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ABSTRACT 

COMPARISONS BETWEEN EDUCATOR PERFORMANCE FUNCTION-BASED AND 

EDUCATION PRODUCTION FUNCTION-BASED TEACHER EFFECT ESTIMATIONS 

 

By  

Eun Hye Ham 

Challenging the current discordance in orientation between student assessment models 

and teacher/school value-added models, this study aims to present the educator performance 

function (EPERF)-based teacher effect estimation method which utilizes the nature of student 

criterion-referenced assessment, to evaluate its feasibility and usefulness by comparison with the 

currently prevailing methods – the education production function (EPROF)-based value-added 

model. Specifically, this study (1) investigated how different the teacher effect estimates of the 

EPERF-based method are from those of the EPROF-based method, (2) examined whether the 

model fit of the EPERF is acceptable, and (3) simulated whether the EPERF-based method is 

robust to the locations of cut-scores and number of performance levels. A northern state’s 

student-teacher linked data set was used, and the student challenge index, which is defined as the 

degree of difficulty that teachers face in teaching a student to attain a desired/higher performance 

standard, was constructed as a summary quantity of individual students’ characteristics.  

The main findings from comparison between the two different teacher effect estimates – 

the educator performance level (EPL) from the EPERF-based method, and the value-added 

measure (VAM) from the EPROF-based method – were as follows: First, rank correlations 

between the two estimates were above .82 for mathematics. In particular, the EPL from the 

polytomous EPERF were very close to the VAM estimates in terms of ranking teachers, showing 

above .8 rank correlations. Second, in consistent and considerable ways, the relationship of the 



teacher effect estimates to student and teacher characteristics did not differ between the EPL and 

VAM estimates. Third, intra-teacher rank correlations across different subjects and different 

grade levels were also similar between the EPL and VAM. These observations implied that the 

teacher ranking information resulting from the EPERF-based methods did not differ noticeably 

from the results of the EPROF-based method. The EPERF-based methods, however, produced 

several useful areas of information for understanding how average or individual teachers perform 

with their students.   

For the second question, the EPERF showed a reasonable model fit in mathematics but 

not in reading. The conditional independence assumption of student success was violated. The 

amount of conditional dependency within each teacher was reasonable, and tended to be larger 

than in the EPROF-based models. Regarding the third question, it was found that, as a result of 

real-data simulations, the EPL based on the polytomous performance levels was quite robust to 

the location of cut-scores, and the number of performance levels also did not substantially 

change the teachers’ ranking. These mixed results of model-fit and the robustness of the 

estimates bring into question on whether the EPL estimates change when student challenge index 

indicators are added, or when more generalized EPERF models are applied.  

This study appraised a part of the validity evidence of using the EPERF-based method, 

including if the method is executable and if the estimated teacher effects are trustworthy, along 

with the comparison with the EPROF-based method. Implications of applying the EPERF-based 

teacher effect estimation and future directions for expanding the method are discussed.  
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CHAPTER 1.  INTRODUCTION 

 

1.1 Background 

 

In the context of outcome-based accountability,1 which has become a major subject that 

state governments now apply to their decision making, school or teacher effectiveness is 

generally regarded as how much of a contribution they make to their students’ progress in 

educational outcomes, rather than teacher qualifications or the quality of their teaching 

performance itself (Carnoy, 2003; Jacob, 2007; Linn, 2000; O’Day, 2002). Studies to estimate 

individual school or teacher effects on students’ growth in academic achievement by so-called 

‘value-added modeling’ are increasing, and the movement to use the results for sanctioning and 

rewarding schools or teachers has been boosted (Harris et al., 2010; Sanders & Horn, 1994).  

The implementation of outcome-based accountability requires not only a solid testing 

model to measure students’ educational outcomes and an accurate value-added model to compute 

teachers’ effects on those outcomes, but also effective coordination between the two models. 

Interestingly, however, it appears, as Koretz & Hamilton (2006) implied, that the way that value-

added models have been developing is fundamentally incompatible with the way that testing 

models have been moving forward for the last 20 years: In a nutshell, testing models are 

criterion-oriented, whereas value-added models are norm-oriented.  

                                                 
1 Despite the argument that outcome-based accountability should be conceptually 

distinguished from test-based accountability (for example O’Day, 2002; Spady, 1994), this study 

considers them interchangeable, under the condition that educational outcomes are mostly 

considered achievement test scores. 
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It is meaningful to recall why criterion-referenced tests have been substantially 

emphasized and expanded for building school and teacher accountability systems; a test needs to 

be designed in alignment with a curriculum, that is, what teachers are expected to teach, and the 

test results need to determine what a student knows and can do, and to guide what a teacher has 

to do with his/her students. This idea has necessitated major changes in the design of statewide 

tests, and in the ways of interpreting and using the results, which can be summarized as a shift 

from norm-referenced tests to criterion-referenced-tests and measurement-driven instruction 

(Koretz & Hamilton, 2006; Smith, O’Day, & Cohen, 1991). In contrast, current value-added 

models attempt to evaluate teachers based on their students’ average learning gains over years, 

which are determined by what test scores other students in the state obtain. In this case, what 

teachers are expected to be accountable for regarding their students is not clearly stated until test 

results are released.  

Challenging this discordance in orientation between the student-testing model and the 

teacher value-added model, this study aims to introduce a new teacher effect estimation model 

which supports the idea of criterion-oriented testing models, and to evaluate its feasibility and 

usefulness by comparison with an existing value-added model. To be specific, this study 

compared the new approach, the educator performance function-based teacher effect estimation, 

with the currently prevailing methods, the education production function-based value-added 

estimation.  

The educator performance function (EPERF) is a non-linear probability model to 

describe the relationship between a teacher’s proficiency, student characteristics, and students’ 

success in reaching a certain performance level (Reckase, 2012); it applies mathematical models 

and main concepts of item response theory models (IRT models) to represent the relationship 
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between examinees’ proficiency, item characteristics, and their correct responses to test items. 

Meanwhile, the education production function (EPROF), which is the basis of value-added 

models (VAM), formulates the relationship between student achievement test scores and relevant 

inputs such as teacher or school effects and student characteristics for determining best 

effectiveness as a linear regression model (Boardman & Murnane, 1979; Hanushek, 1979; Todd 

& Wolpin, 2003).  

This EPERF-based teacher effect estimation model is distinguished intuitively from the 

EPROF-based, by the following points: (1) the way that the model uses achievement test results; 

(2) the way that student characteristics are incorporated in each model; (3) the way that the 

model defines teacher effectiveness; and (4) the statistical property of the teacher effect estimates 

that each model yields.  

First, in the EPERF, the outcome variable is whether students pass or fail at a desired 

standard performance level, or is a categorical variable of performance standard classification. 

Currently, most state tests are designed and developed for criterion-referenced tests, aiming to 

determine into which performance category a student can be classified according to the state’s 

performance target. In contrast, in the EPROF-based VAM, the outcome variable is a continuous 

test score and, basically, the method utilizes norm-referenced rank information of where a 

student stands compared to other students based on test scores. 

Second, in the EPERF, student characteristic variables are used to determine individual 

students’ challenge levels, i.e., the degree of difficulty teachers have in bringing a student to a 

desired performance standard, given that student’s characteristics. The scale of the student 

challenge level decides the scale of the teacher effect estimates. In the EPROF, student 
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characteristic variables are considered as additional educational inputs other than teachers or 

schools.  

Third, in the EPERF-based teacher effect estimation method, individual teacher’s effect 

is treated as a latent trait, a proficiency in helping students achieve a desired performance 

standard. Each teacher’s level of proficiency is estimated based on the challenge levels as well as 

on successes in the target performance of students the teacher taught. Meanwhile, in the EPROF-

based method, the teacher effect is not explicitly defined but is estimated by the size of change in 

student-observed test scores after accounting for the effects of other inputs.  

  Fourth, related to the third point, teacher effect estimates from the EPERF-based method 

are sample-independent, once each student’s challenge level is determined, whereas in the 

EPROF-based method, teacher effect estimates change depending on the sample involved in an 

analysis.   

Although this new method seems comprehensible and advantageous in light of the above 

salient characteristics, since studies on the EPERF and its application are in their embryonic 

stage, relevant concepts and details of how it works rarely have been explicated. Accordingly, it 

still is open to question whether the results from the EPERF-based method provide useful 

information about teacher performance. At this stage, one of the basic questions that draws a 

great deal of attention is how teacher effects estimated from the EPERF-based method are 

consistent with those estimated from the EPROF-based VAM method that has been extensively 

used. This is the key question to be answered in this study.  
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1.2 Guiding Questions 

 

The purpose of this study is to compare teacher effect estimates based on the educator 

performance function (EPERF) to those based on the education production function (EPROF),  

and to evaluate the feasibility of the EPERF-based teacher effect estimation. In this study, how 

the EPERF-based teacher effect estimation is distinct from the EPROF-based value-added 

estimation (VAM) with respect to their main concepts or assumptions was examined first. Along 

with this theoretical clarification of their similarities and differences, the following three specific 

questions were empirically answered.  

The first question was how different the results from the EPERF-based method were 

from those of the EPROF-based VAM method. Using a northern state’s student-teacher linked 

data set, individual teachers’ effects were computed separately when using the EPERF-based 

method and when using the EPROF-based method. Then the estimates were compared, with the 

aim to scrutinize how they were consistent or different. It was also examined if some general 

features of the teacher effects from the EPERF-based method confirmed or opposed the findings 

from using the EPROF-based VAM method. To be specific, the relationship to student and 

teacher characteristics and the consistency of the estimates were monitored.  

The second question was whether several basic assumptions of the EPERF were 

acceptable. The model fit of the EPERF, the conditional independence of student success, and 

the amount of dependency among student success were evaluated.  

The third question was whether the results from the EPERF-based method were sensitive 

to the locations of cut-scores and the number of performance categories. Whether the teacher 
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effect estimates change depending on the locations of cut-scores or the number of performance 

categories was investigated by implementing small simulations with real data.  

This study was intended to investigate thoroughly both the conceptual and empirical 

differences between the EPERF and the EPROF-based teacher effect estimation methods. Along 

with these comparisons, the inquiries on whether the new method is executable and whether the 

estimated teacher effects are trustworthy allowed us to appraise a part of the validity evidence for 

this new method. Taken together, the possibilities and limitations of the current EPERF-based 

teacher effect estimation are discussed with respect to the interpretation and use of the results, 

which provides some guidance on the conditions under which the EPERF-based methods are 

more feasible, and which points to future directions for developing and expanding the application 

of the EPERF.  

 



7 

  

CHAPTER 2.  MODELS AND ASSUMPTIONS 

 

Both the educational performance function (EPERF)-based models and the educational 

production function (EPROF)-based models are applied to estimate individual teachers’ 

contributions to their students’ learning, based on how the students performed on a large-scale 

assessment. Fundamental differences between the two models are (1) the type of student 

outcomes demonstrated in the tests to be used to evaluate teachers – performance standards 

(criterion-referenced) vs. scale scores (norm-referenced); and (2) the scale of teacher 

effectiveness measures – unit of student challenge index vs. unit of student test score. For the 

purpose of contrasting the two models in details, this chapter introduces the main concepts and 

assumptions of the EPERF, illustrates how the EPERF-based model works, and reviews findings 

of teacher effects from studies of the EPROF-based models.  

 

2.1. Educator Performance Function-based Teacher Effect Estimation 

 

2.1.1. The Educator Performance Function 

The educator performance function (EPERF) represents the probability that a teacher or 

school succeeds in helping students with a certain level of challenge to achieve a given 

performance standard (Reckase, 2012). The main idea is to apply an analogy with item response 

models for estimating the latent teaching ability of educators, called the educator performance 

level (EPL): teachers differ in their level of proficiency in helping students progress in their 

academic achievement; students differ in the level of challenge that they pose for teachers, 

depending on their backgrounds as well as their prior achievement; a teacher’s performance can 
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be determined by the level of challenge of the students with whom he/she has worked, as well as 

by his/her successes as demonstrated in students’ performance. That is, each student is regarded 

as an item/task that each teacher takes on, and each teacher’s EPL is estimated based on his/her 

successes in helping students reach given performance levels.  

Equation 2-1 illustrates an EPERF for dichotomous performance categories, i.e., mastery 

coded as 1 and non-mastery coded as 0, as initially proposed by Reckase (2012). Basically, this 

is analogous to the two-parameter logistic IRT model (Lord, 1980).  

 

P(sij = 1|θj, aj, Xi) =
exp[aj(θj – Xi)]

1 + exp[aj(θj – Xi)]
   Equation 2-1 

  

Specifically, the probability that teacher j with 𝜃 level of teaching ability succeeds in 

helping student i to achieve a performance standard, 𝑃(𝑠𝑖𝑗 = 1), is a function of the EPL of 

teacher j, 𝜃𝑗, and the challenge level for student i, 𝑋𝑖 , which is analogous to item/task difficulty. 

The slope parameter, 𝑎𝑗 , indicates the strength of the relationship between the challenge level 

and the proficiency level of students within a teacher’s classroom. The probability that a student 

who was taught by a teacher for a year is classified by a mastery level is modeled by the 

teacher’s EPL as well as by the student’s challenge level that could hinder the student from 

achieving an appropriate academic performance.  

Unlike an IRT model, which estimates both item and person parameters simultaneously, 

the challenge level for each student is predetermined before fitting a logistic function. Ways to 

decide the challenge levels for students are discussed in detail in the following section. Once 

each student’s challenge level is determined as reasonable and accurate, each teacher’s EPL can 
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be estimated using the maximum likelihood estimation (MLE), or empirical Bayesian estimation, 

in the same way that regular item response models do. As a result, each teacher’s EPL is his/her 

location on the scale of student challenge level, where the teacher has a .5 probability of bringing 

his/her students at that level of challenge to the desired performance.  

This model can be generalized to cases with more than two categorical performance 

standards, such as basic, proficient, and advanced. Specific models either for dichotomous and 

polytomous performance categories used in this study are detailed in Chapter 3.  

 

2.1.2. The Challenge Index for Students 

Student challenge level is defined as the degree of difficulty that teachers face in teaching 

a student to attain a desired performance standard. It is assumed that students differ in how much 

challenge they pose to teachers expected to help their students achieve success in certain 

academic standards. It also is assumed that individual students’ challenge levels can be estimated 

based on their observable characteristics; the quantity for this level is called the challenge index 

(CI). First consideration when constructing the student CI is what students are demanding from 

teachers to help them successfully fulfill a required performance level in each subject-matter, or 

which student characteristics can possibly impede their success. The rich previous literature on 

academic achievement up to now offers concrete ideas for the selection of reasonable indicators. 

Drawing on this literature, the main facets and relevant variables which can be potentially used 

to construct the student CI are listed as follows.   

First, family background, such as parental socio-economic status, has been known widely 

as a predominant predictor of student achievement (Baker, Goesling, & Letendre, 2002; Chudgar 

& Luschei, 2009; Coleman, 1969; Hanushek, 1992; Sirin, 2005). For example, parental socio-
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economic advantages relate closely to the amount of practical support for school work, as well as 

cultural resources for learning, that their children are given, which accordingly results in a 

positive influence on academic performance. By contrast, lack of support and resources for 

children’s learning due to socially or economically disadvantaged families can be considered 

indicators of CI. Free or reduced lunch status is a well-known indicator for the latter. Parents’ 

incomes or eligibility for housing support programs can be relevant also.  

Second, some student characteristics directly hinder students from effective learning in 

schools. Students are dissimilar in what they bring into a new academic year and a new 

classroom. They differ in their cognitive abilities, and some are diagnosed as having learning 

disabilities. Since learning is accumulative process, the previous year’s deficiency in curricular 

coverage also affects performance in following years. Also, previous achievement is likely to 

capture a substantial amount of variation in those factors (Ballou, Sanders, & Wright, 2004; 

Chetty, Friedman, & Rockoff, 2011; Konstantopoulos, 2014; Papay, 2011). Learning support 

program eligibility, including special education programs, can additionally be counted in 

constructing student CI. Limited English proficiency related to home language or migrant status 

also has been shown to be a significant predictor of achievement (e.g., Baker, Goesling, & 

Letendre, 2002; Buddin & Zamarro, 2009). 

Third, relevant factors which can facilitate students’ learning can inversely be counted in 

estimating their challenge levels. Students who actively participate in class or are highly 

motivated are more likely to learn better in their classroom than those who are not motivated or 

are often absent from classes (Brophy, 2010; Hulleman, Durik, Schweigert, & Harackiewicz, 

2008). The latter is more challenging for teachers. Similarly, students who are more interested in 

or more value a particular subject-matter, and therefore spend more time on self-learning, are 
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likely to cooperate with their teachers to achieve a desired/higher performance standard. These 

characteristics will be inversely proportional to the challenge level.   

Fourth, many studies have reported that some demographic variables such as gender or 

ethnicity also predict nontrivial amounts of variance in achievement (Aaronson, Barrow, & 

Sander, 2007; Ballou, Sanders & Wright, 2004; Buddin & Zamarro, 2009; Jacob, 2007). For 

instance, in particular in mathematics and science, male students tend to perform better on 

average than female students. Even though this general finding shows a phenomenon, it neither 

means that female and male students are expected to perform differently nor that teachers feel it 

is more difficult to work with female or minority students, for example, in mathematics, in order 

to achieve a desired performance level, thus whether to include those variables in a student CI is 

controversial.  

Last, possibly disadvantageous school-level as well as classroom-level characteristics 

also can be taken into account. Some studies have shown that individual student performance 

depends on the dynamics of classroom interaction, and sometimes the school’s environment has 

an effect on level of achievement (Burke & Sass, 2008; Card & Krueger, 1996).  

Certainly, other unknown factors affect the degree of difficulty that teachers experience 

in their classrooms, and more indicators which are considered appropriate can be measured and 

added. It is also beneficial for teachers and/or school principals to participate in discussing and 

deciding which indicators ought be included in creating a student CI. 

Another concern is how the indicators are weighted and combined to compose the 

challenge index which is fair to all teachers for evaluation purpose. Reckase (2012) proposed 

two methods to construct CI. One is to estimate the locations of the students based on an IRT 

model regarding student indicator variables as test items (IRT calibration). In this case, students 
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who achieve higher scores on the hypothetical latent trait represent those who impose more 

demands on their teachers. Another is to use the inverse (minus) of the predicted achievement, a 

linear combination of indicators, as the CI (OLS weighted sum score). A set of weights for the 

prediction is obtained from regressing achievement on selected student indicator variables using 

the previous cohort’s data. In any case, it is critical to assure that the same indicator variables 

and the same weights are used to construct the CI for students who are involved in the analysis, 

so that all students are on the same CI scale, thus comparable. Both methods were tested and 

evaluated in this study, and specific procedures are described in Chapter 3.  

 

2.1.3. Assumptions 

Before presenting the assumptions required for the EPERF to be feasible, several 

prerequisite assumptions need to be recognized. First, cut-scores used to classify students into 

different performance categories are assumed to be precisely determined through an appropriate 

procedure. Accordingly, it has to be assured that the classification of each student based on the 

cut-score is reliable as well as valid. Second, it is also assumed that all key student characteristics 

or background variables that possibly influence their achievements are included in forming the 

challenge index, so that the CI accurately quantifies the level of challenge for students by 

considering out-of-school factors that possibly hinder students working with a teacher from 

reaching the desired performance standard. Finally, it needs to be assumed that the higher the 

challenge level for students, the more difficult it is for teachers to help them pass the desired 

standard. Otherwise, at least, there has to be an agreement that the success of a student whose 

challenge level is higher needs to be more heavily weighted for estimating EPL.   
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Basic assumptions that need to infer the causal relation between the estimated teacher 

capability and students’ successes from the EPERF are identified, corresponding with those of 

regular item response models (de Ayala, 2009), as follows: (1) the fit of logistic regression 

models, (2) the uni-dimensionality of teacher capability, and (3) the conditional independence of 

students.  

The most fundamental assumption is that the EPERF’s functional form represents the 

relationship between teachers’ capabilities and students’ successes reasonably well. Specifically, 

the probability that a teacher succeeds in helping a student to reach a performance standard is 

assumed to increase monotonically with the level of teaching proficiency, P(si = 1) ∝ EPL, 

along with a S-shape curve. That is, the more proficient a teacher, the higher the probability of 

success. The relationship is assumed to be non-linear, as is the logit function linking the teacher 

EPL and the probabilities of students’ successes, as described in Equation 2-1. In order to check 

this assumption, the fit of the logistic regression models to the data was tested in several ways in 

Chapter 5.  

The unidimensionality assumption of teacher capability is that there is only a single latent 

trait of the teacher that can explain the statistical dependence of students’ successes, once their 

challenge levels are taken into account. This also can be stated in the way that unobservable 

student characteristics, which predict students’ successes but are omitted from forming CI, are 

independent of teacher assignment once the CI takes account of the observed characteristics. 

That is, teacher assignment is an ignorable condition on the CI, which is similar to what Reardon 

& Raudenbush (2009) called the assumption of ignorability. This assumption brings back a 

concern over the quality of CI, because the teacher effect estimation procedure inherently relies 

on the student’s CI.   
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The conditional independence of students’ successes means that each student’s 

probability of reaching a certain performance level is independent of each other after taking 

account of the single teacher trait. This assumption is close to that of no interference between 

units (Reardon & Raudenbush, 2009), or that of the stable unit treatment value assumption 

(SUTVA; Rubin 1986). If within a classroom there is interaction among students within a 

classroom that influences their successes, i.e., the so-called ‘peer effect’, then the conditional 

independency is challenged. This assumption also is closely associated with the 

unidimensionality assumption; if there is another dimension of teacher capability affecting 

students’ successes, or if there is an unobservable variable interacting with teacher assignment, 

which is a violation of the unidimensionality assumption, the conditional independence 

assumption is violated.  

When the conditional independence assumption is untenable, the joint probability of any 

performance pattern of N students who were taught by a teacher with a given level of 𝜃 cannot 

be equal to the product of the probabilities of individual students’ successes when the teacher’s 

EPL is set to 𝜃; consequently, the teacher EPL estimates from the EPERF can be less dependable.  

