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ABSTRACT

Family Gromov—Witten Invariants for Kahler Surfaces

By

Junho Lee

The usual Gromov-Witten invariants are zero for Kahler surfaces with pg 2 1. In

this paper we use analytic methods to define Family Gromov-Witten Invariants for

Kahler surfaces. We prove that these are well-defined invariants of the deformation

class of the Kahler structure and develop methods for computing them, including a

version of the TRR formula and the symplectic sum formula. Finally, we explicitly

compute some of these family GW invariants for elliptic surfaces.
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Introduction

Gromov-Witten invariants are counts of holomorphic curves in a symplectic manifold

X. To define them using the analytic approach one chooses an almost complex

structure J compatible with the symplectic structure and considers the set of maps f :

2 —> X from Riemann surfaces 2 which satisfy the (nonlinear elliptic) J-holomorphic

map equation

51f = 0. (0-1)

After compactifying the moduli space of such maps, one imposes constraints, requir-

ing, for example, that the image of the map passes through specified points. With

the right number of constraints and a generic J, the number of such maps is finite.

That number is a GW invariant; it depends only on the symplectic structure of X.

There are some beautiful conjectures about what the counts of holomorphic curves

on Kahler surfaces ought to be ([V],[KP],[YZ],[G]). However, as currently defined, the

corresponding GW invariants of Kahler surfaces with pg 2 l are all zero! This

discrepancy occurs because GW invariants count curves for generic almost complex

structures J, whereas Kiihler structures are very special — Donaldson details this

in [D]. They can have whole families of curves which disappear when the Kahler

J is perturbed to a generic J. For example, a generic K3 surface (pg = 1) has

no holomorphic curves at all, whereas algebraic K3 surfaces do admit holomorphic

curves.



Clearly a new version of the invariants is needed — one which counts the relevant

holomorphic curves. Work in that direction is just beginning. Bryan and Leung

([BLl],[BL2]) defined such invariants for K3 and abelian surfaces by using the Twistor

family; they were also able to calculate their invariants in important cases. In a

preprint to appear shortly, Behrend-Fantechi [BF] have define invariants for a more

general class of algebraic surfaces using algebraic geometry, but have not yet made

calculations. We approach the same issues using the geometric analysis approach to

GW invariants.

Given a Kahler manifold (X, w, J, g) we constructs a 2pg-dimensional family of

elements KJ(f, a) in flo’l(f*TX), where a is a real part of a holomorphic 2 form.

We then modifies the J-holomorphic map equation (1) by considering the pairs (f, a)

satisfying

EJf = KJ(f: a). (0-2)

The solutions of this equation form a moduli space whose dimension is 2199 larger

than the dimension of the usual GW moduli space.

Because a range over a vector space compactness is an issue. Here things get

interesting because there are instances when the moduli space for (0.2) is not compact.

In fact, when the map represents a component of a canonical divisor the moduli space

is never compact. Nevertheless, there is a simple analytic criterion — the uniform

boundedness of the energy of the map and the L2 norm of a — that ensures that the

moduli space is compact.

Theorem 0.0.1 Let (X, J) be a Kahler surface and fit a genus g and a class A E

H2(X, Z). Denote by C(J) the supremum ofE(f)+||a|| L2 over all (J, cud-holomorphic

maps from genus g curves into X which represent A. IfC(J) is finite, then the family



GW invariants

GWg{£‘(x, A)

are well-defined. They are invariant under deformations {Jt} of the Ka'hler structure

with C(Jt) bounded. Furthermore, if A is a (1,1) class then all the maps which

contribute to these invariants are in fact J-holomorphic.

The last sentence of Theorem 0.0.1 means that the invariants for (1, 1) classes are

counts of holomorphic curves in (X, J). That is not the same as saying the invariants

are enumerative, since there is no claim that each curve is counted with multiplicity

one. But it does mean that the family GW invariants, which a priori are counts of

maps which are holomorphic with respect to families of almost complex structures on

X, are in fact calculable from the complex geometry of (X, J) alone.

Theorem 0.0.1 yields well-defined family GW invariants provided there is a finite

energy bound C'(J). Following the Kodaira classification of surfaces, we verify the

energy bound case-by-case using geometric arguments. That yields the following cases

where the family GW invariants are well-defined.

Proposition 0.0.2 The moduli space for a class A is compact, and hence the family

GW invariants are well-defined, when (X, J) is

(a) a K3 or abelian surface with A sé 0,

(b) a minimal elliptic surface it : E -—+ C with Kodaira dimension 1 with —A-

(fiber class) 7e deg rr.(A) , and

(c) a minimal surface of general type and A is in a certain subspace of the (1,1)

classes (see Proposition 4.0.26).

The second half of this paper develops computational methods. We extend sev-

eral existing techniques for calculating GW invariants to the family GW invariants.
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In particular, the ‘TRR formula’ applies to the family invariants, and at least some

special cases of the symplectic sum formula [1P3] apply, with appropriate minor mod-

ifications to the formula. Those formulas enable us to enumerate the curves in the

elliptic surfaces E(n) for the class A: section plus multiples of the fiber.

Theorem 0.0.3 Let E(n) be a standard elliptic surface with a section 3 of self-

intersection —n. Denote by S and F the homology class of the section and the fiber.

Then the g = 0 family GW invariants for the classes A = S + dF are well-defined

and are given by the generating function

1 127:

2 GW,’,{‘; (E(n), s + dF) td = H (1 _ td) . (0.3)

«120 (120

 

Bryan and Leung used algebraic methods to show (0.3) for K3 surfaces (i.e. n = 2)

[BL1]. This provided a verification of the well-known Yau-Zaslow Conjecture [YZ] for

those cases when the homology class A is primitive. On the other hand, the above

formula for n = 1 gives the ordinary GW—invariants of rational elliptic surface E(l),

which was shown by Ionel and Parker [1P3]. They related TRR formula and their

sum formula for the relative invariants to obtain a quasi-modular form as in (0.3).

We follow the same argument — relating TRR formula and sum formula — to show

Theorem 0.0.3.

Chapter 1 gives the definition of a (J, a)-holomorphic map and some of the analytic

consequences of that defintion, most notably an expression for the energy in terms of

pullbacks of the symplectic form and the form a. Chapter 2 begins by describing the

relation between a complete linear system IC' | — or more generally a Severi variety

— and the moduli space of (J, a)-holomorphic maps. That leads us to consider the

family of (J, a)-holomorphic maps in which a is the real part of holomorphic 2-form;

4



the corresponding family moduli space should be an analytic version of the Severi

variety. As partial justification of that view, we prove the last statement of Theorem

0.0.1: any (J, a)-holomorphic map which represents a (1,1) class is in fact holomorphic

(theorem 2.0.12).

Chapter 3 summarizes the analytic results which lead to the definition of the family

GW-invariants. That involves constructing the virtual moduli cycle by adapting the

method of Li and Tian [LT]. Thus defined, the family invariants satisfy a Divisor

Axiom and a Composition Law analogous to those of ordinary GW-invariants. To

keep the exposition flowing the main results are stated in Chapter 3 and their technical

proofs are deferred until Chapter 5.

Chapter 4 contains examples of Kahler sufaces with pg 2 1 with well-defined

family invariants. We focus on minimal surfaces and establish the results summarized

in Proposition 0.0.2 above. For the case of K3 and Abelian surfaces we prove that our

family GW-invariants agree with the invariants defined by Bryan and Leung. That is

done in the course of the proof of Theorem 4.0.23 by relating the holomorphic 2—forms

to the twistor family.

Chapter 5 contains the analysis which proves that the family GW invariants are

well-defined. Slightly modifying the arguments of Li and Tian, we consider the prod-

uct of the space of C‘ stable maps and the parameter space ’H for a. The (J, a)-

holomorphic map equation defines a section <I> of a generalized bundle E —> B whose

zero set is the moduli space of (J, a)-holomorphic maps. In general that space is nei-

ther smooth nor compact. For the ordinary GW-invariants Li and Tian showed that

after perturbing <I> its zero set becomes smooth and compact and defines a virtual

moduli cycle. Our case requires more care because the parameter space ’H is not

compact.

The construction consists of two main steps. First, using the Fredholm prOperty

of the section <I> of E —i B, one can construct a collection of finite dimensional

5



subbundles E,- —+ U,- = <I>‘1(E,) whose union contains the moduli space and has each

restriction <I>,- = (Fla.- being smooth. Compactness of moduli space, which follows

from the energy bound 0'(J) of Theorem 0.0.1, ensures that there is such a finite

collection. Second, one can perturb the moduli space locally in each U.- in such a way

that the local perturbations fit together to produce a well-defined cycle, the virtual

moduli cycle. This second part is very general procedure and is proved in Theorem

1.2 of [LT].

Thus the bulk of Chapter 5 is devoted to working through the first step. The

arguments parallel the proofs for J-holomorphic maps in [LT]. The key step is es-

tablishing uniform estimates for the linearization of holomorphic map equation and

its adjoint operator. Those estimates are still true for (J, a)—holomorphic maps and

are locally uniform in a. The exposition ends up being rather lengthy because of the

need to recall the extensive notation of [LT] and because we have taken the trouble of

filling in missing details and some fixing minor errors in [LT]. At the end of Chapter

5 we prove the two properties of family GW-invariants: the Divisor Axiom and the

Composition Law.

Turning to the computations, we give an overview of the proof of Theorem 0.0.3

in Chapter 6. This argument is an extension of the elegant argument used by Ionel

and Parker to compute the GW—invariants of E(1) [1P3]. It involves computing the

generating function for the invariants in two ways, first using the so-called TRR

formula, and second using a syplectic sum formula as in [1P3]. Roughly, the only

modification needed is a shift in the dimension counts. But to justify the computation

we need to extend both the TR formula and the symplectic sum formula to apply

to the family GW invariants. The extended TRR formula is proved in Chapter 7 and

sum formula is established in the last four Chapters.

Chapter 8 gives an alternative definition of the family invariants for E(n) based



on the idea of perturbing the (J, a)-holomorphic map equations as in [RTl] and

[RT2]. This alternative definition is better suited to adapt the analytic arguments

in [1P2] and [1P3] to a family version of sum formula. The proof of the sum formula

begins by studying holomorphic maps into a degeneration of E(n) Because E(n) is

a Kahler surface we are able to degenerate within a holomorphic family, rather than

the symplectic family used in [1P3].

The degeration family Z is constructed in Chapter 9. It is a family A : Z —> D2

whose fiber Z; at A 75 0 is a copy of E(n) and whose center fiber is a union of E(n)

with T2 x 5'2 along a fixed elliptic fiber V. As A —+ 0 maps into Z; converge to maps

into Zo, and by bumping a to zero along the fiber V we can ensure that the limits

satisfy a simple matching condition along V (there is a single matching condition for

the classes A that we consider). Conversely, if a map into 20 satisfies the matching

condition then it can be smoothed to produce a map into Z; for small A. That

smoothing is described in Chapter 11 and then used prove the required sum formula

for the family invariants of E(n).

The appendix contains a brief discussion of how the family GW invariants defined

here relate to those defined by Behrend and Fantachi in [BF].



CHAPTER 1

(J, oz)-holomorphic maps

A J-holomorphic map into an almost complex manifold (X, J) is a map f : 2 —-> X

from a complex curve 2 (a closed Riemann surface with complex structure j) whose

differential is complex linear. Equivalently, f is a solution of the J-holomorphic map

equation

DJf = 0 where 51f = $(df + dej).

In this Chapter we will show that when X is four-dimensional there is natural infinite-

dimensional family of almost complex structures parameterized the J-anti-invariant

2-forms on X.

Let (X, J) be a 4~dimensional almost Kiihler manifold with the hermitian triple

(w, J, 9). Using J, we can decompose a E 92(X) as a = a+ + a- where

a(u, v) — a(Ju, Jv)

2

a(u, v) + a(Ju, Jv)

2

  a+ (u, v) = a- (u, v) = (0.1)

Definition 1.0.4 A 2—form a is called J-anti-invariant if a = a_. Denote the set of

all J-anti-invariant 2-forms by 03(X). Each a E 93(X) defines an endomorphism

Ka ofTX by the equation

(u, Kev) = a(u, v). (0.2)



It follows that

(Kau,v) = —(u,Kav), JKO, = -KaJ, and (Ju,Kau) = 0. (0.3)

Definition 1.0.5 For a E 93(X), a map f : E —> X is called (J, a)-holomorphic if

51f = KJ(f, a) - (0.4)

where KJ(f, a) = Ka(6f 0 j) = grew — dej)j.

The next proposition and its corollary list some pointwise relations involving the

quantities that appear in the (J, a)-holomorphic equation. We state these first for

general 0'1 maps, then specialize to (J, a)-holomorphic maps.

Proposition 1.0.6 Fix a metric within the conformal class j and let dv be the asso-

ciated volume form. Then for any 0'1 map f we have the pointwise equalities

(a) |5Jf|2 dv =%Idf|2 dv—rw, (b) «if, KJ(f.a)> dv = so,

(c) K: = -lal21. (d) mm)? dv = lalz (gw dv + m) .

Proof. Fix a point p E E and an orthonormal basis {e1, e2 = gel} of T923. Setting

v1 = df(e1) and v2 = df(e2), we have 251f(e1) = v1+Jv2 and 2KJ(f,a)(e1) = Ka’Ug—

JKa’Ul, and similarly 25]f(€2) = ’02 — J’Ul and 2K](f,(1)(62) = — avl — JKavg.

Therefore,

4|51f|2 = In + Jvzl2 + I'vz — Jvll2 = 2(I'vll2 + I’v2l2) + 4(v1, Jvz)

= 2W -— 4rw(e.,e.).



That gives (a), and (b) follows from the similar computation

4(5Jf,K(f, (1)) = (v1 + ng, Kavg — JKav1)+ (v2 — Jv1,—Kav1 — JKaU2>

= (v1,Kav2) — (v1,JKav1) + (Jv2,Kav2) — (Jv2,JKav1)

-<’U2, Kavl) — (v2, JKa’U2) + (Jul, Kav1)+ (Jv1,JKavg)

= 4(v1,Kav2)

= 4f*a(€1,82)'

Next fix a: E X and an orthonormal basis {w1,w2,w3,w4} of T;X with w2 = —Jw1

and w4 = —Jw3. Then the six forms

wlsziw3Aw4, wlAw3iw2Aw4, w1 Aw4iw2Aw3

give an orthonormal basis of A2(TgX), and two of these span the subspace of J

anti-invariant forms. Hence

a=a(w1/\w3—w2/\w4)+b(w1/\w4+w2/\w3)

for some a and b, and in this basis K0, is the matrix

(OOafl

0 0b—a

—a—b00

t—baooj

Consequently, K3 = —-(a2+b2)I = —|a|21. Lastly, since K0, is skew-adjoint, (c) shows

  

that

|KJ(f,a)|2 = -(3f°j. K§(0f°j)) = |a|2|5f|2-

Equation ((1) then follows from (a) because Ide2 = |af |2 + I51f|2. [3

Corollary 1.0.7 Suppose the map f : E —r X is (J, a)-holomorphic. Then

10



(a) [51f]2 d’” = f‘a,

(b) (1 - lalz) lalfl2 dv = 2(1+ |a|2)f*w. and

(C) IOII2 ldfl2 = (1+ |a|2)|51f|2-

PI'OOf- Since f is (J,a)'h010m0rP1fiC, ngfl2 = (ngIKJUfiI) = IKJU, 01W, 30 (a)

follows from Proposition 1.0.6b while (b) and (c) follow from Proposition 1.0.6 (a)

and (d). C]

There is a second way of writing the (J, a)—holomorphic equation (0.4). For each

a E 93(X), I + JK0, is invertible since JK, is skew-adjoint. Hence

Jo, = (I + JKa)‘1J(I + JKO) (0.5)

is an almost complex structure. A map f : E —r X is (J, a)-holomorphic if and only

if f is Ja-holomorphic, i.e. satisfies

_ 1 .

air = E(df+Jade) = o. (0.6)

From this perspective, a solution of the (J, a)-holomorphic equation is a Jo, holo-

morphic map with Jo, lying in the family (0.5) parameterized by a E 93(X). In

particular, we see from (0.6) that the (J, a)-holomorphic equation is elliptic.

Proposition 1.0.8 For any a E 0i (X), the almost complex: structure JO, on X

satisfies

_l—Iozl2 2

<J.u,J.v>=<u,v> and Ja——1+|a|2 __1+la|2
K. (0.7)

Proof. From (0.3), the endomorphisms A+ = I + JKO, and A- = I -— JKO, are

transposes, and A+J = JA- and A+Ka = KaA_. Consequently, A;1 and A21 are

11



transposes, with AZIJ = JA;l and AIIKa = KaA;1 and therefore AIIA+ = A+A:1.

Consequently,

(Jau, Jav) = (A;1JA+u,A;1JA+v) = (JA:1A+u, JA:1A+v)

= (A:1A+u,A:1A+v) = (u, A-A;1A:1A+v)

= (u,v).

On the other hand, noting that K2 = —|a|21, it is easy to verify that

1 l

Ka"1=——— ——
([+J ) 1+|a|21 1+[al2

JKa. (0.8)

With that, the second part of (0.7) follows from the definition of Ja. D

In summary, (J, a)-holomorphic maps can be regarded as solutions of the Ja-

holomorphic map equation 5.1.. f = 0 for a family of almost complex structures para-

meterized by a as in (0.6). We will frequently move between these two vieWpoints.

12



CHAPTER 2

Curves and Canonical Families of

(J, a) Maps

Given a Kiihler surface X, we would like to use (J, a)-holomorphic curves to solve

the following problem in enumerative geometry:

Enumerative Problem Give a (1, 1) homology class A, count the curves in X that

represent A, have a specified genus g, and pass through the appropriate number of

generic points.

We begin this Chapter with some dimension counts which show that in order to

interpret this problem in terms of holomorphic maps we need to consider families of

maps of dimension pg. We then show that there is a very natural family of (J, a)-

holomorphic maps with exactly that many parameters. We conclude the Chapter

with a theorem showing that such maps do indeed represent holomorphic curves in

X.

