

LIBRARY Michigan State University

This is to certify that the

thesis entitled

SYNTHESIS OF GROUP IV IMIDO COMPLEXES SUPPORTED BY

\$-DIKETIMINATE LIGANDS presented by

Jie Fang

has been accepted towards fulfillment of the requirements for

M.S. degree in Chemistry

Major professor

Date ____5/11/2001

MSU is an Affirmative Action/Equal Opportunity Institution

O-7639

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

		•	

SYNTHESIS OF GROUP IV IMIDO COMPLEXES SUPPORTED BY $\beta\text{-DIKETIMINATE LIGANDS}$

By

Jie Fang

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Chemistry

ABSTRACT

SYNTHESIS OF GROUP IV IMIDO COMPLEXES SUPPORTED BY $\beta\text{-DIKETIMINE LIGANDS}$

By

Jie Fang

In recent years, there has been considerable effort put forth in developing group 4 imido chemistry. Many research groups have focused on developing supporting ligands with the major goal of tailoring chemical reactivity and properties.

 β -Diketiminate ligands were used in this research, and a new ligand synthesis that involves deoxygenation of monoketimines by Ti(NMe₂)₄ was devised for synthesizing β -diketimines with bulky aryl groups.

A family of titanium imido complexes containing one or two β -diketiminate ligands were synthesized. The synthesis of five-coordinate imido complexes containing two β -diketiminate ligands was achieved for Ti and Zr. The sterically hindered ligand, Dipnacnac, yielded (Bu^tN)Ti(Dipnacnac)Cl, a rare example of a four-coordinate group 4 imido complexes.

The chloride in (Bu^tN)Ti(Dipnacnac)Cl could be readily replaced to form a new Ti-E (E = element) bond. From this compound, (Bu^tN)Ti(Dipnacnac)(OTf), (Bu^tN)Ti(Dipnacnac)(NMe₂), (Bu^tN)Ti(Dipnacnac)Me were synthesized.

A reaction between Ti(NMe₂)₄ and C₆F₅nacnacH was discovered, wherein *ortho* amination of each C₆F₅ group and fluoride abstraction yielded an unusual Ti difluoride complex. Hydrolysis of this Ti complex gave the ketimine (2-NMe₂-C₆F₅)nacnac in good yield.

To my family and my parents

ACKNOWLEDGMENTS

I would like to thank Professor Smith. He guided me step by step, which helped me to learn about research and opened the door of organometallic chemistry. I appreciate his help and patience as I wrote this thesis.

I also want to say thanks to Baixin, my former group member and undergraduate classmate. He guided and helped me a lot on my research. I feel lucky to have this friend. Also, other group members offered me a lot help, which was not limited to chemistry. Especially, I want to express my appreciation to Jian-Yang.

I appreciate the help from Professor Odom. He inspired many ideas on the research. Also, I appreciate the help of Dr. Ward and many others at MSU.

TABLE OF CONTENTS

CHAPTER 1	1
INTRODUCTION	1
A. Transition metal imido complexes	1
Structural Features of Transition Metal Imido Complexes	2
Synthetic Methods	5
B. Ti and Zr imido chemistry	5
Convenient syntheses for Ti and Zr imido complexes	6
C-H bond activation	7
Cycloaddition	8
C. Ligand Considerations	9
β-Diketiminate ligands	11
Bibliography	13
CHAPTER 2	18
RESULTS AND DISCUSSION	18
Ligand Synthesis	18
Synthesis of (Arnacnac)Ti(NBu ^t)Cl and (Arnacnac)Ti(NBu ^t)Cl(Py)	20
Syntheses of L ₂ M(=NR) through lithium salt metathesis	26
Syntheses of LTi(=NR)Cl derivatives	29
An unusual reaction between Ti(NMe ₂) ₄ and C ₆ F ₅ nacnacH	33
Summary	37
Bibliography	38

CHAPTER 3	39
EXPERIMENTAL METHODS	39
General Methods and instrumentation	39
Single Crystal X-Ray Structure Determination	40
Starting materials	41
Synthesis	41
Bibliography	55
APPENDIX	56

LIST OF TABLES

Table 1. Selected bond lengths (Å) and bond angles (°) for (Bu ^t N)Ti(Dipnacnac)Cl (17).
Table 2. Selected bond lengths (Å) and bond angles (°) for
(Bu ^t N)Ti(Tolnacnac)Cl(PyBu ^t) (18)24
Table 3. Selected bond lengths (Å) and bond angles (°) for
(Bu ^t N)Ti(TMFnacnac)Cl(PyBu ^t) (19)25
Table 4. Selected bond lengths (Å) and bond angles (°) for (DipN)Zr(Tolnacnac) ₂
(25)
Table 5. Selected bond lengths (Å) and bond angles (°) for (Bu ^t N)Ti(Dipnacnac)OTf
(26)
Table 6. Selected bond lengths (Å) and bond angles (°) for (Bu ^t N)Ti(Dipnacnac)(NMe ₂)
(27)
Table 7. ¹ H NMR (C ₆ D ₆ , 300HZ) Chemical shift of Dipnacnac ligand in
(Dipnacnac)Ti(NBu ^t)X (X = OTf, NMe ₂ , and Me)33
Table 8. Selected bond lengths (Å) and bond angles (°) for (NMe ₂)Ti[(2-NMe ₂ -
C_6F_4)nacnac] F_2 (29)

LIST OF FIGURES

Figure 1: Early known transition metal imido complexes
Figure 2: VB descriptions of metal-imido linkages
Figure 3: Versatile synthons for titanium imido compound
Figure 4: C-H activation with a titanium imido complex
Figure 5: Selected cycloaddition reactions of [Ti(NAr)(Me4taa)]
Figure 6: Several supporting ligands used to support group 4 imido complexes
Figure 7: Thermal ellipsoid plot (50% probability) of (Bu ^t N)Ti(Dipnacnac)Cl (17) 22
Figure 8: Thermal ellipsoid plot (50% probability) of (Bu ^t N)Ti(Tolnacnac)Cl(PyBu ^t)
(18)
Figure 9: Thermal ellipsoid plot (50% probability) of (Bu ^t N)Ti(TMFnacnac)Cl(PyBu ^t)
(19)
Figure 10: Thermal ellipsoid plot (50% probability) of (DipN)Zr(Tolnacnac) ₂ (25)28
Figure 11: Thermal ellipsoid plot (50% probability) of (Bu ^t N)Ti(Dipnacnac)(OTf) (26).
31
Figure 12: Thermal ellipsoid plot (50% probability) of (Bu ^t N)Ti(Dipnacnac)(NMe ₂) (27).
Figure 13: Thermal ellipsoid plot (50% probability) of (NMe ₂)Ti[(2-NMe ₂ -
C_6F_4)nacnac] F_2 (29)
Figure 14: Ligand (2-NMe ₂ -C ₆ F ₄)nacnac and its potential coordination with metal35

LIST OF ABBREVIATIONS

Ar	Ary
Bu	Buty
BTBA	•
calcd	calculated
C ₆ F ₅ nacnacH 2-pentafluoropheny	vlamino-4-pentafluorophenylimino-2-pentene
CCD	Charge Coupled Devise
CN	Coordination Number
Cp	(C ₅ H ₅)
Cp*	(C ₅ Me ₅)
d	double
decomp	decomposed
Dip	C_6H_3 -2,6- i Pr ₂
DipnacnacH2-(2,6- ⁱ Pr ₂ -phen	ylamino)-4-(2,6- ⁱ Pr ₂ -phenylimino)-2-pentene
equiv	equivalent
e ⁻	electron
Et	Ethyl
i	iso
IR	Infrared
L	ligand
m	multiplet
Me	Methyl
mp	melting point
NMR	
o	ortho
OTf	triflate

<i>p</i>	para
Ph	Phenyl
Pr	Propyl
ру	pyridine
s	singlet
sept	septet
t	triplet
taa	tetraazamacrocycle
tert	tertiary
THF	tetrahydrofuran
TFMnacnacH2-3,5-di-trifluoromethyla	mino-4-3,5-trifluoromethylimino-2-pentene
Tol	tolyl
TolnacnacH	2-(p-tolylamino)-4-(p-tolylimino)-2-pentene
ТsOH	p-toluenesulfonic acid
VR	Valence Rond

CHAPTER 1

INTRODUCTION

The chemistry of transition metal imido complexes has attracted considerable interest and has experienced exceptional growth in recent years. Such compounds are of interest as intermediates in organic syntheses as well as catalytically active species.¹ A substantial body of research has focused on the group 4 complexes.² Terminal zirconium imido complexes were reported in 1988,^{3,4} and terminal titanium imido complexes were first structurally characterized in 1990.^{5,6} Group 4 compounds containing bridging imide ligands are also well known.⁷⁻¹³ However, it is generally the terminal M=NR (M = Group 4 Metal, R = Organic fragment) linkage that demonstrates important chemical reactivity such as C-H bond activation^{3,4,14,15} and N-C bond forming reactions with unsaturated subtrates.^{4,16-20}

A. Transition metal imido complexes

Complexes containing metal-nitrogen multiple bonds are prevalent in transition metal chemistry. Transition metal imido complexes have the general formula $M(=NR)_n(L)_m$ (R = alkyl or aryl group, L = ancillary ligand). They have received significant attention in recent years because of their importance in a wide range of applications that encompass industrial processes, catalysis, and some organic transformations. The first transition metal imido complex to be prepared was *tert*-butylimidotrioxo osmium (VIII) (compound 1 in Figure 1), reported by Clifford and Kobyashi in 1956, and in 1962, the arylimido complex Re(=NPh)Cl₃(PEt₂Ph)₂ was

described by Chatt and Rowe (compound 2 in Figure 1).²² Since then, numerous imido complexes have been synthesized. In this section, the structural features and synthetic methods to transition metal imido complexes will be described.

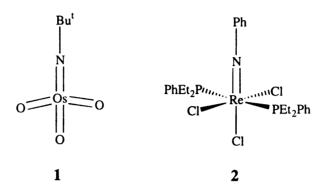


Figure 1: Early known transition metal imido complexes

Structural Features of Transition Metal Imido Complexes

Terminal transition metal imido complexes can be considered to bond to a transition metal with one σ and either one or two π interactions. Limiting Valence Bond (VB) descriptions of this interaction¹ are presented in Figure 2, where the hybridization about the nitrogen and the metal-ligand bond order are suggested to impose certain structural parameters on the imido ligand. In addition, three compounds are shown as examples of the limiting VB structures in Figure 2.

In structure A, the sp² hybridization of nitrogen yields an M=N double bond, with one σ and one π bond. The non-bonding lone pair on nitrogen makes a bent M-N-R linkage. In the closed-shell formalism, the imido dianion [NR]²⁻ acts as a four electron (4e⁻) donor. There are only a few examples of strongly bent imido complexes. Structure A is expected only when the metal center cannot form a bond with the nitrogen lone pair. This case occurs when a linear, triply bonded NR can cause the electron count of the

complex to exceed 18 electrons.²³ Wilkinson & Hursthouse reported a tris(imido) complex Mn(=NBu^t)₃Cl.²⁴ The Mn-N-C angles in this compound are very similar, and lie in the range from 138.5(3)° to 141.8(3)°. The bending is consistent with a delocalization of the bonding contributions required from the three imido functions for an 18-electron manganese configuration.

The M-N-R moieties of most known transition metal imido complexes are close to linear. This is consistent with sp hybridization at nitrogen. The M-N-R linkage could be either structure **B** or structure **C** in Figure 2. In structure **B**, there are some restrictions that prevent nitrogen from donating its lone pairs to the metal, thus it retains the one σ and one π double bond configuration. The restrictions could be symmetry imposed, or due to a severe energy mismatch with the available metal orbitals. Bercaw and coworkers²⁵ reported the synthesis of the imido complex Cp^{*}₂Ta(=NPh)H. They expected a structure with a bent arrangement, because with a single Ta-M π interaction, tantalum would achieve a closed-shell, 18-electron configuration. However, the X-ray structure showed a nearly linear [177.8(9)°] Ta-N-Ph arrangement, with the phenyl group lying nearly in the equatorial plane, indicating that the nitrogen is sp hybridized. The authors suggested that steric interactions, which force the phenyl ring into the equatorial plane, are responsible for sp hybridization at nitrogen. Hence a double [Ta=NPh] bond with a lone electron pair localized in a nitrogen p orbital. Shortly thereafter, Jørgensen offered supporting evidence for this description from extended Hückel MO calculations.²⁴

Most known transition metal imido complexes resemble structure C. Lone pair $p(\pi) \to M(d)$ donation is very effective leading to a M \equiv NR bond order of 3. In contrast to structures A and B, the imido dianion $[NR]^{2-}$ in structure C is a formal six electron (6e⁻)

donor with 1σ and 2π bonds to the metal. Structure C is found in many complexes including octahedral mono(imido) complexes with d^0 - d^2 electronic configurations, tetrahedral bis(imido) with d^0 - d^2 electronic configurations, and d^0 trigonal bipyramidal bis(imides) with equatorial imides. As an example, the d^0 imido complex Ti(NC₆H₃Me₂-2,6)(OC₆H₃Me₂-2,6)₂(Py)₂²⁵ is shown in Figure 2. The linear M-N-C linkage shows an sp hybridization of nitrogen, and the lone pair donation from nitrogen to titanium should be described as an M≡NR triple bond.

