M LT

v

Yiid

34




THESIS

200! LIBRARY

fiichigan Sials
University

~vw—r

3

i

This is to certify that the

dissertation entitled

Symplectic Approximation Of Hamiltonian Flows
And Accurate Simulation Of Fringe Fields Effects

presented by
BELA ERDELYI

has been accepted towards fulfillment
of the requirements for

PH D, degree in __Physics

CMOVL\ s

Major professor

M. Berz

Date 8! ?-—7-! Ol

MSU is an Affirmative Action/Equal Opportunity Institution 0-12"



PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

6/01 ¢/CIRC/DateDue.p65-p.15




SYMPLECTIC APPROXIMATION OF HAMILTONIAN FLOWS
AND ACCURATE SIMULATION OF FRINGE FIELD EFFECTS

By

Béla Erdélyi

AN ABSTRACT OF A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

2001

Professor Martin Berz



ABSTRACT

SYMPLECTIC APPROXIMATION OF HAMILTONIAN FLOWS
AND ACCURATE SIMULATION OF FRINGE FIELD EFFECTS

By

Béla Erdélyi

In the field of accelerator physics, the motion of particles in the electromagnetic
fields of periodic accelerators is usually approximated by the iteration of a symplectic
map, which represents the system over short time, such as one turn around the
accelerator. Unfortunately, due to the complexity of the systems, in practice only
some approximation of the one-turn map can be computed, as, for example, the
truncated Taylor series. To this end, simulation of the nonlinear dynamics consists,
in general, of the following three steps: 1) Computation of the truncated Taylor
approximation of the one-turn map, 2) Symplectification of the Taylor map, and 3)
Iteration of the resulting exactly symplectic map. This dissertation addresses all three
components of the process, with the emphasis being on developing new methods that

allow long-term tracking as accurately and efficiently as possible.

Specifically, the contributions to the first step concern the fringe field effects. The
truncated Taylor map should include every relevant effect, so that it is an accurate
representation of the system over one turn. While it is straightforward to compute the
truncated maps over the regions where the fields are independent of the longitudinal
variable, it is not so anymore at the ends of the magnets, the so-called fringe field

regions. We study fringe fields generically, to show their importance, and develop a



method that allows “exact” fringe field map computation of superconducting magnets,
for which the coils and the iron parts are represented by current wires. The theory is
illustrated by a detailed study of fringe field effects on the nonlinear dynamics of the

Large Hadron Collider at collision energy.

Many contributions are established to the second step. It is well known that
the theory of generating functions of canonical transformations provides a possible
symplectification method. It is shown that, by transforming the dynamical problem
into a problem in symplectic geometry, a general theory can be developed, which
leads to a set of infinitely many new types of generating functions. It follows that it
is possible to use this extended set to produce symplectic maps, and to reduce the
whole set of generators to classes that give the same symplectified map. Moreover, the
effects of factorization of the linear parts on the outcome of symplectification were
studied. A variety of examples show the performance of various generator types,
from which it can be concluded that it is not only important to symplectify, but
also to symplectify “the right way”. The precise meaning of the last statement is
the subject of the optimal symplectification theory, which can be formulated using
methods of symplectic topology. In particular, Hofer’s metric allows the formulation
of the optimality condition in a very general setting, and the solution leads to a
generating function type (EXPO) that, in general, gives optimal results. In the proof,
an interesting one-to-one correspondence between fixed points of symplectic maps and
critical points of generating functions is developed, and a generalized Hamilton-Jacobi

equation is derived.

Finally, as contribution to the third step, it is pointed out that the numerical
method used to solve the implicit equations arising in the iteration of the symplectic
maps makes a difference in the final results, and, in general, a fixed point iteration is

more robust than the widely used Newton method.
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Chapter 1

Introduction

A symplectic integration method is an integration method that preserves the sym-
plectic structure (w = dq A dp, for more details see subsection 2.2.1) at every time
step. It is well known that symplectic integration methods have favorable qualitative
properties compared to non-symplectic ones, when used for long term integration.
The good long term behavior has been explained by favorable global error propaga-
tion (which is usually linear in the symplectic case, compared to generically quadratic
in the non-symplectic case, and at least in certain cases stays bounded in the radial
direction [1]), and the fact that the methods introduce only Hamiltonian perturba-
tions of the original system; if the perturbations are small enough, according to the
KAM theorem, most invariant tori, and hence most of the geometric structure, sur-
vive [2]. Also, symplectic methods have very good energy conservation properties.
Although it is known that in general the symplectic structure and the energy cannot
be conserved simultaneously by a numerical method for a Hamiltonian system [3],
the Hamiltonian is preserved by a symplectic integration scheme up to a function of
the accuracy of the integrator, up to exponentially long times [4]. Sometimes (as a
function of time step and initial condition) quasi-periodic and bounded energy er-
rors are observed that seemingly last forever. There are various implementations of

symplectic integrators in the fields of molecular dynamics [5], celestial mechanics [6],



non-equilibrium statistical mechanics (7, 8], beam physics, etc.

However, it is not clear geometrically what is the exact meaning of symplecticity.
This is even more true for symplectic tracking with maps, as applied in the case
of beam physics. On the one hand, the element by element symplectic integration
usually is implemented in the thin lens (kick) approximation. While it is exactly
symplectic, it is also slow, only accurate to first or second order in the time step, and
not applicable in the case of general, nonseparable Hamiltonians, i.e. Hamiltonians
that can be written as a sum of functions, which have flows that can be computed
exactly. On the other hand, to assess the long-term stability of particles in a periodic
accelerator structure in a reasonable amount of time, it is customary to compute an
approximation of the one turn map, and then track with the map. Unfortunately, by
approximating the originally symplectic map, for example by truncation of the Taylor
series of the true map, its symplecticity is lost. Tracking large numbers of turns with
truncated Taylor maps thus can potentially give inaccurate results. The best we can
hope is that by recovering the exact symplecticity “artificially” from the truncated
map, the long term tracking with the map will restore the properties of the original
system, and will speed up considerably the estimation of the dynamic aperture. As
we shall see, in the Differential Algebraic framework [9, 10] this can be done to very

high orders.

Therefore, tracking symplectically with high order maps is symplectic integration
taken in its usual sense, but because of the use of integrators of very high order
[10], it is usually more accurate in the time step and faster. It is also true that the
speed is achieved at the expense of increasing the time step; here the time step is in
fact one turn around the accelerator (using the arclength along the reference orbit
as the independent variable). Sometimes it might be necessary to balance the length

of the part of the system represented by a map with the required accuracy. This



can be done by splitting the whole system into several pieces and representing each
lump by a transfer map. Also, the map approach allows the important advantage of
incorporating effects in the map that are otherwise very time consuming to compute,

as, for example, fringe fields [11, 12, 13].

The main step in tracking symplectically with maps is the symplectification of
the truncated, order n symplectic, Taylor maps. Several methods have been devel-
oped to achieve the symplectification of maps. There are two main streams: one is
based on factorization methods, and consist of Cremona symplectification [14], inte-
grable polynomial factorization [15] and monomial factorization [16]; the other one
is based on mixed variable generating function methods [17]. All methods provide
valid symplectification schemes. However, the symplectified map depends on the spe-
cific method used. It was realized that the particular schemes applied often make
considerable differences in the final results. This realization triggered the studies of
optimal symplectification. For details concerning optimal Cremona symplectification
see [14]: In part I of this dissertation we extend the method of generating function
symplectification to an exceedingly large class of generators, study the optimality of
generating function symplectification expressed in terms of Hofer’s metric [18], and
solve it by choosing the type of generating function that comes closest to satisfy the

optimality condition in general.

The first mention of the possibility of symplectic integration using generating func-
tions dates back to 1956 [19]. Later it was rediscovered by others; see for example
[20, 21]. Specifically, in beam physics, symplectic tracking with maps based on gener-
ating functions was proposed in 17, 16, 22|. In particular, it has been shown that in
the Differential Algebraic framework it is straightforward to compute the order n + 1
truncation of the generating function from the order n truncation of the one turn map

to any order n [17, 10]. Symplectic tracking to order three was first implemented in






the code MARYLIE (23], and to arbitrary order it was first implemented in COSY IN-
FINITY [24]. The possibility to estimate the SSC dynamic aperture with generating
functions-based symplectic tracking with one turn maps has been considered in [25].

Another approach to generating functions and maps is based on fitted maps [26].

All these methods use only the conventional Fi,..., Fy (in Goldstein’s notation)
types of generating functions [27]. Recently, a symplectic integration scheme has
been developed that is based on generating functions, and it has been shown that
actually there are infinitely many generating functions associated to a symplectic map
(28, 29]. The methods of [28] are based on [30], which is basically a linear algebra
problem, and its local generalizations to the nonlinear case. On the other hand,
the rigorous mathematical foundation on manifolds of the classical global generating
function theory has been laid in the 1970s [31, 32, 33, 34]. We combine the two, and
give the general theory of generating functions of canonical transformations, with an
eye on usefulness for computation in the Differential Algebraic framework [10] used

in COSY INFINITY [24].

To be able to say which generating function is the best one first requires a char-
acterization of the various types. This provides the motivation to develop the general
theory of generating functions in chapter 2. First, it is shown that locally there is
an isomorphism between symplectic and gradient maps, and this leads to infinitely
many generating function types for every symplectic map. Then, the global theory is
developed, which is based on transformation of the problem into a problem in sym-
plectic geometry. This approach gives insight into various problems of locality versus
globality of the generating functions, and emphasizes the generality of the approach.
We mention that following Weinstein’s work, the geometric approach to generating
functions in the physics literature appeared at various degrees of completeness, as,

for example, in [35, 36, 37, 38].



Chapter 3 contains results related to the symplectification of truncated symplectic
Taylor maps. Specifically, it is shown that the general theory of generating functions
can be used to produce exactly symplectic maps. In fact, infinitely many can be pro-
duced, each map being associated to a different generator type. It is shown that not
every generator type produces distinct symplectified maps, and a certain subset of
generators can be reduced to equivalence classes. Two types of generating functions
are said to be equivalent if they produce exactly the same symplectified map, when
applied to a given order n symplectic Taylor map. In this endeavor some transforma-
tion properties of the generating functions are derived, which are interesting also in
their own right. Also, there is a brief presentation of how the conventional generators

fit into this framework.

Sometimes it is preferred to factor out the linear part of the map to be symplec-
tified, and apply the symplectification procedure to the nonlinear part only (in fact
this part will have identity as linear part). It is proved that there is nothing to be
gained by this approach if the appropriate types of generating functions are utilized.
The implications of linear symplectic variable changes for the outcome of the sym-
plectification process are also analyzed. The last section of the chapter gives some

details about the implementation of the method in the code COSY INFINITY.

Chapter 4 is devoted to a variety of examples. The tracking pictures obtained for
standard test cases and accelerator lattices of practical interest are studied, and sev-
eral generator symplectifications are compared. For a few cases, the local corrections
introduced by the symplectification process to the Taylor maps are shown to exhibit

unusual patterns.

The examples of chapter 4 point out the necessity for optimal symplectification

studies. In chapter 5 the problem is approached from the perspective of symplectic






topology in general, and Hofer’s metric for compactly supported Hamiltonian sym-
plectic maps in particular. In a very general way, the chapter gives a precise meaning
to “the right way” to symplectify, and obtains a partial answer by singling out the
generator type that is closest to satisfy the optimality condition in general. As by-
products, a generalized Hamilton-Jacobi equation is found, which describes the time
evolution of any generator type, and an interesting duality is developed between fixed

points of symplectic maps and critical points of generating functions.
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Chapter 2

General Theory of Generating
Functions of Canonical
Transformations

In the classical mechanics literature, traditionally only the 4 Goldstein type of gen-
erating functions are well known. However, it is easy to show that, for example, the
identity transformation cannot be generated by the type 1 and 4 generating functions.
On the other hand, this set can be easily extended to 2", or 4", generating functions.
It can be showed that for any symplectic map, at least one generating function from
this set exists locally [10]. The common factor for this set is that they all depend
on mixed coordinates, more specifically on n initial coordinates and momenta, and n

final coordinates and momenta.

The first sign that in fact there are more generating functions dates back to
Poincaré, who used a different type of generating function, which not only is a mixed
variable function in the sense discussed above, but also mixes (linearly) initial and
final conditions in all the 2n variables [39]. Later this generating function reappeared
in [40] and [28], where also a unifying approach to the theory of generating functions

has been presented, from which it resulted that there are infinitely many generating

functions.



However, while the approach of [28] gives important computational insight, the
general mathematical foundation of the theory is contained in the series of papers
[31, 32, 33, 40]. On the other hand, the general theory lacks exactly the computa-
tional aspect. Our purpose is to give a rigorous account of the mathematical basis,
and to cast the theory into a convenient computational tool within the framework
of Differential Algebraic methods. We start with the local theory, since it already
contains the main ideas, and it is easier to understand the underlying principles. The
detailed account of the global theory follows in the next section, where light is shed

on the somewhat obscure aspects of the local theory.

2.1 The Local Theory

The theory is developed in Euclidean space, and all definitions and statements refer to
this case. It will be generalized to arbitrary symplectic manifolds in the next section.

First we introduce a few notations. Every map is regarded as a column vector. Let

a= ( Z; ) (2.1)
al= ( Z; ) (2.2)

be its inverse. Notice that o; and o', 1 = 1,2, are the first 2n and second 2n com-
ponents of a and a~! respectively. This entails that a; : U C R*" — V; C R?", and
analogously for o’. It is worthwhile to note that there is a geometric significance to
the use of R*". Both symplectic maps and functions under certain conditions can be
given a geometric interpretation in the form of Lagrangian submanifolds of R*"*. (La-

grangian submanifolds are 2n dimensional submanifolds of 4n dimensional symplectic






manifolds on which the symplectic forms vanish identically.) Let

A B

Jac (o) = ( c D ) (2.3)
be the 4n x 4n Jacobian of a, split into 2n x 2n blocks. Let

T J2n 0271

J4n - < 02n _Jzn ) ) (2.4)
where

0, I,
=% 0, (25)

and I, is the unit matrix of appropriate dimension. A map « is called conformal

symplectic if
(Jac (@) Jin Jac (@) = i, (2.6)
where u is a non-zero real constant [41]. Also, we denote by Z the identity map of

appropriate dimension. A map M is called symplectic if its Jacobian M satisfies the

symplectic condition [42], that is
MTIM = J. (2.7)

Also, (2.7) can be written is several different forms [10]. We always assume that
the symplectic maps are origin preserving. We call a map a gradient map if it has
symmetric Jacobian N. It is well known that, at least over simply connected domains,
gradient maps can be written as the gradient of a function (hence the name) [10],

that is
N = Jac (VF)T. (2.8)

(VF is regarded as a row vector [43].) The function F is called the potential of the

map.

The best way to formulate the main result of this section is a theorem.

10
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Theorem 1 Let M be a symplectic map. Then, for every point z there is a neigh-

borhood of z such that M can be represented by functions F via the relation

oo e (4))efor () o

where a is any conformal symplectic map such that
det (C (M (z),2)-Mz+ D (M(z),z2)) #0. (2.10)

Conversely, let F be a twice continuously differentiable function with gradient N,

where N' = Jac (VF)T. Then, the map M defined by
M = (NC - A" (B - ND) (2.11)

is symplectic.

Definition 1 The function F is called the generating function of type a of M, and

denoted by Fy m.

The theorem says that, once the generator type is fixed, locally there is a one-to-
one correspondence between symplectic maps and scalar functions, which are unique
up to an additive constant. The constant can be normalized to zero without loss
of generality. Due to the fact that there exist uncountably many maps of the form
(2.6), we can conclude that for each symplectic map one can construct infinitely many

generating function types.

A question that naturally arises is about the locality of the description of sym-
plectic maps by generating functions, i.e. what is the size of the region where the
generating functions are defined? A rigorous lower bound can be computed by com-
bining the theory of this section with high-order Taylor model based verified methods.

The results, using several examples of practical interest, suggest that at least certain

11
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carefully chosen generating function types’ domain of definition enclose the region of

interest in simulations (for example the dynamic aperture) [44].

Proof. We notice that, by the implicit function theorem, the proof can be reduced

to the linear case. In particular, the linearization of (2.9) at some point reads
N =(AM + B)(CM +D)™". (2.12)

Here all the entries in the equation are matrices. Therefore, by the implicit function
theorem, if (2.9) is well defined at some point, i.e. det (CM + D) # 0, then it also
holds in a neighborhood of that point. Therefore, the proof is complete if we prove

the following lemma. B

Lemma 2 Let A, B,C, D € R**?* qand
a=<g g). (2.13)
Let M € R>"*?" be given. If A, B,C, D is chosen such that
det (CM + D) #0, (2.14)
and if N € R**?" 45 defined as
N =(AM + B)(CM + D)™}, (2.15)
which is equivalent to
M= (NC-A)"'(B- ND), (2.16)

then any two of the following statements imply the third one:
1) M is symplectic, i.e. MTJM = J,
2) N is symmetric, i.e. NT = N,

3) « is conformal symplectic, i.e. aT Jya = pJan.

12
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The proof is split into three part. First, it is shown that 1) and 2) implies 3), then
that 2) and 3) implies 1), and finally that 1) and 3) implies 2). In the proof of the

lemma we need the following proposition.