One can phrase the above enumerative problem in terms of the Severi variety

19(0) C [C], which is defined to be the closure of the set of all curves with geo-

metric genus 9. Assuming that C — K is ample, ‘it follows from the Riemann-Roch

theorem that the dimension of the complete linear system |C | is given in terms of

13



pg = dimcH0'2(X) and q = dimcH0'1(X) by

. 02—0-K

dlmchl = ——,— + p. — q

and the formal dimension of the Severi variety is

dichg(C) = —K~C + 9—1 + pg — q. (0.1)

The right-hand side of (0.1) is the ‘appropriate number’ of point constraints to impose;

the set of curves in V9(C) through that many generic points should be finite, making

the enumerative problem well-defined.

Now let Mg(X, A) be the moduli space of holomorphic maps from Riemann sur-

faces of genus g, which represent homology class A. Then its virtual dimension is

given by

dim cMg(X,A) = —K-A + 9—1. (0.2)

The image of a map in MAX, [0]) might be not a divisor in ICI, instead it is a

divisor in some other complete linear system IC’ I with [C’] = [C]. As in [BLl], we

define the parameterized Severi variety

Vgucv = H mm

[C']=ICI

Its expected dimension is now given by

dichg([C]) = -K - C + g —l + pg. (0.3)

We still have pg dimensional difference between (0.3) and (0.2). Therefore, the cut-

down moduli space by (0.3) many point constraints is empty when pg 2 1. This

implies that the corresponding Gromov-Witten invariants is zero, whenever pg 2 1.

We show that there is a natural — in fact obvious — pg-dimensional family of

(J, a)-holomorphic maps associated with every Kahler surface.

14



Definition 2.0.9 Given a Ka'hler surface on X, define the parameter space H by

H = {a+a [a e H2'°(X)} (0.4)

Here H2’°(X) means the set of holomorphic (2, 0) forms on X. Note that all forms

a E H2"’(X) are closed since do: = 6a + 5a = Ba is a (3,0) form and hence vanishes

because X is a complex surface. Thus H C 93(X) is a 2pg-dimensional real vector

space of closed forms. We give it the (real) inner product defined by the L2 inner

product of forms:

(a, s) = Law. (0.5)

We can use the forms a E H to parameterize the right-hand side of the (J, a)-

holomorphic map equation (1.0.5).

Definition 2.0.10 Henceforth the term ‘(J,a)-holomorphic map’ means a map sat-

isfying (1.0. 5) for or in the above family H.

Lemma 2.0.11 The zero divisor Z(a) of each nonzero a E H represents the canon-

ical class.

Proof. Write a = 16+? with E E H2")(X) Since fl is a section of the canonical bun-

dle, this means that Z(a) = Z(fl) represents the canonical divisor with appropriate

multiplicities. CI

Next, using this 2pg dimensional parameter space H, we define the family moduli

space

We, [01) = {(f.a) IEJJ = 0. [Imfl = [01, and a e H}

15



Since we just parameterize the D-operator by 2pg dimensional parameter space, the

formal dimension of the family moduli space is given by

(Formal) dime-M-zi(X,[C]) = -K'C' + 9—1 + Pg

On the other hand, we define a component of the canonical class to be a homology

class of a component of some canonical divisor.

Theorem 2.0.12 If f is a (J, a)-holomorphic map which represents a class A E

H1’1(X). Then f is, in fact, holomorphic. Furthermore, if A is not a linear combi-

nation of components of the canonical class, then a = 0.

Proof. Since a E H2'°(X) EB H2'°(X) is closed and A E H1’1(X), it follows from

Corollary 1.0.7a that

/ IEJfli = a(A) = 0.
2:

Thus f is holomorphic, that is, 51f E 0. Consequently, |oz|2|df|2 E 0 by Corol-

lary 1.0.7c. Since df has at most finitely many zeros, we can conclude that a = 0

along the image of f. Hence a = 0, otherwise it contradicts to the assumption on A

by Lemma 2.0.11. C]
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CHAPTER 3

Family GW—Invariants

Let X be a complex surface with a Kahler structure (w, J, g). In this Chapter we will

define the Family Gromov-Witten Invariants associated to (X, J) and the parameter

space H of (0.4). We also state some properties of these invariants. To keep the

discussion clear we defer the proofs and some technical definitions until later Chapters.

Our approach is to extend the analytic arguments of Li and Tian [LT] to show

that the moduli space of (J, a)-holomorphic maps carries a virtual fundamental class

whenever it is compact. While compactness is automatic for the usual Gromov-

Witten invariants, it must be verified caseby-case for the family GW invariants (see

Example 3.5 below). Thus compactness appears as a hypothesis in the results of this

Chapter.

First, we recall the notion of C‘ stable maps as defined in [LT]. Fix an integer

l 2 0 and consider pairs (f; 2,221, - - - ,zrk) consisting of

1. a connected nodal curve 2 = U 2,- of arithmetic genus g with distinct smooth

i=1

marked points 221, - ~ - ,atk, and

2. a continuous map f : )3 —» X so that each restriction f,- = fl»,- lifts to a Cl-map

from the normalization E. of E into X.

17



Definition 3.0.13 A stable 0’ map of genus g with k marked points is a pair

(f; 23,331, - ~ - ,zk) as above which satisfies the stability condition:

a If the homology class [f;] 6 H2(X,Q) is trivial, then the number of marked points

in 2.- plus the arithmetic genus of E.- is at least three.

Two stable maps (f,E;a:1,--- ,xk) and (f’,E’;:r’1,~- ,r],) are equivalent if there

is a biholomorphic map a : )3 H 2’ such that o(a:,-) = a): for l S i S k and f’ = foo.

We denote by

f
9,1.(X, A)

the space of all equivalence classes [f ; 2, $1, - .. , 2:1,] of C'-stable maps of genus g with

k marked points and with total homology class A. The topology of 7-";k(X, A) is

defined by sequential convergence as in Chapter 2 of [LT]. There are two continuous

maps from 75‘. First, there is an evaluation map

ev: ”(X, A) —> ch (0.1)

which records the images of the marked points. Second, for 29 + k 2 3, collapsing

the unstable components of the domain gives a stabilization map

t _.,.<X, A) 4%. (0.2)

to the compactified Deligne-Mumford space of genus 9 curves with k marked points.

For 29 + k < 3 we define 14—9,). to be the topological space of consisting of a single

point and define (0.2) to be the map to that point.

We next construct a ‘generalized bundle’ E over T1k((X A))x H, again following

[LT]. Recall that each a E H defines an almost complex structure Jo on X by (0.5).

Denote by Reg(E) the set of all smooth points of 2. For each ([f ; 2, 3:1, - - - ,zk], a),

define

Asz. (f'TX)
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to be the set of all continuous sections u of Hom(TReg(E), f‘TX) with 1103'; = —Jaou

such that 11 extends continuously across the nodes of 2. We take E to be the bundle

whose fiber over ([f,2;a:1,--- ,mk],a) is AjEJa(f‘TX) and give E the continuous

topology as in Chapter 2 of [LT]. We then define a section <1) : EAX, A) x H —» E

by

(13([f’ 2; $1" ' ' ' txklt a) = df + Jadsz' (03)

The right-hand side of (0.3) vanishes for Ja-holomorphic maps. Thus <I>’1(0) is

the moduli space of (J, a)-holomorphic maps. The following is a family version of

Proposition 2.2 in [LT].

Proposition 3.0.14 Suppose that the set <I>‘1(0) is compact. Then the section <I>

gives rise to a generalized Fredholm orbifold bundle with a natural orientation and

with index

r = 2c1(X)[A] + 2(g — l) + 2k + dim H. (0.4)

We will postpone both the proof of Proposition 3.0.14, and the definitions of the

terms in its statement until Chapter 5. Until then we will accept it, and continue

following the construction of Li-Tian.

By Theorem 1.2 of [LT], the bundle E has a rational homolog “Euler class”

in “(X, A) x H; in fact, since H is contractible this Euler class lies in

H..(7¥g,k(X,A);Q) where r is the index (0.4). We call this class the virtual fun-

damental cycle of the moduli space of family holomorphic maps parameterized by H

and denote it by

[Mitts A)]"". (0.5)

In particular,

dim [M;;f(X, Ans = 2c1(X)[A] + 2(g -— 1) + 2k + 2199. (0.6)
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The next issue is whether the virtual ftmdamental cycle is independent of the

Kahler structure on X. The next proposition is analogous to the Proposition 2.3 in

[LT]. It shows that the virtual fundamental cycle depends only on certain deformation

class of the Kahler structure.

Proposition 3.0.15 Let (wt,Jt,gt), 0 S t S 1, be a continuous family of Ka'hler

structures on X. Let H, be the corresponding continuous family of finite sub-

spaces defined by (0.4) and let in be the corresponding family of sections of Et over

it
9
,k(XaA) X Ht- If<I>;'1(0) is compact for all 0 S t S 1, then

warm,AW" = were, AM”.

We also postpone the proof of Proposition 3.0.15 to Chapter 5.

The family GW invariants can now be defined by pulling back cohomology classes

by the evaluation and stabilization maps and integrating over the virtual fundamental

cycle. That of course requires that the virtual fundamental cycle exists, so we must

assume that we are in a situation where <1),— 1(0) is compact.

Definition 3.0.16 Whenever the virtual fundamental cycle [./\/l;’;‘(X,A)]Vir exists,

we define the family GW invariants of (X, J) to be the map

GW.’;Z*(X. A) : [H*<X;Q)]’° >< WOW—gm) H 0

defined on 011, - -- ,ak E H*(X;Q) and fl 6 H*(X/lg,k;Q) by

GWMX. Axe; a1, - ~ at) = [M;:Z:(X.A)1V“ n (sew) u ev*(«;a1 A - - . A «ram.

We will use the shorter notation

GW9{£1(XIA)(01,°“ fire)

for the special case when ,6 = 1 E H°(Wl_g,k); this corresponds to imposing no con-

straints on the complex structure of the domain.
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The condition that <I>’1(0) is compact must be checked “by hand”. In general,

<I>‘1(0) is compact for some choices of A, but not for others.

Example 0.17 Let (X, J) be a Kiihler surface with pg > 1. Then there is a non-zero

element fl 6 H2'0 whose zero set Z([3) is non-empty, represents the canonical class

K, and whose irreducible components can be parameterized by holomorphic maps.

Fix a parameterization f : E —> X of one such component; this represents a non-zero

class A E H2(X, Z). Then a = [3 + 3 lies in the space H of (2.0.9) and <I>(f, Aa) = O

for all real A. Thus on any Kahler surface with pg > 1, the set <1>"1(0) is not compact

for an component of the canonical class A.

On the other hand, in the next Chapter we will give examples of classes A in

Kahler surfaces with pg > 1 for which <I>'1(0) is compact.

Theorem 3.0.18 If there is a constant C, depending only on (X,w, J, 9) such that

E(f) + “all < C for all (J, a)-holomorphic maps into (X, J), then (II-1(0) is compact

and hence the family GW invariants are well-defined.

Proof. Consider a sequence (fn, an) of Ja-holomorphic maps. The uniform bound

on llanll implies that the Jo, lie in a compact family. Since E(fn) < C the proof

of Gromov’s Compactness Theorem (see [PW] and [IS]) shows that {(fn, an)} has

a convergent subsequence. Consequently, <I>‘1(0) is compact as in the hypothesis

of Proposition 3.0.14. That means that the virtual flmdamental cycle (0.5) is well-

defined. The family GW invariants are then given by Definition 3.0.16. C]

We conclude this Chapter by listing two important properties of the family GW

invariants. These are analogous to divisor axiom and composition laws of ordinary

GW invariants. Again, the proofs appear in Chapter 5.

Proposition 3.0.19 (Divisor Axiom) If oak E H2(X, Z) then

GW;£1(X,A)(a1,-~ ,ak) = ak(A) GWg{}c7:1(X,A)(a1,-~ ,ak_1). (0.7)

21



The second pr0perty generalizes the composition law of ordinary Gromov-Witten

invariants. For that we consider maps from a domain 2 with node p and relate them

to maps whose domain is the normalization of E at p. When the node is separating

the genus and the number of marked points decompose as g = g1+gg and k = k1 + k2

and is a natural map

0 : Hauler-+1 X Myth-f1 H M9,]; (0'8)

defined by gluing (k1 + 1)-th marked point of the first component to the first marked

point of the second component. We denote by PD(o) the Poincaré dual of the image

of this map 0'.

Given any decomposition A = A1 + A2, g = g1 + g2, and k = k1 + k2 let E1 69 E;

be the generalized bundle over

igl,k1+l(X, Al) x 7'-.<12.Ic2+1(X, A2) X H

whose fiber over ([f1,)31; {x,-}], [f2, 22; {yj}],a) is Ag’l EB AO'1 . The formula
2, J. my...

‘I’thh 31; {ital}, lfz. 232; {ll/1}], 0‘) = (de + Jadfljzudfz + Jtadfzjm) (0-9)

defines a section of E1 63 E5.

On the other hand, for non-separating nodes there is another natural map

9 1 fig-IJC-ifl H mime (0-10)

defined by gluing the last two marked points. We also write PD(0) for the Poincaré

dual of the image of 6. The composition law is then the following two formulas.

Proposition 3.0.20 (Composition Law) Let {H7} be any basis of H‘(X; Z) and

{H7} be its dual basis and suppose that GWfifiX, A) is defined.

(a) Given any decomposition of (A, g,lc), if the set II!,_1(0) is compact for all

OStSl, then
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Swift‘s. A)(PD(a); a1, - -- ,a.)

= EmA=A1+A2 GWQI’Tzl+1(X’ AlXQh ' ° ' ’akl’ H7)GW92J=2+1(X7 A2)(H7r ak1+1a ' ' ' r all?)

(b) GWg{£‘(Xr A)(PD(0); a1) ' ' ' talc) = 27 GWng-ik+2(X9 A)(ali ° ' ' talc, H1) H7)

That completes our overview of the family GW invariants. We next look at some

examples, namely the various types of minimal Kahler surfaces. There we can use the

specific geometry of the space to verify that the moduli space is compact and hence

the family GW invariants are well-defined.
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CHAPTER 4

Kiihler surfaces with pg _>_ 1

In this Chapter we will focus on the family GW-invariants for minimal Kahler surfaces

X with pg 2 1. The Enriques-Kodaira Classification [BPV] separates such surfaces

into the following three types.

1. X is K3 or Abelian surface with canonical class K = 0. In this case, pg = 1.

2. X is an elliptic surface 1r : X —-—> C with Kodaira dimension 1. If the multiple

fibers B,- have multiplicity m,, then a canonical divisor is

K = rr‘D + 2(m, — 1)B, where deg D = 2g(C) — 2 + x(0x) (0.1)

3. X is a surface of general type with K2 > 0.

We will examine these cases one at a time. For each we will show that the family

invariants GW;£‘(X, A) are well-defined. By Theorem 3.0.18 the key issue is bound-

ing the energy E(f) and the pointwise norm |a| uniformly for all (J, a)-holomorphic

maps into X.

K3 and Abelian Surfaces

Let (X, J) be a K3 or Abelian surface. Since the canonical class is trivial, Yau’s proof

of the Calabi conjecture implies that (X, J) has a Kahler structure (w, J, g) whose
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metric g is Ricci flat. For such a structure all holomorphic (0, 2) forms are parallel,

and hence have pointwise constant norm (see [3]). Thus H ’5 (C consists of closed

forms a with [a| constant. Furthermore, the structure is also hyperkahler, meaning

that there is a three-dimensional space of Kahler structures which is isomorphic as

an algebra to the imaginary quaternions. The unit two-sphere in that space is the

so-called Twistor Family of complex structures.

Consider the set ’13 = {Ja I a E H}. Since a has no zeros, equation (0.7) shows

that Ja —+ -J uniformly as |a| —; 00. We can therefore compactify 76 to T ’_—‘i P1 by

adding —J at infinity.

Proposition 4.0.21 T is the Twistor Family induced from the hyperkdhler metric

9.

Proof. Let a E H with |a| = 1. It then follows from Proposition 1.0.8 that Jo, =

—K., and (a, Ja, g) is a Kiihler structure on X. On the other hand, we define a’

by a’ (u, v) = a(u, Jv). Then |a’| = l and a’ E H since fl’ is holomorphic for each

holomorphic 2-form fl. Moreover, by definition we have

Jar = —Kar = —JKO, = JJa.

Since (a’, Jar, g) is also Kahler and JJaJa: = —Id, the Kahler structures {J, Ja, Jar}

multiply as unit imaginary quaternions. It follows that ’I' is the Twistor Family

induced from the hyperkhler metric g. D

Lemma 4.0.22 Let A be a nontrivial homology class with w(A) 2 0. Then there

exits a constant CA such that every (J, a)-hol0morphic map f : C —> X representing

A with a E H satisfies

E(f) = é/Zldflz < w(A) +CA and |a| g 1.
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Proof. Since [al is a constant, we can integrate Corollary 1.0.7b to conclude that

la] 5 1. Let CA be an upper bound for the function a H |a(A)| on the set of a E H

with |a| S 1. Because a is closed, Proposition 1.0.6a and Corollary 1.0.7a imply that

1

E(f) = 5 / ldflz = / f*(w + a) = w(A) + a<A> s w<A> + C... a
c )3

Theorem 4.0.23 Let (X, J) be a K3 or Abelian surface. For each non-trivial

A E H2(X,Z), the invariants CW;E(X, A) are well-defined and independent of J.

Furthermore, if A = m8 and A’ = mB’ where B and B’ are primitive with the same

square, then

ijmx, A) = GWg{£‘(X, A’).

Proof. For any nontrivial homology class A, we can choose a Ricci fiat Ka'hler

structure (w, J, g) such that w(A) 2 0 ( if w(A) < 0, then we choose (-w, —J, g) ).

It then follows from Lemma 4.0.22 and Theorem 3.0.18 that GWg‘f,:’(X, A) is well-

defined.

Bryan and Leung have applied the machinery of Li and Tian to define family GW

invariants associated to the Twistor Family T [BL1, BL2]. Their invariants, which

we denote by

‘I’LAX, A):

are actually independent of the Twistor Family since the moduli space of complex

structures on X is connected. On the other hand, if A = m8 and A’ = mB’ where

B and B’ are primitive with the same square, then there is an orientation preserving

difieomorphism of X which sends the class B to the class B’. That implies that

(PLAX, A) =<I>3:k(X, A’).

