M28 Sm	0.11	0.59	SB1 (zone I) Du	0.19	0.43
M21 Sm	0.19	0.63	R1 ^{₩o}	0.17	0.47
D12 Sm	0.11	0.64	D25 ^{wo}	0.14	0.56
M20 Sm	0.13	0.37	D34 ^{Wo}	0.16	0.58
M11 Sm	0.11	0.47	A7d Sm	0.18	0.64
G3 ^{Sg}	0.23	0.61	A5g ^{Sp}	0.17	0.64
P34 * #Wo	0.10	0.31	PAY 1 ^{SW}	0.13	0.65
SD13 * #Sm	0.10	0.27			

- * samples that have zero correlation at the 95 percent confidence interval
- # samples that have a significant correlation at the 89 percent confidence interval
- * samples that have a significant correlation at the 80 percent confidence interval
- S Saluda Formation samples
- W Whitewater Formation samples
- B Burlington-Keokuk Formation samples
- D Seroe Domi Formation samples
- c dolomitized crinoidal wackestone
- $\hbox{$u$ unimodal planar dolomite where original rock} \\ \hbox{$texture is completely obliterated by dolomitization}$
- o dolomitized peloidal grainstone
- m dolomitized mudstone
- g partially dolomitized grainstone
- w dolomitized wackestone
- p dolomitized packstone

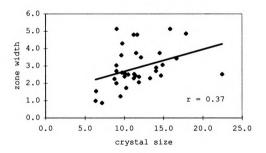


Figure 50. Saluda Mudstone (sample M20)

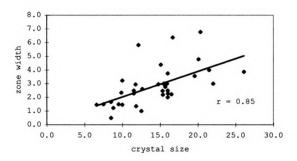


Figure 51. Saluda Grainstone (sample G8)

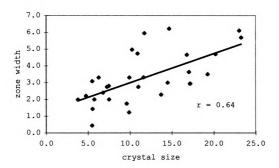


Figure 52. Saluda Packstone (sample A5g)

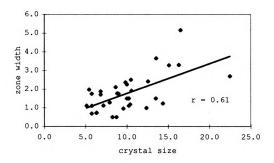


Figure 53. Saluda Wackestone (sample Pay 5)

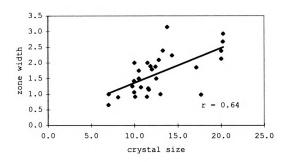


Figure 54. Saluda Interbedded Mudstone (sample D12)

Call Sign Control of the State of the State

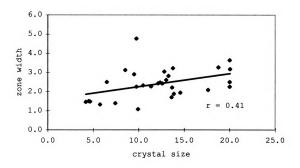
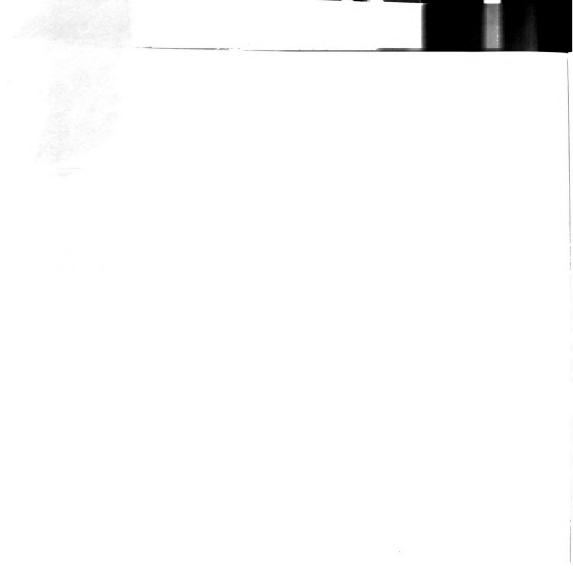



Figure 55. Whitewater Peloidal Grainstone (sample P 27)

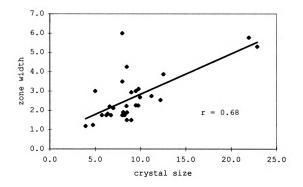


Figure 56. Burlington-Keokuk Crinoidal Wackestone (sample DFS 24)

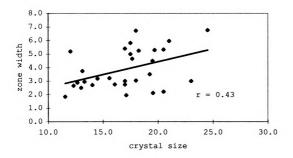
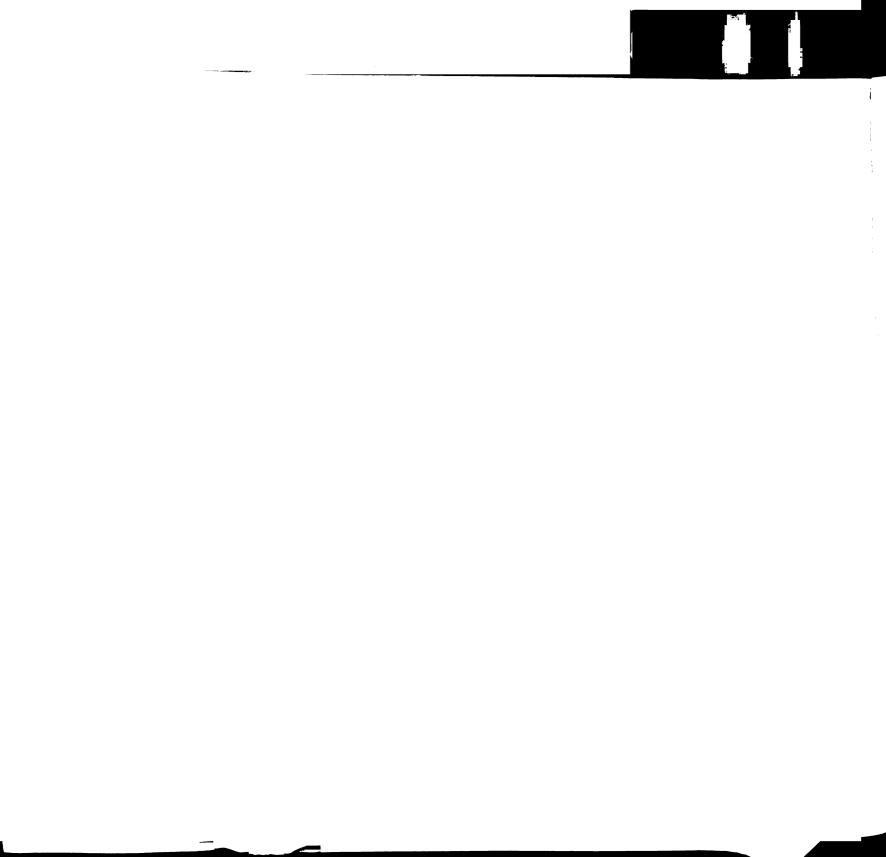



Figure 57. Seroe Domi Dolomite, Zone I (sample SB1)

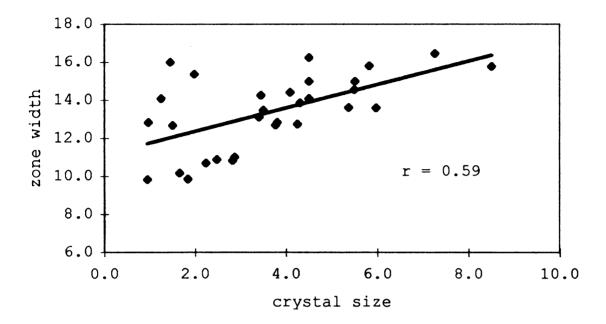
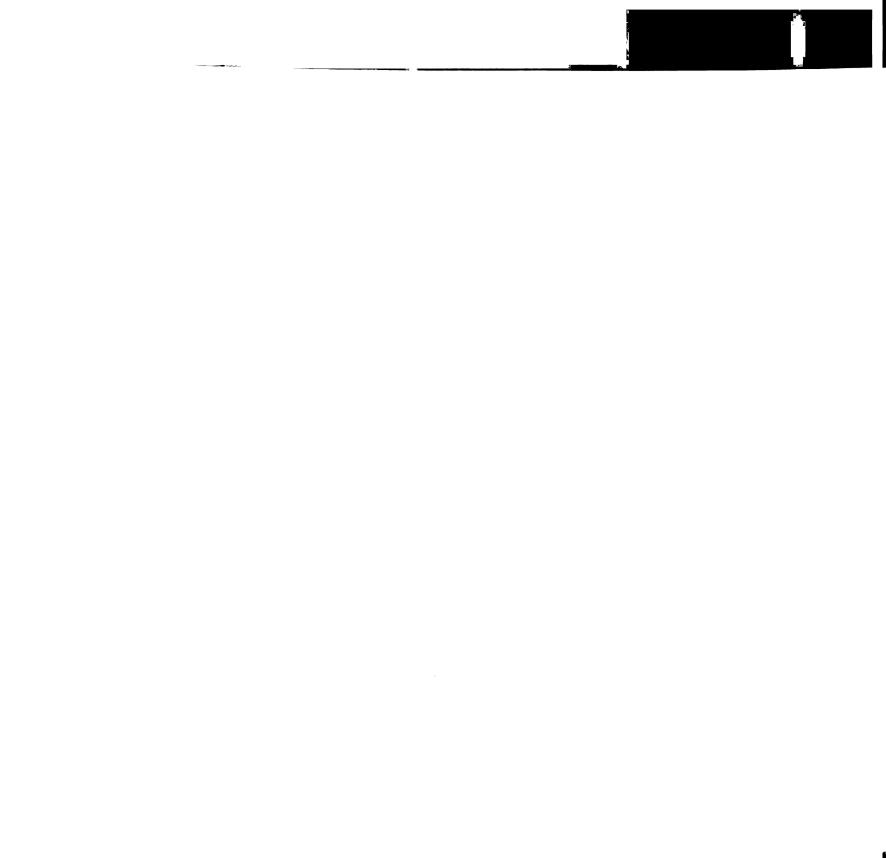


Figure 58. Seroe Domi Dolomite, Zone II (sample SB1)

Comparison of Crystal Growth Rate Equation among Lithologies of the Same Dolomite

In order to compare zone-width vs. crystal-size crystal growth equations among samples of the same lithology and samples of different lithologies, comparisons were made among samples of the Saluda and Whitewater formations since the same zone could be measured throughout the different lithologies of the two formations (dt is constant for Because each sample is fit best with samples compared). the equation dr/dt = kr, equations for different lithologies can be compared by slope. In the equation dr/dt = kr, k is the slope. However, unlike the other crystal growth equations for the crystal growth models previously discussed, the physical parameters that k signifies are unknown. In previous models, k is attributed to parameters such as solution chemistry and hydraulic properties. Because it is unclear what set of parameters k represents, k' will be used to denote the slope in the empirically determined crystal growth equation, dr/dt = k'r. Comparisons of k' among samples within a specific lithology and between samples of different lithologies indicated the slopes were not statistically different at the 95 percent confidence interval using the β significance test for slopes (Table 7). In addition, the mudstones and grainstones of the Saluda Formation and the grainstones of the Whitewater Formation sample slopes did not vary among or between



formations despite statistically different crystal size populations. Different rock types dolomitized concurrently did not exhibit a difference in the correlation between zone width and radius.

Comparison of Crystal Growth Rate Equation between Different

The Saluda/Whitewater Formations, Burlington-Keokuk Formation and Seroe Domi all exhibit similar linear trends of crystal growth rate and crystal size. Each of the dolomites has a different zonal stratigraphy (dt is not assumed constant between different dolomites). Since the Burlington-Keokuk and Seroe Domi samples are also best fit by the equation dr/dt = k'r, comparison of crystal growth equations is accomplished by comparing the slopes. The slopes of the samples in the Burlington-Keokuk do not vary from the slopes of the Whitewater and Saluda Formations at the 95 percent confidence interval using the β significance test for slopes. The slopes of the Seroe Domi Zone I samples do not statistically vary from the slopes of the Whitewater, Saluda, and Burlington-Keokuk Formations at the 95 percent confidence interval using the β significance test for slopes. The slopes of the Seroe Domi Zone II samples do vary at the 95 percent confidence interval using the using the β significance test for slopes when compared to the Whitewater, Saluda, Burlington-Keokuk and Seroe Domi Zone I

samples. The mean zone widths for the Whitewater, Saluda, Burlington-Keokuk, Seroe Domi Zone I, and Seroe Domi Zone II do vary statistically from each at the 95 percent confidence interval using a two-sample t test comparing two formations at a time.

Temporal Comparisons within the Seroe Domi Formation

The unimodal planar crystals in the Seroe Domi Dolomite I exhibit two zones that can be measured. A dark zone and a light zone adjacent to each other in the crystals were measured (Figure 11). As previously stated, the slopes of Zone I and Zone II statistically vary from each other. The interior zone (Zone II) is a thick bright zone. The next zone precipitated is Zone I, a dark zone. Zone II is thicker than Zone I. Zone II is potentially composed of multiple thinner zones (Figure 11). These zones are individually not resolvable for measurement due to the difficulty in picking zone boundaries and the limit of magnification. Zone II samples have a greater slope than Zone I samples (Table 7).

Comparison of Crystal Growth Equations for Adjacent Crystals in Thin Section

Subsets of the Saluda and Burlington-Keokuk Formations were obtained by selecting crystals that share the same pore space or are in direct contact with each other (Figure 59). Plotting zone-width vs. crystal-size data for pairs of adjacent crystals results in a statistically significant

The united to a constant two constants and control exhibit two constants and adjacent is a light cone adjacent is a constant the constant (right el.,).

Some I and Zone II account to the constant that cone (Zone II) account to the constant that is a cone preceditated is a constant to constant the constant that cone is a constant to the constant that cone is a constant to the constant that constant the constant that constant the constant that constant the constant that constant that constant that constant that constant the constant the constant that constant the c

Comparison of Crystal Growth Presticus Fr. C. Ser Trystale in Thin Section

Subsets of the Saluda and activation-Record Formations one obtained by selecting crystals that fracts the same pore pare of are in direct contact with each other (Figure 58).

Intring the width we drystal-size data for pairs of discent crystals results in a statisfically significant

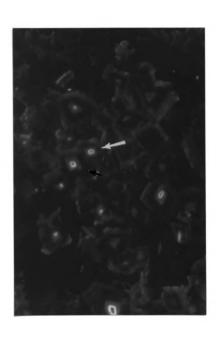
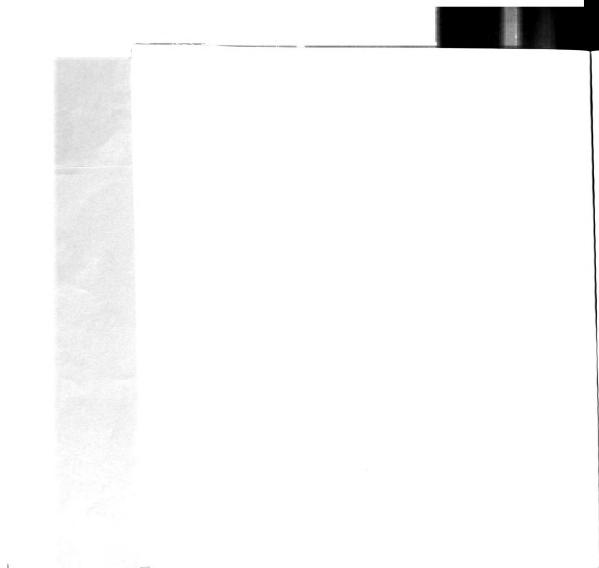



Figure 59. Cathodoluminescent view of Saluda dolomite sample. Arrows point to adjacent (paired) crystals (1 inch = 100 microns).

linear trend at the 95 percent confidence interval (Figure 60, 61). The Burlington-Keokuk subset was selected from data on samples LAK-22, MIN-16, and DFS-24. The Saluda subset was selected from data on samples M2, M1, M4, and SD3.

Discussion

The zone-width vs. crystal-radius plots indicate a similar linear trend, dr/dt = k'r, for all four formations. However, the linear crystal growth equation does not correspond to any of the published crystal growth mechanisms. The crystal growth equation dr/dt = k' r does extend spatially on the scale of an individual outcrop and on the scale of multiple outcrops separated by approximately five miles. Because the three different dolomites studied share the same general crystal growth equation, dr/ dt = k'r, the crystal growth mechanism can be said to be independent of lithology variation over the fluid composition range of dolomitizing fluids represented by the Saluda/Whitewater, Burlington-Keokuk and Seroe Domi dolomites. The extent to which k' represents solution variation when comparing formations or different zones from the same formation is unknown since dt cannot be assumed to be the same between different zones or formations. The variation in the slope k' could result from solution variation, changes in dt, or some combination of the two

Minear trend at the 35 person contributed into which promose to, (6). The Burishgrouped a patrent was soluted thom fals on samples LAW-21, Min in, and 178-24. The Paintle Subset was selected from out to untries Min Min Min and and a selected from out to untries Min Min Min and and.

Discussion

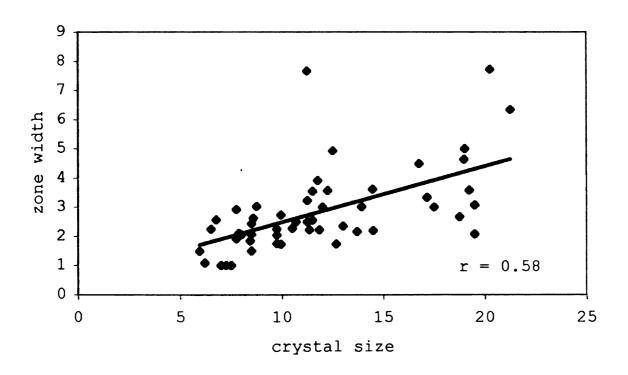


Figure 60. Saluda Paired Crystals

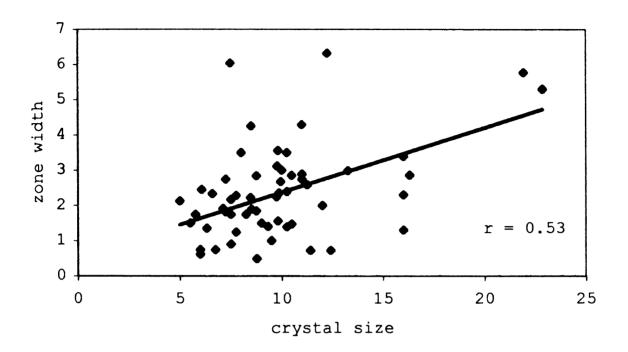
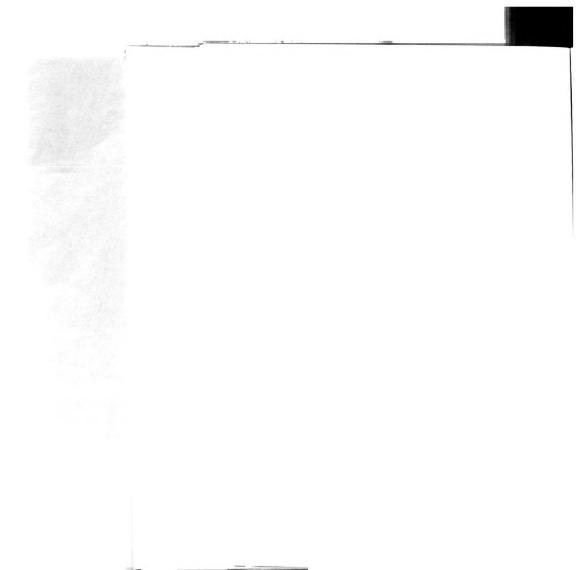



Figure 61. Burlington-Keokuk Paired Crystals

factors unless the comparison of k' is of values from the same dolomite and same zone such as the Saluda/Whitewater samples. Thus, the variation of k' between Seroe Domi zone II samples and all other samples may be attributed to both or either solution variation or a change in dt relative to the other samples.

Crystal Growth Equation and Crystal Growth Mechanism

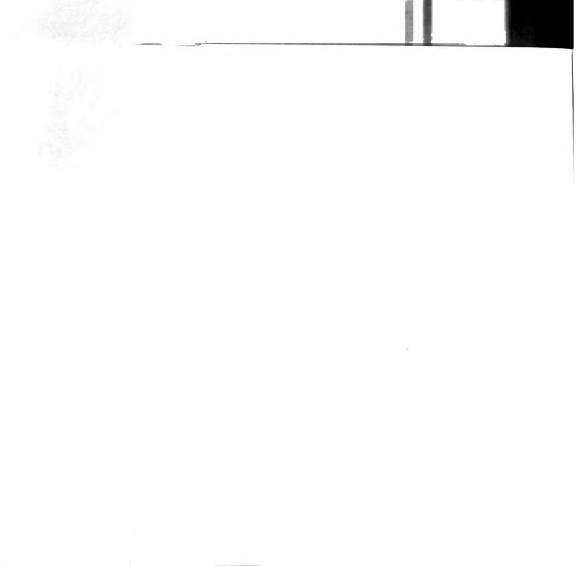
The fact the relationship between zone width and crystal radius is linear and is not represented by any known crystal growth mechanism indicates either: 1) the linear relationship found represents a new mechanism or combination of mechanisms not investigated previously or 2) the assumption of isochronous zones commonly made in carbonate petrography is wrong.

The assumption of isochronous zones can be made based on the assumption that changes in solution cause variations in zone intensity and color across the outcrop in a shorter period of time than the induction period for dolomite.

Abrupt dolomite/limestone contacts and the lack of partially dolomitized rocks as well as experimental high temperature dolomitization of calcite indicate a long induction period for dolomite (Sibley et al. 1994, Sibley 1990, Sibley and Bartlett 1987, Sibley et al. 1987). Experimental studies also imply dolomite precipitating on dolomite seeds has a long induction period (Gaines 1980). This is consistent with the idea that changes in stochiometry of dolomite

Hertors unless the content of the angle whitewater sapies. Thus, the end some services are the sapies. Thus, the end of a converse and the cold content of a content to be serviced to be content to be serviced to be content to be serviced.

rystal Growth "quet " Table as Telech Hothentam

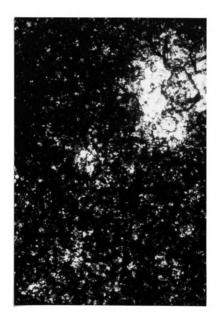

The fact the celection of the constant of the

on the stamption that charges in polurion cause variations in come intensity and chieff across the outcrop in a shorter teriod of time than the 'hourtfield period for deliberts.

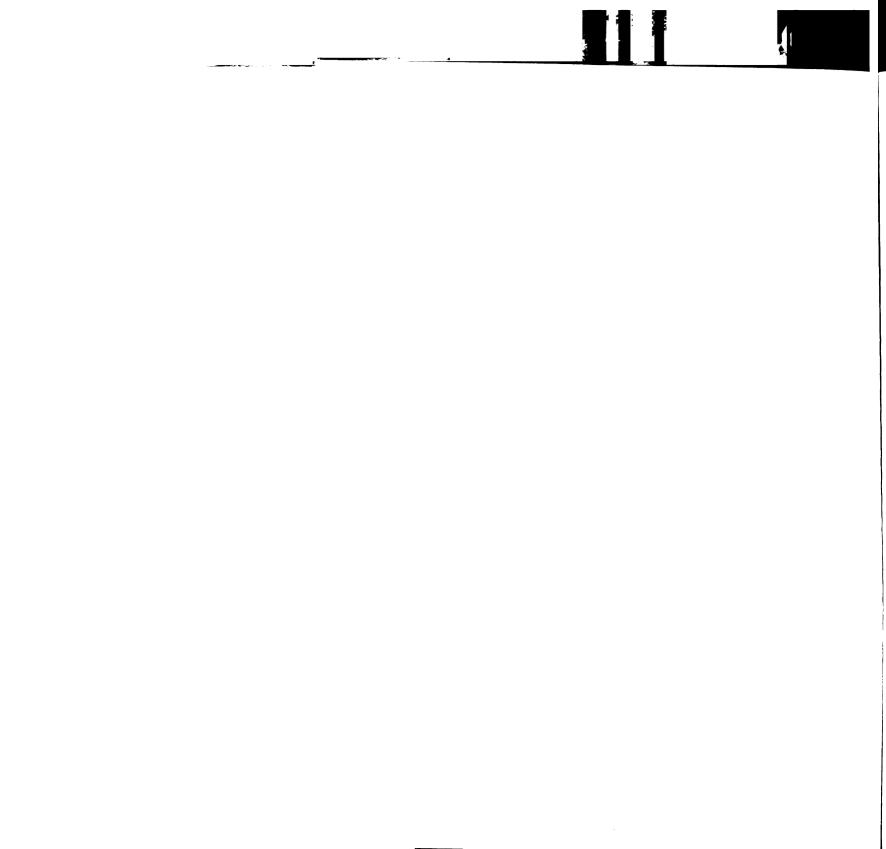
Abrupt delocate/ilmes/one expressed and the lack of partially delocatized tooks as well as experiment at high temperature delocatization of caloffe indicate a long induction period for delomits (Sibley et al. 1984) Sibley 1890, Sibley and Tartictt 1887, Sibley et al. 1987). Typerimental studies also imply delogite precipitating on delomite seeds has a long induction period (Caines 1980). This is subsistent tong induction period (Caines 1980). This is subsistent with the idea that changes in stochiometry of actomate

(percent molar Mg) affect the surface free energy requirement for precipitation. Thus, changes in stochiometry of dolomite with changes in solution could create induction periods between zones. Another argument that initial start times for zones are isochronous is the fact a random plot would be expected as a result of different-sized crystals starting at random times.

While the previous argument indicates the initial time of each zone may be isochronous, the end time of each zone may still vary. If the final time for each zone is not the same, then a linear trend can be created by allowing the larger crystals a longer period of growth. However, if we look at actual data, this trend is found in each sample. So, if it is a matter of the larger crystals having grown for a longer time, then on the scale of a thin section, larger crystals grew for a longer time than other crystals in the area represented by a thin section. Pairs of adjacent crystals indicate the larger crystals either in the same pore or in direct contact with smaller crystals have thicker zone widths. Thus, the larger crystal is either 1) growing faster than the smaller crystal or 2) growing for a longer period of time. The latter would indicate the fluid around the large crystal was more saturated than the fluid around the small crystal and thus took a longer time to deplete even though the crystals share the same pore space. This of course, assumes the fluid between the adjacent

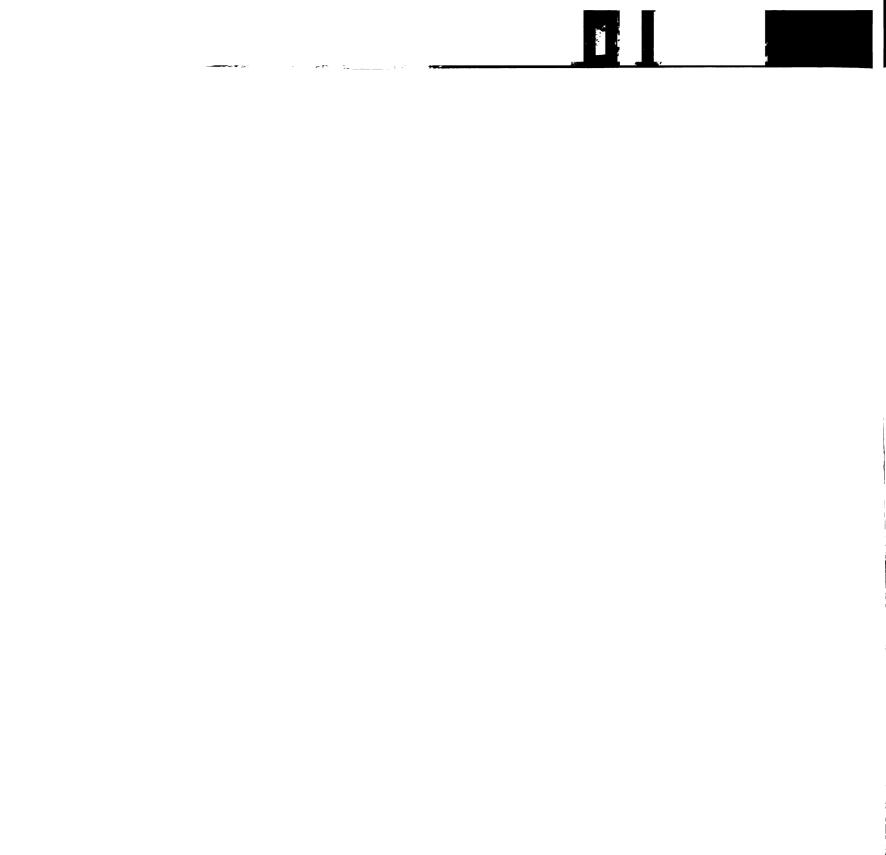


crystals was heterogeneous and not mixing, or solution in the pore was heterogeneous. This idea is rejected in favor of isochronous final times for zone widths. If large crystals were growing for a longer period of time due to solution heterogeneity, one would expect this trend to result from large crystals near pores. Petrographically, on the scale of a thin section there is no relationship between the large crystals and porosity (Figure 62). Large crystals and small crystals adjacent to each other that have no spatial bias to porosity and exhibit a linear trend between zone width and crystal radius, are readily found as indicated by the adjacent crystal pair plots (see Results Section).

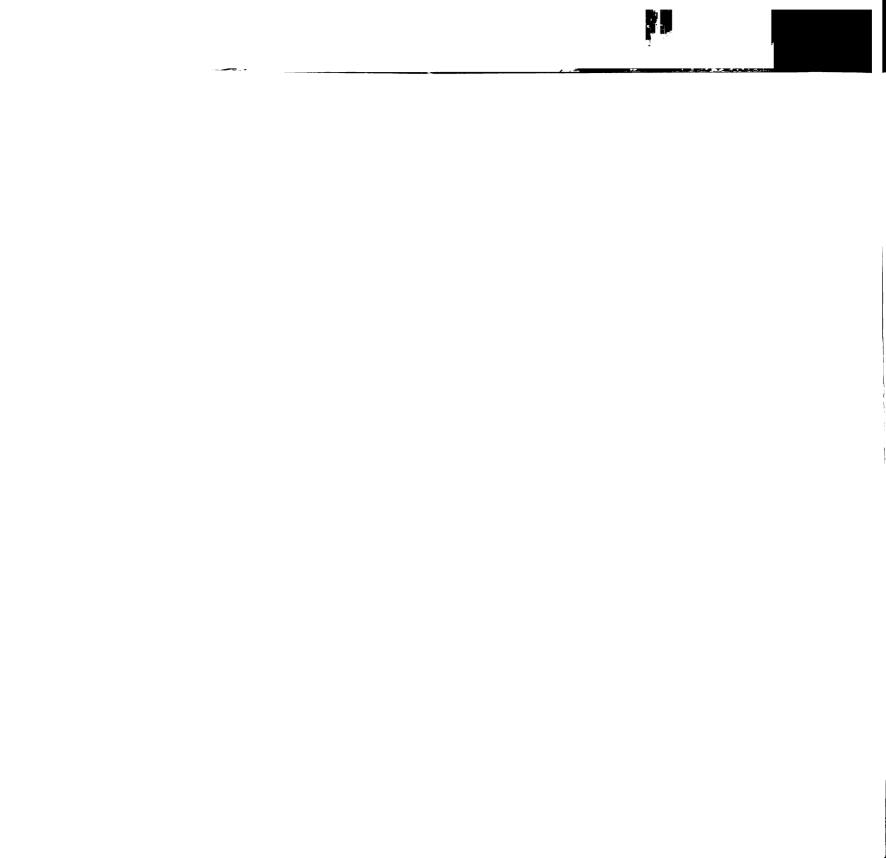

If the zones are isochronous as argued, the linear relationship found represents either a new surface-limited growth mechanism not previously considered, or a combination of crystal growth mechanisms that leads to a linear trend. Mononuclear, polynuclear and spiral growth mechanisms or any combination of these mechanisms will not result in a linear trend between zone width and radius among a population of crystals as the models are previously presented in the crystal growth literature. Diffusion-limited growth also does not result in a linear trend for a population of crystals. Birth and spread growth cannot be attributed to a linear trend among zone width and radius. Birth and spread growth assumes a constant nucleation rate/unit area and a

expected was heterogeneous of an a released in favor of isochronous final times for a subject, if large crystals were growing for a society person of dispension for a society person of dispension between growing for a society person of dispension to solution heterogeneity, one would stand the scale of a thin section there is a relationship between the large crystals and potosity sayore 62%. Large crystals and potosity sayore 62%, large crystals and small crystals adjacent to such other than have no spetial bias to personally and ashibit a linear trong between cone width and crystal results, are resulty found as indicated by the adjacent crystal (say plots (see Results Indicated by the adjacent crystal (say plots (see Results Section)).

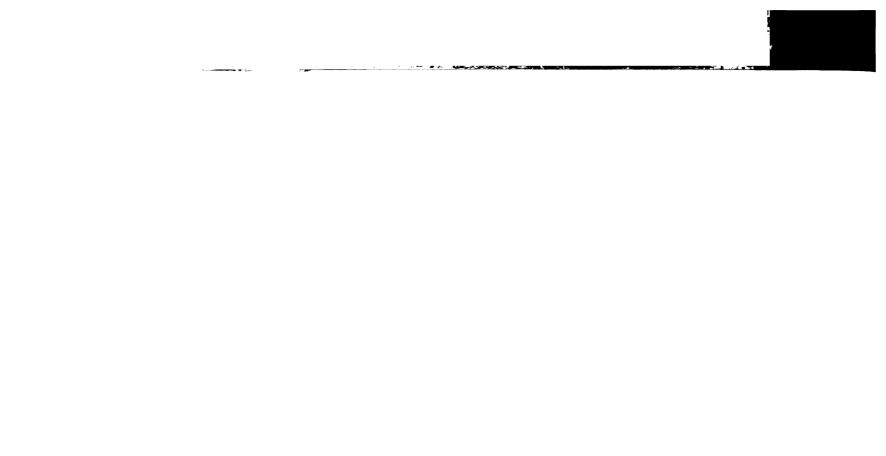
If the zones are teochropone as argued, the itemate relationship found represents either a new marrace-limited growth mechanism not previously considered, or a combination of crystal growth mechanisms that leads to a linear trend. Monomuclear, polymuclear and spiral growth mechanisms or any monomuclear, polymuclear and spiral growth mechanisms or any trend between zone width and radium among a population of crystals as the models are previously presented to the crystal growth literature. Diffractor-limited growth also does not result in a linear trend for a population of crystals. Birth and spread growth cannot be attributed to a linear trend among zone width and radius: Birth and apread growth cannot be attributed to growth assures a constant nucleation testerum eres and a


Partially crossed polars view of Burlington-Keokuk sample. Arrows point to large crystals near pore and within matrix (1 inch = 100 microns). Figure 62.

constant radial rate/unit area (Nyvlt 1985, Ohara and Reid 1973, Nielson 1964). In order to get a linear trend, nucleation rate or radial rate per unit area would have to vary from crystal to crystal. The saturation state would have to vary for adjacent crystals on a thin section for the nucleation or radial rate per unit area to vary for the previously published models. The latter variation in saturation state is rejected here for the same reasons it was rejected in the argument of isochronous final times for zone widths. There is no inherent property in any of the current growth mechanisms that would lead to a linear zone width-radius relationship in a population of crystals.


An alternative, consistent with the data, is any combination of polynuclear or birth and spread growth with a modified spiral growth model or a modified spiral growth itself. The spiral growth mechanism varies only with saturation state or solution properties which effect precipitation (Christian 1975, Ohara and Reid 1973, Burton et al. 1951). The spiral growth model is independent of defect density to the extent that groups of defects or single defects on the surface independently contribute to the overall growth rate. In Burton et al. (1951), the rate of spiral growth is determined by the distance between steps of the spiral where the rate increases with the distance between steps:

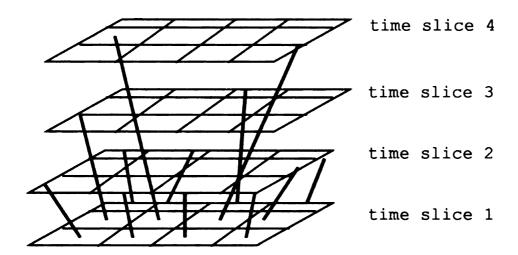
 $R = d (v_{\infty}/\lambda_0)$ (Bennema 1984, Burton et al. 1951)


where λ_0 is the distance between each arm of the spiral, d is the thickness of the layer (step), and v $_\infty$ is the advance velocity of the steps (dependent on saturation state). The distance between steps produced by a spiral is given by the rate of step advance (v $_\infty$) per number of steps (determined by the distance between arms of the spiral) or the flux of steps, v $_\infty$ / λ_0 (Bennema 1984, Burton et al. 1951). A decrease in the distance between steps results in a solute uptake by the steps greater than solute delivery from solution. Thus, the crystal growth rate is dependent on the interrelationship between step distance and saturation state. As saturation state increases, the minimum distance between steps necessary to maintain a concentration of adsorbed ions around the step decreases.

Burton et al. (1951) do indicate a range in growth rate is possible when more than one defect is present on the surface. In the case of a group of defects, Burton et al. (1951) divide the surface into groups of defects intergrowing and acting as one defect. In this case, the perimeter of each step is larger and overall growth is greater. However, growth is still limited by saturation state and the distance between steps resulting in the basic equation dr/dt = k. In either the case of single defects or groups of defects acting as one (due to intergrowth), if the distance between the defect centers or centers of defect

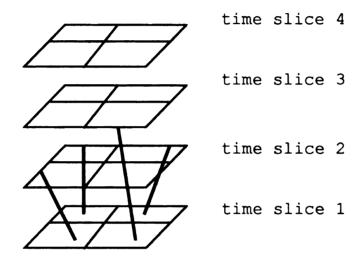
groups is great enough such that the center of the defects or defect groups do not intergrow then the total perimeter of steps is increasing. Simply, if the number of defects, whether single defects or group defects, on the surface is increasing, the rate of growth increases as the amount of step edge available or total step perimeter increases. Therefore, growth rate is dependent on defect density as well as distance between steps and saturation state. crystal growth rate for a population of crystals interacting with the same solution would equal a constant, dr/dt = k, if the defect density/unit area/unit time did not vary from one crystal to another crystal. If the defect density/unit area/unit time increased with crystal size, then the crystal growth rate for a population of crystals interacting with the same solution could be represented by dr/dt = k*r where k* represents solution conditions, mineralogy, and defect density/unit area/unit time. Thus, crystals growing by the spiral growth mechanism in a homogeneous solution can still exhibit a linear population trend between zone width and crystal size where the larger crystals are growing faster by varying defect density. This could be accomplished in two ways: 1) an increase in defect density/unit area with crystal size or 2) increasing distance from defects originating in the center of the face to the edge of the face (an increase in defect density/unit area/unit time).