Proposition 3 Let det (CM + D) # 0 and N defined as in (2.15). Then

det (NC — A) # 0. (2.17)

Proof. Taking determinants on both sides of (2.6) if follows that det () # 0. Thus,

denote its inverse by

- A B
Then, if we expand the relations a- a™! = a~! - a = I, we obtain
AA+BC = AA+BC=1,CB+DD=CB+DD =1, (2.19)
AB+BD = AB+BD=0,CA+DC=CA+DC =0. (2.20)

First we compute

(CN+D)(CM+D) = [C(AM + B)(CM + D)™ + D] (CM + D) (2.21)

= C(AM +B)+ D(CM + D) (2.22)
= (CA+DC)M + (CB+ DD) (2.23)
= L (2.24)

Taking determinants on both sides we obtain that
det (CM + D) # 0 => det (CN + D) # 0. (2.25)

Next consider the identity
Io0 I -N A B\ (A-NC B-ND (2.26)
Cc 1 0 CN+D C D) 0 I '

13



Pr.
)V



Taking determinants on both sides yet again, we obtain that
det (CN + D) - det (a) = det (A — NC). (2.27)
But det (a) # 0, hence
det (CN + D) #0 = det (A — NC) # 0. (2.28)
Combining (2.25) and (2.28) we arrive at
det (CM + D) #0 = det (NC — A) #0, (2.29)
and the proposition is proved. B
We can proceed to prove the lemma.
Proof. The first step is to prove that 1) + 2) = 3). We rewrite (2.12) to give
N(CM + D) = (AM + B). (2.30)
Knowing that N is symmetric, transposition gives
(MTCT + DT) N = (MTAT + BT). (2.31)
Combining (2.30) and (2.31) results that
(MTCT + D7) (AM + B)(CM +D)™' = (MTAT + BT) (2.32)
(MTCT + D) (AM +B) = (MTAT +B”)(CM + D).
Therefore we obtain that
MT (CTA- A"C)M + (D"B - B™D) + (2.33)
MT(C"TB - ATD)+ (DTA-B'C)M =0. (2.34)

The only way for this to hold for any symplectic M is by requiring that

MT (CTA- ATC)M + (D"B-B"D) = 0, (2.35)
MT(CTB-A"D) = o, (2.36)
(DTA-B™C)M = 0, (2.37)

14



for any symplectic M. This is true because the symplectic condition is a condition
that involves quadratic relations among the entries of M, and these relations give as
their results constants. From the first equation we conclude that it holds if and only

if

CTA-ATC = uJ, (2.38)

D'B-BTD = —uJ (2.39)

for any real number u different from zero, and the second and third equations hold

simultaneously if and only if
DTA-BTC =o. (2.40)
These relations can be cast into a convenient matrix form, namely

(A8 (S0 (A8)=(52)  em

where 4 € R*. Hence, we can conclude that for any symmetric N and symplectic
M there can be found nonsingular matrices A, B, C, and D such that (2.6) holds.

Therefore, « is a conformal symplectic map.

The second step is to show that 2) + 3) = 1). From (2.15) we can deduce that
NT =M +D)T(4aM + B)". (2.42)
Using the assumption that N7 = N, we get that
(CM + D) T (AM + B)T = (AM + B) (CM + D)™". (2.43)
To remove the inverses, the above equation can be rewritten as

(MTCT + D) (AM + B) = (MTAT + BT) (CM + D). (2.44)

15
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Performing the operations and regrouping of terms gives

MT (CTA— ATC)M + MT (CTB - ATD) +

(DTA-B'C)M + (DB - B"D) =0.
From the expansion of (2.6) it follows that

ATC -CTA = uJ,B"D-DTB = —uJ,

ATC-CTA = 0,B'C-D'C=0.
This entails that (2.45) reduces to
MTIM =,

showing that M is symplectic.

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

To complete the proof now we need to show that 1) + 3) = 2). First we notice

that, according to the above lemma, (2.15) always can be solved for M to give

M= (NC-A)'(B-ND).
Therefore,

MT = (B-ND)Y(NC-A4)T,

M™' = (B-ND)™'(NC - A).

Also, from the symplectic condition MTJM = J it follows that JM7T

Inserting (2.51) and (2.52) in this equation, gives

J(B-=ND)Y(NC-A)T=(B-ND)""(NC - A)J,

which can be expressed as

(B—ND)J (BT — D"NT) = (NC — A)J (CTNT - AT).

16
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Rearrangement of terms gives

N(cJCT - DJDT)NT - N (CJAT - DJBT) — (2.55)
(AJCT — BJDT) NT + (AJAT — BJBT) = 0. (2.56)
Next, we need to manipulate (2.6), which is equivalent to a”J = pa~'J. Transposition

gives Ja = pa~TJ, where we used that J7 = —J and JT = —J. Also, from J~! = —J

and J-! = —J it finally follows that

aJaT = plJ. (2.57)

Expanding this relation yields
AJAT —BJBT = 0,CJCT - DJDT =0, (2.58)
AJCT - BJDT = uI, CJAT — DJBT = —ul. (2.59)

As the last step, inserting these in (2.55) results in
NT = N. (2.60)

This completes the proof. B

Theorem 1 has a simple, intuitive interpretation. It provides a way to construct
infinitely many generating function types for any given symplectic map. The various
types are parametrized by the group of conformal symplectic maps. For the existence
of a certain type of generator, det (CM + D) # 0 must hold. Conversely, given any
function and a conformal symplectic map, theorem 1 provides a method for generation

of symplectic maps.

2.2 The Global Theory

The local theory is sufficient in most situations, as the cases of interest to us are weakly

nonlinear Taylor maps around fixed points. Therefore, the treatment of practically

17
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relevant systems is inherently local. However, there are important aspects that the
local theory does not answer. For example, how can the theory be extended to
symplectic manifolds? Moreover, the definition of N in (2.15) seems to be taken
from thin air. Is there a deeper reason behind this definition? Or, is there a more
general definition that provides even more generator types? Finally, what can be said
about the domain of definition of the generators? Can a global generating function

be defined for any symplectic map? In this section we try to answer these questions.

The local theory shows that around any point local generators can be found. The
question is whether the various local generators can be glued smoothly to form a
global generator. Apparently, this cannot be done in general by generators of type
linear . However, the existence of nonlinear conformal symplectic maps is not a
priori obvious. Moreover, even if a global generator exists for a given symplectic
map, does the same type of generator exist globally for other symplectic maps? The
solution of these questions requires the “geometrization” of the problem, that is,
reformulation of the problem into a problem in symplectic geometry. We begin with
a brief introduction to symplectic geometry, the language used for the mathematical

basis of the theory. More details can be found in [45, 46].

2.2.1 Fundamentals of Symplectic Geometry

Symplectic geometry is the natural mathematical language of classical mechanics,
specifically Hamiltonian dynamics, as any variational principle can be given a sym-
plectic interpretation. To begin, some fundamental concepts are introduced. Let P
be a smooth manifold, and w a differential 2-form defined on it. If w is closed and non-
degenerate, it is called a symplectic form, and the pair (P,w) is called a symplectic
manifold. A form is called closed if its exterior differential vanishes, dw = 0. Closed-

ness is a geometric constraint, which is equivalent to the Jacobi identity. On the other

18



hand, non-degeneracy is an algebraic condition. It means that at each point p € P
the skew-symmetric bilinear form w, : T,P x T, P — R which acts on tangent vectors,
is non-degenerate. In terms of the associated linear map @, (v) (u) = w, (v,u), we
have that, if &, (v) (u) = 0 for each v € T, P, then u = 0. Hence w, : T,P — T, P is an
isomorphism. This means that, relative to some local coordinate system around each
point, the matrix of @, and equivalently the matrix of w has nonzero determinant.
This in turn implies that any symplectic manifold is necessarily even dimensional,
due to the fact that the determinant of any odd dimensional skew-symmetric matrix

vanishes.

A fundamental category of symplectic manifolds are the cotangent bundles of
configuration manifolds, which are the phase spaces of dynamical systems. These
manifolds carry a symplectic structure that is a generalization of the canonical sym-
plectic structure of R?". On the Euclidean space itself, by identifying R?" with T*R",
we have a special coordinate system in which the symplectic form takes the simple
form wy = dq@' A dp. The coordinates (G, p) are called canonical. This coordinate sys-
tem is the symplectic counterpart of the orthonormal coordinate system of Euclidean

geometry. The matrix of wy is denoted by J and has the form

J:(_OI é) (2.61)

where each entry represents a n xn block matrix, I being the appropriate unit matrix.
We also note that the standard symplectic form can be defined in a coordinate-free
way by wy = —dA, where ) is called the canonical one-form, and takes the coordinate
representation A = p’- dg. Darboux’s theorem states that on any symplectic manifold
such a coordinate system can be found in a neighborhood of any point, hence any
symplectic manifold is locally equivalent (symplectomorphic) to the Euclidean space

with its standard symplectic structure wy. We call a symplectic form translationally

19



invariant if its matrix has the same form at any point on the manifold.

Now we turn to symplectic transformations between symplectic manifolds. We
will use hereafter interchangeably the notions of symplectic transformations, sym-
plectic maps, canonical transformations, symplectic diffeomorphisms and symplecto-
morphisms. By definition, a diffecomorphism M : P, — P, between two symplectic
manifolds (P}, w;) and (P, w,) of the same dimension is called a symplectomorphism

if it preserves the symplectic forms, that is
Mwy = wy, (2.62)
where * denotes the pull-back, which is defined as
(M*w), (v1,v2) = W) (ToM - v, T, M - vy) (2.63)

where z € P and vy,v, € T, P,. In this case P, and P, are said to be symplectomor-
phic. In canonical coordinates this definition takes the following form for a symplectic

map of the Euclidean space with its standard symplectic structure wyq
(Jac(M)T J (Jac(M)) = J. (2.64)

Here Jac denotes the Jacobian and 7 the matrix transpose. The above definition can

be extended to include conformal symplectic maps by the following relation
M*wy =71 (M) wy, (2.65)

with r (M) € R*. To see the significance of r, take a scaling map defined by ¢*w; =
12wy, € RX, and apply it to both sides of (2.65). By choosing p = l/m, we obtain
(Mog)* wy = sgn (r (M))w;. Hence, if r > 0, then Mo is symplectic. If r < 0,
then Mog¢ is called antisymplectic. Essentially, it means that Mo is orientation
Teversing. Actually, this is strictly true only if n is odd, otherwise, for n even, the

Cartesian product (Mog) xT is orientation reversing; Z being the identity map. This
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follows from the definition of the symplectic map. Specifically, any symplectic map
of a manifold into itself preserves the symplectic form, so it also preserves the volume
form w™ = wA...Aw (n times). This is a never vanishing 2n-form on a 2n dimensional
manifold, so the vector space it forms is 1 dimensional. Direct calculation shows that
it integrates to a constant times the Euclidean volume. It follows that any symplectic
manifold is oriented by the volume form, symplectic maps preserve orientation, and
if global coordinates are available the determinant of the Jacobian of any symplectic

map is equal to 1 at any point.

Now we turn our attention to Hamiltonian systems, as the single particle dynamics
in accelerators of interest to us can be described to a very good level of approximation
by a Hamiltonian dynamical system. First we establish a few notations. Obviously,
the symplectic maps of a symplectic manifold form an infinite dimensional Lie group
under composition, denoted by Symp(P,w) = Symp(P), if it is clear which symplectic
form is considered. Also its Lie algebra of symplectic vector fields will be denoted
by X (P). In the view of non-degeneracy of symplectic forms, there is a one-to-one

correspondence between vector fields and 1-forms via
X(P)= Q' (P): X - 1(X)w, (2.66)

where we used z for the interior product. A vector field X is called symplectic if 1 (X ) w
is closed, that is d (: (X)w) = 0. By the Poincaré lemma, on connected manifolds
every closed 1-form is locally exact, so ¢ (X ) w can be written locally as the differential
of a function ¢ (X)w = dH. In this case the vector field is called locally Hamilto-
nian. If dH exists globally (for example if the manifold is simply connected), X is
called Hamiltonian, and H the Hamiltonian function. Conversely, for any function
H : P 5 R, the vector field Xy : P — TP determined by the identity 2 (Xy)w = dH

is called the Hamiltonian vector field associated to the Hamiltonian function H. A
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Hamiltonian dynamical system is the triple (P,w, H). Hamiltonian vector fields form
a Lie subalgebra of the Lie algebra of symplectic vector fields. The map Xy — H isa
homomorphism. However, if we restrict ourselves to compactly supported Hamiltoni-
ans, then the map becomes an isomorphism, and it can be viewed as a normalization
condition, by specifying the arbitrary constant in H. With this normalization different
Hamiltonians generate different flows. This will be important later in the definition
of the Hofer metric on the space of compactly supported Hamiltonian symplecto-
morphisms. Specifically, compact support means that the Hamiltonian and hence
the associated vector field vanishes outside a compact subset. Recall that vanishing
Hamiltonians generate the identity map. Hence, the support of a symplectic map is

defined as the closure of the set where it is different from identity.

To define Hamiltonian symplectomorphisms we need first the notion of isotopy.
The time-dependent vector field Xy,, associated to the time-dependent Hamiltonian

H, at every t, generates a smooth 1-parameter group of diffeomorphisms ¢th satisfying
d t X ¢ .0
'C'i‘ifth = Hq [e] on y (le = I (267)

¢tH¢ is called the Hamiltonian flow associated to H;, or the Hamiltonian isotopy. A
symplectomorphism ¢ € Symp (P) is called Hamiltonian if there exists a Hamiltonian
isotopy ¢, € Symp (P) from ¢, = Z to ¢, = ¢. We denote the space of Hamiltonian
symplectic maps by Ham (P, w), or simply Ham (P) . It turns out that Ham (P) is a
normal subgroup of Symp (P), and its Lie algebra is the Lie algebra of Hamiltonian
vector fields. On simply connected manifolds Ham (P) is the identity component of
Symp (P), that is any symplectic isotopy is Hamiltonian [41]. The group of Hamilto-
nian symplectomorphisms is path connected. Also, any path in the space of Hamilto-
nian maps is Hamiltonian. If a symplectic map is generated by compactly supported

Hamiltonians, the symplectic map is also compactly supported, which means that it
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is the identity map outside a compact subset.

To prove that the flows of Hamiltonian systems are symplectic we need the fol-

lowing two formulae [47]: the Lie derivative formula
d . .
a@w = ¢; Lx,w, (2.68)
and Cartan’s magic formula
Lxw=1(X)dw+d((X;)w). (2.69)

Now it is straightforward to see that if dw = 0 and (¢ (X;) w) = dHy, then %Q‘):w =0,
that is constant in time and equal to its value at t = 0. Hence we obtain ¢;w = w, for
any t. The argument works also backwards, implying that if the flow of a dynamical

system is symplectic then it is generated by Hamiltonian dynamical systems.

2.2.2 Primitive Function vs. Generating Function

In this subsection it is shown that the main ideas of mixed variable generating func-
tions are already built in in the symplectic condition. Consider symplectic transfor-
mations, M, of a symplectic manifold (7*X,w). Let us assume that the manifold
is simply connected, or in other words is an exact symplectic manifold. Then, every
closed form is also exact. We can write w = —d\. The symplectic condition takes

the form
d(A—M*)) =0, (2.70)
from which follows the existence of a function F, such that
A—M*A=dF. (2.71)

The function F is called the primitive function of M. However, there is no one-to-

One correspondence between symplectic maps and primitive functions. Actually, the
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symplectic map is determined up to a left action (composition with M from the left)
of an actionmorphism, i.e. a symplectic map that preserves the 1-form A. This can
be easily seen by replacing M with another symplectic map, A o M, where N an

actionmorphism. Therefore, we obtain

A= (NoM)'A = A= M (N*X) (2.72)
= A=M") (2.73)
= dF. (2.74)

Hence, M and N oM have the same primitive function. All the As with this
property arise as lifts of diffeomorphisms on the base manifold [47]. Therefore, the
primitive function determines the symplectic maps up to cotangent lifts. This is a
manifestation of the coordinate independence of the symplectic condition, specifically
A. It also implies that for one-to-one correspondence between M and F, F cannot

be defined on the phase space.

If we think of (¢, p) as independent canonical coordinates, and M (7. p) = (Q 13) ,

it follows from (2.71) that
p-di—P-dQ = dF (§,p). (2.75)

Now, if the equation § = Q (¢, P) can be solved for § to give a function F; ((j’, Q) =
F ((j’, 7 (d‘, Q)), with (cj’, Q) as independent variables, we obtain

=p , ?Fl_a(g_gz =-P, (2.76)

and we recognize it as the F; (Goldstein type 1) generating function. The symplectic

oF: (4,)
o7

maps with this property are called twist maps.

Now it is apparent that, in order to uniquely determine the symplectic map, a

function must employ mixed variables, and this follows from the symplectic condition
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itself. The method used in this section could be used to derive other types of gen-
erating functions. However, there are many As such that w = —dA, as for example
A= —¢-dpor A= %(ﬁ dq — ¢ - dp), etc. Moreover, different As can be chosen on
the source and target manifold, and guessing is necessary for the variable changes.
Therefore, it is not clear how much freedom is possible for construction of new gener-
ating functions, and in general it is not convenient to work in this setting. We choose

to work in another setting, which has been introduced by Weinstein.