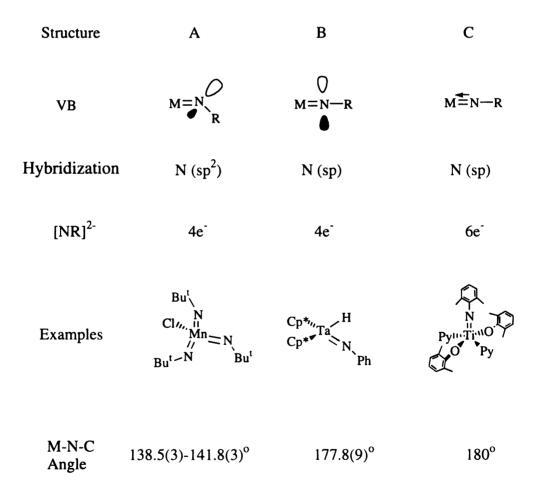


Figure 2: VB descriptions of metal-imido linkages

Although structure C is a fairly accurate depiction of imido bonding for most transition metal imido complexes, "M=NR" is a commonly used generic designation for the metal imido group and is not necessarily an indication of the true bond order.

Synthetic Methods

Chemists have developed various methods for the synthesis of imido complexes. These include (1) α -elimination from amide ligands, $^{21,26-28}$ (2) Oxidative nitrene transfer from arylazides 29 and related species, 30,31 (3) "Wittig-like" reactions between phosphin imines and metal ligand double bonds (especially M=O), $^{23,32-36}$ and (4) electrophilic attacks on nitrido 37,38 and diazenido ligands. 39

Among the transition block elements, group 5-8 transition imido chemistry had been reasonably well developed by the end of 1980s. In contrast, well-defined derivatives for group 4 did not appear until about this time.^{1,2} The current development of group 4 elements titanium and zirconium imido chemistry will be described in next section.

B. Ti and Zr imido chemistry

Although the first imido titanium complex Ti(=NSiMe₃)Cl₂(Py)₂ was reported by Burger and Wannagat⁴⁰ as early as 1963 through Me₃SiCl elimination from Ti[N(SiMe₃)₂]Cl₃, titanium imidos were still rare at the end of 1980s. Terminal titanium imido complexes were first structurally characterized in 1990.⁵ Since then, a number of simple mononuclear, five- and six-coordinate titanium imido derivatives have been reported.² The first terminal Zr=NR functional groups were reported in 1988.^{3,4} Since then, many research groups have reported a range of new chemical reactivity. In this section, many new developments in Ti and Zr imido chemistry will be described.

Convenient syntheses for Ti and Zr imido complexes

The Mountford group^{41,42} reported the compound $[Ti(NR)Cl_2(L)_n]$ (R=Bu^t or aryl; L=py or NC₅H₄Bu^t-4; n=2 or 3) (Figure 3), which offers a general route to a series of Ti=NR species. The *tert*-butyl imido complexes $[Ti(NBu^t)Cl_2(L)_n]$ are readily obtained from TiCl₄, Bu^tNH₂ and the appropriate ligand(s). Analogous arylimido complexes cannot be obtained directly from ArNH₂ and TiCl₄, but arylamine/*tert*-butyl imide exchange reactions of $[Ti(NBu^t)Cl_2(Py)_3]$ readily afford the desired complexes, $[Ti(NAr)Cl_2(Py)_3]$. The utility of these complexes as synthons for new titanium imido derivatives may partly be attributed to the imido ligand's ability to stabilize higher oxidation states by π donation. Hence, almost none of the anion metathesis reactions are complicated by reduction of the Ti(IV) centers.

The easiest way to access Zr=NR complexes is by reacting 4 equiv of LiNHAr with ZrCl₄(THF)₂ in THF / py, which yields Zr(=NAr)(NHAr)₂(Py)₂. This complex reacts further with 1 or 2 equiv of Me₃SiCl in THF / py to provide Zr(=NAr)(NHAr)Cl(Py)₂ and Zr(=NAr)Cl₂(Py)₃ respectively.⁴⁴

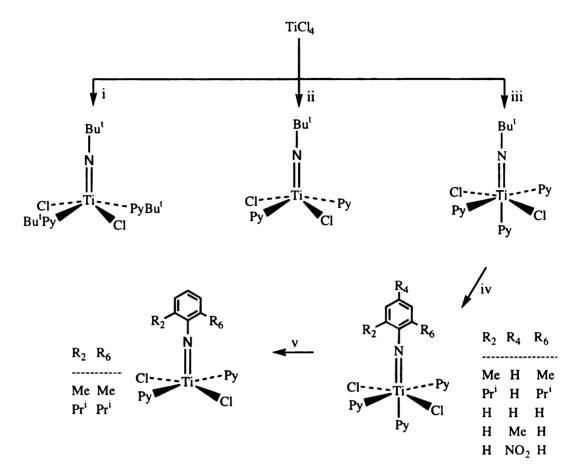


Figure 3: Versatile synthons for titanium imido compound

- (i) Bu^tNH₂(6 equiv), py-Bu^t(2.2 equiv.)
- (ii) $Bu^tNH_2(6 \text{ equiv}), py(2.3\text{ equiv})$
- (iii) Bu^tNH₂(6.3 equiv), py(4.1 equiv)
- (iv) aniline or substituted aniline
- (v) 65°C, dynamic vacuum.

C-H bond activation

High-valent Ti and Zr imido complexes can activate C-H bonds. In 1991, Wolczanski's group¹⁵ described the preparation and chemistry of highly reactive species [Ti(NSiBu^t₃)(NHSiBu^t₃)₂], which can activate C-H bonds of benzene. The reaction is shown in Figure 4. The group also reported the selectivity in hydrocarbon activation through the kinetic and thermodynamic investigations of reversible 1,2-RH-elimination from (^tBu₃SiO)₂(^tBu₃SiNH)TiR.⁴⁵

Figure 4: C-H activation with a titanium imido complex

The Zr=N bond can activate the C-H bonds of hydrocarbons through σ-bond metathesis. Bergman's group reported C-H activation by using transient Cp₂Zr=NR in 1988.³¹ At the same time, Wolczanski's group reported that a highly reactive zirconium imido complex, (Bu^t₃SiNH)₂Zr(=NSiBu^t₃), effectively mediated the C-H bond activation.³

Cycloaddition

Titanium imido complexes also react with alkynes, isocyanates, and isocyanides to produce [2+2] cycloaddition products. For example, Mountford's group studied the cycloaddition reactions of the compounds [Ti(NR)(Me4taa)] with a range of organic substrates. Figure 5 shows the cycloaddition reactions with isocynates, di-p-tolylcarbodiimide and carbon dioxide.

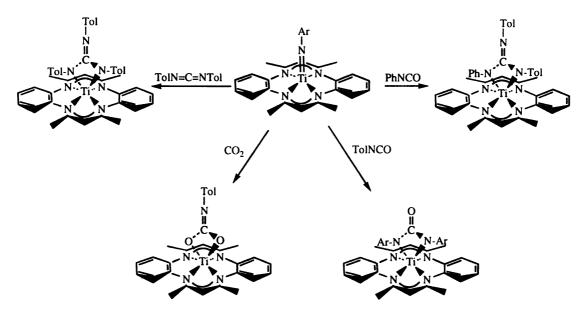


Figure 5: Selected cycloaddition reactions of [Ti(NAr)(Me4taa)]

Zirconium imido complexes undergo cycloaddition reactions with a wide range of unsaturated organic molecules including alkynes, imines, and certain alkenes.^{47,50} Several these reactions are believed to be important steps in catalytic transformations (e.g. hydroamination and imine metathesis) mediated by imido compounds.

C. Ligand Considerations

By 1993, research showed that group 4 imido compounds could be isolated but were relatively unreactive, or could be generated in situ and were extremely reactive. In recent years, there has been considerable effort put forth in developing supporting ligands in transition metal imido chemistry, with a major goal being the tailoring of chemical reactivity and properties. Supporting ligands are generally bulky in order to prevent dimerization and to provide the necessary electronic stabilization to the metal center.

Studies utilizing a wide range of ligands have confirmed the influence of the ancillary ligand environment on reactivity, but the accurate prediction of reactivity from a structure remains a challenge. For group 4 metal imido chemistry, N-donor amide and N_4 macrocyclic ligands have been developed, and some representative structures are shown in Figure 6.

A class of ligand that has enjoyed widespread use across a range of transition metal chemistry is "salen"-type Schiff bases **D** (Figure 6).^{51.52} The peripheral substituents (i.e. R₁, R₂, R₃) of these N₂O₂-donor ligands are readily modified, and their syntheses from diamines and salicylaldehydes are typically straightforward. A few compounds with group 4 imido chemistry have been reported, and investigations of these compounds are still ongoing.⁵³

 α -Diimines⁵⁴ (E in Figure 6) can coordinate as a neutral bidentate ligands, but most commonly they act as mono- or di-anionic moieties owing to their ability to accept electron density into the π_3 lowest unoccupied molecular orbital. This results in shortening of the diimine C-C and lengthening of the C-N bonds in comparison to those of the free ligand. 55,56

Arnold's group⁵⁷ has explored several general classes of amindinate ligands including linked bis(amidinates)⁵⁸ and ferrocene-containing derivatives.⁵⁹ An example is the N,N-bis(trimethylsilyl) benzamidinate (BTBA) ligand (F) shown in Figure 6. This ligand is particularly attractive because it is prepared easily and cheaply on a large scale. Its complexes are nicely soluble and generally highly crystalline, and the ligand contains excellent NMR spectroscopic handles. BTBA complexes are known for a wide range of transition metals in various oxidation states.⁶⁰

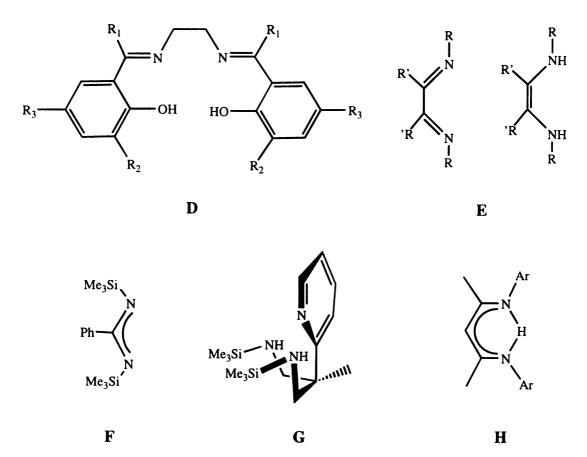


Figure 6: Several supporting ligands used to support group 4 imido complexes

The dianionic diamidoamine ligand $[Me_3SiN(CH_2CH_2NSiMe_3)_2]^{2-}$ (N_2N^{2-}) (G in Figure 6) has been used for imido group 4 chemistry. Like its diamidopyridine N_2Npy analog, 62,63 the N_2N ligand can adopt a *fac* coordination geometry. Stable group 4 imido compounds with this ligand were synthesized, and the structures have been reported.

β-Diketiminate ligands

In this research, β -diketiminate ligands (**H** in Figure 6) were used. Applications of β -diketiminate ligands to imido metal complex have been limited despite several attractive features. First, they can be prepared in high yields from cheap and readily

available building blocks, 2,4-pentanedione and primary amines. Second, the steric and electronic properties of the β -diketiminate ligands can be altered through appropriate choices of amine and β -diketone used in their syntheses. Lastly, this ligand family can provide kinetic stability while maintaining several accessible oxidation states at the metal since they generally bind as monoanionic ligands.

Diketiminate ligands have been known for a long time, and early investigations involved spectroscopic studies of transition metal complexes.⁶⁴⁻⁶⁶ In addition to our group's work,⁶⁷⁻⁷⁴ several groups have recently used the ligands to carry out stoichiometric and catalytic reactions.⁷⁵⁻⁸³

Bibliography

- (1) Wigley, D. E. In *Progress in Inorganic Chemistry*, Vol 42, **1994**; Vol 42, pp 239-482.
- (2) Mountford, P. J. Chem. Soc. Chem. Commun.. 1997, 2127-2134.
- (3) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731-8733.
- (4) McGhee, W. D.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8428-8443.
- (5) Roesky, H. W.; Voelker, H.; Witt, M.; Noltemeyer, M. Angew. Chem. Int. Edit. Engl. 1990, 29, 669-670.
- (6) Hill, J. E.; Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P. Angew. Chem. Int. Edit. Engl. 1990, 29, 664-665.
- (7) Jekelvroegop, C. T.; Teuben, J. H. J. Organomet. Chem. 1985, 286, 309-315.
- (8) Jekelvroegop, C. T.; Teuben, J. H.; Bolhuis, F.; Vanderlinden, J. G. M. J. Chem. Soc. Chem. Commun. 1983, 550-552.
- (9) Nielson, A. J. *Inorg. Chim. Acta* **1988**, *154*, 177-182.
- (10) Roesky, H. W.; Raubold, T.; Witt, M.; Bohra, R.; Noltemeyer, M. Chem. Ber. 1991, 124, 1521-1523.
- (11) Bai, Y. N.; Roesky, H. W.; Noltemeyer, M.; Witt, M. Chem. Ber. Recl. 1992, 125, 825-831.
- (12) Bai, Y.; Roesky, H. W.; Schmidt, H. G.; Noltemeyer, M. Z. Naturforsch.(B) 1992, 47, 603-608.
- (13) Liu, F. Q.; Herzog, A.; Roesky, H. W.; Uson, I. *Inorg. Chem.* **1996**, *35*, 741-744.
- (14) Schaller, C. P.; Bonanno, J. B.; Wolczanski, P. T. J. Am. Chem. Soc. 1994, 116, 4133-4134.
- (15) Cummins, C. C.; Schaller, C. P.; Vanduyne, G. D.; Wolczanski, P. T.; Chan, A. W. E.; Hoffmann, R. J. Am. Chem. Soc. 1991, 113, 2985-2994.
- (16) McGrane, P. L.; Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1992, 114, 5459-5460.

