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ABSTRACT

SYMPLECTIC APPROXIMATION OF HAMILTONIAN FLOWS

AND ACCURATE SIMULATION OF FRINGE FIELD EFFECTS

By

Béla Erdélyi

In the field of accelerator physics, the motion of particles in the electromagnetic

fields of periodic accelerators is usually approximated by the iteration of a symplectic

map, which represents the system over short time, such as one turn around the

accelerator. Unfortunately, due to the complexity of the systems, in practice only

some approximation of the one-turn map can be computed, as, for example, the

truncated Taylor series. To this end, simulation of the nonlinear dynamics consists,

in general, of the following three steps: 1) Computation of the truncated Taylor

approximation of the one-turn map, 2) Symplectification of the Taylor map, and 3)

Iteration of the resulting exactly symplectic map. This dissertation addresses all three

components of the process, with the emphasis being on developing new methods that

allow long-term tracking as accurately and efficiently as possible.

Specifically, the contributions to the first step concern the fringe field effects. The

truncated Taylor map should include every relevant effect, so that it is an accurate

representation of the system over one turn. While it is straightforward to compute the

truncated maps over the regions where the fields are independent of the longitudinal

variable, it is not so anymore at the ends of the magnets, the so-called fringe field

regions. We study fringe fields generically, to show their importance, and develop a



method that allows “exact” fringe field map computation of superconducting magnets,

for which the coils and the iron parts are represented by current wires. The theory is

illustrated by a detailed study of fringe field effects on the nonlinear dynamics of the

Large Hadron Collider at collision energy.

Many contributions are established to the second step. It is well known that

the theory of generating functions of canonical transformations provides a possible

symplectification method. It is shown that, by transforming the dynamical problem

into a problem in symplectic geometry, a general theory can be developed, which

leads to a set of infinitely many new types of generating functions. It follows that it

is possible to use this extended set to produce symplectic maps, and to reduce the

whole set of generators to classes that give the same symplectified map. Moreover, the

effects of factorization of the linear parts on the outcome of symplectification were

studied. A variety of examples show the performance of various generator types,

from which it can be concluded that it is not only important to symplectify, but

also to symplectify “the right way”. The precise meaning of the last statement is

the subject of the optimal symplectification theory, which can be formulated using

methods of symplectic topology. In particular, Hofer’s metric allows the formulation

of the optimality condition in a very general setting, and the solution leads to a

generating function type (EXPO) that, in general, gives optimal results. In the proof,

an interesting one-to—one correspondence between fixed points of symplectic maps and

critical points of generating functions is developed, and a generalized Hamilton-Jacobi

equation is derived.

Finally, as contribution to the third step, it is pointed out that the numerical

method used to solve the implicit equations arising in the iteration of the symplectic

maps makes a difference in the final results, and, in general, a fixed point iteration is

more robust than the widely used Newton method.
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Chapter 1

Introduction

A symplectic integration method is an integration method that preserves the sym-

plectic structure (w : (15’ A d5, for more details see subsection 2.2.1) at every time

step. It is well known that symplectic integration methods have favorable qualitative

properties compared to non—symplectic ones, when used for long term integration.

The good long term behavior has been explained by favorable global error prOpaga-

tion (which is usually linear in the symplectic case, compared to generically quadratic

in the non-symplectic case, and at least in certain cases stays bounded in the radial

direction [1]), and the fact that the methods introduce only Hamiltonian perturba-

tions of the original system; if the perturbations are small enough, according to the

KAM theorem, most invariant tori, and hence most of the geometric structure, sur-

vive [2]. Also, symplectic methods have very good energy conservation properties.

Although it is known that in general the symplectic structure and the energy cannot

be conserved simultaneously by a numerical method for a Hamiltonian system [3],

the Hamiltonian is preserved by a symplectic integration scheme up to a function of

the accuracy of the integrator, up to exponentially long times [4]. Sometimes (as a

function of time step and initial condition) quasi-periodic and bounded energy er-

rors are observed that seemingly last forever. There are various implementations of

symplectic integrators in the fields of molecular dynamics [5], celestial mechanics [6],



non—equilibrium statistical mechanics [7, 8], beam physics, etc.

However, it is not clear geometrically what is the exact meaning of symplecticity.

This is even more true for symplectic tracking with maps, as applied in the case

of beam physics. On the one hand, the element by element symplectic integration

usually is implemented in the thin lens (kick) approximation. While it is exactly

symplectic, it is also slow, only accurate to first or second order in the time step, and

not applicable in the case of general, nonseparable Hamiltonians, i.e. Hamiltonians

that can be written as a sum of functions, which have flows that can be computed

exactly. On the other hand, to assess the long-term stability of particles in a periodic

accelerator structure in a reasonable amount of time, it is customary to compute an

approximation of the one turn map, and then track with the map. Unfortunately, by

approximating the originally symplectic map, for example by truncation of the Taylor

series of the true map, its symplecticity is lost. Tracking large numbers of turns with

truncated Taylor maps thus can potentially give inaccurate results. The best we can

hope is that by recovering the exact symplecticity “artificially” from the truncated

map, the long term tracking with the map will restore the properties of the original

system, and will speed up considerably the estimation of the dynamic aperture. As

we shall see, in the Differential Algebraic framework [9, 10] this can be done to very

high orders.

Therefore, tracking symplectically with high order maps is symplectic integration

taken in its usual sense, but because of the use of integrators of very high order

[10], it is usually more accurate in the time step and faster. It is also true that the

speed is achieved at the expense of increasing the time step; here the time step is in

fact one turn around the accelerator (using the arclength along the reference orbit

as the independent variable). Sometimes it might be necessary to balance the length

of the part of the system represented by a map with the required accuracy. This



can be done by splitting the whole system into several pieces and representing each

lump by a transfer map. Also, the map approach allows the important advantage of

incorporating effects in the map that are otherwise very time consuming to compute,

as, for example, fringe fields [11, 12, 13].

The main step in tracking symplectically with maps is the symplectification of

the truncated, order n symplectic, Taylor maps. Several methods have been devel-

oped to achieve the symplectification of maps. There are two main streams: one is

based on factorization methods, and consist of Cremona symplectification [14], inte-

grable polynomial factorization [15] and monomial factorization [16]; the other one

is based on mixed variable generating function methods [17]. All methods provide

valid symplectification schemes. However, the symplectified map depends on the spe-

cific method used. It was realized that the particular schemes applied often make

considerable differences in the final results. This realization triggered the studies of

optimal symplectification. For details concerning optimal Cremona symplectification

see [14].- In part I of this dissertation we extend the method of generating function

symplectification to an exceedingly large class of generators, study the optimality of

generating function symplectification expressed in terms of Hofer’s metric [18], and

solve it by choosing the type of generating function that comes closest to satisfy the

optimality condition in general.

The first mention of the possibility of symplectic integration using generating func-

tions dates back to 1956 [19]. Later it was rediscovered by others; see for example

[20, 21]. Specifically, in beam physics, symplectic tracking with maps based on gener-

ating functions was proposed in [17 , 16, 22]. In particular, it has been shown that in

the Differential Algebraic framework it is straightforward to compute the order n + 1

truncation of the generating function from the order n truncation of the one turn map

to any order n [17, 10]. Symplectic tracking to order three was first implemented in



 

 
 

r

um. I

.u. .

,
1
-



the code MARYLIE [23], and to arbitrary order it was first implemented in COSY IN-

FINITY [24]. The possibility to estimate the SSC dynamic aperture with generating

functions-based symplectic tracking with one turn maps has been considered in [25].

Another approach to generating functions and maps is based on fitted maps [26].

All these methods use only the conventional F1, ..., F4 (in Goldstein’s notation)

types of generating functions [27]. Recently, a symplectic integration scheme has

been developed that is based on generating functions, and it has been shown that

actually there are infinitely many generating functions associated to a symplectic map

[28, 29]. The methods of [28] are based on [30], which is basically a linear algebra

problem, and its local generalizations to the nonlinear case. On the other hand,

the rigorous mathematical foundation on manifolds of the classical global generating

function theory has been laid in the 19708 [31, 32, 33, 34]. We combine the two, and

give the general theory of generating functions of canonical transformations, with an

eye on usefulness for computation in the Differential Algebraic framework [10] used

in cosv INFINITY [24].

To be able to say which generating function is the best one first requires a char-

acterization of the various types. This provides the motivation to develop the general

theory of generating functions in chapter 2. First, it is shown that locally there is

an isomorphism between symplectic and gradient maps, and this leads to infinitely

many generating function types for every symplectic map. Then, the global theory is

developed, which is based on transformation of the problem into a problem in sym-

plectic geometry. This approach gives insight into various problems of locality versus

globality of the generating functions, and emphasizes the generality of the approach.

We mention that following Weinstein’s work, the geometric approach to generating

functions in the physics literature appeared at various degrees of completeness, as,

for example, in [35, 36, 37, 38].



Chapter 3 contains results related to the symplectification of truncated symplectic

Taylor maps. Specifically, it is shown that the general theory of generating functions

can be used to produce exactly symplectic maps. In fact, infinitely many can be pro-

duced, each map being associated to a different generator type. It is shown that not

every generator type produces distinct symplectified maps, and a certain subset of

generators can be reduced to equivalence classes. Two types of generating functions

are said to be equivalent if they produce exactly the same symplectified map, when

applied to a given order n symplectic Taylor map. In this endeavor some transforma-

tion properties of the generating functions are derived, which are interesting also in

their own right. Also, there is a brief presentation of how the conventional generators

fit into this framework.

Sometimes it is preferred to factor out the linear part of the map to be symplec—

tified, and apply the symplectification procedure to the nonlinear part only (in fact

this part will have identity as linear part). It is proved that there is nothing to be

gained by this approach if the appropriate types of generating functions are utilized.

The implications of linear symplectic variable changes for the outcome of the sym-

plectification process are also analyzed. The last section of the chapter gives some

details about the implementation of the method in the code COSY INFINITY.

