

A00 |

_ LIBRARY
tuichigan Siaiz |
University

—p—
-

This is to certify that the

dissertation entitled

Restricted Cache Scheduling

presented by

Stephen Wagner

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Computer Science

£ 57, =

Major professor

MSU is an Affirmative Action/Equal Opportunity Institution 0-12m

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

6/01 c/CIRC/DateDue.p65-p.15

RESTRICTED CACHE SCHEDULING
By

Stephen Wagner

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTORATE

Department of Computer Science and Engineering

2001

ABSTRACT
RESTRICTED CACHE SCHEDULING
By

Stephen Wagner

This dissertation studies the caching problem in a restricted cache where each
memory item can be placed in only a restricted subset of cache locations. Examples
of restricted caches in practice include victim caches, assist caches, and skew caches.
Restricted caches differ fundamentally from traditional set-associative caches because
the exact location that an item is placed in the cache is important. This difference
greatly complicates the scheduling problems for restricted caches.

We first consider the off-line restricted cache scheduling problem. This problem is
closely related to restricted interval scheduling. We show that any interesting version
of restricted interval scheduling is NP-complete and also APX-complete, meaning
that there is a limit to how well the problem can be approximated unless P = NP.

We then study the on-line restricted cache scheduling problem. We focus on com-
panion caches, the simplest restricted cache. Companion caches include victim caches
and assist caches as special cases. We show that the commonly studied Least Re-

cently Used (LRU) algorithm is not competitive unless cache reorganization is allowed

while the performance of the First In First Out (FIFO) algorithm is competitive but
not optimal. We present two near optimal algorithms for this problem as well as
lower bound arguments. We also extend these results to more complicated restricted
caches, such as the skew cache.

Finally we present a model to measure the flexibility of cache designs as a means
to compare different cache designs independent of scheduling algorithms and input
sequences. The model is based on the concept of working sets, and the probability

that working sets of different sizes will fit into a given cache.

© Copyright 2001 by Stephen Wagner
All Rights Reserved

To my parents.

ACKNOWLEDGMENTS

I would like to thank all of the people who have helped me throughout the years of
graduate school, and who made this dissertation possible.

First I would like to thank my advisor, Dr. Eric Torng, who always had good ideas
and even better feedback, and who was more than patient with my sometimes less than
diligent manner. I would also like to thank my committee members, Dr. Enbody, Dr.
Esfahanian, and Dr. Palmer, all of whom were extremely helpful and always willing
to discuss my research with me. I would also like to thank Dr. Esfahanian, who as
the Graduate Director, always made sure that I had financial support.

I would like to thank Dr. Stockman for his help over the years. He noticed me as
an undergraduate student those many years ago, and it is largely because of him that
I was able to return to MSU as a graduate student after th.ose long years in limbo.

I would like to thank my fellow student Mark Brehob for bringing the skew cache
problem to my attention, and for all of his help and work on the problem. Finding
an interesting problem worth working on is one of the great hurdles in completing a
dissertation, so I am very grateful that he helped find a problem for me.

Other students that I would like to thank are Patchrawat Uthaisombut and Ryan
McFall. I would like to thank Jay Kusler for hiring me as a systems administrator
and for all of the interesting conversations about food and life. I would like to thank

Cora Fong for proof reading my dissertation. I would like to thank Linda Moore and

vi

all of the secretaries for helping me find and fill out all the necessary forms needed to
make it through graduate school. I especially would like to thank Susanna Tellschow
for all of the dances and for providing robots and monsters where needed.

My family has always been my most constant source of support. I would like
to thank all of my siblings, Peter, Robert, Paul, Mary and Michael and wish them
well in their various pursuits. I would like to thank my father, who's financial and
educational support made so much possible, and my mpther, may she rest in peace,
for caring so much about me. Lastly I would like to thank God, who made this and

all things possible.

vii

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES

1 Introduction

1.1 Motivation: Memory Latency and Caches
12 Overviewof Caches
1.3 The Cache Scheduling Problem
1.3.1 Cache Bypassing and Interval Scheduling
1.4 Traditional Cache Designs
1.4.1 Set Associative Caches
1.4.2 Cache Scheduling for Set Associative Caches
1.5 Restricted Caches
1.5.1 The Companion Cache Structure
1.5.2 The Skew Associative Cache
1.5.3 Restricted Cache Scheduling
1.6 Methodology
1.6.1 Off-line Methodology
1.6.2 On-line Methodology
1.7 Overview

2 Related Work

2.1 Cache Scheduling
2.1.1 Off-line Cache Scheduling
2.1.2 On-line Cache Scheduling
2.2 Interval Scheduling
2.2.1 Identical Interval Scheduling
2.2.2 Restricted Interval Scheduling
2.2.3 Tactical Interval Scheduling
2.2.4 On-line Interval Scheduling
2.2.5 Otbher Interval Scheduling Problems.
2.3 Circuit Routing and Load Balancing
24 General Scheduling

3 Off-line Restricted Cache Scheduling

3.1 HardnessResults
3.1.1 Interval Scheduling Problems
3.1.2 Cache Scheduling

3.1.3 Inapproximability Results
3.2 Algorithms
3.2.1 Optimal Off-line Solution
3.2.2 Optimal Solution for RIS(2)
3.3 Approximation Algorithms oL o oL
3.3.1 Graph Theoretical Model
3.3.2 Earliest End Time Algorithms
3.3.3 Linear Programming Relaxations
3.34 Empirical Results L.
34 Summary
4 On-line Restricted Cache Scheduling

4.1 Companion Cache Scheduling
4.1.1 Companion Cache Scheduling with Bypassing
4.1.2 Companion Cache Scheduling without Bypassing
4.1.3 Companion Cache Scheduling with Reorganization
4.14 Companion Cache Scheduling with Extra Resources
4.2 Other Restricted Caches
4.2.1 The Set-Associative Companion Cache
4.2.2 The Skew-Associative Cache
43 Summary e
5 Cache Design Analysis

5.1 Metrics e
5.1.1 Size and Associativity
5.1.2 A New Flexibility Metric.
5.2 Flexibility of Different Cache Designs
5.2.1 Set-Associative Caches,
5.2.2 CompanionCaches,
523 Skew Caches
5.3 Comparisons e e
5.3.1 Different Cache Designs
5.3.2 Different Sized Caches
5.3.3 Comparing CCS(m,n) and Set Associative Caches
5.4 Summary e e e e e
6 Conclusion

6.1 Contributions
6.2 Future Work
6.2.1 Off-line Cache Scheduling
6.2.2 On-line Cache Scheduling
6.2.3 Cache Design Analysis

ix

LisT OoF FIGURES

1.1 A Request Sequence and the Corresponding Intervals 8

1.2 Example of Item Placement in Different Cache Designs 10
1.3 Example of Item Placement ina CCS(6,2) 15
1.4 Two different views of a 2-way set associative cache. 17
1.5 A 2-way skew associativecache. 17
1.6 Different banks, different conflicts. 18
3.1 Example reduction from 3-OCC-MAX-2-SAT 48
3.2 Example reduction from CMIS(m) to CMIS(m+1) 50
33 EETlowerbound., 67
3.4 The choices of RAN-EET and the resulting subgraphs. 69
3.5 Integrality Gap Example. 72
4.1 LRU is not competitive for CCS(2,1) 75
4.2 Example phases for CCS(3,1) 77
4.3 MCF’s behavior on the LRU counter example. 7
4.4 Illustration of a Main to Main (Intervening) miss. 79
4.5 A Worst Case Input for MCF on CCS(m,1) 82
4.6 FIFO can miss an item more than once per phase. 84
4.7 Tllustration of a FIFO Other miss. e e e e e e e e e 88
4.8 B-phases and Periods for CCS(m,1) 91
4.9 Different behaviors of MCF and MCF, 93
410 The NFA Fi. e e e e e 94
4.11 Part of NFA Fi. o e 95
4.12 Lower Bound Example for RLRU 101
4.13 Lower Bound Example with Extra Resources 104
4.14 A Worst Case Input for MCF on SACC(m,2,1) 107
4.15 A lower bound example for FIFO 109
4.16 Graph Representation of FIFO Lower Bound 110
5.1 Flexibility of Cachesofsize 64 125
5.2 Flexibility of Cachesof size 128 126
5.3 Flexibility of Different Size Caches 127

LisT OF TABLES

3.1 Performance of Approximation Algorithms for RIS

5.1 Simulation results of Different Sized Caches
5.2 Values of n needed for CCS(m, n) to e-dominate SA(b,7) for € = .01

xi

Chapter 1

Introduction

1.1 Motivation: Memory Latency and Caches

Modern processors are becoming increasingly faster. A version of Moore’s Law says
that processor speed doubles every 18 months. However, this exponential increase in
processor speed does not guarantee that processor performance will actually improve.
Most instructions executed by the processor need to access memory. If memory speed
is not on par with processor speed, the processor will spend much of its time waiting
on memory accesses and the advantages of a fast processor will be lost. This is the
memory latency problem. As a further complication, new applications have increased
memory demands dramatically which means that computers require larger and larger
main memories to operate effectively. Unfortunately memory technology has not
kept pace with processor technology. Even though large memory access speeds are

increasing exponentially, the gap between processor speeds and large memory access

speeds is still increasing exponentially. Note, small fast memory devices can be built,
but it is not feasible to build large fast memories.

Since small fast memories can be built, a common approach for coping with mem-
ory latency is to implement the memory of a computer as a memory hierarchy con-
sisting of a large, inexpensive, slow main memory, and a relatively small, expensive,
high-speed memory known as a cache. In the most basic memory hierarchy, there is
a single cache located between the main memory and the processor. When the pro-
cessor requests a memory word, it first looks for the word in the cache. If the word
is in the cache, it is returned immediately to the processor and the processor can
continue executing instructions without delay. Ideally nearly every memory reference
will be a cache hit, in which case the memory system will behave like a single large
fast memory.

Until now, traditional cache designs and scheduling algorithms have sufficiently re-
duced memory latency so that it has not been the significant bottleneck in processor
performance. However, as the gap between processor speed and large memory ac-
cess speed increases, better cache designs and better cache scheduling algorithms are
needed to ensure that increases in processor speed result in corresponding increases
in processor performance.

This dissertation studies the scheduling of restricted caches, a general class of
cache designs that encompasses many of the new, and proposed non-standard cache
designs being considered by the architecture community. Until now, the scheduling
problems related to this class of cache designs have not been studied by the theory

community.

1.2° Overview of Caches

A cache is a small, high speed memory. Whenever the processor requests a word
from memory, it first looks for the word in the cache. If the word is in the cache, it is
returned immediately to the processor. This is referred to as a cache hit. If the word
is not in the cache, it is called a cache miss. When a cache miss occurs, main memory
is accessed and the réquested word is brought into the cache. In order to make room
for the newly accessed word, a word currently in the cache must be evicted. A cache
miss may result in the processor stalling until the memory access can be completed.
The percentage of memory accesses that result in cache misses is known as the miss
rate.

The reason caches work is because typical programs exhibit locality of reference,
which includes both temporal locality and spatial locality. Temporal locality is the
tendency to reuse recently accessed memory words. Spatial locality is the tendency
to use memory words that are “physically” close to recently accessed memory words.
A cache takes advantage of temporal locality by keeping recently accessed words in
the cache. To take advantage of spatial locality, when a cache miss occurs, a block of
memory, typically 8 to 16 words, is brought into the cache instead of a single word.
All of the words in the block are likely to be accessed in the near future, and because
the entire block was brought into the cache, each of these accesses will be a cache
hit. Blocks are the smallest unit of memory in a caching scheme. We will henceforth
use the term item to describe the smallest unit of memory. A result of locality of

reference is that programs use only a relatively small number of items for relatively

long periods of time. The set of items currently needed by the program is known as
the working set. If the working set can be placed in the cache, the program will not
generate any cache misses until the working set changes.

The size of a cache is defined as the number of items the cache can hold. A cache of
size k has k distinct locations in which to place items. Because every memory access
involves searching the cache to determine if the item is currently in the cache, the
placement of items in the cache is typically restricted. The cache design determines
where each item can be placed in the cache. In general, each item can only be placed
in a subset of the cache locations. We will defer the discussion of cache designs to

Section 1.4, and first discuss the cache scheduling problem.

1.3 The Cache Scheduling Problem

The overall goal of a cache is to reduce memory latency. A major component of
latency is the miss rate. The goal of a cache scheduling algorithm is to minimize the
miss rate. However, a cache scheduling algorithm has no control over which items will
be accessed in the future, and has to rely largely on locality of reference to achieve
a low miss rate. The only control the algorithm has is deciding where in the cache
to place an item, and consequentially which item to evict from the cache. A cache
scheduling algorithm is also limited by the cache design. The cache design restricts
where in the cache an item can be placed. This in turn limits the choice of item to
be evicted when a cache miss occurs. The algorithm can only evict items that are

occupying locations in which the newly accessed item can be placed.

We formally define the cache scheduling problems as follows:

Definition 1.3.1. Cache Scheduling:

INSTANCE: We are given a cache of size k, a set of memory items R, and a function
g: R — 2M where M is the set of cache locations. We are also given a sequence of
memory requests, s € R*.

GOAL: Find a schedule, that is an assignment of items in s to legal cache locations,

with the fewest cache misses.

The function g indicates where each item from R can be placed in the cache and
is determined by the cache design. A schedule specifies where in the cache each item
from s is placed. This is the optimization version of cache scheduling. The problem
can also be phrased as a decision problem.

A scheduling algorithm needs to consider both where in the cache to place the
newly accessed item, and which item to evict. Intuitively a newly accessed item
should be placed in a location where it will not conflict with other needed items, and
the evicted item should be one that will not be referenced again soon. Solving this
problem optimally requires knowledge of future requests. Optimal cache scheduling
is therefore an off-line problem. The entire request sequence s must be known before
making any scheduling decisions. In a real system, cache scheduling is an on-line
problem. The decision about which item to evict must be made before the next
access occurs. The algorithm can only see a single element of the request sequence s
at a time. Both the off-line and on-line versions of cache scheduling are interesting

from a theoretical and practical viewpoint.

Cache scheduling can be viewed as a machine scheduling problem if we think of
each cache location as an individual machine, and the memory requests as jobs. We
can then take advantage of the scheduling terminology used to describe the types of
machines available. If the cache locations are identical, then any item can be placed
in any cache location. In the terms of definition 1.3.2, the cache locations are identical
if Vz € M, g(z) = C. If the cache locations are restricted, then each item can only be
placed in a subset of the locations. If the cache locations are identical, the decision
about where to place an item is no longer important, and we only need to consider

which item to evict.

1.3.1 Cache Bypassing and Interval Scheduling

We typically assume that when a cache miss occurs, the memory item accessed must
be placed in the cache. If bypassing is allowed, the item may be fetched directly from
secondary memory and need not be placed in the cache. This still qualifies as a cache
miss and will increase memory latency. However, this is advantageous if it is known
that the item is not going to be referenced again soon. Consider the case where
everything currently in the cache will be referenced again, and the newly accessed
item z will not be accessed again. If we place the item X in the cache, we must evict
some other item Y, which will result in a second cache miss when the evicted item
Y is accessed again. If item X bypasses the cache, there is only a single cache miss.

Whether of not bypassing is actually permitted, it is worth studying the bypassing

case, as it gives us an upper bound on possible cache performance for a given cache
design.

When bypassing is used, it is clear that in the optimal solution an item should only
be put in the cache if it will remain in the cache until its next reference. With this
in mind, we can view the problem of finding an optimal cache scheduling algorithm
for a cache of size k as an interval scheduling problem on k parallel machines. We

formally define the problem as follows:

Definition 1.3.2. Interval Scheduling:

INSTANCE: We are given a set M of machines, a set I of intervals, and a mapping
g : I — 2M which determines on which machines each interval can be scheduled. Each
interval © has a fized start time s; and a fized processing time p;. Interval i must be
assigned to a machine immediately at time s;, and it must be continuously processed
until it is complete, or else it is lost. A machine can only process one interval at a
time. In other words, overlapping intervals cannot be scheduled on the same machine.

GOAL: Find a schedule that processes the mazimum number of intervals.

The machines correspond to the cache locations. An interval is defined by suc-
cessive references to the same memory item. Figure 1.1 shows an example request
sequence and the corresponding intervals. Placing an item in the cache is only prof-
itable if the item will still be in the cache the next time it is referenced. Likewise,
scheduling an interval on a machine is only profitable if the machine is not otherwise
busy during that interval. The schedule that loses the fewest intervals corresponds to

a cache schedule with the fewest cache misses.

Requests: I, I, I, Ia I, I3 I Ia I I

-.-__

Intervals: ' L 1

Figure' 1.1: A Request Sequence and the Corresponding Intervals

In order to exactly model cache scheduling, we need to add an additional constraint
to the interval scheduling problem. Consider item I, in the request sequence depicted
in Figure 1.1. The first three references to I, deﬁne two adjacent intervals. Intervals
are considered adjacent if they share an endpoint and correspond to the same memory
item. In a regular interval scheduling problem it would be legal to schedule these
intervals on different machines. However, this would be equivalent to item I, being
in one cache location between its first and second reference, and in a different cache
location between its second and third reference. In general items are not allowed to
freely move within the cache. To correctly model caching, we can only schedule two
adjacent intervals if they are scheduled on the same machine. The general interval

scheduling problem though, is still of theoretical and practical interest.

1.4 Traditional Cache Designs

The cache design determines where in the cache specific items can be placed. The key
difference between different designs is how freely items can be placed in the cache.
Despite the apparent differences, cache scheduling for all traditional cache designs is

equivalent to scheduling a cache with identical cache locations.

1.4.1 Set Associative Caches

There are several traditional cache designs, but all of these can be considered under
the general classification scheme of set associative caches. In an m-way set associative
cache of size k, the k locations are divided into k/m disjoint sets. Each memory item
can only be placed in one set of cache locations, but the item can be placed in any
of the m locations within that set. A simple function such as the modulo operator is
used to determine which set of cache locations an item can be placed into. A fully
associative cache can be thought of as a k-way set associative cache of size k; that
is, any item can be placed in any cache location. In a fully associative cache, all
of the cache locations are identical. On the other hand, a direct mapped cache can
be thought of as a one-way set associative cache; that is, any item can be placed in
exactly one cache location. Typical values of m in practice are 2, 4, and 8, and m
is referred to as the associativity of the cache. We will use the notation SA(m,n) to
refer to an m-way set associative cache of size mn. SA(1,n) is a direct mapped cache
of size n, and SA(n,1) is a fully associative cache of size n.

We illustrate the effect of different associativities with the following simple ex-
ample. Suppose we have a cache of size six and that the following six items are
repeatedly referenced: I;, I, Iy, I7, Ig, and I. The associativity of the cache design
will determine how many of these items can simultaneously fit in the cache. This is
illustrated in Figure 1.2. Clearly all of the items can be fit into a fully associative
cache as there are 6 items, the cache has 6 locations, and each item can be placed in

any cache location. It is worth noting that the items can be arranged in any order in

the cache. The exact location of each item is unimportant. In a direct mapped cache,
each item’s location in the cache would be determined by the item number modulo
6. Item I, and item I; share the same location in the cache, so they both cannot
simultaneously be in the cache. This is known as a conflict. Likewise items I, and Ig
cannot both be in the cache because of a conflict. Only 4 of the 6 items can be placed
in the cache simultaneously leaving two of the locations in the cache unused. In a
two-way set associative cache there would be a total of 3 sets of size two. The set into
which each item is placed would be determined by the item number modulo 3. Items
I, and Iz would both be placed in set 2, and item Ig would be placed in set 0. Items
I, 14, and I; would all have to be placed in set 3. However, each set can hold only
two items, so it is impossible to put all three items into the cache simultaneously.
Only 5 of the 6 items can be placed in the cache simultaneously leaving one of the

cache locations unused.

I

h Set 0 { 2
Iz Il I'I
14 . 12 Is { Il

Set 1 I
Iz Is ¢ I4 7
Is I4 { Iz

Set 2
Io ¢ Is

Fully Associative Direct Mapped 2-way Set Associative

Figure 1.2: Example of Item Placement in Different Cache Designs

With respect to flexibility of placement, the fully associative cache is the ideal
cache design. Unfortunately this flexibility is not easily realizable. Finding an item

in a fully associative cache requires all cache locations to be quickly searched in

10

parallel. This search has to be done on every memory access, and must be on par
with processor speed, or else the advantage of a cache is lost. It is impossible to build
a fully associative cache that is both large enough and fast enough for a modern
processor. On the other extreme, we have the direct mapped cache. The advantage
of this design is that it is simple and fast. An item’s location in the cache can be
found simply by looking at the low order bits of the item’s location in main memory.
The disadvantage of the direct mapped cache is that the inflexibility of placement
may result in a higher miss rate. To balance flexibility of placement and simplicity
of implementation, most caches in practice are set associative with associativity 2, 4,

or 8 rather than direct mapped or fully associative.

1.4.2 Cache Scheduling for Set Associative Caches

In a set associative cache, the locations are not identical. Each item can only be
placed in a subset of the cache locations. However, the set associative cache schedul-
ing problem reduces to scheduling a cache with identical cache locations, i.e. a fully
associative cache. When discussing cache scheduling for traditional set associative
caches, it is important to note that set associative caches satisfy the following de-
composition property. For a traditional m-way set associative cache, any sequence of
requests can be decomposed into k/m independent subsequences of memory requests.
Specifically, for each of the k/m sets of locations in the cache, the subsequence of re-
quests which can be placed into the locations in that set forms one of the independent

subsequences. Thus, scheduling an m-way set associative cache reduces to scheduling

11

k/m fully associative caches of size m, so we can focus on the problem of scheduling
fully associative caches.

In general, a cache scheduling algorithm, also known as a replacement policy, needs
to consider both the location where an item should be placed, and which item should
be evicted. However, as stated in Section 1.3, cache scheduling for fully associative
caches is simplified by the fact that the cache locations are identical and the only
thing that need be considered is which item should be evicted. Intuitively the optimal
choice is to evict the item whose next access is farthest in the future. This is known
as Belady’s algorithm [8] and is often simply referred to as OPT.

