m- qlalm filfil‘C “NW any" we" a "'1"! “‘Alu H' an.“ Ina-5L5 9d ‘8 d LIBRARY Michigan State University 1 l W" This is to certify that the dissertation entitled Analysis of the Relationship Between Peel and Burst Test Results for Peelable Flexible Packages presented by Rosamari Feliu-Baez has been accepted towards fulfillment of the requirements for Ph.D. degree in Packaging 1M 5. KW Major professor Date 81,10, MS U i: an Affirmative Action/Equal Opportunity Institution 0- 1 2771 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE NF viiilélzitlz“ 3 6/01 alClRC/DatoDuopSS—p. 15 ANALYSIS OF THE RELATIONSHIP BETWEEN PEEL AND BURST TEST RESULTS FOR PEELABLE FLEXIBLE PACKAGES By Rosamari FeliI'I-Baa AN ABSTRACT OF A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY School of Packaging 2001 Professor Hugh E. Lockhart ABSTRACT ANALYSIS OF THE RELATIONSHIP BETWEEN PEEL AND BURST TEST RESULTS FOR PEELABLE FLEXIBLE PACKAGES By Rosamari FeliI'I-Baa Theoretical formulas that relate peel and burst test results were developed using force diagram analysis. The formula, P=ZS/D (P = Burst Pressure, S = Seal Strength, and D = Plate separation) has been studied before (F eliu-Baez, 1998), and it was found to overestimate the actual burst values even when the bursting and peeling times were controlled to be the same. A new theoretical formula, which accounts for package size, was developed but it did not improve the accuracy of the results. The fact that the new formula did not improve accuracy, even when accounting for package size, indicates that random behavior of the package defamation during the burst test makes the actual values differ from the predicted ones. Wrinkles in the seal area, the amount of stretch around the package’s perimeter, and its shape when pressurized are difficult to model and therefore cannot be included in the theoretical formulas. For that reason, empirical models were developed by using a linear multiple regression technique to fit experimental data to a power law relationship. The empirical models developed include the formulas for theoretical development as independent variables. Three models were validated in three different types of Tyvek/plastic pouches. The results were good. The correlation coefficients (R) were all higher than 0.96 and the average percent errors between actual and predicted values ranged from 1% to 7% for predictions of burst test value from seal strength and vice V8133. This Dissertation is dedicated to my husband and family in appreciation for all their love and support iii ACKNOWLEDGEMENTS I want to express my gratitude to my research guidance committee. Dr. Hugh Lockhart, my major professor, for being a great advisor, teacher, and a mentor, for his guidance and support, for being always available, for his endless patience, and for having so much faith in me. I want to express a special appreciation to Dr. Gary Burgess for his tremendous contribution to this research project and for the amount of time he spent helping me. His contribution was critical in the completion of this project. I would also like to thank Dr. Susan Selke for her good advice, support, patience and great help and Dr. Brian Feeny, from the Mechanical Engineering Department, for serving in my guidance committee, for his help and support. Thanks to the School of Packaging Faculty and Staff for making my stay in East Lansing a pleasant one, for teaching me so many wonderful things and for treating me as one of them. I like to thank Dr. Jack Giacin for all the things he taught me and mostly for being an example of commitment and hard work. Thanks to the packaging graduate students for being my friends and for making me feel at home. I want to thank them for their help, support and mostly for their smiles (:~) on those days were things were not going well. I want to acknowledge the Minority Competitive and Doctoral Fellowship (MCDF) for their financial support, and express my appreciation to Dr. James Jay who always made sure I was getting financial help. I want to express my gratitude to Neil Lorimer, from Rexam Medical Packaging, and Marie Tkacik, from Tolas Health Care Packaging, for donating thousands of pouches for the completion of this project. iv Special appreciation to my family for all the encouragement and love provided during my graduate studies. I have to mention my husband for all his love, for being there during the difficult times and for being my best friend. I will like to thank my family in Puerto Rico and Indiana for all their prayers and long distance support. Finally, I would like to thank God for letting me finish my doctoral degree, for all the wonderful people I met during my stay in East Lansing and for making this past five and a half years unforgettable ones. TABLE OF CONTENTS LIST OF TABLES ........................................................... LIST OF FIGURES ......................................................... Chapter 1: INTRODUCTION .................................... Chapter 2: LITERATURE REVIEW ........................... Chapter 3: NEW THEORETICAL DEVELOPMENT ..... Chapter 4: MATERIALS AND METHODS ............ Materials 1073B Tyvek/Polyester Poly — Rexam ........... 1073B Tyvek/PET/PE - Tolas .................. 1059B Tyvek/Polyester Poly — Rexam ......... Equipment Burst Test Equipment ..................................... Peel Test Equipment ....................................... Methods ...................................................... Chapter 5: RESULTS AND DISCUSSION .................... Part A. Summary of Test Results A] Burst Test Results ................................... A.2 Peel Test Results ....................................... Part B. Factorial Analysis B.1 Analysis of Residuals ................................... B.2 Analysis of Variance ................................... a. Burst Test ......................................... b. Peel Test ........................................... Part C. Validation of Theoretical and Empirical Models C l Burst Pressure predicting models ..... C. 2 Seal Strength predicting models . Part D. Comparison of Burst Location of Failure vs. Minimum Seal Strength Location ...... Chapter 6: CONCLUSIONS AND RECOMMENDATIONS Conclusions ............................................................ Recommendations ................................................... ix xviii 22 29 3O 31 32 33 34 35 42 43 46 50 51 54 57 59 6O 75 95 97 l 03 APPENDICES: Appendix I — Glossary ........................................................ Appendix II — Literature Review Summary Table ....................... Appendix III - Power Calculations ........................................ Appendix IV — Testing Information ........................................ Appendix V — Raw Data ...................................................... A. Burst Test Results 1. Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches... H. Tolas (1073B Tyvek/PET PE Laminate) Pouches ............ III. Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches... IV. Summary of Burst Test Results in psi (lbs/inz) ............... B. Peel Test Results 1. Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches... II. Tolas (1073B Tyvek/PET PE Laminate) Pouches ............. III. Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches... Appendix VI — Analysis of Variance for Factorial Experiments MINITAB Results .............................................. A. Analysis of Variance for Burst Test Factorial Experiments 1. Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches... II. Tolas (1073B Tyvek/PET PE Laminate) Pouches ............. III. Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches. B. Analysis of Variance for Peel Test Factorial Experiments 1. Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches... II. Tolas (1073B Tyvek/PET PE Laminate) Pouches ............. III. Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches... Appendix VII — Model Validation Information ......................... 9'3"?“ .U 09°? Data Transformation ............................................. Formulas Used in Calculations ................................ Burst Pressure (P) empirical model results when using flow index as an independent variable ................... Burst Pressure (P) empirical model results WITHOUT using flow index as an independent variable ................. Correlation Calculations ..................................... Seal Strength (S) Empirical Model Results ............... Burst Pressure (P) and Seal Strength (S) empirical model results when using burst test data fi'om flow index 5 only... vii 104 107 112 117 122 125 130 132 134 136 161 171 181 184 190 . 192 195 199 201 203 206 207 2 1 0 214 234 238 266 Appendix VIII — Location of Burst Failure vs Location of Minimum Seal Strength .................................... 269 A. Burst Test Location of Failure for I. Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches... 271 II. Tolas (1073B Tyvek/PET PE Laminate) Pouches ............. 273 III. Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches... 274 B. Peel Test Location of Minimum Seal Strength for I. Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches... 275 II. Tolas (1073B Tyvek/PET PE Laminate) Pouches .............. 277 ID. Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches... 278 References ........................................................................... 279 viii LIST OF TABLES Table 1. Dimensions for Rexam (1073B Tyvek/ Polyester/Poly Laminate) Pouches .............. 30 Table 2. Dimensions for Tolas (1073B Tyvek/ PET/PE Laminate) Pouches ....................... 31 Table 3. Dimensions for Rexam (1073B Tyvek/ Polyester/Poly Laminate) Pouches ............. 32 Table 4. 22 Factorial Experiments for Burst and Peel Tests ........................ 39 Table 5. Burst Test Results - Burst Pressure Values for Rexam (107 3B Tyvek/Polyester/Poly Laminate) Pouches ............ 43 Table 6. Burst Test Results - Burst Pressure Values for Tolas (1073B Tyvek/PET/LDPE Laminate) Pouches ............... 45 Table 7. Burst Test Results — Burst Pressure Values for Rexam (1059B Tyvek/Polyester/Poly Laminate) Pouches ........... 45 Table 8. Pee] Test Results — Seal Strength Values (PEAK FORCE) for Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches .......... 46 Table 9. Peel Test Results — Seal Strength Values (PEAK FORCE) for Tolas (1073B Tyvek/PET/LDPE Laminate) Pouches ............... 47 Table 10. Peel Test Results - Seal Strength Values (PEAK FORCE) for Rexam (1059B Tyvek/Polyester/Poly Laminate) Pouches ........... 47 Table 11. Peel Test Results — Seal Strength Values (AVERAGE FORCE) for Rexam (l 07 3B Tyvek/Polyester/Poly Laminate) Pouches ........... 48 Table 12. Peel Test Results — Seal Strength Values (AVERAGE FORCE) for Tolas (1073B Tyvek/PET/LDPE Laminate) Pouches ................ 49 Table 13. Peel Test Results — Seal Strength Values (AVERAGE FORCE) for Rexam (1059B Tyvek/Polyester/Poly Laminate) Pouches .......... 49 Table 14. Results for Burst Test 22 Factorial Experiments Rexam (1073B/Polyester/Poly Laminate) Pouches ........................ 54 ix Table 15. Results for Burst Test 22 Factorial Experiments Tolas (1073B/PET/PE Laminate) Pouches .............................. Table 16. Results for Burst Test 22 Factorial Experiments Rexam (1059B/Polyester/Poly Laminate) Pouches ..................... Table 17. Results for Peel Test 22 Factorial Experiment Rexam (1073B/Polyester/Poly Laminate) Pouches ..................... Table 18. Results for Peel Test 22 Factorial Experiment Tolas (1073B/PET/PE Laminate) Pouches .............................. Table 19. Results for Peel Test 22 Factorial Experiment Rexam (1059B/Polyester/Poly Laminate) Pouches ..................... Table 20. Validation Results for Burst Pressure Prediction Models Rexam (1073B/Polyester Poly Laminate) Pouches ................... Table 21. Validation Results for Burst Pressure Prediction Models Tolas (1073B/PET/PE Laminate) Pouches ............................. Table 22. Validation Results for Burst Pressure Prediction Models Rexam (105 9B/Polyester Poly Laminate) Pouches ................... Table 23. Validation Results for Seal Strength Prediction Models Rexam (1073B/Polyester Poly Laminate) Pouches .................... Table 24. Validation Results for Seal Strength Prediction Models Tolas (1073B/PET/PE Laminate) Pouches ............................. Table 25. Validation Results for Sea] Strength Prediction Models Rexam (1059B/Polyester Poly Laminate) Pouches ................... Table 26. Percentage of Location of Failure and Minimum Seal Strength Location in the Chevron Seal ............................................. Table 27. Different approaches to describing the relationship between peel and burst tests .......................................................... Table 28. Michigan State University School of Packaging CURRENT WORK ........................................................ Table 29. 22 Factorial Experiments for Burst Test ................................. Table 30. Power calculation results for the Burst Test ............................ 55 56 57 58 58 65 66 67 81 83 ..... 85 ..... 96 108 111 114 115 Table 31. 22 Factorial Experiments for Peel Test ....................................... 115 Table 32. Power calculation results for the Peel Test .................................. 116 Table 33. Testing Information for Material combination #1: Uncoated 1073B Tyvek/ Polyester/Poly Laminate —-Rexam ............... 119 Table 34. Testing Information for Material combination #2: Uncoated 1073B Tyvek/ PET/LDPE Laminate -Tolas ................... 120 Table 35. Testing Information for Material combination #3: Uncoated 1059B Tyvek/ Polyester/Poly Laminate —Rexam .............. 121 Table 36. Burst Test Results for Package Size (3.25” x 7.25”) — 1073B Rexam ............................. 125 Table 37. Burst Test Results for Package Size (5.25” x 9.125”) - 1073B Rexam ............................. 126 Table 38. Burst Test Results for Package Size (7.25” x 11.125”) - 1073B Rexam .......................... 127 Table 39. Burst Test Results for Package Size (9.25” x 14.125”) —- 1073B Rexam ......................... 128 Table 40. Burst Test Results for Package Size (11.25” x 15.25”) - 1073B Rexam ........................... 129 Table 41. Burst Test Results for Package Size (3” x 11.375”) — 1073B Tolas ................................ 130 Table 42. Burst Test Results for Package Size (10.625” x 15”) — 1073B Tolas .............................. 131 Table 43. Burst Test Results for Package Size (5.75” x 9.125”)- 1059B Rexam ............................. 132 Table 44. Burst Test Results for . Package Size (9.25” x 14.125”) - 1059B Rexam ............................ 133 Table 45. Summary of Burst Test Results in (lbs/inz) .................................. 134 Table 46. Peel Test Results for Package Size (3.25” x 7.25”) — 1073B Rexam .............................. 136 xi Table 47. Minimum Peel Strength Values for Package Size (3.25” x 7.25”) - 1073B Rexam ............................... 140 Table 48. Peel Test Results for Package Size (5.25” x 9.125”) - 1073B Rexam ............................. 141 Table 49. Minimum Peel Strength Values for Package Size (5.25” x 9.125”) - 1073B Rexam ........................... 145 Table 50. Peel Test Results for Package Size (7.25” x 11.125”) - 1073B Rexam ......................... 146 Table 51. Minimum Peel Strength Values for Package Size (7.25” x 11.125”) - 1073B Rexam ........................... 150 Table 52. Peel Test Results for Package Size (9.25” x 14.125”) - 1073B Rexam ........................ 151 Table 53. Minimum Peel Strength Values for Package Size (9.25” x 14.125”) - 1073B Rexam ............................. 155 Table 54. Peel Test Results for Package Size (11.25” x 15.25”) - 1073B Rexam ........................... 156 Table 55. Minimum Peel Strength Values for Package Size (11.25” x 15.25”) - 1073B Rexam ........................... 160 Table 56. Peel Test Results for Package Size (3” x 11.375”) - 1073B Tolas ................................... 161 Table 57. Minimum Peel Strength Values for Package Size (3” x 11.375”) - 10733 Tolas ................................. 165 Table 58. Peel Test Results for Package Size (10.625” x 15”) - 1073B Tolas ................................ 166 Table 59. Minimum Peel Strength Values for Package Size (10.625” x 15”) - 1073B Tolas ................................. 170 Table 60. Peel Test Results for Package Size (5.75” x 9.125”) - 1059B Rexam ............................. 171 Table 61. Minimum Peel Strength Values for Package Size (5.75” x 9.125”) - 1059B Rexam ........................... 175 xii Table 62. Peel Test Results for Package Size (9.25” x 14.125”) - 1059B Rexam ........................... 176 Table 63. Minimum Peel Strength Values for Package Size (9.25” x 14.125”) - 1059B Rexam ........................... 180 Table 64. Analysis of Variance for Burst Pressure — Factorial Experiment #1 Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches ................ 184 Table 65. Analysis of Variance for Burst Pressure — Factorial Experiment #2 Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches .................. 186 Table 66. Analysis of Variance for Burst Pressure - Factorial Experiment #3 Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches ................. 188 Table 67. Analysis of Variance for Burst Pressure — Factorial Experiment #1 Tolas (1073B Tyvek/PET/PE Laminate) Pouches ............................ 190 Table 68. Analysis of Variance for Burst Pressure - Factorial Experiment #2 Tolas (107 3B Tyvek/PET/PE Laminate) Pouches ............................ 190 Table 69. Analysis of Variance for Burst Pressure — Factorial Experiment #3 Tolas (1073B Tyvek/PET/PE Laminate) Pouches ............................. 191 Table 70. Analysis of Variance for Burst Pressure — Factorial Experiment #1 Rexam (1059 Tyrell/Polyester/Poly Laminate) Pouches ..................... 192 Table 71. Analysis of Variance for Burst Pressure - Factorial Experiment #2 Rexam (1059 Poly/Polyester/Poly Laminate) Pouches ...................... 192 Table 72. Analysis of Variance for Burst Pressure - Factorial Experiment #3 Rexam (1059 Poly/Polyester/Poly Laminate) Pouches .................... 193 Table 73. Analysis of Variance for Peel Strength when using Peak Force Values Rexam (1073 Tyvek/Polyester/Poly Laminate) Pouches .................. 195 Table 74. Analysis of Variance for Peel Strength when using Average Force Values Rexam (1073 Tyvek/Polyester/Poly Laminate) Pouches ................. 197 Table 75. Analysis of Variance for Peel Strength when using Peak Force Values Tolas (1073 Tyvek/PET/PE Laminate) Pouches ............................ 199 Table 76. Analysis of Variance for Peel Strength when using Average Force Values Tolas (1073 Tyvek/PET/PE Laminate) Pouches ............................ 200 xiii Table 77. Analysis of Variance for Peel Strength when using Peak Force Values Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches .................. 201 Table 78. Analysis of Variance for Peel Strength when using Average Force Values Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches .................. 202 Table 79. Empirical Model #1 Results with Flow Index as an Independent Variable .............................. 211 Table 80. Empirical Model #2 Results with Flow Index as an Independent Variable ................................ 212 Table 81. Empirical Model #3 Results with Flow Index as an Independent Variable ................................ 213 Table 82. Data used for the Burst Pressure (P) Prediction Models Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches (when using Peak Force Values) ............................................. 215 Table 83 . Data used for the Burst Pressure (P) Prediction Models Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches (when using Average Force Values) ....................................... 217 Table 84. Data used for the Burst Pressure (P) Prediction Models Tolas (1073B Tyvek/PET/PE Laminate) Pouches (when using Peak Force Values) ............................................... 219 Table 85. Data used for the Burst Pressure (P) Prediction Models Tolas (107 3B Tyvek/PET/PE Laminate) Pouches (when using Average Force Values) .......................................... 220 Table 86. Data used for the Burst Pressure (P) Prediction Models Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches (when using Peak Force Values) ............................................. 221 Table 87. Data used for the Burst Pressure (P) Prediction Models Rexam (1059B Tyvek/Polyester Poly) Pouches (when using Average Force Values) ........................................ 222 Table 88. Burst Pressure Model #1 Results using data from 3 flow index values .......................................... 223 Table 89. Burst Pressure Model #2 Results using data from 3 flow index values ......................................... 224 xiv Table 90. Burst Pressure Model #3 Results using data fiom 3 flow index values .......................................... Table 91. Average Percent Error for Burst Pressure Prediction Models Results for Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches using Peak Force Values ...................................................... Table 92. Average Percent Error for Burst Pressure Predicting Models Results for Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches using Average Force Values... .................................... Table 93. Average Percent Error for Burst Pressure Prediction Models Results for Tolas (107 3B Tyvek/PET/PE Laminate) Pouches using Peak Force Values ............................................ Table 94. Average Percent Error for Burst Pressure Prediction Models Results for Tolas (1073B Tyvek/PET/PE Laminate) Pouches using Average Force Values .................................................. Table 95. Average Percent Error for Burst Pressure Prediction Models Results for Rexam (105 9B Tyvek/Polyester Poly Laminate) Pouches using Peak Force Values ....................................................... Table 96. Average Percent Error for Burst Pressure Prediction Models Results for Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches using Average Force Values ................................................. Table 97. Sample Correlation Coefficient for Seal Strength (S) Prediction Models ....................................... Table 98. Sample Correlation Coefficient for Burst Pressure (P) Prediction Models ...................................... Table 99. Summarized results for Rexam 1073B Tyvek/plastic pouches (when using Peak Values) ................................................... Table 100. Data used for the Seal Strength (S) Prediction Models Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches (when predicting Peak Force Values) ........................................ Table 101. Data used for the Seal Strength (S) Prediction Models Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches . 225 226 228 231 232 233 235 235 236 239 (when predicting Average Force Values .................................... 241 XV Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Tablelll. Table 112. Table 113. Table 114. Table 115. Data used for the Seal Strength (S) Prediction Models Tolas (1073B Tyvek/PET/PE Laminate) Pouches (when predicting Peak Force Values) ................................. 243 Data used for the Seal Strength (S) Prediction Models Tolas (1073B Tyvek/PET/PE Laminate) Pouches (when predicting Average Force Values) ............................ 244 Data used for the Seal Strength (S) Prediction Models Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches (when predicting Peak Force Values) ....................................... 245 Data used for the Seal Strength (S) Prediction Model Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches (when predicting Average Force Values) ................................. 246 Seal Strength Model#l Results using data from 3 flow index values ........................................ 247 Seal Strength, Model#2 Results using data from 3 flow index values ........................................ 248 Seal Strength Model#3 Results using data from 3 flow index values ........................................ 249 Average Percent Error for PEAK Seal Strength Prediction Models Results for Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches. 250 Average Percent Error for AVERAGE Seal Strength Prediction Models Results for Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches. .254 Average Percent Error for PEAK Seal Strength Prediction Models Results for Tolas (1073B Tyvek/PET/PE Laminate) Pouches ......... 258 Average Percent Enor for AVERAGE Seal Strength Prediction Models Results for Tolas (1073B Tyvek/PET/PE Laminate) Pouches .......... 260 Average Percent Error for PEAK Seal Strength Prediction Models Results for Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches. 262 Average Percent Error for AVERAGE Seal Strength Prediction Models Results for Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches. 264 Burst Pressure Model #1 Results using data from flow index = 5 ................................................ 267 xvi Table 116. Burst Pressure Model #2 Results using data from flow index = 5 ................................................ 267 Table 117. Burst Pressure Model #3 Results using data from flow index = 5 ................................................ 267 Table 118. Seal Strength Model#l Results using data from flow index = 5 .............................................. 268 Table 119. Seal Strength Model#2 Results using data from flow index = 5 .............................................. 268 Table 120. Seal Strength Model#3 Results using data from flow index = 5 ............................................... 268 Table 121. Location of Failure for Rexam 1073B Tyvek/Polyester Poly Laminate ............................ 271 Table 122. Location of Failure for Tolas 1073B Tyvek/PET/PE Laminate ...................................... 273 Table 123. Location of Failure for Rexam 1059B Tyvek/Polyester Poly Laminate ............................. 274 Table 124. Location of Minimum Seal Strength for Rexam 1073B Tyvek/Polyester Poly Laminate ..................... 275 Table 125. Location of Minimum Seal Strength for Tolas 1073B Tyvek/PET/PE Laminate ................................. 277 Table 126. Location of Minimum Seal Strength for Rexam 1059B Tyvek/Polyester Poly Laminate ..................... 278 xvii LIST OF FIGURES Figure 1. Ideal Package Force Balance (W achala, 1991) ........................... 7 Figure 2. A Schematic of the Internal Burst Test for a Flexible Pouch (Yam, 1993) ............................................ 11 Figure 3. Analysis of Force Near the Seal Area (Yam, 1993) ....................... 12 Figure 4. Force Diagram of a Center Section of an Unrestrained Pouch ............ 15 Figure 5. Pressurized Pouch in a Restrained Burst Test .............................. 17 Figure 6. Cross Sectional Edge View of Pressurized Pouch in a Restrained Burst Test .................................................... 17 Figure 7. Force Diagram of a Center Section of a Restrained Pouch ............... 18 Figure 8. Relationship between Critical Burst Pressure and Plate Separation ....... 20 Figure 9. Chevron Seal Pouch (a) Flat (b) Pressurized (c) Original Length, 1.0 and Width, We in a pressurized pouch ............ 23 Figure 10. Force Diagram of a Center Section of a Restrained Pouch with Original, Contact and Pressurized Widths (W0, We, and Wp, respectively) ...... 24 Figure l 1. (a) Pressurized Chevron Seal Pouch (b) Edge View of Deformed/Rippled Perimeter ........................... 25 Figure 12. Burst Tester with Open Package Fixture at rear and Aluminum Restraining Plates (15” x 20” x 3/4”) with gap = 1.0” on the right ...... 33 Figure 13. Unsupported Peel Test Specimen Mounted in Pneumatic Grips of Instron Model 4201 Universal Testing Instrument ..................... 34 Figure 14. Top view of sample locations in tested pouches. The pouch has the transparent plastic side facing up ............................................. 36 Figure 15. Actual & Predicted Burst Pressure (P) vs. Package/Gap Rexam (1073B/Polyester Poly Laminate) Pouches (using Peak Force Values) ..................................................... 69 xviii Figure 16. Actual & Predicted Burst Pressure (P) vs. Package/Gap Rexam (1073B/Polyester Poly Laminate) Pouches (using Average Force Values) ................................................ 70 Figure 17. Actual & Predicted Burst Pressure (P) vs. Package/Gap Tolas (1073B/PET/PE Laminate) Pouches (using Peak Force Values) ................................................... 71 Figure 18. Actual & Predicted Burst Pressure (P) vs. Package/Gap Tolas (1073B/PET/PE Laminate) Pouches (using Average Force Values) ............................................. 72 Figure 19. Actual & Predicted Burst Pressure (P) vs. Package/Gap Rexam (1059B/Polyester Poly Laminate) Pouches (using Peak Force Values) ................................................... 73 Figure 20. Actual & Predicted Burst Pressure (P) vs. Package/Gap Rexam (1059B/Polyester Poly Laminate) Pouches (using Average Force Values) ................................................ 74 Figure 21. Actual & Predicted Seal Strength (S) vs. Package Rexam (1073B/Polyester Poly Laminate) Pouches (predicting Peak Force Values) ................................................ 88 Figure 22. Actual & Predicted Seal Strength (S) vs. Package Rexam (1073B/Polyester Poly Laminate) Pouches (predicting Average Force Values) .......................................... 89 Figure 23. Actual & Predicted Seal Strength (S) vs. Package Tolas (1073B/PET/PE Laminate) Pouches (using Peak Force Values) ................................................... 90 Figure 24. Actual & Predicted Seal Strength (S) vs. Package Tolas (1073B/PET/PE Laminate) Pouches (using Average Force Values) ............................................. 91 Figure 25. Actual & Predicted Seal Strength (S) vs. Package Rexam (1059B/Polyester Poly Laminate) Pouches (using Peak Force Values) ................................................... 92 Figure 26. Actual & Predicted Seal Strength (S) vs. Package Rexam (1059B/Polyester Poly Laminate) Pouches (using Average Force Values) ................................................ 93 Figure 27. Length and Width Dimensions of a Chevron Seal Pouch ................ 102 xix CHAPTER 1 INTRODUCTION The tendency to use more flexible packages for medical device applications has raised concerns about safety, sterility, seal strength and total package quality. This has increased the need for package integrity tests. Package integrity testing assesses a package’s ability to protect the product from microbial contamination and remain intact after being stressed by the pressure changes that may occur during sterilization and shipment. These tests are intended to detect the presence of leaks in the seal area and measure seal strength. This project will concentrate on two commonly used tests for measuring the seal strength of medical pouches: the peel test and the burst test. Although both tests provide an indication of the seal strength and structural integrity of the package, they are performed in different ways. Refer to Appendix I for definitions of all terms. The peel test measures the force required to peel apart a 1-inch wide sample strip cut from the seal. Although the peel test has been used for years in industry, it has some inconveniences. It is a time consuming test because many strips have to be cut from a package in order to get a true measure of the seal strength. It is also possible that the one or more sample strips cut fiom the seal do not contain a weak spot that may be present in the pouch. Ifonly a small number of strips from a given package are tested, some substandard seal surface may be overlooked (W achala, 1991). There is some controversy over whether to use peak or average force as a value for seal strength in the peel test. The peak force is the maximum force required to separate the sealed webs, the maximum force created during peeling. It has been the commonly accepted value used for quantifying the strength of a seal. According to Barcan (1995), the peak force could be misleading if used alone because it imparts a false sense of security. He believes that the average force provides a more relevant specification number than the peak force data alone. The average force is calculated by dividing the energy, which is the area under the force-deformation curve, by the total length of peel. Barcan thinks that the average force is a better measure, providing a more comprehensive picture of seal strength because it considers the entire sample strip of seal and not just an instant during peel. There is also some debate regarding how to conduct the test; testing can be performed using a supported tail or an unsupported tail. According to Earl Hackett (1998), in order to obtain good test repeatability the peel angle of the two substrates must be maintained throughout the measurement. He suggests the use of backing plates to maintain a 180° peel angle (supported at 180°). Others prefer not to use the backing plates and perform the “fi'ee-tail”, or unsupported peel test, because they think it emulates real world conditions more closely. The other common way of measuring seal strength is by performing a burst test, which consists of pressurizing a package until it breaks. Normally, in pouches with peelable seals (seals that are easy to open and provide a sterile delivery of the product), the break occurs as a separation of the seal, not as a rupture in the material. The pressure required to break the package is recorded and interpreted as an indication of‘ the strength ofthe seal. This test can be performed with or without the use of restraining plates. When using restraining plates, the deformation of the pressurized package is minimized. The burst can be performed on an open or closed pouch. When performing a burst test with an open package fixture, the pouch supplier’s seals are tested. When performing a closed package burst test, both the pouch supplier and user’s seals are tested. The burst test has gained acceptance in the medical device and medical packaging industries because it is easier to perform and it does not require as much time as the peel test. In addition, it provides an evaluation of the entire package system, not only the seal. By supplying air inside the package and pressurizing it, burst testing subjects the entire sterile package system to some of the stresses that the package encounters in the manufacturing, distribution, and use environments (Bohn, 1994), whereas the peel test does not. The peel and burst tests are used by both pouch users and suppliers to perform incoming and outgoing inspections, to validate the sealing parameters of a package and as a process control tool. Both groups have shown an interest in clarifying the relationship between peel and burst tests. Pouch users tend to have specifications on tensile peel seal strength that are used when testing package seals. With a correlation model between peel and burst test, the faster burst test could be used to update their specifications without an extensive revalidation program. This could reduce sampling and testing costs by reducing labor and material usage costs. Pouch suppliers work with customers that use both the peel and the burst test. Customers usually want to use only one method and suppliers need to show that their method will correlate with the customer’s method. Additionally, if the burst and peel tests can be mathematically related, the faster burst test technique can be used to provide peel test values directly to production and quality control personnel. In this way, corrective action can be taken almost immediately to prevent the production of pouches that are out of specification (Barcan and Franks, 1999). This will increase productivity and, at the same time, reduce labor and material costs. The objective of this work is to analyze and describe the relationship between peel and burst test results for peelable flexible packages for medical applications. Peelable seals are widely used in the medical device industry because they are easy to open and at the same time provide protection and a sterile delivery of the product. The analysis of the relationship between peel and burst tests was performed by conducting 22 factorial experiments and by validating theoretical and empirical models that relate the results of one test in terms of the other. The factorial experiments had the purpose of determining the effect of flow index and plate separation in the burst test, and the effect of crosshead speed and grip separation in the peel test. Theoretical models were developed by using force diagram analysis and the empirical ones by using multiple regression analysis to fit actual data to a power law model. The adequacy of these models was determined by comparing actual values with the predicted ones and by calculating percent error. The theoretical model, P=2 S/D (P= Burst Pressure, S = Seal Strength, and D = Plate separation) has been studied before (F eliu-Baez, 1998, 2001). It was found that this model overestimates the actual burst values. After the completion of those experiments, it was hypothesized that the relationship between peel and burst tests depends on the package size and material characteristics, and that the inclusion of the package’s dimensions in the model would improve its accuracy. For that reason a new theoretical model was developed (see Chapter 3) and additional testing was done. The testing results showed that the new model, which accounts for the package size, did not improve accuracy. For that reason, it was then hypothesized that an empirical model would describe the relationship between peel and burst tests better than the theoretical ones. The contribution that this project will make to industry consists of a procedure on how to describe the relationship between peel and burst tests for pouches of a specific material combination and sealant characteristics. The relationship developed can be used to predict burst test results from peel test values and vice versa. CHAPTER 2 LITERATURE REVIEW The interest in describing the relationship between peel and burst tests is certainly not new. Distinguished minds from both academia and industry have devoted efforts to finding a correlation between these two. In 1991, Thomas Wachala, from Carleton Technologies published his approach to correlating peel and burst tests for medical pouches. In 1993, Dr. Kit Yam from the Department of Food Science at Rutgers University published his approach to finding a relationship between seal strength and burst pressure for Meal-Ready to Eat (MRE) pouches. In 1997, Neil Lorimer, from Rexam Medical Packaging, presented the results of a multivariate regression model developed with the purpose of predicting burst values for any given peel strength value for medical pouches. In 1998, F eliu-Baez, from the Michigan State University School of Packaging published a Master’s Thesis in which theoretical equations were developed with the purpose of explaining the pouch behavior during unrestrained and restrained burst test methods. Equations from the Michigan State research are based on force diagrams and consider the effect of the forces needed to peel the seals apart (seal strength) in the burst test of a pouch. Although these equations were not developed with the original intent of correlating peel and burst tests, they were used as a base to build upon, and as a starting point to find such a correlation. In 1999, Stephen Franks and Donald Barcan, from TM Electronics and Dunbar Industries, Inc, respectively, performed a screening experiment to determine whether peel and burst tests were sensitive enough to detect process changes in the seal manufacture of a medical peel pouch. The following paragraphs contain a detailed explanation, in chronological order, of the different approaches to describing the relationship between peel and burst tests. Refer to Appendix II for a summary of the different approaches. Thong Wachfl - Carleton Tngolggjes, 1991: Wachala’s formulas were developed in the 19703 with the intent of helping burst tester customers verify if they were operating the tester regulator correctly. In the 703, the burst tester regulators were operated manually, not automatically. Wachala’s approach to correlating peel and burst tests consisted of relating a force acting on a line with a force acting on a surface area (the units of measure are force per unit length and force per unit area for peel and burst tests, respectively). According to Wachala, an ideal package will not deform under pressure and will have a minimum peel force of 1 Win. At the point of seal failure, an ideal package is in equilibrium, and the force attempting to pull the seal apart is balanced by the seal strength. See Figure 1, below. Y F .- .I SEAL _ _ ' ...__ SURFACE 900 P F Figure 1. Ideal Package Force Balance (W achala, 1991) A correlation may be found by solving the following force balance equation: Feed = Funnies S x Perimeter = P x Area Where; Fm; = Force exerted by the seal strength (lbs) Fm = Force attempting to pull the package’s seal apart (lbs) S = 1 (lb/in) = de facto minimum peel force standard in the medical device industry Perimeter = 2 x (L+W) (in) P = Burst Pressure (psi) Area = (L x W) (inz) L = length of the package (in) W= width of the package (in) So; S x {2 x (L+W)} = P x {(L x W)}; units (lbs/in)*(in) = (lb/in’)*(in’) P = s x [{2 x (L+W)}] / {(L x W)}; units (lbs/in’) = {(1b/in)*(in)}/(in’) P = r (lb/in) x [Perimeter/Area] units (lbs/inz) = (lb/in)* [(in/in’n [r] This equation represents an ideal case. According to this equation, the internal pressure (P) is equal to the seal strength (S -1 lb/in) times the perimeter of the package (in) divided by its area (in’). In his article, Wacha1a(1991) also used force diagram analysis to describe an actual package under deformation. He estimated the force experienced by the seal by treating the entire package under deformation as a cylinder. According to Wachala, the correlation between peel and burst tests for an actual package deteriorates for at least four reasons: First, an inflated package usually takes an elliptical form and the angle between the seal surface and the surface of the membrane is rarely 90 °. Second, the end effects caused by the clamping device of a burst tester and the seal opposite the clamp makes the actual shape of the deformed pouch deviate from the ideal shape. Third, when the package is inflated the effective length of the package reduces to a shorter length L'. The angle formed at the end seal is always less than 90°. Lastly, the seal perimeter does not take the same load at all points because of the folds and creases caused by uneven tensions in the surface membranes when the package is pressurized. Equation [1] is based on the ideal package case and works fine only if a rough estimation of the relationship between peel and burst tests is needed. According to Wachala, since this ideal equation considers no package deformation, the magnitude of error may exceed 30%. For this reason, be included a correction factor in the formula and developed a general equation to describe the correlation between the burst and the peel test: Test Pressure = [1 (lb/in) x {27.67 (perimeter)l(area)} x K factor] [2] Where: Test Pressure = (psi) or (lbs/in’) 27.67 is conversion from inches ofH20 to psi (27.67 in H20 = 1 psi) Perimeter = 2 (L + W) (in) Area -— (L x W) (inz) K factor = Correction factor = [L2 / (ALz + BLW + CW2)] A = 0.854, B = 0.093, and C = -0.l95 A, B and C were determined empirically for a specific application (30.5” x 25.0” paper plastic pouches) L = Length of the package (in) W = Width of the package (in) The test pressure obtained from equation [2] should correlate to a peel strength of approximately 1 lb/in. It is important to point out that these formulas were developed with the assumption that the pouches had an average peel strength of 1 lb/in. Ifthe pouches under study have an average peel strength different from 1 lb/in, adjustments to the formula need to be made. Wachala performed peel and burst tests using 30.5” x 25.0” paper/plastic pouches that had, on the average, peak peel strength of 1 lb/in. An unrestrained burst test using an open package fixture was performed. In addition, he performed a “free-tail” or unsupported peel test and used peak peeling force values for the correlation. The percent error between the theoretical burst pressure, estimated with equation [2], and the experimental burst pressure was approximately 3.1%. According to Wachala (1991), the best correlation is found when each particular package is tested individually, since different results can be obtained when different materials, sizes, and types of seals are used. According to him, a group of packages should be burst tested first, with the average burst pressure and the location of failure recorded. Then a peel test should be performed on the seal areas in which most of the packages failed in the burst test (weakest point). The peel strength values from the weakest point should correlate with the average burst pressure obtained fiom the burst test. Wachala believes that developing a correlation model for burst and peel tests is possible. The negative aspect of conducting this type of study is that manufacturers with 10 an extensive product line must qualify each item individually, which could be a costly and a labor-intensive task. Dr. Kit Yam - Dept. of Food Science - Rutgers University, 1993: Dr. Kit Yarn correlated the results of a restrained burst test method with the seal strength of retortable pouches. His work was performed during the 19803 and published during the early 1990s His results showed, based on force analysis, that the seal strength obtained from a pee] test (S) is equivalent to the product of the burst pressure (P) obtained fi'om the restrained burst test and half of the plate separation (R), S=PR He emphasized in his article that the validity of this equation is based on the assumption the “peeling times” for the peel test and the burst test are the same. The figure below shows a pouch restrained by two parallel plates separated with a n Air entering the package through a needle distance 2R. Top Plate 1 I l V Pressurized Pouch 2R Bottom Plate I —> Figure 2. A Schematic of the Internal Burst Test for a Flexible Pouch (Yam, 1993) According to Dr. Yarn, when a pouch is inflated with air, the reaction force exerted by the restraining plates balances the force acting on the top and bottom part of the pouch that is touching the restraining fixture. The reaction force exerted at the pouch's sea] area balances the force acting on the unrestrained portion of the pouch. 11 Since the pouch is flexible, the air exerts a tensile force on the seal and causes the unrestrained portion of the pouch to take on an approximately circular shape. The y—component of the force around the seal is represented by the following equations. See Figure 3, below: PRd0 * Seal Plane X it. Figure 3. Analysis of Force Near the Seal Area (Yam, 1993) dF y = P R sin 0 d0 Fy = force peeling a 1 in-wide strip taken from the seal P = internal pressure R = half plate separation 0 = angle shown in Figure 3 Fy =10“ PR sin 9 d0 Fy = P R ; Fy can be substituted by S (lb/in) — seal strength at rupture P can be substituted by Pr, — burst test at rupture S =P.,R [3] 12 1101 COT bur: lOCa i681: Dr. Yam presented in his article data to support his theory. He performed an experiment with 6” x 4” MRE pouches. The pouch material was PET/aluminum/PP. A “free-tail” or unsupported peel test was performed and peak peeling force values were used for the correlation. The burst test was performed with the use of restraining plates and using a closed package fixture. Peel test and burst tests were performed in a way that the peeling times for both tests were similar. According to Yam (1993), the reason to control the “peeling times” of the peel and burst tests is that they have a significant effect on the results. S (seal strength) and Pt, (burst pressure) are inversely proportional to the tensile and burst peeling times (tv and tb), respectively. Dr. Yarn’s results showed that good agreement between observed and predicted values could be obtained, but only when the peeling times of the two tests are the same. The difference between observed and predicted values at plate separation 0.50” ranged from 1% to 4%. Neil Lorimer — Rexam Mgical Pacng’ g, 1997: During the 19903 Neil Lorimer, from Rexam Medical Packaging, developed a multivariate regression model that correlates peel and restrained burst tests. According to Lorimer (1997), when developing a correlation it is important to recognize that test values for burst strength are correlated only to the weakest areas of the pouch seal, and not to the entire distribution of seal strength values. Lorimer mentioned that no positive correlation has been determined with unrestrained burst testing because pouches tend to burst in the middle of the pouch in spite of where the weakest point in the pouch is located. According to Lorimer, good results have been obtained between restrained burst tests and peel tests. Studies performed on Tyvek/plastic and paper/plastic pouches of 13 different sizes using a 1” gap on the restraining plates have shown correlation coefficients of 0.92 or greater. The correlation was developed for open package restrained burst test results and the peel test values of the ‘wveakest areas” in the package (areas in which the package failed during a restrained burst test). A “free-tail” or unsupported peel test was performed and peak peeling force values were used for the correlation. Rexam Medical Packaging has not published the formula they have developed but Lorimer has mentioned that force balance equations, provided by ARC Corporation, are used as factors in their multivariate regression model and that the coefficients are estimated from experimental models. According to Lorimer, the correlation coefficient of the predicted values has been 0.94 or greater, the R square for the predictive model approximately 87.7%, so the correlation between peel and burst test results provides accurate predictions. Lorimer pointed out factors to consider when developing correlations and predictive models between burst and peel test. 1. Burst pressure is inversely proportional to package size. As package size decreases, the burst pressure for any given seal strength will increase. 