To complete the proof it suffices to show that

Gngf‘(X, A) = eggx, A). (0.2)
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For that, recall from Theorem 1.2 of [LT] that the moduli cycle is defined from a

section 3 of a generalized Fredholrn orbifold bundle E —> B and is represented by

a cycle that lies in an arbitrarily small neighborhood of s‘1(0). Both sides of (0.2)

are defined in that way using the same hedholm bundle E over the space of Kahler

structures. In the first case B is {J0 | a E H} and s‘1(0) is the set of of all (f, a)

where f is a Ja-holomorphic map, and in the second case B = T is the Twistor Family

and s‘1(0) is the set of Ja-holomorphic maps for JO, 6 T . By Proposition 4.0.21

{Ja | a E H} parameterizes‘the Twistor Family after adding a point at infinity to H.

But since w(A) Z 0, Lemma 4.0.22 shows that |a| S l for all JO holomorphic maps

representing the homology class A with a E H. Thus the moduli cycle is bounded

away from the point at infinity, so the two definitions of the moduli cycle are exactly

equal. That gives (0.2) C]

Elliptic Surfaces

First, we recall the well-known facts about minimal elliptic surfaces X with Kodaira

dimension 1 [FM].

1. X is elliptic in a unique way.

2. Every deformation equivalence is through elliptic surfaces.

Therefore, there is a unique elliptic structure 7r : (X, J) ——> C. Moreover, for the fiber

class F and any homology class A E H2(X; Z), the integer

F - A + deg(rr.A) (0.3)

is well-defined for each complex structure J and it is invariant under the deformation

of complex structure J.

Let (w, J, g) be a Kahler structure on X and H be as in (0.4). For a E H, let ”all

denote the L2 norm as in (0.5).
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Lemma 4.0.24 Let A E H2(X; Z) such that the integer (0. 3) is positive. Then, there

exit uniform constants E0 and N such that for any Ja-holomorphic map f : 2 —> X,

representing homology class A, with a E H, we have

153(f)=-;-/2|dfl2 s E... Hall 3 N.

Proof. It follows from (0.1) and Lemma 2.0.11 that for any nonzero a E H, the zero

set of a lies in the union of fibers F,. Let N(a) be a (non-empty) union of e~tubular

neighborhoods of the E. Denote by S the unit sphere in H and set

. . 2

m“) - 13.1? first.) '0" and N - m-

We can always choose a smooth fiber F C X \ N(a) such that f is transversal to

F. Let f‘1(F) = {p1, - - . ,pn} and for each i fix a small holomorphic disk D,- normal

to F at f(p,) We can further assume that f is transversal to each D,- at f(p,)

Define sgn(r) to be the sign of a real number r if r aé 0, and 0 if r = 0. Denote

by I(S, f)p the local intersection number of the map f and a submanifold S H X

at f(p). In terms of bases {e1, e2 = jel} of TIRE, {v1, v2 = jvl} of Tf(Pi)F’ and

{v3, v4 = j v3} of Tfm.)D,- we have

[(Fr f)Pi = sgn ((1)1 A '02 A ’03 A U4)(’Ul,’l}2, f*81:f*62)) = sgn ((1)3 A v4)(f*el) f¢e2))r

I(D,~, flp. = sgn ((01 A ”2 A ”3 A v4)(f*€1,f:€2,1’3,v4)) = sgn ((01 A v2)(f.e1, 1382)) -

Comparing with sgn f*w(e1,e2) = sgn((vl /\ v2)(f.el, fiez) + (v3 A v4)(f*€1,f*82))

shows that

1(Fr f)Pi + [(013 f)Pi = sgn (f*w)(81, 62). (0'4)

Now suppose m(J)||a|| Z 2. Then |a| 2 2 along each F,-, so by (0.4) and Corol-

lary 1.0.7b

ZUU’Flm +I(f!Di)p,-) <0.

I
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This contradicts to our assumption A - f + deg(rr...A) > 0 since by definition

2,1(f,F)p, = A - f and 2,1(f,D,-)p, = deg(rr,.A). Therefore ”all < N with N

as above. The energy bound follows exactly same arguments as in the proof of

Lemma 4.0.22. El

Proposition 4.0.25 For any homology class A with (0.3) positive, the invariants

GW9{£{(X, A) are well-defined and depend only on the deformation class of (X, J).

Proof. It follows from Lemma 4.0.24 and Theorem 3.0.18 that the invariants

GWg{f’(X, A) are well-defined. On the other hand, (0.3) is invariant under the de

formation of J. Therefore, applying Proposition 3.0.15, we can conclude that the

invariants only depends on the deformation equivalence class of J. D

Surfaces of General Type

Let (X, J) be a surface of general type.

Proposition 4.0.26 If A is of type (1,1) and is not a linear combination of compo-

nents of the canonical class, then we can define the invariant GWg{£’(X, A). They

are invariant under the deformations of complex structures which preserve (1,1)-type

of A.

Proof. Lemma 2.0.12 and Theorem 3.0.18 imply that the invariants GWJI‘AX, A)

are well-defined under the assumption that A is type (1,1). On the other hand,

Proposition 3.0.15 also implies that the invariants GWg’fk(X, A) are invariant under

deformations of the complex structure which preserve the (1, 1) type of A. D
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CHAPTER 5

Virtual Moduli cycles

This Chapter is devoted to the technical proofs of the analysis results stated in Chap-

ter 3. Specially, we will prove Proposition 3.0.14, 3.0.15, 3.0.19, and 3.0.20.

We first recall the notion of orbifold bundle.

Definition 5.0.27 A topological fibration 7r : E —+ B is an orbifold bundle if there

is an open covering {U,-} of B such that

(a) each U,- is of the form I7,/P,~, where F,- is a finite group acting on (7,-

(b) for each i, there is a topological bundle E,- —-> (7,, such that Ely,- = Ei/I‘,

(c) For any i, j, there is a bundle map

(pi-l : Ejlxj—lwmuj) —> E’lwflwmuj)

which is compatible with actions P,- and P,- and descends to the identity map of

Elana,- , where rr;c : (I), --> U), is the natural projection

(d) for each x E rr‘1(U,- flUj), there is a small neighborhood U3, such that (1).-flint, )

is an isomorphism fmm each connected component of 1r;1(Um) onto its image

Any such (1 7r,- : U,- —i U,- is called a local uniformization of B. We denote ¢ij by

the induced map from rrJ-"1(U, fl Uj) to rr,‘1(U,- n Uj). An orbifold section 3 : B —r E

is a continuous map such that for each i, sly, lifts to a section 3,- of E,- over U,.
I
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We now define a generalized Hedholm orbifold bundle following [LT].

Definition 5.0.28 An orbifold bundle E -> B is called a generalized Hedholm

orbifold bundle of index r if there is an orbifold section 3 : B -—> E satisfying

(a) s‘1(0) is compact with a finite covering {U,-}

(W for 806,1 31' I (I; —> 133,-, there is a topological subbundle E0,- of finite rank over (7,-

such that

(i) 3:1(Em) C (J,- is smooth of dimension r + rk(Eo,-)

(ii) Eml-ylwo.) is a smooth bundle over 3:1(Em) with Silsflwo.) smooth

(c) for each i, there is a finite dimensional vector space F,-, on which F,- acts, and

a Pi-equivariant bundle homomorphism w,- : (I, x F, —i E,, satisfying

(i) 1,0,] “(is ) F : 3:1(Em) x F, —» E0, is smooth and transverse to 3,- along

or X r

8:1(0) 0 0i

(ii) if diij S dimF,, then there is an injective bundle homomorphism

rr;1(U,~FI Uj) X Fj —> 77:1(Ui fl Uj) X R

such that p,- o 0,-1- = (12,-,- o 15,-, where p’, : U,- x F,- —+ (J,- is a natural projection,

and v, o 9,,- = <1», 0 v,- on 1r;1(U.- n U,) x F,

(iii) dika S diij S dimF,-, then 0,; = 0,,- o 03-), over rr;1(U,- fl Uj)

(iv) for any x E U,- D U], 0,, is I‘m-equivariant near r“1 (x), where I‘._., is the

uniformization group of B at x

For each i, (F,, E0.) is called a resolution of s,- : II,- —* Bi.

Proof of Proposition 3.0.14 Following Chapter 3 in [LT], we will show that

<1>: 71“,,((X A))x H -» E
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satisfies Definition 5.0.28b. Namely, we will show a family version of Proposition 3.4

in [LT]. Then Proposition 3.0.14 follows from the proof of Proposition 2.2 in [LT].

The proof of above assertion consists of 4 steps. First, we recall local uniformizations

of PLAX, A) in [LT]. Then these give the local uniformizations of TEAX, A) x H in

an obvious way. Second, we recall the definition of approximated maps and weighted

norms as in [LT]. Next, we show the main estimates for the linearization of the

Cauchy-Riemann operator 5].: and its adjoint operator. These are family versions of

Lemma 3.9 and 3.10 in [LT]. Finally, we use the main estimates of the previous step

and the Inverse Function Theorem to conclude our assertion.

Step 1 In this step, we recall the local uniformizations of PLAX, A) in [LT]. In the

following, we will denote by C a stable map (f, 2; x1, - -- ,xk). We fix l 2 2. Let [C] =

[f, 2; x1, - -- ,xk] 6 PLAX, A). A component of E is called a bubble component if it

collapses to a point under the stabilization of 2. We add one or two marked points to

each bubble component, to obtain a stable curve (2; x1, - -- ,xk, 21, - - - ,21) 6 HM“.

Let W be a small neighborhood of (2; x1, - - - ,xk, 21, - - - , 2;) in WIN,“ and W be the

uniformization of W, i.e. W = W/I‘, where F = Aut(2; {x,-}; {z,~}).

Let L7 be the universal family of curves over W. We fix a metric h on LI. Define

the distance of two maps f1 and f2 from fibers of LI over W as follows:

dW(f1: f2) = suprDom(f1)Supdh(y,x)=dh(x,Dom(f2))dX (f1 (:11) ) f2 (3’))

Since the homology class of any non-stable component under the map f is non-

trivial, there is at least one regular value of f on each unstable component. Therefore,

we can assume that f‘1(f(23)) consists of finitely many immersed points. We choose

local hypersurfaces H1, - -- ,Hl such that H,- intersects Im(f) transversally at f(2,).
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Fix a small 6 > 0, and define

Map5(W) ={ (f,i;{fé.-},{2j}) | (f3;{:t,-},{2,~}) 6 W, dw(f,f) < 6.

f is C0 on E and C’ on Reg(E), and f(z",-) 6 Hj }.

Let K be any compact subset in Ll\Sing(Ll) of the form : there exits a diffeomorphism

112K : (K n E) x W —» K such that wK((K n E) x {t}) lies in the fiber of LI over

t = (E; {53,}, {i,-}) E W. Then we define

MapAW. K) ={ (f, is; {a}, (is) e Map(W) l Ilfwx.....,,.,., -— usual < 6,

where t = (E; {55,-}, {Z,-}) 6 W }

By forgetting added marked points, each point in Map5(I/V, K) give rise to a

stable map C and consequently, an equivalence class [C] E PLAX, A). Let pwx :

Map6(W, K) —> —g,k(X, A) be such a projection map and let

MaP5(Wo, K) = PW( Map6(W, K) )-

Let Aut(C) be the automorphism group of the stable map C. It is a subgroup

of I‘ = Aut(E; {x,}; {z,-}), so it is finite and acts on LI. Denote by m(C) its order.

LFYom now on, K always denotes a compact set in L7 \ Sing(Ll) containing an open

neighborhood of Ujf‘1 (f(z,-)). Moreover, we may assume that K is invariant under

the action of Aut(C)

There is an action of Aut(C) on Map6(I/V, K) with Map5(Wo, K) as its quotient:

For 7' E Aut(C) and C’ = (f’,E’; {x2}, {z;}) E Map5(W, K) we define

7*(0') = (f’T‘l, 7(2’); {7132)}, {7(Z§)})-

Then Map5(Wo, K) = Map5(W, K)/Aut(C), see Lemma 3.1 [LT].

Let V C H be a small neighborhood of a. The topological bundle EIMamWo.

over Map5(Wo, K) x V lifts to the bundle

K)xv

—-) Map6(VV, K) X V. (0.1)
[Map5(W,K)XV
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Infact,E—rfl
9
,k(X, A) x H is a topological orbifold bundle with the local uni-

formization

PW,K X I I Map5(W, K) x V —> Map6(Wo,K) x V.

Without further confusion, we simply denote the lifted bundle ElMap5(W,K)xv by E. On

the other hand, the section Q defined as in (0.3) lifts to a section, still denoted by (I),

of E over Map6(W, K) x V.

Step 2 In this step, we recall the definition of approximated maps and weighted

norms in [LT]. In the following, we assume <I>(C,oz) = 0, i.e. f is Ja-holomorphic.

Denote by q1,--- ,q, the nodes in E. For any q,- (1 S i S s), by shrinking W if

necessary, we may choose coordinates w,1,w,-2, as well as t in W, near C, such that

the fiber

(2:; {Mil}. {zj(t)})

of LI over t is locally given by the equation

wilwiZ = 62'“), [Wu] < 1, [we] < 1,

where e,- is a C°°-function of t.

For any y in 2;, if |w,1| > Lm or [wig] > L\/|—e,-(T)| for all i, where L is

a large number, then there is a unique m(y) in E = 20 such that dh(y,rrt(y)) =

dh(y, 2). Note that if y is not in the coordinate chart given by w,1,w,-2, then simply

set wi1(y) = w,2(y) = 00.

Introduce a complex structure Jo. = ju + Jo, on ll x X and let F : E —> Ll x X be

the graph of f. Put p,- = F(q,-). We may assume

1. F({w,1w,-2 = 0 | |w,—1| < 1, |w,-2| < 1}) is contained in a coordinate chart

(u1,---.,u2N) ofbl x X near p,-.

  2. as.) = 6.3,, + 0(Iul) Jami“) = me, + 0(Iul) where Iul = ME,- MI”-
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3. In complex coordinates Uj + V—IUN+j, F(w,-1,w,-2) = (w,1,w,-2,0,- ' ° ,0) +

0(lwiII2 + |w,-2|2).

Then we can extend F to a neighborhood of q,- using the formula in 3.

Let 5 be a cut-off function such that

E(x) = 0 for Ix] S 1, E(x) = 1 for [x] > 2, and |dfi(x)| S 2.

Definition 5.0.29 We define ft(y), where y 6 2,, as follows:

f(rrt(y)) if either |w,-1(y)| > 1 or |w,-2(y)| > 1 for alli

ft = «2(F(y)) if]w,-1(y)| < % and ]w,2(y)| < % for somei

91(9) if% S [7011(9)] S 1 07‘ l S [midi/ll S 1

where 9,-(y)

= expf(q,) (.B( 2dh(ya (Ii) )eXPj—r(lq,)f(7rt(y)) + (1 — fi( 2d”(y’ q” ))eXp;(1qi)7r2(F(y)))

Next, we will define weighted norms as in [LT]. Let r be the distance function to

the singular set Sing(bl) with respect to the metric h on Ll. In the below, all norms

and covariant derivatives over 23; are taken with respect to the induced metric his. .

Definition 5.0.30 For any smooth section 5 E I‘°(Et, f,*TX), we define

”5“" = (fr ('5'? + 'Vi'p’d’“); + (is ”ELF—23mm) 5

Lina,em = { as was”) I IIrIII. < oo }

L” = { (use I e e LWE. :TX), te W, H e v }

where p Z 2 and P°(E¢, ffTX) is the space of continuous sections of f,*TX over

2,. If E; has more than one components, then 5 consists of continuous sections of

components which have the some value at each node.
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Definition 5.0.31 For n 6 Hom(2t, ft‘TX), we define

1 1
P _2(2_2) 2

”’7”? = ([2 I’llpdflt) + (L 7" ” [film/Ix)

LP (Arms) = { n e nemesis”) I 773” = -an. ”77”.: < oo }

LP<A°J<TX>> = { (tfim) I n e If (A3:(f:TX)) , te W. A e v }

Lemma 5.0.32 For any p > 2, there exits a uniform constant c such that for any

t E W and B 6 V

l

ll‘P(ft.fl)llp S C( Ill2 + Ila - fill)

Proof. It follows from Lemma 3.8 in [LT] that ||<I>(ft,oz)||p S c |t|i. It also follows

from Lemma 3.7 in [LT] that Idftl is uniformly bounded. On the other hand, we have

(2—2)

/ r—2 ? dut S C(p).

2t

Therefore, we can conclude that

ll‘1>(ft.fi)||p S ||¢(ft.a)||p + ||(Js - Jaldftjllp S C(ltP + Ila - fill ). 0

Step 3 In this step, we will show main estimates. The linearization Lm of (I) at

(ft, B) with respect to f, is an elliptic operator

LN; : LINE“ fg'TX) —» LP(A3;31(f,*TX)) given by

Lug“) = Vé + Jpvé jt + g (Vng) (dftjt + Jgdft) . (0.2)

where j; is the complex structure on 2,. Its adjoint operator L22), with respect to the

L2-inner product is given as follows: for any 17 E 93% {TX)

LEM”) = -2V81(’71) - 2vez (772) + Bt,fi(’l) (O3)
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where {e1,e2 = jtel} be an orthonormal basis on 2,, 171 = r)(e1),172 = 17(e2), and

Bt,,3(r)) is defined by

(if, Bt,s(77)) = ((Ver) faez, 771) - ((VeJA)fa.61, 772 )-

For the proof of (0.2) and (0.3), see lemma 6.3 and 6.4 in [RTl].

The next lemma follows from Lemma 3.9 in [LT]. This shows the uniform elliptic

estimates for L”.