Additionally, it needs to be assumed that the distribution of CI for students per teacher 

has no significant impact on the estimation of teacher EPL. Because each teacher is sometimes 

exclusively assigned to different groups of students, in other words, a student is assigned to one 

or at most two teachers for each subject, the distribution of student CI is less likely to be 

identical across all teachers. This is a clear distinction from an item response function – a test 

item is given to most examinees. Therefore, admitting that the distribution of student CI is 

different across teachers, we need to confirm that the effect of the difference in the student CI 

distribution on the teacher effect estimation is minor or not in favor of a certain group of teachers.  
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2.2. Education Production Function-based Teacher Effect Estimation  

 

2.2.1. Background and Models  

The education production function (EPROF) has been popular and has been elaborated by 

economists and sociologists since the 1970s, in order to inquire into how much effect each input 

has on educational outcomes on average (Hanushek, 1989; Goldhaber & Brewer, 1997; Hill, et 

al., 2005), and how closely out-of-school inputs relate to inequality (Greenwald, et al., 1996; 

Murnane, et al., 1981). Recently, while emphasizing outcome-based accountability, the value-

added approach based on the EPROF has drawn education policy makers’ attention as a 

promising tool to evaluate individual schools’ or teachers’ effectiveness, rather than the average 

effects of school or teacher characteristics, such as the effect of teacher qualifications or school 

resources. Again, the key idea of VAMs is to isolate statistically from all other sources the 

contribution of individual schools or teachers to student achievement (Harris & McCaffrey, 2010; 

Meyer, 1997; Sander & Horn, 1994; Rockoff, 2004). 

The EPROF relates observed student outcomes to student characteristics and educational 

inputs, such as teacher or school characteristics (Boardman & Murnane, 1979; Hanushek, 1979; 

Todd & Wolpin, 2003); this approach originated in the production function approach in industry. 

Economists and sociologists have employed the EPROFs to investigate how much school inputs 

or out-of-school inputs, such as family backgrounds (Murnane, et al., 1981), account for 

educational outcomes, and to determine whether school inputs are effectively invested and 

managed in ways to maximize student outcomes (Hanushek, 1989). Even though various types 

of educational outcomes, such as college entrance (Meyer, 1970), earnings or labor market 
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performance (Card & Krueger, 1998), and even socialization (Dee, 2003), have been used under 

the umbrella of studies using the EPROFs, most have focused on academic achievement through 

large-scaled achievement test scores. This is because the content that an achievement test covers 

is directly connected to what students formally learn most of the time in schools, and student 

data on academic achievement are in general collected every year by states; therefore, it is easier 

to observe their changes after years of schooling or a treatment. Also, test scores are regarded as 

less prone to subjectivity, compared to both teachers’ observations and students’ self-reported 

surveys; as less expensive than other measures of long-term outcomes; and as easily handled by 

quantitative analyses.  

A general form of the EPROF is presented in Equation 2-2 (Hanushek, 1992, Harris & 

McCaffrey, 2010; Meyer, 1997). The achievement test score of student i at year t can be 

represented as a function of the student’s family background, 𝐹𝑖
(𝑡)

; different inputs of the school 

the student attends, including the teacher, 𝑆𝑖
(𝑡)

; and student time-invariant characteristics, called 

innate ability, Ii, and student time-varying student characteristics, 𝜇𝑖𝑡 . Note that cumulative 

inputs of families and schools reflect the cumulative nature of education.  

 

Ait = f (Fi
(t)

, Si
(t)

, Ii,  μit)   Equation 2-2 

 

When the change in achievement between two time points is considered, the EPROF is 

referred to as a value-added model specification, as in Equation 2-3. This function specifies the 

optimal relationship between educational resources and student growth in outcomes, and it has 

been applied to determine good or effective schools or teacher characteristics for student 

progress (Boyd, et al., 2009; Goldhaber & Brewer, 1997; Nye, et al., 2004).  
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Ait = f ∗ (Fi
(t−t∗)

, Si
(t−t∗)

, Ii, μit, Ait∗) 
Equation 2-3 

 

Applying this general production function to measure the effect of each unit of 

educational resources on student growth in achievement brings about many challenges. 

Economists and educational statisticians (McCaffrey & Harris, 2009) have identified and have 

dealt with these challenges in different ways.  

First, economists have given attention to how to isolate individual teacher or school 

effects, which allows us to make more rigorous inferences about their causal effects. Estimating 

individual unit effects is technically trickier than estimating average effects of a certain 

characteristic of units. More, because the result from the former is more likely to be used for 

high-stakes decisions than the latter, the former is practically riskier than the latter. Therefore, 

how to deal with unobserved effects is one of the main issues. Some studies have examined 

assumptions necessary for inferring a solid causal relationship from a model, have empirically 

tested if the assumptions are tenable in reality, and have evaluated how the estimators – when the 

assumptions are not held – can be potentially biased (Clotfelter, et al., 2007; Koedel & Betts, 

2009; Rothestein, 2010).   

Among economists, various forms of VAM have been refined according to the choice of 

input variables and the assumptions of the relationship between variables. One of the typical 

forms uses prior test scores as a covariate and includes a student-fixed effect term (Guarino, et al., 

in press; Harris &Sass, 2006; Koedel & Betts, 2009; McCaffrey, et al., 2004; Papay, 2011; 

Rockoff, 2004), as Equation 2-4 shows. Koedel & Betts (2009) labeled this model a “within-

students approach”; Guarino et al. (in press) did “dynamic OLS (DOLS)”; and McCaffrey, et al. 
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(2004) labeled it “covariate adjustment models.” The model with 𝜆 = 1 is equivalent to a gain 

score model, that is, a pooled OLS estimator (Guarino, et al., in press). 

 

Ait = λAi,t−1 + ci + βXit + θTit + εit 
 

Ait achievement test score of student i at year t 

ci time-invariant student fixed effect of student i 

Xit time-varyiant student characteristics of student i at year t 

Tit teacher indicator at year t 

εit idiosyncratic error at year t 

Equation 2-4 

  

On the other hand, educational statisticians have developed the models to reflect the 

nature of student learning and schooling represented in longitudinal data, because the school or 

education setting differs from the industry setting in respect of the form or level of complexity. 

Specifically, they have been concerned with 1) intra-class dependency due to the hierarchical 

structures of data (McCaffrey, et al., 2004; Nye, et al., 2004); 2) intra-person dependency among 

repeated measures of each individual (McCaffrey, et al., 2004; Nye, et al., 2004); and 3) 

accumulated effects of educational inputs on student performance (Konstantopoulous & Chung, 

2011; Lockwood, et al., 2007; Sanders & Horn, 1994). They have focused more on how 

accurately a model describes students’ growth by taking into account the above three 

characteristics of data.  

The layered model is one of the most popular; it is a constrained version of the general 

value-added model first described by McCaffrey, et al. (2004). Later it was named the variable 

persistence model by Lockwood, et al. (2007) (Briggs & Week, 2008), as Equation 2-5 shows. 

When all persistence parameters (𝛼21, 𝛼31, 𝑎𝑛𝑑 𝛼31) are equal to 1, it is called a complete 
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persistence model, which is equivalent to the Tennessee Value Added Assessment System 

(Sanders & Horn, 1994).  

 

Ait = Uit + Zit   

Uit = ct
′ + λAi,t−1 + βXit + δTj(i,t) + εit 

𝑍𝑖1 = 𝜃𝑗(𝑖,1) 

𝑍𝑖2 = 𝛼21 ∙ 𝜃𝑗(𝑖,1) + 𝜃𝑗(𝑖,2) 

𝑍𝑖3 = 𝛼31 ∙ 𝜃𝑗(𝑖,1) +  𝛼32 ∙ 𝜃𝑗(𝑖,2) + 𝜃𝑗(𝑖,3) 

Equation 2-5 

 

Controversies have arisen continuously in using the EPROF-based VAMs to determine 

individual school or teacher effects and in using the results for high stakes decisions because of 

their strong required assumptions about student growth and test-scores (Baker, et al., 2010; 

Ballou, 2009; Harris, 2011; Kupermintz, 2003; Rothstein, 2010; Robin, et al., 2004) as well as 

the instability of value-added estimates (Briggs & Domingue, 2011; Martineau, 2006; McCaffrey, 

et al., 2009; Newton, et al., 2010); accordingly, a few alternative methods have been proposed 

(Betebenner, 2011; Reckase, 2012). 

 

2.2.2. Assumptions 

Several assumptions are required to compute causal teacher effects using the above 

models, as some studies have detailed (Harris, 2009; Reardon & Raudenbush, 2009; Rothstein, 

2010)  For example, Harris (2009) summarized the assumptions as follows: 1) the school system 

and teachers’ teamwork do not significantly influence student achievement; 2) the impact of 

prior educational inputs (history) is captured sufficiently by prior achievement test scores; 3) 

student fixed-effect sufficiently accounts for the nonrandom assignment of students to teachers; 4) 
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all test scores are equivalent and the scales are interval; and 5) teachers are equally effective with 

all types of students.  

In this study, assumptions about the interpretation and use of achievement test scores, 

which have been often overlooked in the studies of the EPROF-based VAM, are underlined and 

elaborated. The EPROF-based VAM is commonly based on the idea that a test score gives us the 

approximate achievement level of a student, thus teacher effectiveness can be approximated 

based on a set of test scores. These underlying assumptions supporting the ideas are reviewed 

with respect to the following three points: (1) test content, (2) test scale, and (3) the use of test 

results.  

First, considering what students have learned, the equivalence of test contents needs to be 

assumed. That is, contents or constructs being assessed have to be the same between different 

tests over years, so that we can determine how much value is added on the content/constructs. 

However, content change or construct shift over years or grades is inherent in student growth; 

what students are supposed to know and be able to do changes depending on their ages or grade 

levels. Some studies have demonstrated that using single test scores from different tests not only 

misrepresents the amount of student growth (Reckase & Li, 2007), but also distorts the teacher 

value-added estimates based on the test scores (Martineau, 2006).   

If one considers test scores only for norm-referenced interpretation – how one performed 

compared to other students in the tests – regardless of content or performance standards about 

what students are expected to learn in a certain grade, we might worry less about test contents. In 

this case, however, “growth” is defined as a change in a student’s relative ranks between the 

prior and current years rather than as a change in the performance standards from the prior year 

to the current year.   
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Second, the assumption of interval scales is necessary (Harris, 2009; Reardon & 

Raudenbush, 2009) in order to interpret regression coefficients of teacher indicators from the 

EPROF-based VAMs in a meaningful and fair way. That is, one unit difference in a test’s scores 

is assumed to be the same at every point on the test scale. When one uses only rank information 

of student test scores, a less strict version of this assumption can be applied: a test is equally 

accurate in terms of ranking students no matter where a student is located in the continuum of 

achievement. However, there exists no test which has the capacity to rank students equally 

precisely across every level of achievement, unless the test is very long. Tests are likely more 

precisely to place students in the middle of the distribution, but to do this less precisely with 

students in the extremes of the distribution.  

Finally, even if we do not care about test contents and even if tests yield very accurate 

rank information about students, it is still in question what the number values from a test mean 

and whether teacher effect can be defined by using students’ ranks without any reference to what 

students are expected to know and be able to do, and what teachers are expected to do. Current 

VAM does not consider the nature of criterion-referenced achievement tests when using test 

scores to estimate teacher effects. Note that criterion-referenced tests are designed to provide 

information of what students should know and be able to do (content standard), and how 

proficient the students are expected to be (performance standard), which is closely aligned to 

curriculum and guides teachers in what they are supposed to work for/with their students. Under 

the VAM ignoring these standards, the only resource remaining to teachers/schools to be 

responsive to their resulting VAM is to make their students obtain higher test scores than others 

in the state.  
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2.2.3. Findings from the Studies of the EPROF-based Teacher Effectiveness 

Increasing numbers of studies on the EPROF-based VAM have yielded not only some 

common findings but also some conflicting conclusions about teacher effects on student 

achievement. This section briefly reviews findings from previous studies on the VAM, focusing 

on (1) the size of teacher effects, (2) the relationship with teacher qualifications or experience, (3) 

the relationship with student characteristics, and (4) the consistency of estimates.     

Studies have found that 1% to 20% of variance in student test scores were due to 

differences in teachers (Chetty, et al., 2011; Rothstein, 2010; Condie, Lefgren, & Sims, 2012; 

Lockwood, et al., 2007; McCaffrey et al., 2004; Nye, et al., 2004; Sanders & Horn, 1997). Many 

studies have demonstrated that the size of the explained variance generally tended to be larger in 

mathematics test scores than in reading test scores (Condie, Lefgren, & Sims, 2012; Nye, et al., 

2004; Rockoff, 2004), but some studies showed it depended on different grade levels 

(Konstantopoulos & Chung, 2011). It is known that children’s reading ability is more likely to 

depend on their family backgrounds.   

A few studies examined the relationship between teacher VAM estimates and teacher 

qualifications. Kane, Rockoff, & Staiger (2008) found little or no difference in average value-

added measures among different certification status. Findings from many studies on the 

relationship between student achievement and teacher qualifications implied that the relationship 

between teacher effectiveness and traditional teacher qualifications is not transparent. Some 

studies reported no effect of the certification status or licensure on student achievement (Buddin, 

Zamarro, 2009; Croninger, Rice, Rathbu & Nishio, 2007; Palardy & Rumberger, 2008) but other 

reported a positive effect (Clotfelter, Ladd & Vigdor, 2007). Some concluded there was a 

significant impact of advanced degrees (Croninger, Rice, Rathbun & Nishio, 2007; Goldhaber & 
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Brewer, 2000), but others found there was no effect of advanced degrees (e.g., Clotfelter, Ladd 

& Vigdor, 2007).  

The other strand of studies investigated the sensitivity of the VAM estimates on different 

statistical models (Lockwood et al., 2007; Newton, Darling-Hammond, Haertel, & Thomas, 

2010), different sets of covariates (Ballou, et al., 2004; Papay, 2011), and different types of test 

scores (Corcoran et al., 2011, Jacob, 2007; Lockwood et al., 2007, Papay, 2011). It has been 

commonly demonstrated that while different statistical model specifications or different sets of 

covariates made no substantial change in the VAM estimates, those estimates were more 

sensitive to using different types of test scores. A few studies also evaluated the consistency of 

the VAM over years, and the result showed low to moderate correlation between different years 

(McCaffrey, et al., 2004). 

 

2.3. General Comparisons between the EFERF-based and the EPROF-based Teacher 

Effect Estimations  

 

Both the educator performance function (EPERF)-based teacher effect estimations and 

the educational production function (EPROF)-based value-added models (VAM) focus on 

estimating teacher capabilities, as demonstrated by student performance on achievement tests. 

This section elaborates the characteristics of the EPERF-based method by contrasting it with the 

EPROF-based method with respect to their statistical models, measurement aspects, and social 

consequences. These three aspects are interwoven rather than separate.     
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2.3.1. Statistical Modeling 

Both the EPERF-based teacher effect estimations and the EPROF-based VAM basically 

use the same regression model to predict student outcomes from a set of student characteristics 

(see each regression model in sections 3.3.1 and 3.3.2). Evident distinctions between the EPERF-

based and EPROF-based models are simply from (1) the types of student outcome variable, and 

(2) the ways to take into account student background variables in their regression models. These, 

however, follow the fundamental differences in (1) the definition of teacher effect of interest, and 

(2) the scale of teacher effect estimates, which are critical for the interpretation and use of the 

resulting teacher effect estimates.  

First, the two models use different outcome variables: a categorical performance standard 

for the EPERF and a continuous test score for the EPROF. Accordingly, the teacher effect of 

interest is different between the two. For instance, in the EPERF, one is concerned with how 

teachers work to help students pass the cut-off scores of the test, while in the EPROF, one 

focuses on how teachers help their students achieve higher scores on the test than do other 

students. For the former, what teachers are expected to achieve with their students is obvious, in 

alignment with the student performance standards based on the state benchmark.  

Second, the way to take into account student background variables, including prior test 

scores, is also distinctive between the two models. In the EPROF, they are directly included as 

covariates in a regression model, in which regression coefficients associated with teacher 

indicators are regarded as unique teacher effects, after ruling out the effect of those covariates. 

Meanwhile, for the EPERF-based method, student characteristics are used to determine student 

challenge levels before computing teacher effects. Then, the student challenge level is used in the 
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process of estimating teacher effect based on the EPERF. Basically, the EPERF-based method is 

a two-step procedure.  

The big advantage of this two-step procedure of the EPERF-based method is to produce 

sample-independent estimates of teacher effects, once construction of the student challenge index, 

including selection of relevant indicator variables and their weights, is decided. Provided that the 

weights of student characteristics for forming the student challenge indices are appropriately and 

fairly determined, teacher capability estimates are independent of which sample of students, 

teachers, and schools is involved in the analyses. By contrast, in the EPROF-based method, 

teacher effect estimates are dependent on which sample of students is included in the analyses, 

and individual teachers’ ranks also move around relying on the sample of students, schools, or 

districts the data contain. This causes ambiguity in the interpretation of teacher effect estimates 

as a stable teacher attribute in the EPROF-based method.   

Further advantage of the scale of the EPERF-based teacher effect estimates is delineated 

in the following section. 

 

2.3.2. Measurement Aspects 

The EPROF-based method uses a student test score as an outcome variable, which 

implies defining educational success as obtaining a higher test score than do other students. Most 

state tests, however, are designed to assess if students meet a state benchmark of student 

performances; this has been an important and dominant principle for developing achievement 

tests as a part of forming a school accountability system. One of the fortes of the EPERF-based 

method is to allow us to maintain the nature of the criterion reference for evaluating teachers by 

using student performance categories as an outcome variable.  
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Since the EPERF is based on the idea and mathematical form of item response models, 

the teacher effect estimate has several useful properties, as a measure of teacher attributes, that 

person parameters in item response theory have if all required assumptions can be upheld. For 

example, teacher performance level is scaled on the same scale as student challenge level, which 

makes the interpretation of the estimated teacher effects straightforward and sensible. That is, the 

EPERF-based method basically intends to make comparable the two different but interdependent 

measures related to student outcome, namely teacher attribute and student attribute. In the 

language of Wright and Stone (2004), the two measures are how hard a student was to teach, and 

how effective a teacher was in that student’s success.  

 

2.3.3. Social Consequences 

There have been many controversies in using the EPROF-based VAMs for high stakes 

decisions (Baker, et al., 2010; Ballou, 2009; Martineau, 2006; Harris, 2011; Kupermintz, 2003; 

Rothstein, 2010; Robin, et al., 2004). One concern is that achievement test scores can be 

misinterpreted and misused. Even if assumptions of interval scale and construct comparability 

are plausible, a one-unit difference in an achievement test without any reference to what students 

know and can do cannot necessarily be regarded as a qualitative difference in learning outcomes, 

nor does it define teacher effects.  

Also, for schools and teachers who want to improve their practice, value-added measures 

are less informative than are other possible measures. Because individual teacher or school 

effects are measured by how many units of achievement test scores they increased for one year, 

the only practical information of what they can do for their value-added measure is to make their 

students’ test scores higher than the others, regardless of what the tests assess. Moreover, the 
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models are very complicated and difficult to use as tools to communicate with many other stake-

holders in practice.  

The EPERF-based teacher capability evaluation places less emphasis on the 

informativeness of an achievement test score itself. Instead it turns educators’ and students’ 

attentions to benchmarks of student performance that a test assesses. The results can guide what 

teachers and schools seek for in alignment with state performance standards. Consequently, this 

provides teachers with space to work on other desirable student outcomes that are not formally 

assessed but remain highly valued in education, such as non-cognitive outcomes, rather than 

focusing only on getting their students to obtain higher gains than do other students. 

Furthermore, teachers could be less reluctant to teach disadvantaged students when using 

the EPERF-based method. The EPERT-based method takes students’ characteristics that impede 

their academic achievement into account when evaluating teacher capability.  
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CHAPTER 3.  DATA AND METHODOLOGY 

 

This chapter outlines specific procedure for data analyses: Data properties for this study 

are described briefly in the first section. Each step of constructing student challenge index (CI) 

and of applying the educational performance function (EPERF) to compute teachers’ educator 

performance levels (EPL) is detailed in the second and third sections respectively. Also, the steps 

of computing teachers’ value-added measures (VAM) based on the educational production 

function (EPROF) are summarized at the end of the third section. Each plan of analyzing data for 

answering the three research questions posed in section 1.2. is delineated in the last three 

sections: (1) comparisons of the teacher effect estimates between the EPERF-based and the 

EPROF-based methods; (2) examination of the model fits of the EPERF-based method; and (3) 

the effect of the locations of cut-scores and the number of performance standards categories on 

the EPERF-based teacher effect estimates. 

 

3.1. Description of the Data 

 

Student-teacher linked data of the 2010-2011 academic year from the Michigan 

Department of Education, in particular approximately 300,000 students from Grades 4 to 7 and 

their 12,000 teachers, were used for this study. The data contained several student background 

characteristics known to predict achievement levels, such as economically disadvantaged group, 

limited English proficiency, and attendance. Several teacher backgrounds, including credential 

types and education, were also available.  
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The state test, Michigan Educational Assessment Program (MEAP), is administered 

during every October, the beginning of the new academic year, for the purpose of providing 

teachers with diagnostic information on students newly assigned to teachers. This assessment 

administration schedule, however, may not be the best practice for using the results to evaluate 

newly assigned teachers. This is because the test results on October are likely to reflect how well 

their previous academic year’s teachers taught. Accordingly, in this study, 2010-2011 Academic 

year’s teachers were evaluated based on their students’ performance on the October 2011 test not 

on the October 2010 test, assuming that students’ test results from October 2011 are likely to be 

due to 2010-2011 Academic year’s instead of 2011-2012 Academic year.  

Descriptive statistics of several student characteristics by school-level are displayed in 

Table 3-1. The state test classifies students into the following four performance categories based 

on the test scores through their standard setting procedure: (1) Basic, (2) Partially proficient, (3) 

Proficient, and (4) Advanced. For applying the EPERF with dichotomous outcomes, ‘basic’ and 

‘partially proficient’ were merged into non-mastery, coded as 0; and ‘proficient’ and ‘advanced’ 

were merged into mastery, coded as 1. For the polytomous case, the four categories were used as 

specified in the data. For VAM estimation, students’ IRT scale scores were used.   