2. Burst pressure is inversely proportional to restraining plate gap dimensions. As the restraining plate gap dimension decreases, the burst pressure will increase. Values obtained at different gaps cannot be directly compared to each other. 3. The relationship between burst and peel test values can change depending on the seal peel characteristics of the materials used. Different predictive models may be required for different material combinations that peel differently. 14 Theoretical equations, based on force diagrams, were developed in order to explain a pouch’s behavior during an unrestrained and a restrained burst test. Although these equations were not developed with the original intent of correlating peel and burst test, they will be used as a starting point to find such correlation Pough Burst Tgting: When the pouch is pressurized, its center section tries to become circular, and “shrinks”. The internal dimensions after pressurization are smaller than before pressurization. n st ' Case: The force diagram, in the figure below, represents a half center section strip of width (h) in an unrestrained burst test at failure. The work needed to peel the seals apart can be described by the vector component of the force in the Y direction, perpendicular to the plane of the seal. Still W T T 1‘ h 1‘ T P T 1‘ h . l. w. st I | l I Figure 4. Force Diagram of a Center Section of an Unrestrained Pouch _) 15 wt Sub The: pou. thevertical component: ZFy=PW'h=2Sh; P = [(2 S) / W'] (a) where P - pressure (lbs/inz) h = width of the strip (inches) CI) ll seal strength (lb/inch) (force required to peel seal apart /the width of the strip) W' = diameter of the pouch (inches) W = original width (inches) Ifthe center section is approximated as a circle, assuming that the strip does not stretch much along its perimeter, then; it W' = 2 W (1: * diameter = circumference) W' = [(2 W) / 1t]; W = .636 W (it shrinks about 1/3) (b) Substitute equation (b) in (a); PW = [(1t S) l W)]; Partial = Burst Pressure [4] Therefore, for the unrestrained case the burst pressure is a function of seal strength and pouch size. With equation [4], some predictions can be made: 1. The burst pressure increases as the seal strength increases 2. The burst pressure decreases as the width of the package increases. Therefore, bigger pouches are weaker in burst, even when seal strength is the same. 3. Dimension L has no effect on Panic... The burst pressure depends only on the smaller dimension W; so lengthening of the pouch while keeping the width the same should not affect the burst strength. 16 F15 Restrained Case: The restraining plates apply pressure to the pouch over contact area WL. See Figures 5 and 6 below. D represents the plate separation. Top Plate L = length of the pouch under test. This dimension is normally shorter than the restraining plate Pouch Bottom Plate Figure 5. Pressurized Pouch in a Restrained Burst Test Top Plate Air entering . D the [flange ............... mm chh H Bottom Figure 6. Cross Sectional Edge View of Pressurized Pouch in a Restrained Burst Test 17 A force diagram of a center section of a pressurized pouch is shown in Figure 7. The force applied by the plates is equal and opposite to the air pressure P inside the pouch acting over the contact area, so these forces cancel and do not enter in the force balance equation. The vertical component of the pressure along the curved parts is balanced by the seal strength, SL. HHHHH D12 D/2 Figure 7. Force Diagram of a Center Section of a Restrained Pouch Ifthe curved sides of the pouch are assumed to deform into a quarter circle and if the material does not stretch much, then a force balance in the vertical direction in Figure 7 gives: ZSL = 2PL(D/2) Pena: = [(2 S) / n] [5] W = Width (inches) L = Length (inches) S = Seal strength (lb/inch) - unsupported Pam“; = Burst Pressure (lbs/inz) D = Plate separation (inches) 18 Lo) See Bt” the 1 \M’ it? According to Equation [5], the restrained burst pressure is a firnction of seal strength and plate separation. With this equation, some predictions can be made: 1. The burst pressure increases as the seal strength increases. 2. The burst pressure increases as the distance between the plates decreases, as shown in Figure 8. 3. The burst pressure is independent of pouch dimensions L and W. The results for both cases, unrestrained and restrained, can be depicted in a single graph. See Figure 8. Theoretically, restrained test results can be represented as a hyperbolic function. Beyond a certain D (plate separation) value, no contact occurs between the package and the plates; the test is similar to an unrestrained one. In this case Pain-u] is independent of D and the data cannot be represented with a hyperbolic filnction anymore. The unrestrained test results agree with the results provided by Wachala (1991) when approximating the depth of the package to a cylinder in shape. Additionally, the restrained test results agree with the results provided by Dr. Kit Yam (1993). 19 Restrained; Pm Pat... =(2SID) Unrestrained: Pcfltlcal =(1tS/W) (ES/W) __ (2W/tt) D = Plate Separation (Gap Size) Figure 8. Relationship between Critical Burst Pressure and Plate Separation Feliu-Baez (1998, 2001) performed restrained burst tests and unsupported peel tests on 6” x 10” Tyvek/plastic chevron seal medical pouches. The restrained burst test was performed using an open package fixture. The average of the peak peeling force was used for the correlation. The tensile peeling times were controlled within a range of 1- 8% of the burst times. The results showed that the formula P=ZS/D overestimated the actual burst pressure; the overestimation increased at smaller gaps. The overestimation of burst pressure was 22-49% at 0.50” plate separation (F eliu-Baez, 2001) 20 Stephen Franks — TM Electronics and Donald Barcan — Dunbar Industries, 1999 In 1999, Stephen Franks and Donald Barcan published the results of a screening experiment in which the sealing parameters of temperature, pressure and dwell time were varied for a specific pouch. This experiment was designed to determine whether the burst and the peel tests were sensitive enough to detect process changes in the seal manufacture. The fourth seal was manufactured on the pouch under study at various temperatures and dwell times. The pressure was held constant. A linear regression plot of the burst and tensile seal strength showed a high degree of correlation (R094). Franks and Barcan (1999) emphasized that this relationship is only valid for the materials and test configuration used. This does not represent a universal algorithm. However, a significant correlation between tensile and burst seal strength values was observed, for the materials and methods used, when varying the sealing parameters. Therefore, pouch manufacturers could develop a relationship between the tests and apply it to process control. 21 CHAPTER 3 NEW THEORETICAL DEVELOPMENT The theoretical model, P=28/D, has been studied before. Two experiments were conducted by Feliu-Baez at the Michigan State University School of Packaging in which a restrained burst test and a peel test were performed on Tyvek/plastic medical pouches. In the first experiment, the peeling times for the peel and burst tests were controlled to be the same (F eliu-Baez, 1998, 2001). In the second experiment, one of the preliminary experiments for this dissertation project, the peeling times for the peel and burst tests were not controlled to be the same (F eliu-Baez, 2000). The reason for not controlling the times was to try to be able to describe the relationship between peel and burst tests when performed at ASTM (American Society for Standards and Materials) recommended settings, which is the way they are performed in industry. In both cases, the results showed that the theoretical development did not exactly explain burst test results in terms of peel test values. The theoretical formula (P= ZS/D) tends to overestimate the actual burst pressure. These results are an indication that the formula is not universal and they suggest that it is an oversimplification. The theoretical formula (P=2 S/D) does not account for package size. It is known fiom previous experiments that package size has a significant effect on the restrained burst pressure (F eliu-Baez, 1998). For that reason, it was hypothesized that the model accuracy could be improved by adding the package’s dimensions. A force diagram analysis was performed on the entire pouch in order to develop a new model that accounts for package size. Figure 9 (a) below shows the original length and width dimensions (Lo and W0) of a flat pouch. Figure 9 (b) shows the pouch after it is 22 pressu repICSI intuit pouch press pressurized in a restrained burst test. The dashed rectangular patch in Figure 9 (b), represents the flat area that is in contact with the restraining plates. The dotted intersecting lines represent the original length, 1.0 and original width, W0 in a pressurized pouch. Figure 9 (c) shows, individually, the original length, Lo and width, W0 in a pressurized pouch. Figure 9. Chevron Seal Pouch (a) Flat (b) Pressurized (c) Original Length, 10 and Width, W0 in a pressurized pouch 23 «- Flgi the A force diagram of a pressurized pouch is shown in Figure 10, below. It shows the original width of the pouch, W0; the width of the rectangular patch in contact with the restraining plate, WC; and the width of the pressurized vouch. Wp. It is assumed that the unsupported outer border of the pouch deforms into a circle and that the material does not stretch much. ) W0 ( . eeeeeeeeeeeeeeeeeee art C l = Quarter Circle = °°°°°° . ....... 9': *er at- m e e.’ e/‘ (2 n (D/2)) 1/4"‘(2"‘1t"'(D/2))-' on 1— We —> on ¢ Wp F. Figure 10. Force Diagram of a Center Section of a Restrained Pouch with Original, Contact and Pressurized Widths (W0, WC, and Wp, respectively) The original dimensions of the flat pouch are Lo and W0, The length and the width of the rectangular patch in contact with the restraining plates are the following: Lc= Lo— moan/2) = My (ED/2) Lo— 1.571 n We = Wo- mean/2) = wo- (an/2) Wo- 1571 n The length and the width of the pouch under pressure, with gap D, are the following: Lp= {Lo- (rm/2)} + 20)/2)= Lo -(1r/2 - 1)D = Lo— 0.571 D Wp={Wo-(1tD/2)}+2(D/2)= Wo-(n/2-1)D = Wo—o.57rn 24 0i ilk di d1 (1: Figure 11 (a), below, shows a pressurized chevron seal pouch and (b) the edge view of the deformed perimeter. Figure 11. (a) Pressurized Chevron Seal Pouch, (b) Edge View of Deformed/Rippled Perimeter df = infinitesimal seal force exerted by seal length d1 d1 = arc (seal) length dx = projection of arc length d] on horizontal plane 0 = projected angle of arc length d1 25 If S is the seal strength (lb/in), then df = S * d1 The component of (If in the vertical direction is df’cosO=S*dl*cosO where;dl*c030=dx df*c030=S*dx The total seal force in the vertical direction is, 1W pain.“ S " dx = S * deformed perimeter = S [2*(Lp+ Wp)] The plate balances the pressure acting on the rectangular patch and the seal balances the pressure acting on the unsupported border: S[perimeter] = P["working area”] where; “working area” = total pressurized area — contact area. S[2(LP+ WP)] = P[{LP* WP} - {Lc* Wc}] S[2(LP+ WP)] = P[{Io - (it/2 - 1)D} * {Wo- (TI/2 - 1)D}-{Lo- (TED/2)} *{ Wo- (RD/2)” 25(Lp+ Wp) = P[{Lo— 0.571D}*{ W0 — 0.57113} — { Lo— 1.571D}*{ wo - 157113)] 2S(Lp+ we) = P[{Lowe—.571D(1.O+Wo)+.5712D2}-{L0W0—l .571D(L0+W0)+1.5712D2}] 28(Lp + wp) = PD[(LO + wo) — 2.14213] P = 28(Lp+ Wp) / D[(Lo + W0) — 2.142D] P = ZS/D * [{(Lp+ Wp)} / {( Lo + W0) — 2.142D}] P = ZS/D * [{(Lo + W0 — 1.142D)} / {(Lo+ W0 — 2.142D}] [6] The term within the brackets in equation [6], {(1.0 + W0 -— 1.142D)} / {(Lo+ W0 — 2.142D}, will be referred to as the correction factor (CF). 26 then Mi. Hell facto The correlation obtained with equation [6] will not be better than P=ZS/D. Since the correction factor is a quantity bigger than 1, it will predict a higher burst pressure, so it will overestimate even more than P=2 S/D. The fact that the correlation is not better even when taking into consideration the size of the package suggests that there are other factors that affect it that are not included in the model. For example, the model does not account for the wrinkles formed in the sea] area and the amount of stretch of the pouch materials during a restrained burst test (“ripple effect”). In addition, if the actual geometry of the ‘Vvorking area” when deformed during a restrained burst test is not a circle, as assumed in the model, then there will be deviations between the actual and predicted burst pressures. All these factors are very difficult to measure and derive with the force diagram analysis. One way to estimate the “ripple effect” is by using the strain formula. This effect occurs due to the shortening of the length and width dimensions when the pouch is pressurized. Therefore, it depends on the strain in the length and width directions. See the equations below. 81, = (length under pressure — original length) / original length 81, =({Lo-(1r/2 -1)D}- Lo)/Lo = -0.571 D/ Ln sw = (width under pressure — original width) / original width aw = ({Wo- (rt/2 -1)D}- W0) / W0 = -0.571 D/ We According to physical principles, P = ZS/D*[{(Lo +Wo— Luzon/{(10 +w0 — 2.142n}]* ”(41.571 DI Lou-0.571 n/ won The burst pressure is equal to equation [6] times some firnction of the strain in the length and width directions (“ripple” effect). 27 Since this new model, equation [6], did not improve the accuracy of the prediction, it was decided to use an empirical approach. Multiple regression analysis was used to fit actual data to a power law model. Chapters 4 and 5 give a detailed explanation of the methodology used and the results obtained. 28 ll.- ma me ma: inel Clea pen por. 3?? Clar Tn of 1 Car dill POU CHAPTER 4 MATERIALS AND NIETHODS MATERIALS Tyvek/plastic chevron seal peelable pouches were studied in this project. This material combination and pouch style was chosen because of their widespread use in the medical device industry. The chevron peelable seal makes the opening of the pouch easier and helps the end user achieve a sterile delivery of the product. Tyvek is used in many medical applications. This spunbonded polyolefin is HDPE, nontoxic, chemically inert, naturally white and contains no binders or fillers. In addition, Tyvek provides a clean peel with low lint and has good tear strength. It is puncture, water and bacterial penetration resistant, and it is compatible with many sterilization methods. Tyvek’s porosity permits the use of gas sterilization methods, which are widely used in medical applications. The plastic side of the pouch is usually a lamination. This side provides clarity so the end user can identify the product before actually using it. This study focused on 1073B and 10593 Tyvek, two of the most commonly used Tyveks in the medical industry. Three different combinations were tested: two variations of 1073B/plastic, from two manufacturers: Rexam Medical Packaging and Tolas Health Care Packaging, and one 1059B/plastic from Rexam Medical Packaging. Pouches of different sizes were tested within each material combination. A description of the pouches tested follows below: 29 A. Material combination #1: 1. Pouch Dimensions, see Table 1 Uncoated 1073B Tflek/ Polyester/Fog Laminate —Rexam: Table 1. Dimensions for Rexam (1073B Tyvek] Polyester/Poly Laminate) Pouches Rexam Inner1 Inner1 Estimated2 Estimated2 Estimated 1’0““! Width Length Area Perimeter Aspect Ratio PKG Description (in) (in) (inz) (in) (in/in) l R03OOIB 3.25” 725” 3 23.56 21.00 2.23 2 L03005B 5.25” 9.125” 47.91 28.75 1.74 3 D32001B 7.25” 11.125” 80.66 36.75 1.53 4 T01534A 9.25” 14.125” 130.66 46.75 1.53 5 T02680A 11.25” 15.25” 171.56 53.00 1.36 1. According to equation [6], Chapter 3, inner dimensions should be used 2. The area, perimeter and aspect ratio were estimated using the pouch inner dimensions and without considering the chevron seal’s geometry. These quantities are provided only for comparison between package sizes because they will not be used in the models. 3. Pouch R0300]B- original length was 9.25”, it was cut to 7.25” 2. Thickness: a. Uncoated 1073B Tyvek - 0.0060” to 0.0086” b. Polyester Poly Laminate — 00026-00030” 3. Uncoated 1073B Tyvek Porosity: 8-36 sec/100 rec/tn2 4. Uncoated 1073B Tyvek Unit Weight: 2.1-2.3 02/de 30 B. te ' mb' i n #2: Qnm 1073B Tflbk/ PET/LDPE Laminate —Tglas: 1. Pouch Dimensions, see Table 2: Table 2. Dimensions for Tolas 1073B . ek/ PET/PE Laminate Pouches Estima -. . T0118 Innerl Innerl Estimated2 Estimated2 Aspect PKG POW" Width Length Area Perimeter Ratio Description (in) (in) (in‘) (in) (in/in) 1 10733 Tyvek/ 3” 1 1.375” 34.13 28.75 3.79 TPF-OSOIA 2 1073B Tyvek! 10.625” 15” 159.38 51.25 1.41 TPF-OSOIA _‘ 1. According to equation [6], Chapter 3, inner dimensions should be used 2. The area, perimeter and aspect ratio were estimated using the pouch inner dimensions and without considering the chevron seal’s geometry. These quantities are provided only for comparison between package sizes because they will not be used in the models. 2. Thickness: a. Uncoated 1073B Tyvek - 0.005” to 0.011” b. TPF-0501 A (polyester film/alcohol resistant primer/LDPE) - 0.0024” to 0.0026” 3. Uncoated 1073B Tyvek Porosity: 6—50 sec in 1” orifice 4. Uncoated 1073B Tyvek Basis Weight: 2.09-2.31 oz/yd2 31 C. Material combination #3: Ungated 1059B Tflek/ Poflester/Polx Laminag —Rexam: 1. Pouch Dimensions, see Table 3: Table 3. Dimensions for Rexam (1059B ek/ Polyester/Po Laminate) Pouches Rexam Inner Inner Estimated Estimated Estimated Pouch Width Length Area Perimeter Aspect Ratio PKG Description (in) (in (mi (in) (in/lg 1 T02748A 5.75” 9.125” 52.47 29.75 1.59 2 A14003B 9.25” 14.125” 130.66 46.75 1.53 1. According to equation [6], Chapter 3, inner dimensions should be used 2. The area, perimeter and aspect ratio were estimated using the pouch inner dimensions and without considering the chevron seal’s geometry. These quantities are provided only for comparison between package sizes because they will not be used in the models. 3. Pouch T02748A- original length was 14.125”, it was cut to 9.125” 2. Thickness: a. Uncoated 1059B Tyvek - 0.0053” to 0.0077” b. Polyester Poly Laminate — 0.0026”-0.0030” 3. Uncoated 1059B Tyvek Porosity: 8-36 sec/100 eo/in2 4. Uncoated 1059B Tyvek Unit Weight: 1.82-1.98 oz/yd2 32 EQUIPMENT A. Burst Test 1. Test-A-Pack Model 2600 Burst Tester (Carleton Technologies) 2. Pneumatic Open Package Fixture - F 100-1600-2 3. Aluminum Restraining Fixture (15” x 20” x 3/4”) 4. Robic Stopwatch (sensitivity +/- 0.001 seconds) See Figure 12 below Figure 12. Burst Tester with Open Package Fixture at rear and Aluminum Restraining Plates (15” x 20” x Va”) with gap = 1.0” on the right 33 B. Peel Test: 1. Instron Model 4201 Universal Testing Instrument —— Load Cell Used lkN (200 lb) 2. Instron X-Y Recorder 3. Epson LX-300 Printer 4. Robic Stopwatch (sensitivity +/- 0.001 seconds) See Figure 13 below Figure 13. Unsupported Peel Test Specimen Mounted in Pneumatic Grips of Instron Model 4201 Universal Testing Instrument 34 METHODS The methodology used in this project is as follows: 1. The pouches were conditioned at ASTM standard test conditions (73 +/- 4° F or 23 +/- 2 ° C and 50 +/- 5% relative humidity) for 48 hours prior to testing. A restrained burst test using an open package fixture was performed according to ASTM F1140-96 Standard T est Methods for Failure Resistance of Unrestrained and Nonrigid Packages for Medical Applications and the draft proposal of ASTM F 2054-00 Standard Test Methods for Burst Test Seal Strength Testing of Flexible Packages using Internal Air Pressurization with Restraining Plates. The draft proposal was used instead of ASTM F 2054-00 because the standard was not yet published at the time these experiments were performed. The reason for doing a restrained burst test is that according to data reported by Feliu-Baez (1998), the percent error between theoretical and observed burst values is at least 12% lower when using restraining plates with a 1” plate separation (gap) than when performing the unrestrained burst test. There is less package deformation during a retrained burst test. Additionally, the restrained burst test showed a lower coefficient of variation than the unrestrained test. Open packages as opposed to closed packages were tested in order to avoid the added variation of a fourth seal made with a different heat sealer. Sixty pouches of each material combination were burst tested at three different flow index values and two different plate separations. The flow index values used were 1, 5 and 9 in order to cover the entire range of possible flow values in the burst tester used. Flow index values of 1 and 9 are the lowest and 35 highest speeds at which the air enters the package, respectively. The plate separations tested were 0.5” and 1.0”, which are the recommended values and the ones usually used in industry for the pouch dimensions tested. The sample size used for each flow/plate separation combination was ten. So, 3 flow values x 2 plate separations x 10 samples = 60 pouches of each material combination. The burst pressure, bursting time and the location of failure were recorded. Appendix III shows the power calculations that were used to determine the sensitivity of the experiments when using a sample size often. . An unsupported peel test was performed according to ASTM F 88-99 Standard Test Method for Seal Strength of Flexible Barrier Materials. The unsupported peel test better represents what happens to the seal during a restrained burst test than the supported test. Four locations were tested on each pouch. Locations A and E are the left and right side seals of the pouch, respectively. Locations B and D are the left and right sides of the chevron seal, respectively. See Figure 14 below. Figure 14. Top view of sample locations in tested pouches. The pouch has the transparent plastic side facing up 36 Within each location, a one-inch wide sample strip was cut in the region where the pouch failed during the burst test. Out of the four readings taken from each pouch, only the lowest peel value was used for the correlation calculations. This was done because the lowest peel value of the four locations represents the weakest of all the regions tested, presumably where the package would break during a burst test. Forty pouches of each material combination were tested at two different crosshead speeds and two different grip separations. The crosshead speed values tested were 10 and 12 inches/minute, which are the lowest and highest values of the recommended range in ASTM F88-99. The gn'p separations used in this test were 1.0”, as recommended by ASTM F88-99 and 2.0”, which used to be recommended in the ASTM F88-94 version. The sample size used for each crosshead speed/grip separation combination was ten. So, 2 crosshead speeds x 2 grip separations x 10 sample = 40 pouches of each material combination. The peak force, total extension, energy, and peeling time for each location tested were recorded. The average force was calculated by dividing the energy, which is the area under the force-deformation curve, by the total extension. See Appendix III for power calculations. Readers should note that this research was conducted differently than the work of other researchers, like Yam (1993 ), in that the bursting and peeling times were not controlled to be the same. The times to burst and peel were recorded in order to be able to see how different they were when changing fi'om flow 1 to 9 in the burst test and fi‘om crosshead speed 10 to 12 inches/minute in the peel test. 37 ASTM recommended settings were used because ASTM standards are usually used in industry as guidelines to perform these tests. This experiment was designed to represent industry practice, and its goal is to describe the relationship between the peel and burst tests by using ASTM recommended settings and a reasonable sample size. Appendix IV has summary tables with information about testing conditions, parameters and sample size used for the three material combinations studied. 4. Data Analysis: The data collected was analyzed in two different ways. First, factorial analyses were performed with the purpose of determining the effect of flow index and plate separation, at ASTM settings, on the burst test. Similarly, a factorial experiment was performed to determine the effect of crosshead speed and grip separation, at ASTM settings, on the peel test. Second, the same data was used to validate theoretical and empirical models that predict burst pressure from known seal strength and models that predict seal strength from known burst pressure. These models were developed using data from preliminary experiments (Feliu- Baez, 1998, 1999, 2000) A. Factorial Analysis: In a 22factorial analysis all possible combinations of the factors under study are considered. The following hypothesis is tested: 38 Ho: There is no significant; a. Factor A effect b. Factor B effect and c. Interaction effect. H1: There is significant; a. Factor A effect b. Factor B effect and c. Interaction effect. The first step in this analysis is to conduct a residual analysis with the purpose of checking for normality, equality of variance and independence, which are the assumptions made in order to be able to use analysis of variance (ANOVA) (Montgomery, 1997). Once these assumptions are checked, the analysis of variance is used to test for significance of the effect on test results of the factors under study. Four 22 factorial analyses were performed using the data collected. A 22 factorial experiment studies the effect of two factors, each at two levels, on a certain response. See Table 4 below. Table 4. 22 Factorial Experiments for Burst and Peel Tests Combinations i Response Factor - Levels (low, high) tested Burst Flow Index — (1, 9) (1, 0.5”), (9, 0.5”) 1 Pressure Plate Separation - (0.5”, 1.0”) (1, 1.0”), (9, 1.0”) Burst Flow Index — (l, 5) (1, 0.5”), (5, 0.5”) 2 Pressure Plate Separation — (0.5”, 1.0”) (1, 1.0”), (5, 1.0”) Burst Flow Index — (5, 9) (5, 0.5”), (9, 0.5”) 3 Pressure Plate Separation — (0.5”, 1.0”) (5, 1.0”), (9, 1.0”) Peel Crosshead Speed — (10 ipm, 12 ipm) (10, 1.0”), (12, 1.0”) A Strength Grip Separation — (1.0”, 2.0”) (10, 2.0” , (12, 2.0”) 39 B. Model Validation: 1) Theoretical approach — the data collected in this experiment was used to validate theoretical models that were derived using force diagram analysis. The following theoretical models were studied: (a) P = ZS/D (b) P = ZS/D * [{(Lo+ Wo- 1.142D)} I {(14, +Wo - 2.142D}] See Chapter 2, equation [5] and Chapter 3 equation [6]), respectively. The analysis of these theoretical models consisted of calculating the predicted burst pressure (P) with the two formulas above and comparing them with the actual burst values obtained experimentally. A calculation of the percent error was performed in order to get a numerical comparison. Additionally, the values obtained with the theoretical formula were plotted with the experimental ones for a graphical comparison. 2) Empirical approach —A multiple regression analysis was used to fit experimental data to different power law models. This was done using a program in BASIC programming language that calculates all the regression parameters, the average percent error, and the correlation coefficient (R). MINITAB statistical software was also used for the same analysis. These power law models need to be transformed from nonlinear to “intrinsically” linear functions (Devore, 1995), by taking the logarithm of the dependent and independent variables, in order to be able to use linear regression in MINITAB. MINITAB outputs provide the regression coefficients and the coefficient of determination (R2). 40 C. Cmrison of Burst Location of Failure and Minimum Seal Strength Location: The minimum seal strength values were used in the prediction models to describe quantitatively the relationship between peel and burst test results. This value is the lowest peel value obtained out of the four locations tested in a pouch. In other words, it is the weakest of the tested sample strips cut from the seal. The location which that weakest sample strip was taken from was compared with the location of failure of the pouches that were burst tested. The purpose of doing this is to see how much agreement there was between the two tests in terms of the weakest point in the pouches tested. The results for the factorial analysis, model validations and comparison of burst location of failure with minimum seal strength location can be found in Chapter 5. 41 CHAPTER 5 RESULTS AND DISCUSSION Chapter 5 is divided in four parts. Part A has summary tables of the burst and peel test results for all package sizes and material combinations tested. Section A1 presents burst test results for the Rexam 1073B/plastic, Tolas 1073B/plastic and Rexam 1059B/plastic pouches, respectively. Section A.2 presents peel test results for the same materials. Raw data can be found in Appendix V. Part B includes a factorial analysis for burst and peel tests. This analysis has the purpose of determining the effects of flow rate and plate separation, at ASTM settings, on the burst test results and the effect of crosshead speed and grip separation, at ASTM settings, on the peel test results. Sections BI and B2 show a summary of the results for the analysis of residual and the analysis of variance, respectively that were performed as part of the factorial experiments. Appendix VI presents the analysis of variance results obtained with MINITAB statistical software. Part C uses the collected data for theoretical and empirical model validation. Section C.1 has a summary of the results for models that predict burst pressure when seal strength, plate separation, and package dimensions are known. Section C.2 shows the results for models that predict seal strength from a known burst pressure, plate separation, and package dimensions. Model validation results are found in Appendix VII. Finally, Part D has a comparison of the location of failure recorded from the pouches that were burst tested with the minimum peel strength values obtained in the pouches that were peel tested. Appendix VIII contains tables with information about location of failure and location of minimum seal strength for burst and peel test, respectively. 42 Part A. SUMMARY OF TEST RESULTS The burst test results showed that the burst pressure tends to increase with flow rate and decrease with plate separation. Tables 5 to 7 summarize the burst test results. The peel test results show no specific pattern in how changes in crosshead speed and grip separation levels affect the peel test results. Tables 8 to 13 summarize the peel test results. When examining the data from both tests together, it appears that the pouch’s seal strength and size have a confounded effect on the burst pressure. In other words, the burst pressure in the packages tested changes because of changes in seal strength and size occurring at the same time (see Tables 5 to 13). A.1. BURST TEST RESULTS A summary of burst test results is shown below. Raw data is found Appendix V. Table 5. Burst Test Results - Burst Pressure Values for Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches Packa e Size (3.25” x 7.25”), n=10 Gap Average Minimum Maximum Range Std Dev Coefficient (in) (inHz_0)_ (inH10) (inHZO) (inHzO) (inHIO) of Variatio 0.5 121.55 107.60 145.80 38.20 11.0569 9.10 0.5 127.17 106.50 150.40 43.90 12.3967 9.75 0.5 131.41 117.30 154.00 36.70 11.6055 8.83 1.0 74.09 64.90 85.70 20.80 8.5548 11.55 1.0 79.16 72.20 94.20 22.00 8.2040 10.36 9 1.0 79.76 62.60 105.20 42.60 11.8063 14.80 Packa e Size (5.25” x 9.125”), n=10 1 0.5 124.47 120.10 136.40 16.30 5.3841 4.33 0.5 128.66 111.40 147.30 35.90 10.9909 8.54 0.5 129.07 111.90 143.70 31.80 9.9336 7.70 1.0 73.46 65.70 78.60 12.90 3.7515 5.11 1.0 77.14 69.40 82.80 13.40 4.1021 5.32 1.0 77.41 74.60 80.40 5.80 1.8363 2.37 (Ill—@001— \OCAH\OUI 43 Table 5. Burst Test Results - Burst Pressure Values for Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches (Continuation) Packa e Size (7.25” x 11.125”), n-=10 Gap Average Minimum Maximum Range Std Dev Coefficient o (in) (inHzo) (inH10) (inHzO) (inHzO) (inHzO) of Variatio 1 0.5 99.05 91.80 112.10 20.30 6.9900 5 0.5 120.23 104.80 132.40 27.60 9.4468 7. 86 9 0.5 113.80 97.00 134.10 37.10 12.2291 10. 75 l 1.0 61.37 55.10 73.00 17.90 5.7562 9. 38 5 1.0 63.69 55.30 69.90 14.60 4.1538 6. 52 9 1.0 63.16 55.30 67.20 11.90 4.0034 6. 34 Package Size (9.25” x 14.125” , n=10 l 0.5 93.36 81.10 101.00 19.90 6.4662 6.93 5 0.5 108.70 89.30 122.30 33.00 10.1725 9.36 9 0.5 118.63 106.70 128.00 21.30 7.9161 6.67 1 1.0 62.35 53.70 76.50 22.80 7.1444 11.46 5 1.0 65.01 59.40 73.90 14.50 5.4554 8.39 9 1.0 70.15 61.50 78.20 16.70 5.9543 8.49 Package Size (11.25” x 15.25”), n=10 1 0.5 114.43 104.00 125.20 21.20 6.8983 6.03 5 0.5 119.44 112.80 136.50 23.70 7.4610 6.25 I 9 0.5 119.62 99.00 130.30 31.30 8.6007 7.19 l 1.0 66.71 60.60 76.00 15.40 5.2195 7.82 5 1.0 71.55 59.20 86.40 27.20 8.7746 12.26 9 1.0 77.46 65.40 89.60 24.20 7.5244 9.71 Table 6. Burst Test Results - Burst Pressure Values for Tolas (1073B Tyvek/PET/LDPE Laminate) Pouches Pack£g_e Size (3” x 11.375”), n=10 Gap Average "’ “ Range Std Dev Coefficienq o (in) (inHZO) (inHZO) (inHzo) £21120) @910) of Variatio l 0.5 119.93 107.70 136.50 28.80 8.7053 7.26 5 0.5 134.37 112.60 154.90 42.30 12.5471 9.34 I 9 0.5 134.43 112.80 154.40 41.60 15.8228 11.77 I 1 1.0 76.69 70.70 93.40 22.70 7.2930 9.51 I 5 1.0 83.68 76.00 95.50 19.50 5.3483 6.39 I 9 1.0 84.15 76.30 91.20 14.90 5.6036 6.66 I Packa e Size @0625” x 15”), n=10 1 0.5 105.51 100.20 110.80 10.60 3.3435 3.17 5 0.5 106.12 94.10 117.60 23.50 6.4594 6.09 9 0.5 107.48 93.00 120.90 27.90 8.4335 7.85 1 1.0 62.97 45.50 72.10 26.60 7.2498 11.51 5 1.0 66.34 52.40 73.50 21.10 7.0454 10.62 9 1.0 69.46 54.40 76.20 21.80 6.2292 8.97 Table 7. Burst Test Results — Burst Pressure Values for Rexam (1059B Tyvek/Polyester/Poly Laminate) Pouches Packa e Size (5.75” x 9.125”), n=10 Gap Average “' " Range Std Dev Coefficient o in (inHZO) inH20 inHZO) inHzO) (infiO) of Variatio 1 0.5 114.28 100.10 133.90 33.80 12.5685 5 0.5 121.68 106.70 146.60 39.90 12.8236 10.54 I 9 0.5 123.47 111.10 139.50 28.40 9.1658 7.42 I l 1.0 66.37 57.30 79.70 22.40 6.2454 9.41 I 5 1.0 69.40 59.30 82.70 23.40 6.7676 9.75 I 9 1.0 71.21 49.20 83.40 34.20 11.1145 15.61 I Package Size (9.25” x 14.125” , n-=10 l 0.5 115.47 95.10 133.50 38.40 10.3554 8.97 5 0.5 125.00 118.70 131.70 13.00 4.3594 3.49 9 0.5 132.43 116.80 146.20 29.40 8.7737 6.63 1 1.0 70.30 62.40 75.00 12.60 4.6743 6.65 5 1.0 75.44 69.90 81.60 11.70 3.6846 4.88 9 1.0 76.79 70.10 85.50 15.40 5.6518 7.36 45 A.2. PEEL TEST RESULTS A summary of peel test results is shown below. Raw data is found Appendix V. Table 8. Peel Test Results - Seal Strength Values (PEAK FORCE) for Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches e Size (3.25” x 7.25”), n=10 Standard Coefficient GS Average Minimum Maximum Range Deviation of , (in) (lb/in) (lb/in) (lb/in) (lb/in) (lb/in) Variation 1 1.5983 1.2350 2.0350 0.8000 0.2173 13.60 1 1.4840 1.0090 1.8040 0.7950 0.2506 16.89 2 1.5054 0.8966 1.9650 1.0684 0.2742 18.21 2 1.5775 1.2830 1.8420 0.5590 0.1783 11.30 Package Size (5.25” x 9.125”), n=10 10 1 1.5069 1.1920 1.8520 0.6600 0.2257 14.98 12 1 1.5818 1.1010 1.8740 0.7730 0.2633 16.65 L10 2 1.5446 1.3580 1.8090 0.4510 0.1625 10.52 12 2 1.5980 0.9820 2.1740 1.1920 0.3260 20.40 Package Size (7.25” x 11.125”). n-=10 10 1 1.3325 1.0680 1.6380 0.5700 0.1891 14.19 12 1 1.4916 1.0090 1.7400 0.7310 0.2650 17.77 10 2 1.5713 1.1700 1.9170 0.7470 0.2532 16.11 12 2 1.3486 0.8161 1.9810 1.1649 0.3023 22.42 Packa e Size (9.25” x 14.125”). n=10 10 FLl 1.5528 1.1330 1.9270 0.7940 0.2557 16.47 12 1 1.6133 1.3850 1.8630 0.4780 0.1740 10.79 10 2 1.5735 1.0090 2.0400 1.0310 0.2876 18.28 12 2 1.6118 1.3960 1.9170 0.5210 0.1665 10.33 Package She (11.25” x 15.25”). n=10 10 1 1.7273 1.4710 2.1370 0.6660 0.2200 12.74 12 1 1.5892 1.2130 1.7720 0.5590 0.1871 11.77 10 2 1.6317 1.0200 1.9870 0.9670 0.2875 17.62 12 2 1.4629 0.9342 1.7930 0.8588 0.2599 17.77 NOTES: 1. Column #3 has the average of the “minimum peak peel force” from 10 pouches, Refer to Appendix I for Glossary 2. CS = Crosshead Speed (inches per minute), GS = Grip Separation (inches) 46 Table 9. Peel Test Results — Seal Strength Values (PEAK FORCE) for Tolas (1073B Tyvek/PET/LDPE Laminate) Pouches Packa e Size ( ” x 11.375”), n=10 Standard Coefficient CS GS Average “' ' “ ' Range Deviation of ipm) (in (lg/in) (lb/in) (lb/in) (lb/in) (lb/in) Variation I 10 1 1.6881 1.2890 1.9700 0.6810 0.2080 12.32 I 12 1 1.8422 1.4660 2.1640 0.6980 0.1876 10.18 [10 2 1.8492 1.5250 2.1050 0.5800 0.1631 8.82 I 12 2 1.8019 1.5460 2.1370 0.5910 0.1538 8.54 Packa e Size (10.625” x 15”), n=10 10 1 1.7762 1.4550 2.1370 0.6820 0.2126 11.97 I 12 1 1.7625 1.4600 2.1260 0.6660 0.2076 11.78 I I10 2 1.7985 1.1100 2.0780 0.9680 0.2821 15.69 I I12 2 1.9672 1.2780 2.2600 0.9820 0.3013 15.32 I NOTES: 1. Column #3 has the average of the “minimum peak peel force” from 10 pouches, Refer to Appendix I for Glossary 2. CS = Crosshead Speed (inches per minute), GS = Grip Separation (inches) Table 10. Peel Test Results — Seal Strength Values (PEAK FORCE) for Rexam (1059B Tyvek/Polyester/Poly Laminate) Pouches Packa e Size (5.75” x 9.125”), n=10 Standard Coefficient CS GS Average "' ' “ ' Range Deviation of ipm) (in) (lb/in) filin) (lb/in) (lb/in) (lb/in) Variation 10 1 1.1565 0.9127 1.4980 0.5853 0.1942 16.79 I 12 1 1.2640 0.8698 1.5890 0.7192 0.2422 19.16 I 10 2 1.3288 0.9342 1.5570 0.6228 0.1810 13.62 I 12 2 1.1922 0.9074 1.5410 0.6336 0.2179 18.28 Packa e Size (9.25” x 14.125”) n-=10 I 10 1 1.3934 1.0680 1.8420 0.7740 0.2761 19.81 I I 12 1 1.4340 1.1380 1.8790 0.7410 0.2305 16.07 I I 10 2 1.4439 1.0360 1.5950 0.5590 0.1639 11.35 I I 12 2 1.4352 1.1220 1.7400 0.6180 0.2642 18.41 I NOTES: 1. Column #3 has the average of the “minimum peak peel force” from 10 pouches, Refer to Appendix I for Glossary 2. CS = Crosshead Speed (inches per minute), GS = Grip Separation (inches) 47 Table 11. Peel Test Results — Seal Strength Values (AVERAGE FORCE) for Rexam (1073B 'I‘yveklPolyester/Poly Laminate) Pouches Package Size4(3.25” x 7.25”), n=10 Standard Coefficient CS GS Average"' ' " ' Range Deviation of Lipm) (in) (lb/in) (lb/in) (lb/in) (lb/in) (lb/in) Variation 10 1 1.0834 0.8111 1.3078 0.4967 0.1498 13.83 7; 1.1135 0.7087 1.4881 0.7794 0.2113 18.98 Size (7.25” x 11.125”) n-=10 12 1 1.0095 0.5947 1.2788 0.6841 0.2020 20.01 10 2 1.0521 0.6245 1.3323 0.7078 0.1796 17.07 12 2 1.0822 0.8792 1.2583 0.3791 0.1181 10.91 Packa e Size (5.25” x 9.125”), n=10 10 1 1.0164 0.7133 1.3095 0.5962 0.1922 18.91 I I12 1 1.0243 0.7026 1.2429 0.5403 0.1762 17.20 I I 10 2 1.1123 0.9855 1.3071 0.3216 0.1147 10.31 I 2 I e :E’ % 10 1 0.8592 0.7265 1.0830 0.3565 0.1186 13.80 I I 12 1 0.9806 0.7007 1.1810 0.4803 0.1665 16.98 I I 10 2 1.0776 0.7985 1.4077 0.6092 0.1969 18.27 I I 12 2 0.9132 0.5967 1.3960 0.7993 0.2169 23.75 I Package Size (9.25% 14.125”) n=10 ’ I10 1 1.0181 0.7036 1.3162 0.6126 0.1945 19.10 I I 12 1 1.0093 0.8103 1.1971 0.3868 0.1364 13.51 I I 10 2 1.1235 0.7003 1.5076 0.8073 0.2119 18.86 I 12 2 1.1169 0.8903 1.2407 0.3504 0.1110 9.94 | Packa eSize(11.25”x15.25”) n=10 7 I 10 1 1.1702 0.8709 1.3772 0.5063 0.1644 14.05 I I 12 1 1.0405 0.8067 1.2292 0.4225 0.1503 14.44 I I 10 2 1.0954 0.6841 1.3599 0.6758 0.2348 21.44 I I 12 2 1.0290 0.6050 1.3361 0.7311 0.2070 20.12 I 1. Column #3 has the average of the “minimum average peel force” from 10 pouches, Refer to Appendix I for Glossary 2. CS = Crosshead Speed (inches per minute), GS = Grip Separation (inches) 48 Table 12. Peel Test Results — Seal Strength Values (AVERAGE FORCE) for Tolas (1073B Tyvek/PET/LDPE Laminate) Pouches E75”), n=10 Standard Coefficient Average “" ' " Range Deviation of (lb/in) (lb/in) Slb/in) (lb/in) (lb/in) Variation 1.1824 0.9645 1.3968 0.4323 0.1412 11.94 I 12 1 1.2403 1.0020 1.5177 0.5157 0.1483 11.96 I 10 2 1.2892 1.0768 1.5230 0.4462 0.1386 10.75 I 12 2 1.2835 1.0219 1.4974 0.4755 0.1345 10.48 Packa e Size (10.625” x 15”), n=10 7 10 1 1.2438 1.0243 1.6099 0.5856 0.1969 15.83 I '12 1 1.2131 0.9366 1.4898 0.5532 0.1794 14.79 I I 10 2 1.3080 0.7888 1.5349 0.7461 0.2150 16.44 I I 12 2 1.3894 0.9952 1.6920 0.6968 0.2106 15.16 I NOTES: 1. Column #3 has the average of the “minimum average peel force” from 10 pouches, Refer to Appendix I for Glossary 2. CS = Crosshead Speed (inches per minute), GS = Grip Separation (inches) Table 13. Peel Test Results — Seal Strength Values (AVERAGE FORCE) for Rexam (1059B Tyvek/Polyester/Poly Laminate) Pouches Package Size (5.75” x 9.125”), n=10 Standard Coefficient CS GS Average "' ' " ' Range Deviation of (ipm) (in) (lb/in) (lb/in) (lb/in) (lb/in) (lb/in) Variation 10 1 0.7684 0.5807 1.0201 0.4394 0.1574 20.48 12 1 0.8324 0.6813 1.0540 0.3727 0.1290 15.50 10 2 0.9270 0.6157 1.0634 0.4477 0.1400 15.10 12 2 0.8533 0.6605 1.1195 0.4590 0.1567 18.36 Packa e Size (9.25” x 14.125”) n-=10 7 I 10 1 0.8792 0.7032 1.1925 0.4893 0.1693 19.26 I I 12 1 0.9303 0.7214 1.3133 0.5919 0.1754 18.85 I I 10 2 0.9679 0.7574 1.1495 0.3921 0.1222 12.63 J I 12 2 0.9856 0.7788 1.1823 0.4035 0.1776 18.02 I NOTES: 1. Column #3 has the average of the “minimum average peel force” from 10 pouches, Refer to Appendix I for Glossary 2. CS = Crosshead Speed (inches per minute), GS = Grip Separation (inches) 49 Part B. FACTORIAL EXPERIMENTS Four 22 factorial experiments were run (see Table 4, Chapter 4) with the purpose of testing the significance of the test parameters, at ASTM settings, on the results. The test parameters under study are the flow rate and plate separation in the burst test, and the crosshead speed and grip separation on the peel test. The analysis was performed for each pouch under study. The peel test results were analyzed using the average of the “minimum peak peel force” and the average of the “minimum average peel force” values. Refer to Appendix I for Glossary. The factorial experiment analysis was divided in two parts: analysis of residuals and analysis of variance. B.1. ANALYSIS OF RESIDUALS The assumptions for an analysis of variance are that model errors and the observations are normally and independently distributed with the same variance in each factor level (Montgomery, 1997). An analysis of the residuals can be used to check these assumptions. The residual is the difference between the actual observation and the predicted value from a least-squares fit of the underlying analysis of variance model to the sample data. The normality assumption can be checked with a normal probability plot of the residuals and a visual examination of the data. Ifthe data are adequately described by a normal distribution, the plotted data should fall approximately along a straight line. Plotting the residuals against the run order in which the experiment was performed can check the independence assumption. Any pattern in this plot may indicate that the observations are not independent. In order to check the equal variance assumption, the 50 residuals should be plotted against each factor level. The spread of the data should be similar at each factor level (Montgomery, 1997). An analysis of residuals was performed with the data from each package tested. All plots showed that the assumptions of normality, independence and equal variance were reasonable. Since the analysis of residuals was satisfactory, an analysis of variance was conducted. The results are summarized in the following section. B.2. ANALYSIS OF VARIANCE An analysis of variance was conducted for each of the factorial experiments designed (see Table 4, Chapter 4) and for each of the package sizes and material combinations under study. The analysis of variance results obtained fi'om MINITAB are tabulated in Appendix VI. The analyses of variance performed with the burst test results showed that plate separation had a significant effect on the burst pressure for all the package sizes at each of the material combinations tested. Additionally, it showed that flow index had a significant effect on the burst pressure when the extreme values, 1 and 9, were used. This was true for all package sizes and each of the material combinations tested. When comparing flow indexes 1 and 5, a significant difference in burst pressure was observed mostly in bigger packages. When the comparison was made between flow indexes 5 and 9, the burst pressure tended to show no significant difference. Burst pressure values obtained at flow index 1 were lower than the ones obtained at flow indexes 5 and 9. Tables 14 to 16, in section B.Za, provide a summary of the analysis of variance for the burst test results. 51 The analyses of variance performed with the peel test results showed that the crosshead speed and grip separation did not have a significant effect on either the peak or average peel test results. Tables 17 to 19, in section B.2b, provide a summary of the analysis of variance for the peel test results when using peak and average force values. Differences in the time it takes to burst test a package and the time it takes to peel a sample strip at the selected settings can explain the findings for flow index and crosshead speed efl'ects on the burst and peel test results, respectively. In other words, the time dependency of the viscoelastic materials used in these pouches can be used to explain these results. A summary of the test completion times is provided below: Burst Test: 1. at Flow index 1 — 100 to 145 seconds 2. at Flow index 5 — 11 to 13 seconds 3. at Flow index 9 — 5.5 to 7 seconds Peel Test: 1. at Crosshead Speed 10 ipm — 4.6 to 6.6 seconds 2. at Crosshead Speed 12 ipm — 3.9 to 5.6 seconds Refer to Appendix V for information on test completion times. If a package seal is stressed slowly, it will elongate and then break at a lower value than if it is stressed quickly. This fact can explain the difference found in burst pressure when using flow index of 1 and 9. At flow index 1, the observed burst test completion times ranged between 100 and 145 seconds at both of the plate separations tested. This is significantly slower than when testing at flow index 9, in which the burst test completion time ranged between 5.5 and 7 seconds. At flow index 9 the burst values 52 were found to be higher and significamly different than the burst values at flow index 1. Similarly, the difference in burst pressure when testing at flow indexes l and 5 can be explained by the difference in the time it takes to complete the test. At flow index 5, it takes approximately 11 to 13 seconds to complete the burst test, which is significantly less time than what it takes at flow index 1 (100 to 145 seconds). The resulting burst pressure for flow index 5 was higher and significantly different than the burst pressure obtained when flow index 1 was used. This was true for bigger packages at each of the materials combinations tested. According to Burgess, 1994, the force required to stretch a viscoelastic specimen to a given length quickly is always greater than the force required to stretch it to the same length slowly. However, the speed effect on the materials under study is not apparent within the range of crosshead speeds used in the peel tests, because this range is too narrow. It can be seen that the difference in peel test completion times at 10 and 12 ipm is not as large as it was the difference in burst test completion times when using different flow rates. At 10 ipm it takes between 4.6 to 6.6 seconds to complete the test. At 12 ipm it takes between 3.9 to 5.6 seconds. 53 B.2.a. Factorial Experiment - BURST TEST RESULTS: Tables 14 to 16 summarize the factorial experiment results for the burst test results of each of the material combinations under study. The analysis of variance results obtained from MINIT AB statistical software can be found in Appendix VI. 1. Uncoa 1073 ester/Po Laminat - Rexam Table 14. Results for Burst Test 22 Factorial Experiments Rexam (1073B/Polyester/Poly Laminate) Pouches riment #1 — Flow rate and Plate Separation Effect on the Burst Pressure Low High Factor Level Level Conclusion A Significant effect on the burst pressure Flow Rate 1 9 of the 5 package sizes under study B Significant effect on the burst pressure Plate Separation 0.5” 1.0” of the 5 package sizes under study Experiment #2 - Flow rate and Plate Separation Effect on the Burst Pressure Low High Factor Level Level Conclusion Significant effect on the burst pressure of the following packages sizes: A 1 5 (7.25” x 11.125”) Flow a.