Belady’s algorithm is an off-line algorithm. It can only be accurately computed if
the entire sequence of memory requests is known at the beginning. A commonly used
on-line scheduling algorithm is Least Recently Used (LRU). LRU evicts the item that
was least recently accessed. The intuition behind LRU is that when temporal locality
is in effect, the near future looks like the recent past. Therefore, LRU is a good
approximation of Belady’s optimal algorithm. Random replacement policies .are also
used in practice. The advantage to random is that it is fast and easy to implement.
LRU requires storing additional information, and thé improved performance may not
be worth the extra effort. Another common replacement policy is First In First Out
(FIFO). FIFO approximates LRU and can be implemented more easily.

The interval scheduling problem that corresponds to fully associative cache schedul-
ing is also simplified by the fact that location is not important. When the machines are

identical, the optimal interval scheduling algorithm is earliest end time first [27]. Also,

12

the constraint on adjacent intervals is no longer relevant, so in this case the normal

interval scheduling problem is an exact model of fully associative cache scheduling.

1.5 Restricted Caches

While set associative caches have been fairly successful in coping with memory latency,
new cache designs are needed to bridge the widening gap between processor speeds
and memory access speeds. In this section we describe a new and promising class of
cache designs which we call restricted caches.

The basic memory hierarchy consists of two levels, the cache and main memory.
This hierarchy can be generalized to include several levels of caches. This is known
as a maulti-level cache. Multi-level caches are one approach to improving cache per-
formance. Another approach is a multi-lateral cache. A multi-lateral cache design
consists of two or more cache structures, of possibly different types, at the same
level in the memory hierarchy. A given item may be in any of the component cache
structures and each will be searched, in parallel, when a memory reference occurs.
This is the class of cache designs that we will call restricted caches. We further limit
the definition of a restricted cache to not include those degenerate cases where the
combined cache structures are the equivalent of a set associative cache.

Restricted caches are interesting not only because of their potential to reduce
memory latency and improve processor performance, but also because they also in-
troduce interesting and challenging scheduling problems. In an m-way set associative

cache, the only relevant factor is which item to evict from the cache: it does not

13

matter in which of the legal m locations we put the new item. In a restricted cache,
not all locations are created equal: one location may see much more conflict than
another. Both off-line and on-line algorithms must consider where items are placed
in the cache, not just which item is evicted.

Several restricted cache designs have been proposed to cope with the increasing
gap between processor and memory speeds. Two of the more interesting designs are
the victim cache [32] and the m-way skewed associative cache (51, 49, 50]. We will

study generalized versions of these restricted caches.

1.5.1 The Companion Cache Structure

Direct mapped caches and set associative caches both have the disadvantage that
they may not be able to utilize all the locations in the cache due to conflicts. This
was illustrated in Figure 1.2. However, the number of conflicts at any one time is
likely to be small. This is the intuition behind many restricted cache designs. We
generalize this idea as the Companion Cache Structure (CCS(m,n)). A CCS(m,n)
consists of a direct mapped cache of size m paired with a fully associative cache of
size n. Each item can be stored in one of the locations of the direct mapped cache,
and any of the locations in the fully associative cache. We will refer to the small fully
associative cache as the companion buffer, and to the direct mapped cache as the main
cache. The companion buffer provides extra locations in which to store conflicting
items. Two items which conflict in the direct mapped cache can simultaneously fit

in the cache if one of the conflicting items is placed in the companion buffer. The

14

direct mapped cache can be large and still very fast. The companion buffer must be
equally fast, because on every memory request, both caches must be searched for the
requested item. Therefore, the companion buffer will be very small, even as small as
one item. However, because the number of conflicts at any one time is likely to be
small, a small companion buffer can be quite effective in reducing the miss rate.

In a CCS(m, n), location is important. Consider the example in Figure 1.3. The
CCS(6,2) is based on the direct mapped cache in Figure 1.2. Items I; and I; conflict
in the main cache, and items I, and Ig conflict in the main cache. If I; or I; and I,
or Ig are put in the companion buffer, then all of the items will fit into the cache.
However, if some other item such as Ig is put in the companion buffer, then the items
will not all fit into the cache. In a traditional set associative cache, a set of items
either fits in the cache or it does not, regardless of exactly where each item is placed

in the cache.

e CoppEe M Oogppr
I
I I, I I !
12 Is 12 I7 12 Ig
Io Is Is Is
Iq : Iq ' I
Direct Mapped CCs(6,2) CCS(6,2)
(Optimal Placement) (Suboptimal Placement)

Figure 1.3: Example of Item Placement in a CCS(6, 2)

The definition of a CCS(m,n) does not include a replacement policy. We will

consider general scheduling algorithms for this particular cache design. Many of the

15

proposed restricted cache designs are a CCS(m, n) with a specific replacement policy.
One example is the victim cache [32]. In the victim-caching scheme, a regular direct
mapped (or set associative) cache is supplemented with a small fully associative cache
called the victim cache, and the following replacement policy is used. When a cache
miss occurs, the item is retrieved from the main memory and placed in the direct
mapped cache. However, the item which is evicted is not moved into main memory,
rather it is placed into the victim cache. This will cause an item to be evicted from
the victim cache. Also when a hit occurs in the companion buffer, the item is moved
into the direct mapped cache. This is an example of cache reorganization, which
will be explained in Section 1.5.3. This replacement policy is identical to the way
multi-level caches are managed. The key difference is that the direct mapped cache
and the victim cache are searched in parallel. Another example of a CCS(m,n) with
a specific replacement policy is the assist cache implemented on the PA7200 [13]. In
the assist cache, items are first put into the companion buffer, and then moved to the

direct mapped cache or evicted altogether.

1.5.2 The Skew Associative Cache

An m-way set associative cache can be thought of as m direct mapped caches of size
k/m, where k is the total cache size. The m direct mapped caches are called banks.
A given memory item can be placed in the same position in each of the m banks. In
other words, the same mapping function is used for each bank. Figure 1.4 illustrates

this idea for a 2-way set associative cache, and compares it to the 2-way set associative

16

cache depicted in Figure 1.2. The mapping function f determines where each item
goes in both banks. A small modification to this design results in an m-way skewed
associative cache, also known as a skew cache. Instead of using a single mapping
function, a different function is used for each bank. A 2-way skewed associative cache
is illustrated in Figure 1.5. In this case two different functions, fo and f; are used,

and a given item may be placed in different locations in different banks.

_ni ~ ~
= MMM I M\
Set 1 { [f]

Set 2 { Bank 0 Bank 1

item

Figure 1.4: Two different views of a 2-way set associative cache.

fo hH h

Bank 0 Bank 1
item

Figure 1.5: A 2-way skew associative cache.

The key difference between a skew cache and a set associative cache is the fol-
lowing: In an m-way set associative cache, items that conflict with each other in one
bank will conflict with each other in all banks. In a skew cache, items that conflict in
one bank will not necessarily conflict with each other in another bank. This difference
is the intuition behind the skew cache design, and is illustrated in Figure 1.6. In the
example from Figure 1.2, it is not possible to fit all three items I;, I, and I into a

17

set associative cache because they all conflict with each other and the sets are of size
two. In a skewed associative cache, even though the items conflict with each other
in one bank, they may not conflict with each other in another bank. For example, in
Figure 1.6, items I;, I, and I7 all conflict in the first bank, but only items I; and I,

conflict in the second bank because a different mapping function is used.

o £1)

4 fo(I7) hd)
fi(l4)

Bank 0 Bank 1

item

Figure 1.6: Different banks, different conflicts.

The fact that items do not necessarily conflict with each other in all banks in a
skew cache means that the issue of placement in a skew cache is relevant. For example,
consider Figure 1.6 again. If item I; is placed in the first bank, then only two of the
three items, I, I4, and I; can simultaneously be in'the skew cache. However, if
item I; is placed in the second bank, then all three of the items, I, I, and I; can
simultaneously be in the skew cache.

A skew cache requires only slightly more hardware than a set associative cache
and will be nearly as fast. The hardware cost of an m-way skewed associative cache is
approximately the same as the cost of an m-way set associative cache [49]. Due to the
fact that a skew cache is better able to utilize the entire cache, it may perform better

than a set associative cache of the same size. Simulation results in [50] show that a

18

2-way skewed associative cache achieves a miss rate similar to a 4-way set associative

cache.

1.5.3 Restricted Cache Scheduling

Restricted cache scheduling is the general cache scheduling problem described in Sec-
tion 1.3. Restricted Cache Scheduling differs from traditional cache scheduling. This
is because a scheduling algorithm for a restricted cache needs to consider both where
to place an item and which item to evict. As we will show, this greatly complicates the
scheduling problem. For example in Chapter 3, we will show that Belady’s algorithm,
which is optimal for set associative caches, is not optimal for restricted caches.

Restricted cache scheduling also needs to consider reorganization. Because loca-
tion is important, it may be beneficial to reorganize the cache by moving items from
one location to another when a hit occurs. Reorganization must be supported by the
cache hardware. The proposed design for the victim cache allows items to be moved
between the two components of the cache whenever there is a miss or there is a hit
on the companion buffer. Reorganization does not make sense in a traditional cache.
We will consider algorithms that allow for reorganization in our analysis of restricted
cache scheduling.

Related to the reorganization is the fact that restricted caches have an adaptive
nature with regards to working sets [50, 10]. In a sense, the goal of cache scheduling
is to fit the current working set into the cache. In order to to this, the items in the

working set need to be placed in the cache in such a way that they will not interfere

19

with other items in the working set. When the working set changes, items may need
to be moved within the cache to accommodate the new working set. When the cache
locations are identical as they are in a traditional cache, position is irrelevant and
moving items within the cache is not beneficial. However, in a restricted cache, a
scheduling algorithm may move an item from one cache location to another, by first
evicting it and then re-accessing it, in order for adjust to a new working set. Some
restricted caches explictly allow reorganization when a hit or miss occurs. This is

another feature not seen in traditional cache designs.

1.6 Methodology

In this section we define some of the methods that will be used to analyze cache

scheduling problems and algorithms.

1.6.1 Off-line Methodology

Many off-line scheduling problems are NP-hard [25]. There are no known efficient
solutions for NP-hard problems and the running times of the optimal algorithms
are typically exponential with respect to the size of the input. For this reason, it is
necessary to find polynomial time approximation algorithms for NP-hard optimiza-
tion problems. We say that a polynomial-time algorithm A is an p-approzrimation

algorithm if for all inputs = we have

A(z) OPT(z)
““”‘(OPT(x)’ A(z))S

20

where p is a constant, A(z) is the value returned by A on input z and OPT(z) is
the optimal value for input z. For a minimization problem like cache scheduling, a
p-approximation algorithm returns solutions that never have more than p times the
optimal number of page faults. The class APX is the class of problems that have
p-approximation algorithms [31].

An polynomial-time approzimation scheme (PTAS) is a family of approximation
algorithms. If a PTAS exists for a problem P, then for any € > 0, there is an (1+¢)-
approximation algorithm for P, though the running time may be exponential in %
A fully polynomial-time approrimation scheme (FPTAS) is an approximation scheme
where the running times of the algorithms are polynomial with respect to %

Ideally we would like to find a PTAS for any NP-hard problem. However, for
some problems it is known that a PTAS does not exist unless P = NP. The class
APX-complete is a class of optimization problems that do not have polynomial time
approximation schemes unless P = NP [2]. Proving that a problem is APX-complete
is similar to proving that a problem is NP-complete. .To prove that a problem P is
APX-complete, we first need to show that P is in APX. We then need to reduce a
known APX-complete problem @ to P using an approximation presérving reduction,
such as an L-reduction [47]. An L-reduction consists of two polynomial time functions
R and S with the following properties. For any instance I of Q with optimum cost

OPT(I), R(I) is an instance of P with optimum cost OPT (R(I)), such that

OPT(R(I)) < a- OPT(I),

21

for some positive constant a. Also, for any feasible solution s of R(I), S(s) is a

feasible solution of I such that
OPT(I) — c¢(S(s)) < B- (OPT(R(I)) — c(s)),

for some positive constant 3, where ¢(S(s)) and c(s) denote the costs of S(s) and s
respectively. Because an L-reduction is an approximation preserving reduction, if a
problem P has a PTAS and there is an L-reduction from @ to P, then the problem

Q also has a PTAS.

1.6.2 On-line Methodology

An on-line algorithm is not likely to find an optimal solution due to the lack of
future knowledge. For example, an on-line cache scheduling algorithm does not know
when an item will next be referenced and may inadvertently evict a needed item
from the cache. We therefore need some metric to measure the quality of an on-
line algorithm. Absolute metrics such as the number of cache misses, however, are
not very meaningful. For example, for any cache scheduling algorithm there exists a
sequence of memory requests that will result in a cache miss every time.

A standard method of analyzing on-line algorithms is to use competitive analysis.
Competitive analysis compares how an on-line algorithm performs against the opti-

mal off-line algorithm on all input instances. The competitive ratio c4 of an on-line

22

algorithm A is defined as

eq = sup 20
1 OPT(I)
where OPT denotes the optimal off-line algorithm, and sup is the supremum. The
supremum of a set is the smallest number that is as large or larger than all numbers in
the set. An on-line algorithm is within a factor of ¢4 of optimal on all input instances.
A c-competitive algorithm has a competitive ratio of c. An algorithm is said to be
strongly competitive if it has the smallest possible competitive ratio.

Lower bound proofs on the competitive ratio for an on-line problem often make use
of an adversary. The adversary constructs the input sequence “on-line” in response to
the on-line algorithm’s decisions in such a way that results in the worst competitive
ratio. For example, the adversary in the caching problem could always request the
item most recently evicted from the cache. Because an on-line algorithm cannot see
the future, there is no difference between an input sequence that is being constructed

on-line and one that is determined from the beginning.

1.7 Overview

The focus of this dissertation is Restricted Cache Scheduling. The remainder of this
dissertation is organized as follows.
In Chapter 2 we discuss previous work related to cache scheduling and interval

scheduling. There has been considerable work done on traditional cache scheduling,

23

but to the best of our knowledge restricted cache scheduling has not previously been
studied. We also discuss previous work on interval scheduling and related scheduling
problems.

In Chapter 3 we analyze the offline restricted cache scheduling problem. This
includes hardness results, optimal solutions, and approximation algorithms for the
different problems. The off-line restricted cache problem is significantly more difficult
than identical cache scheduling. Whereas the latter is optimally solvable in O(nlgn)
time using Belady’s algorithm, the former is NP-complete and APX-complete, as
are the related interval scheduling problems.

In Chapter 4 we analyze the on-line restricted cache scheduling problem. This
includes upper and lower bounds for different on-line algorithms and different cache
designs. Again the on-line restricted cache scheduling problem differs greatly from tra-
ditional on-line restricted cache scheduling. For the traditional on-line cache schedul-
ing problem, LRU and FIFO are both strongly competitive. We will show that LRU
is not competitive for restricted cgche scheduling, and that FIFO is competitive but
not necessarily optimal.

In Chapter 5 we present a mathematical model to measure the flexibility of a cache
design. This is an attempt to directly compare different cache designs, independent
of scheduling algorithms and input sequences.

In Chapter 6 we summarize the dissertation and discuss future work.

24

Chapter 2

Related Work

This chapter describes previous work done in cache scheduling, interval scheduling

and other related scheduling problems.

2.1 Cache Scheduling

To the best of our knowledge, restricted cache scheduling has not been studied by
the theory community. There has been extensive work done on scheduling for fully-

associative caches.

2.1.1 Off-line Cache Scheduling

For traditional cache designs, the off-line cache scheduling problem is well studied
and easily solved using Belady’s algorithm [8]. Belady’s algorithm simply evicts the
item in the cache whose next reference is the farthest in the future. This is optimal

for both set-associative and fully-associative caches.

25

2.1.2 On-line Cache Scheduling

Caching is one of the most natural on-line problems and has been extensively studied
by the theory community. Much of the work actually considers the paging problem,
which is closely related to cache scheduling. The memory hierarchy can include
secondary storage, in order to create a virtual memory much larger than the actual
physical memory. As in cache scheduling, the goal is to keep the information that
will needed soon in main memory. The unit of memory that is moved between main
memory and secondary storage is known as a page, and is typically on the order
of 16KB. A page fault occurs when the processor attempts to access a page that
is currently in secondary storage. The goal of a page scheduling algorithm is to
minimize the number of page faults. To a large degree, caching and paging are the
same problem from a theoretical point of view.

The Least Recently Used (LRU) replacement policy is k-competitive for a fully
associative cache size of k [52, 19, 54]. LRU belongs to a class of algorithms known
as marking algorithms, which are all k-competitive. A marking algorithms works as
follows. The input sequence is divided into phases: Each phase contains k distinct
items. Initially all pages a;'e unmarked. When an item is accessed it is marked. When
the k + 1° distinct item is accessed, all the marks are cleared. This is the end of
the phase. A new phase then begins, and the newly accessed item is marked. The
key idea behind a marking algorithm is that it never evicts a marked item from the
cache. LRU fits this description. If there are both marked and unmarked items in the

cache, clearly the marked items were used more recently than the unmarked items,

26

so LRU will not evict a marked item. If all the items in the cache are marked, and a
cache miss occurs, then a new phase begins, all the marks are cleared, and whatever
item LRU evicts is not marked. First In, First Out (FIFO), is another example of a
marking algorithm.

We briefly outline why marking algorithms are k-competitive. First, during each
phase, the optimal off-line algorithm must incur one cache miss. A phase ends after
k + 1 distinct items have been accessed. It is not possible to keep k + 1 items in the
cache, so there must be at least one cache miss. A marking algorithm will incur no
more than k cache misses during a phase. Whenever a cache miss occurs, the item
newly placed in the cache is marked. Because marked items are never evicted, at
most k cache misses can occur during a phase. It follows that marking algorithms
are k-competitive. A detailed proof can be found in [54].

It turns out that marking algorithms are optimal for deterministic algorithms.
No deterministic on-line algorithm can be better than k-competitive. For any de-
terministic on-line algorithm A, tAhe adversary can construct a request sequence that
always requests the item that A just evicted. Clearly A will miss on every access.
The optimal algorithm will only page fault after every k distinct items are accessed.
Therefore, no deterministic on-line algorithm can be better than k-competitive. A
detailed proof can be found in [52] and [54].

This theoretical analysis of caching does not match observed results very well.
First, in practice on-line caching algorithms perform much better than the compet-
itive analysis suggests. Second, algorithms with the same competitive ratio perform

differently in real systems. In particular, LRU usually performs much better than

27

FIFO in a real system, despite the fact that they have the same competitive ratio.
Most of these problems stem from the fact that competitive analysis is a worst case
analysis, and does not properly consider locality of reference. The whole concept of a
memory hierarchy is built on the assumption that we can take advantage of locality of
reference. For this reason, researchers have focused on ways to better model locality
of reference.

In [54] the author analyzes the performance of marking algorithms on request
sequences that exhibit significant locality of reference. This is formally defined as
request sequences where the length of the phases are large with respect to k. Real
programs tend to display this behavior, accessing only a small set of items for rela-
tively long periods of time. When the request sequences are restricted in this way,
marking algorithms have a constant competitive ratio. A different approach to mod-
eling locality of reference is the access graph [9, 18, 14, 30]. The vertices of the access
graph G represent the memory items. A directed edge between vertices = and y indi-
cates that memory item y can be accessed after memory item z. A legal sequence of
accesses is defined by a walk on G. In the most general case, G is a complete graph
and any item can be referenced at any time. Using access graphs it is possible to
prove that LRU outperforms FIFO, and to find competitive ratios better than k.

Randomized caching algorithms have also been studied [19, 18, 43]. The adversary
is not as effective against a randomized algorithm because it does not know the out-
come of the random choices. Randomized marking algorithms are 2Hj-competitive,
where H) is the kth harmonic number. A strongly Hi-competitive randomized
caching algorithm is described in [43].

28

Caching is a restricted version of the k-server problem [42, 36]. In the k-server
problem there are k servers and a sequence of requests. The servers and requests
both reside in the same metric space. When a request appears, one of the servers
must move to the request in order to serve it. The goal is to minimize the total
distance moved by the servers. In caching, each memory item defines a point in the
metric space, and all points are distance one from each other. The servers are the
cache locations, and putting an item in a cache location is equivalent to moving the

corresponding server to the corresponding point in the metric space.

2.2 Interval Scheduling

There has been a considerable amount of work done on interval scheduling, also
known as fixed job scheduling problems. In the literature there is not a consistent
naming convention for these problems; the same problems are given different names
and the same name is used to refer to different problems. The common feature in
these problems is that the jobs have a fixed starting time, a fixed length, and a job
must be processed continually for fixed amount of time, or else it is lost. In some
problems there is an interval during which a job must start, but we are primarily
interested in the case when the starting times are fixed.

There are two main types of interval scheduling problems. In the first type of
problem, there is a fixed number of machines, and the goal is to determine if all of
the jobs can be scheduled on the available machines, or to maximize the number of

jobs that can be scheduled. This is the problem described in Definition 1.3.2 and is the

29

interval scheduling problem most closely related to cache scheduling. We will simply
call this problem interval scheduling (IS). It may be the case that some jobs have a
higher priority than others, in which case the jobs are weighted, and the goal is to
maximize the weight of the scheduled jobs. In the second type of problem, there is an
unlimited pool of machines and the goal is to find a set of machines with minimal cost
that can process all of the jobs. We will call this problem tactical interval scheduling
(TIS). TIS typically has different types of machines that have different costs. The
unweighted maximization version of IS is the problem most relevant to our research,
and unless otherwise noted, this is the problem we are referring to when we use the
term interval scheduling.

We will use terms from traditional scheduling to describe the types of machines
available. If the machines are identical, then any job can be scheduled on any machine,
and the weight of the job is independent of the machine on which it is run. It is
worth noting that in interval scheduling problems, the concept of machine speed is
not relevant. Jobs have a fixed start time and end time which does not depend on
the machine on which the job is run. All machines operate at the same speed. In this
case the goal of TIS is to find the smallest number of machines necessary to process
all jobs. If the machines are restricted, then a given job can only be scheduled on
a subset of the machines. Again all of the machines have the same speed. We will
refer to these problems as the restricted interval scheduling problem (RIS) and the
restricted tactical interval scheduling problem (RTIS). Often the jobs and machines
are divided up into classes, and jobs of certain classes can only be scheduled on a
subset of the machine classes. This is particularly useful in the RTIS as it allows

30

different costs to be assigned to the different classes of machines. If the machines are
restricted and the jobs are weighted, then the weight is independent of which machine
processes the job. It is also possible to define uniform and unrelated machines where
the weight of a job depends on the machine on which it is scheduled. However, these
definitions to do not seem to correspond to real world problems and rarely appear in
the literature.