First, if the defect density/unit area varied with crystal size, defect-ridden crystals would grow faster because the total step perimeter would be larger. Previously reported empirical evidence indicates larger crystals have a greater stress field to induce defects (Hull In addition, Randolph and Larson (1965) have indicated by observation some crystals inherently have more defects than others. Experimental evidence indicates a correlation between increasing defects and increasing growth rates (Ristic et al. 1991). Ristic et al. (1991) found an increase in the overall growth rate of potash alum crystals when incrementally increasing the strain on growing The increase in rate was attributed to an crystals. increase in dislocations observed petrographically on the growing crystals. Studies by White et al. (1974), Ottens et al. (1972), and Jancic and Garside (1975) also indicate an increase in crystal growth rate with crystal size but did not demonstrate a cause for the size-dependent growth. However, even if defect density/unit area was the same for all crystals, larger crystals could still grow faster if the defect density/unit area/unit time varied. dislocation, the defect that causes spiral growth, is a slip plane in a crystal that occurs at an angle to the growing crystal face. The screw dislocation perpetuates in time by constantly supplying new low-energy sites for ions to attach to the surface relative to the formation of a



two-dimensional nucleus on a flat surface. As the defect perpetuates through time it grows at an angle to the growing face giving the appearance of migrating to the edge of the crystal surface. At the end of the life span of the screw dislocation it will intersect the edge of the growing crystal and the screw dislocation defect will become an edge defect that will not continue to propagate. To illustrate this point, the surface of a large crystal (crystal A, Figure 63) and a small crystal (crystal B, Figure 64) are divided into square unit areas and are given the same defect density/unit area. The lifespan of screw dislocations in the center of the larger crystal will be longer than the lifespan of screw dislocations in the center of smaller crystals. Thus, even if defects had an equal chance of occurrence/unit area (defect density/unit area is constant), larger crystals could still be growing faster than smaller crystals because the number of defects/unit area/unit time would be greater for the larger crystals. This is one alternative hypothesis for the physical model of the crystal growth mechanism represented by the equation dr/ dt =k'r determined from the empirical data in this study.

Spatial and Temporal Crystal Growth Trends


A crystal growth mechanism as described previously in the Population Trends for Crystal Growth Mechanisms section can be represented by a family of related functions since a crystal growth mechanism can occur over a range of solution

	<u> </u>		

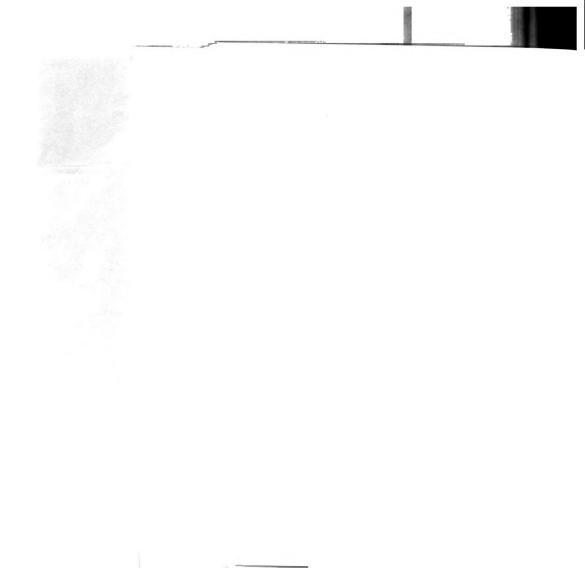

path of a defect originating in time slice 1

Figure 63. Crystal A

path of a defect originating in time slice 1

Figure 64. Crystal B

conditions. Also, when comparing formations, the period of time a zone grows can change the slope of the function but not the general function type. Thus, the four formations can all be described by the same general function type or crystal growth mechanism. The data indicate that bodies of rock on the scale of an outcrop that have the same net rockwater interaction and crystal growth mechanism, exist and are spatially mappable. Different lithologies within the Saluda/Whitewater Formations, different dolomites (Saluda/Whitewater, Burlington-Keokuk and Seroe Domi), and different zones from the same dolomite (Seroe Domi) have the same crystal growth mechanism, dr/dt=k'r. The slope of the fitted lines does not vary statistically from samples of one lithology to samples of another lithology. Thus, the crystal growth mechanism represented by the linear trend is not influenced by the range of the lithologies, rock ages or carbon and oxygen isotopes represented by the samples tested.

Variance in Crystal Growth Equations

In the crystal growth equations, we find low to moderate correlation coefficients even though the trend itself is statistically significant. This variance from the fitted line may result from experimental error, solution variation across the thin section (distances much greater than the size of a pore) or variation in the amount of time

<u> </u>		to A

the zone precipitates. First, the experimental error is discussed in the methods section and is less than the variation represented. Second, even though the pairs of adjacent small and large crystals in contact or within a pore indicate solution heterogeneity is not the cause of the linear trend, the variation from the trend may result from pore to pore solution heterogeneity. For example, if pore A solution has a higher saturation state than pore B solution, small and large crystals in pore A will grow faster than small and large crystals in pore B while the large crystals in both pores are growing proportionately faster than their smaller crystal counterparts. Arguments for the isochronity of initial and final times of zone widths are presented earlier. The constraint of a third unknown variable such as any solution concentration parameter (saturation state for example) for the zone measured and its relationship to the zone-width vs. crystalradius function could result in a more accurate function with a corresponding higher correlation coefficient.

In the Saluda/Whitewater dolomite, even though the slopes of the Whitewater samples and Saluda samples are the same, the mean zone width is greater for the Whitewater samples. This could be accomplished in two ways: 1) the saturation state was higher in the Whitewater samples and/or 2) the Whitewater samples were in contact with the dolomitizing solution for a longer period of time. In

either case, the trend of larger crystals growing faster than smaller crystals still occurs (Figure 65).

Conclusions

The Saluda/Whitewater, Burlington-Keokuk, and Seroe Domi Formations are growing by a similar mechanism as demonstrated by the same statistically significant linear trend, dr/dt = k'r, between zone width and crystal size for all four formations. The heterogeneity of the four formations compared agrees with previous work that indicates a single mechanism can operate over a range of solution conditions (Sunagawa 1984). The crystal growth equation does not statistically vary within a particular lithology or between lithologies when comparing the same zone. When comparing different formations, the same linear trend exists between two different zones. The crystal growth equation dr/dt = k'r also best represents zone-width vs. crystal-size plots of pairs of adjacent crystals. In addition, the data demonstrate the Saluda and Whitewater formations share the same zonal stratigraphy. From these observations, the following conclusions are drawn:

- a body of rock greater than the scale of outcrop can be described by a single crystal growth equation,
- 2) the crystal growth mechanism represented by equation dr/dt = k'r operates over a range of conditions as represented by the variation in lithology, age,

either case, the tiend it a claim tell-convent, feater than smaller crystals at a convent of the convent of the

Conclusions

The SalumareNitronshow, as we were saided as constrained by the state of the constraint of the constraint. The noter remarkly of the constraint of the const

2) the crystal growth mechanism represented by equation

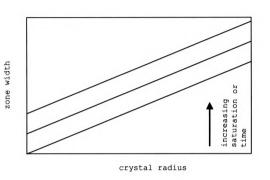
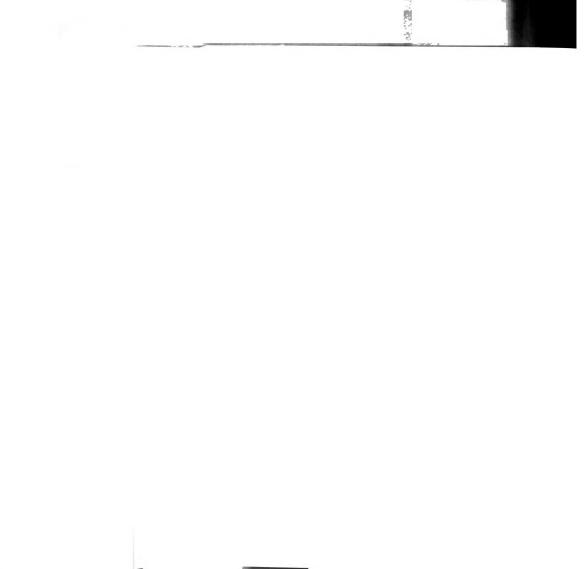



Figure 65. Family of functions for dr/dt = k'r

carbon isotopes and oxygen isotopes of the Saluda, Whitewater, Burlington-Keokuk, and Seroe Domi Formations,

- 3) the higher growth rate of larger crystals is not a result of thin section-scale solute flux, and
- 4) the Saluda Formation was dolomitized after deposition of the Whitewater Formation in contrast to published work suggesting the Saluda was dolomitized in a hypersaline environment concurrently with deposition.

While no current size-dependent crystal growth mechanism exists which can be ascribed to the equation dr/dt =k'r, this linear trend is found in similar data from Ristic et al. (1991), White et al. (1974) and Nordeng and Sibley (1996). A possibility suggested for the mechanism is a polynuclear, birth and spread and modified spiral growth or modified spiral growth with increasing defect density with time on the larger crystals.

APPENDIX A

APPENDIX A

Geometric Correction to Slice of Rhombic Face

Three lengths and one angle (A, B, C, β) were measured for each concentrically-zoned slice of the rhomb face (1 0 $\overline{1}$ 4) as illustrated in Figure 66. Measurement of β was used as an internal check on data precision since it can also be calculated from the three measured values of A, B, and C. The value of β calculated from A, B, and C in Equation 1 (Law of Cosines) was used to solve for the true lengths of A, B, and C referred to as A', B', and C'.

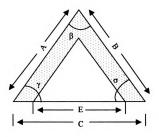
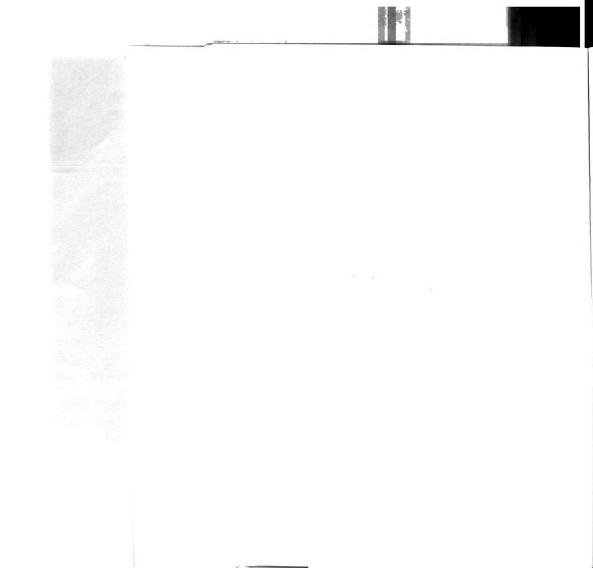
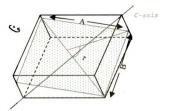
 $\beta = \cos^{-1}[A^2+B^2-C^2)/2AB]$ (Equation 1)

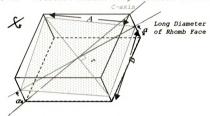
Once β has been calculated, angles σ and γ can be calculated by applying the Law of Sines (Equation 2,3).

 $\sigma = \sin^{-1}[(A\sin\beta)/C]$ (Equation 2)

 $\gamma = \sin^{-1}[(B\sin\beta)/C]$ (Equation 3)

Each of the three cases outlined in Figure 67 can now be solved. These three cases; Oblique Rotation (Case I), Rotation around the C-axis (Case II), and Rotation through the C-axis (Case III), are the only three cases which preserve a concentrically-zoned view with parallel apices. The three cases can be distinguished by the measured values as listed in Table 8. In Case III, C equals C' and no correction is required. For Case I and Case III, C' can be solved by comparison of the triangles created by; 1)


Figure 66. Slice Measurements

Case I - Oblique Rotation

Case II - Rotation Around Long Diameter of Rhomb Face

Case III - Rotation Around Short Diameter of Rhomb Face

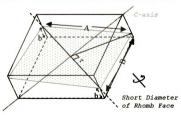


Figure 67. Three cases of rotation with corrections

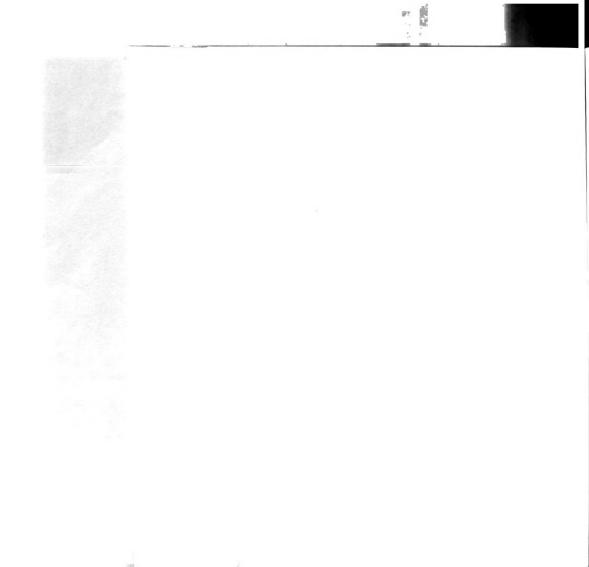


Table 8. Parameters to distinguish Case I, II and III

en .	Case I	Case II	Case III
A	A>A'	A>A'	A>A'
В	B>B'	B>B'	B>B'
A=B?	A≠B	A=B	A=B
C	C>C'	C>C'	C=C'
β	β>73.2°	β>73.2°	β<73.2°
γ	γ<53.4°	γ<53.4°	γ>53.4°
σ	σ<53.4°	σ<53.4°	σ>53.4°
γ=σ?	γ≠σ	γ=σ	γ=σ
τ	variable	τ=90°	τ=90°

bisecting C and 2) the normal to C', which cuts through the apex, labeled with the angle β .

In Case II, the line which is normal to length C' and the line which bisects C is the same line (Figure 68). In this case, length D' can be obtained by using the right triangle D'B(C/2).

$$D' = B \sin \sigma$$
 (Equation 4)

In Case I, the line that bisects C of the triangle ABC, is also the hypotenuse of the right triangle D'DX. The sides of D'DX are vectors (vector D' + vector X = vector D) which describe the orientation of the slice ABC relative to the triangle A'B'C' of the true rhomb face (Figure 69). The line that bisects C of the triangle ABC, or D, can be calculated from the Law of Cosines using triangle DB(C/2).

$$D = [B^2 + (C/2)^2 - 2B(C/2)\cos\sigma]^{1/2}$$
 (Equation 5)

Once D is known, the angle τ of the triangle DB(C/2) can be calculated from the Law of Sines.

$$\tau = \sin^{-1}[(B\sin\sigma)/D]$$
 (Equation 6)

The angle λ of the triangle D'DX is a complementary angle to $\tau.$

$$\lambda = 180 - \tau$$
 (Equation 7)

The length D' can be calculated from the right triangle ${\tt D'DX}$.

$$D' = D \sin \lambda$$
 (Equation 8)

discoting C and 3) the normal to C', which m's through the area, labeled with the angle B.

In Case II, the line which is normal to length (' and the line which bisects C is the same line (Figure 66). In this case, length o' can be o'tained by using the right (riangle D'B(C/2).

D' = B sin o (Equation 4)

In Case I, the line that bisects C of the triangle ARC, is also the hypotenum of he ight riangle D'DX. The sides of D'DX are vectors (vector D' + vector X = vector D) which describe the orientation of the site ABC relative to the triangle A'B'C' of the true rhomb face (Figure 69). The line that bisects C of the triangle ABC, or D, can be calculated from the law of Cosines using triangle DB(C/2).

 $D = [B^2 + (C/2)^2 - 2B(C/2)\cos\sigma]^{1/2}$ (Equation 5)

Once D is known, the angle t of the triangle DB(C/2) can be calculated from the law of Sines.

r = sin [(Bsing)/D] (Equation 6)

The angle A of the triangle D'DX is a complementary angle to

-

 $\lambda = 180 - \tau$ (Equation 7

The langth D' can be calculated from the right triangle

f ats a = ta

Equation 9)

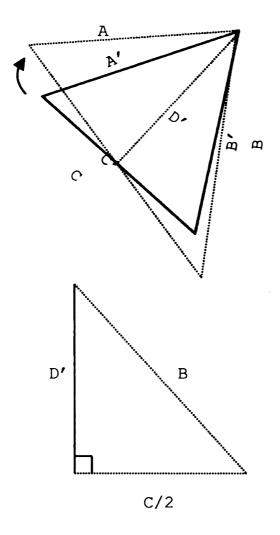


Figure 68. Case II Solution

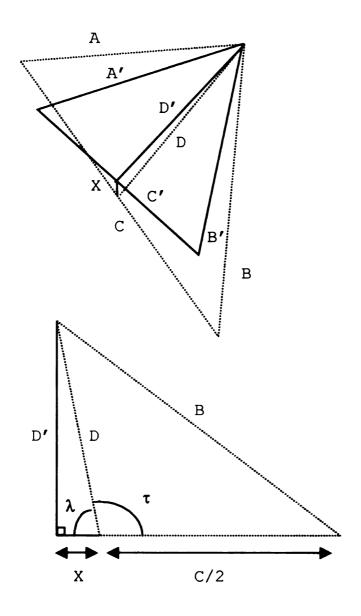
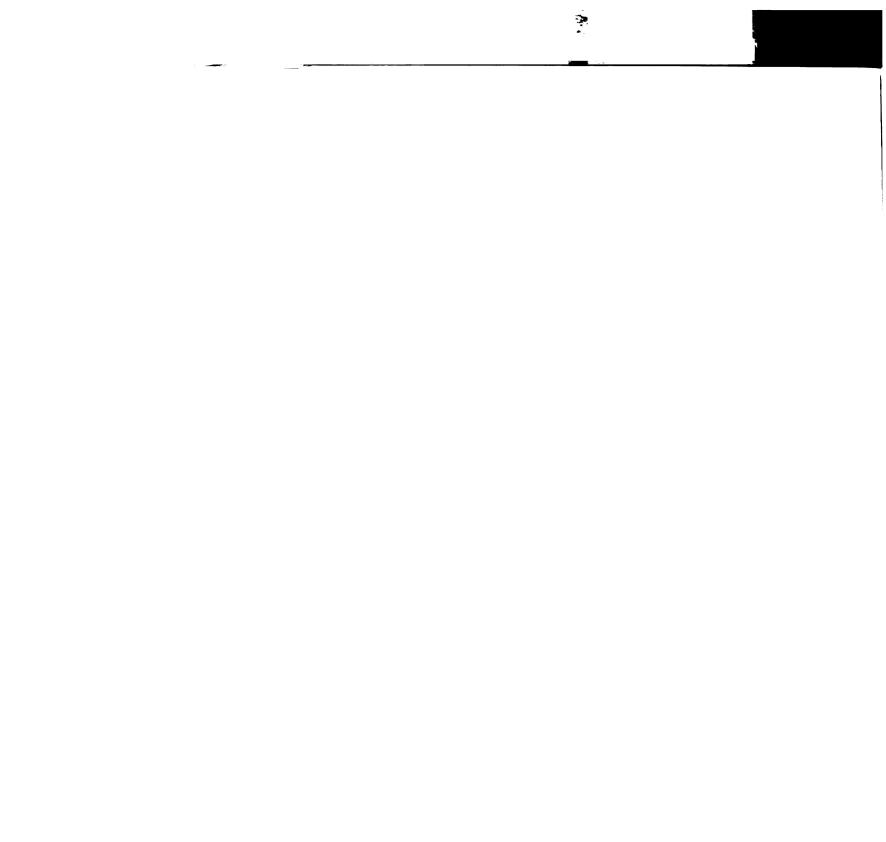


Figure 69. Case I Solution

Figure 69. Case I Solution


For Cases I and II, B' and C'/2 can be calculated from the right triangle D'B'(C'/2) (Figure 70). In the triangle A'B'C', A' is equal to B' due to the symmetry of the rhomb face and σ is equal to γ . From crystal symmetry, the angle β equals 73.2 degrees and σ equals 53.4 degrees in the true rhomb face. Since the line D' equally bisects β , the angle θ of the triangle D'B'(C'/2) equals 36.6 degrees.

$$B' = D'/(\sin 53.4^{\circ})$$
 (Equation 9)

$$C' = (B'\sin 73.2^{\circ})/\sin 53.4^{\circ}$$
 (Equation 10)

Since E (Figure 66), the inner zone width, changes proportionately to C, E' can be calculated by scaling E by the amount C is shortened.

$$E' = (C'E)/C$$
 (Equation 11)

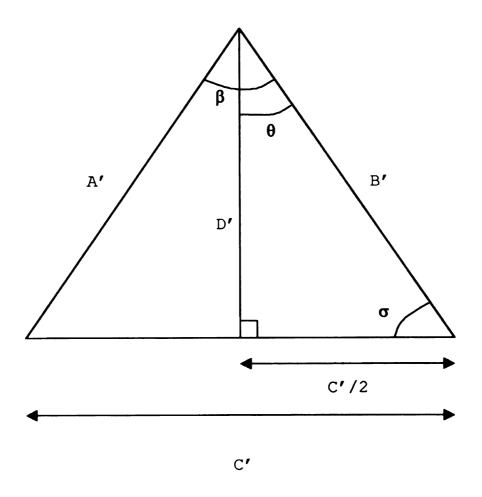
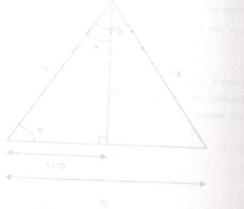



Figure 70. Triangle A'B'C'

A

rimure vo. Triangle A'B'C'

APPENDIX B

APPENDIX B

Data Tables

Table 9. Sample List for Saluda Formation Hwy 421 Outcrop

Sample	Sample	Number	Sample	Sample	Number
Number	ID	of	Number	ID	of
	:	Crystals			Crystals
1	m1	30	25	sd7	38
2	m2	33	26	sd11	31
3	m4	30	27	sd13	36
4	m8	30	28	sd15	30
5	m11	31	29	sd23	30
6	m20	35	30	p2	31
7	m21	30	31	p 5	30
8	m26	30	32	p17	31
9	m28	33	33	p19	30
10	m30	31	34	p27	30
11	m34	30	35	p31	30
12	m42	30	36	p34	30
13	g1	33	37	p36	39
14	g3	31	38	p37	37
15	g4	43	39	p40	34
16	g5	32	40	p41	36
17	g6	30	41	p45	33
18	g7	34			
19	g8	37			
20	d6	44			
21	d8	31			
22	d10	31			
23	d12	30			
24	sd3	36			

Selid' of Ces

Table 9. Sample like for Savona Eurman | wy 42; Outerrop

					Number
					2
					A.
			00 00 00 00 00 00 00 00 00		9
				8 S m 0 E m	
30			30 30 60 10 10 54 55		
29 29 70 34				m42 q1 q3	
					EE
				Cp 93	13
					15
36	10g	40		94	OI
	319	4.1		g6 g7 g8	
			34		18
				80	19
			9.4		
			31	85	
				010	20 21 22 23
-				dig	23
				gd3	24

Table 10. Sample M1 Measurements

				crystal	zone
A	В	С	E	size	width
25	28	32.5	27	12.9	2.6
14	19	21	17	7.4	1.7
29.5	32.5	38	32	15.3	2.9
42	41.5	51	42	20.2	4.3
45.5	39.5	56	45	19.0	4.6
23.5	25	29	25.5	12.7	1.7
24	22	28	23	11.1	2.4
26.5	25.5	33.5	29	12.8	2.0
24.5	24	29	27.5	13.7	0.7
35	35	43.5	33.5	15.7	4.7
17	17	17.5	16	8.0	0.8
21.5	20	27	23	10.0	1.7
40	39.5	47.5	39.5	19.7	4.0
12	11	13.5	11.5	5.8	1.0
11	11	12	10	5.0	1.0
43	45.5	57	49	21.6	3.5
18.5	18.5	25.5	23	9.0	1.0
18.5	20.5	20	16	8.0	4.4
30	40	38	33	16.5	4.6
28	25.5	32	29	14.4	1.5
45.5	49	57.5	50	24.2	3.6
26	28.5	33	28.5	13.9	2.2
45.5	48	58	50	23.5	3.8
22.5	21	26	21	10.4	2.5
25.5	21.5	29	26	12.2	1.4
25.5	28.5	32	29.5	14.8	1.3
46	48.5	58.5	51	24.0	3.5
19	22	22	18	9.0	3.7
30.5	35	38	33	16.5	3.2
16	14.5	18	16	8.0	1.0

Table 11. Sample M2 Measurements

				crystal	zone
Α	В	С	E	size	width
20	19.5	22.5	18.5	9.3	2.0
9	9.5	12.5	7.5	3.0	2.0
28	31	35.5	28.5	14.0	3.4
23	26	31.5	24.5	10.8	3.1
26	25	27	23	11.5	2.0
20.5	20	24	19.5	9.8	2.3
21	21	21	18	9.0	1.5
23	22	25	19	9.5	3.0
18	19.5	22	19	9.5	1.5
26	28	32.5	27.5	13.5	2.5
40	39	48	40	19.4	3.9
17	17.5	20.5	16.5	8.3	2.0
46	44.5	57	44.5	20.4	5.7
32	31	41	31.5	13.6	4.1
32	31	40	32	14.5	3.6
10.5	19	20	17	6.2	1.1
22	27.5	33	27	11.1	2.5
37.5	35	44	36.5	17.7	3.6
22	24	26	23	11.5	2.5
20.5	22	26	22	10.5	1.9
17	20.5	25	20.5	8.4	1.8
14.5	15	17	15	7.5	1.0
18	17	19	17	8.5	1.0
14	14.5	16.5	14.5	7.3	1.0
25	25	30	24.5	12.1	2.7
30	29	31	27	13.5	2.0
21.5	21.5	28	24	10.4	1.7
23	22.5	25	21	10.5	2.0
27	27	33	28.5	13.7	2.2
16	14	18.5	16.5	7.8	0.9
20.5	21	24	20.5	10.3	1.8
25	21.5	33	24	8.8	3.3
15	15.5	18	13	6.5	2.5

Table 11. Sample M2 Mean's

9.70	LEJEV.	7	-		-
not to					15.00
0.5		3	2	B	A
0.0					
			12.5		1 6
			35.5		28
1.8			31.5	(26	23
2.3			27	25	26
			24	20	0.5
		81	21	21	
	9.5	52	25	[22	23
		1 8		19.5	18
		27.5		28	26
				39	40
	8.3		20.5	17.5	27
5.7				44.5	46
				31	32
			40	31	32
		32 17	0.8	19	10.5
			33	27.5	22
2.5	17.7		44	35	37,5
		23	26	24	00
			8.8	22	22 2015
1.8				20,5	
1.8	8.A 7.5	20.5 15	13	21	1415
	8.5	17	19	15	
		14.5	16.5	14.5	14
0.1 2.7 2.2 1.7		24.5	30		
0.5	13.5	27	16	25	30
T. I	10.4	24	28	21.5	
2.0	10.5	21	25		
	13.7	28.5	33	2215	23
0.9	8.5	16.5	18:5	27	
	10.3	20.5	24	14	
3.3	9.8	AS I	33	21	20,5
2.5	6,5	13	18	21.5	25
The state of the s	-	100	01	15.5	

Table 12. Sample M4 Measurements

				crystal	zone
A	В	С	E	size	width
28	35	38.5	29	13.7	4.5
18.5	23	27.5	22.5	9.3	2.1
39	39	42.5	33	16.5	4.8
30.5	28	36.5	_30	13.9	3.0
22.5	25	28.5	24	11.8	2.2
21.5	19.5	23.5	20.5	10.3	2.2
18.5	17	22	18.5	8.7	1.6
42.5	42	48	38	19.0	5.0
34	32.5	34.5	27.5	13.8	3.5
17	20	23.5	17.5	7.8	2.7
23	23	26.5	22	11.0	2.3
22	23	25.5	20.5	10.3	2.5
26.5	21.5	30.5	25.5	11.4	2.2
20.5	21.5	24	19.5	9.8	2.3
16	13.5	19	15.5	6.8	1.5
14	13	16	14	7.0	1.0
9.5	10	10.5	6.5	3.3	2.0
15	12	16.5	12.5	5.9	1.9
21	17.5	23.5	18	8.6	2.6
36	34	43	36	17.2	3.3
18	19.5	19.5	17.5	8.8	1.0
24.5	24	28	24	12.0	2.0
24.5	31.5	35	26.5	12.0	3.9
29	26.5	38	29.5	11.6	3.4
15.5	15	16	13	6.5	1.5
30.5	29	37.5	30.5	13.9	3.2
18.5	18.5	22	17	8.5	2.5
21.5	21	24	18.5	9.3	2.8
38	40	48	42	20.0	2.9
50	43	56.5	50.5	24.3	2.9

Table 13. Sample M8 Measurements

				crystal	zone
Α	В	С	E	size	width
30	27	34.5	29	14.1	2.7
22	27	30	28.8	13.6	0.6
15	19	22	16.5	7.1	2.4
22	29	31	24	11.3	3.3
30.5	26	35	28	13.1	3.3
18	18	22	18.5	8.9	1.7
19.5	16.5	22	19	9.1	1.4
17	22	24.5	20.5	9.2	1.8
16	18	20.5	16	7.8	2.2
34	32	41.5	36	16.5	2.5
15	15	19	16	7.3	1.4
20	20	24	20	9.9	2.0
19	22.5	26	22.5	10.3	1.6
12	10	13.5	10.5	5.0	1.4
23	22	26	21.5	10.8	2.3
32	25.5	37.5	30.5	13.0	3.0
19	18.5	22	20	10.0	1.0
26	32	35.5	29.5	13.9	2.8
17	15.5	22.5	18.5	7.1	1.5
22	20.5	23.5	19	9.5	2.3
25.5	27	32.5	28.5	13.4	1.9
28	22	30.5	23.5	11.1	3.3
27	30	35.5	28	13.0	3.5
29.5	35	43	33.5	13.8	3.9
21.5	21	26	20.5	9.8	2.6
25.5	32	36	30	13.6	2.7
34.5	35.5	41	36	18.0	2.5
17.5	15	20	17	8.0	1.4
38.5	35	45	40	19.1	2.4
34	34	41	35	17.2	2.9

Table 13. Sample M8 Measuremen I

		-	7	- Contract of the Contract of	-
					1
datiw		3))	B	A
				27	
				13	
					225
				26	
				81	16
2,8					
	7.7				17
€.8	9.5				
1.9	13.4				
€.€					
				OE	
				35	
2.6				21	
2.7					
			41		
1.4	0.8			15	
2.4	1.01			35	
2.9	17.2				34

Table 14. Sample M11 Measurements

				crystal	zone
A	В	С	E	size	width
19	17.5	22	19.5	9.6	1.2
26.5	24.5	29	23.5	11.8	3.8
26	24.5	27	24	12.0	1.5
13.5	14	16.5	13	6.4	1.7
19.5	23	28	23.5	9.9	1.9
20	22.5	27	23	10.3	1.8
24	21.5	28	23	10.9	2.4
24.5	25	28	25.5	12.8	1.3
29.5	27	34	29.5	14.5	2.2
20	15.5	22.5	19.5	8.7	1.3
27	29	31.5	30	15.0	2.2
13	15.5	18.5	15.5	6.7	1.3
16.5	17	17	16.5	8.3	0.3
26	29	34	29	13.6	2.4
16.5	14	19	16.5	7.6	1.2
19.5	18.5	22.5	21	10.5	0.8
18	20	22.5	20.5	10.3	1.1
20	18	23	22	10.7	0.5
17.5	19.5	21	19	9.5	1.8
14.5	14	19	16	6.6	1.2
25	26	26.5	22	11.0	2.3
13	12	14.5	11.5	5.8	1.5
24	27	32.5	27	12.1	2.5
17.5	15	19.5	16	7.9	1.7
15.5	14.5	17	15	7.5	1.0
26	27.5	32	26	12.9	3.0
28	23.5	31.5	28	13.3	1.7
23	23.5	25	23.5	11.8	0.8
24.5	28.5	32.5	27	12.8	2.6
44.5	45.5	53	47.5	23.8	2.8
29	23	31.5	29	13.9	1.2

Table 14. Sample Mil Medout Honis

to the transfer of the street				Charlemonth County	and the second second
					- 1
					A
				17.5	19
				24.5	
			27		
	6.DI				2410
		29.5 29.5 19.5	28	25 27	
				29	
				15.5	
			17 34 19	17	
				29	
	7.6			14	16.5
I.I				20	
					20
1.8			23	19.5	
	6.6			1.4	
				26	
			14.5	12	13
				27	24
			19.5		
2.5			1.1	14.5	15.5
0.8		26		27.5	
Fal					
8.0	11.8			23.5	
2.6	12.8			28.5	23
2.8	23.8	27		45.5	
1.2	13.9	29			

Table 15. Sample M20 Measurements

	-			crystal	zone
Α	В	С	E	size	width
41	37.5	49	38.5	17.8	4.9
28	28.5	34	28.5	14.0	2.7
26.5	26	38.5	28	9.6	3.6
25	26.5	34.5	22	9.0	5.1
19.5	19.5	22	18	9.0	2.0
26.5	22.5	30	25	11.9	2.4
30	33.5	41	34	14.9	3.1
22.5	20	26	21	10.0	2.4
22	22	26	21	10.5	2.5
32	26	44	37.5	11.8	2.1
27	25	40	31.5	9.7	2.6
25	36	38	31.5	14.1	2.9
24	23	28.5	23.5	11.4	2.4
25	29	33.5	26	12.1	3.5
26.5	22.5	32.5	27	11.2	2.3
27	26	30.5	23	11.5	3.8
47	40	54.5	49	22.5	2.5
27.5	30.5	35	30	14.7	2.4
35.5	32.5	41	34	16.7	3.4
13.5	15	18.5	16.5	7.2	0.9
22	26	30	24.5	11.3	2.5
19_	21	23.5	20.5	10.3	1.7
40	35	49	37	15.8	5.1
21	20	22	17.5	8.8	2.3
21	20	21.5	19	9.5	1.3
13.5	14.5	18	14.5	6.4	1.5
31	25	35	24.5	11.2	4.8
25.5	20	29.5	23.5	10.1	2.6
31.5	30.5	36.5	29	14.5	3.8
31.5	26	36	25.5	11.7	4.8
24	22	26	19.5	9.8	4.3
20.5	18.5	21.5	18	9.0	3.0
13.5	19.5	26	22.5	6.4	1.0
20	18	21	18	9.0	2.7
27	27	34	29	13.3	2.3

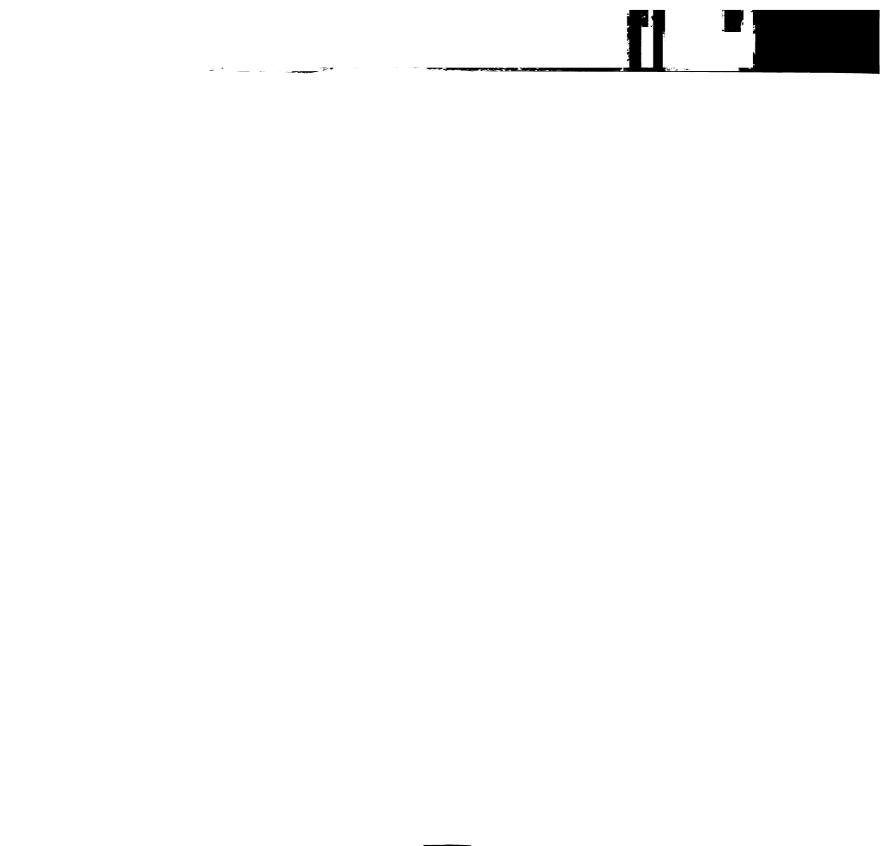


Table 16. Sample M21 Measurements

				crystal	zone
A	В	С	E	size	width
19	21.5	25	21	9.9	1.9
42.5	47	56	48	22.1	3.7
24	22.5	29	24	11.2	2.3
20.5	22.5	30	27	10.3	1.1
32	31	37	25	12.5	6.0
21	19.5	25	22	10.4	1.4
19	20	24	20	9.5	1.9
22	20	25	21	10.5	2.0
12.5	13	14	12	6.0	1.0
15.5	16.5	19.5	18	8.7	0.7
22	27	31	28	12.6	1.3
21	15	22	19.5	9.0	1.2
43.5	37.5	50	43.5	20.4	3.1
13.5	14	16	13	6.5	1.5
14.5	12	16.5	12	5.5	2.1
17	31	39	32	8.0	1.7
27.5	28	32.5	26	13.0	3.3
39.5	43	50	41	19.9	4.4
19.5	19.5	24.5	20	9.2	2.1
33	33.5	35.5	31	15.5	2.3
27	25	30	24.5	12.3	3.5
22	19.5	26	22	10.1	1.8
20	13.5	21	17.5	7.7	1.5
19.5	19	22	19	9.5	1.5
21	22.5	26	23	11.4	1.5
34.5	31	39.5	32.5	15.9	3.4
28	26.5	34	28.5	13.2	2.6
18.5	16.5	20.5	18	9.0	1.5
19	17	24	23	9.5	0.4
19.5	22.5	25.5	21	10.1	2.2