“ (9.25” x 14.125”) (11.25” x 15.125”) B Significant effect on the burst pressure Plate Separation 0.5” 1.0” of the 5 package sizes under study Experiment #3 - Flow rate and Plate Separation Effect on the Burst Pressure Low High Factor Level Level Conclusion A Significant effect on the burst pressure Flow Rate 5 9 of package size (9.25” x 14.125”) B Significant effect on the burst pressure Plate aration 0.5” 1.0” of the 5 package sizes under study 54 H. Uncoated 1073B/PET/PE Laminate - Tog; Table 15. Results for Burst Test 21 Factorial Experiments Tolas (1073B/PET/PE Laminate) Pouches Experiment #1 - Flow rate and Plate Sjpamtion Effect on the Burst Pressure 7 I Low High Factor Level Level Conclusion I Significant effect on the burst pressure I Flow Rate 1 9 of the 2 package sizes under study I Significant effect on the burst pressure I Plate Separation 0.5” 1.0” of the 2 package sizes under study Ex eriment #2- Elow rate and Plate Se aration Effect on the Burst Pressure I Low High I Factor Level Level Conclusion L A Significant effect on the burst pressure I Flow Rate 1 5 of package size ( ” x 11.375”) B Significant effect on the burst pressure I Plate Separation 0.5” 1.0” of the 2 package sizes under study Ex riment #3- E ow rate and Plate be aration Effect on the Burst Pressure I Low High I Factor Level Level Condfln I A NO significant effect on the burst Flow Rate 5 9 pressure of the 2 package sizes under stqu B Significant effect on the burst pressure I Plate Separation 0.5” 1.0” of the 2 package sizes under study 55 HI. Uncoat 1059B/Po ester/Po Laminate - Rexam Table 16. Results for Burst Test 22 Factorial Experiments Rexam (1059B/Polyester/Poly Laminate) Pouches Low High Experiment #1 - Flow rate and Plate Se aration Effect on the Burst Pressure Factor Level Level Conclusion I l A Significant effect on the burst pressure I Flow Rate 1 9 of the 2 package sizes under study B Significant effect on the burst pressure Plate Separation 0.5” 1.0” of the 2 package sizes under study Ex eriment #2- Flow rate and Plate Separation Effect on the Burst Pressure I Low High I Factor Level Level Conclusion A Significant effect on the burst pressure Flow Rate 1 5 of package size (9.25” x 14.125”) B Significant effect on the burst pressure I Plate Separation 0.5” 1.0” of the 2 packajisizes under study Ex eriment #3- E ow ralte and Plate Separation Effect on the Burst Pressure 7 I Low High Factor Level Level Conclusion L A Significant effect on the burst pressure I Flow Rate 5 9 of package size (9.25” x 14.125”) B Significant effect on the burst pressure Plate Se aration 0.5” 1.0” of the 2 package sizes under study I 56 B.2.b. Factorial Experiment — PEEL TEST RESULTS: Tables 17 to 19 summarize the factorial experiment results for the peel test results of each of the material combinations under study. The analysis of variance results obtained from MINITAB statistical software can be found in Appendix VI. I. Uncoated 1073B/Pouester/Pou Laminate - Rexam Table 17. Results for Peel Test 22 Factorial Experiment Rexam (1073B/Polyester/Poly Laminate) Pouches 7 Using Peak Force Values I Low High I Factor Level Level Conclllfiion I A 10 12 NO significant effect on the peel strength Crosshead Speed ipm ipm of the 5 package sizes under study B NO significant effect on the peel strength I Grip Separation 1.0” 2.0” of the 5 package sizes under study Usin Avera e Force Values Low High I Factor Level Level Conclusion I A 10 12 NO significant effect on the peel strength I Crosshead Speed ipm ipm of the 5 package sizes under study I B NO significant effect on the peel strength I Grip Separation 1.0” 2.0” of the 5 package sizes under study 57 H. Uncoated 1073B/PET/PE Laminate - Tolas Table 18. Results for Peel Test 22 Factorial Experiment Tolas (1073B/PET/PE Laminate) Pouches Usin Peak Force Vflles I Low High I Factor Level Level Conclusion I A 10 12 NO significant effect on the peel strength I Crosshead Speed ipm ipm of the 2 package sizes under study B NO significant effect on the peel strength I Grip Separation 1.0” 2.0” of the 2package sizes under study Usin Avera e Force Values I Low High I Factor Level Level Conclusion I A 10 12 NO significant effect on the peel strength I Crosshead Speed ipm ipm of the 2 package sizes under study B NO significant effect on the peel strength I Grip Separation 1.0” 2.0” of the 2 package sizes under study III. Uncoated 1059B/Po ester/Po Laminate - Tolas Table 19. Results for Peel Test 22 Factorial Experiment Rexam (1059B/Polyester/Poly Laminate) Pouches Using Peak Force Values I Low High Factor Level Level Conclu_sion I 10 12 NO significant effect on the peel strength I Crosshead Speed ipm ipm of the 2 package sizes under study '0 NO significant effect on the peel strength I Gri SeB aration 1.0” 2.0” of the 2package sizes under study Using Average Force Values I Low High Factor Level Level Conclusion IC 10 12 NO significant effect on the peel strength I Crosshead Speed ipm ipm of the 2 package sizes under study IG NO significant effect on the peel strength I @p Separation 1.0” 2.0” of the 2 package sizes under study 58 Part C. MODEL VALIDATION Since both the peel and the burst tests are destructive tests, it was not possible to pair individual samples for the data analysis. For that reason, the average of a group of ten samples burst tested under the same testing conditions was compared with the average of a group of ten samples peel tested under the same conditions. The model validation was performed in a way that, if this method is reproduced in the future for other material and package sizes, it will require the least amount of samples and time. For that reason, the data for this analysis was selected from the data gathered for the factorial experiment. Since the flow index and plate separation were found to be significant in the burst test results, all the data collected in the burst test was used for model validation. In other words, the data coming from 3 different flow rates at each of the 2 plate separations was used. Since the factorial analysis showed no significant effect of crosshead speed and grip separation in the peel test results, only the data obtained at crosshead speed = 12 ipm and a grip separation of 1” was chosen. The reason for choosing 12 ipm is that the peel test is a little faster than when using 10 ipm, so it requires less time. A grip separation = 1.0” is what the ASTM F 88-99 recommends. Refer to Appendix VII for the data used in model validation. 59 C.1 Predicting Burst Pressure Two theoretical models and three empirical models were used to predict the burst pressure from the seal strength values. The theoretical models were developed with force diagram analysis as described by equations [5] and [6], found in Chapters 2 and 3, respectively. Empirical models were developed by using multiple regression analysis to fit experimental data to a power law relationship. The five models used to predict burst pressure from peel strength are shown below: Theoretical Model #1: P = ZS/D Theoretical Model #2: P = 2S/D * [CF] where: CF = [{ (130+Wo-1 . 142D)/(Lo+Wo-2. 142D)}] Empirical Model #1: P = K [X11P11X21PZIX31P3 where: X] = {S/D}*CF; CF =[{(Lo+wo-1.14zn)/(10+wo-2.1421))}] x2=D/L,; Lc =10-1.571D x3 =D/Wc; wc =wo-1.57ro Empirical Model #2: P = K [Xilnllen where: X1 = {S/D} x2 = CF; CF = [{(L0+Wo-1.142D)/(L0+Wo-2.142D)}] 60 Empirical Model #3: P = K [KllmlleP2 where: X1 = {SID} X2 = W The three empirical models have a power law relationship. A power relationship was used instead of a linear or exponential relationship because of the behavior of the experimental data. Scatter plots of burst pressure (P) vs. (2S/D) and (P) vs. (2S/D*CF) were made with data from the three material combinations tested. A linear, an exponential and a power fit were tried. Out of the three, the best fit was obtained with a power law relationship. This was true for all material combinations tested. The power law relationships in the empirical models above were converted from a nonlinear firnction to an “intrinsically linear” one by using logarithms. The transformed data was used to produce a scatter plot to check for linearity and for a residual analysis. Since the scatter plots and the residual analysis were both satisfactory, a linear multiple regression analysis was performed. See Appendix VII.A for an example of transformation of data. It can be seen that the empirical models are based on the theoretical formulas. The independent variables are equal to terms that were derived theoretically with the use of force diagram analysis, as described in Chapters 2 and 3. In empirical model #1, X1 is equal to the right side of theoretical model #2, (S/D)*CF (derived in Chapter 3). The other two independent variables (X; and X3) are the ratio of the plate separation to the length (LC) and width (W c) of the pouch that is touching the plates (as defined in Chapter 3), respectively. Empirical model #2 moves towards a simpler model because it only has 61 two independent variables. The first variable is (SID), as in theoretical model #1 (derived in Chapter 2), and the second one is the correction factor (CF as derived in Chapter 3). In empirical model #3, which is the simplest one, X1 is equal to (SID) and X2 is (IJW), the aspect ratio of the package. None of the empirical models includes flow index as an independent variable. The effect of flow index on burst test results was so small that it was considered negligible for practical purposes. Including the flow index in the model is equivalent to multiplying the predicted burst pressure by 1.10 at most when the maximum value of flow index (9) is used. That is because the power to which the variable flow would be raised to is 0.04 (9 0'04 = 1.10). These results can be found in Appendix VII. Appendix VII.B includes the formulas used for calculating the average percent error, the regression parameters (IQ and p1, p2, ..., pn), correlation coefficients (R), and the burst pressure (P) prediction intervals for the three empirical models. The regression results for empirical models #1, #2, and #3, when flow index is included as one of the independent variables, are tabulated in Appendix VII.C The positive aspect of not including flow index as independent variable in the empirical models is that the model results will be applicable to burst testers different than the one used. If the flow index was included as an independent variable, the fact that the burst tester used has no measurable units for the flow index would have made the model unique for that particular burst tester. The regression analysis was performed for the three empirical models without including the flow index as an independent variable. The results were analyzed and 62 tabulated for an easier comparison against the theoretical model results (Tables 20-22). The following was found: 1. The empirical models had a lower average percent error than the theoretical ones. For 1073B Tyvek/plastic pouches lower average percent errors were obtained when using average force in theoretical models. Slightly better results, in terms of correlation coefficient and average percent errors, were obtained when using average force values in the empirical models. This was true for all material combinations. All empirical models provided good results. In general, empirical models #1 and #3 provided better results than empirical model #2. Model #1 resulted in slightly higher correlation coefficients and tended to have smaller average percent errors, which made it the most accurate. Model #3 provided more simplicity. When all material combinations were compared within the same empirical model (Tables 88 to 90 in Appendix VII.D) model #3 resulted in similar regression parameters for the three material combinations under study. This makes model #3 a very attractive one. Besides being simple and having similar regression parameters for all material combinations, the regression parameters are reasonable in magnitude, and the model results in good correlation coefficient and average percent error results A summary of the validation results for the two theoretical and three empirical models that predict burst pressure (P) is shown below. Summary Tables 20 to 22 and Figures 15 to 20 display these results. The tables show the average percent errors for all 63 models and the regression parameters (K, and p1, p2, ..., pn), correlation coefficients (R), and burst pressure (P) prediction intervals for the empirical models. Appendix VII.D, includes the data arranged in the way it was used for this analysis, the regression results for the three empirical models and has tables with the actual and predicted results for individual observations along with the average percent errors for all models. 64 L yum 1073B/P9_IygterIPpfl LEM gt; - Rggm: Table 20. Validation Results for Burst Pressure Prediction Models Rexam (1073B/Polyester Poly Laminate) Pouches Us' Peak Force Values Average PI — Single Model ('/s) Regression R Responsel Error Coefficients kg (lbs/in”) Theoretical #1 34.66 -- —- -- Theoretical #2 41.14 -- -- -- K = 2.44 Empirical 5.48 p1 = 1.01 #1 p2 = 0.23 0.9654 P +/- 0.5143 P +/- 0.0924 p3 = - 0.03 0.9612 K = 1.36 Empirical 5.53 p1 = 0.91 0.9624 P +/- 0.5554 P +/- 0.0998 #2 p2 = 3.41 0.9597 K = 1.53 Empirical 5.95 p1 = 0.74 0.9601 P +/- 0.5616 P +/- 0.1009 #3 p2 = 0.37 0.9571 Us' Avera e Force Values Average PI — Single PI - Mean Model ('/o) Regression R Responsel Response Error Coefficients R=§L (lbs/inz) (lbs/irr’) Theoretical #1 14.40 -- -- -- -—- Theoretical #2 10.82 -- --- --- -- K = 3.87 Empirical 5.14 p1 = 1.00 #1 p2 = 0.29 0.9704 P +/- 0.4713 P +/- 0.0846 p3 = - 0.09 0.9670 Empirical K = 2.10 #2 5.27 p1 = 0.88 0.9677 P +/- 0.5080 P +/- 0.0912 p2 = 2.67 0.9654 Empirical K = 2.17 #3 5.78 p1 = 0.74 0.9656 P +/- 0.5220 P +/- 0.0938 _ p2 = 0.30 0.9628 NOTES: P = Burst Pressure, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively Refer to Appendix VH.D for a description of the models and data used 65 n 1073 ET E min —T Table 21. Validation Results for Burst Pressure Prediction Models Tolas (1073B/PET/PE Laminate) Pouches Us' Peak Force Values Average PI - Single PI — Mean Model ('/o) Regression R Response1 Response2 Error Coefficients 13:, (lbs/m2) (lbs/hf) Theoretical #1 53.49 -- -- -- -- Theoretical #2 60.04 -- -- -- -- K = 7.29 Empirical 3.33 p1 = 1.57 #1 p2 = 0.89 0.9880 P +/- 0.3426 P +/- 0.0950 p3 = - 0.11 0.9834 Empirical 4.18 K = 1.12 #2 p1 = 0.92 0.9830 P +/- 0.4584 P +/- 0.1271 p2 = 5.37 0.9793 K = 1.54 Empirical 3.32 p1 = 0.68 0.9880 P +/- 0.3732 P +/- 0.1035 i #3 p2 = 0.17 0.9854 Usin Avera e Force Values I Average PI — Single PI — Mean Model (7.) Regression R ResponseI Response2 Error Coefficients R91 (lbs/i111) (Ibs/inz) Theoretical #1 12.96 -- -- -- -- Theoretical #2 13 .40 --- -- --- --- K = 20.40 Empirical 3.33 p1 = 1.78 #1 p2 = 1.10 0.9880 P +/- 0.3426 P +/- 0.0950 p3 = - 0.13 0.9834 Empirical K = 1.52 #2 4.33 p1 = 0.95 0.9815 P +/- 0.4806 P +/- 0.1333 p2 = 5.99 0.9772 Empirical K = 1.97 . I #3 3.25 p1 = 0.68 0.9879 P +/- 0.3732 P +/- 0.1035 p2 = 0.19 0.9854 NOTES: P = Burst Pressure, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively Refer to Appendix VH.D for a description of the models and data used 66 HI. Uncoat 1059B/Po r/P -R m: Table 22. Validation Results for Burst Pressure Prediction Models Rexam (1059B/Polyester Poly Laminate) Pouches Usin Peak Force Values Average PI — Single Model ('/s) Regression R Responsel Error Coefficients RgL (lbs/m1) Theoretical #1 13.70 -- -- -- Theoretical #2 18.43 -- -- --- K = 15.45 Empirical 3.44 p1 = 1.21 #1 p2 = 2.50 0.9887 P +/- 0.3675 P +/- 0.1019 p3 = - 2.01 0.9844 K = 1.82 Empirical 3.82 p1 = 0.84 0.9866 P +/— 0.4425 P +/- 0.1227 #2 p2 = 1.68 0.9834 K = 1.25 Empirical 3.59 p1 = 0.77 0.9882 P +/- 0.4078 P +/- 0.1131 #3 p2 = 1.12—J 0.9854 _ Usin Avera e Force Values __ Average PI — Single Model ('/o) Regression R Responsel Error Coefficients R... (lbs/inz) Theoretical #1 25.90 -- -- -- -- Theoretical #2 22.60 --- -- --- -- K = 20.89 Empirical 4.08 p1 = 1.14 #1 p2 = 2.37 0.9887 P +/- 0.3675 P +/- 0.1019 p3 — - 1.94 0.9844 Empirical K = 2.69 #2 3.76 p1 = 0.82 0.9872 P +/- 0.4303 P +/- 0.1193 p2 = 1.10 0.9844 Empirical K = 1.98 #3 3.59 pl = 0.77 0.9882 P +/- 0.4078 P +/- 0.1131 NOTES: P = Burst Pressure, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively Refer to Appendix VH.D for a description of the models and data used 67 0.9854 — The data was used to construct bar charts so a visual comparison between the actual burst values at three different flew rates (1, 5 and 9), and the predicted values fiom the two theoretical and three empirical models could be made (Figures 15 to 20). It can be seen that, in most cases, the bars representing the empirical models (bars with horizontal stripes) are more similar in height to the bars representing the actual values (bars with inclined stripes) than the bars representing the theoretical models (solid bars). Since there is more agreement between actual and empirical model results than between actual and theoretical model results, it is logical to observe lower percent errors for the empirical models. Second, when comparing Figures 15 with 16 and Figures 17 with 18, for 10733 Tyvek/plastic pouches, it can be seen that the values for the theoretical models (solid bars) are significantly lower when using average force than when using peak force values. That agrees with the finding of lower average percent errors obtained when using average force than when using peak force in theoretical models for 1073B Tyvek/Plastic pouches. Third, it was observed that there is a tendency of the theoretical models to overestimate the actual burst pressure when peak force values are used. The overestimation increases at smaller gaps. Figures 15, 17 and 19 show results using peak values. In addition, a tendency of the theoretical models to underestimate the actual values when average force values are used was observed. The underestimation increases at bigger gaps. Figures 16, 18 and 20 show results using average values. 68 We scream n «a 35:5 u E auras".— m 2 sources... I a. 3:28: I E ® a :52. a E © m :53, n E® .— .253. n Acacias—ass: 111 n zIll/fill) (.1) answer tuna 99mm 18 lrnnv 9. v ( as 1 mg. i a.» Anon—.5 3.3% :3.— «53V Acacia—ar— bem notch—again. fink: vow-cone 8:25.— Salem sensuieem as E £38.... .95: 88.8; a 13% .8 scene. 69 7 me seesaw n «a autism n 2 33.—am m a. 3:28.: I 3 3:28.; I e..— ® a 133. I E ® a 1.84. I E ® a :33. I AeeOEMexoes—v V V V V V V V V no a p. a I no a p. . O O O O . O . or o/ o/ 02 o/ emu 28% 83% A83!» 3......— 09:93, uni: Acacia—sq Dem Launches—Ruin. fink: .833an 85.—om Enrol erasure; .9 E 8:32.— 35: 83.8; e 183. .2 Beam... 9.: m6 c.— m.— :.N m.N 9n m.n :6. m6. . cf. m.m :6 m6 .3. m4. :6 MI) (.1) mums tuna potalrma s lvnnv ( 70 a. 35......— n a. 33......— u a. 3:35 m N... 3:28.: I a. 3:88.; I 2. ® I :52; E ® m :53 I E © .— 153. I EsauxouS—uan—V \ \\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\ IIYIIV .vaq'aqvaq "NH—ta: c II; c Q n M (Zn/ml) 1 a": Win Anna—.5 Rich :8.— "52: 3.3.53 magmas»? 9.2: 3.3.5. 85...:— a: 3535.2... .9 E 8.58.... 3...: 33.5.. a 3.3. .2 2...»..— °."2. mv '2 a 9'2? ”65 (J) ans-ma Inna WWW-Id 10 Ivnnv 71 2.. 3:35 I u. 3E2...— n a. .3395 m N... 3:28.: I a. 3:28.: I «5 ® I a§< "in; assuming mafia—$93.! Int: 3.32—E 85.—om 33,—. 963.38.. ..> E 9.38.... .25 33.3.... a 183 .2 9...»... 72 “ 2 autism n 2 .853... n 3 .8235 m a. 3328‘s I E 3:28.; I 2. ® I ...ESI n..— © m E§< «:35 A8325?— bom Loaabefixoih mama €82.25. 3:25.— .533— naUEu-afiah .9» av 9:38...— .EE— 188—.95 a. .253. .3 0.52% 74 C.2 Predicting Seal Strength The models discussed so far predict burst pressure (P) when the seal strength (S), the plate separation (D) and the package dimensions (Lo and W0) are known. However, there might be situations in which there is a need for predicting seal strength (S) fi‘om burst pressure (P), plate separation (D), and package dimensions (Lo and W0). In order to do that, the two theoretical models discussed above were solved for sea] strength (S). The resulting models are the following: Theoretical Model #1: When solvianor (S) from the Burst Pressure (P) theoreticalgprediction model #1 : S = PD/2 Theoretical Model #2: When solving for (S) from the Burst Pressure Q) theoretical prediction model #2: S = (PD) / (2*[CF]) where CF = [{(L0+Wo-l . 142D)/(10+Wo-2. 142D)}] Two different approaches were used for the empirical models: solving for (S) from the burst pressure (P) prediction models and running a linear multiple regression analysis to predict (SID). Empirical models #1a to #3a, shown below, were derived by solving for (S) from the burst pressure (P) prediction models #1 to #3, respectively. For example, model #3a was derived the following way: From Burst Pressure (P) empirical prediction model #3: P = K [S/D]P‘[L/W]P’ P(l/P1): K (m1) [S mlmm) [L/W] (m1) 75 [PIK] 0”” = [SID] Mam" s = [l/K1"’P"[D] [1’10“ [W/Ll‘m’” The following notations were used for the empirical models derived by solving for (S) from the burst pressure (P) prediction models,: Ks = Regression coefficient (K) for model that predicts (S) pus = Power (for independent variables) for model that predicts (S) Kp = Regression coefficient (K) for model that predicts (P) pup = Power (for independent variables) for model that predicts (P) where; Ks = (1/ Kp )" P" P1, = 1/ P19 P23 = P2P / P1? P3: = P3P / P1P See models #1a, #2a, #3a, below. A regression analysis was run so empirical models that predict (S/D), and not (S), were developed. The reason for predicting (S/D) and not (S) is due to the nature of the gathered data Refer to Appendix VII.E, Table 99. It can be seen from the tabulated data - that the seal strength (S) does not change significantly with changes in (P), (D) or (PD). The seal strength for the pouches under study does not change drastically within the same package size and material combination. The sealin g parameters for these pouches were controlled during manufacturing to stay within a Specific range. This was done because it is industrial practice to maintain the seal strength within a certain range. According to Lorimer, 1997, over time acceptable seal strength has been determined to be in the range of target = 1.0 to 1.5 lbs/in and lower limit 0.50 to 0.8 lbs/inch, depending on the 76 application. If (S), which would be the dependent variable (Y), does not vary significantly with changes in (P), (D) or (PD), which would be the independent variables, then a multiple linear regression model will not work satisfactorily. When looking at Table 99 in Appendix VII.E, one could see that there are significant changes of (S/D) with changes in (P). That is the reason why the regression model works both ways, predicting (P) from (S/D), and vice versa, predicting (SID) from (P). Because of the nature of the data collected and the way this experiment was designed, a model that predicts seal strength (S) from burst pressure (P) was performed by using regression to predict (S/D) from (P). Seal strength (S) was then obtained by multiplying by (D). A good way to understand the relationship between these variables is by looking at the sample correlation coefficients. According to Devore, 1995, the sample correlation can be used to see if two variables are related. The sample correlation coefficient was calculated for burst pressure (P) and seal strength (S). The results show low correlation between (S) and (P) and between (S) and (PD) but not between (S/D) and (P). See Appendix VII.E. The three empirical models for sea] strength (S) are shown below: 77 Empirical Model #1: a When solvirgfor (S) from the Burst Pressure (P) empirical prediction model #1: s = Ks D/CF [P]”"[( 10-1.571DyD]"’[( Wo-l .571D)/D]P3’ b. When using regression analysis to predict (S/D): (S/D) = lerlmllemlxflP3 where; X; = P/CF; CF = [{(Io+Wo-1.142D)/(Lo+Wo-2.142D)}] X2=Lc ID; Lc=Lo-l.57lD X3 =Wc ID; Wc=Wo-1.571D Empirical Model #2: men solving for (S) from the Burst Pressure Q)empirical prediction model #2: s = Ks D [P]“'[1/CF]”‘ b. When usingregression was to predict (S/D): (S/D) = lerlmlleP2 where; X1 = P X2 = l/CF; CF = [{(Lo+Wo-l.142D)/(L0+Wo-2.142D)}] Empirical Model #3: a When solving for (S) from the Burst Pressure (P) empiricacl prediction model #2: s = Ks D [PIP'TW/LIP” b. When using regression analysis to predict (S/D): (SID) = era“rx21” where; X1= P X2 =W/L 78 The same analysis performed for burst pressure (P) prediction models was performed for seal strength (S) prediction models. The results for the empirical models were analyzed and tabulated for an easier comparison against the theoretical model results (Tables 23 to 25). It can be seen that the findings are similar to the ones for burst pressure (P) prediction models. First, the empirical models have a lower average percent error than the theoretical ones. Second, lower average percent errors are obtained when using average force in theoretical models for 1073B Tyvek/plastic pouches. Third, the results are slightly better, in terms of correlation coefficient and average percent errors, when using average force values than when using peak force values in the empirical models. This is true for all material combinations. Third, if all material combinations are compared within the same empirical model, (Appendix VHF), it can be seen that model #3b resulted in similar regression parameters for the three material combinations under study. This model has the advantages of being simple, it has regression parameters that are reasonable in magnitude, and has good correlation coefficient and average percent error results. That makes this model a very attractive one. A summary of the validation results for the theoretical and empirical models that predicts seal strength (S) is shown below. Summary Tables 23 to 25 and Figures 21 to 26 display these results. The tables show the average percent errors for all models, the parameters derived for models #1a, #2a and #3a, and the regression parameters (K, and pl, p2, ..., pn), correlation coefficients (R), and seal strength (S) prediction intervals models #1b, #2b and #3b. 79 Appendix VILF includes the data arranged in the way it was used for this analysis, the regression results for empirical models #1b, #2b, and #3b, and tables with the actual and predicted results for individual observations along with the average percent error for the theoretical and all the empirical models. It should be noticed that models #1b, #2b and #3b provided more accurate results. However, since the improvement in accuracy by running the regression all over again is small, models #la, #23 and #3a can be used for simplicity without serious loss of accuracy. 80 I. anoated lO73B/Pokester/Pgly Laminate - Mm: Table 23. Validation Results for Seal Strength Prediction Models Rexam (1073B/Polyester Poly Laminate) Pouches Predictin Peak Force Values TL Pl — Single Model (%) Coefficients R Responsel Response2 Error Ra: (lbs/i112) (lbs/i112) Theoretical --- -- -- -- #1 24.32 Theoretical -- -- --- -- #2 28.18 K = 0.41 Empirical 5.45 p1 = 0.99 -- -- -- #la p2 = 0.23 p3 = - 0.03 Empirical K = 0.714 -- --- --- #2a 5.89 p1=1.10 p2 = 3.74 Empirical K = 0.56 --- --- «- #3a 7.90 p1 = 1.36 p2 = 0.51 K = 0.27 Empirical p1 = 0.660 #1b 4.83 p2 = 0.77 0.9864 (S/D)+/-0.2916 (S/D)+/-0.0523 p3 — - 0.32 0.9849 K = 0.83 Empirical 5.18 p1 = 0.99 0.9754 (S/D)+/-0.4022 (S/D)+/-0.0722 #2!) p2 = 4.25 0.9737 K = 0.63 Empirical 7.16 0.9589 (S/D)+/-0.5152 (S/D)+/-0.0925 #3b NOTES: Refer to Appendix VILF for a description of the models and data used S = Seal Strength, D = Plate Separation or Gap, and R = Correlation Coefl'icient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3. The percent error for models #1 b, #2b, and #3b were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 81 Table 23. Validation Results for Seal Strength Prediction Models Rexam (1073B/Polyester Poly Laminate) Pouches - Continuation Predictin Average Force Values Average PI - Single PI — Mean Model (-/.) Coefficients R Response1 Response2 Error R... (Ibs/in’) (lbs/inz) Theoretical -- -- -- -- #1 17.63 Theoretical -- -- -- -— #2 12.33 K = 0.26 Empirical 5.04 p1 = 1.00 -- -- -- #la p2 = 0.29 p3 = - 0.09 K = 0.43 Empirical 5.88 p1 = 1.14 -- --- --- #2a p2 = 3.04 K = 0.35 Empirical 7.58 pl = 1.35 -- -- -- #3a p2 = 0.40 K = 0.18 p1 = 0.71 Empirical 4.37 p2 = 0.749 0.9872 (S/D)+/-0.1791 (S/D)+/-0.0322 #lb p3 = - 0.34 0.9859 K = 0.49 Empirical 5.28 p1 = 1.04 0.9767 (S/D)+/-0.2483 (S/D)+/-0.0446 #2b p2 = 3.50 0.9752 K = 0.39 Empirical 6.85 p] = 1.25 0.9644 (S/D)+/-0.3075 (S/Dfl/—0.0552 #3b 2 = 0.38 0.9618 NOTES: Refer to Appendix VILF for a description of the models and data used S = Seal Strength, D = Plate Separation or Gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3. The percent error for models #1b, #2b, and #3b were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 82 n 1073 ET/PE Lamin te - T ' Table 24. Validation Results for Seal Strength Prediction Models Tolas (1073B/PET/PE Laminate) Pouches Predictin Peak Force Values Mm}! PI — Single PI — Mean Model (0/.) Coefficients R Response1 Responsez Error R... (lbs/in”) (lbs/inz) Theoretical -- -- -- -— #1 33.51 Theoretical -- -- -- -— #2 36.56 K = 0.28 Empirical 2.14 p1 = 0.64 -- -- -- #la p2 = 0.57 p3 = - 0.07 K = 0.88 -- --- -- Empirical 4.55 p1 = 1.08 #2a p2 = 5.82 K = 0.53 --- --- --- Empirical 4.76 pl = 1.48 L #3a p2 = 0.26 K = 0.15 Empirical 1.36 pl = 0.17 #lb p2 = 1.05 0.9992 (S/D)+/-0. 1048 (S/D)+/-0.0291 p3 = - 0.20 0.9990 K = 0.95 Empirical 4.45 p] = 1.04 0.9894 (S/D)+/-0.3671 (S/D)+/-0. 1018 #2b p2 = 6.05 0.9869 K = 0.55 Empirical 4.75 p1 = 1.44 0.9858 (S/D)+/-0.4059 (S/D)+/-0.1126 4 #3b p2 = 0.25 0.9829 NOTES: Refer to Appendix VILF for a description of the models and data used 8 = Seal Strength, D = Plate Separation or Gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3. The percent error for models #1b, #2b, and #3b were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 83 Table 24. Validation Results for Seal Strength Prediction Models Tolas (1073B/PET/PE Laminate) Pouches - Continuation Predictin Average Force Values Average PI - Single PI - Mean Model (%) Coefficients R Responsel Response2 Error Ra: (lbs/fill) (lbs/inz) Theoretical 12.19 -- -- -- -- #1 Theoretical 11.63 -- -- -- -- #2 K = 0.18 Empirical 1.89 p1 = 0.56 -- -- -- #la p2 = 0.62 p3 = - 0.07 K = 0.64 -- --- -- Empirical 4.62 p1 = 1.05 #2a p2 = 6.31 K = 0.37 --- --- -- Empirical 4.81 p1 = 1.48 #3a p2 = 0.28 K = 0.11 Empirical 1.10 p1 = 0.16 #lb p2 = 1.04 0.9993 (S/D)+/-0.0649 (S/D)+/-0.0180 p3 = - 0.19 0.9990 K = 0.69 Empirical 4.49 p1 = 1.01 0.9892 (S/Dfi/-0.2533 (S/D)+/-0.0703 #2b p2 = 6.55 0.9869 K = 0.38 Empirical 4.73 p1 = 1.44 0.9858 (S/D)+/-0.2740 (S/D)+/-0.0760 #3b . p2 = 0.27 0.9823 NOTES: Refer to Appendix VILF for a description of the models and data used S = Seal Strength, D = Plate Separation or Gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3. The percent error for models #1 b, #2b, and #3b were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 84 III. Uncoated 1059B/Poyger/Pog Lamingte — Rgxam: Table 25. Validation Results for Seal Strength Prediction Models Rexam (1059B/Polyester Poly Laminate) Pouches Predictin Peak Force Values Avemge PI — Single PI - Mean (7.) Coefficients R Responsel Responsez Error R... (lbs/in”) (Ibs/in‘) 1 1.29 15.01 K = 0.10 Empirical 3.66 p1 = 0.83 -- -- -- #la p2 = 2.10 p3 = - 1.69 K = 0.49 --- --- --- Empirical 4.49 pl = 1.19 #2a p2 = 2.0 K = 0.75 --- --- --- Empirical 4.64 pl = 1.30 #3a p2 = 1.45 K = 0.03 Empirical 2.26 p1 = 0.52 #11: p2 = 3.90 0.9971 (S/D)+/-0.1647 (S/DH/-0.0457 p3 = - 3.17 0.9960 K = 0.61 Empirical 4.30 p1 = 1.07 0.9899 (S/D)+/-0.2866 (S/D)+/-0. 0795 #2b p2 = 3.43 0.9879 K = 0.79 Empirical 4.63 pl = 1.27 0.9885 (S/D)+/-0.3151 (S/D)+/-0.0874 #3b 2 = 1.50 0.9859 NOTES: Refer to Appendix VILF for a description of the models and data used S = Seal Strength, D = Plate Separation or Gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3. The percent error for models #1 b, #2b, and #3b were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 85 Table 25. Validation Results for Seal Strength Prediction Models Rexam (1059B/Polyester Poly Laminate) Pouches - Continuation Predictin Average Force Values Avengg PI - Single PI - Mean Model (4) Coefficients R Response1 Responsez Error Rd] (lbs/i112) (lbs/in”) Theoretical ‘ -- -- -- -— #1 36.15 Theoretical -- -- --- -- #2 30.01 K = 0.07 Empirical 3.67 p1 = 0.88 -- -- -- #la p2 = 2.08 p3 = - 1.70 K = 0.30 --- --- -- Empirical 4.53 p1 = 1.22 #2a p2 = 1.35 K = 0.41 --- --- --- Empirical 4.63 p1 = 1.30 #3a p2 = 1.07 K = 0.02 Empirical 2.36 p1 = 0.55 #lb p2 = 4.01 0.9967 (S/DH/-0.1135 (SID)+/-0.0315 p3 = - 3.29 0.9955 K = 0.37 Empirical 4.27 p1 = 1.10 0.9897 (S/D)+/-0. 1883 (S/D)+/-0.0522 #2b p2 = 2.75 0.9874 K = 0.44 Empirical 4.66 p1 = 1.27 0.9884 (S/D)+/-0.2051 (S/D)+/-0.0569 #3b p2 = 1.11 0.9859 NOTES: Refer to Appendix VII.F for a description of the models and data used S = Seal Strength, D = Plate Separation or Gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3. The percent error for models #1 b, #2b, and #3b were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 86 The data were used to construct bar charts in order to perform a visual comparison between the actual seal strength and the ones predicted with the theoretical and empirical models. The bar charts, Figures 21 to 26, were made for models predicting peak force and average force. In the majority of the cases, there is more similarity between actual values and the ones predicted by the empirical models than between actual values and the ones predicted by the theoretical models. For that reason, that the empirical models had a lower percent error than the theoretical ones. The theoretical models tend to underestimate actual peak force values and overestimate actual average force values, for all material combinations. 87 c9. Eras”.— a can Bras”.— 5 a: 35.—Em a an». autism m fie auras”.— m :3 Erie...— m «a 3:285. I a. 3:28.: I m .52 N @93an or re re av 2v \\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\‘ 9.: a "2 C r 9. VII 1 "2 v-l 9N 9n A835» 83... 58.. “53823 A3255: Dem Launch—emioih ant: 1332.3 8:28.“— Equal 326cm .3 as $53 1cm BEES a. 1364.: 2.5...— (Ill/8m) (S) Irfiuws MS mil worms 78’ W“”V 88 an. .353... a 5. .3235... a a... 3:35.... a an. autism. m an. .8255. m a... autism m a... 3:28.:- 5. 16:952....- m ...32x Anus—2rd av \ \ \\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\ .3; 3:58.: hem ..ofioh.£—Ro?m.—. fink: 333:3 853% Sale”— 85.25619 593% 18 83.12.. a .38..V ..n 9...»... m.N c6 (s) mums ms and pmrrma 19 ivmov 88 an. Stag... a .5. 3.2.9.... 5 a... 31.3.... a an... ionic... m .9... 3:35... m a... 35.3... m N... 33932:. I 5... 350.32: I m 13:. N 35.8... ..v ...v .9 xv r 6.: in... m." ad A82!» 8......— oueao>< 259.185 .855... 2.... 582......15 5...... 3.8.5. 85...... 83o... 85.6... ..s a. 5.5.3 .5 3682.. e 3.5.12 2a.... (s) trims [”8 cit-luv 091010911 39 rvmav 89 an. autism. a an... 3......5 E a... 35...... a .5. auras... m .5. Erin... m a... Eras... m a. Beacons I a. 3:28.? I m .25... I Anus—och. xv ("l/“11) (s) Irrfiums ms mm 09191991.! 39 rumov 90 8...; 8...... is. «5.6.8.... 33...... ufismgoih .5... 8.325. 35...... 3.... 826......19 ...uEbm ...om 88.8... a. .553. .8 8:»... an. 32.3.... a... 3.2.3.... a... autism... .3... .32....5. m a... .8........... m a... .8............ m a... 3.28.... I .. 3.8.8.: I m .284 I a? Anus—oak. Iv Amos—.5 8......— ou§o>< gag—.23 3.3.5.... ”.25...on .5... 82.8.5. 88...... 2...... 85...... .9 a. 5.55 ...om 38.12.. a. .33. .3 2...... (s) mums ms 34v 1391910914 19 runnv 91 an... .82....5. a an... .8232... a a... 322...... a ...,... .8222”; .5. .82.....§m a... 82......am a. 3.8.8.;- .. 3228.;- m 253.: 2V $932.5 2.? A8=E> 3.3m anom «2.3.29.5 A8225!— Dofi ..Suobehioih mane. 18.3923 3:25.— 8.30% 2.5.2... .2. a. 22.8% 16 88.8.... a. 15...... .3 2a.... (s) mamas ms ma [momma 1:? wnnv 92 8.1.2.3.... a... 82.3.... a... .8225... .5. 82......mn .5. 82......2u a... .82......am a. 8228;: 2. .8228...- m 2.84.5 ..v 8.5.8... I... 8......» 8...... < 3.3.2.... .2... 2282.285 2%... 8.82.... 88...... 25.8. 85.8.. .8 a. 5.5m ...m 88.8... a 1.8.1... 2...... (0!an (s) minus MS 3w Mann-Id 19 Imov 93 Regression analyses for all the burst pressure (P) and seal strength (S) prediction models shown in section Cl and C2 were run using burst test data obtained at flow 5 for Rexam 1073 Tyvek/plastic pouches. There was not enough data to do this for the other two materials under study. The results showed correlation coefficients (R) of 0.97 and higher. The average percent errors ranged from 2.5 to 4% and the regression coefficients obtained were similar to the ones obtained when using burst test data from all flows. These results are tabulated in Appendix VII.G. 94 Part D. Location of Burst Failure Vs. Minimum Seal Strengt_h As mentioned previously, the minimum seal strength values were used in the prediction models to describe quantitatively the relationship between peel and burst test results. This value is the lowest peel value obtained out of the four locations tested in a pouch. In other words, it is the weakest of the tested sample strips cut from the seal. The location which that weakest sample strip was taken from was compared with the location of failure of the pouches that were burst tested. The purpose of doing this is to see how much agreement there was between the two tests in terms of the weakest point in the pouches tested. For this comparison, the percentage of pouches with failure in the chevron seal found in the burst test was compared with the percentage of pouches with minimum seal strength found in the chevron seal in the peel test. The percentage of pouches with minimum seal strength found in the chevron seal during a peel tended to be less than the percentage of pouches with burst test failures in the chevron seal. Refer to Table 26, shown below. It is necessary to consider that both tests are destructive and that different pouches are being compared. Inconsistencies in the sealing die heat distribution could cause differences in seal strength within a pouch and between pouches of the same lot. Additionally, it is important to remember that sample strips cut from the pouch seal, and not the entire package, are tested in the peel test. The weakest point in the pouch might not be within the samples tested. These reasons explain the differences in results. Appendix VIII shows location of failure and minimum seal strength location for all packages tested. 95 e938 mews—2:— =a .5. gnu—5.5» 13.. E355:— EE 9.3:: ..o 5:32 3.. E insonn< 8 .50“ "E02 cm 8 2 2 cm 8 2 2 p.82: x .33— S. 9. 2 on 9. on 8 Om 5.8; x .33 _ 8:25.— AouaEEaA Dom Launch—ogoih mama—v =3qu 8 on 02 2: 2: 2: 2: 2: 92 x .33: _ 8 on 2: 02 02 02 2: 2: 33.: x =0 aamfihmmio h .52 a: 8 9. 8 02 8 om 8 E 93.2 x =3: ow 8 02 OS 02 2: 02 02 93:; x .33 on om om 8 E 8 8 Om 32.: x =3: om 3 E 8 cm on om 8 $2 a x :33 cm om 9. 8 ow on on ow as x .39 83m ©2355 memo..— xfifi $5 a Ea m 32m _ 55 a >5; m 32m _ 32m «em 2 team use—.820 3 .3on 32.880 :9— naU .5.— aaw .5; 30 :md 96 :md .30 :md mac ems—9am :9: .8333; mtg :cA acts—anew QEU Emma. dam.— a wit... Gem 5.52.0 2: E 2:8.— fiwfirzm 73m SEE—:2 ..o ems—$9.0m Emma 55:. a use... :3 8:26 2.. 5 3:5.— o.:_=¢m ..o :23qu ..o owfifiznom 8525 935.55 bomtoumoh—osoih MESS Esme: 13m 5.325 05 E 55304 Ana—.25 13m 5355: EB 0.5:!— ._o set-Bea he oust—3.5.— .g 033,—. 6 9 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS CONCLUSIONS Empirical models explained the relationship between peel and burst tests results better than the theoretical ones. The theoretical models are based on physical principles using force diagram analysis. When using experimental data for validation of the theoretical models, it was found that there was a tendency for these models to overestimate the actual burst pressure when peak force values were used and to underestimate it when average force values were used. For that reason, empirical models were developed by using multiple regression techniques to fit experimental data to a power relationship. The reasons for the disagreement between the actual values and the ones predicted by the theoretical models are believed to be the following: 1. The peel test is a uni-axial test in which deformation is evenly applied to a 1-inch wide strip of seal. The burst test is a multi-axial test in which force is applied by internal air pressure. When the package is pressurized, the seal perimeter does not take the same load at all points because it deforms differently around that perimeter. Areas that have wrinkles are loose and slack, so they do not take any force. Only the stressed part of the perimeter takes the force [Feliu-Baez et al., 2001]. 2. The theoretical models involve the assumption that the material does not stretch much around its perimeter and that the seal area assumes a circular shape. The amount of stretch that the package experiences when pressurized and the actual 97 shape its seal area assumes are both variable and unpredictable. For that reason it is not accounted for in the model. . Sharp edges, corners and angles on the package seal can act as stress concentrators during the burst test and affect the results [Feliu-Baez et al., 2001]. . Since both tests are destructive, the correlation is made between the average burst pressure of a group of pouches with the average peel strength of a different group of pouches. For that reason, any variation in the seal strength around the seal perimeter of a pouch or significant seal strength variations between pouches makes the correlation weaker. In addition, the strip cuts for the peel test may not represent the point at which the pouch would break in a burst test. Such a strip does not necessarily represent either a stress concentrating deformation or the weakest point in the seal. The characteristics of the peel and burst tests, listed above, as well as the characteristics of the package design and behavior under deformation are not included in the theoretical models presented in this work because of the great difficulty in controlling and measuring them. Three empirical models were presented in this project. Empirical model #1 is the closest to physical theory. It provides more accurate results than the two other models. However, it is a complex model. Empirical model #3 is a simple model. The first term [SID] comes from the theoretical development and the second term [L/W], aspect ratio, accounts for the package size. Besides its simplicity, model #3 provides good accuracy, close to that of Model #1. Additionally, the resulting regression coefficients were similar for the three material combinations studied, which indicates that the model works well for 98 the different types of Tyvek /plastic pouches. Model#2 provides good results. It is the intermediate point between the accuracy provided by Model #land the simplicity provided by Model #3. The validation results for the empirical models are good. The correlation coefficients (R) were all higher than 0.96 and the average percent errors between actual and predicted values ranged from 1% to 7% for predictions of burst test value from sea] strength and vice versa. The model to use, out of the three presented, will be the user’s choice. Readers should note that these results are applicable for the material combinations tested within the range of package sizes tested. However, because the independent variables for the empirical models are based on theoretical principles, and the models were run for three different Tyvek/plastic types of pouches, the model should work for other types of Tyvek/plastic combinations. A change in the regression parameters when the materials under study are changed should be expected. The results obtained when using average values tended to be slightly better than the ones obtained when using peak values. This was expected because the average peel force results were less variable than the peak peel force results. Refer to Tables 47, 49, 51, 53, 55, 57, 59, 61 and 63 in Appendix V. The contribution that this project will make to industry is a procedure on how to perform an experiment so the regression coefficients for any particular material combination can be obtained. The recommended procedure is as follows: 99 l. 3. Choose at least three pouch sizes of the material combination of interest. The pouches should have the same material combination, type of sealant and seal configuration (chevron vs. no chevron). Sizes should be chosen so a wide range of packages sizes for that particular material combination is covered. The validity of the model is limited to the range of values covered in the experiment. Condition samples at ASTM standard test conditions (73 +/- 4° F or 23 +/- 2 ° C and 50 +/- 5% relative humidity). Burst test 10 packages at each flow index/plate separation combination according to ASTM F1140 and ASTM F2054. Choose at least 2 plate separations. The use of three flow index values that cover the entire range (lowest, highest and a mid- value) is recommended for more accuracy. Note that three flow index values at two plate separation will require 60 pouches for the burst test. If it is found that the flow index does not have a significant effect on the burst test results of the packages under study, a mid-range flow index is recommended. In the case in which only the mid-range flow index is tested at two plate separations, only 20 pouches will be required. 4. Pee] test 10 packages according to ASTM F88. a.) prouches similar to the ones tested in this project are used, a crosshead speed of 12 ipm and a grip separation of 1.0” are recommended. A crosshead speed of 12 ipm requires a little less time to complete a test. than a crosshead speed of 10 ipm. The crosshead speed and grip separation in ASTM F88 were shown not to have a significant effect on peel test results. 100 b.) The sample strips should be cut from regions where the package tended to break in the burst test. 0.) The use of average values is recommended due to the fact that they provided more accurate results than using peak values. If the user does not have a way to measure average values, peak values can be used because the results obtained using peak values are also good. 5. Run a linear multiple regression analysis to obtain regression parameters. Empirical models #1, #2, #3 all work well for the three different kinds of Tyvek/Plastic pouches. Any of these models is recommended for this type of material combination. Ifthe user needs more accuracy, model #1 is recommended. However, if some accuracy can be sacrificed for simplicity then model #3 is the one of choice. The user can also choose whether the regression technique will be used to predict burst pressure or to predict seal strength as it can be done both ways. Once the model is developed for a particular group of pouches made out of the same materials, it should be revised every time there is a change in the sealing process, or in the materials and sealants used. Since the length, L and width, W dimensions of the package are part of the model, it is important to define the way L is used for the data analysis. L refers to the distance from the tip of the chevron to the open side of the pouch (see Figure 27). 101 Figure 27. Length and Width Dimensions of a Chevron Seal Pouch The total number of pouches that need to be tested if only the mid-range flow index value is used is 90, or 30 per package size (20 for the burst test and 10 for the peel test). Ifthree flow index values are used a total of 210, or 70 per package size, need to be tested (60 for the burst test and 10 for the peel test). It will be the user’s choice what to do. The more pouches tested, the more accuracy is obtained in the results. This proposed methodology can bring a number of benefits to pouch users and manufacturers. An empirical model that describes the relationship between peel and burst test results with good accuracy can be developed by testing at least ninety pouches (60 burst tests and 30 peel tests) of a particular material combination. The time and number of samples required for the development of the model is reasonable. The developed model could be used to predict the results of one test in terms of the other. The use of the models can bring cost benefits in terms of reduced labor testing time and material usage. 102 RECOMMENDATIONS: Even though some of the goals in terms of defining the relationship between peel and burst tests were accomplished in this project, there is still some more research that needs to be done. Some of the recommendations for future research are: 1. Test the validity of the empirical models developed in this project for use with other types of materials a. Coated Tyvek/Plastic Pouches b. 2FS Tyvek/plastic Pouches .9 Paper/Plastic Pouches P- Paper/Paper Pouches ‘e. Plastic/Plastic Pouches 2. Perform the proposed methodology with a burst tester different than the one used. 3. Investigate whether finite element analysis can be used to estimate the deformation of the package under pressure. 103 APPENDIX I GLOSSARY 104 GLOSSARY ASTM - American Society for Testing and Materials (ASTM) is the largest technical standard writing organization in the United States. ASTM is made up of technical committees, which in turn are divided in subcommittees. These committees are a group of people with different backgrounds: educators, engineers, consumers, as well as people from government and industry. The committees develop, publish and regularly update standards in all fields. Voting interests are always balanced between users and suppliers so that neither group can dictate policy in standards approval. Committee D-lO on packaging is the major committee responsible for packaging standards. Committee F-2 is responsible for the medical packaging standards Average Peel Force - is calculated by dividing the area under the force deformation curve (energy) by the total extension of the seal. Some researchers consider it a better indicator of seal strength than peak peel force. Burst Test - A method of testing the package’s seal strength and structural integrity by filling it with air until it breaks. The pressure required to burst the package gives an indication of the seal strength. Closed Package Fixture - A fixture that is used with the burst tester to test sealed pouches or lidded trays. See ASTM F 1140 Crosshead Speed - The rate at which the sample specimen is pulled apart Energy - Area under the force-deformation curve obtained in a peel test Flow Index - The speed at which the air flows from the burst tester into the package. Factors affecting the flow rate are: 1) air source pressure, 2) supply tubing diameter, orifice diameter, c) package size and porosity Gap -the distance between the top and bottom plates in the restraining fixture used in a restrained burst test. It is also called “Plate Separation”. Grip Separation - Original distance between the lower and upper jaw, in the tensile tester, that contains the sample. 