Lemma 5.0.33 For any fixed p 2 2, there is a uniform constant c such that for any

t, fl, andfi E LL42), (TX), we have

||€||1,p S C(||L(I,s)€||p + |l€||1,2)- (04)

Proof. It follows from Lemma 3.9 in [LT] that (0.4) holds with some constant c(fl)

which might depend on lVJpl. However, by shrinking V, if necessary, we can choose

cwithc>c(fl)foranyflEV. CI

Fix a node q, of 2: and choose t e W with 6,-(t) 7e 0. Let w,-1 = pe‘/'—1”. Then

wig = E¥Me¢—_I(90-0) and r2 = p2 + 15%;”: where 6,-(t) = |e,-(t)|e‘/"—19°. We define the

neck region by

N,., = 2,n{ (w,1,w,2,t)€ L? | r g l/k} and ,e = r—_(_Hp;2. (0.5)

Denote by ht the induced metric on N“ and let h6 = r‘2 p2 ht. Then we have

h6 = dp2 + p2 d02 and due = r‘2p2d/it = idpdfl

Lemma 5.0.34 For any fixed p > 2, there exist kg and a uniform constant c, which

is independent of t and B, such that if k > k0, then each 17 E (23’; (f,"TX) satisfies

[N scavenge] cplLi,e(n)|2due+c/ «p(ln|’+lV°n|3)d0 (0.6)
In! Ne: 0Nk,t
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Proof. Using the metric hc on 2,, for any n 6 03;“ ,*TX), we can write it as

r) = m dp — Jg’lh pd0. In terms of p and 6, we also have

617121 37712 2_ 2_ 2 d c 2 = 2 _ _ 2 .

|n|= |n|= (;) lnl an Ian (lap! +|p Bel

For fixed p > 2, we can choose k0 which satisfies

2

(39’ < 3ko 10

For k > k0, we first show the following :

/ vlnl’dm S 4/ cplnl’d0+/ le°n|§dIue (0-7)
Nlc,t 6N)“: Nle,t

Let w(p) = fpchpdp, where p0 S p on N”. Then w S <pp1+q, where q = Lg.

Consequently, from the integration by parts, we have

/ wlvl’due
Nk,t

2/ wlml’dpdfl

Nk,t

a
=2 vaIzde—AI/N ¢(nl,a”--1->dpd9

k,t
6N,”

S 2/ wlnl2d0+f wlml’dpdil + 2/ vpp29|V°n|§dpdfl
6N,” NM!

Nk-t

Using p S r S l/ko, we can rearrange the above to conclude (0.7).

Next, we will show the following :

C * T2 C

/ wIanidMeS e/ cp(lLe,e(n)|’+-3|m|’)due+cf e(IVnI2)d6
Nk,t Nu P 3N“

' (0.8)

Since [Vng and ldftl are uniformly bounded,

r r

IBr.,ra(77)| S Cldft lclm l S Czldft | lm | S Czlm l-

Consequently, we have

1 t _ 6’71 lpa__’ll
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This implies that

1 c a 16 a 16
-/ ‘PIVUIZd/Jc:/ <p(aipl-%-an—;l’+2(—7’1J-s617101111.

Nk,t ng
p2

.. B Jfila

s/ e(cIL.(Tl)|2+C—|771|2+2(—m J—,,—’},‘ )de.
Nu

(0.10)

Let J50 = Jg(f(q,)). If the neck region N“ is sufficiently small, then [Jg(ft) —

J50] < l/ (4p) on N“ for any fl 6 V and t E W. Using the fact that J3 is compatible

with the metric g on X, we have

% 1211 _ (9771 11771 671__1_1O__771

2(ap,Jep,,,)= (we, JeI—a—p 5,, 6 (JA— Je 6—9-

 

6771
1 6771

8771 1 6771

+< 8P , Jflo p 09> <JB°_ap’ p 35>
(0.11)

We have

9—771 1 6771 6171
1 6771

t/Nm’p [<(Jfio_ Jfl)
_6p p 80>— < ap1(<]flo Jfl) P 60 d/Jac

l

—<- 4— «prCnIde,

(0.12)

Nk,t

On the other hand, using integration by parts, we also have

em 1 6771 0m l 6_171
, J J dc

[11..’0<0p Spa—6» <fi°0p’ Pa_9

6771 > r 6171

go 17 a, J d6 — / <77 a, J 01> dp d9
AN,” < 1— 50—06 N,” (p 1_ [30—69

S C/ 90 ([771 - “[2 + lV‘nlg) d9

ON)“;

19-2 2 13171 2
—— — Jfi, ,. 0.13+ p ~.,.’0(Il2|171 al +| pa_e’ (1,1 ( )

  

  

where a(p) = 2%. f 771(1), 0) do and Ip’ = —2;72 90% gal—If]; Now, apply Wirtinger’s
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inequality [GT] and then use (0.9) to derive the following :

277-0’ dl‘cS/ _ dc[We I1 I N cplpagl It

k,t

g 1 + ) — + c L“ + c d c.

./Nk,t so (( 2(1) _ 2) Ip 0p I I t’fil [771' 'u

(0.14)

 

Combining (0.10), (0.11), (0.12) (0.13), and (0.14), we can deduce (0.8).

On the other hand, <p(r2/p2)du,c = r%(1/p)dpd0 and fr%(1/p)dp S c(p)r%, where

c(p) = 2% (p/4). Therefore, using integration by parts, we have

1‘2
2

3 c

/ wfilml’due S cf wln|2d9+0/ rP|n1|2duc+Cf “IV "lgdflc
Nun 5N” Na: Nu

(0.15)

Finally, (0.6) follows from (0.7), (0.8) and (0.15) since every constant in the above

estimate depends only on p and we can assume r is arbitrary small. [3

Step 4 In this step, we will show a family version of Proposition 3.4 in [LT]. This

proves that (I) : ”(X, A) x H -—> E satisfies Definition 5.0.28b. Consider the vector

bundle Ev —> Li X X x V whose fiber over (q, p, [1) consists of all n 6 Hom(Tqu, TPX)

with n jg = — on. We denote by

Pl)’l(a1TX)V

the set of all sections of Ev —1 Ll x X x V, which are C’ smooth and vanish near

Sing(Ll). For 6 = (i,f3;{e,-},{z,-}), s e v and n e P?”(Ll,TX)v, we define the

restriction 17' (c. p) as follows: for any x E E

n.,.,,,(e~) = no, f(a=).fi)-

Lemma 5.0.35 There is a finite subspace S C F?’1(Ll , TX)v such that Sl(c.a) is trans-

verse to Lfm i.e., ifn1,- . - ,nn span S, then 171k“), - - - ’"nlrcm and Im(Lm) generate

I)" (A3:(f‘TX)), and dim(S) = dim(S|(C,a)), where S|(C.a) = { "kc-,0) l 77 E S }
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Proof. Denote by Coker(Lf,a) the space of all 17 E L2(/\3;1(f*TX)) such that

Liam) = 0. Then it is a finite dimensional subspace of If (A3:(f‘TX)) and for

any n E LP(/\3’a1(f*TX)), there are 5 E L1’2(E,f*TX) and 770 6 Coker(Lf,a) such

that Lf,a(€) = n — 770- Moreover, E E LINE, f‘TX).

On the other hand, the set Fla...) = {m(cmln 6 F?’1(LI,TX)V} is dense in

LP (Ag’:(f‘TX)). Therefore, we can always find 01 e P?'1(LI,TX)V such that the

restriction "Ila... is not in Im(Lfia) UCoker(Lf,a), if Coker(Lf,a) 7i {0}. Then, n1 Ic... =

Lf’a(€) + 171 for some 5 in L11P(E,f*TX) and n1 in Coker(Lf,a). Let Coker1(Lf,a)

be the orthogonal complement on (171) in Coker(Lf,a). Its dimension is one less than

those of Coker(Lf,a). If Coker’(Lf,a) 74 {0}, then we can also find r72 6 I‘?’1(LI,TX)V

such that 172 la... = L”(5’) +am [6.0 +172 for some 6’ in L11P(E, f*TX), some nonzero 172

in Coker1 (LLa)’ and some constant a. In this way, we can use the induction on the di-

mension of Coker(Lf,a) to find 171, - - - ,nn 6 I‘?’1(LI, TX)v such that 171' (c.a)’ - - - ,1an (c...)

and Im(LLa) generate LP (A3:(f*TX)). El

Denote by C6+1(LI,TX) the set of all CHI-smooth sections of TX —-» Ll x X,

which vanish near Sing(Ll). Let S be as in Lemma 5.0.35 and rrs be the orthogonal

projection onto the orthogonal complement of SIM) in L2 (Agfl f,*TX )) . Let P

be a finite dimensional subspace in Cé+1(11 , TX) such that dim(P)=dim(Pf) and

q5( Ker(rrSU'O)L(f,a))) = Pf, where qs : L1'2(E, ffTX) -—> Pf, is the projection with

respect to the L2-inner product.

Lemma 5.0.36 Let P and S be as above, and t and “3 - all be sufl‘iciently small.

Then for any p > 2, £0 E Pf, and r) 6 LP (A3“ ,‘TX)), there are unique g 6

L11"(f,*TX) and 770 E Slurry satisfying:

(15(0 = $0, Lt.fi(€) = 77 - 770, (0-16)

max{ llflllan ll’lOllp } S cmax{ lléOlllmr llllllp}
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where c is a uniform constant.

Proof. Its proof is similar to the proof of Lemma 3.10 in [LT]. We first show that

there is 6 and no such that Lt,p(§) = n — no for sufficiently small |t| and Ila — fill.

Suppose not. Then we can find a sequence {(tn, ,Bn)} with (tn, fin) —* (0, a) and 17,, in

Coker(Ltmo,,) with ”null? = 1 such that 177, is perpendicular to S with respect to the

L2-metric on LP (A3}; (f,;TX)).

It follows from the standard elliptic estimates that nn converges to some n in

L? (A31: (f’TX)) outside of nodes of 2. Since n is perpendicular to S and Lia(n) = 0,

we have n = 0. This implies that n" -—> 0 on the compliment of Neck region as in

(0.5) and thus ||nn||p —+ 0 by Lemma 5.0.34. This contradicts to ||nn||p = 1.

Next, we show that there is a unique 6 and no satisfying (0.16). First, choose 5

and 77 With Lt,fi(§) +770 = 77 and SBt 5' = §+qS(§o - E) and 776 = 770 + 14.3015“ — 50))-

Then €’ and n’ satisfy (0.16). One can prove the uniqueness by the similar argument

as above.

Finally, we show the estimate by contradiction. Suppose not. Then there is a

sequence {(tn, fin)} with (tmfln) —-> (t, ,6) and g, in Ll'P(f,’;TX) and non in S such

that

(i) max{|l€nl|1.pll|770nllp} = 1, and (ii) max{ll€o:zll1.p,||77nllp} —’ 0

where q5(£,,) = {on and among“) + no" = n... By Sobolev Embedding Theorem,

we may assume that 5,, converges to some 5 and £071 to 0 both in Ll’z-norm. We

may further assume that non converges to some no. Note that Ltfi(5) + no = 0 and

qs(g) = 0. Therefore, by uniqueness we have 5 = 0 and no = 0. On the other hand,

by (i) ||§||1,p —-> 1. It then follows from Lemma 5.0.33 that ”any. are uniformly

bounded away from zero. This contradicts to {n —> g = 0 in L112. D

Let S be as in Lemma 5.0.35. We define E5 over Map5(W, K) x V as follows : for
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any (If, A) in Map5(W, K) x v,

ESde) = Sl(C’.A)'

The following shows that Q: 77’k((X A) x H —> E satisfies Definition 5.0.28b.

Proposition 5.0.37 By shrinking V and W if necessary, if 6 is sufliciently small

and K is sufl‘iciently large, Q'1(E5) is a smooth submanifold, which contains (C,a),

in Map6(W', K) x V and of dimension

2c1(A) + 2(g — l) + 2k + 2 dimH + dimS. (0.17)

Moreover, E5 —> Q’1(ES) is a smooth bundle with Q|g_1(Es)

Proof. This proof is similar to the proof of Pr0position 3.4 in [LT]. By shrinking V

and W if necessary, we can assume that for any (t, S) E W x V, Lemma 5.0.36 holds.

We first show that there exists an co > 0 such that the subset

{ 0,5,5) 6 131"" | 7Ts ‘1’(t.fi,€) = 0, lléllle < 60} (0-18)

is smooth of dimension dim(S) + 2c1(A) + 2(g — 1) + 2k + 2l + dimH.

Let Vf’: 1/2 (J); — JgVJp) and r is the parallel translation with respect to V".

Define a map ‘1' : L11? —> If(/\°'1(TX)) by \Il(t,fi,€) = rQ( expf,(£),fl). Then the

linearization of \II at (t, S, 0) is [10.5) as in (0.2). Now, consider the following expansion

\p(t1161€) : $611810) + L(t,3)(€) + H(t,fl)(£)

where H(t.fi) is the higher order term satisfying ||H(t,o)(§)||p S Clléllmlllélllp for some

uniform constant c; this constant may depend on Jp, but we can still assume it is

uniform on S by. shrinking V, if necessary. It also follows from the Sobolev Embedding

Theorem that

||H(I,A)(€)llp S Clléllie (0-19)
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Let Ep be the bundle induced by P over W x V with fibers Pom = Pf, and define

a map

E : L149 x E5 —* LP(/\0’1TX) x Ep by

(t1 181$) 770) —" ( t1 :6) m(ta 1816) + ’70) 43(6))

Then the linearization of E at (t,fl, 0,0) is the map

DE:L1*P()3,, f,TX) x SW.) —» LP(/\3’plf,*TX) x PM given by

(5,770) "* (L(1,A)(§) + 770.43%»

By Lemma 5.0.36, it is an isomorphism with uniformly bounded inverse. Therefore, by

the Inverse Fimction Theorem there exists an co > 0 such that E is a diffeomorphism

from the region

{(trfiréa’lol 6 L1,? X ES l max{ll§ll1.pall770llp} < 60}

onto its image. Furthermore, by Lemma 5.0.36, if [tl and Ila - fill are small, then for

any éo 6 130.3) with ||£o||1,p < so, there is a unique (t, B,€, no) satisfying

E(t,fi,€,770) = 0.5.0.60).

On the other hand, it also follows from (0.19) that ||n||o S c||£||1,p when \Il(t,fi,£) +

no = 0. Therefore, we can conclude that the subset (0.18) is parameterized by W, V,

and some open set of P. Note that by our choice of P and S, dimP—dimS = ind(L¢,o).

The subset (0.18) is thus smooth manifold of dimension ind(Lt,o) + dimW + dimS+

dimV.

Next, we will show that if 6 is sufficiently small and K is sufficiently large, then

Q‘1(ES) is an open subset of the following set

{ (MM) E 131’” l 7rs ‘1’(t,fi,€) = 0, ||€|l1.p < €01 eXPf,E(Zj) 6 H1 } (020)
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where z,- for 1 S j S l is the added marked points and H; for 1 S j S l are local

hypersurfaces given in Step 1. Note that it is a smooth manifold of dimension (0.17).

Let (f,E;{x,-},{zj},fi) in Q‘1(ES). Denote by t the corresponding point

(f3;{e,-},{z,-} in W. Since d(f, f) g 5, there is some 5 in ma, f,*TX) with

f = expftfi. It follows from Lemma 3.12 in [LT] that “fill”, < so. This implies

that Q‘1(E5) is an open set of (0.20) and thus Q‘1(E5) is a smooth manifold of

dimension (0.17).

Finally, it follows from the smooth dependence of solutions of rrSQ(f, fl) = 0 that

E5 —+ Q‘1(ES) is a smooth bundle with Q|¢_,(Es) smooth. CI

Proof of Proposition 3.0.15 This proof is similar to the proof of Proposition 2.3

1n [LT]. Let <1, z?’ ,,(X, A) x H, —» E. be the generalized Fredholm orbifold induced
9,

by the Kiihler structure (wt, Jt, gt). We define

H={(t,a) I (16H; }.

Similarly as in Chapter 3, we then define a generalized bundle E over 77:”, (X, A) x H

and consider

\II: ?,(X,A) xH—>E definedby

((ffl. {173), 0.01)) -+ df + Ja(t) dfj

where Ja(t) is the almost complex structure on X defines by J, and a E H; as in

(0.5). By definitions, we have \IllfJg.IAX’21)ch = Q. Since all Q,‘1(0) are compact,

it follows from the same argument as above that Q: .7:k(X, A) x H —> E is a

generalized Fredholm orbifold bundle. Moreover,\II gives homotopy between Qo and

Q1 as generalized Fredholm orbifold bundles. Now, this proposition follows from
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Theorem 1.2 in [LT]. D

The following lemma gives two facts about the setup used by Li and Tian which

are used in the course of several proofs in [LT].

Lemma 5.0.38 Let s : B —> E be a generalized Fredholm orbifold bundle.

(a) pr : B —-> V be a continuous map and K be a cycle in V with PD( [K]) = '7

Then 3’ : p‘1(K) —i E’ is also a generalized Fredholm orbifold bundle, where

I _ I _

s — SIP-1m andE — Elp-lm' Moreover,

i.e(s' :p—1(K) —» E’) = c(s : B —* E) 01917)

where i :p'1(K) H B.

(b) If s’ : B’ —+ E’ is a generalized Fredholm orbifold bundle with a continuous

onto map 7r : B —-> B’ and an injective bundle map r : rr'E’ —-> E such that

s‘1(0) = (1r‘s’)'1(0), then

e(s:B—-+E)=e(s':B'—>E')

Proof of Proposition 3.0.19 Let Q: .7"k(,X A) —> E be a generalized Hedholm

orbifold bundle as in (0.3) and a). 6 H2(X; Z). Choose a cycle K which represents

a Poincaré dual of a. Then by Lemma 5.0.38a, [J\/l;f,,(X,A)]Vir fl ev;(ak) can be

regarded as a class in H.(ev;1(K); Q), where evk is the evaluation map of the k—th

marked points.

On the other hand, there is a continuous surjective map

7r : ev—1(K) —+ _g,k_1(X, A) x H
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which forgets the k-th marked points. 7r satiefies the condition of Lemma 5.0.38b and

hence we have

e. (was, A)]"” 0 ev;(ae)) = [Mane AW”-

That implies Pr0position 3.0.19 since 7r is a finite branched covering of order ak(A).

D

Proof of Proposition 3.0.20

(a) For III, as in (0.9), the set \II{1(0) is compact for all 0 S t S l by assumption.

