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ABSTRACT

Family Gromov-Witten Invariants for Kahler Surfaces
By

Junho Lee

The usual Gromov-Witten invariants are zero for Kahler surfaces with p, > 1. In
this paper we use analytic methods to define Family Gromov-Witten Invariants for
Kahler surfaces. We prove that these are well-defined invariants of the deformation
class of the Kéahler structure and develop methods for computing them, including a
version of the TRR formula and the symplectic sum formula. Finally, we explicitly

compute some of these family GW invariants for elliptic surfaces.
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Introduction

Gromov-Witten invariants are counts of holomorphic curves in a symplectic manifold
X. To define them using the analytic approach one chooses an almost complex
structure J compatible with the symplectic structure and considers the set of maps f :
¥ — X from Riemann surfaces ¥ which satisfy the (nonlinear elliptic) J-holomorphic

map equation
8;f =0. (0.1)

After compactifying the moduli space of such maps, one imposes constraints, requir-
ing, for example, that the image of the map passes through specified points. With
the right number of constraints and a generic J, the number of such maps is finite.

That number is a GW invariant; it depends only on the symplectic structure of X.

There are some beautiful conjectures about what the counts of holomorphic curves
on Kahler surfaces ought to be ([V],[KP],[YZ],[G]). However, as currently defined, the
corresponding GW invariants of Kahler surfaces with p, > 1 are all zero! This
discrepancy occurs because GW invariants count curves for generic almost complex
structures J, whereas Kahler structures are very special — Donaldson details this
in [D]. They can have whole families of curves which disappear when the Kahler
J is perturbed to a generic J. For example, a generic K3 surface (p, = 1) has
no holomorphic curves at all, whereas algebraic K3 surfaces do admit holomorphic

curves.



Clearly a new version of the invariants is needed — one which counts the relevant
holomorphic curves. Work in that direction is just beginning. Bryan and Leung
([BL1],[BL2]) defined such invariants for K3 and abelian surfaces by using the Twistor
family; they were also able to calculate their invariants in important cases. In a
preprint to appear shortly, Behrend-Fantechi [BF] have define invariants for a more
general class of algebraic surfaces using algebraic geometry, but have not yet made
calculations. We approach the same issues using the geometric analysis approach to

GW invariants.

Given a Kahler manifold (X,w, J,g) we constructs a 2p,-dimensional family of
elements K;(f,a) in Q%(f*TX), where a is a real part of a holomorphic 2 form.

We then modifies the J-holomorphic map equation (1) by considering the pairs (f, «)
satisfying

gjf = KJ(f, C!). (02)

The solutions of this equation form a moduli space whose dimension is 2p, larger
than the dimension of the usual GW moduli space.

Because a range over a vector space compactness is an issue. Here things get
interesting because there are instances when the moduli space for (0.2) is not compact.
In fact, when the map represents a component of a canonical divisor the moduli space
is never compact. Nevertheless, there is a simple analytic criterion — the uniform
boundedness of the energy of the map and the L? norm of o — that ensures that the

moduli space is compact.

Theorem 0.0.1 Let (X,J) be a Kdhler surface and fir a genus g and a class A €
Hy(X,Z). Denote by C(J) the supremum of E(f)+||a||L2 over all (J, &)-holomorphic

maps from genus g curves into X which represent A. If C(J) is finite, then the family



GW invariants
GW, (X, A)
are well-defined. They are invariant under deformations {J;} of the Kihler structure

with C(J;) bounded. Furthermore, if A is a (1,1) class then all the maps which

contribute to these invariants are in fact J-holomorphic.

The last sentence of Theorem 0.0.1 means that the invariants for (1,1) classes are
counts of holomorphic curves in (X, J). That is not the same as saying the invariants
are enumerative, since there is no claim that each curve is counted with multiplicity
one. But it does mean that the family GW invariants, which a priori are counts of
maps which are holomorphic with respect to families of almost complex structures on

X, are in fact calculable from the complex geometry of (X, J) alone.

Theorem 0.0.1 yields well-defined family GW invariants provided there is a finite
energy bound C(J). Following the Kodaira classification of surfaces, we verify the

energy bound case-by-case using geometric arguments. That yields the following cases
where the family GW invariants are well-defined.

Proposition 0.0.2 The moduli space for a class A is compact, and hence the family

GW invariants are well-defined, when (X, J) is

(a) a K3 or abelian surface with A # 0,

(b) a minimal elliptic surface 7 : E — C with Kodaira dimension 1 with —A -

(fiber class) # deg m.(A) , and

(c) a minimal surface of general type and A is in a certain subspace of the (1,1)

classes (see Proposition 4.0.26).

The second half of this paper develops computational methods. We extend sev-

eral existing techniques for calculating GW invariants to the family GW invariants.
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In particular, the ‘TRR formula’ applies to the family invariants, and at least some
special cases of the symplectic sum formula [IP3] apply, with appropriate minor mod-
ifications to the formula. Those formulas enable us to enumerate the curves in the

elliptic surfaces E(n) for the class A= section plus multiples of the fiber.

Theorem 0.0.3 Let E(n) be a standard elliptic surface with a section s of self-
intersection —n. Denote by S and F the homology class of the section and the fiber.
Then the g = 0 family GW invariants for the classes A = S + dF are well-defined

and are given by the generating function

1 12n
> GWos (E(n),S +dF) t* =] ( — td) : (0.3)
d>0 d>0

Bryan and Leung used algebraic methods to show (0.3) for K3 surfaces (i.e. n = 2)
[BL1). This provided a verification of the well-known Yau-Zaslow Conjecture [YZ] for
those cases when the homology class A is primitive. On the other hand, the above
formula for n = 1 gives the ordinary GW-invariants of rational elliptic surface E(1),
which was shown by Ionel and Parker [IP3]. They related TRR formula and their
sum formula for the relative invariants to obtain a quasi-modular form as in (0.3).
We follow the same argument — relating TRR formula and sum formula — to show

Theorem 0.0.3.

Chapter 1 gives the definition of a (J, a)-holomorphic map and some of the analytic
consequences of that defintion, most notably an expression for the energy in terms of
pullbacks of the symplectic form and the form a. Chapter 2 begins by describing the
relation between a complete linear system |C| — or more generally a Severi variety
— and the moduli space of (J, a)-holomorphic maps. That leads us to consider the
family of (J, a)-holomorphic maps in which a is the real part of holomorphic 2-form;

4



the corresponding family moduli space should be an analytic version of the Severi
variety. As partial justification of that view, we prove the last statement of Theorem
0.0.1: any (J, a)-holomorphic map which represents a (1,1) class is in fact holomorphic
(theorem 2.0.12).

Chapter 3 summarizes the analytic results which lead to the definition of the family
GW-invariants. That involves constructing the virtual moduli cycle by adapting the
method of Li and Tian [LT]. Thus defined, the family invariants satisfy a Divisor
Axiom and a Composition Law analogous to those of ordinary GW-invariants. To
keep the exposition lowing the main results are stated in Chapter 3 and their technical

proofs are deferred until Chapter 5.

Chapter 4 contains examples of Kahler sufaces with p, > 1 with well-defined
family invariants. We focus on minimal surfaces and establish the results summarized
in Proposition 0.0.2 above. For the case of K3 and Abelian surfaces we prove that our
family GW-invariants agree with the invariants defined by Bryan and Leung. That is
done in the course of the proof of Theorem 4.0.23 by relating the holomorphic 2-forms
to the twistor family.

Chapter 5 contains the analysis which proves that the family GW invariants are
well-defined. Slightly modifying the arguments of Li and Tian, we consider the prod-
uct of the space of C* stable maps and the parameter space H for a. The (J,a)-
holomorphic map equation defines a section ® of a generalized bundle E — B whose
zero set is the moduli space of (J, a)-holomorphic maps. In general that space is nei-
ther smooth nor compact. For the ordinary GW-invariants Li and Tian showed that
after perturbing & its zero set becomes smooth and compact and defines a virtual
moduli cycle. Our case requires more care because the parameter space H is not
compact.

The construction consists of two main steps. First, using the Fredholm property

of the section ® of F — B, one can construct a collection of finite dimensional
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subbundles E; — U; = ®~!(E;) whose union contains the moduli space and has each
restriction ®; = @|;, being smooth. Compactness of moduli space, which follows
from the energy bound C(J) of Theorem 0.0.1, ensures that there is such a finite
collection. Second, one can perturb the moduli space locally in each U; in such a way
that the local perturbations fit together to produce a well-defined cycle, the virtual
moduli cycle. This second part is very general procedure and is p;'oved in Theorem
1.2 of [LT].

Thus the bulk of Chapter 5 is devoted to working through the first step. The
arguments parallel the proofs for J-holomorphic maps in [LT]. The key step is es-
tablishing uniform estimates for the linearization of holomorphic map equation and
its adjoint operator. Those estimates are still true for (J, a)-holomorphic maps and
are locally uniform in a. The exposition ends up being rather lengthy because of the
need to recall the extensive notation of [LT] and because we have taken the trouble of
filling in missing details and some fixing minor errors in [LT]. At the end of Chapter
5 we prove the two properties of family GW-invariants: the Divisor Axiom and the

Composition Law.

Turning to the computations, we give an overview of the proof of Theorem 0.0.3
in Chapter 6. This argument is an extension of the elegant argument used by Ionel
and Parker to compute the GW-invariants of E(1) [IP3]. It involves computing the
generating function for the invariants in two ways, first using the so-called TRR
formula, and second using a syplectic sum formula as in [IP3]. Roughly, the only
modification needed is a shift in the dimension counts. But to justify the computation
we need to extend both the TRR formula and the symplectic sum formula to apply
to the family GW invariants. The extended TRR formula is proved in Chapter 7 and

sum formula is established in the last four Chapters.

Chapter 8 gives an alternative definition of the family invariants for E(n) based



on the idea of perturbing the (J,a)-holomorphic map equations as in [RT1] and
[RT2]. This alternative definition is better suited to adapt the analytic arguments
in [IP2] and [IP3] to a family version of sum formula. The proof of the sum formula
begins by studying holomorphic maps into a degeneration of E(n). Because E(n) is
a Kahler surface we are able to degenerate within a holomorphic family, rather than
the symplectic family used in [IP3).

The degeration family Z is constructed in Chapter 9. It is a family A : Z — D?
whose fiber Z) at A # 0 is a copy of E(n) and whose center fiber is a union of E(n)
with T2 x S? along a fixed elliptic fiber V. As A\ — 0 maps into Z) converge to maps
into Zp, and by bumping a to zero along the fiber V' we can ensure that the limits
satisfy a simple matching condition along V' (there is a single matching condition for
the classes A that we consider). Conversely, if a map into Z, satisfies the matching
condition then it can be smoothed to produce a map into Z, for small A\. That
smoothing is described in Chapter 11 and then used prove the required sum formula
for the family invariants of E(n).

The appendix contains a brief discussion of how the family GW invariants defined
here relate to those defined by Behrend and Fantachi in [BF).



CHAPTER 1

(J, @)-holomorphic maps

A J-holomorphic map into an almost complex manifold (X,J) isamap f: X — X
from a complex curve ¥ (a closed Riemann surface with complex structure j) whose
differential is complex linear. Equivalently, f is a solution of the J-holomorphic map
equation

3,f=0 where 3,f= %(df + Jdfj).
In this Chapter we will show that when X is four-dimensional there is natural infinite-

dimensional family of almost complex structures parameterized the J-anti-invariant

2-forms on X.

Let (X,J) be a 4-dimensional almost Kéahler manifold with the hermitian triple
(w, J,g). Using J, we can decompose a € Q*(X) as o = a; + a_ where

(u,v) — a(Ju, Jv)
2

a(u,v) + a(Ju, Jv)
2

oy (u,v) = a_(u,v) = 2 (0.1)

Definition 1.0.4 A 2-form « is called J-anti-invariant if = a_. Denote the set of
all J-anti-invariant 2-forms by Q;(X). Each o € Q;(X) defines an endomorphism
Ko of TX by the equation

(u, Kqv) = a(u,v). (0.2)



It follows that

(Kau,v) = —(u, Kov), JK,=—-K,J, and (Ju,K,u) =0. (0.3)

Definition 1.0.5 For a € Q;(X), a map f : £ — X is called (J, a)-holomorphic if

9:f = Ku(f, ) : (0.4)

where K;(f,a) = Kq(0f 0 j) = -;—Ka(df — Jdf3)j.

The next proposition and its corollary list some pointwise relations involving the
quantities that appear in the (J, a)-holomorphic equation. We state these first for

general C' maps, then specialize to (J, a)-holomorphic maps.

Proposition 1.0.68 Fiz a metric within the conformal class j and let dv be the asso-

ciated volume form. Then for any C! map f we have the pointwise equalities

(@) Boffdv=ldi dv—fu, (1) @f,Kslfe)) dv=fa,
(c) K2=—lol], (@) 1Ks(f,)F do = af? (U7 du+ o).

Proof. Fix a point p € ¥ and an orthonormal basis {e;,e; = je;} of Tp,X. Setting
v; = df (e;) and v, = df (e;), we have 20, f(e1) = vy +Jv; and 2K ;(f,a)(e1) = Kava—
JK,v;, and similarly 20;f(e;) = vo — Jv; and 2K;(f,a)(e2) = —Kav1 — JKav;.

Therefore,

4105112 = |v1 + Jug|2 + |va = Jui |2 = 2(|n1]? + |v2]?) + 4(vy, Jvg)

= 2|df|* — 4f*w(es, e2).



That gives (a), and (b) follows from the similar computation

40;f, K(f,a)) = (v1+ Jug, Koy — JKo01) + (v — Juy, —Kov) — JK,0,)
= (v, Kav2) — (v1, JKqu1) + (Jug, Ko v2) — (Jvg, JKqu1)
—(vg, Koqu1) — (g, JKau2) + (Ju1, Kov1) + (Jv1, JKav2)
= 4(v, Kov2)

= 4f*a(ey,ey).

Next fix z € X and an orthonormal basis {w!, w?, w3, w*} of T} X with w? = —Jw,

and w* = —Jw3. Then the six forms
w A uwiAwt, v A tuw Awt, wAwtEwiAw?

give an orthonormal basis of A?(T:X), and two of these span the subspace of J

anti-invariant forms. Hence
a = a(w' Aw? — w? A w?) + b(w! A w? + w? Aud)

for some a and b, and in this basis K, is the matrix

(0 Oab\

0 0 b —a
—-a =-b 0 0
\-b a 0 0

Consequently, K2 = —(a?+b%)I = —|a|?I. Lastly, since K, is skew-adjoint, (c) shows
that
|Ks(f,0)> = —(8f 0 j, K3(8f o)) = |ef?|0f*.

Equation (d) then follows from (a) because |df|> = |0f|*> +|0;f]2. O

Corollary 1.0.7 Suppose the map f : ¥ — X is (J, a)-holomorphic. Then

10



(a) |-51f|2 dv = f‘ay
(b) (1 —|af?) df|* dv =2(1+ |a*) f*w, and
(c) lel?|df > = (1 + |ol?) 84 f]*.

Proof. Since f is (J,@)-holomorphic, |0sf|* = (0., K(f, a)) = |Ks(f, )%, so (a)
follows from Proposition 1.0.6b while (b) and (c) follow from Proposition 1.0.6 (a)
and (d). O

There is a second way of writing the (J, a)-holomorphic equation (0.4). For each

a € Q;(X), I + JK, is invertible since JK, is skew-adjoint. Hence
Jo= I+ JK,) P J(I + JK,) (0.5)

is an almost complex structure. A map f: ¥ — X is (J, a)-holomorphic if and only

if f is J,-holomorphic, i.e. satisfies
— 1 .
Orf = 5 (df +Jadfj) = 0. (0.6)

From this perspective, a solution of the (J, a)-holomorphic equation is a J, holo-
morphic map with J, lying in the family (0.5) parameterized by a € Q7(X). In
particular, we see from (0.6) that the (J, @)-holomorphic equation is elliptic.

Proposition 1.0.8 For any o € Q/(X), the almost complex structure J, on X

satisfies

(Jau, Jov) = (u,v) and  Jp =

K, (0.7)

Proof. From (0.3), the endomorphisms A, = I + JK, and A_ = I — JK, are
transposes, and A;J = JA_ and A, K, = K,A_. Consequently, A7' and A~! are

11



transposes, with A_'J = JA;! and AZ'K, = K,A;" and therefore A!A, = A, A”".

Consequently,
(Jaut, Jov) = (A7 J A u, AN JA W) = (JAZ'Aju, JAT A o)

= (A:1A+'U., A:1A+v> = <'U,, A_A;IA:IA.*_’U)

= (u,v).

On the other hand, noting that K2 = —|a|?], it is easy to verify that

1 1
I- J
1+ a1+ af

(I+JKp) ! = K,. (0.8)
With that, the second part of (0.7) follows from the definition of J,. O

In summary, (J, a)-holomorphic maps can be regarded as solutions of the J,-
holomorphic map equation 8, f = 0 for a family of almost complex structures para-

meterized by a as in (0.6). We will frequently move between these two viewpoints.

12



CHAPTER 2

Curves and Canonical Families of

(J,a«) Maps

Given a Kahler surface X, we would like to use (J, a)-holomorphic curves to solve

the following problem in enumerative geometry:

Enumerative Problem Give a (1, 1) homology class A, count the curves in X that
represent A, have a specified genus g, and pass through the appropriate number of

generic points.

We begin this Chapter with some dimension counts which show that in order to
interpret this problem in terms of holomorphic maps we need to consider families of
maps of dimension p,. We then show that there is a very natural family of (J, a)-
holomorphic maps with exactly that many parameters. We conclude the Chapter
with a theorem showing that such maps do indeed represent holomorphic curves in

X.