2.2.3 Symplectic Maps as Lagrangian Submanifolds

Initially, we have symplectic maps of a manifold in one hand, and functions on an-
other manifold on the other hand. The local representative of the symplectic maps
are vector functions of an even number of components. Our generating function is a
scalar function. A priori, the most general method to connect the two in a one-to-one
manner is not clear. In the early '80s Weinstein formulated a “symplectic creed” with
the motto “in symplectic geometry everything is a Lagrangian submanifold” (see defi-
nition below). Indeed, in symplectic geometry Lagrangian submanifolds are the most
important objects beside the symplectic manifolds themselves. These Lagrangian
submanifolds provide the most general link between symplectic maps and generating
functions. Both symplectic maps, and functions under certain conditions, can be
put in one-to-one correspondence with Lagrangian submanifolds of appropriate sym-
plectic manifolds. Once this correspondence is established, instead of working at the
level of symplectic maps and functions we can work with Lagrangian submanifolds.
At this point, the link we are looking for will be given by the most general type of
diffeomorphisms that map these Lagrangian submanifolds into each other, or in other

words the diffeomorphisms of identification of the two Lagrangian submanifolds.

We will consider only submanifolds of symplectic manifolds that are properly
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embedded and which inherit their topology from the ambient manifold. Also, we will
need to work with injections of graphs of maps. It can be proved that the graph of a

smooth map f: P, = P;,

Fy={(f(),p) lpe P, f(p)E R} CPAXP (2.77)

is a smooth submanifold of P, x P, of dimension dim (P;) [47]. Moreover, if f is
a diffeomorphism, then the projections 7; : I'y — P;, i« = 1,2 are diffeomorphisms

(47, 32).

Lagrangian submanifolds are defined in terms of tangent spaces on which the

symplectic form vanishes.

Definition 2 Let (P,w) be a 2n dimensional symplectic manifold and let L be a
submanifold of P. L is called a Lagrangian submanifold if, at each p € L, T,L is a
Lagrangian subspace of T,P, i.e. wy|r,r =0 and dimT,L = %dim T,P. Equivalently,
if i : L — P 1s the inclusion map, then L is Lagrangian if and only if i*w = 0 and

dim L = } dim P.

First we prove that any symplectic map M : (P,w;) = (P2, w3), M*w, = wy, can
be interpreted as a Lagrangian submanifold in the Cartesian product space P, x P,
with the symplectic structure p(mjw; — Tjws), where m; : P x P, = P, i = 1,2,
are the canonical projections and u € R*. The graph of the symplectic map is the

2n-dimensional submanifold of P, x P,
FTm={(M((),z) |z€ P}. (2.78)

Denote P = P, x P, and w = p (75w, — mjws); then we have the following:

Theorem 4 M is a symplectomorphism if and only if T »4 is a Lagrangian subman-

ifold of (P,w).
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Proof. 'y is Lagrangian iff relative to the inclusion map i : 'yy — P, i*w = 0.

Pw = p(itmiw —mw,) (2.79)
= p((mr0d) wy — (m101)" wo) (2.80)
= p(TMwr — M'w,) (2.81)
= p(w — M'wy) =0. (2.82)

Hence, because u # 0, it follows that M*w, = w;. W

Arbitrary Lagrangian submanifolds of (P,w) are called canonical relations, and
can be considered as generalizations of symplectic maps. For practical applications
we will be interested in the case P, = P, = R?", and w; = wy = wy being the standard
symplectic structure of R?®. Thus, in this case, any symplectic map M : R?" — R>"
is a Lagrangian submanifold in (R“", uj ), with symplectic structure w that has the

matrix

T J2n 02n
ud = p ( A ) . (2.83)

One particular Lagrangian submanifold of this kind that will be useful later is the

diagonal, which by definition is the graph of the identity map
A={(zz)]z€ P}. (2.84)
2.2.4 Functions as Lagrangian Submanifolds

Next, we turn our attention to the one-to-one correspondence that can be set up
between closed one-forms and Lagrangian submanifolds of cotangent bundles that
project diffeomorphically onto the base manifold. Consider a smooth manifold X
and a 1-form defined on it. Regard it as a map from X to T*X. Then the following
holds:
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Proposition 5 The canonical one-form A\ € Q' (T*X) is uniquely characterized by

the property that
o*A=o, (2.85)

for every one-formo : X —- T*X.

Proof. The o on the left hand side is considered as a map, and on the right hand
side as a one-form. Denote the coordinates of T*X by (¢,p). Then o regarded as
a map in these coordinates can be written as o = ((]‘, f ((j)) for some functions f;.
Recall that the canonical one-form has the expression A = p'- dgq. Thus, using the

definition of the pull-back we obtain

(0*A); = Aoy dgo (2.86)
T

- (?) (dqf@) (287)

= oy (2.88)

where we used that A,y = (ﬁo f((f)) d(§oq) = f(§)-di = o;. (¢, p) being regarded

as components of the identity map. B

Now we demonstrate that when o is closed, its image o (X) (o regarded as a map)
is a Lagrangian submanifold of T* X with the standard symplectic structure. Note

that the graph I'; of the one-form o is defined as
Ie={(c(w),w) |lwe X,o0(w) e TyX}. (2.89)

Its image by the inclusion ¢ : I'; — T*X is Lagrangian. Relative to the projection
m: [, = X, I, is uniquely determined by the one-form ¢ if and only if 7 is a
diffeomorphism. This can be seen from the fact that ¢ = cow. Hence, I', is Lagrangian

iff i*wy = 0. Thus we get

(cgom)we = (com)* (=dX) =—7"(d(c*))) (2.90)

—7*do =0, (2.91)
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where we used wy = —d), the fact that the pull-back commutes with the exterior
differential and the result of the above proposition. Therefore, there is a one-to-one
correspondence between Lagrangian submanifolds of (T X, vwy) of the form (2.89)

which project diffeomorphically onto X, and closed one-forms ¢ on X; here v € R*.

In general, there are two ways to ensure that 7 is a diffeomorphism; if the em-
bedding is C; close enough (i.e. close enough in norm to the function values as well
as the values of the first derivatives) to the canonical embedding of the zero section
into the cotangent bundle, or ¢ (as the differential of a function) is a diffeomorphism.
In the first case the projection mapping will be C; close enough to identity to be a

diffeomorphism. Indeed, it can be showed [45] that if
1
ldf =T l< 5, (2.92)
then f is a diffeomorphism. Hence, in this case 7 can be guaranteed to be a diffeo-

morphism if ¢ is C; close enough to 0.

For example, the zero section of T* X, defined by
Z={¢w) |E€=0we X, EcTyX}={0} x X (2.93)

is such a Lagrangian submanifold. This obviously follows from the fact that ¢ = 0,

so Alz =0.

Other examples of Lagrangian submanifolds are the fibers of cotangent bundles
(“delta functions” at a fixed point in the base manifold), any smooth curve on a 2
dimensional symplectic manifold, invariant tori (KAM tori) of Hamiltonian systems,

etc.

The next step is to make the connection between functions on X and the La-
grangian submanifolds of the form (2.89) of T*X. This is possible if the one-form o

is exact, that is can be written as the differential of a function. The condition when
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this is possible can be described by the first Betti number. First we define the de
Rham cohomology groups H* (X,R) by

_ ker (d: QF (X) - Q1 (X))
HY R = rge (@ 01 (X) = % (X))

(2.94)

The elements of H* (X,R) form a vector space, and its dimension is called the k-th

Betti number
by = dim H* (X,R), (2.95)

which measures the failure of closed forms to be globally exact. On the other hand,
if X is connected, by the Poincaré lemma every closed form is locally exact. If
by = 0, it follows that every closed one-form is globally the differential of a function.
In this case the closed one-form o can be written as dF for a function F' that is
unique up an additive arbitrary constant. The function F € F (C* (X)) is called
the generating function of the Lagrangian submanifold I',. Hence, if b = 0 we can
think of Lagrangian submanifolds I', as generalized functions on X. We note the
well-known fact that for R, by = 1 and b, = 0 for i > 1. In the case relevant
for our applications, in Euclidean space, every function “generates” a Lagrangian
submanifold, and conversely, given a Lagrangian submanifold of the form (2.89),
which projects diffeomorphically onto the base manifold, its generating function can
be computed by mere integration along an arbitrary path. Also, this function will
be called the generating function of the canonical transformation. However, it is
still hecessary to link the Lagrangian submanifolds (2.78) and (2.89) with suitable

diffeomorphisms. We do that in the next subsection.

We mention that the projection 7 is actually a fiber translation, and I, intersects
each fiber at most in only one point. The fact that I, might not project diffeomor-
phically is a hint that some generating functions do not exist for certain symplectic

maps. In the case that the projection is not a global diffeomorphism, we certainly
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cannot have a global generating function, but still it might be possible to define a
local generating function, if the origin has a neighborhood that projects diffeomorphi-
cally. While, for special cases of symplectic maps and types of generating functions
it might be possible to ensure that the projection is a global diffeomorphism (see for
example twist maps and Goldstein type 1 generating functions), in general the pro-
jection can be guaranteed to be a global diffeomorphism only if I, is close enough to
the zero section. In this case, the projection map is C'-close enough to identity to be
a diffeomorphism. Hence, every C?-small enough function is in one-to-one correspon-
dence with such a Lagrangian submanifold. At this point it is not clear how much
freedom we have to map Lagrangian submanifolds into each other, but it is a basic
requirement of the theory to try to map as close to the zero section as possible. As

we will see, this condition also plays a crucial role in the optimal symplectification.

2.2.5 Existence of Infinitely Many Generating Functions

Now we are ready to link symplectic maps with their generating functions. The most
natural and general way is to require the Lagrangian submanifold determined by a
function to be diffeomorphic to the Lagrangian submanifold determined by the sym-
plectic map, if such a map exists. A well-known theorem [31] states that a neighbor-
hood of any Lagrangian submanifold can be identified by a local symplectomorphism
with a neighborhood of the zero section in the cotangent bundle of the submanifold.
In general there are two difficulties with this approach. If the manifolds are not simply
connected, the generating functions in general cannot be defined globally, and from
the computational point of view, it is difficult to deal with the complicated cotangent
bundles of the Lagrangian submanifolds determined by the symplectic maps. That
is why in general this approach is best suited for symplectic maps close to identity.

Also, the theorem states the existence of a local symplectomorphism that identifies
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the appropriate Lagrangian submanifolds, but is not a priori clear that this is the
most general way to do that. Fortunately, for our purpose it is enough to consider

only the case of Euclidean space, for which more results can be obtained.

If we limiting ourselves to simply connected manifolds, and if it happens that P;,
i = 1,2, is diffeomorphic to X, then we have the following commutative diagram:

Fm _—ay Tar
mid i (2.96)

P; e X
M being a symplectomorphism, the projections 7; are diffeomorphisms. Moreover, it
is assumed that 7 is a diffeomorphism, and there exist a diffeomorphism ¢, : P, — X.
Thus, in this case there exists a diffeomorphism o : T'yy — T4p, for any pair of
Lagrangian submanifolds of this form, satisfying the above conditions. The following
theorem [48, 49] shows that a extends to a local symplectomorphism. It can be

thought of as a generalization of the main theorem of [31].

Theorem 6 Let L; be two Lagrangian submanifolds of the symplectic manifolds (P;,w;),
t = 1,2. Then any diffeomorphism o : Ly — L, extends to a conformal symplecto-

morphism (3 : Uy — U, of some neighborhoods U; of L; in P;, such that B|L, = a.

Consider the following diagram:

(P,w) I} . (T*X,vwy)

iMI IidF

FM Q y de
WgOiM,/ \moiM ’/T,/ ’\z

z _M M (z) w dF , dF(w)
Where z € P, and w € X are arbitrary points of the respective manifolds.
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We pointed out that the local classification, around a point, of symplectic struc-
tures is completely solved by Darboux’s theorem. Here we have another concept of
locality, namely local around a submanifold, of which one can think of as germs of
the symplectic manifolds. Marle’s theorem is an example of such a tubular theorem,
first proved to exist by Weinstein. It says that Lagrangian submanifolds do not have
geometric invariants in order to distinguish each other. In general there are no global
theorems similar to the tubular ones. This is true even in the R?" case, due to the

existence of exotic symplectic structures proved by Gromov [50].

The importance of the above theorem consists of two main aspects: it gives the
most general way to represent symplectic maps globally by scalar functions, and
implies that once a symplectomorphism [ exists for a symplectic map M and a
function F, it is automatically valid for all nearby symplectic maps. It follows that
the freedom for selecting generating function types is given by the set of conformal
symplectic maps of the form S*wy = w/v. A generating function of type a, which
exists for a given M, exists for all nearby symplectic maps. In case the assumptions of
the theorem are satisfied, any Lagrangian submanifold Iy, can be identified with any
Lagrangian submanifold I'yr; therefore, in principle the scalar function F' can always
be chosen in such a way that 7 is a diffeomorphism, guaranteeing global generating
function types for any symplectic map. Clearly, once « is fixed, there is a one-to-
one correspondence between symplectic maps and functions, hence they are called
the generating functions of the symplectic maps. Interestingly enough, the diagram
shows that, when the theorem'’s conditions hold, to any pair (M, F') can be found an
a (which is not unique) such that F' becomes the generating function of type a of
M. Also, generating functions can be defined on any simply connected manifold X
diffeomorphic to P;, and as mentioned above, 3 cannot in general be extended to a

global conformal symplectic map.
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Now we specialize these result to the case of Euclidean spaces. Notice that for our
practical cases in beam dynamics M : R?® — R?"  and it is computationally conve-
nient to define the generating functions also on R**. Hence P, = P, = X = R?>", and
w; = wg = wp. As long as 7 is a diffeomorphism, the theorem applies and the exis-
tence of the diffeomorphism a, which can be extended to a local symplectomorphism
3 follows. Global canonical coordinates are available, in which the symplectic struc-
tures w and vwy are translationally invariant with matrices, pJ and vJ respectively.
Therefore, there is an a which can be used to identify any Lagrangian submanifold
of (R"", uJ ) of the form (2.78) with any Lagrangian submanifold of (R**,vJ) of the
form (2.89). According to the theorem, the most general form of § is a conformal
symplectic map. Since a is the restriction of 3 to the Lagrangian submanifolds, we
conclude that the most general form of the diffeomorphism a that links the symplectic

maps to their generating functions is
) 1
a’wo = —w. (2.97)

The coordinate expression of this equation is (2.6). In fact, this was expected from
the local theory. Using elementary methods, it has been shown in section 2.1 that
if (2.15) holds, the most general map that gives the generator type is a conformal
symplectic matrix. The global theory just states that instead of matrices nonlinear
maps can be used, and the local maps around each point can be glued together along
germs of Lagrangian submanifolds, which entail the existence of global generating

function types.

In conclusion, we have the following fundamental results in the case of Euclidean
space: there is a one-to-one correspondence between any small function (in the C?

sense) F € F (C* (R*)) and symplectic map M : R*® — R?", realized through a
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diffeomorphism a : I'yy — ['gr such that

TFir = a(Tum), (2.98)
.1
a’wp = —w. (2.99)

For a fixed a, the function F that satisfies the above equations is called the generating
function of type a of the canonical transformation represented by M. The same type
of generator exists for all symplectic maps close enough to each other (in the C!
topology). Obviously, from these equations it follows that to every symplectic map
infinitely many generating functions can be constructed, due to the fact that the Lie

group of diffeomorphisms of the form (2.99) contains infinitely many elements.

This completes the global theory of generating functions. It is worthwhile to note
that the theory is global in the sense that guarantees the existence of global generating
functions for any symplectic map. However, it is local in the sense that it proves that
one fixed type of generator cannot exist for all symplectic maps, not even locally

around a point.

2.3 Generating Functions from the Computational
Point of View

This section presents a computationally convenient method to obtain generating func-
tions of given symplectic maps. First, it is necessary to rewrite (2.98-2.99) in a form
that is convenient computationally. The vector function associated to the one-form dF
by the standard Euclidean scalar product is the gradient, VF. We write N' = (VF)T

for the map, regarded as a column vector, represented by VF. “dN = 0” means that

ON; _ dN;

Bwj - EU_,'-,

i,j=1,..2n. (2.100)
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These are the well-known necessary and sufficient conditions for the existence of a
scalar potential [10]. The generating function is the potential of the closed one-form

that determines the Lagrangian submanifold.

Denote some canonical coordinates by z = (¢, p), and denote the coordinates of the
space where the generating function is defined by w. Introduce Z and @ by 2 = M (2)

and @ = N (w). Then (2.98) can be expressed as

(Z):QC) (2.101)

( N (w) ) _o M©) ) (2.102)
w \ =z
Splitting a into the first 2n and last 2n components, we obtain
B
a= ( o > (2.103)
Similarly, for its inverse a~! we write
-1 Ol
a”l = ( % ) (2.104)
From (2.102) it follows that
w = 020( /;” )(z), (2.105)
Nw) = a0 ( /:\; ) (2). (2.106)

Combining the two equations we obtain that

Noago(/:\zd)(z)zalo(/\z/!)(z). (2.107)

Recllliring 0y 0 ( J}/t

formlﬂa, useful for the actual computation of the generating function:

(VF)T=<alo( “‘I" ))o(ago( J}" ))_l. (2.108)
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Therefore, the formula (2.9) that has been defined in section 2.1, without apparent
deep logic behind it, is recovered, and the general condition that requires 7 to be a
diffeomorphism appears in computations as the above mentioned invertibility condi-
tion. If the respective map does not have a global inverse, clearly there is no global
generating function. Obviously, the symplectic map M needs to be defined globally.
If (2.105) fails to be a global diffeomorphism, there is still a chance to be defined
locally, producing local generators. The invertibility condition sometimes is called

the transversality condition. Locally, around the origin, this is satisfied whenever

det (Jac (azo ( “‘I" ) (z)lz:0>) £0. (2.109)

Denote the Jacobian of a by ag = Jac (a). ay can be written as

oy = ( g g ) , (2.110)

A, B,C, D being 2n x 2n block matrices. Hence, assuming that the symplectic maps
are origin preserving, i.e. M (0) = 0, the local transversality condition around the
origin is

det (C (0,0) - M (0) + D (0,0)) # 0, (2.111)

where M = Jac(M). If this necessary condition is satisfied, then the generating
function is defined in a neighborhood of the origin, and can be calculated from (2.108)
by mere integration along an arbitrary path. The arbitrariness of the path is assured

by Stokes’ theorem. This has been known also from the local theory of section 2.1.