Chapter 4 is devoted to a variety of examples. The tracking pictures obtained for

standard test cases and accelerator lattices of practical interest are studied, and sev-

eral generator symplectifications are compared. For a few cases, the local corrections

introduced by the symplectification process to the Taylor maps are shown to exhibit

unusual patterns.

The examples of chapter 4 point out the necessity for optimal symplectification

studies. In chapter 5 the problem is approached from the perspective of symplectic





 

topology in general, and Hofer’s metric for compactly supported Hamiltonian sym-

plectic maps in particular. In a very general way, the chapter gives a precise meaning

to “the right way” to symplectify, and obtains a partial answer by singling out the

generator type that is closest to satisfy the optimality condition in general. As by-

products, a generalized Hamilton-Jacobi equation is found, which describes the time

evolution of any generator type, and an interesting duality is developed between fixed

points of symplectic maps and critical points of generating functions.





Chapter 2

General Theory of Generating

Functions of Canonical

Transformations

In the classical mechanics literature, traditionally only the 4 Goldstein type of gen-

erating functions are well known. However, it is easy to show that, for example, the

identity transformation cannot be generated by the type 1 and 4 generating functions.

On the other hand, this set can be easily extended to 2'", or 4", generating functions.

It can be showed that for any symplectic map, at least one generating function from

this set exists locally [10]. The common factor for this set is that they all depend

on mixed coordinates, more specifically on 77. initial coordinates and momenta, and 72.

final coordinates and momenta.

The first sign that in fact there are more generating functions dates back to

Poincare, who used a different type of generating function, which not only is a mixed

variable function in the sense discussed above, but also mixes (linearly) initial and

final conditions in all the 27?. variables [39]. Later this generating function reappeared

in [40] and [28], where also a unifying approach to the theory of generating functions

has been presented, from which it resulted that there are infinitely many generating

fllnCtions.



However, while the approach of [28] gives important computational insight, the

general mathematical foundation of the theory is contained in the series of papers

[31, 32, 33, 40]. On the other hand, the general theory lacks exactly the computa-

tional aspect. Our purpose is to give a rigorous account of the mathematical basis,

and to cast the theory into a convenient computational tool within the framework

of Differential Algebraic methods. We start with the local theory, since it already

contains the main ideas, and it is easier to understand the underlying principles. The

detailed account of the global theory follows in the next section, where light is shed

on the somewhat obscure aspects of the local theory.

2.1 The Local Theory

The theory is developed in Euclidean space, and all definitions and statements refer to

this case. It will be generalized to arbitrary symplectic manifolds in the next section.

First we introduce a few notations. Every map is regarded as a column vector. Let

a=<$> an

be a diffeomorphism of a subset of R4" onto its image, and let

a-1 = ( Z; ) (2.2)

be its inverse. Notice that a,- and Oz", 2' = 1, 2, are the first 2n and second 277. com-

ponents of a and a“ respectively. This entails that a,- : U C R4" —> V,- C W", and

analogously for (12'. It is worthwhile to note that there is a geometric significance to

the use of R4". Both symplectic maps and functions under certain conditions can be

given a geometric interpretation in the form of Lagrangian submanifolds of R4". (La-

grangian submanifolds are 272 dimensional submanifolds of 472 dimensional symplectic
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manifolds on which the symplectic forms vanish identically.) Let

A B

Jac(a) = < C D ) (2.3)

be the 4n x 471 Jacobian of a, split into 272 x 272 blocks. Let

7 _ J21: 0211

J4Tl _ ( 0211 —J2n ) a (2'4)

where

0,, In

J... — ( —I.. 0.. ), (2.5)

and In is the unit matrix of appropriate dimension. A map a is called conformal

symplectic if

(Jac (0.))T .14., Jac (a) = tin, (2.6)

where ,u is a non-zero real constant [41]. Also, we denote by I the identity map of

appropriate dimension. A map M is called symplectic if its Jacobian M satisfies the

symplectic condition [42], that is

MTJM = J. (2.7)

Also, (2.7) can be written is several different forms [10]. We always assume that

the symplectic maps are origin preserving. We call a map a gradient map if it has

Symmetric Jacobian N. It is well known that, at least over simply connected domains,

gradient maps can be written as the gradient of a function (hence the name) [10],

that is

N = Jac (VF)T. (2.8)

(VF is regarded as a row vector [43].) The function F is called the potential of the

map.

The best way to formulate the main result of this section is a theorem.

10
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Theorem 1 Let M be a symplectic map. Then, for every point 2 there is a neigh-

borhood of 2 such that M can be represented by functions F via the relation

Mir-(muWWW
where a is any conformal symplectic map such that

det(C(M(z),z)~Mz+D(M(z),z)) 7&0. (2.10)

Conversely, let F be a twice continuously diflerentiable function with gradient N,

where N = Jac (VF)T. Then, the map M defined by

M = (NC — A)‘1 (B — ND) (2.11)

is symplectic.

Definition 1 The function F is called the generating function of type a of M, and

denoted by FOM.

The theorem says that, once the generator type is fixed, locally there is a one-to-

one correspondence between symplectic maps and scalar functions, which are unique

up to an additive constant. The constant can be normalized to zero without loss

of generality. Due to the fact that there exist uncountably many maps of the form

(2.6), we can conclude that for each symplectic map one can construct infinitely many

generating function types.

A question that naturally arises is about the locality of the description of sym-

plectic maps by generating functions, i.e. what is the size of the region where the

generating functions are defined? A rigorous lower bound can be computed by com-

bining the theory of this section with high-order Taylor model based verified methods.

The results, using several examples of practical interest, suggest that at least certain

11
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carefully chosen generating function types’ domain of definition enclose the region of

interest in simulations (for example the dynamic aperture) [44].

Proof. We notice that, by the implicit function theorem, the proof can be reduced

to the linear case. In particular, the linearization of (2.9) at some point reads

N = (AM+B) (CM+D)‘1. (2.12)

Here all the entries in the equation are matrices. Therefore, by the implicit function

theorem, if (2.9) is well defined at some point, i.e. det (CM + D) 75 0, then it also

holds in a neighborhood of that point. Therefore, the proof is complete if we prove

the following lemma. I

Lemma 2 Let A, B,C, D E Rznfl", and

0.:(3 g). (2.13)

Let M E R2nX2" be given. If A, B,C, D is chosen such that

det (CM + D) ¢ 0, (2.14)

and ifN E 112“?" is defined as

N = (AM+B) (CM+D)", (2.15)

which is equivalent to

M = (NO — A)‘1 (B — ND), (2.16)

then any two of the following statements imply the third one:

1) M is symplectic, i.e. MTJM = J,

2) N is symmetric, i.e. NT 2 N,

3) a is conformal symplectic, i.e. OTJ4nOz = p.74".

12
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The proof is split into three part. First, it is shown that 1) and 2) implies 3), then

that 2) and 3) implies 1), and finally that 1) and 3) implies 2). In the proof of the

lemma we need the following proposition.

Proposition 3 Let det (CM + D) 75 0 and N defined as in (2.15). Then

det (NC — A) 75 0. (2.17)

Proof. Taking determinants on both sides of (2.6) if follows that det (a) # 0. Thus,

denote its inverse by

_ A B

Then, if we expand the relations Q ~ 0‘1 = (1'1 - a = I , we obtain

AA+BC = AA+BC=LCB+DD=CB+DD=L (2.19)

AB+BD = AB+BD=0,C/1+DC=C‘A+DC=O. (2.20)

First we compute

(0N + D) (CM + D) = [6 (AM + B) (CM + D)“1 + D] (CM + D) (2.21)

= (7 (AM + B) + D (CM + D) (2.22)

= (CA + Do) M + (GB + DD) (2.23)

= I. (2.24)

Taking determinants on both sides we obtain that

det (CM + D) 74 0 => det (CW + D) ¢ 0. (2.25)

Next consider the identity

11 0 I __N_ A B _ A—NC B—ND (226)
c 1 0 CN + D C D — 0 I l

13



 



Taking determinants on both sides yet again, we obtain that

det (CN + D) -det (a) = det (A — NC). (2.27)

But det (a) # 0, hence

det (CN + D) 76 0 => det (A — NC) 49 0. (2.28)

Combining (2.25) and (2.28) we arrive at

det (CM + D) 76 0 :> det (NC — A) ;£ 0, (2.29)

and the proposition is proved. I

We can proceed to prove the lemma.

Proof. The first step is to prove that 1) + 2) => 3). We rewrite (2.12) to give

N (CM + D): (AM + B). (2.30)

Knowing that N is symmetric, transposition gives

(MTCT + DT) N = (MTAT + BT) . (2.31)

Combining (2.30) and (2.31) results that

(MTCT + DT) (AM + B) (CM + D)‘1 = (MTAT + BT) (2.32)

(MTCT + DT) (AM + B) = (MTAT + BT) (CM + D).

Therefore we obtain that

M" (CTA — ATC) M + (DTB — BTD) + (2.33)

MT (CTB -— ATD) + (DTA -— BTC) M = 0. (2.34)

The only way for this to hold for any symplectic M is by requiring that

MT (CTA -— ATC) M + (DTB — BTD) = 0, (2.35)

MT (CTB -— ATD) = 0, (2.36)

(DTA — BTC) M = 0, (2.37)

14



for any symplectic M. This is true because the symplectic condition is a condition

that involves quadratic relations among the entries of M, and these relations give as

their results constants. From the first equation we conclude that it holds if and only

if

CTA-A'TC 2 DJ, (2.38)

DTB—BTD = -pJ, (2.39)

for any real number a different from zero, and the second and third equations hold

simultaneously if and only if

DTA — BTC = 0. (2.40)

These relations can be cast into a convenient matrix form, namely

(33)T(gg)(gg)-.(3 3,), 7...,

where ,u E Rx. Hence, we can conclude that for any symmetric N and symplectic

M there can be found nonsingular matrices A, B, C, and D such that (2.6) holds.

Therefore, a is a conformal symplectic map.