In the following subsections we look at previous work on the interval scheduling
problem on identical machines, the restricted interval scheduling problem, the tactical

interval scheduling problem, and on-line and other versions of these problems.

2.2.1 Identical Interval Scheduling

If all the machines are identical and the jobs are unweighted, then interval scheduling
is easily solvable in polynomial time. Scheduling the jobs by earliest end time will
produce an optimal schedule. This problem can also be represented by an interval
graph [27]. Each interval is represented by a vertex in the graph, and there is an
edge between two vertices if the corresponding intervals overlap. Interval scheduling
on k identical machines is equivalent to k-coloring the corresponding interval graph.
Interval graphs are a subclass of chordal graphs. An interesting property of chordal
graphs is that a chordal graph always has a simplicial vertex. A vertex is simplicial if
its neighbors form a clique. Clearly a simplicial vertex can always be in a maximum
independent set. For this reason, independent set and k-coloring problems which are

normally NP-complete are easily solvable in polynomial time for chordal graphs.

31

The weighted version of IS is considered in [1, 37]. In both cases they reformulate
the problem as a minimum cost flow problem; however the underlying graphs are
remarkably different. In 1] they use a graph based on the maximal cliques of the
underlying interval graph. The vertices of the graph correspond to the maximal
cliques and the arcs correspond to jobs with capacities of 1 and cost equal to the
weight of the job. In the solution to the minimum cost flow problem, the arcs with
non zero flow correspond to the intervals that are not in the solution to IS. The
complexity of the algorithm is O(n%logn). The construction of the graph used in
[37] is more direct. The vertices of the graph represent all starting and finishing
times of jobs in chronological order. For each interval create an arc from the vertex
representing the interval’s start time to the vertex representing the interval’s end
time. The capacity of this arc is 1, and its cost is the negation of the intervals weight.
Additional zero cost, infinite capacity arcs are added between consecutive vertices.
In this case, the arcs with non zero flow correspond to the intervals in the solution to
IS. This flow problem can be solved in O(n?log? n) tin'le.

In [1] they also show that IS is NP-complete if precedence constraints are added.
The precedence constraints are pairs of jobs (j;, jo) such that j, can ohly be scheduled

if 7, is also scheduled.

2.2.2 Restricted Interval Scheduling

Restricted interval scheduling is first considered in [1). This is the basic IS problem

where each interval can be scheduled on an arbitrary subset of the machines. The

32

authors show that that RIS is NP-complete. The reduction is from 3-SAT and
is relatively straightforward. Create a machine for both the positive and negative
instance of each variable. For each clause create a short interval that can be scheduled
on the machines that correspond to the literals in the clause. The clause intervals
are arranged so that none of them intersect. For each variable, create a long interval
that intersects with all of the short intervals. Each long interval can be scheduled
on the machines corresponding to the positive and negative instance of the variable.
Scheduling the long intervals defines a truth assignment. Scheduling a long interval
on the “negative” machine is equivalent to assigning “true” to the corresponding
variable. It will only be possible to schedule all of the short intervals if one of the
variables in each clause is true. The authors also show that the weighted problem can
be solved optimally in O(n™*!) time. Their solution involves constructing a DAG
such that paths through the DAG represent possible schedules. It is essentially a
dynamic programming solution.

In [34] the authors refine the complexity results of interval scheduling. They
consider what they call the Class Scheduling problem, which is the version of IS
where the jobs and machines are divided into classes. In the most general case, each
machine and job forms its own class. They show that if there are three or more
dependent classes of machines, then deciding if all the intervals can be scheduled is
NP-complete. A set of machine classes is dependent if the classes of jobs they can
process overlap. They also show that if there are two or more dependent classes of
machines then the optimization problem is NP-hard. The proofs rely on the fact
that there are only a small number of different ways that job classes can be assigned

33

to machine classes when there are only two or three dependent classes of machines.
For example if there are only two classes of machines, there must be at least two
classes of jobs: jobs that run on one machine class and jobs that run on both machine
classes; and there can be at most three classes of jobs: jobs that run on the first
machine class, jobs that run on the second machine class, and jobs that run on both
machine classes. For each case they use a reduction from N3DM (Numerical Three
Dimensional Matching) to show that the particular case is NP-complete or NP-hard.
Note that even though there are only two or three classes of machines, there are many
machines that belong to each class. This is a necessary part of the hardness results.
In [35] the same authors apply the same techniques to a variation of the problem
where the machines are only available for specified intervals and show that in general
this problem is NP-complete.

The general complexity of IS is also discussed in [12] in the context of classroom
assignment. This is an interval scheduling problem where classrooms correspond to
machines and the classes are jobs. They consider variations where classes meet several
times a week but must be scheduled in the same room, in which case sets of intervals
must all be scheduled on the same machine. They also consider the problem where
classes can be scheduled in any room that is large enough. This is a special case of
restricted interval scheduling where the machines can be arranged in a hierarchy. In
general these problems remain hard.

The case where the weights of the intervals are dependent on the machine is
considered in [45]. This is the unrelated machines case of interval scheduling. It
can be solved as a maximum weight m-coloring of an interval graph. For the case

34

when intervals are restricted to certain machines but the interval weight is machine
dependent, they generalize the result in [1] to show that the problem is solvable in
O(k™*!) time.

Approximation algorithms for RIS are discussed in [24] and [37]. In [24] the au-
thors formulate the interval scheduling problem as an independent set problem. A
graph is defined as in Section 3.3.1. The approximation algorithms take advantage
of the clique structure of the graphs. They do not dq a worst case analysis of the
approximations, but instead provide computational results to show that the approxi-
mations are good. They also consider the Variable Start Interval Scheduling problem,
where jobs have a starting interval instead of a starting point, and show that their
algorithms can be adapted for this problem. In [37] they extend the network flow
model they used for identical machines to handle multiple classes of machines. For
each class of machine, a separate network graph is created. The graphs are all linked
to a common source and sink and additional constraints have to be added to the flow
problem to ensure that a job is not processed twice. 'fheir approximation algorithm
uses a dual cost heuristic. They use a greedy algorithm to find a lower bound, and
they relax the constraint on jobs being processed multiple times tb find an upper
bound. The two bounds are used in an iterative fashion to refine the approximation.
Again, there is no worst case analysis of the algorithm but they provide computational

results to show that the approximations are good.

35

2.2.3 Tactical Interval Scheduling

The tactical interval scheduling problem is first discussed in [26]. The authors call
the problem the fixed job scheduling problem. They note that the problem is a
special case of Dilworth’s problem. Dilworth’s problem is the following: given a
partially ordered set N, find the minimum chain decomposition of N where a chain is
a sequence of elements 7y, 1,,...,% such that i, < i3 < ...%. In terms of intervals i
and j, ¢ < j if j starts after ¢ ends, and the minimum chain decomposition consists of
sets of non-overlapping intervals. The result for TIS is that the number of machines
necessary to schedule all jobs is simply the maximum overlap of jobs. To assign the
jobs they present a straightforward algorithm that essentially assigns a maximal non-
overlapping set of jobs to a machine, removes those jobs, then repeats the process.
They also consider what they call the variable job schedule problem. This is TIS but
the starting time of a job is defined by an interval. They present two approximation
algorithms for the problem. Computational results show that the approximations are
very good but no worst case analysis is provided. An exact integer programming
solution to VSP is also given.

In [35] they consider TIS and using an analysis similar to their analysis of IS
in [34], determine under which conditions the problem is hard. If there are only
two types of machines, then the problem can be solved in polynomial time using a
combination of linear programming and network flow algorithms. The authors of [16]
also consider the case where there are two classes of processors and three classes of

jobs and show that it is solvable in polynomial time by reducing it to a network flow

36

problem. In both cases the networks used are similar to the networks used in [37, 11].
Vertices represent points in time, and jobs are represented by arcs from their start
time to the end time. In general if there are more than two classes of machines, then
TIS is NP-complete[35]. The proof reduces IS to TIS.

Two generalizations of TIS are considered in [20, 21, 22], which they call the Fixed
Job Schedule Problem with Spread-Time Constraints and the Fixed Job Schedule
Problem with Working-Time Constraints. The spread time for machine 7 is defined
as the time between when the first job assigned to ¢ starts and the time the last
job assigned to 7 ends. The Spread-Time constraints impose an upper bound on the
spread time for all processors. The working time for machine 7 is the sum of the
processing time of all jobs assigned to i. Working-Time constraints impose an upper
bound on the working time for all processors. Clearly extra machines will usually be
necessary to satisfy these constraints. In [20, 21] these two problems are shown to
be NP-hard. In [22] they present approximation algorithms for both problems. For
the spread time constraints a simple greedy algorithm that assigns jobs to available
machines and adds new machines if no machines are available uses at most twice as
many machines as the optimal solution. A more complicated algorithm that uses
an exact solution to the preemptive version of TIS as a starting point also has an
approximation factor of 2. For the working time constraints a greedy algorithm with
an approximation factor between 2 and 3 exists. An algorithm based on preemption
has an approximation factor of 2.

The case when jobs may be preempted and moved from one machine to another
with no penalty is considered in [15]. Jobs still have to be processed continually for

37

a fixed amount of time, but they can migrate from one machine to another. They
show that when preemption is allowed, then two cases of RTIS become solvable in
polynomial time. If there are m classes of processors and m + 1 classes of jobs, and a
job in class k can be done only by a processor of class k,k = 1,2,... ,m and jobs of
class 0 can be done by any processor, then the problem can be solved in polynomial
time. Likewise if the processor classes are hierarchical, meaning that processors in
class k can perform any job that processors in class j < k can, the problem is
also solvable in polynomial time. Both of these problems are NP-complete when
preemption is not allowed. It is also shown that if preemption is allowed, the decision
version of TIS, which is equivalent to the decision version of IS, can be solved in
polynomial time by transforming it into a set of transportation problems. However,
this method cannot be applied to the optimization problem.

The authors of [37] present a similar study of TIS in [38]. They only consider the
case where machines have equal cost. They show that the problem can be represented
as a network flow problem as in [37]. One additional constraint has to be added to
ensure that the flow in arcs corresponding to jobs is one unit. They present upper and
lower bound approximation algorithms similar to those in [37). The main new result
of this paper is the fact that TIS remains NP-hard when preemptions are allowed.

A hybrid version of TIS is studied in [33]. In this problem, there are two types
of machines, fast and slow. Normally machine speed is not considered in interval
scheduling problems. Each job has a fixed start time and requires a fixed amount of
time on the slow machines, but the fast machines can process the jobs more quickly.

Therefore, the completion time of a job is not necessarily fixed. They consider the

38

case where jobs have to be started at a fixed time and the case where the fast machines
can delay the start of a job. They refer to these cases as fixed starting times (FST)
and variable starting times (VST). VST is NP-hard in the strong sense even, if all
release dates are equal. FST is NP-hard in general, but can be solved in O(n) time
if the release dates are equal. If the fast machines are able to process jobs in one unit
of time, then VST can be solved in O(nlogn) time if all release dates are equal and

FST can be solved in O(nlogn) time.

2.2.4 On-line Interval Scheduling

An on-line version of IS is studied in [55]. They consider the single machine case. Job
lengths and weights are known when they arrive. Jobs can be preempted, but they
are lost. The quality of on-line algorithms depends on the relation between the length
of the jobs and the weight of the jobs. If the weights of the jobs have no relation
to the lengths of the jobs then no on-line algorithm is competitive. An instance of
the problem is called f — related if there is a function f(z) that maps lengths to
weights. If f(z) is concave or decreasing then there exists a 4-competitive on-line
algorithm. The algorithm is straightforward. A job Ji is scheduled if the machine
is idle, or if its value is twice the value of the job currently being processed, or if
its endtime is before the endtime of the job currently being processed and its value
is greater than the value of the job currently being processed. They show that for
concave f —related instances, no algorithm has a competitive ratio better than 4 —e,

so the straightforward algorithm is optimal.

39

An on-line extension of the algorithm in [11] is presented in [17]. The k-coloring
interval algorithm is nearly an on-line algorithm due to its greedy nature. However,
it requires the intervals to be sorted by right endpoint, which is impossible in an
on-line setting. They show that a greedy algorithm that considers the intervals in
order of left endpoints is also optimal. This algorithm can be applied on-line. The
new algorithm is essentially Belady’s algorithm applied to intervals.

In the above work, the length of the interval is known when it appears. With
regards to caching, this is not truly on-line. Knowing the length of an interval is
equivalent to knowing when an item will next be referenced. In the fully on-line
version of IS the lengths of intervals are not known until the interval ends. This
problem is studied in [41]. They consider the 1 machine case. Their basic results
are that if there are only intervals of length 1 and length k£ > 1 then a strongly
2-competitive algorithm exists. In the general case they present an algorithm with
a competitive factor of O((log A)!*¢) where A is the ratio of the longest to shortest
interval. They also show that no O(log A)-competitive algorithm can exist.' For the
instance with only two lengths of intervals, the on-line algorithm does the following.
If the machine is free and a length k interval arrives,-schedule it. If a length 1 interval
arrives, flip a coin and schedule it if the result is heads. Otherwise do not schedule
it or any other length 1 interval for the next unit of time. Time is not discrete in
this problem. This simple algorithm is strongly 2-competitive. They generalize this
for the case of arbitrary interval lengths as follows: if we reject an interval I, then

schedule no other interval that begins during I unless it is twice as long as I. Because

40

time is not discrete in this model, it is not very relevant to caching, where something

happens at each time step.

2.2.5 Other Interval Scheduling Problems

A variation of IS is discussed in [53]. In this problem, there is a single machine
and n k-tuples of intervals. The goal is to schedule as many intervals as possible
such that no two intervals overlap and no two intervals from the same k-tuple are
scheduled. They call this the Job Interval Selection Problem (JISP). The “jobs” are
the k-tuples of intervals. The graph representation of this problem is an interval graph
with additional edges added to indicate the k-tuples. The subgraph induced by these
additional edges is a collection of cliques of size k. Using this fact they are able to find
an L-reduction from B-OCC-MAX-3-SAT. B-OCC-MAX-3-SAT is a version of SAT
where each clause contains exactly 3 literals, and each variable appears at most B
times [47]. It follows that no polynomial time approximation scheme exists for JISP.
They also show that there is a straightforward greedy 2-approximation algorithm for
JISP.

RIS is actually a restricted version of JISP, even though JISP only has a single
machine. We can transform any instance of RIS into an instance of JISP where all
of the intervals in a job have the same length. Let P be an instance of RIS with
m machines, let T be the maximum end time of any interval in P, and assume the
machines are numbered My, M;,... ,M,,_,. For each interval j and each machine M;

in P, create an interval offset i - T units to the right if interval j can be scheduled

41

on machine M;. The result is a set of intervals where the intervals in the range
[¢-T,(: + 1) - T] correspond to the intervals in P that can be scheduled on machine
M;. All of the intervals created for a specific interval j in P define the k-tuples. The
restriction that only one interval from a job can be scheduled is therefore equivalent

to the restriction that a interval can only be scheduled on a single machine.

2.3 Circuit Routing and Load Balancing

Another family of on-line interval scheduling problems appear in the domain of circuit
routing. These problems are studied in [3, 5, 6, 7]. In the basic circuit routing
problem there is a network, and a series of connections. Connections have a source
and destination, and fixed starting and ending times. Connections have to be assigned
a route through the network on-line. The goal is to balance the load on the circuits
in the network.

Circuit routing can be viewed as a generalization of load balancing. The circuits
correspond to machines, and connections correspond to a series of jobs. The basic load
balancing problem is studied in [6]. Two different types of tasks are considered: per-
manent jobs that have a start time but remain in the system forever, and temporary
jobs that have a start time and a fixed length. Jobs have to be assigned to a machine
when they appear. The duration of a job may or may not be known when a job first
appears. What distinguishes this problem from IS is that overlapping jobs can be
scheduled on the same machine. Each job adds a load to the machine, which may be

dependent on the machine. They consider the full range of machine types: identical,

42

uniform, restricted and unrelated. The goal is to minimize the maximum load on
any one machine. For permanent jobs, constant competitive ratios are possible if the
machines are identical or uniform. Otherwise ©(logn)-competitive algorithms are
possible. For temporary jobs with unknown durations, constant competitive ratios
are possible. If the machines are restricted the competitive ratio is ©(y/n). The best
known competitive ratio for unrelated machines is O(n). These problems and results
are also discussed in [7] and [3].

A more complicated and realistic version of circuit routing is discussed in [5]. In
this case links of the network have a limited bandwidth, so it may not be possible to
satisfy all connection requests. In addition to determining how to route a connection,
an admission policy to determine if a request will be satisfied is also necessary. Each
connection has a load and a profit associated with it. The goal is to maximize the
profit of admitted requests without violating the capacity constraint. They present
an on-line algorithm with a profit on the interval [r; — T, 7 + T that is within a
logarithmic factor of the off-line profit on the interval [, 75, where T is the m‘a.ximum
duration of a connection. The slight difference in the intervals is necessary in order to
be competitive. This problem is a generalization of iS. If we consider the case where
all links have capacity one, and all calls have a load of one and cover exactly one link,

then circuit routing becomes IS.

43

2.4 General Scheduling

There is a very large body of work on scheduling problems. A survey of classical
scheduling results can be found in [28]. They present a detailed classification of
scheduling problems. Problems are classified by the number and type of machines
available. Restricted interval scheduling can be classified as the following scheduling
problem: R|p;; = {dj — rj,00}|> w;U;. The machines are unrelated. The job
characteristics are that a job’s processing time on a given machine is exactly the
difference between the job’s deadline and release time, or it is infinite. The optimality
criteria is the unit penalty criteria. U; = 0 if a job completes before its deadline and
1 otherwise. In this case the sum of U; is the number of intervals that are not
successfully scheduled. The unit penalty criteria has not been widely studied. It is
known that 1| Y w;Uj, 1|prec,p; = 1| >_Uj, and 1|r;| Y U; are all NP-hard.

Many interesting and natural scheduling problems are NP-hard. Therefore, ap-
proximation algorithms for scheduling problems are often studied. General methods
of approximation are particularly interesting. If the scheduling problems can be ex-
pressed as Integer Programs, then general approximation methods such as Linear
Relaxation and Lagrangian Relaxation can be used [40, 23]. In Linear Relaxation,
the IP is solved as a linear program. The result is then coerced into a feasible solution.
For certain classes of integer programs, the LP relaxation will still be optimal. For

preemptive scheduling problems, the LP may be optimal [39].

44

Chapter 3

Off-line Restricted Cache

Scheduling

This chapter describes results for the off-line restricted scheduling cache problem.
Cache scheduling is by nature an on-line problem. However, the off-line problem is of
interest to researchers because it indicates the best possible performance a new cache
design can achieve, and is a benchmark against which the performance of on-line
algorithms can be compared. Off-line cache scheduling is closely related to interval
scheduling, therefore many of our results focus on variations of interval scheduling
problems.

This chapter is organized as follows. We first present hardness results including in-
approximability results, for different interval scheduling and off-line cache scheduling
problems. We then present some optimal algorithms for certain interval scheduling

problems. Finally, we present approximation algorithms for the different problems.

45

3.1 Hardness Results

In this section we will prove that for any type of restricted cache, both the off-line

cache scheduling problem and the related interval scheduling problem is hard.

3.1.1 Interval Scheduling Problems

Restricted Interval Scheduling (RIS(m)) is defined in Definition 1.3.2. We will refer
to the problem in which each interval can be scheduled on m machines as RIS(m).
Previous work on the problem is described in Section 2.2.2. The problem has been
shown to be NP-complete if intervals can be scheduled on three or more machines,
that is when m > 3. [1] We will improve that result and show that any interesting
variation of RIS(m) is hard. First we define Companion Machine Interval Scheduling,

which is the simplest version of RIS(2).

Definition 3.1.1. The m-Companion Machine Interval Scheduling (CMIS(m)):
INSTANCE: A set M of machines M,,... , M, a set. of m “companion” machines
Bi,...,Bn, an integer K, and a set I of n intervals (s;, f;,0;) where s; € Z* is
the starting time of interval i, f; € Z* is the end time of interval i, and 0; € M is
the machine on which interval i can be scheduled. Additionally, any interval can be

scheduled on any of the companion machines.

QUESTION: Can at least K of the intervals be legally scheduled?

Theorem 3.1.1. CMIS(1) is NP-complete.

46

Proof. We reduce 3-OCC-MAX-2-SAT to CMIS(1). 3-OCC-MAX-2-SAT is a re-
stricted form of MAX-2-SAT where each variable occurs at most three times. This
problem has been shown to be NP-complete and APX-complete [4].

Let U = {u,ug,...,u.}, C = {c1,¢a,...,¢c} and K be an instance of 3-OCC-
MAX-2-SAT. For each variable u; create two machines, M,, and Mz. We also add
the single companion machine B;.

For each variable u; create the following four intervals (7,7 +1, M,,), (¢,i+1, Mg;),
0,|U| +|C| +2,M,,), and (0, |U| + |C| + 2, Mz;). This results in 4|U| intervals. For
each clause ¢, we create two intervals. If variable u; appears in clause k in its positive
form, we create the interval (|U|+k, |[U|+k+1, M,,,). If variable u; appears in clause
k in its negative form, we create the interval (|U| + k, |U| + k + 1, Mg;). This results
in 2|C| intervals. Thus a total of 4|U| + 2|C]| intervals are created, clearly polynomial
in the original input size.

An example instance is shown in Figure 3.1. The intervals form an instance of
CMIS(1). The machine name above each interval indicates the machine, in addition
to B;, on which the interval can be scheduled. The intervals can be broken into
three groups: the long variable intervals, the short variable intervals, and the clause
intervals. The key observations about this reduction are that the variable intervals,
both long and short, are used to enforce a variable assignment, and the schedulable
clause intervals correspond to the satisfiable clauses.

Suppose we can satisfy K of the clauses in 3-OCC-MAX-2-SAT. We now show
that we can schedule 3|U| + |C| + K of the intervals. Consider each variable u;. If u;
is true, we use machine My to schedule one of the long intervals corresponding to u;

47

C = {(I7 y): (.’l?, 37)’ (fa Z/), (g: T)}

M,

4 4L A, 1

Figure 3.1: Example reduction from 3-OCC-MAX-2-SAT

and we use machines M,, and B, to schedule the two short intervals corresponding
to u;. If u; is false, the roles of machines Mgz and M, are reversed. Exactly 3|U| of
the variable intervals will be scheduled. Note that it is not possible to schedule more
than 3|U| of the variable intervals because for each variable, there are 4 overlapping
clauses and only 3 available machines.