We note that in fact the computation of F' according to (2.108), and subsequent
integration, gives F', which is the primitive function rather than the generating func-
tion. To get the generating function itself, one has to keep in mind to which a it is

associated, and compute F' in the w coordinates,

F.——>Fo(a20<’¥)). (2.112)
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There is a nice geometric interpretation of the global existence of the generating
functions. As has been seen, any Lagrangian submanifold in unique correspondence
with M can be sent diffeomorphically onto the Lagrangian submanifold determined
by F. If, for some choice of a, this is achieved in such a way that I'yr is close enough
to the zero section to project diffeomorphically onto the base, the generating function
of type a exists globally. Recall that the group of diffeomorphisms is open in the set
of smooth maps in the C! topology. Therefore, any smooth map close enough to the
identity is a global diffeomorphism [41]. The reflection of this fact is that a, (2, 2) has
a global inverse. However, it might not be possible in practice to find an « satisfying
this condition, especially for very nonlinear symplectic maps, and we need to consider
local generating functions. If the projection diffeomorphisms are local, defined in a
neighborhood of the origin, then we have local generating functions. In this case, one
can think intuitively that fixing the type of generating function, as the nonlinearities
of the symplectic map increase, the singularities move closer to the origin, limiting
the domain of validity of the generating function. However, we always assume that
the dynamics is taking place in a finite region of the phase space, so there is no loss
of generality in assuming that the symplectic maps are compactly supported, and
requiring only that the generating function to be defined in the region of interest. If
the symplectic maps are too “big” for the generating functions to cover the region of

interest, the problem can always be alleviated by taking roots of the symplectic map.

Next, we are interested in the constraints imposed by a. Equation (2.99) written

in coordinates is

a£J4na# = j4n. (2113)

R Iw®

By abuse of notation, for u/v we write 4 € R*. More explicitly (2.113) reads
AT CT 02 Ion A B\ [ Jawm 0y
( BT DT ) ( I Opn J\C D )TH 0 = ) (2.114)
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which gives the constraints

ATC - CTA = pdp, (2.115)
BTD-D"B = —pJ,,, (2.116)
ATD-CT™B = 0. (2.117)

Knowing that « is a diffeomorphisms, obviously ay is invertible. It is easy to see that
det (Jyn) = 1 and det (Ln) = det (Jy,) - det (—Jo,) = 1, and hence (det (a#))2 =

p*" # 0. Then equivalently, (2.113) can be written as follows:

ol Jin = pdima’. (2.118)

Transposition gives
J4n0‘# = ua;TLn, (2119)
where we used JI, = —J4, and JJ, = —Js,. Obviously, J;,! = —Jy, and N .

so it results that

Jimagdim = —pag’ (2.120)
J4na#.]~4na£ = —pu, (2.121)
agpJincly = plm, (2.122)

which gives the equivalent set of constraints, but better suited for further analysis:

AJon AT — BJ,, BT = 0, (2.123)
CJonCT — DJ,,DT = 0, (2.124)
DJon BT — CJyn AT = pul,. (2.125)

The constraints show that (A, B) and (C, D) must be symplectic pencils, and there is

an additional condition that links the two pencils. An important observation is that in
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the process of construction of the generating function from a symplectic map (2.123-
2.125) have to be satisfied exactly, not only up to order n. In the Differential Algebraic
framework, where we are working with Taylor expansions, it means that we need to
construct as that are exact, at most order n, polynomial conformal symplectic maps.
To our knowledge, their classification is not known. It follows that we are inherently
constrained to consider linear maps o, which can be constructed and represented
exactly on a computer. In this case a can be represented by a 4n x 4n constant
matrix. If A is invertible, it follows that A~!B is a symplectic matrix. The same
argument holds for the case when C is invertible, resulting that C~!D is a symplectic
matrix. Of course, even in the linear case, there are still infinitely many as to choose

from.

2.4 Computation of Symplectic Maps from Gen-
erating Functions

In this section, the inverse problem is addressed. That is, given a generating function
of type o, what is the symplectic map it generates? In other words, is there a
“reversion” of (2.108) that gives M in terms of F' and a? In section 2.1 this has been
shown to be possible. However, it involves a somewhat awkward definition in terms

of Jacobians. Here another method is presented, without involving the Jacobians.

Introduce a transformation defined by

TO(M)=<alo('AI4 )>o<ago<"; )>—1, (2.126)

where Jac (o) € Gl (4n), and suppose that the transversality condition is satisfied.

Therefore, T, (M) = N if and only if

(N oap—ar)o ( "IA ) — 0. (2.127)
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Now suppose that M is given by another transformation T3 (K) = M, where 8 =
(8,,B8,), Jac(B) € Gl (4n), with the appropriate transversality condition satisfied.

Inserting it in the above equation gives

(Noaz_al)o((ﬂlo(’f))o(ﬁzo(’i))_l)ﬂ. 212)

A

Because (B2 o (IC,I)T) is invertible, this is equivalent to

K

IBI O | I
(NO Q9 — Ql) (o} K , (2129)

A

IC )
(Mo (azoB)—(a;0p)) I ) =0, (2.130)
which in terms of T can be written as

To0 Ty (K) = Taos (K), (2.131)

-1

for any K. If we choose 3 = a7, it follows that

TooTyr =T =1, (2.132)
that is
To-r = (Ty)7". (2.133)

This equation entails that whenever T, (M) = N is well defined, the inverse is

automatically well defined, and gives M =T,-: (N). Explicitly, this means that

e (E)ee(4) e

Applied to the situation where N is the gradient of the generating function and « is
conformal symplectic, it gives a symplectic M. Thus, (2.134) is the counterpart of
(2.9). Together, they provide a convenient computational method to pass from F to

M and back.
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Chapter 3

The Symplectic Approximation
Process

Chapter 2 developed the general theory of generating functions and put the results
into computationally convenient forms. It has been shown that, as long as the math-
ematics can be performed exactly, the passing from symplectic maps to generating
functions and back is easy to achieve. Moreover, this can be done utilizing any of the
infinite set of generator types. Unfortunately, in practice this is not the case. Specifi-
cally, the mathematical operations can be readily performed on a computer only with
the truncation of the Taylor series of the maps at some order n. Since there is a
need to represent the accelerator systems by exactly symplectic maps for long term
tracking purposes, procedures to recover the exact symplecticity of the truncated Tay-
lor maps are needed. The symplectification can be achieved utilizing the generating
function theory. This chapter studies various problems related to generating function

symplectification.
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3.1 Symplectification of Taylor Maps and Sym-
plectic Tracking by the Generating Function
Method

Symplectic integrators became famous for their long-term properties. Their accuracy
is not necessarily their best feature, and very high order symplectic integrators are
often not efficient enough. The overall conclusion is that, for short term integration,
the methods of choice should be integration methods with the smallest possible local
error. For details see Sanz-Serna [1]. One turn around an accelerator can be con-
sidered short term, and a good algorithm should give symplecticity close to machine
precision over the region of interest. In the Differential Algebraic (DA) approach
the integration of the reference particle also gives the truncated Taylor series of the
one turn map, which is also close to machine precision order n symplecticity. The
problems arise with the 108 — 10° iteration of the maps required for evaluation of
the region of stable orbits, the so-called dynamic aperture. The errors potentially
build up during large number of iterations, overshadowing completely the symplectic
nature of the motion if sufficient time passes. Although, as it will be seen, recovering
the symplectic nature of the motion is not a complete cure, there is reasonable hope
that symplectic tracking captures the most important features of the original system
over a sufficiently long time and sufficiently large region of phase space to be useful

for applications.

The symplectification process is the following. Using a given integration method,
compute the truncated Taylor series of the map, M,. It is assumed that M, is
order n symplectic. Fix an o that satisfies the constraints and the transversality
condition. Use (2.108) to compute A, the truncation at order n of A. In COSY IN-

FINITY all the necessary operations of truncated symplectic map generation, order n
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composition and inversion of maps, and integration are readily available. Now, there
is a fundamental difference between M,, and N,. While in general M is loosing its
symplectic property by truncation, because its elements are related by quadratic rela-
tions, NV, still satisfies conditions (2.100) if A satisfies them, because they represent
linear relations. Hence, a function which agrees with the true generating function’s
Taylor expansion up to order n can be easily computed by integration of A, along
an arbitrary path. Therefore, if the true generating function is F, only F, can be
computed. On the other hand, F;, is a valid generating function in its own right, and
can be used to generate an exactly symplectic map. The Taylor expansion of the new

symplectic map agrees up to order n with the original truncated symplectic map.

Separating A, and « in linear and non-linear parts, we obtain

N, = NE+NY, (3.1)
L N
o= (o) - () 5

Therefore, denoting by M, the exactly symplectic map generated by N, (or F,),
and Z = M (z), (2.107) can be used to get

(NL+NY) o (of (3,2) +af (3,2)) = aF (3,2) + oV (3,2). (3.3)
The linear parts o can be written as matrices

of (3,2) = Az+ Bz, (3.4)

o (3,z) = C:i+ Da. (3.5)
Isolating the linear part in Z we obtain

(NioC—-A): = af (3,2) —NYo (Cz+Dz+ab (3, z)) (3.6)

—N}o (Dz+ab (3,2)) + Bz. (3.7)
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It already has been proved in section 2.1 that (AL o C — A) is always invertible; thus

Ni(z .\ _ N 5 N3
Ez(N,,LOC'——A)_lo al (t;\)[L N¥No (Cz+ Dz+aj (2,2))

Lo (Dz+a) (3,2)) + Bz (3:8)

If the right hand side is contracting, it can be solved for Z by iteration. Using as
initial value 2, = My (z) = M, (z) = Z,, if n is sufficiently high, it is hoped that
(3.8) is contracting, and it can be interpreted as a symplectic tracking scheme. The

(k + 1)-th iterate of the map takes the form

afl (K1, 2%) = NN o (C2M*1 + D2F + aff (2511, 2%))

k+1 _ L At
A4 = (WEoC— A) o CNEo (Bak + al (+41,55)) + Bob

(3.9)

Of course, at each (k + 1)-th iteration, it has to be solved for z¥*! as a function of z*

by a fixed point iteration. With only linear maps a, (3.8) simplifies somewhat:

f=(NMroC—-A) ' o[(B-NLoD)z-NNo(C:+D2)]. (3.10)

Notice that (MFoC — A) is in fact a matrix. Denote N = Jac (NF). It is
actually the Jacobian of A, at the origin. From (2.100) follows that N is symmetric.
Interestingly, the first term appearing in (3.10) is the linear part of the symplectic
map. Hence, assuming that the linear part of the solution can be computed always
to machine precision, (3.10) takes the following form for the non-linear part of the

solution V¥

V= - (MoC—-A)"oNYo(C:+D2). (3.11)

To this end, in principle the symplectification of maps and the symplectic tracking
utilizing the generating function method is solved. We conclude the section with an
interesting question. One of the reasons for tracking with maps is to speed up the

simulation of accelerators. It seems that always implicit equations must be solved
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for tracking symplectically. If the fixed point iterations could be replaced by some
explicit relations, probably the tracking would be much faster. This problem is equiv-
alent to the question whether the generating functions must be of mixed variables?
Unfortunately, in general the answer is yes. For any a, denote Jac (a2) = (C D).
If any generating function was non-mixed, it would mean that C = 0. But then it

would follow that

det (Jac (a)) = det ( 4 B ) = det (A) - det (D) (3.12)

0 D
From the constraints (2.123-2.125) results that in this case (det (D))? = (det (C))* =
0, giving det (Jac (a)) = 0, which contradicts the condition compatible with the
constraints: (det (Jac(a)))® = u" # 0. The same argument is valid for any block

entry in Jac (a); hence A, B,C,D # 0.

In subsequent sections we will show that the complexity of the problem can be re-
duced by considering equivalence classes of generating functions. However, the results
of this section, taken together with subsection (3.3.1), is a recipe for transforming any
code that uses the Goldstein generating function symplectic tracking to a form which
uses fixed point iterations for solving the implicit equations, instead of the more tra-
ditional Newton method. In section (3.5) it will be pointed out that the fixed point

iteration has certain advantages over the Newton method.

3.2 Transformation Properties of Generating Func-
tions

By looking at how the generating functions transform under modifications of a and/or
M, a set of rules is obtained, which are called transformation properties. These

properties are based on the fact that if a is a conformal symplectic map such that

(Jac (a))T Jun Jac (@) = pJin, (3.13)
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then for any 3 and 7 such that

(Jac (8))T Jam Jac (B) = Jun, (3.14)

(Jac ()" JinJac () = Jin, (3.15)

the map S o a o+ is also a valid conformal symplectic map. Indeed, it follows from
(3.14) and (3.15) and repeated application of the chain rule that 5 o a o v satisfies
(3.13). Therefore, it gives another type of generating function. In invariant form, if

a*wy = pw, B*wy = wp, and y*w = w, then
(Boaoy) wo=17"(a" (B'wo)) =7" (a’wo) = 7" (w) = pw. (3.16)

These rules are interesting in their own right in symplectic geometry, and some of
them can be found in [29]. More importantly, the rules are used in the next sections

for equivalence class reduction of the set of generating functions.

We begin with studying what happens to the generating function F, o under the
transformation a; — Aa;, for some non-zero real A. This affects only the conformality

factor u of a, which becomes Au. Slight rearrangement of (2.9) gives

(VR 02 —ar) o < “}l” ) —0. (3.17)

Then, we also have

T
M
(VF('\::),M> oaz—,\.al O( T )—0, (318)

which is equivalent to

T
(V (,\—1 . F(':;‘),M)) oca;—ap | o ( 'Alf! ) = 0. (3.19)
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Comparing (3.17) with (3.19) we see that

VFEm=V (/\_1 : F(/\al)‘M) ’

that is
a2

F('\m),M =/\‘Fa.M + ¢,

for some arbitrary constant c.

In the same way, the transformation a; — Aas has the following effect:

((7r(zy) oo -au)a(§) = 0
(720 o22) cn=ar)o (4

([ (v (ry o)) o] o () = o
<<V (- (o)) o ) (7)

Again, comparison of (3.17) and (3.132) gives

v (/\_1 . (F()“::z)“u o /\I)) = VFa,M,

that is

F( al =X Fomod'IT+ec

Aaz ) M

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Also, from these two transformation properties it is easy to see the effect of the two

transformations combined.

Next, we study what happens if we change the symplectic map, for example, by
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M = Mo A, for some symplectic map .A. From (2.9) we have

((VFa,MoA)T oy — al) o ( Mlc-) A ) =0 (3.28)
(Vhasenocz-a)o( 44 ) =0 @2
((VFa,MOA)T o(azoTy4) - (a0 TA)) ° ( 'A; ) = 0, (3.30)

where T4 is defined by T4 (2,2) = (2, A7 (z)). Equation (3.30) can be written also

as
((VFusasn)” o (@20 T) = (a1 0 T)) o ( M ) —o, (3:31)
from where we conclude

Fomon = Faorym +c. (3.32)

In the same manner, the left action of another symplectomorphism on the map,

ie. M= KoM leads to

((VFQ_;COM)T oay — al) o ( K OIM ) =0. (3.33)
Define T (2,2) = (K (2),2). Then,
Fa,ICoM = FaoT,c,M +c. (334)

We are also interested what happens when we change the coordinates in the gen-
erating function, F — F o L, by a diffeomorphism £ (here not necessarily a symplec-

tomorphism); we have

N X

(CiFor)om-a)o( ) =0 @)

0 (3.36)

(Jac(C))T- (VF)Toang—al)o< /}4 )

(VFT,_OO,,M)TO(.Coag)— ((Jac (E))_T-al))o( /‘I” ) = 0, (3.37)
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where we defined T, (2,z2) = ((Jac N T3 L (z)). Hence,
v (FTLDQ,M o E) = VFQVM, (338)
that is

FTCOQ,M =Famo L '+ec (339)

Finally, if we replace M with M1, we arrive to

(VFame-)T 00z —ar) o ( MI_I ) —0. (3.40)

Applying M from the right we get

((VFQ,M_I)T o0y — al) o ( AIA ) =0. (3.41)

This is equivalent to say that, if in both a; and a, we interchange the first 2n variables
with the second 2n, we get back Fj4 with this changed . In terms of the Jacobian

a4, or in case of linear as, this can be written as the transformation

A B B A
(CD)H(DC), (3.42)
so we can conclude that

+e. (3.43)

3.3 Equivalence Classes of Generating Functions

We call two types of generating function equivalent if both types generate exactly
the same symplectified map when applied to a truncated, order n symplectic, Taylor
map. As we showed, the different types are parametrized by conformal symplectic

maps. In this section we show that all the types generated by linear as, and which
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exist at least locally for a given symplectic map, can be organized into equivalence

classes characterized by symmetric matrices.