105 Minimum of Average Peel Force - The lowest average peel force value obtained out of the four locations tested in a pouch. This is the value used for the correlation analysis. Refer to Figure 14 for pouch locations. Minimum 01' Peak Peel Force - The lowest peak peel force value obtained out of the four locations tested in a pouch. This is the value used for the correlation analysis. Refer to Figure 14 for pouch locations. Open Package Fixture - A fixture that is used with the burst tester to test open-ended pouches. See ASTM F 1140. Peak Peel Force - The maximum force during peeling. It has been used through the years as the way of quantifying seal strength. Peel Test - A 1-inch wide sample strip cut fiom the seal is gripped between jaws (one movable and one fixed) and pulled apart at a controlled rate. The force required to separate two sealed surfaces gives an indication of the seal strength Peelable Seal - A seal that is easy to open and that at the same time provides sterile delivery of the product. The peelable characteristic can be achieved by design of adhesives or sealants. Plate Separation —the distance between the top and bottom plates in the restraining fixture used in a restrained burst test. It is also called “Gap”. Restrained Burst Test — A burst test in which the package is placed within a restraining fixture while being pressurized. It is described in ASTM F 2054. Supported Peel Test - A peel test in which the “tail” angle of the sample strip is controlled by the use of backing plates. It is described in ASTM F 88. Unrestrained Burst Test - A burst test in which the package moves freely while pressurized. The defamation of the pressurized package is not controlled. It is described in ASTM F 1140. Unsupported Peel Test (“Free tail” test) - A peel test in which the “tail” of the sample is allowed to move freely. It is described in ASTM F-88. 106 APPENDIX II LITERATURE REVIEW SUNflVIARY TABLE 107 A000.— 30... 80g... .000 00.080900 0005020 .000 0.0.3 £300. 0ws0m. .080... 00:80:00 025 00:05:00 08.0 0... 000 «00. 6.5.. $500“. 65m. $500.. 0:30... 0... .000 00.0. .02. 2.0 ma... .5. 0.08.. $500.. 0... 0030...". .00. .00.. .0... 5.88030 05 a. .. 00.000093 0.0... ..o ...0... n M 0300a. 80.89.5003 no .0003 m. 0.250.. .0“. - 05000:. 605 u A. 0000.0 ....00-000n... 02.032. 9.2 b.2033— 0£ ..0 €3.00, 0.... a 0.3.! 5385 .00m n m pawns— .032000 59.0...» .000 830.832 80%... 00.5.. #0... 003m .000 838.088 n .4 so .0002. 0.088... 0 m.— u m 000.050.". 05 ..o 00.. Aspmn. 50> 5. .00.» $3.00.. 05 00.00.00.008 Be. .3030... 0580....-. 0892.0 003 000.00 0.250.. 0...... o 880... 00.600000 n 0300.. v. 822, 3:20 a»... a - 523 u 3 ..o 00.8030... 05:0 e. - 5000.. u .. .00. 0.... «o: ..000 ...032. «a. I 3 x A .I. 00.2. 3.x... S 0... .0 0.00.8 0000.003 a. .. C5 + ..c N n 00.08.03. .00. .00.. ..o 59.0...» .02. 05 8 ...co 00.0.0080 .2. - 0.5305 .00... u A. 0583. Gov—038:3 0m00>0 FEB 0050.05.00... 0.. ...mcobm 65m 0 .000; 030.000 02.0 2.3.000”... 8&302. con. 5.0.000 0.3.000 00.2. 8300.0 83. .80... M a 03 EB 88.. 05.02. 5.5.. 0.30.3 :0 .0002. 0.380.... 0 £302.00... 5.3 u n 0050060003 0.00.. ..o 0.5 0.000730%“. 0082.... 3030.00.80. 0.0.0305. .30? 3:08:30 0.5—Ea... 000... «9:5 .00... .00.. .50 030.00.. 02.0.3000..— 3000 00.5.. .50 .00.. 000.50.. Egan—0.00.0.— 0... flier—000.0 3 02.0093... 0:000»...— ....N 030... 108 0.0.. 30.. A0800 00.0 090.000 0000000000 0.0.0 02.080 000 00.0.0000 000000000 000 000. 00..0.00.0000 0.0. 00.0. .0 02.9.. 003 00..08..00.0>0 0.0.0. 0.9.0. 09003 .00 0000 0.0800,. 0...... o 2.... 08000.0 .008. .0300 00:00.03 08.. 00:00.08 08.. “0.000.000 00000 0 ..0 0... 00.08.0056 0.0800,. 0...... 90.000 .08.. 90.000 2.000... ..0 .00—.0m .000 0.... 08.000 00.00. 5.80.0.0.— 000.000. .80.. 0... ..0 0. I 00.0.0000 0.0.0 I A. .00. .000 0.0.m 508.00 .80 520.08 0.3. I 50800 .80 u 0 230.. 600000.003 5.0.80... 0... 8.3 00.0.0000 .00 I 0000.000 0000 ..00.00.00: 003 0.9.00.0 .08.. 0 0 8000 .0 .0 .8. 000.0 0.00... n .8050 0000000 0.00.000 8080.0 00.0.. .00... .08.. 00.0.. 90.000 .000 00500.0 0000-0..0... 8 033 0.20.5. . .0 \ .0 0.. u 3.... 08.0080 .80 0o 05 200.022.... 00.530 0000.00.00.05 w0..000 80.0.0.0 00.. 000000 0.0 0.0008 00.000.00.000 02.0.0000 80000.5 0 m0..000 00.0 09.000 80.0.0.0 000 000. 0... 00.000.00.00 .00. .000 000.0 000...0> 0.0. 000.0. 0.0800,. 00.... 0 0.0.0.0 0000000000. ..0 02.0000 0029 .0500 .30 003.80 500 0.3-3.... 2.23.. 00.03.80 ..0 00.80.50 00.00 10.00.). 0... .00 ..000 ..0000 0000000 8000.. 0... ..0 00000 000.003 0.5.0.0000 0... 0. 0.00 00.0.0000 00006.0 .00 0.08.0... .00... .08... 00.0.. 90.000 0.0 0. 59.0.0.0 .080 0 .0003. 00.00080... 0.0.03.8... 00800.00... 0.000 ..0 00 D 0000.00.03... 008.00.. ..07. 00.8.0080. 0.0.0.0.). 80> 0.008800 0.0800,... .00... .80.. .00... .000 000 090.000 000000000... 000000.800. 0.00. .80.. 000 .000 0003.2. 0.0000300... 00.40.00.080 0. 0000000000 8000...... .5 0.00... 109 $3 853—...— 5355 839.805.— mmoooa mam—wow 838 E 05 5 33% 38% 23x; auEéémE 3 .3393 02:88 owe—cam v9.20 “gang—u 55 0.63 38“ $3 98 $308985 3:5 05 a wfifiguouou A5 “coma—bog 8:032. 58.—am «o 3255 05 2:? 8:29:00 2: 82:23 gob #55 3.58% 03202. 2.5: Bamfiov “585an 3 .833th 30:: v9.9 3:35.3— 8: mm a oMSEEoMSa—m 3.3.:— 955 Esau—9:08 arena: 23> 3:03:30 258.8...— ufih 3.5m =3. .09— 93 «ma—25 55.—33¢ Aaoflasauuog 38. «9:5 E: .02— 98an 3:23:39. ofidflatuuou 3 8:23.53 3050b:— fin 033—. 110 82 a 8233 swam NaméE 2: 8.: 2505mm. 8% 803 as: $55 838 35:02: "3oz m 5320 08% .mmgw—ddd H0.— . 63% 02$ no 29:53 .868.on Baa—:8 v83 mafia—Com .23 3:350 880888 I n: E: a J— 83 588%? .m 3320 E won—mow ma Eggme .95 138.85 523 83:8 23 35%.. u 93 E: 3 2F .33 .m .5320 E 333 3 30362—3“ Ass 825 monocoaga 598— 6850 23 35mg n 9‘— uaa A 18¢:an H H a Eda—av Am SKEW mono—Sm . 0 =38: m 08 . $8.5." Butane“ 28 332023 93 83 mew—.85 on? flows—ca a ”E : ”Maw “MW—mmwwm“ one omfisq 2: $8228 53a 850:8 Had a a . m as coup—0283 E I cardamom 033 I a Son 35 a 53. I 35% new I m 238.8.“ $5. an I 8883 EB con—Mahmud u .— 63 Boa 835 tog? :38 2524. Exam: v— u m owaxoam comm” Qua—3H3?” Ea was—us.— So 33 2: 2:22:89. & n a 3 .83 283 858 2.935. «...éEEEULsz M u m m h m a 5.9835 80:82 .58 dEmcoun—n: 3 35m 05 mo £385.». 32 $38 a B 3% 2085?». g Baum—.32 33 838%? E 8 $2228 568%»: 0322.: womb 35:3 05 .23 . .— < _ E E 828 38 532—0 wean—obs 33 NHL: \ aw: n .— 63. 5:5 manna 3% 092.50%... Saga—om 388 3.5m 3% 8:353— Hflfla? 3.: m E: 53::— ?ouafitouv 33.—0:2 53> 3:03:30 298.8."— «noh 2.5: «8H .95 can ems—2..— 3:238”— 553 .228 I mam. 3.2..— .c .253 5.23.5 33m muss: .3 as: 111 APPENDIX III POWER CALCULATIONS 112 A sample size often was chosen for the following reasons: 1. It was the highest sample size that could be tested with the number of samples available. 2. It is a reasonable number of samples, which makes feasible (in terms of samples and time spent) the application of this experiment in industry. 3. According to the power calculations performed, see below, a sample size often provided acceptable test sensitivity and good test power. Power calculations were performed in order to determine the sensitivity and power of the factorial experiments when using a sample size of ten. In the 22 factorial experiments for peel and burst tests the following hypothesis are tested: Ho: There is no significant; a. Factor A effect b. Factor B effect and c. Interaction efi‘ect. H1: There is significant; a. Factor A effect b. Factor B effect and c. Interaction effect. Operating characteristic (0C) curves are used in power calculations with the quantity #2 . ¢1 = mu)2 / 21m2 113 where; n = sample size a = number of Factor A levels D = specified difference in the response variable between any two factors b = number of Factor B levels a = standard deviation of burst pressure D and a were chosen based on data from preliminary experiments. A table like the one shown below is filled out. The first five columns gather important information for the use and interpretation of the 0C curve. ¢2 ¢ v1= (a - 1) V2: ab(n - l) B 1-31 I NOTE: v1= degrees of fi’wdom in the numerator V2 = degrees of fi-eedom in the denominator With that information and the 0C curve, B and (l- B) can be determined. According to Montgomery, 1997, [3 = P{type 11 error} = P{fail to reject Ho/ Hois false} 1- B = Power = P{reject Ho/ Ho is fitlse}= probability of correctly rejecting Ho. Burst Test: Three factorial analyses were performed with the data collected. See Table 29 below. Table 29. 22 Factorial Experiments for Burst Test Combinations Response Factor - Levels (low, high) tested Burst Factor A = Flow Index — (1, 9) (l , 0.5”), (9, 0.5”) Pressure Factor B = Plate Separation — (0.5”, 1.0”) (l, 1.0”), (9, LOB Burst Factor A = Flow Index — (1, 5 (l , 0.5”), (5, 0.5”) Pressure Factor B = Plate Separation — (0.5”, 1.0”) (l, 1.0”), (5, 1.0”) Burst Factor A = Flow Index — (5, 9) (5, 0.5”), (9, 0.5”) Pressure Factor B =Plate Separation — (0.5”, 1.0”) (5, 1.0”), (9, 1.0”) 114 Power calculations: l2 = mu)2 / 2bo'z Where; n=10 D=9inH20 o=8inH20 a=2 b=2 6‘ = nan2 / 21m2 = mm:‘ (9)2 /2*2* (8)2]: 6.3281 Table 30. Power calculation results for the Burst Test | n #2 ¢ v.= (a - 1) v,= ab(n - 1) a 1-9 I 10 6.3281 £5156 1 36 0.065 0.9350 I _ Theseresultswereobtained fromav1= 1 OCcurve,ata=0.05 and V2=36 (Montgomery, 1991). With a sample size often this experiment will be able to detect a difference in burst pressure of 9 in H20 due to changes in the factors under study. The probability of correctly rejecting Ho (no significant factor and interaction effects) is 0.9350. Peel Test: One factorial analysis was performed with the data collected. See the table below. Table 31. 22 Factorial Experiments for Peel Test Combinations I Factor - Levels (low, high) tested Factor A -Crosshead Speed — (10 ipm, 12 ipm) (10, 1.0”), (12, 1.0”) Factor B - GriLSeparation —ll .0”, 2.0”) (10, 1.0”), (12, 2.0”) NOTE: ipm = inches/minute Power calculations: «)2 = uaD2 / 2b0'2 Where; n = 10 D = 0.24 lb/in o = .21 1b/in a=2 b=2 ¢’ = naD2/2boz = [(10*2*(0.24)2/2*2*(o.21)2]= 6.5306 115 Table 32. Power calculation results for the Peel Test * n 92 0 V1 ' (1| ' 1) V2= 8N“ " 1) 3 1'3 10 6.5306 2.5555 1 36 0.06 0.94 Theseresultswereobtainedfi‘omaw=1OCcurve,ata=0.05andv2=36 (Montgomery, 1991). With a sample size of ten this experiment will be able to detect a difference in peel strength of 0.24 lb/in due to changes in the factors under study. The probability of correctly rejecting Ho (no significant factor and interaction effects) is 0.94. It has been found in previous experiments that the influence of crosshead speed andgripseparationinthepeeltest results, ifany, isvery small. Thisinfluencecan’tbe detected with a sample size of ten. It would require very large sizes. For example, if a difference of 0.05 lb/in would like to be detected with the same power, then a sample size of 231 samples would be needed. See calculations below. n = 62 2 b o’la D2 = [{(6.5306"‘2*2‘(0.21)2}/ {2"(0.05)2}]= 230.40 Although a sample size of ten sacrifices some sensitivity in the peel test, it is a reasonable number of samples to be tested. A sample size of ten pouches represents 40 peel tests because each pouch is tested in four different locations (see Chapter 4). A sample size bigger than that would make this experiment not practical and not feasible for industry application. 116 APPENDIX IV TESTING INFORMATION 117 APPENDIX 1! CONTENTS: A. TESTING INFORMATION (package size, date and time of experiments, temperature and relative humidity of laboratory, testing parameters and sample size used) for: Page I. Matfl' combingg'gn #1: Uncoated 1073B Tflek/Polyester/Poly Laminate - Rexam 119 11. Material combingtion #2: Uncgated 1073B Tflek/PET/PE Laminate — Tom 120 III. Material combination #3: Uncgatfl 1059B TfleldPglyester/Poly Laminate — Ream 121 118 2 2 2 2 $822; .838 Ed 83 8.3: 8.3: 8.3: 8.3: a 3 u as x o o 33 85*. 83.2 x :82 : 2 2 2 2 .88 "as; 8% as 88 8.3: 83: 8. 3: 8.3: a 3 n as x o o 0.3 88:. 885 .E x :83: S 2 2 S osmuesaaw .88 Es 83 8.3: 8.3: 8.3: 8.3: a 3 u 8a x o .. on 838 882.: x and: 2 2 S 2 08 "ex; 88 as 88 8.3: 8.3: 8.3: 8.3: 5 2 u as x u o 8.8 88:. 833 x :83: 2 2 2 2 .8 "as; ..x. mm as 83 8.3: 8.3: 8.3: 83: s 2 u as x o a 8.8 88$ 883 x .83.: :33“. moan—am we ..onEsz rogue—Eek «new. 8.8: DEE—3m 2553— 25h 23m 8.4 a E5: 2.5 5:238 9.5 Aim: 9...on 32.880: .550 AD 6: 9.522.508 0:5 35 owes—cam «aloh .oom 2 S S 2 2 S 21328 .88. .383 8. 3: 8. 3: 8.3.: 8.0.: 83.: 8.0.: _ n 83:28 0 .. 33 83¢ 83.: x .3. a : S 2 2 2 S 2 21568 :8 .383 8. 3: 8.3: 8. _.: 8.3: 83.: 83.: _ u F338 0 o 3.6. 83:. 882 .3 x :83: S S S 2 S 2 218.5 .88 .533 8. 3: 8. 3: 8.2.: 8.3: 83.: 8.0.: H n 83228 o o 33 854 882 . : x .83.: 2 S S 2 2 2 21.88 :3 Ed 03 8.3: 8. 3: 8.1: 8.3: 83.: 8.0.: _ n £238 0 o 8.8 88:. 882 .8 x :83: 2 S 2 S 2 S 21an as: .88 2:. 8.3: 8.3: 8._.: 8.3: 83.: 83.: _ n 33288 e o 8.8 83$ 883 x :83: case 8.958 .3 .2252 2325::— eoe E: $25.5 3.33. 2.5 ram 8.— x as: 55 53.2.38 85.— .uo—E— >685 .650 A0 a: 9.39.0:th 8.5 35 owns—ca.— flma. Es: 530ml 82:81— bomtoauobem 39>; ant: 13.3.5 3% 552.333 3.5:: .8.— ..euafineueu maroon. .3 93:. 119 32 S 2 32 §u2§> .32 .23 83 8.3: 8.3: 8.3: 8.3: a 83 n as x o o 833 83$ 82 x 28333: S 32 2 32 88 "an; :38 as 83 8.3: 83: 82.3: 8.3: E 83183“ 0.333 535. 823.: 5.: tunnuh. gag—ham 56 508552 EOHUESLQA— «nah. Ae\ev human—5mm aged—0M— QEPF tam Asia N SE 2.5 559333 8.5 .855 .5on 305320: .559 AU 6: oestrous—oh 8.5 935 owns—cam amp .83 32 S 2 32 32 32 z n 3323 .3 33 8.3 83 8.3: 8. 3: 8. _.: 83.3: 83.2 83.: 2 u £33863 0 .. 8. 23 835. 82 x .8333: 32 32 2 32 32 2 21.323 .x. S .53 83 8. 3: 8. 2.2 8. 2.: 83.3: 83.: 83.: _ u £23263 0 .. 333 83:. 823.: x a: 339,—. 8.3:—am ..o cone—:2 232—:25— .noh. ex: 3.25—fin 9523— 258 23m 8.4 a .25: 2.5 55.2.38 3....— .uouE 30...: .350 O a: 25.22—th 3.5 035 ems—u..— unoh «3.5: :3: 8.553 33.—Fm.— 365 :32: 33.8.5 33 38.3353 1:83: 3.. 83.5.33 33:83. .3. 2...; 120 2 2 2 2 «$53.8, XS .8.“ m3 8.1m: 8.18: 8.1: 8.18: a 2 u was x o .. 3%. 8%. 8313 x and: 2 S 2 2 .8 n 38 > .x. mm .93 83 8.1“: 8.18: 8.1«: 8.18: a 2 u Ea x u .. 02 83>. 8318 x :3: 3.8g. 8.3:—am so Baa—=2 £98.52...— 209 3.: £2.55 gazed 0:5. tam Aaa a 55V 2.5 5:933» 3.5 .855 .3on 32.2:qu .359 AU .9 9.39.0958 3.5 SE cacao...— Ea .25 2 S 2 2 2 2 z 1E5 .x. mm .88 8mm 8.18 8.13 8.1: 8.8.: 8.8.: 8.8.: _ u 333mg 0 .. QNN ES 881: x 23.3 2 2 2 2 2 2 Zn .605 ..x. mm Smog 8.1: 8.1: 8.1: 8.8.3 8.8.: 88.: _ u bméafim o .. 8.8 as? $2 a x :3: 088,—. 838.5 .3 song—=2 Eugen—2am 30,—. A3: 5:55.! 2520“ 25h. 23m Asu— u :E 35 56.2.2.3 32m Rev:— 323 3:5 6 .v 25.22—th 3.5 03m ans—oak is 3:5 533ml 32:83 bofiuoumobom 20>; mama 03.325 "nu 5:33:39 3.332 .8.— =o€anfl£=~ ”.589 .3 03:. 121 APPENDIX V RAW DATA 122 APPENDIX 2 QQNTEN1§: A. BURST TEST RESULTS at six different (flow index/plate separation) combinations; three flow index levels (1, 5 and 9) at each of the two plate separations (0.5” and 1.0”) under study. I. II. III. Rexam (1073B jlneklPolxecter/Polx Laminate) Pouches a) Package Size (3.25” x 7.25”) b) Package Size (5.25” x 9.125”) c) Package Size (7.25” x 11.125”) (1) Package Size (9.25” x 14.125”) e) Package Size (11.25” x 15.25”) Tolas (1073B jlflek/PET/PE Laminate) Pouches a) Package Size (3” x 11.375”) b) Package Size (10625” x 15”) Rexam (1059B filflek/Polxester/Pglx Lam te) Pouches a) Package Size (5.75” x 9.125”) b) Package Size (9.25” x 14.125”) Summa f B rs Tee Raul in si s/in 123 Page 125 126 127 128 129 130 131 132 133 134 APPENDIX V CONTENTS - Continuation: B. PEEL TEST RESULTS at four different (crosshead speed/grip separation) combinations; two crosshead speed levels (10 and 12 ipm) at each of the two grip separations (1.0” and 2.0”) under study. Page I. Regm (1073B Tuek/Polxester/Polx Laminate) Pouches a. Package Size (3.25” x 7.25”) 1) Results 136 2) Minimum Peel Strength Values 140 b. Package Size (5.25” x 9.125”) 1) Results 141 2) Minimum Peel Strength Values 145 c. Package Size (7.25” x 11.125”) 1) Results 146 2) Minimum Peel Strength Values 150 (1. Package Size (9.25” x 14.125”) 1) Results 151 2) Minimum Peel Strength Values 155 e. Package Size (11.25” x 15.25”) 1) Results 156 2) Minimum Peel Strength Values 160 II. Tolas (1073B Tflek/PET/PE Laminate) Pouches a. Package Size (3” x 11.375”) 1) Results 161 2) Minimum Peel Strength Values 165 b. Package Size (10,625” x 15”) 1) Results 166 2) Minimum Peel Strength Values 170 Ill. Rexam (1059Bj1nek/Poyester/Polx Laminate) Pouches a. Package Size (5.75” x 9.125”) 1) Results 171 2) Minimum Peel Strength Values 175 b. Package Size (9.25” x 14.125”) 1) Results 176 2) Minimum Peel Strength Values 180 124 A. BURST TEST RESULTS Rexam (1073B TfleHPolxester/Poly Laminate) Pouches Table 36. Burst Test Results for Package Size (3.25” x 7.25”) — 1073B Rexam I. at Plate Separation 0.50” Flow=l Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) (in H20) LF (sec) 1 113.5 D 102.451 116.4 D 11.952 124.0 B 5.432 2 119.8 B 113.400 129.3 B 12.823 119.2 D 5.345 3 110.4 B 109.153 133.0 E 12.711 120.8 B 5.400 4 118.9 D 114.541 120.9 B 12.305 117.3 A 5.201 5 121.1 B 121.628 128.8 B 13.067 154.0 B 5.730 6 131.5 E 118.670 150.4 B 13.364 134.5 D 5.580 7 125.9 B 114.494 117.4 D 12.336 143.0 E 5.548 8 107.6 B 107.993 137.4 B 12.871 137.6 D 5.445 9 121.0 D 112.310 106.5 E 11.804 130.5 A 5.295 10 145.8 A 124.323 131.6 E 12.444 133.2 B 5.554 Avera 121.55 NA 113.90 127.17 NA 12.57 131.41 NA 5.45 Std Dev 11.0569 NA 6.5248 12.3967 NA 0.4901 11.6055 NA 0.1548 at Plate Separation 1.0” Flow= l Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) (in H20) LF (sec) 1 65.8 E 95.653 73.7 B 11.102 68.1 A 4.650 2 65.6 B 96.798 75.5 D 10.782 79.4 E 4.820 3 64.9 E 96970 94.2 B 11.676 82.6 D 4.852 4 81.5 E 102.868 72.8 B 10.593 85.7 E 4.817 5 85.7 E 103.585 72.2 E 10.952 85.9 B 4.932 6 71.5 D 93.310 84.1 B 11.400 105.2 D 5.170 7 68.1 B 93.842 73.3 A 10.583 62.6 A 4.676 8 83.5 A 105.849 82.0 E 11.487 72.0 E 4.762 9 70.3 B 98.676 91.0 D 12.000 74.2 A 4.743 10 84.0 A 101.166 72.8 E 10.766 81.9 B 4.852 Average 74.09 NA 98.87 79.16 NA 11.13 79.76 NA 4.83 Std Dev 8.5548 NA 4.3035 8.2040 NA 0.4864 11.8063 NA 0.1474] NOTE: LF = Location of Failure, Refer to Figure 14 125 Regm (1073B jlnelt/Polxuter/Polx Laminate) Pouchg — Continuatign Table 37. Burst Test Results for Package Size (5.25” x 9.125”) - 1073B Rexam at Plate Separation 0.50” Flow=1 Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) in H20) LF (sec) 1 121.5 E 120.271 111.4 B 13.038 122.7 A 5.731 2 120.9 E 125.803 147.3 B 13.611 138.2 B 5.875 3 126.3 B 127.505 128.0 E 13.613 130.2 E 5.609 4 123.1 D 126.868 141.8 B 13.916 111.9 A 5.490 5 136.4 B 124.826 121.0 E 13.105 143.7 B 6.188 6 121.3 A 128.038 125.3 E 13.179 120.4 B 5.673 7 131.1 D 128.964 136.2 B 13.628 140.9 D 5.800 8 120.1 E 127.826 123.1 E 13.250 124.2 B 5.484 9 120.2 D 120.150 133.3 A 13.255 132.0 B 5.666 10 123.8 B 124.198 119.2 B 13.140 126.5 D 5.599 Avera e 124.47 NA 125.44 128.66 NA 13.37 129.07 NA 5.71 |Std Dev 5.3841 NA 3.1255 10.9909 NA 0.2942 9.9336 NA 0.2080 . at Plate Separation 1.0” Flow=1 Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H2O) LF (sec) (in H20) LF (sec) Lin H2O) LF (sec) 1 71.9 A 109.060 75.5 D 12.063 80.4 D 5.269 2 65.7 D 101.964 82.8 D 12.345 75.3 D 5.320 3 72.3 D 105.163 77.0 D 11932 78.3 A 5.672 4 77.5 B 111.708 78.2 E 12.139 75.9 B 5.407 5 74.9 D 111.125 69.4 E 11.691 74.6 A 5.301 6 74.0 B 112.923 74.3 B 11.948 77.1 B 5.275 7 73.2 D 107.881 76.4 E 12.397 77.1 B 5.298 8 76.2 B 111.702 80.5 B 12.192 78.6 B 5.422 9 70.3 E 102.788 74.7 B 12.211 77.3 B 5.233 10 78.6 D 108.303 82.6 E 12.631 79.5 A 5.513 vera e 73.46 NA 108.26 77.14 NA 12.15 77.41 NA 5.37 Std Dev 3.7515 NA 3.8535 4.1021 NA 0.2672 1.8363 NA 0.1359 NOTE: LF = Location of Failure, Refer to Figure 14 126 Rexam (1073B jlflek/Polxuter/Polx Mina“) Pouches — Continugtion Table 38. Burst Test Results for Package Size (7.25” x 11.125”) - 1073B Rexam at Plate Separation 0.50” Flow=1 Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in [129) LF Qec) (in H20) LF (sec) (in $0) LF (sec) 1 97.9 E 119.970 111.7 E 13.393 105.8 A 5.563 2 91.8 A 122.323 117.2 B 13.217 113.5 E 5.685 3 99.4 B 122.429 129.4 B 14.034 132.7 A 6.070 4 110.3 B 122.121 111.4 B 13.349 1071 A 5.836 5 99.9 B 116.733 104.8 B 12.637 134.1 B 5.628 6 93.6 A 113.520 132.4 B 13.634 97.0 A 5.448 7 96.6 B 119.208 116.2 B 13.374 103.2 B 5.499 8 92.2 B 119.930 128.6 E 13.932 116.2 B 5.690 9 96.7 A 118.375 121.1 A 12.932 115.7 E 5.595 10 112.1 A 122.115 129.5 A 14.073 105.5 B 5.522 Avera 99.05 NA 119.67 120.23 NA 13.46 113.08 NA 5.65 Std Dev 6.9900 NA 2.8893 9.4468 NA 0.4711 12.2291 NA 0.1840 at Plate Separation 1.0” Flow = 1 Flow = 5 Flow = 9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) (in H20) LF (sec) 1 65.2 D 116.942 55.3 E 12.024 65.3 B 5.240 2 57.5 A 118.262 62.1 E 12.490 62.8 D 5.403 3 73.0 E 116.852 63.2 B 12.544 64.1 B 5.435 4 55.9 A 116.804 61.4 D 12.128 55.3 B 5.140 5 58.6 D 111.929 69.4 D 12.490 57.8 E 5.137 6 55.1 D 112.089 63.6 E 12.345 67.2 E 5.467 7 61.2 B 113.294 65.9 E 12.714 61.3 B 5.525 8 62.7 B 117.19] 69.9 B 12.311 64.1 D 5.355 9 67.4 D 118.942 63.0 B 12.092 66.5 B 5.512 10 57.1 D 111.349 63.1 D 11.952 67.2 D 5.371 vera e 61.37 NA 115.37 63.69 NA 12.31 63.16 NA 5.36 Std Dev 5.7562 NA 2.8722 4.1538 NA 0.2527 4.0034 NA 0.1422 NOTE: LF = Location of Failure, Refer to Figure 14 127 Rexam (1073B filneklPonester/Po)! Laminate) Pouches - Continuation Table 39. Burst Test Results for Package Size (9.25” x 14.125”) — 1073B Rexam at Plate Separation 0.50” Flow=1 Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (i3 H20) LF (sec) (i_n H20) LF (sec) (in H20) LF (sec) 1 81.1 B 127.333 101.1 B 13.403 124.3 D 6.223 2 92.3 D 130.163 115.8 B 15.255 121.5 D 6.384 3 98.2 B 137.339 89.3 D 13.564 114.1 B 6.317 4 87.5 B 131.586 111.5 D 13.868 128.0 B 6.448 5 101.0 B 140.281 102.6 B 14.124 126.8 B 6.362 6 91.0 D 131.493 103.7 D 14.294 118.5 B 6.452 7 100.9 D 135.464 105.5 D 14.673 106.7 B 5.791 8 96.0 B 135.86] 114.2 D 14.727 109.8 B 5.964 9 88.4 B 129.358 121.0 B 14.532 126.3 B 6.355 10 97.2 B 133.727 122.3 D 14.255 110.3 B 6.048 vera e 93.36 NA 133.26 108.70 NA 14.27 118.63 NA 6.23 Std Dev 6.4662 NA 3.9951 10.1725 NA 0.5621 7.9161 NA 0.2255I at Plate Separation 1.0” Flow = 1 Flow = 5 Flow = 9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H2O) LF (sec) (in H2O) LF (sec) (in H2O) LF Jsec) 1 65.4 D 122.672 59.6 B 12.795 73.3 D 6.294 2 67.0 D 121.073 60.4 D 13.124 74.7 B 6.494 3 57.1 B 121.285 68.7 D 14.169 71.4 D 6.121 4 55.5 D 121.734 68.6 D 14.054 73.5 D 5.958 5 67.2 D 126.612 61.3 B 12.827 65.1 D 5.740 6 62.6 B 122.714 67.1 B 13.305 75.9 B 6.111 7 55.0 B 127.060 71.1 B 14.050 61.5 D 5.781 8 53.7 B 121.005 59.4 B 13.605 63.4 B 5.906 9 63.5 B 120.608 73.9 D 14.699 78.2 D 6.221 10 76.5 D 125.451 60.0 D 13.811 64.5 B 6.002 vera e 62.35 NA 123.02 65.01 NA 13.64 70.15 NA 6.06 Std Dev 7.1444 NA 2.4423 5.4554 NA 0.6258 5.9543 NA 0.2340 NOTE: LF = Location of Failure, Refer to Figure 14 128 Rexam (1073B IlfleklPoflester/Polg Laminate) Pouches — Continuation Table 40. Burst Test Results for Package Size (11.25” x 15.25”) — 1073B Rexam at Plate Separation 0.50” Flow= 1 Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time LS_ample (in H2O) LF (sec) (in H20) LF (sec) (in 1110) LF M 1 125.2 B 151.067 113.1 A 15.352 126.3 B 6.891 2 113.8 E 151.067 123.1 A 16.134 119.3 B 6.653 3 121.8 A 148.682 118.6 B 14.829 122.2 D 6.448 4 106.4 B 144.932 114.7 D 15.830 126.7 B 7.060 5 116.0 B 148.400 136.5 D 16.032 117.9 B 7.099 6 104.0 D 132.361 117.6 D 15.621 130.3 D 6.763 7 112.2 D 142.332 112.8 D 15.852 117.3 B 6.984 8 113.6 E 137.865 126.6 D 15.420 121.3 A 6.480 9 109.6 D 146.327 117.5 D 15.451 99.0 A 6.022 10 121.7 D 142.400 113.9 B 15.581 115.9 B 6.480 Avera e 114.43 NA 144.54 119.44 NA 15.61 119.62 NA 6.69 {Std Devl 6.8983 NA 5.9902 7.4610 NA 0.3798 8.6007 NA 0.3384 at Plate Separation 1.0” Flow=] Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H2O) LF (sec) (in H20) LF (sec) (in H20) LF (sec 1 71.1 A 139.910 61.2 D 14.374 77.1 B 6.753 2 76.0 A 139.015 59.2 D 14.507 83.5 B 7.115 3 64.8 A 137.865 66.5 B 13.996 73.5 B 6.628 4 62.4 D 126.435 78.9 D 16.443 74.9 D 6.710 5 65.0 B 131.766 80.4 D 15.689 65.4 E 6.169 6 72.2 B 145.347 70.1 D 14.935 83.7 E 7.179 7 63.1 D 129.445 76.7 B 15.067 89.6 B 7.262 8 70.0 A 134.515 67.1 D 14.160 82.6 E 7.053 9 60.6 B 136.714 86.4 B 15.742 76.4 B 6.663 10 61.9 B 131.274 69.0 B 14.563 67.9 E 6.080 Avera e 66.71 NA 135.23 71.55 NA 14.95 77.46 NA 6.76 Std Devi 5.2195 NA 5.6441 8.7746 NA 0.7908 7.5244 NA 0.4056 NOTE: LF = Location of Failure, Refer to Figure 14 129 II. Tolas (1073B Tflek/PET/PE Laminate ) Pouches Table 41. Burst Test Results for Package Size (3” x 11.375”) — 1073B Tolas at Plate Separation 0.50” Flow=] Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sam le (in H2O) LF (sec) (in H20) LF (sec) (in 11:20) LF (sec) 1 127.0 B 118.685 139.3 D 13.595 139.3 B 5.791 2 111.8 B 122.499 140.3 D 13.750 154.4 D 6.175 3 136.5 B 132.021 137.7 B 13.710 119.1 B 5.643 4 123.1 D 123.685 129.3 B 13.522 115.3 B 5.531 5 110.7 B 123.112 148.8 D 13.823 112.8 B 5.717 6 115.8 D 123.753 127.1 D 13.381 126.3 B 5.675 7 125.2 B 123.384 112.6 B 13.103 149.5 B 6.032 8 120.3 D 124.499 131.9 B 14.041 154.4 D 5.897 9 121.2 D 124.795 154.9 B 14.093 131.1 B 4.922 10 107.7 B 115.868 121.8 B 13.597 142.1 D 5.771 Avera e 119.93 NA 123.23 134.37 NA 13.66 134.43 NA 5.72 |Std Dev 8.7053 NA 4.1800 12.5471 NA 0.2954 15.8228 NA 0.3372 at Plate Separation 1.0” Flow=] Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sailple (in H20) LF (sec) (in H20) LF (sec) (in H20) LF (sec) 1 93.4 B 114.290 76.0 D 11.121 76.3 B 5.140 2 74.0 B 100.987 80.4 D 11.778 89.2 B 5.237 3 83.5 D 114.461 83.0 B 11.836 77.5 B 4.836 4 73.0 D 103.907 83.1 D 11.874 79.1 D 5.352 5 70.7 B 111.798 86.9 B 12.182 85.0 D 5.259 6 70.7 D 101.553 84.2 D 11.784 87.9 B 5.227 7 71.3 D 97939 79.3 B 11.550 85.5 B 5.253 8 80.9 D 103.695 81.3 B 11.561 79.5 B 5.125 9 76.4 B 101.493 87.1 B 12.265 91.2 B 5.205 10 73.0 D 110.480 95.5 B 12.862 90.3 D 5.247 vera e 76.69 NA 106.06 83.68 NA 11.88 84.15 NA 5.19 {Std Devl 7.2930 NA 6.0906 5.3483 NA 0.4728 5.6036 NA 0.1391 NOTE: LF = Location of Failure, Refer to Figure 14 130 Tolas 1073B T ek/PET/PE Laminate Pouches - Continuation Table 42. Burst Test Results for Package Size (10.625” x 15”) — 1073B Tolas , at Plate Separation 0.50” I I Flow= 1 I Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in HJ20) LF (sec) (infiH20) LF (sec) (in H20) LF (sec) 1 104.6 B 123.560 110.9 B 14.121 110.2 B 5.913 2 102.6 B 130.425 98.9 B 14.085 105.6 B 5.524 3 109.3 B 132.490 105.5 B 13.643 119.0 B 6.115 4 105.7 D 132.250 107.9 D 13.432 104.2 B 5.993 5 110.8 B 131.762 103.0 B 13.826 106.6 B 5.958 6 108.7 B 131.861 117.6 B 14.051 98.3 B 5.964 7 106.5 B 126.878 108.3 B 13.531 120.9 B 6.422 8 100.2 B 122.641 94.1 D 13.614 106.4 D 6.114 9 103.0 B 122.217 108.6 B 14.284 110.6 D 6.016 10 103.7 B 120.599 106.4 B 13.862 93.0 B 5.865 rAverage 105.51 NA 127.47 106.12 NA 13.84 107.48 NA 5.99 Std Dev 3.3435 NA 4.8102 6.4594 NA 0.2854 8.4335 NA 0.2258 _ at Plate Separation 1.0” I I Flow=] Flow=5 J Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (h3g0) LF (sec) (ingO) LF gee) (in H20) LF (sec) 1 61.0 B 121.874 64.2 B 13.801 74.3 B 6.147 2 72.1 B 136.759 60.5 B 13.202 73.8 B 6.374 3 64.5 B 119.932 59.7 D 13.307 69.7 B 6.005 4 60.1 B 125.763 72.3 B 14.150 66.7 D 5.794 5 68.4 B 140.920 73.3 B 14.541 54.4 B 5.534 6 62.2 B 125.022 73.5 B 14.452 76.2 B 6.327 7 67.9 B 129.323 71.8 B 13.855 66.5 B 5.685 8 45.5 B 110.624 67.7 B 13.435 73.7 B 5.945 9 61.4 B 125.108 68.0 D 13.692 69.3 D 6.025 10 66.6 B 124.742 52.4 D 12.663 70.0 B 5.813 Average) 62.97 NA 126.01 66.34 NA 13.71 69.46 NA 5.96 Std Devl 7.2498 NA 8.4529 7.0454 NA 0.5828 6.2292 NA 0.2695 NOTE: LF = Location of Failure, Refer to Figure 14 131 III. Rexam (1059B TgeklPoyger/Polx Laminate ) Pouches Table 43. Burst Test Results for Package Size (5.75” x 9.125”) - 1059B Rexam at Plate Separation 0.50” Flow=] Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sci (in H20) LF (sec) (in H20) LF (sec) 1 130.8 A 121.454 146.6 B 13.162 123.9 E 5.435 2 106.3 A 108.022 109.8 A 11.512 126.4 E 5.470 3 122.1 B 114.750 124.1 B 12.724 132.0 B 5.621 4 1001 B 106.791 106.7 A 11.769 127.2 E 5.621 5 110.1 A 111.846 133.5 E 13.323 111.8 B 5.480 6 133.9 B 114.015 121.4 E 12.525 139.5 E 5.723 7 123.5 A 117.625 113.9 A 12.272 116.6 E 5.294 8 101.1 E 106.224 116.7 B 12.281 111.1 E 5.330 9 113.3 E 110.852 110.6 A 11.820 128.9 E 5.352 10 101.6 A 103.673 133.5 B 13.073 117.3 A 5.211 Avera e 114.28 NA 111.53 121.68 NA 12.45 123.47 NA 5.45 Std Dev 12.5685 NA 5.5517 12.8236 NA 0.6270 9.1658 NA 0.1633 at Plate Separation 1.0” Flow=1 Flow=5 How=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) (in H120) LF (sec) 1 70.0 E 109.262 73.8 A 11.932 83.4 E 5.185 2 69.2 B 110.230 74.6 A 12.022 80.1 E 5.291 3 60.3 E 107.505 59.3 E 11.743 65.4 B 5.121 4 65.0 E 105.080 82.7 E 11.954 80.9 E 5.441 5 62.2 B 100.766 72.6 B 11.650 80.0 E 5.234 6 57.3 A 98.890 70.1 A 12.423 60.6 A 5.052 7 79.7 E 111.685 67.4 E 12.045 66.7 E 5.105 8 69.3 D 108.804 64.4 A 11.291 49.2 A 4.708 9 66.6 E 104.756 64.8 A 11.951 78.2 A 5.265 10 64.1 B 104.673 64.3 B 11.596 67.6 A 4.980 Average 66.37 NA 106.17 69.40 NA 11.86 71.21 NA 5.14 |§td Dev 6.2454 NA 4.1205 6.7676 NA 0.3075 11.1145 NA 0% NOTE: LF = Location of Failure, Refer to Figure 14 132 Rexam (1059B Tflek/Pouester/Polx Laminate) Pouches - Continuation Table 44. Burst Test Results for Package Size (9.25” x 14.125”) - 1059B Rexam at Plate Separation 0.50” Flow=] Flow=5 Flow=9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) (in H20) LF (sec) 1 122.0 D 144.634 131.7 E 13.903 138.8 B 6.303 2 133.5 B 141.563 127.4 B 13.791 134.0 D 6.632 3 120.9 B 125.105 118.7 B 14.403 116.8 A 5.810 4 117.6 A 127.269 123.0 B 14.224 124.1 B 6.041 5 95.1 B 120.614 119.5 B 13.641 131.6 B 6.253 6 112.9 A 122.220 124.6 A 13.956 139.3 B 6.307 7 119.1 A 122.102 121.0 D 13.653 123.9 B 6.053 8 111.9 B 124.271 128.8 B 14.603 132.1 B 6.470 9 104.8 B 122.672 128.6 A 14.320 146.2 E 6.560 10 116.9 B 121.176 126.7 B 14.134 137.5 D 6.481 vera e 115.47 NA 127.16 125.00 NA 14.06 132.43 NA 6.29 {Std Devl 10.3554 NA 8.6548 4.3594 NA 0.3268 8.7737 NA 0.2602 . at Plate Separation 1.0” Flow = 1 Flow = 5 Flow = 9 Burst Burst Burst Pressure Time Pressure Time Pressure Time Sample (in H20) LF (sec) (in H20) LF (sec) (in H20) LF (sec) 1 63.8 B 111.577 70.9 D 13.211 80.7 A 6.175 2 74.6 E 135.858 69.9 E 13.138 70.1 A 6.131 3 70.0 A 129.670 76.0 E 13.585 70.6 E 5.778 4 75.0 B 135.035 79.5 A 13.624 83.2 A 6.019 5 74.2 A 130.628 77.4 A 13.891 85.5 A 6.109 6 72.8 A 132.558 76.9 A 13.695 70.1 A 5.938 7 69.9 B 128.364 72.6 E 13.464 74.2 B 6041 8 74.0 A 129.958 75.6 A 13.612 78.0 E 6.192 9 62.4 E 128.714 74.0 A 13.798 80.7 E 5.865 10 66.3 A 124.022 81.6 E 13.660 74.8 E 5.849 Avera e 70.30 NA 128.64 75.44 NA 13.57 76.79 NA 6.01 Std Dev 4.6743 NA 6.8932 3.6846 NA 0.2381 5.6518 NA 1.9049 NOTE: LF = Location of Failure, Refer to Figure 14 133 IV. Summggy of Burst Test Results in psi Table 45. Summary of Burst Test Results in (lbs/inz) Rexam 1073B Tyvek/Polyester Poly Laminate) Pouches Burst Burst PKG Length Width Gap Flow Pressure Pressure (in) (in) (in) Index (in 131.0) (lbs/inz) 1 7.25 3.25 0.5 1 121.55 4.3923 1 7.25 3.25 0.5 5 127.17 4.5960 l 1 7.25 3.25 0.5 9 131.41 4.7492 1 7.25 3.25 1.0 1 74.09 2.6776 1 7.25 3.25 1.0 5 79.16 2.8609 1 7.25 3.25 1.0 9 79.76 2.3325 2 9.125 5.25 0.5 1 124.47 4.4934 2 9.125 5.25 0.5 5 128.66 4.6493 2 9.125 5.25 0.5 9 129.07 4.6646 2 9.125 5.25 1.0 1 73.46 2.6549 2 9.125 5.25 1.0 5 77.14 2.7379 2 9.125 5.25 1.0 9 77.41 2.7976 3 11.125 7.25 0.5 1 99.05 3.5797 3 11.125 7.25 0.5 5 120.23 4.3451 L 3 11.125 7.25 0.5 9 113.03 4.0367 3 11.125 7.25 1.0 1 61.37 2.2179 [ 3 11.125 7.25 1.0 5 63.69 2.3013 [ 3 11.125 7.25 1.0 9 63.16 2.2826 l 4 14.125 9.25 0.5 1 93.36 3.3741 4 14.125 9.25 0.5 5 103.70 3.9234 I 4 14.125 9.25 0.5 9 113.63 4.2373 I 4 14.125 9.25 1.0 1 62.35 2.2533 4 14.125 9.25 1.0 5 65.01 2.3495 4 14.125 9.25 1.0 9 70.15 2.5352 5 15.25 11.25 0.5 1 114.43 4.1355 5 15.25 11.25 0.5 5 119.44 4.3166 5 15.25 11.25 0.5 9 119.62 4.3231 5 15.25 11.25 1.0 1 66.71 2.4109 5 15.25 11.25 1.0 5 71.55 2.5353 5 15.25 11.25 1.0 9 77.46 2.7994 NOTES: 1 11111.:2 = 1 psi = 27.67 in 1120 Refer to Tables 36 to 40 134 Table 45. Summary of Burst Test Results in (lbs/inz) - Continuation Tolas (1073B Tyvek/PET/PE Laminate) Pouches Burst Burst PKG Length Width Gap Flow Pressure Pressure (in) (in) (in) Index (in H20) (lbs/inz) 1 11.375 3 0.5 1 119.93 4.3343 1 11.375 3 0.5 5 134.37 4.8562 1 11.375 3 0.5 9 134.43 4.8583 1 11.375 3 1.0 1 76.69 2.7716 1 11.375 3 1.0 5 83.69 3.0246 1 11.375 3 1.0 9 84.15 3.0412 2 15 10.625 0.5 1 105.51 3.8132 2 15 10.625 0.5 5 106. 12 3.8352 2 15 10.625 0.5 9 107.48 3.8844 2 15 10.625 1.0 1 62.97 2.2757 2 15 10.625 1.0 5 66.34 2.3975 2 15 10.625 1.0 9 69.46 2.5103 Mm (1059B Tyvek/Polyester Poly Laminate) Pouches Burst Burst PKG Length Width Gap Flow Pressure Pressure (in) (in) Lin) Index Q 1120) nan/in2 1 9.125 5.75 0.5 1 114.28 4.1301 1 9.125 5.75 0.5 5 121.68 4.3975 1 9.125 5.75 0.5 9 123.47 4.4622 1 9.125 5.75 1.0 1 66.37 2.3986 1 9.125 5.75 1.0 5 69.40 2.5081 1 9.125 5.75 1.0 9 71.21 2.5735 2 14.125 9.25 0.5 1 115.47 4.1731 2 14.125 9.25 0.5 5 125.00 4.5175 2 14.125 9.25 0.5 9 132.43 4.7860 2 14.125 9.25 1.0 1 70.30 2.5407 2 14.125 9.25 1.0 5 75.44 2.7264 2 14.125 9.25 1.0 9 76.79 2.7752 NOTES: 1 lb/in2 = 1 psi = 27.67 in [120 Refer to Tables 41 and 42 for Tolas 1073B Tyvek/plastic pouches and to Tables 43 and 44 for Rexam 1059B Tyvek/plastic pouches. 135 B. PEEL TEST RESULTS 1. Rexam 1073B T ek/Po er/P Lamin te Pouch Table 46. Peel Test Results for Package Size (3.25” x 7.25”) - 1073B Rexam at Crosshead Speed = 10 ipm and G Time (see) 5 Peak Force (le) ri Se 1 aration = 1.0” Total Avg Energy Ext Force Time ( in‘lbs in . » sec Location B 2.0720 5.542 1.3260 0.7170 0.884 0.8111 5.298 2.5930 5.285 2.1850 1.3870 0.931 1 .4898 5.605 2.3620 5.131 1.8790 1.1360 0.867 1.3103 5.224 1.6640 5.624 1.8150 1.0860 0.834 1.3022 4.922 2.0720 5.605 1.9010 1.1770 0.951 1.2376 5.708 2.2010 5.365 1.6210 0.9689 0.901 1.0754 5.381 1 .9270 5.714 1 .9760 1 .2040 0.859 1.4016 5.125 1 .8420 5.420 1 .9760 1.1590 0.904 1.2821 5.390 2.0670 5.313 1.2350 0.7159 0.831 0.8615 5.003 2.3680 5.406 2.1100 1.3470 0.862 1.5626 5.173 2.1168 0.9078 1.5310 5.4405 1.8024 1.0898 0.8824 1.2334 5.2829 0.2749 0.0277 0.1970 0.1793 0.3160 0.2298 0.0395 0.2488 0.2483 Location D Location E 1.9870 1.1070 0.853 1.2978 5.128 2.0510 1.1620 0.801 1.4507 4.775 2.0890 1.3130 1.004 1.3078 6.143 2.0350 1.2000 0.800 1.5000 4.835 1.7290 1.0610 0.909 1.1672 5.432 1.5570 0.9021 0.788 1.1448 4.737 1.7400 1.1020 0.933 1.1811 5.580 2.0670 1.1470 0.757 1.5152 4.532 1.6590 1.0230 0.986 1.0375 5.874 2.2440 1.1610 0.744 1.5605 4.426 1.7610 1.1270 0.884 1.2749 5.271 2.1580 1.1760 0.752 1.5638 4.422 2.0080 1.1650 0.850 1.3706 5.160 1.7290 0.8983 0.764 1.1758 4.553 2.2070 1.4120 0.861 1.6400 5.147 1.5840 0.8220 0.717 1.1464 4.313 WOQO‘MbUNI-tfi 2.0990 1.3430 0.973 1.3803 5.846 1.8360 1 .0250 0.752 1.3630 4.544 1.5730 0.9181 0.840 1.0930 5.000 1.6640 0.8891 0.797 1.1156 4.727 1.8852 1.1571 0.9093 1.2750 5.4581 1.8925 1.0383 0.7672 1.3536 4.5864 0.2175 0.1544 0.0614 0.1716 0.3869 0.2494 0.1471 0.0282 0.1882 0.1742 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 47 for information about the location and value of minimum peel strength for this package size. 136 1073B ek/Po r/P ° te Po - ntinu Table 46. Peel Test Results for Package Size (3.25” x 7.25”) - 1073B Rexam at Crosshead S 1 . .. = 12 ipm and Gri: Se1aration = 1.0” - Continuation Peak Peak Total Avg Force Force Energy Ext Force Time bs bs in*lbs in bs sec Energy Total Ext in*lbs) (in) Avg Force (IDS) Time sec Location A Location B 2.0190 1 .2820 0.985 1.3015 4.871 1.7930 1.1990 0.965 1.2425 4.843 2.0460 1.4600 0.938 1.5565 4.685 2.0990 1.3190 0.897 1.4705 4.502 1.8900 1 .2920 0.896 1.4420 4.480 1.6590 1.0670 0.904 1.1803 4.596 2.1100 1.5140 0.921 1.6439 4.602 2.1150 1.3290 0.833 1.5954 4.150 2.1530 1.3630 0.893 1.5263 4.423 2.1260 1.1420 0.885 1.2904 4.381 2.1320 1.4910 0.932 1.5998 4.624 1.3420 0.8610 0.869 0.9908 4.313 2.1850 1.4350 0.919 1.5615 4.554 1.0090 0.5281 0.888 0.5947 4.480 2.1480 1.4130 0.882 1.6020 4.413 1.2670 0.8110 0.856 0.9474 4.300 2.0720 1.3740 0.860 1.5977 4.294 1.7770 1.1420 0.835 1.3677 4.157 1.9170 1.3470 0.909 1.4818 4.515 1.6270 0.9414 0.871 1.0808 4.313 >3~ees~le~mauuuu 2.0672 1.3971 0.9135 1.5313 4.5461 1.6814 1.0340 0.8803 1.1761 4.4035 m U 0.1003 0.0793 0.0345 0.1009 Location D 0.1619 0.3836 0.2503 0.0383 0.2888 Location E 0.2104 1.7720 1.1240 0.895 1.2559 4.544 1.9270 1.1140 0.779 1.4300 3.941 1.9540 1.2210 0.868 1.4067 4.349 1.3100 0.7187 0.837 0.8587 4.160 2.0720 1.1620 0.933 1.2454 4.640 2.1150 1.1680 0.741 1.5762 3.769 1.8040 1 .0780 0.843 1.2788 4.214 2.1910 1.2100 0.805 1.5031 4.060 1.4930 0.9348 0.940 0.9945 4.702 1.6640 0.9506 0.774 1.2282 3.807 1.7720 1.0460 0.868 1.2051 4.323 2.0620 1.1380 0.828 1.3744 4.085 1.1440 0.6541 0.872 0.7501 4.330 2.2760 1.2600 0.777 1.6216 3.903 1.4340 0.8372 0.837 1.0002 4.140 2.2500 1 .2270 0.784 1.5651 3.932 @OQO‘UIAUNI-B 1.8470 1.1230 0.907 1.2381 4.599 1.5570 0.7413 0.800 0.9266 4.002 10 1.9330 1 .0890 0.937 1.1622 4.669 1.8790 1 .0720 0.804 1.3333 4.041 A 1.7225 1.0269 0.8900 1.1537 4.4510 1.9231 1.0600 0.7929 1.3417 3.9700 SD 0.2824 0.1716 0.0383 0.1886 0.2031 0.3229 0.1947 0.0280 0.2660 0.1235 i NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 47 for information about the location and value of minimum peel strength for this package Size. 137 1073B r/P ' Pch -Cn° . Table 46. Peel Test Results for Package Size (3.25” x 7.25”) - 1073B Rexam at Crosshead Speed = 10 ilm and Grip Separation = 2.0” — Continuation Peak Force bs _ in’lbs Total Energy Ext Avg Force bs Location A Time sec Peak Force Energy bs in’lbs Total Ext in Avg Force Location B Time . see 2.1580 1.3500 0.933 1.4469 5.521 1.6540 1.0280 0.841 1.2224 5.048 2.1640 1.4880 0.903 1.6478 5.477 1.7660 1.0650 0.887 1.2007 5.262 1.8630 1.2630 1.050 1.2029 6.224 0.8966 0.5727 0.917 0.6245 5.442 2.0890 1.3810 0.944 1.4629 5.619 1.6110 0.9808 0.877 1.1184 5.265 1.5090 0.9802 0.949 1.0329 5.640 1.7230 1.1120 0.824 1.3495 4.920 1.7930 1.1580 0.900 1.2867 5.346 1.6430 0.9327 0.864 1.0795 5.189 2.0990 1 .2870 0.917 1.4035 5.493 1.6590 0.9982 0.844 1.1827 5.025 1.9110 1.2570 0.887 1.4171 5.320 1.5460 0.9724 0.817 1.1902 4.878 1.7130 1.0630 1.007 1.0556 6.060 1.8360 1.1410 0.852 1.3392 5.031 2.1320 1.3980 0.927 1.5081 5.524 2.0300 1.2790 0.960 1.3323 5.727 >8~OO~I€~UIAMN~B 1.9431 1.2625 0.9417 1.3464 5.6224 1.6365 1.0082 0.8683 1.1639 5.1787 m 5 0.2230 0.1570 0.0508 0.1989 0.2943 0.2936 0.1834 0.0440 0.2107 0.2591 Location D Location E 1.5360 0.8729 0.842 1.0367 4.980 1.5250 0.8021 0.744 1.0781 4.438 1.6380 1.0310 0.888 1.1610 5.266 2.3360 1.3660 0.890 1.5348 5.307 0.9664 0.5713 0.813 0.7027 4.868 2.2340 1.2730 0.884 1.4400 5.323 1.7130 1.0840 0.848 1.2783 5.105 2.3780 1.2890 0.763 1.6894 4.586 1.9700 1.2160 0.854 1.4239 5.130 1.9970 1.0960 0.830 1.3205 5.012 1.5190 0.8741 0.835 1.0468 5.013 1.7990 1.0100 0.737 1.3704 4.455 1.7340 1.0530 0.919 1.1458 5.522 2.1420 1.2160 0.755 1.6106 4.515 1.6540 0.9474 0.847 1.1185 5.022 1.3530 0.7691 0.755 1.0187 4.524 \DQQOKUI8UNI-ifl 1.3690 0.8236 0.820 1.0044 4.881 2.3300 1.3570 0.782 1.7353 4.730 10 2.2440 1.4170 0.903 1 .5692 5.390 1.9650 1.1350 0.818 1.3875 4.868 A 1.6343 0.9890 0.8569 1.1487 5.1177 2.0059 1.1313 0.7958 1.4185 4.7758 SD] 0.3400 0.2309 0.0352 0.2388 0.2153 0.3536 0.2144 0.0568 0.2388 0.3387 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 47 for information about the location and value of minimum peel strength for this package an. 138 073B eklPo est r/P inate P - on ' Table 46. Peel Test Results for Package Size (3.25” x 7.25”) — 1073B Rexam at Crosshead S = 12 ipm and Gri Se aration = 2.0” - Continuation Peak Force bs Energy in*lbs Location A Total Ext 1.8470 1.2940 0.972 1.3313 4.907 1.7400 1.1900 0.955 1.2461 4.762 1.7400 1.1990 0.981 1.2222 4.919 1.5680 1.0570 0.903 1.1705 4.573 2.0830 1.2930 0.920 1.4054 4.592 2.1800 1.4210 0.884 1.6075 4.391 1.8420 1.1010 0.965 1.1409 4.813 2.0510 1 .4620 0.893 1.6372 4.455 2.1 100 1.3530 0.911 1.4852 4.521 2.1800 1.5020 0.915 1.6415 4.625 >gcaqemauN—B 1.9341 1.2872 0.9299 1.3888 4.6558 1.0773 SD 0.2143 0.1505 0.0351 0.1953 0.1852 0.1900 Location D Location E 1.8910 1.2450 0.864 1.4410 4.263 2.0720 1.1340 1.4070 0.8145 0.853 0.9549 4.211 1.6700 0.8691 1.7720 1.0330 0.896 1.1529 4.464 1.9170 1.0910 2.0400 1.2230 0.944 1.2956 4.685 1.6110 0.9032 1.5730 1.0300 0.930 1.1075 4.650 1.5360 0.8631 1.9110 1 .2090 0.852 1.4190 4.221 2.2930 1.2630 1.9170 1.1970 0.861 1.3902 4.253 2.0030 1.1230 1.9440 1 .2320 0.880 1.4000 4.340 1.6640 0.8888 WGQO‘M‘UNI‘B 1.4170 0.8470 0.810 1.0457 4.012 2.0030 1.1310 10 1.8420 1 .2200 0.936 1.3034 4.670 2.3780 1.3780 1.7714 1.1051 0.8826 1.2510 4.3769 1.9147 1.0644 3.8727 SD 0.2260 0.1646 0.0434 — NOTE: The minimum peak and average peel strength values, out of the four 0.1734 0.2304 0.2899 0.1785 locations, from each sample, were used for the analysis. Refer to Table 47 for information about the location and value of minimum peel strength for this package size. 139 «.262 8a.:— .$. 03:. Be...— =S—5 9.03 83¢.» SEE—:3 2E. ESE“ fink: I amufi n ..mn.n 35 u 5.2:— .5.— a 3 2:22 8 .3qu .3255 0.953 a E 2:: 595.53. Avon EEEEE 2: he 553.5 .1. A “HBO 2 <2 3:5 <2 32.: <2 :55 <2 «93.: <2 one"... <2 comm... <2 33.: <2 «.22. 5: Em <2 ancA <2 mkhA <2 3%: <2 mvemA <2 max: <2 33A <2 32..— <2 mwemA owfiu>< m 33.0 m omwNA m S?! m 086.2 m memo." m 2qu Q 080A A One: 3 Q $3.2 Q 2:4.— Q vvooA Q 0%? m 886 m own: m 28.0 m 03: a m 32.— m 030A m SSA m cm: m 3.36 m 058.2 m vow: m Saw: a < mow: < 3va Q mmv: m 83A m Send m omooA m mmSA m 8Q; b m 8%: m ONRA Q M62: D 032 m wooed m one: m emnoA m BSA 9 m wewoA m can: < ammo." < 08: O 336 Q 0812 D 38A Q 332 m < 8.2; < own: m 32A m SBA Q man: D 968.2 D :w: < 332 v Q amm: < 0032 m Quad m 83d m mom: m comm: m mg: m 2%: n O 33.0 D onovg Q 08: Q 88A m 33.0 m 03: Q who: m ommod N m 0806 m 09.: Q SSA m can; m 3va Q 822 m 25.0 m can: A A3: A3: A3? As: an: 9.5 an: an: A 332 A 3.32 A 3.32 A 8.32 A 3.82 A 3......— A 3.82 A 832 oEEam omaao>< 33m omauo>< xaom owaao>< 6.3m owaao>< Anon no." age .3 u :22: 6m a ..3 a“?! ..3 "345 E3 ~— 0 .3on 32.820 EE 3 n “.0on 23:29.0 EE «— u .3on 33:20 8.: 3 n .5on 23:29.0 I 2.3» a 55m :6.— aaész .3. as; 140 Ram (1073B Imzonester/Pgly Lamingte) Pouches - Continuation Table 48. Peel Test Results for Package Size (5.25” x 9.125”) - 1073B Rexam at Crosshead Speed = 10 ipm and Gij Separation = 1.0” Peak Force Energy L lbs) 1min) Total Ext 0!!) Avg Force (lb!) Time (:09 Peak Force Energy Total Ext (lb!) 11in*lb8)1 (in) Avg Force ABEL Location A Location B 1.2400 0.7468 1.047 0.7133 6.233 2.2230 1 .6650 1.025 1.6244 1.5840 1.0500 0.954 1.1006 5.737 1.8900 1.3500 1.002 1.3473 1.7660 1.1550 0.940 1.2287 5.621 2.2340 1.7170 1.051 1.6337 2.1150 1.4320 1.048 1.3664 6.282 2.0720 1.4400 1.059 1.3598 2.1580 1 .4520 1.016 1.4291 6.070 1.9760 1.5060 1.014 1.4852 2.4000 1.4360 0.997 1.4403 5.935 2.2760 1 .7020 1.064 1.5996 2.2550 1.3030 0.995 1.3095 5.890 2.4000 1.7130 1.010 1.6960 1.1920 0.7644 0.950 0.8046 5.695 2.1420 1.6470 1.011 1.6291 1.7610 1.0590 1.127 0.9397 6.750 1.5140 1.1040 0.984 1.1220 1.5190 0.9410 0.967 0.9731 5.755 1.8850 1.4400 1 .084 1.3284 1.7990 1.1339 1.0041 1.1305 5.9968 2.0612 1.5284 1.0304 1.4825 0.4224 0.2680 0.0578 0.2635 0.3469 0.2562 0.2002 0.0321 0.1859 Location D ff Location E 2.3140 1 .6940 1.000 1.6940 5.949 1.9270 1.4910 1.118 1.3336 1.6910 1 .2570 1.050 1.1971 6.310 1.8740 1.4520 1.127 1.2884 1.5730 1.1720 0.998 1.1743 5.977 1.6640 1.1880 1.067 1.1134 2.1100 1.5200 1.068 1.4232 6.404 1.8520 1.3540 1.049 1.2908 1.9490 1.4000 1.156 1.2111 6.919 1.4760 1.1060 1.101 1.0045 2.2230 1.6560 1.014 1.6331 6.031 1.3150 0.9789 1 .070 0.9149 1.9600 1 .4770 l .073 1.3765 6.461 1.8520 1 .4670 1.089 1.3471 1.9490 1 .4950 1.033 1.4472 6.179 1.7020 1 .2920 1.103 1.1714 \OGQOsUlhls-DNI—B 1.4660 0.9777 1.037 0.9428 6.208 1.9920 1.4560 1.164 1.2509 2.0830 1.5330 1.047 1.4642 5.269 1.9330 1.3630 1.094 1.2459 1.9318 1.4182 1.0476 1.3564 6.1707 1.7587 1.3148 1.0982 1.1961 0.2770 0.2227 0.0459 0.2275 0.4267 0.2193 0.1732 0.0331 0.1445 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 49 for information about the location and value of minimum peel strength for this package size. 141 ReLam 1107313 Ilnek/Polxester/Pgly minatg! Pouchg - Continuag'on Table 48. Peel Test Results for Package Size (5.25” x 9.125”) — 1073B Rexam at Crosshead Speed = 12 ipm and Gljp Separation = 1.0” - Continuation, Peak Force Energy in'lbs) 0b!) Total Ext (in) Avg Force (lb!) Time (80¢) Peak Force Energy in'lbs) (lb!) Total Ext (in) Avg Force bs Location A Location B Time 1.7830 1.1620 1.130 1.0283 5.637 1.7180 1.2190 1.025 1.1893 5.051 1.9170 1.2230 0.984 1.2429 4.907 2.1370 1.6480 1.044 1.5785 5.210 1.5410 1.0190 0.957 1.0648 4.794 2.2930 1.7540 1.021 1.7179 5.131 1.7180 1.1080 1.002 1.1058 4.840 2.2010 1.6830 1.090 1.5440 5.439 1.8630 1.1790 0.953 1.2371 4.727 2.1740 1.6480 1.083 1.5217 5.391 1.5410 0.9160 1.051 0.8716 5.282 1.8740 1.3430 1.009 1.3310 5.021 2.0940 1.3190 1.065 1.2385 5.342 1.9440 1.4430 1.192 1.2106 5.893 1.4500 1.0210 1.056 0.9669 5.191 1.6540 1.1400 1 .024 1.1133 5.063 1.7450 1 .0920 1.111 0.9829 5.599 1.2240 0.8823 1.029 0.8574 5.112 1.1010 0.7785 1.108 0.7026 5.524 2.2170 1.6340 1.089 1.5005 5.435 1.6753 1.0818 1.0417 1.0441 5.1843 1.9436 1.4394 1.0606 1.3564 5.2746 0.2797 0.1563 0.0648 0.1748 0.3470 0.3352 0.2870 0.0553 0.2627 0.2706 Location D Location E 2.1960 1.7410 1.096 1.5885 5.475 1.8740 1.4990 1.077 1.3918 5.323 2.1100 1.5230 1 .029 1.4801 5.153 1.8740 1 .4270 1.060 1.3462 5.242 1.9700 1.5010 1.031 1.4559 5.073 1.8090 1.4350 1.153 1.2446 5.711 2.1850 1.4910 1.045 1.4268 5.134 1.8150 1.3210 1.009 1.3092 5.051 1 .9330 1.3580 1.064 1.2763 5.284 1.9010 1.3860 1.091 1.2704 5.419 1.9970 1.5140 1.053 1.4378 5.263 2.2340 1.6210 1.113 1.4564 5.506 1.7880 1.3020 1.117 1.1656 5.586 1.8090 1.2660 1.065 1.1887 5.324 1.6380 1.2170 0.990 1.2293 4.987 1.8630 1.4040 1.313 1.0693 6.499 2.2010 1.6190 1.096 1.4772 5.407 2.0080 1 .4760 1.107 1 .3333 5.577 2.0030 1 .4660 1.087 1.3487 5.400 1.8250 1.3400 1.056 1.2689 5.324 2.0021 1.4732 1.0608 1.3886 5.2762 1.9012 1.4175 1.1044 1.2879 5.4976 0.1845 0.1515 0.0388 0.1308 0.1910 0.1314 0.1007 0.0829 0.1082 0.3967 — NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 49 for information about the location and value of minimum peel strength for this package 8110. 142 Re m 1073]! o er/Po Laminate Pouch - Continuation Table 48. Peel Test Results for Package Size (5.25” x 9.125”) - 1073B Rexam _a_t Crosshead Speed = 10 ipm and Grip 5 Separation = 2.0” - Continuation Total Ext Lin) Avg Force (lbs) Time (86¢) Peak Force Energy Total Ext (lbs) [(in’lbsll (in) Avg Force (lbs) Time (sec Location A Location 1.8420 1.2310 0.845 1 .4568 5.045 1.9600 1.4580 0.978 1.4908 5.823 1.4280 0.9718 0.943 1.0305 5.654 2.2070 1 .6240 0.961 1.6899 5.750 2.1210 1.2700 0.869 1.4614 5.204 1 .9490 1 .4970 1.008 1.4851 5.980 1.9760 1 .2680 0.897 1.4136 5.323 1.8040 1.3020 0.956 1.3619 5.730 2.1480 1 .4040 0.950 1.4779 5.672 1.8950 1.3470 1.000 1 .3470 5.913 1.3580 0.8569 0.847 1.0117 5.064 1.6860 1.1340 0.993 1.1420 5.910 1.8200 1.1960 0.873 1.3700 5.166 2.2440 1.5380 0.973 1.5807 5.823 1.8310 1.1860 0.883 1.3431 5.310 1 .8950 1.3280 0.988 1.3441 5.862 1.8200 1.1740 0.907 1 .2944 5.425 2.0830 1.5060 1.016 1.4823 6.073 1.4390 0.8712 0.884 0.9855 5.262 1.8520 1.3660 1 .040 1.3135 6.170 1.7783 1.1429 0.8898 1.2845 5.3125 1.9575 1.4100 0.9913 1.4237 5.9034 0.2825 0.1820 0.0356 0.1984 0.2180 0. 1752 0.1421 0.0259 0.1545 0.1391 Location D Location E 2.0890 1.4550 0.964 1.5093 5.795 1 .37 40 1 .0620 1.044 1.0172 6.266 2.1690 1 .6060 0.978 1.6421 5.871 1.8790 1.4480 0.993 1.4582 5.903 1.7830 1.3010 1.010 1.2881 6.015 2.1420 1.5830 1.035 1.5295 6.105 1.8200 1.3360 0.963 1 .3873 5.792 1.6110 1.1870 1.038 1.1435 6.243 1.5460 1.1120 0.992 1.1210 5.893 1.9920 1.3870 1.064 1 .3036 6.335 2.0130 1.5510 1.033 1.5015 6.163 1.9220 1.4350 1.051 1.3654 6.220 1.8090 1 .2600 0.964 1.3071 5.843 2.2340 1.6150 0.984 1.6413 5.887 1 .4550 1.0730 1.020 1.0520 6.082 2.1530 1.5090 1.014 1.4882 6.050 1.6430 1.1160 0.957 1.1661 5.691 1.9760 1.5360 1.036 1.4826 6.224 2.0300 1.5270 1 .020 1 .497 1 6.109 1.7720 1.3650 1.019 1.3395 6.055 >3waqomauN—n g>3waqo~mauunul 1.8357 1.3337 0.9901 1.3472 5.9254 1.9055 1.4127 1.0278 1.3769 6.1288 {—n 5 0.2390 0.1956 0.0286 0.1936 0.1575 0.2636 0. 1742 0.0252 0.1868 0.1540 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 49 for information about the location and value of minimum peel strength for this package size. 143 m 1073B ek/Po est r/Po minate Po ch - C n ’ ua ' Table 48. Peel Test Results for Package Size (5.25” x 9.125”) - 1073B Rexam at Crosshead Seed = 12 i m and Gri: Se aration = 2.0” - Continuation 4.188 2.3140 4.400 2.1210 4.532 2.3250 4.374 1.8150 4.332 2.5500 4.451 1.9060 4.682 2.2660 4.483 2.1850 \OQQQUIhUNU-‘H 4.608 1.6160 4.602 2.4590 4.4652 2.1557 0.1484 H039“ 4.823 1.9600 4.977 2.1800 5.073 1.7070 4.874 2.1050 4.951 2.1050 1.7840 1.080 1.6519 5.378 1.7180 1.1380 1.020 1.1157 5.201 1.9440 1.5640 1.051 1.4881 5.256 2.4270 1.5520 1.058 1.4669 5.266 2.2870 1.3210 0.989 1.3357 4.893 1.7660 1.4423 1.0176 1.4149 5.0692 2.0199 0.2047 0.0355 0.1736 0.1940 0.2450 j NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 49 for information about the location and value of minimum peel strength for this package size. 144 3AA: noun: .3 03:. E9: :83 9.93 82...» EEEEE can. 3 Earn 8 team .3235 29:: a E 2:!» 595.5... .3.— EEEEE 2: we 5530A n A "H HO 2 <2 and <2 venne <2 b3 fie <2 mnefie <2 neufie <2 mnene <2 mum—.e <2 bmnne >09 Em <2 m2 AA <2 even.“ <2 3:.