- (17) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Organometallics 1993, 12, 3705-3723.
- (18) Doxsee, K. M.; Mouser, J. K. M.; Farahi, J. B. Synlett 1992, 13-21.
- (19) Doxsee, K. M.; Farahi, J. B.; Hope, H. J. Am. Chem. Soc. **1991**, 113, 8889-8898.
- (20) McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485-11489.
- (21) Nugent, W. A. M., J.M. Metal-Ligand Multiple Bonds; Wiley: New York, 1988.
- (22) Chatt, J.; Rowe, G. A. J. Chem. Soc. 1962, 4019.
- (23) Haymore, B. L.; Maatta, E. A.; Wentworth, R. A. D. J. Am. Chem. Soc. 1979, 101, 2063-2068.
- (24) Jorgensen, K. A. *Inorg. Chem.* **1993**, *32*, 1521-1522.
- (25) Collier, P. E.; Blake, A. J.; Mountford, P. J. Chem. Soc. Dalton Trans. 1997, 2911-2919.
- (26) Baldwin, T. C.; Huber, S. R.; Bruck, M. A.; Wigley, D. E. *Inorg. Chem.* 1993, 32, 5682-5686.
- (27) Chao, Y. W.; Wexler, P. A.; Wigley, D. E. *Inorg. Chem.* **1990**, 29, 4592-4594.
- (28) Nugent, W. A.; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123-175.
- (29) Danopoulos, A. A.; Wilkinson, G.; Sweet, T.; Hursthouse, M. B. J. Chem. Soc. Chem. Commun. 1993, 495-496.
- (30) Parkin, G.; Vanasselt, A.; Leahy, D. J.; Whinnery, L.; Hua, N. G.; Quan, R. W.; Henling, L. M.; Schaefer, W. P.; Santarsiero, B. D.; Bercaw, J. E. *Inorg. Chem.* 1992, 31, 82-85.
- (31) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729-8731.
- (32) Schofield, M. H.; Kee, T. P.; Anhaus, J. T.; Schrock, R. R.; Johnson, K. H.; Davis, W. M. *Inorg. Chem.* 1991, 30, 3595-3604.
- (33) Harlan, E. W.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 186-193.
- (34) Danopoulos, A. A.; Wilkinson, G.; Hussainbates, B.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 1991, 1855-1860.
- (35) Danopoulos, A. A.; Wilkinson, G.; Hussainbates, B.; Hursthouse, M. B. J. Chem. Soc. Dalton Trans. 1991, 269-275.

- (36) Carofiglio, T.; Floriani, C.; Chiesivilla, A.; Guastini, C. Inorg. Chem. 1989, 28, 4417-4419.
- (37) Bishop, M. W.; Chatt, J.; Dilworth, J. R.; Hursthouse, M. B.; Motevalle, M. J. Less-Common Metals 1977, 54, 487-493.
- (38) Bishop, M. W.; Chatt, J.; Dilworth, J. R.; Neaves, B. D. J. Organomet. Chem. 1981, 213, 109-124.
- (39) Chatt, J.; Diamantis, A. A.; Heath, G. A.; Hooper, N. E.; Leigh, G. J. J. Chem. Soc. Dalton Trans. 1977, 688-697.
- (40) Burger, H.; Wannagat, U. Monatsh. Chem. 1963, 94, 761.
- (41) Dunn, S. C.; Batsanov, A. S.; Mountford, P. J. Chem. Soc. Chem. Commun. 1994, 2007-2008.
- (42) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.; Shishkin, O. V. J. Chem. Soc. Dalton Trans. 1997, 1549-1558.
- (43) Collier, P. E.; Dunn, S. C.; Mountford, P.; Shishkin, O. V.; Swallow, D. J. Chem. Soc. Dalton Trans. 1995, 3743-3745.
- (44) Arney, D. J.; Bruck, M. A.; Huber, S. R.; Wigley, D. E. *Inorg. Chem.* **1992**, *31*, 3749-3755.
- (45) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. **1997**, 119, 10696-10719.
- (46) Dewith, J.; Horton, A. D.; Orpen, A. G. Organometallics 1993, 12, 1493-1496.
- (47) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 974-985.
- (48) Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. *Inorg. Chem.* **1991**, *30*, 1143-1144.
- (49) Blake, A. J.; Mountford, P.; Nikonov, G. I.; Swallow, D. Chem. Commun. 1996, 1835-1836.
- (50) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1994, 116, 2669-2670.
- (51) Garnovskii, A. D.; Nivorozhkin, A. L.; Minkin, V. I. Coord. Chem. Rev. 1993, 126, 1-69.
- (52) Jacobsen, E.N. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F.G.A., and Wilkinson, G., Eds.; Elsevier: New York, 1995; Vol. 12.
- (53) McInnes, J. M.; Swallow, D.; Blake, A. J.; Mountford, P. *Inorg. Chem.* 1998, 37, 5970-5977.

- (54) McInnes, J. M.; Blake, A. J.; Mountford, P. J. Chem. Soc. Dalton Trans. 1998, 3623-3628.
- (55) Cloke, F. G. N.; Dalby, C. I.; Daff, P. J.; Green, J. C. J. Chem. Soc. Dalton Trans. 1991, 181-184.
- (56) Kaltsoyannis, N. J. Chem. Soc. Dalton Trans. 1996, 1583-1589.
- (57) Hagadorn, J. R.; Arnold, J. Organometallics 1998, 17, 1355-1368.
- (58) Hagadorn, J. R.; Arnold, J. Angew. Chem. Int. Edit. 1998, 37, 1729-1731.
- (59) Hagadorn, J. R.; Arnold, J. *Inorg. Chem.* **1997**, *36*, 132-&.
- (60) Edelmann, F. T. Coord. Chem. Rev. 1994, 137, 403.
- (61) Collier, P. E.; Pugh, S. M.; Clark, H. S. C.; Love, J. B.; Blake, A. J.; Cloke, F. G. N.; Mountford, P. *Inorg. Chem.* 2000, 39, 2001-2005.
- (62) Friedrich, S.; Gade, L. H.; Edwards, A. J.; McPartlin, M. J. Chem. Soc. Dalton Trans. 1993, 2861-2862.
- (63) Friedrich, S.; Schubart, M.; Gade, L. H.; Scowen, I. J.; Edwards, A. J.; McPartlin, M. Chem. Ber Recl. 1997, 130, 1751-1759.
- (64) Scheibe, G. Chem. Ber. 1923, 56, 137-148.
- (65) Parks, J. E.; Holm, R. H. *Inorg. Chem.* **1968**, *7*, 1408-1416.
- (66) McGeachin, S. G. Can. J. Chem. 1968, 46, 1903-1912.
- (67) Smith, M. R.; Qian, B. X.; Scanlon, W. J. Abstract Paper Am. Chem. Soc. 1998, 216, 003.
- (68) Smith, M. R.; Qian, B. X. Abstract Paper Am. Chem. Soc. 1999, 218, 578.
- (69) Kakaliou, L.; Scanlon, W. J.; Qian, B. X.; Baek, S. W.; Smith, M. R.; Motry, D. H. *Inorg. Chem.* **1999**, *38*, 5964-5977.
- (70) Qian, B. X.; Smith, M. R. Abstract Paper Am. Chem. Soc. 1998, 216, 002.
- (71) Qian, B. X.; Ward, D. L.; Smith, M. R. Organometallics 1998, 17, 3070-3076.
- (72) Qian, B. X.; Baek, S. W.; Smith, M. R. Abstract Paper Am. Chem. Soc. 1998, 215, 290.
- (73) Qian, B. X.; Baek, S. W.; Smith, M. R. Polyhedron 1999, 18, 2405-2414.

- (74) Qian, B. X.; Scanlon, W. J.; Smith, M. R.; Motry, D. H. Organometallics 1999, 18, 1693-1698.
- (75) Mair, F. S.; Scully, D.; Edwards, A. J.; Raithby, P. R.; Snaith, R. *Polyhedron* **1995**, *14*, 2397-2401.
- (76) Lappert, M. F.; Liu, D.-S. J. Organomet. Chem. 1995, 500, 203-217.
- (77) Kim, W.-K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A. L.; Theopold, K. H. Organometallics 1998, 17, 4541-4543.
- (78) Clegg, W.; Cope, E. K.; Edwards, A. J.; Mair, F. S. *Inorg. Chem.* **1998**, *37*, 2317-2319.
- (79) Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, J. C.; Arthur, S. D. Organometallics 1997, 16, 1514-1516.
- (80) Budzelaar, P. H. M.; de Gelder, R.; Gal, A. W. Organometallics 1998, 19, 4121-4123.
- (81) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384-9385.
- (82) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics 1998, 17, 1315-1323.
- (83) Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M. Organometallics 1999, 18, 2947-2949.

CHAPTER 2

RESULTS AND DISCUSSION

Ligand Synthesis

Syntheses of various β-diketiminate ligands were of interest. The general route is from 2,4-pentanedione, through two steps of amine condensation catalyzed by *p*-toluenesulfonic acid (Scheme 1).¹ However, relatively few examples of unsymmetrically substituted ketiminate ligands are known, and most involve reactions of more basic alkyl amines with arylketinines.^{1,2} For arylamines, the procedure in scheme 1 is complicated by reversible amine condensations, which can lead to mixtures. Hence, we attempted to devise routes to unsymmetrically substituted ligands.

Scheme 1:

Our group previously found that Ti(NMe₂)₄ deoxygenation of monoketiminate complexes, which is thermodynamically driven by formation of TiO₂.³ For example, two equiv of 4-(p-methylphenylamino)-3-pentene-2-one (3) react with 1 equiv of Ti(NMe₂)₄ to afford colorless 2-Dimethylamino-4-p-tolylimino-2-pentene (11) in 80% yield after standard workup. With a TsOH mediated reaction, the secondary dimethylamino group could be replaced by primary arylamines, thus TolnacnacH (7) was prepared in about 52% yield (Scheme 2).

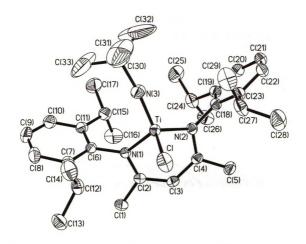
Scheme 2:

After this encouraging result, we designed a new in situ reaction route. To avoid isolation of 11, we replaced dimethylamino unit at the outset by reacting $Ti(NMe_2)_4$ with two equiv of an aryl amine, and then we reacted the titanium intermediate(s) with 4-amino-3-pentene-2-one to synthesize the desired β -diketiminate ligand (Scheme 3). The result was what we expected, simplifying the syntheses of ligands with bulky aryl groups.

For example, after Ti(NMe₂)₄ and *p*-toluidine were stirred in toluene for 8 hours, 4-(2,6-di-*iso*-propylphenylamino)-3-pentene-2-one (4) was added and the mixture was refluxed. The desired unsymmetrically substituted ketiminate ligands 12 was obtained after the workup.

Scheme 3:

Synthesis of (Arnacnac)Ti(NBu^t)Cl and (Arnacnac)Ti(NBu^t)Cl(Py)


The β-diketiminate ligands are all readily converted to the corresponding lithium salts (14, 15 and 16) in excellent yields through reaction with butyl lithium in toluene/pentane. Filtration and evaporation of volatile materials give products suitable for use without the need for additional purification. Mountford's group^{4,5} reported that the compound Ti(=NBu^t)Cl₂(PyBu^t)₂ (13), which is inexpensive and readily prepared, is an excellent starting material in titanium imido chemistry since the *tert*-butyl pyridine and chloride ligands are usually easily substituted. Therefore, compound 13 was examined as a source of the titanium imido fragment.

The syntheses of β-diketiminate titanium imido chloride complexes were achieved by reacting 13 with lithium salts 14, 15 and 16 respectively, where a chloride and one or two *tert*-butyl pyridine ligands are replaced by the Arnacnac group. The

chemistry is summarized in Scheme 4, and full spectroscopic and analytical data are listed in Chapter 3.

Scheme 4:

Reaction of 13 with 14 in toluene at 70 °C for 16 hours resulted in an orange solution. Standard workup and crystallization from toluene/pentane at -30 °C gave (Bu^tN)Ti(Dipnacnac)Cl (17) in 66% yield. The NMR spectra for 17 in CDCl₃ indicate mirror symmetry in solution. Diffraction-quality crystals of 17 were grown at -30 °C from a saturated pentane solution. Details of data collection, processing, and structure resolution are given in the Appendix. The molecular structure is shown in Figure 7, and selected bond lengths and angles are given in Table 1.