Hence, the arguments used in the proof of Proposition 3.0.14 show that for each

OStS 1 thebundle

E1 EB E; —> f9,,k,+1(X,A1) x P9,,k2+1(X,A1) x H

with a section Q, is a generalized fiedholm orbifold bundle. Denote by

)]virvir

[Mt] = [Mllnh+1>.(eake+1)(x, A11 A21 ’

the corresponding virtual moduli cycle. As in the proof of Proposition 3.0.15, it also

follows that

[MIIVir = [Mor’ir = [MimeA101” e [Meo,ke+1(X,A2)IVir (0.21)

as homology classes in H. (P9,,k,+1(X, Al) x Tm,k,+1(X, A1);Q) . Note that

[M9,,k,+1(X, A2)]Vir is the cycle which defines ordinary GW-invariants.

On the other hand, there is a natural map

p:?91,k1+1(X1A1) X ?gg,k2+1(X1 A1) X H -+ X X X

defined by(lf1,21;{$1}lIlf2,22;{yj}lea)—* (f1(1‘k1+1),f2(311)) Thereis also a sur-

jective map rr : U p‘1(A) —> st’1(Im 0) obtained by identifying xk,“ and y], where
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the union is over all decompositions of (A, g, k), A is the diagonal in X x X, a is the

gluing map in (0.8), and 3t is the stabilization map on itk((X A))x ’H. It follows

from Lemma 5.0.38a that the classes

vir vir

Z [Mal.k1+1),(92,k2+1)(x’ Al’ A2’ t)] and [M:k(X’ A)] 0 PD(”)

can be regarded as a class in H.(U p‘1(A); Q) and H.(st‘1(1ma); Q), respectively.

Moreover, by Lemma 5.0.38b we have

[M:k(X, A)]m fl PD(a)

vir . t

= 7'“I (Z [Mg1,k1+l),(92,k2+1)(X’ A1, A2, 1)] Fl(e'vk1+1H1 A 8le7 )) (0.22)

where evk,“ and em are evaluation maps of 1:le and y1, respectively. Combining

(0.21) and (0.22), we have

[M2,(x, A)]Vir n PD(a)

= 1r. 2 ([M;,k1+l(xa 141)] Vll‘ ® [Mgg,k2+1(X, A2)]Vir) fl (BU;1+1H.’ /\ BUIH7)

= 7r. z ( [M3,k1+1(X, [41)]V1r n evzl+1H7) ® ( [M92.k2+1(X, A2)]Vir n evlH7).

That implies the first Composition Law.

(b) Similarly, we have an evaluation map of last two marked points

1) I ~1.9.1,]¢+2()(,A) X H -> X X X

([f, 2; {all ,a) -* (f(:vk+1), f(:vk+2) ).

There is also a surjective map 1r : p‘1(A) —+ st‘1(Im6l). It also follows from

Lemma 5.0.38 that

[Mgk(x, A)]Vir 0 190(9) = 7r. 5: ([My_,,k+,(x,)A)]Vlr n (ev;+,H /\ evg+2m )) .

That implies the second Composition Law. [3
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CHAPTER 6

The Invariants of E(n) — Outline

Let 7r : E(n) ——> P1 be a standard elliptic surface with a section 3 of self-intersection

number —n. Denote by S and F the homology class of the section and the fiber.

We will compute family GW-invariants for the class S + dF with 2139 = 2(n — 1)

dimensional parameter space 71,. defined as in (0.4). These invariants GWit; (3 + dF)

are unchanged under deformations of Kahler structure. For convenience we assemble

these into the generating fimction

F(t) = Z GWg}; (s + dF) td. (0.1)

ago

In the this and the following four Chapters we will calculate the invariants

Gng; (S + (1F) by deriving the formula for F(t) stated in Theorem 0.3. Thus our

aim it to prove:

PrOposition 6.0.39 For n _>_ 1,

F(t) = H(l—:—i§)l2n (0.2)

dZO

As mentioned in the introduction, the cases n = 1, 2 have been proven by Bryan-

Leung and Ionel-Parker.

This Chapter shows how Proposition 6.0.39 follows from two formulas, equations

(0.4) and (0.5) below, that are proved in later Chapters. Our proof parallels the proof
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of Ionel and Parker [IP3] with two changes. First, we replace the use of the 7' class by

1/) class; that makes the argument conceptually a bit easier. Second, we must extend

the TRR formula and the Symplectic gluing formula of [IP3] to family invariants.

Here is the outline the proof of (0.2). Let G(t) be the generating fimction for the

function for the sum of divisors flmction 0(n) = Zdln:

d dtd
G(t) = 2m” = :14,

dZO dZO

 

Following [IP3] we also consider the generating fimction for a genus 1 invariant,

namely

Hm = ZGWff." (3+ dF) (¢(1.4>;4;F‘>t“ (03)
(120

where 10(9),)”- denotes the first Chem class of the line bundle L(g,k);,- -—» My). whose

geometric fiber over (0; 3:1, - - - ,xn) is TgiC'.

We can compute H(t) in two different ways. In Chapter 7, we show how to combine

the composition law together with the relation between 2p class and the divisors in

Ill—1,4 to obtain the formula

H(t) = $tF’(t) — le-F(t) + (2 — n)F(t)G(t) (0.4)

Then, in Chapters 8—11 we develop a family version of the Gluing Theorem in [IP3]

to obtain the sum formula

H(t) = —112-F(t) + 2F(t)G(t) (0.5)

(see Proposition 11.0.62). Equations (0.4) and (0.5) give rise to the ODE with

tF’(t) = 12nG(t)F(t) (0.6)
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and we show in Proposition 8.0.47 that the initial condition is F(O) = 1. It is well-

known that the solution of this ODE is given by

F(t)=H(1_ltd)l2n.

ago

 

That completes the proof of Proposition 6.0.39 and hence of the main Theorem 0.3

of the introduction.
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CHAPTER 7

The Topological Recursion

Relation (TRR)

A pinched torus can be regarded as a two-sphere with two points identified. Conse-

quently, maps from a pinched torus are a special class of maps from the two-sphere.

That observation allows one to express certain g = 1 GW invariants in terms of g = 0

invariants, and more generally express certain genus g invariants in terms of genus g

invariants. Such formulas are called t0pological recursion relations or TRR formulas.

In this Chapter we will prove formula (0.4), which is a TRR formula for the family

CW invariants.

We begin by recalling the notion of the dual graph associated with a stable curve.

Given a stable genus 9 curve with n marked points (C; 33,-, - -- ,mk), its dual graph

is defined as follows. Let 7r : C —+ C be the normalization of C. The dual graph

G has one vertex for each component of C, and the edges of G correspond to nodal

points of C; if two points on C maps to a node, then the edge, corresponding to that

node, are attached to the vertices associated to the components of C on which the

two points lie. The legs (half-edge) of G correspond to marked points of C, and these

are indexed in an obvious way.
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We denote by M(G) the moduli space of all genus g curves with n marked points

whose dual graph is C. We also denote by 60 the orbifold fimdamental class ofm,

that is, the fundamental class divided by the order of the automorphisms of a general

element of M(G). Graphs with one edge correspond to degree two classes. There

are two types of such graphs. One is the graph G," with one vertex of genus g -— l.

The other types are the graphs G0,], which have two vertices, one of genus a, with

attached the legs indexed by I, and one of genus g —- a, with attached the legs indexed

by {1,--- ,k}\I.

For any 2' E {l,--- ,k}, we have

¢(1,k);i = $50.... + 213500,, in H2(—M1,k;Q)- (0-1)

”:22

For the proof of (0.1), see [AC] and [G].

Proposition 7.0.40 The generating function (0.3) satisfies

H(t) = étF’U) — 112.51» + (2 — n)F(t)G(t)

Proof. It follows from (0.1) that the coefficients GWfiflS + dF)(’l/J(1,4);4; F4) of H(t)

is

GW,,;(S + dF)(6G,,,; F4) + Z GWI’jE,"(S + dF)(6GO.,; F4). (0.2)

i6!

l1l_>.2

i
12

We will apply the first Composition Law to 0W3," (S+ dF)(6Go,,; F4) and the Second

. F4).

irr ’
composition Law to 0W3," (S + dF)(6G

Recalling Proposition 3.0.20, the only possible decompositions of the class S+ dF,

which can appear when we apply the first Composition Law, are S + le and d2F

with d1 + (12 = d. It then follows from a dimension count and the first composition
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law that

ij;(s + dF)(6Go.,; F4)

2 ZGWJI';I+1(S+le)(F”',H.)GWI,5_m(d2F)(F4—'”,H"). (0.3)
di+d2=d '7

where {H,} and {H7 } are bases of H* (E(n)) dual by the intersection form. It also

follows from Proposition 3.0.19 that, if I = {1, - .. ,4}, then (0.3) becomes

2 2(H, . (s + W» (H7 . sz)GWg:,n(s + M) GW1,o(d2F)

dl+d2=d ’7

(12 >0

+ 201, (S + dF))GW,3*‘,,n(S + dF)GW1,1(0)(H") (0.4)

Otherwise, (0.3) vanishes. Since 27(H7A)(HVB) = AB and kGW1,o(kF) = (2 —

n)a(k) (see [IP1]), the first sum in (0.4) becomes (2 — n) 2,21 GWJI,"(S + (d —

k)F) 0(k). On the other hand, GW1,1(0)(H") = 5%(KH7) ( see [IP3]), where K =

(n — 2)F is the canonical class. This implies that the second sum in (0.4) becomes

n — 2

—2—4— W3}; (S + dF). In summary, we have

2GW$¥2<S+ dF)(6a..,;F4)

iEI

UL).2

(2 n)W513+ (d— k)F)a(k)+ Egg-cwmsmp) (0.5)

k>1

Note that PD(Im(0)) = 260," where 0 : Ho’s -> _MM as in (0.10). It then follows

from the second Composition Law and Pr0position 3.0.19 that

wafgw + dF)(6G,"; F4)-— 1:Gngn(s + dF)(F4, H,, H”)

=21:(H,(s + dF)) (m(s + dF)) GWij,"(S + dF)(F4)

2d: ”a

The proof follows from (0.2), (0.5), (0.6) and the definition of F(t) and H(t)
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CHAPTER 8

Ruan-Tian Invariants of E(n)

Instead of constructing virtual moduli cycle directly from the moduli space of stable

J-holomorphic maps, Ruan and Tian [RT1, RT2] perturbed the equation (0.6) to

51f = V where the inhomogeneous term V can be chosen generically. For generic

(J, V), the moduli space of stable (J, V)-holomorphic maps is then a compact smooth

orbifold with all lower strata having codimension at least two. Ruan and Tian defined

GW-invariants from this (perturbed) moduli space.

We can follow as similar procedure for the family invariants by introducing an

inhomogeneous term into the (J, a)-holomorphic equation and vary (J, u) and corre-

sponding parameter space H. In taking that approach, we immediately face two main

problems: compactness and the dimension of lower strata. In general, it is difficult to

show the compactness of a perturbed moduli space, even if M is small and the moduli

space without perturbation is compact. It is also difficult to determine the dimension

of lower strata which contain bubble components. However, for the moduli space of

perturbed (J, a)-holomorphic maps representing a homology class S + dF in E(n)

with fixed complex structure J, the moduli space of (J, a)-holomorphic maps with

generic perturbation is still compact and the image of lower strata under stabilization

and evaluation map is contained in a set of codimension at least two. Therefore, we

can define invariants from the moduli space with fixed Kahler structure and generic
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perturbation in the same way as for ordinary GW-invariants. This alternative defin-

ition of invariants is more geometric. In particular, using this definition of invariants

we can follow the analytic arguments of Ionel and Parker in [IP2, 1P3] to show sum

formula (0.5) for the case at hand: the class S + dF in E(n).

To simplify notation in this Chapter we will set X = E(n) and A = S + dF.

The construction of invariants starts from the perturbed equation 51f = V. Using

Prym structures defined as in [L], we can lift Deligne-Mumford space WM to a finite

cover

pl! I Vigil, —’ Hg’k. (0.1)

This finite cover is now a smooth manifold and has a universal family

71’" Z 17:”: "" Hg’k

which is projective. Moreover, for each I) 6 H3,“ 7r;1(b) is a stable curve isomorphic

to p,,(b).

We fix, once and for all, an embedding of a; into some I?” . An inhomogeneous

term 11 is then defined as a section of the bundle Hom(7rf(TlPN),7r;TX) which is

anti-J-linear :

V(jp(v)) = —J(V(v)) for any 1) E TlP’N (0.2)

where jp is the complex structure on P” .

For each stable map f : 2 —-> X, we can specify one element j E p;1(st(2)). Then

7r;1(j) is isomorphic to the stable curve st(2). In this way, we can define a map

4) : z: _. 52(2) :2 7r;1(b) c: 1.7;, e» P”. (0.3)

Definition 8.0.41 A stable (J, V, a)-holom01phic map is a stable map f : (2, (b) —-» X

satisfying

(df + ‘10de!) )(P) = Va(¢(P). f(17))
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where (15 is defined as in (0.3), and Va = (I + JKa)_ll/. Cl

Two stable (J, u, a)-holomorphic maps (f, (¢,E);$1,--- ,xk) and

(f', (¢',2');$'1,- -- ,xjc) are equivalent if

dams), ¢'(2’))) + dH(f(E), f’(2’)) + Zd(f(m.-), m2» = 0

where dH is the Hausdorff distance. We then define the moduli space

M9.k(Xi A, V7 Hi (1')

as the set ofall pairs ([f, (¢, 2);:121, . - . ,xk],a) , where a E H and [f, (q), 2); 2:1, - -- ,xk]

is the equivalence class of (J, V, a)-holomorphic maps with [f(2)] = A E H2(X; Z).

We denote by Mg,k(X, A, u,’H,p) the set of ([f, ((15, 2); $1, - -- ,xk], a) with a smooth

domain 2. We will often abuse notation by writing (f, j, a) or simply (f, or), instead

Of (f, (¢’2)3 Cx).

There is a stratification of Mg”. parameterized by the automorphism group of

Riemann surfaces MM = 2,, T2,, where each strata T3,, is smooth and consists of

the Riemann surfaces with a fixed automorphism group n. We can also assume that

M5,]. = XT53;
K

where T5,): = p;l(T;k) is smooth. Let Mg,k(X, A, 11,7141); consist of all (f, j, a)

with j in T51, where I denote the trivial automorphism group.

Consider the following stabilization and evaluation maps

st" X en“ : Mg,k(X, A, 1471,11); —+ Rik x X". (0.4)

Its Hontier is defined to be the set

{7' 6 fig, x xk | 7' =lim(st“ x ev")(f,,, a.)

and (fn, an) has no convergent subsequences }.
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We denote by yo the space of all V with |V|°° is sufficiently small. Now, we are

ready to state ”Structure Theorem” for the moduli space.

Theorem 8.0.42 (Structure Theorem) For generic V 6 yo,

(a) Mg,k(X, A, V,H,[.t)1 is an oriented smooth manifold of dimension

—2 KA + 2(g — 1) + 2k + dim(H) = 2(g + k) (0.5)

(b) the Frontier of the smooth map

st" x ev" : M9,).(X, A, V,'H,p)1 —> 17;), x X’c

lies in dimension 2 less that 2(g + k).

Proof. This proof is similar to the proof of Proposition 2.3 in [RT]. We will sketch

proof, without specifying Sobolev norms.

(a) For each ’6, define

W = U Map..(>3.,X) x {j}

jag)?

where MapA(Eg,X) = {f : 29 —+ X ] f.[29] = A}. Consider the vector bundle

8M“ —* Xp’n X H X yo

whose fiber over (f, j, a, V) is 522’), (f*TX). Obviously, the (J, V, a)-holomorphic equa-

tion defines a section (D of 8"” by

<I>(f,j,oz,V) = df + Jadfj — Va.

The differential D<I> of (I) at (f, j, a, V) is then an elliptic operator

D<I> : o°(f*TX) 39 7:35;; ea TQH s HomJ(TlPN, TX) —. {23,14f*TX)
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given by

02a. w, v) = 14(5) + Jadf k + aw) — A-lv where (0.6)

L,(g) = V5 + JaVEj + % (v.1...) (dfj + Jadf) — (7.12,,

L(1JK,3J., + JaA-lmp) dfj,

{7

(A

m—é-(v JMVJ), andA= (I+JKa)

Consider the universal moduli space

Liam) = {(f,j.a.V) 6 x97." x H x we I <I>(f 2a v) =0}

At any (f, j, a, V) E Ll;,;‘(X, A), the differential Dd) is surjective because of the term

A’lv. This implies that the universal moduli space is smooth.

Let 7r : u;,;‘(X, A) —2 yo be the projection. Its difierential at (f, j, a, V)

”1771’:(X, A) ——+ T37“,

is just the projection (5, k, 6, v) —-> o. It then follows that the kernel of d7r is isomor-

phic to the kernel of Lf 63 Jadf EB La. Moreover, its image consists of all 1) with

A‘lv E Im(Lf EB Jadf EB La).

Note that Lf EB Jadf EB L, is Piedholm, and hence Im(dvr) is a closed subspace of T370.

On the other hand, the map

p: T370 -» 93,14f‘X) /Im(L, ea Jadf ea La) defined by v —. 21-12;

is onto since D<I> is onto. Therefore, dim(Coker(Lf EB Jadf GB La)) = dim(Tyo /

Ker(p)) = dim(Coker(d1r)) and hence d7rlS Fredholm of the same index as the index

of (Lf EB Jadf EB La).

Applying Sard—Smale Theorem, we can conclude that for generic V 6 yo, the

moduli space

7r‘1(V) = M9,),(X, A, V, Hm)”
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is a smooth manifold. The dimension formula follows from the Index Theorem.

For generic (J, V), the tangent space Tf’j,aMg,k-(X, A, V, H, #)n = Ker(Lf 6 Jadf 6

La), so we have

det (Tf,j’aMg’k(X, A, V, H, u),,) = det(Lf 6 Jadf 6 La)

On the other hand, there is a decomposition Lf = Lf“ + Z, where L?“ is Ja-linear

and Z is the zero order term. It follows that det(Lf 6 Jadf 6 L0,) is isomorphic

to det(L}° 6 Jadf 6 La). Since both kernel and cokemel of Lf" 6 Jadf 6 La are

complex vector spaces, there is a canonical non-vanishing section of det(L}°' 6 Jadf 6

La). Therefore, there is a nonvanishing section of det(Lf 6 Jadf 6 La) which orients

Mg,k(X, A, V,H,p),,. D

(b) This proof consists of 5 steps. In step 1, we show that the stabilization and

evaluation map as in (0.4) extends continuously to the moduli space of stable maps.