Now consider each pair of clause intervals. If the corresponding clause ¢; is sat-
isfied, then one of the literals in ¢; must be true. Without loss of generalit);, we can
assume that this literal is u;. Because u; is true, the long interval that could be
placed on M,; was not scheduled and machine M, ; is free. We can therefore schedule
the pair of intervals that correspond to clause c; using machines M,; and B,. If the
clause is not satisfied, one interval can be scheduled on B;. It is important to note
that for each u;, the clause intervals either use machine M,,; or machine Mg but not
both. A total of |C| + K of the clause intervals will be scheduled. Thus we have

scheduled exactly 3|U| + |C| + K intervals.

48

Now suppose there exists a schedule S that contains 3|U|+ |C| + K intervals. We
are going to create a modified schedule S’ that contains at least 3|U|+|C|+ K intervals,
such that exactly one of the long variable intervals for each variable is scheduled, no
long variable interval is scheduled on a companion machine, all 2|U| short variable
intervals are scheduled, and |C| + K of the clause intervals are scheduled. Note it is
always possible to schedule 3|U| of the variable intervals as described above, and it is
always possible to schedule |C| of the clause intervals using the companion machine.

We construct S’ as follows. If there is a pair of clause variables such that neither
is scheduled on B, we schedule one of the intervals on the companion machine. This
cannot hurt and may improve the schedule.

Suppose for a variable u;, we use both M, and Mg to schedule a long variable
interval. This means that one of the short intervals corresponding to u; is not sched-
uled. We modify the schedule by dropping one of the long variable intervals and
replacing it with the unscheduled short variable interval.

Suppose that for a variable u;, we do not schedule either of its corresponding long
intervals. We look at the clause intervals. Because the variable u; appears at most
three times, it either appears in its positive form at most once, or it appears in its
negative form at most once. It follows that there is at most one clause interval that
can be scheduled on machine M, , or there is at most one clause interval that can
be schedule on machine Mg;. We drop that single clause interval and use the freed
machine to schedule a long variable interval. This may require us to modify how the
short intervals corresponding to u; are scheduled. However, regardless of which long
variable interval is scheduled, it is always possible to schedule the two short variable

49

intervals. The similar argument applies if B, were used to schedule a long interval,
with the added note that if B, is used to schedule a long interval, only 2|U| + 1 of
the variable intervals can be scheduled.

The schedule S’ will have at least 3|U| + |C| + K intervals scheduled. For each
variable, exactly one long variable interval will be scheduled and it will not be on B;.
This will define a valid truth assignment for 3-OCC-MAX-2-SAT. At least K clause
intervals will be scheduled on a non-companion machine, and these will correspond

to the satisfied clauses in the instance of 3-OCC-MAX-2-SAT. O

It follows from this result that any interesting restricted interval scheduling prob-

lem is hard. We prove some specific cases below.

Corollary 3.1.1. CMIS(m) is NP-complete for m > 1.

Proof. We reduce CMIS(m) to CMIS(m + 1). Given an instance I of CMIS(m),
construct an instance I' of CMIS(m + 1) which contains all of the same intervals plus
the additional machine B,,,; and a new machine G,,. Let e}, es,...€ be all the
distinct interval endpoints that appear in I. For each 1 < i <! —1 we add 2 copies

of the interval (e;, €;41, Gk+1) to I'. This construction is illustrated in Figure 3.2.

| G, | G» G G2 |
— Ga . G3 : | G2 . G3 :
L G3] (= Gl] IG4I L G3] L Gl] IG‘]
=dl { } 1 ¥ Gzl] : (.r r Gzl I J:
O 20 B O B
O Y = —_—

Figure 3.2: Example reduction from CMIS(m) to CMIS(m + 1)

50

If we can schedule K intervals in I, we can clearly schedule K + 2/ — 2 intervals
in I' by using the same schedule for the original intervals and using the machines
B,.+1 and Gi4 to schedule the additional 2! — 2 intervals. Suppose we can schedule
K + 2l -2 intervals in I'. Suppose the schedule does not contain one of the additional
2! — 2 intervals. We will refer to the interval as j. Because j is as short as any of
the original intervals, we can drop the interval scheduled on B,,,; and replace it with
j without changing the cost of the schedule. Given that all 2/ — 2 of the additional
intervals are scheduled, the remaining K intervals form a legal schedule for I.

CMIS(1) is NP-complete. It follows then that CMIS(m) is NP-complete for

m>1. O
Corollary 3.1.2. RIS(m) is NP-complete for m > 2.

Proof. CMIS(1) is an instance of RIS(2). It follows that RIS(2) is NP-complete. O

This improves the results of Arkin, et. al. [1] who only showed that RIS(m) is
NP-complete when m > 3. Their proof is based on 3-SAT and breaks down if MAX-
2-SAT is used. It is possible to modify their proof to work with MAX-2-SAT, but it

is much more complicated than the proof presented here.

Corollary 3.1.3. The m-way Skewed Interval Scheduling (SIS(m)) problem is NP-
complete. The m-way Skewed Interval Scheduling problem is a variation of RIS(m)
in which the machines are partitioned into m sets and each interval can be scheduled

on ezactly one machine from each group.

Proof. CMIS(m) is an instance of SIS(m + 1). Each companion machine forms a set

and the remaining machines form the last set. a

51

3.1.2 Cache Scheduling

We can now show that off-line restricted cache scheduling is NP-complete. The basic
observation is that when bypassing is allowed, an instance of cache scheduling in
which each memory item is referenced exactly twice is identical to a restricted interval
scheduling problem. We first consider the Companion Cache Structure Scheduling
problem, CCSS(m,n). This is the off-line scheduling problem for the Companion

Cache Structure CCS(m, n) defined in Section 1.5.1.

Definition 3.1.2. Companion Cache Structure Scheduling: (CCSS(m,n))

INSTANCE: We are given a CCS(m,n), a set of memory items R, and a function
g: R - {M,...M,}, that determines where in the main cache each item can be
placed. We are also given a sequence of memory requests, s € R*, and an integer K.
QUESTION: Can the memory items be legally placed in the cache such that at least
K requests in the sequence s are to items currently in the cache? In other words, does

there exist a schedule with at least K hits?
Theorem 3.1.2. CCSS(m,n) with bypassing is NP-complete.

Proof. We reduce CMIS(n) to CCSS(m,n). For each machine in CMIS(m) create a
cache location. The companion buffer consists of the n cache locations corresponding
to the n companion machines. For each interval (s;, fi,0;) create a memory item
z; and let g(z;) = 0;. In other words, memory item z; can be placed in the cache
positions that correspond to the machines on which the interval (s;, f;) can be sched-
uled. Sort the end points sy, fi, 82, fa, - - - Sn, fn of the intervals. If two end points are
equal, then the end points are sorted as follows. Finishing points come before starting

52

points. Otherwise the endpoint from the lower indexed interval is first. A sequence
of memory references is generated as follows. For each end point in the sorted list,
reference the memory element that corresponds to the endpoint’s interval.

The set of intervals defined by the resulting sequence of memory references and
the original set of intervals are equivalent in the sense that the number of intervals
that can be scheduled in both sets is the same. If an interval is scheduled, the refer-
ence corresponding to its endpoint will be a hit. Therefore, the number of intervals
scheduled in the interval scheduling problem is equal to the number of hits in the

cache scheduling problem. a
Theorem 3.1.3. CCSS(m,n) without bypassing is NP-complete.

Proof. If bypassing is not allowed, interval scheduling is not an exact model of the
caching problem. However we can modify the proof of Theorem 3.1.1 using the ideas
in the proof of Theorem 3.1.2 to reduce 3-OCC-MAX-2-SAT to CCSS(m, 1) without
bypassing. Let I be an instance of 3-OCC-MAX-2-SAT. We construct an instance
I' of CCSS(m,1) without bypassing as follows. For each variable z we create the
memory items L., Lz, U, and Uz. For each clause c; we create the memory items Cjy,
and C;,, where u and v are the literals that appear in clause ¢;. The request sequence
s is defined as follows. First each L, and Lz is referenced. Then for each variable add
U.UzU.Uz to the sequence. For each clause we add C;,C;,C;,Ci, to the sequence.
Finally we add each L, and Lz to the sequence.

We will show that I’ has a schedule in which 3|U| + |C| + k references will be

hits if and only if k£ clauses can be satisfied in I. Suppose we can satisfy k clauses

53

in the instance of 3-OCC-MAX-2-SAT. Consider a clause ¢ that was not satisfied.
One of the literals in clause ¢ must appear only once. If not, we can modify the
truth assignment to create an assignment that satisfies clause ¢ and satisfies at least
k clauses. Each variable only appears at most 3 times. If a variable only appears
in the positive or negative form, then obviously clause i can be satisfied. Therefore
clause 7 contains a variable that appears twice in its positive and once in its negative
form (or vice versa). Let us assume that clause i contains the literals z and y. If
appears in another clause, then Z can only appear in a single clause j. If we assign z
to be true, we satisfy clause 7, and the only clause that might no longer be satisfied
is clause j. Therefore, there are still at least k clauses satisfied.

We now consider the modified truth assignment. If z is true, we use B; and Mz
to schedule the U, and Uz references, and to schedule the C;; and Cj, references. We
place L, in M, and Lz in B,. If z is false, we swap the roles of Mz and M,. This
is the same idea used in Theorem 3.1.1. Because bypassing is not allowed, we must
place the references corresponding to the unsatisfied ciauses in the cache. Essentially
we are forced to schedule the “short” intervals. For each unsatisfied clause, if z is
the literal that appears a single time, we use M, and B, to schedulé the C;; and Cj,
references.

There are 2|U| + 2|C| hits for the “short” intervals. For each variable, one of the
final L, or Lz references will be a hit, unless that variable appeared in an unsatisfied
clause. There are |C| — k unsatisified clauses, so we have a total of 3|U| + |C| + k

hits.

o4

Theorem 3.1.4. CCSS(m,n) with reorganization is NP-complete.

Proof. Cache reorganization is equivalent to preemptive interval scheduling. In pre-
emptive interval scheduling, an interval can be moved from one machine to another
without being lost. We again consider the reduction used in the proof of Theo-
rem 3.1.1. We show that in the optimal schedule for this type of instance, each
interval is scheduled on one machine even if preemption is allowed. It follows that
CCSS(m,n) with reorganization is NP-complete.

For each variable there are four intervals that must be scheduled on three machines.
Preemption cannot help. At most three of the intervals can be scheduled; specifically
one of the long intervals and two of the short intervals. Likewise preemption does not

allow us to schedule any additional clause intervals. O
Theorem 3.1.5. Off-line restricted cache scheduling (RCS) is NP-complete.

Proof. Any interesting restricted cache is going to “contain” a CCS(m,1). Therefore
CCSS(m, 1) is an instance of every other restricted cache scheduling problem, and

every restricted cache scheduling problem is NP-complete. O

3.1.3 Inapproximability Results

We now show that CMIS(1) belongs to the class APX-complete [31]. APX-complete
is a class of problems that are hard to approximate. Unless P = NP, there does not

exist a polynomial time approximation scheme for APX-complete problems.

Theorem 3.1.6. CMIS(1) is APX-complete.

95

Proof. In Section 3.3 we will show that CMIS(1) has a 2-approximation. Therefore
the problem is in APX. We will now show that the reduction used in Theorem 3.1.1

is an L-reduction. L-reductions are defined in Section 1.6.1.
Let I be an instance of 3-OCC-MAX-2-SAT. R(I) will be an instance of CMIS(1)

created using the reduction in Theorem 3.1.1. By definition of the reduction,
OPT(R(I)) = OPT(I) + 3|U| + |C]|.

Because each clause can contain at most two variables and each variable must appear
at least once, [U| < 2|C|. Also, for any instance of MAX-2-SAT, at least 2 of the

clauses are satisfiable. It follows that

OPT(R(I)) = OPT(I)+3|U| +|C]|
< OPT(I)+17|C]

< OPT(I)+ (g;) OPT(I)

(33—1) OPT(I)

IN

Given a schedule s for R(I) we can modify it as described in the proof of Theo-
rem 3.1.1 to create a schedule s’ that corresponds to a valid truth assignment ¢. The
short intervals not scheduled in s’ will correspond exactly to the unsatisfied clauses.

Therefore

OPT(I) — ¢(t) = OPT(R(I)) — c(s') < OPT(R(I)) — c(s).

96

Therefore, the reduction is an L-reduction, with o = 33—‘ and 8 =1, and CMIS(1)

is APX-complete. a
Corollary 3.1.4. CMIS(1) does not have a PTAS for m > 2 unless P=NP.

For the reasons stated in Thereom 3.1.5, the above results apply to any restricted

cache scheduling problem.

3.2 Algorithms

In this section we present algorithms to optimally solve some cache scheduling and

interval scheduling problems.

3.2.1 Optimal Off-line Solution

RIS(m) can be solved optimally using dynamic programming. Arkin and Silverberg
present an optimal solution for this problem with running time O(n¥*!), where k is
the total number of machines [1].. We now give a more straightforward and efficient

dynamic programming solution.

Theorem 3.2.1. RIS(m) with k machines and n intervals can be solved in O(kn*)

time.

Proof. Order the n intervals by starting time. The dynamic programming solution
works from back to front. Let S(j1, j2,- - - , jm) be the number of intervals that can be
scheduled given that no interval before j; is scheduled on machine M; for 1 < i < m.
In other words, this is the subproblem which consists of intervals such that the earliest

o7

starting interval that can be be scheduled on machine M; is interval j; of the original
problem. Note that the subproblem is not just a subset of intervals. In some cases,
intervals in the subproblem will only be schedulable on a subset of the machines on
which they were schedulable in the original problem.

We define the functions f;,... f,, and g;,...gnm. Let f;(j) be the earliest starting
interval after j that can be scheduled on machine i. Let g;(j) be the earliest interval
after j that can be scheduled on machine M; and that does not overlap with j. Note
gi(j) is the adjacency function. The optimal solution is S(hy, hy, ... hy), where h; is
the earliest interval that can be scheduled on machine M;. The idea behind the dy-
namic programming solution is simple. Consider the earliest available interval 7, and
either schedule j on any of the machines, or reject it, and then solve for the remaining
intervals. If j is scheduled on machine M;, we must remember that machine M; is
unavailable for the length of interval j. As an example, consider S(j1, jo, 73, Ja, J5)s
and suppose that the earliest interval can be scheduled on on machines M;, M, and

M. In other words, j; = j» = js < j3,75. In this case

S(j1, 32,33, Ja, Js) = max(S(fi(j1), f2(J2), 33, fa(Ja), Js), (reject the interval)
14+ S(91(71), f2(42), 33, f1(Js), Js), (schedule on M,)
1+ S(f1(31), 92(42), 33, f4(Ja), Js), (schedule on M)
1+ S(f1(41), f2(42), 33, 94(js), Js)) (schedule on M,)

In order to write out the dynamic program in a closed form we introduce some
additional notation. Let E = {i | VI j; < j5;}. F is the set of machines on which the

earliest available interval can be scheduled. Let

58

F(j) = ,
) Ji otherwise F;(j;) otherwise

{fi(ji) ifie E Gilial) = {g,-(ji) ifi=1

Note that strictly speaking, F; and G; are also functions of F which is a function of
Ji,---,Jk, but we will abuse notation for brevity’s sake. The earliest available interval
is either scheduled on a machine, or it is rejected. The function F;(j;) represents an
interval being rejected and the function G;(j;,!) represents an interval being sched-
uled. In the case that an interval is not the earliest ending interval, both functions

are the identity function.

The complete dynamic programming solution is

S(j11j27 . Jk) = ma‘x(S(Fl(]l)a s Fk(jk))’ r{éaéx(l + S(Gl(jh l)’ .. Gk(]k,l))))

There are at most n* values to calculate. Calculating any one value is an O(k)
operation, because in the worst case an interval can be scheduled on all k¥ machines.
Therefore the dynamic programming solution has a complexity of O(kn*). 'We can
improve this slightly when we consider that an interval can be scheduled on at most
m machines. The complexity is O(m (%)k) Clearly, for large n and k this is
impractical. O

As mentioned before, interval scheduling is not an exact model of restricted cache
scheduling (RCS). In order to exactly model cache scheduling with bypassing, we need

to consider the adjacency constraints. The adjacency constraint prevents adjacent

intervals from being scheduled on different machines. The dynamic programming

59

solution can be extended to handle adjacency constraints, but the solution becomes

considerably more complex.

Theorem 3.2.2. RCS with k cache locations and 2n items referenced can be solved

in O(kn?*+1) time.

Proof. Again we consider scheduling the earliest interval. However, instead of only
scheduling a single interval at each step of the dynamic program, we need to consider
scheduling groups of adjacent intervals. For example, suppose j, is the earliest interval
that can be scheduled on machine M;. We can schedule j; on machine M;, or we can
schedule j; and g;(j;) (the earliest starting interval that does not overlap j, that can
also be scheduled on M;) on machine M, or we can schedule ji, g:(j;) and ¢,%(j1)
on machine M, etc. Also, if we schedule j; on machine M;, then we cannot schedule
91(j1) on a different machine, so we need to remember which sets of consecutive
intervals have been scheduled on which machines.

Our dynamic programming solution will have the form S(j;, u1, jo, 42, - - - , jm, Um)-
The meanings of j; and u; are the ‘following. If j; = u;, then j; is the earliest interval
that can be scheduled on machine M;. If j; # wu;, then the set of intervals {g(u;)|n >
0 A ¢*(u;) < ji} have been scheduled on machine M;. We must avoid scheduling any
interval in this set a second time, and we cannot schedule any interval adjacent to
this set on a different machine.

Let E = {i |Vl j; < iNj; = w;} and let E' = {i |Vl j; < 5;}. F; and G; are defined

the same manner. As before, F is the set of machines on which the earliest interval

60

can be scheduled and thus is the set of machines on which we consider scheduling

groups of intervals. If E is not empty, then the dynamic program is defined as follows.

S(J1, u1, Jo, Uz, - - - Jk, k) = max(S(F1(51), Fi(w), - - - Fe(Gk), Fi(ux)),

I{éaéx lglaé)'f (v+S(Gl(j1’l,v)’u1""Gz(jlhl)auk))
FiFw g (wi) =01 (fi)<Js

If E is empty, then E’ is the set of machines on which it is safe to forget the
previously scheduled groups of intervals. In this case the dynamic program is defined

as follows

S(jlvul7j2au27 . 'jkvuk) = S(jl’Hl(jlvul)v .. 'jkak(jk’ Uk)),

ji ifi€eF
where H;(ji, u:) =

u; otherwise

There are n?* values to calculate. Calculating any one value is an O(kn) operation.

Therefore the dynamic programming solution has a complexity of O(kn?+1). O

3.2.2 Optimal Solution for RIS(2)

If intervals can only be scheduled on at most two machines, and we are only interested
in whether or not all the intervals can be scheduled, then things are easier. RIS(2) can
be solved in polynomial time. The algorithm is similar to the algorithm for solving

2-SAT.

61

Theorem 3.2.3. Determining if all of the intervals in an instance of RIS(2) can be

scheduled is solvable in polynomial time.

Proof. We construct a directed graph as follows. If interval j can be scheduled on
machine M, we create a vertex v;;. Because each interval can be scheduled on at
most two machines, there are at most 2n vertices. We create a directed edge (vz;, vyk)
if intervals j and k overlap, x # y and interval k£ can also be scheduled on machine
M,.

We apply an all pairs shortest path algorithm to this graph. If for any interval j
schedulable on machines M; and M,, there is a path from v;; to v,; and a path from
vy; t0 vzj, then it is not possible to schedule all of the intervals. Otherwise a schedule
exists.

The basic idea is as follows. Consider an interval j that can be scheduled on
machines M; and M,. If we schedule j on M, none of the intervals that overlap
Jj can be scheduled on M, and we are forced to schedule those intervals on another
machine. This is the meaning of the directed edges in the graph. In turn, this will
force other intervals to be scheduled on specific machines and may eventually force
us to schedule j on My, in which case we cannot schedule j on M;. If it is also the
case that scheduling j on M, eventually forces us to schedule j on M, it is clear that

j cannot be scheduled. O

It is interesting to compare this result to the results of Kolen and Kroon [34].
There the authors showed that RIS(m) is NP-complete if there exist more than two

classes of machines, where two machines are in a different class if there exists an

62

interval that can be scheduled on one machine but not the other. In RIS(2) there
are more than two classes of machines. In general, each machine is in its own class.
However, because each interval in RIS(2) can only be scheduled on 2 machines, the
problem is solvable in polynomial time.

If intervals can be schedule on more than 2 machines, then even determining if all

of the intervals can be scheduled or not is NP-complete.

3.3 Approximation Algorithms

Given that RIS(m) is NP-complete we have to be content with approximation al-
gorithms. We have already shown that a PTAS does not exist for RIS(m) unless
NP # P. In this section we present approximation algorithms for the optimization

version RIS(m).

3.3.1 Graph Theoretical Model

Interval scheduling and cache scheduling with bypassing can both be formulated as
independent set problems. This model is very useful for describing approximation
algorithms. For the interval scheduling problem, we construct a graph G as follows.
For each interval ¢ create a vertex v;; if interval ¢ can be scheduled on machine z.
There will be at most nk vertices where n is the number of intervals and k is the size
of the cache. We add the edge (viz,vj) if interval i and j overlap and they both can
be scheduled on machine z. This enforces the constraint that overlapping intervals

cannot be scheduled on the same machine. Note that intervals that share endpoints

63

do not overlap. We add the edge (vi, viy) if interval 7 can be scheduled on machines
z and y. This enforces the constraint that an interval can only be scheduled on one
machine. A set of independent vertices in G corresponds to a valid schedule. A
maximum independent set in G corresponds to an optimal solution to the scheduling
problem. A similar model is used in [24].