The second step is to show that 2) + 3) => 1). From (2.15) we can deduce that

NT = (CM + D)’T (AM + B)T. (2.42)

Using the assumption that NT = N, we get that

(CM + D)‘T (AM + B)T = (AM + B) (CM + D)". (2.43)

To remove the inverses, the above equation can be rewritten as

(MTCT + DT) (AM + B) = (MTAT + 37’) (CM + D). (2.44)

15
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Performing the Operations and regrouping of terms gives

MT (CTA — ATC) M + MT (CTB — ATD) + (2.45)

(DTA —- B‘C) M + (DTB — BTD) = 0. (2.46)

From the expansion of (2.6) it follows that

ATC - CTA = a], BTD — DTB = —11J, (2.47)

ATC — CTA = 0, BTC — DTC = 0. (2.48)

This entails that (2.45) reduces to

MTJM = J, (2.49)

showing that M is symplectic.

To complete the proof now we need to show that 1) + 3) => 2). First we notice

that, according to the above lemma, (2.15) always can be solved for M to give

M = (NC — A)‘1 (B — ND). (2.50)

Therefore,

MT 2 (B — ND)T (NC — A)"T, (2.51)

M-1 = (B — ND)‘1 (NC — A). (2.52)

Also, from the symplectic condition MTJM = J it follows that JMT = M‘IJ.

Inserting (2.51) and (2.52) in this equation, gives

J (B — ND)T (NC — A)“T = (B —- ND)‘1 (NC — A) J, (253)

which can be expressed as

(B —— ND) J (BT — DTNT) = (NC -— A) J (CTNT — AT) . (2.54)

16
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Rearrangement of terms gives

N (CJCT — DJDT) NT — N (CJAT - DJBT) — (2.55)

(AJCT — BJDT) NT + (AJAT — BJBT) : 0. (2.56)

Next, we need to manipulate (2.6), which is equivalent to Q‘TJ = Dar—1 .7. Transposition

gives Ja = pa’Tj, where we used that JT 2 -—J and TT = —j. Also, from J“1 = —J

and j“ = —j it finally follows that

def = )1]. (2.57)

Expanding this relation yields

AJAT — BJBT = 0, CJCT — DJDT = 0, (2.58)

AJCT — BJDT = a], CJAT — DJBT = —)11. (2.59)

As the last step, inserting these in (2.55) results in

NT : N. (2.60)

This completes the proof. I

Theorem 1 has a simple, intuitive interpretation. It provides a way to construct

infinitely many generating function types for any given symplectic map. The various

types are parametrized by the group of conformal symplectic maps. For the existence

of a certain type of generator, det (CM + D) ¢ 0 must hold. Conversely, given any

function and a conformal symplectic map, theorem 1 provides a method for generation

of symplectic maps.

2.2 The Global Theory

The local theory is sufficient in most situations, as the cases of interest to us are weakly

nonlinear Taylor maps around fixed points. Therefore, the treatment of practically

17
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relevant systems is inherently local. However, there are important aspects that the

local theory does not answer. For example, how can the theory be extended to

symplectic manifolds? Moreover, the definition of N in (2.15) seems to be taken

from thin air. Is there a deeper reason behind this definition? Or, is there a more

general definition that provides even more generator types? Finally, what can be said

about the domain of definition of the generators? Can a global generating function

be defined for any symplectic map? In this section we try to answer these questions.

The local theory shows that around any point local generators can be found. The

question is whether the various local generators can be glued smoothly to form a

global generator. Apparently, this cannot be done in general by generators of type

linear 0. However, the existence of nonlinear conformal symplectic maps is not a

priori obvious. Moreover, even if a global generator exists for a given symplectic

map, does the same type of generator exist globally for other symplectic maps? The

solution of these questions requires the “geometrization” of the problem, that is,

reformulation of the problem into a problem in symplectic geometry. We begin with

a brief introduction to symplectic geometry, the language used for the mathematical

basis of the theory. More details can be found in [45, 46].

2.2.1 Fundamentals of Symplectic Geometry

Symplectic geometry is the natural mathematical language of classical mechanics,

specifically Hamiltonian dynamics, as any variational principle can be given a sym-

plectic interpretation. To begin, some fundamental concepts are introduced. Let P

be a smooth manifold, and w a differential 2—form defined on it. If (12 is closed and non-

degenerate, it is called a symplectic form, and the pair (P, w) is called a symplectic

manifold. A form is called closed if its exterior differential vanishes, did 2 0. Closed-

ness is a geometric constraint, which is equivalent to the Jacobi identity. On the other
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hand, non-degeneracy is an algebraic condition. It means that at each point p E P

the skew-symmetric bilinear form cop : TpP x TOP —> R which acts on tangent vectors,

is non-degenerate. In terms of the associated linear map 5),, (v) (u) 2 top (v,u), we

have that, if 62,, (v) (u) = 0 for each v E TpP, then u = 0. Hence dip : TPP —-> T;P is an

isomorphism. This means that, relative to some local coordinate system around each

point, the matrix of (I), and equivalently the matrix of (D has nonzero determinant.

This in turn implies that any symplectic manifold is necessarily even dimensional,

due to the fact that the determinant of any odd dimensional skew-symmetric matrix

vanishes.

A fundamental category of symplectic manifolds are the cotangent bundles of

configuration manifolds, which are the phase spaces of dynamical systems. These

manifolds carry a symplectic structure that is a generalization of the canonical sym-

plectic structure of R2". On the Euclidean space itself, by identifying R2" with T*IR",

we have a special coordinate system in which the symplectic form takes the simple

form wo = dq’A dp‘. The coordinates ((7,117) are called canonical. This coordinate sys-

tem is the symplectic counterpart of the orthonormal coordinate system of Euclidean

geometry. The matrix of coo is denoted by J and has the form

J=(_01 (1)) (2.61)

where each entry represents a n x n block matrix, I being the appropriate unit matrix.

We also note that the standard symplectic form can be defined in a coordinate-free

way by (.00 = —d)\, where /\ is called the canonical one-form, and takes the coordinate

representation /\ = 13’ - dq‘. Darboux’s theorem states that on any symplectic manifold

such a coordinate system can be found in a neighborhood of any point, hence any

symplectic manifold is locally equivalent (symplectomorphic) to the Euclidean space

with its standard symplectic structure too. We call a symplectic form translationally

19



invariant if its matrix has the same form at any point on the manifold.

Now we turn to symplectic transformations between symplectic manifolds. We

will use hereafter interchangeably the notions of symplectic transformations, sym-

plectic maps, canonical transformations, symplectic diffeomorphisms and symplecto-

morphisms. By definition, a diffeomorphism M : P1 —> P2 between two symplectic

manifolds (P1, col) and (P2, (.02) of the same dimension is called a symplectomorphism

if it preserves the symplectic forms, that is

M*UJ2 2 col, (2.62)

where “ denotes the pull-back, which is defined as

(M*w).(v1.vz) = cum.) (T.M - v1. TZM - 122), (2.63)

where z 6 P1 and vl, v2 6 TmPl. In this case P1 and P2 are said to be symplectomor—

phic. In canonical coordinates this definition takes the following form for a symplectic

map of the Euclidean space with its standard symplectic structure we

(Jac(M))T J (Jac(M)) = J. (2.64)

Here Jac denotes the Jacobian and T the matrix transpose. The above definition can

be extended to include conformal symplectic maps by the following relation

MIW2 = 7‘ (M) W11 (2-65)

With r (M) E RX. To see the significance of r, take a scaling map defined by afoul =

Wm, B 6 IR", and apply it to both sides of (2.65). By choosing a = 1/m, we obtain

(M065sz 2 sgn (r (M))w1. Hence, if r > 0, then M045 is symplectic. If r < 0,

then M033 is called antisymplectic. Essentially, it means that Mot/9 is orientation

reversing. Actually, this is strictly true only if n is odd, otherwise, for n even, the

Cartesian product (Mort) XI is orientation reversing; I being the identity map. This
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follows from the definition of the symplectic map. Specifically, any symplectic map

of a manifold into itself preserves the symplectic form, so it also preserves the volume

form w" = wA Aw (n, times). This is a never vanishing 2n—form on a 2n dimensional

manifold, so the vector space it forms is 1 dimensional. Direct calculation shows that

it integrates to a constant times the Euclidean volume. It follows that any symplectic

manifold is oriented by the volume form, symplectic maps preserve orientation, and

if global coordinates are available the determinant of the Jacobian of any symplectic

map is equal to 1 at any point.

Now we turn our attention to Hamiltonian systems, as the single particle dynamics

in accelerators of interest to us can be described to a very good level of approximation

by a Hamiltonian dynamical system. First we establish a few notations. Obviously,

the symplectic maps of a symplectic manifold form an infinite dimensional Lie group

under composition, denoted by Symp(P, w) E Symp(P), if it is clear which symplectic

form is considered. Also its Lie algebra of symplectic vector fields will be denoted

by X (P). In the view of non-degeneracy of symplectic forms, there is a one—to—one

correspondence between vector fields and l—forms via

X (P) —> (21 (P) : X —+ '2. (X)w, (2.66)

where we used 2 for the interior product. A vector field X is called symplectic if z (X) L.)

is closed, that is d (z (X)w) = 0. By the Poincaré lemma, on connected manifolds

every closed l-form is locally exact, so 2. (X) w can be written locally as the differential

of a function 2 (X)w = dH. In this case the vector field is called locally Hamilto-

nian. If dH exists globally (for example if the manifold is simply connected), X is

called Hamiltonian, and H the Hamiltonian function. Conversely, for any function

H : P ——> R, the vector field XH : P ——> TP determined by the identity 2 (XH) w = dH

iS called the Hamiltonian vector field associated to the Hamiltonian function H. A
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Hamiltonian dynamical system is the triple (P, w, H). Hamiltonian vector fields form

a Lie subalgebra of the Lie algebra of symplectic vector fields. The map XH -> H is a

homomorphism. However, if we restrict ourselves to compactly supported Hamiltoni-

ans, then the map becomes an isomorphism, and it can be viewed as a normalization

condition, by specifying the arbitrary constant in H. With this normalization different

Hamiltonians generate different flows. This will be important later in the definition

of the Hofer metric on the space of compactly supported Hamiltonian symplecto-

morphisms. Specifically, compact support means that the Hamiltonian and hence

the associated vector field vanishes outside a compact subset. Recall that vanishing

Hamiltonians generate the identity map. Hence, the support of a symplectic map is

defined as the closure of the set where it is different from identity.