— <2 $.va <2 mgeA <2 33A <2 veSA <2 eeemA em93>< < Se: < 02.2 < 33.0 < 8va < emcee < e8: < 38.0 < oeHmA e— < 9.3.0 < 0032 Q So: Q enveA m vnmme m ovumA < 83.0 Q 891 e Q 5%: D 9.2 .N D 83." Q emmVA < $006 < eemVA < evewe < 032 a Q $2: D 85A Q Ken.“ Q oeowA D owe: Q e352 < 302 m ommwA b w New: m 0352 < 58A < 0%: < 23.0 < 23A m 9.8.0 m 022 e < eemNA < 0352 Q 0:: A Q 0302 < 2.3.2 < anew.“ m mvoeA m 0052 m m NmeA m eflwA m mmv: m 020A < ewe: < 8:: m weeNA m ommmA v < Sofie < 33.0 D 53.2 D 085A < $00.2 < 02.2 m 3: 2 Q omnmA n < 8.8.0 < oommA < 88; < 3va < 3va m ovum; < eeS A < own: N Q 38: Q omveA m «20.2 m ovum.“ < mwNeA m 8:; < mmfie < 8va A fine male es: A2: e3: Ase Ann—w 3e A 8.82 A 3.8,.— A 3.32 A 3.82 A 8.52 A 3.8..— A 3.8% A 02o...— 0...an omaao>< :aom owaLo>< xaom owaao>< :3.— owaao>< 33m .5." u aura a." u .sfilflwmuwo :3 u 5%: .5 a :3 u 8:2. om are En. 2 n coon—m 23:39.0 E3 3 n econ—m 23.—39.0 5.: «A u .3on 33:39.0 SE S u 3on 23:39.0 .a a ..me 3% 9 Seam 8. 3......» a 55m .8.— aaész .3. as: 145 1073B ek/Po r/P 'Ph-n' Table 50. Peel Test Results for Package Size (7.25” x 11.125”) — 1073B Rexam at Crosshead S = 10 i . m and Gri Se » aration = 1.0” Peak Force bs Energy in‘lbs Total Ext in Avg Force "\ Location A Time Force Energy Peak be in‘lbs Total Avg Ext Force Time in be sec Location B 1.4550 0.8794 1 .029 0.8546 6.169 1.6380 1.3260 1.108 1.1968 6.560 1.0680 0.6466 0.890 0.7265 5.291 1.6430 1.3220 1.063 1.2437 6.361 1.2560 0.7420 0.915 0.8109 5.445 1.7020 1 .4270 1.099 1.2985 6.592 1.5300 0.9169 0.904 1.0143 5.391 2.0830 1.6580 1.120 1.4804 6.714 2.0460 1 .2780 0.868 1.4724 5.170 1.4280 1.0440 1.103 0.9465 6.600 1.6380 0.9701 0.898 1.0803 5.355 1.91 10 1 .6270 1.126 1.4449 6.695 1.4390 0.7978 0.871 0.9160 5.195 1.9810 1 .6080 1.087 1.4793 6.505 1.4870 0.9234 0.855 1.0800 4.984 1.1220 0.8680 1.124 0.7722 6.650 1.6320 1.0410 0.895 1.1631 5.352 1.6590 1.3970 1.064 1.3130 6.339 1.1970 0.7674 0.899 0.8536 5.374 1.7070 1 .4070 1.151 1.2224 6.830 >gwaqemauN—I 1.4748 0.8963 0.9024 0.9972 5.3726 1.6874 1.3684 1.1045 1.2398 6.5846 m 5 0.2735 0.1783 0.0481 0.2168 Location D 0.31 1 1 0.2760 0.2524 0.0278 0.2292 Location E d 0.1531 2.0670 1.6020 1.068 1.5000 6.384 1.5460 1.0160 1.046 0.9713 6.220 2.1370 1.7640 1 .263 1.3967 7.528 1.3100 0.7794 0.941 0.8283 5.618 1.6050 1.2130 1.183 1.0254 7.034 1.4230 0.8481 1.043 0.8131 6.179 1.8360 1.3490 1.104 1.2219 6.592 1.4820 0.8811 1.110 0.7938 6.587 1.7070 1.3300 1.138 1.1687 6.730 1.7770 1 .2280 1.011 1.2146 6.012 1.8740 1.4370 1 .070 1.3430 6.400 1.9490 1.3120 0.990 1.3253 5.920 1.7020 1.3630 1.106 1.2324 6.609 1.1920 0.7799 1.054 0.7399 6.253 1.6110 1.0510 1.054 0.997 2 6.294 1.6430 1.0690 0.983 1.0875 5.801 \OQQONMhUN—B 1.9330 1.4160 1.110 1.2757 6.641 1.4870 0.9368 0.924 1.0139 5.542 10 1.9110 1 .5680 1.051 1.4919 6.253 1.3050 0.8636 0.893 0.9671 5.252 A 1.8383 1.4093 1.1147 1.2653 6.6465 1.51 14 0.9714 0.9995 0.9755 5.9384 SD 0.1823 0.2022 0.0661 0.1737 0.3869 0.222.. 0.1835 0.0668 0.1915 0.3961 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 51 for information about the location and value of minimum peel strength for th'u package size. 146 R 1073B 0 ester/P Laminat Pou hes - Continuati n Table 50. Peel Test Results for Package Size (7.25” x 11.125”) — 1073B Rexam atCrossheadS ... =l2i mandGri Se Peak Total Force Energy Ext bs) in’lbs) (in) Force 01’!) e (sec) aration = 1.0” - Continuation Avg Force QM) Time Location A Location B 1.6700 1.0660 1.043 1.0221 5.170 1.6700 1.3440 1.117 1.2032 5.535 1.7400 0.9344 0.900 1.0382 5.734 1.8040 1.4410 1 .072 1.3442 5.339 1.5840 0.9050 0.810 1.1173 4.003 1.4120 1.1200 1 .084 1.0332 5.432 1.8040 1.0190 0.836 1.2189 4.173 2.3680 1 .9440 1.168 1.6644 5.733 1.8680 1 .0820 0.912 1.1864 4.519 1.9220 1.5550 1 .080 1.4398 5.320 1.0090 0.6138 0.876 0.7007 4.384 2.0350 1.7460 1.102 1.5844 5.435 1.0470 0.6106 0.825 0.7401 4.092 2.1150 1.7950 1.096 1.6378 5.456 1.7180 1.0450 0.893 1.1702 4.455 2.1640 1 .6780 1.128 1.4876 5.602 WOQQUIhUNl-ifl 1.4820 0.8338 0.852 0.9786 4.317 1.8090 1.5490 1.133 1.3672 5.554 he 6 1.6270 0.9450 0.878 1.0763 4.342 2.3030 1.9900 1.100 1.8091 5.420 > 1.5549 0.9055 0.8825 1.0249 4.5189 1.9602 1.6162 1.1080 1.457 1 5.4826 m 5 0.2984 0.1728 0.0656 0.1778 0.5336 0.2960 Location D 0.2706 0.0291 0.2314 Location E 0.1253 1.7560 1.3590 1.121 1.2123 5.516 1.6970 1.2030 1 .422 0.8460 6.105 2.1100 1 .7620 1 .077 1.6360 5.361 1.7610 1.2010 1.018 1.1798 4.990 1.9810 1.5900 1.253 1.2690 6.172 1.9110 1.3090 1.025 1 .2771 5.060 2.0830 1.4380 1 .089 1.3205 5.448 1.5520 1.1430 1.097 1.0419 5.439 1.6590 1.3570 1.149 1.1810 5.650 1.8150 1.3410 1.002 1.3383 4.920 2.2390 1.7950 1.083 1.6574 5.384 1.4170 1.0660 1.057 1.0085 5.529 2.4540 2.1490 1.160 1.8526 5.717 1.6270 1.1460 1 .029 1.1137 5.022 1.8470 1.5630 1.153 1.3556 5.714 1.9170 1.2740 1.026 1.2417 4.961 WNQO‘UIhUNI-B 2.2390 1.6640 1 .072 1.5522 5.332 1.5790 1.1230 0.957 1.1735 4.817 10 1.7770 1.4760 1.112 1.3273 5.410 1.7930 1.2550 1.016 1.2352 5.034 A 2.0145 1.6153 1.1269 1.4364 5.5704 1.7069 1.2061 1.0649 1.1456 5.1877 SD 0.2553 0.2421 0.0551 0.2238 0.2559 0.1629 0.0882 0.1305 0.1468 0.3927 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 51 for information about the location and value of minimum peel strength for this package SIZC. 147 xam 1073B er/P minate P uch -Con°u 'n Table 50. Peel Test Results for Package Size (7.25” x 11.125”) — 1073B Rexam at Crosshead Speed = 10 ipm and Gri: Peak Total Force Energy Ext bs ( in‘lbs ill) Avg Force GIRL Time (sec Location A Se Ext ration = 2.0” - Continuation Peak Force Energy bs in'lbs Location B 1.8520 1.0700 0.807 1.3259 4.846 1.6640 1 .4080 1.142 1.2329 6.769 1.8520 1.0930 0.877 1.2463 5.250 1.9330 1.6410 1.117 1.4691 6.663 2.0240 1.1820 0.832 1.4207 4.952 1.6590 1.1580 1.069 1.0833 6.311 1.8740 1.0950 0.828 1.3225 4.893 1.9060 1 .5680 1.097 1.4294 6.535 2.4380 1 .4080 0.804 1.7512 4.762 1.9380 1.5110 1 .073 1.4082 6.452 1.5030 0.8038 0.870 0.9239 5.175 1.6910 1.2520 1 .073 1.1668 6.467 1.5620 0.8040 0.779 1.0321 4.650 1.8040 1.2830 1 .082 1.1858 6.484 1.1700 0.6588 0.825 0.7985 4.906 1.3370 0.9713 1.041 0.9330 6.217 2.1740 1.1360 0.807 1.4077 4.759 2.0620 1.5640 1 .079 1.4495 6.451 1.4600 0.8397 0.843 0.9961 4.977 1.7020 1.3670 1.080 1.2657 6.440 >3waqemauN—H 1.7909 1.0090 0.8272 1.2225 4.9170 1.7696 1.3723 1.0853 1.2624 6.4789 m 5 0.3748 0.2258 0.0303 0.2850 0.2100 0.0278 0.1774 0.1568 Location D 0.185% 0.2059 Location E 2.4380 2.0480 1.073 1.9087 6.426 1.7720 1.2110 1.038 1.1667 6.170 2.3030 1.9100 1.164 1.6409 7.019 1.6910 1 .2270 0.960 1.2781 5.723 2.0400 1.5290 1.141 1.3401 6.826 1.8740 1.3260 0.920 1.4413 5.452 1.1920 0.9080 1 .074 0.8454 6.429 1.7230 1.1800 0.967 1.2203 5.788 2.2820 1.8060 1.116 1.6183 6.670 1.9170 1 .2020 0.942 1.2760 5.499 1.6970 1.2990 1.035 1.2551 6.137 2.2010 1.4700 0.949 1.5490 5.631 2.2440 1.6930 1 .088 1.5561 6.452 1.6380 1 .0400 0.936 1.1111 5.582 2.1260 1.5890 1.073 1.4809 6.324 1.6110 1 .0470 0.954 1.0975 5.653 waqemauN—B 2.0510 1.7180 1.094 1.5704 6.509 1.8950 1.3330 0.937 1.4226 5.554 10 1.8090 1.3510 1.068 1.2650 6.330 1.8850 1.3140 0.926 1.4190 5.512 A 2.0182 1.5851 1.0926 1.4481 6.5122 1.8207 1.2350 0.9529 1.2982 5.6564 SD 0.3683 0.3327 0.0381 0.2890 0.2598 0.1740 0. 1323 0.0333 0.1538 0.2081 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 51 for information about the location and value of minimum peel strength for this package size. 148 R 10733 erlPo inteP 1| - ntinua ' Table 50. Peel Test Results for Package Size (7.25” x 11.125”) - 1073B Rexam at Crosshead S Peak Force Energy bs in*|bs = 12 i m and Gri Se aration = 2.0” - Continuation Total Avg Peak Total Avg Ext Force Time Force Energy Ext Force Time bs (in‘lbs) (in) bs Location A bs Location B 1.9700 1.0680 0.857 1.2462 4.291 1.6480 1.3320 1.096 1.2153 5.460 2.2500 1.1680 0.789 1.4804 3.903 1.9810 1.6640 1.107 1.5032 5.525 1.8250 1 .0670 0.819 1.3028 4.073 1.0470 0.8600 1 .268 0.6782 6.310 1.4600 0.8564 0.809 1.0586 4.012 1.8580 1.5530 1.109 1.4004 5.473 0.8161 0.4714 0.790 0.5967 3.929 1.6270 1.3850 1.097 1.2625 5.487 1.4070 0.7821 0.820 0.9538 4.073 1.7720 1.4430 1.230 1.1732 6.085 1.3640 0.7250 0.802 0.9040 3.925 1.9650 1.5430 1.088 1.4182 5.403 1.4120 0.8179 0.908 0.9008 4.528 2.1320 1.7170 1 .077 1.5942 5.320 1.3320 0.7165 0.807 0.8879 3.983 1.9060 1.5280 1.110 1.3766 5.464 2.1050 1.2190 0.824 1.4794 4.070 1.4870 1.1120 1.079 1.0306 5.624 >EwaqauauN—a 1.5941 0.8891 0.8225 1.0810 4.0787 1.7423 1.4137 1.1261 1.2652 5.6151 m 5 0.4345 0.2355 0.0358 2.2881 0.1937 Location D 0.31 10 0.2603 0.0664 0.2645 Location E 0.3210 1.4600 1.0280 1 .069 0.9616 5.336 2.0350 1.4490 0.988 1.4666 4.901 2.1100 1 .4700 1.053 1.3960 5.234 2.0830 1.3630 0.944 1.4439 4.672 1.9490 1.6040 1.105 1.4516 5.496 1.7560 1.3020 1.036 1.2568 5.128 1.9540 1.5050 1.096 1.3732 5.461 1 .9760 1.3620 0.989 1 .377 1 4.871 1.3370 0.9370 1 .054 0.8890 5.272 1.6750 1.1690 0.949 1.2318 4.643 2.3300 1.7460 1.257 1.3890 6.220 1.2720 0.9063 0.977 0.9276 4.871 1.8580 1.3630 1.053 1.2944 5.225 1.2720 0.8178 1.008 0.8113 4.984 2.1690 1.7360 1.064 1.6316 5.252 1.5090 0.9957 0.932 1.0683 4.637 WNNIO‘M‘UNI-IB 1.6050 1.2100 1.069 1.1319 5.291 1.9490 1.3600 0.929 1.4639 4.553 10 2.4860 2.0740 1.088 1.9063 5.416 1.4340 0.8853 0.969 0.9136 4.631 A 1.9258 1.4673 1.0908 1.3425 5.4203 1.6961 1.1610 0.9721 1.1961 4.7891 SD 0.3716 0.3479 0.0612 0.3012 0.2970 0.3117 0.2380 0.0345 0.2495 0.1879 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 51 for information about the location and value of minimum peel strength for this package size. 149 e363 8a.:— .em 03:“. 59c :33 933 83: Baa—EE— 25. 3 9592 3 ..ouom .2285 2953 a E 2...; 59.95 .3.— EEEEE 2: ..o :oflaueA n A “H HO 2 <2 ee—ue <2 nueme <2 Sofie <2 unmne <2 meefie <2 emene <2 3:6 <2 336 .5: Em <2 «nae <2 33.— <2 38A <2 nFmA <2 wowed <2 33A <2 named <2 mnmmA owano>< m eSoo m 9.22 < Seed < 89: < SSA < onNoA < emmwo < 2.2 A e— < ehwwo < on?! < Rev; m omowg < cameo < camel m oSeA m 2.va e < woooo < out; < moose < eon: < new: < 8:2 m NNPo m emu: e m 25o m enema < 58; < omemA < 83o < onvoA m eomno m one: b m owned m omnmA < omuoo < omomA < noose < oooeA < mono; < ommoa e < Some < 35o m oenNA m oSeA Q 0;: Q oomeA m moved m omfil m < memo.“ < 891 Q vawo Q one: u 33A m ommmA m amend m omwvg v m NmSo m onvoA m mmwoA m 83: m NmmoA m 8:: < eofimo < oemNA n D one: m 23A < 3va m vooA < S8.— < oovnA < weave < omooA N 0 Seed Q ooov; M So: m oveeA m oevwo < ooSA < 33o < 391 A E: :13 E: whee ea we 3% Ed A 3.52 A 3.8..— A 0982 A 3.8m A 8.8..— A 8.8m A 3.5..— A 3.82 oEEam omaao>< :aom omaeo>< 23m owa._0>< 3.3m owaao>< :aom as.” u :28: 8 are as." u .529... em 35 :3 n :23: em .35 ..3 u :23: um 35 SE 2 n 3on 63:29.0 E& e— n .3on 63:29.0 5.: S n .5on 32.395 EE 3 u coon—m 13:89.0 150 Rexam (1073B filfleli/Polyester/Polx Laminate) Pouches - Continuation Table 52. Peel Test Results for Package Size (9.25” x 14.125”) - 1073B Rexam at Crosshead Speed = 10 ipm and Grip Separation = 1.0” Peak Total Avg Peak Total Avg Force Energy Ext Force Time Force Energy Ext Force Time (lbs) (iu‘ibs) (in) (lbs) (sec) (lbs) 1(in*lbs Lin) (lbs) (sec) Location A Location B 1.8850 1.2650 1.064 1.1889 6.310 2.1150 1.6040 1.067 1.5033 6.342 1.3050 0.9221 1.273 0.7244 6.396 1.8200 1.3260 1.107 1.1978 6.644 2.2930 1.6190 1.041 1.5552 6.240 2.0990 1.4500 1.127 1.2866 6.679 1.82001.2780 1.018 1.2554 6.015 1.9220 1.4950 1.137 1.3149 6.820 2.5450 1.7470 1.120 1.5598 6.698 1.81501.3150 1.031 1.2755 6.185 1.6540 1.1300 0.980 1.1531 5.859 1.69701.1940 1.261 0.9469 7.536 2.4000 1.6190 0.990 1.6354 5.929 1.9270 1.5000 1.022 1.4677 6.141 1.6860 1.1460 0.951 1.2050 5.788 1.7500 1.1920 1.007 1.1837 6.053 \OQQ$UI8UNI—H 2.01301.3590 1.00] 1.3576 5.974 1.78801.3750 1.011 1.3600 6.035 .— O 1.9330 1.3450 0.979 1.3739 5.907 1.8250 1.3200 1.027 1.2853 6.144 1.9534 1.3430 1.0417 1.3009 6.1116 1.8758 1.3771 1.0797 1.2822 6.4579 > m U 0.3761 0.2555 0.0949 0.2646 0.2892 0.1401 0.1347 0.0801 0.1563 0.4722 Location D Location E 1.4930 1.0780 1.057 1.0199 6.349 1.9330 1.2070 0.969 1.2456 5.836 1.7450 1.1950 1.034 1.1557 6.244 1.9920 1.2360 0.993 1.2447 5.935 1.1330 0.7599 1.080 0.7036 6.484 1.9490 1.3190 1.073 1.2293 6.432 1.89001.4120 1.134 1.2451 6.817 2.21201.3770 1.166 1.1810 6.954 1.92701.3390 1.041 1.2863 6.237 1.80401.2280 1.074 1.1434 6.425 1.3530 0.9743 1.025 0.9505 6.121 1.9600 1.2510 0.990 1.2636 5.952 1.9870 1.4600 1.016 1.4370 6.108 2.1050 1.3610 1.034 1.3162 6.202 2.0620 1.5620 1.063 1.4694 6.356 1.6810 1.0170 0.910 1.1176 5.461 wwqemauN—a 1.4280 1.0650 0.984 1.0823 5.852 1.8950 1.1510 0.974 1.1817 5.791 u— G 1.8630 1.2920 0.976 1.3238 5.823 1.5840 0.9062 0.958 0.9459 5.746 1.6881 1.2137 1.0410 1.1674 6.2391 1.9115 1.2053 1.0141 1.1869 6.0734 > m 5 0.3139 0.2466 0.0463 0.2357 0.2932 0.1858 0.1483 0.0739 0.1033 0.4342 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 53 for information about the location and value of minimum peel strength for this package size. 151 R m 1073BT o ester/Po Laminate Pouches - Continuation Table 52. Peel Test Results for Package Size (9.25” x 14.125”) - 1073B Rexam at Crosshead S . ‘ Peak Fo bs Total rce Energy Ext 1 in'lbs) (in) Location A 1 = 12 ipm and Gri Avg Force (lb!) Time (sec) Force Energy bs in’lbs) Total Ext (in) Se aration = 1.0” - Continuation Avg Force bs Location B Time sec 1.8090 1.1810 1 .066 1.1079 5.260 1.5090 1.1810 1.044 1.1312 5.252 1.7830 1.1920 1.153 1.0338 5.723 1.8040 1.3060 1.112 1.1745 5.563 2.1640 1.5440 1.097 1.4075 5.499 1.9170 1.4810 1.138 1.3014 5.656 2.0720 1.3640 1.084 1.2583 5.413 1.8680 1.3500 1.051 1.2845 5.153 1.8850 1.3440 1.174 1.1448 5.839 1.4070 0.9542 1.046 0.9122 5.140 2.1910 1.6190 1.124 1.4404 5.592 2.1480 1.5310 1.112 1.3768 5.563 2.3520 1.5740 1.100 1.4309 5.499 1.8090 1.3170 1.006 1.3091 5.000 1.9440 1.3710 1.043 1.3145 5.099 2.2230 1.5490 1 .029 1.5053 5.112 1.7340 1.2140 1 .072 1.1325 5.320 1.6480 1.2150 1.320 0.9205 6.582 1.4550 0.9910 1.223 0.8103 6.096 1.7930 1 .2990 1.036 1.2539 5.166 >geuqemauN—H 1.9389 1.3394 1.1136 1.2081 5.5340 1.8126 1.3183 1.0894 1.2169 5.4187 SD 0.2631 0.2002 0.0554 0.2015 0.1791 0.0916 0.1886 0.4667 Location D 0.2935 #01537 Location E 1.9060 1.4310 1.046 1.3681 5.191 1.9330 1 .2060 1.031 1.1697 5.170 1.7180 1.2990 1.083 1.1994 5.412 2.1210 1.3960 0.960 1.4542 4.820 1.8630 1.3360 1.116 1.1971 5.557 2.2760 1.3940 1.106 1.2604 5.513 1.8250 1.2830 1 .022 1.2554 5.076 1.5620 1 .0080 1.132 0.8905 5.618 1.8040 1.3630 1.141 1.1946 5.749 1.8040 1.0130 1.012 1.0010 5.041 1.3850 1.0340 1.123 0.9207 5.612 1.9220 1.1910 0.989 1.2042 4.926 1.8470 1.3640 1.125 1.2124 5.586 1.7930 1.1440 1.033 1.1075 5.140 1.9810 1 .4420 1.090 1.3229 5.445 1.7930 1.1350 0.952 1.1922 4.730 @“QGKM89NI‘H 1.9270 1 .4720 1.191 1.2359 5.955 1.7720 1.1430 0.912 1.2533 4.551 10 1.8630 1 .4460 1.050 1.3771 5.204 1.5730 1 .0070 0.922 1.0922 4.573 A 1.8119 1.3470 1.0987 1.2284 5.4787 1.8549 1.1637 1.0049 1.1625 5.0082 SD 0.1661 0.1276 0.0508 ‘— 0.1288 0.271 1 0.2214 _ 0.1425 0.0734 0.1541 0.3635 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 53 for information about the location and value of minimum peel strength for this package SIZC. 152 1073B 01‘ 'a Pub - n ' uation Table 52. Peel Test Results for Package Size (9.25” x 14.125”) - 1073B Rexam atCrossheadS .. =10i mandGri Peak Total Force Energy Ext bs in*lbs) (in) Avg Force (“’81 Location A Peak Force Energy Total Ext Separation = 2.0” - Continuation Avg Force (lb!) (in ’11”) (in) f (lbs) Location B Time 1.9060 1.3240 1.102 1.2015 6.624 2.0720 1.5540 0.989 1.5713 5.903 1.4710 1.0640 0.984 1.0813 5.935 1.7130 1.2310 0.956 1.2877 5.727 2.1320 1.5490 1.116 1.3880 6.722 1.7990 1.2330 0.971 1.2698 5.800 2.1260 1 .4860 1.040 1.4288 6.214 1.9600 1.4360 1.009 1.4232 6.009 2.0190 1.4050 1.000 1.4050 6.035 1.6700 1.1980 1.014 1.1815 6.082 2.1100 1 .4650 0.960 1.5260 5.733 1.8200 1.3150 1.000 1.3150 5.999 1.9760 1.4250 0.974 1.4630 5.840 1.0090 0.6947 0.992 0.7003 5.993 2.2820 1.5850 0.944 1.6790 5.621 2.2170 1.5790 0.994 1.5885 6.003 2.2390 1 .5220 1.134 1.3422 6.884 1.5570 1.1400 1.028 1.1089 6.115 1.4820 0.9537 0.953 1.0007 5.721 1.6810 1 .2080 0.959 1.2596 5.730 >3~ea~iemauumn 1.9743 1.3779 1.0207 1.3516 6.1329 1.7498 1.2589 0.9912 1.2706 5.9361 m 5 0.2855 0.2099 0.0723 0.2052 0.4577 #3286 0.2504 0.0235 0.2531 0.1399 Location D Location E 1.7340 1 .2770 0.967 1.3206 5.814 2.0940 1.3260 0.890 1.4899 5.275 1.9220 1.4600 1 .024 1.4258 6.082 1.5190 0.9657 0.884 1.0924 5.330 1.5620 1.1790 1.002 1.1766 5.971 2.0400 1.2640 0.912 1.3860 5.471 1.9870 1.5360 1.017 1.5103 6.111 1.8740 1.1120 0.865 1.2855 5.153 1.8950 1.3790 1.001 1.3776 5.981 1.6480 1.0460 0.871 1.2009 5.211 1.6000 1.0380 0.922 1.1258 5.570 1.7720 1.1120 0.822 1.3528 5.230 1.8580 1.4310 1.012 1.4140 5.993 1.9220 1.1790 0.861 1.3693 5.230 2.0400 1 .5080 0.980 1.5388 5.826 2.0510 1 .2920 0.857 1.5076 5.131 WQQQM8MNI-H 1.7450 1.1250 0.969 1.1610 5.772 1.3150 0.8351 0.857 0.9744 5.121 10 1.6210 1.1260 0.984 1.1443 5.887 1.9970 1.2750 0.941 1.3549 5.576 A 1.7964 1.3059 0.9878 1.3195 5.9007 1.8232 1.1407 0.8760 1.3014 5.2728 SD 0.1686 0.1802 0.0304 0.1570 J 0.1620 0.2580 0.1587 {0.0330 0.1687 0.1489 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 53 for information about the location and value of minimum peel strength for this package size. 153 R m073B erlPo ' ate Po h -Cn° uati Table 52. Peel Test Results for Package Size (9.25” x 14.125”) - 1073B Rexam at Crosshead S . - .. = 12 ipm and Gri Peak Force Energy in*lbs bs Total Ext in Avg Force flL Location A Time Energy Ext Se . aration = 2.0” - Continuation Peak Force bs in'lbs Avg Force bs Location B Time sec 2.1260 1.3790 1.015 1.3586 5.082 1.9760 1.3880 1.000 1.3880 4.974 2.2440 1.5950 0.939 1.6986 4.714 1.6050 1.2010 0.968 1.2407 4.839 2.1320 1.4550 0.962 1.5125 4.798 1.8150 1.3160 0.973 1.3525 4.849 2.1100 1.3660 1.121 1.2186 5.589 1.9110 1.4300 0.946 1.51 16 4.704 1.9110 1 .2880 0.904 1.4248 4.612 1.9490 1 .4070 0.963 1.4611 4.810 2.1420 1.4690 0.954 1.5398 4.788 2.1210 1.5560 0.955 1.6293 4.804 2.1320 1.5290 0.941 1.6249 4.683 1.7660 1.3120 0.952 1.3782 4.752 1.5570 1.1100 1 .028 1.0798 5.153 1.4550 0.9799 1.005 0.9750 4.922 1.4600 0.9890 0.933 1.0600 4.621 1.6480 1.1260 1.040 1.0827 5.185 2.0030 1.3390 1.009 1.3271 5.061 1.7450 1.2150 1.023 1.1877 5.060 >3waqamauN—B 1.9817 1.3519 0.9806 1.3845 4.9101 1.7991 1.2931 0.9825 1.3207 4.8899 m 5 0.2656 0.1857 0.0636 0.2181 0.3095 Location D 0.1981 0.1671 0.9324 0.2001 Location E 0.1475 2.1420 1.5840 0.996 1.5904 4.893 1.6860 1.0850 0.934 1.1617 4.595 1.9810 1.3320 0.982 1.3564 4.907 2.0030 1.2900 0.909 1.4191 4.454 2.0670 1.5390 1.010 1.5238 5.073 1.7290 1.0680 0.881 1.2123 4.394 1.4070 0.9550 0.976 0.9785 4.862 1.8850 1.1310 0.849 1.3322 4.230 1.8310 1 .2340 0.939 1.3142 4.676 1.6430 1.0370 0.883 1.1744 4.445 1.9490 1.4330 0.969 1.4788 4.855 1.9170 1.2450 1.051 1.1846 4.140 2.0460 1.5170 0.989 1.5339 4.932 1.5300 0.9756 0.888 1.0986 4.374 1.3960 0.8440 0.948 0.8903 4.641 1.7340 1.1570 0.939 1.2322 4.672 @flflGlfl-flMNflH 1.9700 1.4150 0.995 1.4221 4.929 1.6270 1.0890 0.974 1.1181 4.823 10 1.7610 1 .2440 0.965 1.2891 4.771 1.7500 1 .0800 0.925 1.1676 4.570 A 1.8550 1.3097 0.9769 1.3377 4.8539 1.7504 1.1158 0.9233 1.2101 4.4697 SD 0.2630 0.2473 0.0222 0.2349 0.1282 0.1453 0.0943 0.0574 0.0978 0.2037 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 53 for information about the location and value of minimum peel strength for this package 8113. 154 37:3 89:. .Nm 03:. E9... 88.8 9:...» 83¢.» 855.5... 2E. 3 9592 E 8.8% .3285 «.95: ¢ 5 02¢.» 598.5... .8.— EEEEE 25 .8 8588A u A "n.— 80 2 <2 eAZe <2 mew—e <2 eZNe <2 emee <2 menfie <2 e436 <2 mvefie <2 nmmNe .59 Em <2 .32.. <2 e—SA <2 mnNAA <2 mnbmA <2 neeeA <2 nnSA <2 $8.. <2 eNmmA ow¢8>< m one... m omvnA < Boo. < onv. < 88o < 0mm... m envoo m oven. 3 < ooeo. < ooov. m vibe m. o2: m mono m SE... Q NNmoA Q 8N... a Q moowo Q econ. m whom. Q oovoN N No... m omen. m 2.2.. m ego. e m owoo. m 8%.. m moose m ooooA m 2.0... m 2.9.. m No.2 m oNNoA b m 03.... m 2.8.. Q me... Q oooe. n. 89.0 Q 03»... m moved Q ommm. e m 3.2.. m omve. m 2»... m 09.0.. m NN.o.o m one... m 33.. m ovow. m D 33o Q o8... m mmmN.. m 943.. m momme m 83.. m o5... < oon. v m mN.N.. m oeNN. D eon... Q 33.. Q .3... Q 09%.. Q emoNo G SM... n m 83.. m omoe. < 28.. < St... < ammo. Q 8:. < VVNNo < omen. N m 2%.. m come. < m.oN.. Q 042... < one... m ooom. Q 38.. Q 084.. A A25 3 .3: male 9% .3: .2... .2... A 8.82 A 8.82 A 8.82 A 8.82 A 8.8...— A 882 A 8.82 A 8.82 o...E¢m o9...o.»< 8.8m ow¢8>< 8.8.— o9...o.»< 8.8.— 09:93.. 8.8m ...Z n 5.2:. om are ...R u 5.22.. um are a... u 5.22.. am «me A... u 5.22.. .5 are E... N. u 68.—m 3058.5 E... 3 u 88m E35296 E... N_ u Beam 2858.6 E... e u team E3595 I Edna“ mnbe— . 155 Table 54. Peel Test Results for Package Size (11.25” x 15.25”) — 1073B Rexam at Crosshead S Peak = 10i1mandGri1 Se1aration=1.0” Total Force Energy Ext bs in*lbs Avg Force bs Location A Peak Total Avg Time Force Energy Ext Force Time see he in*lbs in be see Location B 2.0990 1.5650 1.099 1.4240 6.570 1.5790 1.2050 1.021 1.1802 6.105 2.1370 1 .4420 1.040 1.3865 6.233 2.0780 1.6400 1.047 1.5664 6.242 1.7500 1.1970 1.121 1.0678 6.714 1.6430 1.2000 1.041 1.1527 6.153 1.8250 1.3260 1.067 1.2427 6.345 1.9540 1.5200 0.978 1.5542 5.855 1.8630 1.1980 1.139 1.0518 6.820 1.9490 1 .4770 1.061 1.3921 6.272 2.1800 1.5720 0.937 1.6777 5.541 1.7450 1.3120 1.007 1.3029 6.009 2.0030 1 .4220 1.033 1.3766 6.153 2.1050 1 .6270 1.011 1.6093 6.092 1.9010 1.3000 0.977 1.3306 5.810 2.0350 1 .5680 0.999 1.5696 6.015 2.2070 1.5350 1.127 1.3620 6.624 1.6320 1.2580 1.059 1.1879 6.282 2.1420 1.5230 1.021 1.4917 6.082 2.3520 1.8290 1.000 1.8290 5.973 >3eaqemauN—n 2.0107 1.4080 1.0561 1.3411 6.2892 1.9072 1.4636 1.0224 1.4344 6.0998 m 5 0.1648 0.1450 £671 0.1870 0.2127 0.0282 0.2261 Location D 0.4097 jB2508 Location E 0.1404 1.5840 1.1200 1.029 1.0884 6.281 1.9810 1 .2970 1 .026 1.2641 6.220 2.2120 1 .5920 1.056 1.5076 6.317 2.2070 1.3690 1.009 1.3568 5.958 2.0620 1 .4520 1.051 1.3815 6.270 2.5340 1.5640 0.924 1.6926 5.545 2.0670 1.4930 0.977 1.5281 5.852 1.6590 1 .0470 0.924 1.1331 5.599 1.9220 1.5010 1.042 1.4405 6.214 1.4710 0.8343 0.958 0.8709 5.685 2.0080 1.4480 1.047 1.3830 6.208 2.0940 1.3460 1.130 1.1912 5.685 1.7830 1.3780 0.971 1.4192 5.823 1.9170 1.2330 0.890 1.3854 5.313 2.0720 1.5610 1.017 1.5349 6.013 1.5460 0.9856 0.937 1.0519 5.535 \OUQGUI&UNI‘H 2.0670 1.5040 1.038 1.4489 6.214 2.0080 1 .2540 0.939 1.3355 5.593 10 2.1370 1.5700 1.140 1.3772 6.849 2.2010 1.3610 0.891 1.5275 5.300 A 1.9914 1.4619 1.0368 1.4109 6.2041 1.9618 1.2291 0.9628 1.2809 5.6433 SD 0.1848 0.1362 0.0468 0.1281 0.2877 0.3287 0.2151 0.0736 0.2359 0.2765 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 55 for information about the location and value of minimum peel strength for this package size. 156 R m 1073B 0 erlP Po Table 54. Peel Test Results for Package Size (11.25” x 15.25”) - 1073B Rexam at Crosshead S Peak Total Force Energy Ext bs in'lbs = 12 ipm and Gri Avg Force .9”). Location A Se aration = 1.0” - Continuation Avg Force bs 80¢ 1.8520 1 .2980 1.056 1.2292 5.275 1 .6880 1.5416 5.384 1.9440 1.3870 1.088 1.2748 5.346 1 .4970 1.5000 4.960 1.7230 1.1330 0.945 1.1989 4.714 1 .4740 1.4638 4.987 1.6320 1.0060 1.027 0.9796 5.083 1.7300 1.6619 5.190 1.9060 1.3410 1.052 1.2747 5.262 1.4920 1.4656 5.012 2.2070 1 .6240 1.045 1.5541 5.240 1.8140 1.7578 5.227 2.2390 1.5220 0.990 1.5374 4.935 1.2640 1.1780 5.374 1.2130 0.8537 1.010 0.8452 4.929 1.2610 1.1003 5.714 1.3800 0.9309 1.154 0.8067 5.766 1.5010 1.066 1.4081 5.230 1.7990 1.2310 1.200 1.0258 5.855 1.5340 1.092 1.4048 5.406 >3~ea~iemauuna 1.7895 1.2327 1.0567 1.1726 5.2405 2.0623 1.5255 1.0568 1.4482 5.2484 m U 0.3244 0.2523 0.0754 0.2589 Location D 0.3588 0.2466 0.1811 0.0463 Location E 0.1975 0.2327 1.7290 1.3210 1.069 1.2357 5.317 1.8250 1.1570 0.940 1.2309 4.644 1.7720 1.1370 0.978 1.1626 4.862 1.8630 1.1670 0.920 1.2685 4.531 1.7990 1.3820 1.069 1.2928 5.300 2.3460 1.5790 0.898 1.7584 4.484 1.8900 1 .2490 0.985 1.2680 4.926 1.4230 0.8653 0.912 0.9488 4.548 1.6320 1.1130 1.011 1.1009 5.045 2.5130 1.3980 0.960 1.4563 4.775 2.0830 1.5590 1.006 1.5497 4.984 1.7180 1.0330 1.036 0.9971 5.163 2.1640 1.6400 1 .029 1 .5938 5.182 1.9760 1.2000 1.036 1.1583 5.169 2.0890 1.3590 0.980 1.3867 4.771 1.5680 0.9671 0.959 1.0084 4.755 \OQQONMIBUNHH 1.4500 1.0570 1.026 1.0302 5.109 1.9540 1.1800 1.039 1.1357 5.172 10 1.6380 1.2540 1.096 1.1442 5.490 1.6000 1 .0270 1 .073 0.9571 4.940 A 1.8246 1.3071 1.0249 1.2765 5.0986 1.8786 1.1573 0.9773 1.1919 4.8181 SD 0.2312 0.1880 9am 0.1860 0.2255 0.3410 0.2087 0.0630 0.2557 b 0.2760 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 55 for information about the location and value of minimum peel strength for this package size. 157 1073 T Cl’ ' ePoch-o Table 54. Peel Test Results for Package Size (11.25” x 15.25”) — 1073B Rexam at Crosshead S Peak bs Force Energyi in‘lbs = 10 ipm and Gri Total Ext 0!!) Location A Se 1 aration = 2.0” - Continuation Peak Force Energy bs in*lbs Avg Force bs Location B 806 2.0780 1 .4770 1.125 1.3129 6.692 2.3840 1.7380 0.988 1.7591 5.283 2.0400 1.4370 0.961 1.4953 5.798 2.0720 1.6550 1 .080 1.5324 6.439 1.9870 1.3940 1.047 1.3314 6.227 2.0300 1.5880 1.010 1.5723 6.044 1.8040 1.2000 0.944 1.2712 5.595 1.7290 1.3510 1.051 1.2854 6.031 1.7770 1.2960 1.130 1.1469 6.778 2.1910 1.7100 1 .207 1.4167 6.078 1.7180 1.1600 0.956 1.2134 5.685 1.6430 1.0430 1.043 1.0000 6.204 1.7340 1.1450 1.000 1.1450 5.932 2.1210 1.5660 1.111 1.4095 6.634 2.2010 1.6070 0.985 1.6315 5.865 1.8850 1 .4620 1.101 1.3279 6.548 1.9870 1.3830 1.006 1.3748 6.015 1.3580 0.9902 1.049 0.9439 6.243 1.5730 1.0010 1.126 0.8890 6.756 1.9970 1 .4740 1.050 1.4038 6.252 >3~eaqeuauu~n 1.8899 1.3100 1.0280 1.2811 6.1343 1.9410 1.4577 1.0690 1.3651 6.1756 SD 0.1966 0.1832 0.0743 0.2044 Location D 0.2474 0.4539 0.2974 0.2608 0.0612 Location E 0.3762 — 1.6700 1.1510 1 .024 1.1240 6.140 1.6910 1.1170 0.986 1.1329 5.903 1.8740 1.3540 0.986 1.3732 5.897 1.9490 1.1600 0.853 1.3599 5.070 2.5070 1.8550 0.970 1.9124 5.820 1.9870 1.2360 0.905 1.3657 5.330 2.0350 1.3630 1.031 1.3220 6.147 1.9220 1.2230 0.952 1.2847 5.670 1.0200 0.6766 0.989 0.6841 5.884 1.9810 1.2570 0.994 1.2646 5.999 1.7660 1.3180 1.018 1.2947 6.051 1.4870 0.9002 1.026 0.8774 6.076 2.0400 1.5500 1.051 1.4748 6.252 1.8580 1 .2260 0.865 1.4173 5.147 2.1960 1.6930 1.009 1.6779 6.061 1.9010 1 .2460 0.897 1.3891 5.263 \flflelaMhuNI—B 2.0080 1.4410 1.046 1.37 76 6.273 2.3090 1.4470 0.889 1.6277 5.314 10 1.7880 1.3860 1.034 1.3404 6.214 2.2660 1 .4900 0.909 1.6392 5.400 A 1.8904 1.3788 1.0158 1.3581 6.0739 1.9351 1.2302 0.9276 1.3358 5.5172 SD 0.3892 0.3177 0.0269 0.3229 0.1610 0.2408 0.1640 0.0586 0.2229 0.3664 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 55 for information about the location and value of minimum peel strength for this package size. 158 R 1073B ek/Po ester/P Lamint P h - n' tion Table 54. Peel Test Results for Package Size (11.25” x 15.25”) — 1073B Rexam at Crosshead Speed = 12 ipm and Grip Separation = 2.0” - Continuation Peak Total Force Energy Ext be in‘lbs Avg Force Location A Time Force Energil (in‘lbs Total Ext (in) Avg Force bs Location B Time 2.0300 1.4490 1.043 1.3893 5.175 1.4760 1.1390 1.204 0.9460 5.923 2.1480 1.4540 1.012 1.4368 5.048 2.1740 1.6950 1.052 1.6112 5.330 1.7930 1 .2880 0.964 1.3361 4.733 2.1050 1 .6220 1 .020 1.5902 5.053 1.9220 1.3220 0.985 1.3421 4.862 2.1850 1.5680 0.988 1.5870 4.910 1.7610 1 .2480 0.977 1.2774 4.903 1.9650 1 .5480 1.332 1.1622 5.743 1.5730 1.1330 0.942 1.2028 4.669 2.3250 1.8300 1.057 1.7313 5.282 1.9330 1.3540 0.952 1.4223 4.794 1.5620 1.1880 1.001 1.1868 4.961 1.6380 1.1560 0.963 1.2004 4.742 1.2830 0.9530 0.975 0.9774 4.852 \OQQQUIBUNI-H 1.9920 1.4450 0.972 1.4866 4.852 2.1480 1.5997 1.132 1.4132 5.621 _ c 1.9600 1.3130 0.916 1.4334 4.596 2.2550 1.6470 1.032 1.5959 5.140 > 1.8750 1.3162 0.9726 1.3527 4.8374 1.9478 1.4790 1.0793 1.3801 5.2815 m 5 0.1802 0.1 152 0.0356 0.0997 Location D 0.1738 0.3686 0.2834 0.1128 0.2881 ” Location E 0.371 1 2.0300 1 .5670 1.010 1.5515 5.073 1.6210 0.9946 0.921 1.0799 4.541 1.3320 1.0030 1.071 0.9365 5.298 1.2400 0.8104 0.916 0.8847 4.512 2.3250 1.7500 0.993 1.7623 4.894 1.8520 1.2130 0.870 1.3943 4.317 2.1640 1.6590 1 .027 1.6154 5.053 1.6480 1 .0420 0.869 1.1991 4.303 1.9270 1.4990 1.060 1.4142 5.349 2.0350 1 .0760 0.884 1.2172 4.330 2.1320 1.6330 1.044 1.5642 5.231 1.8040 1.0890 0.861 1.2648 4.326 1.9700 1.3330 0.971 1.3728 4.775 0.9342 0.5572 0.921 0.6050 4.570 1.4550 0.9879 0.959 1.0301 4.769 2.1690 1.3540 0.877 1.5439 4.355 WfldfilllbuNI-tfl 1.4280 0.9555 0.987 0.9681 4.903 1.7720 1.1540 0.896 1.2879 4.505 pus G 2.0460 1.4750 0.997 1 .4794 4.920 1.4930 0.9607 0.953 1.0081 4.710 > 1.8809 1.3862 1.01 19 1.3695 5.0265 1.6568 1.0251 0.8968 1.1485 4.4469 SD 0.3477 0.3009 0.0376 0.2913 0.2098 £03655 0.2204 fill-.0299 0.2680 0.1395 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 55 for information about the location and value of minimum peel strength for this package 8120. 159 0300— 88.. .3. 93¢“. E9... :30: 98.5 82¢.» E=EAEE 25. 3 959..— E 8.8”— .3885 oEES ¢ 5 63¢.» 59.95 .8.— E=EAEE 05 .8 8580A u A "H HO 2 160 <2 00eN.e <2 000N.e <2 9.3.0 <2 mbeNd <2 New—.0 <2 :30 <2 3.3.0 <2 eeNN.e >8: Em <2 0mNeA <2 0N0vA <2 0000A <2 SSA <2 0000A <2 NeamA <2 Nev—A <2 nbNbA om¢._o.»< m 500.. m 000.: < 0000.0 < 0000A m 2.00.0 m 0000.. Q NNNmA Q onmAN 0— Q 5000 Q 009.... m 030.0 m 000»... < 5000.0 < 0000.. m 03: m 0Nm0A 0 m 0:00 m 00%.... m 0NNMA m 0000A < N300 < 003.. m 0.00.. m 00.40.. m m 0000.0 m N300 < 003A < 03A... m 000... m 0NonA < 003A Q 009... b < mNoNA < 03.0.. m 3.30 m 03.4.. m :000 m 003.. m NAOAA m 003... 0 m NNOAA < 0.0.... Q .4000 Q 00NOA Q 000... Q 0Nm0A m 005.0 m 0.0.... m m .00... m 00.0.. < NANNA m 00NnA m 340.0 m 009... m AmmAA m 0000A v < .00: < 000.... < EMMA m 030.. < 000... < omNnA < 9.00.. m 00.40.. m m 500.0 m oovNA m 002.. Q 0.45.. D 0N0... Q 0NRA < 0000A m omnoN N m 00.00 m 008. A Q 002 A Q 0000.. < NONN . A Q 00Nn. A Q 3.00. A m 00? A A 02.0 53 80.0 ma 050 05.0 030 02.0 A 88 m A 8.8..— A 882 A 8.8..— A 8.8% A 8.82 A 88.0 A 88 m oEE¢m om¢8>< 0.8.— ow¢..o.»< 0.8.— oma..o.»< 8.8m om¢..o.»< :8.— ..e." u 5...... ..m are .3 u 5...... um 35 ..3 u ...fleflvaE A... u 5...... um 35 E... N— u 080m 0858.5 E... e— n 08am 0858.5 E... N— u 080m 0858.5 E... e— n 080m 0858.5 =88“ mnbo— I ..mN.m— n ..mN.= 03m o 5.25 .8.— 8:_¢> A. :95m 08% E=EA==>A .mm 0.55. I. Tolas (1073B Tflek/PET/PE Laminate) Pouches Table 56. Peel Test Raults for Package Size (3” x 11.375”) — 1073B Tolas at Crosshead Speed = 10 ipm and Grip Separation = 1.0” Peak Force Energy (lbs) (in‘lbs) Total Ext (in) Avg Force (lbs) Time (306) Peak Force (lbs) Energy (iu‘ibs) Total Ext (in) Avg Force (lbs) Time (8°C) Location A Location 2.3620 1.3700 0.852 1 .6080 5.028 1.7500 1.1040 0.927 1.1909 5.567 2.7870 1.8770 0.890 2.1090 5.362 2.0940 1 .3470 0.919 1.4657 5.525 1.9380 1.1440 0.814 1.4054 4.861 1 .9440 1.2860 0.884 1 .4548 5.265 2.7700 1.6650 0.829 2.0084 4.945 2.1320 1 .4600 0.940 1 .5532 5.614 2.1480 1.3410 0.847 1.5832 5.041 2.0670 1.3680 0.890 1.5371 5.304 1.6640 1 .0070 0.870 1.1575 5.191 1.9540 1.2650 0.862 1.4675 5 .224 2.3410 1.5490 0.892 1 .7365 5.303 2.1530 1.3660 1.010 1.3525 6.025 2.1050 1.3600 0.965 1 .4093 5.720 1.7340 1.0710 0. 898 1.1927 5.361 \OQQONUIKMNI-B 2.6950 1.7780 0.949 1 .8736 5.670 1.5030 0.8985 0.910 0.9874 5.500 .— 6 2.2710 1.5560 0.911 1.7080 5.487 1.7720 1.1000 0.938 1.1727 5.721 > 2.3081 1.4647 0.8819 1.6599 5.2608 1.9103 1.2266 0.9178 1.3374 5.5106 m 5 0.3676 0.2731 0.0495 0.2917 0.2997 0.2137 0.1752 0.0408 0.1903 0.243 D Location E 2.2930 1.4007 5.391 2.0300 1.4580 1.044 1 .3966 6.250 1.6160 1.1090 5.233 2.4430 1.6180 0.845 1.9148 5.035 1.9650 1.3447 5.060 1.8630 1.3230 1.021 1 .2958 6.006 1.9700 1 .3968 5.298 2.1850 1.4260 0.984 1 .4492 5.884 1.6700 1.1619 4.977 1.8360 1.3690 1.027 1.3330 6.140 2.3780 1.8103 5.250 1 .2890 0.8709 0.903 0.9645 5.410 1 .8790 1.3705 5.057 2.5230 1.6540 0.888 1.8626 5.330 2.3950 1 .6739 5.227 1.6380 1.1090 0.914 1.2133 5.471 @NflaUIh-UN—B 1.4340 0.9985 4.894 1.5680 0.9986 0.920 1.0854 5.423 in 6 2.0890 1.2750 1 .4026 5.471 2.0080 1 .2960 0.864 1.5000 5.143 > 1 .9689 1.1861 1 .3669 5.1858 1.9383 1.3123 0.9410 1.4015 5.6092 m U 0.3294 0.2297 0.0269 0.2447 0.1842 0.3852 0.2544 0.0721 0.3037 0.4274 NOTE: The minimum peak and average peel strength valuu, out of the four locations, from each sample, were used for the analysis. Refer to Table 57 for information about the location and value of minimum peel strength for this package size. 161 T s 1073B ek/PET/PE in e P ches- ontin a 'on Table 56. Peel Test Results for Package Size (3” x 11.375”) - 1073B Tolas at Crosshead S .. = 12 i m and Gri Se . aration= l .-0” Continuation Peak Total Avg Peak Total Avg Force Energy Ext Force Time Force Energy 'h'me m*lbs mbs‘l sec Ext Force Location A Location B 2.2340 1.5830 0.918 1.7244 4.550 1.9810 1 .2870 0.868 1.4827 4.346 2.1910 1.3460 0.972 1.3848 4.855 1.8950 1 .2020 1.004 1.1972 4.983 2.9420 1.7600 0.988 1.7814 4.374 1.9170 1.1370 0.906 1.2550 4.474 2.5880 1.5980 0.905 1.7657 4.467 2.0190 1.2860 0.950 1.3537 4.858 2.0400 1 .2640 0.850 1.4871 4.243 1.6970 1.1380 0.913 1.2464 4.500 2.1640 1.2460 0.821 1.5177 4.137 2.3730 1.4510 0.843 1.7212 4.163 2.1530 1.2750 0.843 1.5125 4.169 2.0130 1 .2240 0.875 1.3989 4.358 1.8580 1.0440 0.829 1.2593 4.080 1.8250 1.0830 0.865 1.2520 4.339 \GGQGMAth—B 2.3090 1.3520 0.943 1.4337 4.650 1.9650 1 .2220 0.851 1.4360 4.224 .— 6 2.1100 1.1360 0.808 1.4059 4.021 1.4660 0.8832 0.883 1.0002 4.313 > 2.2589 1.3604 0.8877 1.5272 4.4046 1.9151 1.1913 0.8958 1.3343 4.4667 m 5 0.3044 0.2226 0.0659 0.1757 0.3187 0.2344 0.1491 0.0496 0.1937 Location D Location E 1.4369 2.3140 1.3110 0.876 1.4966 4.432 1.8630 1.2190 0.921 1.3236 4.557 2.4860 1.5530 0.841 1.8466 4.167 2.2600 1.3650 0.988 1.3816 4.942 1.9970 1.2410 0.893 1.3897 4.432 2.5560 1.7690 0.982 1.8014 4.842 1.8950 1.1910 0.982 1.2128 4.932 1.8740 1.3930 0.944 1.4756 4.695 2.1740 1.4860 0.950 1.5642 4.769 2.1910 1.5560 0.928 1.6767 4.555 2.3250 1.4160 0.880 1.6091 4.384 2.6740 1.7770 0.896 1.9833 4.444 2.0620 1.2950 0.873 1.4834 4.385 2.71 10 1.8850 0.940 2.0053 4.672 1.7770 1.1000 1.005 1.0945 5.070 2.2660 1 .6240 0.949 1.7113 4.727 \ONQOKM-bUN-ifl 1.7560 1.0130 0.876 1.1564 4.403 2.3680 1.5410 0.918 1.6786 4.531 10 2.2340 1 .4220 0.869 1.6364 4.303 2.6090 1.7310 0.908 1.9064 4.544 A 2.1020 1.3028 0.9045 1.4490 4.5277 2.3372 1.5860 0.9374 1.6944 4.6509 SD 0.2462 0.1715 0.0546 0.2371 0.2927 0.3069 0.2123 0.0299 0.2405 0.1549 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table S7 for information about the location and value of minimum peel strength for this package size. 162 T 073B ET E ' t P ntinu 'n Table S6. Peel Test Results for Package Size (3” x 11.375”) - 1073B Tolas at Crosshead S = 10 i . m and Gri . Se . aration = 2.0” - Continuation Peak Force Energy Ext bs in‘lbs) (in) Location A Avg Force bs Peak Total Avg Time Force Energy Ext Force Time 80$ [)8 L 1.7le in I -. 8“ Location B 2.2010 1.3030 0.814 1.6007 4.813 2.2120 1.3600 0.893 1.5230 5.324 1.9170 1.1540 0.817 1.4125 4.903 1.8150 1 .0270 0.811 1.2663 4.894 2.5720 1 .5050 0.820 1.8354 4.900 1.8420 1.0970 0.806 1.3610 4.823 1.8420 1.1500 0.861 1.3357 5.175 1.9490 1.1950 0.874 1.3673 5.198 2.1150 1.3670 0.826 1.6550 4.945 2.0560 1.2560 0.984 1.2764 5.960 2.0240 1.1980 0.954 1.2558 5.743 1.9870 1.1680 0.810 1.4420 4.855 2.5400 1 .4920 0.830 1.7976 5.041 1.9920 1.2430 0.843 1.4745 5.057 2.3090 1.3200 0.826 1.5981 4.971 1.9760 1.3100 0.914 1 .4333 5.461 1.7930 1.0570 0.826 1.2797 4.952 1.9270 1.2120 0.859 1.4109 5.147 1.9760 1.1110 0.796 1.3957 4.714 1.9010 1.2410 0.826 1.5024 4.916 >3waqamauN—n 2.1289 1.2657 0.8370 1.5166 5.0157 1.9657 1.2109 0.8620 1.4057 5.1635 m 5 0.2744 0.1567 £9442 0.2097 0.2837 Location D 0.1126 0.0971 0.0566 0.0879 Location E 0.3506 2.1050 1.3480 0.846 1.5934 5.073 2.2820 1.5510 0.979 1.5843 5.855 1.8310 0.9914 0.897 1.1052 5.410 2.0940 1.3730 0.884 1.5532 ' 5.259 1.5250 0.9411 0.874 1.0768 5.214 2.6250 1.6890 0.844 2.0012 4.981 1.9600 1.1740 0.847 1.3861 5.093 2.5180 1.3420 0.947 1.4171 5.765 2.0190 1.1820 0.847 1.3955 5.051 2.5560 1.4180 0.827 1.7146 4.926 1.7660 1.2060 0.888 1.3581 5.214 1.7660 1 .0740 0.835 1.2862 4.983 2.0720 1.3060 0.827 1.5792 4.944 2.4480 1 .5070 0.861 1.7503 5.112 2.1690 1.3310 0.850 1.5659 5.064 1.8740 1.1920 0.912 1.3070 5.390 madame-mun: 2.3570 1.5490 0.843 1.8375 5.012 2.1690 1.3930 0.868 1.6048 5.182 10 2.2070 1.3960 0.869 1.6064 5.170 1.7610 1.1960 0.951 1.2576 5.663 A 2.0011 1.2425 0.8588 1.4504 5.1245 2.2093 1.3735 0.8908 1.5476 5.31 16 SD 0.2417 0.1838 0.0222 0.2355 0.1323 0.3292 0.1845 0.0536 0.2373 0.3425 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 57 for information about the location and value of minimum peel strength for this package 8126. 163 T s 1073B ek/PET E ' te P u — ntinu tion Table 56. Peel Test Results for Package Size (3” x 11.375”) — 1073B Tolas at Crosshead Speed = 12 ipm and Grip Separating = 2.0” - Continuation Peak Force lfnergy in*lbs) Total Ext JEL Avg Force bs Location A Time sec Peak Total Avg Force Energy Ext Force Time bs in'lbs be Location B 2.7220 1.8960 0.955 1.9853 4.742 1.8580 1.1930 0.864 1.3808 4.303 1.9540 1.3280 0.881 1.5074 4.393 2.4000 1.5040 0.855 1.7591 4.274 2.9050 1 .9690 0.909 2.1661 4.525 2.0720 1.3270 0.865 1.5341 4.323 2.0510 1.4430 0.900 1.6033 4.468 2.2710 1 .4780 1.007 1.4677 4.990 2.2820 1.5820 0.886 1.7856 4.426 2.1640 1.3410 0.867 1.5467 4.326 2.3890 1.6630 0.900 1.8478 4.503 2.1370 1.3520 0.841 1.6076 4.153 2.2930 1.5790 0.922 1.7126 4.599 2.0890 1 .4020 0.860 1.6302 4.249 2.8460 1.9310 0.911 2.1196 4.553 2.0670 1.2140 0.868 1.3986 4.243 WNQO‘M‘WNU‘H 2.0890 1.4610 0.946 1.5444 4.743 1.9330 1.2510 0.876 1.4281 4.391 2.6520 1 .8970 0.949 1.9989 4.679 1.6750 0.9886 0.853 1.1590 4.278 2.4183 1.6749 0.9159 1.8271 4.5631 2.0666 1.3051 0.8756 1.4912 4.3530 0.3433 0.2329 0.0264 J— 0.2363 0.1252 Location D 0.2062 +1— 0.1516 0.0472 0.1651 0.2324 Location E 2.2170 1.3850 0.941 1.4718 4.682 2.1370 1.3390 0.870 1.5391 4.327 1.7830 1.1360 0.884 1.2851 4.352 1.9810 1.0730 0.797 1.3463 3.971 1.8360 1.0850 0.850 1.2765 4.298 2.0030 1.2800 0.900 1.4222 4.461 2.1420 1.4010 0.854 1.6405 4.211 1.8040 1.1520 0.868 1.3272 4.355 1.5460 0.9350 0.915 1.0219 4.605 1.8040 1.1550 0.875 1.3200 4.339 2.2820 1 .4920 0.881 1.6935 4.335 2.2340 1.4420 0.963 1.4974 4.832 1.8900 1 .2460 0.881 1.4143 4.355 2.4540 1.5840 0.895 1.7698 4.432 1.7450 1 .0800 0.878 1.2301 4.393 2.4640 1 .6280 0.849 1.9176 4.288 2.1050 1 .2970 0.869 1.4925 4.349 1.7450 1.1670 0.939 1.2428 4.682 1.7720 1.1760 0.838 1.4033 4.150 2.3190 1.4210 0.871 1.6315 4.307 1.9318 1.2233 0.8791 1.3930 4.3730 2.0945 1.3241 0.8827 1.5014 4.3994 size. 0.1727 0.0306 0.1994 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 57 for information about the location and value of minimum peel strength for this package 0.1613 164 0.2687 0.1919 0.0461 0.2171 0.2327 373A 8!:— .em 03:. E9..— =§3 89: 33.3 5355.: 2.8 3 953.2 8 .3qu .2285 0.95: a E 2:: saw—.2: .3.— E=E_:_E 2: no :23qu u A “H HO 2 <2 mvad <2 «mm—6 <2 32.: <2 Ame—d <2 33.: <2 e33. <2 «~36 <2 83.: BA Em <2 mmwnA <2 3%.— <2 newnA <2 «evaA <2 83A <2 "Nva <2 vnwAA <2 33A 09203.. m can: m 02.0.2 m 33.2 m 055A m 88.2 m 8va A REA m omnnA 3 m wNVNA m 33.2 < SSA < 085A Q vow: Q 83A m 3.3.0 Q 3va a D 83A Q 035A m 082 m 043A Q 32: 0 02.5.2 m Rho: m 9392 a Q 92.: O 83.2 m 351 m 8%; m 39: m OMEN m 32: Q oat: A. m $.92 m EQN < wmmNA m 82..“ < REA < ovEN m 38.0 m comm.” e O SSA Q 842 m vogA Q 88d m $va m 030A Q 20: D 83A m m mum: m ovomA < am: < ONVwA Q ”NANA m 9.3.2 9 woe: Q 83A v Q SANA Q 89: O 38.2 D 39.2 m ommmA m 2.3.2 m wmmNA m omwmA m G 3mm; D 33.2 G Nmo: m 35.2 m ~32 m ommwA Q omo: Q SSA N m mom: m 83.2 m 08: Q omofid m 082 m omoMA m ace: m 83.2 A 9.5 as: E: Ea 3: ~25 2.. ma: A 8.82 A 3.8m A 3.5..— A 8.8m A 8.5m A 3.82 A 3.5..— A 3.5m 0.9—Em owano>< xaom emano>< :aom owano>< :aom emano>< scum .5." u :23: 5 HS .5." n :23: um uml :3 u Sea: 8 are :3 u .32.: 8 HE EE 2 n 3on 63.—29.0 EE 3 u “.9on 33:29.0 Em. «A u “.0on 32.320 Eu. 3 u “.0on 32.296 ah. fink: I bhrfi: u ..n 35 o 3.2:— ..8 825» .— ..ohm .oom 82552 .5 03:. 165 1073 TE in P Table 58. Peel Test Results for Package Size (10.625” x 15”) — 1073B Tolas atCrossheadS. .. =10i-nmandGri Searation=1.0” Peak Total Avg Time Force Energy Ext Force Time sec bs in*lbs in . . sec Peak Total Force Energy Ext in*lbs) (in) Location A Ix Avg Force bs Location B 2.1260 1.2730 0.934 1.3630 5.596 2.0830 1 .5080 0.953 1.5824 5.724 1.9220 1.3390 1.037 1.2912 6.214 1.9490 1.4320 0.951 1.5058 5.734 2.1580 1.5500 0.993 1.5609 5.932 1.5840 1.1030 0.937 1.1772 5.666 2.0300 1.4330 0.949 1.5100 5.615 1.5030 1.0250 0.987 1.0385 5.897 2.2870 1.6290 0.938 1.7367 5.609 2.1640 1 .4290 1.001 1.4276 5.977 2.1370 1.4360 0.892 1.6099 5.435 2.2660 1.5830 0.937 1.6894 5.573 2.1850 1.4830 1.028 1.4426 6.160 1.6810 0.9977 0.974 1.0243 5.884 2.1050 1.3670 0.914 1.4956 5.484 1.8420 1.3540 1.044 1.2969 6.256 2.6580 1.8540 0.895 2.0715 5.371 2.0400 1 .4720 0.963 1.5286 5.734 1.6750 1.0810 0.920 1.1750 5.519 1.6700 1.2160 0.933 1.3033 5.573 >3WQ~IOKUIAUNHB 2.1283 1.4445 0.9500 1.5256 5.6935 1.8782 1.3120 0.9680 1.3574 5.8018 SD 0.2513 0.2090 0.0522 0.2502 Location D 0.3006 0.2616 0.2112 0.0349 0.2282 0.2085 Location E 1.9870 1.3990 0.990 1.4131 5.941 2.6360 1.5880 0.976 1.6270 5.800 2.1690 1 .4680 0.964 1.5228 5.755 2.1210 1.1870 0.893 1.3292 5.291 1.4550 1.0390 0.991 1.0484 5.884 2.1 100 1 .2680 0.863 1.4693 5.156 2.3730 1.6130 0.977 1.6510 5.774 2.7540 1.7950 0.886 2.0260 5.314 2.2500 1.5110 0.974 1.5513 5.836 1.8470 1.1730 0.859 1.3655 5.054 2.3680 1 .6740 0.969 1.7276 5.775 2.7220 1.5930 0.847 1.8808 5.025 1.9760 1 .4080 1.001 1.4066 5.993 2.1320 1.3230 0.844 1.5675 5.005 2.6090 1 .7020 0.984 1.7297 5.845 1.7180 1.0490 0.951 1.1030 5.720 @fldGM‘MN-fifl 2.3300 1.6860 0.957 1.7618 5.698 1.8420 1.1720 0.826 1.4189 4.900 10 2.1580 1.5070 0.956 1.5764 5.654 2.4160 1.3400 0.875 1.5314 5.194 A 2.1675 1.5007 0.9763 1.5389 5.8155 2.2298 1.3488 0.8820 1.5319 5.2459 SD 0.3140 0.1974 0.0152 0.2134 0.1055 0.3817 0.2360 0.0477 0.2678 0.3005 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 59 for information about the location and value of minimum peel strength for this package 166 T 1073B T ek/PET/PE Lamin te Pouch - ontinuation Table 58. Peel Test Results for Package Size (10.625” x 15”) - 1073B Tolas at Crosshead Speed = 12 ipm and Grip Separation = 1.0” - Continuation Peak Force (le) muss) Total Energy Ext (in) Avg Force (IDS) Time Location A Location B 2.0620 1.5140 1.111 1.3627 5.551 2.2390 1.5000 0.980 1.5306 2.3520 1.6590 0.952 1.7426 4.803 2.0130 1.4000 1.006 1.3917 2.8460 1 .7420 0.896 1.9442 4.445 1.4600 0.9994 1.067 0.9366 2.3890 1 .6320 0.936 1.7436 4.651 1.9440 1 .3420 0.931 1.4415 1.6540 1.0800 0.940 1.1489 4.682 2.4160 1 .6340 0.955 1.7110 2.7650 1 .9020 0.909 2.0924 4.545 2.2870 1 .7680 0.988 1.7895 2.1800 1.5110 0.902 1.6752 4.506 2.0670 1 .4420 0.971 1.4851 2.5130 1 .6290 0.883 1.8448 4.445 2.2710 1.5790 0.955 1.6534 \OflflalllbUNI—B 2.7060 1.7310 0.899 1.9255 4.481 1.6860 1.2100 0.992 1.2198 2.1260 1.3900 0.933 1.4898 4.599 2.3030 1.6560 0.970 1.7072 2.3593 1.5790 0.9361 1.6970 4.6708 2.0686 1.4530 0.9815 1.4866 0.3680 0.2259 0.0655 0.2889 0.3298 0.3034 0.2288 0.0369 0.2593 Location D Location E 2.1100 1.4140 0.999 1.4154 5.002 1.6320 0.9097 0.868 1.0480 2.0300 1.5660 1.144 1.3689 5.692 2.4480 1.3790 0.838 1.6456 1.8950 1.4390 0.976 1.4744 4.884 2.2500 1.4590 0.872 1.6732 2.3730 1.7410 0.985 1.7675 4.874 1.7230 1.1030 0.881 1.2520 2.3300 1 .6720 0.966 1.7308 4.852 2.4110 1.5720 0.860 1.8279 1.5730 0.9648 0.972 0.9926 4.903 2.6850 1 .6820 0.893 1.8835 1.8470 1 .2780 0.953 1.3410 4.798 2.1740 1.3280 0.911 1.4577 2.1100 1.3440 1.008 1.3333 5.009 1.9110 1.2320 0.900 1.3689 2.1210 1 .5940 1.017 1.5674 5.051 1.9920 1.2430 0.936 1.3280 2.6090 1.9560 1 .023 1.9120 5.085 2.5500 1.5910 0.878 1.8121 2.0998 1.4969 1.0043 1.4903 5.0150 2.1776 1.3499 0.8837 1.5297 0.2936 0.2748 0.0541 0.2654 0.2556 0.3557 0.2383 0.0277 0.2806 0.1415 NOTE: The minimum peak and average peel strength value: out of the four locations, from each sample, were used for the analysis. Refer to Table 59 for information about the location and value of minimum peel strength for this package size. 167 T 1073B ET/PE ' Ph-ntin Table 58. Peel Test Results for Package Size (10.625” x 15”) - 1073B Tolas at Crosshead S : - .. = 10 ipm and Gri Se aration = 2.0” Peak Total Force Energy Ext bs) in*lbs) (in) Avg Force 0'”) Location A Peak Total Force Energy Ext (lbs) (WIN) 0!!) Location B - Continuation Avg Force (lbs sec 2.0830 1.3320 0.886 1.5034 5.281 2.1690 1.4010 0.964 1.4533 5.781 2.4480 1.6390 0.928 1.7662 5.550 2.3360 1 .5670 0.994 1.5765 5.932 2.2660 1.4540 0.885 1.6429 5.233 1.1110 0.7494 0.950 0.7888 5.657 2.2760 1 .4970 0.904 1.6560 5.416 1.8740 1.3460 0.983 1.3693 5.903 2.7490 1.8100 0.919 1.9695 5.496 1.9650 1.3300 0.967 1.3754 5.766 2.3570 1.6160 0.871 1.8553 5.179 2.1260 1.5720 0.925 1.6995 5.502 2.8400 1.9170 0.892 2.1491 5.349 1.9060 1.3990 0.912 1.5340 5.419 2.3360 1.5170 0.887 1.7103 5.295 2.2600 1.5860 0.910 1.7429 5.422 2.2660 1.5900 0.927 1.7152 5.553 1.7610 1.3330 0.990 1.3465 5.987 >3waqemauN—n 2.4970 1.6630 0.935 1.7786 5.625 1.7660 1.2110 0.990 1.2232 5.942 2.4118 1.6035 0.9034 1.7747 5.3977 1.9274 1.3494 0.9585 1.4109 5.731 1 SD 0.2318 0.1703 0.0223 0.1818 0.152% 0.3497 0.2445 0.0328 0.2723 0.2197 Location D Location E 2.0780 1.5100 0.947 1.5945 5.702 2.3460 1 .5620 0.888 1.7590 5.266 1.9270 1.3340 1.017 1.3117 6.022 2.2930 1.5600 0.894 1.7450 5.291 1.8850 1.1430 1.017 1.1239 6.170 1.9170 1.1900 0.900 1.3222 5.464 2.2440 1.5830 0.947 1.6716 5.711 2.7540 1.8130 0.920 1 .9707 5.477 2.4320 1.7760 0.967 1.8366 5.785 2.0620 1.2590 0.834 1.5096 5.012 2.2980 1 .6790 0.966 1.7381 5.734 1.9810 1 .2740 0.830 1.5349 4.984 1.8250 1.3440 0.940 1.4298 5.611 2.4640 1.5000 0.860 1.7442 5.105 1.9170 1.3820 0.957 1.4441 5.714 2.6680 1.6800 0.854 1.9672 5.105 eeeqeusszu—a 1.5410 1.1070 0.963 1.1495 5.772 2.4320 1.5320 0.862 1.7773 5.125 us 9 2.0080 1 .4680 0.968 1.5165 5.782 2.3360 1.4810 0.886 1.6716 5.308 > 2.0155 1.4326 0.9689 1.4816 5.8003 2.3253 1.4851 0.8728 1.7002 5.2137 SD 0.2594 0.2156 0.027 1 0.2388 0.1675 0.2765 0.1950 0.0294 0.2014 0.1747 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 59 for information about the location and value of minimum peel strength for this package SIZC. 168 T 073B eklPET/PE Laminate Po ches — ntinuation Table 58. Peel Test Results for Package Size (10.625” x 15”) - 1073B Tolas at Crosshead S = 12 i m and Gri Se . aration = 2.0” - Continuation 2.2440 1.5240 0.968 1.5744 4.798 2.2230 1.5370 0.940 1.6351 4.689 1.9600 1.3870 0.944 1.4693 4.666 2.3140 1.6400 0.948 1.7300 4.682 2.4160 1.6080 0.944 1.7034 4.705 1.2780 0.9345 0.939 0.9952 4.695 1.9010 1.3190 0.964 1.3683 4.771 1.9440 1.3090 0.952 1.3750 4.749 4.368 2.5830 1.8410 0.967 1.9038 4.811 2.5990 1.7680 0.936 1.8889 4.660 1.9380 1.2680 0.940 1.3489 4.682 2.2600 1.4730 0.919 1.6028 4.605 2.0830 1.4820 0.933 1.5884 4.605 1.6250 0.916 1.7740 4.560 2.2390 1.5170 0.953 1.5918 4.714 1.8090 0.922 1.9620 4.570 2.2280 1.6150 0.948 1.7036 4.737 1.6940 0.961 1.7627 4.723 1.8520 1.2600 0.977 1.2897 4.835 1.5696 0.9354 1.6798 4.6426 2.0682 1.4404 0.9497 1.5162 4.7199 0.1601 0.0270 0.1820 0.1251 0.3509 0.2546 0.0135 0.2639 0.0670 VDQQOKUIbuNI—B l" 8 S H A W 8 O W co 0 fl S N O 1.6090 0.999 1.6106 4.948 2.5990 1.5430 0.846 1.8239 4.249 2.0030 1.054 1.9004 5.211 1.9970 1.1940 0.921 1.2964 4.585 1.3520 1.001 1.3506 4.922 2.0940 1.1420 0.837 1.3644 4.205 1.5180 0.962 1.5780 4.774 2.0510 1.2830 0.848 1.5130 4.204 1.6660 0.959 1.7372 4.794 2.6470 1.7090 0.881 1.9398 4.371 2.0260 1.005 2.0159 4.974 2.0460 1.3030 0.846 1.5402 4.182 1.1280 0.935 1.2064 4.641 2.4000 1.4470 0.854 1.6944 4.195 1.8040 0.991 1.8204 4.871 2.3190 1.3300 0.880 1.5114 4.154 1.5820 0.982 1.6110 4.855 2.6790 1.6330 0.833 1.9604 4.150 1.3160 0.960 1.3708 4.794 2.1260 1.2540 0.800 1.5675 3.903 1.6004 0.9848 1.6201 4.8784 2.2958 1.3838 0.8546 1.6211 4.2198 0.2910 0.0333 0.2575 0.1522 0.2697 0.1909 0.0328 0.2280 0.1729 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 59 for information about the location and value of minimum peel strength for this package size. 169 $73: 8w!— .nm 05:. E9... :23 9.93 8...!» SEE—:5 2F v— enzflm 8 L23— .3235 2953 a E 2:: saw—5.5» .03 SEE—E: 2: ..o :oflaucA n A "H HO 2 <2 2:"... <2 Sand <2 35.: <2 ASN.6 <2 van—d <2 2.8.: <2 33.: <2 02".: Sa— Em <2 vewnA <2 «SaA <2 83A <2 mamhA <2 AnANA <2 3wa <2 wmvnA <2 uwbhA o ano>< m 33A m ommmA m NmNNA m 085A < new?“ < SEN < 02.3 m 8?: 3 Q 2 EA m om-.~ Q 33 A O 03.92 m 35A m 030A m $2: m 8va a m ERA m ommmd Q :43; Q 28A 0 mmmmA m 28A m 082 m owKA a Q vcouA Q ommnA Q 3va Q omNmA Q 03:: Q 2.va m mvmoA m 050A 5 m 3...: m 88.2 m 33.2 m 23A G 88.0 G 032 < 38A < Quid e < 0892 D coon.” m 35: m 030A < ava < 948A m 33.2 m 3va m < $02 < 39: A new: A ovSA m 83.2 m Oman.“ m 38A m 0892 v m Nmood m ownNA m 33.6 m S 2 2 m 83.0 m 0082 Q vwvoA Q own»; n m $3.2 < ooooA Q :2: Q 059: Q one: m OMEN < 23.2 < ommoA N < 33A m cmNN.~ m $.va Q SSA m 036.2 m 8mm: < 08: D 023A A a E: E: 3.: Eu an: as :2 A 3.8m A 3.8.2 A 3.82 A 3.3...— A ounoh A 3.3..— A 8.3% A 3.8.2 295m owano>< ..aom 3.295.. :55 ink owuno>< such :3 u .35.: um 35 .5." u :23: gm «.5 :3 u 5.2.: 8 ma :3 u "gamma Em. «A n @025 23:29.0 E... 3 n 3on 32.895 5.: 2 n Exam 3233.5 E2 3 u .825 32.320 2:08 fink: I :3 u annex: 35 o .325 .3.— no=_¢> .— =obm 30m Ens—:52 .am 22:. 