 

3.2. Constructing the Student Challenge Index (CI) 

 

3.2.1. Selection of Indicators and the Weights 

The process of selecting challenge index indicators depends on which one of the two 

methods – OLS weighted sum score or IRT calibration, proposed in section 2.1.2– would be 

applied. In either case, it starts with all candidates being available in the given data.  
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Table 3-1. Distributions of student-level selected indictors (2010-2011 Academic year cohort) 

 Elementary (Grades 4-5) 
 

Secondary (Grades 7-8) 

 N Mean SD Min Max 
 

N Mean SD Min Max 

Prior math score  103,828 1.30 1.09 -3.85 7.32 
 

191,487 1.16 1.00 -4.58 6.68 

Prior math proficiency  103,828 0.86 0.35 0 1  191,487 0.86 0.35 0 1 

Prior reading score  103,414 0.84 1.17 -5.16 4.89  191,223 0.99 1.21 -5.08 5.26 

Prior reading proficiency 103,414 0.86 0.35 0 1  191,223 0.83 0.37 0 1 

Economically disadvantaged 103,983 0.50 0.50 0 1  191,950 0.46 0.50 0 1 

Free/reduced lunch eligibility 105,027 0.50 0.60 0 2  194,007 0.47 0.60 0 2 

Free/reduced lunch  105,027 0.45 0.50 0 1  194,007 0.41 0.49 0 1 

Targeted assistant program 105,027 0.11 0.31 0 1  194,007 0.06 0.23 0 1 

Special education 103,983 0.12 0.32 0 1  191,950 0.11 0.31 0 1 

Disability 105,027 0.12 0.33 0 1  194,007 0.11 0.32 0 1 

Limited English proficiency 103,983 0.03 0.18 0 1  191,950 0.03 0.16 0 1 

Proportion of attendance 105,027 0.98 0.08 0 1  194,007 0.98 0.10 0 1 

Above 80% of attendance 105,028 0.97 0.16 0 1  194,008 0.96 0.20 0 1 

Female 105,027 0.49 0.50 0 1  194,007 0.49 0.50 0 1 

Asian 103,075 0.02 0.15 0 1  189,911 0.03 0.16 0 1 

Black 103,075 0.15 0.36 0 1  189,911 0.15 0.36 0 1 

Hispanic 103,075 0.05 0.22 0 1  189,911 0.06 0.23 0 1 
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When using the OLS weights, it is first necessary to have an optimal regression model in 

which individual indicators uniquely contribute to explaining the variance of student 

performance. They should be correlated with achievement but not be highly correlated with each 

other; this yields a set of optimal weights. Starting with a model to regress the following year’s 

achievement on all possible indicator variables, some were associated with very small and 

insignificant t-values, or were showed directions opposite from the expected, which is possibly 

due to collinearity, and they were deleted stepwise.  

Data from the 2009-2010 cohort, the previous cohort of the target cohort of 2010-2011, 

comprising approximately 110,000 students per grade, were used to select a set of appropriate 

indicators and to obtain their regression coefficients by grade and subjects. The weights were to 

be used for constructing the 2010-2011 academic year students’ challenge index. In the process, 

the disability indicator was deleted because no additional unique explanatory power was found. 

A set of remaining indicator variables were regarded as more effective in explaining the variation 

in student achievement, and the final selection of the indicator variables is shown in the second 

column of Table 3-2.  

For indicators of socio-economic background, free or reduced lunch eligibility and 

economically disadvantaged groups which were identified by the state government were 

available. In particular, the economically disadvantaged subgroups were identified based on a 

combination of their free- or reduced- meal eligibility, and their immigrant status and homeless 

status.2 For indicators of learning disadvantage, targeted assistant school program eligibility, 

special education program, and limited English proficiency, were used. For the relevant factor of 

learning advantage, proportion of attendance and prior achievement were used, and their weights 

                                                 
2 Michigan Department of Education (2012). Community Eligibility Option: Frequently Asked 

Questions.   
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were expected to be negative. Finally, depending on whether to include gender and ethnicity as 

indicator variables, two different sets of indicators, full and compact sets, were determined in 

order to monitor whether the two sets yield different weights. Assuming that the weights would 

be dissimilar between grade as well as subject-matter, all regression models were separately 

estimated by grade and subject-matter.  

 

Table 3-2. Final sets of selected indicators for constructing the student challenge index 

Facet OLS weighted sum score IRT calibration 

Social/economic 

background 

 Economically disadvantaged 

group 

 Free/reduced lunch eligibility 

 Economically disadvantaged 

group 

 Free/reduced lunch eligibility 

Learning 

disadvantaged 

 Targeted assistant school 

program 

 Special education program  

 Limited English proficiency 

 Targeted assistant school 

program 

 Special education program 

 Limited English proficiency 

 Disability 

Learning 

advantaged 

(reverse) 

 Proportion of attendance  

 Previous year’s achievement in 

the same subject 

 Proportion of attendance 

 Previous year’s achievement in 

mathematics and reading 

Demographic   Gender 

 Ethnicity (Asian, Black, 

Hispanic) 

 

 

Fit indexes of regression models using each final set of indicators and the resulting 

regression coefficients are shown in Table 3-3 for mathematics and Table 3-4 for reading. The 

models’ Adjusted R-square fell above .6 for mathematics and .5 for reading. More variance in 

mathematics achievement was explained by the final set of indicators than that in reading. The 

unexplained variance in student achievement, approximately 40-50% of the total variance, does 

not imply that the statistical models for obtaining the CI weights are of questionable value. 

Rather, it is fair to assume that part of the unexplained variance in student achievement is due to 
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their teachers. In other words, significant room exists for teachers to help students, given their 

background or characteristics, work better. While for mathematics, R-square slightly increases as 

grade increases, this does not hold for reading. The inclusion of gender and ethnicity made no 

substantial difference.  

For applying IRT calibration, because student challenge level is considered as a latent 

trait, indicators are supposed to be substantially correlated, assuming that there is one common 

latent trait to explain the dependency among the indicators. Also, given that all indicators for 

IRT calibration were dichotomous, it was attempted to include as many as possible indicators to 

guarantee a reasonable amount of variation in the estimated challenge level across students. For 

initial examination, tetrachoric correlations among indicators and Cronbach’s alpha (internal 

consistency between indicators) were observed while each indicator was added or deleted. The 

final set of indicators for IRT calibration was determined as shown in Table 3-2. No gender and 

ethnicity indicators were considered because it seems unfair to take gender or ethnicity into 

account when approximating their level of the latent trait.  

 

3.2.2. Weights of Indicators 

A set of weights for the indicator variables was determined by regression coefficients of 

indicator variables predicting achievement; this is shown in Table 3-3. As expected, prior test 

scores and proportion of attendance were positively associated with the following year’s 

achievement in either mathematics or reading. Also, they were most heavily weighted compared 

to other indicators. Students who performed better in the previous year scores and attended more 
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classes are likely to be less demanding of teachers to teach them to perform better. Weights of 

proportion of attendance, however, tended to decrease in secondary school years, Grades 6-7, 

compared to elementary school years, Grades 4-5, in both mathematics and reading.  

 

Table 3-3. OLS weights of selected challenge index indicators (Mathematics) 

 

 

 

 
Full Set Compact Set 

Indicators G4 G5 G6 G7 G4 G5 G6 G7 

Pre-test 
0.79 

(0.00) 

0.57 

(0.00) 

0.68 

(0.00) 

0.64 

(0.00) 

0.81 

(0.00) 

0.58 

(0.00) 

0.70 

(0.00) 

0.66 

(0.00) 

Economically 

disadvantaged 

-0.10 

(0.01) 

-0.07 

(0.01) 

-0.08 

(0.01) 

-0.08 

(0.01) 

-0.11 

(0.01) 

-0.09 

(0.01) 

-0.09 

(0.01) 

-0.08 

(0.01) 

Free/reduced 

lunch 

-0.05 

(0.00) 

-0.03 

(0.00) 

-0.04 

(0.00) 

-0.03 

(0.00) 

-0.06 

(0.00) 

-0.04 

(0.00) 

-0.05 

(0.00) 

-0.03 

(0.00) 

Targeted assistant 
-0.13 

(0.01) 

-0.06 

(0.01) 

-0.13 

(0.01) 

-0.05 

(0.01) 

-0.11 

(0.01) 

-0.04 

(0.01) 

-0.12 

(0.01) 

-0.05 

(0.01) 

Special education 
-0.17 

(0.01) 

-0.12 

(0.01) 

-0.18 

(0.01) 

-0.11 

(0.01) 

-0.14 

(0.01) 

-0.11 

(0.01 

-0.17 

(0.01) 

-0.09 

(0.01) 

Limited English 

proficiency 

-0.01 

(0.01) 

-0.05 

(0.01) 

-0.06 

(0.01) 

-0.05 

(0.01) 

0.05 

(0.01) 

-0.01 

(0.01) 

-0.02 

(0.01) 

-0.01 

(0.01) 

Proportion of 

attendance 

0.38 

(0.03) 

0.32 

(0.03) 

0.19 

(0.02) 

0.15 

(0.02) 

0.37 

(0.03) 

0.34 

(0.03) 

0.21 

(0.02) 

0.15 

(0.02) 

Female 
-0.09 

(0.00) 

0.06 

(0.00) 

0.03 

(0.00) 

-0.04 

(0.00) 
    

Asian 
0.42 

(0.01) 

0.24 

(0.01) 

0.26 

(0.01) 

0.23 

(0.01) 
    

Black 
 -0.13 

(0.01) 

-0.14 

(0.01) 

-0.11 

(0.01) 

-0.09 

(0.01) 
    

Hispanic 
-0.06 

(0.01) 

-0.04 

(0.01) 

-0.05 

(0.01) 

-0.03 

(0.01) 
    

Adjusted R2 0.64 0.66 0.67 0.68 0.63 0.65 0.67 0.68 

N 108,989 108,133 109,232 109,842 108,378 107,763 109,025 109,768 

 These weights were obtained from multiple linear regressions to predict mathematic 

achievement using 2009-2010 Academic year cohort data  

 Each cell contains the associated regression coefficient and standard error 
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Table 3-4. OLS weights of selected challenge index indicators (Reading) 

 Full Set Compact Set 

Indicators G4 G5 G6 G7 G4 G5 G6 G7 

Pre-test 
0.57 

(0.00) 

0.64 

(0.00) 

0.78 

(0.00) 

0.58 

(0.00) 

0.58 

(0.00) 

0.66 

(0.00) 

0.81 

(0.00) 

0.60 

(0.00) 

Economically 

disadvantaged 

-0.11 

(0.01) 

-0.08 

(0.01) 

-0.13 

(0.01) 

-0.10 

(0.01) 

-0.13 

(0.01) 

-0.11 

(0.01) 

-0.16 

(0.01) 

-0.11 

(0.01) 

Free/reduced lunch 
-0.05 

(0.00) 

-0.05 

(0.00) 

-0.08 

(0.00) 

-0.05 

(0.00) 

-0.06 

(0.00) 

-0.07 

(0.00) 

-0.10 

(0.00) 

-0.05 

(0.00) 

Targeted 

assistance 

-0.15 

(0.01) 

-0.15 

(0.01) 

-0.25 

(0.01) 

-0.14 

(0.01) 

-0.14 

(0.01) 

-0.13 

(0.01) 

-0.23 

(0.01) 

-0.14 

(0.01) 

Special education 
-0.29 

(0.01) 

-0.28 

(0.01) 

-0.35 

(0.01) 

-0.29 

(0.01) 

-0.29 

(0.01) 

-0.27 

(0.01) 

-0.34 

(0.01) 

-0.30 

(0.01) 

Limited English 

proficiency 

-0.17 

(0.02) 

-0.23 

(0.02) 

-0.22 

(0.02) 

-0.09 

(0.02) 

-0.10 

(0.01) 

-0.18 

(0.01) 

-0.14 

(0.02) 

-0.07 

(0.01) 

Proportion of 

attendance 

0.67 

(0.04) 

0.39 

(0.04) 

0.30 

(0.03) 

0.21 

(0.03) 

0.68 

(0.04) 

0.42 

(0.04) 

0.36 

(0.03) 

0.23 

(0.03) 

Female 
0.05 

(0.00) 

0.08 

(0.00) 

0.14 

(0.01) 

0.12 

(0.00) 
    

Asian 
0.27 

(0.01) 

0.09 

(0.01) 

0.33 

(0.01) 

0.20 

(0.01) 
    

Black 
-0.12 

(0.01) 

-0.24 

(0.01) 

-0.29 

(0.01) 

-0.08 

(0.01) 
    

Hispanic 
0.02 

(0.01) 

-0.09 

(0.01) 

-0.08 

(0.01) 

-0.04 

(0.01) 
    

Adjusted R2 0.55 0.58 0.54 0.53 0.54 0.57 0.53 0.52 

N 107,129 106,447 107,545 108,240 106,583 106,084 107,331 108,1169 

 These weights were obtained from multiple linear regressions to predict reading 

achievement using 2009-2010 Academic year cohort data  

 Each cell contains the associated regression coefficient and standard error 
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Table 3-5. IRT-based Indicator Parameters and Standard Errors 

 
1PL 

 
2PL 

 
G4 G5 G6 G7 

 
G4 G5 G6 G7 

Indicators b a b a b a b a 
 

b a b a b a b a 

Economically 

disadvantaged 

-0.38 

(.01) 

1.81 

(.01) 

-0.05 

(.01) 

1.64 

(.01) 

-0.04 

(.01) 

1.71 

(.01) 

0.02 

(.01) 

1.69 

(.01)  

-0.28 

(.01) 

1.72 

(.03) 

0.26 

(.01) 

1.29 

(.02) 

0.28 

(.01) 

1.32 

(.02) 

0.37 

(.01) 

1.26 

(.02) 

Free/reduced 

lunch eligibility 

0.38 

(.01) 
 

0.10 

(.01) 
 

0.12 

(.01) 
 

0.17 

(.01) 
 

 

0.19 

(.01) 

2.75 

(.03) 

0.44 

(.01) 

1.25 

(.02) 

0.47 

(.01) 

1.24 

(.02) 

0.54 

(.01) 

1.20 

(.02) 

Targeted assistant 
1.45 

(.01) 
 

1.77 

(.01) 
 

2.17 

(.01) 
 

2.34 

(.01) 
 

 

6.38 

(.35) 

0.33 

(.02) 

5.70 

(.23) 

0.40 

(.02) 

6.54 

(.23) 

0.44 

(.02) 

7.10 

(.27) 

0.43 

(.02) 

Special education 
2.36 

(.01) 
 

1.68 

(.02) 
 

1.70 

(.02) 
 

1.73 

(.02) 
 

 

1.13 

(.01) 

8.43 

(.17) 

1.44 

(.01) 
11.1 

(.36) 

1.56 

(.01) 

9.93 

(.15) 

1.58 

(.00) 

10.2

0 

(.14) 

Limited English 

Proficiency 

2.34 

(.02) 
 

2.79 

(.02) 
 

2.79 

(.01) 
 

2.88 

(.01) 
 

 

3.59 

(.14) 

1.00 

(.05) 

5.63 

(.32) 

0.70 

(.05) 

5.46 

(.20) 

0.73 

(.03) 

6.02 

(.25) 

0.66 

(.03) 

Proportion of 

attendance 

2.89 

(.02) 
 

2.82 

(.02) 
 

2.51 

(.01) 
 

2.46 

(.01) 
 

 

2.09 

(.02) 

3.37 

(.10) 

2.27 

(.02) 

3.94 

(.12) 

2.11 

(.01) 

4.99 

(.13) 

2.07 

(.01) 

5.22 

(.12) 

Disability 
1.22 

(.02) 
 

1.64 

(.02) 
 

1.66 

(.02) 
 

1.68 

(.02) 
 

 

1.10 

(.01) 

8.19 

(.19) 

1.35 

(.04) 

16.0 

(4.6) 

1.42 

(.05) 

16.7 

(4.5) 

1.44 

(.03) 

16.7 

(2.4) 

Prior test score 

on Mathematics 

1.94 

(.01) 
 

1.21 

(.01) 
 

1.46 

(.01) 
 

1.49 

(.01) 
 

 

2.41 

(.04) 

1.18 

(.03) 

1.69 

(.02) 

1.29 

(.02) 

1.97 

(.01) 

1.34 

(.02) 

1.94 

(.01) 

1.42 

(.02) 

Prior test score 

on Reading 

1.46 

(.01) 
 

1.52 

(.01) 
 

1.45 

(.01) 
 

1.16 

(.01) 
 

 

1.57 

(.02) 

1.40 

(.02) 

1.85 

(.02) 

1.58 

(.03) 

1.85 

(.01) 

1.50 

(.02) 

1.55 

(.01) 

1.51 

(.02) 

-2LL 311400.24 352511.24 534237.58 573515.28  288475.89 340229.00 512686.19 548803.58 

Cronbach’s α .65 .68 .71 .72  .65 .68 .71 .72 



37 

 

Other indicators including economically disadvantaged group, free or reduced lunch 

eligibility, targeted assistant school-program eligibility, special education eligibility, and limited 

English proficiency were negatively associated with achievement. Students who are members of 

these categories are expected to be more challenging for teachers. Negative coefficients 

associated with the limited English proficiency group and special education eligibility, tend to be 

larger for reading achievement than for mathematics achievement. Of note is that the effect of 

limited English proficiency on mathematics was positive in Grade 4 unless controlling for 

ethnicity. It may be because younger Asian students who newly migrated to the US tend to 

perform well in mathematics despite being less proficient in English language, and as grade goes 

up, the discrepancy between mathematics achievement and English proficiency would lessen. 

The direction of female weights is opposite between mathematics and reading in Grade 4 and 

Grade 7.   

For IRT calibration, one-parameter logistic models and two-parameter logistic models 

were applied to calibrate the selected indicators using 2010-2011 academic year data. As a 

results of IRT calibration using BILOG-MG, indicators’ parameters and models’ fit indexes are 

displayed in Table 3-5. Note that several indicators of relevant factors, such as proportion of 

attendance and prior performance levels in mathematics and reading, were reverse coded. For 

both mathematics and reading, the economically disadvantaged group indicator was the most 

frequently applied indicator; compared to other student characteristics, the economically 

disadvantaged group indicator does not contribute much information for locating students at the 

higher level of the challenge index.  

For one-parameter logistic models, limited English proficiency and proportion of 

attendance show high challenge level for any grade-level. However, notice that the b-parameters 
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of the one-parameter logistic models are likely to reflect in part the proportion of students who 

are applicable for each index (see Table 3-1); if the proportion of students who are categorized as 

economically disadvantaged is large, then the b-parameter tends to be lower. For the two-

parameter logistic models, targeted assistant program eligibility, in addition to limited English 

proficiency and proportion of attendance, seem to contribute more to being located at the higher 

level of the challenge index. However, the standard errors of targeted assistant program 

eligibility and limited English proficiency are relatively large. Special education and disability 

show higher discrimination parameters, compared to the others. 

 

3.2.3. Distributions of the Challenge Index  

First, for the OLS weighted sum score, using weights in Tables 3-3 and 3-4, each 

individual student’s predicted achievement was computed based on his/her indicator variables, 

and the minus (negative value) of the predicted achievement was taken for his/her challenge 

index for each subject. That is, the higher the predicted achievement, the lower the challenge 

level represented in the challenge index. Weights were obtained from the previous cohort’s data 

and were used to compute the following cohort’s CI. The challenge index was standardized with 

a 0 mean and a 1 standard deviation by grade-level.    

Second, for the IRT calibration, using the fixed indicator-parameters in Table 3-4, each 

individual student’s latent trait, which represents the degree of difficulty that he/she poses to 

his/her teacher, was estimated for both mathematics and reading in common. The higher the 

score on the latent trait, the higher the challenge index. The estimated students’ challenge index 

was also standardized with a 0 mean and a 1 standard deviation by grade-level.    
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Figure 3-1. Distributions of student challenge index from the OLS weighted sum scores by grade 

(Compact set of indicators) 
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Figure 3-2. Distributions of student challenge index from the IRT calibration by grade (1PL on 

the top; 2PL on the bottom) 
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Table 3-1 displays the distributions of the selected indicators for 2010-2011 academic 

year students whose teachers’ effects will be estimated. Distributions of the resulting challenge 

index, yielded from the OLS weights and IRT calibration, are shown in Figures 3-1 and 3-2 

respectively. Based on the observed distributions, the OLS weighted sum score is preferred over 

the IRT calibration. While the OLS weighted sum scores are bell-curved, with substantial 

variation to discriminate students according to their challenge level, the results from the IRT 

calibration show that there to be only a few score categories available. This suggests more 

indicators are necessary to obtain more variation of the CI across students when using the IRT 

calibration.  

Distributions of student CI by performance level, that is, basic, partially proficient, 

proficient, and advanced, are displayed in Table 3-6 and in Figures 3-3, 3-4, and 3-5. As shown 

in Table 3-6, as the performance level increased from basic to advanced, the average CI 

decreased, which is true for all grade-levels, for both mathematics and reading, and for both the 

OLS weighted sum scores and IRT calibration. Standard deviations in the OLS weighted sum 

scores tended to be larger in higher performance levels, proficient and advanced, whereas those 

in the IRT calibration tended to be larger in lower performance levels, basic and partially 

proficient. A series of one-way ANOVA and post-hoc analyses were conducted in order to 

examine whether the CI distributions are statistically different depending on the four 

performance levels. Every pair of distributions of adjacent performance levels significantly 

differed in both mathematics and reading as well as in the OLS weighted sum scores and the IRT 

calibration.  