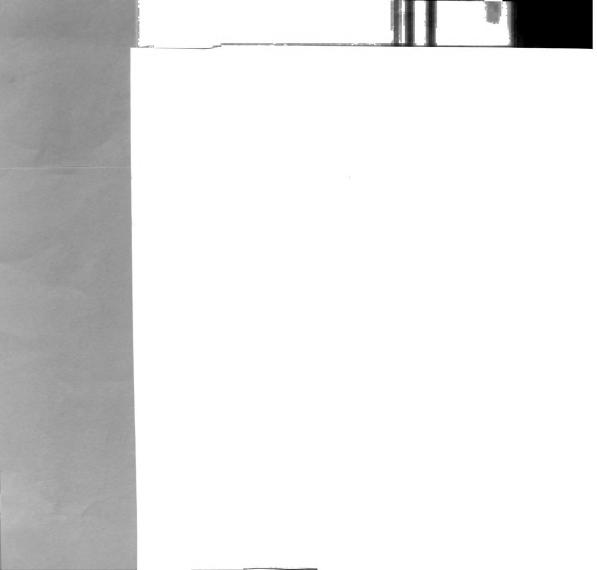


Table 17. Sample M26 Measurements

				crystal	zone
A	В	С	E	size	width
14	15	19	14	6.0	2.1
18.5	14	20.5	19	8.5	0.7
13.5	12	16	14.5	6.7	0.7
29.5	29	29	25	12.5	2.0
22.5	22	26	22	11.0	2.0
22	17	26	23	9.4	1.2
12.5	19	20	18	7.7	0.9
21	20	26	23	10.4	1.4
20.5	26	29	23	10.5	2.7
30	33.5	38	33.5	16.6	2.2
20.5	26.5	29	23	10.7	2.8
15.5	15	18	15.5	7.8	1.3
22.5	18.5	25	22	10.5	1.4
27.5	28	34	30	14.4	1.9
21.5	18.5	25	23	10.6	0.9
19.5	16	22	19	8.8	1.4
8	8	10.5	8.5	3.6	0.9
32	33.5	44.5	37.5	15.0	2.8
10	15.5	16	14.5	6.3	0.6
28.5	28	33	28.5	14.3	2.3
19.5	24	27	24	11.1	1.4
16	18	19	17	8.5	1.9
17.5	19	23	19	8.7	1.8
18.5	20	22	19	9.5	1.5
28	28	35	30	13.9	2.3
32	26	35	32.5	15.7	1.2
16	14	17.5	15	7.5	1.5
29	30	35	31	15.5	2.0
15	15	18	16	7.9	1.0
24	22	25	22	11.0	3.3

Table 18. Sample M28 Measurements

				crystal	zone
A	В	С	E	size	width
28	23.5	32	26.5	12.3	2.5
29.5	25.5	34	31	14.5	1.4
41	46	52.5	44	21.5	4.2
18	17.5	21	18.5	9.3	1.3
25	25	29.5	24	12.0	2.8
19	21	25	22	10.2	1.4
19	18.5	23.5	21	9.7	1.2
18.5	18	20	18.5	9.3	0.8
20.5	22.5	23.5	21	10.5	2.8
23.5	23.5	26.5	24.5	12.3	1.0
35.5	35.5	41.5	36	18.0	2.8
41	35	47	40.5	19.0	3.0
42	47.5	55.5	51	23.8	2.1
18.5	18.5	23	20.5	9.6	1.2
39	40.5	48.5	44.5	21.5	1.9
19.5	23	25.5	23.5	11.5	1.0
22.5	26.5	30.5	27	12.5	1.6
21.5	23.5	25	22.5	11.3	2.6
28	23	32	29	13.2	1.4
25	27	29.5	28	14.0	1.9
17	18	19	16.5	8.3	1.3
26.5	21.5	34	29	10.6	1.8
19.5	23.5	26.5	23.5	11.0	1.4
28.5	28	32	26	13.0	3.0
42	37	48	42	20.3	2.9
21	24	27	24.5	12.1	1.2
41	31	45	37.5	17.0	3.4
49	38.5	58	52	21.5	2.5
21.5	20	22.5	19	9.5	1.8
28.5	34.5	38	32.5	15.8	2.7
17	19	22	18.5	8.9	1.7
20.5	19	24	21.5	10.4	1.2
27.5	28.5	34	31	15.1	1.5

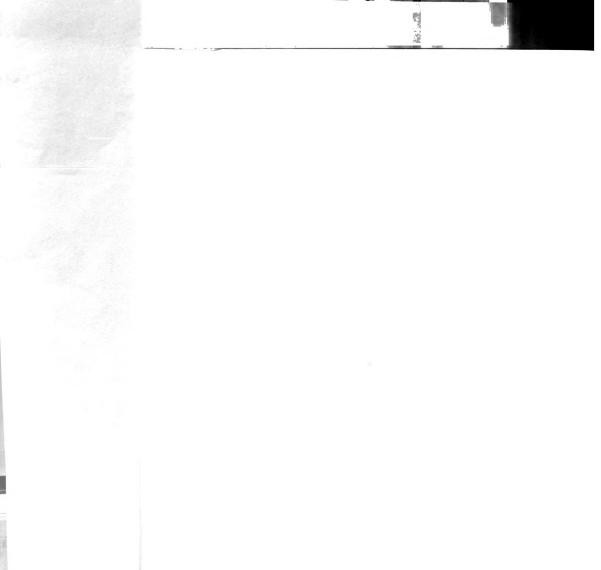


Table 19. Sample M30 Measurements

				crystal	zone
A	В	С	E	size	width
27.5	25.5	34.0	27.0	12.0	3.1
31.0	21.0	37.0	32.0	11.3	1.8
31.0	31.5	36.5	27.5	13.8	4.5
36.0	38.0	44.0	37.0	18.5	3.6
39.5	42.0	51.0	42.0	19.4	4.2
37.0	37.5	43.0	35.5	17.8	3.8
32.0	27.0	37.0	30.0	13.7	3.2
39.0	36.0	49.0	39.5	17.0	4.1
23.0	29.0	33.0	27.5	12.2	2.4
37.0	37.5	45.0	39.5	19.4	2.7
36.0	39.0	47.0	39.5	18.2	3.5
14.0	12.0	17.5	15.0	6.1	1.0
37.5	32.0	44.0	36.5	16.4	3.4
23.0	23.5	27.0	22.5	11.3	2.3
15.0	18.0	20.0	16.0	7.7	1.9
19.5	18.0	22.0	20.5	10.3	0.8
20.5	21.0	25.0	22.0	10.8	1.5
42.0	39.0	48.5	43.5	21.6	2.5
36.5	34.5	41.0	35.0	17.5	4.0
25.0	23.5	32.0	29.0	12.3	1.3
12.5	14.0	15.5	13.5	6.8	1.0
18.0	18.0	21.0	19.0	9.5	1.0
15.0	14.5	18.0	16.5	8.0	0.7
27.0	28.0	35.5	31.5	13.8	1.8
16.0	16.5	19.5	17.5	8.7	1.0
19.0	16.0	22.0	20.0	9.1	0.9
24.0	26.0	28.5	25.0	12.5	2.7
28.0	28.5	35.5	33.0	15.2	1.1
16.0	16.0	16.5	13.5	6.8	1.5
50.0	42.0	56.5	50.0	23.6	3.1
14.0	19.0	21.0	18.5	8.1	1.1

Table 20. Sample M34 Measurements

				crystal	zone
Α	В	С	E	size	width
29.0	27.5	38.0	33.5	13.7	1.8
40.0	43.0	54.5	49.0	20.9	2.3
22.0	24.0	29.0	24.5	11.2	2.1
38.5	43.5	49.5	41.5	20.2	3.9
40.5	31.0	47.5	39.0	16.0	3.5
28.5	27.0	34.0	27.5	13.2	3.1
39.0	33.5	46.0	39.5	17.7	2.9
14.0	17.5	22.0	18.0	6.8	1.5
28.0	30.0	34.5	27.0	13.5	3.8
19.5	21.5	27.5	22.5	9.2	2.0
28.5	30.5	34.0	27.0	13.5	4.4
25.5	24.0	27.5	21.5	10.8	3.0
27.0	27.5	39.0	32.5	11.8	2.4
29.0	25.0	32.5	27.0	13.2	2.7
29.0	36.0	42.5	36.0	15.3	2.8
16.0	14.0	18.5	16.0	7.5	1.2
26.5	26.0	36.0	31.5	12.4	1.8
28.5	25.5	34.5	30.0	13.4	2.0
28.5	28.0	36.0	30.0	13.5	2.7
30.0	35.5	40.5	36.0	16.8	2.1
28.0	29.5	36.5	31.5	14.2	2.3
35.5	32.0	40.5	36.0	17.8	2.2
25.5	24.5	32.0	26.5	11.8	2.5
24.0	22.0	28.5	23.5	11.0	2.3
19.0	20.5	20.0	15.5	7.8	2.3
27.5	25.5	32.5	29.5	14.1	1.4
35.0	27.0	39.0	30.5	13.7	3.8
25.5	16.5	28.0	26.0	10.2	0.8
20.0	20.5	25.0	19.5	9.2	2.6
12.0	13.0	15.0	13.5	6.7	0.7

Table 21. Sample M42 Measurements

			4-11	crystal	zone
A	В	С	E	size	width
17.0	13.5	19.0	17.5	8.0	0.7
26.0	25.0	28.0	24.0	12.0	2.0
19.0	18.5	21.0	20.0	10.0	0.5
46.0	40.0	53.0	46.0	21.7	3.3
27.0	24.0	33.0	29.0	12.6	1.7
20.0	22.0	24.5	22.5	11.3	1.4
24.0	25.0	26.5	23.5	11.8	1.5
19.0	24.0	27.0	23.0	10.4	1.8
15.0	15.0	18.5	16.0	7.6	1.2
34.5	28.5	40.0	32.0	14.3	3.6
30.0	27.0	38.0	31.0	12.8	2.9
26.5	26.0	27.0	24.0	12.0	1.5
26.0	21.0	29.0	27.0	12.6	0.9
21.0	21.5	26.0	22.5	10.8	1.7
32.0	33.5	37.0	32.0	16.0	2.5
30.5	33.5	41.0	33.5	14.9	3.3
26.0	25.0	29.0	27.0	13.5	1.0
18.0	20.0	20.0	17.0	8.5	3.4
19.5	19.0	26.0	21.0	8.5	2.0
19.0	20.5	26.0	21.5	9.1	1.9
32.0	27.0	37.0	31.0	14.2	2.7
37.0	39.0	48.0	45.0	20.5	1.4
24.0	30.5	35.0	28.5	12.4	2.8
38.0	32.0	51.0	46.0	15.9	1.7
23.0	25.0	28.0	25.5	12.8	1.7
22.0	28.0	30.5	26.5	12.5	1.9
14.0	14.5	17.0	15.0	7.5	1.0
30.5	21.5	33.0	29.0	12.6	1.7
17.0	18.5	21.0	17.5	8.8	1.8
56.0	56.0	72.0	66.0	29.2	2.7

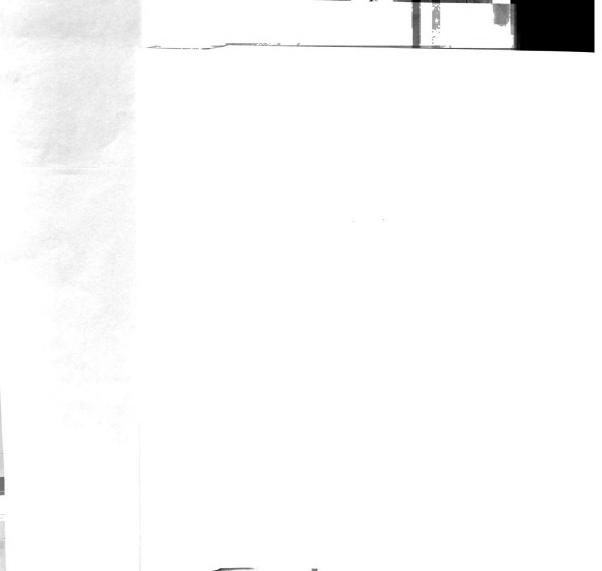


Table 22. Sample G1 Measurements

					crystal	zone
	Α	В	С	E	size	width
2	21.0	29.5	36.5	31.0	10.7	1.9
5	0.8	52.0	69.0	57.0	26.2	5.5
1	7.5	23.5	25.0	22.0	10.3	1.4
2	26.0	21.5	30.0	27.0	12.2	1.4
2	0.0	21.0	24.0	20.5	10.3	1.8
2	9.0	24.0	32.0	28.5	13.8	1.7
1	7.5	16.5	20.0	18.0	9.0	1.0
1	3.0	16.0	17.5	14.0	6.8	1.7
1	7.0	22.0	26.0	21.0	8.6	2.0
2	6.0	24.0	28.0	26.5	13.3	2.1
4	18.0	51.0	59.5	52.5	25.9	3.5
2	8.0	18.5	29.0	22.5	9.9	2.9
2	26.0	36.0	41.0	36.5	14.9	1.8
2	1.5	20.0	23.0	18.0	9.0	2.5
1	4.5	16.0	19.5	16.0	7.1	1.6
2	6.5	35.0	46.0	41.5	13.4	1.5
3	31.0	32.0	41.5	34.5	14.6	3.0
2	1.5	21.0	26.0	22.5	10.8	1.7
1	6.5	16.5	18.0	16.5	8.3	0.8
1	9.5	18.0	23.0	20.5	9.8	1.2
1	6.5	15.0	18.0	14.0	7.0	2.0
3	1.5	32.5	38.5	33.0	16.3	2.7
1	7.0	13.0	18.5	14.5	6.7	1.9
-	18.0	33.0	45.0	37.5	16.9	3.4
1	9.0	24.0	27.0	22.0	10.0	2.3
_	4.5	23.0	29.5	24.5	11.5	2.3
1	7.5	16.5	20.0	17.0	8.5	1.5
1	4.5	17.0	19.0	16.0	7.8	1.5
2	0.5	24.5	27.5	22.5	10.7	2.4
1	3.0	18.0	20.0	17.0	7.2	1.3
1	5.0	16.5	22.5	19.5	7.1	1.1
_	4.0	16.0	17.0	16.0	8.0	1.1
_ 1	6.5	18.5	22.0	19.0	8.7	1.4

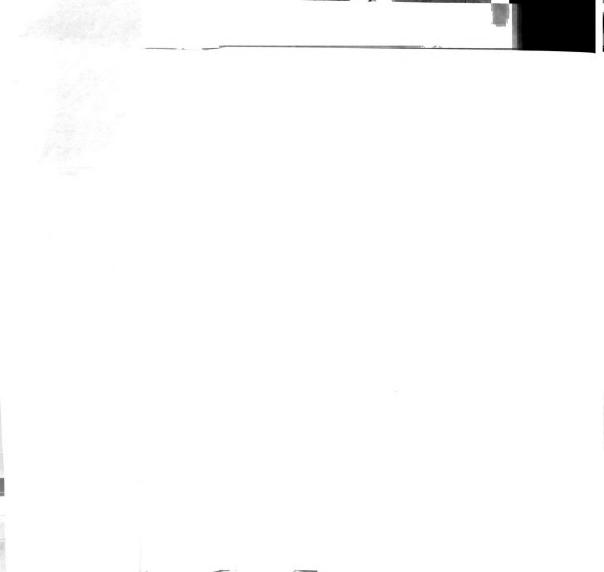


Table 23. Sample G3 Measurements

				crystal	zone
A	В	С	E	size	width
26.0	26.0	32.0	27.0	12.8	2.4
40.0	47.0	56.0	48.0	21.0	3.5
15.0	16.0	17.0	14.5	7.3	1.3
17.5	16.0	23.0	20.0	7.8	1.2
19.5	21.0	21.5	20.5	10.3	0.5
34.5	24.0	38.5	30.5	12.5	3.3
22.0	26.0	29.0	24.5	11.9	2.2
15.0	21.5	22.5	21.5	9.8	0.5
27.5	27.5	33.0	29.0	14.4	2.0
20.0	21.5	27.0	24.5	10.6	1.1
15.0	14.0	16.5	15.5	7.8	0.5
32.0	32.0	38.5	34.5	17.0	2.0
25.0	23.0	24.5	22.5	11.3	4.0
19.5	20.5	24.0	19.5	9.6	2.2
14.5	16.5	18.0	17.0	8.5	0.8
29.0	26.5	40.5	33.0	11.5	2.6
21.0	22.0	25.0	23.0	11.5	1.0
23.5	24.0	26.0	23.5	11.8	1.3
16.5	17.5	20.0	17.5	8.8	1.3
26.0	22.0	30.0	27.0	12.4	1.4
14.0	14.0	16.0	14.0	7.0	1.0
15.0	14.0	17.0	16.0	8.0	0.5
38.0	55.0	63.0	49.0	19.0	5.4
23.0	23.0	27.0	22.0	11.0	2.5
25.0	28.0	32.0	30.0	14.6	1.0
20.0	23.0	27.0	24.5	11.2	1.1
27.0	27.5	38.0	29.0	11.1	3.4
28.0	25.0	33.0	27.5	12.8	2.6
20.5	21.0	25.0	22.0	10.8	1.5
19.0	29.0	30.5	27.0	11.5	1.5
18.5	23.0	26.0	24.5	11.1	0.7

Table 24. Sample G4 Measurements

				crystal	zone
Α	В	С	E	size	width
17.0	23.0	27.0	22.5	8.9	1.8
30.5	28.0	38.0	27.5	11.9	4.6
18.0	19.0	23.5	17.5	7.9	2.7
17.0	26.0	27.0	21.5	9.3	2.4
32.0	27.0	37.0	27.0	12.3	4.6
23.0	24.0	28.0	24.0	12.0	2.0
34.5	37.0	46.0	35.5	15.7	4.6
29.0	25.0	32.5	24.0	11.7	4.2
29.5	28.5	35.5	26.0	12.5	4.6
28.0	23.0	33.0	26.5	11.5	2.8
13.0	17.5	19.0	14.0	6.3	2.3
17.5	23.0	26.0	19.5	8.5	2.8
19.0	26.5	29.0	24.5	10.6	2.0
18.0	21.5	25.0	20.0	9.0	2.2
26.5	21.0	31.5	28.5	11.8	1.2
63.0	62.0	80.0	69.0	30.8	4.9
21.5	39.0	41.0	31.5	11.5	3.5
17.5	15.5	21.0	16.0	7.2	2.2
25.0	39.5	45.0	35.0	12.6	3.6
34.0	33.0	44.5	36.5	15.3	3.3
39.0	37.0	48.0	40.0	18.2	3.6
42.0	42.0	44.0	33.0	16.5	5.5
42.5	43.0	47.5	42.0	21.0	2.8
27.0	27.5	33.0	25.5	12.4	3.7
16.0	17.0	19.0	15.0	7.5	2.0
42.0	42.5	49.0	42.0	21.0	3.5
27.0	28.0	33.0	30.5	15.1	1.2
15.5	17.0	20.0	15.5	7.4	2.1
31.5	28.0	36.0	29.5	14.3	3.2
22.0	27.0	30.0	26.0	12.3	1.9
26.0	27.5	32.0	25.0	12.4	3.5
30.5	27.5	35.0	30.0	14.7	2.4
21.0	26.5	31.0	26.0	11.0	2.1
16.0	15.0	18.0	15.0	7.5	1.5
23.0	16.0	24.5	19.5	8.6	2.2
29.0	31.0	40.0	33.5	13.9	2.7
38.0	38.0	47.5	41.0	19.0	3.0

Table 24 (cont'd).

				crystal	zone
A	В	С	E	size	width
26.0	22.5	29.5	23.5	11.3	2.9
24.0	22.0	22.5	20.5	10.3	4.6
29.5	32.0	37.0	30.5	15.0	3.2
20.0	17.5	23.5	20.5	9.4	1.4
25.5	26.0	31.0	25.0	12.3	3.0
29.5	27.5	35.5	29.0	13.5	3.0

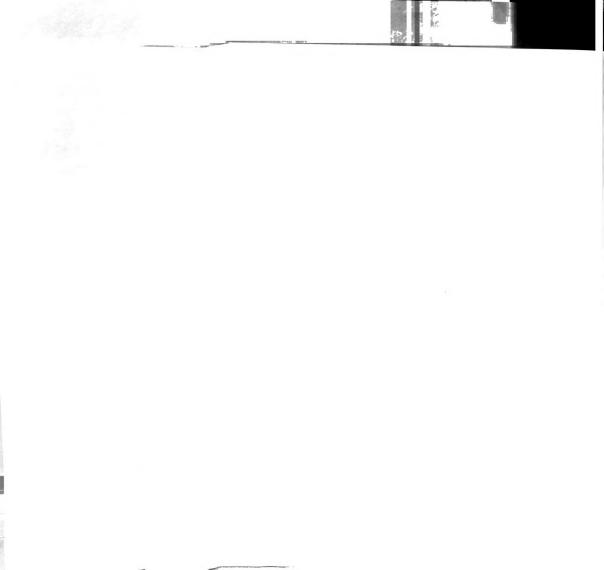


Table 25. Sample G5 Measurements

				crystal	zone
Α	В	С	E	size	width
22.5	23.0	27.0	23.5	11.8	1.8
18.5	20.5	26.5	22.0	8.8	1.8
24.0	28.0	32.5	26.0	12.0	3.0
25.0	28.5	33.5	28.0	12.9	2.5
20.0	18.5	24.0	21.0	9.8	1.4
12.0	16.5	18.0	15.5	6.8	1.1
21.5	19.0	24.5	23.5	11.4	0.5
37.0	37.0	43.0	39.0	19.5	2.0
14.0	15.0	15.0	11.5	5.8	1.8
12.5	11.5	15.0	13.0	6.0	0.9
20.0	20.5	23.0	20.0	10.0	1.5
13.0	11.0	15.0	13.0	6.0	0.9
13.5	15.0	17.5	16.0	7.6	0.7
8.5	8.5	10.0	8.0	4.0	1.0
31.5	32.5	32.0	27.0	13.5	2.5
20.5	21.0	26.0	22.0	10.2	1.8
25.5	27.0	32.0	28.5	13.7	1.7
23.0	24.5	30.0	26.5	12.1	1.6
20.5	22.0	24.0	17.0	8.5	3.5
14.0	13.5	17.5	16.5	7.4	0.4
15.5	17.0	20.0	18.0	8.5	0.9
9.5	11.0	12.0	10.0	5.0	1.0
12.0	14.0	15.0	14.0	7.0	0.8
33.0	25.5	37.0	31.0	13.8	2.7
20.0	20.0	23.0	19.5	9.8	1.8
33.5	26.0	36.0	31.0	14.8	2.4
15.5	16.5	20.0	17.5	8.1	1.2
23.0	23.0	28.0	26.5	12.8	0.7
21.5	21.0	28.0	25.0	10.6	1.3
26.0	21.0	29.0	25.5	11.9	1.6
21.0	22.5	25.0	20.5	10.3	2.3
22.0	28.0	30.5	27.0	12.8	1.7

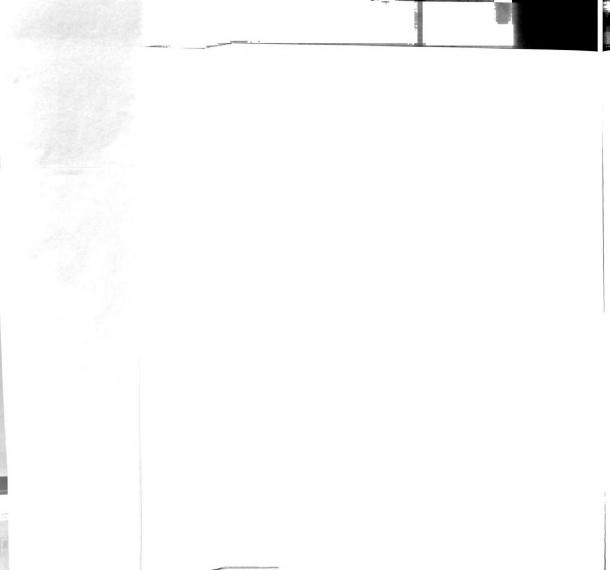


Table 26. Sample G6 Measurements

				crystal	zone
Α	В	С	E	size	width
37.0	27.5	45.0	37.0	13.8	3.0
25.0	27.0	30.0	26.5	13.3	2.5
19.0	18.0	22.0	19.5	9.8	1.3
33.0	30.5	43.0	38.5	15.5	1.8
18.0	18.5	21.5	19.0	9.5	1.3
28.5	21.0	33.0	28.5	11.5	1.8
22.0	23.5	27.0	22.0	11.0	2.5
28.5	34.5	39.0	35.5	16.5	1.6
34.5	34.0	41.0	37.0	18.4	2.0
19.5	19.0	24.0	21.5	10.0	1.2
20.5	22.5	26.0	23.5	11.5	1.2
38.6	35.0	45.0	38.0	18.2	3.4
20.5	22.5	26.0	23.0	11.2	1.5
31.0	39.0	43.0	37.0	17.3	2.8
11.5	11.0	13.0	11.5	5.8	0.8
23.5	22.5	26.0	22.5	11.3	1.8
21.0	24.0	29.0	26.5	11.6	1.1
17.0	17.5	17.5	16.0	8.0	0.8
32.0	38.5	44.0	36.0	16.6	3.7
12.0	11.5	13.5	11.0	5.5	1.3
32.0	36.0	44.0	38.0	16.6	2.6
20.5	21.0	25.0	22.5	11.1	1.2
16.5	17.0	20.0	17.0	8.5	1.5
30.0	31.0	35.5	33.5	16.8	1.0
50.0	40.5	55.0	46.5	22.2	4.1
20.5	20.0	24.0	21.5	10.8	1.3
13.5	17.0	18.5	15.5	7.4	1.4
29.0	28.0	33.0	29.0	14.5	2.0
23.0	25.0	28.0	24.5	12.3	2.2
41.0	32.5	47.0	43.0	18.9	1.8

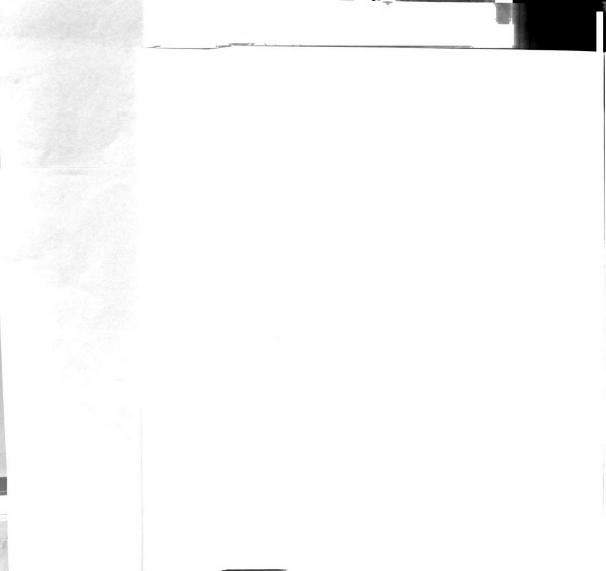


Table 27. Sample G7 Measurements

				crystal	zone
Α	В	С	E	size	width
17.0	19.0	19.5	17.0	8.5	2.7
17.0	19.0	21.0	19.0	9.5	1.3
37.5	38.0	42.0	36.0	18.0	3.0
20.5	28.0	32.5	27.0	10.8	2.2
36.0	35.0	41.0	36.0	18.0	2.5
24.0	22.0	26.5	25.0	12.5	1.4
27.5	27.0	32.5	27.0	13.5	2.7
34.5	41.5	46.0	39.0	18.8	3.4
26.0	31.0	36.0	33.0	14.9	1.4
30.5	34.0	47.0	38.0	13.2	3.1
33.0	28.0	38.0	29.0	13.4	4.2
21.0	20.5	25.0	20.0	9.8	2.5
17.0	15.0	19.5	17.0	8.2	1.2
32.0	32.0	36.0	31.0	15.5	2.5
29.0	35.0	42.0	35.0	14.8	3.0
14.5	10.5	17.0	15.0	5.8	0.8
20.0	22.0	25.0	23.0	11.5	1.0
33.5	37.5	43.0	38.0	18.5	2.4
19.5	21.0	23.0	20.0	10.0	1.5
36.0	37.0	44.0	37.0	18.2	3.4
37.0	36.0	44.5	35.0	16.9	4.6
20.0	26.0	30.0	26.0	11.0	1.7
15.0	13.0	15.5	13.5	6.8	1.8
21.0	24.0	27.0	22.0	10.8	2.5
18.0	26.0	28.0	23.0	9.9	2.2
40.0	40.0	48.0	42.0	20.8	3.0
14.0	13.0	15.0	14.0	7.0	0.5
22.0	23.0	27.0	23.0	11.4	2.0
17.0	17.0	24.0	21.0	7.8	1.1
42.0	40.0	52.0	46.0	20.8	2.7
22.0	17.5	24.0	22.0	10.5	1.0
27.0	27.5	30.0	27.0	13.5	1.5
25.0	26.0	29.0	24.0	12.0	2.5
18.0	17.0	20.0	18.0	9.0	1.0

Table 28. Sample G8 Measurements

				crystal	zone
A	В	С	E	size	width
22.0	24.0	27.0	23.0	11.5	2.3
36.0	35.0	39.5	32.0	16.0	3.8
18.0	18.5	18.0	17.0	8.5	0.5
28.0	26.0	35.0	29.0	12.6	2.6
34.0	32.0	40.0	31.0	15.1	4.4
30.0	31.5	36.0	32.0	16.0	2.0
31.0	32.0	37.0	32.0	16.0	2.5
31.0	31.5	37.0	31.0	15.5	3.0
37.0	41.0	47.0	34.0	16.7	6.4
31.0	31.0	37.0	31.0	15.5	3.0
48.0	54.0	62.0	54.0	26.1	3.9
30.0	32.0	40.0	35.0	15.4	2.2
31.0	32.5	40.0	35.0	16.0	2.3
31.0	29.0	36.0	31.0	15.3	2.5
23.0	25.0	27.0	23.5	11.8	2.9
16.0	18.0	20.0	17.0	8.5	1.7
20.0	18.0	22.0	20.0	10.0	1.5
45.0	40.0	52.0	42.0	20.1	4.8
22.0	20.0	26.0	21.0	9.9	2.3
27.0	27.0	28.0	23.0	11.5	2.5
36.0	46.0	52.0	44.0	19.5	3.6
34.0	35.5	37.0	32.0	16.0	2.5
15.0	16.5	18.0	15.0	7.5	1.5
30.0	34.0	40.0	34.0	15.7	2.8
36.0	30.0	42.0	37.0	16.5	2.2
44.0	43.0	50.0	44.0	22.0	3.0
36.0	31.5	44.0	37.0	15.9	3.0
42.5	43.0	51.0	43.0	21.5	4.0
20.0	26.5	29.0	26.0	11.8	1.4
22.0	20.0	22.0	20.0	10.0	3.2
24.0	24.0	27.0	25.0	12.5	1.0
17.0	14.0	22.0	18.0	6.6	1.5
16.0	18.0	20.5	18.0	8.8	1.2
32.0	29.0	37.0	25.0	12.1	5.8
19.5	20.0	22.0	19.0	9.5	1.5
32.0	28.0	36.0	30.0	14.8	3.0
46.0	46.0	56.0	42.0	20.3	6.8

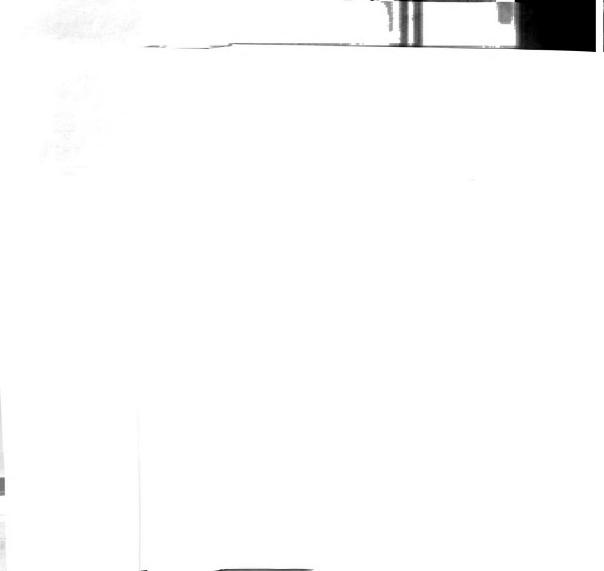


Table 29. Sample D6 Measurements

				crystal	zone
A	В	С	E	size	width
38.0	35.0	47.0	41.0	18.1	2.6
31.0	37.5	44.5	35.5	15.3	3.9
33.5	28.0	39.0	32.0	14.3	3.1
28.0	19.5	30.5	24.5	10.4	2.6
34.0	37.0	68.5	57.5	5.8	1.1
26.5	31.0	34.5	27.5	13.5	3.4
31.0	32.0	34.5	28.0	14.0	3.3
31.0	33.0	38.0	29.0	14.5	4.6
12.0	13.0	15.0	12.5	6.2	1.2
19.5	15.0	21.5	18.5	8.4	1.4
11.5	11.0	14.5	11.0	4.8	1.5
27.0	26.0	31.5	26.0	13.0	2.8
27.0	30.5	35.0	28.0	13.5	3.4
49.0	40.0	54.0	45.5	21.8	4.1
33.5	28.5	43.5	38.0	14.2	2.1
29.0	20.0	32.5	29.0	11.7	1.4
22.0	16.0	24.5	20.5	8.8	1.7
44.0	35.5	51.5	43.0	18.5	3.7
13.5	13.5	16.0	12.5	6.3	1.8
21.0	19.0	24.0	20.0	9.9	2.0
16.0	20.0	22.0	18.5	8.7	1.7
20.5	27.0	30.0	25.0	11.1	2.2
18.0	16.0	21.0	18.0	8.5	1.4
22.5	21.0	26.5	22.5	10.9	1.9
23.5	24.0	25.0	19.0	9.5	3.0
20.5	20.5	24.5	20.5	10.2	2.0
42.0	27.0	44.0	36.0	15.2	3.4
24.0	19.5	27.5	23.0	10.3	2.0
31.0	32.5	38.0	30.5	15.2	3.7
17.5	18.0	21.0	16.5	8.3	2.3
24.0	23.0	28.5	23.0	11.2	2.7
18.0	18.0	21.0	18.0	9.0	1.5
42.5	35.5	50.0	38.5	16.9	5.1
23.5	22.5	25.5	23.0	11.5	1.3
35.0	30.0	39.0	31.0	15.2	3.9
32.5	29.0	41.0	33.0	13.7	3.3
46.0	43.5	57.5	44.0	19.5	6.0

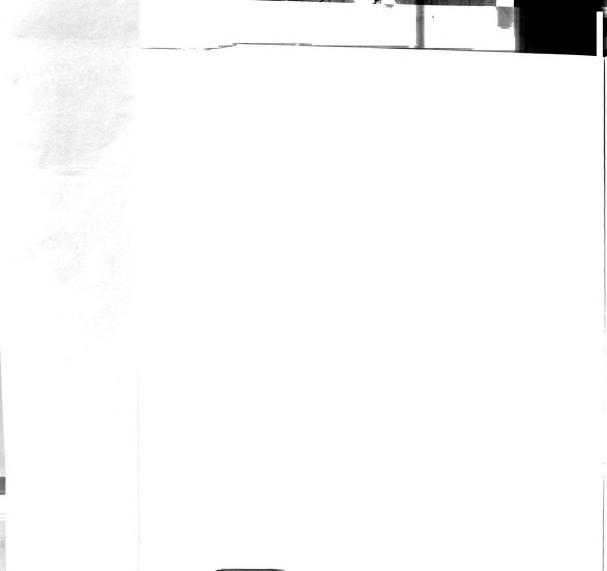


Table 29 (cont'd).

				crystal	zone
A	В	С	E	size	width
47.0	50.5	59.0	44.5	21.7	7.1
20.5	22.0	25.0	21.0	10.5	2.0
22.5	20.0	28.0	21.5	9.1	2.7
27.0	32.0	37.0	30.0	13.7	3.2
20.5	22.0	25.5	21.0	10.4	2.2
18.0	19.0	23.0	18.5	8.6	2.1
30.5	30.0	33.0	29.5	14.8	1.8

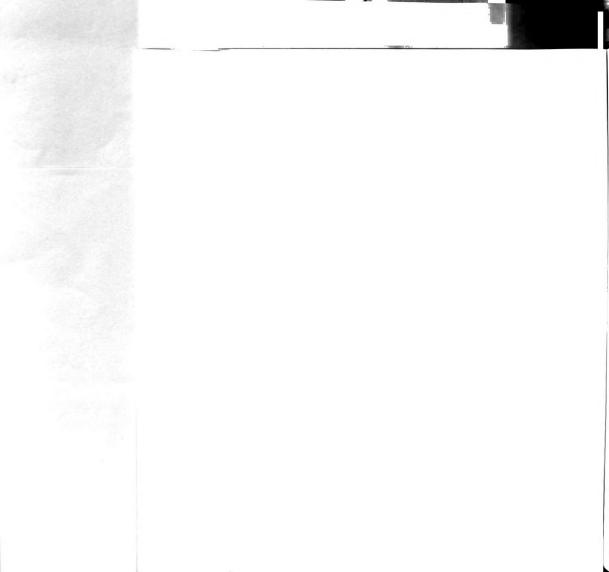


Table 30. Sample D8 Measurements

Antichateren ben an a ferbalegen eine beseiche eine fan de gebehr fall befene bestellt beratt ert.