To define Hamiltonian symplectomorphisms we need first the notion of isotopy.

The time-dependent vector field X3,, associated to the time-dependent Hamiltonian

Ht at every t, generates a smooth l-parameter group of diffeomorphisms C1531, satisfying

d t __ X vt v0 _

Ei—t¢Ht _ Ht 0 0H: ’ (DH: — I' (267)

city, is called the Hamiltonian flow associated to Ht, or the Hamiltonian isotopy. A

symplectomorphism 45 E Symp (P) is called Hamiltonian if there exists a Hamiltonian

isotopy (25, E Symp (P) from Q50 = I to (251 = <25. We denote the space of Hamiltonian

symplectic maps by Ham (P,w), or simply Ham (P) . It turns out that Ham (P) is a

normal subgroup of Symp (P), and its Lie algebra is the Lie algebra of Hamiltonian

vector fields. On simply connected manifolds Ham (P) is the identity component of

Symp (P), that is any symplectic isotopy is Hamiltonian [41]. The group of Hamilto-

nian symplectomorphisms is path connected. Also, any path in the space of Hamilto-

nian maps is Hamiltonian. If a symplectic map is generated by compactly supported

Hamiltonians, the symplectic map is also compactly supported, which means that it
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is the identity map outside a compact subset.

To prove that the flows of Hamiltonian systems are symplectic we need the fol-

lowing two formulae [47]: the Lie derivative formula

d t '*

gi¢tw = $t£xtw,
(268)

and Cartan’s magic formula

Ex,w = 2(Xt)dw+d(z(Xt)w). (2.69)

Now it is straightforward to see that if dw = 0 and (2 (Xt) w) = dHt, then fiqfiflu = 0,

that is constant in time and equal to its value at t = 0. Hence we obtain (15:w = w, for

any t. The argument works also backwards, implying that if the flow of a dynamical

system is symplectic then it is generated by Hamiltonian dynamical systems.

2.2.2 Primitive Function vs. Generating Function

In this subsection it is shown that the main ideas of mixed variable generating func-

tions are already built in in the symplectic condition. Consider symplectic transfor-

mations, M, of a symplectic manifold (T*X,w). Let us assume that the manifold

is simply connected, or in other words is an exact symplectic manifold. Then, every

closed form is also exact. We can write w = —d)\. The symplectic condition takes

the form

d (A — M*)\) = 0, (2.70)

from which follows the existence of a function F, such that

/\ — M‘A : dF. (2.71)

The function F is called the primitive function of M. However, there is no one—to-

One correspondence between symplectic maps and primitive functions. Actually, the
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symplectic map is determined up to a left action (composition with M from the left)

of an actionmorphism, i.e. a symplectic map that preserves the 1-form A. This can

be easily seen by replacing M with another symplectic map, N o M, where N an

actionmorphism. Therefore, we obtain

A — (N o M)* A : A — M“ (N*A) (2.72)

= A — M*A (2.73)

= dF. (274)

Hence, M and N0M have the same primitive function. All the NS with this

property arise as lifts of diffeomorphisms on the base manifold [47]. Therefore, the

primitive function determines the symplectic maps up to cotangent lifts. This is a

manifestation of the coordinate independence of the symplectic condition, specifically

A. It also implies that for one—to—one correspondence between M and F, F cannot

be defined on the phase space.

If we think of (5,15) as independent canonical coordinates, and M ((7.15) = ((3, P),

it follows from (2.71) that

fi-dJ—P-dézdF(cj',fi). (2.75)

Now, if the equation 63 = Q ((7, 15’) can be solved for 13' to give a function F1 (q", 63) =

F (5,13 ((7, Q)), with (q", Q) as independent variables, we obtain

8F1 (#7 Q) _.

= p‘ , -—-————_, = —P, 2.76aQ ( )

and we recognize it as the F1 (Goldstein type 1) generating function. The symplectic

maps with this property are called twist maps.

Now it is apparent that, in order to uniquely determine the symplectic map, a

function must employ mixed variables, and this follows from the symplectic condition
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itself. The method used in this section could be used to derive other types of gen-

erating functions. However, there are many As such that w = —dA, as for example

A = —cj' - dp’ or A = %(15'- dri— cf- dp'), etc. Moreover, different As can be chosen on

the source and target manifold, and guessing is necessary for the variable changes.

Therefore, it is not clear how much freedom is possible for construction of new gener-

ating functions, and in general it is not convenient to work in this setting. We choose

to work in another setting, which has been introduced by Weinstein.

2.2.3 Symplectic Maps as Lagrangian Submanifolds

Initially, we have symplectic maps of a manifold in one hand, and functions on an-

other manifold on the other hand. The local representative of the symplectic maps

are vector functions of an even number of components. Our generating function is a

scalar function. A priori, the most general method to connect the two in a one-to-one

manner is not clear. In the early ’803 Weinstein formulated a “symplectic creed” with

the motto “in symplectic geometry everything is a Lagrangian submanifold” (see defi-

nition below). Indeed, in symplectic geometry Lagrangian submanifolds are the most

important objects beside the symplectic manifolds themselves. These Lagrangian

submanifolds provide the most general link between symplectic maps and generating

functions. Both symplectic maps, and functions under certain conditions, can be

put in one-to—one correspondence with Lagrangian submanifolds of appropriate sym-

plectic manifolds. Once this correspondence is established, instead of working at the

level of symplectic maps and functions we can work with Lagrangian submanifolds.

At this point, the link we are looking for will be given by the most general type of

diffeomorphisms that map these Lagrangian submanifolds into each other, or in other

words the diffeomorphisms of identification of the two Lagrangian submanifolds.

We will consider only submanifolds of symplectic manifolds that are properly

25



'3' __

D. I

o.

I .

l-On P.

.1. 4.

A I

Ir C I.

. fi
. . 1 .

\ _

C up... .

.0 u.

1‘. .

 
w

«v. < o.
. I. T

I. _

Flo.
r o.

.
I

f.

I .

Ex. ..
o

I.

.

n .

o J.

(La. 4.

A... .

'

 

 



embedded and which inherit their topology from the ambient manifold. Also, we will

need to work with injections of graphs of maps. It can be proved that the graph of a

smooth map f : P1 —-> P2,

Ff={(f(P):P)[PEP1,f(P)€P2}CP1XP2 (2-77)

is a smooth submanifold of P1 x P2 of dimension dim (P1) [47]. Moreover, if f is

a diffeomorphism, then the projections 7r,- : Ff —> 13,-, i = 1,2 are diffeomorphisms

[47, 32].

Lagrangian submanifolds are defined in terms of tangent spaces on which the

symplectic form vanishes.

Definition 2 Let (P, (.2) be a 2n dimensional symplectic manifold and let L be a

submanifold of P. L is called a Lagrangian submanifold if, at each 1) E L, TpL is a

Lagrangian subspace of TpP, i.e. wPITpL E 0 and dim TpL = %dim TpP. Equivalently,

if i : L ¢—+ P is the inclusion map, then L is Lagrangian if and only if i*w = 0 and

dimL = §dim P.

First we prove that any symplectic map M : (P1,w1) —> (P2, (.12), M‘wz : (.21, can

be interpreted as a Lagrangian submanifold in the Cartesian product space P2 x P1

with the symplectic structure a(7r§w1 — iri‘wg), where 77.,- : P2 x P1 —> P,, i = 1,2,

are the canonical projections and p. E RX. The graph of the symplectic map is the

2n-dimensional submanifold of P2 >< P1

PM = {(A4 (2),.3) lz 6 P1}. (2.78)

Denote P = P2 x P1 and w = ,u (fig/ail — 7r’i‘w2); then we have the following:

Theorem 4 M is a symplectomorphism if and only if I‘M is a Lagrangian subman-

ifold of (P, w).
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Proof. PM is Lagrangian iff relative to the inclusion map i : I‘M H P, i‘w = 0.

m = u(i*7r.3w1 — wring) (2.79)

= n ((7r2 o i)‘ w, — (771 o i)‘ 7.12) (2.80)

: 12(I‘w1 — M‘wg) (2.81)

= u(w1 — M’wg) = O. (2.82)

Hence, because ,u at 0, it follows that M’wg = w]. I

Arbitrary Lagrangian submanifolds of (P,w) are called canonical relations, and

can be considered as generalizations of symplectic maps. For practical applications

we will be interested in the case P1 = P2 = R2", and w] = (.22 2 too being the standard

symplectic structure of R2". Thus, in this case, any symplectic map M : R2" —> R2"

is a Lagrangian submanifold in (R‘Wuj), with symplectic structure L.) that has the

matrix

7 _ J2n 02n

)2] — u ( 02” —J2n ) . (2.83)

One particular Lagrangian submanifold of this kind that will be useful later is the

diagonal, which by definition is the graph of the identity map

A = {(2,2) |z 6 P1}. (2.84)

2.2.4 Functions as Lagrangian Submanifolds

Next, we turn our attention to the one—to—one correspondence that can be set up

between closed one-forms and Lagrangian submanifolds of cotangent bundles that

project diffeomorphically onto the base manifold. Consider a smooth manifold X

and a l-form defined on it. Regard it as a map from X to T"X . Then the following

holds:
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Proposition 5 The canonical one-form A E Q] (T*X) is uniquely characterized by

the property that

o‘A = a, (2.85)

for every one-form o : X —> T*X.

Proof. The a on the left hand side is considered as a map, and on the right hand

side as a one-form. Denote the coordinates of T*X by ((3115). Then a regarded as

a map in these coordinates can be written as o = ((7, f((j)) for some functions f,.