One can phrase the above enumerative problem in terms of the Severi variety
V,(C) C |C|, which is defined to be the closure of the set of all curves with geo-
metric genus g. Assuming that C — K is ample, it follows from the Riemann-Roch

theorem that the dimension of the complete linear system |C| is given in terms of

13



pg = dimcH%*(X) and ¢ = dimcH%'(X) by

C*-C-K

dimchI = 2

+ Py — 9
and the formal dimension of the Severi variety is
dimcVy(C) = -K-C + g-1 + p, — q. (0.1)

The right-hand side of (0.1) is the ‘appropriate number’ of point constraints to impose;
the set of curves in V,(C) through that many generic points should be finite, making
the enumerative problem well-defined.

Now let M,(X, A) be the moduli space of holomorphic maps from Riemann sur-
faces of genus g, which represent homology class A. Then its virtual dimension is

given by

dim cM,y(X,4) = -K-A + g—1. (0.2)

The image of a map in M,y(X, [C]) might be not a divisor in |C|, instead it is a
divisor in some other complete linear system |C’| with [C'] = [C]. As in [BL1], we
define the parameterized Severi variety

vi(ieh = [I (@)
[C=[C]

Its expected dimension is now given by
dimcVy([C]) = -K-C + g—1 + p,. (0.3)

We still have p, dimensional difference between (0.3) and (0.2). Therefore, the cut-
down moduli space by (0.3) many point constraints is empty when p, > 1. This

implies that the corresponding Gromov-Witten invariants is zero, whenever p; > 1.

We show that there is a natural — in fact obvious — p,-dimensional family of

(J, &)-holomorphic maps associated with every Kéhler surface.

14



Definition 2.0.9 Given a Kéhler surface on X, define the parameter space H by

H ={a+a | a € H*(X)} (0.4)

Here H%%(X) means the set of holomorphic (2,0) forms on X. Note that all forms
a € H*%(X) are closed since da = 0a + 8a = da is a (3,0) form and hence vanishes
because X is a complex surface. Thus H C Q7 (X) is a 2p,-dimensional real vector
space of closed forms. We give it the (real) inner product defined by the L? inner

product of forms:

@8 = [ans. (0.5)

We can use the forms a € H to parameterize the right-hand side of the (J, a)-

holomorphic map equation (1.0.5).

Definition 2.0.10 Henceforth the term (J, a)-holomorphic map’ means a map sat-
isfying (1.0.5) for o in the above family H.

Lemma 2.0.11 The zero divisor Z(a) of each nonzero a € H represents the canon-

ical class.

Proof. Write a = 3+ 3 with 8 € H?%(X). Since 3 is a section of the canonical bun-
dle, this means that Z(a) = Z(8) represents the canonical divisor with appropriate

multiplicities. O

Next, using this 2p, dimensional parameter space H, we define the family moduli

space

MAX,[C) = {(f,@) | 8sf=0, Imf]=[C], anda e H }

15



Since we just parameterize the §-operator by 2p, dimensional parameter space, the

formal dimension of the family moduli space is given by

(Formal ) dimc¢M, (X,[C]) = -K-C + g—1 + p,

On the other hand, we define a component of the canonical class to be a homology

class of a component of some canonical divisor.

Theorem 2.0.12 If f is a (J,a)-holomorphic map which represents a class A €
HY(X). Then f is, in fact, holomorphic. Furthermore, if A is not a linear combi-

nation of components of the canonical class, then a = 0.

Proof. Since o € H*%(X) ® H?°(X) is closed and A € H"!(X), it follows from
Corollary 1.0.7a that

[ st =) =o.
Thus f is holomorphic, that is, 8;f = 0. Consequently, |a|?|df|> = 0 by Corol-
lary 1.0.7c. Since df has at most finitely many zeros, we can conclude that a = 0

along the image of f. Hence a = 0, otherwise it contradicts to the assumption on A

by Lemma 2.0.11. O

16



CHAPTER 3

Family GW-Invariants

Let X be a complex surface with a Kéhler structure (w, J, g). In this Chapter we will
define the Family Gromov-Witten Invariants associated to (X, J) and the parameter
space M of (0.4). We also state some properties of these invariants. To keep the
discussion clear we defer the proofs and some technical definitions until later Chapters.

Our approach is to extend the analytic arguments of Li and Tian [LT] to show
that the moduli space of (J, a)-holomorphic maps carries a virtual fundamental class
whenever it is compact. While compactness is automatic for the usual Gromov-
Witten invariants, it must be verified case-by-case for the family GW invariants (see
Example 3.5 below). Thus compactness appears as a hypothesis in the results of this

Chapter.

First, we recall the notion of C* stable maps as defined in [LT]. Fix an integer

[ > 0 and consider pairs (f;X,z;,--- ,z) consisting of

1. a connected nodal curve £ = |J Z; of arithmetic genus g with distinct smooth

=1
marked points z,,- - ,zx, and

2. a continuous map f : ¥ — X so that each restriction f; = fi; lifts to a C'-map

from the normalization %; of ¥ into X.

17



Definition 3.0.13 A stable C' map of genus g with k marked points is a pair
(f;Z,z1,- -+ ,zx) as above which satisfies the stability condition:

o If the homology class [f;] € Ha(X,Q) is trivial, then the number of marked points

in L; plus the arithmetic genus of ¥; is at least three.

Two stable maps (f,X;z;,-- ,zx) and (f',X';2),- - ,z}) are equivalent if there
is a biholomorphic map ¢ : ¥ — ¥’ such that o(z;) =z} for 1 <i< kand f' = foo.

We denote by

7

ok (X, A)

the space of all equivalence classes [f; %, z;,- -+ ,zx] of C!-stable maps of genus g with
k marked points and with total homology class A. The topology of ?‘ kX, A) is
defined by sequential convergence as in Chapter 2 of [LT]. There are two continuous

maps from 7. First, there is an evaluation map
k(X A) — X* (0.1)

which records the images of the marked points. Second, for 2g + k > 3, collapsing

the unstable components of the domain gives a stabilization map
st: Fy o(X, A) = Moy (0.2)

to the compactified Deligne-Mumford space of genus g curves with k marked points.
For 2g + k < 3 we define M, to be the topological space of consisting of a single

point and define (0.2) to be the map to that point.

We next construct a ‘generalized bundle’ E over fl (X, A) x H, again following
[LT]. Recall that each & € H defines an almost complex structure J, on X by (0.5).
Denote by Reg(Z) the set of all smooth points of ¥. For each ([f;Z, 1, - - ,zx], @),
define

Ajpsa (fTX)

18




to be the set of all continuous sections v of Hom(TReg(X), f*T X) with vojy = —J,ov
such that v extends continuously across the nodes of £. We take E to be the bundle
whose fiber over ([f,X;z1,--- ,zk], @) i8 Ajps.(f*TX) and give E the continuous
topology as in Chapter 2 of [LT]. We then define a section  : ?;,,(X yA)XH - E
by

Q([fa 2’ Ty ’xk])a) = df + Jadsz' (03)

The right-hand side of (0.3) vanishes for J,-holomorphic maps. Thus ®~!(0) is
the moduli space of (J,a)-holomorphic maps. The following is a family version of
Proposition 2.2 in [LT].

Proposition 3.0.14 Suppose that the set ®~1(0) is compact. Then the section ®
gives rise to a generalized Fredholm orbifold bundle with a natural orientation and

with indez
r = 2¢(X)[A] +2(g — 1) + 2k + dim H. (0.4)
We will postpone both the proof of Proposition 3.0.14, and the definitions of the

terms in its statement until Chapter 5. Until then we will accept it, and continue

following the construction of Li-Tian.

By Theorem 1.2 of [LT], the bundle E has a rational homology “Euler class”
in F,x(X,A) x H; in fact, since H is contractible this Euler class lies in
H,(?g’k(X ,A); Q) where r is the index (0.4). We call this class the wvirtual fun-
damental cycle of the moduli space of family holomorphic maps parameterized by H

and denote it by
MR (X, A (05)
In particular,

dim [MJP(X, )™ = 2¢1(X)[A] + 2(g — 1) + 2k + 2p,. (0.6)
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The next issue is whether the virtual fundamental cycle is independent of the
Kabhler structure on X. The next proposition is analogous to the Proposition 2.3 in
[LT]. It shows that the virtual fundamental cycle depends only on certain deformation

class of the Kahler structure.

Proposition 3.0.15 Let (w;, J;,g:), 0 < t < 1, be a continuous family of Kéhler
structures on X. Let H; be the corresponding continuous family of finite sub-
spaces defined by (0.4) and let ®; be the corresponding family of sections of E, over

7 (X, A) x H,. If ®;1(0) is compact for all 0 < t < 1, then
9

(MET(X, A = (M (X, A

We also postpone the proof of Proposition 3.0.15 to Chapter 5.

The family GW invariants can now be defined by pulling back cohomology classes
by the evaluation and stabilization maps and integrating over the virtual fundamental
cycle. That of course requires that the virtual fundamental cycle exists, so we must

assume that we are in a situation where ®;(0) is compact.

Definition 3.0.16 Whenever the virtual fundamental cycle [M‘;':‘(X , A)|" exzists,
we define the family GW invariants of (X, J) to be the map

CW (X, A) : [H"(X; Q) x H'(Myk;Q) = Q
defined on ay,--- ,o4 € H*(X;Q) and B € H*(Myx; Q) by
GWH(X,A)(Bron,- -+ o) = [MPFHX, A" 0 (st*(B) Uew' (mfan A - - Amiay)) -
We will use the shorter notation
GW (X, Ao, o)

for the special case when 3 = 1 € H°(M,y); this corresponds to imposing no con-

straints on the complex structure of the domain.
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The condition that $~(0) is compact must be checked “by hand”. In general,

®~1(0) is compact for some choices of A, but not for others.

Example 0.17 Let (X, J) be a Kéhler surface with p, > 1. Then there is a non-zero
element 3 € H?® whose zero set Z(() is non-empty, represents the canonical class
K, and whose irreducible components can be parameterized by holomorphic maps.
Fix a parameterization f : ¥ — X of one such component; this represents a non-zero
class A € Hy(X,Z). Then a = 8 + S lies in the space M of (2.0.9) and ®(f,Aa) =0
for all real . Thus on any Kahler surface with p, > 1, the set $~!(0) is not compact

for an component of the canonical class A.

On the other hand, in the next Chapter we will give examples of classes A in

Kahler surfaces with p, > 1 for which $~1(0) is compact.

Theorem 3.0.18 If there is a constant C, depending only on (X,w, J,g) such that
E(f)+||al| < C for all (J, @)-holomorphic maps into (X, J), then ®~1(0) is compact

and hence the family GW invariants are well-defined.

Proof. Consider a sequence (f,,ay,) of Jy-holomorphic maps. The uniform bound
on ||ay|| implies that the J, lie in a compact family. Since E(f,) < C the proof
of Gromov’s Compactness Theorem (see [PW] and [IS]) shows that {(fs,cs)} has
a convergent subsequence. Consequently, $-1(0) is compact as in the hypothesis
of Proposition 3.0.14. That means that the virtual fundamental cycle (0.5) is well-
defined. The family GW invariants are then given by Definition 3.0.16. O

We conclude this Chapter by listing two important properties of the family GW
invariants. These are analogous to divisor axiom and composition laws of ordinary

GW invariants. Again, the proofs appear in Chapter 5.
Proposition 3.0.19 (Divisor Axiom) If oy € H%(X, Z) then

GW (X, A) (a1, , o) = aw(A) GW (X, A)(eu, -+ yop1).  (0.7)

gvk—
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The second property generalizes the composition law of ordinary Gromov-Witten
invariants. For that we consider maps from a domain ¥ with node p and relate them
to maps whose domain is the normalization of ¥ at p. When the node is separating
the genus and the number of marked points decompose as g = g, + g, and k = k; + k;

and is a natural map
1 Mg, 11 X Mg, ky1 = Mgy (0.8)

defined by gluing (k; + 1)-th marked point of the first component to the first marked
point of the second component. We denote by PD(o) the Poincaré dual of the image

of this map o.

Given any decomposition A = A; + Az, g = g1 + g2, and k = k; + k; let E; @ Ef
be the generalized bundle over

?91.k1+1(X7 Al) X ?92,k2+1(X, A2) xH

whose fiber over ([f1, Z1; {z:}], [f2, 25 {y;}], @) is A?gl 5, @AY, . The formula

JgqJta
Ve([f1, 215 {z:}], [f2, Zai {5}], @) = (dfi + Jadfifs,, df2 + Jiadfajs,) (0.9)

defines a section of E; & E%.

On the other hand, for non-separating nodes there is another natural map
0: My_y k2= Mgy (0.10)

defined by gluing the last two marked points. We also write PD(6) for the Poincaré

dual of the image of 8. The composition law is then the following two formulas.

Proposition 3.0.20 (Composition Law) Let {H,} be any basis of H*(X; Z) and
{H"} be its dual basis and suppose that GWgJ' (X, A) is defined.
(a) Given any decomposition of (A,g,k), if the set W;'(0) is compact for all

0<t<1, then
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GW;’,;H(X, A)(PD(o);ay,--- o)
= A=Ay +Az GW.‘;,;?:1+1(Xa Ar)(a, - oy, Hy) GWy, ki 11(X, Ag)(HY, oty 41, -+ - 5 k)

(b) GW. (X, A)(PD(); 1, - o) = 3 GWM L Lo(X, A)(en, - , o, Hoy, HY)

9-1,

That completes our overview of the family GW invariants. We next look at some
examples, namely the various types of minimal Kahler surfaces. There we can use the
specific geometry of the space to verify that the moduli space is compact and hence

the family GW invariants are well-defined.
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CHAPTER 4

Kahler surfaces with p; > 1

In this Chapter we will focus on the family GW-invariants for minimal Kéhler surfaces
X with p, > 1. The Enriques-Kodaira Classification [BPV] separates such surfaces

into the following three types.

1. X is K3 or Abelian surface with canonical class K = 0. In this case, p; = 1.

2. X is an elliptic surface 7 : X — C with Kodaira dimension 1. If the multiple

fibers B; have multiplicity m;, then a canonical divisor is

K=n'D+) (mi—1)B; where degD=2g(C)-2+x(0x) (0.1)

3. X is a surface of general type with K2 > 0.

We will examine these cases one at a time. For each we will show that the family
invariants GW; (X, A) are well-defined. By Theorem 3.0.18 the key issue is bound-
ing the energy E(f) and the pointwise norm |c| uniformly for all (J, a)-holomorphic

maps into X.

K3 and Abelian Surfaces

Let (X, J) be a K3 or Abelian surface. Since the canonical class is trivial, Yau’s proof

of the Calabi conjecture implies that (X, J) has a Kéhler structure (w, J,g) whose
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metric g is Ricci flat. For such a structure all holomorphic (0,2) forms are parallel,
and hence have pointwise constant norm (see [B]). Thus H = C consists of closed
forms a with |a| constant. Furthermore, the structure is also hyperkéhler, meaning
that there is a three-dimensional space of Kahler structures which is isomorphic as
an algebra to the imaginary quaternions. The unit two-sphere in that space is the

so-called Twistor Family of complex structures.

Consider the set 7o = { J, | @ € H}. Since a has no zeros, equation (0.7) shows
that J, — —J uniformly as |a] — co. We can therefore compactify 7y to 7 = P! by
adding —J at infinity.

Proposition 4.0.21 7 is the Twistor Family induced from the hyperkdhler metric

g.

Proof. Let a € ‘H with |a| = 1. It then follows from Proposition 1.0.8 that J, =
—K, and (o, J,,g) is a Kahler structure on X. On the other hand, we define o’
by o(u,v) = a(u,Jv). Then |&/| =1 and o’ € H since 3’ is holomorphic for each

holomorphic 2-form 3. Moreover, by definition we have
Jo =Koy =—JKy = JJy.

Since (o, Jo, g) is also Kahler and JJ,Jp» = —Id, the Kahler structures {J, Jo, Jor }
multiply as unit imaginary quaternions. It follows that 7 is the Twistor Family
induced from the hyperkhler metric g. O

Lemma 4.0.22 Let A be a nontrivial homology class with w(A) > 0. Then there
ezits a constant C, such that every (J, a)-holomorphic map f : C — X representing

A with o € H satisfies

1

E(f)=3

/ AP <w(A)+Ca  and |a| < 1.
)]

25



Proof. Since |a| is a constant, we can integrate Corollary 1.0.7b to conclude that
|| < 1. Let C4 be an upper bound for the function a — |a(A)| on the set of @ € H

with |a| < 1. Because « is closed, Proposition 1.0.6a and Corollary 1.0.7a imply that

B(f) =5 [l = [ £+ a) =w(a) + o) Sw(4) + Ca. O
(o} p

Theorem 4.0.23 Let (X,J) be a K3 or Abelian surface. For each non-trivial
A € Hy(X,Z), the invariants GWQ{ M(X,A) are well-defined and independent of J.
Furthermore, if A= mB and A' = mB’ where B and B’ are primitive with the same

square, then

GW. (X, A) = GW (X, A).

Proof. For any nontrivial homology class A, we can choose a Ricci flat Kéhler
structure (w, J, g) such that w(A) > 0 ( if w(A) < 0, then we choose (—w, —J,g)).
It then follows from Lemma 4.0.22 and Theorem 3.0.18 that G'Wg‘{‘,:i(X , A) is well-
defined.