				crystal	zone
A	В	С	E	size	width
39.0	37.0	47.0	40.0	18.9	3.3
31.5	35.0	41.0	36.5	17.2	2.1
26.0	27.5	29.0	26.0	13.0	1.5
29.0	31.0	35.0	30.5	15.3	2.8
29.5	27.5	35.0	30.5	14.5	2.1
33.0	33.0	40.0	36.0	17.5	1.9
26.0	36.0	40.0	36.0	15.3	1.7
29.5	27.0	34.0	30.5	15.0	1.7
32.5	32.0	40.0	35.5	16.7	2.1
25.0	23.0	28.5	24.0	12.0	2.3
26.5	24.5	32.0	29.0	13.3	1.4
15.0	17.0	19.0	16.0	8.0	1.5
18.0	23.5	27.0	23.5	10.0	1.5
21.0	21.5	26.5	22.0	10.2	2.1
25.0	24.5	32.0	28.0	12.3	1.8
18.0	19.0	21.0	19.0	9.5	1.0
23.0	19.5	26.0	23.5	11.2	1.2
29.5	35.5	40.0	36.0	16.9	1.9
35.0	34.5	42.0	37.5	18.4	2.2
23.0	18.0	26.5	22.0	9.5	1.9
24.5	25.5	29.0	25.5	12.8	1.8
38.5	35.0	48.5	38.0	16.0	4.4
28.5	27.0	31.0	25.0	12.5	3.0
14.0	13.5	14.5	11.5	5.8	1.5
24.5	23.5	31.5	27.5	11.7	1.7
27.0	28.0	35.0	28.0	12.6	3.1
19.5	22.0	25.0	20.0	9.8	2.4
17.0	16.5	20.5	17.5	8.4	1.4
21.0	34.0	34.5	28.0	12.0	2.8
21.0	27.0	30.0	24.0	10.9	2.7
25.0	21.5	33.0	26.0	9.5	2.6

Table 31. Sample D10 Measurements

				crystal	zone
Α	В	С	E	size	width
34.0	33.5	42.5	35.5	16.3	3.2
21.0	19.0	23.0	18.5	9.3	2.9
38.5	40.5	52.0	44.5	18.9	3.2
30.5	34.0	40.0	36.5	17.1	1.6
39.0	40.5	53.0	43.0	17.8	4.1
42.0	52.0	59.5	49.0	21.9	4.7
23.5	21.0	27.5	25.5	12.0	0.9
28.0	28.0	33.5	29.5	14.7	2.0
31.0	35.5	43.5	39.0	16.7	1.9
22.0	22.0	26.0	23.0	11.5	1.5
33.5	34.5	37.0	31.0	15.5	3.0
19.0	21.0	27.0	22.0	8.9	2.0
32.0	27.0	40.5	34.0	13.3	2.5
28.0	34.0	41.5	36.5	14.9	2.0
25.5	27.0	31.5	23.5	11.6	4.0
28.0	34.5	40.5	37.0	15.9	1.5
26.0	26.5	32.5	21.5	10.1	5.2
25.5	24.0	26.5	22.5	11.3	2.0
21.0	27.0	29.5	24.5	11.4	2.3
21.5	19.5	25.0	22.0	10.6	1.4
20.0	18.0	24.5	21.0	9.2	1.5
34.0	35.0	43.0	35.5	16.5	3.5
32.5	32.0	40.0	35.0	16.4	2.3
22.0	23.0	27.0	22.0	10.9	2.5
13.0	11.5	15.0	13.0	6.2	1.0
17.5	18.5	23.0	20.5	9.2	1.1
24.5	20.5	30.0	27.0	11.1	1.2
21.0	15.5	22.5	17.5	8.0	2.3
16.0	18.5	21.0	18.5	8.9	1.2
24.0	22.5	28.5	24.5	11.7	1.9
36.5	35.5	42.0	37.0	18.5	2.5

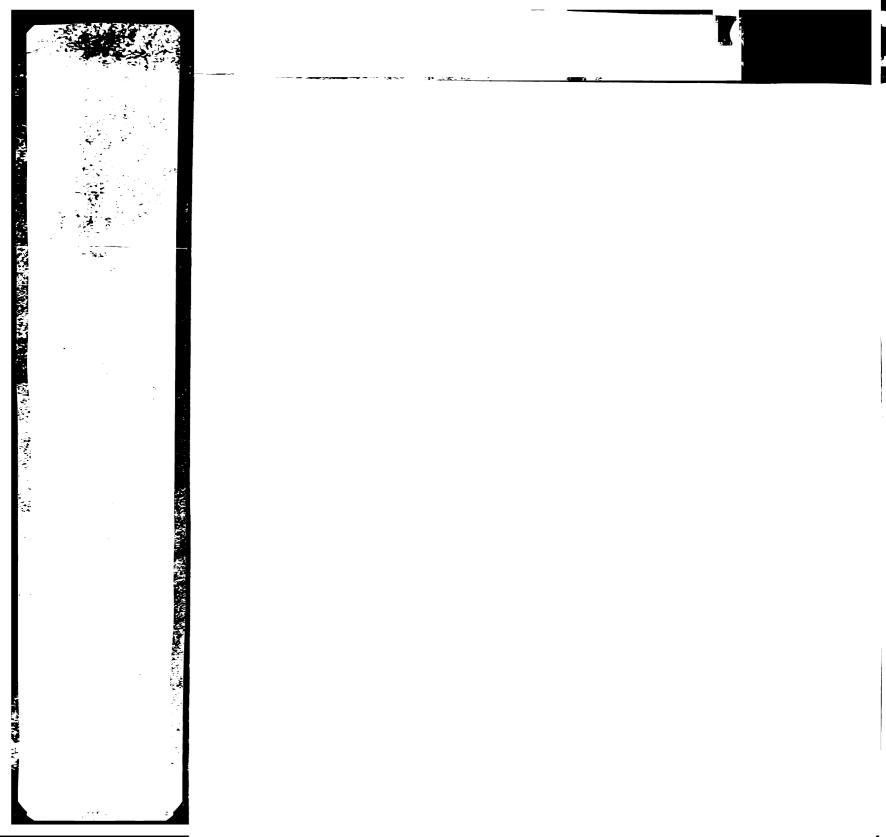


Table 32. Sample D12 Measurements

				crystal	zone
A	В	С	E	size	width
16.5	15.0	20.0	18.0	8.1	0.9
22.0	24.0	27.0	24.0	12.0	1.8
18.5	20.5	24.0	21.0	10.0	1.4
24.0	24.5	28.0	26.0	13.0	1.0
24.0	23.0	29.0	25.0	11.8	1.9
30.0	36.0	41.0	37.0	17.1	1.9
17.0	21.5	24.0	22.0	10.1	0.9
23.0	22.5	27.0	23.0	11.5	2.0
35.0	45.0	52.0	47.0	20.0	2.1
31.0	32.0	38.0	36.0	17.7	1.0
14.0	14.0	16.0	14.0	7.0	1.0
21.5	20.0	24.0	20.0	10.0	2.0
22.0	22.0	24.5	21.0	10.5	1.8
20.0	24.0	27.0	24.5	11.6	1.2
29.5	28.5	37.0	32.0	14.3	2.2
21.0	23.5	28.0	25.5	11.6	1.1
38.0	40.5	47.5	41.5	20.2	2.9
24.0	27.5	32.0	27.5	12.8	2.1
23.0	20.0	27.0	25.0	11.4	0.9
19.5	19.0	22.0	19.5	9.8	1.3
39.0	38.5	47.0	41.5	20.2	2.7
20.5	20.0	24.5	22.0	10.8	1.2
39.0	37.5	47.0	42.0	20.0	2.4
30.5	24.0	38.0	33.0	12.4	1.9
19.0	20.5	26.0	23.5	10.0	1.1
24.5	24.0	28.0	25.0	12.5	1.5
20.0	21.5	24.0	21.0	10.5	1.5
13.5	13.5	17.5	16.0	7.0	0.7
28.0	29.5	35.0	28.5	13.8	3.1
28.5	27.0	36.0	30.5	13.3	2.4

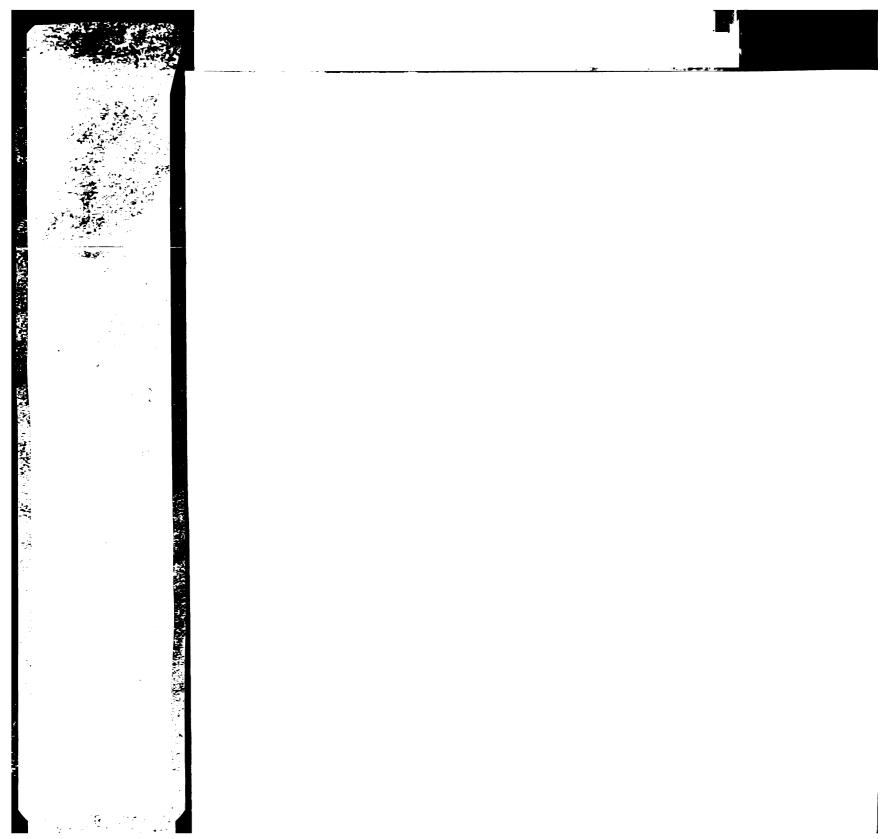


Table 33. Sample SD3 Measurements

				crystal	zone
Α	В	С	E	size	width
29.5	27.0	37.0	32.0	13.7	2.1
35.0	36.0	43.0	36.5	17.8	3.2
46.0	57.0	66.5	56.0	24.3	4.5
36.0	37.0	41.5	35.5	17.8	3.0
57.0	45.0	63.0	55.0	25.5	3.7
40.0	35.5	50.0	42.5	17.8	3.1
38.5	38.5	50.0	42.5	18.5	3.3
16.0	19.5	22.0	17.0	7.9	2.3
34.0	35.0	38.5	33.5	16.8	2.5
24.5	23.5	29.5	24.0	11.4	2.6
38.5	52.5	57.0	46.5	20.8	4.7
21.0	22.5	26.5	22.5	10.9	1.9
18.0	19.0	22.0	17.5	8.8	2.3
17.0	17.5	19.5	14.0	7.0	2.8
21.0	20.0	23.0	19.5	9.8	1.8
14.0	15.5	17.5	13.0	6.5	2.3
12.5	12.5	15.0	12.0	5.9	1.5
19.0	19.0	23.0	18.0	8.8	2.4
36.0	33.5	42.5	35.5	17.0	3.4
25.5	25.0	29.5	25.0	12.5	2.3
28.5	27.5	31.0	26.0	13.0	2.5
24.5	25.0	27.5	22.5	11.3	2.5
26.5	20.0	31.0	28.0	11.4	1.2
24.0	22.0	27.5	22.5	11.2	2.5
31.0	30.0	35.5	31.5	15.8	2.0
19.5	18.0	23.0	16.5	7.9	3.1
36.0	39.0	46.5	41.0	19.2	2.6
52.5	42.5	64.0	53.0	21.3	4.4
35.5	36.5	41.0	35.0	17.5	3.0
28.0	22.5	33.5	24.0	9.9	3.9
35.5	35.0	41.5	36.0	18.0	2.8
19.0	14.5	21.0	17.0	7.7	1.8
43.0	45.0	53.0	42.5	20.9	5.2
26.0	25.5	28.0	21.5	10.8	3.3
12.5	14.0	15.5	12.0	6.0	1.8
31.0	30.0	32.0	24.5	12.3	3.8

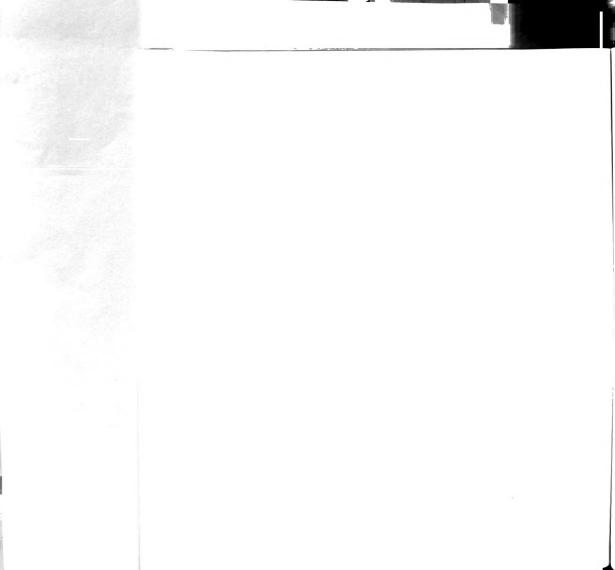


Table 34. Sample SD7 Measurements

				crystal	zone
A	В	С	E	size	width
35.5	32.0	46.0	31.0	12.3	6.0
35.5	30.5	41.0	34.5	16.0	3.0
17.5	17.0	18.0	14.5	7.3	1.8
14.5	14.5	17.0	14.5	7.3	1.3
20.0	24.0	29.5	26.0	10.6	1.4
27.5	37.0	41.0	35.0	15.4	2.6
39.5	39.5	47.0	39.5	19.8	3.8
50.0	44.0	57.0	47.5	23.0	4.6
14.5	14.0	15.0	13.0	6.5	1.0
19.0	17.5	19.5	18.0	9.0	0.8
19.0	19.0	22.0	19.5	9.8	1.3
18.0	17.0	21.0	17.5	8.7	1.7
17.0	18.0	20.0	18.0	9.0	1.0
29.0	29.0	29.0	26.5	13.3	1.3
35.0	27.5	39.0	33.5	15.3	2.5
49.0	44.0	59.0	50.0	22.5	4.1
34.0	36.0	40.0	35.5	17.8	3.6
34.0	28.0	37.5	33.5	16.2	1.9
33.5	32.5	42.0	36.0	16.2	2.7
48.0	44.0	58.0	48.0	21.9	4.6
28.0	30.0	35.0	30.0	14.7	2.4
41.0	31.0	45.5	39.5	17.5	2.7
27.5	30.0	35.0	31.0	15.0	1.9
42.0	31.0	46.0	39.0	17.3	3.1
43.0	33.0	49.0	43.0	18.5	2.6
14.0	16.0	17.0	15.0	7.5	1.6
11.5	12.0	13.0	11.0	5.5	1.0
13.5	13.0	15.5	12.0	6.0	1.8
17.5	20.0	23.0	19.0	9.0	1.9
18.0	18.0	21.0	17.5	8.8	1.8
27.0	30.5	35.0	29.0	14.0	2.9
26.0	29.5	36.0	28.0	12.1	3.5
18.0	18.0	21.0	18.5	9.3	1.3
18.0	18.5	21.5	17.0	8.5	2.3
30.0	35.0	42.0	36.0	15.7	2.6
18.5	24.0	26.0	21.0	9.9	2.3
23.0	14.5	23.5	19.0	8.2	1.9

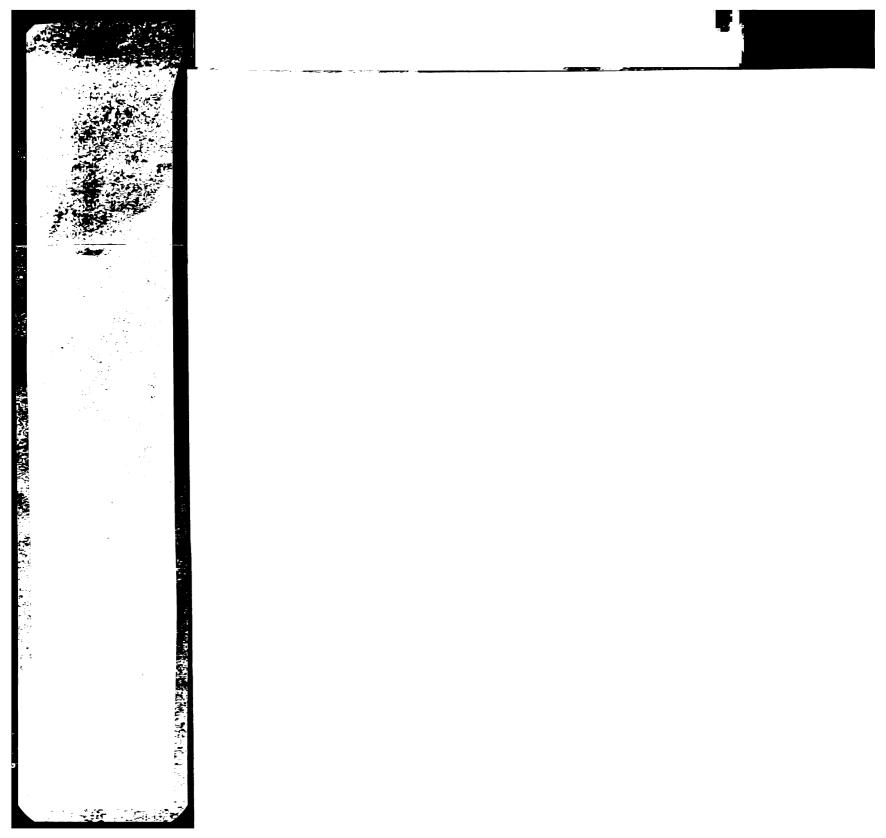


Table 34 (cont'd).

				crystal	zone
A	В	С	E	size	width
30.0	33.5	38.0	32.0	15.8	3.0

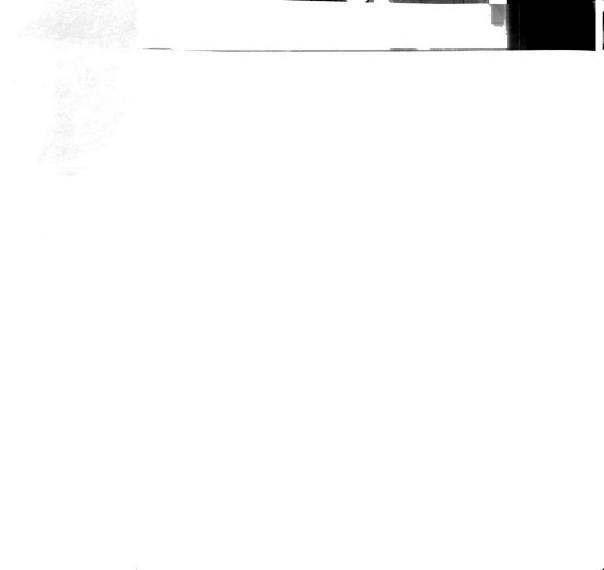


Table 35. Sample SD11 Measurements

				crystal	zone
A	В	С	E	size	width
33.0	20.0	35.0	28.0	11.0	2.7
29.0	29.0	34.0	29.0	14.5	2.5
34.0	49.0	53.0	43.5	18.7	4.1
32.0	32.0	47.0	33.0	11.3	4.8
32.0	32.0	34.5	25.0	12.5	4.8
35.5	41.0	53.0	46.5	17.9	2.5
48.0	37.0	51.5	43.5	20.7	3.8
14.5	13.0	17.0	13.5	6.3	1.6
15.5	16.0	18.0	15.5	7.8	1.3
19.0	21.0	23.5	18.5	9.3	2.7
17.0	16.5	20.0	18.0	9.0	1.0
28.5	27.0	31.5	26.0	13.0	2.8
26.5	24.0	31.0	25.0	11.9	2.9
17.5	10.0	18.5	15.5	5.8	1.1
27.5	20.0	30.0	25.5	11.3	2.0
26.5	23.0	31.0	26.0	11.9	2.3
16.5	11.5	18.0	16.0	6.8	0.9
18.5	26.5	29.0	25.0	10.6	1.7
24.0	26.0	33.5	28.5	11.7	2.1
29.5	28.0	33.5	28.0	14.0	2.8
40.5	33.0	47.0	39.0	17.2	3.5
14.5	14.0	15.5	13.0	6.5	1.3
29.5	29.5	35.0	27.5	13.8	3.8
13.0	13.0	15.5	12.5	6.3	1.5
32.0	31.0	40.5	34.5	15.3	2.7
17.5	16.0	19.5	17.0	8.5	1.3
18.0	20.0	23.5	18.5	8.7	2.4
21.5	21.0	23.0	19.0	9.5	2.0
24.0	25.5	29.0	22.5	11.3	3.3
17.5	16.0	20.5	16.5	7.9	1.9
12.5	11.0	14.5	11.5	5.4	1.4

Table 36. Sample SD13 Measurements

				crystal	zone
A	В	С	E	size	width
18.0	18.0	20.5	19.0	9.5	0.8
36.0	35.0	44.0	38.0	17.9	2.8
27.5	27.5	33.0	31.0	15.3	1.0
25.0	28.0	33.0	29.0	13.5	1.9
27.0	25.0	35.0	26.5	10.8	3.5
19.5	21.0	24.0	20.0	10.0	2.0
20.0	21.5	26.0	20.0	9.2	2.8
25.0	23.0	31.0	26.0	11.4	2.2
18.0	19.0	21.0	20.0	10.0	0.5
26.0	23.0	31.5	27.0	11.9	2.0
31.0	35.0	40.0	35.5	17.2	2.2
26.0	28.0	34.0	29.0	13.3	2.3
17.0	16.0	19.0	16.0	8.0	1.5
23.0	24.0	27.0	21.0	10.5	3.0
27.5	21.0	30.0	25.0	11.5	2.3
19.5	18.0	22.0	20.0	10.0	1.0
23.5	28.0	31.0	26.5	12.9	2.2
20.0	18.5	23.0	20.5	10.2	1.2
22.5	20.0	27.5	23.0	10.0	2.0
27.0	25.0	31.0	25.0	12.5	3.0
18.0	16.0	17.0	16.5	8.3	2.6
21.0	21.0	25.5	21.5	10.4	1.9
13.0	20.0	21.0	17.0	7.2	1.7
20.5	15.5	22.0	20.0	9.4	0.9
25.0	25.0	28.0	22.0	11.0	3.0
16.0	14.5	20.0	15.0	6.4	2.1
21.5	19.5	24.5	20.0	9.9	2.2
25.0	26.5	28.0	22.0	11.0	3.0
20.5	21.0	23.5	20.0	10.0	1.8
29.0	22.5	33.0	29.5	12.9	1.5
29.0	29.5	36.0	26.0	12.4	4.8
22.0	23.0	27.5	22.0	10.6	2.6
29.5	30.0	38.0	30.5	13.6	3.4
32.0	30.0	34.0	28.0	14.0	5.2
19.5	19.0	21.5	16.5	8.3	2.5
18.0	17.5	22.0	17.5	8.2	2.1

Table 37. Sample SD15 Measurements

				crystal	zone
A	В	С	E	size	width
33.0	32.0	41.0	34.5	15.8	3.0
18.0	19.0	22.0	19.0	9.5	1.5
19.0	20.0	24.0	18.5	8.8	2.6
22.0	19.0	25.0	16.5	7.9	4.1
21.0	20.0	25.0	21.5	10.4	1.7
16.5	15.0	22.5	15.5	5.6	2.5
20.0	20.5	23.5	17.0	8.5	3.3
42.5	49.0	64.0	52.5	19.8	4.3
29.0	28.0	32.5	26.5	13.3	3.0
22.5	25.0	30.5	24.0	10.6	2.9
19.5	23.0	25.5	19.5	9.6	2.9
35.5	35.0	39.0	30.0	15.0	4.5
19.5	22.0	26.5	18.5	8.2	3.6
32.5	34.0	36.5	27.5	13.8	4.5
36.5	37.0	50.5	39.0	15.3	4.5
24.0	24.0	31.0	24.0	10.5	3.1
19.5	24.0	26.5	19.5	9.3	3.3
19.5	25.0	31.0	23.5	8.8	2.8
20.0	24.5	27.0	20.0	9.6	3.4
35.0	29.0	41.0	31.5	13.9	4.2
26.0	26.5	32.0	27.0	13.0	2.4
24.0	24.0	30.5	23.5	10.6	3.2
27.5	28.5	29.5	24.5	12.3	2.5
31.0	32.0	30.5	25.5	12.8	2.5
13.0	11.0	18.0	13.5	4.4	1.5
23.5	28.0	36.0	29.0	10.9	2.6
20.5	18.5	23.5	18.5	9.1	2.5
41.0	31.0	44.0	37.0	17.3	3.3
25.5	23.5	32.0	29.0	12.5	1.3
21.0	17.0	23.0	21.0	10.1	1.0



Table 38. Sample SD23 Measurements

				crystal	zone
Α	В	С	E	size	width
44.0	39.0	54.0	44.5	19.2	4.1
34.0	33.0	37.0	35.0	17.5	1.0
23.0	22.5	25.5	24.0	12.0	0.8
20.0	17.0	24.0	20.5	8.9	1.5
14.5	13.0	17.5	15.0	6.7	1.1
11.0	11.0	13.5	12.0	5.7	0.7
20.0	17.0	23.5	19.0	8.5	2.0
33.0	25.0	36.5	33.0	14.8	1.6
15.0	11.0	16.0	14.5	6.7	0.7
25.0	24.0	26.0	24.5	12.3	0.8
14.5	18.0	20.5	19.0	8.6	0.7
39.0	40.0	46.0	41.0	20.5	2.5
15.5	14.0	17.0	13.0	6.5	2.0
25.0	24.0	29.0	27.5	13.8	0.8
15.0	16.0	18.5	17.5	8.8	0.5
25.5	28.5	32.5	29.5	14.5	1.5
20.0	18.0	21.0	18.0	9.0	2.7
20.0	24.5	27.5	25.5	11.9	0.9
13.0	15.0	16.0	13.5	6.8	1.7
17.5	17.0	21.0	19.5	9.4	0.7
21.0	22.0	23.0	22.0	11.0	0.5
20.0	17.5	22.5	20.0	9.8	1.2
36.0	41.5	47.5	42.5	20.2	2.4
17.0	16.0	18.0	16.0	8.0	1.0
34.5	34.0	39.0	35.0	17.5	2.0
18.0	20.0	23.0	21.5	10.5	0.7
9.5	10.0	11.5	10.5	5.3	0.5
26.0	27.5	37.5	31.0	11.7	2.5
16.5	16.0	17.0	15.0	7.5	1.0
25.0	26.0	30.0	24.0	12.0	3.0

Table 39. Sample P2 Measurements

				crystal	zone
A	В	С	E	size	width
38.0	33.5	43.0	38.0	18.6	2.5
12.0	14.0	16.0	12.5	5.9	1.7
14.5	15.0	17.0	14.5	7.3	1.3
20.5	14.0	21.5	18.5	8.2	1.3
13.0	14.5	16.0	14.5	7.3	0.8
29.0	23.0	32.5	27.0	12.3	2.5
19.0	31.5	33.5	28.0	10.9	2.1
13.0	12.0	16.0	12.5	5.6	1.6
27.5	28.0	27.0	23.0	11.5	2.0
11.5	16.0	17.0	14.0	6.4	1.4
14.0	15.0	18.0	14.0	6.6	1.9
16.0	21.0	23.0	18.0	8.2	2.3
24.0	17.0	26.0	21.5	9.4	2.0
17.5	22.0	24.0	21.0	10.0	1.4
26.0	23.0	30.0	24.0	11.5	2.9
45.0	33.0	50.0	47.0	20.3	1.3
19.5	18.5	23.5	17.5	8.3	2.8
15.0	14.0	18.0	15.0	7.0	1.4
20.5	20.5	20.5	18.0	9.0	1.3
24.0	30.0	33.0	29.0	13.7	1.9
29.5	32.5	38.0	32.0	15.3	2.9
28.0	22.5	32.0	27.0	12.1	2.2
31.0	31.0	39.0	33.5	15.4	2.5
21.0	24.0	30.0	26.5	10.9	1.4
16.5	22.0	25.5	21.0	8.6	1.8
10.5	13.5	16.0	13.0	5.3	1.2
35.5	35.0	39.5	35.5	17.8	2.0
14.5	18.0	20.5	17.5	7.9	1.4
23.5	26.0	31.0	25.5	11.7	2.5
16.0	15.0	19.5	17.5	8.0	0.9
18.0	15.0	20.0	15.5	7.5	2.2

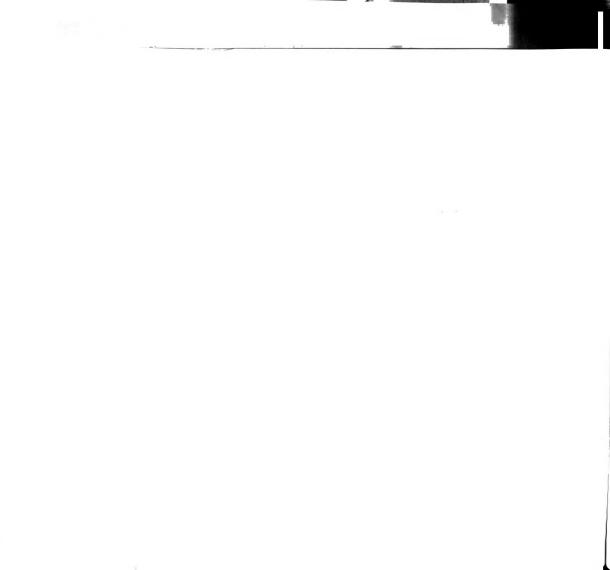


Table 40. Sample P5 Measurements

				crystal	zone
A	В	С	E	size	width
44.0	42.5	51.0	44.5	22.3	3.3
37.0	34.0	43.0	35.5	17.3	3.7
24.0	22.0	27.5	22.0	10.9	2.7
20.0	19.5	23.5	21.5	10.8	1.0
30.0	31.5	37.0	29.0	14.3	3.9
32.0	33.5	36.5	32.0	16.0	2.3
11.0	11.0	12.5	7.5	3.8	2.5
34.0	38.0	43.5	38.5	18.8	2.4
17.0	22.5	24.0	19.0	9.0	2.4
23.5	24.5	27.5	21.0	10.5	3.3
29.0	28.0	34.5	28.0	13.7	3.2
30.0	29.0	36.0	29.0	14.0	3.4
30.5	29.0	35.0	32.0	16.0	1.5
16.5	20.5	23.0	19.0	8.8	1.8
44.0	47.0	54.5	48.5	24.0	3.0
32.0	27.0	36.0	31.0	14.8	2.4
30.0	32.5	38.5	34.0	16.1	2.1
27.5	21.0	31.0	26.0	11.4	2.2
11.0	12.5	14.0	13.0	6.5	0.5
29.5	27.5	34.0	31.0	15.5	1.5
18.5	15.0	22.0	18.5	7.8	1.5
27.0	27.0	33.0	28.5	13.7	2.2
34.0	32.5	36.0	30.5	15.3	2.8
11.5	9.5	11.0	10.0	5.0	1.5
14.0	17.0	19.0	17.0	8.0	0.9
21.0	26.0	30.0	25.5	11.3	2.0
29.5	29.0	34.0	31.0	15.5	1.5
21.0	27.0	33.0	28.0	10.8	1.9
25.5	24.0	29.5	27.0	13.5	1.3
21.0	27.5	32.0	28.0	11.6	1.7

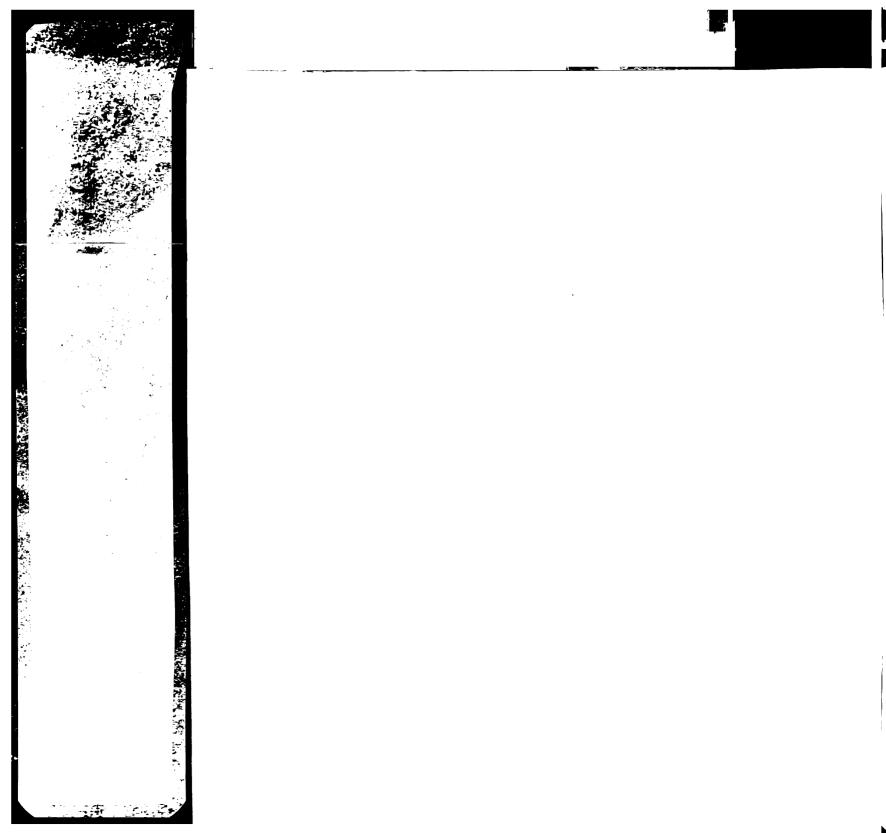


Table 41. Sample P17 Measurements

				crystal	zone
Α	В	С	E	size	width
20.0	20.0	22.5	18.0	9.0	2.3
17.0	22.5	25.5	22.0	9.4	1.5
27.0	34.0	37.0	28.0	13.4	4.3
41.5	42.0	50.0	41.0	20.4	4.5
25.5	25.0	29.5	22.0	11.0	3.8
32.5	32.5	39.0	32.5	16.1	3.2
35.0	29.0	41.5	33.5	14.5	3.5
29.5	27.5	33.0	27.5	13.8	3.5
27.5	24.0	31.0	25.0	12.2	2.9
39.0	37.5	44.0	37.0	18.5	3.5
20.0	13.0	21.5	18.5	7.6	1.2
22.5	20.5	22.5	19.0	9.5	4.1
21.0	15.0	22.5	15.5	6.9	3.1
28.0	19.0	29.0	26.0	11.7	1.4
33.0	29.0	39.5	36.0	16.1	1.6
21.0	22.0	28.5	23.5	9.9	2.1
26.5	28.0	33.5	28.5	13.6	2.4
17.0	13.0	19.5	16.5	7.0	1.3
34.5	22.0	35.5	30.0	12.9	2.4
21.0	16.0	24.0	17.5	7.5	2.8
17.0	12.0	19.0	14.5	6.0	1.9
42.5	55.0	60.5	52.0	23.9	3.9
19.5	17.5	21.5	17.5	8.8	2.4
23.5	21.5	27.0	22.0	10.9	2.5
25.5	27.0	29.0	24.0	12.0	2.5
19.0	23.0	26.0	20.5	9.5	2.6
25.5	21.0	35.0	28.5	9.2	2.1
22.0	24.0	27.0	21.5	10.8	3.0
16.0	15.5	18.0	15.0	7.5	1.5
15.5	14.5	17.5	15.0	7.5	1.3
41.0	45.0	61.0	50.0	18.4	4.1

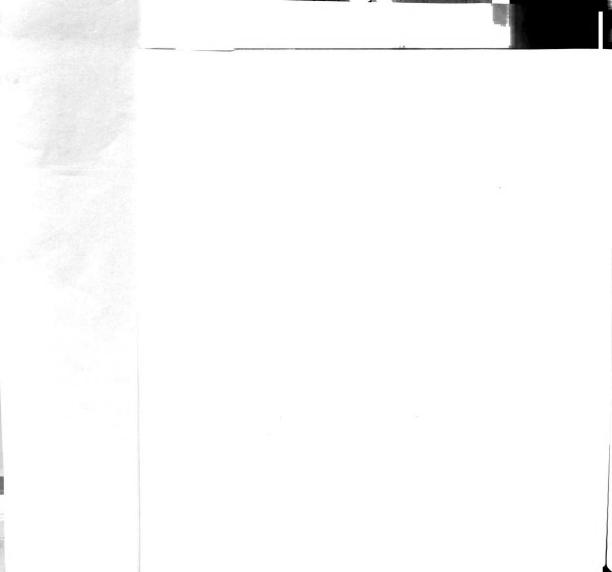


Table 42. Sample P19 Measurements

				crystal	zone
Α	В	С	E	size	width
19.5	17.5	24.0	19.0	8.2	2.2
18.0	22.0	25.0	20.0	9.2	2.3
39.0	43.0	50.0	42.0	20.2	3.8
18.0	18.5	21.0	18.5	9.3	1.3
15.0	16.5	18.0	16.0	8.0	1.0
15.0	14.0	17.0	14.0	7.0	1.5
27.0	26.0	30.0	23.5	11.8	3.3
15.5	18.5	25.0	20.0	6.8	1.7
18.0	16.5	23.0	19.0	7.9	1.7
16.0	16.0	20.0	16.0	7.4	1.9
17.0	21.0	23.5	19.0	8.8	2.1
28.0	22.5	31.5	26.0	11.9	2.5
22.0	20.0	25.0	22.0	11.0	1.5
22.5	22.5	27.0	21.0	10.4	3.0
23.5	22.5	28.5	22.0	10.3	3.1
13.5	11.0	16.0	14.5	6.2	0.6
22.0	23.0	24.5	22.0	11.0	1.3
37.0	37.5	41.0	36.0	18.0	2.5
12.0	11.5	14.0	10.0	5.0	2.0
34.5	33.0	39.0	33.0	16.5	3.0
31.5	30.0	32.5	29.0	14.5	1.8
23.0	23.0	25.5	21.5	10.8	2.0
21.5	18.0	26.0	22.5	9.5	1.5
19.5	20.0	22.0	20.0	10.0	1.0
29.5	23.0	32.5	27.5	12.7	2.3
12.0	15.0	17.5	13.5	5.8	1.7
13.0	15.0	19.0	16.0	6.4	1.2
21.0	23.0	24.5	21.0	10.5	3.0
34.0	30.0	39.5	31.0	14.6	4.0
17.0	17.5	18.0	17.0	8.5	0.5