That follows from the compactness. In step 2, we show all possible homology classes,

which can be represented by the components of stable maps. In step 3, we reduce

the moduli space. The resulting reduced moduli space will have the same image as

that of the moduli space under the stabilization and evaluation maps. In step 4, we

stratify the reduced moduli space. The Frontier is then contained in the image of

all lower strata. In the final step, we show that each image of the lower strata is

contained dimension 2 less than 2(g + k).

Step 1 There are well-defined stabilization and evaluation map

st“ x ev" :VQJJX, A, V,H,H) —-> 7W; X Xk (0.7)

where we still use the same notation for the map as in (0.4), without further confusion.

It follows from Gromove Compactness Theorem, Theorem 3.0.18, and the following

lemma that (0.7) extends (0.4) continuously.
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Lemma 8.0.43 There exit uniform constants E0 and N such that for any (f, 2, a) E

Hg,k(Xa A: V371)

l

E(f)=§/ Idflsto and HaIIsN.
2

Proof. Similarly to Corollary 1.0.7, we have

_ 2 - ’a — V .AIM —/Ef +2/2(31f. > (08)

(1 + (amrw do = %(1 — |a|2)|df|2 do — 4(5)f, u) do + 4M” do (0.9)

Note that f represent homology class A = S + dF which is of type (1,1) with respect

to the complex structure J. Therefore, it follows from (0.8) and Pr0position 1.0.6a

g f |de2 s M) + 2 (I. ldfl2)% ([2 Iul2)%

We then have a uniform energy bound by using the inequality 2ab S s a2 + 5'1 b2 on

that

the last term and absorbing the [de term on the left-hand side.

Next, we will show uniform bound of Hall. This proof is similar to those of

Lemma 4.0.24 except for using (0.9) instead of Corollary 1.0.7b. Let 1r : X —> (IF1

be the elliptic structure for J on X and N(a), m(J), and N be as in the proof of

Lemma 4.0.24. If there is a holomorphic fiber F C X \ N(a) such that

(i) f is transversal to F,

(ii) at each p E f’1(F), f is transversal to a holomorphic disk DMD) normal to F

at f(p), and

(iii) 4|de IVI + 4|V|2 S %|de2 on f‘1(F)

then the proof follows exactly as in the proof of Lemma 4.0.24. We can clearly find

fibers satisfying (i) and (ii), so we need only verify that we can also obtain (iii). For

that we consider the set 20 of all points in 23 where 4|de |V| + 4|V|2 > % [de2. Then
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|df|2 g 16|V| on 20, since both Ide and [Vloo are less than 1. Therefore

|d1rodf|2 g 16Area(st()3))|d7r goluloo (0.10)

20

We can thus assume that (0.10) S §Area(CP1) for sufficiently small |V|°°. On the

other hand, from the definition of N(a), we can also assume that Area(1r(N(a)) ) S

§Area(CP1). Therefore, we can always choose a holomorphic fiber F = 7r‘1(q) as in

the above claim with q 6 (CF1 \ ( 7r(N(a)) U 7r 0 f(20) ). El

Step 2 Let (f, E) be a stable map. A stable bubble component which maps to a

point by f is called ghost bubble. Now, we reduce the moduli space as follows : for a

stable (J, V, a) holomorphic map,

(i) we collapse all ghost bubbles,

(ii) we replace each multiple map from a bubble by its reduced map

(iii) we identify those bubble components which have the same image.

Denote by MAX, A, V, H, p) the quotient of RELAX, A, V, H, p) by this reduction.

We define the topology on it as the quotient topology.

The reduced moduli space is still compact. On the other hand, the map (0.7)

descends to the reduced moduli space and by definition the image of reduced moduli

space is same as that of stable moduli space under stabilization and evaluation maps.

Step 3 Let (f, 2, a) e E,,(X, A, 1471,11) with 23 = 11,23. and [f,-(2.)) = 21,-. The

following lemma shows all possible homologt classes for A,.

Lemma 8.0.44 If [Vloo is sufliciently small, then A.- is one of the following homology

classes

S, S + le, d2F With 0 < d1,d2 S d. (0.11)

and each bubble component 2,- represents either S or dgF.
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Proof. Suppose not. Then there exits a sequence of (J, an, Vn)-holomorphic maps

(fn, 2,.) and a homology class C which is not one of classes in (0.11) such that (i)

Vn —+ 0 as n —2 00, (ii) for each n, there is some component En, with [fm(2n,)] = C.

By Lemma 8.0.43 and Gromov Convergence Theorem, we may assume that Jan —» Jan

uniformly for some a0 6 H and fa converges to f0, where f0 is (J, ao)-holomorphic

and f0 represent the class S + dF. Since S + dF is of type (1,1) and do is closed

J-anti invariant 2-form, do = 0. This implies that the homology classes C and

D = S + dF — C are both represented by holomorphic map with possibly reducible

domain.

Note that C - F is either 0 or 1. Assume C - F = 0. Then C = d3F with d3 > d

by the assumption on C and D = S + (d — d3)F. Let (f1), ED) be the holomorphic

map representing homology class D. Then for some component ED, , the restriction

map f1).- represent a homology class S — d4F with d4 > 0. This is impossible since

(S — d4F) - S < 0 and ED, is irreducible. Similarly, we also have the contradiction

when C - F = 1.

When 2.- is a bubble component, V vanishes on 2,- and hence f.- is holomorphic.

Therefore, A,- cannot be S + d2F since 2,- is irreducible. [II

Step 4 In this step, we stratify the reduced moduli space. For each (f, a) E

—r

Mg,k(X, A, V,H, u), the normalization of the domain of the map f, without spec-

ified complex structure, is a disjoint union of smooth Riemann surfaces

2=P1U---UPnUB1U---Bm (0.12)

where B,- is the bubble component. We will call R a principal component.

Each component of 2 has points corresponding to the marked points of the do-

main, which we also call marked points. Each component also have points corre-

sponding to the singular points of the domain. We call these points intersection
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points. Together with the normalization map, the intersection points carries the in-

tersection data of the domain. Each component is also associated to a homology class

in H2(X; Z), which we denote by [P.-] and [8;].

Note that [13,-] is one of the class in (0.11) and [BI] is either 3 or f by definition

of reduction. Moreover, if some [8;] = f, then the image of the restriction map

lez is some nodal fiber F} and oz 6 { fl 6 H I F; C Z(fi) } by Lemma 2.0.12.

Similarly, if some [8;] = s, then the image of the restriction map fla, is a section S

and a = 0 by Lemma 2.0.12. In this way, the set of bubble components determines

a subspace H3 C H. If there is no bubble component, we simply set H3 = H. Since

there’s no fixed component in the complete linear system [KI of a canonical divisor,

Lemma 2.0.11 implies that this subspace HB has at least 2 real codimension whenever

it is proper.

We denote by DV(f, a) the set of following four data, (i) E with marked points, (ii)

the intersection points with intersection data, (iii) the set of homology classes each

of which is associated to a component of E, and (iv) the subspace H3 determined

by bubble components. Let 1),, be the set of all Du(f, a)’s. It then follows from the

uniform energy bound and Lemma 8.0.44 that D” is finite.

Fix D 6 ’13., such that ED has more than one component. If ED has just one

component, proof follows from proof of (a) above. Let g,-, IQ, and d,-, be the genus of

P,-, the number of marked points on P,-, and the number of intersection points on P,-

with principal components, respectively. Similarly, let k‘ be the number of marked

points on 8;. Note that k' might be 2 by reduction. Let it = (n1, - - - , mp), where It,-

is an automorphism group of some j E 791.9%..de and p is the number of principal

component. We will use (D, R) to label each stratum of the reduced moduli space.

We denote by

M(D, Ft) c MAX, A, u, H, ,1)

64



the stratum labeled by (D, R).

Step 5 Finally, we will show that the image of each strata is contained dimension 2

less than 2(g + 1:). Consider the universal moduli space

“0,75 = {( (f11j1)1' ' ° ,(fmjnlaV1a)}

Where dfi + Jadfiji = Vi With ji 6 Tgi’:‘+d£a Vi = leia a E HUB: and ldfi] 2 [Bl we

have an evaluation map

6110,, 2110;, —> Xd

which records the image of intersection points, where d = 2 d;. We denote by ADP

the multi-diagonal in X‘1, which is determined by the intersection pattern of principal

components.

Now, the inhomogeneous term V ensure that 110,-, is smooth and e120,, is transversal

to App. Therefore, um. fl ev5;(ADP) is smooth. Finally, the natural projection

7r 2 Up"? n evBL(ADP) —’ yo

is Fredholm. By Sard-Smale Theorem, we can then conclude that for generic V, the

moduli space

M(Dp, V, HDB, K.) = 7r‘1(V)

is smooth. Its dimension is obtained from the routine count and is less than or equal

to

29 + 2Z k.- + 2 — 2p — codim(7‘iDB) if H0, 75 {0} (0.13)

29 + 2Z k,- — 2 if Hp, = {0} (0.14)

where p is the number of principal component. Note that 2 — 2p — codim(HDB) S —2

since ED has more than one component.
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Recall that for each bubble component B), the homology class [8,] is either 3 or

f. We identify each B, with a section S or nodal fiber F according to [3;], and then

fix, once and for all, a holomorphic map h; : (CP,1 —» B; C X. Let b is the number of

bubble components and set

8(1),.) = («JPN x --~(CP§)"".

Clearly, it is smooth of dimension 2 Z: k‘.

Let k1 = 2k,- and k2 = Zk‘. Note that 1171 + k2 = k. Each element (j1,--- ,jp)

determines an element in 7W“, by gluing intersection points by intersection data.

Obviously, we have an evaluation map which records In marked points on principal

components. We also have an obvious map from 8(DB) into Xk“ by hl’s. Combing

those three maps to obtain a continuous map

6 x evp x hB : M(Dp,V,HDB,It) x 8(DB) —+ Rik x X"

It then follows that its image Im(6’ X 611;: x hB) lies in dimension 2(g + k) — 2.

Now, it remains to show the following :

st“ x eo"(M(D, 173)) C Im(6 x evp x hB) (0.15)

There is a decomposition of the evaluation map ev" on M(D, F.) as ea” = eo‘I‘, x evg,

where eoflevg) records marked points on principal(bubble) components. Note that

Im(ev’g) C Im(hB) since for all (f,2,a) E M(D,Ft), the image of bubbles are all

881116.

On the other hand, for each (f, 2,01) 6 M(D, R), if we forget all bubbles, then we

obtain an element (fp, 2;», a) in M(Dp, V, HDB , It). In this way, we can define a map

1rp : M(D,Fc) ——> M(Dp, V, HDmn)
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Then (0 x evp) 0 HP = st“ x e127,. Together with Im(ev’g) C Im(hB), this implies

(0.15). [:1

Now, we are ready to define invariant. Instead of using intersection theory as in

[RT] , we will follow the approach in [1P2]. The above Structure Theorem implies

that

Fr( st" x eo") C st" x ev" MAX, A, V,H,/1.) \Mg,k(X, A, V,H,p)1)

In particular, the Frontier lies in dimension 2(g + k) — 2. It then follows Proposition

4.2 of [KM] that the image

Sty X 6’1)” (Mg,k(X1A1V1H1#)I)

give rise to a rational homology class. We denote it by

[Hg,k(XaA1V1H1/1)l E H*(m:,kiQ) ® H*(Xk;Q)' (0'16)

Definition 8.0.45 For 2g + k 2 3, fl 6 H‘(_J\79,k;Q), and a1, - -- ,ak E H‘(X";Q),

we define invariants by

(pg,k(X1A1H)(fl;ala°” yak) = (IB®(al AmAak)) n [mg,k(X1A1V1H1/J)]

1

Au

where A” is the order of the finite cover in (0.1).

By repeating the arguments used in [RT] for the ordinary GW—invariants, we

can prove that these invariants <I>g,k(X, A, H) are independent of the inhomogeneous

term V, the finite cover pp, and the projective embedding UL, H P”. Alternatively,

we can simply observe that those three facts emerge as corollaries of the following

proposition.
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Proposition 8.0.46 <I>g,k(X, A,H) = GW:,,(X, A)

Proof. As in Chapter 3, we define fg’,,(X,A,/1) to be the set of all equivalence

classes of the stable maps of the form ( f, ()3, 05) ), where 43 is defined as in (0.3); two

stable maps ( f, (2, 45)) and ( f’, (2’, ((3’)) are equivalent if there is a marked points

preserving biholomorphic map a : 2 ——> 2’ such that f = f’ o a and (b = ¢’ 0 a. Note

that FLAX, A, p) is a finite cover of T-j,’k(X, A). Similarly, we define a generalized

bundle E'" over H,,,(X, A, n) x ’H and a section <1»: by ( f, (2, d),a) -. df + Jadf j.

It follows from Lemma 8.0.43 that the zero set of (1)6 is compact. Therefore, by

Proposition 3.0.14 there is a virtual moduli cycle which satisfying

mlMZuX. A. 11)] = Aelequ. A. )1 (0.17)

where 7r : fiAX, A, p.) —-> g’k(X, A) and A” is the order of p,,.

Now, fix a generic V as in Theorem 8.0.42. It follows from Proposition 3.0.15 and

Lemma 8.0.43 that we still have the same moduli cycle as in (0.17) when we change

the section <I>“ by adding —V. We still use the same notation <1)“ for this new section.

Note that

U1 = M(X. A, 11,71, II)! C (Ml—1(0)

It follows from the proof of Proposition 3.0.14 that U, is one of the open sets of the

finite cover of (<I>")’1(0) as in Definition 5.0.28.

Let n = dim(-NI“,c x X") and d = 2(g + k) = dim(M(X, A, V,H,/1.)] ). Since the

Frontier of st“ x ev" lies in dimension d — 2, there is an arbitrary small neighborhood

V of Fr(st" x ev") such that every homology class in H,,..AW/IZ,‘ x Xk;Q) has a

representative disjoint from 7.

We can assume that for any open set U, in the finite cover of (4)”)‘1(0) as above

with U,- aé U), the intersection U,- n U, lies in (st“ x ev“)‘1 (M5,, x X" \7). It then
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follows from the proof of Theorem 1.2 in [LT] that the cycle Z which represents the

virtual moduli cycle satisfies

st" x ev“(Z) fl (WA—L, x X'c \V) 2 st” x ev"(U1) fl (fig,c x X"\V)

This implies that

(st“ x ev").[M;f,'; (X, A, u)] = {7179,}.(X, A, V,H, u)]

Therefore, by Definition 8.0.45 and (0.17) we can conclude that two invariants are

same. 1:]

In the below, we will not distinguish two invariants and use the same notation

0W3? (X, A) for them. The following proposition shows F(0) = 1 which provides

the initial condition for (0.6).

Pr0position 8.0.47 GWJS‘ (X, S)(F3) = 1.

Proof. Fix V = 0. Since the section class S is of type (1, 1), Theorem 2.0.12 implies

that for any (J, a)-holomorphic map (f, a) with [f] = S, f is holomorphic and a = 0.

In fact, there is a unique such f since 82 = —n. Now, consider the linearization as

in (0.6). Propositions A.63 and A64 of the appendix show, quite generally, that Lf

is a 51 operator and Lo defines a map

L0 2 H —* Coker(Lf)

which is injective if and only if the family moduli space ”SAX, A) is compact. But

we just showed the moduli space is a single point, and hence compact.

On the other hand, Ker(Lf) is same as the Dolbeault cohomology group

H§(f“TX). It is trivial since c1(f*TX)[S2] = —n + 1 < 0. Therefore,

dim( Coker Lf) = —Index(Lf) = —2(c1(f*TX) + 1) = 2(n — 1)
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Since L0 is injective and dim(H) = 2(n — 1), Lf 6 L0 is onto. That implies V = 0

is generic in the sense of Theorem 8.0.42. Consequently, the invariant is :l:l. In this

case, the sign is determined by Lf and L, is BJ-operator, the invariant is 1. D
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CHAPTER 9

Degeneration of E(n)

Throughout this Chapter, X always denotes the standard elliptic surface E(n) -> (IF1

and Y always denotes T2 x S2 with a product complex structure.

In this Chapter, we construct a degeneration of X into a singular surface which

is a union of X and Y with V = T2 intersection. The sum formula (0.5) will be

then formulated from this degeneration. We also define the parameter space and

inhomogeneous terms corresponding to this degeneration.

We fix a small constant e > 0 and let D(€) C C be a disk of radius 6. Choose

a smooth fiber V in X. We then define p : Z —2 X x D(e) to be the blow-up of

X x D(e) along V x {0} and let

/\:Z—>D(e)

be the composition Z@ > p >> X x D(e) —> D(e), where the second map is the

projection of the second factor. The central fiber Z0 = A‘1(0) is a singular surface

X UV Y and the fiber ZA with A aé 0 is isomorphic to X as a complex surface. Since

Z is a blow-up of a Kahler manifold, it is also Kahler. Denote by (tag, Jz, 92) the

Kahler structure on Z induced from the blow-up. We also denote by (tax, JA, g,\) the

induced Kahler structure on each Z,\ with A 79 0.
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We can describe the Z locally along V C Z as follows : fix a normal neighborhood

N of V in X. It is then a product V x D, where D C C is some disk. Let a: be the

holomorphic coordinate of D. Then, Z is given locally along V C Z as

{(v,:c,A,[lo;ll]) Iv E V, xll = Alo} C N x D2 x (CP1

where [l0; II] are the homogeneous coordinates of S2 = CPI. It is covered by two

patches

U0 = (lo sé 0) and U1 = (ll 51$ 0).

On U0, we set y = l1/ lo. Z is then locally given as

{(v,:1:,y) | v E V} with A(p,:t,y) = my.

Clearly, the fiber Z,\ is given locally by the equation xy = A. Note that we can also

think of y as a holomorphic normal coordinate of the normal neighborhood of V in

Y.