The graph G has an interesting structure. For a fixed z, let G; be the subgraph
induced by the vertices v;;. This graph represents all of the intervals that can be
scheduled on machine M, and is an interval graph. Interval graphs are well stud-
ied and have many interesting properties [27]. The independent set problem for an
interval graph is solvable in polynomial time. This is because an interval graph is
guaranteed to have a simplicial vertex. A vertex is simplicial if its neighbors form
a clique. Clearly a simplicial vertex can be part of a maximum independent set,
because only one of its neighbors could take its place. Removing a simplicial vertex
and its neighborhood results in another interval graph. The vertex corresponding to
the earliest ending interval is simplicial in an interval graph.

For a fixed 7, let H; be the subgraph induced by the vertices v;;. This graph is a
clique which represents the machines that interval ¢ can be scheduled on and the fact
that the interval can only be scheduled on one machine. If we look at a vertex v;,; that
is simplicial in G, then the neighbors of v;; form at most two cliques. One clique is
the neighbors in G, and the other clique is the neighbors in H;. All of the vertices
corresponding to the earliest ending interval have the property that their neighbors

form at most two cliques.

64

For restricted cache scheduling with bypassing (RCS), we also have to enforce the
constraint that two adjaceht intervals cannot be scheduled on separate machines. We
do this by adding edges (viz, vjy) if interval ¢ is adjacent to interval j and z # y to G.
This additional edge is neither part of a clique nor part of an interval graph. For this
reason, the vertices corresponding to the earliest ending interval have the property
that their neighbors form at most three cliques.

It follows from the results of Section 3.1 that the. independent set problem is

NP-complete and APX-complete for these two families of graphs.

3.3.2 Earliest End Time Algorithms

The earliest end time algorithm (EET) is a greedy algorithm that sorts the intervals
by end time, and then schedules intervals as they fit. EET is optimal for interval
scheduling on identical machines. This is because interval scheduling on identical
machines can be represented as an interval graph and the earliest ending intervals

correspond to simplicial vertices in the interval graph.
Theorem 3.3.1. There ezists an optimal EET schedule for RIS(m).

Proof. Let G be a graph representing an instance of RIS(m). Consider a maximum
independent set that does not contain any of the vertices corresponding to the interval
with the earliest end time. Because each of these vertices are simplicial in the interval
subgraphs, each of these vertices can have at most one neighbor in the maximum
independent set. We can therefore add one of the vertices that corresponds to the

earliest ending interval and remove its one neighbor, without changing the size of the

65

maximum independent set. We then remove the scheduled vertex and its neighbors

and repeat. a

Unfortunately, EET as described above is not a deterministic algorithm because
it may be possible to schedule the earliest ending interval on more than one machine.
In order to make the algorithm deterministic, EET will always schedule an interval
on the lowest numbered machine available. This algorithm is a 2-approximation for

RIS(m).

Theorem 3.3.2. EET is a 2-approzimation algorithm for RIS(m).

Proof. We will prove this theorem two ways. First, let S be the schedule produced
by EET, and let OPT be the optimal schedule. Consider an interval ¢ scheduled on
some machine M, in OPT that is not in S. There must be exactly one interval j
in S on machine M, that overlaps i and has an earlier endtime than ¢. Otherwise i
would have been in S. It is not possible that there is a second interval k¥ scheduled
on machine M; in OPT that is not in S because of j. In order for k to not be in
S because of 7, k must be scheduled on M, in OPT, it must have a later end time
than j and it must overlap j. However, this means that ¢ and k must overlap, and
therefore OPT cannot schedule both ¢ and k¥ on machine M;. It follows from this
that OPT can schedule at most twice as many intervals as S.

Secondly, we can consider the graph formulation of the problem. There always
exists at least one vertex whose neighbors form at most two cliques. These are the
vertices that are simplicial within the interval subgraph for a specific machine, and

include the vertices representing the earliest ending interval. Because this vertex’s

66

neighbors form two cliques, at most 2 of the vertex’s neighbors can be in the optimal

solution. Therefore choosing such vertices will result in a 2-approximation. O

This bound is tight as shown in the instance of CMIS(1) depicted in Figure 3.3.
Each interval is labeled with the machine on which it can be scheduled. Each interval
can also be scheduled on the companion machine C,. EET will schedule all of the
short intervals on the appropriate M; and one of the long intervals on B, for a total
of n + 1 intervals. The optimal solution schedules all of the short intervals on B; and
the long intervals on the appropriate M; for a total of 2n intervals. This example can

be generalized for RIS(m) for any value of m.

M,

—_— = —_—

M, M, My M, M,y M,
— -]

Figure 3.3: EET lower bound.

EET would be optimal if each interval was scheduled on the correct machine.
For a deterministic algorithm, we can construct an instance where it always chooses
incorrectly. If we randomly choose the machine on which to schedule an interval, we

can improve the performance of EET. We consider the randomized EET algorithm

67

(RAN-EET), which randomly places the earliest ending interval on one of the available

machines.

Theorem 3.3.3. Randomized EET (RAN-EET) is a (*2=1)-approzimation algo-

rithm for RIS(m).

Proof. The proof is inductive in nature. Let G be a graph corresponding to an
instance I of RIS(m). Let R(G) be the value of RAN-EET for the graph G. Let
OPT(G) be the optimal value. |

If OPT(G) < 2, then clearly R(G) = OPT(G). Otherwise, consider a graph
G. RAN-EET randomly places the earliest ending interval on one of the available
machines. The algorithm then removes the vertex corresponding to the placement
of the interval, and all of the vertex’s neighbors to form a new graph, and then
repeats. There are two possibilities. With probability #, RAN-EET chooses the
correct machine, in which case we name the new graph G'. Clearly R(G) = 1+ R(G")
and because this was the optimal choice, OPT(G) = 1+ OPT(G’). Otherwise with
probability %;—1-, RAN-EET chooses an incorrect machine, in which case we name
the new graph G”. R(G) =1+ R(G") and OPT(G) < 2 + OPT(G"), because the
subgraph G—G" consists of at most two cliques and can have at most two independent

vertices in it. G’ and G” are illustrated in Figure 3.4.

68

o

Figure 3.4: The choices of RAN-EET and the resulting subgraphs.

We can now calculate the expected value of R(G).

1) (14 () 0770 -2)
2 (2m—1) PT(G)+1_(2 1+§Z—f)

> (m)OPT(G)

2m —

EIR(G)| = (;}{) (1+ E|R(G))) +(’" 1) (1+ E|R(G")))
> (5) (1+ () oFr)
+ —)(+(m 1)OPTG”)
>) -
N
m

g8
() () om0
(1

O

We can prove similar results for restricted cache scheduling. Let RCS(m) be

a restricted cache scheduling problem in which each item can be placed in m cache

69

locations. In the graph representation of RCS(m), there exist vertices whose neighbors

form 3 cliques.
Corollary 3.3.1. EET is a 3-approzimation algorithm for RCS(m) with bypassing.

Corollary 3.3.2. RAN-EET is a (¥2=2)-approzimation algorithm for RCS(m) with

bypassing.

3.3.3 Linear Programming Relaxations

RIS(m) can be formulated as an integer programming (IP) problem. For each interval
¢ that can be scheduled on machine Mj, let the variable z;; indicate if interval ¢ has
been scheduled on machine M;. For each machine Mj, the intervals schedulable on
M; define an interval graph G;. Let Cjx be the k** maximal clique in G;. The linear

program version of RIS(m) is:

(IP) Maximizez Tij
subject to
Z zij < 1 Vi (schedule interval < on at most one machine).
J
Z z;j < 1 Vj (do not schedule overlapping intervals on machine Mj).

‘iGCjk
z;; € {0, 1}

Interestingly enough, the linear programming (LP) relaxation of these IPs tend to

have integral solutions. An LP can be expressed in the form Az = b, where A is a

70

matrix, and z and b are vectors. A matrix A is totally unimodular if the determinant of
every square, nonsingular submatrix of A, including A itself, is +1 [48]. If the matrix
A is totally unimodular, then the LP has an optimal integer solution. In the LP
formulation of restricted interval scheduling, the submatrix of A that corresponds to
the second set of constraints for a machine M; is the cliqgue matriz of the interval graph
G;. The clique matrix of an interval graph is totally unimodular [46]. Therefore, in
the restricted interval scheduling case, large sub-matrices of the matrix A are totally
unimodular and it is for this reason we believe that the LP’s often have integral
solutions.

We cannot prove an upper bound on the approximation ratio of an LP relaxation,

but we can prove a lower bound.

Theorem 3.3.4. The integrality gap between the IP formulation of RIS(m) and its

DI

LP relazation is >

Proof. The proof is by example. Consider Figure 3.5. This is the graph representation
of a restricted interval scheduling ﬁroblem. We can divide this example into groups of
four intervals, skipping the first interval. In each group, the optimal solution schedules
three of the intervals. Each vertex corresponds directly to a variable in the LP, and
the numbers besides each vertex represent the optimal assignment of that variable.

The fractional LP solution for each group is 3.5. Therefore, the gap is %.

a

It follows that an LP based approximation algorithm cannot have an approxima-
tion ratio better than a .

71

o

(N1

(N1

Figure 3.5: Integrality Gap Example.

3.3.4 Empirical Results

Despite the inapproximability results, random instances of this problem tend to be
easy to approximate. We consider instances where each interval can be scheduled on
2 machines. In the 100 interval inputs, there are 8 machines, and all endpoints are
in the range 0 through 64. In the 250 interval inputs, there are 10 machines, and all
endpoints are in the range 0 through 120. In both cases the length of each interval
is between 1 and 20, and the optimal solution schedules approximately 40% of the
intervals.

We consider four algorithms. EET is the basic earliest end time algorithm. MSV
and AIL are variations of EET that employ different heuristics to determine on which
machine to schedule an interval. MSV (Maximize Simplicial Vertices) chooses the

machine that results in the most simplicial vertices. AIL (Avoid Interval Loss), will

72

choose the machine that results in the fewest unscheduled intervals being lost. LP is
an LP relaxation of the integer programming. Table 3.1 compares the performance

of these different algorithms.

100 Intervals, 8 machines
Algorithm | Avg Performance | Worst Performance | %Optimal
EET 93.16 85.10 1
MSV 93.95 86.36 5
AIL 95.59 87.76 9
LP 99.65 95.35 86
250 Intervals, 10 machines
EET 93.24 87.38 9
MSV 94.14 89.19 13
AIL 95.91 91.89 6
LP 99.60 96.36 73

Table 3.1: Performance of Approximation Algorithms for RIS

3.4 Summary

We have shown that any interesting variation of Restricted Interval scheduling is NP-
complete and APX-complete. As a consequence, off-line Restricted Cache Scheduling
is also NP-complete and -APX-complete. We have designed optimal, exponential
algorithms for RIS and RCCS. We have also shown that the simple EET algorithm
is a 2-approximation for interval scheduling, and have done empirical studies to show

how EET and other algorithms perform.

73

Chapter 4

On-line Restricted Cache

Scheduling

This chapter describes the results for on-line restricted cache scheduling problems.
We evaluate on-line algorithms using the competitive analysis technique. Competitive
analysis is defined in Section 1.6.2. For the most part we focus on the Companion
Cache Structure (CCS(m,n)), defined in Section 1.5.1, as it is the fundamental re-
stricted cache. We consider many variations of the basic Companion Cache Scheduling
problem, including features such as bypassing and reorganization. We also include

results for other types of restricted caches.

4.1 Companion Cache Scheduling

The Companion Cache Structure is defined in Section 1.5.1. A CCS(m,n) consists

of a direct-mapped cache of size m, which we will call the main cache, and a small

74

fully-associative cache of size n, which we call the companion buffer. We will use M;,
M,, ... M,, to refer to the positions in the main cache, and B;, B,, ... B, to refer
to the positions in the companion buffer. Two items are of the same type if they can
occupy identical positions in the cache. We will use X, X', Y, Y, Z, Z' to refer to
memory items. X and X' will refer to different items of the same type.

We first look at the Least Recently Used (LRU) replacement policy. When a miss
occurs, LRU will place the item in the least recently used cache position, which can
either be in the main cache or in the companion buffer. The first result is that LRU

is not competitive, assuming reorganization is not allowed.

Theorem 4.1.1. LRU is not competitive for CCS(2,1).

Proof. The proof is by example. Let X and X' be items that can be placed in cache
position M; and let Y and Y’ be items that can be placed in cache position M,.

Consider the input sequence in Figure 4.1.

Sequence: V¥ X Y X Y X Y X Y X Y X
LRU: M; Mi B, M; B, My B, My B; M; B M
OPT: Mg M\ My B My M; M; B, My M; M; B,

Figure 4.1: LRU is not competitive for CCS(2, 1)

Misses are underlined. OPT only misses on the first four references. LRU misses
on every reference to X or X'. We are assuming that LRU initially places items
in the main cache. If LRU initially places items in the companion buffer, then the
counter example is the same sequence starting with the first reference to Y. It is

interesting to note that LRU does not miss on every reference. In traditional caches,

7

the worst case for any on-line algorithm, which includes LRU, is when it misses on

every reference. a

In any restricted cache, we can find three items such that they all share a location
in one of the component caches, and two share a location in another component cache.
It follows that LRU is not competitive for any restricted cache. Note that this is true

whether or not bypassing is allowed.

4.1.1 Companion Cache Scheduling with Bypassing

For this section, we will assume that bypassing is allowed but reorganization is not
allowed. We will first focus on CCS(m, 1). We divide the input sequence into phases.
A phase consists of a minimal set of consecutive references to items that cannot all
simultaneously fit in the cache. This is a generalization of the phase definition used
in the analysis of traditional on-line caching as described in Section 2.1.2. The first
phase begins with the first item in the request sequence. Within a phase, an item is
a leader if its first occurrence in the phase is followed by the first occurrence in the
phase of a different item of the same type. An item is a follower if its first occurrence
is preceded by the first occurrence of a different item of the same type. An item can
be both a leader and a follower. The reference to the second follower ends a phase.
This is because we can place all of the non-followers in the main cache and one of
the followers in the companion buffer, but there is no room in the cache for the other
follower. The last phase ends when the input sequence ends. Figure 4.2 illustrates

the phases for a given request sequence. Note that different phases can contain a

76

different number of distinct items, and that in phase 2, Z’' is both a leader and a
follower. Because all the items in a phase cannot all simultaneously fit into the cache,
any algorithm must miss at least once per phase.

XYY’XZX’|YXY’Z’ZIZZ’YZ”|XYZ
phase 0 phase 1 phase 2 phase 3

Figure 4.2: Example phases for CCS(3,1)

We now define the algorithm Main Cache First (MCF) as follows. Whenever a
miss occurs, the newly accessed item is placed in the direct mapped cache if it is the
first item of its type in the phase. Otherwise the item is placed in the companion
buffer. In Figure 4.3, we show how MCF behaves on the LRU counter example. The

input consists of only two phases.

Sequence: YV X Y X|Y X Y X Y X Y X

MCF: M, M\ Bp By|My M My B, My My M; B
OPT: M, M} My Bj|M; M; M; By Mo My M; B
phase 0 phase 1

Figure 4.3: MCF's behavior on the LRU counter example.

Theorem 4.1.2. MCF is 5-competitive on CCS(m,1) if bypassing is allowed.

Proof. The outline of the proof is as follows. Each miss that occurs in the MCF
schedule will be charged to one of the phases. Misses will not necessarily be charged
to the phase in which they occur. Let c; represent the cost charged to phase i. We
will also determine a lower bound on OPT;, the number of misses that occur in phase

i of the optimal schedule. The total cost of MCF will be)" ¢; and the total cost

7

of the optimal algorithm will be greater than Y OPT;. We will show that for each
phase, 585 < 5. Therefore, 2%%7} < 5 and MCF is 5-competitive.

MCF will only miss on an item once per phase. If an item is put in the main
cache, it will remain in the main cache throughout the phase. If an item is put in
the companion buffer, it must be a follower. The first item placed in the companion

buffer will remain in the companion buffer until the second follower is referenced,
which ends the phase.

Consider a reference to item X in phase i in the MCF schedule. This reference

is a miss if X is not currently in the cache. We divide the misses into 4 different

categories.

e Shared misses. Both OPT and MCF miss on X. This includes the very first

reference to X, which is known as a compulsory miss.

e Companion Buffer misses. X is placed in the companion buffer. X must be a

follower.

e Companion to Main misses: X was last in the companion buffer, and X is now
placed in the main cache. This means that when X was last referenced it was a

follower.

¢ Main to Main misses: X was last in the main cache and X is now placed in the

main cache.

Companion Buffer, Companion to Main, and Main to Main misses are mutually

exclusive. Shared misses take precedence over the other categories. If MCF places

78

an item in the companion buffer, but OPT also misses on that item, the miss will be
classified as a Shared miss, not as a Companion Buffer miss.

Shared misses are charged to MCF in the phase in which they occur. Let m? be
the cost charged in phase ¢ by Shared misses. It is also the case that the cost of OPT
in phase i must be at least mJ. Companion Buffer misses will be charged to the phase
in which they occur. Let m{® be the cost associated with Companion Buffer misses.
Companion to Main misses will be charged to the phase in which the item was placed

in the companion buffer. Let mEM be the cost associated with Companion to Main
misses. Because there are at most two followers in a phase, m{® < 2 and mfM < 2,
for all i.

Last we consider the Main to Main misses. OPT does not miss on the reference
to X because otherwise it would have been a Shared miss. In order to have a Main to
Main miss on a reference to X in phase 7, there must have been an intervening reference
to some item X'. We will only consider the earliest such intervening reference. Because

MCF will only place an item in the main cache if it is the first item of its type in

the phase, the phase in which X was last in the main cache, the phase in which X'

forced X out of the cache, and the phase ¢ in which the Main to Maiﬁ miss occurred,

must all be different phases. This is illustrated in Figure 4.4. We charge each Main

to Main miss to the phase in which the intervening reference occurs. We will refer

to X as a saved item. Main to Main misses will later be referred to as Intervening
misses.

We look at phase j. Let mj be the number of intervening references in phase j.

In other words, OPT must save m§ items during phase j. We are going to show that

79

| X |] X] X
phase k phase j phase 7
k<ji<i

Figure 4.4: Illustration of a Main to Main (Intervening) miss.

OPT; > 1+ m§ . Let d be the number of distinct types that appear in phase j. By
the definition of a phase, there are exactly d + 2 distinct items in phase j. There are
a total of d + 1 locations in which to place these items, the d locations in the main
cache corresponding to the d types, plus the coﬁlpanion buffer. However, m1’~ of the
cache locations must be used to hold saved items, so we are left with d + 1 — mJ’
locations in which to place d + 2 items. The result is that OPT must miss at least

1+ m] times in phase j.

The total cost charged to MCF in phase i is

¢ =m +mEB + mfM 4 m!.
The cost of OPT in phase ¢ is

OPT; > max(1 + m,-’,mf).

If m >1+m], then

80

Ci m$ +mEB + mfM + m!

IN

OPT; my
< m$ +4+m!
2ms + 3
< 1
1
<5

The other case is if 1 + m] > m7. Then

Ci < mis+m,-CB+m,-CM+m{
OPT; — 1+ m]
< mi +4+m!
- 1+m]
< 2m! +5
- 14+m!
< 95

O

This bound is tight, as the example in Figure 4.5 shows. The two phases shown
each have length 5 and are repeated indefinitely. MCF misses on every reference in a
phase. Other than the six compulsory misses, OPT only misses on the first reference
of each phase, which it chooses to bypass. This lower bound example is interesting
because the most recently evicted item is not always the next item requested. In

traditional cache scheduling, the worst case for an on-line algorithm is when the most

recently evicted item is always the next item in the sequence.

81

Sequence: ...|X X Z Y Y

Zz 7 X Y Y
MCF: |M; By Mg M; Bi|Mg Bi M M; B
OPT: . Ml I\rl;; M2 Bl - M3 1\11 Bl M2

Figure 4.5: A Worst Case Input for MCF on CCS(m, 1)

We can generalize this result for CCS(m, n). The definition of a phase remains the
same. Each phase will now contain n + 1 leaders and n + 1 followers. We generalize
the MCF algorithm as follows. Each item is placed in the main cache if it is the first

item of its type encountered in the phase. Otherwise, the item is placed in the least

recently used location in the companion buffer.

Theorem 4.1.3. MCF is (2n + 3)-competitive on CCS(m,n) if bypassing is allowed.

Proof. The proof is a straightforward generalization of the proof of Theorem 4.1.2. As
before, MCF will miss at most once on an item per phase. Items placed in the main
cache will remain in the main cache throughout the phase. Because items are placed
in the companion buffer using a least recently used policy, each follower will be placed
in a different location in the companion buffer and will remain in the companion buffer
throughout the phase, except for the first follower. The first follower will be evicted
by the reference to the n + 1°t follower, which ends the phase.
Misses are divided into the same four categories and on-line misses are charged to
phases as in Theorem 4.1.2. For each phase ¢; = m$ + mfZ + mfM + m!. Clearly
for each phase OPT; > mf . Each phase contains exactly one more item than can be

simultaneously put in the cache, and each saved item uses one of the needed cache

82

locations, so OPT; > 1+ m!. The only real difference is that m{® < n +1 and

mE&M < n + 1. Therefore,

G L m$ + mfB + mfM 4+ m!
OPT; — max(m$, 1 +m/)
m + (2n +2) + m!
max(m?, 1+ m/)

< 2n+3

O

This bound is tight. The example in Figure 4.5 can be generalized by replacing
the single pair Y, Y’, with n pairs of different types.

We now look at the First In First Out (FIFO) replacement policy. When a miss
occurs on an item X, FIFO will consider the set of items occupying cache locations in
which X can be placed, and evict the item in that set that has been in the cache the
longest. Without loss of generality, we assume that items will be placed in the main
cache initially. FIFO is competitive on a CCS(m,n), even though LRU is not. In
traditional on-line cache scheduling, both FIFO and LRU are strongly competitive.

In order to show that FIFO is competitive we will use the phases described before,
even though FIFO does not use phases. Unlike MCF, it is possible for FIFO to miss
an itern twice in a phase, as the example for CCS(m, 1) in Figure 4.6 shows. We will
call multiple misses on the same item Repeat misses. We first prove a bound on the

number of Repeat misses in a phase.

83

Sequence: X Y Y Z X |Z X X 7 Y Y
FIFO: M, M, Bi M; Mi[B M, B, My My B

Figure 4.6: FIFO can miss an item more than once per phase.

Lemma 4.1.1. FIFO will have at most 2n Repeat misses in a phase.