Bryan and Leung have applied the machinery of Li and Tian to define family GW
invariants associated to the Twistor Family 7 [BL1, BL2]. Their invariants, which
we denote by

<1>; (X, A),

are actually independent of the Twistor Family since the moduli space of complex
structures on X is connected. On the other hand, if A = mB and A’ = mB’ where
B and B’ are primitive with the same square, then there is an orientation preserving
diffeomorphism of X which sends the class B to the class B’. That implies that
®T.(X, A) =<I>Z:,c(X, A).

To complete the proof it suffices to show that

GWH(X, A) = ®T(X, A). (0.2)
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For that, recall from Theorem 1.2 of [LT] that the moduli cycle is defined from a
section s of a generalized Fredholm orbifold bundle E — B and is represented by
a cycle that lies in an arbitrarily small neighborhood of s~!(0). Both sides of (0.2)
are defined in that way using the same Fredholm bundle E over the space of Kéhler
structures. In the first case B is {J,|a € H} and s~!(0) is the set of of all (f,a)
where f is a J,-holomorphic map, and in the second case B = 7 is the Twistor Family
and s71(0) is the set of J,-holomorphic maps for J, € T . By Proposition 4.0.21
{Ja| @ € H} parameterizes the Twistor Family after adding a point at infinity to H.
But since w(A) > 0, Lemma 4.0.22 shows that |a| < 1 for all J, holomorphic maps
representing the homology class A with o € ‘H. Thus the moduli cycle is bounded
away from the point at infinity, so the two definitions of the moduli cycle are exactly
equal. That gives (0.2) O

Elliptic Surfaces

First, we recall the well-known facts about minimal elliptic surfaces X with Kodaira
dimension 1 [FM].

1. X is elliptic in a unique way.

2. Every deformation equivalence is through elliptic surfaces.

Therefore, there is a unique elliptic structure = : (X, J) — C. Moreover, for the fiber

class F and any homology class A € Hy(X; Z), the integer
F - A+ deg(m,A) (0.3)

is well-defined for each complex structure J and it is invariant under the deformation

of complex structure J.

Let (w, J,g) be a Kéhler structure on X and H be as in (0.4). For a € H, let |||

denote the L? norm as in (0.5).
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Lemma 4.0.24 Let A € Ha(X; Z) such that the integer (0.3) is positive. Then, there
ezit uniform constants Eg and N such that for any J,-holomorphic map f: X — X,

representing homology class A, with a € H, we have

E() =3 [P <Ea, lall<N

Proof. It follows from (0.1) and Lemma 2.0.11 that for any nonzero a € H, the zero
set of « lies in the union of fibers F;. Let N(a) be a (non-empty) union of e-tubular
neighborhoods of the F;. Denote by S the unit sphere in H and set

. . 2
m(J) = min e X\N(a) lof and N = m(J)’

We can always choose a smooth fiber F C X \ N(«) such that f is transversal to
F. Let f~Y(F) = {p1,--- ,pn} and for each i fix a small holomorphic disk D; normal

to F at f(p;). We can further assume that f is transversal to each D; at f(p;).

Define sgn(r) to be the sign of a real number r if r # 0, and 0 if r = 0. Denote
by I(S, f), the local intersection number of the map f and a submanifold S — X
at f(p). In terms of bases {e;, e2 = jei} of T, X, {v1, v, = jui} of Ty, F, and
{vs, v4 = jvs} of Ty, D; we have

I(F, f)p, = sgn (v Av® A° Av)(v1, 03, fuen, fuez)) = sgn ((v° A v*)(fuen, fuea))

I(D;, f)p, = sgn ((v! Av? A3 AvY)(feey, fueo, v3,v4)) = sgn ((v' Av?)(f.e1, fue2)) .

Comparing with sgn f*w(ei,ez) = sgn((v' Av?)(f.ey, fuez) + (v* Av*)(foey, fue2))
shows that

I(F’ f)Pi + I(Di’ f)P& = 5gn (f‘w)(elv 62)' (0'4)

Now suppose m(J)||a|| > 2. Then |a| > 2 along each F;, so by (0.4) and Corol-
lary 1.0.7b

S U Flpy +1(£,Di)p) <0.
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This contradicts to our assumption A - f + deg(m,A) > 0 since by definition
S I(f F)p, = A- f and Y, I(f, D;)p, = deg(m.A). Therefore ||a]| < N with N
as above. The energy bound follows exactly same arguments as in the proof of

Lemma 4.0.22. O

Proposition 4.0.25 For any homology class A with (0.3) positive, the invariants
GWQ‘{ H(X,A) are well-defined and depend only on the deformation class of (X, J).

Proof. It follows from Lemma 4.0.24 and Theorem 3.0.18 that the invariants
GW; M(X,A) are well-defined. On the other hand, (0.3) is invariant under the de-
formation of J. Therefore, applying Proposition 3.0.15, we can conclude that the

invariants only depends on the deformation equivalence class of J. O

Surfaces of General Type

Let (X, J) be a surface of general type.

Proposition 4.0.26 If A is of type (1,1) and is not a linear combination of compo-
nents of the canonical class, then we can define the invariant GW;,’,;"(X ,A). They
are invariant under the deformations of complex structures which preserve (1,1)-type

of A.

Proof. Lemma 2.0.12 and Theorem 3.0.18 imply that the invariants GW75(X, A)
are well-defined under the assumption that A is type (1,1). On the other hand,
Proposition 3.0.15 also implies that the invariants GWg’fk(X ,A) are invariant under

deformations of the complex structure which preserve the (1,1) typeof A. O
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CHAPTER 5

Virtual Moduli cycles

This Chapter is devoted to the technical proofs of the analysis results stated in Chap-
ter 3. Specially, we will prove Proposition 3.0.14, 3.0.15, 3.0.19, and 3.0.20.

We first recall the notion of orbifold bundle.

Definition 5.0.27 A topological fibration w : E — B is an orbifold bundle if there

is an open covering {U;} of B such that
(a) each U; is of the form U;/T;, where T'; is a finite group acting on U
(b) for each i, there is a topological bundle E; — U;, such that E|U'_ = E, /T

(c) For any i, j, there is a bundle map

q)‘j : Ejl'j—‘(u,-nuj) - ilw‘._l(Ul-nt)
which is compatible with actions I'; and I'; and descends to the identity map of

E., £y where m : Uy — Uy is the natural projection
(d) for each z € =1 (U;NU;), there is a small neighborhood U,, such that ®; 1)
J' z
is an isomorphism from each connected component of m; 1(U,) onto its image

Any such a m; : U; — U, is called a local uniformization of B. We denote ¢i; by
the induced map from n; (U;NU;) to 7} (U;NU;). An orbifold section s: B — E

is a continuous map such that for each i, s, lifts to a section s; of E; over Ui.
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We now define a generalized Fredholm orbifold bundle following [LT].

Definition 5.0.28 An orbifold bundle E — B is called a generalized Fredholm

orbifold bundle of index r if there is an orbifold section s : B — E satisfying
(a) s71(0) is compact with a finite covering {U;}

(b) for each s; : U; — E;, there is a topological subbundle Ey; of finite rank over U;
such that

(i) 87 (Ew) C U, is smooth of dimension r + rk(Ey)
(i1) Em'-:‘(soe) is a smooth bundle over s7'(Ey;) with s,-|,i-1( Eo:) STR0OtA

(c) for each i, there is a finite dimensional vector space F;, on which I'; acts, and

a I';-equivariant bundle homomorphism v); : U;x F. > E‘.-, satisfying

(i) ¥y A soyer s7Y(Ex) x F; — Ey; is smooth and transverse to s; along
L 0i) X Fy
8; l(0) N 0,'
(i) if dimF; < dimF;, then there is an injective bundle homomorphism

0,‘]' : ﬂ;l(U,' nt) X Fj — 7T,~_1(U,' nt) X E

such that p; 0 0;; = ¢;; o p;, where p; : U; x F; — U is a natural projection,
and ; 0 0;; = ;5 0 ¢p; on 77 (U; NU;) x Fj

(1) dimFy < dimF; < dimF;, then 6 = 6;; 0 ;) over ' (U; N U;)

(iv) for any z € U; NUj, 6;; is I';-equivariant near w~'(z), where I'; is the

uniformization group of B at x

For each i, (F,, Ey;) is called a resolution of s; : U; — E;.

Proof of Proposition 3.0.14 Following Chapter 3 in [LT], we will show that
®:F (X, A)xH—E
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satisfies Definition 5.0.28b. Namely, we will show a family version of Proposition 3.4
in [LT]). Then Proposition 3.0.14 follows from the proof of Proposition 2.2 in [LT].
The proof of above assertion consists of 4 steps. First, we recall local uniformizations
of ?;,k(X ,A) in [LT]. Then these give the local uniformizations of f‘;,k(X ,A) X H in
an obvious way. Second, we recall the definition of approximated maps and weighted
norms as in [LT]. Next, we show the main estimates for the linearization of the
Cauchy-Riemann operator 9, and its adjoint operator. These are family versions of
Lemma 3.9 and 3.10 in [LT]. Finally, we use the main estimates of the previous step

and the Inverse Function Theorem to conclude our assertion.

Step 1 In this step, we recall the local uniformizations of ?;,k(X ,A) in [LT]. In the
following, we will denote by C a stable map (f,Z; z;,-+- ,zx). Wefix 1 > 2. Let [C] =
[f, 521, ,zi] € ._7?‘9’,:()( ,A). A component of ¥ is called a bubble component if it
collapses to a point under the stabilization of ¥. We add one or two marked points to
each bubble component, to obtain a stable curve (X;z;, -+ ,zk, 21, - ,21) € /_\A_g,kﬁ.
Let W be a small neighborhood of (£;zy,- -+ ,zk, 21, -+ ,21) in Kd—g,ku and W be the
uniformization of W, i.e. W = W/T, where I' = Aut(Z; {z:}; {2;})

Let I be the universal family of curves over W. We fix a metric h on U. Define

the distance of two maps f, and f, from fibers of I over W as follows:

dy(fi, f2) = SUPzeDom(f;)SUPd, (y,z)=dn (z,Dom( fz))dx(f 1(2), f2(y))

+ SupyEDom(fg)supd;,(:t,y):d,.(y,Dom(fl ))dX (fl (‘T) ) f2 (y))

Since the homology class of any non-stable component under the map f is non-
trivial, there is at least one regular value of f on each unstable component. Therefore,
we can assume that f~!(f(z;)) consists of finitely many immersed points. We choose

local hypersurfaces Hy,- - - , H; such that H; intersects Im(f) transversally at f(z;).
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Fix a small § > 0, and define

Maps(W) = { (£, {&}, {%}) | Ei{&}{5)) e W, dw(f, f) <6,
fis C° on £ and C' on Reg(X), and f(%;) € H; }.
Let K be any compact subset in I/\ Sing(i4) of the form : there exits a diffeomorphism
YK : (KNE) x W — K such that ¥x((K N T) x {t}) lies in the fiber of & over
t = (£;{&}, {%}) € W. Then we define
Map;(W, K) = { (f,Z;{&},{%}) € Map(W) | || f¥K| nmpnyy — fixnsllor < 6,
where t = (Z; {#:},{%}) e W }

By forgetting added marked points, each point in Maps(W, K) give rise to a

stable map C and consequently, an equivalence class [C] € ?;,,,(X ,A). Let pwk :

Maps(W, K) — F (X, A) be such a projection map and let

Map,;(Wo, K) = pw(Maps(W, K) ).

Let Aut(C) be the automorphism group of the stable map C. It is a subgroup
of I' = Aut(Z; {z;};{}), so it is finite and acts on . Denote by m(C) its order.
;From now on, K always denotes a compact set in I/ \ Sing(i{) containing an open
neighborhood of U; f~(f(z;)). Moreover, we may assume that K is invariant under

the action of Aut(C).

There is an action of Aut(C) on Map,;(W, K) with Map,(W,, K) as its quotient:
For 7 € Aut(C) and C' = (f',%'; {z}}, {#;}) € Maps(W, K) we define

n(C) = (f771, 7(T); {7z} {7(z))}).
Then Map,;(Wo, K) = Mapgs(W, K)/Aut(C), see Lemma 3.1 [LT].

Let V C 'H be a small neighborhood of a. The topological bundle Ej,,, . «)xv
over Map;(W,, K) x V lifts to the bundle

ElMup;(W.K)xV — Mapy,(W, K) x V. (0.1)
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In fact, E — ? x(X,A) x H is a topological orbifold bundle with the local uni-
formization

pw,k X I : Maps(W, K) x V — Mapy(W,, K) x V.

Without further confusion, we simply denote the lifted bundle E,,,_ .y by E. On
the other hand, the section ® defined as in (0.3) lifts to a section, still denoted by @,
of E over Map,(W, K) x V.

Step 2 In this step, we recall the definition of approximated maps and weighted
norms in [LT]. In the following, we assume ®(C,a) = 0, i.e. f is Jy-holomorphic.
Denote by ¢y, ,g, the nodes in X. For any ¢; (1 < ¢ < s), by shrinking W if

necessary, we may choose coordinates w;;,w;2, as well as t in W, near C, such that

the fiber
(Ze; {z:(t)}, {2;(t)})

of U over t is locally given by the equation
wiwiz = €(t), |wal| <1, |wie| <1,

where ¢; is a C*®°-function of t.

For any y in %, if |wy| > Ly/]e(t)] or |wie| > Ly/[ei(t)] for all i, where L is
a large number, then there is a unique m(y) in ¥ = Xy such that dx(y,m(y)) =
dr(y,Z). Note that if y is not in the coordinate chart given by w;;, wi2, then simply
set w1 (y) = wiz(y) = oo

Introduce a complex structure Jo = Jju+ Joon UxXandlet F: T —Ux X be

the graph of f. Put p; = F(q;). We may assume

1. F{{wawis = 0 | |lwy| < 1, |wie| < 1}) is contained in a coordinate chart

(w1, u2n) of U x X near p;.

Jalgs) =~ + O(lul) where [u] = /5, [usf*
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3. In complex coordinates u; + v —luny;, F(wi,wi2) = (wir,wi2,0,---,0) +
O(|lwi | + |wig|?).

Then we can extend F to a neighborhood of ¢; using the formula in 3.

Let 3 be a cut-off function such that
B(z) =0 for |z| <1, PB(z)=1 for |z|>2, and |df(z)| < 2.
Definition 5.0.29 We define fi(y), where y € L;, as follows:

f(me(y))  if either |lwia(y)| > 1 or |wia(y)| > 1 for all i

fe= 9 m(F(y) if lwa(y)| < 1 and |wia(y)| < § for some i

| 9:(¥) if 3 <lwa(y)| <1ori <|wa(y) <1

where gi(y)

=expy(q) (B(20n(y, &) Jexpr, f(m(®) + (1 - B(2dn(y, 49)) ) exp7, ma(F(9)) )

Next, we will define weighted norms as in [LT]. Let r be the distance function to
the singular set Sing({/) with respect to the metric h on . In the below, all norms

and covariant derivatives over X, are taken with respect to the induced metric ), .

Definition 5.0.30 For any smooth section £ € I'°(Z,, ffTX), we define

€ll1p = ( / (|£|P+|ve|ﬂ)dm);+ ( / r-ﬁ?’ﬂvslzdm)’

LY*(Zy, f;TX) = { € € T°(Z0, 7TX) | ||Ellip < o0 }
07 = { (£8,0) | €€ (5, ITX), te W, pev )
where p > 2 and T°(Z,, ffTX) is the space of continuous sections of ffTX over

;. If ¥; has more than one components, then £ consists of continuous sections of

components which have the same value at each node.
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Definition 5.0.31 For n € Hom(%,, f;TX), we define

1 1

P _2(p-2) 2

IIan=( / Inl”dm) +( / 2 |n|2dut)
2: E!

L2 (ASA(£:TX)) = { 1 € Hom(TS,, f;TX) | nig = ~Jgm, |lnlly < oo }

L(ATX) = { t.8,0) | ne I (A(FTX)), teW, BeV }

Lemma 5.0.32 For any p > 2, there ezits a uniform constant ¢ such that for any

teWandBeV
1®(fe B)lp < c([t]% + |la = B]])

Proof. It follows from Lemma 3.8 in [LT] that ||®(f,, )||, < c|t|2. It also follows
from Lemma 3.7 in [LT] that |df;| is uniformly bounded. On the other hand, we have

/ r 5 dp: < c(p).
>

Therefore, we can conclude that

. L
12(fe: B)llp < N@(f2s @)lp + [1(Jg = Ja)fellp < c(|t]2 + [le = B]]). O

Step 3 In this step, we will show main estimates. The linearization L, of ® at

(ft, B) with respect to f, is an elliptic operator

Lyp: L'*(S, f;TX) — LP (A‘};,‘(f:TX)) given by

Lup(€) = VE+ JsVE e+ 5 (Velg) (dfisi+ Jody). 02)

where j; is the complex structure on ¥;. Its adjoint operator L; ; with respect to the

L%-inner product is given as follows: for any n € Q?,'; (ffTX)

18(M) = =2Ve, (M) = 2V, (m2) + Brp(n) (0.3)
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where {e;,e2 = jte;} be an orthonormal basis on ¥;, 7, = n(e;),n2 = n(ez), and

B (n) is defined by

(€, Bip(n)) = ((VeJp) fruez, m) — ((VeJp) fruer, m2).

For the proof of (0.2) and (0.3), see lemma 6.3 and 6.4 in [RT1].

The next lemma follows from Lemma 3.9 in [LT]. This shows the uniform elliptic

estimates for L, g.