Recall that the canonical one-form has the expression A = 13' - dcj'. Thus, using the

definition of the pull-back we obtain

(03)).7 = Aa(q‘)'d(j‘0 (2.86)

T

= (‘37) (its) (2....)
= 0(7- (2.88)

where we used that AWD 2 (170 f(cj’)) -d ((70 (f) = f((]) -d(j'= oq~, (5,1)”) being regarded

as components of the identity map. I

Now we demonstrate that when a is closed, its image 0 (X) (o regarded as a map)

is a Lagrangian submanifold of T‘X with the standard symplectic structure. Note

that the graph I“, of the one-form o is defined as

Fa={(o(w),w) IwEX,o(w) ETJX}. (2.89)

Its image by the inclusion i : I“, —-> T*X is Lagrangian. Relative to the projection

77 : [‘0 —+ X, I“, is uniquely determined by the one—form o if and only if it is a

diffeomorphism. This can be seen from the fact that i = 0071’. Hence, F0 is Lagrangian

iff i‘wo = 0. Thus we get

(a 0 7r)’ we = (o 0 7r)‘ (—dA) = —7r* ((1 (o*A)) (2.90)

= —7l’*d0 = 0,
(2°91)
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where we used we 2 —dA, the fact that the pull-back commutes with the exterior

differential and the result of the above proposition. Therefore, there is a one-to-one

correspondence between Lagrangian submanifolds of (TX, mug) of the form (2.89)

which project diffeomorphically onto X, and closed one-forms 0 on X; here V E RX.

In general, there are two ways to ensure that 7r is a diffeomorphism; if the em-

bedding is 01 close enough (i.e. close enough in norm to the function values as well

as the values of the first derivatives) to the canonical embedding of the zero section

into the cotangent bundle, or o (as the differential of a function) is a diffeomorphism. .

In the first case the projection mapping will be 01 close enough to identity to be a

diffeomorphism. Indeed, it can be showed [45] that if

1

|| df - I ll: -2-, (2.92)

then f is a diffeomorphism. Hence, in this case 7r can be guaranteed to be a diffeo-

morphism if a is Cl close enough to 0.

For example, the zero section of T*X, defined by

Z={(€,w) |§=0,w€X,£eT;,X}={0}><X (2.93)

is such a Lagrangian submanifold. This obviously follows from the fact that g = 0,

so Alz =0.

Other examples of Lagrangian submanifolds are the fibers of cotangent bundles

(“delta functions” at a fixed point in the base manifold), any smooth curve on a 2

dimensional symplectic manifold, invariant tori (KAM tori) of Hamiltonian systems,

etc.

The next step is to make the connection between functions on X and the La-

grangian submanifolds of the form (2.89) of T‘X. This is possible if the one-form o

is exact, that is can be written as the differential of a function. The condition when
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this is possible can be described by the first Betti number. First we define the de

Rham cohomology groups Hk (X, R) by

_kHWAYQU*QHWM)Hk (X,R) _ range (d ': 9““ (X) _) 9k (X))

 QM)

The elements of Hk (X, R) form a vector space, and its dimension is called the k-th

Betti number

a=mmHHxny a%)

which measures the failure of closed forms to be globally exact. On the other hand,

if X is connected, by the Poincaré lemma every closed form is locally exact. If

bl = 0, it follows that every closed one-form is globally the differential of a function.

In this case the closed one-form 0 can be written as dF for a function F that is

unique up an additive arbitrary constant. The function F E f (C°° (X)) is called

the generating function of the Lagrangian submanifold I‘d. Hence, if bl = 0 we can

think of Lagrangian submanifolds I}, as generalized functions on X. We note the

well-known fact that for R2", b0 2 1 and b,- = 0 for i 2 1. In the case relevant

for our applications, in Euclidean space, every function “generates” a Lagrangian

submanifold, and conversely, given a Lagrangian submanifold of the form (2.89),

which projects diffeomorphically onto the base manifold, its generating function can

be computed by mere integration along an arbitrary path. Also, this function will

be called the generating function of the canonical transformation. However, it is

still necessary to link the Lagrangian submanifolds (2.78) and (2.89) with suitable

diffeomorphisms. We do that in the next subsection.

We mention that the projection it is actually a fiber translation, and I‘d intersects

each fiber at most in only one point. The fact that 1",,r might not project diffeomor-

phically is a hint that some generating functions do not exist for certain symplectic

maps. In the case that the projection is not a global diffeomorphism, we certainly
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cannot have a global generating function, but still it might be possible to define a

local generating function, if the origin has a neighborhood that projects diffeomorphi-

cally. While, for special cases of symplectic maps and types of generating functions

it might be possible to ensure that the projection is a global diffeomorphism (see for

example twist maps and Goldstein type 1 generating functions), in general the pro-

jection can be guaranteed to be a global diffeomorphism only if I‘d is close enough to

the zero section. In this case, the projection map is Cl-close enough to identity to be

a diffeomorphism. Hence, every Cz-small enough function is in one-to-one correspon-

dence with such a Lagrangian submanifold. At this point it is not clear how much

freedom we have to map Lagrangian submanifolds into each other, but it is a basic

requirement of the theory to try to map as close to the zero section as possible. As

we will see, this condition also plays a crucial role in the optimal symplectification.

2.2.5 Existence of Infinitely Many Generating Functions

Now we are ready to link symplectic maps with their generating functions. The most

natural and general way is to require the Lagrangian submanifold determined by a

function to be diffeomorphic to the Lagrangian submanifold determined by the sym-

plectic map, if such a map exists. A well-known theorem [31] states that a neighbor-

hood of any Lagrangian submanifold can be identified by a local symplectomorphism

with a neighborhood of the zero section in the cotangent bundle of the submanifold.

In general there are two difficulties with this approach. If the manifolds are not simply

connected, the generating functions in general cannot be defined globally, and from

the computational point of view, it is difficult to deal with the complicated cotangent

bundles of the Lagrangian submanifolds determined by the symplectic maps. That

is why in general this approach is best suited for symplectic maps close to identity.

Also, the theorem states the existence of a local symplectomorphism that identifies
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the appropriate Lagrangian submanifolds, but is not a priori clear that this is the

most general way to do that. Fortunately, for our purpose it is enough to consider

only the case of Euclidean space, for which more results can be obtained.

If we limiting ourselves to simply connected manifolds, and if it happens that P,,

i = 1, 2, is diffeomorphic to X, then we have the following commutative diagram:

PM __C¥_.> PdF

”ii i” (2.96)

Pt 99.; a X

M being a symplectomorphism, the projections it, are diffeomorphisms. Moreover, it

is assumed that 7r is a diffeomorphism, and there exist a diffeomorphism <,0,- : P,- —> X.

Thus, in this case there exists a diffeomorphism a : I‘M —-> Pdp, for any pair of

Lagrangian submanifolds of this form, satisfying the above conditions. The following

theorem [48, 49] shows that 0 extends to a local symplectomorphism. It can be

thought of as a generalization of the main theorem of [31].

Theorem 6 Let L,- be two Lagrangian submanifolds of the symplectic manifolds (P,, wi),

i = 1,2. Then any diffeomorphism a : L1 ——> L2 extends to a conformal symplecto-

morphism B : U1 —> U2 of some neighborhoods U,- of L,- in P,-, such that filLl E 01.

Consider the following diagram:

 

 

(P, w) )3 \ (T*X, z/wo)

U4] IMF

PM a > Pdp

agoiM/ \moiM 7r,/ \i

Z _.M__) M (Z) w L dF (10)

Where 2: 6 P1 and w E X are arbitrary points of the respective manifolds.
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We pointed out that the local classification, around a point, of symplectic struc-

tures is completely solved by Darboux’s theorem. Here we have another concept of

locality, namely local around a submanifold, of which one can think of as germs of

the symplectic manifolds. Marle’s theorem is an example of such a tubular theorem,

first proved to exist by Weinstein. It says that Lagrangian submanifolds do not have

geometric invariants in order to distinguish each other. In general there are no global

theorems similar to the tubular ones. This is true even in the R2" case, due to the

existence of exotic symplectic structures proved by Gromov [50].

The importance of the above theorem consists of two main aspects: it gives the

most general way to represent symplectic maps globally by scalar functions, and

implies that once a symplectomorphism 6 exists for a symplectic map M and a

function F, it is automatically valid for all nearby symplectic maps. It follows that

the freedom for selecting generating function types is given by the set of conformal

symplectic maps of the form 733.10 = w/u. A generating function of type a, which

exists for a given M, exists for all nearby symplectic maps. In case the assumptions of

the theorem are satisfied, any Lagrangian submanifold PM can be identified with any

Lagrangian submanifold FdF; therefore, in principle the scalar function F can always

be chosen in such a way that it is a diffeomorphism, guaranteeing global generating

function types for any symplectic map. Clearly, once a is fixed, there is a one-to-

one correspondence between symplectic maps and functions, hence they are called

the generating functions of the symplectic maps. Interestingly enough, the diagram

shows that, when the theorem’s conditions hold, to any pair (M, F) can be found an

a (which is not unique) such that F becomes the generating function of type a of

M. Also, generating functions can be defined on any simply connected manifold X

diffeomorphic to P,, and as mentioned above, 6 cannot in general be extended to a

global conformal symplectic map.
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Now we specialize these result to the case of Euclidean spaces. Notice that for our

practical cases in beam dynamics M : R2" —> R2”, and it is computationally conve-

nient to define the generating functions also on R2". Hence P1 = P2 = X = R2", and

col 2 tag 2 wo- As long as it is a diffeomorphism, the theorem applies and the exis-

tence of the diffeomorphism a, which can be extended to a local symplectomorphism

)3 follows. Global canonical coordinates are available, in which the symplectic struc-

tures w and mag are translationally invariant with matrices, pi and VJ respectively.

Therefore, there is an a which can be used to identify any Lagrangian submanifold

of (Rm, ad) of the form (2.78) with any Lagrangian submanifold of (Rm, VJ) of the

form (2.89). According to the theorem, the most general form of 6 is a conformal

symplectic map. Since a is the restriction of )8 to the Lagrangian submanifolds, we

conclude that the most general form of the diffeomorphism a that links the symplectic

maps to their generating functions is

, 1

OZ LL10 '—"- ~01. (2.97)

1/

The coordinate expression of this equation is (2.6). In fact, this was expected from

the local theory. Using elementary methods, it has been shown in section 2.1 that

if (2.15) holds, the most general map that gives the generator type is a conformal

symplectic matrix. The global theory just states that instead of matrices nonlinear

maps can be used, and the local maps around each point can be glued together along

germs of Lagrangian submanifolds, which entail the existence of global generating

function types.