 $Figure~7:~Thermal~ellipsoid~plot~(50\%~probability)~of~(Bu^tN)Ti(Dipnacnac)Cl~(17).$

Table 1. Selected bond lengths (\mathring{A}) and bond angles $(^{\circ})$ for $(Bu^{l}N)Ti(Dipnacnac)Cl$ (17).

Bond Lengths (Å)		Bond Angles (°)			
N3-Ti-N1	1.695(2)	N3-Ti-N1	106.39(9)	N2-Ti-Cl	115.79(6)
N3-Ti-N2	2.0292(18)	N3-Ti-N2	112.43(10)		
Ti-N2	2.031(2)	N1-Ti-N2	93.83(8)	Ti-N3-C30	171.3(2)
Ti-Cl	2.3268(7)	N3-Ti-Cl	113.17(8)		
N3-C30	1.460(3)	N1-Ti-Cl	113.36(6)		

 $(Bu^iN)Ti(Dipnacnac)Cl$ (17) has a four-coordinate Ti^{IV} center which possesses a distorted tetrahedral geometry. The $Ti=N_{imide}$ bond length [1.695(2) Å] lies in the middle

of the range of values (ca. 1.67-1.73 Å) usually found for this linkage.^{6,7} The angle subtended at the imido nitrogen atom [Ti-N3-C30] is 171.3(2)°.

The Dipnacnac ligand in 17 has the di-iso-propyl substituents on the 2- and 6-aryl positions. We were interested in probing the effects of changing the aryl ring substituents on the properties of titanium imido derivatives. Thus, we also investigated chemistry with less hindered Tolnacnac ligand.

The lithium salt 15 reacted with compound 13 in toluene to afford brown Ti(NBu¹)(Tolnacnac)Cl(PyBu¹) (18) in 44% recrystallized yield. Formation of a five-coordinate titanium with one *tert*-butylpyridine in 18 reflects the reduced steric demands of the Tolnacnac ligand relative to Dipnacnac ligand.

A view of the molecular structure of (Bu'N)Ti(Tolnacnac)Cl(PyBu¹) (18) is shown in Figure 8, and important bond lengths and angles are listed in Table 2.

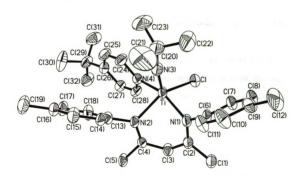


Figure 8: Thermal ellipsoid plot (50% probability) of (Bu^tN)Ti(Tolnacnac)Cl(PyBu^t) (18).

Table 2. Selected bond lengths (Å) and bond angles (°) for (Bu^tN)Ti(Tolnacnac)Cl(PyBu^t) (18)

Bond Le	ngths (Å)		Bond Ar	ngles (°)	
Ti-N3	1.685(5)	N3-Ti-N1	104.8(3)	N3-Ti-N4	100.5(3)
Ti-N1	2.067(6)	N3-Ti-N2	110.4(3)	N1-Ti-N4	154.0(2)
Ti-N2	2.076(5)	N1-Ti-N2	83.6(2)	N2-Ti-N4	82.4(2)
Ti-N4	2.228(6)	N3-Ti-Cl	111.6(2)	N4-Ti-Cl	84.28(16)
Ti-Cl	2.376(2)	N1-Ti-Cl	91.53(17)		
N3-C20	1.455(9)	N2-Ti-Cl	137.55(17)	Ti-N3-C20	171.6(5)

Compound 18 has the titanium in a square pyramidal geometry with the near-linear *tert*-butylimido ligand in the apical position. The titanium-imido nitrogen bond distance of 1.685(5)Å also falls in the typical range of 1.67-1.73 Å. The two Ti-N bond lengths for the ligand are statistically identical, averaging 2.072 Å.

Lithium salt 16 was also tried to perform the reaction. Under the same condition, the orange compound (Bu^tN)Ti(TFMnacnac)(PyBu^t)Cl (19) was formed in 53% yield. Compound 19 was obtained with a five-coordinate titanium. The molecular structure of 19 and some important bond lengths and bond angles are shown in Figure 9 and Table 3 respectively.

Similar to that of 18, the structure of 19 shows a square pyramidal geometry. The titanium-imido nitrogen bond distance is almost identical to that of 18. The angle of $168.5(7)^{\circ}$ at the imido nitrogen atom (Ti-N6-C24) is nearly linear and consistent with a Ti-N triple bond. The titanium-imido nitrogen bond distance is experimentally identical to that in compound 18.

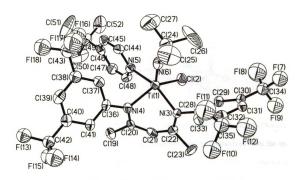


Figure 9: Thermal ellipsoid plot (50% probability) of (Bu^tN)Ti(TMFnacnac)Cl(PyBu^t) (19).

Table 3. Selected bond lengths (Å) and bond angles (°) for (Bu^tN)Ti(TMFnacnac)Cl(PyBu^t) (19)

Bond Lengths (Å)		Bond	Bond Angles (°)		
Til-N6	1.684(8)	N6-Ti1-N3	104.1(3)	N3-Ti1-N5	156.2(3)
Ti1-N3	2.119(7)	N6-Ti1-N4	109.8(3)	N4-Ti1-N5	86.1(3)
Ti1-N4	2.084(7)	N6-Ti-N5	99.5(3)	N4-Ti1-Cl2	139.5(2)
Til-N5	2.255(7)	N6-Ti-Cl2	110.6(3)	N5-Ti1-Cl2	85.2(2)
Ti1-Cl2	2.380(3)	N3-Ti1-N4	83.4(3)		
N6-C24	1.483(12)	N3-Ti1-Cl2	89.0(2)	Ti1-N6-C24	168.5(7)

In an attempt to prepare an arylimido analog of (Dipnacnac)Ti(NBu¹)Cl, the NMR reaction between 17 and toluidine was examined in a toluene-d₈ solution. The exchange required forcing conditions. Nevertheless, a clean conversion occurred within 1 hour at 150 °C (Scheme 5).

Scheme 5:

$$\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

The pyridine adduct of 20 was easily prepared from lithium salt Li(Dipnacnac) (14) and (NTol)TiCl₂Py₃ (21). The desired products could be synthesized from the imido complex and lithiated β-diketimine ligands. For example, compound 21 was reacted with 14 in toluene for 16 hours at 70°C. After standard workup procedure, the brown compound (TolN)TiDipnacnacClPy₂ (22) was obtained in 63% yield. With the success of this reaction, a series of arylimido titanium compounds were analogously synthesized with this route.

Scheme 6

Syntheses of $L_2M(=NR)$ through lithium salt metathesis

We tried to coordinate a second β -diketiminate ligand to titanium by further lithium salt metathesis. Addition of 14 to a stirred toluene solution of

(Bu^tN)TiCl₂(PyBu^t)₂ (13) gave compound 17 and unreacted 14. Since steric factors may prevent incorporation of the second dipnacnac ligand, analogous reactions with 15 were examined. However, the desired product Ti(=NBu^t)(Tolnacnac)₂ could not be obtained.

Surprisingly, two equiv of 16 reacted with 13 afforded the yellow compound $(Bu^{1}N)Ti(TFMnacnac)_{2}$ (23) in 62% yield (Scheme 7). A singlet methane proton in the ^{1}H NMR spectrum and only one singlet in the ^{19}F NMR suggest a $C_{2\nu}$ -symmetric structure.

Scheme 7

We also tried the syntheses of zirconium compounds because zirconium has a bigger atomic radius. The complex (DipN)ZrCl₂Py₂ (24)⁸ was chosen as the starting material.

Two equiv of 15 were dissolved in toluene, and the solution was added dropwise to a toluene solution of 24. The yellow-orange compound (DipN)Zr(Tolnacnac)₂ (25) was obtained in 70% yield (Scheme 7). The solid-state structure of compound 25 is shown in Figure 10 and selected bond lengths and bond angles are listed in Table 4.

Compound 25 has a five-coordinate Zr^{IV} center in a distorted trigonal-bipyramidal arrangement with an approximately linear arylimido ligand (174.95(7)°) occupying an equatorial coordination site. The Zr- N_{imido} bond length (1.854(2) Å) is within the range of known alkyl- and aryl-substituted imido ligands for Zirconium complexes (1.83-1.88 Å).^{6,8-13} The nitrogens of each β -diketimine ligand occupy both axial and equatorial coordination sites, where the averaged axial Zr- N_{ligand} bond distances (2.60 Å) are longer than the averaged equatorial Zr- N_{ligand} bond distances (2.35 Å).

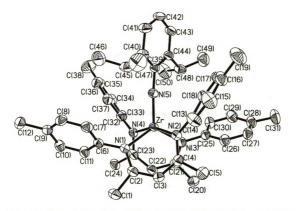


Figure 10: Thermal ellipsoid plot (50% probability) of (DipN)Zr(Tolnacnac)2 (25).

Table 4. Selected bond lengths (Å) and bond angles (°) for (DipN)Zr(Tolnacnac)₂ (25)

Bond Lei	ngths (Å)		Bond Angles (°)	
Zr-N1	2.2447(19)	N5-Zr-N1	117.72(8) N1-Zr-N4	89.93(7)
Zr-N2	2.259(2)	N5-Zr-N2	98.62(8) N2-Zr-N3	91.04(7)
Zr-N3	2.228(2)	N5-Zr-N3	116.34(8) N2-Zr-N4	160.30(7)
Zr-N4	2.261(2)	N5-Zr-N4	101.08(8) N3-Zr-N4	80.33(7)
Zr-N5	1.854(2)	N1-Zr-N2	80.80(7)	
N5-C39	1.395(3)	N1-Zr-N3	125.94(8) Zr-N5-C39	174.95(17)

Syntheses of LTi(=NR)Cl derivatives

Compounds 17, 18, and 19 provide good entries to potentially interesting imidotitanium compounds by exchanging the chloride ligand. As shown in Scheme 8, compound 17 reacts with 1 equiv silver triflate at room temperature to afford the orange compound (Bu^tN)Ti(Dipnacnac)(OTf) (26) in 72% yield. Since triflate is usually a better leaving group than chloride, compound 26 may exhibit interesting reactivity. Compound 26 has a similar ¹H NMR spectrum to 17. Therefore, the triflate is almost certainly bound in solution. ORTEP diagram of complex 26 is shown in Figure 11. In Table 5, some selected bond lengths and bond angles are listed.

Scheme 8

The structure of 26 has a distorted pseudo tetrahedral symmetry similar to chloride 17. The angle subtended at the imido nitrogen atom [Ti-N3-C30] is 177.0 (5)°, which is slightly more linear than in 17 [(171.3(2)°], and the Ti=N_{imide} bond length [1.680(5) Å] is slightly shorter than that of 17 [1.695(2) Å]. These data may reflect a somewhat higher degree of π -interaction between N_{imido} and Ti in 26.

Table 5. Selected bond lengths (Å) and bond angles (°) for $(Bu^tN)Ti(Dipnacnac)OTf \eqno(26)$

Bond	Lengths (Å)		Bono	Angles (°)	
Ti-N3	1.680(5)	N3-Ti-N1	108.0(2)	N2-Ti-O1	116.3(2)
Ti-N1	1.993(6)	N3-Ti-N2	108.4(2)	Ti-O1-S	163.7(3)
Ti-N2	2.006(5)	N1-Ti-N2	94.8(2)		
Ti-O1	1.982(4)	N3-Ti-O1	113.7(2)	Ti-N3-C30	177.0(5)
N3-C30	1.458(7)	N1-Ti-O1	113.9(2)		

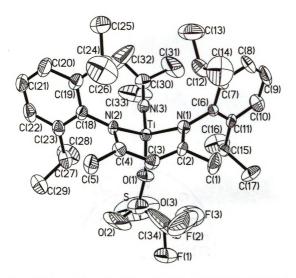


Figure 11: Thermal ellipsoid plot (50% probability) of (Bu^tN)Ti(Dipnacnac)(OTf) (26).

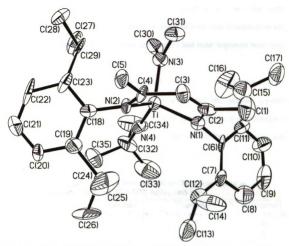


Figure 12: Thermal ellipsoid plot (50% probability) of (Bu'N)Ti(Dipnacnac)(NMe₂) (27).

Table 6. Selected bond lengths (Å) and bond angles (°) for $(Bu^tN)Ti(Dipnacnac)(NMe_2)$ (27)

Bond Lengths (Å)			Bond	Angles (°)	
Ti-N4	1.703(4)	N4-Ti-N1	113.8(4)	N2-Ti-N3	114.7(4)
Ti-N1	2.047(9)	N4-Ti-N2	113.2(4)		
Ti-N2	2.080(9)	N1-Ti-N2	92.64(14)	Ti-N4-C32	176.2(9)
Ti-N3	1.922(4)	N4-Ti-N3	108.44(16)		
N4-C32	1.430(6)	N1-Ti-N3	113.6(4)		

The amide derivative (Bu'N)Ti(Dipnacnac)(NMe₂) (27) was prepared by metathesis between 17 and Li(NMe₂) in 62.4% yield. The ¹H NMR spectrum showed two

N-CH₃ resonances at 3.93 ppm and 2.61 ppm, respectively. It is not clear whether restricted Ti-N bonds have steric or electronic origins. The solid-state structure from single crystal X-ray diffraction on 27 is shown in Figure 12 and some important bond lengths and bond angles are listed in Table 6.