Lemma 5.0.33 For any fired p > 2, there is a uniform constant c such that for any
t,B, and £ € LY*(%,, fTX), we have

€l11p < c(|Leséllp + [1€]]12)- (0.4)

Proof. It follows from Lemma 3.9 in [LT] that (0.4) holds with some constant c¢(3)
which might depend on |V Js|. However, by shrinking V), if necessary, we can choose

cwithc>c¢(B) forany e V. O

Fix a node ¢; of £ and choose t € W with €(t) # 0. Let w;; = pe‘/:f". Then
Wig = ]ﬂ'pme‘/‘_l(%"") and r? = p? + l%llf’ where €;(t) = |e;(t)|eV~1%. We define the

neck region by
Nes =TSN { (wi,wie,t) €U | r<1/k} and p=r 5. (0.5)
Denote by h; the induced metric on Ni, and let h, = r=2 p? h,. Then we have

he=dp? + p*d6? and du, =r"2p’dy, = %dpde

Lemma 5.0.34 For any fized p > 2, there erist kg and a uniform constant c, which

is independent of t and 3, such that if k > kg, then each n € Q?,: (ffTX) satisfies

/N olnlPdu < c / 1L ()P dpie + ¢ / o (nl+|venl?) do  (0.6)
k,t

Ni,e ONg,e
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Proof. Using the metric h. on X,, for any n € Q o (ffTX), we can write it as

n=mdp— Jgm pdb. In terms of p and 8, we also have

2 _ 1002 — 2 |2 Om 2 10m,
2l = ni2= (2) 1nP e 1wt =2 (124 L 20p)

For fixed p > 2, we can choose ky which satisfies

2
(&) <3
ko p

For k > kg, we first show the following :

/ elnl*dp. < 4 / @ |nl*d + / @ |Ven|2 dpe. (0.7)
Nk'g oNk,t

Ni,¢

Let ¥(p) = fp’; @ pdp, where py < p on Ni;. Then 9 < pp't9, where ¢ = L;g.

Consequently, from the integration by parts, we have

/ @ nf* dp
Ni,e

2/ pp|m|*dpdd
N,
E
) ¢|n1I2d9—4/N ¥ (m, ) dpds
k,t

AN ¢

< 2/ <p|n|2d0+/ pplm|*dpdd + 2/ @ pp*| Ven |2 dpds.
ANy, Ni Nie

Using p < r < 1/kg, we can rearrange the above to conclude (0.7).

Next, we will show the following :

[ eivaldus e (lL S+ pzlmlz)d#cﬂ [ e vea) as
Nk,t Nk,t aNk.t

- (0.8)
Since |V Jg| and |df:| are uniformly bounded,
IBrus(m)] < cldilelm | < cZldilIm | < eZiml.
Consequently, we have
Ligm) =~ 5+ Jp 3 o +O(£lm ). 09)

06
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This implies that

1 / e 12 / (3711 1 3771 2 om 1 om )
- Venl2 du. = J— +2 ) - ] dpe
5 Nk,,‘pl nlc dp . Iap b5l T2(55 9 >3 )
0
< | (c|Lﬂ<n)|2+c—|m|2+2< . gp 3 S ) de
Ni,¢
(0.10)

Let Jg, = Js(f(gi)). If the neck region Ni, is sufficiently small, then |Js(f;) —
Jso| < 1/(4p) on Ny, for any B € V and t € W. Using the fact that Jj is compatible

with the metric g on X, we have

om . 1om\ _ g \Om 10m\ [/ om o 10m
2<ap"]"p60> <(']ﬂo ﬂ)ap >0 e » (Jgo — Jp) = 530
1
p

om , LomN_ [, om 10m
+< 3 » Ja ; ae> <J,;° 30 50 > (0.11)
We have
om 10 om 18m
/Nk, K(Jm 7)o o’ p 69> < o = J p 86 Gte
< L[ oo (0.12)

- 4p Ni,¢

On the other hand, using integration by parts, we also have
om 1 0m > < Om 10m >
== Jg - — J, d
/I-V,‘_,(p< ap " p 08 % p oo |
5 )0 [, (newap)
a, J do — —a,J dp do
/m,. i <"‘ %56 Nes o

< C/ @ (Im —al*+|V°nl2) df
ONi¢

p—2 2 10m
—_— - Iy - 0.13
N o (Zalm-al+ 1> G0r) da (0.13)
where a(p) = = [m(p,0)dd and ¢’ = %2 %7—“1- Now, apply Wirtinger’s
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inequality [GT] and then use (0.9) to derive the following :

1 2 / 6’712
—-al®d c S
/wa—zlm |* du. 7 paol

1 67]1 2 2 2)
S 1+ +c L} +c d c.
/I‘Vk.z ‘P(( 2(17—2)) p 5, Lz sl Im|* ) du

(0.14)

Combining (0.10), (0.11), (0.12) (0.13), and (0.14), we can deduce (0.8).

On the other hand, ¢(r?/p?)dp. = r%(l/p)dpde and [ r#(1/p)dp < c(p)rs, where

c(p) = 25 (p/4). Therefore, using integration by parts, we have

7.2 2 2
/ p—|m|*dpe < c / plnl*d6 + ¢ / rem|*duc + ¢ / r7|V°n|2dp.
JNpe P ONi,e Nie Nt
(0.15)

Finally, (0.6) follows from (0.7), (0.8) and (0.15) since every constant in the above

estimate depends only on p and we can assume r is arbitrary small. O

Step 4 In this step, we will show a family version of Proposition 3.4 in [LT]. This
proves that @ : ?’ x(X,A) x H — E satisfies Definition 5.0.28b. Consider the vector
bundle Ey — U x X x V whose fiber over (g, p, 8) consists of all € Hom(Tqu y TpX)
with 7 j;; = —Jon. We denote by

P?’l(a’TX)V
the set of all sections of Ey — U x X x V, which are C* smooth and vanish near
Sing(i). For € = (f,£;{z:},{2}), B € V and n € I'?'(U,TX)y, we define the

restriction 7, = as follows: for any z € £

M, @) = 1(z, (), 6).

Lemma 5.0.35 There is a finite subspace S C I (U, TX)y such that S)c.a) 18 trans-
verse to Ly q, i.€., if )1, -+ , M, span S, then Micay " Mrlicm) and Im(Ly) generate
Lr (A‘}':(f‘TX)), and dim(S) = dim(S) ,,), where S ., = { Mooy |nesS}.
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Proof. Denote by Coker(L;,) the space of all n € L? (/\?,:: (f*TX)) such that
L% ,(n) = 0. Then it is a finite dimensional subspace of L? (/\?,’al (f*TX)) and for
any n € L (A} (f*TX)), there are £ € LY*(Z, f*TX) and ny € Coker(Ly,) such
that Ly ,(£) = n — no. Moreover, £ € L'?(Z, f*TX).

On the other hand, the set I\, = {n|., |7 € I}'(&,TX)y} is dense in
L (Agf( f*TX)) . Therefore, we can always find 7, € I (U, TX)y such that the
restriction 7y, , is not in Im(Ly o) UCoker(Ly,q), if Coker(Lysq) # {0}. Then, n;|., =
Lsa(€) + ! for some £ in L'P(Z, f*TX) and n' in Coker(Lysqo). Let Coker'(Lyq)
be the orthogonal complement on (n') in Coker(Ly ). Its dimension is one less than
those of Coker(L;q). If Coker!(Ly o) # {0}, then we can also find 7, € I} (U, TX)y
such that 72|, . = Ly o(€')+am ., +n? for some ¢ in L'?(Z, f*T X)), some nonzero n?
in Coker(Ly,o), and some constant a. In this way, we can use the induction on the di-
mension of Coker(Lyq) to find ny,--- ,n, € F?’l (L?, T X)y such that Micay """ > Mlc.a)
and Im(Ly,) generate L? (A} (f*TX)). O

Denote by Cit!(U,TX) the set of all C**'-smooth sections of TX — U x X,
which vanish near Sing(/). Let S be as in Lemma 5.0.35 and s be the orthogonal
projection onto the orthogonal complement of S, , in L? (Ag;:( fTX )) Let P
be a finite dimensional subspace in C4*!(i,TX) such that dim(P)=dim(P;) and
gs(Ker(ms,, . L(sa))) = Py, where g5 : L'*(Z, f;TX) — Py, is the projection with

respect to the L2-inner product.

Lemma 5.0.36 Let P and S be as above, and t and ||B — a|| be sufficiently small.
Then for any p > 2, & € Py, and n € LP (/\3;91( ffTX )), there are unique £ €
LY?(f;TX) and no € Sy, ,,, satisfying:

gs(&) = &, Lip(§) =n— o, (0.16)

maz{ ||€]|1,p:[Imollp } < cmaz{ ||&oll1p, ||l }
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where ¢ is a uniform constant.

Proof. Its proof is similar to the proof of Lemma 3.10 in [LT]. We first show that
there is £ and 79 such that L, () = n — np for sufficiently small |t| and ||a — G]].
Suppose not. Then we can find a sequence {(t,,5,)} with (¢,,8,) — (0,) and 7, in
Coker(Ly, g,) with ||n,]|, = 1 such that 7, is perpendicular to S with respect to the
L3-metric on L? (Ag;:ﬂ (faTX ))

It follows from the standard elliptic estimates that 7, converges to some 7 in
L (A?,':( f*TX)) outside of nodes of £. Since 7 is perpendicular to S and L} ,(n) =0,
we have 7 = 0. This implies that 7, — 0 on the compliment of Neck region as in
(0.5) and thus ||n,]|, — 0 by Lemma 5.0.34. This contradicts to ||n.||, = 1.

Next, we show that there is a unique £ and 7 satisfying (0.16). First, choose £

and n with L, 5(€) + 1o = n and set &' = £ + gs(§o — §) and 1y = no + L¢ g (gs(§ — &o))-
Then £’ and 7’ satisfy (0.16). One can prove the uniqueness by the similar argument

as above.
Finally, we show the estimate by contradiction. Suppose not. Then there is a
sequence { (tn, 8s) } with (tn,5.) — (¢,8) and &, in L'P(f; TX) and 7o, in S such

that

() max{ ||€all1p:IMonllp } =1, and (i) max{||éon|l1p: ||7nllp } — O

where gs(¢,) = fon and L, g,(&s) + Mon = 7Mm. By Sobolev Embedding Theorem,
we may assume that &, converges to some £ and £y, to 0 both in L'2-norm. We
may further assume that 7o, converges to some 79. Note that L;g(§) + no = 0 and
gs(&) = 0. Therefore, by uniqueness we have £ = 0 and 79 = 0. On the other hand,
by (i) ||€|lip — 1. It then follows from Lemma 5.0.33 that ||{,||:,2 are uniformly

bounded away from zero. This contradicts to &, — £ =0in L¥2. O

Let S be as in Lemma 5.0.35. We define Eg over Mapg(W, K) x V as follows : for
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any (C, 6) in Maps(W, K) x V,
ESien = Slea:
The following shows that & : ?;,k(X ,A) x H — F satisfies Definition 5.0.28b.

Proposition 5.0.37 By shrinking V and W if necessary, if 6 is sufficiently small
and K is sufficiently large, ®~!(Es) is a smooth submanifold, which contains (C,a),
in Maps(W, K) x V and of dimension

2c1(A) +2(9 — 1) + 2k + 2dimH + dimS. (0.17)
Moreover, Es — ®~'(Es) is a smooth bundle with ®|4-. g,

Proof. This proof is similar to the proof of Proposition 3.4 in [LT]. By shrinking V
and W if necessary, we can assume that for any (t,3) € W x V, Lemma 5.0.36 holds.

We first show that there exists an ¢y > 0 such that the subset

{ (t,ﬂ,E) € Ll‘p I s ‘I’(t7ﬂ’£) = Oa ”6”1.}7 <é€p } (018)

is smooth of dimension dim(S) + 2¢;(A) +2(g — 1) + 2k + 2! + dimA.
Let VA =1/2(Js — J3VJp) and 7 is the parallel translation with respect to V2.
Define a map ¥ : L'? — LP(A®}(TX)) by ¥(t,,£) = 7 ®(expy,(€),8). Then the

linearization of ¥ at (t, 3,0) is L, g) as in (0.2). Now, consider the following expansion

‘I’(t,ﬂ,f) = \I’(t,ﬁ, 0) + L(t,ﬂ)(g) + H(t,ﬂ)(g)

where Hy, g is the higher order term satisfying ||H,5)(€)|lp < c|l€]|cell|€]]1,p for some
uniform constant c; this constant may depend on Jg, but we can still assume it is

uniform on 3 by. shrinking V), if necessary. It also follows from the Sobolev Embedding

Theorem that
| Hee) E)llp < clléllF, (0.19)
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Let Ep be the bundle induced by P over W x V with fibers Py ) = Py, and define

a map

Z: LY x Es — LP(A"'TX) x Ep by

(taﬂ’é’UO) - (t’ﬂi ‘y(t,ﬂ1€) +n0)q5(£))
Then the linearization of = at (¢, 3,0,0) is the map

DE: LY (%, fiTX) x Sqp) — LP(AS, f;TX) x Py given by

(€,m0) = (L, (&) + n0,qs(£))

By Lemma 5.0.36, it is an isomorphism with uniformly bounded inverse. Therefore, by
the Inverse Function Theorem there exists an ¢y > 0 such that = is a diffeomorphism

from the region

{ (tvﬂ’§1n0) € L'? x Es I max{ “6”1,}’) ”7’0”1’} < ¢€o }

onto its image. Furthermore, by Lemma 5.0.36, if |¢t| and ||a — (|| are small, then for

any & € P p) with [|£o||1, < €0, there is a unique (¢, 3,£,70) satisfying

=(t,8,€,m0) = (t,5,0,&).

On the other hand, it also follows from (0.19) that ||n||o < c||é]||1,, when ¥(t,5,€) +
1o = 0. Therefore, we can conclude that the subset (0.18) is parameterized by W, V,
and some open set of P. Note that by our choice of P and S, dimP—dimS = ind(L, ).
The subset (0.18) is thus smooth manifold of dimension ind(L, ) + dimW + dimS+
dimV.

Next, we will show that if é is sufficiently small and K is sufficiently large, then

®~!(Ejs) is an open subset of the following set

{ (t’ﬂa E) € Ll'p l Ws\I’(t,ﬂ,ﬁ) = 0’ ”€||1,P < €y, efot&(zJ') € Hj } (020)
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where 2; for 1 < j < [ is the added marked points and H; for 1 < j < [ are local
hypersurfaces given in Step 1. Note that it is a smooth manifold of dimension (0.17).

Let (f,%;{z:},{2},8) in ®(Es). Denote by t the corresponding point
(£; {z:}, {2} in W. Since d(f,f) < 6, there is some & in I'9(Z,, f;TX) with
f = exp;§. It follows from Lemma 3.12 in [LT] that ||€|[1p < €. This implies
that ®~!(Es) is an open set of (0.20) and thus ®~1(Es) is a smooth manifold of
dimension (0.17).

Finally, it follows from the smooth dependence of solutions of ms®(f, 8) = 0 that

Es — ®~!(Es) is a smooth bundle with ®|4_ () smooth. O

Proof of Proposition 3.0.15 This proof is similar to the proof of Proposition 2.3
in [LT]. Let &, : F.

9,

(X, A) x H; — E,; be the generalized Fredholm orbifold induced
by the Kéhler structure (w;, Ji, g:). We define

H={(ta)|aecH )}

Similarly as in Chapter 3, we then define a generalized bundle E over 7 a.k(X, A) x

and consider

V:F,4(X,A) x H — E defined by
( (f?z’ {2),‘}), (t7a)) - df + Ja(t) df]

where J,(t) is the almost complex structure on X defines by J; and a € H; as in
(0.5). By definitions, we have \Il|?: LK AYXH = ®,. Since all ®;(0) are compact,
it follows from the same argument as above that ¥ : 7—" HX,A)xH — Eis a
generalized Fredholm orbifold bundle. Moreover,¥ gives homotopy between ®¢ and
®, as generalized Fredholm orbifold bundles. Now, this proposition follows from
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Theorem 1.2 in [LT]. O

The following lemma gives two facts about the setup used by Li and Tian which

are used in the course of several proofs in [LT].

Lemma 5.0.38 Let s: B — E be a generalized Fredholm orbifold bundle.

(a) If p: B — V be a continuous map and K be a cycle in V with PD([K]) =~
Then s’ : p"}(K) — E' is also a generalized Fredholm orbifold bundle, where

!/ L
=8 4 MdE =E, _, . Moreover,

ine(s:p'(K)—> E')=e(s: B— E)Np*(y)
where i : p”}(K) — B.

(b) If & : B — FE' is a generalized Fredholm orbifold bundle with a continuous
onto map m : B — B’ and an injective bundle map 7 : n*E’ — E such that

s71(0) = (n*s')71(0), then

m.e(s:B—> E)=e(s:B" = E)

Proof of Proposition 3.0.19 Let ®: f‘ (X, A) — E be a generalized Fredholm
orbifold bundle as in (0.3) and o, € H%(X;Z). Choose a cycle K which represents
a Poincaré dual of . Then by Lemma 5.0.38a, [M74(X, A)VI' N ev}(ax) can be
regarded as a class in H,(ev;'(K);Q), where ev; is the evaluation map of the k-th

marked points.

On the other hand, there is a continuous surjective map

m:ev N (K) = For-1(X,A) x H
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which forgets the k-th marked points. 7 satiefies the condition of Lemma 5.0.38b and

hence we have
m. (IMI(X, AV N evi(ar)) = MP o (X, A

That implies Proposition 3.0.19 since 7 is a finite branched covering of order ax(A).