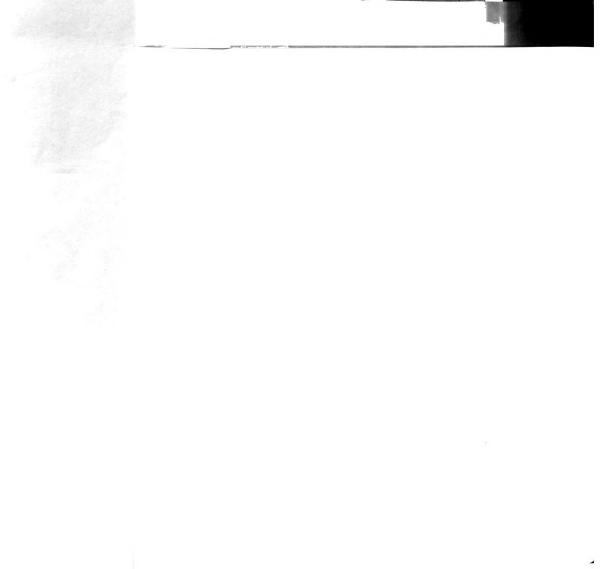


Table 43. Sample P27 Measurements

A control to the second experience of the second control to the second experience of the second

				crystal	zone
A	В	С	E	size	width
33.0	24.0	36.0	31.0	13.7	2.2
42.0	43.0	44.5	40.0	20.0	2.3
42.0	43.0	45.0	40.0	20.0	2.5
22.0	24.0	24.0	19.5	9.8	4.8
26.0	23.5	30.0	25.0	12.1	2.4
26.0	25.0	31.0	26.0	12.6	2.4
27.0	21.0	30.0	25.0	11.4	2.3
21.5	21.0	24.8	19.0	9.5	2.9
24.0	18.5	28.0	20.5	8.5	3.1
27.0	34.0	39.5	32.0	13.8	3.2
27.0	31.0	39.0	31.5	12.8	3.0
24.5	30.0	33.5	29.5	13.9	1.9
15.0	16.5	18.0	13.0	6.5	2.5
27.5	28.5	34.0	30.0	14.6	1.9
28.5	30.5	40.0	33.0	13.3	2.8
28.0	24.0	33.0	27.5	12.3	2.5
25.0	27.0	31.5	28.0	13.6	1.7
34.5	33.5	42.5	38.0	17.6	2.1
24.5	24.5	24.0	19.5	9.8	2.3
23.5	16.5	25.5	23.0	9.9	1.1
35.5	37.5	42.5	37.5	18.8	3.3
27.5	26.0	33.0	27.5	13.0	2.6
22.5	20.5	25.5	21.0	10.5	2.3
10.5	11.5	14.5	11.0	4.6	1.5
13.5	11.5	16.0	13.0	5.8	1.3
40.0	38.5	47.5	41.0	20.0	3.2
9.0	11.5	13.5	10.0	4.2	1.5
38.0	40.0	45.0	40.0	20.0	3.6
14.5	16.0	19.0	16.0	7.4	1.4
10.5	12.0	12.0	9.0	4.5	1.5

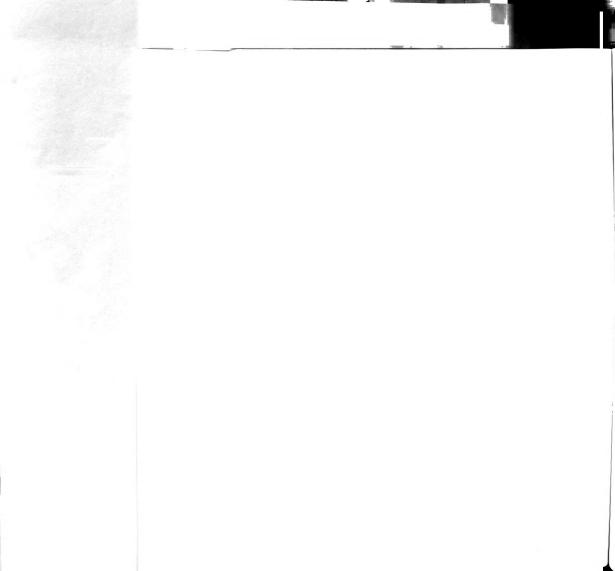


Table 44. Sample P31 Measurements

				crystal	zone
A	В	С	E	size	width
21.0	21.5	25.5	19.0	9.4	3.2
27.5	24.0	32.0	25.5	11.9	3.0
23.0	23.0	27.5	25.0	12.4	1.2
24.5	25.5	30.5	26.0	12.5	2.2
10.0	11.0	12.5	11.5	5.8	0.5
25.5	25.5	28.0	25.5	12.8	1.3
16.0	14.5	16.0	12.5	6.3	1.8
25.0	24.5	28.0	23.5	11.8	2.3
25.0	25.0	27.5	25.0	12.5	1.3
16.0	20.0	22.0	20.0	9.5	0.9
20.0	19.0	23.0	21.0	10.5	1.0
15.0	15.0	18.0	16.0	7.9	1.0
27.5	33.5	40.0	36.0	15.2	1.7
37.0	35.0	41.5	34.5	17.3	4.6
27.5	33.0	40.0	35.0	14.6	2.1
17.5	16.5	19.5	17.0	8.5	1.3
26.5	22.0	30.5	28.5	12.9	0.9
26.0	26.5	33.5	27.5	12.3	2.7
27.5	26.0	29.5	25.5	12.8	2.0
13.5	10.0	14.5	13.0	6.0	0.7
22.0	26.0	29.5	25.0	11.8	2.1
19.0	21.0	25.0	23.0	10.6	0.9
23.0	23.5	29.5	25.5	11.5	1.8
12.5	14.0	15.0	13.0	6.5	1.0
18.0	17.0	20.5	18.5	9.3	1.0
21.0	20.5	24.5	21.0	10.5	1.8
28.0	32.0	38.5	35.0	15.5	1.5
27.0	30.0	35.0	32.5	15.5	1.2
18.5	17.5	20.0	19.5	9.8	0.3
22.5	25.0	29.0	26.0	12.5	1.4
24.0	23.0	25.0	23.0	11.5	1.0

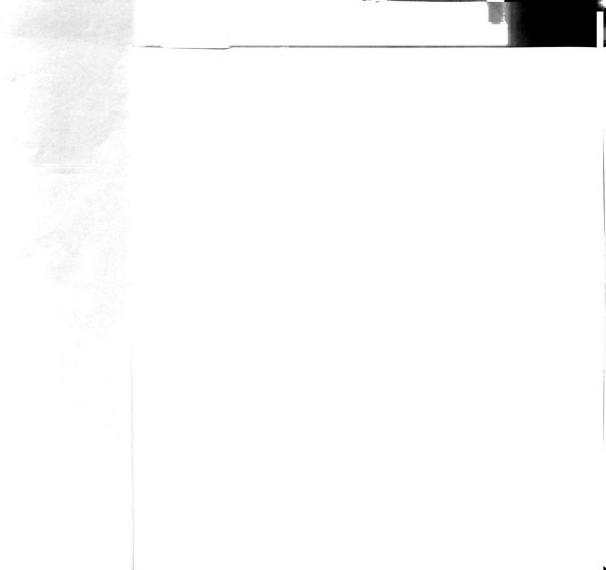


Table 45. Sample P34 Measurements

				crystal	zone
Α	В	С	E	size	width
30.0	22.0	32.0	26.0	12.0	2.8
31.0	25.0	35.0	31.5	14.4	1.6
31.0	30.0	35.0	29.0	14.5	3.0
27.0	23.0	31.5	25.0	11.4	3.0
27.0	23.0	30.0	24.0	11.8	2.9
30.0	24.5	38.5	31.0	11.4	2.8
18.0	20.0	24.5	19.0	8.3	2.4
27.0	31.0	43.0	39.0	13.1	1.3
13.5	14.5	15.5	12.5	6.3	1.5
20.5	19.0	24.0	22.0	10.7	1.0
43.0	34.0	60.0	54.5	16.1	1.6
19.5	27.0	32.0	24.5	9.3	2.9
21.0	25.5	29.0	25.0	11.5	1.8
20.0	24.0	27.5	21.5	9.9	2.8
13.5	13.0	15.5	13.5	6.8	1.0
13.0	16.5	18.5	12.0	5.4	2.9
19.5	20.0	24.0	17.0	8.3	3.4
20.0	20.0	24.0	16.5	8.2	3.7
13.5	17.0	19.5	16.5	7.2	1.3
42.0	43.5	53.0	42.5	20.0	4.9
17.5	23.0	25.0	22.0	10.2	1.4
26.0	23.5	31.0	23.5	10.8	3.5
29.5	22.0	32.0	25.0	11.4	3.2
21.5	23.5	26.0	23.0	11.5	2.1
17.5	19.5	21.5	18.0	9.0	2.1
35.5	35.0	34.0	28.5	14.3	2.8
21.0	20.5	22.0	19.0	9.5	1.5
25.5	34.5	43.0	30.0	10.6	4.6
18.0	18.5	21.0	17.5	8.8	1.8
12.5	11.0	12.0	8.5	4.3	1.8

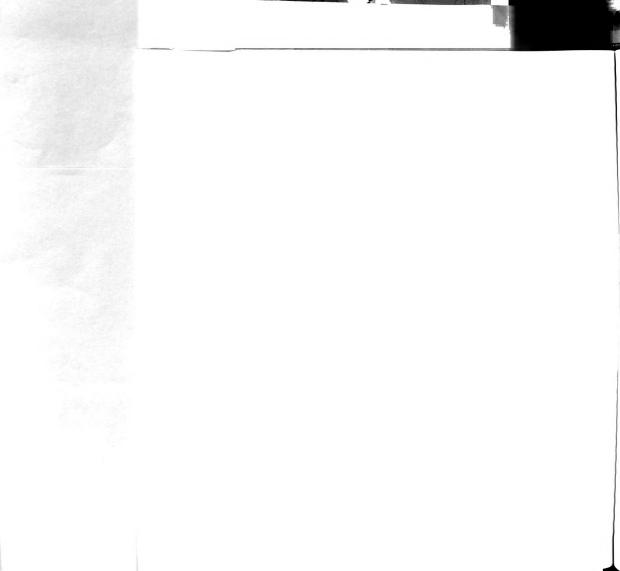


Table 46. Sample P36 Measurements

A				CIVSTAL	zone
	В	С	E	crystal size	width
30.5	25.5	36.0	30.0	13.1	2.6
22.0	24.0	25.5	20.0	10.0	4.2
33.5	38.5	44.5	37.5	17.6	3.3
22.0	23.0	26.5	20.5	10.3	3.0
39.5	41.0	47.0	39.0	19.5	4.0
29.0	22.0	32.0	26.0	11.7	2.7
18.0	19.0	24.0	19.0	8.3	2.2
14.0	14.0	16.5	13.0	6.5	1.8
15.0	13.0	16.0	13.5	6.8	1.7
22.5	23.5	26.0	22.5	11.3	1.8
37.0	42.0	51.0	43.0	18.8	3.5
26.5	25.0	29.0	21.5	10.8	3.8
38.0	30.5	46.5	36.0	14.3	4.2
19.5	13.0	23.0	17.0	6.0	2.1
14.0	12.0	13.5	11.0	5.5	2.7
16.5	20.0	24.5	21.5	8.7	1.2
35.0	30.0	39.0	31.0	15.2	3.9
14.0	14.0	15.0	12.0	6.0	1.5
18.5	17.0	26.5	15.5	5.1	3.6
34.0	30.5	41.0	34.5	15.5	2.9
25.0	20.0	27.5	23.0	10.9	2.1
13.0	19.5	21.0	17.0	7.1	1.7
40.0	37.0	48.0	40.5	18.8	3.5
26.5	23.0	31.0	25.0	11.5	2.8
14.0	13.5	16.0	12.5	6.3	1.8
13.0	12.0	15.5	14.0	6.6	0.7
16.0	20.0	24.0	19.5	8.0	1.8
21.5	20.5	25.0	23.5	11.8	0.8
14.5	12.5	16.5	13.5	6.4	1.4
21.5	21.0	23.0	19.5	9.8	1.8
24.0	23.0	26.5	21.0	10.5	2.8
8.0	7.5	9.0	7.0	3.5	1.0
17.0	17.0	18.5	16.0	8.0	1.3
15.0	16.0	18.0	15.0	7.5	1.5
36.5	36.0	44.0	35.5	17.3	4.1
26.5	29.5	35.0	28.0	12.9	3.2
23.0	20.5	27.0	21.5	10.0	2.6

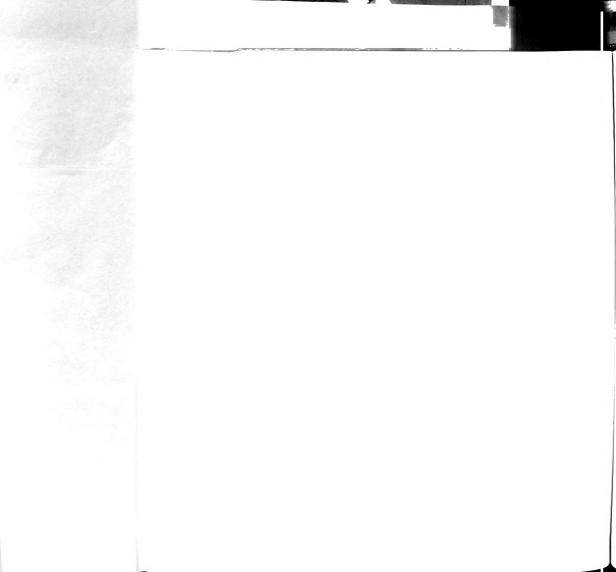


Table 46 (cont'd).

А	В	С	E	crystal size	zone width
28.5	27.5	34.5	26.0	12.3	4.0
20.0	22.0	26.5	20.0	9.1	3.0

Table 47. Sample P37 Measurements

				crystal	zone
A	В	С	E	size	width
33.0	35.0	39.0	34.0	17.0	3.7
49.0	48.5	59.5	51.0	24.6	4.1
28.5	26.0	35.0	26.0	11.5	4.0
12.0	14.0	15.0	12.0	6.0	1.8
29.0	27.0	31.0	22.0	11.0	6.3
35.0	34.0	39.5	33.0	16.5	3.3
37.0	35.0	41.0	30.0	15.0	7.0
36.0	41.0	48.0	35.0	16.2	6.0
15.5	16.5	19.5	16.0	7.7	1.7
49.0	51.0	69.0	52.0	20.2	6.6
22.5	22.0	28.5	21.5	9.6	3.1
38.0	47.0	56.0	40.0	16.7	6.7
11.0	10.5	14.0	6.0	2.6	3.5
52.0	35.0	55.0	39.0	16.9	6.9
28.0	28.0	32.5	23.0	11.5	4.8
27.0	23.0	31.5	26.0	11.8	2.5
48.5	42.0	55.0	40.0	19.3	7.2
28.0	26.0	32.0	25.0	12.5	3.6
28.5	27.5	33.0	26.0	13.0	3.5
54.0	52.0	57.0	52.0	26.0	7.2
40.0	44.0	52.0	44.0	20.7	3.8
15.0	13.5	16.5	14.0	7.0	1.3
24.0	24.0	25.0	21.0	10.5	2.0
27.0	24.0	32.0	20.0	9.2	5.5
25.5	22.0	31.0	24.0	10.3	3.0
13.0	15.0	18.0	14.0	6.2	1.8
8.0	8.0	10.5	7.5	3.2	1.3
8.0	9.5	10.0	6.0	3.0	2.0
12.0	10.0	12.5	8.0	4.0	2.6
18.0	20.5	24.0	17.5	8.1	3.0
22.0	21.5	22.0	16.0	8.0	3.0
18.0	18.5	20.0	13.0	6.5	3.5
17.0	16.0	20.5	14.0	6.6	3.0
35.5	43.0	49.0	34.5	15.8	6.7
21.0	22.0	22.0	15.5	7.8	3.3
14.0	14.5	18.0	13.0	5.9	2.3
24.5	24.0	28.5	17.5	8.8	5.5

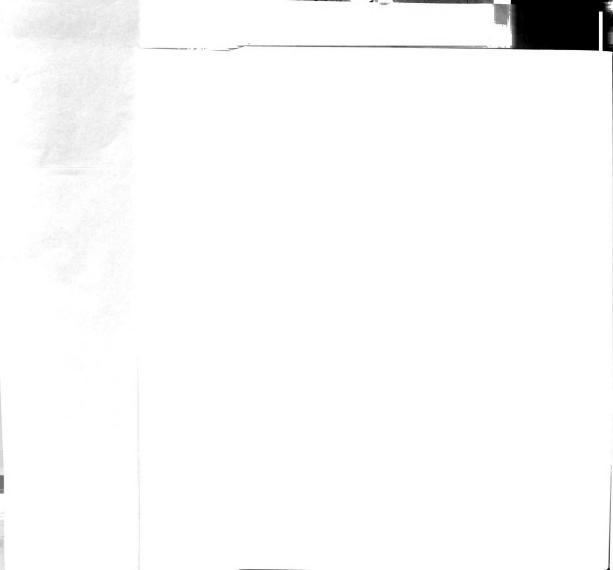


Table 48. Sample P40 Measurements

				crystal	zone
A	В	С	E	size	width
18.5	13.5	20.0	15.5	7.0	2.0
11.0	10.5	10.0	9.0	4.5	0.5
15.5	13.5	18.0	15.0	7.0	1.4
18.0	17.0	19.0	14.5	7.3	2.3
18.5	20.0	24.0	18.5	8.6	2.6
15.5	16.0	18.0	14.5	7.3	1.8
18.0	15.0	20.0	17.0	8.2	1.4
25.0	30.0	33.5	28.5	13.6	2.4
13.0	15.0	18.5	15.5	6.5	1.3
17.5	23.5	25.5	20.0	9.1	2.5
16.0	14.5	17.5	15.5	7.8	1.0
24.0	30.5	35.5	29.0	12.3	2.8
22.0	27.5	30.0	22.0	10.5	3.8
26.0	25.5	27.0	22.0	11.0	2.5
25.5	25.5	30.0	25.0	12.5	2.5
19.0	18.0	23.0	16.0	7.5	3.3
17.5	11.5	19.5	15.0	5.8	1.8
21.5	21.0	24.5	21.0	10.5	1.8
14.5	14.0	16.5	12.5	6.3	2.0
12.5	13.0	15.0	10.0	5.0	2.5
10.0	12.0	12.5	8.5	4.3	2.4
15.5	18.5	20.5	13.5	6.6	3.4
16.5	12.0	19.0	15.0	6.1	1.6
19.2	19.5	23.5	17.5	8.5	2.9
15.5	15.5	18.5	14.0	7.0	2.2
14.5	13.0	17.5	14.0	6.3	1.6
14.5	13.5	17.5	14.5	6.7	1.4
9.0	14.0	15.0	10.0	4.1	2.0
23.0	21.0	24.0	18.0	9.0	4.6
24.0	17.5	26.0	19.5	8.7	2.9
33.0	27.5	38.5	30.0	13.4	3.8
16.5	18.5	20.0	15.5	7.8	2.9
29.0	34.0	38.5	32.0	15.3	3.1
22.5	23.5	24.5	20.5	10.3	2.0

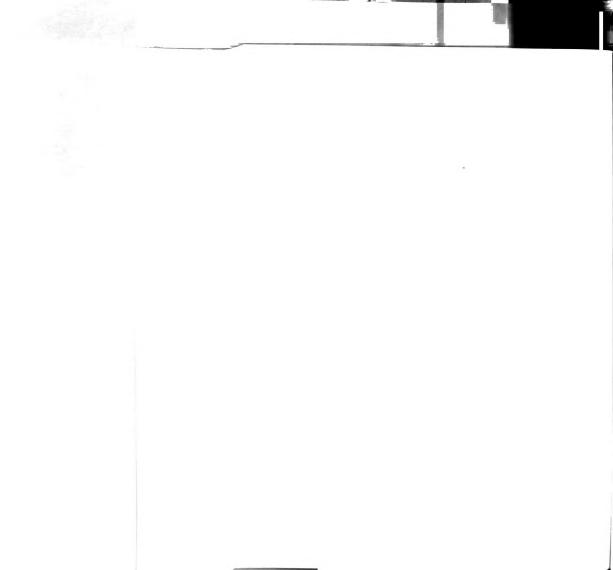


Table 49. Sample P41 Measurements

				crystal	zone
Α	В	С	E	size	width
15.5	15.0	18.5	14.0	6.8	2.2
10.0	11.0	13.0	11.5	5.4	0.7
25.0	23.0	28.5	23.0	11.5	2.8
25.0	29.5	38.0	31.0	11.8	2.7
21.0	26.0	29.0	22.5	10.5	3.0
32.5	40.0	55.5	42.5	13.1	4.0
25.5	21.5	28.5	20.5	9.9	3.9
34.0	38.5	43.5	36.5	18.0	3.4
12.0	11.0	13.0	10.0	5.0	1.5
16.5	16.5	20.5	14.5	6.8	2.8
17.0	20.5	23.5	20.0	9.1	1.6
19.5	19.5	23.5	19.5	9.6	2.0
24.5	22.5	27.0	20.0	10.0	4.2
12.0	20.0	20.5	16.0	6.6	1.8
16.5	16.5	19.5	16.5	8.3	1.5
11.5	12.0	13.5	11.0	5.5	1.3
12.5	20.0	20.5	17.0	7.2	1.5
28.0	31.0	36.5	30.5	14.3	2.8
24.0	25.5	29.5	22.0	11.0	3.8
22.5	24.0	28.0	22.0	10.8	2.9
29.5	26.5	35.5	28.0	12.6	3.4
25.0	28.5	33.0	24.5	11.5	4.0
15.5	14.0	15.5	10.5	5.3	2.5
29.0	28.0	35.0	25.0	11.9	4.8
29.0	32.0	40.5	31.0	12.9	4.0
16.5	14.5	18.5	15.0	7.5	1.7
15.0	14.0	16.0	11.0	5.5	2.5
11.0	11.5	13.5	8.0	4.0	2.7
20.5	22.0	24.5	20.0	10.0	2.3
28.0	29.0	32.5	23.5	11.8	4.5
13.5	13.5	16.5	11.0	5.3	2.6
17.5	17.5	19.0	13.0	6.5	3.0
33.0	28.5	37.0	28.5	13.9	4.2
22.5	20.5	26.5	23.5	11.1	1.4
19.0	20.5	23.0	18.0	9.0	2.5
25.5	23.5	26.0	18.0	9.0	6.4

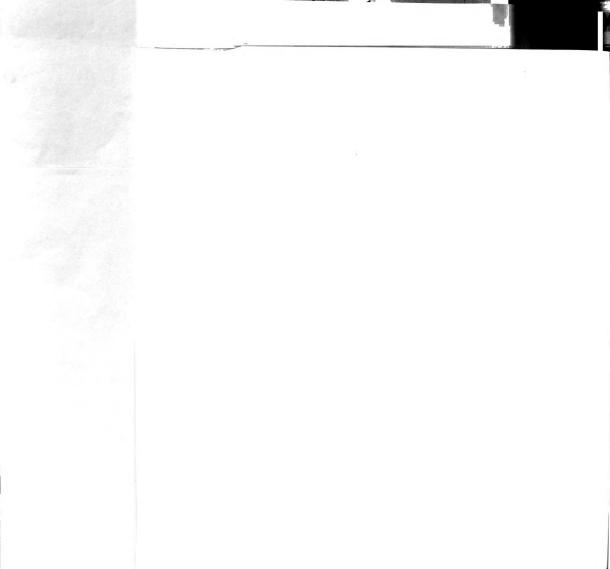


Table 50. Sample P45 Measurements

				crystal	zone
Α	В	С	E	size	width
16.5	16.5	20.0	15.0	7.3	2.4
24.0	23.0	24.0	18.0	9.0	3.0
26.5	23.0	34.5	27.0	10.3	2.9
20.5	18.5	23.5	19.0	9.3	2.2
16.0	15.0	16.5	13.5	6.8	1.5
13.5	11.5	14.5	11.5	5.8	1.7
35.5	35.5	41.5	36.0	18.0	2.8
33.0	34.0	47.0	40.0	15.1	2.6
14.0	16.0	19.0	14.5	6.5	2.0
22.0	19.0	26.0	20.0	9.0	2.7
24.8	23.5	29.0	24.0	11.9	2.5
28.5	23.5	33.0	26.5	11.8	2.9
20.5	21.5	24.5	20.0	10.0	2.3
24.0	22.0	27.5	23.0	11.4	2.2
28.0	26.0	35.0	22.0	9.6	5.7
41.5	34.0	47.0	39.0	18.0	3.7
16.0	14.0	17.5	15.5	7.8	1.2
26.5	28.0	35.0	27.0	12.0	3.5
12.5	14.0	18.0	13.0	5.2	2.0
27.0	28.0	35.0	28.0	12.6	3.1
7.5	8.0	9.5	7.5	3.6	1.0
21.0	19.5	25.5	18.5	8.5	3.2
22.0	24.0	28.0	23.0	11.1	2.4
29.0	24.0	32.5	24.0	11.3	4.0
27.0	26.0	35.0	24.0	10.1	4.6
41.0	35.0	47.0	38.0	17.8	4.2
21.0	20.5	22.5	19.0	9.5	1.8
13.5	19.0	20.5	10.0	4.4	4.6
12.0	9.5	13.0	10.5	5.0	1.2
24.0	22.5	28.0	21.5	10.6	3.2
27.5	26.5	32.5	22.0	10.8	5.2
13.5	15.5	17.0	12.0	6.0	2.7
23.5	27.0	33.5	27.5	11.5	2.5

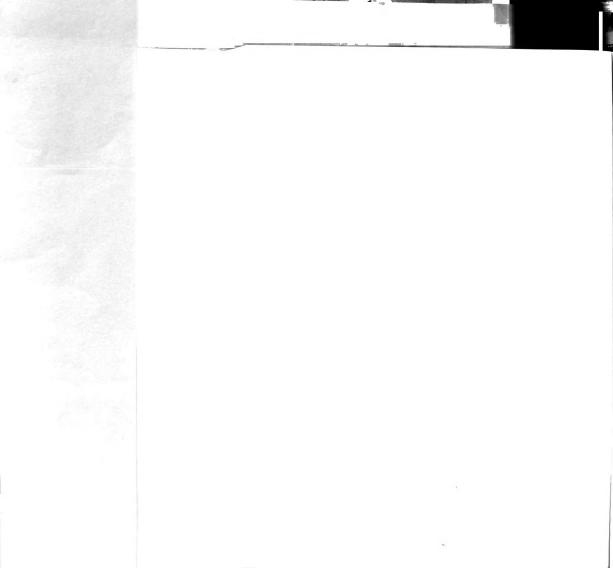


Table 51. Sample List for Saluda Formation Hwy 7 and Hwy 56 $\,$ Outcrops

Sample Number	Sample ID	Number of Crystals
1	Sal R-1	37
2	Sal R-5	33
3	Sal R-10	30
4	Sal D-25	30
5	Sal D-34	30
6	Sal A-1d	32
7	Sal A-5d	30
8	Sal A-7d	45
9	Sal A-5g	30
10	Sal A-7g	30
11	Sal 56-1	31
12	Sal 56-5	30
13	Sal Pay-1	30
14	Sal Pay-5	34
15	Sal Pay-11	30
16	Sal Ton-11	54
17	Sal How-1	. 33
18	Sal How-6	30
19	Sal 7-8	30

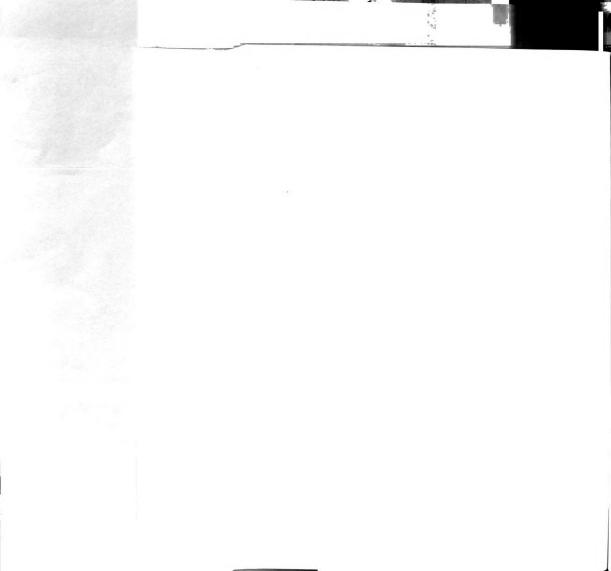


Table 52. Sample Sal R-1 Measurements

A B C E size width 17.0 16.0 19.0 15.0 7.5 2.0 25.5 32.0 36.0 30.0 13.6 2.7 28.0 28.0 30.5 25.0 12.5 2.8 32.0 24.5 36.0 33.0 14.5 1.3 31.0 16.0 18.0 16.5 7.6 0.7 8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 </th <th></th> <th></th> <th></th> <th></th> <th>crystal</th> <th>zone</th>					crystal	zone
25.5 32.0 36.0 30.0 13.6 2.7 28.0 28.0 30.5 25.0 12.5 2.8 32.0 24.5 36.0 33.0 14.5 1.3 31.0 25.0 34.5 29.5 13.8 2.3 13.0 16.0 18.0 16.5 7.6 0.7 8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 14.5	A	В	С	E		width
28.0 28.0 30.5 25.0 12.5 2.8 32.0 24.5 36.0 33.0 14.5 1.3 31.0 25.0 34.5 29.5 13.8 2.3 13.0 16.0 18.0 16.5 7.6 0.7 8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0	17.0	16.0	19.0	15.0	7.5	2.0
32.0 24.5 36.0 33.0 14.5 1.3 31.0 25.0 34.5 29.5 13.8 2.3 13.0 16.0 18.0 16.5 7.6 0.7 8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5	25.5	32.0	36.0	30.0	13.6	2.7
31.0 25.0 34.5 29.5 13.8 2.3 13.0 16.0 18.0 16.5 7.6 0.7 8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5	28.0	28.0	30.5	25.0	12.5	2.8
13.0 16.0 18.0 16.5 7.6 0.7 8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.5 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0	32.0	24.5	36.0	33.0	14.5	1.3
8.0 8.0 9.5 8.0 4.0 0.8 10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 15.5 7.7	31.0	25.0	34.5	29.5	13.8	2.3
10.5 11.0 13.0 12.0 5.9 0.5 17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5	13.0	16.0	18.0	16.5	7.6	0.7
17.5 19.5 23.0 18.0 8.4 2.3 26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 26.0 22.0 11.0 2.0 27.5 19.5 29.0 24.0 10.9 2.3 22.5 25.0 29.0 24.0 10.9 2.3 22.5 21.0 26.0 15.5	8.0	8.0	9.5	8.0	4.0	0.8
26.0 23.0 30.0 23.0 11.0 3.3 9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 15.5 7.7 5.2 39.0 39.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5	10.5	11.0	13.0	12.0	5.9	0.5
9.5 10.5 13.0 10.5 4.5 1.1 21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5	17.5	19.5	23.0	18.0	8.4	2.3
21.0 21.0 25.0 21.0 10.5 2.0 28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 19.5 29.0 21.5	26.0	23.0	30.0	23.0	11.0	3.3
28.0 25.5 33.0 22.5 10.6 5.0 35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 19.5 29.0 24.0 10.9 2.3 22.5 21.0 26.0 22.0 11.0 2.0 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 19.5 29.0 20.5 9.2 3.8 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5	9.5	10.5	13.0	10.5	4.5	1.1
35.0 32.0 40.5 33.0 16.1 3.7 32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5	21.0	21.0	25.0	21.0	10.5	2.0
32.0 34.0 39.0 29.0 14.5 5.2 23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 19.5 29.0 21.5 8.7 3.0 25.0 18.5 29.0 21.5 8.7 3.0 25.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0	28.0	25.5	33.0	22.5	10.6	5.0
23.0 19.5 26.5 20.0 9.2 3.0 25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 19.5 29.0 20.5 9.2 3.8 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0	35.0	32.0	40.5	33.0	16.1	3.7
25.5 25.5 31.0 23.5 11.4 3.6 34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 25.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0	32.0	34.0	39.0	29.0	14.5	5.2
34.0 35.0 40.5 33.5 16.8 3.5 27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0	23.0	19.5	26.5	20.0	9.2	3.0
27.5 19.5 29.0 24.0 10.9 2.3 22.0 22.5 26.0 22.0 11.0 2.0 11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0	25.5	25.5	31.0	23.5	11.4	3.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34.0	35.0	40.5	33.5	16.8	3.5
11.5 9.5 12.5 9.0 4.5 1.7 22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0	27.5	19.5	29.0	24.0	10.9	2.3
22.5 21.0 26.0 15.5 7.7 5.2 39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5	22.0	22.5	26.0	22.0	11.0	2.0
39.0 39.5 53.5 45.5 18.1 3.2 27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	11.5	9.5	12.5	9.0	4.5	1.7
27.0 19.5 29.0 20.5 9.2 3.8 27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	22.5	21.0	26.0	15.5	7.7	5.2
27.0 24.0 32.0 27.0 12.4 2.3 25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	39.0	39.5	53.5	45.5	18.1	3.2
25.0 18.5 29.0 21.5 8.7 3.0 22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	27.0	19.5	29.0	20.5	9.2	3.8
22.5 21.5 26.0 19.5 9.8 3.3 34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	27.0	24.0	32.0	27.0	12.4	2.3
34.0 32.0 36.5 31.0 15.5 4.9 21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	25.0	18.5	29.0	21.5	8.7	3.0
21.0 15.0 23.0 16.0 6.9 3.0 25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	22.5	21.5	26.0	19.5	9.8	3.3
25.5 24.5 30.5 22.0 10.6 4.1 11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	34.0	32.0	36.5	31.0	15.5	4.9
11.5 16.5 20.0 15.0 5.3 1.8 33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	21.0	15.0	23.0	16.0	6.9	3.0
33.5 34.5 39.5 30.0 15.0 4.8 22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	25.5	24.5	30.5	22.0	10.6	4.1
22.5 19.5 26.0 21.5 10.1 2.1 24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	11.5	16.5	20.0	15.0	5.3	1.8
24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	33.5	34.5	39.5	30.0	15.0	4.8
24.0 24.5 29.5 23.0 11.1 3.1 26.0 19.5 29.5 23.5 10.0 2.6	22.5	19.5	26.0	21.5	10.1	2.1
26.0 19.5 29.5 23.5 10.0 2.6	24.0	24.5	29.5	23.0		3.1
21.5 22.5 25.5 21.0 10.5 2.3	26.0	19.5	29.5	23.5		
	21.5	22.5	25.5	21.0	10.5	2.3
18.5 20.5 21.5 15.5 7.8 4.3	18.5	20.5	21.5	15.5	7.8	4.3

Table 53. Sample Sal R-5 Measurements

				crystal	zone
A	В	С	E	size	width
16.0	19.0	22.0	17.0	7.7	2.3
18.0	16.0	23.0	18.0	7.2	2.0
19.0	18.0	21.0	16.5	8.3	2.3
28.0	31.0	40.5	27.0	10.6	5.3
28.0	43.0	45.5	35.5	14.9	4.2
14.5	15.5	18.0	13.0	6.4	2.5
21.0	20.0	22.0	16.5	8.3	2.8
17.5	18.0	20.0	18.0	9.0	1.0
16.0	16.0	18.0	14.0	7.0	2.0
18.0	17.5	19.0	15.0	7.5	2.0
8.5	10.0	11.5	9.0	4.2	1.2
17.0	18.0	19.0	15.0	7.5	2.0
21.0	24.0	28.0	24.5	11.4	1.6
13.0	15.0	16.0	14.0	7.0	1.5
16.0	17.5	21.0	16.0	7.4	2.3
27.0	27.5	29.0	26.0	13.0	1.5
21.0	20.5	25.0	20.5	10.1	2.2
21.5	21.5	24.5	19.0	9.5	2.8
21.5	20.5	23.5	16.0	8.0	3.8
16.5	19.0	22.0	20.0	9.3	0.9
27.0	27.5	31.0	26.5	13.3	2.3
24.5	18.0	26.0	21.5	10.0	2.1
30.0	26.0	34.5	29.0	13.7	2.6
16.5	15.0	17.5	15.0	7.5	1.3
25.0	23.5	32.5	24.5	10.1	3.3
14.5	14.5	16.0	11.5	5.8	2.3
23.0	31.0	35.0	24.5	10.4	4.5
21.0	19.5	27.0	17.0	7.0	4.1
28.0	27.5	36.0	28.0	12.2	3.5
26.5	24.0	31.0	25.5	12.1	2.6
36.0	34.0	38.0	30.5	15.3	6.5
19.0	16.5	23.0	21.0	9.1	0.9
30.0	26.0	37.0	29.5	12.4	3.1

Table 54. Sample Sal R-10 Measurements

	1			crystal	zone
A	В	С	E	size	width
16.0	17.0	21.0	18.0	8.1	1.3
17.0	18.0	18.5	16.0	8.0	1.3
20.5	22.0	25.0	21.0	10.5	2.0
22.0	16.0	25.5	21.0	8.4	1.8
23.0	19.5	26.5	23.0	10.6	1.6
10.0	11.0	12.0	10.0	5.0	1.0
36.0	34.0	41.0	37.0	18.5	2.5
16.5	19.0	22.0	19.0	8.9	1.4
30.5	33.0	41.0	33.0	14.5	3.5
28.5	28.0	35.5	26.0	12.0	4.4
35.0	36.0	44.0	41.0	19.3	1.4
33.5	33.5	41.0	37.0	17.8	1.9
10.0	9.5	10.5	7.5	3.8	1.5
31.0	33.5	39.0	33.5	16.4	2.7
28.5	29.0	32.0	27.5	13.8	2.3
15.0	19.0	21.0	13.5	6.3	3.5
32.5	35.0	41.5	36.0	17.1	2.6
28.5	30.0	31.0	25.0	12.5	3.0
31.5	26.0	35.0	27.5	13.1	3.6
21.0	25.5	28.0	23.0	11.2	2.4
21.0	21.0	24.0	17.5	8.8	3.3
40.0	41.5	49.0	42.0	20.7	3.5
17.0	17.5	21.0	16.0	7.7	2.4
32.0	21.5	34.5	30.0	12.6	1.9
27.0	27.0	33.5	27.0	12.7	3.1
40.5	42.0	51.0	40.0	18.9	5.2
25.5	22.0	29.5	26.5	12.3	1.4
45.0	47.0	52.5	44.0	22.0	6.0
28.5	30.5	29.0	26.0	13.0	6.0
40.0	38.0	39.0	32.0	16.0	9.1