A Ti-C derivative was also synthesized by metathesis route. Chloride 17 reacted cleanly with methyl lithium at room temperature, and the yellow, crystalline (Bu¹N)Ti(Dipnacnac)Me (28) was obtained in 88% yield after workup. Although the solid-state structure was not determined, the ¹H NMR data for 28 are consistent with a structure similar to those of the compounds 26 and 27 (Table 7).

Table 7. 1 H NMR ($C_{6}D_{6}$, 300HZ) Chemical shift of Dipnacnac ligand in (Dipnacnac)Ti(NBu^t)X (X = OTf, NMe₂, and Me)

Compound	(Dipnacnac) Ti(NBu ^t)(OTf) (26)	(Dipnacnac) Ti(NBu ^t)(NMe ₂) (27)	(Dipnacnac) Ti(NBu ^t)Me (28)
Backbone (1H)	4.81	4.94	4.86
Methane of petane (6H)	1.51	1.53	1.56
Bond to 1,3-C	1.71 (6H)	1.44 (6H)	1.60 (6H)
of isopropyl group	1.37 (6H)	1.20 (6H)	1.42 (6H)
(24H)	1.30 (6H)	1.13 (6H)	1.19 (6H)
	0.92 (6H)	0.85 (6H)	1.07 (6H)
Bond to 2-C of	3.11 (2H)	3.61 (2H)	3.36 (2H)
isopropyl group (4H)	3.02 (2H)	2.83 (2H)	3.14 (2H)

An unusual reaction between Ti(NMe₂)₄ and C₆F₅nacnacH

Previously, Our group 14 and Collins' group 15 had examined reactions between various β -diketiminate ligands and Ti(NMe₂)₄. Scheme 9 shows the general scheme for these reactions.

Scheme 9

The general scheme 9 holds for many different β -diketiminate ligands. However, when we used the highly fluorinated ligand C_6F_5 nacnacH for the reaction, an unusual dark red compound (NMe₂)Ti[(2-NMe₂- C_6F_4)nacnac]F₂ (29) was formed in 93% yield (Scheme 10). ¹H NMR spectrum in benzene-d₆ exhibits four sharp singlets and three multiplets between 1.48 ppm and 3.51 ppm. Each resonance integrates as three protons against the β -diketiminate ligand backbone resonance. The typical chemical shift of the backbone hydrogens ranges from 5 ppm to 6 ppm. In this case, the resonance was observed at 5.09 ppm. The ¹⁹F NMR spectrum showed ten fluorine resonances.

Scheme 10

$$C_6F_5$$
, H , C_6F_5
 $+ Ti(NMe_2)_4$
 $+ HNMe_2$
 $+ HNMe_2$
 $+ HNMe_2$

To help assign the NMR data, an X-ray diffraction experiment was performed on single crystals of 29 (Figure 13). In Table 8, the selected bond lengths and bond angles are listed.

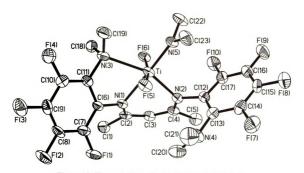


Figure 13: Thermal ellipsoid plot (50% probability) of (NMe₂)Ti[(2-NMe₂-C₆F₄)nacnac]F₂ (29)..

Table 8. Selected bond lengths (Å) and bond angles (°) for $(NMe_2)Ti[(2-NMe_2-C_6F_4)nacnac]F_2$ (29)

Bono	l Lengths (Å)		Bond	Angles (°)	
Ti-N1	2.140(3)	N5-Ti-N1	175.55(13)	N1-Ti-F6	90.54(10)
Ti-N2	2.055(3)	N5-Ti-N2	100.04(13)	N2-Ti-N3	155.62(12)
Ti-N3	2.350(3)	N5-Ti-N3	104.26(12)	N2-Ti-F5	99.26(11)
Ti-N5	1.911(3)	N5-Ti-F5	89.81(12)	N2-Ti-F6	93.51(11)
Ti-F5	1.846(2)	N5-Ti-F6	92.53(11)	N3-Ti-F5	82.88(10)
Ti-F6	1.818(2)	N1-Ti-N2	82.97(12)	N3-Ti-F6	83.58(10)
		N1-Ti-N3	72.89(11)	F5-Ti-F6	166.41(10)
		N1-Ti-F5	86.46(10)		

The ORTEP diagram shows a distorted octahedral geometry with two *trans* fluoride ligands. The β -diketimine ligand C_6F_5 nacnac has been aminated twice through *ortho* C-F activation at each pentafluoro phenyl group (Figure 20). Three out of four nitrogens in the (2-NMe₂- C_6F_4)nacnac ligand coordinate to the central titanium, and inequivalent (2-NMe₂- C_6F_4)nacnac ligand coordinate to the central titanium, and inequivalent (2-NMe₂- C_6F_4)nacnac ligand coordinate to the central titanium, and inequivalent (2-NMe₂- C_6F_4)nacnac ligand coordinate to the central titanium, and inequivalent (2-NMe₂- C_6F_4)nacnac ligand coordinate to the central titanium.

NMe₂-C₆F₄) are evident by ¹H and ¹⁹F NMR. With five sites of the six-coordinate compound **29** accounted for, the last coordination site is occupied by a dimethylamide.

Figure 14: Ligand (2-NMe₂-C₆F₄)nacnac and its potential coordination with metal

3

CN

2

Hydrolysis of compound **29** afforded the ligand (2-NMe₂-C₆F₄)nacnacH (**30**) in 90% yield. The ligand **30** has interesting possibilities as a 2-4 coordinate ligand with a valence of -1 (Figure 14).

Summary

In this project, a new method for synthesizing unsymmetrical diketminate ligands from an arylketimine, Ti(NMe₂)₄ and an arylamine has been developed. This may be useful for preparing complexes where standard acid catalyzed reactions give mixtures.

A series of four and five-coordinate Ti and Zr imido complexes were prepared with one or two diketiminate ligands. For Ti, a series of compounds with the formula $(Dipnacnac)Ti(NBu^t)X$ (X = OTf, NMe₂, and Me) were prepared from $(Dipnacnac)Ti(NBu^t)Cl$.

Finally, the fluorinated ligand C_6F_5 nacnacH undergoes an *ortho* C-F activation at each C_6F_5 group to give a novel Ti compound, which hydrolyzes to give the new ketamine $(2-NMe_2-C_6F_4)$ nacnacH.

Bibliography

- (1) Qian, B. X.; Ward, D. L.; Smith, M. R. Organometallics 1998, 17, 3070-3076.
- (2) Qian, B. X.; Scanlon, W. J.; Smith, M. R.; Motry, D. H. Organometallics 1999, 18, 1693-1698.
- (3) Kakaliou, L.; Scanlon, W. J.; Qian, B. X.; Baek, S. W.; Smith, M. R.; Motry, D. H. *Inorg. Chem.* **1999**, *38*, 5964-5977.
- (4) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.; Shishkin, O. V. J. Chem. Soc. Dalton Trans. 1997, 1549-1558.
- (5) Dunn, S. C.; Batsanov, A. S.; Mountford, P. J. Chem. Soc. Chem. Commun. 1994, 2007-2008.
- (6) Wigley, D. E. In *Progress in Inorganic Chemistry*, Vol 42, 1994; Vol 42, pp 239-482.
- (7) Mountford, P. J. Chem. Soc. Chem. Commun. 1997, 2127-2134.
- (8) Arney, D. J.; Bruck, M. A.; Huber, S. R.; Wigley, D. E. *Inorg. Chem.* **1992**, *31*, 3749-3755.
- (9) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729-8731.
- (10) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696-10719.
- (11) Bai, Y. N.; Roesky, H. W.; Noltemeyer, M.; Witt, M. Chem. Ber. Recl. 1992, 125, 825-831.
- (12) Profilet, R. D.; Zambrano, C. H.; Fanwick, P. E.; Nash, J. J.; Rothwell, I. P. *Inorg. Chem.* **1990**, 29, 4363-4364.
- (13) Zambrano, C. H.; Profilet, R. D.; Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. *Polyhedron* **1993**, *12*, 689-708.
- (14) Scanlon, W. J. Master Thesis, Michigan State University 1998.
- (15) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallic. 1998, 17, 1315-1323.

CHAPTER 3

EXPERIMENTAL METHODS

General Methods and instrumentation

All manipulations, excluding ligand preparations, were carried out under an atmosphere of dinitrogen or argon using standard Schlenk-line or dry-box techniques. Dinitrogen and argon were purified by passing through columns of MnO supported on silica.

Solvents (excluding deuteriated solvents) were freshly distilled over sodium/benzophenone ketyl (toluene, pentane, ether and THF) or over calcium hydride (methylene chloride) and were saturated with dinitrogen before use. Chloroform-d₁, bezene-d₆, toluene-d₈ were dried over activated 3Å sieves, and vacuum transferred. Dichloromethane-d₂ was dried over activated 4Å sieves, and vacuum transferred. Chloroform-d₁ and dichloromethane-d₂ were stored under dinitrogen in air-free flasks in the dry-box. Bezene-d₆ and toluene-d₈ were stored in air-free flask over a sodium mirror in dry-box.

Elemental analyses (C, H, N) were performed on a Perkin Elmer CHN 2400 Series II CHNS/O at the chemistry department of Michigan State University. The following NMR spectrometers were used: Varian Gemini-300, Inova-300 or VXR-300.

¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were referenced to the chemical shift of the residual proton and ¹³C signals of the deuterated solvents. ¹⁹F (288 MHz) NMR spectra were referenced to neat CFCl₃ (δ 0 ppm) as an external standard. Uncorrected

melting points of crystalline samples in sealed capillaries (under a dinitrogen atmosphere) were reported as ranges.

Single Crystal X-Ray Structure Determination

Unless otherwise noted, all crystals were considered to be air sensitive and were collected by filtration and coated with Paratone-N. A suitable single crystal was selected and mounted onto a glass fiber (with Paratone-N). The crystal was then transferred to the goniometer of a Siemens SMART CCD diffractometer using Mo K_{λ} radiation (λ = 0.71073 Å). Data frames were collected as 30-second exposures at 173K. The initial cells were calculated from three sets of 20 frames. All data sets were collected over a hemisphere of reciprocal space. SAINT was used to integrate 1025 frames and to generate the raw file. Final unit cell parameters were obtained by least-squares refinement of strong reflections obtained. Absorption correction and time decay were applied to the data by SADABS. The non-hydrogen atoms located by using SHELXS and refined using.

Calculations were based on F^2 data. Unless noted otherwise, all non-hydrogen atoms were refined using anisotropic displacement parameters and all hydrogen atoms were placed in calculated positions and refined as riding models. Three of the parameters are defined below.

$$GOF = [\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)]^{1/2}$$

where n is the number of reflections and p the total number of parameters refined.

$$R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$$

$$wR2 = \left[\sum [w(F_0^2 - F_c^2)^2]/\sum [w(F_0^2)^2]\right]^{1/2}$$

Starting materials

Common chemicals were purified by established procedures. The compounds $(Bu^tN)TiCl_2(PyBu^t)_2$, $(Bu^tN)TiCl_3Py_3$, $(TolN)TiCl_2Py_3$, $(DipN)ZrCl_2Py_2$, $(DipN)ZrCl_2Py_2$, $(DipN)ZrCl_2Py_3$, $(DipN)ZrCl_2Py_3$, and $(DipN)ZrCl_2Py_3$, $(DipN)ZrCl_2Py_3$, and $(DipN)ZrCl_2Py_3$, $(DipN)ZrCl_3Py_3$

2,4-pentanedione, 2,6-diisopropyl aniline were distilled prior to use. *p*-Toluidine was sublimed and AgOTf was recrystallized from ether before use.

Synthesis

4-(*p*-Methylphenylamino)-3-pentene-2-one (3)⁵ In a 500 mL round bottom flask, 2,4-pentanedione (40 g, 0.4 mol) and freshly sublimed *p*-toluidine (42.8 g, 0.4 mol) were dissolved in 300 mL toluene. A Dean-Stark apparatus was used to azetropically remove water. The mixture was heated at 130 °C for eight hours to give a brown solution. All the toluene was removed by a rotary evaporator and the subsequent brown oil was diluted with hexane. The hexane solution was put into -30 °C freezer for overnight. The yellow crystallized material was collected by suction filtration (61.3 g, 81.5%). mp 67–68 °C. ¹H NMR (CDCl₃, 300 MHz) δ 12.38 (br, s, 1H), 7.12 (d, 2H), 6.97 (d, 2H), 5.18 (s, 1H), 2.32 (s, 3H), 2.07 (s, 3H), 1.94 (s, 3H). ¹³C { ¹H} NMR (CDCl₃, 75 MHz) δ 195.8, 160.6, 135.9, 135.4, 129.5, 124.7, 97.10, 29.03, 20.81, 19.68.

4-(2,6-Di-iso-propylphenylamino)-3-pentene-2-one (4)⁵ A 250 mL round bottom flask was charged with 2,4-pentanedione (40 g, 0.40 mol), TsOH•H₂O (0.46 g, 2.5 mmol), and 2,6-diisopropyl aniline (47 g, 0.27 mol). The mixture was heated with a minimum amount of toluene in a Dean-Stark apparatus for eight hours. After removing the solvents, the mixture was vacuum distilled (105 °C / 0.01 mmHg) to give a pale yellow ketoamine which solidified upon standing overnight (65 g, 93%). mp 49-51 °C.