O

Proof of Proposition 3.0.20

(a) For ¥, as in (0.9), the set ¥;(0) is compact for all 0 < ¢ < 1 by assumption.
Hence, the arguments used in the proof of Proposition 3.0.14 show that for each

0 <t <1 the bundle

Ey ® E; — Fg ky+1(X, A1) X Fgpppr1(X, A1) x H
with a section ¥, is a generalized Fredholm orbifold bundle. Denote by
vir

M = [ME sy ko) (X Av, Aa, )]

the corresponding virtual moduli cycle. As in the proof of Proposition 3.0.15, it also

follows that
MY = (Mo = (M, (X, AD]YT ® (M (X, )Y (0.21)

as homology classes in H, (Fg k+1(X, A1) X Fogye+1(X,41); Q). Note that
Mgk +1(X, Az)] is the cycle which defines ordinary GW-invariants.

On the other hand, there is a natural map
P Fok1(X, A1) X Foppar1 (X, A1) xH - X x X

defined by ([f1,Z1; {z:}], [f2, Z2; {w}], @) = (fi(Tky41), f2(31) ) There is also a sur-
jective map = : |J p~(A) — st~!(Im o) obtained by identifying zx,+; and y;, where
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the union is over all decompositions of (A4, g, k), A is the diagonal in X x X, o is the
gluing map in (0.8), and st is the stabilization map on ?;'k(X ,A) x H. It follows

from Lemma 5.0.38a that the classes

)] vir vir

E [Mglyk1+l),(m,kz+l)(x7 Ay, Ast and [M:k(X, A)] n PD(O’)

can be regarded as a class in H.(|J p7!(A); Q) and H.(st"!(Imo); Q), respectively.
Moreover, by Lemma 5.0.38b we have

[MZ(X, 4)]"™ N PD(o)
=, (Z [Mgl‘klﬂ),(m,kﬁl)()(, Ay, Ay, 1)]v1r N (evg, . Hy Aevi HY )) (0.22)

where evy, ) and ev, are evaluation maps of zx,; and y;, respectively. Combining

(0.21) and (0.22), we have
[MZ4(X,4)]" NPD(o)
vir i * *
=my ([M},*m“(x, AT ® Mgk (X, Ag)]"") N (evp 1 Hy AeviH)
=T Z ( [M;f,k1+l(x’ Al)] v N evl:1+lH'7) ® ( [Myz.k2+l (Xv A2)]m n ev; ) .
That implies the first Composition Law.

(b) Similarly, we have an evaluation map of last two marked points

p: f'g_l,k”(X, A) XH—-XxX

( [f’ z; {:B,}] ’a) - (f($k+1), f(zk+2) )

There is also a surjective map 7 : p~}(A) — st™!(Im#). It also follows from

Lemma 5.0.38 that

[(Mi(X, )] nPD(O) =m. Y ([M?—l.m(x A" N (v}  Hy A evyy o HY )) :

That implies the second Composition Law. O
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CHAPTER 6

The Invariants of E(n) — Outline

Let 7 : E(n) — P! be a standard elliptic surface with a section s of self-intersection
number —n. Denote by S and F the homology class of the section and the fiber.
We will compute family GW-invariants for the class S + dF with 2p, = 2(n — 1)
dimensional parameter space H,, defined as in (0.4). These invariants GW;‘,: (S +dF)
are unchanged under deformations of Kahler structure. For convenience we assemble
these into the generating function

F(t) =) GWgs (S +dF) t*. (0.1)

d>0

In the this and the following four Chapters we will calculate the invariants
GW;f,;‘ (S + dF) by deriving the formula for F(t) stated in Theorem 0.3. Thus our

aim it to prove:

Proposition 6.0.39 Forn > 1,

F@t) = H(ljtd)m (0.2)

d>0

As mentioned in the introduction, the cases n = 1,2 have been proven by Bryan-

Leung and Ionel-Parker.

This Chapter shows how Proposition 6.0.39 follows from two formulas, equations

(0.4) and (0.5) below, that are proved in later Chapters. Our proof parallels the proof
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of Ionel and Parker [IP3] with two changes. First, we replace the use of the 7 class by
1 class; that makes the argument conceptually a bit easier. Second, we must extend

the TRR formula and the Symplectic gluing formula of [IP3] to family invariants.

Here is the outline the proof of (0.2). Let G(t) be the generating function for the

function for the sum of divisors function o(n) = 3_, :

d dt?
G(t) = ) o(d)t* = ) —

d>0 d>0

Following [IP3] we also consider the generating function for a genus 1 invariant,

namely

H(t) = Y GW% (S +dF) (Y F*)t? (0.3)

d>0

where 1 x); denotes the first Chern class of the line bundle L, x); — Mg whose
geometric fiber over (C;z1,--- ,,) is T;;,C.

We can compute H (t) in two different ways. In Chapter 7, we show how to combine
the composition law together with the relation between 1 class and the divisors in

M, 4 to obtain the formula

H(t) = —tF’(t) - —F(t) +(2 - n)F)G(t) (0.4)

Then, in Chapters 8-11 we develop a family version of the Gluing Theorem in [IP3]

to obtain the sum formula
H(t) = -lizF(t) +2F()G(2) (0.5)
(see Proposition 11.0.62). Equations (0.4) and (0.5) give rise to the ODE with

F'(t) = 12nG(t) F(t) (0.6)
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and we show in Proposition 8.0.47 that the initial condition is F(0) = 1. It is well-

known that the solution of this ODE is given by

F(t)=H(1_1td)l2n.

d>0

That completes the proof of Proposition 6.0.39 and hence of the main Theorem 0.3

of the introduction.
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CHAPTER 7

The Topological Recursion

Relation (TRR)

A pinched torus can be regarded as a two-sphere with two points identified. Conse-
quently, maps from a pinched torus are a special class of maps from the two-sphere.
That observation allows one to express certain ¢ = 1 GW invariants in terms of g = 0
invariants, and more generally express certain genus g invariants in terms of genus g
invariants. Such formulas are called topological recursion relations or TRR formulas.
In this Chapter we will prove formula (0.4), which is a TRR formula for the family

GW invariants.

We begin by recalling the notion of the dual graph associated with a stable curve.
Given a stable genus g curve with n marked points (C;z;,--- ,zyx), its dual graph
is defined as follows. Let 7 : C — C be the normalization of C. The dual graph
G has one vertex for each component of C, and the edges of G correspond to nodal
points of C; if two points on C maps to a node, then the edge, corresponding to that
node, are attached to the vertices associated to the components of C' on which the
two points lie. The legs (half-edge) of G correspond to marked points of C, and these

are indexed in an obvious way.
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We denote by M(G) the moduli space of all genus g curves with n marked points
whose dual graph is G. We also denote by 8¢ the orbifold fundamental class of M(G),
that is, the fundamental class divided by the order of the automorphisms of a general
element of M(G). Graphs with one edge correspond to degree two classes. There
are two types of such graphs. One is the graph G, with one vertex of genus g — 1.
The other types are the graphs G, ;, which have two vertices, one of genus a, with
attached the legs indexed by I, and one of genus g — a, with attached the legs indexed
by {1,--- ,k}\ I.

For any i € {1,--- ,k}, we have

Yy = %6@" + §5co,, in H*Myi; Q). (0.1)
11122

For the proof of (0.1), see [AC] and [G].
Proposition 7.0.40 The generating function (0.3) satisfies
1 1
H(t) = <tF'(t) - =F(t)+ (2-n)F(t)G(t)
12 12
Proof. It follows from (0.1) that the coefficients GW&" (S +dF) (1,445 F*) of H(2)
is

%Gwﬁ;(s + dF)(86,.i F) + 3" GWIS (S + dF) (8, i FY).  (0.2)

i€l
17122

We will apply the first Composition Law to GW{"‘,{' (S+dF)(bg, ,; F*) and the Second
composition Law to GW{% (S + dF)(6g,,.; F*).

Recalling Proposition 3.0.20, the only possible decompositions of the class S +dF,
which can appear when we apply the first Composition Law, are S + d, F' and do F'

with d; + d; = d. It then follows from a dimension count and the first composition
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law that

GW{3 (S + dF)(bc, ,; F*)
= > S oWt (S +diF)(F, Hy) GWy 5 (o F)(F*', HY).  (0.3)
dy+do=d v

where { H, } and { H" } are bases of H*(E(n)) dual by the intersection form. It also
follows from Proposition 3.0.19 that, if I = {1,--- ,4}, then (0.3) becomes

> N (Hy- (S+diF)) (H - d2F)GWiG (S + di F) GWy0(daF)

dy+d2=d v
d2>0

+ Z - (S + dF)) GW% (S + dF) GW1,1 (0)(H") (0.4)

Otherwise, (0.3) vanishes. Since ) (H,A)(H"B) = AB and kGWyo(kF) = (2 —
n)o(k) (see [IP1]), the first sum in (0.4) becomes (2 — n)3},, GW{s (S + (d -
k)F)o(k). On the other hand, GW,,(0)(H") = EIZI-(KH") ( see [IP3]), where K =
(n — 2)F is the canonical class. This implies that the second sum in (0.4) becomes
n—2—4—2GW8f5‘ (S + dF). In summary, we have

Y GWIZ (S +dF)(6c,,: F*)

i€l
11>2

2-n) Y GWI (S + (d - k)F) o n;12GWJ},"(S+dF) (0.5)

k>1

Note that PD(Im(6)) = 26, where 8 : Mg — M 4 as in (0.10). It then follows

from the second Composition Law and Proposition 3.0.19 that

W% (S + dF)(66,.; FY) = -;- ;G Mo (S + dF)(F*, H,, H")
= % > (Hy(S + dF)) (H"(S + dF)) GWgg (S + dF)(F*)
2d—n

= —2——ngj‘;(s +dF). (0.6)

The proof follows from (0.2), (0.5), (0.6) and the definition of F(t) and H(t).
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CHAPTER 8

Ruan-Tian Invariants of E(n)

Instead of constructing virtual moduli cycle directly from the moduli space of stable
J-holomorphic maps, Ruan and Tian [RT1, RT2] perturbed the equation (0.6) to
0;f = v where the inhomogeneous term v can be chosen generically. For generic
(J,v), the moduli space of stable (J, v)-holomorphic maps is then a compact smooth
orbifold with all lower strata having codimension at least two. Ruan and Tian defined

GW-invariants from this (perturbed) moduli space.

We can follow as similar procedure for the family invariants by introducing an
inhomogeneous term into the (J, a)-holomorphic equation and vary (J,v) and corre-
sponding parameter space H. In taking that approach, we immediately face two main
problems: compactness and the dimension of lower strata. In general, it is difficult to
show the compactness of a perturbed moduli space, even if |v| is small and the moduli
space without perturbation is compact. It is also difficult to determine the dimension
of lower strata which contain bubble components. However, for the moduli space of
perturbed (J, a)-holomorphic maps representing a homology class S + dF in E(n)
with fixed complex structure J, the moduli space of (J, a)-holomorphic maps with
generic perturbation is still compact and the image of lower strata under stabilization
and evaluation map is contained in a set of codimension at least two. Therefore, we

can define invariants from the moduli space with fixed Kahler structure and generic
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perturbation in the same way as for ordinary GW-invariants. This alternative defin-
ition of invariants is more geometric. In particular, using this definition of invariants
we can follow the analytic arguments of Ionel and Parker in [IP2, IP3] to show sum
formula (0.5) for the case at hand: the class S + dF in E(n).

To simplify notation in this Chapter we will set X = E(n) and A = S + dF.
The construction of invariants starts from the perturbed equation §;f = v. Using

Prym structures defined as in [L], we can lift Deligne-Mumford space M, to a finite

cover
Dy H‘g‘,k — Mg (0.1)
This finite cover is now a smooth manifold and has a universal family
Ty :Hl;.k - 'A_/i;‘,k
which is projective. Moreover, for each b € H;k,
to pu(b).

We fix, once and for all, an embedding of ﬁ;k into some PV. An inhomogeneous

7, 1(b) is a stable curve isomorphic

term v is then defined as a section of the bundle Hom(n}(TPV), n3TX) which is
anti-J-linear :
v(jp(v)) = —=J(v(v))  for any v € TPV (0.2)
where jp is the complex structure on PV,
For each stable map f : & — X, we can specify one element j € p,*(st(X)). Then
7, 1(j) is isomorphic to the stable curve st(X). In this way, we can define a map
¢: T — st(Z) X ml(b) Uy, — PV, (0.3)
Definition 8.0.41 A stable (J, v, a)-holomorphic map is a stable map f : (£,¢) = X
satisfying
(df + Jodfjz )(p) = va(¢(p), £ (P))
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where ¢ is defined as in (0.3), and vo = (I + JK,)"lv. O

Two  stable (J,v,a)-holomorphic maps (f,(4,X);z1, -+ ,zx) and
(f',(¢,X); 24, -+ ,z}) are equivalent if
du($(E),¢'(£))) + du(f(2), (X)) + Y_d(f(=:), f(a})) =0
where dy is the Hausdorff distance. We then define the moduli space
Myu(X, A, v, H, 1)

as the set of all pairs ([f’ (¢1 2)’ Iy,--- ’xk]7a) , where o € H and [fa (¢’ E)a S PR ’zk]
is the equivalence class of (J, v, a)-holomorphic maps with [f(X)] = A € Hy(X; Z).
We denote by Mg i (X, A,v,H, ) the set of ([f, (¢, X); 21, - ,Zk], @) with a smooth

domain ¥. We will often abuse notation by writing (f, j, @) or simply (f, @), instead
of (f, (¢, %), @).

There is a stratification of M, parameterized by the automorphism group of
Riemann surfaces My, = 3, Ty, where each strata T}, is smooth and consists of

the Riemann surfaces with a fixed automorphism group x. We can also assume that
M= Tox
(.3

where T¢ = p,'(T5,) is smooth. Let Myx(X, A,v, H,u); consist of all (f,j,a)

with j in T;"’,: , where I denote the trivial automorphism group.

Consider the following stabilization and evaluation maps
st* x ev* : Mg (X, A, v, H,p); — -M-:_k x X*. (0.4)
Its Frontier is defined to be the set

{re ﬂ;k x X*|r =lim(st* x ev*)(fn,n)

and (f,,@,) has no convergent subsequences }.
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We denote by ) the space of all v with |v| is sufficiently small. Now, we are

ready to state ”Structure Theorem” for the moduli space.
Theorem 8.0.42 ( Structure Theorem ) For generic v € ),
(a) Myx(X,A,v,H, ) is an oriented smooth manifold of dimension

—2KA+2(g — 1) + 2k + dim(H) = 2(g + k) (0.5)

(b) the Frontier of the smooth map
st x evt : Mg (X, A, v, H,p); — M;k x X*
lies in dimension 2 less that 2(g + k).

Proof. This proof is similar to the proof of Proposition 2.3 in [RT]. We will sketch

proof, without specifying Sobolev norms.

(a) For each k, define

xte = | ) Mapa(Z,, X) x {5}
JETx
where Mapa(Z,, X) = {f : £, = X | f.[2,) = A}. Consider the vector bundle
EWF — XHM® x H x yo

whose fiber over (f, j, a,v) is Q?,’}a (f*TX). Obviously, the (J, v, a)-holomorphic equa-

tion defines a section ® of £#* by
Q(f7.7'7a’1/) = df + Jade — Va.
The differential D® of ® at (f, j,a,v) is then an elliptic operator

D& : QO(f*TX) ® TyT* ® ToH ® Hom, (TPY, TX) — Q% (f*TX)
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given by

D®(¢,k,B,v) = Ly(€) + Jadf k + La(8) — A™'v  where (0.6)
Ly(§) = VE+ JaVEj + 5 (VeJa) (4 + Jodf) — Veva,
La(B) = (—A7VKpJa + JaAT Ky ) dfj,
V= -;- (V= JoVJ,), and A= (I + JKa)
Consider the universal moduli space
Upie (X, A) ={(f,J,a,v) € X5 x H X Yo | ®(f,j,,v) =0}

At any (f,j, o, v) € U}y (X, A), the differential D® is surjective because of the term

A~'v. This implies that the universal moduli space is smooth.
Let 7 : U} (X, A) — Y be the projection. Its differential at (f, j,a,v)
dm : TURH (X, A) = TY,

is just the projection (&, k, 8,v) — v. It then follows that the kernel of dr is isomor-

phic to the kernel of L; ® J,df ® L,. Moreover, its image consists of all v with
A e Im(Ly @ Jodf ® La).
Note that Ly ® Jodf ® L, is Fredholm, and hence Im(dr) is a closed subspace of T')}.
On the other hand, the map
p:TYo— Q% (f*X) /Im(Ly @ Jodf ® La) defined by v — A™'v

is onto since D® is onto. Therefore, dim(Coker(Ly & Jodf ® Lo)) = dim(TYp /
Ker(p)) = dim(Coker(dw)) and hence dr is Fredholm of the same index as the index
of (Ly @ Jodf @ Ly).
Applying Sard-Smale Theorem, we can conclude that for generic v € ), the
moduli space
1 (v) = Mgp(X, A, v, H, p)«
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is a smooth manifold. The dimension formula follows from the Index Theorem.

For generic (J, ), the tangent space Ty ; o Mg x(X, A, v, H, ), = Ker(Ly ® Jodf &

L,), so we have
det (TyjaMgr(X, A, v, H, p)x) = det(Ly & Jodf ® La)

On the other hand, there is a decomposition Ly = Lf"' + Z, where L}" is Ju-linear
and Z is the zero order term. It follows that det(L; & Jodf & L,) is isomorphic
to det(Lj* @ Jodf @ Lo). Since both kernel and cokernel of Ly* @ Jodf ® L, are
complex vector spaces, there is a canonical non-vanishing section of det(Lf" @ Jodf ®
L,). Therefore, there is a nonvanishing section of det(L; & Jodf & L,) which orients
Myp(X,A,v,H,p)s. O

(b) This proof consists of 5 steps. In step 1, we show that the stabilization and
evaluation map as in (0.4) extends continuously to the moduli space of stable maps.
That follows from the compactness. In step 2, we show all possible homology classes,
which can be represented by the components of stable maps. In step 3, we reduce
the moduli space. The resulting reduced moduli space will have the same image as
that of the moduli space under the stabilization and evaluation maps. In step 4, we
stratify the reduced moduli space. The Frontier is then contained in the image of
all lower strata. In the final step, we show that each image of the lower strata is

contained dimension 2 less than 2(g + k).