In conclusion, we have the following fundamental results in the case of Euclidean

space: there is a one-to—one correspondence between any small function (in the 02

sense) F E f (C°° (R2")) and symplectic map M : 1R2" —> R2", realized through a
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diffeomorphism a : I‘M —> Four such that

PdF = 0" (PM) » (2-98)

1

ofwo 2 Eco. (2.99)

For a fixed a, the function F that satisfies the above equations is called the generating

function of type a of the canonical transformation represented by M. The same type

of generator exists for all symplectic maps close enough to each other (in the Cl

topology). Obviously, from these equations it follows that to every symplectic map

infinitely many generating functions can be constructed, due to the fact that the Lie

group of diffeomorphisms of the form (2.99) contains infinitely many elements.

This completes the global theory of generating functions. It is worthwhile to note

that the theory is global in the sense that guarantees the existence of global generating

functions for any symplectic map. However, it is local in the sense that it proves that

one fixed type of generator cannot exist for all symplectic maps, not even locally

around a point.

2.3 ’ Generating Functions from the Computational

Point of View

This section presents a computationally convenient method to obtain generating func-

tions of given symplectic maps. First, it is necessary to rewrite (2.98—2.99) in a form

that is convenient computationally. The vector function associated to the one-form dF

by the standard Euclidean scalar product is the gradient, VF. We write N = (VF)T

for the map, regarded as a column vector, represented by VF. “dN = 0” means that

(W.- _8N,-
_ i

0w]- 6w,-

 i,j = 1, ..,.2n (2.100)
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These are the well-known necessary and sufficient conditions for the existence of a

scalar potential [10]. The generating function is the potential of the closed one-form

that determines the Lagrangian submanifold.

Denote some canonical coordinates by z = (6,15), and denote the coordinates of the

space where the generating function is defined by w. Introduce 2 and if) by 2 = M (2)

and u“) = N (w). Then (2.98) can be expressed as

(3):..(g), (2.0.)

( N0”) ) = a( Mm ) (2.102)
211 \ z

Splitting a into the first 2n and last 2n components, we obtain

_ 01
a _ ( a2 ) (2.103)

Similarly, for its inverse a“ we write

_.1 (11

a _ ( a, > (2.104)

From (2.102) it follows that

w 2 ago( A; )(z), (2.105)

N(w) = 01 o ( A; ) (2). (2.106)

Combining the two equations we obtain that

Noago('AI/i)(z)=alo(/¥)(z). (2.107)

I

forTnula, useful for the actual computation of the generating function:

(VF)T=(0710(’/}4 ))o(ago(/‘; D4. (2.108)
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Therefore, the formula (2.9) that has been defined in section 2.1, without apparent

deep logic behind it, is recovered, and the general condition that requires 7r to be a

diffeomorphism appears in computations as the above mentioned invertibility condi-

tion. If the respective map does not have a global inverse, clearly there is no global

generating function. Obviously, the symplectic map M needs to be defined globally.

If (2.105) fails to be a global diffeomorphism, there is still a chance to be defined

locally, producing local generators. The invertibility condition sometimes is called

the transversality condition. Locally, around the origin, this is satisfied whenever

det (Jac (ago ( "I" ) (z)|,=0)) ,6 0. (2.109)

Denote the Jacobian of a by a# = Jac (a). a# can be written as

(1,. = (g g), (2.110)

A, B, C, D being 2n x 2n block matrices. Hence, assuming that the symplectic maps

are origin preserving, i.e. M (0) = 0, the local transversality condition around the

origin is

det (C (0,0) ' M (0) + D (0,0)) 75 0, (2.111)

where M = Jac (M). If this necessary condition is satisfied, then the generating

function is defined in a neighborhood of the origin, and can be calculated from (2.108)

by mere integration along an arbitrary path. The arbitrariness of the path is assured

by Stokes’ theorem. This has been known also from the local theory of section 2.1.

We note that in fact the computation of F according to (2.108), and subsequent

integration, gives F, which is the primitive function rather than the generating func-

tion. To get the generating function itself, one has to keep in mind to which a it is

associated, and compute F in the w coordinates,

Fr—-—>Fo(ago('/}A )) (2.112)
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There is a nice geometric interpretation of the global existence of the generating

functions. As has been seen, any Lagrangian submanifold in unique correspondence

with M can be sent diffeomorphically onto the Lagrangian submanifold determined

by F. If, for some choice of a, this is achieved in such a way that PM is close enough

to the zero section to project diffeomorphically onto the base, the generating function

of type Oz exists globally. Recall that the group of diffeomorphisms is open in the set

of smooth maps in the C'1 topology. Therefore, any smooth map close enough to the

identity is a global diffeomorphism [41]. The reflection of this fact is that 02 (2, 2) has

a global inverse. However, it might not be possible in practice to find an a satisfying

this condition, especially for very nonlinear symplectic maps, and we need to consider

local generating functions. If the projection diffeomorphisms are local, defined in a

neighborhood of the origin, then we have local generating functions. In this case, one

can think intuitively that fixing the type of generating function, as the nonlinearities

of the symplectic map increase, the singularities move closer to the origin, limiting

the domain of validity of the generating function. However, we always assume that

the dynamics is taking place in a finite region of the phase space, so there is no loss

of generality in assuming that the symplectic maps are compactly supported, and

requiring only that the generating function to be defined in the region of interest. If

the symplectic maps are too “big” for the generating functions to cover the region of

interest, the problem can always be alleviated by taking roots of the symplectic map.

Next, we are interested in the constraints imposed by 07. Equation (2.99) written

in coordinates is

0;J4na# = j4n- (2.113)

t
l
‘
:

By abuse of notation, for ,u/ 1/ we write ,u E RX. More explicitly (2.113) reads

AT CT 02,, 12,, A B __ J2” 02,,

l BT DT ) ( 42.. 02.. C D ‘ “ 02.. —J2.. ’ (2'1”)
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which gives the constraints

ATC—CTA = 17.12,, (2.115)

BTD—DTB = —1..12.,,, (2.116)

ATD—CTB = 0. (2.117)

Knowing that 07 is a diffeomorphisms, obviously a# is invertible. It is easy to see that

det(J4,,) = 1 and det (j...) = det(J2,,) . det(—J2,,) = 1, and hence (det(oi,.,1))2 =

[14" ¢ 0. Then equivalently, (2.113) can be written as follows:

07;!“ = uj4na;l. (2.118)

Transposition gives

J4n0'# = #0;Tj4n, (2.119)

where we used J}; 2 —J4,, and J; : —j4,,. Obviously, J47: = —J4n and L7} = —.L;,,,

so it results that

J4na#j4n = —,UO';T, (2.120)

J4na#j4na; = -,U., (2.121)

a#.i4.,,a; =-. ”.14”, (2.122)

which gives the equivalent set of constraints, but better suited for further analysis:

AJgnAT—BJgnBT = 0, (2.123)

CJgnCT—DJgnDT = 0, (2.124)

DJQnBT—ngnAT = #12". (2.125)

The constraints show that (A, B) and (C, D) must be symplectic pencils, and there is

an additional condition that links the two pencils. An important observation is that in
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the process of construction of the generating function from a symplectic map (2.123-

2125) have to be satisfied exactly, not only up to order n. In the Differential Algebraic

framework, where we are working with Taylor expansions, it means that we need to

construct as that are exact, at most order n, polynomial conformal symplectic maps.

To our knowledge, their classification is not known. It follows that we are inherently

constrained to consider linear maps a, which can be constructed and represented

exactly on a computer. In this case a can be represented by a 4n x 4n constant

matrix. If A is invertible, it follows that A‘IB is a symplectic matrix. The same

argument holds for the case when C is invertible, resulting that C‘ID is a symplectic

matrix. Of course, even in the linear case, there are still infinitely many as to choose

from.

2.4 Computation of Symplectic Maps from Gen-

erating Functions

In this section, the inverse problem is addressed. That is, given a generating function

of type a, what is the symplectic map it generates? In other words, is there a

“reversion” of (2.108) that gives M in terms of F and a? In section 2.1 this has been

shown to be possible. However, it involves a somewhat awkward definition in terms

of Jacobians. Here another method is presented, without involving the Jacobians.

Introduce a transformation defined by

W): (....( A; )) . (...( A; ))“, (2.26)

where Jac (a) 6 Cl (4n), and suppose that the transversality condition is satisfied.

Therefore, TO (M) = N if and only if

(N002 —al)o ( AZ" ) :0. (2.127)
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Now suppose that M is given by another transformation T5 (IC) = M, where B =

(131, 32)T, Jac (B) 6 Cl (4n), with the appropriate transversality condition satisfied.

Inserting it in the above equation gives

(Noag—a1)o (51°(§))°(52°(§))_1 =0. (2.128)

I

Because (B2 0 (IC,I)T) is invertible, this is equivalent to

IC
61 O l I

(No a2 — (11) o [C = 0, (2.129)

B2 0 I 1,

IC

(NO (CY-2 O B) — (0'10 5)) O( I > = 0, (2.130)

which in terms of T can be written as

To 0 T5 (K) = Tao/3 (Kl), (2.131)

for any IC. If we choose )3 = 0—1, it follows that

Ta 0 Tan 2 T1 = I, (2.132)

that is

Ta—i = (Ta)'1 . (2.133)

This equation entails that whenever TO (M) = N is well defined, the inverse is

automatically well defined, and gives M =Ta—1 (N) Explicitly, this means that

M=(alo(§[))o(azo(¥))-l. (2.134)

Applied to the situation where N is the gradient of the generating function and a is

conformal symplectic, it gives a symplectic M. Thus, (2.134) is the counterpart of

(2.9). Together, they provide a convenient computational method to pass from F to

M and back.
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Chapter 3

The Symplectic Approximation

Process

Chapter 2 developed the general theory of generating functions and put the results

into computationally convenient forms. It has been shown that, as long as the math-

ematics can be performed exactly, the passing from symplectic maps to generating

functions and back is easy to achieve. Moreover, this can be done utilizing any of the

infinite set of generator types. Unfortunately, in practice this is not the case. Specifi-

cally, the mathematical operations can be readily performed on a computer only with

the truncation of the Taylor series of the maps at some order 12. Since there is a

need to represent the accelerator systems by exactly symplectic maps for long term

tracking purposes, procedures to recover the exact symplecticity of the truncated Tay-

lor maps are needed. The symplectification can be achieved utilizing the generating

function theory. This chapter studies various problems related to generating function

symplectification.