¹H NMR (CDCl₃, 300 MHz) δ 12.06 (s, br, 1H), 7.26 (m, 1H), 7.15 (d, 2H), 5.18 (s, 1H), 3.00 (sept, 1H), 2.09 (s, 3H), 1.18 (d, 6H), 1.60 (s, 3H), 1.12 (d, 6H). ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 195.9, 163.2, 146.2, 133.4, 128.2, 123.5, 95.53, 29.03, 28.41, 24.54, 22.61, 19.10.

4-(3,5-Di-trifluoromethylamino)-3-pentene-2-one (5) A 100 mL round-bottom flask was charged with 2,4-pentanedione (0.75 7.5 g. mmol). 3.5-ditrifluoromethylaniline (1.15 g, 5.0 mmol) and TsOH•H₂O (0.02 g, 0.1 mmol). Dry toluene 50 mL was added to the flask and a Dean-Stark apparatus was used to azetropically remove water. The mixture was heated at 130 °C for eight hours to give a brown solution. All the volatiles were removed by rotary evaporator. The subsequent brown oil was vacuum distilled (75 °C / 0.01 mmHg) to give pale yellow oil which solidified upon standing overnight. (1.45 g, 93%). mp 45-48 °C. ¹H NMR (CDCl₃, 300 MHz) δ 12.68 (s, 1H), 7.60 (s, 1H), 7.49 (s, 2H), 5.29 (s, 1H), 2.10 (s, 3H), 2.06 (s, 3H). ¹³C { ¹H } NMR (CDCl₃, 75 MHz) δ 197.73, 157.74, 147.67, 132.67, 123.37, 121.06, 118.02, 100.09, 29.40, 19.84. ¹⁹F NMR (CDCl₃, 288MHz) δ -63.71.

4-(Pentafluorophenylamino)-3-pentene-2-one (6) A 250 mL round bottom flask was charged with 2,4-pentanedione (11 g, 0.11 mol), TsOH•H₂O (0.3 g, 1.6 mmol), and pentafluoroaniline (14.2 g, 0.078 mol). Dry toluene (50 mL) was added to the flask and a Dean-Start apparatus was used to azetropically remove water. The mixture was heated at 130°C for ten hours to give a yellow solution. All the volatiles were removed by rotary evaporator leaving a yellow solid, which was washed with pentane (20 mL). Colorless crystals formed after recrystallization overnight from pentane/MeOH at -30 °C. (16.50 g, 80.3%). mp 83-85 °C. ¹H NMR (CDCl₃, 300 MHz) δ11.84 (s, 1H), 5.34 (s, 1H), 2.05 (s,

3H), 1.79 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 197.97, 159.80, 145.10, 141.75, 139.42, 138.12, 136.06, 114.41, 99.41, 29.01, 18.59. ¹⁹F NMR (CDCl₃, 288MHz) δ –146.63, -156.94, -162.48.

2-p-Tolylamino-4-p-tolylimino-2-pentene (TolnacnacH) (7)

METHOD 1⁵: A toluene solution of compound 3 (41.0 g, 0.38 mol), TsOH•H₂O (72 g, 0.38 mol), *p*-toluidine (40.7 g, 0.38 mol) was charged in 500 mL round bottom. A Dean-Stark apparatus was used to azetropically remove water. The mixture was heated at 130 °C for 24 hours. After the mixture was cooled to room temperature, it was diluted with ether (40 mL) and washed with aqueous base (100 mL, 18.7% NaOH). After separation from the ether layer, the aqueous layer was back extracted with ether (2 x 20 mL). The combined organics were dried over magnesium sulfate, filtered, and ether was removed using a rotavap. The resultant oil was diluted with 30 mL hexanes, and cooled to -30 °C overnight to induce crystallization. The pale yellow diketimine was obtained after filtration. The product was washed with cold hexane and then dried in vacuo (87 g, 82.4 %).

METHOD 2⁶: A 50ml round bottom flask was charged with compound 11 (216 mg, 1.0 mmol), TsOH·H₂O (190 mg, 1.0 mmol), p-toluidine (107mg, 1.0 mmol). The mixture was stirred with 20 mL toluene in Dean-Stark apparatus in an oil bath heated at 130 °C for 24 hours. After the mixture was cooled to room temperature, it was diluted with ether (25 mL) and washed with aqueous base (30 mL, 20% NaOH). After separated from the organic layer, the water phase was back extracted with ether (2 x 10 mL). The combined organic phase was dried over MgSO₄. The solvent was removed by vacuum.

Yellow analytically pure compound was obtained by recrystallization from Hexane. (146 mg, 52.5%).

METHOD 3: To a stirred solution of Ti(NMe₂)₄ (224 mg, 1.0 mmol) in toluene was added a toluene solution of *p*-toluidine (214 mg, 2.0 mmol). The solution quickly turned from yellow to dark red. After 8 hours stirring, compound 3 (378 mg, 2.0 mmol) was added, and the mixture was refluxed 24 hours. A yellow solution with orange precipitate was formed. After filtration, the solvent was removed under vacuum and gave a yellow solid. (453 mg, 81.5%) Samples thus prepared were sufficiently pure (1 H NMR spectroscopy) to use in further reactivity studies. mp 67–70 °C. 1 H NMR (CDCl₃, 300 MHz) δ 12.62 (s, br, 1H), 7.07 (d, 4H), 6.84 (d, J = 8.1 Hz, 4H), 4.83 (s, 1H), 2.31 (s, 6H), 1.98 (s, 6H). 13 C (1 H) NMR (CDCl₃, 75 MHz) δ 159.5, 143.1, 132.6, 129.2, 122.6, 96.80, 20.76, 20.60.

2-2,6-Di-iso-propylphenylamino-4-2,6-di-iso-propylphenylimino-2-pentene (DipnacnacH) (8) A 250 mL round bottom flask was charged with compound 4 (34 g, 0.13 mol), TsOH•H₂O (22.6 g, 0.13 mol), and 2,6-diisopropyl aniline (23 g, 0.13 mol). The mixture was stirred with a minimum amount of toluene in a Dean-Stark apparatus in an oil bath heated at 170 °C for 24 hours. After the mixture was cooled to room temperature, it was diluted with ether (100 mL) and washed with aqueous base (100 mL, 12.7% KOH). The water layer was separated from the organic layer, and the water phase was back extracted with ether (20 mL). The combined organics were dried over MgSO₄. Colorless, analytically pure compound was obtained by recrystallization from hexane/MeOH (43.4 g, 80%). mp 138–140 °C. ¹H NMR (CDCl₃ 300 MHz) δ 12.12 (s, br, 1H), 7.12 (m, 6H), 4.86 (s, 1H), 3.11 (sept, 4H), 1.71 (s, 6H), 1.20 (d, 12H), 1.11 (d,

12H). ¹³C{ ¹H} NMR (CDCl₃, 75 MHz) δ 161.18, 142.44, 140.69, 125.06, 123.00, 93.18, 28.17, 24.20, 23.22, 20.74.

2-3,5-Di-trifluoromethylamino-4-3,5-trifluoromethylimino-2-pentene

(TFMnacnacH) (9) A 100 mL round bottom flask was charged with compound 5 (1.33) g, 4.3 mmol), 3,5-di-trifluoromethylaniline (0.979 g, 4.3 mmol) and TsOH•H₂O (0.813 g, 4.3 mmol). Dry toluene (50 mL) was added to the flask and a Dean-Stark apparatus was used to azetropically remove water. The mixture was heated at 150 °C for 24 hours. After the mixture was cooled to room temperature, it was diluted with ether (20 mL) and washed with aqueous base (50 mL, 1.0% KOH). After separated from ether layer, the aqueous layer was back extracted with ether (2 x 10 mL). The combined organics were dried over MgSO₄. A brown solid was formed after removal of the ether under reduced pressure. Colorless analytically pure compound was obtained by crystallization from hexane/MeOH at -30°C. (1.76 g, 78.0%). mp 126-128°C. ¹H NMR (CDCl₃ 300 MHz) δ 12.51 (s, 1H), 7.56 (s, 2H), 7.34 (s, 4H), 5.04 (s, 1H), 2.02 (s, 6H). ¹³C{¹H} NMR (CDCl₃ 75 MHz) δ 160.35, 146.79, 132.44, 125.06, 122.33, 116.95, 99.93, 20.96. ¹⁹F NMR (CDCl₃, 288Hz) δ -63.49. Anal. Calcd for C₂₁H₁₄N₂F₁₂: C, 48.29; H, 2.70; N, 5.36. Found: C, 48.32; H, 2.57; N, 5.32.

2-Pentafluorophenylamino-4-pentafluorophenylimino-2-pentene

(C₆F₅nacnacH) (10) A 250 mL round bottom flask was charged with compound 6 (3.0 g, 96.5 mmol), pentafluoroaniline (22.1 g, 96.5 mmol) and TsOH•H₂O (0.813 g, 4.3 mmol). Dry toluene 150 mL was added to the flask and a Dean-Stark apparatus was used to azetropically remove water. The mixture was heated at 150 °C for 24 hours. After the mixture was cooled to room temperature, it was diluted with ether (40 mL) and washed

with aqueous base (80 mL, 10% NaOH). After separated from ether layer, the aqueous layer was back extracted with ether (2 x 10 mL). The combined organics were dried over MgSO₄. A dark brown solid was formed after removal of the ether under reduced pressure. Colorless analytically pure compound was obtained by recrystallization from hexane/MeOH overnight at -30 °C. (17.86 g, 42.9%). mp 85-86 °C. ¹H NMR (CDCl₃, 300 MHz) δ 12.06 (s, 1H), 5.18 (s, 1H), 1.93 (s, 6H). ¹³C { ¹H } NMR (CDCl₃, 75 MHz) δ 164.28, 142.96, 139.67, 136.27, 120.00, 99.21, 20.90. ¹⁹F NMR (CDCl₃, 288Hz) δ – 149.23, -160.84, -163.31. Anal. Calcd for C₁₇H₈N₂F₁₀: C, 47.46; H, 1.87; N, 6.51. Found: C, 47.23; H, 1.87; N, 6.47.

2-Dimethylamino-4-*p***-tolylimino-2-pentene** (11) To a stirred solution of Ti(NMe₂)₄ (3.150 g, 0.014 mol) in toluene was added a toluene solution of freshly prepared **3** (5.32 g, 0.028 mol). The solution changed from yellow to dark red quickly. After heating and reflux for 24 hours, precipitate formed. After filtration, the solvent was removed under vacuum to give dark red solid. Colorless crystals formed in saturated pentane solution at -80 °C for 24 hours (4.88 g, 80.4%). mp 31-33 °C. ¹H NMR (CDCl₃, 300 MHz) δ 7.04 (d, 2H), 6.63 (d, 2H), 4.75 (s, 1H), 2.86 (s, 6H), 2.45 (s, 3H), 2.77 (s, 3H), 1.84(s, 3H). ¹³C {¹H} NMR (CDCl₃, 75 MHz) δ 165.39, 154.10, 150.17, 130.43, 128.88, 120.03, 97.32, 39.36, 22.31, 20.46, 16.15.

Li(Dipnacnac) (14) A pentane (200 mL) solution of freshly recrystallized compound 8 (21.1 g, 50 mmol) was treated with a hexane solution of "BuLi (2.5 M, 20 mL, 50 mmol) at 0 °C with stirring in 30 minutes. The mixture was heated to reflux for one hour, giving a homogeneous pale yellow solution. The volume of solution was concentrated to about 20 mL during which time colorless compound crystallized. After

being cooled to -30 °C, the solid was collected by filtration (19.9 g, 93%). mp 158–160 °C (decomp). ¹H NMR (C₆D₆, 300 MHz) δ 7.18 (m, 6H), 4.86 (s, 1H), 3.09 (sept, 4H), 1.80 (s, 6H), 1.17 (d, 12H), 1.15 (d, 12H). ¹³C{ ¹H} NMR (C₆D₆, 75 MHz) δ 164.0, 149.2, 140.7, 123.4, 123.3, 93.01, 28.21, 24.08, 24.02, 23.35. Anal. Calcd for LiC₂₉H₄₁N₂: C, 82.04; H, 9.73; N, 6.60. Found: C, 82.63; H, 9.64; N, 6.65.

Li(Tolnacnac) (15) A solution of compound 7 (20 g, 72 mmol) in pentane (350 mL) was treated with a hexane solution of ⁿBuLi (45 mL, 1.6 M, 72 mmol) with stirring at 0 °C. After the addition, the stirring was maintained for another 10 minutes at that temperature. The mixture was allowed to warm to room temperature and was stirred for another two hours. The volume of the yellow mixture was reduced to about 250 mL. Yellow compound was collected by filtration under nitrogen (18 g, 88%). mp 185–187 °C. ¹H NMR (C₆D₆, 300 MHz) δ 6.91 (d, 4H), 6.61 (d, 4H), 4.67 (s, 1H), 2.15 (s, 6H), 1.79 (s, 6H). ¹³C {¹H} NMR (C₆D₆, 75 MHz) δ 165.6, 151.4, 131.2, 129.6, 124.3, 95.49, 23.08, 20.87. Anal. Calcd for LiC₁₉H₂₁N₂: C, 80.26; H, 7.44; N, 9.85. Found: C, 80.18; H, 7.15; N, 9.50.