Assume that for a given symplectic map M there exists a generating function of

o= (oo (3 )eloe(3) o

type a given by

and

Jac (a) = ( g g ) (3.45)

From (2.6) it readily follows that

(Jac (o))" = ( _JfDTT }'ﬁ‘f ) (3.46)

First of all, it is straightforward to see that one can always change the conformality
factor to u = 1 using the transformation rule (3.21), by choosing A = u~!. From
(2.134) and (3.46) it easily follows that we get the same symplectified map in both
cases. Therefore, the conformality factor does not introduce any flexibility into the
symplectification process. Hence we can always assume that 4 = 1, which is the most

convenient value from the numerical implementation point of view.

Denote the linear part of M by M. Then the generating function of the same

type that generates the linear part M is given by

(V)T = (alo( p )> 0 <a20< p ))_1. (3.47)

Subtraction of (3.47) from (3.44) gives

(V(F-F)T = [(al ~ (VR oas) o( M )] o (ago ( M )>_1(3.48)
- <&10( /;4 )> o (azo( /}4 ))_l ~(ve),  (3.49)
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where we used the notations G = F — F and &; = a; — (VFO)T o ay. Define

B (w,w) = ( 0 = (VF)" (u) ) : (3.50)

w
Obviously, being a kick, i.e. changing only one component, 3 is a symplectic map for
any function Fy. Clearly, with a; = a; we have @ = o a. Therefore, according to
the transformation properties of the previous section, G is a valid generating function
of type &. If we denote N = Jac (VFp)T = (AM + B) (CM + D)™, the Jacobian of

@ is given by

_(A-NC B-ND
Jac(a) = ( c D > , (3.51)
and its inverse by
=1 JCT  —J (AT - C’TN)
(Jac (a)) - ( -—'JDT J (BT — DTN) (352)

Notice that N is actually the Hessian of a function, and hence symmetric, i.e. N7 =

N.

Here we have to make an important observation. The symplectification procedure
consists of starting with M,, and an a priori fixed o, and computing F,, using (2.9).
Then (2.134) gives an exactly symplectic map, which we call the symplectified map.
Unfortunately, on a computer (2.9) has to be represented by implicit equations and
solved by fixed point iterations, but formally the Taylor expansion of the symplectified
map (2.134) will be M,, up to order n. The point to be emphasized is that one needs
an a priori fixed a that is exactly symplectic (not only up to order n) for the procedure
to work. However, in general it is not easy to construct useful exactly symplectic
polynomial maps of degree at most n. Even in the case that one constructs such a
map, in general there is no reason to believe that (VFy)” as given by (3.47) will be
a polynomial map of degree at most n. Thus, in this case the exact symplecticity

of & will be spoiled. Therefore, we are constrained to consider equivalence classes of
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the types of generating functions associated with the subgroup of linear conformal
symplectic maps.

To this end, we can compare the two symplectified maps, that is the map obtained
from F, and «, and the map obtained from G, and a&. Notice that if o is linear,
(VF,)" and hence & are also linear. Then for the Jacobians of the symplectified

maps we obtain from (2.134)

Jac (Mp, o) = :( JCT —JAT )( Jac(iFn)T )] (3.53)
_ T -1

(—D7 B )( Jac (YF") )] (3.54)

- (JCT-Jac (VFn)T—JAT)- (3.55)

(~JD7 - Jac(VE)T +B7) (3.56)

Jac (Mg, a) = [ JCT ~CTN) ) (Jac (VFI")T‘N )} (3.57)

[ JDT J (BT - DN) ) ( Jac (W}’)T‘N )]— (3.58)

- (JCT Jac (VF,)T = JCTN — JAT + JCTN) : (3.59)

( JDT . Jac (VE,)T +JDTN+JBT—JDTN)-1 (3.60)

- (J Jac (VE,)T - JAT)- (3.61)

(—JDT Jac (VE,)T + JBT) - (3.62)

Since the maps are assumed to be origin preserving, we can conclude that
Mg, o = Mg, & (3.63)

Thus we get the same symplectified map regardless of using F; of type a, or G, of

type a. So why is G, interesting? It is interesting because of the following property:
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if we denote the Jacobian of & by

A B
( c D ) : (3.64)
from (3.51) we observe that
AM+B = (A-NC)M +(B-ND) (3.65)
= (AM +B)- N(CM + D) (3.66)

= (AM+B)-(AM +B)(CM +D)"' (CM +D)  (3.67)

= 0. (3.68)

Therefore we need to consider only the types that satisfy AM + B = 0, in addition

to the usual constraints imposed by (2.6).

However, it is possible to further reduce the equivalence classes. We will use the
transformation rule (3.39) with linear £. Denoting Jac(£) = L and @ = T o & we
obtain .

LA ws) a0

Jac (&) = ( LC LD
We choose L = (CM + D)™'. After writing out explicitly the constraints contained
in (2.6), a straightforward calculation shows that
(CM+D)™' = —M'JAT, (3.70)
(CM+D)YT = —MTJA L. (3.71)
This entails that

-MTJ J

Jac (&) = ( _M-'JATC -M-'JATD ) : (3.72)
and
w-1_ [ JCTAMJ M
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As mentioned above, from (3.39) we obtain that Gapm = Faam 0 L. We drop the

subscript, as there is no danger of confusion. Since L is linear, we also infer that
G,=F,0L, (3.74)
and as a consequence (VG,)" = LT - (VF,)T o L, or
(VE) = (L) - (VGa) o L. (3.75)

We are now in position to compare the Jacobians of the two symplectified maps, and

obtain
- T
Jac(Mg,a) = |(JCT —JAT ) ( Jac (ZGn) )] . (3.76)
_ T -1
( —JDT —JMTAT )( Jac (VGn) )] (3.77)
- (JCT Jac (VG)T - JAT) : (3.78)
_ -1
(—JDT Jac (VG,)T — JMTAT) , (3.79)
where we used B = —AM in the second line. Another calculation shows that
[ -\T | T r-1
Jac (MF,,.a) = ( JCTAJ (MT)—I M ) ( (L ) JachGn) L )] .

[ g (LT - Jac (VG)T- L' \]7
L( JDTAMJ 1)< ; )] (3.80)

- (JCTAJ (MT)™ MTJA  Jac (VG,)" - MM7'JAT) - (381)
(JDTAMJMTJA‘I Jac (VG,)T - ‘JAT)—I (3.82)
- (J - Jac (VG,)T —JAT)- (3.83)
(~JD7 - Jac (VG.)" -—JMTAT)_I, (3.84)
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where we used MJMT = J. Hence, we obtained again that

Mg, a = Mg, a, (3.85)
and after combining (3.63) and (3.85) we finally arrive at

Mg, o = Mg, 5. (3.86)

Thus, the symplectified map obtained from a truncated generating function of type

(linear) o agrees with the symplectified map obtained from type &. Denote

Jac (&) = ( g g ) . (3.87)
Notice that the property from the first step of the reduction, that is
AM+B = —-MTIM+J (3.88)

is preserved, and in addition it has another very nice property, namely

CM+D = —-M'JAT(CM + D) (3.90)
= —MUJAT(AT) M =1, (3.91)
where we used (3.70) in the second line.

Therefore, every generating function type associated with linear maps, which ex-
ists at least locally for a given symplectic map, is equivalent for symplectification

Purposes with another type associated with
A B
( c D ) : (3.92)
Such that the following relations hold:

AM+B = 0, (3.93)

CM+D = I (3.94)
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Equations (3.93) and (3.94) have to be imposed in addition to the usual constraints

derived from (2.6), that is
AJAT - BJBT =0,CJCT - DJDT =0, DJBT —CJAT = I. (3.95)

These five conditions restrict very much the pool of independent generator types.
From (3.93) and (3.94) we obtain B = —AM and D = I — CM respectively, which

inserted in (3.95) gives
A=—-JM™, (3.96)
and re-inserted in (3.93) gives
B=-AM=—-(-JM )M =J. (3.97)

The first condition in (3.95) is automatically satisfied if we impose (3.93) and (3.94).

Inserting D = I — C'M in the second relation of (3.95) we obtain
CMJ—(CMNT =1 (3.98)
We make the ansatz
1
CM = 3 (I+JS). (3.99)

This is always possible for some matrix S. Insertion of (3.99) in (3.98) gives that S

must be symmetric, i.e.
ST =5, (3.100)

but can otherwise be arbitrary. Thus we obtained

c = Yavusym, (3.101)

N =N

(1-JS). (3.102)
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Therefore, every generator type belongs to an equivalence class [S] associated with

—JM! J )
_ , 3.103
(%(I+JS)MI L(I-JS) (3.103)
and represented by the symmetric matrix S.

Given an arbitrary type of generating function, how do we know which equivalence

class it belongs to? We saw that

C=(CM+D)'C,D=(CM+D)"'D, (3.104)
and similarly
_ 4o~ 1

We can express CM — D from the first two and second two relations respectively,

obtaining
(CM +D)"'(CM - D) = JS, (3.106)
or equivalently

S=-J(CM+D)"" (CM-D). (3.107)

To remind ourselves, equivalence means that generating functions from the same
equivalence class will produce indistinguishable results if used to symplectify a given

order n symplectic map. Thus we just proved the following theorem.

Theorem 7 Every generating function type associated with a linear conformal sym-
plectic map that exists at least locally for a given symplectic map belongs to an equiv-
alence class represenvted by a symmetric matriz. An arbitrary type of generator, as-
sociated with a linear o satisfying conditions (3.95) and (2.111), belongs to a class

associated with (3.103), and characterized by the symmetric matriz given by (3.107).
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3.3.1 Application to the Conventional Generating Function
Types

To exemplify the process, we show how the general theory contains the traditional,
Goldstein type, generating functions. Because of (3.107), without loss of generality
we can assume that the symplectic maps have identity as linear part. More explicitly,
fixing the linear part does not affect the calculation of the matrices A, B, C, and D,
but it does influence the calculation of S. However, for a different linear part, use of
(3.107) will give the appropriate matrix S in each case. Here we arbitrarily fix the
linear part to identity to exemplify the calculation process. In canonical coordinates

(¢,P), an origin preserving symplectic map acts as

q Q
S )= 5 ). 3.108
(5)-(%) o100
The type F) is the solution of the implicit relations
r(d\_( P
wrr(L)=( %) 109

Clearly, in this case a can be chosen as a linear map, so in view of (2.107) we have

(VF)T(C(%)+D<§))=A(§)+B(g). (3.110)

We choose
A::(&_%), B:(&&», (3.111)
C:=<%:&), D:(&;&). (3.112)

These matrices satisfy the constraints (2.123-2.125) and clearly substitution into

(3.110) gives (3.109). We say that the F| type of generating function is associated to

0, 0. 0, I
Jac (o) = g: 'ai" ?: g: , (3.113)
I, 0, 0, 0,



or that Fj is of type a;.

Similarly, the Goldstein type 2 generating function F3, given by

(VFz)T< ;13 ) = ( % ) (3.114)
is associated with
0, 0, 0, I,
I, 0, 0, O,
Jac (ap) = 0. 0. L 0. (3.115)
0, I, 0, O,

It can be easily checked from (3.107) that it belongs to the class represented by

52=—<(I) é) (3.116)

The conventional type three (F3), determined by

(VFs)T( g ) = ( __;1; ) (3.117)
is associated with
0 0 —-I 0
Jac (a3) = g ‘DI g ? , (3.118)
I 0 0 O
and belongs to the class
S, = ( ; é ) (3.119)
differing only by a sign from the type F;
S3 = —-5,. (3.120)

Finally, the conventional type four (F}) is determined by

) = ( g ) (3.121)
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and is associated with

Jac (o) = (3.122)

O O ~NO
N O O O
o O O

O ~NO O

It is well-known that the type F} cannot be used in the case when M = Z. This
naturally follows from the general theory, due to the fact that the transversality

condition is not satisfied. That is,

det (C-I+ D) :det( ﬁ" 8" ) = 0. (3.123)

Therefore, it does not belong to any equivalence class for symplectic maps having
identity as linear part. The transversality condition is also violated in the case of the
Fy. On the other hand, in the case of the F; the transversality condition is satisfied

for the identity map, as expected

det (C -1+ D) = det( n ?") . (3.124)

An analogous result is found for Fj too.

Thus, we recovered from the general theory the well known facts that F; and Fj
cannot, while F; and Fj can be used to represent at least locally symplectic maps
having identity as linear part. Also, we identified the equivalence classes which F;
and F; belong to. The only difference if the symplectic maps do not have identity as
linear part is that we obtain different symmetric matrices, and hence classes, which

also can be computed using (3.107).
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3.4 Equivalence of Symplectification with and with-
out Linear Part

Symplectification can be performed on the nonlinear part only by first factoring out
the linear part, or on the whole map. The next question that arises naturally is
whether there is something to be gained if one first factors out the linear part of
the symplectic map to be symplectified. This section answers the question in the
negative. Moreover, combining results of this section, we show in subsection 3.4.1
that not even a linear symplectic change of variables can provide additional freedom

in the symplectification process.

We write the symplectic map to be symplectified as
M=M+H, (3.125)

where M is the linear part, and H the higher order terms. We can distinguish three
symplectification procedures: symplectify M, directly, symplectify M/ , obtained

from

Mp=I+M"'oH, (3.126)
or symplectify Mg, obtained from

Mp=I+HoM™" (3.127)

In the latter two cases we first factored out the linear part from the left and right

respectively. The relations among the maps are the following:

M = MoM,, (3.128)

M = MpgpoM. (3.129)

The question is whether these relations continue to hold for the symplectified versions

of My, My ,, and Mpg,. Suppose we symplectify the maps using a generator of type
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a with
Jac (o) = ( é g ) : (3.130)
The local existence conditions are
det (CM + D) #0 (3.131)
in the first case, and
det (C+ D) #0 (3.132)

in the second and third case. Being linear, we use M for the Jacobian of M too.
Equations (3.131) and (3.132) are not compatible in general. Thus in general not
every type of generating function exists in all three cases. The right question to ask
is the following. Suppose one uses some type of generator to symplectify a given map,
using the approach of one of the three cases. Then, are there other types of generators
which produce the same symplectification for the other two cases? In other words,
we would like to find the appropriate type of generators such that relations (3.128)

and (3.129) hold for the symplectified maps.

To this end, any generator for the first case is associated to one of the following:

—JM! J
Jac (o) = ( LI+ JS)M-' L1(1-JS) ) (3.133)
Its inverse is given by
- IMJ(I-SJ) M
1 _ [ 2

Denoting the generator by Fis), Jac (VF[S])T =n N5}, and the symplectification of
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M, by Ms; we obtain

Jac (Mys)) = :( \MJ(I-SJ) M )( Ms )} . (3.135)
:( _LJ(I+S)) I )( Nllsl )J_l (3.136)

- M. (%J(I—SJ)-N[5]+I>- (3.137)

(—%J (I+S5J)- N+ 1)_1 . (3.138)

Now we turn our attention to the second case. Here the possible generators belong

to one of the following classes:

—J J
Jac (3) = < L(145) (12 J8) ) (3.139)

Clearly its inverse is

] LJ(I=3J) I
/ 1 _ 2 i
(Jac(B))"" = ( P14 50) 1 (3.140)
Again, denoting the symplectified version of M, by M L[3] We obtain
i ) N
Jac(Myg) = |(3I(1-57) I )( }Sl ” (3.141)

(-LJ{I+8J) I) ( NF’] )]_1 (3.142)

= (%J (I-5J)- Nig) + 1) - (3.143)

1 ) -1
(—§J (1+57)-Ng + 1) , (3.144)

T
where we used the notation Jac (VF[S]) =n N[S] Next, we use the transformation

64



property (3.34) with K = M~!. It follows that
Fg my, = Fpore m-
Also notice that 3o Tx = a if and only if S = S. In this case
N[g] = Nig).
Comparing (3.137) and (3.143), and using (3.146) we can conclude that
Misy=MoM,q,
if and only if

S=85.

(3.145)

(3.146)

(3.147)

(3.148)

This proves that the symplectified version of (3.128) is (3.147), and holds only if

(3.148) is satisfied.

We can proceed to the third case and follow the same route. To symplectify Mg,

we choose a generator type from the pool

-J J

Jac(")=<g(1+JS) %(I—Jé))’
(JaC(v'))"=( / (1-8) I).

~1(1+8J) 1

with inverse
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If we denote the symplectification of Mg, by M r[3] Ve get
Jac (Mpz)) = ( L(r-84) 1) ( Nl[f] )] . (3.151)
(-1s(1+87) 1) ( NFJ )r (3.152)

= (%J (I - S'J) N[g] + I) . (3.153)

1 ~ -1
(—§J(1+SJ) N3 +1) : (3.154)
T
using the notation Jac (VF[S]) =, N[S]' Now using the transformation rule (3.32)
with A = M~! we obtain
F‘y.;\AR = FyoTy M- (3155)

A straightforward calculation gives that

Jac(yoTa) = ( 1 (1_+JJS) L1 —MJIS) M ) ’ (3.156)
2 2
with inverse
(Jac(yoTa)) ™' = ( o (I—SJ) ! ) : (3.157)
~iM (1+87) M

Then, (3.153) can be expressed as
Jac (Mp5)) = X - M7, (3.158)
where we introduced the notation

X = (%J (I - SJ) VFyoram + 1) : (——%M“J (1 + S’J) VF, o + M“‘) o

(3.159)
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But as one can see from (3.157) this is nothing else than the Jacobian of the sym-
plectified map obtained from M, and generator of type (3.156). As shown in section
3.3 this generator type for M, belongs to the equivalence class represented by the
symmetric matrix calculated using formula (3.107). A short calculation gives the

result,
S=MTSM. (3.160)
Combining this result with (3.158) and (3.159) we can conclude that
Mg = ML[S] oM. (3.161)

This proves that the symplectified version of (3.129) is (3.161), and holds only if
(3.160) is satisfied. Therefore, the main result of this section can be formulated as

the following theorem.