42



3.1 Symplectification of Taylor Maps and Sym-

plectic Tracking by the Generating Function

Method

Symplectic integrators became famous for their long—term properties. Their accuracy

is not necessarily their best feature, and very high order symplectic integrators are

often not efficient enough. The overall conclusion is that, for short term integration,

the methods of choice should be integration methods with the smallest possible local

error. For details see Sanz-Serna [1]. One turn around an accelerator can be con-

sidered short term, and a good algorithm should give symplecticity close to machine

precision over the region of interest. In the Differential Algebraic (DA) approach

the integration of the reference particle also gives the truncated Taylor series of the

one turn map, which is also close to machine precision order n symplecticity. The

problems arise with the 108 — 109 iteration of the maps required for evaluation of

the region of stable orbits, the so—called dynamic aperture. The errors potentially

build up during large number of iterations, overshadowing completely the symplectic

nature of the motion if sufficient time passes. Although, as it will be seen, recovering

the symplectic nature of the motion is not a complete cure, there is reasonable hope

that symplectic tracking captures the most important features of the original system

over a sufficiently long time and sufficiently large region of phase space to be useful

for applications.

The symplectification process is the following. Using a given integration method,

compute the truncated Taylor series of the map, Mn. It is assumed that .Mn is

order n symplectic. Fix an a that satisfies the constraints and the transversality

condition. Use (2.108) to compute N", the truncation at order n of N. In COSY IN-

FINITY all the necessary operations of truncated symplectic map generation, order n
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composition and inversion of maps, and integration are readily available. Now, there

is a fundamental difference between JV!n and N". While in general M is loosing its

symplectic property by truncation, because its elements are related by quadratic rela-

tions, Nn still satisfies conditions (2.100) if N satisfies them, because they represent

linear relations. Hence, a function which agrees with the true generating function’s

Taylor expansion up to order n can be easily computed by integration of Nn along

an arbitrary path. Therefore, if the true generating function is F, only Fn can be

computed. On the other hand, Fn is a valid generating function in its own right, and

can be used to generate an exactly symplectic map. The Taylor expansion of the new

symplectic map agrees up to order n with the original truncated symplectic map.

Separating N" and a in linear and non-linear parts, we obtain

M. = Nf+N,{", (3.1)

L+ N

. = (2)4322) <32

Therefore, denoting by M, the exactly symplectic map generated by Nn (or F”),

and E = M (2), (2.107) can be used to get

(N: +N,,N) o (02" (2, z) + aév (E, 2)) = 01" (2, 2) + div (5, z). (3.3)

The linear parts of can be written as matrices

af(2,z) = 2+Bz, (3.4)

0%” (2, z) 2 CE + Dz. (3.5)

Isolating the linear part in 2 we obtain

(N: o C — A) 2 = a1” (2, z) — N,” o (02 + D2 + a; (2, 2)) (3.6)

—N,,L 0 (D2: + a; (2, 2)) + 82. (3.7)
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It already has been proved in section 2.1 that (NHL 0 C — A) is always invertible; thus

Otiv (2, 2) —N,,N 0 (C2 + D2 + a? (2,2))
:_ L __ '1

‘_(N"OC A) O —N,{‘O(D2+a'§v(2,2))+Bz
(3.8)

If the right hand side is contracting, it can be solved for 2 by iteration. Using as

initial value 2,, = Mn (2) = Mn (2) = 2", if n is sufficiently high, it is hoped that

(3.8) is contracting, and it can be interpreted as a symplectic tracking scheme. The

(k + 1)-th iterate of the map takes the form

of, (2H1, 2k) — NnN 0(Czk+1+ 02" + a? (2H1, z"))
k 1_ L _ ’1

'
2+ —(Nn 00 A) o _N#O(Dzk+a§\i(Zk+l’zk))+sz

(3.9)

Of course, at each (k + 1)-th iteration, it has to be solved for 2"+1 as a function of 2“

by a fixed point iteration. With only linear maps a, (3.8) simplifies somewhat:

2:(NnLoC—A)“o[(B—NfoD)z—N,§O(C2+Dz)]. (3.10)

Notice that (N: 00 — A) is in fact a matrix. Denote N = Jac (Ni). It is

actually the Jacobian of N... at the origin. me (2.100) follows that N is symmetric.

Interestingly, the first term appearing in (3.10) is the linear part of the symplectic

map. Hence, assuming that the linear part of the solution can be computed always

to machine precision, (3.10) takes the following form for the non-linear part of the

solution EN

2" = - (NfOC—A)_10N,‘,No(C§+Dz). (3.11)

To this end, in principle the symplectification of maps and the symplectic tracking

utilizing the generating function method is solved. We conclude the section with an

interesting question. One of the reasons for tracking with maps is to speed up the

simulation of accelerators. It seems that always implicit equations must be solved
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for tracking symplectically. If the fixed point iterations could be replaced by some

explicit relations, probably the tracking would be much faster. This problem is equiv-

alent to the question whether the generating functions must be of mixed variables?

Unfortunately, in general the answer is yes. For any 0, denote Jac ((12) = (C D).

If any generating function was non-mixed, it would mean that C = 0. But then it

would follow that

AB

det (Jac ((1)) = det< 0 D ) = det (A) odet (D) (3.12)

From the constraints (2123-2125) results that in this case (det (D))2 = (det (0))2 =

0, giving det (Jac ((1)) = 0, which contradicts the condition compatible with the

constraints: (det (Jac (00))2 = [14" ¢ 0. The same argument is valid for any block

entry in Jac (0); hence A, B, C, D 75 0.

In subsequent sections we will show that the complexity of the problem can be re-

duced by considering equivalence classes of generating functions. However, the results

of this section, taken together with subsection (3.3.1), is a recipe for transforming any

code that uses the Goldstein generating function symplectic tracking to a form which

uses fixed point iterations for solving the implicit equations, instead of the more tra-

ditional Newton method. In section (3.5) it will be pointed out that the fixed point

iteration has certain advantages over the Newton method.

3.2 Transformation Properties of Generating Func-

tions

By looking at how the generating functions transform under modifications of a and/or

M, a set of rules is obtained, which are called transformation properties. These

properties are based on the fact that if a is a conformal symplectic map such that

(Jac (0))T J4" Jac (a) = Him, (3.13)
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then for any fl and 7 such that

(Jac(6))TJ4nJac(fi) = .14., (3.14)

(Jac()))Tj4nJac()) = .11.... (3.15)

the map 5 o a o 7 is also a valid conformal symplectic map. Indeed, it follows from

(3.14) and (3.15) and repeated application of the chain rule that [3 o a o 7 satisfies

(3.13). Therefore, it gives another type of generating function. In invariant form, if

a‘wo = uw, B‘wo = we, and 7*w = w, then

(B o a o 2')‘ mm = 7* (0* (B’wo)) = 1“ (a*wo) = 7* (W) = W- (3-16)

These rules are interesting in their own right in symplectic geometry, and some of

them can be found in [29]. More importantly, the rules are used in the next sections

for equivalence class reduction of the set of generating functions.

We begin with studying what happens to the generating function FaM under the

transformation 01 +—> A021, for some non-zero real )1. This affects only the conformality

factor ,u of a, which becomes Au. Slight rearrangement of (2.9) gives

((VFW)?’ o 32 — a1) 0 ( ()4 ) = 0. (3.17)

Then, we also have

T

M
(VF(A£),M) oaz—A-al o( I )20, (3.18)

which is equivalent to

(v (WWW” .( A; ) = .. (3...)
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Comparing (3.17) with (3.19) we see that

VFOM = v (1‘1 -F(1..,)’M) . (3.20)

that is

F(’\:;l).M =/\‘Fa,M +6, (3.21)

for some arbitrary constant c.

In the same way, the transformation 02 H A02 has the following effect:

((VF(AaJ2),M)To(A-ag) —a,) o ( "I" ) = 0, (3.22)

(((VF(A.,2,M)T..I) _ .) .( )

(r1. (:7 (F(Aac:2)‘MoAZ))Toog—al) o( A; ) = 0, (3.24)

((v(.-1.(.,A.,2,,M.3)))T...-..).( )

Again, comparison of (3.17) and (3.132) gives

= 0, (3.23)

II S
3

(3.25)

V A“. F 3. AI = VFQ , 3.26

( ( (A02)"M O )) lM ( )

that is

F(’\Ol ),M =/\'Fa,MO)\—II+C. (3.27)

02

Also, from these two transformation properties it is easy to see the effect of the two

transformations combined.