Looking at the OLS weighted sum score distribution in Figure 3-3 (elementary school) 

and 3-4 (secondary school), as the performance level goes up from basic to advanced, the 
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Table 3-6. Means and standard deviations of student challenge index by performance level (2010-2011 Academic year) 

 Grade 4   Grade 5  Grade 6  Grade 7 

      OLS weights (CS)     

Mathematics M SD N   M SD N  M SD N  M SD N 

Basic 0.77 0.63 16,824  

 

0.73 0.62 19,304 

 

0.77 0.59 30,263 

 

0.74 0.60 33,766 

Partially proficient 0.06 0.60 10,592  

 

0.07 0.59 13,846 

 

0.10 0.53 21,533 

 

0.00 0.60 29,652 

Proficient -0.72 0.72 15,768  

 

-0.76 0.75 17,495 

 

-0.70 0.72 29,359 

 

-0.87 0.69 22,798 

Advanced -1.90 0.77 1,735  

 

-2.14 0.90 1,589 

 

-2.07 0.93 3,569 

 

-2.00 0.82 4,126 

Reading                 

Basic 1.27 0.68 4,773   1.22 0.74 7,248  1.21 0.69 12,997  1.28 0.67 9,258 

Partially proficient 0.62 0.64 8,687   0.54 0.66 9,063  0.46 0.63 19,597  0.52 0.67 25,661 

Proficient -0.27 0.74 26,074   -0.20 0.67 24,281  -0.35 0.67 39,643  -0.36 0.73 48,769 

Advanced -1.07 0.75 5,770   -0.96 0.69 11,185  -1.08 0.70 13,393  -1.19 0.77 11,036 

      IRT calibration (1PL)     

Mathematics                 

Basic 0.49 0.94 17,086   0.53 0.96 19,618  0.58 0.97 30,816  0.53 0.99 34,487 

Partially proficient -0.11 0.88 10,670   -0.14 0.86 13,977  -0.14 0.84 21,754  -0.20 0.83 29,924 

Proficient -0.46 0.82 15,900   -0.51 0.75 17,631  -0.52 0.71 29,565  -0.57 0.67 22,951 

Advanced -0.77 0.66 1,740   -0.81 0.57 1,597  -0.79 0.52 3,608  -0.77 0.51 4,146 

Reading                 

Basic 1.00 0.84 4,945   0.98 0.89 7,491  1.00 0.91 13,415  1.12 0.94 9,631 

Partially proficient 0.39 0.88 8,799   0.32 0.89 9,182  0.24 0.89 19,829  0.32 0.95 26,035 

Proficient -0.25 0.87 26,305   -0.23 0.84 24,519  -0.33 0.78 39,964  -0.33 0.78 49,158 

Advanced -0.65 0.73 5,802   -0.60 0.71 11,257  -0.66 0.63 13,490  -0.65 0.60 11,101 
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Figure 3-3. Distributions of student challenge index by performance level (OLS weighted sum score; elementary school; mathematics 

on the left; reading on the right) 
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Figure 3-4. Distributions of student challenge index by performance level (OLS weighted sum score; secondary school; mathematics 

on the left, reading on the right) 
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Figure 3-5. Distributions of student challenge index by performance level (IRT calibration; 

secondary school; 1PL on the top, 2PL on the bottom)
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Table 3-7. Correlations between different types of student challenge index and between the challenge index and achievement 

   Correlation    

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 

Mathematics           

1. CI-OLS-CS 1.00 0.98 0.61 -0.97 -0.77 0.67 0.71 0.61 -0.68 -0.64 

2. CI-OLS-FS 0.95 1.00 0.62 -0.99 -0.78 0.69 0.71 0.62 -0.69 -0.65 

3. CI-IRT-CS 0.56 0.59 1.00 -0.53 -0.49 0.66 0.68 1.00 -0.57 -0.52 

4. Prior test score -0.89 -0.93 -0.47 1.00 0.76 -0.65 -0.68 -0.53 0.66 0.63 

5. 2011 test score  -0.76 -0.79 -0.47 0.71 1.00 -0.61 -0.64 -0.49 0.64 0.61 

Reading           

6. CI-OLS-CS 0.66 0.68 0.66 -0.60 -0.60 1.00 0.97 0.66 -0.95 -0.71 

7. CI-OLS-FS 0.64 0.68 0.66 -0.60 -0.60 0.99 1.00 0.68 -0.98 -0.73 

8. CI-IRT-CS 0.56 0.59 1.00 -0.46 -0.47 0.66 0.66 1.00 -0.57 -0.51 

9. Prior test score -0.61 -0.65 -0.54 0.55 0.59 -0.97 -0.98 -0.54 1.00 0.70 

10. 2011 test score -0.58 -0.61 -0.50 0.54 0.61 -0.72 -0.72 -0.50 0.71 1.00 

 Elementary school on the lower diagonal; secondary on the higher diagonal 

 CS: compact set of indicators; FS: full set of indicators including gender and ethnicity 
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distributions of CI based on the OLS weighted sum score move toward the left; the higher the 

performance level, the lower the CI on average. Looking at IRT scores in Figure 3-5 (secondary 

school) and A-2 (elementary school), the number of students in the lowest challenge level 

increased, as the performance level increased from basic to advanced.     

Correlations between different types of CI, and between CIs and achievement were 

monitored (see Table 3-7). First, correlations of the OLS weighted sum scores between using the 

full set of indicators and using the compact set of indicators - including neither gender nor 

ethnicity - are above .9; no substantial difference existed between the two sets of indicators. 

Second, the resulting CI using OLS weighted sum scores are moderately correlated with the 

results of the IRT calibration, showing .56 to .68 correlations. Third, looking at the correlations 

between the CI and test scores, while the correlations between OLS weighted sum scores and 

achievement test scores ranged from -.89 to -.99, those between IRT score and achievement 

scores were between -.47 and -.68 within the same subject; this makes sense because prior test 

scores were used to compute the OLS CI, while prior dichotomous performance category were 

used for the IRT CI. Also, the correlations to current achievement were around -.7 for the OLS 

CI and above -.5, which implies some room for teachers to work better given student CI. Last, 

the correlation of CI between mathematics and reading ranged from .5 to .7.    

 

3.3. Computing Teachers’ Educator Performance Levels and Value-added Measures 

 

The primary goal of this study is to compare the results from the educator performance 

function (EPERF)-based teacher effect estimation method to those from the education production 

function (EPROF)-based method. First, for the EPERF-based method, six different teacher effect 
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estimates were computed depending on the number of performance categories – dichotomous or 

polytomous performance categories, depending on the number of estimated teacher parameters – 

1PL or 2PL, and depending on ways to compose the challenge index (CI) – OLS weights or IRT 

calibration. Second, for typical examples of the EPROF-based VAM, three different teacher 

effect estimates were computed under the frame of the covariate adjustment model, shown in 

Equation 2-4: (1) random effect model, (2) average residual; and (3) gain score model. The same 

set of student variables was included in the EPROF as covariates, and was also be used for 

constructing a student challenge index in the EPERF. Model specifications to be compared in 

this study are shown in Table 3-8, and each specification is illustrated in the following sections. 

  

Table 3-8. Summary of model specifications 

 EPERF-based method EPROF-based method 

LHS  

Student outcome 

1. Probability of becoming  

proficient (compared to non-

proficient) 

1. Continuous scores – IRT scale 

scores 

 2. Probability of becoming  

proficient (using 4 different 

performance categories) 

 

RHS  

Student characteristics 

Student challenge index 

1. OLS weighted sum scores  

2. IRT calibration  

A set of student covariates 

RHS  

Teacher effect 

1. Random effect of intercept 

2. Random effect of slope  

3. Random effect of teacher 

indicators  

4. Average residuals by each 

teachers 

5. Gain scores 
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3.3.1. EPERF-based Teacher Effect Estimation  

The general form of educator performance function (EPERF) for dichotomous student 

performance categories – proficiency or non-proficiency – is presented in Equation 3-1. This is 

analogous to the two-parameter logistic IRT model (Equation 2-1), which is equivalent to the 

generalized latent linear and mixed model with random intercept and random slope (Rabe-

Hesketh & Skrondal, 2012; Raykov & Marcoulides, 2011).  

 

logit[(P(Yij = 1)] = β0𝑗 + β1𝑗𝑋𝑖𝑗 

β0𝑗 = 𝛾00 + 𝑢0𝑗 ,   𝑢0𝑗~𝑁(0, 𝜓1)  

β1𝑗 = 𝛾10 + 𝑢1𝑗 ,   𝑢1𝑗~𝑁(0,  𝜓2  ) 

Equation 3-1 

where Yij is performance level of student i who was working with teacher j (0 or 1); 

𝑋𝑖𝑗  is challenge level of student i who was working with teacher j; 

𝑢0𝑗  is random intercept of teacher j; 

𝑢1𝑗  is random slope of teacher j 

For the one-parameter EPERF (EPERF-D1PL), an individual teacher’s effect is defined 

only by the random effects of intercept, 𝑢0𝑗 , while the variance in random effects of slope, 𝜓2 , 

is set to be 0, which means that the slope of student CI on the probability of student success, u1𝑗 , 

is assumed to be identical across all teachers and estimated in common with all teachers. The 

average teacher effect is 𝛾00, and the variance of individual teacher effects, 𝜓1, is to be 

estimated.  

In the two-parameter EPERF (EPERF-D2PL), β1𝑗  is assumed to vary across teachers, 

and 𝑢1𝑗  is estimated as a slope-parameter for each teacher. The resulting β1𝑗  will be mostly 

negative because the probability of students’ successes decreases as their challenge index 

increases, and corresponds to the minus of a-parameter in Equation 2-1. Note that the varying 
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slope for each teacher in the EPERF-D2PL is based on the idea that the impact of CI on their 

students’ successes can be differentiated among teachers. That is, the statistical significance of 

 𝜓2 – the variance of 𝑢1𝑗  – implies whether individual teachers are differentiated in mediating 

the relationship between student CI and success. As a result, the two different parameters for 

each individual teacher, 𝑢0𝑗 and 𝑢1𝑗 , were obtained from this model. For identification 𝜓1 was 

set to 1 in this model.  

The interpretation of 𝑢0𝑗  is straightforward; each individual teacher’s deviation from the 

average logit of the probability that students whose CI is average success. Accordingly, 

supposing that the estimate of 𝑢0𝑗  is larger for teacher A than for teacher B, it is concluded that 

teacher A’s expected or average probability of success is higher than teacher B regardless of 

student CI. The interpretation of 𝑢1𝑗  is somewhat complicated. In a simple way, the regression 

coefficient, β1𝑗 , represents the amount of decreasing probability of success when one unit of 

student CI increases; 𝑢1𝑗  is each individual teacher’s deviation from the average decreasing 

amount of probability of success associated with one unit increase in the student CI, 𝛾10. This 

also can be considered an interaction term. Supposing that we compare the two teachers whose 

𝑢0𝑗  estimates are identical but 𝑢1𝑗  estimates are different from each other: teacher A’s 𝑢1𝑗  is -

.3; teacher B’s is -.5. While the probability of getting their students whose CI were below the 

teachers’ 𝑢0𝑗  estimate success, is larger in teacher A than in teacher B, the probability of getting 

their students whose CI were above their 𝑢0𝑗  estimate success, is large in teacher B than in 

teacher A. In this case, the teachers are mediating the relationship between the students’ CI and 

their successes.  
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In both models, individual teachers’ random effects of intercept were transformed to IRT-

typed person parameters using the following transformation: θj = β0𝑗/−β1j, which rescales 

the teacher random effect of intercept onto the scale of student CI, 𝑋𝑖𝑗 . Again, while in the 1PL 

model, β1j is common across teachers, it varies across teachers in the 2PL model. The 

transformed individual teacher’s educator performance level (EPL), θj, indicates the point of 

student CI corresponding to a probability of 0.5 that a teacher has a student succeed to achieve a 

target performance level.  

Some examples of the results of fitting student performance data to the above models are 

displayed in Figure 3-6 and 3-8 for the EPERF-1PL, and Figure 3-8 for the EPERF-2PL; 

variation in individual teachers’ slopes in the EPERF-2PL is observed in Figure 3-8. They 

represent individual students’ expected probabilities of success in reaching proficient level given 

their teachers’ estimated EPL. The fitted line, called student characteristics curves (SCC), 

represents conditional probability of success given student CI, when their teachers’ EPL is equal 

to 0. As students’ challenge levels increase, the probability of success in achieving the proficient 

level, which the state benchmark requires, tends to decrease. Note that the point on the scale of 

student CI corresponding .5 probability of success varies across different grade levels as well as 

different subjects. For instance, while for Grade 4, the probability that students with -.3 CI would 

achieve the proficient level in mathematics when teachers’ EPL is fixed at 0, was .5, for Grade 6, 

the probability that students with -.3 CI obtain the proficient level was smaller than .5; the 

probability of success for students with -.6 CI was .5. In reading (see Figure 3-8), CI points 

associated with .5 probability of success were significantly higher than in mathematics: all CI 

points corresponding to .5 probability were negative in mathematics, whereas those were all 
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positive in reading. This suggests that the likelihood for students with higher CI to achieve 

proficiency is higher in reading than mathematics. Another observation is that variance in the 

probability of success is smaller in reading than in mathematics. Details of the interpretation are 

discussed in Chapter 4. 

Figures 3-10 to 3-11 display the teacher characteristics curves (TCC), which describe the 

relationship between teachers EPL and the probability of their students’ successes. The red line 

indicates the expected probability of success according to teachers’ EPL when student challenge 

index is equal to 0. And each dot represents each teacher. As teachers’ estimated performance 

level escalates, the average of the probability that their students’ success in reaching the 

proficient level tends to increase. The brightness of circles indicates the average challenge index 

of the students who worked with each teacher; the darker the circles, the more challenging the 

teacher’s students. As shown, when teacher EPL is similar, the probability of success tends to 

decrease along with their students’ average challenge levels increase. Variance in the estimated 

teacher EPL in reading appeared not substantial as Figure 3-12 shows.   
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 For interpretation of references to color in this and all other figures, the reader is referred to the electronic version of this 

dissertation.  

 Each blue mark represents the estimated probability of individual student’s success; and the center red line represents the 

conditional probability of success when teacher EPL=0 

Figure 3-6. Student characteristic curve of the EPERF-1PL with the compact set of indicators by grade (Mathematics)  



54 

 

 
 Each mark represents the estimated probability of individual student’s success; and the center line represents the conditional 

probability of success when teacher EPL=0 

Figure 3-7. Student characteristic curve of the EPERF-2PL with the compact set of indicators by Grade (Mathematics) 
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 Each mark represents the estimated probability of individual student’s success; and the center line represents the conditional 

probability of success when teacher EPL=0 

Figure 3-8. Student characteristic curve of the EPERF-1PL with the compact set of indicators by grade (Reading); 
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 Each mark represents individual teacher; 
 The brightness of the marks represents the average students’ challenge index (The more saturated the gray, the higher the 

average challenge levels);  
 Red lines represent the expected probability of success when student challenge index=0 

Figure 3-9. Teacher characteristic curve of the EPERF-1PL with the compact set of indicators by grade (Mathematics)  
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 Each mark represents individual teacher; 
 The brightness of the marks represents the average students’ challenge index (The more saturated the gray, the higher the 

average challenge levels);  
 Red lines represent the expected probability of success when student challenge index=0 

Figure 3-10. Teacher characteristic curve of the EPERF-2PL with the compact set of indicators by grade (Mathematics)  



58 

 

 
 Each mark represents individual teacher; 
 The brightness of the marks represents the average students’ challenge index (The more saturated the gray, the higher the 

average challenge levels);  
 Red lines represent the expected probability of success when student challenge index=0 

Figure 3-11. Teacher characteristic curve of the EPERF-1PL with the compact set of indicators by grade (Reading)
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Polytomous performance categories also can be utilized likewise, as polyotomous IRT 

models for more than three category responses. The general form of EPERF for polytomous 

student performance categories – for example, advanced, proficient, partially proficient, and 

basic – applying ordinal logistic regressions based on cumulative distribution function (CDF) is 

shown in Equation 3-2. 

 

logit[(P(Yij > k)] = β0𝑗 + β1𝑗(𝑋𝑖𝑗 − τ𝑘) 

β0𝑗 = 𝛾00 + 𝑢0𝑗 ,   𝜃0𝑗~𝑁(0, 𝜓1)  

β1𝑗 = 𝛾10 + 𝑢1𝑗 ,   𝜃1𝑗~𝑁(0,  𝜓2  ) 

Equation 3-2 

where Yij is performance level of student i who was working with teacher j (1, 2, 3 or 4); 

𝑋𝑖𝑗 is challenge level of student i who was working with teacher j; 

𝑢0𝑗 is random intercept of teacher j; 

𝑢1𝑗  is random slope of teacher j; 

τ𝑘 is threshold for category k 

 

β1𝑗  is constant across categories, which implies that linear predictors for different 

categories are parallel. This restriction is equivalent to that of Samejima’s grade response model 

(1974). In this model, each threshold, τ𝑘 , is the point where P(Yij > k) is equal to 0.5, and can 

be converted into the scale of student CI using the following transformation: τ𝑘/𝛾10. The 

probability of attaining k-th level, P(Yij = k), is obtained from P(Yij > k − 1) −

P(Yij > k). As in the dichotomous models, while for the EPERF-P1PL, β1𝑗  is assumed to be 

equal across all teachers, for the EPERF-P2PL, it is estimated for each teacher. STATA gllamm 

command (Zheng & Rabe-Hesketh, 2007) was used for all the estimations. 
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Figure 3-12 illustrates the fitted models using the polytomous performance category for 

mathematics by grade. In each grade-level, the very left curve monotonically decreasing 

indicates the probability of achieving “advanced” level (category 4); the second left uni-modal 

curve represents the probability of reaching “proficient” level (category 3); the third left uni-

modal curve is the probability of becoming “partially proficient” level (category 2); and the very 

right curve monotonically increasing represents the probability of being “basic” level (category 

1). While the probability of attaining basic level increases along with student challenge level, the 

probability of achieving advanced level  decreases as student challenge level increases when 

teacher EPL is set to 0. The probability of being diagnosed as either partially proficient or 

proficient levels goes up to the threshold, and goes down after the threshold. Figure 3-13 shows 

the expected average scores of students depending on their teachers’ estimated EPL. The 

expected score was calculated as follows: ∑ P(Yij = 𝑘)𝑘=𝑚
𝑘=1 ∙ 𝑘 (m is the number of 

performance levels). According to the fitted functions, as the estimated teacher EPL increases, 

their students’ average expected scores also increase up to 3 which indicates “proficient level”, 

not 4, “advanced level”. Further information of the fitted models and individual teachers’ EPL 

are evaluated and discussed in Chapter 4. 



61 

 

 
 From the left to the right, each curve represents advanced, proficient, partially proficient, and basic respectively.  

 Intersections of the curves represent the thresholds   

 3,000 random sample 

Figure 3-12. Student characteristic curve of the EPERF-P1PL with the compact set of indicators by grade (Mathematics);  
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 Each mark represents an individual teacher 

 Brightness of the marks represents the average students’ challenge index (The more saturated the gray, the higher the 

average challenge levels) 

 Red lines represent the expected score given EPL when student challenge index=0 

Figure 3-13. Teacher characteristic curve of the EPERF-P1PL with the compact set of indicators by grade (Mathematics)
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3.3.2. EPROF-based Teacher Effect Estimation  

Based on the covariate adjustment model in Equation 2-3, individual teachers’ random 

effects and average residuals were computed respectively. For random effect estimation, multi-

level models were constructed considering students as level-1 and teachers as level-2. Each 

teacher’s random effect of intercept, after controlling student background variables, was 

estimated using maximum-likelihood estimation. For average residual estimation, student-level 

residuals when predicting achievement on a set of student background variables were averaged 

by each teacher. The mean of the student residuals was regarded a teacher’s value-added 

measure. Last, using student gain scores as outcome variables, teacher fixed effects were 

computed. A large set of teacher dummy variables was included, and the coefficients associated 

with each teacher dummy variables were considered individual teachers’ value-added measures 

on their students’ gain scores. Students’ IRT-scale scores from the state test were used as the 

outcome variable of the EPROF-based model. IRT-scale scores’ distributions are shown in Table 

3-9. 

 

Table 3-9. Student IRT-scaled scores on the 2011 state test (by grade and subject)  

 Mathematics Reading 

 M SD Min Max 
Skew

-ness 
M SD Min Max 

Skew

-ness 

Grade 4 .97 1.10 -5.09 6.24 .64 1.06 1.15 -5.12 4.91 .01 

Grade 5 1.07 .92 -2.11 6.55 .89 1.16 1.17 -4.85 5.26 .11 

Grade 6 1.20 1.04 -3.35 6.68 .76 .96 1.23 -5.12 4.82 .26 

Grade 7 .68 .93 -4.78 6.15 .78 1.29 1.02 -4.44 5.44 .04 
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3.4. Comparison between the EPL and VAM estimates 

The teacher effect estimates from the educator performance function (EPEFR)-based 

method, educator performance levels (EPL), and those from the education production function 

(EPROF)-based method, value-added measures (VAM), were compared using the following 

three aspects: 1) distributions and rank of teacher effect estimates; 2) relationship of the 

estimates to different student characteristics; and 3) consistency of the estimates between 

different subjects.   

First, the distributions and rank correlations of different teacher effects were compared in 

order to check how consistently the models rank the individual teachers. It is expected that the 

EPL and VAM are moderately and positively correlated. If the correlation is too high, it may be 

concluded that the EPL is not differentiated from the VAM in terms of their resulting teacher 

ranking, and that the unique information of the teacher capability that the EPERF-based method 

provides over the EPROF-based method is small. Contrarily, if the correlation is too low, 

criterion validity evidence of the EPL may be threatened.  

Second, how the EPL and VAM estimates were associated with major student 

background variables or with teacher background variables, were investigated. For example, the 

better teacher effect estimates are expected to not be highly correlated with any student 

characteristic, and to be correlated with relevant teacher qualifications or characteristics.  

Last, intra-person (teacher) rank correlations were monitored within each model as 

measures of consistency. The extent to which estimates of each individual teacher change across 

different subjects (mainly in elementary schools) or different classrooms (mainly in secondary 

schools), was evaluated. Correlations are expected to be moderate or high rather than very low, 
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under the assumption that teacher capability is stable or gradually changes over the years rather 

than dramatically improves or declines.  

 

3.5. Examination of the Model Fits of the EPERF 

 

For evaluation of the model fit of the educator performance function (EPERF), the 

following four subtopics are addressed: (1) fit of the logistic regression models; (2) conditional 

independence of students; and (3) dependency of student success for the same teacher.  

First, it is necessary to check on how well data on students’ successes or failures fit the 

EPERFs. The following three indicators were used to evaluate the goodness of fit of the EPERFs: 

(1) student-level residuals; (2) teacher-level residuals; and (3) error rate (Gelman & Hill, 2007; 

Hosmer et al., 1997).  For student-level residuals, individual students’ deviances between their 

observed performance and predicted probabilities of succeeding were averaged within each 

homogenous group; this group was determined according to either similar challenge levels or 

similar predicted probability of succeeding, as shown in Equation 3-3. The residuals for g student 

groups were plotted.    

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑔 =
∑ [𝑂𝑖𝑔 − 𝑃𝑖𝑔(�̂�𝑗)]

2𝑁𝑔

𝑛=1

𝑁𝑔
 

 

Equation 3-3 

𝑁𝑔, number of students in group g  

𝑂𝑖𝑔, observed performance of i-th student in group g (0 or 1) 

𝑃𝑖𝑔(𝜃𝑗), expected probability that i-th student in group g successes given teacher j’s 

estimated  EPL, 𝜃𝑗 which is predicted from teacher j’s fitted EPERF 
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For teacher-level residuals, the mean of deviations between students’ observed 

performance and their expected probability of succeeding based on the EPERF was computed for 

each teacher as shown in Equation 3-4. Basically, it is inversely proportional to how many 

students per teacher on average showed the expected performance predicted from each EPERF, 

given the student’s CI. If a teacher’s EPERF perfectly fits the data, the residual will be ‘0’. 

Teacher-level residuals by the level of EPERF also were plotted and checked to see if any 

noticeable pattern exists. In line with that, the assumption of monotonically increasing 

probability along with the increasing estimated EPL can be monitored.  