Step 1 There are well-defined stabilization and evaluation map
st* x evt : Myp(X, A, v, H,p) — ﬂ'g‘,k x Xk (0.7)

where we still use the same notation for the map as in (0.4), without further confusion.
It follows from Gromove Compactness Theorem, Theorem 3.0.18, and the following

lemma that (0.7) extends (0.4) continuously.
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Lemma 8.0.43 There exit uniform constants Ey and N such that for any (f,X,a) €
ﬂg,k(x, A, V, H)

1
B(f) =5 /8 dfP < By and |laf < N.

Proof. Similarly to Corollary 1.0.7, we have

o [ _
[ st = [ frav2 [@it) (0.8)
(1+ |of2)frwdv = %(1 — a?)|dfPdv — 4B, f,v) dv + 4vPdv  (0.9)

Note that f represent homology class A = S + dF which is of type (1,1) with respect

to the complex structure J. Therefore, it follows from (0.8) and Proposition 1.0.6a

3 [l <oz ( [ ldflz)% (/[ |v|2)%

We then have a uniform energy bound by using the inequality 2ab < £a? + ¢~1 4% on

that

the last term and absorbing the |df| term on the left-hand side.

Next, we will show uniform bound of ||e||. This proof is similar to those of
Lemma 4.0.24 except for using (0.9) instead of Corollary 1.0.7b. Let 7 : X — CP!
be the elliptic structure for J on X and N(a), m(J), and N be as in the proof of
Lemma 4.0.24. If there is a holomorphic fiber F C X \ N(a) such that

(i) f is transversal to F,

(ii) at each p € f~1(F), f is transversal to a holomorphic disk Dy, normal to F
at f(p), and

(iif) 4 |df| |v] + 4|v|* < 3 |df|* on f71(F)
then the proof follows exactly as in the proof of Lemma 4.0.24. We can clearly find

fibers satisfying (i) and (ii), so we need only verify that we can also obtain (iii). For
that we consider the set g of all points in £ where 4 |df||v| +4|v|> > 1|df|%. Then
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|df|? < 16]v| on Xy, since both |df| and |v| are less than 1. Therefore

|dmodf |* < 16 Area(st(Z))|d7|%|v oo (0.10)
Zo

We can thus assume that (0.10) < }Area(CP') for sufficiently small |v|o. On the
other hand, from the definition of N(c), we can also assume that Area(n(N(a))) <
3Area(CP'). Therefore, we can always choose a holomorphic fiber F = 7~(q) as in
the above claim with ¢ € CP'\ ( 7(N(a))Umo f(5o)). O

Step 2 Let (f,X) be a stable map. A stable bubble component which maps to a
point by f is called ghost bubble. Now, we reduce the moduli space as follows : for a

stable (J, v, a) holomorphic map,
(i) we collapse all ghost bubbles,
(ii) we replace each multiple map from a bubble by its reduced map

(iii) we identify those bubble components which have the same image.
Denote by ﬂ;k(x , A, v, H, 1) the quotient of M, (X, A,v, M, 1) by this reduction.
We define the topology on it as the quotient topology.

The reduced moduli space is still compact. On the other hand, the map (0.7)
descends to the reduced moduli space and by definition the image of reduced moduli

space is same as that of stable moduli space under stabilization and evaluation maps.

Step 3 Let (f,Z,a) € M, (X, A,v, H,p) with & = U;Z; and [f;(Z:)] = Ai. The

following lemma shows all possible homology classes for A;.

Lemma 8.0.44 If |v| 13 sufficiently small, then A; is one of the following homology

classes
S, S+dF, dF with 0<d,;,dy; <d. (0.11)

and each bubble component I; represents either S or dyF.
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Proof. Suppose not. Then there exits a sequence of (J, ay,v,)-holomorphic maps
(fa,Xn) and a homology class C which is not one of classes in (0.11) such that (i)
vp — 0 as n — oo, (ii) for each n, there is some component X,, with [f,,(Z,,)] = C.
By Lemma 8.0.43 and Gromov Convergence Theorem, we may assume that J,,, — Ju,
uniformly for some ap € H and f, converges to fy, where fy is (J, ap)-holomorphic
and f, represent the class S + dF. Since S + dF is of type (1,1) and ap is closed
J-anti invariant 2-form, oy = 0. This implies that the homology classes C' and
D = § + dF — C are both represented by holomorphic map with possibly reducible

domain.

Note that C - F' is either 0 or 1. Assume C - F = 0. Then C = d3F with d3 > d
by the assumption on C and D = S + (d — d3)F. Let (fp,Zp) be the holomorphic
map representing homology class D. Then for some component Xp,, the restriction
map fp, represent a homology class S — d4F' with d4 > 0. This is impossible since
(S —d4F)-S < 0 and Xp, is irreducible. Similarly, we also have the contradiction
whenC-F =1.

When %; is a bubble component, v vanishes on ¥; and hence f; is holomorphic.

Therefore, A; cannot be S + dyF since ¥; is irreducible. O

Step 4 In this step, we stratify the reduced moduli space. For each (f,a) €

-

M, (X, A,v,H,u), the normalization of the domain of the map f, without spec-

ified complex structure, is a disjoint union of smooth Riemann surfaces
Y=~hU---UP,UByU---B, (0.12)

where B; is the bubble component. We will call P, a principal component.

Each component of ¥ has points corresponding to the marked points of the do-
main, which we also call marked points. Each component also have points corre-

sponding to the singular points of the domain. We call these points intersection
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points. Together with the normalization map, the intersection points carries the in-
tersection data of the domain. Each component is also associated to a homology class
in Hy(X; Z), which we denote by [P;] and [B].

Note that [P is one of the class in (0.11) and [By] is either s or f by definition
of reduction. Moreover, if some [B;] = f, then the image of the restriction map
fis, i8 some nodal fiber F; and « € { 8 € H | F; C Z(B) } by Lemma 2.0.12.
Similarly, if some [B;] = s, then the image of the restriction map f|, is a section S
and a = 0 by Lemma 2.0.12. In this way, the set of bubble components determines
a subspace Hp C H. If there is no bubble component, we simply set Hp = H. Since
there’s no fixed component in the complete linear system | K| of a canonical divisor,
Lemma 2.0.11 implies that this subspace H g has at least 2 real codimension whenever
it is proper.

We denote by D, (f, a) the set of following four data, (i) X with marked points, (ii)
the intersection points with intersection data, (iii) the set of homology classes each
of which is associated to a component of ¥, and (iv) the subspace Hp determined
by bubble components. Let D, be the set of all D,(f,a)’s. It then follows from the
uniform energy bound and Lemma 8.0.44 that D, is finite.

Fix D € D, such that ¥p has more than one component. If ¥p has just one
component, proof follows from proof of (a) above. Let g;, k;, and d;, be the genus of
P;, the number of marked points on P;, and the number of intersection points on P,
with principal components, respectively. Similarly, let k' be the number of marked
points on B;. Note that k' might be 2 by reduction. Let & = (k;,--- ,p), where k;
is an automorphism group of some j € My, s, +q,+ and p is the number of principal
component. We will use (D, k) to label each stratum of the reduced moduli space.
We denote by

M(D, &) € M (X, A, v, H,p)
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the stratum labeled by (D, §).

Step 5 Finally, we will show that the image of each strata is contained dimension 2

less than 2(g + k). Consider the universal moduli space

uD,R = { ( (fhjl)" v 1(fﬂ’jn)auaa ) }
where df; + Jodfiji = vi with j; € TO% |, vi = v, @ € Hp,, and [dfi] = [P)]. We
have an evaluation map

evp, :Upz — X4

which records the image of intersection points, where d = ) d;. We denote by Ap,
the multi-diagonal in X9, which is determined by the intersection pattern of principal

components.

Now, the inhomogeneous term v ensure that Up  is smooth and evp,, is transversal

to Ap,. Therefore, Up Nevp (Ap,) is smooth. Finally, the natural projection
us :UD,,-‘ N E’UB}:(ADP) — yO

is Fredholm. By Sard-Smale Theorem, we can then conclude that for generic v, the

moduli space
M(Dp,v,Hp,, k) = "} (v)

is smooth. Its dimension is obtained from the routine count and is less than or equal

to

29 +2 Z ki +2 — 2p — codim(Hp,) if Hp, # {0} (0.13)

29+2) ki—2 if Hp, = {0} (0.14)
where p is the number of principal component. Note that 2 — 2p — codim(Hp,) < -2
since ¥ p has more than one component.
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Recall that for each bubble component B;, the homology class [B] is either s or
f. We identify each B, with a section S or nodal fiber F' according to [By], and then
fix, once and for all, a holomorphic map h; : CP} — B; C X. Let b is the number of

bubble components and set
S(Dp) = (CP})* x --- (CPy)*".

Clearly, it is smooth of dimension 2 5~ k.

Let k; = ) k; and k2 = )_ k*. Note that k; + k2 = k. Each element (jy,--- , jp)
determines an element in M,, by gluing intersection points by intersection data.
Obviously, we have an evaluation map which records k; marked points on principal
components. We also have an obvious map from S(Dp) into X*2 by h/’s. Combing

those three maps to obtain a continuous ina.p
6 x evp X hg : M(Dp,v,Hp,,K) x S(Dg) — /T/(_'g‘,,, x XF*
It then follows that its image Im(6 x evp x hg) lies in dimension 2(g + k) — 2.
Now, it remains to show the following :
st* x ev*(M(D, k) ) C Im(6 x evp X hp) (0.15)

There is a decomposition of the evaluation map ev* on M(D, &) as ev* = evh X evl,
where evh(evl) records marked points on principal(bubble) components. Note that
Im(evly) C Im(hg) since for all (f,X,a) € M(D,&), the image of bubbles are all

same.

On the other hand, for each (f, X, a) € M(D, k), if we forget all bubbles, then we

obtain an element (fp, Xp, @) in M(Dp,v, Hp,, «). In this way, we can define a map

7p : M(D,&K) = M(Dp,v,Hp,,K)
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Then (6 x evp) o mp = st* x evp. Together with Im(evly) C Im(hp), this implies

(0.15). O

Now, we are ready to define invariant. Instead of using intersection theory as in
[RT] , we will follow the approach in [[P2]. The above Structure Theorem implies

that
Fr(st* x ev*) C st¥ x ev* (.A_/t'g,k(X, A v, H,p) \ Mgi(X, A, v, H, 1))

In particular, the Frontier lies in dimension 2(g + k) — 2. It then follows Proposition
4.2 of [KM] that the image

Stp X C’U” (Mg,k(x) Av v, Hv #)1)
give rise to a rational homology class. We denote it by

[Hg,k(X,A, V’Ha”)] € Ht(ﬂlg"k,Q)®H¢(Xk,Q) (016)

Definition 8.0.45 For2g+k >3, 8 € H*(Myx;Q), and ay,--- , o € H*(X*;Q),

we define invariants by

<pg.k()()/4';7“{)(,3;al’'" 7ak) = (IB®(al A"'Aak)) N [Hy,k(XvA)V,HJ‘)]

1
Au
where )\, is the order of the finite cover in (0.1).

By repeating the arguments used in [RT] for the ordinary GW-invariants, we
can prove that these invariants ®, (X, A, H) are independent of the inhomogeneous
term v, the finite cover p,, and the projective embedding ?,7';,,, — PN -. Alternatively,
we can simply observe that those three facts emerge as corollaries of the following

proposition.
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Proposition 8.0.46 @, (X, A, H) = GW}i (X, A)

Proof. As in Chapter 3, we define 7

o.k(X, A, p) to be the set of all equivalence

classes of the stable maps of the form ( f, (X, ¢) ), where ¢ is defined as in (0.3); two
stable maps ( f,(2,¢)) and ( f',(X',¢')) are equivalent if there is a marked points
preserving biholomorphic map o : ¥ — ¥’ such that f = f' oo and ¢ = ¢’ 0 0. Note
that .T;,k(X ,A, p) is a finite cover of ﬁ'k(){ ,A). Similarly, we define a generalized
bundle E* over ?;,,,(X, A,p) x H and a section ®* by ( f,(Z, ¢), @) — df + Jadf 3.
It follows from Lemma 8.0.43 that the zero set of <I>'; is compact. Therefore, by

Proposition 3.0.14 there is a virtual moduli cycle which satisfying

where 7 : ?;,k(X A, 1) = F, (X, A) and ), is the order of p,,.

Now, fix a generic v as in Theorem 8.0.42. It follows from Proposition 3.0.15 and
Lemma 8.0.43 that we still have the same moduli cycle as in (0.17) when we change
the section ®* by adding —v. We still use the same notation ®* for this new section.

Note that
Ur = M(X,A,v, ", p); C (2*)71(0)

It follows from the proof of Proposition 3.0.14 that U; is one of the open sets of the
finite cover of (®#)~!(0) as in Definition 5.0.28.

Let n = dim(M,x x X*) and d = 2(g + k) = dim( M(X, A, v, H, u)r ). Since the
Frontier of st* x ev* lies in dimension d — 2, there is an arbitrary small neighborhood
V of Fr(st* x ev*) such that every homology class in Hn_d(ﬂz,k x X*;Q) has a

representative disjoint from V.

We can assume that for any open set U; in the finite cover of (®#)~1(0) as above

with U; # Uy, the intersection U; N U; lies in (st* x ev*)™! (M, . x X*\ V). It then

68



follows from the proof of Theorem 1.2 in [LT] that the cycle Z which represents the

virtual moduli cycle satisfies
st* x ev*(Z) N (WA—;,C x XK\ V) = st* x ev*(Ur) N (H;k x X¥\V)
This implies that
(st* x ev*) [ MIR (X, A, p)] = [Myu(X, A, v, H, 1))

Therefore, by Definition 8.0.45 and (0.17) we can conclude that two invariants are

same. 0O

In the below, we will not distinguish two invariants and use the same notation
GW;f,;‘ (X, A) for them. The following proposition shows F'(0) = 1 which provides

the initial condition for (0.6).

Proposition 8.0.47 GW(y(X,S)(F%) =1.

Proof. Fix v = 0. Since the section class S is of type (1, 1), Theorem 2.0.12 implies
that for any (J, a)-holomorphic map (f, @) with [f] = S, f is holomorphic and a = 0.
In fact, there is a unique such f since S? = —n. Now, consider the linearization as
in (0.6). Propositions A.63 and A.64 of the appendix show, quite generally, that L;

is a 0 operator and Ly defines a map
Lo H— Coker(Lf)

which is injective if and only if the family moduli space H:k(X , A) is compact. But
we just showed the moduli space is a single point, and hence compact.

On the other hand, Ker(L;) is same as the Dolbeault cohomology group
H)(f*TX). 1t is trivial since ¢;(f*TX)[S?] = —n + 1 < 0. Therefore,

dim(Coker Ly ) = —Index(Ly) = -2( 1 (f*'TX)+1) =2(n—1)
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Since Ly is injective and dim(H) = 2(n — 1), Ly @ Lo is onto. That implies v = 0
is generic in the sense of Theorem 8.0.42. Consequently, the invariant is +1. In this

case, the sign is determined by L; and L; is 8;-operator, the invariant is 1. O
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CHAPTER 9

Degeneration of E(n)

Throughout this Chapter, X always denotes the standard elliptic surface E(n) — CP*

and Y always denotes T2 x S? with a product complex structure.

In this Chapter, we construct a degeneration of X into a singular surface which
is a union of X and Y with V = T? intersection. The sum formula (0.5) will be
then formulated from this degeneration. We also define the parameter space and

inhomogeneous terms corresponding to this degeneration.

We fix a small constant ¢ > 0 and let D(e) C C be a disk of radius e. Choose
a smooth fiber V in X. We then define p : Z — X x D(e) to be the blow-up of
X x D(e) along V x {0} and let

A:Z — D(e)

be the composition Z@Q > p >> X x D(e) — D(e), where the second map is the
projection of the second factor. The central fiber Zo = A~1(0) is a singular surface
X Uy Y and the fiber Z, with ) # 0 is isomorphic to X as a complex surface. Since
Z is a blow-up of a Kahler manifold, it is also Kéhler. Denote by (wz, Jz,gz) the
Kabhler structure on Z induced from the blow-up. We also denote by (w, Jx, g») the

induced Kahler structure on each Z, with A # 0.

71



We can describe the Z locally along V C Z as follows : fix a normal neighborhood
N of V in X. It is then a product V x D, where D C C is some disk. Let z be the
holomorphic coordinate of D. Then, Z is given locally along V C Z as

{ (v,z,\[lo;h]) |vEV, zly=Alg} C N x D*x CP*

where [lp;!;] are the homogeneous coordinates of S2 = CP!. It is covered by two

patches
U= (lo#0) and U, = (l1 #0).
On Uy, we set y =1/ ly. Z is then locally given as
{(v,z,y) |veV } with Ap,z,y)=zy.

Clearly, the fiber Z) is given locally by the equation zy = A. Note that we can also
think of y as a holomorphic normal coordinate of the normal neighborhood of V in
Y.