Table 55. Sample Sal D-25 Measurements

				crystal	zone
A	В	С	E	size	width
26.5	18.0	27.5	22.5	10.1	2.2
24.0	29.5	34.0	28.5	12.7	2.4
17.0	16.5	19.0	17.0	8.5	1.0
41.0	38.0	47.5	38.0	18.7	4.7
26.5	24.5	31.0	24.5	11.9	3.1
18.0	16.0	20.0	16.5	8.3	1.9
41.5	48.0	54.0	45.0	21.9	4.4
21.0	19.0	24.5	20.0	9.6	2.1
21.0	22.5	25.0	22.5	11.3	1.3
27.5	28.0	29.0	25.5	12.8	1.8
12.5	14.0	16.0	13.5	6.6	1.2
21.5	21.0	28.5	25.0	10.3	1.4
26.0	24.0	30.0	25.5	12.6	2.2
13.0	14.5	16.5	14.0	6.9	1.2
28.0	29.0	33.0	30.0	15.0	1.5
25.5	22.5	30.0	23.0	10.6	3.2
25.5	16.5	27.0	21.0	8.8	2.5
19.5	22.0	25.0	20.5	10.0	2.2
22.0	22.0	25.5	21.5	10.8	2.0
15.5	14.0	19.0	16.5	7.3	1.1
31.5	30.0	41.0	33.5	13.9	3.1
39.5	37.5	44.0	39.0	19.5	3.9
34.0	28.5	38.0	31.5	15.1	3.1
19.5	24.5	27.0	20.5	9.6	3.1
24.0	23.5	32.0	28.5	11.6	1.4
21.0	22.0	25.0	20.5	10.3	2.3
16.5	18.5	19.0	14.0	7.0	3.9
9.0	8.5	11.5	7.0	3.0	1.9
26.0	18.0	27.5	21.5	9.5	2.7
24.0	23.5	28.0	26.5	13.3	0.8

Table 56. Sample Sal D-34 Measurements

				crystal	zone
A	В	С	E	size	width
16.0	19.5	22.0	17.5	8.1	2.1
33.5	36.0	43.0	34.5	16.2	4.0
34.0	35.5	48.0	38.0	14.8	3.9
20.5	20.0	27.0	21.5	8.9	2.3
22.5	22.0	26.0	22.0	11.0	2.0
53.0	49.0	68.5	51.0	20.9	7.2
34.0	35.0	39.5	29.0	14.5	5.3
26.0	17.0	27.5	22.5	9.5	2.1
29.5	26.0	37.0	34.0	14.1	1.2
13.0	11.5	14.5	9.0	4.5	2.8
14.5	13.0	16.0	11.5	5.8	2.3
25.5	24.0	29.0	24.0	12.0	2.5
25.5	35.5	38.5	33.0	14.5	2.4
14.0	14.5	18.5	18.0	7.8	0.2
25.5	35.0	40.5	33.0	13.2	3.0
33.0	23.0	37.5	29.5	11.7	3.2
20.0	20.0	23.0	14.5	7.3	4.3
44.5	42.0	56.5	45.5	19.6	4.7
21.0	32.0	34.0	23.5	9.9	4.4
39.0	40.0	48.0	37.5	18.2	5.1
21.0	15.5	25.0	19.0	7.3	2.3
39.0	42.5	49.5	43.0	20.8	3.1
20.0	18.0	32.0	26.0	6.2	1.4
21.5	23.0	31.0	23.0	8.8	3.1
32.5	32.0	36.5	32.5	16.3	2.0
35.0	34.0	41.0	32.0	16.0	4.5
47.0	49.0	58.5	50.0	24.1	4.1
39.0	39.0	46.0	38.5	19.3	3.8
16.0	16.0	19.0	15.5	7.8	1.8
15.5	13.5	17.0	12.5	6.3	2.4

Table 57. Sample Sal A-1d Measurements

				crystal	zone
A	В	С	E	size	width
19.5	20.0	21.0	17.5	8.8	1.8
28.5	23.5	32.5	26.0	11.9	3.0
21.5	22.0	24.0	18.5	9.3	2.8
48.5	41.0	56.0	46.0	21.1	4.6
31.5	30.5	37.5	30.0	14.7	3.7
29.5	22.0	32.0	27.0	12.3	2.3
36.0	23.0	45.0	30.5	9.2	4.4
24.5	19.0	29.0	22.0	9.0	2.9
21.5	20.0	25.0	19.0	9.3	2.9
27.0	25.0	31.0	24.0	12.0	3.5
30.5	32.0	37.0	25.0	12.5	6.0
19.5	24.0	29.5	24.0	9.5	2.2
28.0	17.0	29.0	25.0	10.2	1.6
22.0	14.0	24.5	18.0	6.8	2.5
15.0	14.0	16.5	11.0	5.5	2.8
15.0	19.0	22.0	15.5	6.7	2.8
22.0	28.0	35.0	25.5	9.5	3.5
25.5	23.0	33.5	26.0	10.1	2.9
49.5	33.0	53.0	40.0	16.8	5.5
18.0	16.5	20.0	17.0	8.5	1.5
24.5	16.5	28.0	20.0	7.6	3.0
20.0	24.5	31.5	26.0	9.5	2.0
20.5	24.5	32.0	27.0	9.8	1.8
19.0	17.0	20.0	16.5	8.3	2.8
12.5	11.0	13.5	11.0	5.5	1.3
19.5	21.0	20.0	15.5	7.8	2.3
16.0	16.0	22.0	18.0	7.1	1.6
20.5	20.5	24.0	20.5	10.3	1.8
22.0	28.0	33.5	24.0	9.7	3.8
19.5	15.5	24.5	21.5	8.0	1.1
31.0	24.5	36.0	30.0	12.9	2.6
8.0	12.0	14.5	10.0	3.4	1.5

Table 58. Sample Sal A-5d Measurements

				crystal	zone
A	В	С	E	size	width
32.0	31.5	32.0	31.0	15.5	0.5
11.0	11.0	12.0	9.5	4.8	1.3
11.5	10.5	12.5	11.0	5.5	0.8
17.0	19.0	20.0	17.0	8.5	2.6
12.0	12.5	15.5	12.5	5.7	1.4
26.5	25.0	32.5	26.5	12.1	2.7
20.0	20.0	23.0	19.0	9.5	2.0
17.0	15.0	20.0	16.5	7.6	1.6
37.5	33.5	42.5	40.0	19.8	1.2
16.0	15.0	19.0	15.5	7.4	1.7
10.5	14.5	16.0	13.5	5.8	1.1
25.0	23.5	28.0	25.5	12.8	1.3
15.5	16.0	18.0	16.5	8.3	0.8
23.0	25.0	27.0	22.5	11.3	3.4
34.0	38.0	44.5	41.0	19.3	1.6
17.5	18.0	24.0	20.0	8.1	1.6
20.0	18.0	23.0	19.5	9.5	1.7
51.0	49.0	64.0	50.0	22.3	6.2
31.0	34.0	41.0	33.5	15.3	3.4
18.0	16.0	24.5	18.0	6.4	2.3
31.0	34.5	42.0	34.0	15.1	3.5
19.5	20.0	25.5	19.5	8.6	2.6
16.5	17.0	21.5	16.0	7.1	2.4
17.0	23.0	28.0	23.5	8.7	1.7
19.5	19.0	26.0	20.5	8.3	2.2
31.0	34.5	41.0	34.0	15.7	3.2
29.5	36.0	43.0	34.0	14.3	3.8
24.5	19.5	28.5	19.5	8.4	3.9
18.5	18.5	20.5	16.0	8.0	2.3
16.0	17.0	22.5	16.5	6.6	2.4

ble 57. Sample Sal n-5. Menant an

	20.00	1.71		
111212		0.28	3000	
		0.81		
			20.0	
		42.5		
		0.01		
			0.88	
		0.85		
		D.IA		
		43.0.		

Table 59. Sample Sal A-7d Measurements

A B C E size width 29.0 24.0 32.5 28.0 13.2 2.1 16.5 21.5 24.5 18.5 8.0 2.6 26.0 22.0 29.0 22.5 10.9 3.2 32.0 28.0 36.0 27.5 13.5 4.2 23.5 16.0 26.0 20.0 8.1 2.4 29.0 28.0 32.0 26.5 13.3 2.8 16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 24.0 23.0 11.3 2.5 38.0 38.0 34.0 35.5 17.8 4.3 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 16.5 6.8					crystal	zone
16.5 21.5 24.5 18.5 8.0 2.6 26.0 22.0 29.0 22.5 10.9 3.2 32.0 28.0 36.0 27.5 13.5 4.2 23.5 16.0 26.0 20.0 8.1 2.4 29.0 28.0 32.0 26.5 13.3 2.8 16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.5 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5	A	В	С	E	size	width
26.0 22.0 29.0 22.5 10.9 3.2 32.0 28.0 36.0 27.5 13.5 4.2 23.5 16.0 26.0 20.0 8.1 2.4 29.0 28.0 32.0 26.5 13.3 2.8 16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 20.5 23.0 31.5 23.0	29.0	24.0	32.5	28.0	13.2	2.1
32.0 28.0 36.0 27.5 13.5 4.2 23.5 16.0 26.0 20.0 8.1 2.4 29.0 28.0 32.0 26.5 13.3 2.4 16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0	16.5	21.5	24.5	18.5	8.0	2.6
23.5 16.0 26.0 20.0 8.1 2.4 29.0 28.0 32.0 26.5 13.3 2.8 16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 13.0 26.0 23.0 31.5 23.0 10.1 3.7 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5	26.0	22.0	29.0	22.5	10.9	3.2
29.0 28.0 32.0 26.5 13.3 2.8 16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.8 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 22.0 10.1 3.7 12.5 14.0 15.5 15.0 7.5 1.8 26.0 23.0 33.5 23.0	32.0	28.0	36.0	27.5	13.5	4.2
16.0 16.5 19.0 14.0 7.0 2.5 15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 23.0 31.5 23.0 15.9 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 15.1 19.3 10 26.0 23.5 13.5 22.0 15.5 11.9 3.0 26.0 23.5	23.5	16.0	26.0	20.0	8.1	2.4
15.5 20.5 22.0 18.5 8.7 1.6 23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.8 2.3 16.0 23.0 31.5 22.5 11.9 3.0 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5	29.0	28.0	32.0	26.5	13.3	2.8
23.5 23.0 28.0 23.0 11.3 2.5 38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 11.9 3.0 26.0 25.5 32.0 25.5 11.9 3.0 26.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 16.0 18.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 1.5 22.5 6.3 1.5	16.0	16.5	19.0	14.0	7.0	2.5
38.0 38.0 44.0 35.5 17.8 4.3 28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0	15.5	20.5	22.0	18.5	8.7	1.6
28.5 28.5 31.5 26.0 13.0 2.8 19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.2 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5	23.5	23.0	28.0	23.0	11.3	2.5
19.5 18.0 22.0 18.0 9.0 2.0 28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 22.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 24.0 14.5 3.9 11.5 14.5 <t< td=""><td>38.0</td><td>38.0</td><td>44.0</td><td>35.5</td><td>17.8</td><td>4.3</td></t<>	38.0	38.0	44.0	35.5	17.8	4.3
28.0 32.0 37.0 29.0 13.7 3.8 20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0	28.5	28.5	31.5	26.0	13.0	2.8
20.5 13.5 22.0 16.5 6.8 2.3 16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 11.5 20.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0	19.5	18.0	22.0	18.0	9.0	2.0
16.0 15.5 18.5 15.0 7.5 1.8 26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0	28.0	32.0	37.0	29.0	13.7	3.8
26.0 25.5 32.0 25.5 11.9 3.0 26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 7.8 1.6	20.5	13.5	22.0	16.5	6.8	2.3
26.0 23.0 31.5 23.0 10.1 3.7 12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0	16.0	15.5	18.5	15.0	7.5	1.8
12.5 14.0 15.5 12.5 6.3 1.5 25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 16.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0	26.0	25.5	32.0	25.5	11.9	3.0
25.0 21.5 28.0 23.5 11.5 2.2 16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.8 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0	26.0	23.0	31.5	23.0	10.1	3.7
16.0 18.0 18.5 13.5 6.8 3.8 15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0	12.5	14.0	15.5	12.5	6.3	1.5
15.5 17.5 19.5 16.5 8.3 1.6 30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5	25.0	21.5	28.0	23.5	11.5	2.2
30.0 29.5 33.0 24.5 12.3 4.3 20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5	16.0	18.0	18.5	13.5	6.8	3.8
20.0 21.0 25.0 18.0 8.7 3.4 22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5	15.5	17.5	19.5	16.5	8.3	1.6
22.5 21.5 23.5 18.5 9.3 2.5 30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	30.0	29.5	33.0	24.5	12.3	4.3
30.0 32.0 37.0 29.0 14.5 3.9 11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	20.0	21.0	25.0	18.0	8.7	3.4
11.5 14.5 16.0 11.0 5.1 2.3 32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	22.5	21.5	23.5	18.5	9.3	2.5
32.5 36.0 41.0 33.0 16.3 4.0 16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	30.0	32.0	37.0	29.0	14.5	3.9
16.5 16.0 20.5 17.0 7.8 1.6 17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	11.5	14.5	16.0	11.0	5.1	2.3
17.5 19.0 21.5 17.0 8.5 2.3 20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	32.5	36.0	41.0	33.0	16.3	4.0
20.5 30.0 37.5 29.0 9.4 2.8 24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	16.5	16.0	20.5	17.0	7.8	1.6
24.5 24.0 28.5 25.0 12.5 1.8 36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	17.5	19.0	21.5	17.0	8.5	2.3
36.5 35.0 39.0 32.5 16.3 3.3 30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	20.5	30.0	37.5	29.0	9.4	2.8
30.0 22.0 32.0 26.0 12.0 2.8 17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	24.5	24.0	28.5	25.0	12.5	1.8
17.0 20.0 24.0 16.5 7.1 3.2 19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5		35.0	39.0	32.5	16.3	3.3
19.5 18.0 23.0 17.5 8.4 2.6 36.5 37.5 40.5 31.5 15.8 4.5	30.0	22.0	32.0	26.0	12.0	2.8
36.5 37.5 40.5 31.5 15.8 4.5	17.0	20.0	24.0	16.5	7.1	3.2
	19.5			17.5	8.4	2.6
17.0 16.0 20.0 16.5 8.0 1.7	36.5	37.5	40.5	31.5	15.8	4.5
	17.0	16.0	20.0	16.5	8.0	1.7

Sample be A - A seemanned

			32.0	3.6
			1 3 1 4	
		-0.08	0.34	
	3 74 747			

Table 59 (cont'd).

				crystal	zone
A	В	С	E	size	width
25.0	20.0	27.5	22.0	10.4	2.6
28.0	25.0	32.0	24.0	11.7	3.9
28.5	28.0	34.0	28.5	14.0	2.7
28.0	27.0	32.0	26.0	13.0	3.0
31.0	25.0	36.0	30.0	13.1	2.6
36.0	35.0	42.5	33.5	16.6	4.5
31.0	32.0	41.0	33.0	14.3	3.5
36.0	31.0	43.0	33.5	14.8	4.2

Table 60. Sample Sal A-5g Measurements

				crystal	zone
A	В	С	E	size	width
9.5	11.5	13.5	12.5	5.5	0.4
37.5	34.5	45.5	37.5	17.0	3.6
24.0	26.0	28.5	20.5	10.3	5.0
39.0	35.0	46.0	36.0	16.8	4.7
13.5	8.5	14.5	9.5	3.8	2.0
43.5	42.0	53.0	43.0	20.2	4.7
14.5	16.5	17.0	12.5	6.3	3.3
13.0	15.0	15.5	11.0	5.5	3.1
32.5	35.5	41.0	35.0	17.2	2.9
29.0	30.5	35.0	29.0	14.5	3.0
49.0	50.0	61.0	49.0	23.3	5.7
15.0	15.0	15.5	11.5	5.8	2.0
30.5	29.5	27.5	22.0	11.0	2.8
49.5	50.5	62.0	49.0	23.0	6.1
17.5	17.0	20.0	14.5	7.3	2.8
44.0	45.5	45.5	38.5	19.3	3.5
17.5	17.5	19.0	15.0	7.5	2.0
27.0	26.5	33.0	23.0	10.9	4.7
10.5	12.5	13.0	9.5	4.8	2.2
25.5	22.5	32.0	24.0	9.9	3.3
18.0	22.5	26.0	22.0	9.6	1.7
34.5	39.0	47.0	33.0	14.7	6.2
33.0	35.0	41.0	35.0	17.2	2.9
29.0	39.0	47.5	31.5	11.7	5.9
19.0	16.5	22.0	16.0	7.5	2.8
15.5	17.0	21.0	15.5	6.8	2.4
10.0	16.5	17.0	13.5	5.5	1.4
18.0	19.5	22.5	20.0	9.9	1.2
27.0	27.0	36.0	28.0	11.6	3.3
28.0	27.5	35.0	30.0	13.7	2.3

Table 61. Sample Sal A-7g Measurements

				crystal	zone
A	В	С	E	size	width
19.5	17.0	22.0	19.5	9.5	1.2
33.0	32.0	44.0	29.5	11.9	5.9
18.5	17.0	21.5	18.0	8.8	1.7
10.0	12.0	12.0	9.5	4.8	2.0
9.5	9.0	12.0	9.5	4.1	1.1
15.0	17.0	20.0	19.0	8.8	0.5
17.5	18.5	19.5	16.5	8.3	1.5
11.5	13.5	12.5	11.0	5.5	2.4
28.0	28.5	33.0	28.5	14.3	2.3
11.0	10.5	13.0	11.5	5.6	0.7
17.0	17.5	19.0	14.0	7.0	2.5
30.5	30.5	35.0	28.5	14.3	3.3
20.5	21.0	24.0	20.5	10.3	1.8
17.5	16.5	20.0	17.5	8.8	1.3
12.0	10.0	12.5	11.0	5.5	1.1
24.0	19.0	29.0	24.5	9.8	1.8
14.5	15.5	17.0	15.5	7.8	0.8
13.0	12.0	14.0	13.0	6.5	0.5
29.5	23.5	32.0	28.5	13.7	1.7
21.0	21.0	24.5	18.5	9.3	3.0
18.5	19.0	23.0	18.5	8.8	2.2
11.5	12.5	16.5	12.5	4.9	1.6
21.5	21.0	24.5	19.5	9.8	2.5
26.0	25.0	30.5	27.0	13.4	1.7
21.0	24.0	28.0	23.0	10.7	2.3
25.5	22.5	29.5	23.5	11.1	2.8
28.5	32.0	39.0	36.5	16.0	1.1
12.0	12.0	14.5	12.5	6.1	1.0
20.0	21.0	23.0	19.0	9.5	2.0
21.0	19.0	23.0	20.5	10.3	1.9

Die 61. Sample Sal A- Vu M. remarks

	18/810			
		0:24		
				(a)
			23.5	

Table 62. Sample Sal 56-1 Measurements

				crystal	zone
Α	В	С	E	size	width
27.5	29.0	31.0	24.5	12.3	3.3
26.5	24.5	31.0	26.0	12.6	2.4
26.0	22.5	30.0	25.0	11.7	2.3
37.5	30.5	46.5	40.5	15.9	2.4
14.5	16.5	20.5	15.0	6.3	2.3
16.0	17.5	19.5	15.0	7.5	2.3
44.0	49.0	59.0	48.5	21.9	4.7
19.0	18.5	21.0	15.0	7.5	3.0
24.5	17.0	26.0	21.5	9.5	2.0
10.0	11.0	12.0	9.5	4.8	1.3
20.5	22.5	26.0	21.5	10.5	2.2
26.5	30.5	35.0	28.0	13.3	3.3
23.5	27.0	30.5	22.5	11.0	3.9
13.5	13.0	16.0	12.0	5.9	2.0
9.5	10.0	13.0	9.5	3.9	1.5
13.5	16.5	22.0	16.5	5.6	1.9
17.5	17.0	22.5	17.5	7.6	2.2
23.0	27.5	31.5	25.0	11.5	3.0
38.5	40.0	52.0	41.0	17.2	4.6
48.0	37.5	56.0	45.0	18.9	4.6
27.0	27.0	32.0	27.0	13.5	2.5
13.5	15.0	17.5	13.5	6.4	1.9
19.0	18.5	21.5	18.5	9.3	1.5
31.0	35.5	40.0	34.5	16.9	2.7
12.0	10.5	13.0	10.5	5.3	1.3
27.5	28.0	34.0	23.5	11.3	5.0
13.5	15.0	15.5	12.0	6.0	1.8
28.0	28.0	34.5	29.5	14.0	2.4
32.0	29.0	37.0	33.0	16.0	1.9
9.0	11.0	12.0	11.0	5.5	0.4
22.5	25.0	33.0	26.0	10.0	2.7

able 62. Sample Sa

			1777
		8 /	100
	0.18	0.68	8.5
			315
			3.5
			1818
			3.0
			8.5
			0.9
			0.5
			-
			0.4
			1000
			18

Table 63. Sample Sal 56-5 Measurements

				crystal	zone
A	В	С	E	size	width
22.5	15.0	28.0	14.0	4.5	4.5
40.0	38.0	46.0	40.0	20.0	3.4
14.5	15.0	19.0	12.0	5.3	3.1
19.0	18.5	22.5	13.0	6.4	4.7
40.0	40.0	48.0	30.0	14.9	8.9
22.0	16.0	27.0	14.0	5.0	4.7
30.0	31.0	39.0	28.5	12.7	4.7
16.5	17.0	20.0	10.0	5.0	5.0
25.5	29.0	34.5	23.0	10.4	5.2
29.5	27.5	38.5	21.0	8.5	7.1
8.5	10.0	12.0	8.0	3.5	1.7
12.0	12.0	15.5	8.5	3.7	3.1
30.0	26.0	38.5	31.0	12.1	2.9
22.5	20.0	27.5	22.0	9.6	2.4
23.5	27.0	34.5	26.0	10.3	3.4
14.5	15.0	17.0	13.5	6.8	1.8
29.0	25.5	34.5	20.0	9.0	6.6
11.0	10.5	13.5	8.5	3.9	2.3
10.5	10.0	12.0	8.5	4.3	1.8
31.0	38.0	42.0	32.0	15.3	4.8
7.5	6.5	8.5	5.0	2.4	1.7
24.0	24.5	34.0	27.0	10.2	2.6
24.0	23.0	26.5	20.0	10.0	3.3
16.5	19.0	23.0	12.0	5.2	4.8
25.0	28.0	32.0	24.0	11.7	3.9
23.0	20.5	26.5	21.5	10.3	2.4
25.0	18.5	32.5	23.5	7.6	2.9
24.5	26.5	31.5	26.5	12.5	2.4
23.0	22.0	28.5	23.0	10.4	2.5
17.5	16.0	20.0	11.0	5.5	4.5

Table 64. Sample Pay-1 Measurements

				crystal	zone
A	В	С	E	size	width
11.5	9.0	14.0	12.0	4.7	0.8
12.5	15.0	17.0	15.5	7.2	0.7
18.0	17.0	22.0	19.0	8.7	1.4
26.0	32.5	36.0	30.5	14.3	2.6
19.5	19.0	22.5	20.5	10.3	1.0
10.5	11.0	12.5	10.0	5.0	1.3
28.0	26.0	32.0	28.0	14.0	2.1
15.0	15.5	20.0	18.0	7.7	0.9
26.5	20.5	28.5	25.0	11.9	1.7
30.5	26.5	35.0	31.0	14.7	1.9
29.5	21.0	34.0	28.0	11.1	2.4
18.5	17.5	21.5	18.5	9.2	1.5
15.5	15.5	18.0	15.5	7.8	1.3
45.0	37.0	52.0	46.0	20.6	2.7
13.0	14.5	15.5	13.0	6.5	1.3
15.5	15.5	18.5	15.5	7.7	1.5
28.0	27.5	30.0	26.0	13.0	2.0
21.5	30.5	32.0	27.5	12.6	2.1
10.0	9.0	12.0	9.5	4.3	1.1
19.0	19.0	20.0	17.5	8.8	1.3
18.5	18.5	24.5	21.5	9.0	1.3
17.5	17.5	21.5	18.0	8.6	1.7
15.5	18.0	22.0	19.5	8.3	1.1
19.0	19.0	23.0	20.0	9.8	1.5
24.0	18.0	27.5	24.5	10.2	1.3
17.5	18.0	21.5	17.5	8.5	2.0
18.0	21.5	24.0	22.5	10.8	0.7
22.5	24.5	25.5	22.0	11.0	3.6
14.5	12.5	15.5	14.0	7.0	1.1
24.0	23.5	29.0	24.5	11.8	2.2

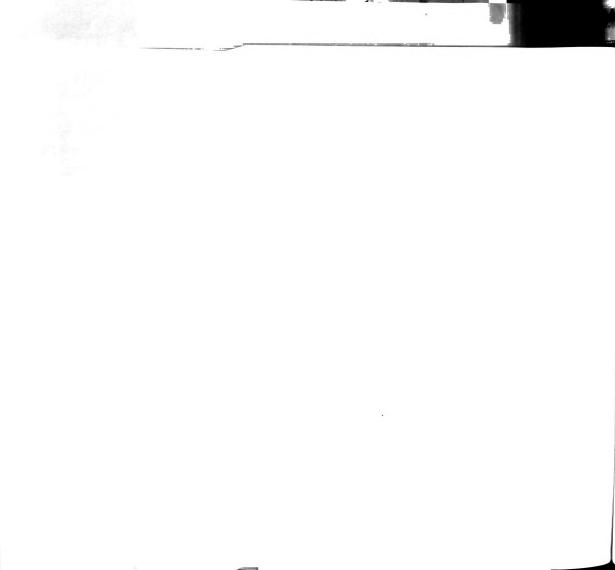


Table 65. Sample Pay-5 Measurements

				crystal	zone
A	В	С	E	size	width
31.0	34.0	42.0	34.5	15.1	3.3
12.0	13.0	15.0	11.0	5.4	2.0
19.5	20.0	23.5	20.5	10.3	1.5
37.0	36.0	44.0	33.5	16.5	5.2
22.0	18.0	24.5	22.0	10.4	1.2
14.0	12.5	15.0	11.5	5.8	1.8
21.0	21.0	24.5	20.0	10.0	2.3
18.0	19.0	23.0	18.5	8.6	2.1
25.0	22.0	33.5	27.0	9.8	2.4
14.0	10.5	15.5	13.0	5.8	1.1
18.0	21.5	27.0	22.5	8.8	1.8
18.5	21.5	25.5	23.0	10.3	1.1
10.0	12.5	14.0	12.5	5.7	0.7
11.5	12.5	14.5	13.0	6.4	0.7
35.0	34.0	44.5	37.0	16.3	3.3
10.0	12.0	14.0	11.5	5.1	1.1
17.0	16.5	17.5	16.5	8.3	0.5
13.0	11.0	14.5	13.0	6.3	0.7
15.5	15.5	18.5	17.5	8.7	0.5
20.5	19.0	23.0	20.0	10.0	1.5
29.0	37.5	47.0	37.0	13.5	3.7
26.0	25.0	26.0	21.0	10.5	2.5
22.0	23.0	27.0	25.0	12.4	1.0
27.0	24.0	31.0	26.0	12.6	2.4
17.0	19.0	22.0	20.0	9.6	1.0
20.0	19.0	21.5	18.0	9.0	1.8
46.0	42.0	56.0	50.0	22.4	2.7
13.5	15.5	17.5	14.0	6.8	1.7
15.0	14.0	18.5	16.0	7.2	1.1
18.0	15.0	21.5	18.5	7.9	1.3
20.5	22.0	26.0	22.0	10.5	1.9
26.0	26.5	31.5	29.0	14.4	1.2
24.5	26.0	30.0	27.0	13.5	1.5
16.0	14.0	18.5	14.5	6.8	1.9



Table 66. Sample Pay-11 Measurements

				crystal	zone
A	В	С	E	size	width
15.0	13.0	19.0	16.0	6.4	1.2
19.0	20.0	24.5	23.0	10.6	0.7
8.5	6.5	9.0	8.0	4.0	0.3
20.5	18.5	24.0	21.5	10.2	1.2
31.5	33.0	36.5	30.0	15.0	3.3
17.5	17.5	21.0	19.5	9.7	0.7
8.0	7.5	8.5	7.5	3.8	0.5
10.0	10.0	11.5	10.0	5.0	0.8
36.5	33.0	45.0	36.0	15.7	3.9
24.0	23.5	30.0	26.0	11.9	1.8
20.0	19.0	25.5	19.5	8.4	2.6
25.0	25.0	27.5	23.5	11.8	2.0
18.0	16.0	21.5	19.0	8.6	1.1
13.0	13.0	15.5	13.0	6.5	1.3
13.0	13.0	15.0	12.5	6.3	1.3
15.0	13.5	16.5	15.0	7.5	0.8
23.5	21.5	24.0	21.0	10.5	3.6
22.5	23.0	24.5	21.0	10.5	1.8
30.5	41.0	48.0	39.5	15.8	3.4
22.0	24.0	30.0	25.0	10.8	2.2
32.5	24.0	35.0	30.0	13.7	2.3
31.5	31.0	35.0	31.5	15.8	1.8
20.0	20.0	25.0	22.5	10.4	1.2
19.0	19.0	21.0	17.5	8.8	1.8
20.0	20.5	23.5	22.5	11.3	0.5
27.0	29.5	36.0	31.5	14.1	2.0
12.0	11.0	13.0	12.0	6.0	0.5
20.0	15.5	23.5	19.5	8.0	1.7
20.0	18.5	24.0	22.0	10.2	0.9
40.0	43.5	53.0	44.0	19.8	4.1

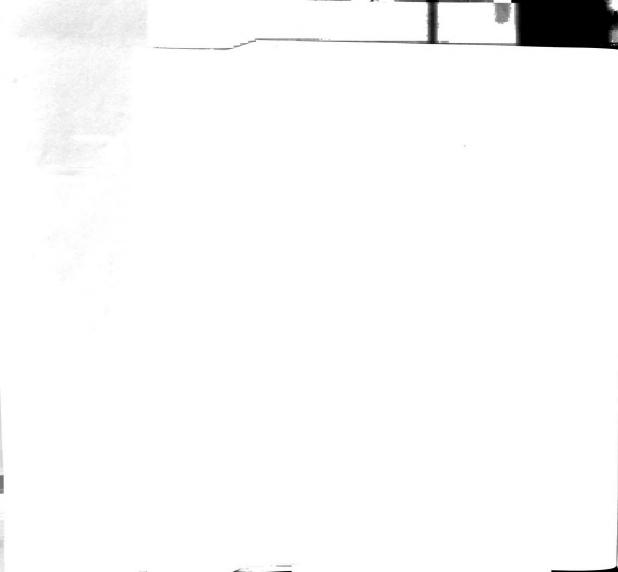


Table 67. Sample Ton-11 Measurements

				crystal	zone
A	В	С	E	size	width
22.5	21.0	24.0	21.5	10.8	1.3
12.5	14.0	15.5	13.0	6.5	1.3
17.0	18.0	20.5	17.0	8.5	1.8
19.5	17.5	21.0	17.5	8.8	2.5
23.0	18.5	27.0	20.5	8.8	2.8
42.0	40.0	52.0	41.0	18.5	5.0
15.5	15.5	19.5	16.5	7.6	1.4
16.0	22.5	26.0	20.5	8.0	2.2
39.0	34.0	49.0	39.0	15.9	4.1
20.5	20.5	24.5	19.5	9.7	2.5
20.0	22.0	24.0	20.0	10.0	2.8
19.0	16.0	21.5	17.5	8.3	1.9
46.0	44.0	53.0	43.5	21.8	5.2
21.0	19.0	22.0	20.0	10.0	2.4
25.0	30.0	33.5	26.5	12.7	3.3
25.5	25.0	31.0	28.0	13.4	
29.5	28.0	35.0	26.0	12.6	1.4
21.0	23.0				
		28.0	20.5	9.2	3.4
18.5	14.0 27.0	20.0	15.5	7.2	3.5
19.0	21.0	41.0 26.0	31.5	9.5	
24.0	26.0	27.0	23.5	11.8	1.7
26.0	25.5	30.5	24.0	12.0	3.8
24.0	22.0		23.0		3.3
	33.0	28.0		11.1	2.4
31.0		33.0	27.0	13.5	6.8
26.0	24.0	30.0	23.5	10.9	3.0
		21.0		8.2	0.7
20.0	14.0	23.5	18.0	9.0	1.4
	21.5		18.0		2.8
27.0	32.0	37.5	28.0	12.5	4.2
30.5	30.0	36.0	30.0	15.0	3.0
30.0	43.5	48.0	39.0	16.1	3.7
21.0	23.0	25.0	19.0	9.5	3.9
23.0	21.5	27.5	23.0	10.8	2.1
14.0	12.0	16.5	12.0	5.4	2.0
15.5	15.5	17.5	15.0	7.5	1.3
22.0	16.0	24.0	19.5	8.6	2.0

Table 67 (cont'd).