170 Ill. 1059B rP Pu Table 60. Peel Test Results for Package Size (5.75” x 9.125”) - 1059B Rexam at Crosshead Speed = 10 i m and Grip Separation = 1.0” Peak Force (“3) mu») Total Ext Lin) Avg Force 0|”) Time (sec) Peak Force 0'”) km] Total Ext (in) Avg Force Location A Location B I“ 1.1700 0.7704 1.122 0.6866 5.913 1.2300 0.7253 0.917 0.7909 5.496 0.9825 0.6566 1.079 0.6085 6.452 1.5790 0.9670 0.897 1.0780 5.374 1.6210 1.1130 0.968 1.1498 5.701 0.9127 0.5065 0.861 0.5883 5.131 1.5190 0.9821 0.926 1.0606 5.502 1.3370 0.8532 0.918 0.9294 5.477 1.0420 0.7194 0.934 0.7702 5.422 1.3850 0.8654 0.826 1.0477 4.974 1.8850 1.3300 0.979 1.3585 5.814 1.91 10 1.2700 1 .022 1.2427 6.147 1.8740 1.2840 1.063 1.2079 6.298 1.6750 1.0570 0.890 1.1876 5.369 1.9270 1.2540 1.021 1.2282 6.124 1.7070 1.0630 0.817 1.3011 4.900 eaqemauN—a 1.1380 0.7481 1.011 0.7400 5.971 1.6540 0.9939 0.844 1.1776 5.128 u-s G 1.7130 1.2090 0.986 1.2262 5.894 1.6540 1.0600 0.877 1.2087 5.234 > 1.4872 1.0067 1.0089 1.0037 5.9091 1.5045 0.9361 0.8869 1.0552 5.3230 m U 0.3722 0.2631 0.0636 0.2734 0.2115 0.0591 0.2251 0.3529 Location D 0.3252 90.2893 Location E 1.2830 0.7257 0.933 0.7778 5.551 1.9270 1.2830 1.004 1.2779 6.003 1.4660 0.8841 0.907 0.9748 5.416 1.7660 0.9845 0.952 1.0341 5.644 1.1110 0.6088 0.903 0.6742 5.432 1.7770 1.0130 0.887 1.1421 5.304 1.3960 0.8821 0.972 0.9075 5.817 1.5840 0.9705 0.862 1.1259 5.169 1.4340 0.8275 0.854 0.9690 5.012 1.2620 0.7193 0.974 0.7385 5.814 1.9170 1.0930 0.834 1.3106 4.935 0.9396 0.5499 0.947 0.5807 5.675 1.6110 0.9122 0.857 1.0644 5.111 1.3530 0.8097 0.884 0.9160 5.311 1.1920 0.7337 0.817 4.865 1.7830 1.0920 0.839 1.3015 5.003 eaqemauN—n 1.9060 1.1110 0.971 1.1442 5.772 1.2990 0.8379 0.977 0.8576 5.811 10 1.4980 0.8732 0.856 1.0201 5.131 1.9270 1 .0200 0.899 1.1346 5.355 A 1.4814 0.8651 0.8904 0.9741 5.3042 1.5618 0.9280 0.9225 1.0109 5.5089 SD 0.2702 0.1560 0.0554 0.1799 0.3421 0.3323 0.2061 0.0554 0.2342 0.3250 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 61 for information about the location and value of minimum peel strength for this package 171 m 1059B rP Po ontinu Table 60. Peel Test Results for Package Size (5.75” x 9.125”) - 1059B Rexam atCrossheadS ... =12i mandGri. SeParation= l.0”-Continuation Peak Total Avg Force Energy Ext Force Time Force Energy mbs*l Inbs*l Location A Total Ext Avg Force Location B Time sec 1.6910 0.9410 0.969 0.971 1 4.846 1.5790 0.9937 0.964 1.0308 4.823 1.6860 1.0180 0.996 1.0221 4.970 1.7180 1.0330 0.921 1.1216 4.573 1.5890 0.9939 0.943 1.0540 4.711 1.9650 1 .2680 1.058 1.1985 5.271 1.6160 0.9771 0.956 1.0221 4.727 1.1600 0.7226 0.819 0.8823 4.080 1.7450 1.1000 0.942 1.1677 4.746 1.9440 1.1650 0.911 1.2788 4.535 1.3530 0.8569 0.976 0.8780 4.845 1.4760 0.8823 0.868 1.0165 4.282 1.4390 0.9501 1.104 0.8606 5.484 1.9540 1.1950 0.901 1.3263 4.487 1.0310 0.6535 0.956 0.6836 4.740 1.3740 0.7739 0.864 0.8957 4.342 1.5840 0.9822 0.966 1.0168 4.874 1.2080 0.6418 0.864 0.7428 4.323 1.5790 0.9476 0.985 0.9620 4.958 1.8090 1.0570 0.875 1.2080 4.311 >3eaqemauN—n 1.5313 0.9420 0.9793 0.9638 4.8901 1.6187 0.9732 0.9045 1.0701 4.5027 m 6 0.2112 0.1 187 0.0471 0.1316 0.2285 0.3064 0.2120 0.0669 0.1899 0.3369 Location D Location E 2.0130 1.2510 0.921 1.3583 4.634 1.7930 1 .0700 1.011 1.0584 5.064 1.3960 0. 8222 0.893 0.9207 4.451 1.6700 1.0210 0.869 1.1749 4.275 2.2710 1 .4040 0.979 1.4341 4.874 1.8680 1.1430 0.920 1.2424 4.592 1.8850 1.1840 0.952 1.2437 4.740 1.6540 1 .0760 0.956 1.1255 4.740 1.1220 0.7045 0.884 0.7969 4.384 1.3210 0.8523 0.937 0.9096 4.670 2.0890 1 .2220 0.883 1.3839 4.352 0.8698 0.5757 0.845 0.6813 4.188 1.5680 0.9918 0.917 1.0816 4.605 1.9870 1 .2770 0.940 1.3585 4.705 2.0030 1 .2290 0.923 1.3315 4.682 1.6700 1.0350 0.868 1.1924 4.330 @fldGMbUN-tfl 2.0890 1 .2680 0.848 1.4953 4.195 1.1010 0.6504 0.953 0.6825 4.685 10 1.6910 1.0460 0.832 1.2572 4.085 1.3530 0.8053 1.018 0.791 1 5.054 A 1.8127 1.1123 0.9032 1.2303 4.5002 1.5287 0.9506 0.9317 1.0217 4.6303 SD 0.3605 0.2183 0.0448 0.2282 0.2500 0.3562 0.2229 0.0582 b 0.2412 — 0.2988 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 61 for information about the location and value of minimum peel strength for this package size. 172 Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches - Continuation Table 60. Peel Test Results for Package Size (5.75” x 9.125”) — 1059B Rexam at Crosshead Speed = 10 ipm and Grin Se . aration = 2.0” - Continuation Peak Force (lbs) Lml Total Ext 1i!) Avg Force (lbs) Time (see) Location A Total Avg Energy Ext Force Time . . k imlhs in bs sec Location B 1.2190 0.8820 0.955 0.9236 5.695 1.7130 1 .0520 0.961 1.0947 5.753 1.9490 1.3460 1.026 1.31 19 6.131 1.5250 0.9133 0.938 0.9737 5.643 1.8040 1.1730 0.978 1.1994 5.804 1.4500 0.9078 0.878 1.0339 5.227 1.7230 1 .2220 0.941 1.2986 5.592 1.5250 0.9891 0.901 1.0978 5.429 1.2890 0.8834 0.966 0.9145 5.820 1.2720 0.7928 0.877 0.9040 5.242 0.9342 0.6354 1.032 0.6157 6.185 1.5950 0.9446 0.923 1.0234 5.473 1.8420 1.3580 0.982 1.3829 5.916 1.3740 0.8337 0.845 0.9866 5.134 1.9330 1.3450 0.915 1.4699 5.451 1.5090 0.9053 0.876 1.0334 5.201 \OQQGMAuNl-IH 1.6590 1.1540 0.934 1.2355 5.624 1.8580 1 .2020 0.877 1.3706 5.201 plus 5 1.9920 1.3030 0.915 1.4240 5.480 1.9060 1.1470 0.902 1.2716 5.355 > 1.6344 1.1302 0.9644 1.1776 5.7698 1.5727 0.9688 0.8978 1.0790 5.3658 m 6 0.3619 0.2478 0.0412 0.2737 Location D 0.2521 fl 0.2017 0.1309 E0346 0.1415 Location E 0.2068 2.2550 1.3690 0.887 1.5434 5.317 1.9380 1.2060 0.908 1.3282 5.454 1.6380 0.9964 0.894 1.1145 5.326 1.9270 1.1780 0.874 1.3478 5.282 2.3190 1.4990 0.919 1.6311 5.477 1.2350 0.7223 0.934 0.7733 5.653 1.4280 0.9054 0.855 1.0589 5.082 2.0890 1.3480 0.914 1.4748 5.496 1.6810 1.0650 0.918 1.1601 5.432 1.7230 1.0600 0.904 1.1726 5.467 1.9540 1 .2970 0.943 1.3754 5.648 1.4340 0.7843 0.921 0.8516 5.488 1.4170 0.8774 0.854 1.0274 5.022 1.5890 0.9455 0.922 1.0255 5.493 2.3520 1.4590 0.850 1.7165 5.102 1.3050 0.7664 0.827 0.9267 4.935 WNQO‘UIAUNI‘B 1.4390 0.8621 0.826 1.0437 4.945 1.7660 1.0590 0.917 1.1549 5.493 10 1.5570 0.9709 0.913 1.0634 5.425 1.9920 1.3020 0.884 1.4729 5.307 A 1.8040 1.1301 0.8859 1.2735 5.2776 1.6998 1.0372 0.9005 1.1528 5.4068 SD 0.3829 0.2501 0.0381 0.2685 0.2281h 0.2991 0.2263 0.0315 0.2533 0.1955 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 61 for information about the location and value of minimum peel strength for this package In. 173 Re In 1059B Table 60. Peel Test Results for Package Size (5.75” x 9.125”) - 1059B Rexam ek/Po esterP Lamin te Pou hes- Con ' atin at Crosshead Speed = 12 ipm and Grin Se 4 aration = 2.0” - Continuation Peak Total Force Energy Ext bs in‘lbs Avg Force bs Location A Time sec Peak Force En ... in*lbs Location B Total ergyExt 1.0200 0.6757 1.023 0.6605 5.115 0.9557 0.5940 0.839 0.7080 1.6000 1.0990 0.936 1.1741 4.618 2.0190 1.3140 0.845 1.5550 1.6640 0.9504 0.915 1.0387 4.596 1.1540 0.7034 0.833 0.8444 1.9540 1.3020 0.913 1.4261 4.528 1.1060 0.6485 0.825 0.7861 1.1540 0.8282 0.932 0.8886 4.602 1.1220 0.6493 0.835 0.7776 2.2340 1.5460 0.905 1.7083 4.496 1.9380 1 .2540 0.840 1.4929 1.9970 1.3360 0.916 1.4585 4.605 0.9074 0.5598 0.841 0.6656 1.6210 1.0580 0.996 1.0622 5.016 1.5140 0.9857 0.833 1.1833 \Dflflalll-BUNi-BH 1.6590 1.1310 0.999 1.1321 4.912 1.5840 0.9326 0.846 1.1024 :— 6 1.5300 1.0590 0.952 1.1124 4.763 1.6160 1 .0690 0.871 1.2273 > 1.6433 1.0985 0.9487 1.1662 4.7251 1.3916 0.8710 0.8408 1.0343 m 5 0.3673 0.2530 0.0423 0.3001 0.2166 0.3986 0.2788 0.0123 0.3251 Location D Location E 1.4870 0.9010 0.853 1.0563 4.233 1.4500 0.8913 0.897 0.9936 1.5890 0.9714 0.844 1.1509 4.182 1.5300 0.9090 0.812 1.1195 1.8040 1.1010 0.881 1.2497 4.378 1.7930 1.0810 0.800 1.3513 1.2300 0.7763 0.871 0.8913 4.330 1.1810 0.7394 0.855 0.8648 1.9220 1.1330 0.863 1.3129 4.323 1.1330 0.6943 0.793 0.8755 1.5410 0.9162 0.826 1.1092 4.060 1.7660 1.1160 0.823 1.3560 1.6750 1.0010 0.891 1.1235 4.441 1.9920 1 .2260 0.819 1.4969 1.3510 0.7466 0.868 0.8601 4.285 1.7610 1 .0320 0.797 1.2949 eaqauauN—B 1.4170 0.8006 0.865 0.9255 4.368 1.0680 0.6919 0.839 0.8247 10 1.1870 0.7404 0.836 0.8856 4.115 1.7930 1.1250 0.809 1.3906 1.5203 0.9088 0.8598 1.0565 4.2715 1.5467 0.9506 0.8244 1.1568 SD 0.2373 NOTE: The minimum peak and average peel strength values, out of the four 0.1429 0.0202 —_ 0.1604 0.1222 L 0.3261 0.1943 0.0319 0.2516 locations, from each sample, were used for the analysis. Refer to Table 61 for information about the location and value of minimum peel strength for this package 8128. 174 :72; 8:...— .8 93...”. E9... :23 9.93 85.3 8.255... 2E. E 3:32 8 .8qu .2285 29...; a E 2:...» 5:85» .3.— E=E_.._E 2: .8 :38qu n A “H HO 2 <2 $3.: <2 3.3.: <2 ::3.: <2 33.: <2 :aufi: <2 33.: <2 vumfi: <2 92.: >2— Em <2 mama: <2 33.— <2 :nnfi: <2 waunA <2 33.: <2 :van <2 33.: <2 mum—A omeno>< Q 03:: Q :3: Q 38A Q :30: m 22.: m :mmmA Q 88A Q 8va :— m 5.3.: m :mooA Q 23.— Q :99; m 3%.: m :8: < 83.: < own: a Q 83.: Q :3: m $3.: m :3: < :30: < 28A Q :3»: Q 8:: a m :39: m 3.8.: m 03:: m own: < comm: < 3va m 03:: m :32 b O 8:: D :34: < 35.: < N43: m 23.: m moon: m 8%.: m 0:3,: : m 3.3.: m :Ng A m :v::.: m 83.: Q $3.: Q :8: m name: < omvoA m m 5:5,: m :8: Q :mm:._ D SQ... m .83.: m :8: D 2.0:: m :32 v m 32%.: m 9%: m mmR: m :mmNA < :VmoA < can: A $3.: m 38.: n m 3.: m oommA m 33.: m :mNmA Q nomad Q 8:: < 300.: < 33.: n < 83.: m 33.: < 98:: < :ENA < :3: m 0302 < 030.: < :2: A .2... 8...: 3. a... .3. 3.: 7|... .3: A 3.82 A 3.8.: A 3.8.: A 3.8.: A 3.8..— A 38.: A 3.8.— A 3.8..— 2956 x55 oua.o>< ..aom ow...o>< owanu>< 33m .5." u .32.: 8 are ..e." u 522.. am “we .3 u 552.. um mm: A... «336 5.: «A u .3on 2.2.39.0 ...2 :A u “.0on 63.—320 En. «— n .325 3.2.29.0 8.: :A n 3on 2.2.39.0 530% mmmoA I Asma— d a .33 26 o 3.8.. 3. 3......» 5 55m .90.. 55.52 .S as: 175 Regm (1059B Tyvek/Polyester Poly Laminate} Pouches - Continuation Table 62. Peel Test Results for Package Size (9.25” x 14.125”) — 1059B Rexam at Crosshead S = 1031m and Grip Separation = 1.0” Peak Force Energy 0b!) Kill*|b8)1 Total Ext (in) Avg Force 0'”) Time (80¢) Peak Force Energy Total Ext (IDS) lLin*le)L (in) Avg Force (lb!) Location A Location B 1.5460 0.9359 1.004 0.9322 5.990 1.2030 0.7405 1.053 0.7032 1.9330 1.3480 0.932 1.4464 5.603 1.7560 1.2170 0.976 1.2469 2.1370 1.4030 0.908 1.5452 5.398 1.7340 1.1250 0.964 1.1670 1.1330 0.7081 0.958 0.7391 5.711 1.9110 1.3660 1.000 1.3660 1.8630 1.1350 0.921 1.2324 5.487 1.0680 0.7471 0.950 0.7864 1.2240 0.8296 0.964 0.8606 5.753 1.6380 1.1260 0.994 1.1328 1.9650 1.3390 1.007 1.3297 6.016 1.6480 1.1390 0.947 1.2027 1 .5790 1.1240 1.019 1.1030 6.064 1.6970 1.1360 0.970 1.1711 1.5620 1.1200 1.133 0.9885 6.733 2.3680 1 .6760 0.943 1.7773 1.8850 1.1730 1.157 1.0138 6.923 1.9060 1.3510 0.987 1.3688 1.6827 1.1116 1.0003 1.1191 5.9678 1.6929 1.1624 0.9784 1.1922 0.3298 0.2286 0.0851 0.2625 0.5067 0.3636 0.2785 0.0328 0.3010 Location D Location E 1.8090 1.2530 0.971 1.2904 5.705 1.7880 1.1470 0.924 1.2413 1.8740 1.4030 0.970 1.4464 5.810 1.6380 1 .0220 0.857 1.1925 1.4760 0.9114 0.941 0.9685 5.621 1.1600 0.7248 0.997 0.7270 1.2190 0.8529 0.941 0.9064 5.606 1.7720 1.0500 0.937 1.1206 1.2240 0.8345 1.001 0.8337 6.032 1 .6430 1.0700 0.951 1.1251 1.8250 1.1930 0.957 1.2466 5.720 1.1540 0.6527 0.913 0.7149 1.5950 1.0300 0.999 1.0310 5.932 1.7830 1.0380 1.018 1.0196 1.7720 1.1580 1.075 1.0772 6.432 1 .6430 0.8089 0.892 0.9068 eaqamauN—B 1.9490 1.4190 1.006 1.4105 6.073 1.7720 1 .0990 0.914 1.2024 1.8420 1.3450 0.985 1.3655 5.891 2.0190 1.2980 0.921 1.4093 1.6585 1.1400 0.9846 1.1576 5.8822 1.6372 0.9910 0.9324 1.0660 0.2681 0.2224 0.0395 0.2217 0.2519 0.2764 0.2004 I2.9473 0.2249 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 63 for information about the location and value of minimum peel strength for this package size. 176 105913 T ek/P rPo Lamin e P uches- on ' uation Table 62. Peel Test Results for Package Size (9.25” x 14.125”) — 1059B Rexam atCrossheadS ... = 12i Peak Total Force Energy Ext be L in‘lbs Location A mandGri tin) Se . aration = 1.0” - Continuation Total Force Energy Ext in*1bs) Avg Force bs Location B Time 2.4910 1.6120 1.092 1.4762 5.419 1.1380 0.7798 1.081 0.7214 5.263 1.4340 0.9215 1 .024 0.8999 5.053 1.2990 0.8533 1.004 0.8499 5.015 1.6380 1.1430 1.076 1.0623 5.320 1.3420 0.8734 0.992 0.8804 5.003 1.5360 0.9064 0.944 0.9602 4.730 2.3460 1.5000 0.980 1.5306 4.862 1.2990 0.7855 0.933 0.8419 4.666 1.9110 1.3830 0.995 1.3899 4.974 1.5410 0.9637 1.053 0.9152 5.274 1.8420 1.2500 0.971 1.2873 4.785 1.8790 1 .2870 0.980 1.3133 4.849 2.2500 1.6490 0.993 1.6606 4.932 1.3690 0.8943 1.091 0.8197 5.374 1.4760 1 .0790 0.983 1.0977 4.801 1.7560 1.2110 1.029 1.1769 5.150 2.1850 1.5920 0.968 1.6446 4.874 2.2170 1 .4940 1.123 1.3304 5.609 1.8790 1.2510 0.969 1.2910 4.833 >39aqamAUN—H 1.7160 1.1218 1.0345 1.0796 5.1444 1.7668 1.2211 0.9936 1.2354 4.9342 m U 0.3834 0.2771 0.0650 0.2315 0.3141 0.4297 0.3158l0.0330 0.3371 Location D Location E 0.1414 2.2280 1.7200 0.981 1.7533 4.839 1.7180 1.1460 1.217 0.9417 6.031 1.7610 1.3010 0.979 1.3289 4.833 1.4660 0.8927 0.968 0.9222 4.771 1.9920 1.3870 0.981 1.4139 4.884 1.8680 1.1640 0.997 1.1675 4.955 1.7880 1.2580 0.963 1.3063 4.820 2.2280 1.4370 0.928 1.5485 4.688 1.9760 1.3560 1.128 1.2021 5.634 1.7400 1 .0790 0.936 1.1528 4.622 1.6910 1.2030 0.936 1.2853 4.615 1.8950 1.2060 0.988 1.2206 4.958 2.3570 1 .7260 0.956 1.8054 4.695 2.0510 1.3530 0.976 1.3863 4.820 1.9170 1.2990 1.016 1.2785 5.163 1.1490 0.6853 0.942 0.7275 4.631 VOGQG‘UIAMNI‘H 1.6160 1.2110 0.991 1.2220 4.967 1.6210 0.9090 0.880 1.0330 4.371 10 1.5410 1 .0680 0.960 1.1125 4.791 1.5680 1.0010 0.944 1.0604 4.663 A 1.8867 1.3529 0.9891 1.3708 4.9241 1.7304 1.0873 0.9776 1.1160 4.8510 SD 0.2613 0.2144 _ 0.0534 0.2300 0.2899 0.3060 0.2249 0.0907 0.2366 — 0.4491 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 63 for information about the location and value of minimum peel strength for this package 8122. 177 1059B T rPo P Table 62. Peel Test Results for Package Size (9.25” x 14.125”) — 1059B Rexam at Crosshead Speed = 10 ipm and Gri L. Peak Force (lbs) Energy Total Ext (in) Avg Force (lb!) Time (809) Peak Force (lbs) (in*lbs) (in) p-SFILaration = 2.0” - Continuation Total Energy Ext Avg Force bl Location A Location B Time sec 1.3300 1.093 1.2168 6.483 1.7500 1 .2940 1.110 1.1658 6.534 1.2660 1.189 1.0648 7.031 2.2710 1.6430 1.002 1.6397 5.941 1.3310 0.939 1.4175 5.573 1.5360 1.0190 0.970 1.0505 5.785 0.9466 1 .074 0.8814 6.503 1.8740 1.4110 0.976 1.4457 5.846 1.3380 0.968 1.3822 5.647 1.4660 0.8536 0.993 0.8596 5.948 1 .0750 0.927 1.1597 5.528 1.4660 0.9299 0.980 0.9489 5.855 1.2930 0.901 1.4351 5.320 1.0360 0.7476 0.987 0.7574 5.893 0.9173 0.918 0.9992 5.467 2.1480 1.5830 0.967 1.6370 5.791 \DGQGUOIBUNt—l 1 .0880 0.979 1.1113 5.832 2.1740 1 .5480 0.997 1.5527 5.973 1.3100 0.950 1.3789 5.672 1.9490 1.3890 0.999 1.3904 5.900 1.1895 0.9938 1.2047 5.9056 1.7670 1.2418 0.9981 1.2448 5.9466 0.1665 0.0937 0.1936 0.5649 0.3914 Location D 0.3276“i 0.0412 0.3306 Location E 0.2159 1.4140 1.012 1.3972 6.060 1.5460 0.9920 0.863 1.1495 5.134 1.9590 1.023 1.9150 5.887 1.5950 0.9940 0.904 1.0996 5.599 0.8787 0.957 0.9182 5.723 1.5300 0.9278 0.852 1.0890 5.086 1.1450 0.994 1.1519 5.881 1.6750 0.9656 0.886 1.0898 5.262 1.3400 1 .076 1.2454 6.114 1.9270 1.1920 0.919 1.2971 5.477 1.3480 0.994 1.3561 5.912 1.5190 0.9370 0.910 1.0297 5.430 1.6730 0.959 1.7445 5.727 1.6970 0.9363 0.887 1.0556 5.295 1.1780 1.051 1.1208 6.263 1.7130 0.9972 0.853 1.1691 5.112 1.0300 1.056 0.9754 6.342 1.9380 1.2340 0.950 1.2989 5.714 1 .2820 1.011 1.2681 6.045 1.5140 0.9480 0.843 1.1246 5.044 1.3248 1.0133 1.3093 5.9954 1.6654 1.0124 0.8867 1.1403 5.3153 0.3116 0.0396 0.3157 0.2083 0.1592 0.1092 0.0345 0.0926 0.2315 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 63 for information about the location and value of minimum peel strength for this package 8110. 178 Rexam (1059B Tyyek/Polyester Poly Laminate) Pouches - Continuation Table 62. Peel Test Results for Package Size (9.25” x 14.125”) - 1059B Rexam at Crosshead Speed = 12 Peak Force bs Energy in*lbs Total Ext in Force ipm and Gri Avg LE’L Location A Se aration = 2.0” - Continuation (lb!) (“I‘ll”) (in) Avg Force bs Location B Time 1.8150 1.1700 1.006 1.1630 1.7400 1.2030 1.006 1.1958 5.034 2.1640 1.4400 0.976 1.4754 1.5410 1 .0720 0.975 1.0995 4.923 1.5570 1.0450 0.938 1.1141 1.3580 0.8944 0.952 0.9395 4.749 1.4660 0.9317 0.982 0.9488 2.0300 1.4090 0.957 1.4723 4.733 2.2550 1 .4520 1.008 1.4405 1.8680 1.2380 0.973 1.2724 4.778 1.7660 1 .0770 0.900 1.1967 1.1220 0. 8429 1.029 0.8191 5.105 1.9170 1.2560 1.022 1.2290 2.3570 1.6250 0.998 1.6283 4.922 1.8950 1.2320 0.949 1 .2982 2.1320 1.6590 0.974 1.7033 4.836 \OQQQUIBUN—H 1.9270 1.2000 1.014 1.1834 2.2500 1.6340 0.973 1.6793 4.820 .- 9 1.8250 1.1960 0.993 1.2044 1.7290 1.1640 1 .024 1.1367 5.118 > 1.8587 1.2000 0.9788 1.2253 1.8127 1.2741 0.9861 1.2946 4.9018 m 5 0.2396 0.1624 0.0390 0.1527 Location D 0.3958 0.2997 0.0267 0.3133 Location E 0.1432 2.0780 1.6210 1 .074 1.5093 5.426 1.9760 1.2100 0.956 1.2657 4.740 2.1640 1.5100 1.019 1.4818 5.000 1.7930 1.1020 0.859 1.2829 4.223 1.6860 1.4300 1.002 1.4271 4.948 2.1740 1.3600 0.852 1.5962 4.230 1.1650 0.7761 0.975 0.7960 4.803 1.4010 0.9018 0.901 1.0009 4.643 2.3190 1 .7970 1.000 1.7970 4.974 1.1650 0.6815 0.868 0.7851 4.320 2.4640 1.7990 1.004 1.7918 4.996 1.8090 1.1840 0.847 1.3979 4.202 2.1050 1 .4250 1.019 1 .3984 5.092 1.6430 1.0310 0.872 1.1823 4.330 1.9270 1.4300 1.035 1.3816 5.140 1.7130 1.0880 0.941 1.1562 4.785 \OOQGM80N—B 1.2080 0.7829 1.005 0.7790 5.019 1.1760 0.7173 0.921 0.7788 4.624 10 2.1210 1.5820 1.121 1.4112 5.592 1.8150 1.1610 0.900 1.2900 4.477 A 1.9237 1.4153 1.0254 1.3773 5.0990 1.6665 1.0437 0.8917 1.1736 4.4574 SD 0.4404 0.3622 0.0425 0.3458 0.2368 u 0.3295 0.2172 0.0383 0.2582 0.2253 NOTE: The minimum peak and average peel strength values, out of the four locations, from each sample, were used for the analysis. Refer to Table 63 for information about the location and value of minimum peel strength for this package 8116. 179 3.3: 8a.... .3 0.5.... ...o... :53 9.93 8......» 5:55... 2.... v. 9...»... 8 .3qu .325... 01...... a 5 0......» 59.9... .02. 5:55... o... ..o :5...qu u A .302 <2 35.: <2 New": <2 32.: <2 3.3.: <2 ..3..: <2 33.: <2 33.: <2 .3": >2. Em <2 :30: <2 "ma... <2 3:: <2 3.3... <2 88.: <2 39... <2 «3:: <2 33... ow...o>< m. 33... m 33.. m ova... m. :30. m. vooo. n. :30. < 3.8.. Q :90. :. m. :33: m :3... n. 33.: n. :8... m. 38.. Q :20. < 3:0: < :80. a m. Now... m. :23. < 83.: < :30. m. 33.: m. :3... m 3:0: < :30. a m. 3:... m :90. m 33.: m. 88.. < 3.0. < :30. m. 02:. Q :30. 3 m. 8.0: m :3... m 32:: m. :8... < N20: < 0.20. m 3...: m :3... e m. .23.: m :3... m 33.: m. :3... < 3.2:: < 83.. m .33.: m :w::.. m n. 83.: Q :3... < 3%.: < :3... < Nome: < :30. < .33.: < :3... v m 38.: m :30. A. 38.: n. :50. m 33.: m :NVm. m. 33.: m. :8... m m 80:. m :30. < 30:. m. :30. m 3.2:: m. 83.. m 3:... m :30. N < 3:... m 0:3. m. mm»... m. :30. m. ...3: m. :3... m. 33.: m 33.. . .2... .2... .2... .2... .2... .2... 4.3 .2... A 8.8.: A 8.3... A 8.8.... A 8.5.: A 3.8.... A 8......— A 3.8... A 3.8.... 0.95.: own..o>< ..aom owEo>< ..aom ow¢.o>< 5.3.. oma.o>< 53.. 2:." u 55...... um 4...“: ..:.N n 55...... em 3.6 2.... u :53... em mg 2.... u .53.... 0: “TU 5... N. u .5on 32.320 E... :. u .8on 5.2.89.0 E... N. n .5on 30:39.0 E... :A u .3on 53:39.0 I 53.3. name I p.33: u ..mndeonfi 993.2... 3.. 3......» 535.6 .00.. 5:55.). .8 03a... 180 APPENDIX VI ANALYSIS OF VARIANCE FOR FACT ORIAL EXPERIMENTS MINITAB RESULTS 181 APPENDIX VI CONTENTS: Page A. ANALYSIS OF VARIANCE for Burst Test Factorial Experiments 1. Rexam 1107313 TfleWPolgester/Polx Laminate) Pouches a) Factorial Experiment #1, Results for all package sizes 184 b) Factorial Experiment #2, Results for all package sizes 186 c) Factorial Experiment #3, Results for all package sizes 188 II. Tolas (1073B Tflck/PET/PE Laminate} Pouches a) Factorial Experiment #1, Results for all package sizes 190 b) Factorial Experiment #2, Results for all package sizes 190 c) Factorial Experiment #3, Results for all package sizes 191 Ill. Ream (1059B TflddPolxester/Pglx Laminate} Pouches a) Factorial Experiment #1, Results for all package sizes 192 b) Factorial Experiment #2, Results for all package sizes 192 c) Factorial Experiment #3, Results for all package sizes 193 B. ANALYSIS OF VARIANCE for Peel Test Factorial Experiment I. Regm [1073B Tflek/Pgnestgrnglx Laminate) Pouchg a. Factorial Experiment, Results for all package sizes using peak force values 195 b. Factorial Experiment, Results for all package sizes using average force values 197 [1. Tags (10733 jlnek/PET/PE Laminate} Pouches a. Factorial Experiment, Results for all package sizes using 199 peak force values b. Factorial Experiment, Results for all package sizes using average force values 200 ll]. Rexam (1059B jlygeldPoflester/Pou my t_e_) Pogchg a. Factorial Experiment, Results for all package sizes using peak force values 201 b. Factorial Experiment, Results for all package sizes using average force values 202 182 A. ANALYSIS OF VARIANCE for Burst Test Factorial Experiments Three 22 factorial experiments were performed for the burst test. The levels for the factors studied in each of the experiments are shown below. 22 Factorial Ex riment #1 for Burst Test 22 Factorial Ex riment #2 for Burst Test Factor Low Level Factor Low Level High Level A Flow Rate 1 9 B Plate Se aration 1.0” A Flow Rate 1 B Plate Se aration 22 Factorial Expejrigient #3 for Burst Test Factor Low Level High Level A Flow Rate 5 9 B Plate Se aratron 0.5 1.0 The results for the three experiments are shown below for each package size and material combination studied. 183 I. e 1073B elsll’ r/P P II Table 64. Analysis of Variance for Burst Pressure - Factorial Experiment #1 Pa Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches e Size (3.25” x 7.25”) Degrees Sum F F P Source of of Mean um“ 2.36.105 value Conclusion Freedom Squares Square W Main 2 25160 12580 107.17 3.26 0.000 Significant Effects: A = Flow 1 603 603 5.15 4.11 0.030 Significant B = Gap 1 24557 24557 209.89 4.11 0.000 Sijnificant Interaction 1 44 44 0.37 4.11 0.545 Not Significant Error 36 4226 117 -- -— -- - Total 39 29430 -- -- ~— -- -- Packa e Size (5.25” x 9.125”) Degrees Sum F Freedom Squares Square | i i I ll 2 26536 13268 365.7 3.26 1 183 183 5.04 4.11 B = Gap 1 26353 26353 724 4.11 Interaction 1 1 1 0.03 4.11 Not Significant Error 36 1306 36 -- -— -- -- Total 39 27843 -- -- -- -- -- Packa e Size (7.25” x 11.125” I — Degrees Sum F F P Source of of Mean “mm, 2.36.105 value Conclusion Freedom Squares Square £22.05 Main 2 19810 9905 160.04 3.26 0.000 Significant Effects: A = Flow 1 626 626 10.11 4.11 0.003 Significant B = Gap 1 19184 19184 309.92 4.11 0.000 Significant Interaction 1 375 375 Sign_ificant Error 36 2228 61.9 Total 39 22413 -- _ 184 Table 64. Analysis of Variance for Burst Pressure — Factorial Experiment #1 Rexam (1073B TyveldPolyester/Poly Laminate) Pouches— Continuation Packa e Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “knitted 2.36.1105 value Conclusion Freedom Squares Square 1 0.05 Main 2 1853 1 9265 194.07 3 .26 0.000 Significant Effects: A = Flow 1 2734 2734 57.32 4.11 0.000 Significant B = Gap 1 15797 15797 331.17 4.11 0.000 Significant Interaction 1 763 763 15.98 4. 1 1 0.000 Significant Error 36 1719 47.7 -- -- -- ~— Total 39 2 1 0 1 3 --- -— --- —- -- Package Size (11.25” x 15.25”) Degrees Sum F F P Source of of Mean “hum“ 2,wa value Conclusion Freedom Squares Square 1.36.1105 Main 2 20831 10416 202.82 3.26 0.000 Significant Effects: A = Flow 1 635 635 12.35 4.11 0.001 Significant B = Gap 1 20196 20196 392.92 4.11 0.000 Significant Interaction 1 77 77 1.50 4.11 0.228 Not Sijnifrcant Error 36 1849 51.4 --- --- -- —— Total 39 22757 --- —-- --— --- -—- 185 Table 65. Analysis of Variance for Burst Pressure - Factorial Experiment #2 Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches Package Size (3.25” x 7.25”) Degrees Sum F F P Source of of Mean “1mm“, 2.36.1105 value Conclusion Freedom Squares Square ”QM Main 2 23072 1 1536 1 10.9 3.26 0.000 Significant Effects: A = Flow 1 286 286 2.75 4.11 0.106 Not Significant B = Gap 1 22786 22786 219.10 4.11 0.000 Significant Interaction l 1 1 0.01 4.11 0.933 Not Significant Error 36 3748 104 -- -- — -— Total 39 26821 --- -- --- --- -- Packa e Size (5.25” x 9.125”) Degrees Sum F F P Source of of Mean ““th 2.36.0115 value Conclusion Freedom Squares Square 1135492 Main 2 26436 13218 292.6 3 .26 0.000 Significant Effects: A = Flow 1 155 155 3.43 4.11 0.072 Not Significant B = Gap 1 26281 26281 581.44 4.11 0.000 Significant Interaction 1 0.7 0.7 0.01 4.11 0.905 Not Significant Error 36 1626 45.2 --- —- -- -—- Total 39 28062.7 --- --- --- --- -- Package Size (7.25” x 11.125”) Degrees Sum F F P Source of of Mean maimed macs value Conclusion Freedom Squares Square 1.361105 Main 2 23574 1 1787 250.14 3.26 0.000 Significant Effects: A = Flow 1 1381 1381 29.32 4.11 0.000 Significant B = Gap 1 22193 22193 471.19 4.11 0.000 Significant Interaction 1 889 889 18. 87 4. l 1 0.000 Significant Error 36 1696 47. 1 --- --- --- --- Total 39 26 1 59 -— -- --- --- --- 186 Table 65. Analysis of Variance for Burst Pressure - Factorial Experiment #2 Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches- Continuation Packa e Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “mm, mass value Conclusion Freedom Squares Square was Main 2 14760 7380 130.57 3.26 0.000 Significant Effects: A = Flow 1 810 810 14.33 4.11 0.001 Significant B = Gap 1 13950 13950 246.90 4.11 0.000 Significant Interaction 1 402 402 7.11 4.11 0.011 Significant Error 36 2035 56.5 -- -— -- -- Total 39 17197 -- . -- -- -- Packa e She (11.25” x 15.25”) Degrees Sum F Source of of Mean “mud Freedom Squares Square Main 2 23096 1 1548 222.62 Effects: A = Flow 1 243 243 4.66 B = Gap 1 22853 22853 440.33 Interaction 1 0. 1 0. 1 0.000 Error 36 1867 51.9 - Total 39 24963 -- —- 187 Table 66. Analysis of Variance for Burst Pressure — Factorial Experiment #3 Rexam (1073B 'vaelt/Polyester/Poly Laminate) Pouches Package Size (3.25” x 7.25”) Degrees Sum F F P Source of of Mean “mm“, 236$” value Conclusion Freedom Squares Square 1.36.1105 Main 2 24889 12444 100.52 3.2? 0.000 Significant Effects: A = Flow 1 59 59 0.48 4.11 0.496 Not Significant B = Gap 1 24830 24830 200.2 4.11 0.000 Significant Interaction 1 33 33 0.27 4.11 0.608 Not Siflificant Error 36 4456 124 —- --. -— «- Total 39 29378 ~-- --- --- --- -- Package Size (5.25” x 9.125”) Degrees Sum F F P Source of of Mean “mm“ 2.36.005 value Conclusion Freedom Squares Square 1 3610.05 Main 2 26617 13308 222. 10 3.32-6- 0000 Significant Effects: A = Flow 1 1 1 0.02 4.11 0.890 Not Significant B = Gap 1 26616 26616 444.37 4.11 0.000 Significant Interaction 1 0.0 0.0 0.00 4.11 0.977 Not Significant Error 36 2157 59.9 --- --- --- --- Total 39 28774 --- --- --- --- --- Package Size (7.25” x 11.125”) Degrees Sum F F P Source of of Mean “mm“ 2.36.0105 value Conclusion Freedom Squares Square 1 (105 Main 2 28482 14241 209.37 3.26 0.000 Significant Effects: A = Flow 1 148 148 2.17 4.11 0.150 Not Significant B = Gap 1 28334 28334 416.60 4.11 0.000 Significant Interaction 1 110 110 1.61 4.11 0213 Not Significant Error 36 2449 68.0 m m _-_ --- Total 39 3 104 1 --- -- --- -- -- 188 Table 66. Analysis of Variance for Burst Pressure — Factorial Experiment #3 Rexam (1073B Tyvek/Polyester/Poly Laminate) Pouches- Continuation ‘ Package Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “mu 2.36.1105 value Conclusion Freedom Squares Square 1 I i nos Main 2 21806 10903 188.5 3.26 0.000 Significant Effects: A = Flow 1 568 568 9.82 4.1 1 0.003 Significant B = Gap 1 21238 21238 367.40 4.11 0.000 Significant Interaction 1 57 57 0.99 4.11 0.326 Not Sigfl'ficant Error 36 2082 57.8 -- -—- -—- -- Total 39 23945 -- -- -— -— -- Package Size (11.25” x 15.25”) Degrees Sum F F P Source of of Mean “Mm“ 2.36.005 value Conclusion Freedom Squares Square 1 0105 Main 2 20365 10183 154.72 3 .26 0.000 Significant Effects: A = Flow 1 93 93 1.41 4.11 0.243 Not Significant B = Gap 1 20272 20272 308.09 4.11 0.000 Significant Interaction l 82 82 1.25 4.11 0.271 Not Significant Error 36 2369 65.8 --- --- -- -- Total 39 22816 189 II. Tolas (1073B TueklPET/PE Laminate) Pouches Table 67. Analysis of Variance for Burst Pressure — Factorial Experiment #1 Tolas (1073B Tyvek/PET/PE Laminate) Pouches Package Size (3” x 11.375”) Degrees Sum F F P Source of of Mean “In...“ 2.36.1105 value Conclusion Freedom Squares Square 1 0.05 Main 2 23071 11535 112.34 3.26 0.000 Significant Effects: A = Flow 1 1206 1206 11.70 4.11 0.002 Significant B = Ggp 1 21865 21865 212.20 4.11 0.000 Significant Interaction 1 124 124 1.21 4.11 0.279 Not Significant Errgr 36 3696 103 — -- — —- Total 39 26891 -- -- -- -- -—- ‘ Package Size (10.625” x 15”) Degrees Sum F F P Source of of Mean “mm 2.36.005 value Conclusion Freedom Squares Square 1 2 goes Main 2 16404 8202 188.91 3.26 0.000 Significant Effects: A = Flow 1 179 179 4.12 4.11 0.050 Significant B = Ggp 1 16225 16225 373.84 4.11 0.000 Significant Interaction 1 51 51 1.18 4.11 0.285 Not Sigificant Error 36 1563 43.4 -- -- -- -- Total 39 18018 -— -- ~— -- -—- Table 68. Analysis of Variance for Burst Pressure — Factorial Experiment #2 Tolas (1073B Tyvek/PET/PE Laminate) Pouches Package Size (3” x 11.375”) Degrees Sum F F P Source of of Mean nkulmd 2.36.1105 value Conclusion Freedom Squares Square 1,3631% Main 2 23205 1 1602 147.33 3.26 0.000 Significant Effects: A = Flow 1 1148 1148 14.56 4.11 0.001 Significant B = Gap 1 22057 22057 279.91 4.11 0.000 Significant Interaction 1 139 139 1.76 4.11 0.193 Not Significant Error 36 2835 78.8 --- --- --- --- Total 39 261 79 --- --- --- --- --- 190 Table 68. Analysis of Variance for Burst Pressure — Factorial Experiment #2 Tolas (1073B Tyvek/PET/PE Laminate) Pouches - Continuation Package Size (10.625” x 15” Degrees Sum F F P Source of of Mean “MM“, 2.36.1105 value Conclusion Freedom Squares Square 1.36.0.” Main 2 16981 8490 218.97 3 .26 0.000 Significant Effects: A = Flow 1 40 40 1.03 4.11 0.319 Not Significant B = Gap 1 16941 16941 436.62 4.11 0.000 Sigpificant Interaction 1 19 19 0.49 4.11 0.488 Not Significant Error 36 1396 38.8 -- --- --- ~— Total 39 18396 --— --- --- --- -— Table 69. Analys'u of Variance for Burst Pressure - Factorial Experiment #3 Tolas (1073B 'I‘yvek/PET/PE Laminate) Pouches ‘ Package Size (3” x 11.375”) Degrees Sum F F P Source of of Mean “mm“, 2.36.1105 value Conclusion Freedom Squares Square 1&5 Main 2 25488 12744 108.97 3.26 0000 Significant Effects: A = Flow 1 1 1 0.008 4.11 0.939 Not Significant B = Gap 1 25487 25487 217.83 4.11 0.000 Significant Interaction l 0 0 0.00 4.11 0.953 Not Significant Error 36 4210 117 -- -- —- —- Total 39 29698 --- --- --- --— --- Package Size (10.625” x 15”) Degrees Sum F F P Source of of Mean “th 2.36.1105 value Conclusion Freedom Squares Square 1.36.1105 Main 2 15182 7591 150. 85 3 .26 0.000 Significant Effects: A = Flow 1 50 50 0.99 4.11 0.325 Not Significant B = Gap 1 15132 15132 300.83 4.11 0.000 Significant Interaction l 8 8 0.15 4.11 0.697 Not Significant Error 36 1812 50.3 --- --- --- -- Total 39 17002 --- -—- --- —-- -- 191 III. Rexam (1059Bj1flek/Pglyester/Poly Laminate) Pouches Table 70. Analysis of Variance for Burst Pressure — Factorial Experiment #1 Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches Package Size (5.75” x 9.125”) Degrees Sum F F P Source of of Mean “hum“ 2'36”” value Conclusion Freedom Squares Square 1 £10105 Main 2 25577 12788 126.45 3 .26 0.000 Significant Effects: A = Flow 1 492 492 4.87 4.11 0.034 Significant B = Gap 1 25085 25085 248.36 4.11 0.000 Significant Interaction 1 47 47 0.47 4.11 0.498 Not Significant Error 36 3641 101 -—- —-- --- -—— Total 39 29265 --- --- --- --- --- Package Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “mud 2.36.0.0!» value Conclusion Freedom Squares Square 1 i i 0.05 Main 2 26781 13391 225.05 3.26 0.000 Significant Effects: A = Flow 1 1375 1375 23.11 4.11 0.000 Significant B = Ggp 1 25406 25406 426.99 4.11 0.000 Significant Interaction 1 274 274 4.61 4.11 0.039 Sigr_l' 3 mt Error 36 2142 59.5 --— -- --- -- Total 39 29197 — -— -- -- —- Table 71. Analysis of Variance for Burst Pressure — Factorial Experiment #2 Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches Package Size (5.75” x 9.125”) Degrees Sum F F P Source of of Mean “mud 2.36.005 value Conclusion Freedom Squares Square 1 ! ices Main 2 25367 12684 124.59 3.26 0.000 Significant Effects: A = Flow 1 272 272 2.67 4.11 0.111 Not Significant B = Gap 1 25095 25095 246.03 4.11 0.000 Significant Interaction 1 48 48 0.47 4.11 0.498 Not Significant Error 36 3665 102 --- -— -- --- Total 39 29080 -- -- -- -- -—- 192 Table 71. Analysis of Variance for Burst Pressure — Factorial Experiment #2 Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches - Continuation Packa e Size (9.25” x 14.125” 1 Degrees Sum F F P Source of of Mean W 2.3“.” value Conclusion Freedom Squares Square 1 1 i ”5 Main 2 22972 11486 284.20 3.26 0.000 Significant Effects: A=Flow 1 538 538 13.31 4.11 0.001 Significant B = Gap 1 22434 22434 555.20 4.11 0.000 Significant Interaction 1 48 48 1.19 4.11 0.282 Not Significant Error 36 1455 40.4 -- -- Total 39 24475 -—- -- -— Table 72. Analys’n of Variance for Burst Pressure - Factorial Experiment #3 Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches Pa e Size 5.75” x 9.125” Source Conclusion Freedom Squares Square 1 ! gees Main 2 27354 13677 130.94 3.26 0.000 Significant Effects: A = Flow 1 32 32 0.31 4.11 0.581 Not Significant B = Gap 1 27322 27322 262.71 4.11 0.000 Significant Interaction 1 0 0 0 4.11 0.998 Not Significant Error 36 3760 104 -- -- -- -- Total 39 31114 -;__ -- -- -- -- x 14.125”) — Sum F F P of Mean “mu mess value Conclusion Squares Square 1 27860 13930 393.78 3.26 0.000 Significant 193 193 5.45 4.11 0.025 Significant 27667 27667 781.55 4.11 0.000 Significant Interaction 92 92 2.61 4.11 0.1 15 Not Significant 1274 35.4 -—- -- -- -- 29226 -- -- -- -- -- 193 B. ANALYSIS OF VARIANCE for Peel Test Factorial Experiments One 22 factorial experiments was performed for the peel test. The levels for the factors studied are shown below. 22 Factorial Ex riment for Peel Test Factor A Crosshead Speed 10 ipm aration 1.0” f The results of this experiment are shown below when using peak and average peel forces for each package size and material combination studied. 194 1. Re In 1073B r/P Pu Table 73. Analysis of Variance for Peel Strength when using Peak Force Values Rexam (1073 Tyvek/PolyesterlPoly Laminate) Pouches Packa e Size (3.25” x 7.25”) Degrees Sum ' F F P Source of of Mean “It...“ 2.36.105 value Conclusion Freedom Squares Square 1 i i “5 Main 2 0.0043 0.0021 0.04 3.26 0.962 Not Significant Effects: A = Speed 1 0.0043 0.0043 0.08 4.11 0.781 Not Significant B = Grip 1 0.0000 0.0000 0.00 4.11 0.998 Not Significant Interaction 1 0.0877 0.0877 1.62 4.11 0.212 Not Significant Error 36 1 .9526 0.0542 -- -- -- - Total 39 2.0446 -- .— .... _ .. Packa S' 5. ” . ” e me! 25 x 9 125 ) Degrees Sum F F P of of Mean W 2.36.105 value Conclusion Freedom Squares Square 1 ““5 2 0.0483 0.0241 0.38 3.26 0.686 Not Significant Effects: A = Speed 1 0.0411 0.0411 0.65 4.11 0.426 Not Significant B = Grip 1 0.0072 0.0072 0.11 4.11 0.737 Not Significant Interaction 1 0.0012 0.0012 0.02 4.11 0.893 Not Significant Error 36 2.2786 0.0633 -- -- -- Total 39 2.3281 -- -- -- --_ x 11.125”) Sum of Mean Conclusion Squares Square 1 i o. 5 0.0331 0.0165 0.25 3.26 0.778 Not Significant 0.0101 0.0101 0.15 4.11 0.696 Not Significant 0.0229 0.0229 0.35 4.11 0.557 Not Significant Interaction 0.3644 0.3644 5.57 4.11 0.024 S'gnificant 2.3532 0.0654 -- -- -- £7507 --F -- —- -- 195 Table 73. Analysis of Variance for Peel Strength when using Peak Force Values Rexam (1073 Tyvek/Polyester/Poly Laminate) Pouches - Continuation Packa e Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “mm“, 2.36.1105 value Conclusion Freedom Squares Square 1,36% Main 2 0.0253 0.0127 0.25 3.26 0.783 Not Significant Effects: A = Speed 1 0.0244 0.0244 0.47 4.11 0.496 Not Significant B = Grip 1 0.0009 0.0009 0.02 4.11 0.894 Not Significant Interaction 1 0.0012 0.0012 0.02 4.11 0.878 Not Significant Error 36 1.8548 0.0515 -- -- —— «— Total 39 1 .8814 —- --- --- -- —- Package Size (11.25” x 15.25”) Degrees Sum F F P Source of of Mean “mm, mm“ value Conclusion Freedom Squares Square 1.3% Main 2 0.3585 0.1793 3.07 3.26 0.059 Not Significant Effects: A = Speed 1 0.2354 0.2354 4.03 4.11 0.052 Not Significant B=Grip 1 0.1231 0.1231 2.11 4.11 0.155 Not Significant Interaction 1 0.0024 0.0024 0.04 4.11 0.842 Not Significant Error 36 2.1028 0.0584 -- - -- -- Total 39 2.4636 --- —- -- -- -- 196 Table 74. Analysis of Variance for Peel Strength when using Average Force Values Rexam (1073 Tyvek/Polyester/Poly Laminate) Pouches Package Size (3.25” x 7.25”) Degrees Sum F F P Source of of Mean calculated 2364105 value Conclusion Freedom Squares Square 1.36.1105 Main 2 0.0091 0.0045 0.17 3.26- 0.847 Not Significant Effects: A = Speed 1 0.0048 0.0048 0.18 4.11 0.677 Not Significant B = Grip 1 0.0043 0.0043 0.16 4.11 0695 Not Significant Interaction 1 0.0270 0.0270 0.99 4.11 0.327 Not Significant Error 36 0.9848 0.0274 --- --- --- -- Total 39 1 .02 1 0 --- --- --- --- --- Packa e Size (5.25” x 9.125”) Degrees Sum F F P Source of of Mean “mud 2.36.1105 value Conclusion Freedom Squares Square 1.36.0105 Main 2 0.0858 0.0429 1.36 3.26 0.268 Not Significant Effects: A = Speed 1 0.0002 0.0002 0.0064 4.11 0.936 Not Significant B = Grip 1 0.0856 0.0856 2.73 4.11 0.108 Not Significant Interaction 1 0.0001 0.0001 0.003 4.11 0.953 Not Significant Error 36 1.1321 0.0314 -- -- -- —- Total 39 1 .2180 -- —- -- --- -- Package Si (7.25” x 11.125” Degrees Sum F F P Source of of Mean “mud 2.36.0.05 value Conclusion Freedom Squares Square 1 0.05 Main 2 0.0616 0.0308 0.97 3.26 0.390 Not Significant Effects: A = Speed 1 0.0046 0.0046 0.14 4.11 0.706 Not Significant B = Grip 1 0.0570 0.0570 1.79 4.11 0.190 Not Significant Interaction 1 0.2042 0.2042 6.40 4.1 1 0.016 Significant Error 36 1 . 1482 0.03 19 --- -- --- --- Total 39 1 .4140 —-— -- -- -- -- 197 Table 74. Analysis of Variance for Peel Strength when using Average Force Values Rexam (1073 Tyvek/Polyester/Poly Laminate) Pouches - Continuation Packa e Size (9.25” x 14.125” Degrees Sum Source of of Conclusion Freedom Squares Square ! i .5 Main 2 0.1140 0.0570 2.01 3.26 0.149 Not Significant Effects: A = Speed 1 0.0006 0.0006 0.02 4.11 0.885 Not Significant B = Grip 1 0.1134 0.1134 3.99 4.11 0.053 Not Significant Interaction 1 0.0000 0.000 Not Significant Error 36 1 .0234 0.0284 Total 39 1.1374 -- Packae S'ne (11.25” x 15.25” Degrees Sum F F P Source of of Mean M 2.36.105 value Conclusion Freedom Squares Square 1 E gees Main 2 0.1148 0.0574 1.56 3.26 0.225 Not Significant Effects: A = Speed 1 0.0962 0.0962 2.60 4.11 0.115 Not Significant B = Grip 1 0.0186 0.0186 0.50 4.11 0.482 Not Significant Interaction 1 0.0100 0.0100 0.27 4.11 0.606 Not Sijnificant Error 36 1.3280 0.0369 -- -- -- -— Total 39 1.4528 -- --- -- -- -- 198 II. Tol_a_s (1073B Ilnek/PET/PE Qminag) Poughes Table 75. Analysis of Variance for Peel Strength when using Peak Force Values Tolas (1073 Tyvek/PET/PE Laminate) Pouches Package Size (3” x 11.375”) Degrees Sum F F P Source of of Mean unwed 2.36305 value Conclusion Freedom Squares Square 1.36.0.0!» Main 2 0.0650 0.0325 1.01 3.26- 0.374 Not Significant Effects: A = Speed 1 0.0285 0.0285 0.88 4.11 0.353 Not Significant B = Grip 1 0.0365 0.0365 1.13 4.11 0.294 Not Significant Interaction 1 0.1014 0.1014 3.15 4.11 0.084 Not Significant Error 36 1.1583 0.0322 --- --- -- -- Total 39 1 .3247 —-— -- -- -- —- Package Size (10.625” x 15”) Degrees Sum F F P Source of of Mean “mu“, 2.36.1105 value Conclusion Freedom Squares Square LEA—05 Main 2 0.1889 0.0944 1.46 3.26 0.245 Not Significant Effects: A = Speed 1 0.0601 0.0601 0.92 4.11 0.342 Not Significant B = Grip 1 0.1288 0.1288 1.99 4.11 0.167 Not Significant Interaction 1 0.0832 0.0832 1.29 4.11 0.264 Not Significant Error 36 2.3275 0.0647 --- -- —- —- Total 39 2.5996 --- --- --- --- -- 199 Table 76. Analysis of Variance for Peel Strength when using Average Force Values Tolas (1073 'I‘yvek/PET/PE Laminate) Pouches Package Size (3” x 11.375”) Degrees Sum F F P Source of of Mean “hm“, 2.36.1105 value Conclusion Freedom Squares Square 1 0105 Main 2 0.0630 0.0315 1.59 3.26 0.217 Not Significant Effects: A = Speed 1 0.0068 0.0068 0.34 4.11 0.56] Not Significant B = Grip 1 0.0562 0.0562 2.83 4.11 0.101 Not Significant Interaction 1 0.0101 0.0101 0.51 4.11 0.480 Not Sifllificant Error 36 0.7128 0.0198 -- - -- —- Total 39 0.7859 -— —- — ——- -— Package Size (10.625” x 15”) Degrees Sum F F P Source of of Mean “In...“ 2.36.1105 value Conclusion Freedom Squares Square 1 ii ”5 Main 2 0.1510 0.0755 1.87 3.26 0.169 Not Significant Effects: A = Speed 1 0.0064 0.0064 0.16 4.11 0.692 Not Significant B = Grip 1 0.1446 0.1446 3.57 4.11 0.067 Not Significant Interaction 1 0.0314 0.0314 0.78 4.11 0.384 Not Significant Error 36 1.4542 0.0404 -— -- —- -— Total 39 1 .6366 -— -- -— -- -- 200 III. Rexam (1059B Tflek/Ponester/Poy Lamingte) Poughes Table 77. Analysis of Variance for Peel Strength when using Peak Force Values Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches 1 Package Size (5.75” x 9.125”) Degrees Sum F F P Source of of Mean “mm“, 2.36.0105 value Conclusion Freedom Squares Square mg Main 2 0.0274 0.0137 0.31 3.26 0.735 Not Significant Effects: A = Speed 1 0.0021 0.0021 0.05 4.11 0.828 Not Significant B = Grip 1 0.0253 0.0253 0.57 4.11 0.454 Not Significant Interaction 1 0.1490 0.1490 3.37 4.11 0.075 Not Significant Error 36 1.5898 0.0442 -—- --- -—- --- Total 39 1 .7662 --- --- --- --- --- Package Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “mu 2.36.1105 value Conclusion Freedom Squares Square 1m Main 2 0.0092 0.0046 0.08 3.26 0.922 Not Significant Effects: A = Speed 1 0.0025 0.0025 0.04 4.11 0.833 Not Significant B = Grip 1 0.0067 0.0067 0.12 4.11 0.733 Not Significant Interaction 1 0.0061 0.0061 0.11 4.11 0.745 Not Significant Error 36 2.0343 0.0565 -- -- --- -- Total 39 2.0496 -— —- -— —- -- 201 Table 78. Analysis of Variance for Peel Strength when using Average Force Values Rexam (1059 Tyvek/Polyester/Poly Laminate) Pouches Package Size (5.75” x 9.125”) Degrees Sum F F P Source of of Mean “Imam 236.0105 value Conclusion Freedom Squares Square 1 1 ”5 Main 2 0.0807 0.0404 1.89 3.26 0.166 Not Significant Effects: A = Speed 1 0.0002 0.0002 0.01 4.11 0.918 Not Significant B = Grip 1 0.0805 0.0805 3.76 4.11 0.060 Not Significant Interaction 1 0.0473 0.0473 2.21 4.11 0.146 Not Significant Error 36 0.7702 0.0214 -— -— -- -— Total 39 0.8983 --- -- ..- -- —— Package Size (9.25” x 14.125”) Degrees Sum F F P Source of of Mean “hum“, 2.36.1105 value Conclusion Freedom Squares Square 1.36.0.” Main 2 0.0637 0.0319 1.20 3.26- .312 Not Significant Effects: A = Speed 1 0.0119 0.0119 0.45 4.11 0.508 Not Significant B = Grip 1 0.0519 0.0519 1.95 4.11 0.170 Not Significant Interaction 1 0.0028 0.0028 0.11 4.11 0.747 Not Significant Error 36 0.9530 0.0265 -- -- --- -- Total 39 1 .0195 --- --- --- --- -- 202 APPENDIX VII MODEL VALIDATION INFORMATION 203 Apgndix VII Contents Page A. Data Transformation 206 B. Formulas Used in Calculations 207 C. Burst Pressure (P) Empirical Models Results when using Flow Index as an Independent Variable 210 1. Model #1 211 2. Model #2 212 3. Model #3 213 D. Burst Pressure (P) Empirical Models Results WITHOUT using Flow Index as an Independent Variable 1. Models 214 2. Data used in the analysis 215 3. Tabulated Results a. Model #1 223 b. Model #2 224 c. Model #3 225 4. Percent Error Between Actual and Predicted Values for each data point 226 E. Correlation Calculations 234 204 Apgndix VH Conteng - Continuation Page F. Seal Strength (S) Empirical Models Results 1. Models 238 2. Data used in the analysis 239 3. Tabulated Results a. Model #1 247 b. Model #2 248 c. Model #3 249 3. Percent Error Between Actual and Predicted Values for each data point 250 a. Models #1a, #2a, #3a 250-251, 254-255, 258, 260, 262, 264 b. Models #1b, #2b, #3b 252-253, 256-257, 259, 261, 263, 265 G. Burst Pressure (P) and Seal Strength (S) Empirical Model Results - when using burst test data from flow index 5 only 266 1.Tabulated Results for Burst Pressure (P) Models: a. Model #1 267 b. Model #2 267 c. Model #3 267 2. Tabulated Results for Seal Strength (S) Models: a. Model #1 268 b. Model #2 268 c. Model #3 268 205 A. Dgtg ngfgrmation - from Nonlinear to Intrinsiglly Linear Functions The transformation of data is necessary in order to be able to use linear multiple regression analysis. An example of the data transformation for a model with three independent variables is shown below: Nonlinear (power): Y = K (x,)"1 (x2)P2 (x3)p3 “Intrinsically linear”: loglo Y = logm K + p1* logm X1+ p2 *loglo X2 + p3 * logloX3 The logarithm of the independent (X’s) and dependent (Y) variables is used to perform a scatter plot to check for linearity of the transformed data, residual analysis and, if satisfactory, a linear multiple regression analysis. The regression parameters K, p1, p2 and p3 are obtained from the regression analysis results. The p’s are obtained directly from the linear regression but the K needs to be derived in the following way: In K = loglo K * In 10 In K K=e where; loglo K is obtained fiom the linear multiple regression analysis In 10 = 2.3026 206 B. Formulas u in alculations 1. Conversion from in H2O to (psi, which is lbs/inz): 1 psi = 27.67 in H2O The burst pressure was recorded in in H2Oand converted to psi for the calculations. Percent Error: {average of predicted values — average of actual values} x 100 average of actual values Average Percent Error: 2 |Percent errorl / n where n = number if observations It was found that in some cases the models overestimated the actual values and in others they underestimated them. For that reason, it is important to mention that the reported average percent error is the average of the magnitude (absolute value) of the percent error from all observations. 3. Coefficient of Multiple Determination (R2) R2 = 1 - SSE/SST = (SST - SSE)/SST = SSR/SST where; SSE == error sum of squares; variation explained by the error SSR = regression sum of squares — variation explained by the regression model SST = total sum of squares; - total variation (SSE + SSR = SST) 207 According to Devore, 1995, R2 = ratio of explained variation to total variation. The higher the R2 , the more successful is the regression model in explaining the variation. The multiple correlation coefficient (R), is the positive square root of the coefficient of multiple determination (R = \IR’ ). The R2 , R, SSE, SSIL SST and the regression coefficients (K, p1, ..., pn) were obtained from MINITAB and the BASIC program. According to Neter et al., 1990, R2,, indicates that there are p parameters, or (p — 1) predictor variables in the regression function on which R2,, is based. R1,, = 1 — SSEp/SSTP = (SST — SSE,)/SST = SSRp/SST Since the denominator is constant for all possible regressions, R2,, varies inversely with the error of sum squares, SSEP. But it is known that SSEp can never increase as additional X variables are included in the model. Thus, R2,, will be a maximum when all P — 1 potential X variables are included in the model. Since R2,, does not take account of the number of parameters in the regression model and since max (Rzp) can never decrease as p increases, the use of the adjusted coefficient of multiple determination (R2.dj) is suggested as a criterion, which takes the number of parameters in the model into account through the degrees of freedom. R”...- = 1 — [{(n-1)/(n-p)}*{SSE/SST}] = 1 — MSE/{SST/(n-1)} R2225 increases if and only if MSE decreases since {SST/(n-1)} is fixed for a given Y observations (Neter, J., et al., 1990). 208 4. Prediction Intervals for single observation and for the mean response: The most important objective in regression analysis is to use the fitted regression model to estimate the expected response (Bhattacharyya, Johnson, 1977). In order to do that, the t distribution is used to construct confidence intervals. The prediction interval of the expected response (burst pressure or seal strength) for a single pouch was estimated with the following formula: Expected Single Response = Value predicted with the model +/- W2 81“] + (1/n)} The prediction intervals of the expected response (burst pressure or seal strength) for a group of pouches was estimated by using the following formula: Expected Mean Response = Value predicted with the model +/- tm2 sr/ (l/n) Where; tom = t statistic at a= 0.05, a/2 = 0.025 to,25,23 = 2.048 for Rexam’s 1073B Tyvek/plastic pouches to,025,10 = 2.228 for Tolas 00738 and Rexam’s 1059B Tyvek/plastic pouches s = NI (SSE/(n-2) = V (2(actuaI-predicted)2/(n-2) u = sample size The prediction intervals for a single response and the mean response were obtained with the BASIC program. 209 C. Bum Pressure (:1 Empirig Model Results when Using Flow Indgx as an Indemdent Variable A linear multiple regression analysis was performed with flow index as an independent variable. The three models are shown below. Empirical Model #1 with flow index as an independent variable: P = K [{S/D} *CF]“[D/( Lo-1.571D)]"[D/( wo-1.571D)]”m" where CF = [{(1mwo-1.142D)/(14,+w(rz.14213)}] Empirical Model #2 with flow index as an independent variable: P = K [{smll“1CF1”lFl"’ where CF = “(newer .142D)/(L0+Wo-2. 142D)}] Empirical Model #3 with flow index as an independent variable: P = K[{S/D}]P'[UW]P211"1P3 Tables 79 to 81, have a summary of the results. The data used in this analysis is in Appendix V. The formulas used in the calculation of the quantities reported in the tables below appear in section B of this appendix. 210 Table 79. Empirical Model #1 Results with Flow Index as an Independent Variable Rexam (1073B Tyvek/Po ester Po Laminate) Pouches, n=30 Average PI — Single PI — Mean ('26) Regression R Response1 Response2 Error Coefficients Ra (lbs/inz) libs/inf) K = 2.31 p1 =1.01 1.00 ifF=1 4.51 p2 = 0.23 0.9770 P +/-0.4104 P +/- 0.0737 1.07 if F=5 p3 = - 0.03 0.9731 1.10 ifF=9 p4 = 0.0438 K = 3.66 p1=1.00 1.00 ifF=1 Avg 3.93 p2 = 0.29 0.9820 P +/- 0.3563 P +/- 0.0640 1.07 if F=5 Force p3 = - 0.90 0.9788 1.10 if F=9 p4 = 0.0438 L Tolas 1073B ijeWinM-uches, n=12 Average PI — Single PI — Mean ('/o) Regression R Response1 Response2 Error Coefficients R31 (lbs/in’) jwmz) K = 6.90 p1 = 1.57 1.59 p2 = 0.89 0.9972 P +/- 0.1934 P +/- 0.0536 p3 = - 0.11 0.9955 p4 = 0.0375 K = 19.45 p1 = 1.78 1.59 p2 = 1.10 0.9972 P +/- 0.1934 P +/- 0.0536 p3 = - 0.13 0.9955 p4 = 0.0375 _ Rexam (1059B Tyvek/Polyester/Po Laminate) Pouches, n = 12 Average PI — Single PI -- Mean Data (7.) Regression R Responsel Responsez usin Error Coefficients g.” (lbs/in”) (Ibs/inz) K = 14.70 S p1=1.21 1.00 ifF=1 Peak 0.88 p2 = 2.50 0.999] P +/- 0.1199 P +/- 0.0333 1.07 if F=5 Force p3 = - 2.01 0.9985 1.10 if F=9 p4 = 0.0419 K = 19.90 S p1=1.14 1.00ifF=1 Avg 0.88 p2 = 2.37 0.9991 P +/- 0.1200 P +/- 0.0333 1.07 if F=5 Force p3 = - 1.94 0.9985 1.10 if F=9 p4 = 0.0419 NOTES: P = Burst Pressure, S = Seal Strength and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 211 Table 80. Empirical Model #2 Results with Flow Index as an Independent Variable Rexam (1073B Tyvek/Polyester Po Laminate) Pouches, n = 30 Average rr— Single rr— MeaT Data (7.) Regression R Response' Response’ usin Error Coefficients (lhs/in‘) (lbs/in”) r K = 1.28 S 4.91 p1 = 0.91 0.9740 R +/- 0.4596 R +/. 