Proof. We will say that an item X currently in the cache is fresh if FIFO placed X
in the cache in the current phase. An item X is stale if FIFO placed X in the cache
in a previous phase. In order for a Repeat miss to occur, FIFO must evict a fresh
item. We will show an item Y can be responsible for evicting at most one fresh item
in a phase. We will also show that Y must be a follower, or a repeated leader. The
phase ends with the reference to the n + 1°¢ follower, so at most 2n + 1 fresh items
will be evicted, and at most 2n of the evicted items can be requested a second time
for a total of 2n repeat misses.

Suppose FIFO places Y in the main cache and evicts the fresh item Y’. Between
the time Y’ was put in the main cache and the time Y was put in the main cache, all
of the companion buffer locations must have been used, or else Y would have been
placed in the companion buffer. Y is a follower or a repeated leader and so at least
one follower has appeared. In order for Y to evict a second item, it must first be
evicted itself. This requires all of the companion buffer locations to be used a second
time. In order for FIFO to reuse a companion buffer location for an item Z, FIFO
must have placed an item Z' of the same type in the main cache. Otherwise Z would

be placed in the main cache. Therefore, n more followers must appear before the

84

companion buffer locations will be reused, and n + 1 followers will appear and the
phase will end before Y can be evicted.

Suppose FIFO places Y in the companion buffer and evicts the fresh item X. FIFO
must have placed an item Y’ in the main cache between the time X was put in the
cache and the time Y was put in the cache, or else Y would be put in the main cache.
Therefore, Y is a follower or a repeated leader. It is also the case that all of the
companion buffer locations must be used between the time X was referenced and Y
was referenced, or else X would not be evicted. In order for Y to evict a second item,
it must be evicted itself, which requires all of the companion buffer locations to be
reused a second time, which will not happen until n + 1 followers have appeared in

the phase. 0

At this point we can prove that FIFO is m + 3n + 1 competitive. Each phase
contains at most m + n + 1 distinct items, and FIFO can miss more than once on at
most 2n items, for a total of m + 3n + 1 misses in a phase. OPT must miss at least

once per phase. We can do better and prove a competitive ratio independent of m.

Theorem 4.1.4. FIFO is (5n + 4)-competitive on CCS(m,n) when bypassing is al-

lowed.

Proof. The proof is similar to the proof of Theorem 4.1.2. Each miss in the FIFO
schedule will be charged to one of the phases, and at the same time we will find a
lower bound on the cost of the optimal off-line schedule. In each phase, FIFO does

not necessarily use the main cache first. For this reason, categorizing the misses with

85

respect to whether the item is or was in the main cache or the companion buffer is

not helpful. Instead we divide the misses into the following categories.

e Shared misses. Both FIFO and OPT miss on the reference to X.
e Repeat misses. This is not the first appearance of X in the phase.
e Follower misses. X is a follower in the phase.

e Intervening misses. A miss on X is an Intervening miss if there was an item X'
of the same type as X referenced since X was last referenced, and if the previous
reference to X, the reference to X', and the current reference to X all occurred

in separate phases. This is the case illustrated in Figure 4.4.

e Pair misses. X was a leader or a follower the last time it was placed in the

cache.

e Other misses. All other misses.

The categories are listed in order of precedence and each miss is placed in exactly one
category. For example, in order for a miss to be an Intervening miss, OPT cannot
miss on that reference; otherwise it would be a Shared miss. Likewise the miss cannot
be the second miss on that item in the phase, and the item cannot be a follower in
the phase. Otherwise the miss would be a Repeat miss or a Follower miss.

Shared misses are charged to the phase in which they occur. Let m} be the number
of Shared misses in phase i. Clearly OPT; > m$. Follower misses are also charged to
the phase in which they occur. Let m be the number of follower misses in phase i.

For each phase, mf < n +1.

86

Repeat misses are charged to the phase in which they occur. Let mF be the
number of repeat misses in phase i. By Lemma 4.1.1, there can be at most 2n Repeat
misses in a phase, so mf < 2n.

Intervening misses are handled the same as Main to Main misses in the proof
of Theorem 4.1.2. The Intervening misses are charged to the phase in which the
intervening reference occurs. Let m/ be the number of intervening misses charged to
phase i. OPT did not miss on X or else this would have been a Shared miss, and the
situation described in Figure 4.4 is true; therefore OPT; > 1+ m/.

Pair misses are charged to the phase in which the item was a leader or a follower.
Let mP be the number of Pair misses charged to phase . It is not possible for both
a leader and a follower of the same type and in the same phase to be responsible for
a Pair miss. Consider an X and X' that appear in the same phase. If X and X' later
appear in different phases, one of them will be a Shared miss or an Intervening miss.
If they appear in the same phase, one of them is a Follower miss. Therefore, for each
phase, mF < n+1. |

We now consider the Other misses. X cannot be a follower, there cannot be
an intervening reference, and X was not a leader er follower the last time it was
referenced, or else the miss on X would have been classified as a Follower, Intervening,
or Pair miss. If FIFO last put X in the main cache, X would still be in the main
cache, because no item of the same type was referenced since X was last referenced.
Therefore, FIFO must have put X in the companion buffer the last time it was put
in the cache. The situation is illustrated in Figure 4.7. The reference to X' in phase
j — 1 must exist, or else FIFO would have placed X in the main cache in phase j.

87

FIFO will put X in the main cache in phase i because FIFO has not used X’s main

cache location since phase 7 — 1.

X | X] X
FIFO M, B, M,
phase j — 1 phase j phase %

Figure 4.7: Illustration of a FIFO Other miss.

Suppose that OPT does miss on X in phase j. Because X is neither a leader nor
a follower in phase j, this is an extra miss for OPT. OPT would still have 1 + m§
misses in phase j even if X did not appear in the phase. We charge the miss on X in
phase i to m}, and OPT; > 1+ m] + m}.

Otherwise, we charge the miss on X in phase i to the same phase we charged the
miss on X in phase j. Note that if FIFO did not miss on X in phase j, we charge
the miss on X in phase ¢ to the phase we would have charged the miss in phase j.
The miss on X in phase j must be an Intervening miss or a Pair miss. Therefore, we
possibly charge each Intervening miss or Pair miss twice. Note, that it is not possible
for an Other miss on X in a phase. later than ¢ to also be added to the charge on the
miss on X in phase j because FIFO puts X into the main cache in phase 3.

The total cost charged to phase i is the following.

¢ = mp+mf+2m! +2mP + mR+m?

< (5n+3)+m +2m! + mf

88

The terms 2m! and 2m’ appear because in some cases we charge the Intervening
and Pair misses twice. Because OPT; is bounded by 1 + m!, double charging the

Intervening misses is not detrimental. The cost for OPT in phase ¢ is the following.
OPT; > max(m?,1+ m! + mF)

Therefore,

G o (5n + 3) + m? + 2m! + mE
OPT; ~ max(mf,1+m! +m¥F)

< dn+4

a

We do not believe this bound is tight. We have not been able to find an input
sequence on which FIFO is worse than (2n + 3)-competitive. FIFO behaves the same
as MCF on the example in Figure 4.5.

We now present a lower bound argument for CCS(n + 1,n).

Theorem 4.1.5. No on-line algorithm is better than (2n+2)-competitive for CCS(n+

1,n) if bypassing is allowed.

Proof. We consider the adversary that always requests the most recently evicted
item. In CCS(n+1,n) there are n+ 1 types of items and 2n + 1 cache locations. The
adversary will use 2 items of each type for a total of 2n + 2 items, and will reference
each item once to begin the input sequence. Let [be the length of the input sequence.

Because the adversary always requests the item most recently evicted, the cost for

89

any on-line algorithm is /. Because there are 2n + 2 items, some item is referenced
no more than ——— times. OPT simply bypasses this item and keeps the other 2n + 1

2n+2

items in the cache for a cost of at most ﬁ +2n+ 1, where 2n + 1 is the cost of the
compulsory misses for the other items. Therefore, no on-line algorithm is better than

(2n + 2)-competitive for CCS(n + 1,n). O

Corollary 4.1.1. No on-line algorithm is better than 4-competitive for CCS(2,1) if

bypassing is allowed.

As noted earlier, in the worst case example described in Figure 4.5, the most re-
cently evicted item is not the next item in the request sequence. Against an adversary
that always requests the most recently evicted item, MCF is (2n + 2)-competitive.
This is because there will be at most 2n + 2 distinct items in a phase, and MCF
will miss at most once on each item in each phase. For CCS(2,1), there are only
two types, and there can be at most 4 distinct items in a phase. Therefore, MCF is

4-competitive and optimal for CCS(2,1).

4.1.2 Companion Cache Scheduling without Bypassing

We now consider the case when bypassing is not allowed. We define a B-phase to be a
maximal set of consecutive items that simultaneously fit in the cache. For CCS(m, n),
each B-phase now contains exactly n leaders and n followers. Using the B-phases, we

have a new version of MCF, which we will call MCF,.

Theorem 4.1.6. MCF, is (2n + 2)-competitive for CCS(m,n) when bypassing is not
allowed.

90

Proof. It is not true that an algorithm must have a cache miss during a B-phase.
For this reason we will define periods. A period begins with the second reference
in a B-phase, and it includes and ends with the first reference of the next B-phase.
Every period is guaranteed to have at least one miss. By definition, the items in a
period and the item preceding the period cannot all fit into the cache, and because
bypassing is not allowed, the item X preceding the period must be in the cache after
it is referenced. It follows that some item referenced in the period cannot be in the
cache after X is referenced, and there must be at least one miss during the period.
Figure 4.1.2 illustrates the definition of B-phases and periods for CCS(m, 1). Cache

misses are underlined. Note that there are no cache misses in B-phase 2.

Y Y X |[X Y X|Y X X |Y

M; BB M\ [My B, B;|M: B, M;|M,

B-phase 0 B-phase 1 B-phase 2
perftﬁ 0 peri;d 1 perir)d 2

Figure 4.8: B-phases and Periods for CCS(m, 1)

The proof is similar to the bypassing case, except that we will use periods in the
accounting scheme. Let ¢; be the cost of MCF; in period i, and OPT; be the cost of
OPT in period i. Misses will still be categorized the same way. In each period MCF,
places at most n items in the companion cache. Therefore, m? < n and mf™ < n.
Shared misses are handled in the same way. Clearly, OPT; > m;.

We now consider Main to Main misses. The situation described in Figure 4.4 does
not apply to periods. The two references to X and the reference X' need not occur

in three separate periods. It is possible that the intervening reference to X' occurs

91

in the same period as one of the references to X. In order for this to happen, either
the intervening reference or the Main to Main miss must be the last reference in the
period, which is equivalent to being the first reference of a B-phase. For this reason,
we can only argue that OPT; > m!.

I

There must be at least one miss per period, so OPT; > max(1,m;, m!). Therefore,

for each period

ci 2n+m? +m!
OPT; ~ max(1,m?,m])

<2n+2

a

Corollary 4.1.2. MCF, is 4-competitive for CCS(m,1) when bypassing is not al-

lowed.

We do not believe that this upper bound is tight. The best lower bound examples
we can find have a competitive ratio of 2n + 1.

It is worth noting that MCF; is a different algorithm than MCF. MCF, is 3-
competitive on CCS(2,1) when bypassing is not allowed because each B-phase can
contain at most 3 distinct items, and MCF, misses at most once on an item in a B-
phase. If bypassing is not allowed, then MCF is at best 4-competitive for CCS(2,1).
If bypassing is allowed, then MCF, is at best 6-competitive. Figure 4.9 demonstrates
the different behavior of the two algorithms on different input sequences.

We now consider FIFO when bypassing is not allowed.
Theorem 4.1.7. FIFO is (4n + 2)-competitive when bypassing is not allowed.

Proof. The proof is the same as the proof of Theorem 4.1.4. The only difference is
that a B-phase contains only n followers. a

92

X XY YX XYY XXYYXXYY
MCF: M; B, M, B, M; B, M; By M; B, M, B; M; B, M; B

MCFy: M, B, M, My B; M; M, My M; B, M; My B; M; M, M,
OPT: M; M; M; B, My M; By M; M; M; M, B; M; M; B, M,

(a) MCF vs MCF; without bypassing

X XYY Y XX XYYYXXZXYY.
MCF: M, By M B M; M; B, M; M; B, M, M; B; M; M; By
MCFy: M; B, M, My B, M; M; B, My M; By M; M; B, M, M,

OPT: _. &%& Mng;M1M2Bl M2M1;M1M2B1

(b) MCF vs. MCF, with bypassing

Figure 4.9: Different behaviors of MCF and MCF,

When bypassing is not allowed, we can find cases where MCF, performs better
than FIFO. In the input described in Figure 4.9(a), FIFO behaves the same as MCF,
so FIFO is at best 4-competitive on CCS(2,1), whereas MCF, is 3-competitive on
CCS(2,1).

We now prove a lower bound using a language theory argument.

Theorem 4.1.8. No algorithm is better than 3-competitive for CCS(2,1) when by-

passing is not allowed.

Proof. We consider the adversary that always requests the most recently evicted
item. There are four items, X, X', Y and Y'. The request sequence is a string
over the alphabet ¥ = {X,X',Y,Y'}. We define an NFA F; that accepts all the
input strings the adversary may generate for any on-line algorithm. Each state of
tkxe machine represents a possible cache configuration and is an accepting state. The
st ate [X,Y, X'] represents X and Y in the main cache, and X' in the companion buffer.

93

If this is the current cache configuration, then the next item requested will be Y'. If
the on-line algorithm places Y’ in the main cache, then the next configuration will be
[X,Y',X']. If the on-line algorithm places Y’ in the companion buffer, then the next
configuration will be [X,Y,Y’]. The entire NFA is depicted in Figure 4.10. Without
loss of generality, we assume that X, Y and X' are in the cache at the beginning.

That means that the initial states are [X,Y,X'] and [X',Y, X].

XYXx] y [XY,X] X, X] vy [X,Y,X]

[X,Y,Y] X',Y,Y] [X,Y',Y] X, Y',Y]

Figure 4.10: The NFA F).

We define a second NFA F;. The strings accepted by F; represent input sequences
for which at most a third of the references are misses in the optimal solution, not
counting the initial compulsory misses. Note, F; does not represent all possible input
sequences for which at most a third of the references are misses in the optimal solu-
tion. For each cache configuration there will be 4 states, all of which are accepting
states. Transitions between states corresponding to the same cache configuration rep-
resent hits. Transitions between states corresponding to different cache configurations
represent misses. The NFA is constructed such that between a pair of misses there
are at least two hits, unless there were three or more hits between the previous two
misses, in which case there is at least one hit between the pair of misses. A subset of

94

the NFA is depicted in Figure 4.11. Only three of the eight configurations are shown,
and only the first configuration has all of its states and transitions labeled. For any
input sequence accepted by F5,, at most a third of the references will be misses in the

optimal solution.

X,Y, X'
X, Y, X]
om0
o ; WA\ ~ ; :
o o/

X,Y,Y'] | }

Figure 4.11: Part of NFA F;.

Using standard NFA constructions it can be shown that the language accepted by
F,, L(F}), is a subset of L(F;). We first construct deterministic machines equivalent
to F} and F,. We can then use the difference construction to construct a machine
that accepts L(F)) — L(F3). The resulting machine has no reachable accepting states,
so it follows that L(F}) is a subset of L(F3). Clearly any on-line algorithm misses on
every reference against the adversary that always requests the most recently evicted
item. For every possible input sequence generated by any on-line algorithm against
this adversary, the optimal algorithm will fault at most a third of the time. Therefore,

no on-line algorithm is better than 3-competitive for CCS(2,1). O

95

In theory the above argument could be used to prove a lower bound for CCS(n +
1,n) for any given value of n. Unfortunately, the deterministic equivalent of F;
becomes exceedingly large. For CCS(2,1), F; produces a deterministic machine with
nearly 13000 states. For n = 2, F; becomes so large that constructing the correspond-
ing deterministic machine is computationally intractable. The same argument could
also be used for the case where bypassing is allowed, but even for CCS(2,1) finding
the deterministic equivalent of F3 is intractable, and it is not clear which adversary
to use.

Using other techniques we can prove the following general lower bound.

Theorem 4.1.9. No algorithm is better than (n + 1)-competitive for CCS(n + 1,n)

when bypassing is not allowed.

Proof. The proof is similar to the proof of Theorem 4.1.5 We consider the adversary
that always requests the most recently evicted item. In CCS(n + 1,n), there are
n + 1 types of items and 2n + 1 cache locations. The.adversary will use 2 items of
each type for a total of 2n + 2 items, and will reference each item once to begin the
input sequence. Let [be the length of the input sequence. Because the adversary

always requests the item most recently evicted, the cost for any on-line algorithm is

{

W) times.

l. Because there are 2n + 2 items, some item is referenced no more than
Let this item be X, and let X’ be the other item of the same type. In one off-line
solution, X and X' share the same location in the main cache. The other 2n items
are each given their own location either in the main cache or in the companion buffer.

In the worst case, each reference to X’ will be a miss, and each following reference to

96

X will be a miss, and all other references will be hits, not counting the compulsory

2l

misses. The total cost for off-line is at most 3°5 + 2n + 1. Therefore, no on-line

algorithm is better than (n + 1)-competitive for CCS(n + 1, n). O

4.1.3 Companion Cache Scheduling with Reorganization

We now consider caches with the ability to reorganize. When a hit occurs, the cache
is free to move items within the cache. Because the exact location in which an item
is located is important, reorganization may be beneficial. Some proposed restricted
cache designs such as the assist cache and the victim cache allow reorganization
(32, 13].

If the cache is allowed to reorganize itself, we can define a competitive variant of
LRU for CCS(m,n) as follows. Whenever a miss occurs, the item is placed in the
main cache. If the item currently occupying that location in the main cache was
referenced more recently than the least recently used item in the companion buffer,
then it replaces the least recently used item in the companion buffer. Otherwise it is
evicted from the cache entirely. If a hit occurs on an item in the companion buffer,
the referenced item is swapped with the item of the same type in the main cache.
We will call this algorithm Reorganize LRU (RLRU). At all times, the main cache
will contain the most recently used item of each type, and the companion buffer
will contain the most recently used items not in the main cache. This algorithm is

essentially the proposed replacement strategy for victim caches.

97

Theorem 4.1.10. RLRU is (2n + 2)-competitive for CCS(m,n) when bypassing and

reorganization are allowed.

Proof. The proof is similar to Theorem 4.1.3. The input sequence is again divided
into phases, even though the algorithm does not use phases.

First we prove that for any item, RLRU will miss on a reference to that item at
most once per phase. Consider an item X. The first time X appears in a phase, it
will be placed in the main cache. In order for RLRU to miss on the next reference to
X, an X’ must be referenced to force X out of the main cache. One of the following
two things must then happen: either X is evicted from the cache entirely when X'
is referenced, because all the items in the companion buffer were referenced more
recently than X; or else X was moved to the companion buffer and later evicted.

Suppose X is moved to the companion buffer when X' is referenced. In order
for an item Y to possibly evict X from the companion buffer, it must be referenced
after X. Furthermore, for Y to evict X, a follower of Y must be referenced after X.
Because a LRU policy is used during reorganization, X will not be evicted before n
such followers have been referenced. X' is also a follower, so X will not be evicted
before n + 1 followers have appeared in the phase. In other words, X will not evicted
before the last reference in the phase.

Suppose X is not moved to the companion buffer and is instead evicted from the
cache. In order for all the items in the companion buffer to have been referenced more
recently than X when X’ is referenced, n items referenced after X must be moved into

the companion buffer before X’ is referenced. This requires each of these items to

98

have a follower referenced before X'. Therefore, X’ must be the n + 1% follower, and
the end of the phase.
The remainder of the proof closely follows the proofs of Theorem 4.1.3 and The-

orem 4.1.4. We divide the on-line misses into the following categories.

e Shared misses. Both RLRU and OPT miss on the reference to X.

e Follower misses. X is a follower in the phase.

Intervening misses. See Figure 4.4.

Pair misses. X is a Pair miss if X was a leader or a follower the last time it was

put in the cache.

The categories are listed in order of precedence. A miss will be classified as an
Intervening miss only if it is not a Follower miss or a Shared miss.

Shared and Follower misses are charged to the phase in which they occur. Let
m; and m! be the number of Shared and Follower misses in phase i. Pair misses
are charged to the phase in which'the item was last put in the cache, and m? is the
number of Pair misses charged to phase i. As in Theorem 4.1.4, it is not possible for
both a leader and a follower of the same type and in the same phase to be responsible
for a Pair miss, so mf < n+ 1. Intervening misses are charged to the phase in which
the intervening reference occurs. There are no other types of misses. If X is the only
item of its type in the phase, it will be put in the main cache and will remain in the
main cache until another item X’ is referenced. The next miss on X must be either a

Follower miss or an Intervening miss.

99

Clearly reorganization does not help OPT with Shared misses. For Intervening
misses there are still 1+m/ more items than can be fit in the cache and reorganization

does not help, and OPT; > 1+ m!. Therefore,

G . m{ +mf + mf +m!

OPT; — max(mj,1+m])
mi + (2n+2)+m!
max(m?,1 + m})

We consider two cases. First, if OPT; > 2, then

G . mi + (2n+2) + m!
OPT; = max(m,1+m])
2+ (2n+2)+1
- 2
)

IN

Forn>1,n+3<2n+2

The other case is if OPT; = 1. If OPT; = 1, then m{ < 1, m! = 0 and OPT
must miss on either a leader or a follower. If OPT misses on a follower, then mf < n
because one of the followers will be a Shared missed instead of a Follower miss and

ci m? +mP +mF
OPT; ~ 1

< 2n+2.

100

If OPT misses on a leader, it must bypass the leader. If it does not bypass the leader,
OPT must miss more than once in the phase. Let X be the leader that OPT bypasses.
X cannot appear more than once in the phase, because then OPT would miss more
than once in the phase. Therefore, at the end of the phase in the RLRU schedule,
some follower X' of X will be in the main cache location occupied by items of type X.
This is because the RLRU algorithm moves each item referenced to the main cache.
Because X was bypassed, it cannot be responsible for a Pair miss. Because X' is in
the main cache, the next reference to it is either a hit, a Shared miss, an Intervening
miss or a Follower miss, so it too cannot be responsible for a Pair miss. Therefore,
mP <n and

G . m$ +mF +mf
OPT; ~— 1

< 2n+2

a

This bound is tight, as the example in Figure 4.12 shows for n = 1. It is worth
noting that if RLRU did not reorganize on a hit in the companion buffer, the algorithm

would be subject to the same counter example used in Theorem 4.1.1.