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑗 =
∑ [𝑂𝑖𝑗 − 𝑃𝑖(𝜃𝑗)]

2𝑁𝑗

𝑛=1

𝑁𝑗
 

 

Equation 3-4 

𝑁𝑗, number of students worked with teacher j  

𝑂𝑖𝑗 , observed performance of student i worked with teacher j (0 or 1) 

𝑃𝑖(�̂�𝑗), expected probability that student i in teacher j’s class successes 

given teacher j’s estimated  EPL, 𝜃𝑗 which is predicted from its 

fitted EPERF 

 

 

The error rate indicates the proportion of cases for which the fitted model’s prediction is 

wrong. That is, for the dichotomous case, if 𝑂𝑖=1 but the predicted probability is smaller than 

0.5, or if 𝑂𝑖=0 but the predicted probability is larger than 0.5, the case is counted as a 

misclassification. This rule is represented in Equation 3-5. The error rate was compared to that of 

the null model, which is simply to assign the same probability to each case without any predictor, 

and so the error rate of the null model is the proportion of 1’s in the data, P=∑ 𝑂𝑖
𝑁
𝑖=1 𝑁⁄  or its 

compensation of 1, whichever is smaller. For the polytomous case, the expected scores were 

used for obtaining the error rate, shown in Equation 3-6.  
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𝐸𝑅𝑗(𝑑𝑖𝑐ℎ𝑜𝑡𝑜𝑚𝑜𝑢𝑠) = ∑ 𝑚𝑖𝑗

𝑁

𝑖=1

𝑁𝑗⁄  

 

𝑚𝑖𝑗 = 1,   if  𝑃𝑖(�̂�𝑗) > 0.5 & 𝑂𝑖𝑗 = 0  or   

𝑃𝑖(�̂�𝑗) < 0.5 & 𝑂𝑖𝑗 = 1 

𝑚𝑖𝑗 = 0, otherwise 

Equation 3-5 

 

𝐸𝑅𝑗(𝑝𝑜𝑙𝑦𝑡𝑜𝑚𝑜𝑢𝑠) = ∑ 𝑚𝑖𝑗

𝑁

𝑖=1

4𝑁𝑗⁄  

 

𝑚𝑖𝑗 = 1,   if  (𝐸𝑖(�̂�𝑗) < 1.5) & (𝑂𝑖𝑗 > 1) or   

 (1.5 ≤ 𝐸𝑖(𝜃𝑗) < 2.5) & (𝑂𝑖𝑗 = 1, 3, 𝑜𝑟 4 ) 𝑜𝑟  

 (2.5 ≤ 𝐸𝑖(𝜃𝑗) < 3.5) & (𝑂𝑖𝑗 = 1, 2, 𝑜𝑟 4 ) 𝑜𝑟 

  (𝐸𝑖(�̂�𝑗) ≥ 3.5) & (𝑂𝑖𝑗 < 4) 

𝑚𝑖𝑗 = 0, otherwise 

Equation 3-6 

 

 

 

Second, conditional independence of student successes within each teacher was evaluated 

applying the concept of Yen’s 𝑄3 (1984). Basically, the 𝑄3-index is a measure of dependency 

among the item-level residuals. When conditional independence is true, the expected distribution 

of 𝑄3 is normal with a mean of 0 and a variance of 1/(𝑁 − 3), where N is the number of 

students. In the context of the EPERF, because each student is assigned to only one teacher or at 

most to two or three, in each subject-matter, 𝑄3 cannot be computed in the usual way such as 

when each item is administered to all examinees or at least multiple examinees. In order to 

approximate the 𝑄3-like-index in this context, students were divided into 50 quantile groups or 

25 quantile groups according to their challenge index, so that students in the group were regarded 

as the same difficulty items, that is, approximately equally-challenging students. As shown in 

Equation 3-7, each student’s residual, 𝑑𝑖𝑗 , was obtained first, and the residuals were averaged by 
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each teacher and each quantile group. Then, the correlations of the teacher-level residuals 

between different quantile groups were computed, and the distribution of the resulting 1,225 

(=50 × 45/2), or 300 (=25 × 24/2) correlation coefficients was observed.  

 

𝑑𝑖𝑗 = 𝑂𝑖𝑗 − 𝑃𝑖(𝜃𝑗) 

𝑑𝑔𝑗 = ∑ 𝑑𝑖𝑗  /𝑁𝑔𝑗
𝑁𝑔𝑗

1   

𝑄3𝑔𝑔′ = 𝑐𝑜𝑟𝑟 (𝑑𝑔, 𝑑𝑔′) 

Equation 3-7 

𝑑𝑖𝑗𝑔 is a residual for a student i working with teacher j in the g-th quantile group  

 

Lastly, dependency among the student success for the same teacher was approximated by 

conditional intra-class correlation or residual intra-class correlation 𝜌 of the student success 

(Rabe-Hesketh & Skrondal, 2011). 

 

𝜌 ≡ 𝐶𝑜𝑟(𝜉𝑖𝑗 , 𝜉𝑖′𝑗) =
𝜓

𝜓 + 𝜋2/3
 

Equation 3-8 

 

For the VAM-RE, regular conditional intra-class correlation (Rabe-Hesketh & Skrondal, 

2011; Raudenbush & Bryk, 2002) was computed according to Equation 3-9.  

 

𝜌 ≡ 𝐶𝑜𝑟(𝑦𝑖𝑗 , 𝑦𝑖′𝑗) =
𝜓

𝜓 + 𝜃
 

Equation 3-9 
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3.6. Effects of Locations of Cut-scores and the Number of Performance Categories  

 

How the locations of cut-scores and the number of performance categories in a test affect 

the educator performance function (EPERF)-based teacher effect estimation were simulated with 

real data. First, in order to examine the effect of the locations of cut-scores, several scenarios 

were planned depending on different proportions of students divided into each category. In the 

case of dichotomous performance categories, only one cut-score for each scenario was fixed to a 

score-point, which breaks the students into the two groups, i.e., non-mastery and mastery, in the 

ratio of 7:3, 6:4, 5:5, 4:6, or 3:7 (five scenarios) in order of their rank of achievement scores. To 

be concrete, at first students were grouped in 10 quantile categories based on their mathematics 

scores, the quantile categories were merged to make the two groups according to the above ratios. 

Likewise, in the case of four performance categories, three cut-scores for each scenario were set 

to the three score-points, which divides the students into the four groups, i.e., not proficient, 

partially proficient, proficient, and advanced, in the ratio of 4:3:2:1, 3:3:2:2, 3:3:3:1, 2:3:4:1, 

1:4:4:1, 1:3:5:1, 2:2:4:2, or 1:2:5:2: (eight scenarios) in order of their rank of achievement scores. 

Proportions were decided considering practicality. The major concern in these simulations is 

how the ranks of the teacher effect estimates change across different scenarios. The intra-person 

correlation of teacher effect estimates between different scenarios, and whether there are teachers 

whose estimates substantially shift across different scenarios, were observed.    

Regarding the number of performance categories, the four scenarios – the cases of 

existing six, seven, eight, and ten performance categories – were evaluated, in addition to the 

cases of two and four performance categories in the original data. Data already defined the four 

performance categories, and each two adjacent categories, that are basic and partially proficient, 
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and proficient and advanced, respectively were merged into one to create the two performance 

category case. For the six-category scenario, students grouped according to the original 

dichotomous categories were divided into three groups within each category in equal proportion, 

which created six groups. For the eight-category scenario, students grouped according to the 

original four categories were divided into two groups within each category in equal proportion, 

which produced eight groups. For the seven-category scenario, the two highest performance 

categories in the eight-category scenario, were merged into one group. For the ten-category 

scenario, students grouped in the two-category case were divided into five groups within each 

category in the same proportion, which created ten groups. The secondary interest is correlation 

between estimated teacher effects and student prior test scores in each scenario. That is, whether 

the increasing number of performance categories mitigates any potential association between 

teacher effect estimates and assigned students’ prior achievement, was investigated.  
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CHAPTER 4.  COMPARISONS OF THE TEACHER EFFECT ESTIMATES 

 

In this chapter, results from the educator performance function (EPEFR)-based method 

and the educational production function (EPROF)-based method, are compared with respect to 

the following three aspects: (1) distributions and rank of teacher effect estimates; (2) relationship 

of the estimates to different student and teacher characteristics; and (3) consistency of the 

estimates between different contexts. At the end of this chapter, supplementary information on 

the estimated educator performance level (EPL) that the EPERF-based method produced, which 

is potentially advantageous over using the EPROF-based method, is also elucidated. 

 

4.1. Distribution and Rank Correlation  

 

Descriptive statistics of the estimated teacher effects - the educator performance levels 

(EPLs) from the four EPERF-based models and the value-added measures (VAMs) from the 

three EPROF-based models - are displayed in Table 4-1 for mathematics and Table 4-2 for 

reading. Also, rank correlations of estimates between models were observed to check how 

consistently the models rank the teachers. The EPL estimates resulting from using the OLS 

weighted challenge index (CI) with a compact set of indicators were presented in this chapter. 

They almost matched those resulting from using the OLS weighted CI with a full set of 

indicators. And the IRT calibrated CI was not considered as a reasonable approximation of 

student challenge level (see Figure 3-2).    

The means of the EPL from dichotomous outcomes (EPL-D1PL and EPL-D2PL) are 

smaller than 0 in mathematics, and larger than 0 in reading, while other estimates’ means are 0. It 
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needs to be noticed that the means of EPL-D1PL and EPL-D2PL were adjusted by the scale of 

the students’ CI, instead of being set arbitrarily by each regression model. In the EPERF-based 

methods with dichotomous outcomes, for example, the -.3 mean of teachers’ EPL in Grade 4 

mathematics refers to the .5 probability that average teachers will have success in helping their 

students with CI of -.3 to pass a desired proficiency level. Likewise, the .3 mean of teachers’ 

EPL in reading indicates that the probability that average teachers will have success in helping 

students with CI of .3 to pass a desired standard is .5. Accordingly, supposing that students’ CIs 

are fixed, the probability that average teachers are successful in helping students obtain the 

proficiency level in mathematics is higher than in reading. For the EPERF-based methods with 

polytomous outcomes (EPL-P1PL and EPL-P2PL), the interpretation can be made by each 

category based on the estimated thresholds, as discussed further in section 4.5.  

Meanwhile, the mean of VAM is assigned to the average teachers whose average students’ 

test scores increased as much as did other teachers’ average students.3 From regression models 

used for obtaining VAMs, the average students represent those whose values on a set of 

background variables used as covariates are average for all students involved; and the average 

gain of test scores indicates average difference scores in the tests.   

Estimated variances of teacher effects are very similar among the different models. Variance in 

mathematics tended to be marginally larger in the EPL, particularly in the case of using 

polytomous categories. Variances in reading were substantially smaller compared to 

mathematics, and tended to be larger in the VAM than in the EPL. The amount of variation in the 

EPL using the four performance categories as an outcome was close to those in the VAM using 

                                                 
3 Raudenbush & Jean (October, 2012) How should educators interpret value-added scores? 

Carnegie Knowledge Network Knowledge Brief. See 

http://www.carnegieknowledgenetwork.org/briefs/value-added/interpreting-value-added/ 

http://www.carnegieknowledgenetwork.org/briefs/value-added/interpreting-value-added/
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test scores treated as a continuous variable, which suggests the possibility of using categorical 

performance standards as reasonable approximation of teachers’ outcomes resulting from 

working with students.  

Rank correlations between the EPL estimates and the VAM estimates were fairly high for 

all the cases (see Table 4-1 for mathematics and Table 4-2 for reading). Since some previous 

studies have shown that gain scores are not reliable measures of growth (Bonate, 2000), and that 

using gain scores for computing VAM is not consistent (Papay, 2011), VAM estimates using 

gain scores (VAM-GA) were not seriously considered for the comparison. Rank correlations 

between the VAM estimates and the EPL estimates using the dichotomous performance 

categories ranged from .81to .86 in mathematics, and ranged from .59 to .79 in reading. For the 

EPL estimates using the four performance categories, rank correlations with the VAM estimates 

were at least .88 in mathematics and .82 in reading. In addition, no noticeable outliers were 

found according to the scatter plots in all grades (see Figure 4-1 and Figure 4-2 for example in 

Grade 5). Again notice that variances of the EPL estimates when using dichotomous categories 

in reading were smaller than the VAM estimates. The EPERF-based method using polytomous 

outcomes and the EPROF-based method appeared to produce consistent rankings of teachers 

both in mathematics and reading.  

Ranking of teachers was almost perfectly correlated between the EPL-D1PL and EPL-

D2PL, and between the EPL-P1PL and EPL-P2PL. Differences in model fit between the 1PL and 

2PL models were also small in consideration of the large number of students in each model (see 

Table 5-1 in section 5.1), although they were statistically significant. As this marginal random 

effect of the slope implies that individual teachers were not very different from each other in 
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Table 4-1. Descriptive statistics and rank correlations of teachers’ EPL and VAM estimates in mathematics  

Elementary 
Grade 4 (N=1,750) Grade 5 (N=1,758) 

Rank correlations (Grade 4 on the lower diagonal; 

Grade 5 on the upper diagonal) 

M SD Min Max M SD Min Max 1. 2. 3. 4. 5. 6. 7. 

1. EPL-D1PL -.30 .23 -1.34 .92 -.37 .27 -1.68 .49  .99 .90 .91 .85 .84 .63 

2. EPL-D2PL -.30 .23 -1.61 1.21 -.37 .28 -2.08 .44 .99  .92 .85 .85 .84 .64 

3. EPL-P1PL .00 .23 -1.12 1.15 .00 .28 -1.52 1.00 .88 .88  .99 .92 .91 .68 

4. EPL-P2PL .00 .22 -1.06 .96 .00 .26 -1.22 1.05 .89 .89 .99  .92 .91 .68 

5. VAM-RE .00 .20 -1.12 1.03 .00 .20 -1.01 .91 .83 .82 .92 .92  .99 .73 

6. VAM-AR .00 .26 -1.41 1.23 .00 .24 -1.12 1.11 .82 .82 .92 .92 .99  .76 

7. VAM-GA .00 .26 -1.58 1.26 -.01 .27 -1.62 1.08 .81 .81 .90 .90 .97 .98  

N. of students 31.6 16.7 11 115 40.4 22.9 11 156        

Secondary 
Grade 6 (N=1,731) Grade 7 (N=1,698) 

Rank correlations (Grade 6 on the lower diagonal;  

Grade 7 on the upper diagonal) 

M SD Min Max M SD Min Max 1. 2. 3. 4. 5. 6. 7. 

1. EPL-D1PL -.30 .23 -1.34 .45 -.62 .23 -1.75 .53  .99 .87 .89 .83 .82 .66 

2. EPL-D2PL -.29 .23 -1.43 .45 -.62 .24 -2.04 .51 .99  .86 .89 .83 .81 .66 

3. EPL-P1PL .00 .25 -1.18 1.01 .00 .24 -1.44 1.20 .90 .89  .99 .92 .90 .70 

4. EPL-P2PL .00 .24 -1.06 .82 .00 .23 -1.19 1.16 .91 .91 .99  .91 .89 .69 

5. VAM-RE .00 .21 -.93 .99 .00 .18 -.86 .97 .86 .85 .92 .92  .99 .77 

6. VAM-AR .00 .23 -1.11 1.13 .00 .20 -.90 1.14 .83 .83 .89 .88 .99  .81 

7. VAM-GA .00 .23 -1.33 .91 .00 .21 -1.16 1.12 .80 .80 .85 .85 .92 .94  

N. of students 82.2 42.4 11 282 90.3 41.9 11 224        

1. EPL-D1PL: EPL using dichotomous outcome with random intercept;  

2. EPL-D2PL: EPL using dichotomous outcome with random intercept and random slope;  

3. EPL-P1PL; EPL using polytomous outcome with random intercept;  

4. EPL-P2PL: EPL using polytomous outcome with random intercept and random slope; 

5. VAM-RE: VAM with random teacher effects;  

6. VAM-AR: VAM with average residual by teacher; 

7. VAM-GA: VAM with gain scores   
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Table 4-2. Descriptive statistics and rank correlations of teachers’ EPL and VAM estimates in reading 

Elementary 
Grade 4 (N=1,940) Grade 5 (N=2,039) 

Rank correlations (Grade 4 on the lower diagonal; 

Grade 5 on the upper diagonal) 

M SD Min Max M SD Min Max 1. 2. 3. 4. 5. 6. 7. 

1. EPL-D1PL .67 .05 .39 .88 .57 .06 .13 .75  .88 .81 .80 .70 .68 .57 

2. EPL-D2PL .66 .08 .43 1.3 .56 .07 -.34 .80 .90  .70 .68 .60 .59 .50 

3. EPL-P1PL .00 .15 -.68 .81 .00 .15 -1.07 .42   .82 .72  .99 .84 .82 .70 

4. EPL-P2PL .00 .14 -.65 .79 .00 .11 -1.02 .39 .84 .73 .99  .84 .82 .70 

5. VAM-RE .00 .14 -.64 .84 .00 .11 -079 .37 .70 .60 .88 .88  .99 .80 

6. VAM-AR .00 .24 -1.07 1.12 .00 .21 -1.35 .96 .69 .60 .87 .87 .99  .83 

7. VAM-GA .00 .25 -1.38 1.40 .00 .23 -1.81 .81 .54 .54 .70 .69 .78 .81  

N. of students 36.0 37.6 11 336 39.9 28.3 11 214        

Secondary 
Grade 6 (N=2,226) Grade 7 (N=1,986) 

Rank correlations (Grade 6 on the lower diagonal;  

Grade 7 on the upper diagonal) 

M SD Min Max M SD Min Max 1. 2. 3. 4. 5. 6. 7. 

1. EPL-D1PL .33 .06 .06 .55 .38 .05 .18 .54  .98 .87 .88 .78 .77 .37 

2. EPL-D2PL .33 .07 .07 .68 .38 .04 .17 .53 .99  .84 .85 .75 .73 .36 

3. EPL-P1PL .00 .20 -.91 .70 .00 .14 -.60 .62 .88 .87  .99 .91 .88 .41 

4. EPL-P2PL .00 .20 -.89 .66 .00 .14 -.59 .59 .89 .88 .99  .90 .88 .41 

5. VAM-RE -.02 .18 -.79 .75 .00 .11 -.42 .55 .79 .79 .91 .92  .98 .46 

6. VAM-AR -.01 .25 -1.19 .85 -.01 .25 -1.19 .85 .77 .75 .89 .89 .99  .50 

7. VAM-GA -.01 .24 -1.54 .90 .02 .21 -.96 .71 .64 .63 .76 .76 .85 .88  

N. of students 79.5 46.4 11 283 93.8 46.7 11 267        

1. EPL-D1PL: EPL using dichotomous outcome with random intercept;  

2. EPL-D2PL: EPL using dichotomous outcome with random intercept and random slope;  

3. EPL-P1PL; EPL using polytomous outcome with random intercept;  

4. EPL-P2PL: EPL using polytomous outcome with random intercept and random slope; 

5. VAM-RE: VAM with random teacher effects;  

6. VAM-AR: VAM with average residual by teacher;  

7. VAM-GA: VAM with gain scores   
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Figure 4-1. Scatter plots of the EPL and VAM estimates (Grade 5, Mathematics) 
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Figure 4-2. Scatter plots of the EPL and VAM estimates (Grade 5, Reading)
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their slope estimates, more parsimonious EPERF-1PL models may be preferred. Model fit and 

relevant issues in model selection are discussed further in Chapter 5. 

 

4.2. Relationship to Student and Teacher Characteristics  

 

How the teacher effect estimates were associated with some key student and teacher 

background variables was observed focusing on mathematics. For the properties of quality 

teacher effectiveness measures, the estimates are expected not to be dependent on their students’ 

characteristics, but are rather dependent on reasonable teacher quality indicators, which may 

provide criterion validity evidence. Because the teacher effect estimates are highly correlated 

with each other, as shown in the previous section, it was expected that their relationships to 

student or teacher characteristics were not considerably different from each other.  

 

4.2.1. Relationship to Student Characteristics  

For the relationship to student characteristics, several student background variables were 

averaged across students by teacher, and the aggregated data of the teacher-level were used for 

relevant analyses. Bivariate correlations between each teacher effect estimate and their average 

student backgrounds are shown by grade-level in Table 4-3. Overall, the correlations tended to 

be higher in Grades 6 and 7 (secondary schools in the bottom rows) than in Grades 4 and 5 

(elementary schools in the top rows), and to be lower in the EPERF-based teacher effects using 

dichotomous outcomes (EPL-D1PL and EPL-D2PL) than in those using polytomous outcomes 

(EPL-P1PL and EPL-P2PL), or than in the EPROF-based teacher effects (VAM-RE and VAM-

AR).  
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First, the teacher effect estimates were positively associated with the average prior and 

outcome achievement of students, as well as the proportion of students classified at the proficient 

level, and the degree of associations was slightly weaker in the EPL than in the VAM. For 

example, while the correlations with prior achievement ranged from .11 to .37 for the VAM, 

those fell to between .04 and .36 for the EPL. The correlations with the outcome achievement in 

both EPL and VAM were significantly higher, ranging from .56 and .69 for the VAM, and 

from .43 to .63 for the EPL.  

Second, the teacher effect estimates were negatively associated with the average 

challenge index (CI) of students, which implies that the higher teachers’ effect estimates were, 

the lower the average CI of their students were. The correlations to the average CI of students 

were -.05 to -.37 in the EPLs, which tended to be weaker than those in the VAM, which ranged 

from -.12 to -.38. The proportion of the economically-disadvantaged showed similar patterns. 

Note that the economically-disadvantaged group indicator was one of the CI indicators. Last, 

associations with the number of students and with the proportion of female students were small.  

In order to investigate whether the composition of students who worked with each 

teacher can predict their teachers’ estimated effects, the teacher effect estimates were regressed 

by a set of student background variables. Those variables were aggregated at the teacher-level, so 

that each variable represented classroom composition rather than individual student 

characteristics. The results are displayed in Tables 4-4 for elementary schools and 4-5 for 

secondary schools. Because the results were very similar between EPL-D1PL and EPL- D2PL, 

between EPL-P1PL and EPL-P2PL, and between VAM-RE and VAM-AR, only those of EPL-

D1PL, EPL-P1PL, and VAM-RE are displayed.  
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Results show that it is not easy to find any consistent or common pattern of the 

coefficients across different grades and estimates. A distinct observation is that the proportion of 

economically disadvantaged students was a strong and negative predictor of all three teacher 

effect estimates at every grade-level, after controlling for other student background variables. In 

contrast, the proportion of limited English proficient students was positively associated with the 

teacher effect estimates, except Grade 7. This may be because Asian students who show high 

performance in mathematics are likely to be classified as LEP students at the beginning of their 

immigration. The effects of the proportion of Asian students on the teacher effect estimates were 

significant in Grade 4 and Grade 7. Prior test score was a significant positive predictor of the 

VAM-RE estimate in Grade5-7, and of the EPL-D1PL estimates in Grade 6 and Grade 7. Prior 

test scores were associated weakly with the EPL-D1PLestimates, either positively or negatively.  