0.0825 1.00 ifF=1 Peak p2 = 3.41 0.9711 1.07 ifF=5 Force = 0.0438 1.10 ifF=9 K = 1.99 s 4.41 pl = 0.88 0.9793 P +/- 0.4020 9 +/- 0.0722 1.00 ifF=1 Avg p2 = 2.67 0.9767 1.07 ifF=5 Force E 0.0438 1.10 if F=9 Tolas 1073B TfleklPET/PE Laminate) Pouches, n = 12 Average PI — Single PI - Mean Equal to ('/o) Regression R Response' Responsez multiplying Error Coefficients M (lbs/inz) (lbs/ill) r K = 1.06 pl = 0.92 0.9922 1.00 ifF=1 253 p2 = 5.37 0.9894 R +/- 0.3335 R +/- 0.0925 1.06 ifF=5 p3 = 0.0375 1.09 if F=9 K = 1.45 2.78 pl = 0.95 0.9908 P +/- 0.3639 R +/— 0.1009 1.00 ifF=1 p2 = 5.99 0.9874 1.06 ifF=5 Jr; = 0.0375 1.09 ifF=9 Rexam (1059B Tyvek/Pollen" Pol: Laminate) Pouches, n = 12 — NOTES: P = Burst Pressure, S = Seal Strength and R = Correlation Coefficient Average PI — Single PI - Mean Data ('/o) Regression R Response1 Response2 ' Error Coefficients as, (lhs/in‘) (lbs/in”) r K = 1.73 1.74 p1 = 0.84 0.9969 P +/- 0.2219 P +/- 0.0616 1.00 ifF=1 p2 = 1.68 0.9960 1.07 if F=5 p3=0.0419 1.10 ifF=9 K = 2.55 1.59 p1 = 0.82 0.9976 P +/- 0.1968 P +/- 0.0546 1.00 if F=1 p2 = 1.10 0.9965 1.07 if F=5 Jp=0.0419 1.10ifF=9 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 212 Table 81. Empirical Model #3 Results with Flow Index as an Independent Variable Rexam (1073B Polyester/Polyester Poly Laminate) Pouches, n = 30 Average PI — Single PI — Mean Equal to Data (%) Regression R Responsel Responsez multiplying Piping Error Coe_fficients Rd] (lbs/in‘) (lbs/in‘) r 6: K = 1.45 S 5.31 p1 = 0.74 0.9717 P +/- 0.4669 P +/- 0.0839 1.001fF=l Peak p2 = 0.37 0.9685 1.07 if F=5 Force p3 = 0.0438 1.10 ifF=9 K = 2.05 S 4.76 p1 = 0.74 0.9771 P +/- 0.4194 P +/-0.0753 1.00 ifF=1 Avg p2 = 0.30 0.9747 1.07 if F=5 Force p3 = 0.0438 1.10 ifF=9 MWPET/PE Laminate POIM 12 Average PI - Single PI — Mean Equal to Data (%) Regression R Responge Responge2 multiplying using Error Czeffiflzgg‘ R.“ (lbs/In ) (lbs/m l P by S 1.55 p1 = 0.68 0.9971 P +/- 0.1938 P +/- 0.0537 1.00 ifF=1 Peak p2 = 0.17 0.9960 1.06 if F=5 Force p3 = 0.0375 1.09 if F=9 K = 1.88 S 1.55 p1 = 0.68 0.9971 P +/- 0.1938 P +/- 0.0537 1.00 ifF=1 Avg p2 = 0.19 0.9960 1.061fF=5 Force p3 = 0.0375 1.09 if F=9 Rexam (1059B Tyvek/Polyester Poly Laminate) Pouches, n = 12 Average PI — Single PI — Mean Equal to Data (%) Regression R ResponseI Response2 multiplying using Error Coefficients R...l1 (lbs/inz) (gs/ml) P by K = 1.19 S 1.29 pl = 0.77 0.9986 P +/- 0.1429 P +/- 0.0396 1.001fF=l Peak p2 = 1.12 0.9980 1.07 if F=5 Force p3 = 0.0419 1.10 if F=9 K = 1.88 S 1.29 p1 = 0.77 0.9986 P +/— 0.1429 P +/- 0.0396 1.00 ifF=1 Avg p2 = 0.82 0.9980 1.07 if F=5 Force p3 = 0.0419 1.10 if F=9 NOTES: P = Burst Pressure, S = Seal Strength and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 213 D. Burst Pressure (2) Empirical Modgg Results WITHOUT using Flow Index g an Indepgndent Variable: 0.1 Models The models analyzed are the following: Burst Pressure, Model #1: p = K [{S/D}*CFl”[D/( 101.57ID)]n[D/( Wis-15711))?” where CF = [{(L0+Wo-1.142D)/(I.o+Wo-2.142D)}] Burst Pressure, Model #2: P = K [{S/D}]"[CF]” where CF = [{(Lo+Wo-l .142D)/(Io+Wo-2-142D)}] Burst Pressure, Model #3: P =K [{S/DHP'fL/W]P2 D.2 Data used in the analysis The data collected for each material combination was used to run a regression analysis in order to calculate the regression coefficients for the three empirical models shown above. Rexam 107 3B Tyvek/plastic pouches will have 30 data points to run the regression analysis if the burst data obtained from 3 different flow index values are used. The number of data points for Tolas 10738 and Rexam 1059B Tyvek/plastic pouches is 12. Refer to Tables 82 to 87, below 214 95v me. u «on gems we. u an . a me. u w 98 me. u ax game we. r .x . .— m21 > 35: m2 1 .x see we. r ax .Eugem: no.1 .x . a we. r w afiEdéSEfiE.3-3.4: n no a N._ Sc :15 M u w as .282 3:35 a 11x. :35 M u w "as .682 scenes. as. Ea N._ 1x. 23a 6. u > as .252 .8235“.— amugems ..., .— § .232 .3832: Ema n m a; .332 359.35. M .3930 3 costume“. 3 29592—8.— .523 E... 59.3 63.30 H o3 ES 6A > awe—3&3 5 age.— on =3 :32: See 2:. Anon—.5 3.8m x3.— uES =23“ nEoz Eco 33.0 38a an: as? ”man 22: $8.2. e no “.2 m2: ma MES good as: $82 33 N83 29: 5.3 m. 00 m2 m2: 3 Eco $3.0 $85 $85 32 33m ca: 853 _ no m3 m2: 2 ES and :2: ES an: ”52 2%; ea: c 3 3m 3; 2 ES 32¢ :22 :85 an: ”52 32 2mg m 3 mom a; z ”:3 2.3.0 5: :82 an: 32 ”$2 9.8m a 3 new a; 8 82.0 88.0 mama can: am: one; as? 88.4 e m 0 m2 3; a 82.0 88.0 as? can: 5m: ones 33 moves n no man a; m 8:.0 88.0 “Sam can: an: 32.... as: as: a no new a; e 833 $2.0 cam: c2: 88m 3:: as: an: s 3 m3 as e cane 32.0 282 oz: 88a 3:: as: 883 m 3 was a: m cane $2.0 2cm: o2: 88m 3:1 as: EON a 3 m2 m3 4 e83 28.0 43; own: 88a men.” as: as: e no m3 as n 803 3.3 5.3 09.3 momma 83 one; 83.4 n no m3 as a some E3 482 can: 8mm.“ seem 9.3.2 ”No? _ no mom “2 _ 43.4%.: mecca 3:: £3 ~52: Assam Amiga as: E E 3 .35 SE 5.58 no 32 em 33m sense: is new 523 593 2955 :3.— «9:5 m .— m a 3 .— 85:8 Acacias rem 6.82885 58: Essex 1 none: aces—cc...— Q 2385 scam 2.. .2 8... 3.5 .8 cash 215 920 we. u .x .59 me. u .x . a no. u w . 1.x. sex. 0. n w a... .682 .8225 EB m... u .x .820 m... u .x . a me. u w . n. ..x. :3... M n w as .252 .3125 058 me. u .x .330 me. u .x .29:me me. u .x . a me. u w ...,. 3.. n. ..x. 2.2. a u a an .332 Brian anusdéséxauv.0-3.4.0 n .5 £9.83 1 m as .232 3.8.8.5 and u m as .232 3.8.8.: n Leena-:0 a: 03:53:. as refinance .523 was 593.: 33.80 H £9 0:: us: > £05.54. a: 058.: on :3 SEE. 32. 2:. 0”5.07: 0.: 3.: 3.0: 00 20:0 3:500 3000.: ::v0.: 0mmm: Noam: Nmmm: vom:..~ . 0.: mN.:: 3.0: 0N mm0:.0 :mnod 300.: :3: 000m: 300: New“: mmwmd mm0:0 :mhoo 300: ::v0: 002.: Noam: mmwm: mo:v.N 0.: mN.:: 3.: ma wbvod 03:00 00%.». 3:0: 000m: 3:0 Noam: :mNm.v 0.0 3.: mud: 5N @5000 03:00 oovma 3:0: 030: vw:.m Nowm: 00:m.v 0.0 mN.:: mmh: 0N whvod 03:00 oovma 3:0: 002.: vw:.m Nmmm: mmm:.v 0.0 3.: mNh: mu N0m:.0 350.0 800.: :30: 05mm: mm:0.: mm:0.: Nmmmd VN 216 N0m:.0 350.0 800.: :20: 05mm: mm:0.: mm:0.: macmd 0.: 3.0 0.2.: nu N0m:.0 530.0 800.: :30: 05mm: mm:0.: mm:0.: mmmNN 0.: 0N0 0:44: NN 300.0 020.0 awomd vmmo: 080.: 00NN.m mm:0.: Mame 0.0 mNd 3:: :N 300.0 mnmod mwanfi VNNO: 05mm: 00NN.m mm:0.: vam.m 0.0 0N0 3:: cu :0000 030.0 mwamd vmno: 05mm: 00NN.M mm:0.: :0an 0.0 310 3:4: 0: 55:0 30:0 mmmm: 0:00.: 03%.: 0:9: 0:90.: 0NmNN 0.: 0N6 02.: a: mas—«ino—r-nm—smo—uno‘ O r—‘ in N O\ In N v—4 <1- F‘ :0:.0 50:0 080.: 0:00.: 3%.: 0:3: 0:9: w:0m.N 0.: 0N6 mN:.:: b: 55:0 50:0 mmwm: 0:00.: mvmm: 0:9: 0:0»: 0:N.N . 03.: 0: s— O .—t m N. (\ 75...: :2... mesa 05.5 .5... .52: 053.0 0.53.0 use... A... :5. Ania .35 ...5 “6.3.9 .6 >5 em cone... 23.6... so... new 52>» 59.3 2955 .13.: «9:5 m m m a B .— 553—5:60 - 72:5» 3.8..— xaom ME»: 5:5 2.23.. 32.53 2...: asarcmnoip ans: sauce 1 .332 8.6.8..— 8 9.3.2.: .2...: o... a... 8... sea .2 cash 3E 8. u 0. .88. u... u a. . .. 8. u 3 ...o. 8. u NV. .82. a... n a. . .. 8. u 3 03.... 8. u a. .32.. 8. u a. 5.0.3.9. a... u a. . m u... u 3 .3“....~.-3+........$.....3+... u ...u . N.1... ....... v. n 3 a... .332 .8233... . N.. 3.. 3...... v. u 3 a... .232 .3533... .1 3.. N....... 2...... v. u > a... .232 3.....3... £9.88. n .. a... ...32 3.3.8.... .83 u .. u... .332 3.3.8.... n 3......0 ... 33.3.... 2. 2.2.83.2 33.3 .3. 39.... 33.30 n .3 E... .. > 5.5254. a. 0.58 on :3 :32: 3a.. 0.:. 3.52 88.3 88.3 2.8.. 88.. 2.8.. :3. 88.3 $8... a no m... 8.... m. 88.3 .833 88.. 88.. $8.. :3... 88.3 .2.... n no 8.. 8.... v. 88.3 3.83 28.. 88.. $8.. :8. 88.3 83.. . no 8.. 8.... n. 88.3 .8... 38... :8. .8... 88.. 88.. 33... 3 3.. m... 8.... a. .2...... v8.3 .8... :8. .8... 9.8.. 88.. 3.8.. m o. m... 8.3 .. EN... v8.3 .8... :8. .8... 88.. 88.. 2.8.. . 3.. m... 8.... 3. 3...... 88.3 8.... 2.8.. .8... 88.. 88.. 3.33.. 3 .3 m... 8.3 3 8:3 88... on... 88.. .8... 8.3... 88.. 8.3... n no 8.. 8.3 a 8:... 88.3 on... 88.. .8: 88.. $8.. .83. . no 8.. 8.... .. 83m... 3:... 8.... 8.... 88.. 88.. 88.. 88.. 3 3.. m... m... 3 8%... 3:3 8.... 8.... 8.... 88.. 88.. 88.. m 3.. m... m... m 8%... 3:... 8.... 3.... 8.... 88.. 88.. 3E... . 3.. m... 2.. v .83 88.3 .8... 3.8.. 8...... 8.3.. 88.. 8...... a no 8.. 8.. n .83 E33 .8... 3.8.. 88.. .38.. 88.. 8%... n no 8.. m... N 38.... E33 .8... 3.8.. 88.. 8.3.. 88.. 88... . no 8.. m... . 34%.... 05...... as... 8...... 03.3.... 3.3.... 0.1%... 5.3. .3. a... 0... .3... ...E .6288 ...o 3... em .33... 2.38... .3... ...5 5....3 5...... 3.3.58 «.5. 2...;— m .. .. a 3 . 33.8%» 9.93.. 5% 33...... 335...... .3. 3.823.535 .28.. 8.3. u .332 3.3.8... E 95.8.... .2.... o... 3. .3... 3.... .8 9...... 217 $55 no. u NM :85 82 u _M . a no. u a 8 N._ 35 21M. M n w “8* .252 .3585: 98 a... n NM :85 a... n _M . m a... n M m 21M. 21M. M u M “g. .882 3583: GEE 88. u mM .355 no. u NM 85:88: a... u _M . m a... u w "a. TM. N._ :M. 21M. M u w u: .382 .3585: £9.53 n m at .382 1528.? 585 n m :8. .282 1528.? m .5530 E 35.63.. 2. 22:82.3.— .523 E... gum—BA 83.30 H 83 E... 9H > £2.22? 5 2:5. 2. :3 :32: 3.... 2E. uH902 :3:.5-B+5\::§.:-B+5 u no 882.8 88.8 88:: :2: 8888: 88:: 8888.: 8888.8 8 8.: 88.: 88.8: 88 882.8 :88 88:: :2: 8888: 89.: 8888.: 8888.8 8 8.: 88.: 88.8: 88 88:8 :88 88:: :X: 8888: 88:: 883.: 888.8 : o: 88.: 88.8: 88 888.8 38.8 882 8:: 8888: 28.8 88:: :83 8 8.8 8.8.: 88.8: 8 888.8 38.8 85.8 8:: 8888: 8:58 8888: 88:3 8 8.8 88.: 88.8: 88 888.8 888.8 85.8 8:: 8882 8:58 888: 8883 _ 8.8 88.: 88.8: 88 882.8 88.8 888:: :2: 888.: 888:: 88:: 8888.8 8 8: 88.8 88:; «N 82.8 88.8 8888: 8:: 888: 888:: 888: 8888.8 8 8: 88.8 88:; an 82.8 88.8 88:: :2: 888.: 888:: 88:: 8888.8 _ 8: 8.8.8 88:: 8 888.8 888.8 888.8 88:: 888: 888.8 88:: 888.8 8 8.8 88.8 82.3 a 888.8 888.8 8888.8 88:: 888: 888.8 888:: £888 8 8.8 88.8 82.: 8" 888.8 88.8.8 8888.8 88:: 888.: 888.8 8888.: $8.8 : 8.8 88.8 82.: 8: 5:8 82.8 2:: 28:: 8888.: 888.8 888.8 8888.8 8 o: 88.8 82.: M: 8:8 82.8 2:: 28:: 8888.: 8888.8 8888.8 888.8 8 o: 83 82.: 8 5:8 82.8 2:: 28: 8888.: 888.8 888 8:88 : o: 88.8 82.: E alfiflé 958% :53. :55 C525 :53: @525 55 :5 :5 :5 U8?: 8:: 5.55 no >5 em as: 2:22.: 38E 8.6 53 58:3 8.8.58 w>< 3.5m m m m a B A 5:35:80 - “nos—.5 3.8,.— o «.33: 5.:— :33“ 85.5: :52:an :8.— Esbsioih :88: :5»: I .332 55852: :5 9.3.2.: .5: 2.. .e no... 5.: .8 as: 218 92.: 88: n 8M :58: 88: u .M . m 82 n M :5: 88. u 8M :58: 88: u :M . m 88. u M :38: 88: n 8M .35: 88: u 8M .2988: 88: u .M . 8 88: n M 8582.88-355588:$-32: a Mo : 8. :88: :38: M u M :88 :23: 32:88.: : 8_ :88: 8.38: M u M :88 3.8:: 32:85:: :8. :88: 8. :88: 8.38: M n M 228882185838: 88.3888: u 8 "88 8.88:: 83:28.: 3&5 n m “=8 .23: 16:89:85. .8. 888.25 E contact 8: 29:88:80.: .523 .858 fig} 68.30 H 83 :58 8A > 2::—23¢. a: :53.— 2— :3 582.8 8.:. 2:. “883:5 3:88— xaom £8: :2; 8:89: 8:8 8888.8 8888.: 8888.: 2:8: 8888.: 8888.: 88:8.8 8 8.: 888.8: 8: 8: 88:8 8888.8 8888.: 8888.: 2:8: 8888.: 8888.: 8888.8 8 8.: 888.8: 8: :: 88:8 8888 8888.: 8888.: 2:8: 8888.: 8888.: 8888.8 : 8.: 888.8: 8: 8: 8888.8 8888.8 8888.8 8888.: 2:8: 8888.8 8888.: 8888.8 8 8.8 888.8: 8: 8 8888.8 8888.8 8888.8 8888.: 2:8: 8888.8 8888.: 8888.8 8 8.8 888.8: 8: 8 8888.8 8888.8 8888.8 8888.: 2:: 8888.8 8888.: 88:8.8 : 8.8 888.8: 8: 8 8888.8 888:8 8888.: 8:88.: 8:888 8888.: 8888.: 8:888 8 8.: 8 888:: 8 8888.8 888:.8 8888.: 8:88.: 8:888 8888.: 8888.: 8888.8 8 8.: 8 888:: 8 8888.8 888:.8 8888.: 8:88.: 8:888 8888.: 8888.: 8:888 : 8.: 8 888:: 8 8888.8 8888.8 8888.8 8888.: 8:888 8888.8 8888.: 8888.8 8 8.8 8 888:: 8 8888.8 8888.8 8888.8 8888.: 8:888 8888.8 8888.: 8888.8 8 8.8 8 888:: 8 8888.8 8888.8 8888.8 8888.: 8:888 8888.8 8888.: 8888.8 : 8.8 8 888:: : :55 :55 88588:: :58: :55 n53: :53: C525 888:: W5: 3 8H: 83:: 85: 89:58: Mo 3: 58 828: 28882.: 32.: 88:8 58:3 585: 8:88.88 8.3m 82.5 8 8 8 82:23.: 38283 8:55.585 :88: 88:88 u 8:232 88:88:82.: :5 23.2.: .2...: 2:: .8: 82.. 5.: .88 8:88.:. 219 5388:u£.:58:88:n_M.:88:uM :6: 88: n 8M .88: 88: u :M . .: 88: u M :35: 88: u 8M .385 88: u 8:8 £9,388: 88: u .M . m 88: n M 88:88:88.325588:.::.B+5 a Mo : a :M: 8.38: M u M :88 3.8:: 32:85:: : 8: :M: :38: M u M :88 :25: 353...: :8: 38: 8. :88: 8.38: M u M “:8 :23: 1858...: 86.8888: u .: :88 8.88:: 3:28:88 588: n m “:8 :23: 18:28:: 8 .2826 8: 82:28.88 .8 8:858:82 8:88:88 8.: 58.3 88388 n 83 8.: 0a > a=2—23¢: a: 2::... on :3 ES... 8.:. 2E. 88,57: 88::8 8888.8 8888.: 8888.: 2:8: :28: :28: 88:8.8 8 8.: 888.8: 8: 8: 88: :.8 8888.8 8888.: 8888.: 8:8: :8:8.: :28: 8888.8 8 8.: 888.8: 8: :: 88::8 8888.8 8888.: 8888.: 2:8: :28: :28: 8888.8 : 8.: 888.8: 8: 8: 8888.8 8888.8 8888.8 8888.: 2:: 8888.8 :28: 8888.8 8 8.8 888.8: 8: 8 8888.8 8888.8 8888.8 8888.: 8: :8: 8888.8 :28: 8888.8 8 8.8 888.8: 8: 8 8888.8 8888.8 8888.8 8888.: 8: :8: 8888.8 :28: 88:88 : 8.8 888.8: 8: 8 8888.8 888:.8 8:88.: 8:88.: 8:888 8888.: 8888.: 8:888 8 8.: 8 888:: 8 8888.8 888:.8 8:88.: 8:88.: 8:888 8888.: 8888.: 8888.8 8 8.: 8 888:: 8 8888.8 888:.8 8:88.: 8:88.: 8:888 8888.: 8888.: 8:888 : 8.: 8 888:: 8 8888.8 8888.8 8888.8 8888.: 8:888 8888.8 8888.: 8888.8 8 8.8 8 888:: 8 8888.8 8888.8 8888.8 8888.: 8:888 8888.8 8888.: 8888.8 8 8.8 8 888.: 8 8888.8 8888.8 8888.8 8888.: 8:888 8888.8 8888h 8888.8 : 8.8 8 888:: : :55 :55 C525 :55 :55 p525 :53: C585 82...: :5 :5 :45 83:: 2::: 86:58: :5 B: 58 828:: 2382.: 85:8: 8.6 58:3 58:3 28:38 w>< «8.:—i 8 .: m 8: B A 82.—:88» 3.5.: $283.. was: 5:3 82.238— A3355: Hfihflsoé mare: 8.8—oh. I 30.52 585950.:— Amv 0.588.88— 88.—am 2: .5.— ..08: Sun .3 0.8—ch. 220 92.5 88: u 8M .888: 88: n :8: . .: 88: u M :6: 88: u :8: .888: 88: u :8: . .: 88: n M 35:: 88: u 8M :55 88: u 8M 66:58:: 88_ u :M . .: 88: n M :n88:.8:.3+5:::88:5.3+: u :u : 8. :88:: :38: M n M :88 :88:: :88::858: : 8. :88: :3: M n M "88 :88:: 18:35.: :8. :88:: 8_ :88: 8.3: M a M ”:8 :88:: 835858.: 8:93:88: n m :88 :88:: 3:28:88 885 n .: ":8 :88:: 3:285 n .5530 E 52:38: 88 29582.8: .523 5:8 5:58— 8350 n 83 5:8 8.: > a=2—25¢: :_ 2::... on :3 :30... 588—8 2: 82:23.: @8825: 8:8: 8238:8555 8:835 8.882: 1 8:252 88:88:82.: :5 2:22.: 82:8: 2:: :8: 82.. 28:: .88 838.8 ":Moz 888:.8 8888.8 8:88.: :888.: 8888.: 8888.: 8888.: 8888.8 8 8.: 88.8 88:8: 8: 828 8888.8 8:88.: :888.: 8888.: 8888.: 8888.: 8888.8 8 8.: 88.8 82.8: :: 828 8888.8 8:88.: :888.: 8888.: 8888.: 8888.: 8888.8 : 8.: 88.8 88:8: 8: :8888 8888.8 8888.8 8888.: 8888.: 8888.8 8888.: 8888.8 8 8.8 88.8 88: .8: 8 :8888 8888.8 8888.8 8888.: 8888.: 8888.8 8888.: 88:8.8 8 8.8 88.8 88: .8: 8 :8888 8888.8 8888.8 8888.: 8888.: 8888.8 8888.: :88: .8 : 8.8 88.8 88: .8: 8 8888.8 888:.8 8888.: 8888.: 8888.: 8888.: 8888.: 8888.8 8 8.: 88.8 88: .8 8 8888.8 888: .8 8888.: 8888.: 8888.: 8888.: 8888.: :8888 8 8.: 88.8 88:.8 8 8888.8 888: .8 8888.: 8888.: 8888.: 8888.: 8888.: 8888.8 : 8.: 88.8 88:.8 8 888:.8 8888.8 88:8.8 8888.: 8888.: 8888.8 8888.: 8888.8 8 8.8 88.8 88:.8 8 888:.8 8888.8 88:8.8 8888.: 8888.: 8888.8 8888.: 8888.8 8 8.8 88.8 88:.8 8 888:.8 8888.8 88:8.8 8888.: 8888.: 8888.8 8888.: :88: .8 : 8.8 88.8 88:.8 : :55 :55 :53: :55 35 8:53: :53: :53: :88:: :8: :5 :8: H88:: 85: 89:58: :0 MS 858 828,: 2:22.: 28:: 8888 8:8: 585: 8:85.88 8.3.: 88:85 8 .: 8: 8: B : :33!» 3.38: 8:38— mama 221 FEE 88: u 8M .33: 88: u 88: £0.38: 88: u :M . 8 88: u M : 1:888: 23:: M n M "88 :88:: 32:858.: : a :88:: 8.3:: M u M "8:: :25: 83:28:28: :8. 38: 8. :88:: 8.3:: M u M ":8 :88:: :888.:858 £02888: r. 8 :88 :25: 3:28.: 888: u 8 “:8 :23: 38288.8 n 88:—.50 a: soar—88v 88 203.38.80.— .533 was 59:08— 8350 u 83 can 84 > 8:85:54: 5 258 o:— 53 :32... 38:. 2E. :85: 88: n 8M :88: 88: u .M . 8 88: u M :80: 88: n 8M :88: 88: u :M . 8 88: u M ::::88:.8:-B+d\::::88:88.35: n 80 "88oz 888:.8 8888.8 :8888 :888.: 8888.: 8888.8 8888.8 8888.8 8 8.: 88.8 88:.8: 8: 888:.8 8888.8 :8888 :888.: 8888.: 8888.8 8888.8 8888.8 8 8.: 88.8 88:.8: :: 888:.8 8888.8 :8888 :888.: 8888.: 8888.8 8888.8 8888.8 : 8.: 88.8 88:.8: 8: :8888 8888.8 8888.: 8888.: 8888.: 8888.: 8888.8 8888.8 8 8.8 88.8 88:.8: 8 :8888 8888.8 8888.: 8888.: 8888.: 8888.: 8888.8 88:88 8 8.8 88.8 88:.8: 8 :8888 8888.8 8888.: 8888.: 8888.: 8888.: 8888.8 :88:.8 : 8.8 88.8 88:.8: 8 8888.8 888:.8 8888.8 8888.: 8888.: 8888.8 8888.8 8888.8 8 8.: 88.8 88:.8 8 8888.8 888:.8 8888.8 8888.: 8888.: 8888.8 8888.8 :8888 8 8.: 88.8 88:.8 8 8888.8 888:.8 8888.8 8888.: 8888.: 8888.8 8888.8 8888.8 : 8.: 88.8 88:.8 8 888:.8 8888.8 :888.: 8888.: 8888.: 8888.: 8888.8 8888.8 8 8.8 88.8 88:.8 8 888:.8 8888.8 :888.: 8888.: 8888.: 8888.: 8888.8 8888.8 8 8.8 88.8 88:.8 8 888:.8 8888.8 :888.: 8888.: 8888.: 8888.: 8888.8 :88:.8 : 8.8 88.8 88:.8 : 1:343 @5888 :88:.8 88:88:: 48588:: :52: £883 888:: :8: :8: :5: 882:: 28:: 89:98: 80 >28: :5 8288 28:28 >5:: 886 58:3 5882: 08:588 u>< 888.5 8 8 8 :8 B 8: 482:5» 3.3m o 9:83: 58:: 5:?“ 82:28.8 83.858584 rem 88888—98238? 583: E39: I 8.252 88282—895 Am: 0.:—.8895 825m 2.. .8:... =2: 3.5 .5 038,—. 222 D. 3 Tabulated Results Empirical model results, for the three material combinations, are shown below. Table 88. Burst Pressure Model #1 Results — using data from 3 flow index values Rexam 1073B 'I‘yvek/Polxeste minate Pouches rPolz La 2 Rexam 1059B Tyvek/Polyester/Polz Laminate! Pouches Average PI — Single Pl - Mean (%) Regression R Response‘ Response2 Error Coefficients R._.‘ (lbs/inzL , Min”) K = 2.44 p1 = 1.01 0.9654 5.48 p2 = 0.23 0.9612 P +/- 0.5143 P +/- 0.0924 p3 = - 0.03 K = 3.87 p1 = 1.00 0.9704 5.14 p2 = 0.29 0.9670 P +/- 0.4713 P +/- 0.0846 p3 = - 0.09 :lzxek/PET/PE Laminate! Pouches Average PI — Single Data usmg (%) Regression R Responsel Response’ Error Coefficients 35L (lbs/inz) (lbs/i112) K = 7.29 pl = 1.57 p2 = 0.89 0.9880 P +/- 0.3426 P +/- 0.0950 p3 = - 0.1] 0.9834 K = 20.40 pl = 1.78 0.9880 p2 = 1.10 0.9834 P +/- 0.3426 P +/- 0.0950 p3 = - 0.13 NOTES: Average PI — Single Pl — Mean Data using (%) Regression R ResponseI Responsez Error Coefficients 3g (lbs/inz) (lbs/inz) K = 15.45 S pl = 1.21 0.9887 Peak 3.44 p2 = 2.50 0.9844 P +/- 0.3675 P +/- 0.1019 Force p3 = - 2.01 K = 20.89 p1 = 1.14 0.9887 p2 = 2.37 P +/- 0.3675 P +/- 0.1019 = - 1.94 P = Burst Pressure, 8 = Seal Strength, D = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 223 Table 89. Burst Pressure Model #2 Results — using data from 3 flow index values Tolas 1073B-TyveklPET/PE Laminate! Pouches Rexam 1073B Pokester/Pokester Pou ngnate Pouches Average Pl — Single PI - Mean Data using (%) Regression R Responsel Responsez Error Coefficients Rs (lbs/in‘) filter-n”) S K = 1.36 Peak 5.53 p1 = 0.91 0.9624 P +/- 0.5554 P +/- 0.0998 Force p2 = 3.41 0.9597 8 K = 2.10 Average 5.27 pl = 0.88 0.9677 P +/- 0.5080 P +/- 0.0912 Force p2 = 2.67 0.9654 Average PI - Single PI - Mean Data using (%) Regression R ResponseI Respoqu Error Coefficients Rs. abuin‘) (lbs/ill) S K = 1.12 Peak 4.18 p1 = 0.92 0.9830 Force p2 = 5.37 0.9793 P +/- 0.4584 P +/- 0.1271 S K = 1.52 Average 4.33 pl = 0.95 0.9815 P +/- 0.4806 P +/- 0.1333 Force p2 = 5.99 0.9772 Rexam 1059B Tuck/Pollen" Po Laminate) Pouches Average PI — Single PI - Mean Data using (%) Regression R Response‘ Response2 Error Coefficients Rfl (Ibs/in’) (lbs/in‘) s K = 1.82 Peak 3.82 pl = 0.84 0.9866 P +/- 0.4425 p +/- 0.1227 Force p2 = 1.68 0.9834 s K=2o9 Average 3.76 pl = 0.82 0.9872 P +/- 0.4303 p +/- 0.1193 Force 2 = 1.10 0.9844 NOTES: P = Burst Pressure, S = Seal Strength, D = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 224 Table 90. Burst Pressure Model #3 Results -— using data from 3 flow index values Rexam 1073B Polyester/Po ester Po Laminate) Pouches Average PI — Single PI — Mean Data using (%) Regression R Responsel Response2 Error Coefficients 1g (lbs/iuz) (Lbs/if) S K = 1.53 Peak 5.95 pl = 0.74 0.960] P +/- 0.5616 P +/- 0.1009 Force p2 = 0.37 0.9571 S K = 2.17 Average 5.78 pl = 0.74 0.9656 P +/- 0.5220 P +/-0.0938 Force _ p2 = 0.30 0.9628 Tolas 1073B T ek/PET/PE Laminate! Pouches Average PI — Single Data using (%) Regression R Responsel Responsez Error Coeflicients 11$ (Ibslinz) flbslin’L s K = 1.54 Peak 3.32 p1 = 0.68 0.9880 P +/- 0.3732 P +/- 0.1035 Force 92 = 0.17 0.9854 s K = 1.97 3.25 pl = 0.68 0.9879 p2 = o. 19 0.9854 Rexam 1059B :Enek/Polzester Poll Laminate Pouches Average P +/- 0.3732 P +/- 0.1035 PI — Single PI - Mean Data using (%) Regression R Responsel Response2 Error Coefficients Rs. abs/in”) (lbs/inz) S K = 1.25 Peak 3.59 pl = 0.77 0.9882 P +/-- 0.4078 P +/- 0.1131 Force p2 = 1.12 0.9854 8 K = 1.98 Average 3.59 p] = 0.77 0.9882 P +/- 0.4078 P +/- 0.1131 Force 2 = 0.82 0.9854 NOTES: P = Burst Pressure, S = Seal Strength, D = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Singe Response, and Mean Response, respectively Section D.4, below has Tables 91 to 96 with the individual percent error results for burst pressure (P) predicting models. 225 88 8:888 n: 8.8 8.: M so. . 8. :§::.::980:M u 8 :88 35838.: 88 2888. n: 8.8 8... M 8. . .::::8:88: .80-B+-:::::::88: . 0.330: 8: 5:80:88 u 8 :88 8.85858: 88 2888 n: 8.8 8.: M 8. .8. 2988.735: 8.: 28:88:- 8835:8888: .80-B+-8\::8:88:.:0-B+-:00:Q80:M u 8 ::8 358.88.: :::8:88: .8:-33:28:88: . :0-B+-00:8::880 u 8 :88 83:828.: 588 n 8 ::8 3:28: 88.288882 .:..88.8: 8 888.3 .:..88:.8: 8 888.8: .:..88:.:: n .888: .:..88:.8 8 .888: .:..88.8 8 888.8: 2.: 8 e .8 .8 .8 .: 0M8 88:—<3: 0.:—88o...— 888=m 089:5...— uua .353: n 8m 05: .m .505 38.-mum 55 new .3 noun—anew 385 u a 605—28.— " Ova "098.07: 08.0- 8080.8 :88- 8808.8 88.0- 8.8-8.0.8 80.08 838.0 80.88. 8088.0 8888.8 0 8.0 m m: 00.0- 880.8 08.0. 88038 88:0- 3:80.8 0:08 8888.0 0.8.88 8008.0 00:88 0 8.0 m v: 80.8. :0mo.v 00.0 8808.8 88.8. 88808 88.08 0:880 2.88 8088.0 8888.8 : 8.0 m n: 00.0- 8888.8 00.0- 0088.8 5.8- 00028 08.88 0808.0 88.08 8888.0 0888.8 0 8.0 8 8: 88.8 8888.8 88.8 8088.8 00.0 000:8 00.80 0808.0 88.80 8888.0 8880.8 8 8.0 v 88 0:08 8888.8 8.08 0080.8 08.8 000:8 88.80 0808.0 00:0 88888.0 $888.8. : 8.0 8 0: :2- 0880.8 08.0- 380.8 08.0- 0880.8 5.08 88.8-:0 00.88 8000.8 8080.8 0 8.0 n 0 88.8- 0880.8 88.0- 380.8 8.8.0- 0880.:8 88.28 082.0 80.88 8000.8 8088.8 8 8.0 n 0 8.8.8: 0880.8 08.8.: 3880.8 88.8: 0880.8 08.:- wwn:.0 80.00 8000.8 8088.8 8 8.0 m 8 8.0.8- 0808.8 08.8- 0808.8 88.8- 0088.8 88.08 0800.0 80.88 8888.0 0800.8 0 8.0 8 0 88.8- 0808.8 08.8- 0808.8 08.8- 0088.8 0:8 0808.0 80.08. 8888.0 8080.8 8 8.0 8 0 8:8- 0808.:8 :88- 0808.8 88.0 0088.8 80.38 0008.0 00.0:8 8888.0 8808.8 : 8.0 8 8 8.0.8- :800.8 00.8- 8808.8 88.8- 8:08.88 80.88 8080.0 00.88 0080.8 8088.8 0 8.0 8 n 08.0 :800.8 80.8. 8808.8 88.8- 8:08.88 :008 8088.0 0: .00 0080.8 0008.8 8 8.0 8 8 8.8.:8 300.8 80.0- 880828 88.8 8:088 0.8.8.8 8088.0 8:88 0080.8 0808.8 : 8.0 8 8 .828: :888.:0 .828: @530 .828: :888.:: .828: :85}: .8288 :888.:: :888.:: :n: 88.: .8 8.8: .8 8...: .8 :8... .8 :88 .8 .8 8 8 8:8 __ 0:8 .aflhmEH ~88 EutEEm 8:8 :32: EH «8: 73:89:85. 8:8 18:28.85. 88:—:5 8.3.:— 88 am win: - 82:28.— Aouaffifiaq be.— ..33NflEEoMM-H mp0: 545.: 88 88:—80¢ 3232 83:89:80.5 0.:—88.5 888.5 .30 89:88 8:09:08— ouqao>< .80 0.:—ah 226 88 8.8.8. 8: ..8 8... M 8. . 88805808188888? u 8 :88 38.88388 88 8.888. .8 ..8 8.:: M 8. . 8.588: .8V-B+-0\288888.:-3+d: :. 86858 n 8 :88 3:88.88.— 88 8.8.8. .8 ..8 8... M 8. . 8 28:88. SEE 8. 86888808885888:88-810888:883+desz u 8 :8 38:88.88 :88:; 88-81.0888: . 8w-B+-0xn\m8v n 8 :88 8.882888 5.88 n 8 :88 838288... 882.888. 5.88.88 8 .888: 0.888.: 8 888.88 8.888.: 8 .8888 5888.8 8 888.88 5.88.8 8 888.88 a: 8 .8 .8 .8 .8 .8 8M8 88.53: 0.588...— 88885 083095 0.:. .2538 n 8m 0.:. 8m .8005 38.—huh A85 :80 .3 nous—anew 8....— n a 683—2..— " GM.— .8598 00.0 00.0 88.88 i. -- - - _ .0- 80 00.88 8888 .8 8888.8 .0 T 88. 8.8 0088 - 88 8 .8 . 8 .0 2. 88.8 88 88.8- . 0808.8 08.8- .8 . 8.8 . 08 8880 80 8 . .8 00.0- 0808.8 . .8 88.2 . a .8 80. 0 H 8 .8 80.0 0808.8 00.8 8888.8 :88 888.8 88.08 0800.8 0.8 08 88888.8 88:8 888880 .25 88888.8 3:8 88888.8 .858 88888.8 888880 0.8 a .8 88.8 8 88.8 .8 88.8 .8 88.8 .8 .8 8 8.8 ._ noun—.5380 - 8.0082 559.09..— o.=.88._m 88.—am 88.. 89...”.— uuoflom emu-.9848 .88 038.8 227 8 2.3 5 ...M as. M 3. . 2 2380329sz n ,M a». .3595 8 as: s ...M E: M 8. . "EMS”: dééxauz . 3.352 a :9sz u .M i .3235 8 2.3. s a... .2... M 8. . a 28:3. TEE an M65. M88358”: NYE-923: . 3.38:8sz u m i. .8135 26m: NYE-SEQ”: .MWé-éxams u .M ”an 3.28.:- QON u .M E... 12.88.; 23.8%: 5.3an u :33: 6.32.: u ..320 5.32.: u :85 6.38.3 . :3va 5.32. u :83 2.. m a. a. .n .N .M cMM @525 9:33.:— Mcam 83:85 MM: 1384‘ n ...M 15 ..M .565 Barnum Au: .30 .5 nous—«now 82m u a 6932:— n 0v: “mm-M62 23. 080+ 8N- w3MN+ 8+- 8MM+ 8M- 8+N+ 8.3- 82+ MmNm+ a 3.0 3 3M 33- 080+ +3.N- 8MN+ 3+- 8MM+ 8M- 8+N+ 8.3- 08M+ 8M3+ 3 3.0 3 3 2M. 080+ +o.M m3MN+ 8.0- 8MM+ 8N wm+N+ +8.0 08M+ 332+ M 3.0 3 mM 8.3- 83+ 8.3- 82+ 8.8- ~+M0+ 23- 32+ 8.3- N30+ 88+ m 3.0 + 2 8.3 83+ 83 82+ 0N.N >+Mo+ 8.3 32+ 3N N30+ 88.3 3 3.0 + MM 8.8 83+ 3.8 82+ 8.2 88+ +3.NN 32+ 30.2 2.8+ 83.3 M 3.0 + S 8.0- 28+ 03.0 88+ 80 mM2+ 3N.M- 38+ N0+- +NNm.m 88+ 8 3.0 m m 38- 28+ 33. 88+ 33. 22+ 2.»- 38+ 35m- +NNm.m M3+3+ 3 3 0 3 a 8.2 28+ 03+M 88+ +M.3M 22+ +52 38+ 38 +NNm.m 838 M 3.0 n M. 8.0- 833+ No.8- 833+ +N+- 88+ 8.». 28+ 8M2- 2.8+ 88+ m 3.0 N o 33.8- 833+ N38- 833+ 8.3- 88+ 38. 28+ 8.:- Nn8+ 88+ 3 3.0 N m 2.3- 833+ 2.3- 833+ 050- 88+ 03.3- 23N+ No? 88+ +8++ M 3.0 N v +N.N- 038+ 83- 828 8+- 833+ 8.0M- MN3N+ 3+M- 88+ No+n+ a 3.0 M 3 SM 088+ 8N- 88+ 8.0- 833+ 8.3- MN3N+ 3.2. 88+ 083+ 3 3.0 M N 83 038+ 3: 88+ N53 833+ 0N.m- MN3N+ 8.x- 0w8+ 88+ M 3.0 M M .95 $520 Sta Muss: Sta 5530 Sta @530 Stu Mafia: €58 E 0.x: “M £0 .5 3.0 an 3.0 ...M 3: ...M ..M m a GE ._ nu Gov—ES”.— Nx MST—Mme”.— Mt MauEmEm Nu M36982; Ma .3585. 323» 3.8a o «.835 - mono—Sm $35.53 33m 3.833%“??? £385 533— Mo.— aMMEom II 3085M E53995 9:38...— uuuam ..8 52.—n.— Mnoouom ems—95V .Na 03:. 228 8 33.3. 5 n... E... M 8. . .3 23:33.32ng u 3 a... 3.53:5. 8 333.3 5 ..3 E... M 8. . 3583: .N:-B+-:\§~: . 5-35:: .3 ”83:33 n 3 a... .3353...”— 8 33: 5 ..3 E... M 8. . 3 382.2453: 33 H85.353933583:$35383::éééa? u 3 .33. 1553.33 Ennis-3:38”:$-21:ng u 3 .5. 15388.; 633 u 3 5.. 35328.:- 3258383 5.2.2 u :33: 5.33.: a .32: 6.33.: 3. an": 5.de a 33.3 6.3.3 3 32...: 33.. m a. .3. ..., .u .3 933 $533: 23:23 :55 3.35333 :5. :53V u .3 5.. .3 5...: ...,—mum .3: 33o 3.. 353233; 353 u a $3.83 a 933 “mHhOz 32m E 5% -I 36 -- and“ -.a 3.3 ..- wuu33>< - --- 5 -- vWNT 83$ 32. mHNvd 0W2- Q-Nvd 3.9.. $2 .N modu- oSoN vmmnd m o; m on ~09 33% em:- QNYN Ed- N:NV.N «NE- voE-o. ~02- oSoN wmmm.m m o; m an mm; 3va 9.: vad :9: Shin 3.2- vowfim no.2- Smog.- mo?.m H o; m an 2.”- womvd :mw- ovmmN 3&6- Knmd no.2- SHIN madm- omSN NmmmN a o; v 3 ohm womvd mm; oar-N w: Enmd v0.2- :2 “N moi- omSN mafia m o.“ v olnl 8.3 8va £6 ovmmd ova Etc-N cub- 22d $.2- omSN. mmm~.~ H o; v mu 3.: 2 Sam woo 29d 3.3. mvovd Eam- omwo.~ no.3- Sea; cmwmd a o; n en new 33% Ed vad no: mvovd mmd- 030:0. 8.3- 233 mSmN m o 3 n mu 3.: 9m: 2d 2m: 2.: 33d 2.:- ommod mm; T 20o." 2.8M 3 o; n «N 8.:- Q-ooN vim- 3%.” v2”. good :58. EEN Rdm- caved oak-N a o; n 3 av:- mnowd Zn- mmvoN odm- owmod Som- EHN: «Won- owvod onwn~ m o." N on Q;- Q-ood mm:- mmvoN no; good $.3- GHNN vwdm. omvod owned 3 o; u m— ama- amt-N $.0- vSwN film- ovmnd wmgm- oooud oodm. omSfi 33;... m o; 3 3 8&- moshm mod vMomN mod- ovfid wmdm- ooomd mvdm- ooSN moowd m o; _ 2 «ma mound wad vSwN SM ovwnd $.2- eoomd oo.v- ooSN 2.3M _ o; 3 3 323”.— $53: 3253 $53: 3233 $53: 3233 $53: 3233 $53: $53: 3: 3.: .3 3.: .3 ...,: .3 ..3: .3 ...,: .3 .3 3 .3 8.3 ._ nu .32. EH at 33.—ES”.— 5. 33.595— Nu 16:28.2. :3 3339822. 825» ou3oqum3o>< min: - 852:5 335an ram ..Eaubogoih ”Esq—=33— ..8 8.33— I acts—.5350 - £0.82 553—395 0.:—=95 «9:5 .38 32.—H 38.—om 3293. .nm 0.3—ah 229 33 3.33.3. 5 ...3 3:... V3 8. . 33 33.3.3. 5 ...3 3:: v3 8. . .3 33.663333333333333 u 3 2833.3 .3:.B+-:\3833.3 . c-3133: .3 3839333 u 3 33 3333.3 5 ...3 3.... M 8. ..3 38333. 3.33:3: .3 36333. 3- 333333283: .3:.3+:\363: .3:.B+:mezv3 u 3 .3... 3335.33.33 .33. 3335.33.33 .3... 33353.53 33833333313333.339333.333333333: u 3 .33 333838.: 9mm .1. .3 3:3 33339383; 33538383 .3333 3 338.333: 3.... 33333.33 3 .3: 33.. 3 3.... 3 933 A3353: 0.:—=95 39335 3303033395 E33. 153.. n 3m 3333. 3m .30—=3— 3...me A35 .3330 ..c 3323-32—3 8.3..“ n n .0932..— u UM.— 333-573 33.3. 3.3... E 33.3 -. 3.33.33 ..- 3...3m “my... - .- 33...- 88.3 33.3- 383.3 33.3.- 3333.3 33.33. 3333.3 33.3.. 3333.3 833.3 3 33 3 33 33.0 88.3 33.3- 833.3 33.3- 3333.3 33.3. 3333.3 8.33. 3.33.3 2.33.3 3 33 3 33 33... 383.3 33.3 833.3 3.3.. 3333.3 3333 3333.3 33.... 3333.3 3333.3 3 33 3 .33 33.3. 3333.3 33.3- 833.3 3.... 33333 8.33 333.3 33.33 333.3 333.3 3 33 3 3 3.3... 333.3 33.3. 833.3 33.3- 3333.3 33.3. 3333.3 3333 3.3%.. 38.3 3 3.3 3 3. 33.3 3333.3 33.3. 833.3 33.3 3333.3 8.33. 3333.3 33.3. 3%.. 3333.3 3 03 3 3. 33.3- 383.3 8.3 3333.3 33.3- 3333.3 33.3 3333.3 3333 88.3 3.33.. 3 no 3 .3 33.3 83.3 33.3 3333.. 8.3 3333.3 33.3. 3333.3 33.3. 88.3 .33.... 3 no 3 m 33.3 333.3 33.3. 3333.. 3.3.3 3333.. 8... 3333.3 33.3... 88.3 3333.3 3 no 3 3. 33...- 3333... 33.3- 3333.3. 3.3.3.- 3333... 33.3. 3.3.3.3 33.33 3332 3333.3. 3 no 3 n 33.3. 3333 B... 3333 33.3- 33.8... 3.33 3.3.3 3.333 383.3 3.33... 3 no 3 3 33.3. 3333.3 33.3. 3333.3. 3: 333... 8.33 333.3. 33.33 3333.3 33.3.... 3 no 3 3 38333 $53: 33333 $53: .2333 $53: .2333 $53: 32333 $53: $53: 35: 3.3.3 .3 3...: .3 3...: .3 3.3.3 .3 3.33 .3 .3 3 .3 833 3 3.. 3335353 3.. 33353533 3.. 3553533 3.. 333328.33 3.. 3333338.: 85.5 8333 333.2338 835.33 ”3.33-333333333 .338: 3333' I 3.033: 33833—8...— o.==8.3.— 39:5 3.3.. 3.3.3.3”.— 3=oo3om 093.3933 .3 0...:- 230 33 33.3.3 3.3 ..3 3.3: V3 8. . 3. 39.533333333333333 n 3 33.. 3.33.33.33.33 33 3.33.3 333 ..3 3.3.. 33 8. . 3333333333 33-34.33.363: . 33.35333 33 3333333333 u 3 33.. 3333333333 33 33.333 .33 ..3 3:... v3 8. .33 383333-3353 33 38333.3-3333333333338333 33-333363: . 33-3-3333333333333 u 3 333 3333333333 33333333 33-33.333.383: . 33513333333333 u 3 33.. 333328333. 33333 n 3 33.. 333328333 33338383 .3333 3 3333.333 33.31.333.33 3 :33 33.. 3 3:... 3 33333 $35335 0.333895 33.335 .3333...— uua 1333333 u 3.— .33333 .A .30—.5 33.—hum A35 95 .8 3.3333333 82m u A Gas—23m n 6v: "333.3073 33.3 33.3 33.3 33.33 E 33.33 3.33.3833 - -- 333- 3333.3 33.3- 3333.3 33.3- 3333.3 33.3 3333.3 33.3- 3333.3 3333.3 3 33.3 3 33 33.3 3333.3 33.3- 3333.3 33.3 3333.3 33.3 3333.3 33.3 3333.3 3333.3 3 33.3 3 33 333.3 3333.3 33.3 3333.3 33.3 3333.3 33.33 3333.3 33.3 3333.3 3333.3 3 33.3 3 333 33.3- 3333.3 33.3- 3333.3 33.3- 3333.3 33.:- 3333.3 33.33- 3333.3 3333.3 3 33.3 3 3 33.3- 3333.3 33.3- 3333.3 33.3- 3333.3 33.33- 3333.3 3333. 833.3 3333.3 3 3.3 3 3 8.3 3333.3 33.3 3333.3 33.3 3333.3 33.3- 3333.3 33.33- 833.3 3333.3 3 33.3 3 3 8.3- 3333.3 33.3 3333.3 33.3 3333.3 33.33 3333.3 33.33 3333.3 3333.3 3 3.33 3 3 33.3 3333.3 33.3 3333.3 33.3 3333.3 33.33 3333.3 33.33 3333.3 3333.3 3 3.3 3 3 33.3 3333.3 33.3 3333.3 33.3 3333.3 33.33 3333.3 33.33 3333.3 3333.3 3 3.3 3 3 33.3. 3333.3 33.3- 3333.3 33.3- 3333.3 33.3 3333.3 33.3 3333.3 3333.3 3 3.3 3 3 33.3- 3333.3 33.3- 3333.3 33.3- 3333.3 8.3 3333.3 33.3 3333.3 3333.3 3 3.3 3 3 8.3 3333.3 33.3 3333.3 33.3 3333.3 33.33 3333.3 33.3 3333.3 3333.3 3 3.3 3 3 38.3.3 33333333 33:33 333333.333 .2333 33:33.3 32.33 333333333 33:33 3333333 333333333 3333 3.3.3 .3 3.33 .3 33.3 .3 3.3.3 .3 3.3.3 .3 .3 3 .3 833 3. 3 3338333 3.3.3.3 33 3333333233 age 32.—33> 99.—cm unnum>fl=fi= - 32.233333335333334 HmFHmb—oih 5”ch 33.—oh .38 33.—38¢ I 3.282 3338:323— 2—333333 33.333: .8.— ..otH 3.38.3033 093.3923 .333 0.3—3.8 231 NN as: 5 r.— Ea M 8. . a Eééaszzm u m "mu autism NN 0:5 a i E; M o: . NNEEN: .NvéfichNz . 3.3+qu a :vai u m mN}. .3535 NN 2.3 5 a. as M 93 .2 RESTEE a 29$. TdéazaoN: NYBQAEN:défivxemzm u m an Eras”.— AAEN: NYB+§2QNE . 3-3+deva u m “Nu 3:28.; QmN u m at 3:28.: 23.8%: 6.3.: . ..mNé .5 chad a $9.3 0: N E: N 93 €53: 238.5 «9::— 33:5...— EE 1594‘ n ..m was ..m .52: spa—mum An: 95 .3 nous—«now 82m u n fins—cam u 0v: @502 an». N3. E 3.... N3: 2.: anti - .- 9%- SSN 8.... BEN m3- ooNNN _N.N :63 v2 OSNN NEN N 3 N N_ NNN- SSN NNN- ESN 2.0 8N: 2.2 :22 a; 8me voNNN m 3 N : N2. BSN o: ESN a; 8m: 82 :2: 32 OSNN SEN _ 3 N 2 N...N- N:mN VNN- $3 8.? EN EN ENNN NE- 8N3 33 m 3 _ N NE NEN 2.0 NEN 02 SEN K.» 3N: 2.0 oNNnN sonN m 3 N a a; NEN a: $3 2..» SEN 32 SN: N2 owNmN £32 _ 3 _ N 02- NON? 02.. E3 8+- 083 SNN $on 3.2 SN: 03:. o 2 N o 8.0 NON? NS E2. 2: 082. NNNN 33% 3.3 8N: E? N no N m N3 NON? 3N E3 :& 803 $3 $3.“ 3: 8m; 5:. _ no N v 8+- NNNNN 8w- we? c2- 8:1. 3.: 3me 2.2 82% NS: a we _ N. NON- NS? NS. 85. 03 8:1. 3.2 3me 8.: 83a #03 N no _ N 03 NS? m3 NS? NS 8:; 3.8 San SN 82: an: N no N _ Stu :53: Stu $53: Sta ANS}: SE. :53: Sta $53: ANS}: E g ..N g e. g ..N g c G: a. c m a 8: ._ 2.8:. Ea $33.33 $33.28.; x. usage 82.5 3.5,,— :3.“ 53-8525 32:an Sm hngsgfi. mono; Esme“ ..8 3.23— 32.32 E50395 0.:—=9..— «9:5 ..8 hot".— Eouuom «9293‘ .3 93.? 232 NN 0...: 5 3.. 5... M 8. . Na Mgrgzgmvi u .M .9. .3555... NN as: 5 a... E... M 8. . n.EENS NYB+§MENEMYB+ME a :vav. u .M N... .3535 NN 2.3 5 9.. 5: M 8. .5 :93. FEB. a :93. M- 5.3228: NYBEMEN: ...ééxesz u .M E. .3555 AMEN: NYBSXEN: . 5-3+deva u .M ”N... 55.28.: QmN n .M a... .3532? 505633. 5.3.: a ..mNé Ea 52... u amt... 2.. N E: M NM“. £52... 9:52.. Ea. .3585 5: .53V u ...M .5. ..M 5.5M 55»... .5. ..5 s 2.223% 3.... u a 33.25 n uMm "mm—HOZ and chm a3. ceNN cmfiN “4:95. - --- --- -- M31 8ch om.m- @033. Ed. mNmoN 8.3. vamM 3.3. woowM NmEN a 0M N NM owN- Mech mMN- oomwN min- mNmoN v03- vaoM 22;. 83M voNNN m oM N MM Mme MoSN 3.v moooN Mod mNmoN Nm.mN- vamM 3.8. 008M BXN M oM N 3 SN. ooMmN RN- omMmN wmé- ommvN mN.om- mmonM M03- wvooM mmth a 0M M m 2.0 ooMmN Rd omMmN oM.N- ommvN Mv.wN- mmmnM Noam- $8M MwomN m o.. M a $6 ooMmN 3+ oflmN RN ommvN 3.3- «35M mmdM- mvooM owomN M oM M N. mm.m- 33¢ Se- 3%... 3.x- nmwmé MOON- ovoma mNNN- NMNnM 035v a We N e 8.0 .2qu NmM mowmé 3N- Same 3.2- 33.». 8.:- NMNnm mtmé m no N m oN.m M23“ cod 8%..» now 23.1 3? gown mde- NMNZH E...“ M 00 N v no? mMmNMN flaw- wwVNé mo? 8va moNN- 8va 3.3.. 3N?” NNovM. m m.o M n voN- MENV mm.m- mmVNé mnm- oovdv «EN- .835 wN.VN- comma mane n no M N ooh 23+ SN mg?“ 8N ooMNNM. 3.2. New: $22. oaNmN. 82 .v M m.o M M :55 $53.. 5.5 $53.. .25.. $55.. SE. m5}... :5. m5}... $53.. A... 3. a.. 5.. 5. a_.. 3.. a. 3... ...M ... ... a 8... __ N... .83 N... aural Mn .35 En N... 55.285. M... 35.28.? 83.5 3.5,.— wmuho>< win: - nose—Mom 93.—Ed‘— bom ..eMnobomb—oih mane: finale: ..8 3.30m :28: .553—.9:— o.==8..m F=5 .8.— ..otH 58.—om nus—25V 6m 03:. 233 E. Correlation Calculations Linear multiple regression analysis was used with the intent of developing models that predict seal strength (S) from burst pressure (P). The same steps that used when developing models that predict burst pressure (P) from seal strength (S) were followed. It was found that, differently than the burst pressure (P) predicting models, the residual analysis for the transformed data was not satisfactory. For that reason, sample correlation coefficient calculations were performed with the purpose of finding out if the variables (P) and (S) were related. According to Devore, 1995, the sample correlation coefficient (r) is a measure of how strongly related two variables x and y (P and S, respectively) are in a sample. The formula for (r) is as follows: r = [{n 2 KM — (Z xix Z Yi)” [w (n 2 x3 — (2 x3)}* N (n z yfi — (2 you One of the properties of r ids that its value does not depend on which of the two variables under study is labeled as “x” (independent variable) and which is labeled as “y” (dependent variable). Tables 97 and 98, below show the sample correlation coefficient that resulted from the data collected for each of the material combinations under study. 234 Table 97. Sample Correlation Coefficient for Seal Strength (S) Prediction Models Rexam B T Pouches Y r -3.78x10 2.55x10 -0.0486 0.1390 -0.0830 0.3135 r 1.98 x 10 0.3929 0.6431 9.29x10 —l.61 x10 0.0940 0.0940 PD 0.2981 0.2981 1. rpm is the between Spar, 2. mm is the sample correlation coefficient between S.‘mac and the corresponding “X” Table 98. Sample Correlation Coefficient for Burst Pressure (P) Prediction Models Rexam B T Pouches X D r = -0.9380 -0.0486 0 1390 0.9263 0.9445 r = -0.9010 0.3929 0.3929 0.9264 0.9143 w-o-e-<:-e-e~e-< Pouches r = -0.981 1 0.0940 0.0940 0.9792 0.9813 "U'U'UK P = Burst Pressure, S = Seal Strength, D = Plate Separation l. rm = sample correlation coefficient for P and the corresponding “X” with SP“.{ 2. mm = sample correlation coefficient for P and the corresponding “X” with Swag, 235 The “r” results obtained with the collected data show the following: 1. There is no correlation between seal strength (S) and plate separation (D) 2. There is a weak correlation between: a. seal strength (S) and burst pressure (P) b. strength (S) and burst pressure x plate separation (PD) 3. There is a strong correlation between: a. burst pressure (P) and plate separation (D) b. burst pressure (P) and seal strength/plate separation (S/D) These results make sense when looking at the collected data. Table 99 below has a summary of the results for Rexam 1073B Tyvek/Plastic pouches. Table 99. Summarized results for Rexam 1073B Tyvek/plastic pouches Peak Values Package D S PD 0.5 1.48 2.20 1.0 1.48 2.81 0.5 1.58 2.30 1.0 1.58 2.75 0.5 1.47 2.00 1.0 1.47 2.27 0.5 1.61 1.93 1.0 1.61 2.38 0.5 1.59 2.13 1.0 1.59 2.60 l 1 2 2 3 3 4 4 5 5 NOTES: P = Burst Pressure, S = Seal Strength, 1) = Plate Separation The data shown is taken from Table 82 in Appendix VH.D 1. The burst pressure values (P) at each gap are an average of the burst pressure obtained from three flow index values When looking at columns 3 and 4, one can see that S changes very little when PD changes. That explains the weak correlation between S and PD. When looking at columns 5 and 6, it can be seen that P changes significantly with S/D. It is important to 236 notice that the changes in P are mostly due to changes in D rather than due to changes in S. That explains the strong correlation between P and S/D and between P and D. It is important to mention that the weak correlation between S and P that was found with the experimental data is due to the fact that the seal strength of the different packages was very similar. If the seal strength had been significantly different, then its effect on the burst pressure, and vice versa, would have been more noticeable. Similar findings were observed when looking at the data for the other materials under study. For all the reasons explained above it was decided that in order to predict seal strength from burst pressure, plate separation and package dimensions, the empirical models were developed by running a regression analysis to predict (SID) instead of (S). After the prediction model was obtained, S was estimated by multiplying the equation by D on both sides. The results are shown in Chapter 5. 237 F. Seal Strength (S) Empirig! Models Results: r21 Models Seal Strength/Gap, Model #1: (S/D) = K [P/CF]"'[( Lo—1.571D)/D]n[(Wo-1.571D)/D]P3 where or = [{(10+wo.1 . 1421))/(14,+wo.2. 1421)») Seal Strength/Gap, Model #2: (S/D) = Kll’IPIII/CF]P2 where CF = [{(1.o+wo—1.1421))/(10+wo-2.1421))}] Seal Strength/Gap, Model #3: (S/D) = K [P 1P11W/L]P2 F.2 om used in the analysis The data collected for each material combination was used to run a regression analysis in order to calculate the regression coefficients for the three empirical models shown above. Rexam 1073B Tyvek/plastic pouches will have 30 data points to run the regression analysis if the burst data obtained from 3 different flow index values are used. The number of data point for Tolas 10733 and Rexam 1059B Tyvek/plastic pouches is 12. Refer to Tables 100 to 105, below 238 8;». me. u a. 3.3. u... u .M A... N... n .M .55 me. n > Eu... me. u .M A... a... n 5.82. me. n w .83. we. a 5.. 5.6.2.. u... n .M .59 me. n w ASN.5.N.-B+.M.\.EN2...-B+5. n .6 . J. 1M. 5...... Mn .5 .8 .582 . 1.5.. 2...... Mn > .N... .582 .a ..M. a Men. :1... Mn .2 5.. .582 .2055..." m N... .582 3.8.8.... MNE... n m 5.. .582 3.88.... n 8.8.6 5 85.88.. a 85.882 5.53 .5. 5.8.. 8580 u .3 ..5. 0M > 52.0%? :M 2::: 2M :3 :32: 3.... 05. ..Foz 8NeN. 858 88. 530 23.. N83 58. $8.. a no .2 5.... m. 88.5 83.8 ...NNe 530 :80 N83 58. .83 m no mNN 5.... a. 88.5 83.8 Net... 53... :3... N52 58.. RN... . no mNN a... 5 83.. 8.2 $me 8N8... ES 5.... 5.... .82 e o. 3.. “N; N. 8%.. 8.3 NEN 8N8... 53 5.... 5.... as: n o. 3.. 3.... .. 85m 85N New: 880 E... 5... 5.... 8.3 . o. “N. 3.... 5 8N3 88.5 $8.. 880 5.2 55 m 5.... 85.... e no mN. mN; a 8N... 88.5 :8... 88.0 $3... 85.. 55.. .83. m no .3 .Ng a 8N8... 88.5 $2... .83 $3... 85... 5.... £8... . no 3.. 3.... e 8%.. 83.. 8.2 :8... 88... 88.. 88.. 3me e o. mNN .2 e 8%.. 88.. .52 .8... 88.0 88.. 88.. 852 m 0.. RN .2 m 8%.. 8%.. 583 .8... $8... 88.. 88.. 5.3 . 0.. «N5 mNN .. 88... 88.5 8.2. 8.8.. 88.0 SeeN 88.. N85. 8 no «N5 .3 n 8N3 8NeN. 85... e8: 88... 803 88.. 8%... n no mNN .2 N 8N8... 8N2. 5:... 08$ .88... 803 88.. 88... . no 3. mNN . 3.1324313433434335... .8... lei? fl. .5. 9.3 E... 5...: .8: .25 em 8...... £88... 55... ...o 5.53 5.58.. 8.555 MS.— 2...:— m .. .. a B M I 8......» 8.:...— Maomaflvoam 52.5 88...... .5255...— 58 8.858.585 .28.. .55. n ..582 8.8.8... 6. 5.98.2 ...om 2.. .5 .8... a... .8. 0...; 239 8...». a... u a. .83. 8. u .M 56...... 8. u .M .5... 8. u > 3.3. a... u .M A... 8. u .M .8... u... n > £0... 8. u .M A... a... u a. .8... u... a w . a ..M. 23.. M u w 2...... .532 885......“ . 13.. 25.. M n .5 ...N. .532 Bras... .2 3... a ..M. 23.. M u > 3... .532 .853... m .3 52.2.. 9.39:8...— 3. 9:58.... «9::— ofi ”£2... .3 355.... 9.0.3 an... E... «at .3... £0.32 iota—EH .88..N.-B+d.....8.5:3... u ...o 5...... SUNS... u m .N... .532 85.58.... 58.... u m 5.. .532 3.88.... n 88...... a. 858.5. .- 85.8.8. 8......» .3. 5...... 8.85 n .3 .3. u.. > 530...? E .55.... on :3 .52.. 3a.. 2:. .807. 8.... 8...... 8....N .38... ..8... N8... N8... ..8... o o. .N... .N... 8 8.... 8...... 88N .38... ..8... N8... 8.... .....N . o. .N... .N... .N 8...... 8...... .....N .38... ..8... .8... N8... 8....N . o. .N... .N... 8 88.8 88.8 .8... ...8... ..8... ..8... 8.... .8... a ..o .N... .N... .N 88.8 88.8 ...N... ...8... ..8... ..8... 8.... .5... . .... .N... .N... .N 88.8 88.8 8...... .38... ..8... ..8... N8... .8... . ..o .N... .N... .N 8.... 2...... N.N.... 0...... 8...... 8.... 8.... ...,...N a o. .N... .N.... ..N 8.... 8...... 8..NN 3...... 8.... 8.... 8.... .82 . o. .N... .N.... .N 8.... 8.... ..N...N 3...... 8...... 8.... 8.... ...NN . o. .N. .N.... NN 88.5 8.98 8...... .8... 8...... .38.. 8.... 88... o ..o .N... .N.... .N 88.5 88.8 .N...... .8... 8...... 5.8.. 8.... .8... . ..o .N. .N.... ..N 88.5 88.8 .8... .8... 88...... ..NN. 8.... .8... . ..o .N. .N.... 5 8.... 8.... 8.2 8...... 2...... 58.. 58.. 8.2 a o. .N. .N.... 5 8.... 8.... 85.. 8...... 2.... 58.. 58.. 58.. . o. .N. .N.... .. 8.... 8...... N83 .N...... 2...... 58.. 58.. ...NN . o. .N. .N.... 5 8.3 e... .2.... .0: ...3 em 88.. 5:55.. .3... ...G .8...» 598.. 2...... ion .95.— . .. m .. B .. 55% 8......» 3.....— xaomflgfi 5:5 8:3...— Ao.a:_EaA rem .83.:33019 mmg: 533— I 5352 558:3...— Amv ...mno...m ...9m 2.. .8. to... 3.5 .8. 93:. 240 3;: 8. n "x .5 no. u i :89 8. u > £9: 8. u «x 5: 8. n 8x .888: 8. u :8 39¢ 8. a a8 :3 8. u "x .865: 8. u .x .889 8. n w 8 N._ 38. :38. a n > £88. .882 .8383: u a 38. 238 v. u w "88 .882 38.35: m. En :38. :38. M u w 2:8 .882 3:35: m 3 8.2.2.. mats—8.:— Amv 9:38.:— un...... 05 2:23 .3 .3538... 9.2» «mt an. cut 5:. 8.0.32 33.—ESQ :8:ééfiingééiv n no 82.3 0685.: u m 88 .882 3:28.; ~59: n m :8 .882 .3228: 8 58.5 a. 88:88:. a 23:88.2 .523 a... 58.3 3380 n “B a... 8: > 522:? E 158.. on :3 ES... 8.:. 2E. "as: 888.: 85.8 888.8 8:88 2888 28.: 888.8 888.8 8 88 88.8 82.: m: 888.: 888.8 :88 8:88 2888 :8: 8888 888.8 8 8.8 88.8 82.: 3 888.2 888.8 8888.8 8:88 2888 :88: 888.8 8888.8 : 88 88.8 82.: 8: 83.8 8888 888.8 888.8 8888.8 888: 888.: 888.8 8 o: 88.8 2:8 8: 8888.8 8888 E88 8888 88888 888: 888: 8888.8 8 o: 88 2:8 : 8888.8 888.8 888.8 888.8 88888 888.: 888.: 8888.8. : o: 88.8 2:8 8 888.8 888.2 8888.8 888.8 8888.8 83.8 888: 88.8.8 8 8.8 88 2:8 8 888.8 888.2 :83. 8888 8888.8 888.8 888: 8888.8 8 8.8 88.8 828 8 88.8 888.2 88888 888.8 88888 888.8 888.: 888.8 : 88 88.8 88:.8 8 8%: 8888.8 8888 888.8 883.8 888: 888.: 8888.8 8 o: 88.8 88.8 8 83: 8888.8 8888 288.8 88888 888.: 888: 888.8 8 8.: 88.8 83. 8 8%.: 85.8 8888 888.8 883.8 888: 888.: 888.8 : 8.: 88.8 88.8 e 8888 8.88.: 8:88 888 883.8 88.8 888.: 888.8 8 88 88.8 88.8 n 88.8 888.: 8888.8 8888 888.8 88.8 888: 888.8 8 88 88.8 888 a 888.8 888.: 2:8 888 88888 88.8 888.: 888.8 : 8.8 88.8 88.8 _ 44441311844448.3448 8.53.8 3.84.48 48 8 8;» ea: 80?: mo: :3» 88 3:8 2:32.: 38E 8.6 523 58.3: 8.8.58 m>< «8.:—m m .8 ,8 a B a 32:5» 3...:— warn-anal .223.— EEES 8.8.. 3.88.9585 :88: :35. u .332 8.389: a: 58:95 .38 2: ..e no... 35 :8 838.8 241 5.3. 88. u .M .33. 88. u 3.3. 8. n 8M A... 88. u .M .588. 88. u w 8.0:. 8. n 8M A... 88. u .x .58. 88. n > 8M .58.... 88. u .M .58. 8... n w . 8.. ..M. 23.. M - w .88.. .332 .3583... .23.. 21M. Mn .8 8838.32 38.8838. .8. 38. 8.. ..M. 8...... Mn .8 .8... E32 38:338. w .3 :23... ”58:8...— AE 0.:—88...— »...3 05 9:28 .3 $055.... 9......» «mu .2... 3% .38.. 8.0.52 iota—EH .88....8.->»+...>E8:....B+d n .6 8.2.3 908...... n m .88 .232 3.3.88.8 :85... n m u... ...32 3.3.8.: M 888.26 5 95.588. 8.. 29539.9. .523 2... £3.34 83.50 H 83 8...: 8‘— .» 52.2.3. 5 2::... 2— ..3 5.6.: 8.:. 2:. “who... 88. 8 888.8. 888. 8 88888 8888 o 888. . 888.. 888.8 8 8.. 88.: 88.8. 8 888 8 888.8. 88.... 8 88888 8888 8 888 . 888.. .888 8 8 8.. 88.: 88.8. 88 888.8 888.8. 88.8.8 8888.8 8888.8 888.. 888.. 88:. 8 . 8.. 88.: 88.8. 88 888.8 88888 8888... 888.8 8888.8 8.8.8 888.. .888... 8 8.8 88.: 88.8. 88 888.8 888.88 8888... 888.8 88888 8.8.8 888.. 88.8.8 8 8.8 88... 88.8. 88 888.8 888.8 8888... 888.8 8888.. 8.8.8 888.. 888.... . 8.8 88... 88.8. 88 888.8 888.8. 8.88.8 8888 8 8888.8 888.. 888.. 8888.8 8 8.. 88.8 88.8. ..8 888. 8 888 8. 8888. 8 8888 8 8888 o 888 . 888. . 8888.8 8 8.. 88.8 88.8. 88 888 8 888 8. 88. 8 8888.8 8888 8 888 . 888. . 8888.8 . 8.. 88.8 88.8. 88 888 8. 888.88 888.... .8888 8888.8 88.8.8 888.. 88888 8 8.8 88.8 88.8. .8 888.8. 888.88 888.8 .8888 8888.8 88.8.8 888.. 8888.8 8 88 88.8 88.8. 8 888.8. 888.88 88.8 .8888 8888.8 88.8.8 888.. .8888 . 8.8 88.8 88.8. 8. 888.8 888.8 888.8 888 8.88.8 888.8 888.8 888.8 8 8.. 88.8 88.... 8. 888.8 888.8 888. .8 888 8.88.8 8888. 8 888. 8 8.8.8 8 8.. 88.8 88.... 8. 888.8 888.8 888.8 8888 8.888 888 8 888 8 88.8.8 . 8.. 88.8 88.... 8. 4381431343133 434%.. .3... IE. 84.. 8.. e...» e... .89.... ...o: .58 Em 33... 8.53... >3.... 8.6 58.3 585: 8.9.38 m>< «tan 8 .. m 8. 88.834.83.38 33.8% 85...... 3.85.5... Do.— ..oanobogoih mng: Esau”— : 8.352 .8333...— Amv 59.9.5 33 a... ..8 to... 3.5 .8— 938,—. 242 883. 88... 85.8. 88. n 8M .8 88. n .M .388. 88. u 8 8.0... 88. a 8M A... 88. u .M .588. 88. u .8 888.83. 88. u 8M 56...... 88. a .M .58. 88. .18 m 3 8.282.. 958.89:— a. 95880.:— 88885 2: 9:23 3 .8:—88.88.. 9.0.: an.“ E... «a... .8; 8.8—52 .3EEEH ..8.88..8..3+d..888.. c-8857 ...u 22.3 58.9.87 «8 .88 .888... 18.88.88... 888......" 8 ..8 .8882 888.828.: n 839:5 :. 82:888.. 88 20538.8.— .533 E... 5»qu 83.50 H .138. 8...... Mn 8 .888 .888... 8.8.8.88... .8. .88.. :38. M18 ...88 .888: .88....88... .8 .88.. .888. 8.38. M188... .888... .3588... 83 can 8A > 8:52:38 E 1.58 on :3 582—8 Sat 2:. 80:238— Auuafifiaa Hfihfisoé 8333 8.8—oh I "8.80... 8888.8 8888.8. 8888.8 8888.8 8888.8 8888. 8888.. 88.8.8 8 8.. 888.8. 8. 8. 8888.8 8888.8. 8888.8 88888 8888.8 8888. 8888.. 88888 8 8.. 888.8. 8. .. 8888.8 8888.8. 888.8 8888.8 8888.8 8888.. 8888.. 8888.8 . 8.. 888.8. 8. 8. 8888.8. 8888.88 8888.8 8888.8 8888.8 8888.8 8888.. 8888.8 8 8.8 888.8. 8. 8 8888.8. 8888.88 8888.8 8888.8 8888.8 8888.8 8888.. 8888.8 8 8.8 888.8. 8. 8 8888.8. 8888.88 .8888 8888.8 8888.8 8888.8 8888.. 88.8.8 . 8.8 888.8. 8. 8 8888.. 8888.8 8:88 8888.8 8888.8 8888.. 8888.. 8.88.8 8 8.. 8 888... 8 8888.. 8888.8 8888.8 8888.8 8888.8 8888.. 8888.. 8888.8 8 8.. 8 888... 8 8888.. 8888.8 .8888 8888.8 8888.8 8888.. 8888.. 8.88.8 . 8.. 8 888... 8 8888.8 888...8 8888.8 8888.8 8888.8 8888.8 8888.. 8888.8 8 8.8 8 888... 8 8888.8 888...8 8888.8 8888.8 8888.8 8888.8 8888.. 8888.8 8 8.8 8 888... 8 8888.8 888...8 888.8 8888.8 8888.8 8888.8 8888.. 8888.8 . 8.8 8 888... . 8.3 8..... 8.0.8... 80.. 8.85 e8 88.8... 8.8.88... .88.... 888. 8.8.88 8.888.. 8.88.88 8.388 88.5: 8 .. 8 8. B .. 32¢ :38— 58:89: :25 8.888.). 88.88.88... .8. 88889.88 .38 2.. .8. 88.8 38.. .88. 8.888. 243 .883. 88. u 8M .83. 88. u «M .58.... 88. u .M .388. 88. u 8 8.3.8. 88. a .M A... 88. u .M .58. 88. u 8 Eu... 88. u 8M A... 88. u .M .388. 88. u 8 . 8. ..M. 8...... M n .8 588 .8882 8.88.88... . 8. .8... 8...... M n 8 "888 .8882 .8588... .8. .888. N._ .8... 8...... M n .8 8...... .888... 8.8.8.858 m .3 8.33... 8.58.89... 3. 9588...— 8883 85 85.8.2 3 8053.... 9.8..» an». 8.... «at .8:. 8.282 33.—EH .688..8.-B+.....E88.$-81... a ..o 888...8 8.085... n 8 .88 .888... 8.8888888... .88.... n 8 “.8. .8882 83.88.8888 8 838.880 8. 82.8888 8.. 8.8388889. .523 8.... 58:3 33:80 .I. 8.5 8.:. 9.— > 8.882548 a. 8.588 8.. :3 ES... 5.... 8..... "8.88.... 8888.8 8888.8. 8888.8 8888.8 8888.8 .8.8.. .8.8.. 88.8.8 8 8.. 888.8. 8. 8. 8888.8 8888.8. 8888.8 8888.8 8888.8 .8.8.. .8.8.. 8888.8 8 8.. 888.8. 8. .. 8888.8 8888.8. 888.8 8888.8 8888.8 .8.8.. .8.8.. 8888.8 . 8.. 888.8. 8. 8. 8888.8. 8888.88 8888.8 8888.8 8888.8 8888.8 .8.8.. 8888.8 8 8.8 888.8. 8. 8 8888.8. 8888.88 8888.8 8888.8 8888.8 8888.8 .8.8.. 8888.8 8 8.8 888.8. 8. 8 8888.8. 8888.88 .8888 8888.8 8888.8 8888.8 .8.8.. 88.8.8 . 8.8 888.8. 8. 8 8888.. 8888.8 8:88 8888.8 8888.8 8888.. 8888.. 8.88.8 8 8.. 8 888... 8 8888.. 8888.8 8888.8 8888.8 8888.8 8888.. 8888.. 8888.8 8 8.. 8 888... 8 8888.. 8888.8 .8888 8888.8 8888.8 8888.. 8888.. 8.88.8 . 8.. 8 888... 8 8888.8 888...8 8888.8 8888.8 8888.8 8888.8 8888.. 8888.8 8 8.8 8 888... 8 8888.8 888...8 8888.8 8888.8 8888.8 8888.8 8888.. 8888.8 8 8.8 8 888... 