We now decompose Z as a union of three pieces, two ends and a neck. These are
defined as follows : Let Nx(e) ( Ny(e)) be the normal neighborhood of V in X (Y')
of the form V x D(e). We then set

Endy = p-l((x\Nx(e))xD2) #X, (X \ Nx(€)) x D? (0.1)
Endy = {(v,z,¥) €U |y =l/l, |y| <1/e} 5 (Y \ Ny(e)) x D* (0.2)

U={(vzy)el||r|<2, |y <2} (0.3)
where the map ¢x ( @y ) is the isomorphism which extends the holomorphic map
(v, 2,y) = (v, z,29) ((v,2,y) = (v,9,2y))
for (v,z,y) € U and € < |z| < 2¢ (€ < |y| < 2¢).

Next, we define the parameter space on Z as follows : choose a bumf function
B on the neck region U which satisfies 8(|z|) = 1 if |z| > (3/2)e and B(|z]) = 0 if
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|z| < e. We then extend (3 on the whole Z such that 3 = 1 on Endx \ Supp(1l — )
and § =0 on Endy. Let H be the parameter space of X = E(n) defined as in (0.4).
We consider each a € H as a 2-form on X x D(e). Then each p*a is closed and

Jz-anti-invariant.
Definition 9.0.48 We define the parameter space of the fibration A : Z — D(e) by

Hz = {ﬂp'a|a€7'l} and H, = {a,\=a|z'\|a€7'(z} when /\750

We can consider X as a Kahler submanifold of Z. It then follows from the above
definition that

Hx={PalacH}={qa, |aecHz}. (0.4)

Lemma 9.0.49 There exit uniform constants Ey and N, which does not depend on

A, such that

1
E(f) = / df? < Bo and loall: < N

for any (f,Z,a1) € Myi(2xr, A, v, Hy), where |v|w is sufficiently small and A =
S +dF.

Proof. The proof of the uniform bound of «, is similar to the proof of Lemma 8.0.43.
We define N(a,) as an open neighborhood of zero set of a, and define m(J,) as in the
proof of Lemma 4.0.24. Since each a, is supported on the Endy, there is a constant
¢ > 0 such that m(J,) > c for any A. Then, the argument in Lemma 8.0.43 shows
that N = 2/c > 2/m(J,).

It remains to show the uniform energy bound. Note that a) = [p*a for some
a € H. For each p € I, let { e1(p), e2(p) = jei(p) } be an orthonormal basis of T,X.

We set
Y_={peX| fp'ale(p)elp)) <0}
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Since |, f|? dv = f*Bp*a+2(0;, f,v) dv, we have |0, f| < 2|v| on £_. This implies
—f*p"a(ei(p), e2(p) ) < Mldf||v|
where p € £_ and M = max{ |[p*a| | |[p*a||2 < N }. Therefore, we can conclude that
1 (e
3 [t s [reve)+ [+ o
b2 £ >
<- [ rra+ [ ldflvl+wz(4)
T- T

<a+m ([ |u|2)% ([ Idf|2)% wz(A)

This implies the uniform energy bound independent of A. O

Finally, following [IP2], we define inhomogeneous terms on the fibration A : Z —
D(e). As in Chapter 8, we fix a finite cover _.A_A-;k, universal family ﬁ:’k over it, and a
projective embedding L_l;k — PN. We denote by the orthogonal projection onto the
normal bundle Nx (Ny) of V by £ — ¢V,

Definition 9.0.50 We define an inhomogeneous term v of the fibration A : Z — D(e)
to be a section of the bundle Hom(TPN,TZ) over PN x Z which satisfies

(i) v is anti-Jz-linear, i.e. vjpv = —Jz v,

(ii) the restriction of v to PN x Z), we simply denote it by vy, is a section of

Hom(TPV,TZ,) over PN x Z, when X\ # 0,

(iii) vx (vy) is also a section of Hom(TPN,TX) (Hom(TPN,TY)) such that

vy () =0, and
(w) for all§ € Nx (Nx) andv e TV

[Vevx + IVieux Y = [(IV, NEIY ([Very + IVaery |V = [(JVL,)EY)
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We denote by YV the set of all inhomogeneous terms on Z.

Proposition 9.0.51 For generic v € YV and generic A # 0,

(a) Myx(Zyx, A, Hx,va)1 is an orientable smooth manifold of dimension 2(g + k),

and

(b) the Frontier of the smooth map
st X ev: Mg,k(Z,\,A, Ha, va)1 — Hg,k X Zf.
lies in dimension 2 less than g + k.

Proof. We can consider Z \ Z; as a fixed smooth manifold E(n) with a family of
Kabhler structures parameterized by D(e) \ {0}, namely, for each A # 0,

(Jrswr, 92) = (Jz,wz,92)),

It then follows that the universal moduli space

U={(f7,Inax,1n) | fis (Jr,ax,vx)-holomorphic,

[fl=s+df, Aut(j) =1, ar € Hy }

is smooth. On the other hand, we have a canonical projection 7 : & — )V. By
Sard-Smale Theorem, w~!(v) is smooth of dimension 2(g + k + 1) for generic v.
Again, applying Sard-Smale Theorem to the projection 7~!(v) — D(e) defined by
(f, Jx,¥a,@r) — A, we can conclude (a).

In order to prove (b), we first consider the stable compactification
M, (25, A, Hy,vy) as in Chapter 8. It follows from Lemma 9.0.49 that this is com-
pact. We also reduce this moduli space and stratify the reduced moduli space by the

same way as in the proof of Theorem 8.0.42. Note that Lemma 8.0.44 still holds for
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this reduced moduli space since each J, is a fixed complex structure. On the other
hand, we consider the bump function § in the Definition 9.0.48 as a function on Z,.
We can then assume that all singular fibers of Zy = ( E(n),Jx) — CP! lie in the
support of 1 — 3. That implies that if (f, a) has a bubble component, then the bubble
component maps into either a singular fiber or a section. It follows that zero set of
« should contain a singular fiber or a section. Therefore, we can conclude (b) using

the same argument as in the proof of Theorem 8.0.42. O

We end this Chapter with the splitting argument as in [IP3]. This shows how maps
into X = E(n) split along the degeneration of E(n). It is also a key observation for
gliuing of maps into X and Y, which leads to the sum formula (0.5).

Lemma 9.0.52 Let (fn,Xn,0,) be any sequence of (Jz,v,ay)-holomorphic maps
such that (i) each f, maps into Z,,, (ii) each f, represent the homology class S+dF,
and (iii) A\, — 0 as n — oo. Then we have

(i) fa converges to a limit f : ¥ — Zy = X Uy Y and o, converges to a, after

passing to some subsequence.

(i1) the limit map f can be decomposed as
H:5 - X, fo:5-Y, and f3: 353 -V
where f, is a stable (Jx,vx,a)-holomorphic and fo(fs) is a stable

(Jy,wr) ((Jv,w))-holomorphic

(ii) for i = 1,2, each f; transverse to V with f7 (V) = {p:}, where each p; is a
node of X.

Proof. (i) follows from Gromov Convergence Theorem and Lemma 9.0.49. Note
that o = 0 near V C Z when a € Hz. Hence, J,, = J near V C Z. Therefore, we
can apply Contact Lemma in [IP2] to conclude (ii). Lastly, (iii) follows from Contact

lemma in [IP2] and lemma 3.3 in [IP3]. O
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CHAPTER 10

Relative Invariants of E(n)

In this Chapter, following [IP2], we define relative invariants for

(X=E(n), V=T% g<1, A=S+dF, vx, Hx )
(Y=T*x8% V=T2% g<1, A=S+dF, vy )
where vx (vy) is the restriction of ¥ on Z to X (Y), Hx is the parameter space in
(0.4) and g is the genus of Riemann surfaces. As in Chapter 8, we fix the complex
structure on X (Y) and we only vary the inhomogeneous term vx (vy) to define
perturbed relative moduli space. In the below, we will not specify complex structures

on X and Y in the notation of moduli spaces. We also assume that we always work

with a finite good cover p, as in (0.1) without specifying it.
For each v € )V we define the relative moduli space as

M 1 (X, A, Hyx,vx):
={ (f.ja) € Mgr41(X, A, Hx,vx) | f(ze1) €V, Aut(j) =1 }
Proposition 10.0.53 For generic v € )V,

(a) MY 1(X, A, Hx,vx)s is an oriented smooth manifold of dimension 2(g + k),

and
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(b) The Frontier of the map
stxevXh: M (X, A Hx,vx)r = Mg x X5 xV (0.1)

is contained in dimension 2 less than 2(g+k), where ev is the evaluation map of

the first k marked points and h is the evaluation map of the last marked point.

Proof. Since for each a € Hx, o = 0 in some neighborhood of V C X, J, = J on
that neighborhood. Therefore, (a) follows from Lemma 4.2 in [IP2].

On the other hand, the Frontier of (0.1) is the image of
CMS‘J,,k+1(X A, Hx,vx)r C m_g,kH(X A, Hx,vx) (0.2)

under stabilization and evaluation maps, where (0.2) is the closure of
M;k_,,l(X, A, Hx,vx) in Mgr1(X, A, Hx,vx). In order to prove (b), we first re-
duce the closure (0.2) under the reduction as in Chapter 8 and stratify the reduced
moduli space by the same way as in the proof of Theorem 8.0.42. Similarly as in
the proof of Proposition 9.0.51, (i) Lemma 8.0.44 still holds, and (ii) if (f,c) has a
bubble component, then the bubble component maps into either a singular fiber or

the section s.

Each strata corresponds to one of the following types of stable maps : (i) f has
some bubble components, (ii) f has two principle components ¥; U X such that the
image of ¥, maps entirely into V, and (iii) f is neither of type (i) nor (ii). First,
consider (f,a) which is of type (i). In this case, the zero set of a should contains
singular fibers or a section. This reduces the dimension of possible parameter space
for the corresponding strata at least 2. Next, it follows from Lemma 6.6 in [IP2]
that those strata corresponding to (ii) is empty. Lastly, note that if f is of type (iii),
then it has at least 3 principle components. Therefore, (b) follows from the similar

dimension count as in the proof of Theorem 8.0.42. O

It follows from the above proposition and Proposition 4.2 of [KM] that the image
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of (0.1) gives rise to a rational homology class. We denote it by

[Myri1(X, A, Hx)] € H' (Mg ri1;Q) ® H*(X*,Q) ® H(V;Q)

Definition 10.0.54 For2g+k > 2, 8 in H*(Mgx+1;Q), o1, -+ , o in H*(X*;Q),

and v in H,(V;Q), we define relative invariants by

GW;,/k+l(X7A:HX)(ﬁ;al’° ce Oy C(’Y))

= (ﬁ®(al /\"'Aak)®c(7))n[M;Iﬁl(X’A’HX)]

where C(7y) is the Poincaré dual of 7.

Similarly as above, we set

M;,,k+l(Y’ A, VY)I = { (fv]) € _M—y.k+l(YvA1 VY) | f(yl) ev, AUt(j) =1 } (0'3)

stxhxev: MY (Y, A vy) > Mgp x V x Y* (0.4)

where h is the evaluation map of the first marked point and ev is the evaluation map

of the last k marked points.

Remark 0.55 Since p,(Y') = 0, the relative moduli space (0.3) is the one in [IP2].
Here, we fixed the product complex structure on Y and we only vary inhomogeneous
terms. However, for a given stable map after contracting all ghost bubbles, there is
at most one bubble component which maps to some holomorphic section. Using the
same argument as in Chapter 6 of [IP2], we can thus show that for generic v € Yz, the
Frontier of (0.4) is contained in dimension 2 less than the dimension of (0.3). On the
other hand, for generic v € )z, (0.3) is an orientable smooth manifold of dimension
2(g + k) + 2. Therefore, we can define relative invariants as in the Definition 10.0.54.
In fact, this invariants is less refined than the relative invariants in [IP2], see also
Appendix in [IP3].
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Finally, we set up some notations which will be used in the next Chapter. We set

MY (X); x MY (V) =M i1(X, s+ dif, Hx) X M} i (Yos+daf)s

= (hx h)7H(D)

where the union is over all g; + g = 1, k; + k; = 4, and d; + d; = d. This moduli
space comes with the following maps :
st' xev: MY (X)) x MY(Y); - U My x X5 x Yk (0.5)
h k1+ka=4
where st' = o o st and o is the gluing map of the domain. For generic v, this moduli

space is also smooth and the Frontier of (0.5) lies in codimension 2.

On the other hand, we set
Ma'pl,tl(Z’ A) = { (f)j’a) | [f] = A, .7 € ml,h a€ HZ }

Note that MY (X); X MY (Y); and M;4(Z», A, H,); are subsets of Map, 4(Z, A).
Moreover, there are following commutative diagrams :
MV(X)I):MV(Y)I —— Map, 4(Z, A) «——— M;4(Zx, A, Hi):
..axe.,l stxevl atxevl (0.6)
UMiax X5 xR 4 My x2% 21—  Myyx 28

where )\ # 0 and the union is over all k; + ky = 4.

Remark 0.56 Recall that _./WM is a smooth finite cover of the Deligne-Mumford
space defined by Prym structures and hence it has a universal family I, 4. The metric
on U, 4 provides a smooth family of metrics on the domain of maps in Map, 4(Z, A).
Therefore, we can define a weighted norm as in Definition 5.0.30 on Map, ,(Z, A) to

make it Banach space.

There is another way to define a topology on Map, 4(Z, A) [IP2]. We can identify
each j € ﬂm with ¢ : B — L_(M, where B is a fixed smooth torus. The map ¢
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defines a complex structure on B by pulling back the complex structure on U, 4. In

this way, we can identify Map, 4(Z, A) with the following space
Map(B,Z xUis) = { (f,$,0) | fx¢:B— Z xU, [fl=A, a€Hz }.

For C° close maps C; = (fi1,¢1,01) and Co = (fa,$2,a3), we can write C; =

€XPc, (6? h» ﬂ) and set
dist(Cy,C2) = [[€]l1p + [[R[] + 118l

Taking the inf of the lenghts over all paths picewise of the above type, we can defines

a distance and hence a topology on Map, 4(Z, A).
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CHAPTER 11

Gluing Theorem

In this Chapter, we will establish a family version of Gluing Theorem as in [IP3].
Using this, we will show the sum formula (0.5). We fix a generic v € )z as in
Chapter 9 and 10. In the below, we will not distinguish a@ € Hz and its restriction

ay to Z), and use the same notation for them.

Theorem 11.0.57 ( Gluing Theorem ) Let Co = (fo,Zo, ) be in MY (X); X
MV (Y);. Then there are Ay, € > 0, and a small neighborhood W of Cy such that we

have a continuous family of maps
Ta: W — My 4(Zx, A, Hy)i
for |A| < Ao, which satisfies
(i) Tx is an injective smooth map from W into M 4(Zx, A, N)1
(ii) TA(Co) converges to Co as A — 0

(17,1.) Zf (f, E,C!) n M]A(ZA,A,HA)[ and d(Co, (f,E,a)) < €, then (f,E,a) s in
TA(W))

where d is the distance of Map, 4(Z, A) defined as in Remark 10.
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Proof. The proof of this theorem consists of 3 steps. In the first step, following
[IP3] we construct approximated maps into Z,, each of which is associated with an
element of W. These are nearly (J), vx, a)-holomorphic. In the second step, we use the
Inverse Function Theorem to perturb these approximated maps to truly (Jy, v, a’)-
holomorphic maps. This process defines the map 7). The required analysis in this
step is same as those in the proof of Proposition 5.0.37. In the last step, we show

that the map T) has the desired properties as we stated.

Step 1 Let (f1,L;) and (f2,X2) be the two components of (fo, £y). Then ¥ lie in

the image of
0 : Mg, k41 X Mg kg1 — Mig

where o is defined as in Chapter 3 and X; € ﬂg‘,k,.“ for i = 1,2. Let U be an open
neighborhood of ¥y in —/Wl,k. We may assume that the intersection W = U NIm(o) is
smooth. Let N be the tubular neighborhood of W in ./Vl,k. There is a trivialization
N ~ W x D, where D C C is some disk. Let N = ﬁlv"ln’ where U,  — M, is the
universal family. Denote by A the set of nodes in the fiber of N and let V(N) be
some fixed neighborhood of NV in N. We can choose local coordinates z, w, as well as

(t,p) € N, on V(N) such that the fiber of N over (t, u) is given by
(t,z,w) with zw = p.

Now, we set W = st~!}(W). This is an open neighborhood of Cy. By shrinking
V(N) and W, if necessary, for any C = (f, X, a) € W, we can assume the followings :

1. f(ENV(N)) C U, where U is the neck region (0.3) of Z.

2. Let f; : £ —» X and f5 : £5 — Y be the components of the reducible map f.
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It then follows from Contact Lemma in [IP2] that

filt,2) = (v(2), az+ O(|2[*) ) and fo(t,w) = (v(w), bw + O(lw|*) ) with

1/2 < |a, |b] < 2.

3. Forpe L, \VW) (g€ Z\V(N)) with fi(p) (f2(g)) in the neck region of Z,

we have

fi(p) = (v(p),2(p),0) ( fa(g) = (v(9),0,3(q)) ) with |z(p)|(ly(a)]) 2 e

where ¢ is a uniform constant which doesn’t defend on C € W.