The t-values corresponding to the student background variables, such as free/reduced 

lunch, targeted assistant program, and limited English proficiency, which were listed as student 

CI indicators, tended to be smaller in the EPL estimates than in the VAM estimates. Looking at 

the R-squares, the cases of the EPL-D1PL tended to have lower R-square values than the EPL-

P1PL or the VAM. While the set of student background variables explained the 7-19% variance 

of the VAM estimates and the 5-21% of the EPL-P1PL estimates, those accounted for only half 

of the variance in the EPL-D1PL. With respect to the school levels, student characteristics 

explained better the secondary school teachers’ effect estimates by more than twice those of the 

elementary school teachers’. More dynamic relationships between each teacher effect estimate 

and student background variables needs to be examined further. 
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Table 4-3. Correlations between teacher effect estimates and student background variables in mathematics  

Student background variables 
EPL VAM 

D1PL D2PL P1PL P2PL RE AR 

                                                           Elementary (Grade 4, Grade 5) 

Average prior test-scores  (.08, .16) (.04, .14) (.12, .21) (.12, .20)  (.14, .23) (.11, .17) 

Average outcome test-scores (.46, .54) (.43, .53) (.54, .62) (.54, .61)  (.58, .67) (.56, .62) 

Proportion of proficient students  (.59, .66) (.56, .64) (.57, .65) (.57, .64)  (.56, .63) (.53, .59) 

Average CI of students  (-.08, -.17) (-.05, -.15) (-.13, -.22) (-.13, -.20)  (-.15, -.24) (-.12, -.18) 

Proportion of female (-.03, .05) (-.02, .05) (-.03, .04) (-.03, .04 ) (-.02, .03) (-.02, .03) 

Proportion of economically-

disadvantaged group  
(.-15, -.20) (-.13, -.19) (-.20, -.26) (-.19, -.24)  (-.20, -.25) (-.17, -.18) 

N. of students (-.01, .01) (-.01, -.02) (-.01, .02) (-.02, .03) (-.03, .00) (-.03, -.01) 

                                                          Secondary (Grade 6, Grade 7) 

Average prior test-scores (.23, .25) (.22, .23) (.36, .34) (.35, .33) (.37, .34) (.29, .26) 

Average outcome test-scores (.51, .51) (.50, .48) (.64, .62) (.63, .61) (.67, .64) (.60, .57) 

Proportion of proficient students (.41, .59) (.40, .57) ( .66, .62) (.66, .62) (.38, .63) (.58, 57) 

Average CI of students  (-.24, -.26) (-.23, -.23) (-.37, -.34) (-.36, -.33) (-.38, -.34) (-.29, -.26) 

Proportion of female (-.01, -.06) (-.01, -.06) (-.01, -.06) (-.00, -.06) (-.04, -.04) (-.05, -.05) 

Proportion of economically 

disadvantaged group  
(-.17, -.23) (-.16, -.21) (-.41, -.37) (-.40, -.37) (-.22, -.35) (-.25, -.25) 

N. of students (.01, .02) (.01, .01) (.03, .05) (.04, .06) (.00, 01) (-.02, .00) 
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Table 4-4. Regression of teacher effect estimates on the average student background variables in 

mathematics (Elementary) 

Grade 4  
EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Economically- 

disadvantaged 
-.16 (.04) -4.20 -.16 (.04)  -4.10 -.14 (.03) -4.35  

Free/reduced lunch  -.02 (.02) -.71 -.02 (.02) -1.03 -.05 (.02) -2.51 

Targeted assistant 

program  
.04 (.03) 1.58 .11 (.03) 4.19 .08 (.02) 3.51 

Special education -.07 (.16) -.46 .01 (.16) .03 -.06 (.14) -.41 

Limited English 

proficiency 
.15 (.06) 2.53 .13 (.06) 2.14 .16 (.05) 2.98 

Disability -.04 (.15) -.24 -.16 (.15) -1.09 -.08 (.13) -.62 

Prior test score  -.02 (.02) -1.32 -.01 (.02) -.91 .00 (.01) .20 

Proportion of female -.07 (.06) -1.10 .07 (.06) -1.22 -.03 (.05) -.63 

Proportion of Asian .22 (.11) 1.98 .38 (.10) 3.50 .30 (.10) 3.12 

Proportion of Black .03( .02) 1.44 -.01 (.02) -.39 .07 (.02) 3.18 

Proportion of Hispanic -.04 (.06) -.58 -.08 (.06) -1.31 -.06 (.05) -1.19 

R-square .033 .062 .071 

Adjusted R-square .027 .056 .065 

Grade 5 
EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Economically-

disadvantaged 
-.11 (.05) -2.10 -.16 (.05) -3.39 -.12 (.04) -3.60 

Free/reduced lunch  -.10 (.03) -3.17 -.07 (.03) -2.44 -.07 (.02)  -3.34 

Targeted assistant 

program  
-.00 (.03) -.00 -.00 (.03) -.10 .04 (.02) 1.72 

Special education .23 (.21) 1.09 .18 (.21) .87 .20 (.15) 1.34 

Limited English 

proficiency 
.27 (.08) 3.18 .24 (.08) 2.92 .21 (.06) 3.57 

Disability -.19 (.21) -.91 -.25 (.21) -1.21 -.17 (.15) -1.11 

Prior test score  .02 (.02) 1.47 .03 (.02) 1.72 .04 (.01) 3.90 

Proportion of female .15 (.07) 2.14 .11 (.07) 1.53 .05 (.05) 1.06 

Proportion of Asian -.04 (.14) -.28 .03 (.14) .24 -.05 (.10) -0.48 

Proportion of Black -.05 (.03) -1.81 -.07 (.03) -2.27 .04 (.02) 2.22 

Proportion of Hispanic .02 (.07) .30 -.04 (.07) -.54 -.00 (.05) -.01 

R-square .060 .083 .089 

Adjusted R-square .054 .077 .083 
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Table 4-5. Regression of teacher effect estimates on the average student background variables in 

mathematics (Secondary) 

Grade 6 
EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Economically- 

disadvantaged 
-.21 (.04) -5.39 -.19 (.04)  -4.85 -.13 (.03) -3.88  

Free/reduced lunch  -.03 (.02) -1.27 -.02 (.02) -.74 -.07 (.02) -3.98 

Targeted assistant 

program  
.06 (.03) 1.82 .08 (.03) 2.38 .10 (.03) 3.39 

Special education -.24 (.22) -1.13 -.30 (.23) -1.32 -.25 (.19) -1.30 

Limited English 

proficiency 
.20 (.07) 2.73 .20 (.08) 2.54 .21 (.06) 3.19 

Disability .14 (.21) .68 .15 (.22) .69 .19 (.19) 1.02 

Prior test score  -.01 (.01) -.51 .05 (.01) 3.30 .07 (.01) 6.13 

Proportion of female .01 (.06) .30 .03 (.06) .43 -.08 (.05) -1.42 

Proportion of Asian .17 (.11) 1.54 .17 (.12) 1.50 .21 (.10) 2.17 

Proportion of Black -.09( .02) -3.82 -.15 (.02) -6.00 .01 (.02) 0.62 

Proportion of Hispanic -.20 (.06) -3.53 -.25 (.06) -4.41 -.10 (.05) -1.97 

R-square .130 .216 .187 

Adjusted R-square .125 .211 .181 

Grade 7 
EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Economically- 

disadvantaged 
-.14 (.04) -3.56 -.20 (.04) -5.09 -.14 (.03) -4.63 

Free/reduced lunch  -.04 (.02) -1.56 -.02 (.02) -.68 -.03 (.02)  -1.73 

Targeted assistant 

program  
.02 (.04) .49 .02 (.04) .65 .08 (.03) 3.09 

Special education -.22 (.21) -.1.02 -.13 (.21) -.65 -.04 (.15) -.27 

Limited English 

proficiency 
.05 (.06) .77 .05 (.06) .83 .07 (.04) 1.56 

Disability .22 (.21) 1.07 .09 (.21) .41 .09 (.15) .58 

Prior test score  .03 (.01) 1.90 .03 (.01) 2.43 .06 (.01) 6.04 

Proportion of female -.12 (.06) -2.06 -.15 (.06) -2.57 -.08 (.04) -1.78 

Proportion of Asian .57 (.12) 4.93 .71 (.11) 6.29 .54 (.08) 6.46 

Proportion of Black -.04 (.03) -1.55 -.06 (.03) -2.54 .07 (.02) 3.97 

Proportion of Hispanic -.04 (.06) -.78 -.03 (.05) -.55 .03 (.04) .79 

R-square .112 .181 .183 

Adjusted R-square .106 .176 .177 
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4.2.2. Relationship to Teacher Characteristics 

Several available teacher background or qualification variables were used to predict the 

teacher effect estimates; the results are shown in Table 4-6 for elementary schools and Table 4-7 

for secondary schools. As displayed, it appears that no variable predicted either the EPL or the 

VAM estimates with reliability and reasonableness. Looking at the R-squares, the set of 

variables explained less than 2% of variance in the estimates.  

In mathematics in elementary schools, teachers possessing advanced degrees such as 

masters or doctorates appeared to achieve higher scores in their VAM and EPL than those who 

did not. This did not hold in secondary schools. Studies on teacher quality or teaching quality has 

demonstrated that while most teacher credentials or qualifications are not related to student 

achievement (e.g., Buddin, Zamarro, 2009; Kane et al, 2008), teaching experience is often 

considered to matter (e.g., Clotfelter, Ladd & Vigdor, 2007; Rockoff, 2004). Surprisingly, 

number of years of teaching associated negatively with the teacher effect estimates, which was 

consistent in elementary schools, except for the EPL-P1PL estimates for Grade 5 teachers. Only 

in the EPL-P1PL estimates for Grade 7 teachers did number of years of teaching predicted the 

teacher effect.  

 

 

 

 

 

 

 



85 

 

Table 4-6. Regression of the teacher effect estimates on the teacher background variables in 

mathematics (Elementary) 

Grade 4  

(N=1,234) 

EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Female -.010 (.018) -0.56 -.008 (.017)  -.91 -.005 (.015) -.30  

Advanced degree .032 (.014) 2.29 .008 (.017) 1.73 .019 (.015) 1.28 

Hrs. professional 

development 
.000 (.000) .044 .000 (.000) .54 .000 (.000) -.64 

Credentials       

Professional -.121 (.086) -1.41 -.107 (.091) -1.17 -.116 (.078) -1.48 

Provisional -.126 (.086) -1.47 -.073 (.087) -1.07 -.115 (.078) -1.47 

Years of teaching -.003 (.001) -3.41 -.000 (.000) -.31 -.001 (.001) -1.23 

Adjusted R-square .003 .003 .005 

Adjusted R-square .008 .000 .012 

Grade 5 

(N=1,308) 

EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Female .009 (.017) 0.52 .002 (.017) .12 .006 (.013) .41 

Advanced degree .047 (.016) 2.91 .016 (.016) 2.48 .037 (.012)  3.13 

Hrs. professional 

development 
-.000 (.000) -.66 -.000 (.000) -.19 .000 (.000) -.11 

Credentials       

Professional .004 (.079) .06 -.026 (.079) -.33 -.000 (.057) -.02 

Provisional .006 (.079) .08  -.019 (.079) -.24 -.014 (.057) -.25 

Years of teaching -.002 (.001) -2.52 -.002 (.001) 1.84 -.002 (.001) -2.66 

R-square .011 .007 .010 

Adjusted R-square .006 .003 .006 
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Table 4-7. Regression of the teacher effect estimates on the teacher background variables in 

mathematics (Secondary) 

Grade 6 

(N=1,156) 

EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Female -.005 (.016) -.034 -.001 (.018) -.04 .003 (.016) .22 

Advanced degree .003 (.016) .17 .017 (.018) .97 .025 (.015) 1.64 

Hrs. professional 

development 
-.000 (.000) -.71 .000 (.000) -1.31 -.000 (.000) -1.39 

Credentials       

Professional -.100 (.085) -1.18 -.163 (.128) -1.28 -.112 (.108) -1.04 

Provisional -.175 (.084) -1.10 -.165 (.128) -1.29 -.122 (.108) -1.13 

Years of teaching -.001 (.001) -.55 -.001 (.001) -1.23 -.002 (.001) -1.77 

R-square .006 .006 .008 

Adjusted R-square .000 .000 .002 

Grade 7 

(N=1,034) 

EPL-D1PL EPL-P1PL VAM-RE 

Beta (se) t Beta (se) t Beta (se) t 

Female -.006 (.018) -0.34 .001 (.018) .04 -.001 (.014) -.09 

Advanced degree .023 (.019) 1.22 .031 (.019) 1.61 .026 (.014)  1.81 

Hrs. professional 

development 
-.000 (.000) -.01 -.000 (.000) -.37 .000 (.000) -.68 

Credentials       

Professional .092 (.111) .81 .160 (.111) 1.42 .151 (.085) 1.79 

Provisional .066 (.111) .58  .130 (.111) 1.15 .120 (.086) 1.39 

Years of teaching .001 (.001) 1.04 .001 (.001) 1.16 .001 (.001) .91 

R-square .008 .013 .016 

Adjusted R-square .002 .006 .010 
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4.3. Consistency of the Teacher Effect Estimates  

 

Intra-person (teacher) rank correlations were monitored within each model to evaluate the 

extent to which individual teachers’ estimates were consistent across different subjects – 

mathematics and reading – and grades. The intra-teacher rank correlation between mathematics 

and reading or between different grade-levels within the same subject were expected to be 

moderate or high rather than very low, under the assumption that teacher capability of teaching is 

stable so that legitimate teacher effect estimates do not change dramatically depending on 

context.   

 Consistency of the estimated teacher effects between mathematics and reading is shown 

in Table 4-8. Rank correlations of the teacher effect estimates between mathematics and reading 

ranged from .19 to .31 across grades. The VAM-RE and VAM-AR tended to be more consistent 

than the EPL estimates, to a marginal degree. For Grade 6, the EPL-P1PL estimates were more 

stable across subjects: the correlations were above .3 except VAM-GA. The number of teachers 

who taught both reading and mathematics decreased as grade-level increased. In Grade 7, only 

170 teachers taught both subjects, so that the correlations of the teacher effect estimates between 

mathematics and reading may be of questionable.  

Consistency of the teacher effect estimates between different grade-levels within each 

subject was examined also. As Table 4-9 displays, correlations of the estimates across different 

grade-levels within the same subject, in general, were smaller than those between different 

subjects within each grade-level. It needs to be noted, however, that the number of teachers 

teaching multiple grade-levels was small. Rank correlations of the teacher effect estimates 



88 

 

between Grades 5 and 6 in the same subject were highest, above .15. In particular, consistency of 

the EPL-P1PL and EPL-P2PL appeared better.  

 

Table 4-8. Intra-teacher rank correlations between mathematics and reading 

 
Across Grades 

(N=4,157) 

Grade 4 

(N=1,647) 

Grade 5 

(N=1,506) 

Grade 6 

(N=657) 

Grade 7 

(N=174) 

EPL-D1PL .209* .187* .215* .307* .017 

EPL-D2PL .191* .152* .168* .303* -.002 

EPL-P1PL .273* .263* .253* .401* .097 

EPL-P2PL .268* .261* .243* .398* .075 

VAM-RE .312* .313* .285* .394* .089 

VAM-AR .290* .293* .271* .351* .085 

VAM-GA .194* .216* .181* .258* -.056 

 

Table 4-9. Intra-teacher rank correlations between different grades 

 Mathematics  Reading 

 
G4-G5 

(N=60) 

G5-G6 

(N=66) 

G6-G7 

(N=354) 

G4-G5 

(N=91) 

G5-G6 

(N=72) 

G6-G7 

(N=363) 

EPL-D1PL .110 . 172 -.073 -.020 -.044 .165* 

EPL-D2PL .126 . 152 -.088 .015 -.007 .162* 

EPL-P1PL .110 .278* .044 .070 .140 .197* 

EPL-P2PL .114 .249* .042 .104 .129 .186* 

VAM-RE .184 .210 .006 .096 .173 .221* 

VAM-AR .154 .206 -.044 .120 .175 .198* 

VAM-GA .036 -.238 -.188* -.250* -.048 -.123* 

 

 

4.4. Additional Information of Teachers’ Performance that the EPERF Produces  

 

The EPERF-based method offers useful information on either the average or the 

individual teacher’s performance estimates as well as his/her student characteristics. This section 



89 

 

articulates what the fitted EPERF models tell us about the average or the individual teacher’s 

performance working with students assigned to a certain challenge index.  

In the dichotomous EPERF, as shown in Figures 3-9 to 3-11, as teacher EPL increases, so 

too does the probability of student success in reaching the proficient level. As the lines of 

expected probability of success delineate, the 0 EPL is fixed at the point corresponding to .5 

probability of student success when student CI is equal to 0. The observed probability of success 

depends on students’ CI: the higher the average student challenge level, the higher the 

probability of success.   

Two noticeable differences between mathematics (Figure 3-9) and reading (Figure 3-11) 

teacher EPL were found: (1) the mean of EPL is lower in mathematics than in reading; and (2) 

the variance in EPL is considerably larger in mathematics than in reading. At first glance, it 

appears on average to be harder for teachers to help students attain the proficient level in 

mathematics than in reading. On the other hand, supposing students are on the same levels of the 

challenge index, the probability of their success in mathematics is lower than in reading. Larger 

variance in teacher effects in mathematics than in reading has been commonly observed in 

previous studies of value-added measures (Condie, et al., 2011; Nye & Konstantopoulos, 2004; 

Rockoff, 2004).    

In the EPERF use of polytomous performance categories, as shown in Figure 3-12, the 0 

EPL is fixed at the point where teachers’ expected scores of their students is equal to 2, 

corresponding to the second of the four performance levels, when student CI is equal to 0. 

According to the fitted functions, as the estimated teacher EPL increases, their students’ average 

expected scores also increase up to 3, which indicates the “proficient level,” not 4, the “advanced 

level.”  
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Figure 4-3 represents the relationship between the estimated teacher EPL and their 

students’ average probabilities in each performance category. As teacher EPL elevates, their 

students’ average probability of achieving only the basic level (Category 1) tends to be lower. 

Students with higher CI, represented as dark spots, have higher probability of reaching this level. 

On the contrary, the higher the teacher’s EPL, the higher his/her students’ average probability of 

achieving the proficient level (Category 3), and students with lower CI show a higher probability 

of getting this level. The case of partially proficient level (Category 2) shows the uni-modal 

function with less than 0.6 probability across all EPL. Again, the probability that a teacher helps 

his/her students achieve the highest performance level, the advanced level (Category 4), does not 

noticeably change depending on the estimated teacher EPL. That is, teacher EPL appears to have 

no significant influence on the probability of student success in achieving the advanced level. 

Rather, that success depends on the average students’ challenge levels. Also noteworthy is that 

only a small number of students achieved this level, and the proportion of students in this level 

was less than 10% in every grade.  
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Table 4-10. Slope and threshold parameters (and standard errors) from the two polytomous 

EPERF-based models  

 EPERF-P1PL EPERF-P2PL 

 G4 G5 G6 G7 G4 G5 G6 G7 

Mathematics          

Slope  
-2.49 

(.02) 

-2.59 

(.02) 

-2.74 

(.01) 

-2.59 

(.01) 

-2.53 

(.02) 

-2.62 

(.02) 

-2.78 

(.02) 

-2.60 

(.02) 

Threshold 1 (B-PP) 
-1.19 

(.02) 

-1.16 

(.02) 

-1.30 

(.02) 

-1.17 

(.02) 

-1.21 

(.02) 

-1.17 

(.02) 

-1.32 

(.02) 

-1.17 

(.02) 

Threshold 2 (PP-P) 
.96 

(.02) 

.79  

(.02) 

.85 

(.02) 

1.64 

(.02) 

.94  

(.02) 

.78  

(.02) 

.84 

(.02) 

1.65 

(.02) 

Threshold 3 (P-M) 
6.52 

(.05) 

5.99 

(.05) 

6.30  

(.04) 

5.94 

(.03) 

6.73 

(.05) 

6.06  

(.05) 

6.46 

(.04) 

6.09 

(.03) 

Reading          

Slope 
-1.99 

(.01) 

-2.13 

(.01) 

-2.20 

(.01) 

-1.99 

(.01) 

-2.01 

(.02) 

-2.16 

(.02) 

-2.21 

(.01) 

-2.01 

(.01) 

Threshold 1 (B-PP) 
-3.39 

(.02) 

-3.04 

(.02) 

-2.95 

(.02) 

-3.43  

(.02) 

-3.43 

(.02) 

-3.06 

(.02) 

-2.97 

(.02) 

-3.45 

(.02) 

Threshold 2 (PP-P) 
-1.38 

(.02) 

-1.26 

(.02) 

-.73 

(.01) 

-.77 

(.01) 

-1.39 

(.02) 

-1.27 

(.02) 

-.73 

(.01) 

-.78 

(.01) 

Threshold 3 (P-M) 
3.07 

(.02) 

2.21 

(.02) 

2.99 

(.02) 

3.33  

(.02) 

3.07  

(.02) 

2.21 

(.02) 

3.00 

(.02) 

3.32 

(.02) 
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 Each mark represents individual teacher 

 Brightness of the marks represents average students’ challenge index. The more saturated the gray, the higher the average 

challenge index. 

Figure 4-3. Teacher characteristic curves of the EPERF-P1PL by category (Grade 6, Mathematics)  
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 From left to right, the orange line represents the probability of attaining the advanced level; the green dotted line the probability 

of attaining the proficient level; the red dotted line the probability of attaining the partially proficient level; the blue bold line the 

probability of attaining the basic level. 

Figure 4-4. Category characteristic curves from EPERF-P1PL by grade (Mathematics) 
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 From left to right, the orange line represents the probability of attaining the advanced level; the green dotted line the probability 

of attaining the proficient level; the red dotted line the probability of attaining the partially proficient level; the blue bold line the 

probability of attaining the basic level. 

Figure 4-5. Category characteristic curves from EPERF-P1PL by grades (Reading)
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Table 4-9 displays estimated slopes and thresholds from the EPERF-P1PL and the 

EPERF-P2PL. Each threshold can be converted into the scale of student CI using the calculation 

τ𝑘/𝛾10, and those thresholds are marked in Figures 4-4 (mathematics) and 4-5 (reading). As the 

EPERF-D1PL demonstrated, the threshold in each step estimated from the EPERF-P1PL was 

lower in mathematics than in reading. In mathematics, the second threshold which is the 

borderline between the proficient and partially-proficient levels, tended to be lower in Grade 7 (-

.6) than in other grades (-.3 or -.4); when student CI is fixed, the probability of achieving 

proficient level is lower in Grade 7 than in other grades. Results of EPERF-P1PL and those of 

EPER-P2PL are very similar. In reading, locations of the thresholds were more fairly varied 

across grades than in mathematics.  