Theorem 8 The symplectified version of (3.128), i.e. (3.147), holds if and only if
(3.148) is satisfied, and the symplectified version of (3.129), i.e. (3.161), holds if and
only if (8.160) is satisfied.

The main point we learned is that from the optimal symplectification point of
view there is no difference which way one proceeds. Once we obtained the best
type of generator for one case, the best generators for the other cases automatically
follow from (3.148) and (3.160). Therefore, there is nothing to be gained by factoring
out linear parts and symplectifying the nonlinear parts only. Moreover, the first
case (without factorization) is the most efficient when implemented numerically on a

computer.
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3.4.1 Equivalence in the Case of Symplectic Maps Conju-
gated by Linear Symplectic Maps

Combining the left and right factorizations in linear and nonlinear parts just discussed,
we can address the special case of the linear symplectic change of variables. From

(3.128) and (3.129) we can infer that
Mp=MoMpoM, (3.162)
and from (3.147) and (3.161) that
Mps) = Mo Mg oM™, (3.163)
if
S=MTSM. (3.164)

The two maps are conjugated by a linear symplectic transformation. However, this
case is very special, since both Mg and M, are obtained from the same map M.
We could relax the conditions, and ask if any two symplectic maps are conjugated by
an arbitrary linear symplectic map, then the same holds true for their symplecified

counterparts. That is, suppose that M and A are symplectic maps such that
N=KoMoK™, (3.165)

for some linear symplectic K. The possible types of generating functions are associated

with
_JKMK! J
Jac(a) = ( L(I+JS)KM-K- 1(I - JS) ) (3.166)
for A, and
_JM-! J
Jac (6) = ( L(I+JS) M- L(I-JS) ) (3.167)
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for M,. As before, we denoted M = M + H and Jac (K) = K. The transformation

rule to be used here is

Fon = Foore M, (3.168)
where
Jac (Tx) = ( ’0{ 2 ) (3.169)
Following now well established procedures, it is straightforward to show that
Nis;=Ko M[S—]olc_l (3.170)
holds for the symplectified maps if
S =KTSK. (3.171)

Therefore, there is no additional freedom in the symplectification process if the sym-

plectic map is first subjected to a linear symplectic variable change.

3.5 Implementation

In this section, the implementation of the extended generating function symplectifi-
cation method to COSY INFINITY is described. The method starts with M, given,
and some arbitrary initial condition z. Utilizing (2.9) with a given by (3.103), the
truncated a-generating function F;,; is obtained. The arbitrary symmetric matrix S
must be specified, fixing the type of generator utilized. All the necessary operations of
map composition, map inversion, differentiation and integration are readily available

in cosy. Then, notice that (2.9) can be expressed as

3-M-2=M-J-(VE)T(C-3—-M-2)+2), (3.172)

69



Ty




where we denoted Z = Mg (z), M|s) representing formally the symplectified map,

and
C= -;-(1 +JS)M™!. (3.173)
To avoid as much as possible any problems with cancellation of digits, we denote
w=z-M-z, (3.174)
which leads to
w=M-J-(VE) (C-w+2). (3.175)
This can be solved by a fixed point iteration for w, and gives the final result by
t=w+ M-z (3.176)

The orbit of z is then computed by iteration of the procedure (in the next step we

take Z as the initial condition, etc.).

Writing (3.175) as w = f (w), we observe that to be able to solve (3.175) by a
fixed point iteration, it is sufficient (but not necessary) for the right hand side to be

contracting for a fixed z, i.e. is guaranteed to succeed if

|f (wa) = f (w1) | £ g |wg — wy], (3.177)

for some ¢ < 1. To have a good chance of contractivity over an extended region,
the ‘derivatives of the generating functions must be small. From our experience, in
general the fixed point iteration converges in the region where the generating function

is defined.

We compiled a table with the number of iterations needed for convergence, for a
few relevant examples that will be presented in more detail in the next chapter. The

examples that we tracked are: two maps generated from random Hamiltonians, an
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Using S =0

Example Number of iterations
Small ampl. | Medium ampl. | Large ampl.
Random map 1 1 4, 10] 9,29
Random map 2 1 1,9] 3,34
Anharmonic oscillator 1 1,8 1, 28]
Quadratic map 1 1 1
LHC [4,5] (7,10] 8, 68]

Table 3.1: Number of iterations needed for convergence in solving (3.175) for several
examples, using the generator type associated with S = 0. The orbits of the particles
of small, medium, and large amplitude, respectively, have been followed for 100 turns,
and the number of iterations needed is enclosed in the intervals appearing in the table.

Using F;
Example Number of iterations
Small ampl. | Medium ampl. | Large ampl.
Random map 1 1,4] 6,36 (7, 56]
Random map 2 1,8] 3, 46 not stable
Anharmonic oscillator 1 1, 8] 1,27]
Quadratic map [4,15] [13,n.c.] [7,n.c
LHC (4,7] [7,16] not stable

Table 3.2: Number of iterations needed for convergence in solving (3.175) for several
examples, using the conventional generator type F. The orbits of the particles of
small, medium, and large amplitude, respectively, have been followed for 100 turns,
and the number of iterations needed is enclosed in the intervals appearing in the table.
In the table, n.c. stands for no convergence in 100 iterations, and “not stable” means
that the respective particle is predicted by the algorithm to be unstable.

anharmonic oscillator, an exactly symplectic quadratic maps, and the Large Hadron
Collider with fringe fields included. For more details see next chapter. The results
are summed up in Table 3.1 (using the generator associated with S = 0) and Table

3.2 (using the conventional Fj type).

Of course, (3.175) can be expressed as f (w) — w = 0, and solved for w by New-
ton’s method. We noticed that the results not only are sometimes dependent on the
generating function type employed, but also on the numerics, that is the particular

numerical method used to solve the implicit equations. Of course, if we start with an
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exactly order n symplectic map, and the convergence to the solution of the implicit
equations is achieved over the tracking region for both methods, then the resulting
pictures are identical. However, in practice the fixed point iteration works in a more
stable manner. It is faster than Newton’s method when many particles are tracked si-
multaneously, and, in the vast majority of cases studied, its domain of convergence is
larger. For maps of practical interest, Newton’s method often does not converge close
to the dynamic aperture, and sometimes gives misleading results. Moreover, if the
symplectification starts with truncated maps that are not exactly order n symplec-
tic, the results depend on the way the truncated generating functions are computed.
It seems that the general theory provides a good order n symplectification scheme.
More about the performance of the algorithm is presented in the next section, where

the attention is turned to examples.

For a better overview of the theory and aspects of the implementation, the Figure
below shows a flow diagram, which explains the algorithmic steps involved in the

symplectic approximation/tracking process.

[ 1. Compute order n truncation of the map M, ]
| 2. Choose a symmetric matrix S, by J;his fixing the generator type utilized |
| 3. Use (2.9) to compute the order n + ]:Ltruncation of the generator of type [S] |
| 4. Solve (3.175) by iterations, and jse (3.176) to obtain the final result |
[ 5. Iterate 4. until the desireé number of turns is reached |

We mention that every step is efficiently implemented in COSY INFINITY, and by
vectorization of the algorithm, many particles can be tracked simultaneously. Choos-
ing different generator types, by specifying different symmetric matrices S, the track-

ing algorithm will give different tracking pictures.
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Chapter 4

Examples

This chapter is devoted to illustrate the performance of the extended generating func-
tion symplectification method through several examples. First we generate symplectic
maps from random Hamiltonians. In two dimensions this can be done easily to high
orders. We can assume that these high order truncated maps are approximating the
exact maps well enough to be considered numerically symplectic over a sizable phase
space region. Then we can compute the generating functions, truncated as some mod-
est order (say 7 or 11), and use them to generate exactly symplectic maps according
to the above symplectification procedure. Finally, we can compare the various maps

obtained this way. We will present some typical cases.

Next, we study two examples that have been studied previously in the symplec-
tification literature: an anharmonic oscillator [16, 14], and an exactly symplectic
quadratic map [51]. These are important cases, as the exact solutions are known and

can be compared with the symplectified ones.

We apply our method to a lattice of the proposed Neutrino Factory [52], and the
FNAL Proton Driver [53]. Although we track the muons for their lifetime (only 1000
turns), it is still an interesting case due to the wide array of nonlinear effects which

the lattice exhibits [11, 12, 13]. Finally, some tracking results for the LHC are also
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provided.

4.1 Maps Generated from Random Hamiltonians

We generate polynomials in two variables, starting with quadratic terms. The co-
efficients are chosen randomly, evenly distributed in [—1,1]. Regarding the random
functions as Hamiltonians, we compute their time 1 maps to very high order, say
19. The vanishing linear part of the Hamiltonians guarantee that the resulting maps
will be origin preserving. We show two dimensional examples because the maps can
be computed to very high orders, and generically in four or more dimensions the
symplectic maps are unstable. The few stable cases that we obtained were linearly
coupled and chaotic. As it is well known, chaos cannot happen in time independent
one degree of freedom Hamiltonian systems. Although in 2D symplecticity is equiv-
alent to area preservation, we chose to show some 2D examples because due to their

regular features it is easier to compare the various tracking pictures involved.

At order 19 most of the resulting maps can be considered numerically symplectic
over some region of phase space. Thus, we take them as the “exact” results. Then, we
compute their generating function truncated at some lower order, and we use them
to generate exactly symplectic maps according to the symplectification methods of
the previous chapters. We use different types of generating functions, and finally we

compare the resulting maps.

For one of the random seeds, the 19th order Taylor map tracking picture for 1000
turns, of some particlés launched along the ¢ axis, looks as in Figure 4.1 (the coor-
dinate axes are always ¢ and p). The symplectified map from the order 19th Taylor
map with S = 0 looks almost identical; see Figure 4.2. To asses the performance of

the symplectification method for this example, we show the 3rd, 7th, and 11th order
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Figure 4.1: 1000 turn tracking of a random two dimensional symplectic map with the
19th order Taylor map (considered to be essentially the exact result).
Taylor maps, and the corresponding symplectified maps with S = 0 tracking pictures

in Figure 4.3.

While the low order Taylor maps give very poor results, the symplectified maps
show the right qualitative behavior right from the beginning. The dynamic aperture
is overestimated, but the agreement gets better as the order is cranked up, and at
order 11 we get almost the same picture as with the 19th order tracking, except
perhaps slightly changed tunes of some outer particles. Therefore, at least in this

case an 11th order symplectified map predicts the right dynamic aperture.

We can compare the 11th order S = 0 symplectified tracking picture with the
conventional (Goldstein) generator types. We track using 6 different 11th order gen-
erators: Fy, F,, F3, and Fj for the full map, and F, and Fj3 for the nonlinear part
only. These are the cases traditionally used in the past. The results are depicted in

Figure 4.4. The superiority of the S = 0 method is clear.

The above random map turned out to be the most nonlinear seed. As a second
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Figure 4.2: 1000 turn tracking of the random two dimensional symplectic map ob-
tained from the 19th order Taylor map, by symplectifying it with the generator type
associated with the S = 0 symmetric matrix.

example in this group, we show results obtained for another seed, which is much less
nonlinear. First of all, the 19th order Taylor map tracking for 1000 turns of some
particles, launched with vanishing momenta, is shown in Figure 4.5. Actually, already
the 15th order Taylor map gives visually identical results, so we assume the order 19th
map to be the exact map. As Figure 4.6 shows, the 19th order S = 0 symplectified
map tracking gives the same result as the corresponding Taylor map, even for the
tunes. Of course, the lower order symplectifications shown in Figure 4.6 give slightly
worse results, but still acceptable, and give a quite accurate estimation of the dynamic
aperture. For comparison, the results using the conventional generators are presented
in Figure 4.7. We also studied many other seeds for random map generation, and all

give similar results.
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Figure 4.3: 1000 turn tracking of the random two dimensional symplectic map with
the 3,7, and 11th order Taylor maps, and S = 0 symplectified map, respectively.
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Figure 4.4: 1000 turn tracking of the random two dimensional symplectic map with
the symplectified maps utilizing the Fy, F;, F3, Fy generating function types for the
full 11th order Taylor map, and F; and F3 for the nonlinear part of the 11th order
Taylor map respectively.
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Figure 4.5: 1000 turn tracking of another random two dimensional symplectic map
with the 19th order Taylor map (considered to be essentially the exact result).

0.27 0.27

Figure 4.6: 1000 turn tracking of the second random two dimensional symplectic map
with the 3,7,11, and 19th order S = 0 symplectified maps respectively.
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Figure 4.7: 1000 turn tracking of the second random two dimensional symplectic map
with the symplectified maps using the conventional generator types Fi, F5, F3, and
F; respectively.
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4.2 An Anharmonic Oscillator

We consider the 2D anharmonic oscillator described by the Hamiltonian

1
H=z-((p"+¢*) - Zq“, (4.1)

DO =

which has been studied previously in [16] to compare various symplectification meth-
ods, and in [14] to study optimal Cremona symplectification. To make the comparison
easier we follow the same guidelines, and present the performance of our method by
symplectifying the order 3, 7 and 11 Taylor maps of the time 1 map of the flow of
(4.1). We track for 1000 turns and use as initial conditions

{ ¢g=0.1,023,0.5,0.7,0.9, 0.95, 0,99, 1.0 . (4.2)

p=0

We present the order 19 Taylor map for comparison purposes. Figure 4.8 shows
the orders 19 and 7 non-symplectified Taylor map tracking, and Figure 4.9 the S =0
symplectified tracking pictures obtained by symplectifying the order 3, 7, 11 Taylor
maps respectively. First of all, notice that this system is quite nonlinear close to the
dynamic aperture. However, the symplectified tracking pictures are similar to the
19th order Taylor maps already from the order 3 symplectification. The agreement
is of course better at order 7, and at order 11 also the edges at the hyperbolic fixed
points are becoming visible. Moreover, the tunes of the inner particles become more

accurate as the symplectification order increases.

For completeness, we also show the order 7 symplectic tracking pictures using
the conventional generators in Figure 4.10. Notice that F is the best conventional
generator for this example. In [16] the conventional generator types F; and F, are
used; F; after factoring out the linear part, and Fj for the full map, including the linear
part. Some unexpected discrepancies have been observed. By the general theory

presented in this dissertation, the reason behind it should be clear: the two types
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Figure 4.8: 1000 turn tracking of a anharmonic oscillator with the 19th (considered
to be essentially the exact result) and 7th order Taylor maps.

Figure 4.9: 1000 turn tracking of an anharmonic oscillator with the 3,7, and 11th
order S = 0 symplectified maps respectively.
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Figure 4.10: 1000 turn tracking of an anharmonic oscillator with the symplectified
maps from the 7th order Taylor map, using the conventional generator types Fj, F3,
F3, and Fj respectively.

of generators fall into different equivalence classes. Hence, they generate different
symplectic maps, with different long-term properties. In the same paper it is stated
that the two unstable fixed points of the symplectified maps are moved away from
(g,p) = (£1,0), the locations which correspond to the exact solution. As a matter
of fact, this is always the case, for any generating function symplectification method.
The explanation lies in Hofer’s metric, and a deep connection between fixed points
of symplectic maps and critical points of generating functions (see next chapter). As
a consequence, if two symplectic maps have the same fixed points, they coincide.
But because symplectification can never restore the true solution, the symplectified

maps will always have their fixed points moved away from the locations of the exact

solution.
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Figure 4.11: 1000 turn tracking of an anharmonic oscillator, with two random gener-
ating function types associated with symmetric matrices with entries in [—1,1] and
[-10, 10] respectively.

In the next step we studied random generator types, i.e. generators associated
with randomly generated symmetric matrices S. In general, if the elements of S are
chosen to be small, we obtain better results than if we increased the norm of S. For
example see Figure 4.11 for two random types with S;; € [-1,1] and S;; € [-10, 10]

respectively. These figures represent typical results.

While one might say that F) is acceptable for estimating the dynamic aperture,
but clearly S = 0 gives better results. So, can we find an even better generator type?
We applied the following strategy: by considering the 19th order Taylor map as the
exact map, and wanting to improve the agreement between the Taylor map and the
symplectified map for the outermost particle (where the discrepancy is the largest,
and expecting that this will not spoil the good agreement for the inner particles),
starting with the S = 0 type of generator, we fitted the symmetric matrix S to
minimize the radial correction introduced by the symplectification to the trajectory

of the last particle, after one turn. We obtained the following symmetric matrix:

S, = ( 0(')1 _8. s ) . (4.3)

The corresponding tracking results are displayed in Figure 4.12. Comparing the

various symplectic trackings with the order 19 Taylor map, we see that apparently the
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Figure 4.12: 1000 turn tracking of an anharmonic oscillator, with the generating
function type associated with the symmetric matrix S, which was fitted to give the
best results.

generator based on S, is the best one, followed closely by the type associated to S = 0.
Notice that the separatrix is very well reproduced, and indeed, the excellent agreement
for the inner particles is not spoiled. Also, the tunes are predicted accurately over
a large phase space region. Therefore, at least for this example, order 7 seems to
be enough to estimate the dynamic aperture, if we use the best type of generating

function symplectification.