For each (t,u) € N, denote by I; = ¥;; U X2 the fiber of (¢,0) in N. We also
denote by T, the fiber of (¢, ) in N. We define X-side ¥, (Y-side TY,) of T,
be the set of all points p € X, ,) which satisfies

d(p,Zun) < d(p,Te2) ( d(p, Le2) < d(p, 1) )-

When p is in X-side (Y-side), denote by mx(p) (7y(p)) the unique point in ¥ (X¢2)

such that
d(p, L) =d(p, 7x(p)) (d(p,Ze2) =d(p, my(p)) )

Let 7 be the distance function to A in N. We define a bump function 8. with

Be(r) =0 if r>2, pBr)=11ifr<e and |dE| <2

Definition 11.0.58 For each C = (f,Z,a) € W and A # 0, we define Cy =
(Fx, I, @) as follows :

1. ¥\ = (t,p), where p = A/ab and ¥ = (t,0), and
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2. let v be a local coordinate of V centered on the image of the node of ¥ and we
define Fy : £y — Z) by

((1=Bu)v(2), £(2), Mi(z)) on { (t2,w) e VIN) | |z| > |w| }
¢x 0 fiomx on ¥ N Supp(B,)
Fy =<
((1=B)v(w), Mj(w), §) on {(t,z,w) € VN) | |w| > |2| }
| $vacfromy on Y N Supp(B,)

where £(z) = az(1+(1-6,)0(|2]) ), §(w) = bw(1+(1-B,)O(|wl)), By is the
bump function defined as above with € = |u|, and ¢x x (dy,) is the holomorphic

map which extends the following map

(v,2,0) = (v,2,2/2) ((v,0,9) = (v,2/y,9)).

on the ncek region (0.3) of Z

As in Chapter 5, we use the metric on U 1,4 and metric gz on Z to define pointwise
norm, weighted norms || - ||, and || - ||, as in Chapter 5. Note that the pointwise

norm |dF,| is uniformly bounded. Recall that v, = (I + JK,) !v.

Lemma 11.0.59 For some Ao > 0, there is a uniform constant c such that for any

CeWand |\ <X
101, Fx — vallp < clAl.

Proof. Let ®(Cy) = 8, F\»—vq. Since mx is holomorphic on the region ¥ NSupp(5,)

and ¢x » is also holomorphic, we have

®(Ch) =dox A(0s.f1 — Va )dTx + (Jo — J)dF)

+dox\(J — Jo)dfidrx + dpx s\ Ve dTx — Vg
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Therefore, we have |®(Cy)| < c|A| on the region £¥ N Supp(B,).

On the region { (¢,2,w) € V(N) | |2] = |w| } we can assume F) maps into the

region at which a = 0. Using zw = p = A\/ab, we have

0, F)

= (84(1 = B,)v,a28,((1 - B)O(|2])], bwdy (1 + (1 = B,)O(|2)))* 3,((1 - BO(|2])])

All terms in §;F) are bounded by ||, except for the term involving 8;v. On the
other hand, 8; v is the V-component of 3, f, and hence v}, where vy, (z) = v(f1(2), 2).

Therefore, we have
[B(Co)] < e(lvy, —vEl+ R |+ A]) < c|A]

since the normal component vV vanishes along V. Using the same arguments on the
other regions, we can conclude that |®(C,)| < c|A| on X,. This implies the lemma.

O

Step 2 As above, we set ®( F,X,a) = 5J°F — V. In this step, we perturb C) =
(F»x, 2, @) to C, = (F5, L), ) such that ®(C}) = 0. For doing that, we consider the

linearization D¢, of ® at C)
De, : L' (F3TZ,) & Tz, M14 ® ToH — LP(A};. (F3TZ5)) (0.1)

where L'? and L? are defined by weighted norms as in Chapter 5. Using the
Inverse Function Theorem, we will show that there exits a unique (&,k,3) such
that (i) ®(expc, (§,k,8)) = 0 and (ii) the projection of (£,k,B) to the kernel of

De, with respect to L2-inner product is zero. We then define a gluing map by
TA(C) = expC,\(él’ k’ﬂ)
Let q: LYP(F}TZ)) @szﬂlA ®ToH — Ker(Dg, ) be the projection with respect

to L%-inner product. The following lemma is similar to Lemma 5.0.36.
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Lemma 11.0.60 There exits Ao > 0 such that if |A\| < Ao, then for any p > 2, C)
with C in W, (&, ko, fo) in Ker(De,) and n in L”(Ag’}a(F,\‘TZ,\) ), there is a unique
(&, k, B) which satisfies

q(€1 kvﬂ) = (60, kOsﬁO)’ DCA(€7 k: ﬁ) =n (02)

€112 + [IEIl + [18]] < cmax { |[€oll1p + |[Kol| + [1Boll, |Inllp } (0.3)

where c is a uniform constant.

Proof. This proof is similar to that of Lemma 5.0.36. We first show that for suffi-
ciently small A and any C € W, Coker(D¢,) = 0. Suppose not. Then there exits a
sequence { (Cn, A, 7n) } such that A, — 0 and Di;_, (1) = 0 with ||n||, = 1, where
(Cn, An) denotes the approximated map determined by C, and ),. We can assume
Cn — C and (Cp,A\;) — C. Let C = (f,%,a). It follows from the standard elliptic
estimates that 7, converges to some 7 outside of a node of ¥. Since Dj(n) = 0 and
Coker(D¢) = 0, we have n = 0. This implies that 1, — 0 on the complement of
neck region defined as in (0.5). On the other hand, note that Li (7,) = 0, where
F, = Fe, ). It follows from Lemma 5.0.34 that ||n,||[, — 0. This contradicts
to our assumption ||n,||, = 1. Therefore, for sufficiently small A and any C € W,
Coker(Dg, ) = 0.

Consequently, there exits (§, k,3) with D¢, (€,k,8) = n. Let ¢ = (§,k,5) and
Co = (&o, ko0, Bo)- Then ¢’ = ¢ — q(¢) + (o satisfies (0.2). Uniqueness is obvious.

Next, we show the estimate by contradiction. Suppose not. Then there exits
(§n, kn, Bn) such that (i) ||€nll1p + [[Kall + [18all = 1, (ii) || Da(&n, kn, Ba)llp — O, where
Da = Dicarnyy 80d (i) [I€nolli + llkroll + [Iaoll — 0. We can assume that the
approximate map (Cp, An) converges to (C,)A) = (F,a). By the Sobolev Embedding
Theorem, we can also assume £, converges to some ¢ and £,9 — 0 both in L}2-norm.

We can further assume that (k,,(,) converges to some (k,(3) and (kno,Bno) — O.
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Note that D¢ (¢, k,3) = q(€,k,3) = 0, and hence we have (&, k,3) = 0 by unique-
ness. Together with (i), (k,3) = O implies that ||£,|[1, — 1. It then follows from
Lemma 5.0.33 that ||£,||12 is uniformly bounded away from zero. This is impossible

since £, — £ in LV%-norm and £ = 0. Therefore, we have a contradiction. O

As in Chapter 5, we set
Ll’p = { (C, Aa&)k)ﬂ) l c € w’ (Ea k’ﬂ) € Ll'p(F;TZA) S TE,\HIA D TaH }
P = { (C, AaEkaO’ﬂO) | Ce W) (501":0):30) € Ker(DCA) }

On the other hand, let Map, 4(Z», A) be a subspace of Map, 4(Z, A) which contains

all maps into Z), and set

P ={ (C',\n) | C' € Map, 4(Zy, A) with C' = (F,j,a), n € LP(A}; F*TZ,) }

and define a map Z: L' — L? x P by
E(C,A, (& k,8)) = ( 2(expe, (€,k,8) ), a(¢, k,8) )
The linearization of = at (C, A, 0) is the map
DZ: L'?(F{TZ,) ® Te,M1,4 ® TaH — LP(A}y. FXT Z)) x Ker(Dc,)
(&, k,B) — (De, (&, k, B),a(€, k,8) )

By Lemma 11.0.60, it is an isomorphism with uniformly bounded inverse. Therefore,
by the Inverse Function Theorem there exits ¢ > 0 such that = is a local diffeomor-

phism from the open set

{ €A K,B) € L' | [|Ellp + Il + 118 < €} (0.4)

onto its image. It then follows from Lemma 11.0.59 that for any (C,)) with |)|

sufficiently small, there is a unique (&, k, 8) such that

E(,k,B) = (C,A,0,0). (0.5)
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Definition 11.0.61 Fiz A with |A\| < |Xo|. For each C € W, let (§,k,B) be given as
in (0.5). We then define

Th: W — Mu(Za); by C— exPc,\(f, k, B).

Similarly as in Chapter 5, we have the following expansion

q’(exPc,\(ﬁ, kaﬂ) ) = q)(cz\) + DC,\(§9 kaﬂ) + HC,\ (&) k:ﬂ)

where ||He, (€,k, B)llp < c(||€ll1p + |1kl + 118]])? for some uniform constant. Using
this expansion and the estimate in Lemma 11.0.60, we can conclude that (£, k, 3) in

(0.5) satisfies

1€l + &[] + [I8]] < c|A| (0.6)
for some uniform constant.

Step 3 As a consequence of the Inverse Function Theorem, the map T) is smooth.
It also follows from (0.6) that T5(C) — C as A — 0.

In the below, we will show the injectivity of T) and (iii) of Theorem 11.0.57.
Denote by Q the orthogonal complement of P withe respect to L? norm. For each
fixed A\, we also denote by .A, the set of all appoximated maps into Z. As in the
proof of Lemma 11.0.60, each Coker(D¢,) = 0 when |)| is small. Hence we can deduce

that
TCALIJ’ = TCAA,\ 2 QlcA

Let @ = Uc @), and denote by exp : Qx — Map, 4(Z», A) the exponential map
defined by

(C, X, Eo, ko, Bo) — expic. (€0, Ko Bo). (0.7)
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Now, fix a path C, starting C and let (£, k, 5) be the tangent vector at ¢ = 0 of the
corresponding approximated maps (C;, A). Using parallel translation we can calculate

d

7 =P (6o, ko, Bo)|,_, = (€, K, B) + (&0, ko, Bo)-

Therefore, there exits ¢g > 0 such that for all small |A| the exponential map (0.7) is a
diffeomorphism from some neighborhood of zero section in @ onto €;-neighborhood
of A, in Map, 4(Z, A). Together with definition of T) and (0.6), we can conclude
that T, is injective. On the other hand, if (f,X, @) in M, 4(Z), A, H)) is close to Co,
then it is in the ep-neighborhood of A,, which implies (f,X,a) in T\(W). O

Now, we are ready to prove the sum formula (0.5).
Proposition 11.0.62
H(t) = ——IIEF(t) +2F()G(2)

Proof. By definition of generating functions H(t), F(t), and G(t), it suffices to show
that

GWIH (S + AP o F) = 3 GWE(S+aiF) (2atd) - 35 )

dy+d=d
where o(dz) = )4, as in Chapter 6.

We can choose a submanifold F; C Z for ¢ = 1,--- ,4 which is in general position
with respect to evaluation maps such that for i = 1,2 each F;NX ( F;;2NY ) represents
a fiber class in X (Y), and each F;N Z) represents a fiber class in Z) = E(n). On the
other hand, without loss of generality, we may assume there is a submanifold K in
ﬂm representing Poincaré dual of 1(; 4),s. We may also assume that K is in general

position with respect to stabilization map.
Let A # 0 be generic as in Proposition 9.0.51. Now, consider the cut-down moduli

space M, which consists of all (f, (j; {z:}), @) in M} 4(2Z), A, H,) with f(z;) in F; and
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st(j) € K. It then follows from Proposition 9.0.51 that M, is finite and Aut(j) = I.

In fact, by definition for generic A we have
[St X ev(M,\) ] = GW;’:?(Z,\, A)(’(/)(l’4);4; F4) = GW;HA" (S + dF)(¢(1,4);4; F4) (08)

where the second equality follows from Lemma 9.0.49 and Proposition 3.0.15.

Similarly as above, let M, be the cut-down moduli space which consists of all

(1 Gudadsa), (f2 Go (i) ) € MY (X1 x MY (Y,

such that fi(z;) € F; and fa(yi+1) € Fie for i = 1,2, and o(j,j2) € K, where o
is the gluing map of the domain as in (0.8). It follows from Proposition 10.0.53 and
Remark 10 that M, is finite. Moreover, (ji,j2) is an element of either M; 3 x My
or Ho,s X mm, since there are two marked points at each X-side and Y-side. Note
that 0*(1(1,4)4) = 0, where o : _/\71,3 X /T/l-o,s — HM. Therefore, we have
M, C d L;J dM(‘,;,(x, S +diF, Hx) x M{5(Y, S + dF) (0.9)
1 +dg=

Together with routine dimension count, (0.9) implies that

[st’ x ev(My)]

= Y GWY™*(S+diF)(F5C(V)) GW5(S + daF) (¥ 33 C(pt) : F?)

dy+dg=d
= Y GWZ5(S+diF)(F®)GW5(S + doF)( 9,3y C(pt); F?)
dy+d2=d
= Y GWI5(S+dF) (2a(d2)-l) (0.10)
’ 12
dy+da=d

where the second equality follows from Lemma 9.0.49, Proposition 3.0.15, and defin-
ition of relative invariants, while the third equality follows from TRR for T2 x S2.

It remains to show that
i.[st' x ev (Mg)] = ju[st x ev(M,)] in Ho(M;q x Z*) (0.11)
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where ¢ and j are inclusions as in the diagram (0.6).

By Lemma 9.0.52, as A — 0 any sequence (f», jx,@x) € M, converges to a limit
(f,7,). As above, since there are two marked points on each X-side and Y -side, j

lies on one of the following images of the gluing maps :

o M0’3 X Ml,a g M1'4, o9 : M1_3 X Mo,g — M1,4, or
o3 : M0,3 X M1_2 X Mo'a — M1'4

Since j also lies on K , and both 03(1(1,4),4) and 03 (1)(1,4);,4) are trivial, (£, j,a) € M.
Hence, there is a bijective map between M), and My for small |\| by Gluing Theo-
rem. Moreover, they are homotopic in Map, 4(Z, A). Therefore, by the commutative

diagram (0.6), we can conclude (0.11). O
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CHAPTER 11

Appendix — Relations with the

Behrend-Fantechi Approach

Behrend and Fantechi [BF] have defined modified GW invariants for Kahler surfaces
using algebraic geometry. While their techniques are completely different from ours,
the definitions seem to be, at their core, equivalent. In this appendix we make several
observations which relate their approach to ours. This is necessarily tentative because

the paper [BF] is not yet available; we are relying on the terse description given in

[BL3]

In algebraic geometry, the virtual fundamental class [M, (X, A)]VIl is obtained
from the relative tangent-obstruction spaces together with the tangent-obstruction
spaces of Deligne-Mumford space M, . Behrend and Fantechi modified their ma-
chinery, intrinsic normal cone and obstruction complex, by replacing the relative

obstruction space H!(f*TX) by the kernel of the map
HY(f*TX) — H*(X,0) (A.1)
defined by dualizing of the composition
H°(X,0%) — H(f*Q%) — HY(f*Q' @ f*Q') - H(f*Q' ® Q). (A.2)

93




In order for their machinery to work, the map (A.1) is of constant rank — in particular
surjective — for every f in M, (X, A) [BL3]. Composing (A.2) with the Kodaira-

Serre dual map, we have
H'(X,Q) - H(f*Q' ® Q') - H'(f*'TX). (A.3)

This map is given by 8 — Ksdf j.

Proposition A.63 Let (X,J) be a Kdhler surface and A € H'(X,Z). Then the
family moduli space ﬂ:k(X , A) is compact if and only if the map (A.1) is surjective
for every f in Myi(X, A).

Proof. By Theorem 2.0.12 ﬂ:k(X , A) consists of pairs (f,a) with f € My x(X, A)
and with the image of f contained in the zero set of «; the latter condition means
that K, = 0 along the image, so K, df j = 0 for all (f,c). As usual, M, (X, A) is
compact by the Gromov Compactness Theorem.

Now, suppose (A.1) is surjective. Then by duality (A.3) is injective. This implies
a = 0 and hence H:k(X ,A) = M, (X, A) is compact. Conversely, suppose for some
f € Mgx(X, A) there is a 3 in the kernel of (A.3). Then setting @ = 8 + 3 we have
8;f = tKqdfj = 0 — and hence (f,ta) € M,(X, A) — for all real t. That means
that 'M"_,’,‘f,,(x ,A) is compact only when (A.3) is injective or equivalently when (A.1)

is surjective. O
The map (A.3) is directly related to the linearization operator of the (J,a)-
holomorphic map equation.

Suppose that A is (1,1) and that the family moduli space ﬂ:k(X , A) is compact
as in Proposition A.63. Consider the linearization of the (J, a)-holomorphic map

equation the (J, a)-holomorphic map equation as given in (0.6). Since J is Kahler,
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the linearization reduces to

Ly(§) = VE+JIVE)
Ly®Ly: Qf'TX)®H — QNf'TX)  where

Lo(B) = —2Kpdfj

In fact, this L; is exactly (twice) the Dolbeault derivative 0. Therefore, Ker(L;)
are Coker(L;) are identified with the Dolbeault cohomology groups H°(f*TX) and
HO%(f*TX), respectively.

Proposition A.684 Under either of the two equivalent conditions of Proposition A.63
there are natural identifications H'(f*TX) ~ H%'(f*TX) and H°(X,Q?) ~ H under
which identification the map is identified with (A.3) with

Lo : H — Coker(Ly).

By Proposition A.63 this map is injective if and only if the family moduli space
—M:k(X , A) is compact.

Proof. This follows directly by comparing the formulas for Ly and (A.3). Alterna-
tively, we can compute the linearization from scratch as follows. Given ¢ € Q°(f*TX),
there is a family of maps f, with fo = f and ¢t = £. It follows from Proposi-

dt |t=0

tion 1.0.6b and (3, A) = 0 that

d oo @ 5 N ;
-3 [re=2 [ @t Kot = [[(Lse). Kot

This implies that Lo maps H into Coker(L;). O
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