 Noteworthy is that the thresholds are also on the scale of student CI, which means that 

the target performance level for students is determined by student CI. In other words, which 

performance level the teachers are expected to achieve with their students in the fitted model 

depends on individual students’ challenge levels; the higher a student’s CI, the lower his/her 

expected performance level (expected scores). Note that, on the contrary, in the VAM, any target 

test score or gain score is not particularly specified, and higher scores may be always 

advantageous for teachers. This distinctive characteristic of the polytomous EPERF-based 

models brings an important policy advantage over using the EPROF-based VAM.  

Individual teachers’ performance also can be graphed along with their students’ challenge 

index distributions as Figure 4-6 displays. Examples for the three different teachers are presented: 

from left to right, each column shows the below average, around average, and above average 

EPL teacher respectively. The first row shows their EPL-D1PL; and the second row shows their 

EPL-P1PL. The small dots represent the students (actual) observed performance levels via their 
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CI: for the dichotomous, proficient (1) or non-proficient (0) level; for the polytomous outcome, 

advanced (4), proficient (3), partially proficient (2), or basic (1) level. Triangles represent the 

students’ expected probabilities of being proficient or expected performance levels given 

teachers’ EPL estimates.  

 

4.5. Summary  

 

First, rank correlations between individual teachers’ EPL and VAM ranged from .63 to .92 

for mathematics, and from .37 to .91 for reading. Excepting the gain score-based VAM, the 

correlations were fairly high, showing above .81 for mathematics, but were moderately high, 

showing above .60 for reading. In particular, the EPL estimates based on the polytomous 

performance categories were very close to the VAM estimates in terms of ranking teachers 

(above .9 rank correlations for mathematics; above .80 rank correlations for reading).   

Second, both the relationship to student characteristics and the relationship to teacher 

characteristics were not noticeably different between the EPL and VAM estimates. Still, the 

associations with the student background variables tended to be weaker in the EPL than in the 

VAM.  In particular, the relationship to students’ prior test scores tended to be weaker in the EPL 

based on the dichotomous outcome, than in the VAM. Most of the teacher background variables 

did not predict both the EPL and VAM estimates; only advanced degrees and years of teaching 

were significant predictors of the teacher effect estimates in secondary schools.  

Third, intra-teacher rank correlations across different subjects and different grade levels 

also were similar between the EPL and the VAM. Correlations of the estimates between 

mathematics and reading ranged from .18 to .40, except Grade 7, and the correlation tended to be 
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marginally larger in the VAM estimates than in the EPL. Consistency of the estimates between 

different grades was small and not significant, except for the EPLs based on the polytomous 

outcomes between Grade 5 and Grade 6.  

Finally, the fitted EPERF-based models can provide teachers and policy-makers with 

additional information of how the average or the individual teacher performed with his/her 

students assigned to certain challenge indices.  
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 Small dots represent the students’ observed (actual) performance levels 

 Triangles represent the students’ expected probabilities of being proficient or expected performance levels given 

teachers’ EPL estimates  

Figure 4-6. Examples of individual teachers’ educator performance functions (EPL-D1PL on the top; EPL-P1PL on the bottom) 
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CHAPTER 5.  EXAMINATION OF THE MODEL-FIT 

 

This chapter monitors the model fit and several quantities to evaluate assumptions of the 

educator performance function (EPERF)-based models. Some model fit indexes of the education 

production function (EPROF)-based models also are provided for reference. Three subtopics are 

addressed: 1) model fit of the EPERF- and EPROF-based models; 2) conditional independence 

of student success; and 3) amount of dependency of student success within each teacher.   

 

5.1. Model fit of the EPERF-based models  

 

First, in order to have general ideas about the model fit of the fitted EPERF models, the 

log-likelihood value of each fitted EPERF model, and the difference in the model fit between the 

1PL and 2PL models were observed in Table 5-1. For all grades and all models, log-likelihood 

values tended to be smaller in mathematics than in reading, which suggests that overall the 

models fitted better for mathematics than for reading. Differences between the EPERF-D1PL 

and EPERF-D2PL models in the log-likelihood ranged from approximately 20 to 80 depending 

on different grades and subjects, all of which were statistically significant with 2 degrees of 

freedom but were relatively small, considering the approximate 50,000 or 100,000 sample size in 

each model. In particular, the difference in the model fit relative to the associated sample size 

tended to be much smaller in secondary schools. This implies that individual teachers’ random 

slopes were not considerably different from each other in the dichotomous EPERF-based models. 

Differences between the EPERF-P1PL and EPERF-P2PL models were larger than those between 

the dichotomous models, especially for mathematics. Note that in mathematics the difference in 
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the model fit increases as the grade increases. Apparently, taking into account the teacher-unique 

slope parameter in Grade 7 mathematics somewhat improved the model fit.  

 

Table 5-1. Log-likelihood for the EPERF-based models 

 

 Dichotomous outcomes  Polytomous outcomes 

N 
EPERF-

D1PL 

EPERF-

D2PL 
-2∆ 

 EPERF- 

P1PL 

EPERF- 

P2PL 
-2∆ 

Math          

Grade 4 46,461 -17,472.27 -17,431.77 80.99  -36,113.15 -36,083.35 59.60 

Grade 5 55,493 -20,496.53 -20,475.40 42.26  -43,274.48 -43,156.76 235.44 

Grade 6 97,768 -34,010.06 -33,996.53 27.06  -73,077.79 -72,942.17 271.24 

Grade 7 105,888 -32,081.39 -32,051.78 59.22  -80,111.54 -79,897.27 428.54 

Reading         

Grade 4 51,438 -19,625.03 -19,605.26 39.54  -42,568.46 -42,510.93 115.06 

Grade 5 61,809 -23,624.31 -23,587.99 72.64  -56,302.43 -56,239.44 125.98 

Grade 6 115,025 -45,505.10 -45,493.64 22.92  -102,035.79 -101,991.15 89.28 

Grade 7 124,473 -53,110.33 -53,090.01 40.64  -105,968.42 -105,892.09 152.66 

 

For reference, overall model fit indexes of the EPROF-based models are provided in 

Table A1 in the appendix. The log-likelihood values of the VAM-RE were similar to or larger 

than those of the polytomous EPERF. R-square values of the VAM-AR or of the VAM-FE were 

around .6 for mathematics and .5 for reading; at best, those of the VAM-GS were .2.  

Second, error rates of the EPERFs were computed by the teacher using Equation 3-5 for 

the cases of dichotomous EPERF-based models and Equation 3-6 for those of polytomous 

EPERF-based models; their means, standard deviations, and ranges are shown in Table 5-2. 

Whether the error rates of the models were statistically lower than the null error rate, whichever 

was smaller between the proportion of observed successes and the proportion of observed 

failures, were tested, and the t-values are displayed in the last column of the same table. Results 
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of the EPERF-D1PL and the EPERF-D2PL were almost identical, as were those of the EPERF-

P1PL and the EPERF-P2PL.  

 

Table 5-2. Error rate of the EPERF-D1PL and EPERF-P1PL 

 
Null1 

Model-based  
t-value 

 M (SD) Range2 

EPERF-D1PL 

Mathematics       

Grade 4 P(S) .39 (.21)  .15 (.09) (0, .58) 47.85 

Grade 5 P(S) .37 (.22)  .15 (.08) (0, .58) 42.52 

Grade 6 P(S) .33 (.24)  .14 (.08) (0, .47) 37.95 

Grade 7 P(S)  .28 (.23) .12 (.08) (0, .43) 30.20 

Reading      

Grade 4 1-P(S) .29 (.17)  .17 (.09) (0, .55) 38.74 

Grade 5 1-P(S) .32 (.17)  .16 (.08) (0, .61) 45.71 

Grade 6 1-P(S) .43 (.23) .17 (.08) (0, .46) 51.48 

Grade 7 1-P(S) .43 (.22) .19 (.08) (0, .53) 47.51 

EPERF-P1PL 

Mathematics       

Grade 4 1-P(S) .48 (.11)  .35 (.11) (0, .86) 44.21 

Grade 5 1-P(S) .49 (.11)  .35 (.11) (0, .85) 42.03 

Grade 6 P(S) .49 (.13) .33 (.11) (0, .78) 38.91 

Grade 7 P(S) .47 (.13) .32 (.11) (0, .83) 35.75 

Reading      

Grade 4 1-P(S) .32 (.08) .36 (.11) (.05, .74) -15.10 

Grade 5 1-P(S) .31 (.10) .41 (.10) (.08, .75) -34.53 

Grade 6 1-P(S) .37 (.12) .40 (.09) (.00, .74) -8.48 

Grade 7 1-P(S) .37 (.10) .38 (.08) (.06, .82) -4.20 
1. 1. Null model is the proportion of 1s (success, P(S)), or the proportion of 0s (not success, 1-

P(S)), which is simply to assign the same probability to each case without any predictor. The 

smaller number between P(S) and 1-P(S) was compared to the error rate based on the EPERF.  
2. 2. Range represents (min, max) 

 

For the dichotomous EPERF-based models, the average error rate in mathematics was up 

to 15%, and it decreased as the grade-level increased, while in reading it was up to 19%; error 

rates tended to be smaller in mathematics than in reading. Error rates of the models were 

significantly smaller compared to the null model in both mathematics and reading (see the 
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associated t-values). For the polytmous EPERF-based models, while the error rate of the model 

for mathematics was significantly smaller than that of the null, this did not hold true for reading. 

It does not appear that the polytomous EPERF-based models for reading predict the students’ 

successes better than do the null.  

Student-level residuals of the dichotomous EPERF-based models were computed based 

on Equation 3-3; binned plots are displayed in Figures 5-1 and 5-2. Bins represent the 400 

quantile groups of students sorted by the expected probability of success (Figure 5-1) or by the 

average challenge index (Figure 5-2). As shown, average residuals delineated clear common 

patterns for all grade-levels and both subjects: S-shape along with the estimated probability of 

success; reverse S-shape along with the challenge index. As per Figure 5-1, residuals were 

smaller for groups whose expected probability of success was closer to 0, .5, or 1. For groups 

whose expected probability of success was below .5, the probability of success was 

underestimated, for those whose expected probability of success was above .5, the probability of 

success was overestimated. As per Figure 5-2, for student groups whose average challenge level 

corresponded to average teacher EPL, or was very high or low, residuals were minimal. When 

the average student CI was smaller than the average teacher EPL, the probability of success 

tended to be over-estimated; when the average student CI was larger than the average teacher 

EPL, the probability of success tended to be under-estimated.    

Teacher-level residuals computed according to Equation 3-4 also were plotted in Figure 

A1 in the appendix. Residuals were distributed in ellipses; no legible pattern was found.   

 



103 

 

 
(a) Mathematics  

 
(b) Reading 

Figure 5-1. Binned student-level residual plots via their expected probability of success (EPERF-

D1PL) 
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(a) Mathematics  

 
(b) Reading 

Figure 5-2 Binned student-level residual plots via their average challenge index (EPERF-D1PL) 
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5.2. Conditional Independence of Student Success 

 

Conditional independence of student success implies that once teacher’s EPL is fixed, the 

probability of an individual student’s success is independent each other. Although several 

different ways to evaluate the assumption have been suggested in the IRT context, in this study, 

as a preliminary examination, the distribution of 𝑄3 values was evaluated. 𝑄3 is basically a 

measure of dependency (correlation) of the residuals between heterogeneous groups of students 

shown in Equation 3-7, and the expected distribution of 𝑄3 when the conditional independency is 

tenable, is normal with a mean of 0 and variance of 1/(N-3) (Yen, 1984). Observed distributions 

of 𝑄3 based on the EPERF-D1PL are presented in Table 5-3.  

 

Table 5-3. Distribution of correlations of residuals among the different quantile groups of student 

CI (EPERF-D1PL) 

 Mean SD Min Max t-value1 

Mathematics (50 groups)     

Grade 4 -.025 .076 -.686 .287 8.93 

Grade 5 -.025 .066 -.438 .218 10.36 

Grade 6 -.014 .053 -.259 .514 5.90 

Grade 7 -.014 .049 -.195 .467 7.33 

Reading (25 groups)     

Grade 4 -.016 .041 -.119 .098 5.16 

Grade 5 -.010 .060 -.129 .404 2.08 

Grade 6 -.018 .038 -.139 .097 6.71 

Grade 7 -.012 .039 -.140 .097 4.24 

1. Test statistics of the mean difference between the observed 𝑄3 and the expected 𝑄3 

 

The mean of correlations of residuals among different groups of students was close to 0 

in mathematics and reading. Distributions of the correlation, however, were significantly 

different from the normal distribution with 0 mean and 1/(N-3) standard deviation in every grade 
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level, as shown in the associated t-value in the last column of Table 5-3. This suggests that the 

models were likely to violate the assumption of conditional independence; the conditional 

dependency implies sources other than teacher EPL affect student success, but are not taken into 

account in the models. For example, student challenge index may have omitted important 

indicators predicting student success. This can be also a signal of peer effect in classrooms. The 

degree of associations between the residuals tended to be considerably larger in mathematics 

than in reading: the correlations in mathematics ranged from -.68 to .47 across all grade levels; 

those in reading ranged from -.14 to .40.  

 

5.3. Dependency among the Student Success  

 

In order to examine the amount of dependency among student outcomes for the same 

teacher, conditional intra-class correlations from the EPERF-based model and from the EPROF-

based model were observed according to Equation 3-8 and Equation 3-9 (see Table 5-4). Note 

that dependency among the student success for the same teacher is distinguished from 

conditional independence among the student success across teachers. Dependency among the 

student success reflects the amount of variance in students’ successes or achievement explained 

by the estimated teacher random effects. The larger the amount of variance in the student success 

explained by the teacher random effect, the higher the intra-class correlation. In the meantime, 

the conditional independence means that no dependency of the variance in the student success is 

unexplained by the teacher effect among different success.   

Intra-class correlations were less than .20 for both the EPERF-D1PL and VAM-RE.  The 

amount of dependency among the student success for the same teacher tended to be larger in the 
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EPERF-D1PL models than in the VAM-RE models. The dependency was almost thrice larger in 

mathematics than in reading, which is consistent with the previous studies on VAM.  For 

reference, all estimated random effects from the four different EPERF-based models and the 

VAM-RE, were displayed in Table A2 in the appendix. 

 

Table 5-4. Intra-class correlations of the EPERF-D1PL and EPROF-RE 

 Mathematics  Reading 

 Grade 4 Grade 5 Grade 6 Grade 7 Grade 4 Grade 5 Grade 6 Grade 7 

EPEPF-D1PL .155 .189 .164 .170 .059 .064 .073 .036 

VAM-RE .123 .164 .142 .121 .051 .038 .069 .037 
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CHAPTER 6. SENSITIVITY ANALYSIS 

 

This chapter explores how locations of cut-scores and the number of student performance 

categories in a test affect the educator performance function (EPERF)-based teacher effect 

estimation, through a series of small simulations with real data. It involves an intensive 

qualitative process, known as standard setting procedure, in practice to determine the number of 

performance categories, and in sequence to set the cut-scores for each category to sort students 

based on the level of performance standards of state benchmarks. From a practical viewpoint, 

therefore, manipulating cut-scores arbitrarily in simulations may not be sensible. Still, to learn 

more about what to consider in applying this method, it is worthwhile to check how sensitive 

results from the EPREF-based method are to the locations of cut-scores and the number of 

performance categories. Of major concern in these simulations is how teacher effect estimates 

move across different scenarios. 

 

6.1. Sensitivity to Different Locations of Cut-scores  

 

As described in section 3.6, five scenarios for the dichotomous performance category and 

eight for the polytomous performance category were designed according to score-points dividing 

students by fixed proportions. For the dichotomous category, students were supposed to be 

divided into a non-proficient level and a proficient level by the following fixed proportions: (1) 

7:3; (2) 6:4; (3) 5:5; (4) 4:6; and (5) 3:7. For the polytomous category, the students were 

separated into basic level, partially proficient level, proficient level, and advanced level by the 

following fixed proportions: (1) 4:3:2:1; (2) 3:3:2:2; (3) 3:3:3:1; (4) 2:3:4:1 (5) 1:4:4:1; (6) 
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1:3:5:1; (7) 2:2:4:2; (8) 1:2:5:2. Cut-points were determined by maximum values of the IRT 

scale score in the lower performance level in each scenario, and are displayed in Table 6-1 for 

dichotomous categories, and in Table 6-2 for polytomous categories. Each performance level’s 

means and standard deviations of the scale scores and challenge index (CI) are shown in the 

same tables.  

Looking at the scenarios for dichotomous performance categories (see Table 6-1), as the 

proportion of students at the proficient level increases from Scenario 1 to Scenario 5, the cut-

score for being at the proficient level, the maximum value of the non-proficient level decreases 

from 1.64 to .58. And the average scale score of the students at the proficient level decreases, 

while the standard deviation increases. The mean of the non-proficient level decreases as the 

variance decreases. By contrast, average CI of students at the proficient level increases, as the 

proportion of students at the proficient level increases. While the range of students’ CI within 

each performance level is constant across scenarios, the deviation of CI in the non-proficient 

group fluctuates depending on scenario.  

 

Table 6-1. Distributions of student test scores and challenge index by the simulated cut-score for 

the dichotomous performance category 

 
 Non-proficient Proficient Cut-

score4 

CI  

(Min, Max) Ratios1 Score2  CI3 Score CI 

Original  6.1:3.9 .56 (.53) .56 (.67) 2.30 (.74) -.83 (.87) 1.40 
NP  

(-2.62, 5.17) 

 

P  

(-5.57, 2.40) 

Scenario 1  7:3 .67 (.59) .48 (.70) 2.49 (.72) -.97 (.87) 1.63 

Scenario 2 6:4 .53 (.51) .59 (.66) 2.24 (.75) -.78 (.87) 1.33 

Scenario 3 5:5 .38 (.45) .71 (.43) 2.02 (.79) -.60 (.87) 1.03 

Scenario 4 4:6 .26 (.40) .80 (.61) 1.86 (.82) -.47 (.89) .81 

Scenario 5 3:7 .13 (.35) .91 (.59) 1.71 (.86) -.35 (.90) .58 
1. Proportion of students at the non-proficient level to those at the proficient level 

2. Average IRT scale score; standard deviation in parentheses 

3. Average challenge index; standard deviation in parentheses   

4. Maximum value at the non-proficient level 
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Table 6-2. Distribution of student test scores and challenge index by the simulated cut-score for the polytomous performance category 

Polytomous 

Scenario 1 

4:3:2:11 

Scenario 2 

3:3:2:2 

Scenario 3 

3:3:3:1 

Scenario 4 

2:3:4:1 

Score2 CI3 Score CI Score CI Score CI 

Basic .28 (.40) .78 (.61) .14 (.35) .89 (.59) .14 (.35) .89 (.59) -.06 (.29) 1.03 (.57) 

Partially Proficient  1.24 (.24) .02 (.56) .98 (.21) .23 (.54) .98 (.21) .23 (.54) .70 (.21) .45 (.55) 

Proficient 2.11 (.29) -.69 (.66) 1.70 (.21) -.35 (.59) 1.92 (.37) -.53 (.66) 1.74 (.45) -.39 (.68) 

Advanced  3.39 (.66) -1.74 (.92) 2.86 (.69) -1.30 (.89) 3.39 (.66) -1.74 (.92) 3.39 (.66) -1.74 (.92) 

Cut-score 14 .81 5.17 .58 5.17 .58 5.17 .27 5.17 

Cut-score 25 1.63 2.80 1.33 2.80 1.33 2.80 1.03 2.80 

Cut-score 36 2.65 2.29 2.05 2.29 2.65 2.29 2.65 2.29 

 

Scenario 5 

2:4:2:2 

Scenario 6 

2:5:2:1 

Scenario 7 

1:4:4:1 

Scenario 8 

1:3:5:1 

Score CI Score CI Score CI Score CI 

Basic -.06 (.29) 1.04 (.57) -.06 (.29) 1.04 (.57) -.24 (.25) 1.15 (.56) -.24 (.25) 1.15 (.56) 

Partially Proficient  .83 (.30) .34 (.57) .97 (.38) .23 (.61) .59 (.28) .54 (.58) .73 (.36) .43 (.60) 

Proficient 1.70 (.21) -.35 (.59) 2.11 (.29) -.69 (.66) 1.74 (.45) -.39 (.68) 1.92 (.37) -.53 (.66) 

Advanced  2.85 (.69) -1.30 (.89) 3.39 (.66) -1.74 (.92) 3.39 (.66) -1.74 (.92) 3.39 (.66) -1.74 (.92) 

Cut-score 1 .27 5.17 .27 5.17 .02 5.17 .02 5.17 

Cut-score 2 1.33 2.80 1.63 2.80 1.03 3.02 1.33 3.02 

Cut-score 3 2.65 2.29 2.65 2.29 2.65 2.29 2.65 2.29 
1. Basic level: Partially proficient level: Proficient level: Advanced level 

2. Average IRT scale score; standard deviation in the parentheses 

3. Average challenge index; standard deviation in the parentheses   
4. Maximum value at the basic level 
5. Maximum value at the partially proficient level 
6. Maximum value at the proficient level  
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Table 6-2 shows the scenarios of the polytomous performance levels. As the proportion 

of students at either the proficient or advanced level enlarged, from Scenario 1 to Scenario 8, cut-

scores of the basic level dropped from .81 to .02. Depending on scenario, cut-scores of the 

partially proficient level ranged from 1.03 to 1.63, while those of the proficient level ranged from 

2.05 to 2.65. Average scores of students at each performance level also changed across scenarios, 

as cut-scores moved.  

Distributions of the teacher effect estimates from different scenarios and their 

correlations are displayed in Table 6-3 for the dichotomous category, and in Table 6-4 for the 

polytomous category. Since the EPLs resulting from the 1PL models were very similar to those 

from the 2PL models, only results from the 1PL models – EPL-D1PL and EPL-P1PL – are 

displayed here. As Table 6-3 shows, as cut-scores for the proficient level dropped, that is, the 

proportion of students in the proficient level increased from Scenario 1 to Scenario 5, the mean 

of teacher effect estimates increased from -.18 to .24 (See Figure 6-1(a)). Note that the average 

EPL increased as the proportion of students achieving proficient level increased, which is one of 

the characteristics distinguishing the EPERF-based models from the EPROF-based models. 

Resulting EPLs reflect how successful teachers were in achieving their goals, helping their 

students to attain a desired performance level, so that the average EPL increases as much as the 

number of successful students increases. The average VAM, however, set to 0, does not move, 

and provides no practical information of how teachers performed on average.  