A	В	С	E	crystal size	zone width
16.5	15.0	18.5	16.0	8.0	1.3
17.0	15.5	19.0	15.0	7.5	2.0
18.0	19.5	23.0	19.0	9.1	1.9
38.0	28.0	46.0	38.5	14.4	2.8
25.5	21.0	33.0	26.0	9.5	2.6
16.0	21.0	23.5	17.5	7.7	2.6
23.0	21.0	26.5	23.0	11.3	1.7
34.0	30.0	41.5	32.5	14.1	3.9
19.5	18.0	21.5	17.0	8.5	2.3
20.5	23.0	26.5	21.5	10.3	2.4
39.5	39.5	48.5	41.0	19.6	3.6
29.0	16.0	29.5	26.5	10.2	1.2
40.0	30.5	43.0	35.0	16.5	3.8
24.0	18.0	27.0	21.5	9.3	2.4
20.5	20.0	23.0	20.0	10.0	1.5
19.0	18.0	20.5	16.5	8.3	2.0
16.0	16.0	18.0	16.0	8.0	1.0

Table 68. Sample Sal How-1 Measurements

				crystal	zone
A	В	С	E	size	width
33.0	36.0	44.5	36.5	16.0	3.5
15.0	14.5	18.0	13.0	6.3	2.4
10.5	15.5	17.5	14.0	5.5	1.4
20.5	23.0	28.5	22.0	9.4	2.8
20.0	18.5	22.0	17.5	8.8	2.3
21.0	20.0	25.5	19.5	9.1	2.8
19.5	11.0	19.5	14.0	5.6	2.2
15.5	15.5	18.0	13.5	6.8	2.3
17.5	21.0	26.0	20.5	8.2	2.2
12.0	14.5	17.5	14.5	6.1	1.3
15.5	15.0	22.5	19.5	6.6	1.0
16.5	11.5	18.5	16.0	6.5	1.0
24.5	24.5	26.5	24.0	12.0	1.3
17.5	16.5	21.0	15.5	7.3	2.6
25.5	25.5	28.0	23.5	11.8	2.3
23.5	25.0	27.0	25.0	12.5	1.0
18.5	18.0	23.0	21.0	9.6	0.9
50.0	41.0	61.5	51.5	20.6	4.0
31.0	31.0	39.5	31.0	13.9	3.8
33.5	38.5	46.0	42.0	18.7	1.8
15.5	15.5	18.0	14.5	7.3	1.8
30.5	34.0	39.0	33.5	16.3	2.7
14.5	16.5	18.0	15.5	7.8	1.6
37.0	35.5	42.0	36.5	18.3	2.8
14.0	15.0	15.0	12.5	6.3	1.3
34.0	40.0	51.0	40.5	15.7	4.1
34.0	30.0	38.5	30.5	15.0	3.9
27.5	28.5	38.5	30.5	12.0	3.1
24.0	22.0	26.5	22.5	11.3	2.7
36.0	25.5	40.0	32.5	13.6	3.1
19.0	17.0	21.5	19.0	9.5	1.2
18.5	18.5	21.5	19.0	9.5	1.3
34.5	33.0	40.0	31.0	15.5	4.5

			T-19 010	
		2345		
	0.460			

Table 69. Sample Sal How-6 Measurements

				crystal	zone
A	В	С	E	size	width
33.0	35.0	42.0	35.0	16.5	3.3
12.0	10.5	14.0	10.0	4.6	1.9
33.0	31.0	36.0	32.0	16.0	3.6
19.5	27.0	31.0	23.5	9.5	3.0
16.0	18.5	21.0	18.0	8.7	1.4
14.5	13.5	16.0	15.0	7.5	0.5
30.5	30.5	38.0	34.5	16.1	1.6
26.5	25.0	30.0	26.0	13.0	2.0
17.0	17.5	20.5	16.0	8.0	2.3
15.0	16.0	20.0	17.0	7.5	1.3
16.5	15.0	18.5	17.5	8.8	0.5
25.5	24.5	31.0	27.0	12.7	1.9
28.0	30.5	35.5	32.5	15.8	1.5
20.5	20.0	20.5	18.5	9.3	1.0
30.5	25.0	34.0	28.0	13.2	2.8
31.0	25.0	34.0	28.0	13.4	2.9
12.5	13.0	15.0	11.0	5.5	2.0
26.0	24.0	32.5	22.5	9.7	4.3
46.0	35.5	49.5	40.5	19.2	4.3
12.5	12.0	13.5	10.5	5.3	1.5
24.5	24.5	27.0	21.0	10.5	3.0
32.0	30.0	38.0	29.5	14.1	4.1
22.5	22.0	26.0	21.5	10.8	2.3
22.0	20.5	23.5	19.0	9.5	2.3
38.0	40.0	46.0	36.0	18.0	5.4
46.0	49.0	63.5	55.0	22.7	3.5
27.0	27.0	37.0	30.0	11.8	2.8
18.0	18.5	19.0	17.0	8.5	1.0
26.0	28.0	31.0	29.0	14.5	1.9
21.0	19.5	24.0	21.5	10.8	1.3

able 69. Sample Sal H. w-6 Moust remember

Midth				
		0.54	13.0	
	8.1.7		COLASIA	
	3.15	7.9k	1 8 28	
		0.48		

Table 70. Sample Sal 7-8 Measurements

				crystal	zone
A	В	С	E	size	width
44.6	35.5	51.5	41.5	18.1	4.4
15.5	13.0	18.5	16.5	7.1	0.9
35.0	27.5	39.0	30.5	13.9	3.9
34.0	32.0	38.0	26.5	13.3	6.8
27.0	26.0	30.5	24.0	12.0	3.3
30.5	29.5	44.5	32.0	10.7	4.2
20.5	31.0	32.5	26.5	11.4	2.6
15.5	13.5	18.5	14.5	6.5	1.8
26.0	28.0	34.5	27.5	12.3	3.1
26.0	29.0	34.0	28.0	13.2	2.8
26.5	29.0	34.5	27.0	12.6	3.5
34.0	28.0	39.0	31.0	14.1	3.6
21.5	20.0	26.5	21.0	9.4	2.5
30.5	31.0	37.0	27.5	13.6	4.7
33.0	44.0	47.0	42.5	19.9	2.1
40.0	42.0	46.0	37.5	18.8	6.4
33.5	47.0	54.0	44.5	17.7	3.8
21.5	22.5	26.0	21.0	10.5	2.5
14.0	20.5	22.0	17.0	7.3	2.1
26.5	26.0	32.0	27.0	13.0	2.4
24.5	17.5	29.5	23.0	8.4	2.4
20.5	19.0	22.5	19.5	9.8	1.5
15.0	16.0	19.0	15.5	7.4	1.7
25.0	25.5	29.0	25.5	12.8	1.8
23.0	21.0	25.0	22.5	11.3	2.2
28.0	22.5	33.0	26.5	11.2	2.8
26.5	28.0	36.0	25.0	10.5	4.6
45.5	41.5	52.0	47.0	23.3	2.5
25.0	24.0	29.5	25.0	12.3	2.2
20.5	18.5	23.0	17.5	8.8	2.9

	Teystal		0.3		
		3	5	8	
b . p		A1.5	81.5	35.5	
			18.5		
					DIE
		25.0			

Table 71. Sample List for Burlington-Keokuk Formation Hwy 61 Outcrops

Sample Number	Sample	Number of
-	ID	Crystals
1	DFS-1	34
2	CAR-5	30
3	MIN-6	34
4	LAK-10	31
5	MIN-16	33
6	DFS-15	32
7	DFS-24	30
8	LAK-22	30
9	MIN-29	30
10	LAK-31	30
11	DFS-32	30
12	LAK-36	31
13	DFS-37	30
14	LAK-40	30
15	DUNC-56	30

she 71. Semulation for it inspire the constraint law 61 Outcoops

	9

Table 72. Sample DFS-1 Measurements

				crystal	zone
A	В	С	E	size	width
34.0	32.0	37.5	31.5	15.8	4.4
18.0	15.0	20.0	17.5	8.4	1.2
14.5	13.0	16.0	13.5	6.8	1.3
19.5	19.0	23.0	21.5	10.7	0.7
13.0	13.0	15.0	13.5	6.8	0.8
9.5	12.0	13.0	11.5	5.5	0.7
21.5	24.5	30.0	28.5	12.2	0.6
13.0	17.5	19.0	16.0	7.2	1.4
18.0	17.5	18.0	15.5	7.8	1.3
15.0	13.0	16.0	12.0	6.0	2.5
16.0	17.0	18.0	13.0	6.5	2.5
27.5	27.0	34.0	28.0	13.0	2.8
26.0	25.0	29.0	25.5	12.8	1.8
25.5	26.0	29.0	22.0	11.0	3.5
20.0	20.0	24.0	20.5	10.1	1.7
17.5	17.5	19.0	14.5	7.3	2.3
14.0	15.0	15.5	14.0	7.0	0.8
14.5	15.0	16.0	13.0	6.5	1.5
17.0	19.0	23.0	18.0	8.0	2.2
37.0	34.0	43.0	32.5	15.8	5.1
20.0	18.0	21.0	16.0	8.0	3.7
19.0	18.0	20.5	14.5	7.3	3.0
18.5	18.0	19.0	12.5	6.3	3.3
17.0	18.0	21.0	18.0	8.9	1.5
18.0	16.0	20.0	13.5	6.8	3.4
23.5	25.0	28.0	22.5	11.3	2.8
20.5	19.0	23.0	16.0	8.0	3.5
25.0	24.0	25.0	21.5	10.8	1.8
9.5	8.0	11.0	8.5	3.9	1.1
17.0	17.5	22.0	15.5	7.0	2.9
15.5	15.0	16.5	14.0	7.0	1.3
15.0	15.0	18.0	15.5	7.7	1.2
27.0	25.0	32.0	25.0	11.9	3.3
14.5	15.0	17.5	13.5	6.8	2.0

		0.50
	0.40	
	e.er	
	0.813	
		0.60
		25.0

Table 73. Sample CAR-5 Measurements

				crystal	zone
Α	В	С	E	size	width
17.0	14.5	20.5	18.0	7.7	1.1
30.0	30.0	35.0	31.0	15.5	2.0
13.0	19.0	22.5	18.0	6.5	1.6
9.5	10.0	11.5	10.0	5.0	0.8
22.0	28.0	32.0	26.0	11.4	2.6
19.0	18.5	23.0	16.5	7.9	3.1
10.0	12.0	12.0	10.0	5.0	1.8
13.0	14.5	16.0	14.0	7.0	1.0
20.5	20.5	23.5	18.5	9.3	2.5
21.0	19.0	24.0	20.0	9.9	2.0
21.5	20.0	27.5	24.0	10.1	1.5
10.5	11.5	14.5	12.5	5.3	0.8
19.0	22.5	25.0	22.5	11.0	1.2
30.0	28.5	34.0	29.0	14.5	2.5
24.0	24.0	27.0	22.5	11.3	2.3
19.0	21.0	23.0	20.0	10.0	2.1
19.5	21.0	20.5	18.0	9.0	1.3
13.0	11.5	14.5	10.0	5.0	2.3
33.5	27.0	37.0	27.5	13.0	4.5
17.0	14.0	19.5	15.0	6.8	2.0
25.0	23.0	28.0	21.5	10.8	3.7
12.0	12.0	12.0	10.0	5.0	1.0
15.0	14.0	17.5	14.5	7.1	1.5
18.0	18.5	22.0	16.0	7.9	2.9
11.0	11.5	13.5	9.5	4.7	2.0
18.0	17.5	20.5	16.0	8.0	2.3
20.0	17.0	22.5	17.0	8.2	2.6
18.0	16.5	23.0	18.5	7.7	1.9
9.0	11.5	13.0	9.5	4.2	1.6
27.0	27.0	31.0	27.5	13.8	1.8

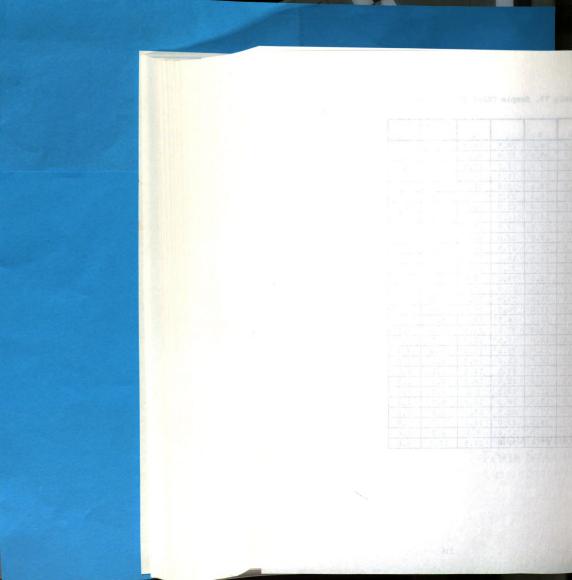


Table 74. Sample MIN-6 Measurements

				crystal	zone
A	В	С	E	size	width
22.0	21.5	26.0	21.5	10.7	2.2
20.0	18.5	22.0	17.0	8.5	2.5
29.0	29.0	34.0	25.5	12.8	4.3
12.0	12.5	14.5	11.5	5.8	1.5
22.0	22.0	26.0	22.5	11.3	1.8
11.5	10.0	18.5	10.0	2.2	1.9
19.0	17.5	20.0	17.5	8.8	1.3
13.5	12.0	16.5	11.0	4.8	2.4
15.5	16.0	22.0	19.0	7.2	1.1
10.0	11.5	12.5	11.5	5.8	0.5
21.0	20.5	22.5	19.5	9.8	1.5
14.0	14.5	17.0	15.5	7.7	0.7
33.0	33.5	35.5	25.0	12.5	5.3
23.0	16.5	25.0	18.0	7.9	3.1
12.5	12.0	14.5	12.5	6.3	1.0
13.0	12.0	14.0	12.5	6.3	0.8
15.5	11.0	16.5	14.5	6.5	0.9
9.5	8.5	10.0	8.0	4.0	1.0
44.0	32.0	53.0	41.5	15.4	4.3
19.5	25.5	27.5	24.0	11.3	1.6
23.0	23.0	25.0	19.0	9.5	3.0
28.0	28.0	29.0	22.0	11.0	3.5
19.5	17.5	22.5	16.5	8.0	2.9
11.0	9.0	11.0	9.0	4.5	1.6
43.0	42.0	53.0	41.0	19.1	5.6
15.0	16.5	19.5	17.5	8.2	0.9
13.0	19.0	21.0	16.0	6.5	2.0
18.5	20.0	19.5	17.5	8.8	1.0
16.5	15.0	19.5	17.5	8.2	0.9
23.5	22.5	25.0	19.0	9.5	3.0
14.5	15.5	19.0	12.5	5.7	2.9
16.5	18.0	20.0	15.0	7.5	2.5
27.0	28.0	31.0	29.0	14.5	1.0
24.0	24.0	33.0	24.5	9.6	3.3

				6.83	
			TALE		
				D. A.	
				a.B.	
			53.0e		
1.6					
0.6					
1.0		0.85			
	9.6	24.5			

Table 75. Sample LAK-10 Measurements

				crystal	zone
A	В	С	E	size	width
28.0	26.5	28.0	10.0	5.0	9.0
16.5	14.5	17.0	14.0	7.0	2.6
40.5	39.0	50.0	35.0	16.1	6.9
20.0	20.0	25.0	18.0	8.3	3.2
18.0	21.5	26.0	22.5	9.5	1.5
19.5	19.5	23.0	19.0	9.5	2.0
19.5	20.0	20.0	16.0	8.0	2.0
21.0	18.5	25.0	19.0	8.6	2.7
15.0	13.5	14.5	10.5	5.3	2.0
14.5	15.0	17.5	14.0	7.0	1.8
12.5	12.5	13.5	12.0	6.0	0.8
29.0	20.5	30.5	24.0	10.9	3.0
21.5	28.5	35.5	28.0	10.1	2.7
22.0	22.0	25.0	20.0	10.0	2.5
16.0	17.0	18.0	16.0	8.0	1.0
18.5	20.0	25.0	19.0	8.2	2.6
31.5	30.0	34.0	28.0	14.0	3.0
15.5	16.5	19.0	16.0	8.0	1.5
35.5	30.0	42.0	33.0	14.5	4.0
11.5	11.5	13.0	10.0	5.0	1.5
31.0	33.0	35.0	27.5	13.8	6.1
26.5	30.0	34.0	28.0	13.7	2.9
13.0	15.0	15.5	11.5	5.8	2.8
22.5	22.0	27.0	20.0	9.7	3.4
24.0	25.5	31.0	27.0	12.5	1.8
10.5	11.0	13.0	11.5	5.6	0.7
19.0	20.0	23.0	20.5	10.3	1.3
27.0	29.0	31.0	25.0	12.5	4.8
13.0	13.0	16.0	13.0	6.2	1.4
25.0	23.5	26.5	19.5	9.8	3.5

ble 75. Sample Label Hardenbarts

			1
		O DIE	
		A CONTRACTOR OF THE PARTY	

Table 76. Sample MIN-16 Measurements

				crystal	zone
A	В	С	E	size	width
21.5	32.5	35.0	30.0	12.4	2.1
38.0	38.5	45.0	37.0	18.5	4.0
14.0	12.5	14.0	11.5	5.8	1.3
19.0	23.0	28.0	22.0	9.0	2.5
12.0	13.5	13.5	12.0	6.0	0.8
22.0	24.0	28.0	15.5	7.5	6.0
26.0	22.0	29.0	23.0	11.2	2.9
24.5	23.0	27.5	20.5	10.3	3.5
12.5	13.0	15.5	12.5	6.1	1.5
18.5	17.5	21.0	18.0	9.0	1.5
13.0	11.0	15.0	10.0	4.6	2.3
12.0	12.0	14.0	11.0	5.5	1.5
20.5	13.0	22.0	16.5	6.6	2.2
27.5	27.0	29.0	26.0	13.0	1.5
8.5	9.5	11.0	9.0	4.3	1.0
14.5	16.0	18.0	16.0	8.0	1.0
14.5	15.0	17.0	15.0	7.5	1.0
13.5	15.0	16.0	14.5	7.3	0.8
15.5	16.0	18.5	15.0	7.5	1.8
15.0	12.0	17.0	14.0	6.3	1.4
12.5	13.5	15.0	12.0	6.0	1.5
23.0	22.0	24.5	20.5	10.3	2.0
16.5	12.0	20.0	13.5	5.0	2.4
15.0	17.0	21.0	15.5	6.6	2.3
23.5	24.0	26.0	20.0	10.0	3.0
15.5	15.0	18.5	14.0	6.8	2.2
22.0	24.0	25.0	20.0	10.0	4.3
17.5	18.5	20.0	14.5	7.3	2.8
13.0	12.0	13.5	12.0	6.0	0.8
20.0	22.0	26.0	21.0	9.9	2.3
11.0	10.0	13.0	8.5	4.0	2.1
19.5	17.5	23.0	20.0	9.3	1.4
14.5	17.0	19.0	18.0	8.8	0.5

		0.86		1 6
				8.3
	U.81			
		0.73		
	d.a.b.	1,0115	0.1	
		26,00		
	. J. A.E.	3.84		
			8.61	

Table 77. Sample DFS-15 Measurements

				crystal	zone
A	В	С	E	size	width
30.0	29.0	36.0	33.0	15.9	1.4
30.5	29.0	35.5	33.0	16.5	1.2
13.0	14.0	15.0	11.0	5.5	2.0
17.0	18.5	22.0	14.0	6.6	3.8
14.0	16.0	18.0	13.0	6.4	2.5
21.5	29.0	34.0	29.0	11.5	2.0
24.5	17.0	26.5	21.0	9.0	2.4
23.0	14.0	24.5	18.5	7.2	2.3
16.0	15.0	19.0	13.5	6.5	2.6
11.0	11.0	14.0	12.0	5.4	0.9
31.5	34.0	40.5	31.0	14.6	4.5
21.5	22.5	26.0	19.5	9.8	3.3
14.0	18.5	20.0	18.0	8.3	0.9
24.5 ≰	25.0	27.5	24.0	12.0	1.8
11.0	11.5	11.5	10.0	5.0	0.8
17.5	16.0	18.0	14.0	7.0	2.0
17.0	17.0	21.5	17.0	7.7	2.0
12.0	11.5	14.0	10.5	5.3	1.8
15.5	17.5	18.5	15.5	7.8	2.3
15.0	13.0	15.0	12.0	6.0	2.7
17.5	17.5	20.0	17.5	8.8	1.3
16.0	18.0	18.5	16.0	8.0	2.5
32.0	31.5	41.5	35.5	15.3	2.6
11.5	11.5	12.0	11.0	5.5	0.5
12.5	14.0	14.5	11.0	5.5	1.8
32.0	30.5	38.0	30.0	14.5	3.9
37.0	32.0	42.0	32.5	15.6	4.6
24.0	16.0	25.0	18.5	8.1	2.9
19.0	20.0	20.0	16.0	8.0	2.0
14.5	13.0	17.5	13.5	6.1	1.8
32.0	29.0	37.0	30.5	14.8	3.2
17.0	15.0	18.0	15.5	7.8	2.0

			0.05	
				* F. B
			0.000	* F . E
	11.56	Call	0185	

Table 78. Sample DFS-24 Measurements

					crystal	zone
	A	В	С	E	size	width
1	20.0	22.0	24.0	17.0	8.5	4.3
	19.0	18.0	20.0	16.5	8.3	1.8
	27.5	19.0	29.0	22.0	9.8	3.1
	17.0	16.5	19.5	16.0	8.0	1.8
	16.0	14.0	17.0	14.0	7.0	2.1
	23.0	24.5	28.0	16.0	8.0	6.0
	19.0	18.0	21.0	18.0	9.0	1.5
	20.0	16.0	22.0	18.0	8.5	1.9
	23.0	20.0	26.0	20.5	10.0	2.7
	30.0	22.0	32.0	26.5	12.2	2.5
	13.0	14.5	16.0	12.5	6.3	1.8
	18.0	20.0	20.0	18.0	9.0	2.9
	10.0	11.0	12.0	9.5	4.8	1.3
	23.0	25.5	30.5	24.5	11.2	2.7
	15.0	15.0	17.0	13.5	6.8	1.8
	22.0	23.0	24.0	19.5	9.8	2.3
	14.5	14.0	18.0	14.0	6.4	1.8
	28.0	29.0	36.0	27.5	12.5	3.9
	23.0	23.5	23.0	16.0	8.0	3.5
	19.0	15.5	21.0	17.0	8.1	1.9
	18.0	16.5	20.0	17.0	8.5	1.5
	20.0	21.0	26.0	21.0	9.5	2.3
	15.0	14.0	16.0	10.0	5.0	3.0
	14.0	14.0	15.0	11.5	5.8	1.8
	18.0	13.5	20.0	15.0	6.6	2.2
	18.5	19.0	24.0	19.0	8.5	2.2
	56.0	48.0	72.0	57.0	21.9	5.8
	9.0	10.0	13.0	10.0	3.9	1.2
	56.0	47.0	69.0	56.0	22.8	5.3
	22.5	21.0	25.0	19.0	9.5	3.0

Le 78. Sample TES-1m par - service

			12.0		
	5.0		0.49		
		14.0	0.81	0.11	
	3.27	27.5	36.0	ener	
	1	16.0	23.0		
		0.75	0.15	atar.	
			0.05		
			26.0		
			16.0		
			15.0	0.01	
			0.08		
		0.81		10.01	
			0.00	0.74	
		0.91			

Table 79. Sample LAK-22 Measurements

				crystal	zone
A	В	С	E	size	width
22.5	24.5	29.0	24.0	11.3	2.4
21.0	18.5	24.0	17.5	8.4	3.1
19.0	17.5	21.0	19.0	9.5	1.0
14.5	10.0	16.0	14.5	6.0	0.6
26.0	24.0	33.0	25.5	10.8	3.2
28.0	23.0	31.0	23.5	11.3	3.6
27.5	36.0	39.0	35.0	16.3	1.9
36.0	35.0	42.0	37.0	18.5	2.5
17.0	15.0	18.0	15.0	7.5	2.3
20.5	18.5	24.0	20.0	9.5	1.9
17.5	19.0	20.0	15.5	7.8	2.3
22.0	23.0	25.5	22.0	11.0	1.8
24.5	20.0	29.0	23.0	9.8	2.6
27.5	27.0	31.5	24.0	12.0	3.8
24.0	23.5	28.0	24.0	12.0	2.0
22.5	22.0	27.0	25.5	12.4	0.7
20.5	19.0	23.0	20.5	10.3	1.3
14.5	14.0	15.0	13.5	6.8	0.8
18.0	18.0	21.5	19.5	9.7	1.0
18.0	19.0	21.0	18.0	9.0	1.5
16.0	14.0	16.0	12.0	6.0	3.3
18.5	17.5	23.0	21.0	9.4	0.9
14.5	14.0	17.0	15.5	7.7	0.7
31.0	28.5	36.0	28.0	13.6	3.9
23.5	24.0	29.0	23.0	11.1	2.9
14.5	16.0	19.0	15.5	7.2	1.6
27.5	29.0	31.0	28.0	14.0	1.5
31.5	33.0	38.0	30.0	15.0	4.0
26.5	23.5	30.0	23.5	11.6	3.2
10.5	11.0	14.0	11.5	5.0	1.1

THE RESERVE OF THE PARTY OF THE

	11.04	POR 634	0.08	
	24.0	E. Tell	0.272	
		O. BS	18,000	

Table 80. Sample MIN-29 Measurements

				crystal	zone
A	В	С	E	size	width
12.5	13.0	15.0	13.0	6.5	1.0
19.0	16.0	22.0	16.0	7.3	2.7
17.0	16.5	18.5	13.5	6.8	2.5
13.0	14.0	17.5	14.0	6.1	1.5
27.5	27.0	31.0	22.0	11.0	4.5
13.0	14.0	16.0	10.5	5.3	2.8
14.0	13.5	16.0	14.0	7.0	1.0
29.5	31.0	34.0	28.5	14.3	2.8
19.0	17.0	20.5	15.5	7.8	3.2
15.5	15.0	17.0	13.5	6.8	1.8
13.0	13.0	17.5	12.0	4.9	2.2
20.0	18.5	23.0	17.0	8.5	3.0
16.0	15.5	17.0	13.5	6.8	1.8
20.5	21.5	28.5	22.5	9.0	2.4
14.5	14.5	16.0	12.0	6.0	2.0
17.5	19.0	21.0	18.0	9.0	1.5
16.0	20.0	24.0	20.0	8.2	1.6
12.0	12.0	13.5	12.0	6.0	0.8
14.0	13.5	16.0	15.0	7.5	0.5
12.0	10.0	11.5	8.0	4.0	2.9
15.5	16.0	17.5	14.5	7.3	1.5
15.5	15.5	20.0	16.0	7.0	1.8
33.5	26.5	37.5	32.5	14.8	2.3
19.5	15.5	24.0	19.0	7.4	1.9
23.5	25.0	32.0	28.0	11.8	1.7
21.5	21.5	27.0	22.5	10.4	2.1
18.0	17.0	18.0	13.5	6.8	2.3
21.0	19.0	23.0	18.0	9.0	3.1
13.5	11.0	15.0	13.0	6.1	0.9
20.0	20.0	27.5	21.5	8.4	2.4

				10
	+			
	17.	11:20	11.83	
			0.15	

Table 81. Sample LAK-31 Measurements

				crystal	zone
A	В	С	E	size	width
14.0	14.5	18.0	16.5	7.5	0.7
36.0	32.5	42.0	36.0	17.2	2.9
36.0	34.0	42.0	36.5	18.1	2.7
28.5	30.0	36.0	30.5	14.5	2.6
20.5	22.0	25.0	20.0	10.0	2.5
28.0	28.0	33.0	24.5	12.3	4.3
24.0	23.5	27.0	23.5	11.8	1.8
28.0	28.0	31.5	27.5	13.8	2.0
19.5	18.0	20.0	13.0	6.5	3.5
9.0	9.5	12.0	9.5	4.1	1.1
29.5	32.5	37.5	31.5	15.4	2.9
19.5	23.0	28.0	20.5	8.6	3.2
21.0	20.5	24.0	20.5	10.3	1.8
26.0	25.0	30.0	25.5	12.8	2.3
30.0	32.0	37.0	30.0	15.0	3.4
16.0	16.0	18.5	15.5	7.8	1.5
15.5	18.0	21.0	16.0	7.3	2.3
23.0	26.0	30.0	26.0	12.4	1.9
28.0	30.0	34.0	26.5	13.3	4.2
27.0	27.0	31.0	23.5	11.8	3.8
22.0	26.5	33.0	30.0	11.9	1.2
50.0	36.5	62.5	49.0	17.0	4.7
23.0	26.0	34.5	30.5	11.4	1.5
28.0	22.5	36.0	27.0	9.7	3.2
23.5	25.5	26.0	21.5	10.8	4.6
29.5	27.5	31.0	22.5	11.3	6.5
20.5	21.0	26.0	23.0	10.6	1.4
20.5	26.0	30.0	27.0	11.7	1.3
13.0	13.0	16.0	13.0	6.2	1.4
36.0	36.5	46.0	33.0	14.9	5.9

	1.7			
		1 21/1		
٧.		TENO !		
		0.828		
		0.48		
			2.28	
		25.0		

Table 82. Sample DFS-32 Measurements

				crystal	zone
Α	В	С	E	size	width
15.0	13.5	18.0	15.0	6.8	1.4
19.5	18.0	21.5	17.0	8.5	2.3
16.0	15.0	17.0	15.0	7.5	1.0
24.5	23.5	29.0	25.0	12.2	2.0
10.0	10.0	13.0	11.5	5.0	0.7
17.5	16.0	18.0	9.5	4.8	4.3
15.0	16.5	18.0	15.5	7.8	1.3
15.5	15.0	18.0	14.5	7.3	1.8
16.5	18.5	22.0	17.5	8.0	2.1
19.0	17.0	21.0	16.0	8.0	2.8
16.5	14.0	19.0	14.5	6.7	2.1
26.0	24.0	28.5	20.5	10.3	5.0
19.0	19.0	20.0	16.5	8.3	1.8
27.0	25.5	33.5	30.0	13.4	1.6
15.0	11.0	17.0	14.0	5.8	1.3
15.5	15.5	18.0	13.5	6.8	2.3
15.0	17.0	17.0	14.0	7.0	3.0
11.5	13.0	14.5	11.0	5.5	1.8
17.0	19.0	21.0	15.5	7.8	3.1
20.0	20.0	24.0	20.5	10.1	1.7
20.5	22.0	25.0	22.0	11.0	1.5
16.0	18.0	20.0	17.0	8.5	1.7
20.5	22.5	27.0	22.5	10.3	2.1
17.0	19.0	25.0	22.0	8.4	1.2
37.0	36.0	44.0	37.0	18.2	3.4
20.5	18.5	19.5	15.5	7.8	4.7
19.5	18.5	21.0	17.5	8.8	1.8
27.0	29.0	28.0	25.5	12.8	5.2
12.5	12.0	14.0	10.5	5.3	1.8
18.5	17.5	23.0	20.0	8.9	1.3

Table 83. Sample LAK-36 Measurements

				crystal	zone
Α	В	С	E	size	width
13.5	12.5	14.0	13.0	6.5	0.5
12.0	14.5	16.0	13.0	6.3	1.5
31.0	29.0	33.0	25.5	12.8	5.8
15.0	14.0	17.0	15.0	7.5	1.0
38.5	38.0	44.0	33.0	16.5	5.5
14.0	13.5	14.0	10.0	5.0	2.0
11.0	10.0	12.0	9.0	4.5	1.5
19.5	17.0	22.0	18.0	8.8	2.0
14.5	15.5	17.5	13.5	6.8	2.0
13.5	21.5	22.0	17.0	7.3	2.1
18.5	18.0	20.0	17.5	8.8	1.3
31.0	33.0	40.0	32.5	15.1	3.5
24.0	25.0	32.5	22.5	9.4	4.2
12.5	14.0	14.5	13.5	6.8	0.5
16.5	16.0	19.0	17.0	8.5	1.0
22.0	20.0	27.0	21.0	9.3	2.6
19.0	18.0	21.0	16.0	8.0	2.5
22.0	15.5	23.0	18.0	8.3	2.3
37.0	39.0	42.0	33.0	16.5	7.0
23.5	24.0	26.0	19.0	9.5	3.5
18.5	18.0	22.5	17.0	8.1	2.6
20.5	20.0	22.0	18.5	9.3	1.8
23.5	22.5	28.0	21.0	10.2	3.4
19.0	22.0	26.0	20.0	9.0	2.7
16.5	12.0	17.5	16.0	7.4	0.7
12.5	12.5	14.5	11.5	5.8	1.5
19.0	19.0	24.0	18.5	8.4	2.5
20.0	19.0	26.0	19.5	8.1	2.7
28.0	24.0	34.0	22.0	9.4	5.1
22.0	23.5	26.0	23.0	11.5	1.5
24.5	28.0	32.0	25.0	12.0	3.4

					3
				0.08	
	1.8.6	ober 3		-0.15	
			7,854		
	19.3	- 18v		0.03	

Table 84. Sample DFS-37 Measurements

				crystal	zone
Α	В	С	E	size	width
26.0	25.5	31.0	27.0	13.3	2.0
21.5	20.0	24.0	18.5	9.3	2.8
28.5	26.5	32.0	27.0	13.5	3.1
32.0	34.0	38.0	32.5	16.3	3.8
20.5	21.0	24.5	17.0	8.5	3.8
17.5	16.0	21.0	18.0	8.3	1.4
26.0	19.0	28.0	24.0	10.9	1.8
18.0	16.0	19.5	16.5	8.3	2.0
26.0	27.0	33.0	25.5	11.9	3.5
27.0	25.0	29.0	23.0	11.5	4.5
36.0	38.0	44.0	32.0	16.0	6.1
32.0	30.0	36.0	28.5	14.3	4.5
27.5	29.0	33.0	26.5	13.3	3.3
20.0	18.0	23.0	17.5	8.5	2.7
31.5	30.0	37.0	27.5	13.5	4.7
21.0	22.0	23.5	16.5	8.3	3.5
26.5	28.0	30.0	26.0	13.0	2.0
26.0	23.5	30.0	24.0	11.7	2.9
20.0	22.0	22.0	18.5	9.3	4.0
29.0	27.0	32.0	26.5	13.3	3.8
25.0	23.0	27.5	23.0	11.5	3.1
20.0	20.0	23.0	16.5	8.3	3.3
34.5	32.5	39.5	33.0	16.5	3.6
25.0	27.0	29.5	24.5	12.3	3.6
24.5	26.5	29.5	24.0	12.0	3.4
19.5	20.0	22.5	18.5	9.3	2.0
17.0	15.0	17.0	12.0	6.0	4.0
34.5	34.0	41.0	32.0	15.9	4.5
15.0	13.5	17.0	15.0	7.5	1.0
37.0	35.0	36.5	27.0	13.5	9.5

Table 85. Sample LAK-40 Measurements

				crystal	zone
A	В	С	E	size	width
20.0	19.5	22.0	17.5	8.8	2.3
32.0	34.0	41.0	27.5	12.9	6.3
22.5	25.0	28.5	24.5	12.1	2.0
25.5	27.0	27.0	22.0	11.0	2.5
27.0	29.0	33.5	28.5	14.2	2.5
39.0	45.0	51.0	43.5	21.0	3.6
30.0	28.0	35.5	29.0	13.9	3.1
17.0	17.0	20.0	16.5	8.3	1.8
39.0	34.0	44.0	38.0	18.6	2.9
18.5	18.5	20.5	16.0	8.0	2.3
25.0	27.0	29.0	25.0	12.5	3.5
24.0	30.0	34.0	25.0	11.3	4.1
27.5	29.0	32.0	26.5	13.3	2.8
27.0	27.0	32.0	27.0	13.5	2.5
26.5	32.5	38.0	29.5	12.8	3.7
19.5	19.5	22.0	19.0	9.5	1.5
19.0	17.0	21.0	18.0	9.0	1.8
25.5	29.0	37.0	30.5	12.2	2.6
27.0	30.0	36.0	32.5	14.8	1.6
28.0	28.5	28.0	24.5	12.3	1.8
32.0	31.0	39.0	33.0	15.5	2.8
35.0	28.0	39.0	30.0	13.9	4.2
14.0	15.5	18.0	15.0	7.2	1.4
40.0	35.5	47.0	36.0	16.7	5.1
21.0	19.0	24.0	17.0	8.4	3.5
17.0	16.5	19.0	14.5	7.3	2.3
30.0	28.5	29.0	26.0	13.0	1.5
19.0	18.0	22.0	18.5	9.3	1.8
20.0	20.0	21.0	16.0	8.0	2.5
18.0	17.0	14.0	13.5	6.8	0.3

		22.0		
		0.88 0.88 0.88		
	1.08	7.88		
	0.1	0.55.5		
1,44		DOTS		
		18.0	164999	
			35.5	
		cler		
		0.08	2.85	
		21.0	20.0	
8.8		14.0		

Table 86. Sample DUNC-56 Measurements

				crystal	zone
Α	В	С	E	size	width
18.0	14.5	20.5	14.0	6.3	2.9
16.0	18.0	17.5	15.5	7.8	3.0
25.0	23.0	24.0	21.0	10.5	4.9
17.0	20.0	24.0	20.0	8.6	1.7
17.0	17.0	22.0	19.0	8.3	1.3
27.0	26.0	36.0	30.0	12.0	2.4
36.0	35.0	44.0	41.0	19.3	1.4
42.0	43.0	46.0	40.5	20.3	2.8
25.0	23.5	29.5	24.0	11.6	2.7
18.0	18.5	24.0	19.0	8.1	2.1
27.0	27.0	32.0	26.0	13.0	3.0
33.5	28.0	37.0	31.0	15.1	2.9
15.5	14.0	17.5	14.5	7.3	1.5
10.5	11.0	15.0	12.0	4.6	1.1
22.0	19.0	25.0	23.0	11.0	1.0
19.0	18.0	19.5	15.0	7.5	2.3
25.0	23.5	28.0	26.0	13.0	1.0
30.0	31.0	41.0	37.0	15.1	1.6
17.0	21.0	23.5	19.0	8.8	2.1
42.0	46.0	57.0	46.0	20.0	4.8
23.0	21.0	24.5	21.5	10.8	2.8
29.5	29.0	36.0	30.0	14.3	2.9
15.5	14.5	18.5	14.5	6.9	1.9
15.5	17.5	18.0	14.0	7.0	3.2
14.5	16.0	18.0	14.5	7.3	1.8
19.5	23.0	26.0	23.0	10.9	1.4
17.0	19.0	22.0	15.5	7.4	3.1
26.0	26.5	29.0	24.5	12.3	2.3
16.0	18.0	21.0	16.0	7.5	2.4
24.0	22.5	28.0	24.0	11.8	2.0

	U.11			
		0 - 1	05,200	
		123:		

Table 87. Sample List for Seroe Domi Formation, Seru Blandan and St. Michielsburg Outcrops

Sample Number	Sample	Number of
	ID	Crystals
1	SB-1 Zone I	30
2	SB-2 Zone I	20
3	SM-1 Zone I	15
4	SB-1 Zone II	30
5	SB-2 Zone II	20
6	SM-1 Zone II	15

Table 88. Sample SB-1 Zone I Measurements

				crystal	zone
A	В	С	E	size	width
38.5	38.0	45.0	35.0	17.5	5.0
37.5	35.5	41.0	34.0	17.0	5.4
29.5	29.5	36.5	25.5	12.0	5.2
41.0	41.5	47.0	36.5	18.3	5.3
45.5	44.0	59.0	46.5	19.7	5.3
40.0	38.0	40.5	36.0	18.0	6.7
27.0	26.0	31.0	26.0	13.0	2.5
33.5	30.0	38.0	31.5	15.6	3.2
40.0	40.5	45.5	38.5	19.3	3.5
21.5	25.0	29.0	25.0	11.6	1.8
24.0	27.0	31.0	25.5	12.3	2.7
33.0	23.0	35.0	28.5	12.7	2.9
27.5	29.0	34.0	28.5	14.0	2.7
46.0	33.0	51.0	46.0	19.5	2.1
44.0	42.0	46.0	42.0	21.0	6.0
28.0	30.0	36.0	28.0	13.1	3.7
39.0	37.0	45.0	41.0	20.5	2.2
29.0	26.0	33.0	27.0	13.3	3.0
40.0	37.0	48.0	38.0	17.7	4.6
36.0	34.0	41.0	36.0	18.0	3.0
36.5	35.0	10.0	34.0	17.0	3.0
37.0	29.0	41.0	35.0	16.1	2.8
34.0	32.0	39.0	34.0	17.0	2.7
38.0	36.0	39.0	35.0	17.5	5.8
50.0	52.0	57.5	49.0	24.5	6.8
42.5	44.0	48.0	39.0	19.5	4.5
28.0	30.0	33.0	29.0	14.5	3.2
49.0	48.0	52.0	46.0	23.0	3.0
32.0	32.5	39.0	35.0	17.1	2.0
43.0	41.0	47.0	41.0	20.5	5.3

ie 88. Sample SB-1 The "Thomas on

		2.0		
				400
		0.34		
		33.0		
		0.84		
	34:0		35.0	
			29.0	
	0.08	0.88	32.0	
	135,0	39.0		
		2.76	52.0	
		0.81		
2.1.5		0.55	0.05	
	0.00	0.98		
1.75				

Table 89. Sample SB-1 Zone II Measurements

				crystal	zone
A	В	С	E	size	width
30.5	28.0	35.0	4.0	2.0	15.4
28.5	28.5	34.0	8.5	4.2	12.7
22.0	24.0	25.5	3.0	1.5	12.7
32.0	30.0	36.5	9.0	4.5	14.1
37.0	37.5	46.5	12.5	5.8	15.8
32.0	28.0	36.0	7.0	3.4	14.3
21.0	22.5	26.0	4.5	2.2	10.7
26.0	23.0	31.5	6.5	2.9	11.0
31.0	32.0	38.5	8.5	4.1	14.4
18.0	23.0	25.0	3.5	1.7	10.2
18.0	23.0	25.5	4.0	1.8	9.9
23.0	18.0	28.5	2.5	0.9	9.8
22.0	25.0	28.5	2.0	1.0	12.8
37.0	32.0	46.0	13.0	5.4	13.6
38.0	31.0	42.0	11.5	5.5	14.6
24.0	26.0	28.0	2.5	1.3	14.1
37.5	30.0	41.0	12.5	6.0	13.6
23.0	22.0	27.0	5.0	2.5	10.9
30.0	32.0	38.0	9.0	4.3	13.9
32.0	27.5	36.0	3.0	1.5	16.0
28.0	28.0	34.0	7.0	3.4	13.1
30.0	27.0	35.0	8.0	3.8	12.8
29.0	28.0	34.0	7.0	3.5	13.5
34.0	32.0	35.0	9.0	4.5	16.2
37.0	44.0	49.0	15.0	7.3	16.4
37.0	38.0	39.0	9.0	4.5	15.0
22.0	25.0	29.0	6.0	2.8	10.8
39.0	41.0	46.0	17.0	8.5	15.8
28.0	28.5	35.0	8.0	3.8	12.7
35.0	35.0	41.0	11.0	5.5	15.0

Sample SB-1 Zone " valentopole

			34.0		
			0.818		
			0.15		
	130	0 6	0.88	17075	
			130.01		
	1	0.7	10.480		
				0.55	
			THE SE		
			over		
			D.ak		
			0.26	28.5	
	8.2	0.11			