8 8888.8 888...8 888.8 8888.8 8888.8 8888.8 8888.. 8888.8 . 8.8 8 888... . 43431343433434.8831 .888. la? 3 848 E83 8..... 88...... ...o: .58 88 88.88 8.5888... 8.8.... 888. 8.8.88 8.888.. 8.88.88 w>< 89:5 8 .. .8 8. B .. A8428.» ougomlouadfluzuoa 5:5 82.2.8.8— AogaEEau— HQHth-oih flag: 8..—on. I 8.0832 559:5...— 6. gnu—.085 .aom 2.. .3.— 0085 3.5 .9: 88.8—ah 244 .883. 88. u 8M .58.... 88. n 8.1.8.08... 88. u ..8 898. 88. u 8 3.8.. 88. n 8.. A... 88. u .M .88. 88. n 8 Eu... 88. n 8M A... 88. n .M .58. 88. n 8 . 8.. .8... 8...... M n 8 2.88 .888... 8.8.8.88... . N._ .8... 8...... M n 8 £88 .888... 8.8.8.88... .8. 38. a .8... :38. M n 8 2.... .888... .3388... m 8.. 83.2.. 8.58:8...— E. 95889:. 88...... 2.. "£8.88 8.. 353.... 9.9.8 an... .2... an... .8.8.. 8.8.3.... iota—EH 588.888.48.858...5.3+... u ...o 888.... 8.085... n 8 "88 .888... 8.8888888... ..88.... u 8 “.8 .888... 18.888888... 8 88.88.... 8. 8888.888 .8 8.88.3888.~ .58..» 888 .8888. .8388“. u 83 888 8. > 52.2548 a. 8.55.. on :3 53:8 38.. 2F ”8.88.... 8888.8 8888.8. 8888.8 8888.8 8888.8 8888.. 8888.. 8888.8 8 8.. 88.8 88.8. 8. 8888.8 8888.8. 8888.8 8888.8 8888.8 8888.. 8888.. 8888.8 8 8.. 88.8 88.8. .. 8888.8 8888.8. 8888.8 8888.8 8888.8 8888.. 8888.. 8888.8 . 8.. 88.8 88.8. 8. 8888.8. 8888.88 288.8 .8888 8888.8 8888.8 8888.. 8888.8 8 8.8 88.8 88.8. 8 8888.8. 8888.88 88.8.8 .8888 8888.8 8888.8 8888.. 88.8.8 8 8.8 88.8 88.8. 8 8888.8. 8888.88 8.88.8 .8888 8888.8 8888.8 8888.. .88..8 . 8.8 88.8 88.8. 8 888.8 8888.8 .8888 8888.8 .8888 8888.. 8888.. 8888.8 8 8.. 88.8 88.8 8 888.8 8888.8 8888.8 8888.8 .8888 8888.. 8888.. .8888 8 8.. 88.8 88.8 8 888.8 8888.8 8888.8 8888.8 .8888 8888.. 8888.. 8888.8 . 8.. 88.8 88.8 8 8888.8 8888.8. 8888.8 8888.8 .8888 8888.8 8888.. 8888.8 8 8.8 88.8 88.8 8 8888.8 8888.8. 8888.8 8888.8 .8888 8888.8 8888.. 8888.8 8 8.8 88.8 88.8 8 8888.8 8888.8. 8888.8 8888.8 .8888 8888.8 8888.. .88..8 . 8.8 88.8 88.8 . 433333334883 .888. la. .3 8.. E83 88.. 5.... 80.. .5» e8 88.8... 8888.8... 8.8... 88.. 8.8.8» 5888. 8.88.88 .13.. .825 8 .. 8. n 8. . 3423.38.82. 888:. 8.888.. .888555 8.8.. 83.88.888.85 ..888: .885. I ..888... 88.88.88... .8. 88888888 .888 8.8 88. 88... a... .88. 8...... 245 $5 a... u "x .E a... u E Si no. u 92: no. u "x .5 a... u .x Si no. u > 59.5 no. u ”x .8): a... n "x .Eu>§ no. u .x A89 a... l w .3 £23.: 9:869:— 95 9:58.:— 23: a... 9:28 .3 12.—«Boa. 9.9.» «mt as «at it“ 2232 13:5...”— NENENVBSEENE. cit: u no 82.3 £855.. u N Na .25: Banzai “RENT um .g .252 3.28:9 N .3930 a 3.5.3 3 23.8%.. .523 E: 593 .520 n .2 EN 21E :2 M n w 3% .232 3:35. .2 1x. :2 Mn > ...NN .082 3:55 EN. 21x3? > .aiouczgcaam 93 v.3 9‘— > 515%? E 358 2. =3 :32: 3.6 2E. umpoz ONNN N ovNN.N_ voNN N oNNN. o NNNN. o 88 o SNN. o NNNN N N N: NNN NNH. 3 N_ NNNN. N NNNN.N_ 35 N 83 o NVNN o 88 0 SN. 0 NNNN N N 3 NNN NNN. 3 : NNNNN SNNS VNNNN oNNN.o NNNNN NoNNN 88.0 NovNN _ 3 NNN NNZL S NNNNS NNNNNN :NNN ENNN NVNNN 82: 88.0 8N: N NN NN.N NNN .3 N ONNN£ ONNNNN NE: 53 NVNNN 8N? SNNN NN_N+ N 3 NNN NNN .3 N NNNN 2 NNNN NN 2N3 ENNN NNNNN 89: 88. 0 EN; _ NN NNN NNSL N ONE. v ovNN. N 6me NNNNN 88.0 VNNNN NNNN o NNNNN N 3 NN.N NN_.N N 8N: ovNNN NNNNN NNNNN 88.0 NNNNN NNNNN SoNN N 3 NNN NNHN N CNN; ovNNN eeNNN NNNNN 88.0 NNNNN NNNNN NNNNN N 3 NNN NNHN a ONNNN ONNNN: N82. oNNNN 8ch N33 NNNNN NNN: N NN NNN NN_ .N N NNNNN NNNNE NNNNN oNNNN 88¢ 3N3 NNNNN NNNNN N NN NNN NN_ .N N NNNNN NNNNS NNNNN 386 885 N33 NNNNN a: .v _ N.o NNN NN_.N N 433133313 agalfle as €19 893 :3 5?: mo: 43» em 85. 2:8: N6; N5 523 59.3 2956 m>< 2.5m N .— m a B a A825» 3....»— 33% .225.— EEES N3.— NSNENSNE “:3: ES»: 1 .332 5:23...— @ £355 3m 2: .e E... 35 .NS 2.3 246 F.3 Tabulated Results Table 106. Seal Strength Model#l Results - using data from 3 flow index values Rexam 1073B Ends/Polyester Pol: Laminate: Pouches Avenge PI - Single Pl - MGII Predicting (%) Regression R Responsel Response2 Em.- Coefficients 11..., (lbs/111‘) (lhs/in’) K = 0.27 Spun/D pl = 0.66 0.9864 4.83 p2 = 0.77 0.9849 (S/D)+/-0.2916 (S/D)+/-0.0523 p3=-032 K = 0.18 Swap/D p1 = 0.71 0.9872 4.37 p2 = 0.75 0.9859 (S/D)+/-0.1791 (SlD)+/-0.0322 p3=-034 Tolas 1073B T ek/PET/PE Laminate! Pouches PI — Single PI — Mean Regression R Responsel Response2 Coefficients 11..., (lhs/inz) (lbs/in’) K = 0.15 pl = 0.17 0.9992 p2 = 1.05 0.9990 (S/D)+/-0.1048 (S/D)+/-0.0291 p3 = - 0.20 K = 0.11 pl = 0.16 0.9993 p2 = 1.04 0.9990 (S/D)+/-0.0649 (S/D)+/-0.0180 p3=-OJ9 Rexam 1059B Tyvek/Po ester/Poly Laminate) Pouches J Avengc PI - Single PI - Mean (%) Regression R Responsel Response2 Em.- Coefficients 11..., (lhs/in’) (lhs/in’) K = 0.03 pl = 0.52 0.9971 2.26 p2 = 3.90 0.9960 (S/D)+/-0. 1647 (S/D)+/-0.0457 p3=-3J7 K = 0.02 p1 = 0.55 0.9967 2.36 p2 = 4.01 0.9955 (Slow-0.1135 (S/D)+/-0.0315 £3 = - 3.29 NOTES: S = Seal Strength, 1) = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3., The percent error were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 247 Table 107. Seal Strength, Model#2 Results — using data from 3 flow index values Rexam 1073B Polyester/Polyester Poy Laminate) Pouches Pl — Single PI — Mean Regression R Responsel Response2 Coefficients R... (lbs/in”) (lbs/inz) K = 0.33 p] = 0.99 0.9754 (S/D)+/-0.4022 (S/D)+/-0.0722 92 = 4.25 0.9737 K=OA9 pl = 1.04 0.9767 (S/D)+/-O.2483 (S/D)+l-0.0446 p2 = 3.50 0.9752 , Tolas 1073B :lneklPET/PE Laminate Pouches Average PI -- Single PI - Mean Predicting (7.) Regression R Responsel Response2 Em, Coefficients in, (Ibs/inz) (lbs/inz) K=095 _ s,_../1) 4.45 pl = 1.04 0.9894 (S/D)+/-0.3671 (S/D)+/-0.1018 p2 = 6.05 0.9869 K = 0.69 1 = 1.01 0.9892 (S/D)+/-0.2533 (S/Dw-00703 2 = 6.55 0.9869 Average Rexam 1059B TneklPolyester Poly Laminate) Pouches PI — Single NOTES: Predicting (%) Regression R Response1 Response2 Em, Coefficients 3..., (lbs/inz) (lbs/inz) K = 0.61 SIN/D 4.30 pl = 1.07 0.9899 (S/D)+/-O.2866 (S/D)+/-0.0795 p2 = 3.43 0.9879 K = 0.37 4.27 (SlD)+/-0.1883 (S/D)+/-0.0522 S = Seal Strength, 1) = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3., The percent error were calculated by multiplying the result by D and then comparing with the actual seal strength (8) 248 Table 108. Seal Strength Model#3 Results — using data from 3 flow index values Rexam 1073B Po ester/Po ester Po Laminate) Pouches _JI—,..fl.!¥____.'z...._..1 Average Pl — Single (7.) Regression R Responsel Response Em.- Coefficients 1a., (lbs/in”) (lbs/inz) K = 0.63 7.16 p1 = 1.25 0.9589 (S/DHI-05152 (S/D)+/-0.0925 p2 = 0.47 0.9560 K = 0.39 6.85 p1 = 1.25 0.9644 (S/D)+/-0.3075 (S/D)+/-0.0552 £2 = 0.38 0.9618 Rexam 10598 T eli/Po PI — Single Regression R Response‘ Response Coefficients R.“ (Ibs/inz) (lbs/inz) K = 055 pl = 1.44 0.9858 (S/D)+/-0.4059 (SlD)+/—0.1126 p2 = 0.25 0.9829 K=038 pl = 1.44 0.9858 (S/D)+/-0.2740 (S/D)+/-0.0760 £2 = 0.27 0.9823 ester Po Laminate Pouches NOTES: S = Seal Strength, D = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3., The percent error were calculated by multiplying the result by D and then comparing with the actual seal strength (S) Avenge PI - Sillgk PI — Mean Predicting (%) Regression R Response1 Response” Em... Coefficients Rd, (lbs/inz) (lbs/in’) K = 0.79 4.63 p] = l .27 0.9885 (S/D)+/-0.3 151 (S/D)+/-0.0874 p2 = 1.50 0.9859 K = 0.44 pl = 1.27 0.9884 (SlDH/-0.2051 (S/D)+/-0.0569 ' £2 = 1.11 0.9859 Section F .4, below has Tables 109 to 114 with the individual percent error results for burst pressure (P) predicting models. 249 can 25 £9... 6:“ £358 303qu Son—u sausage; 208 8.; 3.05 Nomum 8 .603; NN oz: 5 ..N e M so. . 533?? a .M u N NN 2.3. a a... e M 8. ..ch: NN 2...... 5 ..N N. M 8. ..c;Q§NN. Tea ziQEMNN. 73 :5; EON: NYBSXSN: . _0-3+d0.N0\;ae u N “Nu 12.28:... 2382.3. .AcNNNN u ems: 6.3%: u ..NNNV 5.3.: . ..NNNV .AsNNMN u ..NNNV .AeNNN n ..NNé 9: N e .e .N .N ._ cMm 23.8%: .33: £9.95 ...oN MS: 83:35 E: :33, n 5.28 E: .9...st 5...: Beau..— .ouseem u cMm 0 an». BENE— . era n; NM 1 m an». .3238”.— b .65 nM n N 3:. autism .NEN u N i 3.28.: Nona—3.; ~3a:;Ea-; 3.; ..88 Emu—25H mag: E33; .8.— 3:53; umnfinbw; mmd; 00mm; 0;.v Sumo; 0mg. 000nm; 0m.mm- 00m0; 00.;m- wowo; N0wm; 0 m0 m m; mmd; mmmn; m0.m :3; 5:. :05; 0v.mm- mwmo; 00.Nm- ;0h0; N0wm; m m0 m 3 00% Same; vwd- me-W; 00.N Nome; 0N0m- 020.; v06? 0mm0; N0wm; ; m0 m 0; mm; :3; 00.0 0NNO; de VON-0.; N0.mm- mmvo; 09mm- 350.; new; 0 m0 v N; 000;- 0va; 3.0- vvnv; m0.m- 0;mm; ovdv- 0000.0 N;.0m- ;Nw0.0 mew; m m0 v ;; ombN- 00w;.; ooNN- NNVN; Nm.w;- 55:”; 0nd? Omed N55»- mmvwd mmS; ; m0 v 0; ovN mwNm; N00 wmom; 00.0 omom; Slum- 0m00.0 0m. ; m- 2N0; 20v; 0 m0 0 0 00;; :00; mwfi mwoo; ;N.N. N00m; NN.0N- wmmo; SNN- memo; 20¢; m m0 0 w NYE- oobN; mwNT moon; on; ;- 00mm; 00;? w0om.0 00.0w- 0v0m0 20v; ; m0 0 N. 3.0 00:; Nmb 0Vm0; 0m.m :mo; m0.wN- 0mN;.; wN.0N- N02; 03m; 0 m0 N a wow m00.\-.; 3.0 0050.; 5;.m 0N3; 5;.0N- m0N;.; EON- 30;; man; m m0 N m Nm.m 9mm; 0M.N ;0;0.; m; .0- v0hm; wv;m- 0mw0; 00.mN- 0VN;.; mam; ; m0 N v 30;. 00%.; 3.0 ooNo; NN.0 mohm; N0.VN- mN-N; .; 000;- mum;; ovwv; 0 m0 ; n N; .0- mva; 09m 300.; mwN oon; CucN- ;;00.; NmNN- 003.; 0vwv; m m0 ; N 50.0- 9.0;“; mmd mN0v; Nb;- N0mv; N50N- 0Nv0; 00.0N- N000; ovwv; ; m0 ; ; Leta A530 not”; HEB—0 .8:”.— ..g .8:”.— 350 8.:”.— AEBO A530 0: Ae\e 0 £13an A..\.. v .5139 0x. 0 “58.—my Ae\ev NAM-2.9 Ae\ev nanamv .28an m G 03m : lag .Ne 32% 2e .3... E N... .3328: x 12.28.: :33); 533—8...— Eunobm 30m Em he not”.— .nounom cunno>< £00; 03...”. 250 a0... 0.... .00... .20 2009.. .02-0080 Soon conga-6.0:; 80... .00 00.00 800.; 8 .003; N. 2.3. a. N... .0 M 8. . £330.00 0 NM u N N" 0...: N. N... a. M 8. “25: . ._ N. 2.3. a. a. a. M 8. 0258.03-03 00.x;QEEN..-o-. 00:70 ".05 mM H N 0.6.... .00-3008”: . 0.01-00.0.6.0 n N 5. 302800 0.2.32.8. 0.03. N and... 0.02.... N .020 0.3.... N an"... 5.3... N 33.3 5.02 N :30 2.. N a. ... .N .N .. 0M0 0.3.32.3. .0530 50:25 ...oN M3... 8.2.5... E... .2...... u 5.39 E... .0126. .52.. 39..."... $3.9... u 0M0 23.. 3.2.3.... 0 E a .M u N as. .3505... a... 3:35... «A... u N ..., 3.8.85. .0507; 00.0 -- 00.0 -- 2.0 -- 0;.00 -- 00.0.0 -- Hub:- - -- -- - ;0.00 00.0.; 00.0; 0000.; 00.0; 0000.; 9.2. 03.0.; 00;;- 0000.; 0000.; 0 0.; m 00 00.0 00.0.; 00.0 2.0; 3.0 0.00; 00.;0- 02.0.; 0.0;. 0000; 0000.; 0 0.; m 00 00.0 0000.; 0...; 00;0.; 00.; 00;0.; 3.00- 002.; 2.0. 0000.; 0000.; ; 0.; m 00 00.0- 080.; 00.0 0000.; 0.0 0000.; 00....0- 00;0.; 0v.;0- 0000.; 020.; 0 0.; v 00 0.0;- $3.; 004.- 0V00; 00;..- 00V0; 0.00- 0;0;.; 0;.00- 0.0;; 020; 0 0.; v 00 3.2- 0v00; 0.0. 000...; 00.0- 000...; 00.00- 0000.; 0;.00- 000;; 020.; ; 0.; v 00 0;.0- .000; 00.0- 2 ;v.; ;0.0- .00.; 00.00- ;000; 0;..00- 23.; 20...; 0 0.; 0 0.0 00.0- 0;0v; 00.? 0.0.0; 00.? 52.; 00.00- 300.; 0.00- 002.; 20...; 0 0.; 0 00 000;- 0000.; ;0.0- 0000; 00.0- 0000; 00.00- 030.; 00.00- 000;; 20...; ; 0.; 0 00 00.0 3.;0; 00.0 030.; 3.0 0000.; 000;- ;000.; 00.; ;- 0000.; 200.; 0 0.; 0 ;0 00.0 0000.; 00.0 0000.; 00.0 030; .00;- 0000; 00;;- 0000.; 0;00.; 0 0.; 0 00 V0.0 0000.; 00;- 0000.; v0.0- .000; 0v.00- ;000; 000;- .000; 0;00.; ; 0.; 0 0; 00.0 0000.; 00.0 3.0.; 0;... 00.0.; 000;- 0000.; 00.0- 23.; 03v; 0 0.; ; 0; ;0.v 0000.; 0;.0- 0;0v.; 00.0 0.00.; ;0.0;- 0000.; ;0.0- 30...; 05v; 0 0.; ; 0; 0;..- 000...; 2.0- 0000.; 0;.0- 000.; 0.0;. 000;; 00.0- 0000.; 03v; ; 0.; ; 0; s: .N...... S: .530 s: .530 s: .530 s: .530 .530 E A900”.— ..QNoam; 1x. 0H 01.2.9 Ae\e;H 03.2.9 Aft”; 01.2.9 Aflow 02.2.9 .0139 n An; UMQ = a0... .09.... EH «0... 39.-gm at. 3...: EH 0... 330980.:- ;.. E33823. 8:28.; 0.2.5.5.; cm .0200—0&305 500; :3on 3.; 31.8" I, gun-.5050 - .0232 3.8.09.0 50.5.50 =30 Man: .3.— ..ouufl 2.3.3.; 009.25. 4.00; 03:. 251 nu as: s i a. M 8. . ”GEE”: d an as: 5 i d M 8. .a 585. E»: a ”finfigéffiamz «YBSVEQN: . 5-3+ nu 2.3 5 i a. v. 8. . a :dEHaEM u 6% -Béxaaz . 35+)ch Aw £8": dééxamz . :-B+é..§8.c u m "a 3:28.: 2232:: 5.3....— . :35 5.3.: u :33 5.3.: u :35 6.32 n :33 5.3.» u :33 2a m a. .v a .u 4 93 a EM "A89 Eu u Si 58 u m 3% .8235”.— EQ 3:35 3; .3135 i 3.28.; 23.8%.. .32: 59.25 :6 M5..— EEEE E: .253 n 5.19 .2: 5.2.9 .55 SE"... $3.2... u 9: "mm—H02 Nwo numb; wad mega tie ommeg Om.mm- manq— amgm- mono; momma m m.o m m— ch vvmog 5d ammo; wmd meow.“ ov.mm- mwmog mo.Nm- 350.“ momma m md m Va we; ooocg 5v. 7 among ova vaoA ombm- 3204 v0.3“- ammo; Nawma fl md m n— 54- whwmg mmd- $.00; Nm.v :mm: No.9“- mwvoa Oman- £504 Mums; m md v «w mug"- ~mN¢A 5.x- :5!“ mo.T mommé ovdv- ooomd flan- Hmwmd mums; m md v : BORN- 00:.“ omAN- Omwm._ $.07 wmvva owwv- omde N551 mmvwd bums; fl md v. A: 00.0 tow.“ 2.0- vmwv._ v57 omov._ mv.mm- omaod Oman- SNOA 30¢; a m.o n a has nos; :6 wNwm._ NM.N mommg NNdN- wmmoa SEN- 9&0.— oavg m md n w ommT oven; mvNT 000m; .36. vaM._ meg? woowd oodv- ovowd 03v; fl m.o n b 3% mwmog am.m owmog Nw.m- mam.” mm.mm- ommfig waN- N024 man; a md N o mv.v 2mm; cud «Juno.— mo.v- 5:; Sam. «.02; Sdm- mNBA 2mm; m md N m 0N6 ovwm._ no.0- comm; OH .0- mmwva wvgm- ammo; om.wN- ovmfia Emma H m.o N v av.“ Noam; om.m mwom._ mvd ¢0ng No.3”- mbs A mde mug; ovmvg 0 m6 w n mmN- hmvvg 3N v03; mud 3w?— bvhm- :00.“ meN- 03;.— ovwvg m md u N 88. moomg OWN- a9}; ocN- 9“va NFQN- oNvoA ooom- Nmooa Ovaé H m.o — m .3th A53: ..otm Girl—M .8:“.— EEE 59...”.— AEBc .8:”.— AEB—V AEEO A5 Ae\ev =6...»an Ao\ev aQ-awv Ae\ov nfiuoamv Ae\ev .510ng Ae\ev niaoamv .38an ..— G Ulm .— a? .85 En flu 32% g S 3:28.; 5. 3:28.: 35:: @3333:an II :25: guano...— Aunuohm 10m M4”: ..8 3.5— «scuba ems—gt. £8“ 252 an 2.3 s 9.. a. M 8. . a :eEH_:EM u 59 a 2.3: 5 ..a a M 8. . 3:23: S-3+d\§§.:-3+§: an as; 5 3.. a M 8. .a 585. 35: a: 585. 7:23:28: .Nvééxag . 5-3+ ESQ:$45128”:.séérgaa n m “a. 3:28.: 22:92.3. 5.3.2 . :33 5.5.: u :35 émsfi u :35 .52.: u :33 6.3.: u :33 a. m «.13.— ”MM an: autism : EM "A99 3% 3:3...”— MwVEM n 8% 3; 3:35 “an n m E: 3:28.; 23.8%: 33: $9.25 .3 M3: 88:35 E: :53: n gaimv E: .aimv .52: Eaum $3.23 n oMm 85:3 @35an .8 3: .N....Eoflh ant: Enuom .8.— 3.39: 533.550 .. £0.32 5.8:.on 59.9.6 10m fin: he 59:”.— .aoouom «us—93: £2: 03:. umahoz e: 2w Ma... «SN "a..." as: - -. o~.VN NthA ~mNN oovmé NN.V_ Nmmwé OTMT mvaA Nm.:u boom; Noam.“ a 0A m On wMN— mmmhé VN.M~ womb; and mNNbA mwéNu QCVNA Veda- onN.~ Nawmg m oé m mN me NomoA Mod hmhoa GYM Suva; vfifiNu ohm—A m_.VNn mMONA wam.— H CA W QN moN movoé N50 h~NBA OQM moon; ems—N- ooHNA mv. HN- oBWNA Mum—04 a DA V bN “N8- aoavé VO. 7 comm; 55.0 meoA ovdm- QHNM A my KN- thfia Mac; n DA v M” Mo.:- mONvg cow- bfimmé no.7 ofiwmé om.mm. 00504 050*”- hoNHA mmfioé M 0A v mN Nim- movva owgu VMOVA mfim- MVSVA NQSN- fimhog wv.MNu M~VHA wfimvé 0 CA N VN :uNu 0mg»; woé- mthé Mov- ONNVA NMSN- Sumo.— vaNu aomfi A ©~QVA m 0A n MN Mwéu Noam; mow- NNNVA Mad- Nwwmé thN. 035‘“ m©.mN- 09: .— oaavé a 0A n NN wed“ hop; 3% ~mm©.~ mwNu OhmmA mNdT HMmNA hm.:- wwoma wfiwmg a CA N “N QHAZ omvhé m~.v v5.0; 005: mmmmg thfia owwNA mm.:u omamg mammé m CA N ON 09m Fame.“ mud: vaoma M“ .0- wvwvé NVNN- :.NN.~ @067 VNNMA w~wm.~ ~ CA N a“ mhd wmfioé Fwd- :th ~08 fiwwmé 0N.MH- thNA mwN- mTVVA ovwv.~ a CA m N— mbfi Oman.“ #0.“- “00¢; wvb momma H067 OBBNA ~06- VOMVA ovwvé M 0A — b— mwdu 52b»; ems- MNOMA no; hNfimA NvdT hmmfié and- wwmmé ovwva — 0A M 0m Lotu— AEB—V SL.—H A53: 355— A53: SL.—H A53: hot”.— AEE: A53: A5 AAXL agaoamv Ae\ev QQ-onmv Auk; masonmv TX; naaonmv Ae\ov max-oamv «Quenmv h 9 UM..— .— nut Esta—Em— nNt 33.—magma Amt autumn—H Nu influencesh: at 393932;. 253 an» 98 6% J§ 232: $03an 50% cowagomfi 0.58 Sm mhén momma 3 Hound an as: s i a. x 8. . .2325? a i u m 3% Eras".— nu 0:: a a... a M 8. “.255. La a Q n m 3% Eras”.— nu asap 5 ..n a M 8. ..aEEE. 703 55585.73 :53 "65 mm H m a; .3135 £89: dééxfig . séérmioa u m at 3:28.: Nam n m 5. 3:28.: 2382.8. 5.32 u :35 53“.: u :35 6.3.: u :35 6.de u :33 53.5 u :39 2.. m a. .9 .n .a 4 93 23.3%: .2525 5325 :8 gain: 32%; a... .253 a €59 E: .1th .52: 55$. .0333 n 9: umnfioz mos . . . . . . . m 9. mm; . . . move; . . . m . . A . . bl a m o9: mod m 59:”.— ex; .332 2:23..— 5955 ..am MES—m: 5 SE. 2.8:.— ouzoi .3: as: 254 «mu 93 £3 a; £39: 30398 Sons 53.2585 208 8m «v-3. momma 8 “and mu 2.3 5 i a M 8. . £32.:E 9 mM n m 3% Eta—am mu 2...; s ..a a. M 8» ..255. La 9 mM H m 3% 3:35 n" 2.3 a ..g a M 8. {58:353 :éHQEEES :53 web ”M u m 3;. Eta—am ESQ: .Nvééhnnz . :.B+é.§8& n m “a 3:28.: “Nam n m m: 3.28.: 2252.8. 5.32 u :35 6.3.: u :33 5mg: u ..35 5m"; u :39 5.3.» u :33 2.. m a .v .n .u .M UM.— 23338. £53: 59.25 ..am "53?? 2.3.8: .2: .253 n $2.9 2.. $38 5...: Sana $3.8.— » uMm 255 "mm—H62 an.» .-- and i- 36 --- mm.§ --- no.5 --- Huts,“ - 5 5 -- :3 Nova; was man.“ 302 8cm; ~83. 3?: N03. 3m: 32: m o; m an ow.» 02: Ck. EN: 36 mwo: 3.3 Eva; omém 33; move.“ m o; m an SN- 38; 5.0. $8; $6- 3.8; mm: mum: 3.2 «mom; move.“ H o; m an am 38; fine 92: 3.0 $84 $9 cog.“ afimm 0534 300; m o; v 5 2.5- 9.8.0 SN- owwmd 3.7 030.0 2.: an: 32 2A.: 800; m o; v w" and. 33.0 8.0- Hmvmd an- 33.0 3.0 008; no.2 SN: goo.“ _ 0; v ma mmw- Road 3.0- $36 wms- Nwood mod $2: one. 2v: commd o o; m vn as- 300.0 cow- 3.8.0 8.0. $3.0 m2: Smog :2 8m: cowod m o; n ma E..:. 33.0 omd- $36 8.2- 336 8.0 030; 8.2 0002 cowod H o; m an mwd m3: $0 200; SM 28; vmdm Hmong whom $3; $8; a o; n 5 2d mom: 2.0 ago." Sam 33; onN 33; 8.? among 9.8; m o; u an mm.” 32: ovd g8; no.7 Koo; 3.2 Emma 00% in: Sumo; H o; n 3 am; ammo; 3.0 «to; «Wm vaog EBN MSNM in? 23: moo“: m o; M 3 SM «$0; 2.0- 38; and 3.8; 003 chum.“ 05:. 5va 38.— m o; M 5 vow- 33.0 92.. 38.0 $5. 02.vo mg: 53: ~33 «mm: 300; M o; M 3 Sta E3: Btu EB: 35. E3: Stu E3: Sta EB: :53 :5 Ao\ev nAuimv Ae\ev nAuimv Ae\ev ..Auimv Ae\ev nAuimv AR; #939 Auimv m G UNA .— an». .3595— anu Garza—Em a; 13.—REM. Nu 1.3.9.822. S. 39.8.82; mono—Sm 9.2::an Eon Magi—egoih ant: Esau“ ..8 8.53”. 5335.50 . 3252 .3633...“ Enuohm .aom HU§H>< he Sta 2.3.3.— ouauo>< .3: 0.3—ah an 2.3 a ..a a. M 8. . a :dazaam u A93 3% 3:35 a 2.3 s i a M 8. . $2283 .Nvééxaaz . 3&2ch : EM "8% 3": 3:15 2 as: a. a. a M 8. .2 582.“. 35: a 565. 7:32:28: «YBEAEN: . séfiwiu u A98 3: .3235 ERR: 5:51??? . :éficvéxae u m a: 3:28.: mNEE n m ”a 3:285. 202.892 5.3.3 u :35 53.: u :36 .32.: u :35 5.3.: u :33 5&2. u :39 a: m a e .n .u 4 9: 23:89: .33: .355 .3 mafia: 83:35 E: .254: u ii 2.. .139 5...: Eaxm $5.9: n 9.: Smog as.» . . . md mmvo mvnog .H 3.0 v03; 35; . 384 A A Nmmhd .o mod- «mad 0 H m- name; . g 5.0 . 3.2- fl I . HNN- of? $8; a :4 . E. g . maooa mag. mod 3.2 . A _ an . 3.2”.— .SEH not”.— Aé 3: Q; a 9: .332 .333: £9.26 18 mos—m: 3. Sta 2.8:.— ouzoi .3: as: 256 n" 8...: 2. .... a M 8. . a .33....EM u 8.2 n 8......- 2. .... d M 8. . 2.28%. .N..B+d\.8~: . 3-212.... . 22. .8225... 1.9.292 32.8.2.5. nu 8...: a. .2. a M 8. .2 3.8.3. 36. a. 8.8.3. 72.32.59. .N.-...tcxau... . 5-2.222 u 8.2 3... .8222... £62.. .N.-B+-....8~... . 524-2328... n m .2. 3.8.8.: 2.2.82.8 .53. u :3... 2:33.. a :32 .22.... u :35 2:2... u :32 2:3.» u :3... 8.. m a. .v .n .u .. 6M2 2828...: .2...... 52.85 .3 205.2: 88.8... 2... .28..V .- 6:2 2.. .3... .82.. 22...»... 8.3.2... u 6M2 .29. n m ..., 3.8.8.: "2:02 2.... «an S... me". ..- 8... ..- wflzoi - .- 58 8.... 3.2 one”. 2.2 2.2.. «do. 3... an... a... 83.. a o. m 8 2:. .82.. 8.2 .2.... 3.. Re... 22 2.... 8.... a... 8...... m o. m an .3 50.. v... 22... ...o 025.. .N... 22.. 3.2 .8... 83.. . o. m an 8.. S2... 3.. 88.. 3... 2.8.. 3.2 8.... an... 2.8.. 88.. a o. v 2 on..- 28.0 8.0 .20.. .N. 23.. 2.: 22.. 3.2 E... 88.. m o. e W 2.2 .23 8..- RS... 2... :8. .3 88.. 8... $2.. 88.. . o. .. mu 2..- 9.8.0 2...- 380 8...- .2.... S... :8. 3.2 22.. 8.3... a o. n a 2...- 88... o...- Ewo a..- :23 2.2 .25.. R2 82.. 8.3... m o. n ...N ~2- .§.o 8... 2...... $.- 22... .3 2.3.. 8.2 08... 8.3.0 . o. n «N 8.: 5.... 2... 28.. 2....- 023 a... .8... one. 23... 2.8.. a o. a .N 2.: 52.. 2.. 0.8.. 2...- ...o. 8.8 8.... 8.... .8... 98.. m o. a 8 .3 28.. 28 88.. 2....- ..S... 82 E... a... £2. 98.. . o. N 2 a... $8.. a..- 9.23 2... 28.. .3. .3... Rd. 2...... 38.. a o. . 2 3.. 38.. ...N- .83 a... 28.. on... E... 2.... 3.... 38.. m o. . ... 2...- .2...... .3- 88... N3 .20.. 3.2 R2. no... 2...... 38.. . o. . 2 .2.... 2...... .2... 2...... .2... 2...... .2... 2...... .2... 2...... 2...... 2. 2.. .2... 2.. .2... 2.. .2... 2.. .2... 2.. .2... .2... .. n 8... .. a»... .8222... .2. .8225 a... .8222... 2. 3.8.8.: .2 3.8.8.: 8:23.— fliEEaA 3.— ..89 3 E393 ..8 3.30% 5.32.26 . 28.82 8.8.8... 5.85 .8m 85...: 8. .2.... 288.. 8.83.. .2... 8......- 257 an... u... ..N... .2... 22.0... .8...qu .30.... gauche-.2. 80... .8 Each mom... o. 5.0.. v. 8...... a. . .. a. M 8. . 23.3.2... n. 5» . nu 03....- E a .3 Q v— 8.. v. 8..... =. . .. a. M 8. .256... ..o... ...2 .56.... ...02. :2. .28.... $235.29.... ..-B+d.....8..vu . .2... u . .2...-.0... E .. .MI . .2...-.0... .MI . a... .8225 a... .8225 a... .8225 .2. .8.8.85 .2. 8.8.85 2.2.8.8. ...m. u ..2.... .2. ..2.... u ..e 2.. . E... . GM. 2.2.8.8. .2...... 5.82. .8. MS... .8828... E: .28... I .53.... 2.. .93.... .82.. 5...". 8.3.2... u GM. "mayo... 2... mm... v... om... .m... $.83. - -- 0... ...... .2. ...... .... .2... 2....- ..0... .2..- ..... ..2.. . 0.. . .. 8.0- ..2.. 8.. .0... ...0 .2... .5..- .2... 8.... ..2. ...E . 0.. . .. .1- 8...... ....- ..2.. 00..- .2.... .0..- 2.0. ..2..- ..2. ..2.. . o. . c. 0.... 2.... 2... .2.... .... 2.... 0.....- $0.... 2...- 8... ....... . 0.. . . .3. 0...... ...0 8.... o... ...... .2..- 0.... ..2- .2... ..v... m 0.. . . ...- ...... ....- .0... 2... SE. 2...- ...... R...- ...... ....... . 0.. . b .0. 0.... ....- .2.... ...0 ..2.. 8.2.- 2... 0......- .....0 ..2.. . ..0 . w ...0 2.2... .2.... 0...... 2.0 .8... ..2.. .....0 0.....- .....0 ..2.. . ..0 . m ..20- .2.... E...- 0..... ...0- ...2. ..2.- ......0 ..2.- .....0 ..2.. . ..0 . .. .... 2.... .2 .0... .... ....... 2.....- .0... 8....- 2..... ....... . ..0 . .- .... 8..... t... .2... o... ...... 2......- .0:.. 0...- 0...... ....... . ..0 . . ...0.- 8.... 0...- .02... 8.... 2...... ......- ..2.... .2... ...0. .2.... . ..0 . . .85 2...... .25 2...... St... 2...... .25 2...... .25 2...... 2...... 2.. Ae\ov ..anqu Aeov ..anan :X. gawk—WV Ae\ev nguoamv TX; nguonmv 2?:ng h D ugh .— ant—aomhmEH ant 33.-55H nut—«2.: En.— Nt gunoonh 5.103952:- 883. 3.2.5... mfiemfioie 2.3.. 3.5 .2 228.. .33: 5.3.29... 59.2% 13m Man: .3.— ..ouhm .59....— omano>< a... 03:. 258 MN 2.3 ..M ...M a M 8. . NM MM-MMEMMMEM u 8% 3% .3235 «N as: ..M ...M a M 8. . NMMMMEN: .NV-BtMMMMENMVM.MYBSMME .M EM "M93 MMMNMM Mariam ..N «3:. MMM ...M a M 8. .a MQRMMR. M45: NM 585. MscMaERMN: NYBQMMENE . MYBSWMEM u 6% 3:. Marisa ESQ-M .NvééanMN: . MYBfiMMrNMMEe u m MNMM M33285 Nam u m MMMM 3:28.: 2332.3. 5.2 u :3».on MM... $5.: u ..a 2.. N MM... M “Ma 23:98.2 33: amateu- Maom ME: 33MB: 23 :53. u Maia E... 5.2.9 .52: San-M $3.9: .- uMM "$52 an... m3. 3M omen Mn?- ausi - i -- m: 83: 0; $8M No.0 3: $.2- NSNM ENN- MRNM $2 m M: N NM 3.0 E: 3N $3M 2.0- an: £3- «$2 3:. NMaMM “No: m QM N MM 9%. 239M 3:. ooNNM 3M- 03.: No.3- :2: 3.2- NNNMM no: M 3 N 2 m3 $3M SM NE: SN $3M 2.8- $3M 8.:- SN? NNMMNM N. 3 M a MS 83M 00M 88M mNN Nam: MMM-N- 83M 8.:- NNMmM NNNNM m M: M a is. BM: N:- SSM Po $9: 3.3. MMMMNM EN. ”32 8:: M 3 M N :2 v8: MnN- 8M: EN 82: 8..-#- 230 8.3.- :80 “No: a no N o N3- 8v: a:- NRMMM NNN 89: $.8- 886 8.2- 33.0 “Ne: w 3 N m 3M- 02: 03. 53 :N 88M 8.3- 98d 3.?- Nmmg “No: M no N MM 2+ MaaM ”3 83M NS Rx: 3.8. 2:2 8.:- oM-MNM NNVNM a 3 M N N2. $8M N3 393 2.0 $3M exem- MEMM 2.:- 9:3 NNNNM N no M N 8.:- SN“: N2- 3v: m:- 8:: MN?- Nz-oM NM:- ommoM 8:: M 90 M M .55-Mm A53: ..2.—H A53: ..2.—H A53: Mot"..— AEEG ..2.—”.— A53: A53: A5 Ae\ev nauamv AMXMV nanoamv Ao\°v Mud—coamv AMXL QQ-amv Ae\ev .519ng .33an h AH UV?— .- .5232. EM £3833 9:33:85 $12.28.; .225 @553 E3: .28 Me 2...: 20.52 .3523...— Emshm Eom M3: ..8 ..2.—H Eon-Mom amuse-5‘ .3: 03:. 259 “SM 28 JQM 45“ 2308 :63qu Song cognac-«E 0.68 Mom mnén mama 9 Sand VN O—QIH 9: nan Q UH 00a a cum—HdBH-Hmma Q mM H m E as: ..M ...M a. M 8. ..sMnMu: ..N as: ..M ...M a M 8. .5565. Mb? #2585. M-o-M 5.2M EEN: .Nv.3+-§EN¢M . MM-3+-MVM.NM\E.MM n m an». Mariam M. E a ”M u m 8% Mariam “MUM"MQNM .mM H m 8;. Mariam MN». 3388.: Nam u m MMMM 13.88.; M3838. 5.3 u ..mNBMMM .2... MEN-MM N :9 8.. N E: M "Ma 23.8%: .32: $53 .5 mega: 8.295 E... .253 u 6:9 E: 49.9 .82: Main-M $3.2: n wMM 853M Meagan-M HEM-MERE? 9.5: .N...-N Me 338M "mahoz MN... Ne... a: «.9: NMNM was: - .- 38 bmmNA ovfi omomé omN mvag 05.0- omoNA hvd MmmNM :HHNA m 0; N Na 2.0 ”HEN; omN ~NVNA de m3N.— NN.m- mag; 3.7 mam"; HMHNA m CA N = mmfi- 3N“; wofi- hmtg NoN- Em"; no.2- vac; 0N6. mug; ZUNA H CA N .3 09m 000m; v0; vvoNA :N vooN._ MN: snow; owNN comm; moVNA a o; u a mud oooNM on; :mN._ an; mNoNM NhN— owmma mmAN mN—mA mOVNM m 0A _ a oafi- 23M mmfi- 50:." mo.m- MNONA mN.m :wNA afi: wmwmé mOVNA a o.~ m b wHN oomNM mmN- NNEA mud mNNNM mmAN- :mad no.2- :hmd MQNM @ m.o N w 5N6 v03; mmfi- now“; 00.0 meNM VmNN- hamod oodN- wwmmd MMMNM m We N m who- SON; mvé- vow”; 5N6- mmONA ooNN- memd NVAN- mmmmd SUN; _ md N v hmd MacmA mm.w m0¢mA mvN VOBNM New- won—M NON- ova; MOVNA m md — m Om.m mmomug Om.m hmeM ov.N MONNM ooh- 8:; SN. OENA mOVNM m m.o — N mde owe—M EMM- mmmfig mod- 23; owWT mvvoé vaT omwog MovNA g m.o N u Lou-Mn.— AMMME: Mot”.— AEEC .8:”.— AEBc .8:”— AEB—v ..2.—H A53: A53: An: 3: 5:5 g Mai-M g :85 Mi $2.9 g 3:9 5:9 ..M MM 8: __ 3 «NM. 3% l3 Na M33032: fig:- .MoM.o=M 83.8; 598% Mam Mafia: .8 3.5M 2823M 3.83- ..NMM .3:- 260 MN 85.-N ..M ...M a M 8. . N. MEEHMMEM u 53 3»... Matias ..N 2.3 ..M ...M a M 8. . NMMMMEN: NYE-MERE . 0.35:: .M EM «58 3% Marisa ..N 83.:- 5 ...M a. M 8. .3 58:... 35: N. 585. M-éaMMMEN: NYE-92E: . 0-5-vii u 5% 3:. Marisa MMMRMN: $35528: . 0-350356% u m .N... 3.28.: Nam u m E. M85885- :Esaa. 5.2 a $3.30 2:. $3.: u ..c 9:. N E... M UMM 2.2.838 €53: 59.85 M8m mc§m>< 88:8; a... .253. u 5.9 E: 6:9 5...: San-M $8.3M u oMM u$307M NS. an... SM 8.: SNM was: - -- 31. 0m0m._ 0N0 5.ng 0N0- mQONM 05.0- omON.~ Sim MmmNA as.“ m 0; N Ng mmd omMNA mNé ovoNA 8.7 000N._ NN.m- moi; 3.7 mwmfig SUN; m 0; N : :20. 32M 0&7 503M 3.7 NHSM m0.07 :00; 0N6- 052A Hat-"NM H 0; N 0a 00.0 mama NmM aNcNM mmM 0534 2.2 30v; ooNN oONmM mOVNM a 0; a a mN.m 30m.“ 0N._ ommNA oNM oomNM NBNH Oman; maAN MNHmM m0VNA m 0; fl 0 MNN- 002M 0N6- 003A :0- ommNM 0N6 :wN._ m5: wmwma MOVNM M 0; m b 05.0 oHNNa mNN- v3"; 3; VBNNM mmMN- :30 3.07 :500 EN; 0 no N w 2.7 v02; mm.m- N02; mad omNNM Vm.NN- 508.0 00.07 003.0 :uNM m m0 N m v0.7 33; 00.? ENE; 3.0 omNN._ ooNN- $8.0 NTHN- mmmad HMMNM H m0 N v :4. mam; nms Emma vwd- aaNN._ Neh- ootg NON- ovMNM MOVNA 0 m0 u n v0.v vomNM Nms :mma vwd- mmNNM 09m. #0:.“ NMN- OENM m0VNA m m0 _ N 50.:- cmmo._ Nmé- 500M.“ omN- NwONM 0w.m7 mvvog voN7 emwoa MOVNA M m0 — — Mon-Mm— AEEc ..2.—H A530 ..2.—H A520 Mon-MM A530 ..2.:— AEEG A530 95 fix; nAuimv TX; nAu>¢mv AMXMV aAu>amv QXL 3?an QAmimv 4?an h A— UMA .— a»... MSE Em 143.2% a; .85 En N. 33.88.: M... 13:88.: .233 32:53 EFFEEM- was: .25 SM .2...: I .332 5:33...— nMuMMohm 10m HU§H>< .8.— ..otm 38.—om 59.25. in: 03:. 261 an... can an... .2... £30... .8...qu Son-m 8.3.58... 08:. .8 3-2. mom-2. o. Homo-m mu n...fi =. n... a M 8. . £3.25... a “M u m an... .3115... mu 0...: =. a... a. M 3. “2.63. ..E o “M u m 39.12.35". mu 0...: a. .... a M 8. «2.96.3.5... 3.25.93. .-o. 0.5.... 85 “M u m a... .32....5. £8”... .N0-3+d\.8§ . 0-350805% u m .N... 3.8.8.... «A... u m a. .3328..." 2258...... 53.... u :3... .5 rm"... u :33 2.. u .2... . UM. 2332.8. 3.3.0 .355 .3 Ms... 83.3... a... 13...... .- 5.2.9 a... .30 .52.. 55.... $3.“... a 6M. “ma-57. 3... a... 3n .3. an... $.43. - -- 2.0 Sam. 3... 8%.. 86 $8.. ..2. NR... .N..- can. 89.. m o. N N. 2.. m5... ta 5.... a; «a... .N...- as... a..- an. 8:... m o. u .. 2.“. «RM. mi- :2. a..- 8%.. 8.:. NE. ...,..- 8a.. 82... . o. N a. .3 $8.. 8. 3.3.. ..2. a... .3- .8... 8.. 3%.. $8.. a o. . a 2.0- one”. 3...- 3.3.. 2. :8. 8...- So... 2.... $3.. 9.3.. m o. . a ..2- 0...... .3. ma... 2... 3%.. 8.”.- om... NE. 8..... 9.8.. . o. . b .E 3%.. vow Son. ..2. 5n. 2.....- 8:. 03.- 8..... 9A.... a 3 u e 8...- one... a..- 89... 8.. 8...... 8.8- $0... 3.5- 3m... 9...... m 3 a m 2...- 3%.. N3.- 83. an..- .3... 5.3. 38. as... 35.. 89.. . no N a com a... E... 8..... a... SS. 3.:- 88. fl...- wm... 9.8.. a no . n .2 3.2.. a... EN... 3... 8.... 8.2- 28.. 8..-..- amo. 88.. m no . u on..- 88... on. 28.. a..- 8%.. 2.5- $8... .3.- 38. $8.. . m... . . 3:... 2.3.0 3:... .53: .2... .53: 3:... 3...... .2.... .53: 33.0 ..5 Ae\ev mack—WV TX; QQ-onmv AR; nQ-oamv Ae\ev QAM-oamv Ao\ov aaaonmv uQ-onmv h n— UVMA— : unis... a... 523.3% «.33... Em. a. 3.8.8.: .3. 3.8.8.3 8:28.. 05.4.5.5 ram .89 .2...—Ruin. man..— .523— ..8 8.39: I £032 559:8...— gaunoaum .aom in: ..8 ..2.—”.— Hookah own-.95. in: 03:. 262 m. 0...... a. .... a. v. 8. . a .35....EV. u .va 3...... .333... mu 0...... a. .... a v. 8. . agaidééhnuva54.1%.: .. EV. ".va 3% Erie“. nu 0...... a. 3.. a. V. 8. .a 58.3..-.6. u. 58.... 3:358“:.N.-...fiEEN:..Véfioiv. n .va 3... 32...... £6”: «YBEEQN: . 3-3+dr3xna u m a... 3.3.8.... an... n m a. 3:28.... 25.8.8. 5.3.... a an"... E... can... u $.53 9... a E... . 9... 2958...... .2...... 59.25 ..am .3... 33.6... a... .253. u 21%. 2... iii. 5.... 5...... $3.2... n 3... .352 8... 8... on." 8.3 an... Hub: - -- 8.0 2mm.“ was aux.” $6 wag; ans- NmNmA vmfi. ohwm. 9.9.; o 0.. N N— mvé whova 3% 33.. de- 3N... .Nd- 30mg wad- Nmomg ova... m o. N = $6.- wag”.— an. 7 gov; N05- mg»: 0‘2- NSN. Sq. _ T mONNA own... y o. N @— voh wmfimg ooN HomNA VmN SON.“ 36. “no". ow; momma oven; 0 o. u a cod 0:”. Inc. OmmNA :4 mwhN. 8.x- 5N2.“ and- SmNg ovwm. m 0; m a no..- mama VG? 32.. 2.7 MQVNA moNT ON:.H Nfiw- Mme. ovoN. H 0.. u b N50 mom." wad oven.“ $1. $9»; 003- not. 092- mom... 9.9.. o m o N a mad. EN»... mm..- viva Mm; wmm... noNN- eve... VNAN- vamffi 9.va n no N m mde mmwNA hmd- oaaug MBN- ”van.“ vm.wN- vomo; mNBN- mmvoa ova... a m.o N v mmd mam.“ aim mem. OVA- now”. 8.3- 03.0.. 32:- 0m:.H OVONA a m.o m n moN N50”. owfi 5N3: 2N- mom”. 00.2. 030. No.2- vmmoa ovoNA m md — N mN.m.. 053,— awN- thNA end- one. SAN. vomod 3.2- mNmoA ova._ ~ no u — Sta A53: 3...”.— AEB= Sta A53: hr...”— Afibc Sta A53: 3.3: A... Ao\ev 313nm. Ae\ev aQ-onmv fix; max-2.9 Ao\cv 26.-2.9 Ae\ov nQ-oamv aaaoamv m G Uvmm : .6. :3... Eu fig 3% a. 3:28.: 3. Bags 8:28.— A. .2..an be.— ..89 .a_o.—\._o>.~h mama. E39: .8.— £3o~ I , 2232 .8523... 59.9.5 :5 v3.9— ..8 Sta ...3..o.— swabs. £3. 03:. 263 mN ....5 5 .... a. v. 8. ..2.Q....R..-OB :8585. .-o. :5. an... v.8 an... .3... £25... .8...an .20.... 5.388.... So... 8.. EH? mom“... 0. .5qu mN 8...... 5 3.. a v. 8. . 53.3.5... 5 .v. u m :3... .8255”. mN 0...... 5 3.. a. v. 8. “2.654.... a .v. u m 3N... .85.... .. .0... A... u m a... 3.5.5.. .289. .N.-B+d\....N: . 3-35.558... u m .N... 55.28.... NR... n m ..., 3.8.8.... 5.5.888 5.3.... u .N... a... £3... u .38. 8.. N .2... . 9... 2.5.8.8. 55...... 5.85 .8... $3.83. 88.8... ...a .38.. a 5rd. .5. 456. 5.5. 5...“... 8.3.2... u 9... ago... 8... mm... 5.... 8.8 2.8 was»... - i -. 8.0 $8... 8... .08... .3 33... SN. NmN... 2.2. on... 88.0 a o. N N. 8.. 5.8... :N 23... N... 33... a... as... .3... NS... 88.0 m o. N .. 9..- was... ..2- 82... 8..- 28... :8. NN.N.. .3. 82.. 88... . o. N c. ...,. 33... EN 83... ON... 3...... .N.... .3... a... .95.. .N...... a o. . N. .N...- 8...... 3...- SN”... 8.. 8...... a... .N.... 8.0. ...mN. .N...... m o. . a S..- as... 2...- 033 EN. .2.... 8... ON... 8..... .8... .N...... . o. . . N3 N8... 8.. .N...... .3. $8.. 8.2 8.... NoNN 82.. 88.0 a no N o 2...- $de .0..- ma... SN N33 ..2.. $0... 0....N 3N... 88... n no N n 8...- 8...... .N...- 8...... .N...- 2%... .8... .58.. IN. .N...... 88.0 . no N v 9... NE... .3 2...... on... 83... N28 88.. No.3. on... .N...... a no . N N... 88... 8... .33... .NN 33.0 ...,.N 28.. SN. 2.8.. .N...... w W... . N 8...- .83 .N..- 28.0 .NN- .N...... .3. $8... 33 .N.... .N...... . no . . .8... .53.. .8... .53.. .8... .53.. .8... .53.. .8... .53.. .53.. .5. Aokb nAuimv Ao\ov nag-WV TX; ..Auimv TX; nAm>umv Ao\ev ..Agamv Animv K G OMA— : [.33 .N... 58%... a... .483 N... 3.8.8.... .5 55.88.: nogozom A......._...a‘— ...A .8» a 5.30% .8 3:33 5252 5.6.3.... 522% 1.8 Ragga. .8. ..2.“.— ...3.o.— 39.9.3. .3... 03:. 264 mN 8...: 5 .3 a V. 8. . a. 530.37.... u a... 3.... .8535... 3 8.3.9 5 .3 a v. 8. . 3.269. .N.-B+0...QN:..V-B+d.\.. .. Ev. "83. EN... .8335... mN 8...: 5 .3 a. v. 8. .... 8.6.... 3.0. N. 58.... 30.3.2.8... .N.-B+-0\.EN: . 0-35.0»... u 83. 3... .8535... ...SN... .N0.>.+-0..EN... . 0-;-00.8.8.0 u m .N... 3.8.8.: N3... u m 2.. 3.8.8.: 3.2.8.... .52.: . .32.. E... ...mN... . .35. 9:. N a... . 9... 3.2.82.8. 35...... 3.9.83 .80 .5355... 88.8... E... .55... n .050. E... .330. .85.. 35...". $3.2... n 9... .mHH-OZ we... --- nu... -.- on." --- 8.8 .: 3.3. --- mun-.83.. - --- E -- 500 $00.0 00.0 5.000 00... 00.0.0 0.va «mm: o. 0.. 0000.. 0000.0 0 0.. n N. 00... 02-00 mm... 3500 00.. 00000 00.00 0.00.. 2.0.. «no: 8000 m 0.. N 2 mm...- 0030 00¢ 0000.0 and- 300.0 3.00 «0.0.. 3.3 00.0.. 800.0 . 0.. u 0. 00... $80 00.. 003.0 00.... .mww.0 00.0.. .00... 00.3 0000.. $80 0 0.. . 0 v50 0000.0 .4... 33.0 3N 0Nmm0 00.00 Re... 00.00 3.3.. $80 m 0.. _ w .00- 000.20 S .0- 203.0 00.0- 3.000 0m.mm 0N. ... 00.3. 000. .. van-m0 . 0.. . b 3.0 9.000 00.0 .0000 3.0 0.000 00.2 00... .. 8.3 $0. .. 0000.0 0 0.0 u c 00.0- 0.800 Eam- 2-000 can .0000 3...: 000... 0.10 .00. .. 0000.0 0 0.0 N m 3.0.- 300.0 00.0.- 0.00.0 am... 00.00 00.0 0000.. 3.0. 09.0.. 88.0 . 00 u v 0:. 23.0 $0 0800 .00 30.8.0 00.0N 03-0.. «0.: on. ... 008.0 0 m0 . 0 Sum 0080 no.0 N050 R0- 0000.0 3.8 0.00.. 8.3 0000.. 0000.0 m 00 u n 0. .m- 000.20 0:.- 00060 E .v- 0850 2.0. $000 v0.00 300.. 008.0 . m0 . . .2... .53.. .2... .53.. ..Em .530 .2... .53.. .2... .53.. .53.. .5. Afib ..Am.=mv Ae\ev 0Au>umv A93; 0Aa>uwv Ae\ov £0.va Ae\ov 0Au>amv «Auimv h A— Qv—h .— gen. 33% lg N... 358.835 .3 35.8%; 85:...— A............... 3.03 .o....»_om3_o>m.—- m0m0_ E53“ .8 3:53.. I. 3.2.02 5.8.69..— 5uaohm ...om HU§H>< .8.— ..o...H 2.09:..— 09.93. .3: 03:. 265 . Burst Pm u and Seal Stren S Em irical Model Results -usin urst test data obtaing flow index =5 In this case, the regression analysis was run with the results obtained using a flow index value of 5. This analysis was performed only for Rexam 1073B Tyvek/Plastic pouches. See Tables 115 to 120 for results. The reason for this is because in the other two materials the number of data points to run the analysis, when using only observations from flow index 5, was too small. For Rexam1073B Tyvek/plastic pouches the number of data points when using the results obtained with a flow index of 5 ile (observations 2, 5, 8, ll, 14, 17, 20, 23, 26 and 29, in Tables 82 & 83 for burst pressure prediction models and 91 & 92 for seal strength prediction models). For Tolas 1073B and Rexam 1059 B Tyvek/plastic pouches the number of data point is 4 (observations 2, 5, 8, and 11, in Tables 84 to 87 for burst pressure prediction models and 93 to 96 for seal strength prediction models). Four data points is not enough data to run the regression analysis for the three models. When running a regression analysis for model #1 with 4 data points, the mean square error (MSE) and the F statistic cannot be calculated. MSE = (SSE)/Error DF; MSE = SSE/O where; SSE = Error sum of squares and DF = degrees of freedom Regression DF = (number of regression coefficient — 1) Total DF = (total number of observations — 1) Error DF = Total DF — Regression DF Model #1, with n= 4, then; Regression DF = 4-1 = 3 Total DF = 4-1 = 3 ErrorDF=3—3=0 266 G.l Tabulated Results Empirical model results, for the three material combinations, are shown below. Table 115. Burst Pressure Model #1 Results — using data from flow index = 5 Rexam (1073B Tyvek/Polyester Poly Laminate) Pouches Average PI - Single PI — Mean Data using (%) Regression R ResponseI Response2 Error Coefficifl R... (lbs/m2) (lbs/ml) K = 2.69 S p1 = 1.08 0.9845 Peak 3.92 p2 = 0.32 0.9767 P +/— 0.427] P +/- 0.1289 Force 93 = - 0.08 K = 4.48 8 p1 = 1.08 0.9909 Average 3.04 p2 = 0.39 0.9864 P +/- 0.2966 P +/- 0.0894 Force p3 = - 0.15 Table 116. Burst Pressure Model #2 Results — using data from flow index = 5 Rexam (1073B Polyester/Polyester Poly Laminate! Pouches Average PI — Single PI — Mean Data using (%) Regression R Responsel Response2 Error Coefficients RSI—413mm) (lbs/inz) S K = 1.33 Peak 4.33 p1 = 0.95 0.9821 P +/- 0.4954 P +/- 0.1494 Force £2 = 3.59 0.9772 S K = 2.09 Average 3.51 pl = 0.91 0.9882 P +/- 0.3879 P +/- 0.1170 Force p2 = 2.82 0.9849 Table 117. Burst Pressure Model #3 Results - using data from flow index = 5 Rexam (1073B ngester/Polyester Poly Laminate) Pouches Average Pl — Single Pl — Mean Data using (%) Regression R Responsel Response2 Error Coefficients 11..j (lbs/inz) (Ibs/inz) S K = 1.53 Peak 5.47 p1 = 0.76 0.9764 P +/- 0.5553 P +/- 0.1674 Force p2 = 0.37 0.9695 S K = 2.19 Average 477 pl : 0.77 0.9831 P +/- 0.4657 P +/-0.1404 Force p2 = 0.30 0.9783 NOTES: P = Burst Pressure, S = Seal Strength, D = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 267 Table 118. Seal Strength Model#l Results— using data from flow index = 5 Rexam 1073B Tyvek/P52! ester Poly Laminate) Pouches Average P1 " Single P1 " Mean Predicting (%) Regression R Response1 Response2 Em, Coefficients R.“ (lbs/inz) (Ibuin’) K = 0.32 w p1 = 0.55 0.9931 3.64 p2 = 0.77 0.9894 (S/D)+/-0.2488 (S/D)+/-0.0750 p3=-021 K = 0.22 Sump/D p1 = 0.84 0.9955 2.56 p2 = 0.51 0.9935 (S/D)+/-0. 1099 (S/D)+/-0.0331 o 3 = - 0.21 Table 119. Seal Strength Model#2 Results — using data from flow index = 5 Rexam 1073B Po ester/Polyester Poly Laminate Pouches Avenge PI - Single PI - Mean Predicting (%) Regression R ResponseI Response2 Em, Coefficients a... (lbdin’) (lbs/in’) K = 0.79 8,.de 4.04 p] = 1.01 0.9882 (S/D)+/-0.3586 (S/Dfil-0JO81 p2 = 4.03 0.9849 K = 0.47 Swap/D 3.78 p] = 1.06 0.9914 (SlD)+/-0.1873 (SlD)+/—0.0565 .2 = 3.26 0.9889 Table 120. Seal Strength Model#3 Results — using data from flow index = 5 Rexam 1073B Polyester/Polyester Poly Laminate) Pouches NOTES: S = Seal Strength, D = gap, and R = Correlation Coefficient 1.,2. Prediction Interval (PI) for Single Response, and Mean Response, respectively 3., The percent error were calculated by multiplying the result by D and then comparing with the actual seal strength (S) 268 P1 — Single PI — Mean Regression R Responsel Responsez Coefficients R... (lbs/inz) (lbs/inz) K = 0.61 pl = 1.25 0.9757 (S/D)+/-O.4972 (S/D)+/-0. 1499 92 = 0.47 0.9685 K = 0.38 (S/D)+/-0.2654 (S/D)+/-0.0800 APPENDIX VIII LOCATION OF FAILURE VS LOCATION OF MINIMUM SEAL STRENGTH 269 APPENDIX VIII CONTENTS: A. BURST TEST Location of Failure for I. II. III. Uncoated 1073B Tflek/Polyester/Poly Laminate — Rexam Uncoated 1073B TfleldPET/PE Laminate — Tolas Uncoated 1059B Tyyek/PougsterlPoly Laminate — Ru B. PEEL TEST Location of Minimum Seal Strength for I. II. III. Ungated 1073B TfleldPolyesterlPoly Laminate — Rexam Uncoated 1073Bj1nek/PET/PE Lamm‘ te - Tolas Uncoat 1059B T o ester/Po Laminate — Rexam 270 Page 271 273 274 Page 275 277 278 Tables 12] to 123 have a summary of the location of failure for each of the package sizes and materials combinations that were burst tested. Tables 124 to 126 show the location at which the minimum peak and average peel strength values were found on each of the package sizes and materials combinations that were peel tested. The data for individual observations can be found in Appendix V. Refer to Figure 14, Chapter 4 for pouch locations. BURST TEST: Table 121. Location of Failure for Rexam’s 1073B Tyvek/Polyester Poly Laminate Burst Test at Flow = 1 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) glut of 10) 3.25” X 7.25”) 1 5 3 1 5.25” X 9.125”) 1 3 3 3 (7.25” X 11.125”) 4 5 0 1 9.25” X 14.125”) 0 7 3 0 (11.25” X 15.25”) 1 3 4 Z Burst Test at Flow = 5 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E gm of 10) (out of 10) (out of 10) (out of 10) (3.25” X 7.25”) 0 5 2 3 (5.25” X 9.125”) 1 5 0 4 (7.25” x 11.125”) 2 6 0 2 9.25” X 14.125”) 0 4 6 0 (11.25” X 15.25”) 2 2 6 O Burst Test at Flow = 9 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E Qut of 10) (flof 10) “mt of 10) (out of 10) (3.25” X 7.25”) 2 4 3 l (5.25” X 9.125”) 2 5 2 l Q15” X 11.125”) 4 4 0 2 (9.25” X 14.125”) 0 8 2 0 (11.25” X 15.25”) 2 6 2 0 271 Table 121. Location of Failure for Rexam’s 1073B Tyvek/Polyester Poly Laminate -— Continuation Burst Test at Flow = I and Plate Separation = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (3.25” X 7.25”) 2 3 1 4 (5.25” X 9.125”) 1 3 5 l (7.25” X 11.125”) 2 2 5 l (9.25” X 14.125”) 0 5 5 0 (11.25” X 15.25”) 4 4 2 0 Burst Test at Flow = 5 and Plate Separation = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E out of 10) (out of 10) (out of 10) (out of 10) (3.25” X 7.25”) l 4 2 3 5.25” X 9.125”) 0 3 3 4 (7.25” X 11.125”) 0 3 3 4 9.25” X 14.125”) 0 5 5 0 (11.25” X 15.25”) 0 4 6 0 Burst Test at Flow = 9 and Plate Separation = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) gm of 10) glut of 10) (3.25” X 7.25”L 3 2 2 3 (5.25” X 9.125”) 3 2 0 (7.25” X 11.125”) 0 5 3 2 (9.25” X 14.125”) 0 4 6 0 (11.25” X 15.25”) 0 5 l 4 272 Table 122. Location of Failure for Tolas 1073B Tyvek/PET/PE Laminate Burst Test at Flow = 1 and Phte Sepiration = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10L (out of 10) (3” x 11.375”) 0 6 4 0 10.625” x 15”) 0 9 1 0 - Burst Test at Flow = 5 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (3” x 11.375”) 0 6 4 0 (10.625” x 15”) 0 8 2 0 Burst Test at Flow = 9 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (3” x 11.375”) 0 7 3 0 10.625” x 15”) 0 8 2 0 Burst Test at Flow = l and Plate Sepgration = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (3” x 11.375”) 0 4 6 0 (10.625” x 15”) 0 10 0 0 — Burst Test at Flow = 5 and Plate ration = 1.0”Se Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (3” x 1 1.375”) 0 6 4 0 10.625” x 15”) 0 7 3 0 Burst Test at Flow = 9 and Plate Separation = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (3” x 11.375”) 0 7 3 0 10.625” x 15” 0 8 2 0 273 Table 123. Location of Failure for Rexam’s 1059B Tyvek/Polyester Poly Laminate Burst Test at Flow = l and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (5.75” x 9.125”) 5 3 0 2 (9.25” x 14.125”) 3 6 l 0 Burst Test at Flow = 5 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E Jout of 10) (out of 10) (out of 10) (out of 10) (5.75” x 9.125”) 4 4 0 2 9.25” x 14.125”) 2 6 1 1 Burst Test at Flow = 9 and Plate Separation = 0.50” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) 5.75” x 9.125”) 1 2 0 7 (9.25” x 14.125”) 1 6 2 l Burst Test at Flow = 1 and Plate Separation = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) jut of 10) (out of 10) (out of 10) 5.75” x 9.125”) 1 3 l 5 (9.25” x 14.125”) 5 3 0 2 Burst Test at Flow = 5 and Plate Ssparation = 1.0”Se — _ Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) (5.75” x 9.125”) 5 2 0 3 (9.25” x 14.125”) __L 5 0 II 4 Burst Test at Flow = 9 and Plate Sepgation = 1.0” Number of Number of Number of Number of Package Size Failures at Failures at Failures at Failures at Location A Location B Location D Location E (out of 10) (out of 10) Qut of 10) (out of 10) (5.75” x 9.125”L 4 l 0 5 9.25” x 14.12 5 l 0 4 274 PEEL TEST: Table 124. Location of Minimum Seal Strength for Rexam 1073B Tyvek/Polyester Poly Laminate Peel Test at Crosshead Speed = 10 ipm and Grip Separation = 1.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E («at of 10) (put of 10) (out of 10) (put of 10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg (3.25” X 7.25”) l 0 3 3 2 4 4 3 (5.25” X 9.125”) 4 6 0 0 2 0 4 4 7.25” X 11.125”) 5 5 2 2 0 0 3 3 (9.25” X 14.125”) 2 1 1 1 4 3 3 5 11.25” X 15.25”) 0 3 5 l 2 2 3 4 Peel Test at Crosshead Speed = 12 ipm and Grip Separation = 1.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E (put of 10) (out of 10) out of 10) (put of 10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg (3.25” X 7.25”) 0 0 5 6 3 2 2 2 5.25” X 9.125”) 6 8 2 1 l l 1 0 (7.25” X 11.125”) 7 6 l l 1 1 1 2 (9.25” X 14.125”) 1 3 3 2 3 2 3 3 (11.25” X 15.25”) 3 4 l 0 3 2 3 4 275 Table 124. Location of Minimum Seal Strength for Rexam 1073B Tyvek/Polyester Poly Laminate — Continuation Peel Test at Crosshead Speed = 10 ipm and Grip Separation = 2.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E (out of 10) out of 10) out of 10) (out of 10) Packge Size Peak Avg Peak Avg Peak Avg Peak Avg (3.25” X 7.25”) 1 1 3 3 3 5 3 l 5.25” X 9.125”) 3 3 O 0 5 5 2 2 (7.25” X 11.125”) 4 6 2 1 1 l 3 2 9.25” X 14.125”) 2 3 2 4 2 3 3 (11.25” X 15.25”) 2 4 3 2 3 2 2 2 Peel Test at Crosshead Speed = 12 ipm and Grip Separation = 2.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E (out of 10) (out of 10L out of 10) (out of 10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg 3.25” X 7.25”) 5.25” x 9.125”) (7.25” X 11.125”) (9.25” x 14.125”) w—bmw N—AUIN NNNu—‘w u..._..—-w ~NI-‘UJN r—anw Amw—N AO‘W—tN 11.25” X 15.25”) 276 Table 125. Location of Minimum Seal Strength for Tolas 1073B Tyvek/PET/PE Laminate Peel Test at Crosshead SE = 10 ipm and Grip ! Separation = 1.( '” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E jput of 10) (out of 10) jut of 10) Aunt of 10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg (3” x 11.375”) 0 0 2 5 5 3 3 2 (10.625” x 15”) 2 4 3 2 2 1 3 3 Peel Test at Crosshead SE = 12 ipm and Grip ligantion = 1.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Loention E (out of 10) M of 10) Q“! of 10) gm 0f10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg 3” x 11.375”) 1 1 5 5 2 3 2 1 10.625” x 15”) 2 2 3 2 2 4 3 2 Peel Test at Crosshead Speed = 10 ipm and Grip Separation = 2.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E (out of 10) (ofiut of 10) (put of 10) (put of 10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg (3” x 11.375”) 2 3 2 3 3 2 3 2 10.625” x 15”) 0 0 4 5 5 4 l 1 Peel Test at Crosshead Speed = 12 ipm and Gn’p Separation = 2.0” Number of Number of Number of Number of Minimum at Minimum at Minimum at Minimum at Location A Location B Location D Location E (out of 10) (out of 10) (out of 10) (out of 10) Package Size Peak Avg Peak Avg Peak Avg Peak Avg (3” x 11.375”) 0 0 3 2 5 5 2 3 10.625” x 15”) 2 3 6 3 2 2 0 2 277 Table 126. Location of Minimum Seal Strength for Rexam 1059B Tyvek/Polyester Poly Laminate Number of Minimum at Number of Peel Test at Crosshead Speed = 10 ipm and Grip Separation = 1.0” Package Size 5.75” x 9.125”) 3 (9.25” x 14.125”) Peak 4 3 Location A (out of 10) Avg Minimum at Location B (out of 10) Peak Avg Peak 2 Number of Minimum at Location D (out of 10) Number of Minimum at Location E (out of 10) 3 1 Avg Peak 2 2 Avg 3 2 3 0 2 2 Peel Test at CrossheadJSpecd = 12 ipm and Grip 1 Number of 3 Minimum at Number of 5 Separation = 1.0 Package Size 5.75” x 9.125”) 3 4 (9.25” x 14.125” Location A Mt of 10) Peak Avg Peak Minimum at Location B (out of 10) Avg Number of Minimum at Location D (out of 10) Number of Minimum at Location E 4 4 Peak 2 Avg 1 2 3 out of 10) Peak Avg 2 3 2 3 Peel Test at Crosshead Speed = 10 ipm and Gri 0 Number of 3 I 3 Package Size 5.75” x 9.125”) 2 3 9.25” x 14.125”) 2 Minimum at Location A (put of 10) Peak Avg Number of Minimum at Location B (out of 10) Peak 2 Number of Separation = 2.0” Minimum at Location D Qut of 10) Avg Peak Number of Minimum at Location E (out My 3 Avg 3 3 Peak 3 3 3 2 Avg 2 2 Number of 3 2 Minimum at Number of 2 Peel Test at Crosshead Speed = 12 ipm and Grip Separation = 2.0” Package Size (5.75” x 9.125”) Location A (Lut of 10) Peak Avg Peak 0 1 Minimum at Location B Qut of 10) Number of Minimum at Location D (out of 10) Avg Peak Number of Minimum at Location E m5” x 14.125”) 5 0 Avg 4 l 5 (put 07140) Peak 3 Avg 3 2 4 l 2 1 4 3 278 REFERENCES 279 REFERENCES ASTM Committee F-2 on Flexible Barrier Materials, ASTM F88-94 — “Standard Test Method for Seal Strength of Flexible Barrier Materials”, pp.893-895, 1995 ASTM Committee F-2 on Flexible Barrier Materials, ASTM F88-99 — “Standard Test Method for Seal Strength of Flexible Barrier Materials”, pp.989-993, 2000 ASTM Committee F—2 on Flexible Barrier Materials, ASTM F 1 140—96 — “Standard Test Methods for Failure Resistance of Unrestrained and Nonrigid Packages for Medical Applications”, pp] 176-1 179, 2000 ASTM Committee F-2 on Flexible Barrier Materials, Draft Proposal ASTM Standard - “Standard Test Method for Burst Test Seal Strength Testing of Flexible Packages using Internal Air Pressurization within Restraining Plates”, January 1997 Barcan, Donald 8., “Using a Seal Matrix to Optimize Package Sealing Variables”, Medig Device and Diagnostic Industg. pp. 112-122, September 1995 Barcan, D. S., and Franks, S. H., “Comparing Tensile and Inflation Seal-Strength Tests for Medical Pouches”, Medical Device & Diagnostic Industry , pp. 60- 67, August 1999 Bhattacharyya, G.K., Johnson, R.A., “Statistical Concepts and Methods”, John Wiley and Sons, pp. 350-356, and 599, 1977 Bohn, D., “Using Burst Testing to Evaluate Sterile Blister Packaging”, Medical Plastics and Biomaterials, pp. 14 -—20, I994 Devore, J .L., “Probability and Statistics for Engineering and the Sciences”, 4'” ed, Belmont: Duxbury Press, pp 509-511, 533, and 556, 1995 Feliu-Baez, Rosamari, MS. Thesis ”Analysis and Evaluation of Burst Test Methods Using Restraining Fixtures", Michigan State University, pp] 1-20, 37-41, 109-121, and 138-164, March 1998 280 Feliu-Baez, Rosamari, “Pilot Study Report”, Michigan State University School of Packaging, unpublished, December 1999 Feliu-Baez, Rosamari, “Sensitivity Study Report”, Michigan State University School of Packaging, unpublished, August 2000 Feliu-Baez, “ Correlation of Peel and Burst Test for Pouches”, Pack_aging Technology and Science, 14: pp. 63-69, 2001 Hackett, Earl T., “Automated Peel Test for Process Control Eliminates Variables”, Packaging Technology and Engineeriag,_pp. 44-49, February 1998 Lorimer, Neil, Presentation to ASTM F02 “Understanding Restrained Burst Testing”, pp.l-27, April 1997 Montgomery, Douglas C ., “Design and Analysis of Experiments”, 3ml ed., John Wiley and Sons, pp. 216-217, and 607, 1991 Montgomery, Douglas C., “Introduction to Statistical Quality Control”, 3'” ed., John Wiley and Sons, pp. 490-491, 1997 Neter, J., Wasserman W., and Kutner, M.H., “Applied Linear Statistical Models”, 3"l edition, Irwin, Inc, pp 444 — 446, 1990 Wachala, T. P., “Correlating Tensile and Burst Tests in Pouches”, Medical Device & Diagnostic Industry. pp. 12-15, February 1991 Yam, Kit L., Rossen, Jack, and Wu, Xuan-Fei, , “Relationship between Seal Strength and Burst Pressure for Pouches”, Packaging Technology and Science , 6: pp. 239-244, 1993 281 H 111,1Ewfiglglllmiifij‘ifln1 021