It is worthwhile to note that by fitting S using different criteria (such as minimize
radial distance over more than one turn and/or more than one particle simultaneously)
we get slightly different results. In fact, only S, (1,1) is somewhat sensitive to these
criteria (up to approximately 10% of its magnitude), but overall the tracking pictures
using the different matrices look identical, or almost identical. Moreover, we start
fitting these matrices from S = 0, and stop at the first minimum. Thus, we do not
know whether S, corresponds to a local or a global minimum. But since S = 0

is already a pretty good choice for an initial guess, we doubt that there exist better
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Figure 4.13: 2000 turn tracking of an anharmonic oscillator, with the generating
function type associated with the symmetric matrix S = 0, using the 11th order 1/2
time Taylor map.

choices of symmetric matrices than S,. The answer to why is S, the better than S = 0

for this specific case will be given in the next chapter on optimal symplectification.

The high degree of nonlinearity close to the separatrix plays a significant role in
the outcome of the various symplectifications. Naturally, we can compute the time
1/2 map of the same Hamiltonian flow, track it for 2000 turns, and plot every second
turn. As a result, we track the same system for the same amount of time, hence the
tracking pictures should look the same. However, the maps are less nonlinear, and
hence the domain of definition of the generators should enlarge. We did just that
with the S = 0 type and order 11, and obtained Figure 4.13. Now the results are
much better, and a closer look reveals that the 11th order time 1/2 map symplectified
with S = 0 is better than the 11th order time 1 or even time 1/2 map symplectified

Wlth Sb.

As a side note, we mention that the square root trick could be used to gain more

confidence in the accuracy of our symplectified maps. Namely, if we track with a
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symplectified map N turns (N =~ 10%) and plot every turn, then track 2 - N turns
with its square root and plot every second turn, we should get the same pictures. If
not, we keep taking square roots until the pictures become almost identical. Then,

the resulting map can be more or less trusted for long term tracking (N > 10%).

Finally, to get a better feeling of what the symplectification does at the local
level, we plot the corrections introduced by the symplectification method to the tra-
jectory of the stable particles over one turn. For example, Figures 4.14, 4.15, and
4.16 show the corrections (magnified by a certain factor for convenient viewing) of
the F;, 1 = 1,2,3,4 and S = 0 types to the order 7th order Taylor approximation.
The spikes point in the direction of the correction, and their length is proportional to
the magnitude of the correction. We used color coding to express correction radially
outwards (lighter spikes; green in the pdf file), or radially inwards (darker spikes;
red in the pdf file). The three initial conditions for the three sets of pictures are
(¢,p) = (0.1,0);(0.5,0);(0.9,0). The general conclusion that can be drawn from
these pictures is that if the Taylor map is accurate enough, the best symplectification
method introduces the least amount of correction, in both radial and angular direc-
tion. Moreover, the corrections in the radial direction are usually much smaller than
the correction in the angular direction (the actual values are shown in the upper part
of the figures in the following order: number of particles, average radial correction,
and average angular correction). This suggests that for dynamic aperture (i.e. region
of stability) estimation there is a slightly lower precision needed than for the accu-
rate prediction of the tunes (i.e. average angle advances per turn). As expected, the
corrections’ magnitude are increasing with distance from the origin and number of

turns.

In the introduction (chapter 1), it was mentioned that one of the favorable prop-

erties of the symplectic methods is their linear global error propagation, in contrast
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Figure 4.14: Corrections introduced by the symplectification to particles of small
amplitude, which are predicted by symplectic tracking with generating function type
associated with the symmetric matrix S = 0 to be on a invariant curve (a stable
particle). The figure shows the correction with respect to the 7th order Taylor map
of the symplectifications using the convential (the magnification factor is 10%) as well
as the S = 0 (the magnification factor is 10%) generator types.
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Figure 4.15: Corrections introduced by the symplectification to particles of medium
amplitude, which are predicted by symplectic tracking with generating function type
associated with the symmetric matrix S = 0 to be on a invariant curve (a stable
particle). The figure shows the correction with respect to the 7th order Taylor map
of the symplectifications using the convential (the magnification factor is 1) as well
as the S = 0 (the magnification factor is 10?) generator types.

89






1000 0.190 0.125 1000 0.147 0.041
0.8 0.8

- -»\\‘\‘\

0.89E-2

Figure 4.16: Corrections introduced by the symplectification to particles of large
amplitude, which are predicted by symplectic tracking with generating function type
associated with the symmetric matrix S = 0 to be on a invariant curve (a stable
particle). The figure shows the correction with respect to the 7th order Taylor map
of the symplectifications using the convential (the magnification factor is 1) as well
as the S = 0 (the magnification factor is 10) generator types.
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with quadratic error propagation of nonsymplectic methods. To illustrate quantita-
tively this phenomenon, we tracked a particle, with initial condition (g, p) = (0.5,0),
1000 turns through the time one map of the anharmonic oscillator’s flow, using the
exact solution (represented by the 19th order Taylor map), the 7th order Taylor map,
and symplectic tracking with the order 7 Taylor map and generator type associated
with S = 0. As shown in Figure 4.17, for a few tens of turns the Taylor map tracking
is more accurate than the symplectic tracking, then the error of the nonsymplectic
tracking grows fast, while the symplectic tracking stays at small error levels through-
out the 1000 turns. The linear global error propagation of the symplectic method
versus quadratic error propagation of the nonsymplectic method is clear from Figure
4.18, where we superimposed two lines with slopes one and two, respectively, for easy
identification. Interestingly enough, initially, for a short period of time, the nonsym-
plectic method is accurate enough to pass as a “pseudo-symplectic” one by having

slope one, but after =~ 50 turns the slope suddenly becomes approximately two.

4.3 An Exactly Symplectic Quadratic Map

In [51] the following quadratic map is considered:

M=NolL, (4.4)
where
cos@ siné

c_(—sinO cosO)’ (4.5)

with 6 = %, and

-3(g+p)’°

N( 9 ) = ( 9 . 4.6
p )=\ p+3+p) (46)

It is easy to check that it is exactly symplectic. We study this map because it is

a simple map with a nontrivial behavior under iteration, and it is exactly symplec-
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Figure 4.17: Global error propagation in the case of nonsymplectic versus symplectic
tracking of a particle for 1000 turns of the anharmonic oscillator’s time one map.
For the tracking, the order 7 Taylor map was used for nonsymplectic tracking, and
generator of type associated with S = 0 for the symplectic tracking. After a short
transient period, the nonsymplectic method gives large errors, while the symplectic
method’s error stays small.

l O T T T T T T T

Figure 4.18: The global error propagation in a log-log scale of the case shown in
Figure 4.17. After a short transient period, the nonsymplectic method’s slope is two,
and the symplectic method’s slope is one. The dotted lines have exact slopes one and
two, respectively.
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Figure 4.19: 1000 turn tracking of a quadratic symplectic map with the 3rd order
Taylor map (the exact result), and the 3rd order S = 0 symplectified map (which
also gives the exact result).

tic. Moreover, in [51] it is shown that symplectification of (4.4) using conventional
generating functions gives very poor results. As in [51], we also use third order sym-
plectification. The exact result and the S = 0 symplectified result for some choice of
initial conditions is shown in Figure 4.19. The agreement is excellent. In fact, the
results coincide; S = 0 gives the exact solution. As a comparison, Figure 4.20 shows

the results for the Goldstein generators, and indeed they give very poor results.

The generating function of type S = 0 for (4.4) computed according to (2.9) is

F(q,p) = 0.04903810567665787 - q® — 0.5490381056766573 - ¢°p

+2.049038105676657 - gp* — 2.549038105676658 - p°. (4.7)

Moreover, it can be shown that the S = 0 generator type can represent exactly any
quadratic symplectic map. We also mention that there exist other generator types
that can be used to represent exactly any quadratic symplectic map. However, in this

group there are none from the conventional, or even the Poincaré types.

It was mentioned in section 3.5 that the numerics used for solving the implicit
equations also plays an important role in tracking. The tracking pictures in Figure

4.20 have been obtained using fixed point iterations. The same set of tracking pictures
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Figure 4.20: Symplectic tracking with the four conventional generator types (F;
thr Oough Fy), for the exactly symplectic quadratic map, using fixed point iterations
to solve the implicit equations.
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Figure 4.21: Symplectic tracking with the four conventional generator types (F}
through F}), for the exactly symplectic quadratic map, using Newton’s method to
solve the implicit equations.

obtained by solving the implicit equations utilizing Newton’s methods is shown in
Figure 4.21. Clearly, we obtained different pictures for F; through Fj, and identical
Pictures for F;. This points out quantitatively the importance of the numerics, namely
the size of the domain of convergence of the two methods. As expected, the Fy case
Produces identical pictures, because it is the only case where both methods converge

Over the region of the particles tracked in this example.
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4.4 Muon Accelerators

In this section we study the effects of symplectification on truncated Taylor maps of
rings of the proposed Muon Collider and Neutrino Factory complex, utilizing lattices
of the Neutrino Factory Storage Ring [52] and the Proton Driver [53] to illustrate
the effects. For an overview of the current status of the muon collider research and
development see [54], as well as the earlier feasibility study on muon colliders [55].
Since the amount of nonlinearity and emittance in the muon machines far exceed that
of other machines, the muon accelerators are not comparable to most machines, and

for these machines it turned out that even for short term tracking symplectification

is essential.

4.4.1 A Neutrino Factory Lattice

Previous work exposed a variety of nonlinear effects in the lattice described in [52],
of the proposed Neutrino Factory. Nonlinearities are due to the so-called kinematic
effect, fringe fields, small circumference and large aperture. The muons’ lifetime is
less than 1000 turns. In spite of such a short tracking time, it is still interesting to
see how the generating function symplectification method works in a case of practical
interest, where nonlinearities play an important role. We computed order 8 maps of
several realization of the Neutrino Factory. In the following we present side-by-side the
tracking pictures obtained from order 8 Taylor map tracking and the corresponding

S=o0 symplectic tracking.

In particular, we take 4 different realizations of the Neutrino Factory by tracking
the jqeal lattice with 4 sets of fringe fields which differ both in fall-off shape and
length [13]. We will refer to them as case 1, 2, 3, and 4. Figure 4.22 represents the

Tesult of case 1 for some initial conditions along the horizontal axis. We see that the
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Figure 4.22: 1000 turn tracking of the case 1 of a lattice of the proposed Neutrino
Factory with the 8th order Taylor map, and the corresponding S = 0 symplectified
map.

Figure 4.23: 1000 turn tracking of the case 2 of a lattice of the proposed Neutrino

F aCtory with the 8th order Taylor map, and the corresponding S = 0 symplectified
map
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Figure 4.24: 1000 turn symplectic tracking of the case 2 of a lattice of the proposed
Neutrino Factory with the conventional generating functions (F; through Fy).

Figure 4.25: 1000 turn tracking of the case 3 of a lattice of the proposed Neutrino

rf; aCtory with the 8th order Taylor map, and the corresponding S = 0 symplectified
ap.
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Figure 4.26: 1000 turn tracking of the case 4 of a lattice of the proposed Neutrino
Factory with the 8th order Taylor map, and the corresponding S = 0 symplectified
map.

Taylor map is not accurate enough to give a good estimation of the dynamic aperture,
or to resolve the third order resonance. With the S = 0 symplectified tracking we
obtain a clear third order resonance, bigger dynamic aperture, as well some higher
order island structure. Also notice that for a few particles close to the origin, where
even the 8th order Taylor map is accurate enough for short term tracking, the two

pictures are alike, including the tunes. We mention that case 1 was one of the most

nonlinear realizations of the Neutrino Factory.

A less nonlinear lattice is case 2. The corresponding pictures are presented in
Figure 4.23. Here, the 8th order Taylor map looks more accurate than in the previous
case, and has a clearly defined 7th order resonance structure. We can see that this
resonance is preserved by the symplectified map, and again we get a somewhat bigger
dynamic aperture. By comparison, the conventional generators for this case cannot

be used to reliably estimate the DA, as depicted in Figure 4.24.

Case 3, presented in Figure 4.25, is interesting because the Taylor map predicts a
chaotic region, and just on the outside rim of it something that looks like the remnants
of some high order resonance. Indeed, the symplectified map confirms that there is a

7th order resonance just outside the dynamic aperture, but there is no chaotic region
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whatsoever, as required by theory.

Finally, in case 4 we are looking at some particles launched along the diagonal
in geometric space. As expected, Figure 4.26 shows reduced dynamic aperture, and
the onset of the chaotic region. However, while the Taylor map predicts a completely
chaotic trajectory, the symplectified map shows that there is still some structure left

in the phase space trajectory of the outermost particle.

4.4.2 The FNAL Proton Driver

The ideal lattice of the Proton Driver is quite nonlinear. Hence, symplectification
introduced considerable changes even when applied to the order 15 truncated Tay-
lor map. The correctness of the symplectic tracking with generator type associated
with S = 0 has been checked against accurate numerical integration, giving excellent
agreement. The tracking results in the (z — a) and (y — b) planes without and with
symplectification are depicted in Figure 4.27. Notice that the third order resonance
in the (zr — a) figure is missing completely in the Taylor map tracking, but accurate
numerical integration shown in Figure 4.28 confirms its existence, increasing the con-
fidence level in the correctness of the symplectification approach. The particles were

launched along the z and y axes respectively, and were tracked for 1000 turns.

4.5 The Large Hadron Collider (LHC)

Another interesting case for symplectification is provided by the LHC. Here we present
hon-symplectic tracking of the LHC v.5.1 versus symplectic tracking, with seven dif-
ferent generator types. In Figure 4.29, tracking 10° turns utilizing the order 8 Taylor
Map of the ideal lattice, the S = 0 generator type, and Fy, F3, F3, F for the full map

are presented. The same results, with a detailed account of fringe fields included in
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(a) (x — a) tracking pictures

0.03

(b) (y — b) tracking pictures

Figure 4.27: 1000 turn tracking of the FNAL Proton Driver with the 15th order
Taylor map, and the corresponding S = 0 symplectified map.
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Figure 4.28: 1000 turn (x — a) tracking of the FNAL Proton Driver with the element-
by-element numerical integration.

the simulation (for more information on accurate fringe field maps for the LHC see
chapter 10) are shown in Figure 4.30. For the sake of completeness, we.depict the
results without and with fringe fields for the case of F; and Fj symplectified nonlinear
parts of the map in Figures 4.31 and 4.32. Again, the terrible performance of some of
the generator types point out the necessity of optimal symplectification studies, and

shows that the right generator type (S = 0) gives excellent results once again.

The topic of optimal symplectification from a very general standpoint is the sub-

Ject of the next chapter.
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(a) 8th order Taylor map (b) S = 0 symplectified map

0.002 0.002

b 0.0 | . 0.3

(c) F} symplectified full map (d) F» symplectified full map

0.002

0.002

(e) F3 symplectified full map (f) Fy symplectified full map

Figure 4.29: 10° turn tracking of the LHC with the 8th order Taylor map, and the
Corresponding various symplectified maps, without fringe fields taken into account.
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(a) 8th order Taylor map (b) S = 0 symplectified map

0.0003 0.0003

................ 0.005
(c) Fy symplectified full map (d) F> symplectified full map
0.0003 0.0003
—_— ©0.005 . il _0.005
(e) F3 symplectified full map (f) Fy symplectified full map

Figul‘e 4.30: 10° turn tracking of the LHC with the 8th order Taylor map, and

€ corresponding various symplectified maps, with detailed fringe fields taken into
account.
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0.002 0.002

(a) F3 symplectified nonlinear part of the (b) F3 symplectified nonlinear part of the
map map

Figure 4.31: 10° turn tracking of the LHC with the F; and F3 symplectified nonlinear
parts of the 8th order Taylor map, without fringe fields taken into account.

0.0003 0.0003

(a) F, symplectified nonlinear part of the (b) F3 symplectified nonlinear part of the
mmap map

Figure 4.32: 10° turn tracking of the LHC with the F; and F3 symplectified nonlinear
Parts of the 8th order Taylor map, with detailed fringe fields taken into account.
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Chapter 5

Optimal Symplectification

Among many systems of practical interest, hadron colliders in the single particle
approximation can be modeled as Hamiltonian systems. Hamiltonian systems are
uniquely characterized by their symplecticity [10]. One of the fundamental quantities
in accelerator physics is the dynamic aperture (DA), which, roughly, is the region of
space containing stable particle orbits over long times. Since the system is so complex
that an exact solution is not within reach, simulations are needed to estimate the
DA [13, 56]. This can be achieved by iteration of the so-called one-turn map, i.e.
Poincaré section map, of the system. Unfortunately, only some approximation of the
one-turn map, as, for example, the order n truncation of its Taylor series, is available
[24]. While the Taylor map preserves the symplecticity up to order n terms in the
expansion, in general fails to be exactly symplectic. The numerical simulations in
chapter 4 show that the truncation often generates inaccurate results. Therefore,

restoration of the exact symplecticity of the one-turn map is desirable.

There are several symplectification methods [14, 15, 57]. While every method
produces exactly symplectic maps, the results are not equivalent. The symplectified
maps depend on the specifics of the methods. Several examples are presented in chap-

ter 4 using the formalism of generating functions of canonical transformations. For
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some generators, the results are not satisfactory. Therefore, it is not only important
to symplectify, but also to symplectify the right way. The purpose of this chapter is

to give a precise meaning for how to symplectify “the right way” [58].