Table 90. Sample SB-2 Zone I Measurements

				crystal	zone
A	В	С	E	size	width
45.0	41.0	52.0	44.5	21.7	3.7
17.0	17.0	21.0	17.5	8.3	1.7
10.0	10.0	10.0	9.5	4.8	0.3
40.5	46.0	52.0	43.5	21.4	4.2
11.0	10.5	12.0	9.5	4.8	1.3
19.5	19.5	23.0	20.0	10.0	1.5
40.0	38.0	47.0	42.0	20.6	2.5
26.0	28.0	31.0	26.5	13.3	3.1
33.0	34.0	39.0	34.0	17.0	2.5
39.0	36.0	48.0	41.0	18.2	3.1
54.0	54.0	62.0	55.0	27.5	3.5
42.0	38.0	48.0	40.5	20.0	3.7
30.0	33.0	43.0	35.0	13.9	3.2
31.0	31.0	33.0	29.5	14.8	1.8
31.0	31.0	42.5	35.0	13.8	3.0
19.0	17.0	21.0	17.0	8.5	2.3
24.0	25.5	30.0	26.0	12.7	1.9
22.0	22.5	25.0	21.0	10.5	2.0
26.0	25.0	29.0	23.0	11.5	3.0
31.0	30.0	32.0	26.5	13.3	2.8

Table 90. Semple SB-2 Zone I Mene In

			0.00	
2.0	3.0	24.0	0.68	
			0.00	

Table 91. Sample SB-2 Zone II Measurements

A	В	С	E	crystal size	zone width
42.0	31.0	44.5	13.5	6.3	14.5
18.0	16.0	17.5	5.0	2.5	8.3
8.0	8.0	9.5	2.5	1.3	3.5
33.0	39.0	43.5	7.5	3.6	17.5
8.0	8.0	9.5	2.5	1.3	3.5
15.0	16.0	20.0	4.0	1.8	7.0
32.0	34.0	42.0	14.0	6.3	12.6
22.0	24.0	26.5	5.5	2.8	11.2
26.0	28.0	34.0	9.0	4.1	11.4
35.0	31.0	41.0	10.0	4.7	14.5
47.0	46.5	55.0	20.0	10.0	17.5
35.0	31.0	40.5	9.0	4.3	15.0
28.5	27.5	35.0	9.0	4.2	12.1
26.0	27.0	29.5	9.0	4.5	10.3
24.5	27.0	35.0	7.0	2.8	11.2
14.0	12.0	17.0	3.0	1.3	6.0
15.5	22.5	26.0	8.0	3.0	6.9
16.0	18.5	21.0	4.5	2.2	7.9
21.0	22.0	23.0	5.0	2.5	9.0
20.0	20.0	26.5	8.0	3.4	7.8

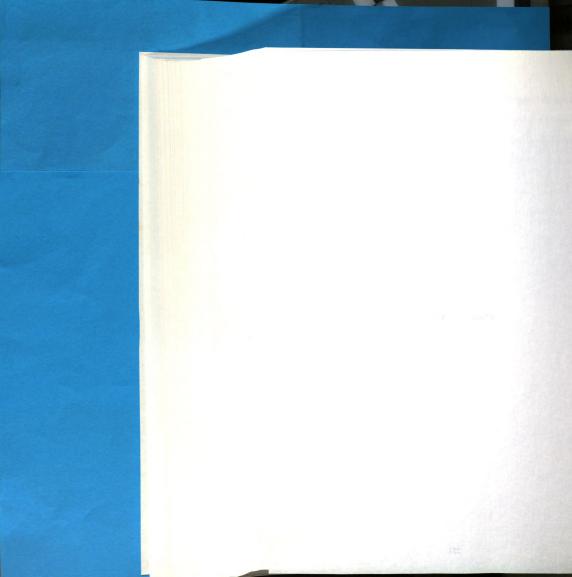
	-0-22m	
	0.5746	
2.00	0.45	
	0.48	

Table 92. Sample SM-1 Zone I Measurements

A	В	С	E	crystal size	zone width
48.0	48.0	54.0	48.0	24.0	3.0
48.0	46.0	55.0	46.0	23.0	5.3
42.0	37.0	49.0	43.0	20.1	2.8
44.5	43.0	55.0	50.0	23.0	2.3
49.0	40.0	54.0	46.0	22.1	3.8
49.0	39.0	58.0	46.0	19.2	5.0
69.0	60.0	80.0	73.0	34.1	3.3
59.0	49.0	65.0	57.0	27.8	3.9
45.0	47.0	57.0	48.0	22.6	4.2
55.0	57.0	69.0	62.0	29.4	3.3
37.0	37.0	36.0	32.0	16.0	2.0
36.0	38.0	43.0	36.0	18.0	4.3
34.0	40.0	45.0	38.0	18.3	3.4
51.5	55.0	64.0	52.0	25.6	5.9
28.0	28.0	33.0	29.0	14.5	2.0

ble 92. Sample SM-1 Zane "Year or

	0.42	


Table 93. Sample SM-1 Zone II Measurements

A	В	С	E	crystal size	zone width
39.0	38.0	48.0	11.5	5.4	17.0
39.0	38.0	46.0	11.0	5.5	17.4
34.0	29.0	43.0	11.0	4.3	12.6
34.0	39.0	50.0	11.0	4.3	15.3
40.0	34.0	46.0	4.5	2.1	19.3
40.0	37.0	46.0	7.5	3.7	19.2
55.0	55.0	73.0	19.0	8.0	22.6
50.0	39.0	57.0	13.5	5.9	19.0
35.5	40.0	48.0	6.0	2.7	18.9
45.0	49.0	62.0	15.0	6.3	19.8
31.0	29.0	32.0	9.0	4.5	14.3
26.0	32.0	36.0	9.0	4.2	12.5
30.0	33.0	38.0	10.5	5.1	13.5
40.0	45.0	52.0	9.0	4.3	20.6
22.0	22.0	29.0	8.0	3.4	8.9

Table 93. Sample SM-1 Zone of elements

		On the San		
caystal		3.0	8	
	6.31	48.0	0.38	0.4
		0.34		
				10

BIBLIOGRAPHY

BIBLIOGRAPHY

- Badiozamani, Khosrow, 1973, The Dorag Dolomitization Model -Application to the Middle Ordovician of Wisconsin, Journal of Sedimentary Petrology, volume 43, p. 965-984.
- Baker, Paul A. and Kastner, Miriam, 1981, Constraints on the Formation of Sedimentary Dolomite, Science, volume 213, p. 214-216.
- Banner, Jay L., Hanson, G. N. and Meyers, W.J., 1988, Water-Rock Interaction History of Regionally Extensive Dolomites of the Burlington-Keokuk Formation (Mississippian): Isotopic Evidence, Sedimentology and Geochemistry of Dolostones, SEPM Special Publication No. 43, p. 97-113.
- Bennema, P., 1984, Spiral Growth and Surface Roughening: Developments since Burton, Cabrera and Frank, Journal of Crystal Growth, volume 69, p. 182-197.
- Berner, R. A., 1980, Early Diagenesis, A Theoretical Approach, Princeton University Press, 241 p.
- Berner, R. A., 1982, Chemistry of Biogenic Matter at the Deep-Seafloor, in The Environment of the deep sea; Rubey Volume II, Ernst, W. Gary and Morin, J. H. (eds.) Prentice Hall Publishers, p. 154-176.
- Berner, R.A. and Morse, J.W., 1974, Dissolution of calcium carbonate in seawater: IV Theory of Calcite Dissolution, American Journal of Science, volume 274, p. 108-134.
- Brown, C. D. Jr. and Lineback, L. A., 1966, Lithostratigraphy of Cincinnatian Series (Upper Ordovician) in Southwestern Indiana, AAPG Bulletin, volume 50, p. 1018-1032.
- Bullen, Susan B. and Sibley, Duncan F., 1984, Dolomite Selectivity and Mimic Replacement, Geology, volume 12, p. 655-658.
- Burton, W. K., Cabrera, N. and Frank, F.C., 1951, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal

16

ozameni, Neoscow, All Advisor Advisor

Paul A. and Kastelle. Remarks of Section 214-216.

day us, Manes, 1

a. Fv. 1984, sp evelopments si n f Crystal Growth.

R. A., 1580, are those the rest of the property Princes ...

A.A., 1962, Bounes dept Section, i. E. 6. Levy Volume II. Sec. Centice Hall Emblisher

K.A. and Mother J.M. transfer in construction and second construction. American the construction of the co

Sosan R. and Sibley, buncar F., 1989, unlimite lectivity and Mimic Replacement, Scology, volume [2, 555-558]

W. K., Cabrera, N. and Frank, F. ., 1891, The Grawal Crystals and the Equilibrium Structure of their Gaes, Philosophical Transactions of the Royal

- Society of London, Mathematical and Physical Sciences, Ser. A, volume 243, p. 299-358.
- Cander, Harris S., Kaufman, Jonathan, Daniels, Lawrence D. and Meyers, William J., 1988, Regional Dolomitization of Shelf Carbonates in the Burlington-Keokuk Formation (Mississippian), Illinois and Missouri: Constraints from Cathodoluminescent Zonal Stratigraphy, Sedimentology and Geochemistry of Dolostones, SEPM Special Publication No. 43, p. 129-144.
- Carpenter, Alden B., 1980, The Chemistry of Dolomite Formation I: The Stability of Dolomite, SEPM Special Publication No. 28, p. 111-121.
- Carlson, William D., 1989, The significance of intergranular diffusion to the mechanisms and kinetics of porphyroblast crystallization, Contributions to Mineralogy and Petrology, volume 103, p. 1-24.
- Carlson, William D., 1983, Aragonite-Calcite Nucleation Kinetics: An Application and Extension of Avrami Transformation Theory, Journal of Geology, volume 91, p. 57-71.
- Carlson, William D. and Rosenfeld, John L., 1981, Optical Determination of topotactic aragonite-calcite growth kinetics; metamorphic implications, Journal of Geology, volume 89, no. 5, p. 615-638.
- Choquette, Philip W. and Steinen, Randolph P., 1980,
 Mississippian Non-Supratidal Dolomite, Ste. Genevieve
 Limestone, Illinois Basin: Evidence for Mixed-Water
 Dolomitization, SEPM Special Publication No. 28, p.
 163-196.
- Christian, J. W., 1975, The Theory of Transformations in Metals and Alloys, Pergamon Press, 568 p.
- Crow, Edwin L., Davis, Frances A. and Maxfield, Margaret W., 1960, Statistics Manual, Dover Publications, 288 p.
- Domenico, P.A. and Schwartz, Franklin W., 1990, Physical and Chemical Hydrogeology, Wiley Publishers, New York, 824 p.
- Eberl, D. D., Drits, V. A. and Srodon, J., 1998, Deducing Growth Mechanisms for Minerals from the Shapes of

Society of London, Mathematics on Parison Sciences, Sec. A. Volume 243, p. 298-7

er, Harris S., Kautnan o natus and a bear end and seyers, William J., 1965, come Do nor end to de Superson of Supe

nter, Alden B., 1980, P.a. Chemish of Dolonino Porcetton It The State of Colonino SERN special Publication No. 28, p. 815

on William D., 1990, The righten does of inter subject of the control of the cont

None william D., 1983, Aragonate Common Notice of Atherication An Application and 200 metals of extension Transformation Theory, Journal of Sectory, volume st. p. 57-11.

n, William D. and Rosenfela, Jann D., 1997, Optical etermination of topocactic asyonite-calcite growth inetcay metamorphic implications, Journal of Geology, Journal of Geology, Colone 89, no. 5, p. 615-638.

mette, Philip W. and Steinen, Screelen 3., 1980.
Missiosippian Non-Supratidel Dolomite, Siz. Genryaeve
Limestone, Illinois dasın: Svidence for Mixed-Wacer
Dolomitization, SEPM Special Fundication No. 28, p.
163-196.

tian, J. W., 1975, The Theory of Transformations in Metals and Alloys, Pergamon Press, 568 p.

Edwin L., Davis, Frances A. and Maxfield, Margaret W., 1960, Statistics Manual, Dover Publications, 248 p.

100, P.A. and Schwartz, Franklin W., 1990, Physical and Chemical Hydrogeology, Wiley Emblishers, New York, 824

D. D. Drits, V. A. and Srodon, J., 1996, Deducti Growth Mechanisms for Minerals from the Shapes of

- The state of the s
 - Crystal Size Distributions, American Journal of Science, volume 298, p. 499-533.
 - Eberl, Dennis D., Srodon, Jan, Kralik, Martin, Taylor, Bruce E. and Petermen, Zell E., 1996, Ostwald Ripening of Clays and Metamorphic Minerals, Science, vol. 248, p. 474 477.
 - Ehlers, Ernest G. and Blatt, Harvey, 1982, Petrology:

 Igneous, Sedimentary and Metamorphic, W. H. Freeman and Company, p. 732.
 - Fairchild, Ian J., 1983, Effects of Glacial Transport and Neomorphism on Precambrian Dolomite Crystal Sizes, Nature, volume 304, p. 714-716.
 - Feazel, Charles T. and Schatzinger, Richard A., 1985,

 Prevention of Carbonate Cementation in Petroleum

 Reservoirs, Society of Economic Paleontologists and
 Mineralogists, p. 97-106.
 - Fouke, Bruce W., Beets, C. J., Meyers, William J., Hanson, Gilbert N. and Melillo, Allan J., 1996, ⁸⁷Sr/⁸⁶Sr Chronostratigraphy and Dolomitization History of the Seroe Domi Formation, Curacao (Netherland Antilles), Facies, volume 35, p. 293-320.
 - Fouke, Bruce W. and Reeder, Richard J., 1992, Surface structural controls on dolomite composition: Evidence from sectoral zoning, Geochimica et Cosmochimica Acta, volume 56, p. 4015-4024.
 - Frank, Tracy D., Lohmann, Kyger C. and Meyers, William J., 1995, Chronostratigraphic significance of cathodoluminescence zoning in syntaxial cement:
 Mississippian Lake Valley Formation, New Mexico, Sedimentary Geology, volume 105, p. 29-50.
 - Gaines, Alan M., 1980, Protodolomite Synthesis at 100°C and Atmospheric Pressure, Science, volume 183, p. 518-520.
 - Gratz, A. J., Hillner, P. E. and Hansma, P. K., 1993, Step Dynamics and Spiral Growth on Calcite, Geochimica et Cosmochimica Acta, volume 57, p. 491-495.
 - Gregg, Jay M. and Sibley, Duncan F., 1984, Epigenetic Dolomitization and the Origin of Xenotopic Dolomite Texture, Journal of Sedimentary Petrology, volume 54, p. 908-931.

Tystal Size Distribution, America, 13 and of cience, volume 20s, r. date.

V. Cennis D. J. Srodon, as a section total plant in E. and Peteriden, 2s.1. Associated to a section of a Clays and Mediment is a section of the section of a 174 - 477.

S. Schest G. and chis continued Schemes and Concepts, Schimentary company, p. 732.

tild. Tan d., 1979. Proc Wednerchiem ca. Erecamon of the Processing Sature, volume 197.

Price W. and Recte: 12. Price of the revision of the restriction of th

Also M., 1980, Procedulences Systemsis of 1980, and Emospheric Procedure, Science, welcome 187, p. 518-520.

A 97% ALLINOT, P. F. at Plansa, F. A. 1993, Ang. Martes and Salval Growth on Calcite, Resolution et Sincontales Acts, volume 77, p. 191-493.

Jay M. and Stbley, Buncan E., 1434, Spigenatic biomitization and the Origin of Neuropic Polonite exture, Journal of Sedimentary Percology, volume ta 200-931.

- Harris, Paul M., Kendall, Christopher G. St. C. and Lerche, Ian, 1985, Carbonate Cementation A Brief Review, SEPM Special Publication No. 36, Carbonate Cements, p. 79-95.
- Harris, D.C., 1982, Carbonate Cement Stratigraphy and
 Diagenesis of the Burlington Limestone (Mississippian),
 southeast Iowa, western Illinois, M.S. thesis,
 University of New York at Stony Brook, 296 p.
- Hatfield, C.B., 1968, Stratigraphy and Paleoecology of the Saluda Formation (Cincinnatian) in Indiana, Ohio and Kentucky, Geological Society of America Special Paper 95, 34 p.
- Hillner, P. E., Gratz, A. J., Manne, S. and Hansma, P. K., 1992, Atomic-scale imaging of calcite growth and dissolution in real time, Geology, volume 20, p. 359-362.
- Jancic, S. and Garside, J., 1975, On the Determination of Crystallization Kinetics from Crystal Size Distribution Data, Chem. Eng. Sci., volume 30, p. 1299-1301.
- Kessels, Lisa A., 1995, The Dolomite Growth Mechanism in the Calcite to Dolomite Transformation, M. S. Thesis, Michigan State University, 90 p.
- Katz, Amitai and Matthews, Alan, 1977, The Dolomitization of CaCO₃: An experimental study at 252-295°C, Geochimica et Cosmochimica Acta, volume 41, p. 297-308.
- Kretz, Ralph, 1974, Some Models for the Rate of Crystallization of Garnet in Metamorphic Rocks, Lithos, volume 7, p. 123-131.
- Kretz, Ralph, 1973, Kinetics of the Crystallization of Garnet at Two Localities Near Yellowknife, The Canadian Mineralogist, volume 12, p. 1-20.
- Land, Lynton S., 1980, The Isotopic and Trace Element Geochemistry of Dolomite: The State of the Art, SEPM Special Publication No. 28, p. 87-110.
- Lane, H.P. and DeKeyser, T. L., 1980, Paleogeography of the late Early Mississippian (Tournaisian 3) in the central and southwestern United States, in Paleozoic Paleography of the West-Central United States: West-

Sy Paul M., Memoell, "".
Tam, 1905, Carbonace New Carbonace All Management Carbonace New Carbonace All Management Carbonace Ca

s D.C. 1962, "2 Elegendess of the elegant love, we see the elegant love, we the elegant love the elegant lov

eld, C.S., 1969, " Aluda Ecraetica Fundada, Celata Sc. da par

S. and Gerson

Typtalifaction

State Chem. Eng.

F. Lies Av. 1995 micros to Colomita Tene Cityen State D. was a

mirel and Matcheus, Alaus 2011, to small custon of LOS An experiences 2011 of the second Commonthing Alaus 2011

Religibly 1973; Xfantion of the president of the Datadian article of the Datadian interaction of the Datadian (Fig. 2), volume 12, p. 1-23.

Lymbon S., A980s, The Isotopic of Truck Siement Consented of Lobiumier the Siement of the Arm. Stew ectal Publication Wo. 26, p. 85-86.

.P and Dekeyser, T. L., 1960, Paleogeography of the farly Mississippien (Tournalsian 3) in the central southwester, Mited States, in Faleogate Wast-lectural United States Wast-

- Central United States Paleography Symposium I: Rocky Mountain Section, Fouch, T. D. and Magathan, E.R. (eds.), SEPM, p. 149-162.
- Larson, M. A. and Randolph, A. D., 1965, Size Distribution Analysis in Continuous Crystallization, Chemical Engineering Progress Symposium Series, vol. 65, no. 95, p. 1-13.
- Lasaga, A.C., 1981, Rate Laws of Geochemical Reactions, Kinetics of Geochemical Processes, Reviews in Mineralogy, volume 8, p. 1-81.
- Lu, Feng H. and Meyers, William J., 1998, Massive Dolomitization of a Late Miocene Carbonate Platform: A Case of Mixed Evaporative Brines with Meteoric Water, Nijar, Spain, Sedimentology, volume 45, p. 263-277.
- Lucia, F. J. and Major, R. P., 1994, Porosity Evolution Through Hypersaline Reflux Dolomitization, Special Publication No. 21 of the International Association of Sedimentologists, p. 325-341.
- Lumsden, David N. and Chimahusky, John S., 1980, Relationship Between Dolomite Nonstoichiometry and Carbonate Facies Parameters, SEPM Special Publication No. 28, p. 123-137.
- Machel, H. G., 1989, Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, Hydrocarbon accumulation, salt domes and metal sulphide deposits, in <u>Carbonates and Evaporites</u>, Mazzullo, S.J. and Gregg, Jay (eds.), p. 137-152.
- Machel, H. G., 1983, Cathodoluminescence in calcite and dolomite and its chemical interpretation, Geoscience Canada, vol. 12, p. 139 - 147.
- Machel, H.G. and Burton, Elizabeth, 1994, Golden Grove Dolomite, Barbados; origin from modified seawater, Journal of Sedimentary Research, vol. A64, p. 741-751.
- Martin, Wayne D., 1975, The Petrology of a Composite
 Vertical Section of Cincinnatian Series Limestones
 (Upper Ordovician) of Southwestern Ohio, Southeastern
 Indiana, and Northern Kentucky, Journal of Sedimentary
 Petrology, volume 45, p. 907-925.

Contral Nolled State
Montain Section Form,
E.R. (eds.), SEPM

a. A.C., 1981, Kara Kinerijs of Geoches Vineralogy, volume , as

and H. and Meyers, was a serious of these points of the property of the serious of the serious of the serious of the serious serious of the serious serious as a serious serio

F. C. and Major, to the Country Not ton Drough Hypersalt, The Section 2007, the Country Telephony No. 2. of the Link Country Section of Administratory is a November 100 of the Country Section of the Country Section 2007, the C

D. Devid N. and China and E. Shen S. Shen S. Shen Salamara, and Distance and Carlos and

H. G., 1989, Relationalists of well-controlled to successful and oxidate the successful and oxidate the successful and successful and metal subjects to the successful and metal subjects to the successful and successf

H: G., 1983, Cathodolpmin cence in raidite and comite and its chemical interpretation, Resutence ada, vol. 12, p. 189 - 147.

H.G. and Burton, Elizabeth, 1944, Golden Grove omite, Parbagos, origin from modified seawater, and of Sedimentary Research, vol. Adv. p. 741-751.

Wayne D. 1975, The Petrology of a Composite tide! Section of Cindinatian Series Limestones per Ofdovician! of Southwestern Only, Southerstern table, and Notthern Kentucky, Journal of Sedimentary Clody, volume 45, p. 907-925.

- Mattes, Bret W. and Mountjoy, Eric W., 1980, Burial Dolomitization of the Upper Devonian Miette Buildup, Jasper National Park, Alberta, SEPM Special Publication No. 28, p. 259-297.
- McKenzie, Judith A., 1981, Holocene Dolomitization of Calcium Carbonate Sediments from the Coastal Sabkhas of Abu Dhabi, U.A.E.: A Stable Isotope Study, Journal of Geology, volume 89, p. 185-198.
- Meyers, William J., 1974, Carbonate Cement Stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico, Journal of Sedimentary Petrology, volume 44, p. 837-861.
- Middleburg, Jack J., de Lange, Gert J. and Kreulen, Rob, 1990, Dolomite Formation in Anoxic Sediments of Kau Bay, Indonesia, Geology, volume 18, p. 399-402.
- Morrow, D. W. and Abercrombie, H. J., 1994, Rates of Dolomitization: the influence of dissolved sulphate, Special Publication No. 21 of the International Association of Sedimentologists, p. 377-386.
- Morse, John W., 1983, The Kinetics of Calcium Carbonate Dissolution and Precipitation, Carbonates, MSA Mineralogy and Chemistry Reviews, p. 227-264.
- Muir, Marjorie, Lock, David and Von Der Borch, Chris, 1980, The Coorong Model for Penecontemporaneous Dolomite Formation in the Middle Proterozoic McArthur Group, Northern Territory, Australia, SEPM Special Publication No. 28, p. 51-67.
- Negra, M. H., Purser, B. H. and M'Rabet A., 1994,

 Permeability and Porosity Evolution in Dolomitized

 Upper Cretaceous Pelagic Limestones of Central Tunisia,

 Special Publication No. 21 of the International

 Association of Sedimentologists, p. 309-323.
- Nielson, Arne E., 1964, <u>Kinetics of Precipitation</u>, Pergamon Press, 271 p.
- Nordeng, Stephan H. and Sibley, Duncan F., 1994, Dolomite Stoichiometry and Ostwald's Step Rule, Geochimica et Cosmochimica Acta, volume 58, p. 191-196.
- Nordeng, Stephan H. and Sibley, Duncan, F., 1996, A Crystal Growth Rate Equation for Ancient Dolomites: Evidence

Fret M. Sud Mountjoy.
Foloutización of the contact described in the con

de contre a contre a

William V. 1974, de la company de la company

NIFO, Gack J., 1 mins, as 100, but 100,

W. W. and Absence that itself flow the and Publican dotation of our

John W., 1983, ...
ssolution and Promining the ... "erbitains in metalogy and chemical and chemi

Morie, took, bent in we to a considered to the constant of the

*C. H., Purser, B. H. and M. Raiet, p. 197, meabling a present of the particle of the present of the particle of the partic

Aine E., 1964, Kinetics of Precipitation, Peryadian s, 271 p.

Stephan B; and Sibley, buncas N. 1994, Not mico Icha ometry and Octward's Stap Rule, Goodhimica en continuos Acts, yolune 58, p. 191-196.

Stephan H. and Sibreyr Connect F., 1996, A Crystal T. Rate Iquiting for Ancient Dolomites: Swidence

- for Millimeter-Scale Flux-Limited Growth, Journal of Sedimentary Research, volume 66, p. 477-481.
- Nyvlt, J., 1985, The Kinetics of Industrial Crystalllization, Chemical Engineering Monographs 19, 350 p.
- Ohara, M. and Reid, R. C., 1973, Modeling Crystal Growth
 Rates from Solution, Englewood Cliffs, New Jersey,
 Prentice-Hall, 272 p.
- Ottens, E.P.K., Janse, A.H., and de Jong, E.J., 1972, Secondary Nucleation in a Stirred Vessel Cooling Crystallizer, Journal of Crystal Growth, volume 13, p. 500-503.
- Pierson, B. J, 1978, Control of catho-luminescence of dolomite by Fe and Mn, AAPG Bulletin, vol. 62, p. 553-554.
- Pierson, B.J., 1981, The Control of Cathodoluminescence in dolomite by Fe and Mn, Sedimentology, vol. 28, no.5, p. 601-610.
- Purser, B. H., Brown, A. and Aissaoui, D. M., 1994, Nature, Origins and Evolution of Porosity in Dolomites, Special Publication No. 21 of the International Association of Sedimentologists, p. 283-308.
- Qing, Hairuo and Veizer, Jan, 1994, Oxygen carbon isotopic composition of Ordovician brachiopods; implications for coeval seawater, Geochimica et Cosmochimica Acta, vol. 58, p. 4429-4442
- Rachlin, Alan L., Henderson, Grant S. and Goh, M. Cynthia, 1992, An Atomic Force Microscope (AFM) study of the calcite cleavage plane, image averaging in Fourier space, American Mineralogist, vol. 77, p. 904-910.
- Reddy, M. M, Plummer, L. N. and Busenberg, E., 1981, Crystal Growth of calcite from calcium bicarbonate solutions at constant PCO₂ and 25 degrees C; a test of a calcite dissolution model, Geochimica et Cosmochimica Acta, vol. 45, p. 1281-1289.
- Ristic, R. I., Sherwood, J.N. and Shripathi, T., 1991, The Role of Dislocations and Mechanical Deformation in growth rate dispersion in Potash Alum Crystals,

or Milimeter-Scale Fins I miss't Granth, Journal of edinemtary Research, V .. e 60 [] 417-421.

J., 1985, The Kiret or of spatters' Tryscellication, Chem.ca Status cars B. or that p 250 p.

M. and Reid, R. C. 19 a Mode Int Cave Greres from Solution, in a social law Jersey, contice-Hell, 272 p.

E.P.K., Janse, A.H., at de chi a. 377, scondary Nucleation of thires the maintenrystallizery Journal of eyers the mainment, u

by B. Jy 1978, C. C. Commun. Commun. as consequence of community by Fe and the Fig. 1981 burner to the community of the commu

8. S. Brown, A. acracest C., 201, oping Torns and Evolution of the contract Special Discretion No. 21 to the C. acraces and across the collateriologists, p.

latrus end Welser, let, 12 %, year inverse _otens to repair to control of October 1 % of the age of the control of the age of the age of the age of the control of the age of the

Also by Henderson, his ... is ... M. juine, ... and A. A. juine, ... And Arcanic Cortect Note of Arthor and Arthory of the collection of Arthory Manage of Linguist ... Supressed Note of Arthory Manage of J. Wol. 17, ... 664-671.

M. Plummer, U. M. and Bream is S., 185 m Crystal much of catolice from radium Licarbonate solutions at Schara PCD and 23 degrees Cr a test or a calific acount on more), Geochimica et losmocilmica Acta, 25, p. 1231-1289.

R. T., Sheridod, J.N. and Shripath. T., 1991, The of Dislocations and Mechanical Deformation in NWTh rate dispersion in botash Alum Crystals.

- Advances in Industrial Crystallization, Garside, Davey and Jones (eds.), p. 77-91.
- Roehl, Perry O. and Choquette, Philip W., 1985, Carbonate Petroleum Reservoirs, Springer Verlag, p. 1-18.
- Saller, Arthur H., 1984, Petrologic and Geochemical Constraints on the Origin of Subsurface Dolomite, Enewetak Atoll: An Example of Dolomitization by Normal Seawater, Geology, volume 12, p. 217-220.
- Sandberg, Philip, 1985, Aragonite Cements and their Occurrence in Ancient Limestones, in Carbonate Cements, SEPM Special Publication No. 36, Carbonate Cements, p. 33-57.
- Sibley, Duncan F., 1990, Unstable to Stable Transformations During Dolomitization, Journal of Geology, volume 98, p. 739-748.
- Sibley, Duncan F., 1982, The Origin of Common Dolomite Fabrics: Clues from the Pliocene, Journal of Sedimentary Petrology, volume 52, p. 1087-1100.
- Sibley, Duncan F., 1980, Climatic Control of Dolomitization, Seroe Domi Formation (Pliocene), Bonaire, N.A., SEPM Special Publication No. 28, p. 247-258.
- Sibley, Duncan F. and Bartlett, T. R., 1987, Nucleation as a Rate Limiting Step in Dolomitization, in Geochemistry and Mineral Formation in the Earth Science, Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral Formation, p. 733-741.
- Sibley, Duncan F., Nordeng, Stephan H. and Borkowski, Michelle L., 1994, Dolomitization Kinetics in Hydrothermal Bombs and Natural Settings, Journal of Sedimentary Research, volume A64, p. 630-637.
- Sibley, Duncan F., Gregg, Jay M., Brown, Robert G. and Laudon, Peter R., 1993, Dolomite Crystal Size Distribution, in Carbonate Microfacies, Rezak R. and Lavoie, D.(eds.), Springer-Verlag, New York, p. 195-208.
- Sibley, Duncan F., Dedoes, Robert E. and Bartlett, Timothy R., 1987, Kinetics of Dolomitization, Geology, volume 15, p. 1112-1114.

Nove -- že - nove -- nove -- nove -- nove -- nove but -- nove but -- nove -- nove but -- nove -- nove

Perry O. and Choquet
el cleun Meservol.s.

Astburga, 1984. erial er

o, Philip, 1985, coireace in Actient We Speckal Pro-

Duncep E., 19et, inc.
ce Domi Yorkut.
ceral Publication w.

Duncan F. and satisfit is \$1.00%, business as a standard Step 1.00% while as a standard Step 1.00% while as a standard Step 1.00% while the forestational Meeting a second could be to the transfer of the transfer of the transfer of the transfer of the standard Step 1.00% of the Step

Duncan E., Nordeng, Neutre H. and Barbawski. Thelle Lay 1994; Dolom L. darke. Riberta. an trothermal Bombs and Wateral Settling, Journal of Himeniary Research, volume New, pp. 200-837.

Duncan F., Gregg, Jay M., Brown, Robert G. and dom, Peter R., 1993, Dokuste Gristal Size stibution, in Carbonate Microscies, Bezak R. and ole, D. (ede.), Springer-Verlag, New York, p. 195-

Duncan F., Dedoes, Robert E. and Bartlett, Timothy
1987, Kinerics of Dolomitisation, Geology, Volume
1172-1115

- Simo, J. A., Johnson, C. M., Vandrey, M. R., Brown, P. E., Castrogiovanni E., Drezewiecki, P. E., Valley, J. W. and Boyer, J., 1994, Burial Dolomitization of the Middle Ordovician Glenwood Formation by Evaporitic Brines, Michigan Basin, Special Publication No. 21 of the International Association of Sedimentologists, p. 169-186.
- Steefel, Carl I. and Van Cappellen, Philippe, 1990, A New Kinetic Approach to Modeling Water-Rock Interaction: The Role of Nucleation, Precursors, and Ostwald Ripening, Geochimica et Cosmochimica Acta, volume 54, p. 2657-2677.
- Stipp, S. L. S., Eggleston, C. M. and Nielsen, B. S., 1994, Calcite Surface Structure observed at Microtopographic and Molecular Scales with Atomic Force Microscopy (AFM), Geochimica et Cosmochimica Acta, volume 58, p. 3023-3033.
- Sunagawa, Ichiro, 1982, Morphology of crystals in relation to growth conditions, in Proceedings of the First International Symposium on Crystal Growth Processes in Sedimentary Environments, Rodriguez, Clemente Rafael and Sunagawa I.(eds), Estudios Geologicos (Madrid), vol. 38, p. 127-134.
- Sunagawa, Ichiro, 1984, Growth of Crystals in Nature, Materials Science of the Earth's Interior, Terra Scientific Publishing Company, p. 63-105.
- Tucker, Maurice E. and Wright, V. Paul, 1990, <u>Carbonate</u>

 <u>Sedimentology</u>, Blackwell Scientific Publications, 482
 p.
- Usdowski, E., 1994, Synthesis of Dolomite and Geochemical Implications, Special Publication No. 21 of the International Association of Sedimentologists, p. 345-360.
- Vahrenkamp, V. C. and Swart, P. K., 1994, Late Cenozoic Dolomites of the Bahamas: Metastable Analogues for the Genesis of Ancient Platform Dolomites, Special Publication No. 21 of the International Association of Sedimentologists, p. 13-153.
- Walter, Lynn M., 1985, Relative Reactivity of Skeletal Carbonates During Dissolution: Implications for

J. A., Johnson, C. M., Walker, M. o., Borth, E. E., Barrodovenn, E., Trouser, C., et al., et al., et al., m., and Bover, J., 1984, be and the historic vices of the Right Ordovician Glam on Trans. L. E. acentic Erines, Michigan Basin, W. Call William at the coll of the be international Association of the message of the St., be estice.

carl I. and Van app Jen. 80 Principle 1 A had incepted Approach to Modella 9 and for inceptions in Role of Nuclear Land and Leave to the State of the Community Cookinton 1 and 1

S. L. S., Egglest and the control of the belong and followed acceptance of the followed acceptance and followed acceptance acceptance and followed acceptance acceptance acceptance and followed acceptance acceptance

way Tohiro, 1982, Majancis and Children and Children of Court and Children and Children of Children and Child

we, Ichiro, 1994, Grown at argutals in Nature, laterials Science of the Earlt's Intector, Tessa clearific Publishing Company, p. 81-105.

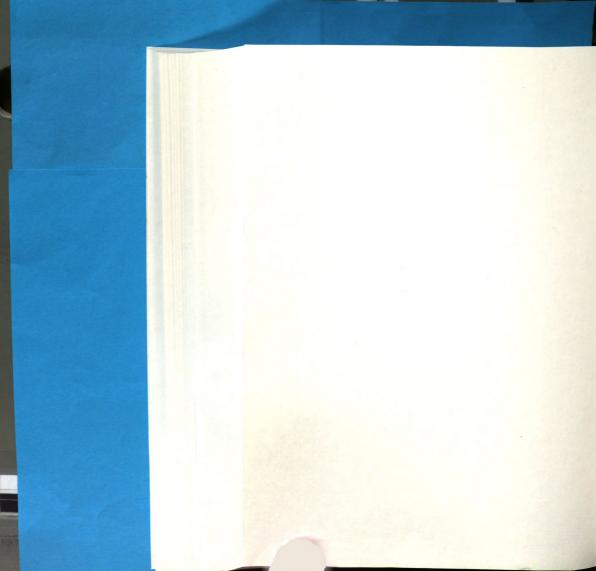
* Mourice ©: sed Wright, V. Paul, 1990: Cordolato edimentology, Blackwell dentify Publications, 482

ki, E., 1994, Synthesis of Dolumice and Geochemical Emplications, Special Fublication No. 21 of the Internetional Association of Sedimentuloists, p. 345-

mkamp, V. C. and Swirty F. S., 1994, Late Casocol-Dolontes of the Salamar Notacialle Analogues for the Genests of Annient Platform Polonics, Special Poblication No. 21 of the International Association of Schimontologists, p. 13-183.

> er, Lynn M., 1915, Relative Reactivity of Skeletal Carbonates During Dissolution: Implications for

- Diagenesis, SEPM Special Publication, Carbonate Cements, no. 36, p. 3-16
- Whitaker, F. F., Smart, P. L., Vahrenkamp, V. C., Nicholson, H. and Wogelius, R. A., 1994, Dolomitization by Near-Normal Seawater? Field Evidence from the Bahamas, Special Publication No. 21 of the International Association of Sedimentologists, p. 111-132.
- White, E. T., Bendig, L.L., and Larson, M.A., 1974, The Effect of Size on the Growth Rate of Potassium Sulfate Crystals, A.I.Ch.E Symposium Series, vol. 72, no. 153, p. 41-47.
- Wilkinson, Bruce H., Drummond, Carl N. and Diedrich, Nathaniel W., 1996, Shoaling Cyclicity in Peritidal Carbonate Sequences, Journal of Sedimentary Research, vol B66, p. 1065-1078.
- Zenger, Donald H. and Dunham, John B., 1980, Concepts and Models of Dolomitization-An Introduction, SEPM Special Publication No. 28, p. 1-9.


genesis, SEFM Special Did nothern stronger ents, no. 36, p. - 10

T. C., Smart, B. A., Yakanisan, V. I., Micholson, and Mogelius, B. A., 199, Coleculization by Nearmal Scarter? Figure Classics flow and Salamas, and Publication No. 21 of the forms although colection of Seducint Sirve entry. Parket 1997.

T. Rendig, L.T. and Dairpon N. N., Ning, The color of St. of St. of Color of St. of St

, Bruce H., Dremenger and Brack Heart in caniel W., 1986, Process of Particles and Sec caniel Sequences, Proceedings Research BBS, p. 1065 u.S.

Sometod M. and bear to the 1998 Jean plus and wis of Dolometer the security and the security and Species incention No. 28, p. 5 %.