We now decompose Z as a union of three pieces, two ends and a neck. These are

defined as follows : Let Nx(e) (Ny(6)) be the normal neighborhood of V in X (Y)

of the form V x D(e). We then set

Endx = p—1((){\.IVX(¢E))XI)2)flr()(\IVx(tE))XI)2 (0.1)

Endv = Harm/)6 U1 I y’=lo/li, ly’l S 1/6 } 39-5 (Y\Ny(6)) X 02 (02)

U = {(v.$,y)€Uol|$|SZe, lyls26} (03)

where the map (px ((,Oy) is the isomorphism which extends the holomorphic map

(may) -: (11.22.9031) ((v,w.y) -> (v,y.xy))

for (v,a:,y) E U and e S [7:] 3 26(6 3 lg] S 26).

Next, we define the parameter space on Z as follows : choose a bumf fimction

6 on the neck region U which satisfies fl(|x|) = 1 if lit] 2 (3/2)e and E(lxl) = 0 if
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[ar| g e. We then extend fl on the whole Z such that B = l on Endx \ Supp(1 - fl)

and ,6 = 0 on Endy. Let H be the parameter space of X = E(n) defined as in (0.4).

We consider each a E H as a 2-form on X x D(e). Then each p‘a is closed and

Jz-anti-invariant.

Definition 9.0.48 We define the parameter space of the fibration A : Z —-> D(e) by

Hz = {fip‘a|a€H} and H,\ = {ai=a|zA|a€Hz} when A7é0

We can consider X as a Kahler submanifold of Z. It then follows from the above

definition that

Hx={)6a|aEH}={alx|oz€Hz}. (0.4)

Lemma 9.0.49 There erm't uniform constants E0 and N, which does not depend on

A, such that

l

E(f) = 5 f 1de s. E. and Maine s N
E

for any (f,2,a,\) E XII—g,k(ZA,A, V, HA), where |V|oo is sufficiently small and A =

S + dF.

Proof. The proof of the uniform bound of a; is similar to the proof of Lemma 8.0.43.

We define N(aA) as an Open neighborhood of zero set of a) and define m(JA) as in the

proof of Lemma 4.0.24. Since each a; is supported on the Endx, there is a constant

c > 0 such that m(JA) > c for any A. Then, the argument in Lemma 8.0.43 shows

that N = 2/c > 2/m(J,\).

It remains to show the uniform energy bound. Note that a; = Bp‘a for some

a E H. For each p E 2, let {e1(p), e2(p) = je1(p) } be an orthonormal basis of TPE.

We set

2— = { p E 53 | f’p*a(ei(p).ez(p)) < 0}
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Since [5.],[fl2 do = f‘flp‘a+2(51,f, V) du, we have ngnfl S 2|V| on 2-. This implies

-f'P'a(61(P),82(P)) S MldfllVl

where p E E- and M = max{ |p‘a| | ||p*a||2 g N }. Therefore, we can conclude that

1 . .
5 / Idflz s / f (sp a) + / Idf||V| + WM)

2: 2 z:

s - / rpm + j W”!!! + WM)
2- z:

s (1 + M) ([2 WY ((3 ldf|2)% +wz(A)

This implies the uniform energy b01md independent of A. [3

Finally, following [1P2], we define inhomogeneous terms on the fibration A : Z —+

D(e). As in Chapter 8, we fix a finite cover 173*, universal family Hg; over it, and a

projective embedding 22-13,, H P” . We denote by the orthogonal projection onto the

normal bundle Nx (Ny) of V by 5 —r 5".

Definition 9.0.50 We define an inhomogeneous term V of the fibration A : Z -> D(e)

to be a section of the bundle Hom(TlPN,TZ) over I?” x Z which satisfies

(i) V is anti-JZ-linear, i.e. Vij = -Jz V,

(ii) the restriction of V to P” x Z,\, we simply denote it by V,\, is a section of

Hom(TlPN,TZ,\) over I?” x Z,\ when A aé 0,

(iii) Vx (Vy) is also a section of Hom(TlPN,TX) (Hom(TlPN,TY)) such that

V5: (V5) =0, and

(iv) for all§ E Nx(Nx) andv 6 TV

[Val/X + JVJtVXIN = [(JVuxJ)€]N ([Vew + JVthlN = [(JVwJ)€]N)
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We denote by y" the set of all inhomogeneous terms on Z.

Proposition 9.0.51 For generic V E 37V and generic A 76 0,

(a) Mg,k(Z)(,A,H,\,VA)1 is an orientable smooth manifold of dimension 2(g + k),

and

(b) the Frontier of the smooth map

8t X en 1 Mg,k(Z,\,A,H;(,VA)1 —-> n.9,): X Zf.

lies in dimension 2 less than g + 10.

Proof. We can consider Z \ Z0 as a fixed smooth manifold E(n) with a family of

Kahler structures parameterized by D(e) \ {0}, namely, for each A 94 0,

(Jiiwxigx) = (Jziwzigzllz,

It then follows that the universal moduli space

a = { (frji JAiaArl/A) l f is (JAraAiuA)'h010m0rphiC1

[f] =s+df, Aut(j) :1, a; 6 HA}

is smooth. On the other hand, we have a canonical projection 7r : LI -2 yV. By

Sard—Smale Theorem, rr‘1(V) is smooth of dimension 2(g + k + 1) for generic V.

Again, applying Sard-Smale Theorem to the projection rr"1(V) —> D(e) defined by

(f, JA,V,\, 0;) -—> A, we can conclude (a).

In order to prove (b), we first consider the stable compactification

WWJZA, A, HA, V,\) as in Chapter 8. It follows from Lemma 9.0.49 that this is com-

pact. We also reduce this moduli space and stratify the reduced moduli space by the

same way as in the proof of Theorem 8.0.42. Note that Lemma 8.0.44 still holds for
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this reduced moduli space since each J; is a fixed complex structure. On the other

hand, we consider the bump function [3 in the Definition 9.0.48 as a flmction on Z;.

We can then assume that all singular fibers of Z; = (E(n), J;) -2 CCP1 lie in the

support of l — fl. That implies that if (f, oz) has a bubble component, then the bubble

component maps into either a singular fiber or a section. It follows that zero set of

a should contain a singular fiber or a section. Therefore, we can conclude (b) using

the same argument as in the proof of Theorem 8.0.42. [3

We end this Chapter with the splitting argument as in [IP3]. This shows how maps

into X = E(n) split along the degeneration of E(n) It is also a key observation for

gluing of maps into X and Y, which leads to the sum formula (0.5).

Lemma 9.0.52 Let (fn,2n,an) be any sequence of (Jz,V,an)-holomorphic maps

such that (i) each fn maps into Z;n, (ii) each fn represent the homology class S +dF,

and (iii) An -> 0 as n -—> 00. Then we have

(i) ffl converges to a limit f : E —> Z0 = X UV Y and an converges to a, after

passing to some subsequence.

(ii) the limit map f can be decomposed as

f1121—>X,f2:22—>Y, andf3:E3—+V

where fl is a stable (JX, Vx,a)-holomorphic and f2 ( f3) is a stable

(Jy, w) ( (JV, Vv) )-h010m0mhic

(iii) fori = 1,2, each f,- tmnsverse to V with f,"1(V) = {pi}, where each p,- is a

node of 2.

Proof. (i) follows from Gromov Convergence Theorem and Lemma 9.0.49. Note

that a = 0 near V C Z when a 6 Hz. Hence, Jan = J near V C Z. Therefore, we

can apply Contact Lemma in [1P2] to conclude (ii). Lastly, (iii) follows from Contact

lemma in [1P2] and lemma 3.3 in [IP3]. Cl
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CHAPTER 10

Relative Invariants of E(n)

In this Chapter, following [1P2], we define relative invariants for

(X=E(n), V=T2, 93 1, A=S+dF, Vx, Hx)

(Y=T2XS2, V=T2, g_<_1, A=S+dF, Vy)

where Vx (W) is the restriction of V on Z to X (Y), Hx is the parameter space in

(0.4) and g is the genus of Riemann surfaces. As in Chapter 8, we fix the complex

structure on X (Y) and we only vary the inhomogeneous term Vx (W) to define

perturbed relative moduli space. In the below, we will not specify complex structures

on X and Y in the notation of moduli spaces. We also assume that we always work

with a finite good cover pp as in (0.1) without specifying it.

For each V E y" we define the relative moduli space as

Mzk+l (X, A, 71x. VX)!

={(f1jra)e Hg,k+1(X1A1HXrl/X) l f($k+l) E V) Allt(j) = I}

Proposition 10.0.53 For generic V E y",

(a) Mgk+1(X, A, Hx, Vx)1 is an oriented smooth manifold of dimension 2(g + k),

and
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(b) The Frontier of the map

st x ev x h : MXHJX, A, Hx,l/x)1 —> .A—d-g,k+1 x X" x V (0.1)

is contained in dimension 2 less than 2(g+k), where ev is the evaluation map of

the first k marked points and h is the evaluation map of the last marked point.

Proof. Since for each a E Hx, a = 0 in some neighborhood of V C X, J0, = J on

that neighborhood. Therefore, (3) follows from Lemma 4.2 in [IP2].

On the other hand, the Hontier of (0.1) is the image of

CMXk+1(X1A1HX1l/X)I C 7‘7.q,t+1(X. A. Hx. Vx) (02)

under stabilization and evaluation maps, where (0.2) is the closure of

Mgk+1(X, A, Hx,Vx) in M9,k+1(X, A, Hx,VX). In order to prove (b), we first re-

duce the closure (0.2) under the reduction as in Chapter 8 and stratify the reduced

moduli space by the same way as in the proof of Theorem 8.0.42. Similarly as in

the proof of PrOposition 9.0.51, (i) Lemma 8.0.44 still holds, and (ii) if (f, a) has a

bubble component, then the bubble component maps into either a singular fiber or

the section 3.

Each strata corresponds to one of the following types of stable maps : (i) f has

some bubble components, (ii) f has two principle components 21 U 22 such that the

image of 22 maps entirely into V, and (iii) f is neither of type (i) nor (ii). First,

consider (f, a) which is of type (i). In this case, the zero set of or should contains

singular fibers or a section. This reduces the dimension of possible parameter space

for the corresponding strata at least 2. Next, it follows from Lemma 6.6 in [IP2]

that those strata corresponding to (ii) is empty. Lastly, note that if f is of type (iii),

then it has at least 3 principle components. Therefore, (b) follows from the similar

dimension count as in the proof of Theorem 8.0.42. [:1

It follows from the above proposition and PrOposition 4.2 of [KM] that the image
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of (0.1) gives rise to a rational homology class. We denote it by

[Minds A, Hid] e H‘(‘M.,...; o) s H‘(X"; o) s WM 0)

Definition 10.0.54 For 29 + k 2 2, 2 in H‘(K/l_g,k+1;Q), a1, - -- ,ak in H*(X’°;Q),

and '7 in H...(V; Q), we define relative invariants by

GWng+1(X, A,HX)(161 01, ° ' °1ak;C(7))

= (259011 /\'“Aakl®C(7))O[M;t+1(XiA,Hx)l

where C(7) is the Poincaré dual of 7.

Similarly as above, we set

M;k+1(Y1A1VY)I = { (fij) 6 fig,k+l(Y1A1VY) I f(yl) E V? Aut(j) = I } (0'3)

st x h x ev : Mgk+1(Y, A,Vy)1 —> VIA—9,1.“ x V x Y"c (0.4)

where h is the evaluation map of the first marked point and ev is the evaluation map

of the last k marked points.

Remark 0.55 Since pg(Y) = 0, the relative moduli space (0.3) is the one in [IP2].

Here, we fixed the product complex structure on Y and we only vary inhomogeneous

terms. However, for a given stable map after contracting all ghost bubbles, there is

at most one bubble component which maps to some holomorphic section. Using the

same argument as in Chapter 6 of [IP2], we can thus show that for generic V E yz, the

Hontier of (0.4) is contained in dimension 2 less than the dimension of (0.3). On the

other hand, for generic V 6 3’2. (0.3) is an orientable smooth manifold of dimension

2(g + k) + 2. Therefore, we can define relative invariants as in the Definition 10.0.54.

In fact, this invariants is less refined than the relative invariants in [IP2], see also

Appendix in [IP3].
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Finally, we set up some notations which will be used in the next Chapter. We set

MV(X)1>:MV(Y), = UM;,k,+,(x,s + dlfflix), if M;,k2+,(Y,s + def),

= (h x h)‘1(A)

where the union is over all g1 + 92 == 1, k1 + k2 = 4, and d1 + d2 = d. This moduli

space comes with the following maps :

st' x ev : MV(X)1 x MV(Y)1 ——> U 7W“ x X"1 X Y"2 (0.5)

h k1+k2=4

where st’ = a 0 st and a is the gluing map of the domain. For generic V, this moduli

space is also smooth and the Hontier of (0.5) lies in codimension 2.

On the other hand, we set

Map1’4(Z,A)={(f,j,a)| [fl = A136 MIA, 0 E HZ}

Note that MV(X)1 l: MV(Y)1 and M1,4(Z;,A,H;)1 are subsets of Map1,4(Z, A).

Moreover, there are following commutative diagrams :

MV(X)1:MV(Y)1 ——+ Map1,4(Z, A) t——— M1,4(Z;,A,H;)1

nee] em] .tx..[ , (0.6)

U WM x X’c1 x Y"2 —i—+ WM x Z4 <—j— WA—M x Zfi

where A 31$ 0 and the union is over all k1 + k2 = 4.

Remark 0.56 Recall that 7W“ is a smooth finite cover of the DeligneMumford

space defined by Prym structures and hence it has a universal farmly 171,4. The metric

on 171,4 provides a smooth family of metrics on the domain of maps in Map1,4(Z, A).

Therefore, we can define a weighted norm as in Definition 5.0.30 on Map1’4(Z, A) to

make it Banach space.

There is another way to define a topology on Mapl,4(Z, A) [IP2]. We can identify

each j 6 M1,.) with (b : B -> 171,4, where B is a fixed smooth torus. The map 45
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defines a complex structure on B by pulling back the complex structure on U1 ,4. In

this way, we can identify Map1,4(Z, A) with the following space

Map(B,Z XU1,4) = { (f,¢,a) I f X 43 I B —> Z XII—(1,4, [f] = 14,0 G Hz }.

For C0 close maps C1 = (f1,¢1,a1) and 62 = (f2,¢2,a2), we can write C2 =

expel (61 h) :8) and set

dist(Cl,C2) = ||€||1,p+ llhll + llflll

Taking the inf of the lenghts over all paths picewise of the above type, we can defines

a distance and hence a topology on Map1,4(Z, A).
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CHAPTER 11

Gluing Theorem

In this Chapter, we will establish a family version of Gluing Theorem as in [IP3].

Using this, we will show the sum formula (0.5). We fix a generic V E yz as in

Chapter 9 and 10. In the below, we will not distinguish a 6 Hz and its restriction

a; to Z; and use the same notation for them.

Theorem 11.0.57 (Gluing Theorem) Let Co = (fo,20,ao) be in MV(X)1 )1:

MV(Y)1. Then there are A0, 60 > 0, and a small neighborhood W ofCo such that we

have a continuous family of maps

T; : W -1 M1,4(Z;, A,H;)1

for [AI < A0, which satisfies

(i) T; is an injective smooth map from W into M1,4(Z;, A, A)1

(ii) T;(Co) converges to Co as A -—2 0

(iii) if (f, )3,a) in M1,4(Z;,A,H;)1 and d(Co, (f,2,a)) < so, then (f,)3,oz) is in

T;(W),

where d is the distance of Map1,4(Z, A) defined as in Remark 10.
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Proof. The proof of this theorem consists of 3 steps. In the first step, following

[IP3] we construct approximated maps into Z;, each of which is associated with an

element of W. These are nearly (J;, V;, a)-holomorphic. In the second step, we use the

Inverse Emotion Theorem to perturb these approximated maps to truly (J;, V;, a’)-

holomorphic maps. This process defines the map T;. The required analysis in this

step is same as those in the proof of Proposition 5.0.37. In the last step, we show

that the map T; has the desired properties as we stated.

Step 1 Let (f1, 21) and (f2, 22) be the two components of (f0, 20). Then 230 lie in

the image of

a : Mg.,t.+1 >< Mm.k2+l —* MIA

where a is defined as in Chapter 3 and 2; 6 fight,“ for i = 1, 2. Let U be an open

neighborhood of 20 in 7171),. We may assume that the intersection W = U flIm(0‘) is

smooth. Let N be the tubular neighborhood of W in V”. There is a trivialization

N z W x D, where D C C is some disk. Let N = fil’kln’ where 31,1: —1 W”. is the

universal family. Denote by N the set of nodes in the fiber of N and let V(N) be

some fixed neighborhood ofN in N. We can choose local coordinates z, w, as well as

(t, p) E N, on V(.N) such that the fiber of N over (t, u) is given by

(t,z,w) with zw = )1.

Now, we set W = st‘1(W). This is an open neighborhood of Co. By shrinking

V(N) and W, if necessary, for any C = (f, E, a) E W, we can assume the followings :

1. f(23 fl V(./V)) C U, where U is the neck region (0.3) of Z.

2. Let f1 : 21 —1 X and f2 : 22 —> Y be the components of the reducible map f.
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It then follows from Contact Lemma in [IP2] that

f1(t,z) = ( v(z), a2: + 0(Izl2) ) and f2(t,w) = ( v(w), bw + 0(le2) ) with

1/2 < [a], [b] < 2.

3. For p E 21\V(./V) (q E 22 \ V(JV)) with f1(p) (f2(q)) in the neck region of Z,

we have

f1(p)=(v(P),$(p),0)(f2(Q)=(v(Q).0.y(q))) with Im(P)|(ly(Q)l)Zeo

where so is a uniform constant which doesn’t defend on C E W.

For each (t,p) E N, denote by 2; = 2:1 U 2‘2 the fiber of (t,0) in N. We also

denote by East) the fiber of (t, p) in N. We define X-side 25;, (Y-side 22””) of 2(n“)

be the set of all points p E 2“,“) which satisfies

(109,211) < d(p)2t2) ( d(P,2t2) < (1(1), 2:1) )

When p is in X~side (Y-side), denote by rrx (p) (rry (p) ) the unique point in En (2,2)

such that

€109,211) = d(p. rx(p)) ( d(p. 2.2) = 61(1). 7w(p)) )-

Let r be the distance function to N in N. We define a bump frmction C. with

C¢(r) = 0 ifr 2 2e, B€(r) =1 ifr g e, and [dfl£| S 2.