Sequence: X X' Y Y (X X Y Y
RLRU: M1 M1 M2 M2 Ml Ml M2 M2
e l \ {
Bl B1 Bl Bl
OPT Ml B1 Mg . Bl Ml . M2 |

Figure 4.12: Lower Bound Example for RLRU

101

4.1.4 Companion Cache Scheduling with Extra Resources

We now consider extra resource analysis of Companion Cache scheduling. The idea
behind extra resource analysis is that for some problems, an on-line algorithm’s lack
of future knowledge can be offset if the on-line algorithm has extra resources at its
disposal. We will consider the case where the on-line algorithm is given a larger
companion buffer. This is a very natural idea, as the companion buffer is essentially
an extra resource.

Let n be the size of the off-line algorithm’s companion buffer and let n + e be the
size of the on-line algorithm’s companion buffer. In other words, the on-line algorithm
has e extra locations in the companion buffer. e will analyze the MCF algorithm
defined in Section 4.1.1. Phases will be defined with respect to the on-line algorithm’s

cache.

Theorem 4.1.11. MCF is 22343 competitive on a CCS(m,n + e) when MCF has

e eztra locations in the companion buffer.

Proof. The proof is very similar to Theorem 4.1.2. The key difference is that for each
phase, OPT; > 1+e+ m{ . Phases are defined with respect to the on-line algorithm’s
cache. Each phase will contain n + e + 1 followers, and will contain e + 1 more items
than can fit in the off-line algorithm’s cache. If the off-line has m! items “saved” in

phase i, the off-line algorithm must have at least 1 + e + m{ misses in phase 1.

102

The Companion Buffer and Main to Companion Buffer misses are both bounded

by n + e + 1. Therefore,

ci m§+m§'3+m?M+m{<2n+3e+3
OPT; = max(l+e+m!{,mf) ~ 1+e

a

This bound is tight. We can construct a lower bound for any n and e using n+e+2
pairs of different types. We divide the types into three groups: A, B,C. There are
e + 1 types in group A, e + 1 types in group B, and n types in group C. We assume
that each pair is ordered. In the odd phases we first reference the e+ 1 pairs in group
A, referencing the first element of each pair before the second. We then reference the
second element of each pair in group B. We then reference the pairs in C. In the
even phases we first reference the e + 1 pairs in group B, then the second element of
each pair in group A, and then the inverted pairs in group C.

Each phase will contain 2n + 3e + 3 references. MCF will miss on every reference.
The off-line algorithm can use the n positions in the companion buffer and the main
cache to hold all of the items in group C. It will choose to bypass the first item in
each pair from group A and B, and will use the main cache to store the other item.
OPT will only miss on the e + 1 items it bypasses each phase.

Figure 4.13 illustrates the lower bound for n = 2,e = 2, where group A con-
tains X,X',Y,Y',Z,Z' group B contains R,R’,S,S', T,T' and group C contains

U, u,v,Vv.

103

X XYYy zZ Z R S T U U V V

MCF: | My Bi My B, Mg By My Ms Mg My By Ms B,
OPT: - hdl - hdg - hd3 h44 h45 hds hA7 I31 hdg Eﬁ
(phase 2i)

R R § & T T X Y Z U U V'V
MCF: | My B; Ms By Ms By M; My My My By Ms By

()F”T: : hdl h42 . RL; h44 h45 hds]31 h47]32 hdg
(phase 2i + 1)

Figure 4.13: Lower Bound Example with Extra Resources

If the size of the companion buffer is doubled, that is e = n, the competitive ratio
is 5. As the size of companion buffer is increased to infinity, that is e — oo, the
competitive ratio approaches 3.

A curious anamoly occurs if we look at the case where off-line has a simple direct
mapped cache of size m, and on-line has a CCS(m,n). If bypassing is allowed, then
FIFO (or MCF) is 2-competitive on a direct mapped cache. Surprisingly, if the
on-line algorithm has a CCS(m,n), the competitive ratio actually becomes worse,
even though the on-line algorithm has a larger cache. If we consider the geﬁeralized
example of Figure 4.5, FIFO (or MCF) will miss 2n+ 3 times each phase. OPT, which
only has a direct-mapped cache, will only miss n+1 times per phase, for a competitive
ratio of %:%3 When n = 1, the competitive ratio is 2.5. Similarly, when bypassing

is not allowed, then FIFO is 1-competitive. However, if the on-line algorithm has a

2n+1
2n

CCS(m, n), the competitive ratio is

104

4.2 Other Restricted Caches

All of our on-line scheduling results have focused on the Companion Cache Struc-
ture. We now consider some more complex restricted caches and their corresponding

scheduling problems.

4.2.1 The Set-Associative Companion Cache

We can generalize the results of Section 4.1.1 to r.estricted caches that consist of a set
associative cache paired with a fully associative cache. We define the set associative
companion cache SACC(b,m,n) as a b-way set associative cache of size bm paired
with a fully associative cache of size n.

As before, we will use By, ...B, to refer to the positions in the companion buffer,
and we will use M}, M2,... M% M},...,M® to refer to the locations in the main
cache. The locations M} ... M® form one of the m sets.

The definition of types and phases remains the same. Each item can occupy b
locations in the main cache and n locations in the companion buffer. We generalize
the MCF algorithm as follows. Within a phase, the algorithm will not put an item in
the companion buffer unless it has already seen b items of that type in the phase. A
marking algorithm will be applied to both the companion buffer and the sets within
the main cache. That is, main cache locations within a set will not be reused until

all the locations within the set have been used.

Theorem 4.2.1. MCF is ((n+1)(b+1)+b)-competitive on SACC(m, b, n) if bypassing

18 allowed.

105

Proof. The proof is a generalization of the proof of Theorem 4.1.2. Items put into the
companion buffer are charged the same way as before. Otherwise, we only consider
the first miss of each type in a phase. These misses we divide up as before into Shared,
Companion to Main, and Main to Main misses. Because we only consider the first
miss of each type in a phase, each miss we consider can represent b actual misses in
the on-line schedule. Otherwise, Shared and Companion to Main misses are charged
the same way as before. We only need to consider the Main to Main misses.

In order for a Main to Main miss to occur on an item X, there must have been
b different items of the same type as X placed into the main cache since X was last
in the main cache or else X would not have been evicted from the main cache. Some
of these references must be in a phase other than the phase X was last placed in the
main cache and the current phase. There are b + 1 items including X itself. Either
OPT misses on one of these references, in which case we charge the miss to that
phase, or else OPT uses one of the companion buffer locations to save an item, in
which case we charge the miss to the phase in which the companion buffer is used.
The cost of these misses is m/.

The total cost charged to phase i is
¢i = bm? + mEE + bmEM + bm!.
The cost of OPT in phase i is

OPT; > max(1 + m!,m?).

106

Therefore,

G . bm? + mEB + bmEM + bm!
OPT; — max(1 + m!, m})
b(n+1)+mf+m!)+(n+1)

max(1 + m, m})

< b((n+1)+1)+(n+1)

< (b+1)(n+1)+b

O

When b = 1 this is the same result as Theorem 4.1.2. This bound is tight, if an
arbitrary marking algorithm is used on main cache locations. Figure 4.14 illustrates
the lower bound for SACC(2,m,1). MCF misses 8 times each phase and OPT only
misses once each phase.

LX X XNZM 7Y Y YNZ 77 X"X Y'Y Y
MCF: |M} M? B, M} M2 M} M2 By |M} M2 B, M} M! MZ M} B,

OPT: |_._ MI M? MZ M} M} M B,|__ M} M2 M? M! B, MZ M}
Figure 4.14: A Worst Case Input for MCF on SACC(m, 2,1)

This lower bound relies on the fact that when MCF reuses the M7 locations in
the second phase, it reuses the most recently used location. This does not violate the
premise of a marking algorithm, as it is free to use any of the MY locations. If we
modify MCF so that it uses FIFO or LRU to determine which of the My locations
to use, then the best lower bound example we can find has a performance ratio of

(b+1)(n+1)+1.

107

4.2.2 The Skew-Associative Cache

We now look at the skew associative cache. As described in Section 1.5.2, a b-way skew
associative cache of size bn (SKEW(b,n)) has b banks containing n cache locations
each, and each item can be placed in one location in each bank. As in Section 4.2.1,
we will use M1, M2 ..., M8 M}, ...,M®, to refer to the locations in the cache. The
locations M},... M} forms one of the b banks in the cache.

The definitions of type and phase remain the same. There are n® different types
in a SKEW(b,n). We will say an item X is of type [ij,...4) if X can be placed in
location M{j for 1 < 7 < b. We will still use X and X’ to refer to items of the same
type.

For the CCS(m,n), we introduced the MCF algorithm. MCF is a very intuitive
scheduling algorithm for CCS(m,n) and it has the property that no item could be
missed more than once in a phase. There is no counter part to the MCF algorithm
for a skew cache. A CCS(m,n) is an asymmetrical cache design, so it makes sense to
favor one of the cache components over another. This is not the case in a skew cache.
All of the banks are the same. Furthermore, there is no on-line algorithm that misses

each item at most once per phase.
Theorem 4.2.2. No on-line algorithm misses each item at most once per phase.

Proof. Consider an item X of type [y, ..., %) that is requested at the beginning of a
phase. Suppose the on-line algorithm places the item in location M[" . Let the next
b requests be to b different items of type [j1,...,Jjm = im,...,Js] where iy # ji for

k # m. All b items of the second type can fit in the cache if X is placed elsewhere, so

108

the phase has not ended. However, one of these b + 1 items cannot be in the on-line
algorithms cache, and this item can be requested a second time in the phase, resulting

in a second miss on that item in the phase. a
Theorem 4.2.3. FIFO is at best (4n — 2)-competitive on a SKEW(2,n).

Proof. Let X and X' be items of type [1,1] and Y and Y’ be items of type [n,n]. Let
Z, be an item of type [2,1], Z; be an item of type [2,2], Z3 be an item of type [3,2],
etc. and Z,,_3 be an item of type [n,n — 1].

It is possible to fit one of the pairs, all of the Z; items, and one item from the
remaining pair into the cache at the same time. Figure 4.15 shows how we can
construct a phase such that FIFO misses 4n — 2 times and OPT misses only once.
FIFO will miss on X,X’,Y and Y’ once per phase, and FIFO will miss on each Z; twice
per phase, for a total of 4n — 2 misses per phase. OPT will only miss once. Note,
that in the next phase, X' will appear before X and Y’ will appear before Y. For this
reason, this lower bound also applies to the non-bypassing case. OPT can use M7 for

both Y and Y’ and still miss only once per phase.

Z] 22 Z3 Z2n—4 Zzn_;;Y Y' Zgn_;; Z2n_4 Z3 Z2 Zl X X'
FIFO|M; M7 M ... M3~' MP Mz M M3~ Mp~' ... M3 M3 M} M; M}

OPT (ML M2 M} ... M-I MP M2 . M? M2 ! ... M} M2 M} M2 M

Figure 4.15: A lower bound example for FIFO

a

The above lower bound example is perhaps best visualized as a bipartite graph.
Let the vertices represent the cache locations. In particular, let the vertex I; represent

109

M} and let the vertex r; represent M?. Each item is represented by an edge. An item
of type [¢, j] is represented by the edge (I;,7;). Because some types are represented
by more than one item, we are actually constructing a multi-graph. The graph that

corresponds to the lower bound example of Theorem 4.2.3 is shown in Figure 4.16.

X
hL r
lz T2
I3 .- r3
o & - Tn-1
ln Tn
YI

Figure 4.16: Graph Representation of FIFO Lower Bound

The graph contains two cycles, one representing the pair X and X', and the other
representing the pair Y and Y’. The graph also contains a path of length 2n — 3
connecting the two cycles. All the items in the path can be put in the cache, however
this will require using one of the cache locations needed by the pair X and X', or
the pair Y and Y'. When the pair is requested, FIFO will evict an item in the path,
and will be forced to “walk” the path, moving each item in the path to a new cache
location. When the end of the path is reached, the other pair is requested, and FIFO

is forced to “walk” the path a second time.

110

In general, if the graph corresponding to a set of items contains two cycles con-

nected by a path of length [, then FIFO will have a competitive ratio of

21 + |cycle,| + [cycle,].

This highlights another difference between restricted cache scheduling and traditional
fully associative cache scheduling. In a fully associative cache of size n, FIFO will
be n-competitive on any collection of n + 1 distinct items. In a SKEW(2,n) of size
2n, FIFO can be anywhere between 2-competitive and (4n — 2)-competitive on a

collection of n + 1 distinct items.

4.3 Summary

We have shown that LRU, which is strongly-competitive for traditional caches, is
not competitive for any restricted caches. This is another example of the funda-
mental difference between restricted cache scheduling and traditional cache schedul-
ing. For the CCS(m,n), we have defined the MCF algorithm, which is competi-
tive, and nearly optimal. We considered the scheduling problem with and without
bypassing, reorganization, and extra resources, and defined competitive algorithms
for these different cases. We have shown that FIFO is competitive, but not optimal,
for CCS(m, n). We have proved that no on-line algorithm can be better than (2n+2)-
competitive for CCS(m, n), and using language theory we have proved that no on-line

algorithm can be better than 3-competitive for CCS(m,1). We also extended these

111

results to more complicated restricted caches, such as the set associative companion

cache, and the skew cache.

112

Chapter 5

Cache Design Analysis

Our previous work has studied the behavior of different algorithms on specific cache
designs. The goal of this chapter is to develop a theoretical model with which to

directly compare different cache designs.

5.1 Metrics

In Section 1.4 we stated that the fully associative cache is the ideal cache design
because any item can be placed anywhere in the cache. Unfortunately large fully
associative caches cannot be built. The goal of restricted caches is to increase the
number of choices regarding item placement with minimal increases in hardware. In
general, the more choices there are about item placement, the lower the achievable
miss rate will be. In this section we develop a model to quantify this concept of cache

flexibility.

113

5.1.1 Size and Associativity

There are two parameters that describe in some sense a cache’s flexibility. The first is
the overall size of the cache, and the second is the number of locations each item can
be placed in. Clearly the larger either of these values is, the more flexible the cache
is. These two parameters completely describe a traditional set associative cache.
These two parameters are not sufficient to describe restricted caches. Both a
CCS(2n —1,1) and a 2-way set associative cache of size 2n (SA(2,n)) have 2n total
locations, and each item can be placed in exactly 2 locations. However the two cache
designs are not equivalent. We would suspect the SA(2,n) to be more flexible and
have a lower miss rate because in a CCS(?n— 1,1) one of the locations can be occupied
by all of the items and the other locations can be used by 2—;‘_—1 of the items, whereas
in a SA(2,n) each location can be occupied by the same number of items. An even
better example is a SA(2,n) and a SKEW(2,n). Again both caches have the same
number of locations, and each item can be placed in two locations. Furthermore, the
mapping of items to locations in both cases is even. Each location can be occupied
by the same fraction of the items. However, the intuition behind the design of the

skew cache is that it is more flexible than the same sized set associative cache.

5.1.2 A New Flexibility Metric

We introduce the following method to quantify the flexibility of a cache. We consider
the probability that = items chosen at random can simultaneously fit in the cache.

The more flexible a cache is, the more likely a random set of items will fit in it. The

114

inspiration for this metric is the concept of the working set. The working set is the
set of items currently needed by the program. Due to temporal and spatial locality,
the working set tends to be relatively small and remains unchanged for relatively long
periods of time. If the entire working set can be placed in the cache, the program
will not generate any cache misses until the working set changes.

For a cache C, we define the flexibility function F(C,r) as follows.
F(C,r) = probability that any r items fit in cache

We will assume that any item is equally likely to be chosen. To simplify the math,
we will assume that the main memory is essentially infinite. This allows us to focus
on types of items (determined by the cache structure), and we can assume that each

type of item is equally likely to be chosen regardless of earlier choices.

5.2 Flexibility of Different Cache Designs

In this section, we calculate F/(C,r) for different cache designs.

5.2.1 Set-Associative Caches

We first consider the simplest case, the direct-mapped cache. A direct-mapped cache
is a 1-way set associative cache (SA(1,n)). A set of r items will all fit into a direct-
mapped cache if all of the items are of a different type. A direct-mapped cache of

size n has n different types. The number of ways of choosing r items of n types

115

such that no type is chosen more than once is fnﬁ_;')' The total number of ways of
choosing r items of n types is n”. Therefore, the probability that r items will fit into
a direct-mapped cache of size n is

n!
(n—r)In"

F(SA(l,n),r) =

For an b-way set associative cache of size bn (SA(b,n)), there are n different types.
A set of r items will all fit into the cache if no type appears more than b times. The
number of ways of choosing r items of n types such that no type is chosen more than

b times is defined by the following multinomial expression.

.
g”("”)zz(kl ko, ... k)

such that Y k; = r and 0 < k; < b. Therefore,

gb(n’ T)
nr

F(SA(b,n),r) =

such that Y k; =r and 0 < k; <b.

We can define g,(n,r) recursively as follows.

gs(n, 1) = i (:) a(n— 1,7 — i)

1=0

"The base cases are gy(n,0) = 1, gy(1,7) =1 if r < b, and gy(1,7) = 0if 7 > b. The

recurrence is based on the fact that (kx kz’_" k..) = (;1)(,‘2""‘}:") We can then define

116

F(SA(b,n),r) as follows.

F(SA(b,n),r) = zbj (’.)ns/;(b,n —1),r—i) (" = 1)"‘ -

n

This definition has the advantage that it is easy to calculate and is not sensitive to

integer overflow.

5.2.2 Companion Caches

We can define F(CCS(m,n),r) in a similar fashion. There are m types of items. A
set of r items will fit into the cache if the total number of excess items chosen is less
than or equal to n. An item is an excess item if an item of the same type has already

been chosen. Again we can define this using a multinomial expression.

T
hl(m’n”r)=2<kl k2 k)

such that > k; = r and > u(k; — 1) < n, where u(k) = k if K > 0, and u(k) = 0 if
k <O0.

This immediately generalizes for SACC(b, m,n), that is a b-way set associative
cache of size b paired with a companion buffer of size n. The number of ways of

choosing r items that fit into such a cache is the following.

r
h"("”"”')zz(kl kay... k)

117

such that)" k; = r and)_ u(k; — b) < n, where u(k) = k if £ > 0, and u(k) = 0 if
k<0.
Therefore,

hy(m,n, 1)
mr)

F(SACC(b,m,n),r) =

For calculation purposes, we can define this recursively as follows.

b

F(SACC(b,m,n),r) = (E C) F(SACC(b,m —1,n),r — i) ("’T‘l)_ m—f)

1=0

+ (i (2 :_ b) F(SACC(bm —1,n—1),r— (i +)) (mT—l)f—i-b m_i_b)

=1

For CCS(m, 1) this can be simplified considerably.

(7)) +2(5))

5.2.3 Skew Caches

We now consider SKEW(b,n), the b-way skew associative cache. Determining the
flexibility of a skew cache is harder because simply counting the number of times
each type appears in a set of r items does not tell us if that set of r items will fit into
the cache. For example, in the set represented in Figure 4.16, no item appears more
than twice, yet this set cannot fit into the cache. On the other hand, some sets of
items where items of the same type appear twice do fit into the cache. Therefore, we

will use a graph model to determine if r items will fit into a skew cache.

118

We can model a set I of r items in a SKEW(b,n) as a b-partite hypergraph with
r edges. We construct the graph G, ,(I) as follows. Each vertex represents a cache
location, and each item X in [is represented by a hyperedge incident to the vertices
that correspond to the cache locations in which X can be placed. Note that because
there may be multiple items of the same type, the resulting graph is actually a multi-
hypergraph. The 7 items can all fit into the cache if we can match each item to a
cache location, which is the same as matching each edge to one of its incident vertices
in Gpn(I). We will call such a matching an edge-vertex matching. Therefore, to
determine if a set I of r items can fit into a SKEW(b,n), we need to determine if the
Gyn(I) has an edge-vertex matching. To determine how many sets of r items can
fit into a SKEW(b,n), we need to determine how many b-partite hypergraphs with r
edges have an edge-vertex matching.

We first consider SKEW(2,n). In this case, G (/) is a bipartite graph, such as
the one pictured in Figure 4.16. To determine the probability that r items will fit into
SKEW(2,n), we need to determineb how many bipartite graphs with at most n vertices
on the left, and at most n vertices on right, and with r edges have an edge-vertex
matching. These graphs are subgraphs of the multigraph formed by doubling all of

the edges in Ky, ..

Theorem 5.2.1. A graph G has an edge-vertex matching if and only if each con-

nected component of the graph is a tree or unicyclic.

Proof. We only need to consider connected components. If a connected component

is unicyclic, then it consists of a set of trees rooted at a cycle. If the component is a

119

tree, we can arbitrarily root it at any vertex. Consider the leaves of the trees. Only
one edge is incident to each leaf, so for each leaf we can safely match the incident
edge with the leaf vertex. We remove the leaves and repeat this procedure until only
the single cycle is left. The cycle will contain n vertices and n edges, and the edges
can be matched to the vertices in two ways. Therefore if a component is a tree or
unicyclic, an edge-vertex matching exists.

If an edge-vertex matching exists in a connected component, then |E| < |V|. This

immediately implies that the connected component is a tree or unicyclic. O

We now need to count the number of subgraphs G of K, with r edges such that
all the components of G are trees or unicyclic. We consider components that span
a subset of [vertices from the left side and m vertices from the right side. Each
component is either a tree, or unicyclic. Let T'(l, m) be the number of spanning trees

on K, ,,. This is determined by the following equation defined in [44].

T(l,m) = ™ 'm!~!

We now count the unicyclic graphs. There are two types of unicyclic graphs. The
first type contains a cycle of length two. This is simply a spanning tree with one of
the [+ m — 1 edges duplicated. Clearly there are (I +m —1)T (I, m) such graphs. The
other type of unicyclic graph contains a cycle of length greater than two. To count
these, we first choose a cycle, and then find a forest that spans the remaining vertices
such that the roots of each tree are vertices in the cycle. For this we need to know

the number of spanning forests on K, such that j trees are rooted at vertices on the

120

left and k trees are rooted at vertices on the right. We denote this as H(l,m, j, k)

and it is also derived in [44].
H(l,m,j k) = (lk+ mj — jk)I™ - Im!=I-1 (5.1)

Putting the two types of unicyclic graphs together, we get the following equation

for the total number of unicyclic graphs that span K; ,,, which we denote as U(l, m).