Li(TFMnacnac) (16) To a stirred solution of freshly recrystallized compound 9 (3.49 g, 6.69 mol) in toluene was added hexane solution of n BuLi (1.6 M, 4.2 mL, 6.69 mmol) at 0°C in 30 minutes. The solution was then heated at 55°C for one hour, forming a yellow solution. The solvent was removed under vacuum to afford a yellow solid. The yellow solid was washed with pentane and then dried in vacuo. (3.02 g, 85.6%). Samples thus prepared were sufficiently pure (1 H NMR spectroscopy) to use in further reactivity studies. mp 157-160 °C. 1 H NMR (1 C6D6, 300 MHz) δ 7.54 (s, 2H), 6.99 (s, 4H), 4.61 (s, 1H), 1.49 (s, 6H). 13 C{ 1 H} NMR (1 C6D6, 75 MHz) δ 166.90, 155.14, 132.48, 125.73,

124.32, 116.16, 96.99, 22.95. ¹⁹F NMR (C_6D_6 , 288Hz) δ . –63.07. Anal. Calcd for $LiC_{21}H_{13}N_2F_{12}$: C, 47.74; H, 2.48; N, 5.30. Found: C, 47.87; H, 2.53; N, 5.17.

Li(C₆F₅nacnac) (31) To a stirred solution of freshly recrystallized compound 10 (641 mg, 1.49 mmol) in pentane was added a hexane solution of ⁿBuLi (2.5 M, 0.6 mL, 1.49 mmol) at 0 °C over 30 minutes. The solution was then warmed to room temperature and stirred overnight to give a yellow precipitate. The mixture was allowed to stand at – 30 °C for 24 hours. The yellow solid was obtained after filtration. The product was washed with cold pentane and then dried in vacuo. (474 mg, 73%). Samples thus prepared were sufficiently pure (1 H NMR spectroscopy) to use. 1 H NMR (C₆D₆, 300 MHz) δ 4.60 (s, 1H), 1.51 (s, 6H). 13 C{ 1 H} NMR (C₆D₆, 75 MHz) δ 170.97, 143.16, 140.11, 136.54, 127.23, 100.68, 23.53. 19 F NMR (C₆D₆, 288Hz) δ . –154.98, -163.80, -164.34.

(Bu^tN)Ti(Dipnacnac)Cl (17) To a stirred solution of (Bu^tN)TiCl₂(PyBu^t)₂ (3.69 g, 8.02 mmol) in toluene, a toluene solution of compound 14 (3.40 g, 8.02 mmol) was added dropwise. After addition, the mixture was heated at 70 °C for 16 hours. After filtration, the solvent was removed under vacuum to give a brown solid, which was washed with pentane two times to give yellow solid after drying in vacuo. (3.02 g, 66%). Samples thus prepared were sufficiently pure (1 H NMR spectroscopy) to use. An analytically pure, X-ray quality crystalline sample was obtained from a saturated pentane/toluene solution at -30 °C. mp 230-233 °C (decomp). 1 H NMR (CDCl₃, 300 MHz) δ 7.17 (m, 6H), 5.30 (s, 1H), 3.22 (sept, 2H), 3.15 (d, 2H), 1.91 (s, 6H), 1.58 (d, 6H), 1.41 (d, 6H), 1.22 (d, 6H), 1.06 (d, 6H), 0.49 (s, 9H). 13 C{ 1 H} NMR (CDCl₃, 75 MHz) δ 167.83, 144.81, 142.18, 140.62, 126.51, 125.05, 123.60, 94.14, 72.46, 30.90,

28.69, 28.40, 26.47, 24.33, 24.05, 23.97, 23.92. Anal. Calcd for TiC₃₃H₅₀N₃Cl: C, 69.28; H, 8.81; N, 7.35. Found: C, 69.15; H, 9.04; N, 7.33.

(Bu^tN)Ti(Tolnacnac)(PyBu^t)Cl (18) To a stirred solution of Bu^tNTiCl₂(PyBu^t)₂ (1.298 g, 2.82 mmol) in toluene, a toluene solution of compound 15 (0.801 g, 2.82 mmol) was added dropwise. After addition, the mixture was heated at 70°C for 16 hours. After filtration, the solvent was removed under vacuum to give a dark brown solid, which was recrystallized from saturated pentane/toluene overnight at -30 °C gave a brown crystalline compound. (0.71 g, 44.4%). mp 80-82 °C. ¹H NMR (C₆D₆, 300 MHz) δ 8.64 (br, s, 4H), 6.98 (br, s, 4H), 6.81 (m, 4H), 5.06 (s, 1H), 2.12 (s, 6H), 1.87 (s, 6H), 0.97 (s, 9H), 0.96 (s, 9H). ¹³C { ¹H} NMR (C₆D₆, 75 MHz) δ 150.69, 149.51, 133.57, 129.69, 129.00, 125.56, 122.92, 120.78, 98.16, 71.56, 34.45, 31.55, 30.17, 22.66, 22.51, 20.91.

(Bu^tN)Ti(TFMnacnac)(PyBu^t)Cl (19)To stirred solution (Bu^tN)TiCl₂(PyBu^t)₂ (200 mg, 0.435 mmol) in toluene, a toluene solution of the compound 16 (230 mg, 0.435 mmol) was added dropwise. The solution turned brown from yellow and some precipitate formed. The mixture was heated at 70 °C for 16 hours. After filtration, the solvent was removed under vacuum to give an orange solid. After washing with pentane two times, yellow solid was dried in vacuo. (185 mg, 52.6%). Samples thus prepared are sufficiently pure (¹H NMR spectroscopy) to use. An analytically pure, X-ray quality crystalline sample was obtained from a saturated pentane/toluene solution at -30 °C. mp 174-177 °C. ¹H NMR (C_6D_6 , 300 MHz) δ 8.41 (br, s, 2H), 8.35 (m, 2H), 7.77 (br, s, 1H), 7.50 (br, s, 1H), 7.13 (m, 2H), 6.67 (m, 2H), 4.91 (s, 1H), 1.53 (s, 3H), 1.45 (s, 3H), 0.92 (s, 9H), 0.74 (s, 9H). ${}^{13}C{}^{1}H$ NMR (C_6D_6 75 MHz) δ 178.49, 163.81, 153.36, 150.32, 146.26, 132.03, 128.37, 128.05, 127.73, 126.76, 126.13, 121.67, 118.76, 100.15, 72.77, 34.91, 30.87, 29.84, 22.71, 14.26. ¹⁹F NMR (CDCl₃, 288Hz) δ -61.83, -62.08. Anal. Calcd for TiC₃₄H₃₅N₄F₁₂Cl: C, 50.35; H, 4.35; N, 6.91. Found: C, 50.27; H, 4.39; N, 6.92.

(NTol)Ti(Dipnacnac)ClPy₂ (22) To a stirred solution of (TolN)TiCl₂Py₃ (127 mg, 0.28 mmol) in toluene, a toluene solution of compound 14 (119 mg, 0.28 mmol) was added dropwise. After addition, the mixture was heated at 70 °C for 16 hours. After filtration, the filtrate was concentrated under vacuum and pentane was added to a saturated the solution. Dark brown crystals formed after standing at -30 °C overnight. (121 mg. 63.0%). mp 184-187 °C. ¹H NMR (CDCl₃, 300 MHz) δ 8.46 (d, 2H), 7.11 (m, 3H), 7.03 (m, 2H), 6.77 (m, 3H), 6.70 (m, 3H), 6.44 (m, 2H), 5.35 (s, 1H), 3.76 (sept, 2H), 3.20 (sept, 2H), 2.02 (s, 3H), 1.75 (s, 6H), 1.45 (d, 6H), 1.19 (d, 6H), 1.12 (m, 12H). ¹³C { ¹H} NMR (CDCl₃, 75 MHz) δ 166.95, 160.88, 150.63, 147.48, 142.94, 142.28, 136.76, 130.26, 128.55, 126.73, 124.70, 124.38, 123.90, 123.30, 98.66, 29.16, 28.05, 25.28, 24.77, 24.58, 20.98. Anal. Calcd for TiC₄₁H₅₃N₄Cl: C, 71.86; H, 7.80; N, 8.18. Found: C, 70.57; H, 7.87; N, 8.13.

(Bu^tN)Ti(TFMnacnac)₂ (23) To a stirred solution of (Bu^tN)TiCl₂(PyBu^t)₂ (146 mg, 0.317 mmol) in toluene, a toluene solution of the compound ·16 (335 mg, 0.634 mmol) was added dropwise. The solution turned brown from yellow and some precipitate formed. The mixture was heated at 70 °C for 16 hours. After filtration, the solvent was removed under vacuum to give the yellow solid. After washing with pentane two times, yellow solid was dried in vacuo. (228 mg, 62.0%). Samples thus prepared are sufficiently pure (¹H NMR spectroscopy) to use. An analytically pure, X-ray quality crystalline sample was obtained from a saturated pentane/toluene mixed solution at –30 °C. mp 165-

167 °C. ¹H NMR (CDCl₃, 300 MHz) δ 7.56 (s, 4H), 7.17 (s, 8H), 5.012 (s, 2H), 2.00 (s, 12H), 0.52 (s, 9H). ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 164.02, 151.07, 131.96, 125.41, 121.17, 118.38, 101.74, 77.20, 31.00, 23.39. ¹⁹F NMR (CDCl₃, 288Hz) δ . -61.45. Anal. Calcd for TiC₄₆H₃₅N₅F₂₄: C, 47.56; H, 3.04; N, 6.03. Found: C, 47.45; H, 2.97; N, 5.62.

(**DipN**)**Zr**(**Tolnacnac**)₂ (**25**) To a stirred suspension of (DipN)**Zr**Cl₂Py₂ (502 g, 1.04 mmol) in toluene, a toluene solution of compound **15** (593 mg, 2.08 mmol) was added dropwise. Stirring continued overnight. After filtration, the solution was concentrated under reduced pressure. Pentane was added to the saturated solution. Yellow-orange crystals formed upon standing at -30 °C for 24 hours. (598 mg, 70%) mp 232-235 °C. ¹H NMR (C₆D₆, 300 MHz) δ 7.00 (d, 2H), 6.94 (d, 8H), 6.82 (d, 8H), 6.77 (m, 1H), 4.87 (s, 2H), 3.94 (sept, 2H), 2.00 (s, 12H), 1.90 (s, 12H), 1.02 (s, 6H), 1.00 (s, 6H). ¹³C{ ¹H} NMR (C₆D₆, 75 MHz) δ 164.01, 146.91, 141.66, 133.65, 129.72, 125.45, 121.57, 100.25, 27.84, 24.21, 23.70, 20.68. Anal. Calcd for ZrC₅₀H₅₉N₅: C, 73.12; H, 7.24; N, 8.53. Found: C, 73.22; H, 7.36; N, 8.31.

(Bu^tN)Ti(Dipnacnac)OTf (26) To a stirred solution of compound 17 (0.58 g, 1.0 mmol) in toluene, an ether solution of AgOTf (0.26 mg, 1.0 mmol) was added dropwise. A white precipitate was formed spontaneously. Stirring was continued for an hour, yielding to give an orange solution. The solution was filtered. The solvent was removed under vacuum, and then washed by pentane for two times. The off-white solid was dried in vacuo. (0.497 g, 71.5%). Samples thus prepared were sufficiently pure (¹H NMR spectroscopy) to use. An analytically pure, X-ray quality crystalline sample was obtained from a saturated petane/toluene solution at -30 °C. mp 202-205 °C (decomp). ¹H NMR (C₆D₆ 300 MHz) δ 7.12 (m, 6H), 4.81(s, 1H), 3.11 (sept, 2H), 3.02 (sept, 2H), 1.71 (d,

6H), 1.51 (s, 6H), 1.37 (d, 6H), 1.30 (d, 6H), 0.92 (d, 6H), 0.58 (s, 9H). ¹³C{¹H} NMR (C₆D₆, 75 MHz) δ 168.08, 145.11, 142.48, 140.29, 131.09, 127.48, 124.46, 123.98, 92.76, 74.04, 30.93, 29.71, 28.65, 25.84, 24.37, 24.15, 23.61, 22.74. ¹⁹F NMR (C₆D₆, 288Hz) δ. –78.17.

(Bu^tN)Ti(Dipnacnac)(NMe₂) (27) To a stirred solution of compound 17 (275 mg, 0.48 mmol) in toluene, LiNMe₂ (25 mg, 0.49 mmol) was added slowly. After addition, the mixture was stirred overnight. After filtration, the solvent was removed under vacuum to afford a brown solid. An off-white crystalline compound formed through recrystallization from saturated pentane solution at -30 °C.(272 mg, 62.4%) mp >260 °C. ¹H NMR (C₆D₆, 300 MHz) δ 7.15 (m, 6H), 4.94 (s, 1H), 3.93 (s, 3H), 3.61 (sept, 2H), 2.83 (sept, 2H), 2.61 (s, 3H), 1.53 (s, 6H), 1.47 (d, 6H), 1.44 (d, 6H), 1.20 (d, 6H), 1.13 (d, 6H), 0.85 (s, 9H). ¹³C{¹H} NMR (C₆D₆, 75 MHz) δ 167.23, 144.91, 142.28, 141.38, 126.18, 123.86, 123.28, 96.06, 52.90, 40.11, 32.55, 28.74, 28.45, 25.62, 24.60, 24.34, 24.23, 24.20, 24.11. Anal. Calcd for TiC₃₅H₅₆N₄: C, 72.38; H, 9.72; N, 9.65. Found: C, 71.94; H, 9.78; N, 9.39.