Definition 11.0.58 For each C = (f,2,oz) E W and A aé 0, we define C; =

(F;,E;,oz) as follows :

1. 2; = (t,/.t), where u = A/ab and 2 = (t,0), and
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2. let u be a local coordinate of V centered on the image of the node of 2 and we

define F; : 2; —-> Z; by

[ ((1 ‘5u)v(2), 53(2), A/flzll 0” { (t,z,w) 6 WM I M Z lwl }

(firm 0 f1 0 77x on Bf O Supp(flp)

FA = i

((1 —fl,.)v(w), A/fllwla I?) 0" { (t,z,w) 6 WM l M Z M }

\ ¢Y,.\ 0 f2 0 7W on 23), fl Supp(fiy) 

when: 57(2) = a3(1+(1--5u)0(|15|)), 31(10): bw(1+(1—flu)0(|w|)): flu is the

bump function defined as above with e = [p], and (bx; ((by;) is the holomorphic

map which extends the following map

(0,3,0) -* (ma/Va?) (01.0.3!) -* (UM/31.31))-

on the ncek region (0.3) of Z

As in Chapter 5, we use the metric on N1,4 and metric gz on Z to define pointwise

norm, weighted norms || ~ II”, and Il - H,, as in Chapter 5. Note that the pointwise

norm ldF;| is uniformly bounded. Recall that Va, = (I + JKa)‘1V.

Lemma 11.0.59 For some A0 > 0, there is a uniform constant c such that for any

CEWandlAl<Ao

“51an — Vallp S CW-

Proof. Let <I>(C;) = 5.1.. F;-Va. Since rrx is holomorphic on the region 2fflSupp(fl,,)

and (bx; is also holomorphic, we have

<I>(C;) =d¢x,;(U-Jaf1 -— Va )d’l'rx + (Jo, — J)dF;

+ d¢x,,\(J — Ja)df1 dfl’x + d¢x,; Va Cl’frx -- Va
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Therefore, we have |<I>(C;)| 5 CIA] on the region 2? fl Supp(B”).

On the region { (t,z,w) E V(./\() | [z] 2 |w| } we can assume F; maps into the

region at which a = 0. Using zw = p = A/ab, we have

29')F;

= 61(1- flu)”: 025.1[0 - 600201611151 (1 + (1 - 2100020)"2 51[(1 - 600201)

All terms in 51F; are bounded by |A|, except for the term involving 51 v. On the

other hand, 5] v is the V-component ofCyf1 and hence UK, where Vf1(Z) = V(f1(z), z).

Therefore, we have

|¢(CA)| S C( IV}: — VXI + lugl + W) S CIAI

since the normal component VN vanishes along V. Using the same arguments on the

other regions, we can conclude that |<I>(C;)| g c|A| on 2;. This implies the lemma.

II]

Step 2 As above, we set <I>( F,Z,a) = EJGF — Va. In this step, we perturb C; =

(F;, 2;,01) to C; = (F;, ((,a’) such that <I>(Cf\) = 0. For doing that, we consider the

linearization Dc; of <I> at C;

Dc, : Ll'P(F;TZ;) 6 T2,‘Mi,4 e Tan —» U”( 1133,1632» ) (0.1)

where L19 and L10 are defined by weighted norms as in Chapter 5. Using the

Inverse Function Theorem, we will show that there exits a unique (6, k, B) such

that (i) <I>( expcx(£, k, fl)) = 0 and (ii) the projection of (§,k,fi) to the kernel of

DeA

T).(C) = eXPc;(§ikim-

with respect to L2—inner product is zero. We then define a gluing map by

Let q : LI’P(F;TZ;) 6Tg,m1,4 6TaH —> Ker(Dc,) be the projection with respect

to L2-inner product. The following lemma is similar to Lemma 5.0.36.
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Lemma 11.0.60 There edits A0 > 0 such that if |A| < A0, then for any p > 2, C;

with C in W, (50,ko,,60) in Ker(Dc,) and r) in LP(A3310(F;{TZ;) ), there is a unique

(5, k, B) which satisfies

q(€, Its) = (50. 1901,60): Dc,(£, kifl) = n (0.2)

|l€|l1,p+ llkll + llflll S cmax{ ||€o||1,p+ ”’60“ + llfioll, llnllp} (03)

where c is a uniform constant.

Proof. This proof is similar to that of Lemma 5.0.36. We first show that for sum-

ciently small A and any C E W, Coker(Dc,) = 0. Suppose not. Then there exits a

sequence { (Cm An, 7771)} such that An —2 0 and DICn.A..)(7l") = 0 with “17“,, = 1, where

(Cu, An) denotes the approximated map determined by Ca and An. We can assume

C7, —> C and (Cm An) —+ C. Let C = (f, E,a). It follows from the standard elliptic

estimates that 17,, converges to some 17 outside of a node of )3. Since DEM) = 0 and

Coker(Dc) = 0, we have n = 0. This implies that 17,. —> 0 on the complement of

neck region defined as in (0.5). On the other hand, note that L3.“ (17,.) = 0, where

Fn = F(c....\..)- It follows from Lemma 5.0.34 that llnnllp —+ 0. This contradicts

to our assumption [Infillp = 1. Therefore, for sufficiently small A and any C E W,

Coker(Dc,) = 0.

Consequently, there exits (5, k,fi) with Dc,(5,k,fi) = 17. Let 5 = (5, 19,5) and

50 = (50, kg, 30). Then 5’ = 5 — q(5) + (0 satisfies (0.2). Uniqueness is obvious.

Next, we show the estimate by contradiction. Suppose not. Then there exits

(in, kmfln) such that (i) ||§n||1.p+ llknll + llflnll = 1, (ii) IIDn(€n, kn.fin)llp —’ 0, where

Dn = D(c..,A..)i and (iii) ||5no||1,p + Ilknoll + Ilfinoll —> 0. We can assume that the

approximate map (Cu, An) converges to (C, A) = (F, a). By the Sobolev Embedding

Theorem, we can also assume 5,, converges to some 5 and 5,,0 -—> 0 both in Ll'z-norm.

We can further assume that (kmfin) converges to some (kfl) and (humflno) —-1 0.
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Note that D0,;(5, k,fi) = q(5,k,B) = 0, and hence we have (5, k,fi) = 0 by unique-

ness. Together with (i), (k,fl) = 0 implies that ||5,,||1,p —+ 1. It then follows from

Lemma 5.0.33 that ||5n||1,2 is uniformly bounded away from zero. This is impossible

since 5,, —2 5 in Ll'z-norm and 5 = 0. Therefore, we have a contradiction. D

As in Chapter 5, we set

L1,? ={ (C1 Aaérkr 18) IC 6 W1 (£1 k1 fl) 6 Ll,p(F;TZ/\) 69 TE;-A—4-l,4 G; TaH }

P ={ (C’A1601k03fi0) [C 6 W1 (€01k01160) E Ker(DC;) }

On the other hand, let Map1,4(Z;, A) be a subspace of Map1,4(Z, A) which contains

all maps into Z; and set

If = { (c', M) | c’ e Map1,.(Z.\,A) with C’ = (Eta), n e H(A?§,F*TZ.\)-}

and define a map E : L11? —+ LP x P by

E(CiA. (6.19.6) = ( ¢(expc;(£.k,fi) ).q(€.k.fl))

The linearization of E at (C, A, 0) is the map

DE : L11P(F;TZ;) e T2,M1,4 ea TaH -» H(Agirflm x Ker(Dc,)

(5.19.15) —’ (Dc.(€ikifi),Q(E,kifl))

By Lemma 11.0.60, it is an isomorphism with uniformly bounded inverse. Therefore,

by the Inverse thction Theorem there exits e > 0 such that E is a local diffeomor-

phism from the open set

{(C.A.§.k.fi) 6 L1""l l|€||1,p+||k||+llfill< 6} (04)

onto its image. It then follows from Lemma 11.0.59 that for any (C,A) with |A|

sufficiently small, there is a unique (5 , k, H) such that

3(5, 16,3) = (C, A, 0,0). (0.5)
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Definition 11.0.61 Fix A with |A| < |A0|. For each C E W, let (5,k,fl) be given as

in (0.5). We then define

T; : W —-+ M1,4(Z;)1 by C —> expCA(5, k,B).

Similarly as in Chapter 5, we have the following expansion

‘1’( eXPc;(€. 16, 5)) = (I)(CA) + Dc.(€. 16. B) + Hc.(€. k. H)

where ||Hc,(5,k,fi)||p S c( ||5||1,p + “k“ + Hfll] )2 for some uniform constant. Using

this expansion and the estimate in Lemma 11.0.60, we can conclude that (5 , k, B) in

(0.5) satisfies

||€||1.p + llkll + llfill S CW (06)

for some uniform constant.

Step 3 As a consequence of the Inverse Function Theorem, the map T; is smooth.

It also follows from (0.6) that T;(C) —+ C as A —1 0.

In the below, we will show the injectivity of T; and (iii) of Theorem 11.0.57.

Denote by Q the orthogonal complement of P withe respect to L2 norm. For each

fixed A, we also denote by A; the set of all appoximated maps into Z;. As in the

proof of Lemma 11.0.60, each Coker(Dc,) = 0 when [AI is small. Hence we can deduce

that

TciLl’p = TciAA G9 Qle,

Let Q; = Uc Qlc; and denote by exp : Q; —-+ Map1,4(Z;,A) the exponential map

defined by

(C, Aiéo, k0. 50) —* eXP(c,A)(§oi koifio). (0-7)
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Now, fix a path Q starting C and let (5 , k, fl) be the tangent vector at t = 0 of the

corresponding approximated maps (C, A). Using parallel translation we can calculate

d

a; exp(ch’\)(€0’ ko’flo)lt=0 =(gik1fi)+(€01k0
130).

Therefore, there exits so > 0 such that for all small [Al the exponential map (0.7) is a

difieomorphism from some neighborhood of zero section in Q; onto (so-neighborhood

of A; in Map1’4(Z;, A). Together with definition of T; and (0.6), we can conclude

that T; is injective. On the other hand, if (f, 23,01) in M1,4(Z;, A, H;) is close to Co,

then it is in the «so-neighborhood of A;, which implies (f, 23, a) in T;(W). C]

Now, we are ready to prove the sum formula (0.5).

Proposition 11.0.62

1

H(t) = ——1§F(t) + 2F(t)C(t)

Proof. By definition of generating functions H(t), F(t), and G(t), it suffices to show

that

GWfiWS + dF)(1/1(1.4);4; F4) = 2: GWJSTS + le) (20%) - 115)d1+d2=d

where 0(d2) = 214012 as in Chapter 6.

We can choose a submanifold F,- C Z for i = 1, - ~ - , 4 which is in general position

with respect to evaluation maps such that for i = 1, 2 each FflX ( anY ) represents

a fiber class in X (Y), and each F,- flZ; represents a fiber class in Z; = E(n). On the

other hand, without loss of generality, we may assume there is a submanifold K in

HM representing Poincaré dual of 1[)(1’4);4. We may also assume that K is in general

position with respect to stabilization map.

Let A 74 0 be generic as in Proposition 9.0.51. Now, consider the cut-down moduli

space M; which consists ofall (f, (j; {xi}), a) in m1,4(Z;, A, H;) with f(a:,-) in F,- and
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st(j ) E K. It then follows from Proposition 9.0.51 that M; is finite and Aut(j ) = I.

In fact, by definition for generic A we have

[St X €‘U(M,\)] = GWE?(ZA, A)(1/J(1’4);4; F4) = CW3," (S + dF)('lp(1,4);4; F4) (0.8)

where the second equality follows from Lemma 9.0.49 and Proposition 3.0.15.

Similarly as above, let Mo be the cut-down moduli space which consists of all

( (f1. 0., {z.}).a). (f2, 0., {t})) ) 6 Moo. 3; MV(Y)I

such that f1(a:,-) E F.- and f2(y.-+1) E Fi+2 for i = 1,2, and 0(j1,j2) E K, where a

is the gluing map of the domain as in (0.8). It follows from Pr0position 10.0.53 and

Remark 10 that M0 is finite. Moreover, (j1,j2) is an element of either 7W”; x 370,3

or 1703 x M7113, since there are two marked points at each X-side and Y-side. Note

that o‘(i/J(1,4),4) = 0, where a : 171,3 x 11710;; -> III-1,4. Therefore, we have

Mo c U Mg,(x, s + le, 21..) >5 M{3(Y, s + dgF) (0.9)

d1+d2=d

Together with routine dimension count, (0.9) implies that

[st’ x ev (M0)]

= Z Gngfns + le)(F2;C(V))GW1‘,’3(S + sz)(1/1(1,3);3;C(Pt) = F2)

d1+d2=d

d1+d2=d

= Z Gng;(s + diF) (20(d2) — 112) (0.10)

dr+d2=d

where the second equality follows from Lemma 9.0.49, Proposition 3.0.15, and defin-

ition of relative invariants, while the third equality follows from TRR for T2 x 32.

It remains to show that

i.[st' x ev (M0)] = j...[st x ev (M;)] in Ho(-./\711,4 X Z4) (0.11)
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where i and j are inclusions as in the diagram (0.6).

By Lema 90°52, as ’\ _’ 0 any sequence (fxijxiax) E M; converges to a limit

(fij, a). AS above, since there are two marked points on each X-side and Y-side, j

lies on one of the following images of the gluing maps :

01:M0,3 X Mp3 —* Mp4, Uzi/V113, X M03 —* Mp4, 01‘

0'3 1 M03 X M13 X Mo’s —* Mp4

Since j also lies on K , and both 03(zp(1,4);4) and ugh/«1,4,0 are trivial, (f, j, a) 6 M0.

Hence, there is a bijective map between M; and M0 for small |A| by Gluing Theo-

rem. Moreover, they are homotopic in Mapl,4(Z, A). Therefore, by the commutative

diagram (0.6), we can conclude (0.11). [I]
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CHAPTER 11

Appendix — Relations with the

Behrend-Fantechi Approach

Behrend and Fantechi [BF] have defined modified GW invariants for Kahler surfaces

using algebraic geometry. While their techniques are completely different from ours,

the definitions seem to be, at their core, equivalent. In this appendix we make several

observations which relate their approach to ours. This is necessarily tentative because

the paper [BF] is not yet available; we are relying on the terse description given in

[BL3]

In algebraic geometry, the virtual frmdamental class [M9,],(X, A)]Vir is obtained

from the relative tangent-obstruction spaces together with the tangent-obstruction

spaces of Deligne-Mumford space MM. Behrend and Fantechi modified their ma-

chinery, intrinsic normal cone and obstruction complex, by replacing the relative

obstruction space H1(f"TX) by the kernel of the map

H1(f*TX) —» H2(X, 0) (A.1)

defined by dualizing of the composition

H°(X,S22) —-+ H°(f‘§22) —» IIO(f"‘Q1 <8) f‘fll) ——> H0(f"fl1 ® 91). (A2)
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In order for their machinery to work, the map (A. 1) is of constant rank — in particular

surjective — for every f in M9,)..(X, A) [BL3]. Composing (A2) with the Kodaira.-

Serre dual map, we have

H°(X, n) —+ H°(f"ol ® 521) —» H1(f"‘TX). (A.3)

This map is given by B —> K5 dfj.

Proposition A.63 Let (X, J) be a Ka'hler surface and A 6 H1'1(X,Z). Then the

family moduli space M2,,(X, A) is compact if and only if the map (AI) is surjective

for every f in _M—g,k(X, A).

Proof. By Theorem 2.0.12 M2,,(X, A) consists of pairs (f, a) with f E M9,),(X, A)

and with the image of f contained in the zero set of a; the latter condition means

that Ka = 0 along the image, so KO, dfj = 0 for all (f, a). As usual, M9,),(X, A) is

compact by the Gromov Compactness Theorem.

Now, suppose (Al) is surjective. Then by duality (A.3) is injective. This implies

or = 0 and hence MZAX, A) = Mg,k(X, A) is compact. Conversely, suppose for some

f E M9,),(X, A) there is a B in the kernel of (A.3). Then setting a = ,6 + B we have

51f = tKadfj = 0 — and hence (f, ta) 6 MZAX, A) — for all real t. That means

that MZAX, A) is compact only when (A.3) is injective or equivalently when (A1)

is surjective. C1

The map (A.3) is directly related to the linearization Operator of the (J, a)-

holomorphic map equation.

Suppose that A is (1, 1) and that the family moduli space MZAX, A) is compact

as in Pr0position A.63. Consider the linearization of the (J, a)—holomorphic map

equation the (J, a)-holomorphic map equation as given in (0.6). Since J is Kahler,

94



the linearization reduces to

111(5) = V5 + JVEJ'

Lf6Lo : 9°(f*TX)6H—>Qo'l(f*TX) where

110(5) = '2Kfldfj

In fact, this Lf is exactly (twice) the Dolbeault derivative 5. Therefore, Ker(Lf)

are Coker(Lf) are identified with the Dolbeault cohomology groups H0(f*TX) and

H0'1 (f*TX) , respectively.

Proposition A.64 Under either of the two equivalent conditions of Proposition A.63

there are natural identifications H1(f*TX) 2 Ho’1(f'TX) and H°(X, (22) c: H under

which identification the map is identified with (A.3) with

Lo : H —1 Coker(Lf).

By Proposition A.63 this map is injective if and only if the family moduli space

MZAX, A) is compact.

Proof. This follows directly by comparing the formulas for L0 and (A.3). Altema—

tively, we can compute the linearization from scratch as follows. Given 5 6 9°(f‘TX) ,

there is a family of maps ft with f0 = f and M = 5. It follows from Proposi-
dt [1:0

tion 1.0.6b and (B, A) = 0 that

o:

  

# _ d
—

. —

_

t=o/2;ft (fl) — a tzoLla-lfhKB
fttJ) —/2;<Lf(€)1KB

fa-J)-

This implies that L0 maps H into Coker(Lf). D

d

dt
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