5.1 Formulation of the Problem

As with any approximation method, a criterion for closeness is needed; mathemati-
cally speaking, a suitable metric is necessary. In our case, the metric should provide
a way to measure distances between Hamiltonian symplectic maps, and should have

some desirable properties, namely:

1. The symplectification should work well for every particle in a given Poincaré

section,

2. The outcome of the symplectification should not depend on the specific Poincaré

section used,

3. The symplectification should work just as well after any NV > 1 turns as after

one turn, and

4. Based on the previous three conditions, the assessment of the optimality of the

symplectification should be unambiguous.

These conditions can be captured by the requirement that if a symplectification
method yields the best result, say M, with respect to the metric, then the same
symplectification gives the same result for Ao Mo A~!, A being any symplectic
map, which entails coordinate independence of the metric. It is hoped that such
special purpose metrics would capture better the details of the dynamics than general

purpose metrics (as, for example, the well-known C° metric), and would give an
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as unambiguous as possible way to measure distances. Therefore, mathematically
speaking, we would like to have a bi-invariant metric for Hamiltonian symplectic
maps. The importance of bi-invariant metrics has been pointed out also in [59]. It
also can be thought of as a certain generalization of subsection 3.4.1, where it has been
shown that linear symplectic variable changes do not matter, to the nonlinear case.
The question is whether such a metric exists at all. Indeed, existence of such a metric
is highly nontrivial over an infinite dimensional non-compact Lie group, like the Lie
group of symplectic maps. A negative example from the field of motion planning for
robotic systems is provided by [60], where it is shown that over the relevant Lie group,
i.e. SE(3), no such “natural and unequivocal concept of distance” exists. Hence the

results are task or designer biased.

5.2 Hofer’s Metric and the Optimality Condition

Fortunately, there exists an outstanding metric that satisfies our needs, and sym-
plectic topology provides a way to formulate the necessary conditions for optimal
symplectification. This is astonishing, since despite Hamiltonian systems have been
studied for such a long time, there was no symplectic topology 25 years ago. Now
symplectic topology is a very lively research field, and we will use and extend some
results concerning Hofer’s metric. In [18], a surprising intrinsic metric has been intro-
duced, now called Hofer’s metric, on the space of compactly supported Hamiltonian
symplectomorphisms, Ham® (R?"). Recall that a symplectic map is called Hamilto-
nian if it is the time one map of the flow of some function defined on phase space.
The fact that such a Finsler metric exists on a non-compact infinite dimensional Lie

group points out the special nature of Hamiltonian systems.
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5.2.1 Hofer’s Metric

We give a short description of this norm [45]. In general, let G be a Lie group with
Lie algebra L. A norm || - || on L is called invariant if it is invariant under the adjoint

action of G

I €l=Ilg7"'¢g | (5.1)

(defined through the exponential of £ at t = 0) for every £ € L and every g € G. Any

such norm gives rise to a bi-invariant intrinsic metric on the Lie group via

dlang) =inf [ 130907 N a 62)

for go, g1 € G. The infimum is taken over any smooth path g : [0,1] = G connecting
90 =g(0) to g = g(1).

Specifically, the compactly supported Hamiltonian vector fields of R?" can be iden-
tified with the space of compactly supported functions C (R?") via the isomorphism
mentioned in subsection 2.2.1. The velocity vector of (5.2) is the Hamiltonian vec-
tor field. Hence, Hofer defined the following L*°-type norm on compactly supported

Hamiltonian functions

Xl & sup He(z) = inf Hi(:) (53)

z€R2M
For convenience we denote it as ||H,||. This norm is called the oscillation norm. The
adjoint actions are the symplectic variable changes. For the Hamiltonian functions
the adjoint actions are the transformations H — H o ¢, for every H € C® (R*")
and every ¢ € Symp (R**, J). The oscillation norm is obviously invariant under the

adjoint action

| Hel| = || Heo 9] (5.4)
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In fact, the norm stays invariant under the larger diffeomorphism group of R**. The

induced length spectrum for paths {¢,}, t € [0,1] in Ham® (R?") is given by

e{6) = /O AT (5.5)

where H,; is the, possibly time dependent, generating Hamiltonian. For any two

@, € Ham® (R?"), the distance between them is defined as

=¥ ,P1=

1
plo)=, inf_ttey=_inf [ lae (5.6)

The infimum is taken over all smooth paths in Ham® (R?") from ¢ to ¢. The following

proposition holds [46]:
Proposition 9 For all ¢, ¢, € Ham® (R?") the following hold:

* p(8,¢) 20,

p(d,9) =p(p d),

p(0,v) < p(d,@)+p(p ),

p(0.I)=p(pogop ', 1),

p(bod,vop)=p(d ) =p(doy,poy)

the map t — p(@,,Z) is uniformly continuous.

The first three properties mean that p is a pseudo-metric. The highly nontrivial

fact is [46]:

Theorem 10 Let ¢, p € Ham® (R?*). Then

p(d,p)=0 & o=9p (5.7)
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Therefore, Hofer’s metric p is an essentially unique, genuine, intrinsic, bi-invariant,
Finsler metric, i.e. it satisfies the positive definiteness, separation and symmetry
axioms, the triangle inequality, and the fifth statement of the above proposition. It

has been shown in [61] that all the invariant L, norms, 1 < p < oo,

paty = ( [y 55)

give rise to pseudo-metrics, but not genuine metrics. So, the only non-trivial case is
p = oco. We also mention that varying the metric in the ¢ direction gives equivalent

metrics. Thus Hofer’s metric satisfies all the conditions we wanted to, and can be

used for our purposes.

Assume that M is the exact one-turn map of our system, M, its order n Taylor
approximation, and N is an exactly symplectic map produced from M, by some
symplectification method. In practice M and A will not be compactly supported. In
fact, a priori it is not even clear that A/ will be Hamiltonian since it is the symplectifi-
cation of some non-symplectic map. However, we need M, A’ € Ham® (R*") to be able
to use Hofer’s metric. The problem can be solved as follows. From the practical point
of view, the particles in the accelerator are constrained to move within the evacuated
beam pipes, and any particle that hits the tube is lost. Mathematically this can be
modeled as a cut-off of the particles’ Hamiltonian. Indeed, choosing suitable bump
functions [43], it is possible to replace the original Hamiltonian with another one
which agrees with the original Hamiltonian inside the beam tube, it is zero outside,
and has arbitrary fast fall-off. Moreover, we are interested in the dynamics in this
finite region of phase space only. These compactly supported Hamiltonians will gen-
erate, as time one maps of their flows, compactly supported Hamiltonian symplectic
maps which will agree with the original maps over the desired region. The arbitrary

fast decay of the cutoff function guarantees that this effect does not influence the
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numerical results (since this region of the phase space can be made arbitrarily small,
in particular smaller than any floating point number that can be represented on a
computer). Therefore, for all practical purposes, this region can be taken as a delta
function, as it saves the complication of working with compactly supported maps in
practice. Knowing that every symplectic map can be interpolated by the flow of some
Hamiltonian in time one, the problem is solved. Indeed, in R?® the group of symplec-
tic maps coincides with the group of Hamiltonian maps. For completeness, the next
subsection gives more details about the connectedness of the group of Hamiltonian

symplectic maps.

5.2.2 Connectedness of the Group of Hamiltonian Symplec-
tic Maps

There is a lot of information scattered in the literature on the connectedness of the
group of symplectic and Hamiltonian maps [41, 45, 46]. There is also some confusion
regarding certain aspects of this topic. For self consistency, the most important results

are presented in this subsection.

It follows from the existence of generating functions (or the so-called Weinstein
charts) that the group of symplectic maps (compactly supported symplectic maps) are
locally contractible, and consequently are locally connected by smooth arcs. Then,
the identity components consist of all symplectic maps which are isotopic to the
identity through symplectic maps (compactly supported symplectic maps). Smooth
isotopies are in one-to-one correspondence with families of smooth vector fields, i.e.

if ¢, is such an isotopy, then it gives rise to the vector fields

_ 9%

X, =
Tt

o ¢yt (5.9)

If the isotopy is symplectic, then so is the vector field. On simply connected manifolds,

the symplectic vector fields are Hamiltonian (in general, on connected manifolds, only
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locally Hamiltonian). Therefore, on R*" every symplectic isotopy is Hamiltonian.
Moreover, it can be shown that in this case the group of symplectic and Hamiltonian
maps coincide. Indeed, given any M € Symp (R?"), to show that it is Hamiltonian,
according to the above discussion, it is enough to show that M is the endpoint of a
symplectic isotopy.

Denote the constant part of M by ¢, i.e. M (0) = ¢. Homotop M = ¢+ M, to
an origin preserving symplectic map by M, = tc + M°, t € [0,1]. We have that M,
is symplectic for each ¢ and M?(0) = 0. Using the Alexander trick, an arc can be

found from the linear part of M°, £, to M, that is
1
M = ZM" otZ, (5.10)

for t € (0,1]. It is easy to see that M? is symplectic for each ¢ (the Alexander trick
being in fact only a change of scale), and from the Taylor expansion of M? is follows

that

lim M = L. (5.11)

t—0
Furthermore, L = Jac (£) € Sp(2n,R), and it is well-known that Sp (2n,R) is con-
tractible. There are several ways to see this. For example, any L € Sp (2n, R) can be

written as
L =e’51el%2, (5.12)
where S}, S, are symmetric matrices [62]. Therefore, it is enough to define the arc
L, =e7S1 052 (5.13)

t € [0,1] to obtain the final part of the total isotopy. Putting together the different

Parts by juxtaposition of paths, we obtain the following piecewise smooth isotopy:

L, te€[0,1/3],
M, = M?, t e (1/3,2/3], (5.14)
tc+ MO t e (2/3,1]
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By replacing the parameter ¢ by a smooth function f : [0.1] — [0,1] such that
it is constant in the neighborhoods of the non-smooth points, we finally obtain a
smooth isotopy from the identity to M, showing that every M € Symp (R?") is in

fact € Ham (R*").

The next natural question is the following: if M € Symp® (R?"), then is it true
that M € Ham® (R?")? In general, the answer is not known. It is true for n < 3
[50]. Moreover, it is known that Ham® (R?") is the C° closure of Symp® (R?") for
any n. Again, there are several ways to see this. Perhaps the easiest is to notice
that for any compactly supported diffeomorphism ¢ such that supp(¢) C D, and any
diffeomorphism 6, supp(6o o 6~"') C (D). It follows that any M € Symp*® (R?")
can be conformally rescaled to have support in an arbitrary small neighborhood of a
point. Then, the Alexander trick (5.10) gives an isotopy from M to an element in
Symp€ (R?") arbitrarily C°close to the identity. Therefore, for computational pur-
poses we can always interchange symplectic with Hamiltonian, even in the compactly

supported case.

5.2.3 The Optimality Condition

To this end, Hofer’s metric can be applied to the problems of interest to us. There-
fore, optimal symplectification can be defined as the symplectification method that
minimizes the distance in Hofer’s metric between the exact map and the symplectified
maps. That is, if the set of all possible symplectification methods is denoted by %,

the best result is achieved by any symplectic map N, which satisfies
p (M, Nop) = infp (M, N;). (5.15)

While being very general, there is a problem with this formulation of the optimal

symplectification, namely it is not very useful for practical computations. The reason
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is that in general it is not known yet how to compute the Hofer distance between two
arbitrary maps in Ham® (R?"). The difficulty lies in the necessity of consideration of all
the Hamiltonians generating the two maps, or equivalently, the paths in Ham® (R?")
from M to N;. However, by the nature of our optimality condition, we are interested
only in the maps N; that are already close to M in some sense. Obviously, this
necessary condition can be achieved by sufficiently increasing the value of n, the
degree of the polynomials M,, with which the exact maps are initially approximated.
T hus it would be sufficient if a suitable neighborhood of M can be parametrized in
such a way that (5.15) becomes computable. Clearly, any symplectic map that does

not fit into this neighborhood cannot be optimal.

5.3 Link to the Extended Generating Function The-
ory

Indeed, parametrization of a neighborhood of M is possible in the C! topology, uti-
lizing the theory of generating functions. The first results in this direction have been
obtained in [63] for Hamiltonian maps C? close to identity and Poincaré’s generating
function, and then it was extended to Hamiltonian maps C! close to identity and
all compactly supported generating functions in [64] and [45]. While the approach
of [64] is more general, as it holds on any symplectic manifold, we are only inter-
ested in R?", and the method of [63] lends itself more easily to generalizations. The
Mmain jdea is to replace the Hamiltonian maps by their generating functions, and try
tO express Hofer’s metric between two maps as some norm of the difference of their
generating functions. In [63] this was proven to be possible in some cases. However,
in the extended theory of generating functions of chapter 2 it was shown that in fact
there exist uncountably many generator types for any symplectic map, some of which

are not compactly supported. To be able to decide which generating function type
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provides the optimal symplectification, the result of [63] must be generalized to every

generator type.

More precisely, introducing a map ®, that sends a symplectic map M into its
generating function F' of type a, we prove that ®, is an isometry. Formally, we can

state the result as the following theorem:

Theorem 11 There exists a neighborhood € of any M € Ham® (R?"), and a neigh-

borhood Z of 0 in C® (R*™) such that the map
¢,: £ 2 &, (M)=F (5.16)

is isometric. That is, for every F,G € Z,

1 1
pMN) = —|[@a (M) = & (N) || = =IIF - G|. (5.17)
|l |l
As a consequence, the inverse of the isometry takes any function from (Z,||-|[|)

into a Hamiltonian symplectomorphism in (£, p) depending on a. This shows that,
considering the space (Z,||-]|) a flat space (in which straight lines are minimal
geodesics), their image under ! : Z — £ in Ham® (R?") remain locally flat min-

imal geodesics. That is why this results is called the local flatness phenomenon.

The proof uses three main ingredients. First, there is an intimate relationship
between fixed points of sy‘mplectic maps and critical points of generating functions,
which is presented in the next subsection. Second, the proof in [63] is based on the
Hamilton-Jacobi equation. In subsection 5.3.2 the generalized Hamilton-Jacobi is
derived, adapted to our situation. It provides the time evolution of any generator
type. Finally, the proof uses a theorem of Siburg [65], which is stated without proof
in subsection 5.3.3. The theorem essentially states that paths without nontrivial fixed

points are absolutely length minimizing for Hofer’s metric.
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5.3.1 The Fixed Point-Critical Point Relationship

In this subsection we study an interesting property of generating functions. A point
zy is called a fixed point of the symplectic map M if it acts on it as the identity
map, that is M (z5) = z;. It follows that the iterates of the map have the same fixed

points,
ME (25) = M Lo M () = M1 (2f) = ... = M (25) = 2. (5.18)
Moreover, the inverse M~! also has the same fixed points,
M7 (z) = Mo M (z4) = 2. (5.19)

To sum up, we can say that any integer power of a symplectic map has the same fixed
points as the map itself. Thus the set of fixed points form a topological invariant
of the map under iteration. Generating functions can be connected with these fixed
points. For start, let us consider a special class of generating functions. We assume
that the generating functions are globally deﬁned, otherwise the theory is valid for
the fixed points in the regions where it is defined. The critical points of functions in
this set are the fixed points of the symplectic maps, and conversely, the fixed points
of the map are critical points of the function. If the symplectic maps are compactly
supported, then these generating functions are exactly the generating functions with
compact support. This can be easily seen if we argue geometrically. Recall that the
symplectic map is a Lagrangian submanifold in the product manifold. Then, the
fixed points of the map are exactly the intersection points of this submanifold with
the diagonal. On the other hand, the critical points of the generating function are the
intersection points of the Lagrangian submanifold determined by the function with
the zero section. Now, if we identify the diagonal with the zero section by a, the fixed

points of the map will go into critical points of the generating functions.

117



Explicitly, given a symplectic map, we can choose only as that satisfy the transver-
sality condition. On the other hand, identification of the diagonal with the zero section

requires that
a(A) =2, (5.20)

which further restricts the pool of as. A necessary condition is that the generating
functions in this class can generate the identity map. If the map is close enough to the
identity, then also the transversality condition is satisfied automatically. Equation

(5.20) can be expanded as

a1 O

(9 O

NN RN
— e
O

) - ( 2 )(w). (5.21)

Applying z; to (2.107), we obtain that

VFoazo('/:\z/‘)(zf)=a10<'/¥)(zf), (5.22)

which is equivalent to

VFoazo(%)(zf)=alo<§>(zf). (5.23)

Using (5.21) we arrive to
VF (’U)f) = 0, (524)

where wy is given by z; and the identification process. From the explicit constraints
we will see that actually wy = z;. Hence, the fixed points of the map are critical

points of the generating functions from this set.

The next question is whether this is true conversely: are all the critical points of

generating functions in this set fixed points of the map? As has been shown in section
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24,

M:(alo(VIF ))o(a2o(VIF ))_1, (5.25)
Mo (a2o( VIF )) (1) = (al o( ‘;F )) (o) | (5.26)

where w, are the critical points of F. From (5.20) it follows that

or

a~1(Z) = A, (5.27)

(5.28)

NolNo
&
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A/
NN
N——
O

Combining what we have derived sofar, we are able to answer the question about

critical points. Using VF (w.) = 0, from (5.26) and (5.28) we obtain
M (z.) = z.. (5.29)

Again, 2. is the point corresponding to w. via the identification, and we will see that
2. = w.. Hence, w, are fixed points of the symplectic map. In conclusion, there is a
one-to-one correspondence between fixed points of the map and critical points of the

generating functions in this set.

Now we elaborate in the direction of finding the explicit constraints for this class
of generating functions. Beside the constraints (2.123-2.125) we have another set
given by (5.21), which in terms of the entries in the Jacobian of a read

A(z,z)+ B(z,2) =0, (5.30)
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