(Bu^tN)Ti(Dipnacnac)Me (28) To a stirred solution of compound 17 (1.21 g, 2.1 mmol) in toluene, an ether solution of LiMe (1.3 mL, 1.6 M, 2.1 mmol) was added dropwise at -50 °C. After addition, the mixture was allowed to warm to room temperature. After two hours, the mixture was filtered and the filtrate was concentrated. Yellow compound was crystallized after 24 hours at -30 °C. (1.029 g, 88.2%). mp 201-203 °C (decomp) ¹H NMR (C₆D₆, 300 MHz) δ 7.15 (m, 6H), 4.86 (s, 1H), 3.36 (sept, 2H), 3.14 (sept, 2H), 1.60 (d, 6H), 1.56 (s, 6H), 1.42 (d, 6H), 1.19 (d, 6H), 1.07 (d, 6H), 0.90 (s, 9H), 0.76 (s, 3H). ¹³C{¹H} NMR (C₆D₆, 75 MHz) δ 167.78, 145.29, 142.07,

141.02, 126.56, 124.05, 123.87, 93.38, 70.03, 32.40, 28.84, 28.58, 27.44, 26.48, 24.39, 24.30, 23.93, 23.86. Anal. Calcd for TiC₃₄H₅₃N₃: C, 74.02; H, 9.68; N, 7.62. Found: C, 73.42; H, 10.03; N, 7.47.

(NMe₂)Ti[(2-NMe₂-C₆F₄)nacnac]F₂ (29) To a stirred solution of Ti(NMe₂)₄ (1.257 g, 5.61 mmol) in pentane, was added compound 10 (2.413 g, 5.61 mmol) toluene solution dropwise at -50 °C. The solution changed from yellow to dark red spontaneously. The mixture was warmed to room temperature and stirred overnight. The volatile materials were removed under vacuum. Then product was crystallized from a saturated pentane/toluene solution at -30 °C to give dark red crystals. (3.19 g, 93.4%) mp 170-173 °C. ¹H NMR (CDCl₃, 300 MHz) δ 5.09 (s, 1H), 3.51 (s, 3H), 2.90 (s, 3H), 2.77 (s, 3H), 2.75 (s, 3H), 2.69 (m, 3H), 2.51(m, 3H), 1.66 (m, 3H), 1.48 (s, 3H) . ¹³C { ¹H} NMR (CDCl₃, 75 MHz) δ 168.10, 166.74, 146.67, 145.42, 143.44, 142.10, 140.78, 138.70, 137.49, 135.41, 134.47, 132.89, 132.08, 130.67, 105.07, 50.55, 49.49, 47.59, 42.63, 34.41, 22.69, 21.84, 14.20. ¹⁹F NMR (CDCl₃, 288Hz) δ -143.62, -146.88, -148.65, -149.39, -157.79, -159.31, -161.55, -162.10, -163.57, -167.21. Anal. Calcd for TiC₂₃H₂₅N₅F₁₀: C, 45.33; H, 4.14; N, 11.50. Found: C, 44.94; H, 4.04; N, 10.55.

(2-NMe₂-C₆F₄)nacnacH (30) Compound 29 (220 mg, 0.36 mmol) was dissolved in an ether/H₂O mixture, and stirred for 10 minutes in air. After separation from the ether layer, the aqueous layer was back extracted with ether two times. The combined ether fractions were dried over MgSO₄. The solvent was removed by rotavap to give a yellow solid. Off-white crystals were deposited from a saturated pentane solution after standing at -30 °C overnight. (155 mg, 89.6%). mp 77-80 °C. ¹H NMR (CDCl₃, 300 MHz) δ 11.97 (s, 1H), 5.037 (s, 1H), 2.739 (s, 12H), 1.854 (s, 6H). ¹³C { ¹H } NMR (CDCl₃, 75

MHz) δ 162.83, 146.33, 142.95, 139.48, 136.43, 131.58, 126.23, 97.68, 42.98, 20.70. ¹⁹F NMR (CDCl₃, 288Hz) δ -149.63, -150.45, -162.59, -164.26.

Bibliography

- (1) Dunn, S. C.; Batsanov, A. S.; Mountford, P. J. Chem. Soc. Chem. Commun. 1994, 2007-2008.
- (2) Blake, A. J.; Collier, P. E.; Dunn, S. C.; Li, W. S.; Mountford, P.; Shishkin, O. V. J. Chem. Soc. Dalton Trans. 1997, 1549-1558.
- (3) Arney, D. J.; Bruck, M. A.; Huber, S. R.; Wigley, D. E. *Inorg. Chem.* **1992**, *31*, 3749-3755.
- (4) Bradley, D. C.; Thomas, L. M. J. Chem. Soc. 1960, 3857-3861.
- (5) Qian, B. X.; Ward, D. L.; Smith, M. R. Organometallics 1998, 17, 3070-3076.
- (6) Kakaliou, L.; Scanlon, W. J.; Qian, B. X.; Baek, S. W.; Smith, M. R.; Motry, D. H. *Inorg. Chem.* **1999**, *38*, 5964-5977.

APPENDIX

X-ray Data structure collection parameters

	TMFnacnacH (9)	(Bu ^t N)Ti(Dipnacnac) Cl (17)	(Bu ^t N)Ti(Tolnacnac) (PyBu ^t)Cl (18)
Empirical formula	$C_{21}H_{14}F_{12}N_2$	$C_{33}H_{50}ClN_3Ti$	C ₃₂ H ₄₃ ClN ₄ Ti
Formula weight	522.34	572.11	567.03
Temperature (K)	173(2)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-1	P2(1)/n	P-1
Cell		, ,	
a (Å)	8.3746(17)	10.3135(2)	12.362(3)
b (Å)	8.5077(17)	27.56620(10)	13.428(3)
c (Å)	16.900(3)	12.4202(2)	13.672(3)
α(°)	77.09(3)	90	68.59(3)
β (°)	77.50(3)	106.8840	85.90(3)
χ(°)	65.59(3)	90	73.30(3)
Volume (Å ³)	1058.2(4)	3378.90(9)	2022.3(7)
Z	2	4	3
d (calc.) (Mg/m ³)	1.639	1.125	1.624
Abs. coef. (mm ⁻¹)	0.172	0.356	0.459
F(000)	524	1232	1056
Crystal size (mm)	0.34 x 0.26 x 0.21	0.21 x 0.16 x 0.10	0.26 x 0.16 x 0.13
2θ range (°) Index ranges	2.50 to 28.30	1.48 to 28.18	1.60 to 28.53
	$-10 \le h \le 11$	-13 <= <i>h</i> <= 13	$-16 \le h \le 16$
	-10 <= k <= 11	-36 <= k <= 36	-17 <= k <=17
Reflections	-20 <= <i>l</i> <= 21 9062	-15 <= <i>l</i> <= 16 29415	-18 <= <i>l</i> <= 17 24432
collected	9002	29413	24432
Independent	4837 [$R(int) =$	7965 [R(int) =	9525 [$R(int) =$
reflections	0.0412]	0.0448]	0.1269]
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F^2	squares on F^2
Data / restraints /	4837 / 0 / 321	7965 / 0 / 343	9525 / 0 / 417
parameters GOF / F ²	0.006	1 120	0.007
Final R indices	0.996 $R1 = 0.0569, wR2$	1.130 R1 = 0.0568, wR2 =	0.997 $R1 = 0.1171, wR2 =$
$[I>2\sigma(I)]$	= 0.1237	0.1583	0.3099
R indices (all data)	R1 = 0.1327, wR2	R1 = 0.0859, wR2 =	R1 = 0.2658, wR2 =
	= 0.1486	0.1741	0.3802
Largest diff. peak and hole (e Å ⁻³)	0.368 and -0.318	0.883 and -0.492	2.265 and -0.791

	(Bu ^t N)Ti(TFMnacna c)(PyBu ^t)Cl (19)	(Bu ^t N)Ti(Dipnacnac) OTf (26)	(DipN)Zr(Tolnac nac) ₂ (25)
Empirical formula	$C_{34}H_{35}ClF_{12}N_4Ti$	$C_{34}H_{50}F_3N_3O_3STi$	$C_{50}H_{59}N_5Zr$
Formula weight	811.01	685.73	821.24
Temperature (K)	173(2)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Tetragonal	Monoclinic
Space group	P2(1)/c	P-42(1)c	P2(1)/n
Cell			
a (Å)	9.3094(19)	19.429(3)	11.167(2)
b (Å)	14.324(3)	19.429(3)	19.194(4)
c (Å)	27.812(6)	19.991(4)	21.749(4)
α (°)	90	90	90
β (°)	91.32(3)	90	100.86(3)
χ (°)	90	90	90
Volume (Å ³)	3707.8(13)	7547(2)	4578.2(16)
Z	4	8	4
d (calc.) (Mg/m ³)	1.456	1.207	1.191
Abs. coef. (mm ⁻¹)	0.393	0.331	0.278
F(000)	1656	2912	1736
Crystal size (mm)	0.31 x 0.26 x 0.10	0.16 x 0.18 x 0.21	0.34 x 0.23 x
2θ range (°)	1.46 to 28.63	2.04 to 28.38	1.43 to 28.23
Index ranges	1.40 to 20.03	2.04 to 20.50	1.43 to 20.23
	-12 <= h <= 12	-25 <= h <= 25	-14 <= h <=14
	$-19 \le k \le 18$	$-25 \le k \le 25$	$-11 \le k \le 25$
	-37 <= <i>l</i> <= 35	-25 <= <i>l</i> <= 26	-28 <= <i>l</i> <= 27
Reflections	42794	87259	28559
collected Independent	9047 [<i>R</i> (int) =	9259 [$R(int) = 0.331$]	10702 [R(int) =
reflections	0.1414]	9239 [K(IIII) - 0.331]	0.0521
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F ²	squares on F^2
Data / restraints /	9047 / 0 / 423	8259 / 0 / 419	10702 / 0 / 518
parameters	1.450	1.650	0.054
GOF/F^2	1.459	1.658	0.954
Final R indices $[I>2\sigma(I)]$	R1 = 0.1648, wR2 = 0.4541	R1 = 0.1017, wR2 = 0.0693	R1 = 0.0424, wR2 = 0.0847
R indices (all data)	R1 = 0.2355, wR2 =	R1 = 0.2561, wR2 =	R1 = 0.0922, wR2
1. maioes (an aata)	0.4742	0.0768	= 0.0983
Largest diff. peak	1.596 and -0.842	0.567 and -0.556	0.292 and -0.390
and hole (e Å ⁻³)			

Empirical formula	(Bu ^t N)Ti(Dipnacnac) (NMe ₂) (27)	(NMe ₂)Ti[(2-NMe ₂ -C ₆ F ₄)nacnac]F ₂ (29)
Empirical formula	$C_{35}H_{56}N_4Ti$	$C_{23}H_{25}F_{10}N_5Ti$
Formula weight	580.74	609.38
Temperature (K)	173(2)	173(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)	P2(1)/n
Cell		
a (Å)	9.4329(19)	13.0595(9)
b (Å)	19.798(4)	9.4528(6)
c (Å)	10.299(2)	21.1353(14)
α (°)	90	90
β (°)	113.20(3)	99.711(2)
χ (°)	90	90
Volume (Å ³)	1768.0(6)	2571.7(3)
Z	2	4
d (calc.) (Mg/m ³)	1.091	1.574
Abs. Coef. (mm ⁻¹)	0.269	0.428
<i>F</i> (000)	632	1240
Crystal size (mm)	0.51 x 0.16 x 0.13	0.40 x 0.26 x 0.23
2θ range (°)	2.06 to 28.45	1.71 to 28.27
Index ranges	10 1 10	15 1 16
	-12 <= h <= 12	-17 <= h <= 16
	-25 <= <i>k</i> <= 25 -13 <= <i>l</i> <= 13	-10 <= <i>k</i> <= 12 -27 <= <i>l</i> <= 21
Reflections	21251	16039
collected	21231	10039
Independent	8311 [R(int) = 0.0959]	6081 [R(int) = 0.0998]
reflections		,
Refinement method	Full-matrix least-	Full-matrix least-
	squares on F^2	squares on F^2
Data / restraints /	8311 / 1 / 371	6081 / 0 / 352
parameters	0.771	0.000
GOF/F^2	0.771	0.880
Final R indices	R1 = 0.0703, wR2 = 0.1941	R1 = 0.0549, wR2 = 0.1288
[I>2 σ (I)] R indices (all data)	R1 = 0.1599, wR2 =	R1 = 0.1548, wR2 =
A muices (an uata)	R1 = 0.1399, WR2 = 0.2598	R1 = 0.1348, WR2 = 0.1536
Largest diff. peak	0.977 and -0.316	0.536 and -0.400
and hole (e Å ⁻³)		
, ,		