The EPL estimates from Scenario-D2 were closest to the original data, showing a .97 

correlation. Notice that the proportion of proficient students in Scenario-D2 was most similar to 

the original data. By contrast, Scenario-D5, which was most apart from the original proportion of 

students by performance level, yielded the results most different from the original estimates 
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Table 6-3. Descriptive statistics of the teacher effect estimates from the five simulated scenarios by different cut-scores of the 

dichotomous category  

N=1,731 
 EPL-D1PL   Rank correlations 

 M SD Min Max Slope  0. 1. 2. 3. 4. VAM 

0. Original 6.1:3.9 -.30 .23 -1.34 .45 -2.92       .86 

1. Scenario-D1 7:3 -.55 .24 -1.76 .23 -2.92  .91     .86 

2. Scenario-D2 6:4 -.21 .22 -1.32 .57 -2.94  .97 .88    .86 

3. Scenario-D3 5:5 .11 .22 -.93 .89 -2.85  .85 .79 .88   .85 

4. Scenario-D4 4:6 .37 .21 -.66 1.11 -2.80  .78 .72 .80 .89  .83 

5. Scenario-D5 3:7 .66 .21 -.41 1.33 -2.68  .69 .64 .72 .81 .89 .78 

 

Table 6-4. Descriptive statistics of the teacher effect estimates from the eight simulated scenarios by different cut-scores of the 

polytomous category  

N=1,731 
 EPL-P1PL   Rank correlations 

 M SD Min Max Slope  0. 1. 2. 3. 4. 5. 6. 7. VAM 

0. Original 3.5:2.6:3.5:0.4 .00 .25 -1.18 1.01 -2.74          .92 

1. Scenario-P1 4:3:2:1 .00 .26 -1.17 .84 -2.76  .96        .93 

2. Scenario-P2 3:3:2:2 .00 .25 -1.16 .80 -2.77  .95 .95       .93 

3. Scenario-P3 3:3:3:1 .00 .25 -1.17 .81 -2.73  .96 .95 .98      .93 

4. Scenario-P4 2:3:4:1 .00 .25 -1.19 .85 -2.63  .91 .93 .92 .94     .93 

5. Scenario-P5 2:4:2:2 .00 .25 -1.23 .81 -2.69  .92 .91 .96 .94 .95    .93 

6. Scenario-P6 2:5:2:1 .00 .26 -1.23 .84 -2.64  .90 .93 .92 .93 .95 .92   .93 

7. Scenario-P7 1:4:4:1 .00 .25 -1.18 .85 -2.58  .91 .92 .91 .92 .97 .92 .97  .93 

8. Scenario-P8 1:3:5:1 .00 .25 -1.25 .82 -2.61  .90 .91 .92 .94 .93 .96 .93 .76 .93 
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(a) (a) Distributions of the 

dichotmous 

performance category-

based EPL estimates 

across the five 

simulated scenarios   

 

Note: From left to right, 

each box represents 

EPL distribution from 

the original data, 

Scenario-1, Scenario-2,  

Scenario-3, Scenario-4,  

and Scenario-5  

 

(b) (b) Locations of three 

thrsholds of the 

polytomous 

performance category-

based EPL estimates 

across eight  simulated 

scenarios  

 

Note: From top to 

bottom, three dots 

represent the three 

thresholds from  

the original data,  

Scenario-1, Scenario-2,  

Scenario-3, Scenario-4,  

Scenario-5, Scenario-6,  

Scenario-7, and  

Scenario-8    

Figure 6-1. Comparison of the teacher effect estimates depending on the different simulated cut-

scores
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(.67 correlation). The estimated slope-parameter was largest for Scenario2. Slope-parameters 

became slightly smaller, as the proportion of proficient students grew. The correlation of the EPL 

estimate from each scenario and the VAM estimates ranged from .74 to .85. Interestingly, it 

turned out that original VAM estimates were closer to EPL estimates resulting from scenarios 

that were more similar to the original proportion of students in proficient levels, such as 

Scenario-D1 to Scenario-D3, than Scenario-D4 and D5.  

Looking at the results of the simulated polytomous cases in Table 6-4, no considerable 

difference in distributions of the estimates among the eight scenarios was found. Correlations 

with original estimates were above .9 in every scenario, and the estimates were strongly 

associated with each other, showing more than .9 correlations. Correlations with original VAM 

estimates were also high and consistent across the scenarios. The slope parameter estimate 

slightly dropped, in particular in Scenario-P7, when proportions of students in both basic and 

advanced levels were relatively small. Importantly, the three thresholds in the fitted EPERF-

based models moved depending on the simulated scenarios of cut-scores as shown in Figure 6-

1(b). For reference, rank correlations of the estimates between all different scenarios – five 

dichotomous and eight polytomous – are provided in Table A3; their scatterplots are provided in 

Figure A2 for dichotomous scenarios and in Figure A3 for polytomous scenarios, in the appendix.    

The size of the estimated random effect and the model-fit index also were monitored in 

Table 6-5. For the dichotomous EPERF, while the size of random effect was largest when the 

proportion of non-proficient students to proficient students was 7:3, it was smallest when the 

proportion was the opposite. For the polytomous EPERF, the original proportion of students 

showed the biggest random effect. 
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Table 6-5. The size of random effect and log-likelihood of the scenarios 

 Ratio 
Variance of 

random intercept 
Log likelihood  

Dichotomous original 6.1:3.9 .644 (.032) -34010.06 

Scenario-D1 7:3 .732 (.038) -30632.41 

Scenario-D2 6:4 .617 (.031) -34840.89 

Scenario-D3 5:5 .564 (.028) -37526.20 

Scenario-D4 4:6 .513 (.026) -37612.34 

Scenario-D5 3:7 .455 (.024) -36187.82 

Polytomous original 3.5:2.6:3.5:0.4 .595 (.026) -73077.79 

Scenario-P1 4:3:2:1 .506 (.022) -85371.98 

Scenario-P2 3:3:2:2 .446 (.020) -95252.82 

Scenario-P3 3:3:3:1 .447 (.020) -89743.90 

Scenario-P4 2:3:4:1 .407 (.018) -88692.51 

Scenario-P5 2:4:2:2 .538 (.023) -83000.56 

Scenario-P6 2:5:2:1 .558 (.024) -72903.55 

Scenario-P7 1:4:4:1 .398 (.018) -83146.55 

Scenario-P8 1:3:5:1 .522 (.023) -71099.52 

 

 

6.2. Sensitivity to the Number of Performance Categories  

 

Four different scenarios – six, seven, eight and ten performance categories as described in 

section 3-6 – were considered, in order to evaluate whether the simulated number of performance 

categories changed teachers’ educator performance level (EPL) estimates. Rank correlations of 

the resulting teacher EPL estimates among the four different simulation scenarios and the two 

original categories are displayed in Table 6-6.  

Rank correlations between the different scenarios were above .9; those with original EPL 

estimates based on the four performance categories were above .9; and those with VAM 
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estimates were above .9 also. Correlations with the original EPL using dichotomous performance 

category ranged from .87 to .90, which was lower than those among the polytomous category-

based EPL estimates. As expected, EPL estimates among the scenarios were closer when the 

number of categories were similar.  

 

Table 6-6. Rank correlations of the teacher effect estimates among the simulated scenarios by 

different number of performance categories  

N=1,758 Two1 Four Six Seven Eight 
VAM-

RE 

Prior test 

score3 

Four Performance levels1  .90     .92 .21 

Six Performance levels2 .88 .94    .96 .23 

Seven Performance levels2 .87 .96 .97   .96 .23 

Eight Performance levels2 .87 .96 .97 .99  .97 .23 

Ten Performance levels2 .87 .94 .98 .98 .98 .97 .24 
1. Original performance categories determined in the original data;  
2. Simulated performance categories 
3. Teacher-level 

 

Associations with the original VAM-RE estimates tended to be slightly stronger as the 

number of categories increased. Those with average student prior test scores also marginally 

increased, along with increasing number of performance categories. It is concluded that the 

teacher effect estimates were not much changed according to the number of performance 

categories. However, the size of random effects reduced and the model-fit slightly worsened as 

the number of performance categories increased. 
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CHAPTER 7. CONCLUSION AND DISCUSSION 

 

7.1. Summary of Findings  

 

This study aimed to introduce the educator performance function (EPERF)-based teacher 

effect estimation model and to evaluate its feasibility, by comparing it with the currently 

prevailing method, the education production function (EPROF)-based value-added model. It 

thereby is expected to illuminate research- or policy-relevant issues of its implementation. While 

the EPROF is a linear model to describe the relationship between students’ test scores and 

backgrounds and their teachers’ effects, the EPERF is a non-linear probability model to describe 

the relationship between teachers’ proficiency, and their students’ characteristics and successes 

in reaching a certain performance level.  

The EPERF-based models are mainly distinguished from the EPROF-based ones by 

including the following characteristics: (1) the outcome variable is a dichotomous/categorical 

variable of performance standard classification; (2) each student is assigned a challenge index 

value, which is a quantity of the degree of difficulty that teachers face in teaching the student to 

attain a desired performance standard; (3) the teacher effect is treated as a latent trait, a   

proficiency in helping students achieve a desired performance standard given their students’ 

challenge levels, and it is scaled to be comparable with the student CI; and (4) the teacher  effect 

estimates are sample-independent, once each student’s challenge level is determined.  

For empirical comparisons between the two methods, this study investigated (1) how the 

two different teacher effect estimates – the educator performance level (EPL) resulting from the 

EPERF-based method and the value-added measures (VAM) resulting from the EPROF-based 
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method – are consistent; (2) whether the model fit of EPERF is acceptable; and (3) whether 

results from the EPERF-based methods are robust to the locations of cut-scores and the number 

of performance categories. Main findings for each question are described and discussed below.  

Regarding the first question, comparing the teacher effect estimates, the rank correlation 

between the estimates, the relationship to student and teacher characteristics, and the consistency 

between different subjects or grade levels were examined. First, teacher rankings that the 

EPERF-based and the EPROF-based methods produced were similar rather than substantially 

different; they showed above .8 rank correlations for mathematics and mostly above .7 rank 

correlations for reading. In particular, when the four student performance categories were used 

for the EPERF, the rank correlation between the EPL and the VAM was higher than when the 

dichotomous performance categories were used. Second, both the relationship to student 

characteristics and the relationship to teacher characteristics were not noticeably different 

between the EPL and VAM estimates. Still, associations with student background variables 

tended to be slightly weaker in the EPL than in the VAM. Third, consistency of the teacher effect 

estimates between different subjects or different grade levels was also similar between the EPL 

and the VAM. However, intra-teacher rank correlations between mathematics and reading tended 

to be marginally higher in the VAM estimates than in the EPL.  

Even though teacher rankings yielded by the two methods were similar in most cases, the 

EPERF-based methods offered additional interesting information of how average or individual 

teachers performed with their students toward their mutual goal to enable students to reach a 

certain performance standard of a state’s benchmarks. For example, while variation in teacher 

effect estimates was larger in mathematics than in reading, it appears that on average teaching 

mathematics to help students attain the proficient level was more challenging than teaching 
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reading. The former is what previous studies on VAM have found consistently, but the latter has 

yet to be stated empirically and explicitly. In addition, from fitting the polytomous EPERF-based 

models, this study also observed no considerable teacher effect on the probability that students 

reach the advanced level, the highest level, in mathematics, whereas the teacher effect clearly 

decreased the probability of being at the basic level, and increased the probability of being at the 

proficient level.   

In answering the second question, the EPERF’s model-fit was evaluated via the residual 

analyses and error-rates. Conditional independence of student success and dependency of student 

success within each teacher also were examined. While the error rate of the dichotomous EPERF 

was noticeably smaller in both mathematics and reading, compared to the null models, the error 

rate of the polytomous EPERF for reading was higher than the null models. Residual analyses 

suggested that the model-fit of the EPERF was not perfect; what caused the misfit needs further 

investigation. The assumption of the conditional independence of student success was not 

completely sustained; this, too, needs scrutiny. In both reading and mathematics, the amount of 

dependency of student successes tended to be a little larger in the EPL than in the VAM,  

For the third question, as a result of real-data simulations, the EPL based on the 

polytomous performance categories was quite robust to the location of cut-scores; rank 

correlations between different cut-scores were above .9. The EPL based on the dichotomous 

performance categories substantially altered teacher ranking when the proportion of the 

proficient level to the non-proficient level was opposite. The number of performance categories 

did not substantially change teacher ranking, showing above .87 rank correlations across all 

scenarios. 
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7.2. Discussion  

Based on these initial examinations of applying the educator performance function 

(EPERF)-based teacher effect estimations and comparisons to the education production function 

(EPROF)-based teacher effect estimations, this section offers several suggestions about what 

should be considered in applying the new method in practice; it also elaborates relevant further 

research questions yet to be answered.  

First, by example this study illustrated how the student challenge index (CI) can be 

composed. As a result of several experiments with a given set of student background variables 

available in the state data, the OLS-weighted sum score worked better than did the IRT-

calibration, in terms of differentiating students in the degree to which they pose challenges to 

teachers. A limited variance was observed when applying the IRT-calibration given the number 

and types of variables. It appears that additional indicator variables, with respect to both the 

number and variety, were necessary in order for the student CI based on IRT-calibration to 

ensure a reasonable amount of variance.  

Of more critical concern when constructing the student CI, however, is whether the 

variables sufficiently explain what kinds of students pose more challenges to their teachers. This 

is because the quality of teacher capability estimates from the EPERF relies substantially on the 

assumption that the CI considers and includes all possible factors beyond teacher control but  

that can influence student achievement. As CI indicators, this study used the 7 to 10 student 

background variables, including prior achievement, which are mostly demographic and 

dichotomous variables that most states commonly collect and are often used as covariates when 

fitting the EPROF-based models. This set may have omitted some important indicators, which 

potentially could have resulted in a violation of conditional independency of student success, and 
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in a misfit of the EPERF. Students’ motivation and school or classroom level characteristics may 

be critical missing indicators. Therefore, what student characteristics can be additionally taken 

into account, and what type of the variables are better, are still open questions, given that in the 

EPERF-based method, student CI is a pivotal concept for measuring teacher effect.    

Further, how to construct student CI – that is, which variables to include and how to 

weight the indicators – is crucial not only for achieving statistically better estimations of teacher 

EPL, but also as a process for seeking political consensus among educational stake-holders, 

especially teachers or schools, about defining teacher capability. In that sense, it would be 

helpful for teachers and/or schools to participate in discussing and determining student CI 

indicators and weights.  

Second, this study examined four different EPERF-based models depending on the 

number of teacher random effects – one-parameter (random intercept) and two-parameters 

(random intercept and random slope), and depending on the number of student performance 

categories – dichotomous and polytomous outcomes. Findings indicate no practical difference 

between the one-parameter (1PL) and the two-parameter (2PL) models in their model-fit and in 

their ranking of the teacher effect estimates, despite statistical differences between the two 

models having been found. Thus, because of parsimoniousness, the 1PL models may be 

preferred.  

Nevertheless, no practical difference between the 1PL and 2PL models in this study 

cannot abandon the potential usefulness of the 2PL models. Note that using the 2PL models – i.e., 

allowing a variation of the random slope across individual teachers – is based on the idea that 

teachers could differ significantly in moderating the relationship between student CI and their 

success in achieving a performance standard, which is completely feasible. It is still worthwhile 
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to continue to apply the 2PL models to see whether the restricted amount of variance in the 

random slope holds when other states’ data are used, or even when the way to create the student 

CI with the same data change. Thereby, what random slope estimates imply about teachers and 

their performance can be clarified further.  

For the polytomous EPERF used in this study, the slope of the student challenge level is 

fixed as identical for all four performance levels, assuming that the impact of the student 

challenge level on the probability of student success is identical among different performance 

levels. This assumption could be released by varying the slope across the four categories. More 

generalized models can be explored and applied, and it would be interesting to investigate how 

consistent are teacher effect estimates from the generalized models.  

A prominent policy advantage of using polytomous EPERF-based models needs to be 

underlined: target performance level is varied across students, depending on their challenge 

levels. Note that in the EPROF-based VAM, there is no specific target test score to inform how 

well students are expected to perform in the achievement tests. Also, all students are equally 

expected to achieve higher (gain) scores than the others, regardless where they started. On the 

contrary, in the polytomous EPERF-based models, the target or expected performance level, 

which level each student is expected to obtain can be decided according to the student challenge 

level. In other words, which performance level teachers and students are expected to achieve 

depends on individual students’ challenge levels; the higher a student’s CI, the lower his/her 

expected performance level (expected scores). In addition, in Chapter 6 it was demonstrated that 

the polytomous EPERF-based models were not very sensitive to the number of performance 

categories and the locations of cut-scores.  
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Third, this study attempted to evaluate the basic model fit of the EPERF, and some 

evidence of misfit were found. However, the misfit does not invalidate usefulness of the EPERF, 

because the EPROF-based value-added models (VAM) also have the same issue, and the perfect 

fit of the model for estimating teacher effect is either impractical or unrealistic. Rather, 

scrutinizing the misfit is potentially beneficial guide to understanding what causes the misfit and 

exploring how to improve the model. Even though several key assumptions of the EPERF-based 

method were identified in section 2.2, which conditions in school or education settings might 

possibly violate the assumptions need thorough exploration. Also it would be meaningful to test 

some falsifiable assumptions empirically and to provide some guidance in determining when this 

method is more feasible for different conditions.  

For example, distribution of student CI per teacher and its impact on teachers’ EPL 

estimates were not monitored in this study. Whether the distribution of student CI is different or 

comparable across teachers can be the first question. If any significant teacher-level variance in 

student CI is found, whether that variation can influence teacher EPL estimates needs 

investigation. This also can be a way towards understanding student sorting in schools or 

districts.  

Fourth, this study used the two-year student-teacher linked data containing only one-

cohort due to restrictions on data availability. It would be worthwhile to use longitudinal and 

multiple-cohort data, and to check longitudinal consistency of estimates. Also it would be useful 

to replicate these results using other states’ data.  

 Finally, it should be emphasized that the salient advantages of applying the EPERF-based 

method is to tighter coordination of student testing models and teacher or school effectiveness 

models tightly coordinated. Current educator effectiveness evaluation models demand that 
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teachers or schools to bring their students to higher gains than other students, regardless not only 

what students are expected to achieve, but also what teachers are expected to achieve with their 

students. Coordination between the student testing model and the educator effectiveness model 

can be ensured by circumscribing what teachers are accountable for in students’ learning, based 

on what students are expected to achieve and by informing teachers of where they are in terms of 

what is to be expected.  
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Table A1. Model fit indexes for the EPROF-based models  

 VAM-RE VAM-AR/FE VAM-GS 
N 

Fit index Log likelihood R-square R-square 

Mathematics      

Grade 4 -43,885.15 .639 .162 45,685 

Grade 5 -41,984.19 .627 .181 54,525 

Grade 6 -81,181.57 .660 .144 95,739 

Grade 7 -80,141.43 .652 .116 103,794 

Reading     

Grade 4 -59,465.13 .509 .081 50,590 

Grade 5 -70,328.49 .546 .072 60,740 

Grade 6 -132,280.98 .568 .066 112,760 

Grade 7 -126,527.94 .533 .074 122,078 
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Figure A1. Error rate of student success predicted by the EPERF-based models via estimated 

educator performance level (EPERF-D1PL on the top; EPERF-P1PL on the bottom; 

Mathematics)
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Table A2. Estimated random effects of the EPERF-based models and VAM-RE model 

 EPL-D1PL EPM-D2PL EPL-P1PL EPL-P2PL VAM-RE 

Math      

Random intercept  .604 (.035) 

.767 (.040) 

.644 (.032) 

.663 (.035) 

.565 (.036) 

.721 (.040) 

.623 (.032) 

.615 (.035) 

.501 (.025) 

.617 (.028) 

.595 (.026) 

.482 (.022) 

.481 (.025) 

.592 (.027) 

.581 (.026) 

.458 (.021) 

.052 (.002) 

.048 (.002) 

.050 (.002) 

.037 (.002) 

Random slope  .310 (.044) 

.112 (.030) 

.092 (.025) 

.135 (.025) 

 .092 (.015) 

.119 (.014) 

.101 (.012) 

.099 (.009) 

 

Covariance 

between intercept 

and slope 

 .016 (.027) 

-.095 (.025) 

-.048 (.020) 

-.042 (.021) 

 -.017 (.013) 

-.138 (.015) 

-.056 (.012) 

-.114 (.011) 

 

Reading      

Random intercept  .208 (.018) 

.228 (.017) 

.260 (.015) 

.121 (.009) 

.193 (.021) 

.223 (.018) 

.246 (.015) 

.131 (.010) 

.183 (.012) 

.180 (.011) 

.278 (.012) 

.137 (.007) 

 

.172 (.011) 

.271 (.012) 

.131 (.008) 

.032 (.002) 

.023 (.001) 

.044 (.002) 

.018 (.001) 

Random slope  .141 (.030) 

.185 (.028) 

.047 (.015) 

.059 (.012) 

  

.073 (.009) 

.035 (.005) 

.035 (.004) 

 

Covariance 

between intercept 

and slope 

 -.016 (.020) 

-.059 (.015) 

.025 (.011) 

-.029 (.007) 

  

-.011 (.007) 

-.001 (.006) 

.003 (.004) 
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Table A3. Rank correlations of the teacher EPL estimates among the simulated locations of cut-

scores 

 
 Scenario-

D11 

Scenario-

D2 

Scenario-

D3 

Scenario-

D4 

Scenario-

D5 

Original-

P2 

  7:3 6:4 5:5 4:6 3:7  

Scenario-P21 4:3:2:1 .88 .87 .89 .91 .81 .96 

Scenario-P2 3:3:2:2 .85 .90 .87 .87 .87 .95 

Scenario-P3 3:3:3:1 .83 .89 .87 .87 .87 .96 

Scenario-P4 2:3:4:1 .77 .82 .90 .87 .83 .91 

Scenario-P5 2:4:2:2 .78 .83 .90 .86 .80 .91 

Scenario-P6 2:5:2:1 .83 .89 .83 .80 .77 .90 

Scenario-P7 1:4:4:1 .84 .89 .85 .83 .80 .92 

Scenario-P8 1:3:5:1 .86 .83 .80 .80 .79 .90 

Original-D1 6.1:3.9 .91 .98 .85 .78 .69 .90 
1. D indicates the dichotomous models; 2. P indicates the polytomous models  
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Figure A2. Scatterplots of the teacher effect estimates from different simulated cut-scores (Dichotomous category) 
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Figure A3. Scatterplots of the teacher effect estimates from different simulated cut-scores (Polytomous category)
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