Ul,m)=(U+m-1T(,m)+ minf:m) (i) (M) (i)!(z’2— 1)!

1
1=2

x (lfj "i“ji (l ‘121) (m P 2’) H(- 2,m - 2,37, k)) (5.2)

j=0 k=0

The outer summation considers cycles containing 2: vertices. There are (i) (':') ways
to choose the vertices in the cycle and there are ﬂ’;—l)—' ways of ordering the vertices
in the cycle. The second line of the equation counts the number of ways to span
the remaining vertices with trees rooted in the cycle. The number of trees rooted in
vertices on the left is j, and the number of trees rooted in vertices on the right is k.
The number of spanning forests for specific values of i, j and k is determined with
Equation 5.1.

Putting the trees and unicyclic graphs together, we can define a recurrence relation

for the number of subgraphs of K| ,, with r edges that have an edge-vertex matching,

121

which we denote as M(l,m,r).

+ Ar £ (1' 1) ("_’)T(i,j)M(l —im—jr—(i+j—1))

r—1 r—i
+ X (1) (7)veama-im-sir-+i) 63)
The base cases are the following.

M(l,m,0) = 1 (There is one graph with 0 edges.)
M@O,m,r) = 0 (There are no bipartite graphs with

M(,0,r) = 0 0 vertices on the left or right)

The idea behind the recurrence relation is the following. We assume that the
vertices are ordered, and we use the vertex ordering to order the components. The
first component is the component that contains the lowest ordered vertex on the
left. The second component is the component that contains the lowest ordered vertex
on the left that is not in the first component, and so on. This ordering defines a
unique way of constructing each graph one component at a time, and prevents us
from counting the same graph more than once.

We consider any subgraph G of K ,, with r edges and look at the component that

contains the first vertex on the left. The first line of Equation 5.3 is the case when the

122

first vertex on the left is not contained in any component. In this case, G is subgraph
of K;_1,m, so we remove the first vertex on the left and consider the subgraphs of
K, m with r edges. The second line in Equation 5.3 is the case when the component
that contains the first vertex on the left is a tree that spans ¢ vertices on the left and
j vertices on the right. There are (‘_}) ('J’.‘)T(i, j) such trees. Each tree has i+ j — 1
edges. The rest of the graph G is therefore a subgraph of K;_; m,—;j with r — (i+j - 1)

edges. The third line in Equation 5.3 is the case when the component that contains

the first vertex on the left is unicyclic and spans ¢ vertices on the left and j vertices

-1
i—-1

on the right. There are (;Z;) (7)U(i,) such graphs and each graph has i + j edges.
The rest of the graph G is therefore a subgraph of K_;m_; with 7 — (i + j) edges.
Equation 5.3 only counts the number of subgraphs of K, , with r edges that have
an edge-vertex matching. To calculate F(SKEW(2,n),r) we need to consider the
number of ways a graph can be constructed by choosing one edge at a time. In general
this is 7!. However, if an edge appears twice in a graph, then the number of ways of
constructing that graph is %!, and if a graph contains d edges that appear twice, then

the number of ways of constructing that graph is 2% Note that if an edge appears

more than twice, the graph does not have an edge-vertex matching.

123

To account for this, we change the way we count unicyclic components. Let

U'(l,m) be defined as follows.

(l+m-1)T(l,m)

E

=2

x (li mfi (l —]2’) (m . 2’) H(l - 2i,m — 2%, j, k))

7 k

U'(l,m) =

The first line counts the number of components containing a cycle of length two. We
divide this result in half, to account for the fact that there are only half as many
ways to construct a component with a duplicate edge. The remainder of the equation
counts components containing cycles of length four or greater, and is the same as in
Equation 5.2.

We can now define M’(l, m,r) the way M(l,m,r) is defined in Equation 5.3, using

U'(l, m) instead of U(l, m). The end result is

. '
F(SKEW (2,n),r) = - (I 7)

n2r

To extend this result to SKEW(b,n) for b > 2 we need to count the number of
b-partite hypergraphs with r edges that have an edge-vertex matching. Unfortunately
we have been unable to count hypergraphs with this property. A hypergraph may
have any number of connected “cycles” and still have an edge-vertex matching. For

a given set of items it is easy to determine if the items fit into the cache by framing

124

it as a matching problem, but counting the number of sets with a matching appears

to be hard.

5.3 Comparisons

Using this metric we can compare the overall flexibility of different cache designs of

different sizes.

5.3.1 Different Cache Designs

The flexibility of different caches of size 64 are plotted in Figure 5.1. In the case of the
companion caches, the size of the main cache is 64. The total size of the companion

caches is actually larger than 64, Figure 5.2 is a similar plot for graphs of size 128.

Probability of items fitting in cache of size 64
I 1
SA(1,64) —
CCS(64,1) - - -
SA(2,32) —
CCS(64,2) ----
CCS(64,4) —
SA(4,16) - - -
SKEW(2,32) —

Prob. Fit

10 20 30 40 50 60
Number of Items

Figure 5.1: Flexibility of Caches of size 64

125

1 1 1
DM(128) —
CCS(128,1) - - - -
0.8 | CCS(128,2) — -
SA(2,64) -
CCS(128,4) —
0.6 | SA(4,32) - - - _
: SKEW(2,64) —
Prob. Fit
0.4 | |
02 | .
0]

20 40 60 80 100 120
Number of Items

Figure 5.2: Flexibility of Caches of size 128

The following conclusions can be drawn from the graphs. CCS(m, 1) has a much
higher probability of fitting a set of items than a direct mapped cache. CCS(m,2)
compares favorably with a 2-way set associative cache. However, the larger the cache
becomes, the worse CCS(m,2) appears in comparison. Finally, a SKEW(2,n) com-
pares very favorably with a 4-way set associative cache. This is consistent with

simulation results found in [49].

5.3.2 Different Sized Caches

In this section we compare the flexibility of different size caches. The larger a cache
is, the more likely a random set of items will fit into it, regardless of the cache design.
We compare a SKEW(2,32) with a direct mapped cache, a 2-way set associative

cache, and a 4-way set associative cache. The sizes of the caches were chosen so that

126

the total area under each curve is the same. A fully associative cache of size 41 would

also have a similar total area under its curve. The results are shown in Figure 5.3.

1 g . 1 : -
h ’ SA(1,512) —
SA(2,116) - - - -
0.8 SA(4,26) — -
SKEW(2,32) ----
0.6 |
Prob. Fit
04 F
0.2 F
0 1 1 1 1

10 20 30 40 50 60
Number of Items

Figure 5.3: Flexibility of Different Size Caches

Unfortunately as size increases, our flexibility metric appears to becomes increas-
ingly pessimistic. This is because in a real system, where spatial locality of reference
is present, the probability that multiple items of the same type are requested is lower
than if items are randomly chosen. As the cache size increases, the number of types
increase, and the number of conflicts decreases. The lower the associativity, the ben-
efits of few conflicts becomes more dramatic. We can determine the optimal miss rate
for these caches using trace data. As seen in Table 5.1, the set associative caches do
not need to be as large as our flexibility metric suggests. The advantages of a larger

cache are documented in [29].

127

Trace File #1 | Trace File #2

Cache #misses #misses
SA(41,1) 8827 9955
SA(4,26) 4957 6899
SA(2,116) 3694 5295
SA(4,14) 8220 9831
SA(2,50) 8063 8204

Table 5.1: Simulation results of Different Sized Caches

5.3.3 Comparing CCS(m,n) and Set Associative Caches

As seen in Figure 5.1 and Figure 5.2, as the overall cache size increases, the flexibility
of CCS(m, n) decreases relative to a set associative cache for a fixed n. In this section
we analyze this phenomena more closely.

We compare CCS(m,n) and SA(b,). We will say that a cache C) dominates
a cache C; if for all r, F(Cy,r) > F(Cy,7). This means that for any r, a random
set of r items is more likely to fit into cache C; than into C,. Unfortunately, as r
increases, F'(C),r) goes to 0, and as the cache size increases, F(Cy,r) is relatively
close to 0 for a significant percentage of the values of r. Because it does not make
much sense to compare F(C,r) and F(C,,r) when they are both essentially zero,
we modify our definition of domination to only consider the “interesting” part of the
range. Therefore, we will say that a cache C, e-dominates a cache C, if for all r,
F(Cy,1r) > € > F(Cy,1r) > F(Cy,1).

For different associativities b and ¢ = .01, we can calculate how large n must be
in order for CCS(m,n) to e-dominate SA(b,). The relation between m, n, and b

for € = .01 is listed in Table 5.2.

128

Size of n

Size of m | 2-way | 4-way | 8-way
64 3 7 12
96 3 9 17
128 4 11 20
160 4 12 24
192 4 14 27
224 b) 15 31
256 5 16 34
288 5 18 37
320 5 19 40
352 6 20 42
384 6 21 45
416 6 22 48
448 6 23 50
480 6 24 53
512 6 25 56
1024 8 37 92

2048 11 55

4096 14 83

Table 5.2: Values of n needed for CCS(m, n) to e-dominate SA(b,*) for e = .01

As stated earlier, our flexibility metric is somewhat pessimistic, so the companion
buffer need not be so large to achieve similar performance. As the cache size increases,
and if spatial locality is in effect, the number of conflicts decreases dramatically, so

only a few extra cache locations would actually be necessary.

5.4 Summary

The goal of this section is to develop a model with which to compare cache designs
that is independent of specific algorithms and input sequences. We define a metric
that attempts to measure how flexible different cache designs are, and captures more
information than just the size and associativity of the cache. We show how to calculate

129

this metric for different cache designs, and then compare different cache designs using

this metric.

130

Chapter 6

Conclusion

Improved cache performance is essential to overall computer performance and be-
comes more important as the gap between processor speeds and memory speeds
continues to increase. New cache designs such as restricted caches are a promis-
ing approach to improved cache performance. As demonstrated in this dissertation,
restricted caches give rise to a number of interesting and challenging scheduling prob-
lems. In this chapter we briefly summarize the contributions made in this dissertation,

and discuss further work that can be done in the area of restricted cache scheduling.

6.1 Contributions

The contributions of this thesis can be summarized as follows

e We have shown that the optimal off-line restricted cache scheduling problem
is NP-complete and APX-complete. This is an important result for cache

researchers interested in optimal cache performance. We have also shown that

131

6.2

a number of related restricted interval scheduling problems and independent set

problems are hard, extending the work of [1].

We have designed optimal algorithms and polynomial time approximation al-

gorithms for the off-line cache scheduling problems.

We have presented the first results on on-line restricted cache scheduling. The
results show that on-line restricted cache scheduling differs greatly from tradi-
tional on-line cache scheduling, and in many ways is a significantly more diffi-
cult problem. For the most basic restricted cache, CCS(m, n), we have designed
the near optimal MCF algorithm. We presented upper bounds for FIFO, and
general lower bounds for the bypassing and the non-bypassing case. We also
considered reorganization, and more sophisticated restricted caches such as the

SACC(b,m,n) and the skew cache.

We have defined a metric with which to measure the flexibility of a cache design.
The goal is to develop a theoretical model that can be used to directly compare

different cache designs.

Future Work

This section presents additional work that needs to be done in the area of restricted

cache

work.

scheduling, and also describes other interesting open problems related to this

132

6.2.1 Off-line Cache Scheduling

Given that the off-line problems are for the most part NP-complete, future work
must focus on approximation algorithms. It seems likely that algorithms with ap-
proximation factors much better than 2 exist. Proving an upper bound for the LP
relaxation is a good starting point.

The graph model of the off-line problem brings up an interesting independent set
problem. In an interval graph, there exist vertices whose neighbors form a single
clique, and for an interval graph the independent set problem is easily solvable. In a
general graph, each vertex’s neighbors may form as many as n cliques, and the best
approximation ratio possible is \/n, assuming P # NP. We have looked at graphs
containing vertices whose neighbors form 2 or 3 cliques and have shown that the inde-
pendent set problem for this graphs is APX-complete. An interesting open question
is the exact relationship between the number of cliques in a vertex’s neighborhood

and the approximability of the independent set problem.

6.2.2 On-line Cache Scheduling

For the Companion Cache, we would like to close the gaps between the proven upper
and lower bounds for on-line restricted cache scheduling. Improving the lower bound
arguments for the bypassing case would require determining exactly how the worst
case adversary behaves. The language theory proof for the non-bypassing lower bound
is interesting, but does not scale well and does not prove a general lower bound. In

both cases, accounting for the fact that the on-line and off-line algorithm can choose

133

to place items in different locations, and the fact that location is important, will be
challenging. We do not believe the upper bounds for MCF in the non-bypassing case,
and FIFO in any case, are tight. Improving the upper bound for MCF would be
particularly important, as we believe this algorithm is optimal.

We have only touched on the on-line scheduling problem for the skew cache. We
would like to find general upper and lower bounds for this problem.

We would also like to study the performance of randomized on-line algorithms.
Randomization is another method of overcoming the on-line algorithm’s lack of fu-
ture knowledge. If the on-line algorithm is allowed to make random choices, then the
adversary cannot as easily construct a worst case input. There has been consider-
able work done with randomized identical cache scheduling. However, none of the
techniques used generalize to the restricted cache case. The techniques break down
because location is important in a restricted technique, and simply keeping track of
which items are in the cache is not sufficient. The location of each item must also be
accounted for.

Restricted caches have a natural ability to reorganize. As items are repeatedly
requested, they will tend to move around in cache (by means of eviction) until it is
possible for the current working set to fit in the cache. A theoretical model of this
phenomena would be useful for the understanding of restricted cache performance.
Our study of flexibility was a result of our initial efforts to study this reorganization
property.

Finally, cache scheduling is an instance of the k-server problem. We can general-
ize restricted cache scheduling to define the restricted k-server problem, where only

134

certain servers are eligible to service each request. To the best of our knowledge,

nothing is known about this problem.

6.2.3 Cache Design Analysis

To improve the usefulness of our flexibility metric we would need to better account for
locality. Unfortunately this is likely to greatly complicate the math involved. Another
possibility is to better determine which parts of the range of the flexibility function are
most significant with respect to cache performance. Also finding closed forms, or good
approximations for the flexibility functions of different cache designs, would make
working with them more practical. On the purely theoretical side, characterizing and
counting general hypergraphs with the edge-vertex matching property is an interesting
problem, in addition to being necessary to applying this metric to skew caches with

associativities greater than two.

135

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

E.A. Arkin and E.B Silverberg. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 18:1-8, 1987.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and intractability of approximation problems. In Proceedings of the 83rd IEEE
Symposium on Foundations of Computer Science, pages 13-22, 1992.

James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-
line routing of virtual circuits with applications to load balancing and machine
scheduling. In Proceedings of the 25th ACM Symposium on Theory of Computing,
pages 623-631, 1993.

G. Ausiello, P. Crescenzi, Gambosi G., Kann V., A. Marchettie Spaccamela,
and M. Protasi. Complezity and Approrimation. Combinatorial Optimization
Problems and their Approrimability Properties. Springer-Verlag, Berlin, 1999.

Baruch Awerbuch, Yossi Azar, and Serge Plotkin. Throughput-competitive on-
line routing. In Proceedings of the 84th IEEE Annual Symposium on Foundations
of Computer Science, pages 32-40, 1993.

Yossi Azar, Andrei Z. Broder, and Anna R. Karlin. On-line load balancing. In
Proceedings of the 83rd IEEE Annual Symposium on Foundations of Computer
Science, pages 218-225, 1992.

Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk R. Pruhs, and Orli
Waarts. On-line load balancing of temporary tasks. Journal of Algorithms,
22(1):93-110, January 1997.

L. A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal, 5(2):282-288, 1966.

A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with
locality of reference. In Proceedings of the 23rd ACM Symposium on Theory of
Computing, pages 249-259, 1991.

[10] Mark Brehob, Richard J. Enbody, and Nick Wade. Analysis and replacement for

skew-associative caches. Technical Report TR97-32, Michigan State University,
Department of Computer Science and Engineering, 1997.

136

[11] Martin C. Carlisle and Errol L. Lloyd. On the k-coloring of intervals. Discrete
Applied Mathematics, 59:225-235, 1995.

[12] Michael W. Carter and Craig A. Tovey. When is the classroom assignment
problem hard? FEuropean Journal of Operational Research, 40:528-S39, 1992.

[13] K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, F.X. Schumacher, and
J. Zheng. Design of the HP PA7200. Hewlett-Packard Journal, February 1996.

[14] Marek Chrobak and John Noga. LRU is better than FIFO. Algorithmica,
23(2):180-185, 1999.

[15] V. Reddy Dondeti and Hamilton Emmons. Algorithms for preemptive scheduling
of different classes of processors to do jobs with fixed times. European Journal
of Operational Research, 70:316-326, 1993.

(16] V.R. Dondeti and Hamilton Emmons. Fixed job scheduling with two types of
processors. Operations Research, 40:S76-S85, 1992.

[17] Ulrich Faigle and Willem M. Nawijn. Note on scheduling intervals on-line. Dis-
crete Applied Mathematics, 58:13-17, 1995.

(18] A. Fiat and A. Karlin. Randomized and multipointer paging with locality of
reference. In Proceedings of the 27th Annual ACM Symposium on the Theory of
Computing, pages 626-634, 1995.

[19] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,
and Neal E. Young. Competitive paging algorithms. Journal of Algorithms,
12:685-699, 1991.

[20] Matteo Fischetti, Silvano Martello, and Paolo Toth. The fixed job schedule
problem with spread-time constraints. Operations Research, 35:849-858, 1987.

[21] Matteo Fischetti, Silvano Martello, and Paolo Toth. The fixed job schedule
problem with working-time constraints. Operations Research, 37:395-403, 1989.

[22] Matteo Fischetti, Silvano Martello, and Paolo Toth. Approximation algorithms
for fixed job schedule problems. Operation Research, 40:S96-S108, 1992.

[23] Marshall L. Fisher. The lagrangian relaxation method for solving integer pro-
gramming problems. Management Science, pages 1,18, 1981.

[24] Virginie Gabrel. Scheduling jobs within time windows on identical parallel ma-
chines: New model and algorithms. European Journal of Operational Research,
83:320-329, 1995.

[25] M.R. Garey and D.S. Johnson. Computers and Instractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

137

[26] Ilya Gertsbakh and Helman I. Stern. Minimal resources for fixed and variable
job schedules. Operations Research, 26:68-85, 1978.

[27] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[28] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Mathematics, 5:287-326, 1979.

[29] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers, San Francisco, 1996.

(30] S. Irani, A. Karlin, and S. Phillips. Strongly competitive algorithms for paging
with locality of reference. In Proceedings of the 3rd ACM-SIAM Symposium on
Discrete Algorithms, pages 228-236, 1992.

[31] D.S. Johnson. A catalog of complexity classes. In Algorithms and Complezity,
volume A of Handbook of Theoretical Computer Science, pages 67-161. Elsevier
Science Publishing Company, Amsterdam, 1990.

[32] N. Jouppi. Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In Proceedings of the Seven-
teenth Annual International Symposium on Computer Architecture, volume 18,
pages 364-373, May 1990.

[33] Nakajima K., Hakimi S.L., and Lenstra J.K. Complexity results for scheduling
tasks in fixed intervals on two types of machines. SIAM Journal of Computing,
11:512-520, August 1982.

[34] Antoon W.J. Kolen and Jeo G Kroon. On the computation complexity of (max-
imum) class scheduling. European Journal of Operational Research, 54:23-38,
1991.

[35] Antoon W.J. Kolen and Jeo G Kroon. On the computation complexity of (maxi-
mum) shift class scheduling. European Journal of Operational Research, 64:138—
151, 1993.

[36] E. Koutsoupias and C. Papadimitriou. On the k-server conjecture. In Proceedings
of the 25th Symposium on Theory of Computing, pages 507-511, 1994.

[37] Jeo G Kroon, Marc Salomon, and Luk N. Van Wassenhove. Exact and ap-
proximation algorithms for the operational fixed interval scheduling problem.
European Journal of Operational Research, 82:190-205, 1995.

[38] Leo J. Kroon, Marc Salomon, and Luk N. Van Wassenhove. Exact and approxi-
mation algorithms for the tactical fixed interval scheduling problem. Operations
Research, 45:624-638, 1997.

138

[39] E.L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel
processors. Journal of the Association for Computing Machinery, 25:612-619,
October 1978.

[40] Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming, 46:259-
271, 1990.

[41] Richard J. Lipton and Andrew Tomkins. Online interval scheduling. Proceedings
of the Fifth Annual Symposium on Discrete Algorithms, 54:302-311, 1994.

[42] M. Manasse, L.A. McGeoch, and D. Sleator. Competitive algorithms for server
problems. Journal of Algorithms, 11:208-230, 1990.

[43] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized
paging algorithm. Algorithmica, 6:816-825, 1991.

[44] J.W. Moon. Counting Labelled Trees. Canadian Mathematical Monographs,
1970.

[45] W.M. Nawijn. Minimum loss scheduling problems. European Journal of Opera-
tional Research, 56:364-369, 1992.

[46] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Op-
timization. John Wiley & Sons, New York, 1982.

[47] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation and com-
plexity classes. Journal of Computer and System Sciences, 43:425-440, 1991.

[48] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complezity. Prentice-Hall, New Jersey, 1982.

[49] A. Seznec. A case for two-way skewed-associative caches. In Proceedings of the
20th International Symposium on Computer Architecture, pages 169-178, 1993.

[50] A. Seznec. Skewed associativity enhances performance predictablility. In Pro-
ceedings of the 22nd International Symposium on Computer Architecture, pages
256-275, 1995.

[51] A. Seznec and F. Bodin. Skewed-associative caches. In Proceedings of PARLE’
93, 1993.

[62] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202-208, February 1985.

[63] Frits C.R. Spieksma. On the approximability of an interval scheduling problem.
Journal of Scheduling, 2:215-227, 1999.

[54] Eric Torng. A unified analysis of paging and caching. Algorithmica, 20:175-200,
1998.

139

[55] Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and end times.
Theoretical Computer Science, 130:5-16, 1994.

140

MICHIGAN STATE LIBRARIES

TR

3 1293 0217