Next, we study what happens if we change the symplectic map, for example, by
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M +——> M o .A, for some symplectic map A. From (2.9) we have

((VFmMoAf oag — a1) 0 < MIO’A ) = 0 (3.28)

((VFa,MoA)T 0 0'2 — a1) 0 ( if, ) = 0 (3.29)

(<VF.,M..4>T<> (cm or...) — (a. om) o( i," ) = o. (3.30)

where TA is defined by TA (2, 2) = (2,/1‘1 (2)). Equation (3.30) can be written also

as

M

((VFaoTA,M)T O (02 0 TA) — (011 0 TA)) 0 ( I ) = O, (3.31)

from where we conclude

Fa,MoA = FaoTA,M + C. (3.32)

In the same manner, the left action of another symplectomorphism on the map,

i.e. M +——> [C o M leads to

((VFaxoM)T 0 a2 —- 01) o ( [C DIM ) = 0. (3.33)

Define TX; (2, 2) 2 (1C (2) ,2). Then,

FaJCoM = Facincm + c. (3.34)

We are also interested what happens when we change the coordinates in the gen—

erating function, F l-> F 0 LI, by a diffeomorphism L (here not necessarily a symplec-

tomorphism); we have

N
3

((V(Fo£))T 00/2 — al) o< ) = 0 (3.35)

(Jae (£))T- (VF)T o [I o 02 —- 021) o( A; ) = O (3.36)

(VFTCOQ,M)TO(2032)— ((Jac(£))_T-a1))o( A; ) = o, (3.37)
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where we defined T; (2, 2) = ((Jac (£))‘"T - 2, L (2)). Hence,

V (FTCOQM o .6) = VFOM, (3.38)

that is

FR...“M = Fa)... o 5‘1 + c. (3.39)

Finally, if we replace M with M‘l, we arrive to

((VF,,M-1)T o 02 -— a1) 0 ( M; ) = 0. (3.40)

Applying M from the right we get

((VFQ,M_.)T o 0.2 — a1) 0( it ) = 0. (3.41)

This is equivalent to say that, if in both 01 and 022 we interchange the first 271 variables

with the second 272., we get back FM With this changed a. In terms of the Jacobian

a#, or in case of linear as, this can be written as the transformation

A B B A

(cpl-4190) (3.42)

so we can conclude that

+ c. (3.43)

3.3 Equivalence Classes of Generating Functions

We call two types of generating function equivalent if both types generate exactly

the same symplectified map when applied to a truncated, order n symplectic, Taylor

map. As we showed, the different types are parametrized by conformal symplectic

maps. In this section we show that all the types generated by linear as, and which
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exist at least locally for a given symplectic map, can be organized into equivalence

classes characterized by symmetric matrices.

Assume that for a given symplectic map M there exists a generating function of

(VF)T= (alo( “21‘ D o (0.2% A14 ”A, (3.44)

type a given by

and

Jac(a) = ( ’2. g ). (3.45)

From (2.6) it readily follows that

_1 _ JC'T —JAT

(Jac(o)) — ( ——JDT JBT ). (3.46)

First of all, it is straightforward to see that one can always change the conformality

factor to p = 1 using the transformation rule (3.21), by choosing A = 11“. From

(2.134) and (3.46) it easily follows that we get the same symplectified map in both

cases. Therefore, the conformality factor does not introduce any flexibility into the

symplectification process. Hence we can always assume that ,u = 1, which is the most

convenient value from the numerical implementation point of view.

Denote the linear part of M by M. Then the generating function of the same

type that generates the linear part M is given by

(VF0)T=(a10( 1‘; ))O(020( 114 ))_1. (3.47)

Subtraction of (3.47) from (3.44) gives

(V(F—F0))T = [(0.1 — (VF0)T032) o( "I" H 0 (ago( A; D7343)

= (310(1‘1" ))o(ago(/\IA ))—1=(VG)T, (3.49)
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where we used the notations G = F — F0 and (11 = a1 — (VF0)T 0 a2. Define

B(1D,w)= ( “7’ (VF°)T(“’) ). (3.50)
w

Obviously, being a kick, i.e. changing only one component, 5 is a symplectic map for

any function F0. Clearly, with d2 = (12 we have 5. = 5 o 0. Therefore, according to

the transformation properties of the previous section, G is a valid generating function

of type a. If we denote N = Jac (VF0)T 2 (AM + B) (CM + D)“, the Jacobian of

{—1 is given by

_, _ A — NC B — ND
Jac( )— ( C D ), (3.51)

and its inverse by

_' _1_ JCT —J (AT — CTN)

(Jac (0)) — ( —JDT J (BT _ DTN) (352)

Notice that N is actually the Hessian of a function, and hence symmetric, i.e. NT =

N.

Here we have to make an important observation. The symplectification procedure

consists of starting with Mn and an a priori fixed a, and computing Fn using (2.9).

Then (2.134) gives an exactly symplectic map, which we call the symplectified map.

Unfortunately, on a computer (2.9) has to be represented by implicit equations and

solved by fixed point iterations, but formally the Taylor expansion of the symplectified

map (2.134) will be Mn up to order n. The point to be emphasized is that one needs

an a priori fixed a that is exactly symplectic (not only up to order n) for the procedure

to work. However, in general it is not easy to construct useful exactly symplectic

polynomial maps of degree at most 71. Even in the case that one constructs such a

map, in general there is no reason to believe that (VF0)T as given by (3.47) will be

a polynomial map of degree at most 71. Thus, in this case the exact symplecticity

of G will be spoiled. Therefore, we are constrained to consider equivalence classes of
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the types of generating functions associated with the subgroup of linear conformal

symplectic maps.

To this end, we can compare the two symplectified maps, that is the map obtained

from E, and a, and the map obtained from 0,, and Er. Notice that if a is linear,

(VFO)T and hence a are also linear. Then for the Jacobians of the symplectified

maps we obtain from (2.134)

Jac(/14%,) = [( JCT -JAT )( ”“371?an )J . (3.53)

[( _JDT JBT ) ( JaC (:1?an ))—l (3.54)

= (JCT Jac((.,TVF) —J.4T)- (3.55)

(—JDT Jac((.,TVF) +JBT)—1, (3.55)

Jac(MGnfi) = [( JCT —)CTN)(Jac(vfilT‘N )) (3.57)

[ _JDT J(B _DTN) ,( Jac(vaf—N ”4,358,

= (JCT Jac((VF,,)T —JCTN—JAT+JCTN)- (3.59)

(—JDT Jac((VF,,)T +JDTN+JBT—JDTN)—l (3.50)

= (JCT Jac((VF,,)T —.]AT)- (3.51)

—JD ~Ja .,T+JB _ . 3.52)( T C(VF) T) 1 (

Since the maps are assumed to be origin preserving, we can conclude that

MF
71,0

= MG (3.53)
7106.

Thus we get the same symplectified map regardless of using Fn of type a, or 0,, of

type 51. So why is 0,, interesting? It is interesting because of the following property:
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if we denote the Jacobian of 57 by

A B(C D), (3....

from (3.51) we observe that

AM + B : (A — NC) M + (B — ND) (3.55)

2 (AM + B) — N (CM + D) (3.66)

= (AM + B) — (AM + B) (CM + D)‘1 (CM + D) (3.57)

= 0. (3.68)

Therefore we need to consider only the types that satisfy AM + B = O, in addition

to the usual constraints imposed by (2.6).

However, it is possible to further reduce the equivalence classes. We will use the

transformation rule (3.39) with linear L. Denoting Jac (£1) = L and 67 2 Tc 0 Ex we

obtain

-1T- -17“—

Jac(d)=((LL2,A(LL1))B).

We choose L = (CM + D)_1. After writing out explicitly the constraints contained

(3.59)

in (2.6), a straightforward calculation shows that

(CM+D)‘1 = —M-1JAT, (3.70)

(CM+D)T = — ITJA—l. (3.71)

This entails that

- —MTJ J

Jac(“) “ ( —M-1JATC —M-1JATD ) ’ (3'72)

and

(Jac (Er (3.73)
))—1 _ JCTAMJ M

_ —JDTA1WJ I
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As mentioned above, from (3.39) we obtain that CGM = Fd,.M o E. We drop the

subscript, as there is no danger of confusion. Since .6 is linear, we also infer that

0,, = Fn o .C, (3.74)

and as a consequence (VGn)T 2 LT . (VF,,)T o L, or

(VF,)T = (L-1)T- (VC,,)T o 2-1. (3.75)

We are now in position to compare the Jacobians of the two symplectified maps, and

obtain

T

Jac(MGma) = [((JCT —JAT ) ( Jac(YG") )) - (3.75)

T -l

[( —JDT —JMTAT ) ( Jac(:GT) )] (3.77)

= (JCT Jac (VC,,T) —JAT)- (3.78)

_ -1

(—JDT - Jac (VGn)T — JMTAT) , (3.79)

where we used B 2 —AM in the second line. Another calculation shows that

...1 T . . T . -1

Jac(MFna) ; JCTAJ((MT)1 M ) < (L ) Jac(VGn) L )]

419%,“ 1 )( (L-1)T.Jac(VG,,)T.L‘1 H4 (3.80,

_ -l

JDTAMJMTJA—1 Jac(VGn)T —M-1JAT) (3.82)

= (JCTAJ(()MTMTJA—l-Jac(VC,,)T—MM-1JAT). (3.81)

(

(JCT Jac((VC)T —JAT)- (3.83)

(

_ —l

JDT Jac((VG)T —JMTAT) , (3.84)
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where we used MJMT = J. Hence, we obtained again that

MGna = Mpmd, (3.85)

and after combining (3.63) and (3.85) we finally arrive at

MP...) = MFna- (3.86)

Thus, the symplectified map obtained from a truncated generating function of type

(linear) a agrees with the symplectified map obtained from type 51. Denote

.. A B

Notice that the property from the first step of the reduction, that is

~ ~

AM + B = —MTJM + J (3.88)

= —J + J = 0 (3.89)

is preserved, and in addition it has another very nice property, namely

~ ~

CM + D = —M-1JAT (CM + D) (3.90)

= —M“JAT (AT)‘1JM = 1, (391)

Where we used (3.70) in the second line.

Therefore, every generating function type associated with linear maps, which ex-

iStS at least locally for a given symplectic map, is equivalent for symplectification

Purposes with another type associated with

A B
( C D ) , (3.92)

such that the following relations hold:

AM+B = 0, (3.93)
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Equations (3.93) and (3.94) have to be imposed in addition to the usual constraints

derived from (2.6), that is

AJAT — BJBT = 0, CJCT — DJDT = 0, DJBT — CJAT = 1. (3.95)

These five conditions restrict very much the pool of independent generator types.

From (3.93) and (3.94) we obtain B 2 —AM and D = I — CM respectively, which

inserted in (3.95) gives

A = —JM"1, (3.96)

and re-inserted in (3.93) gives

B 2 —AM : — (—JM"1) M = .1. (3.97)

The first condition in (3.95) is automatically satisfied if we impose (3.93) and (3.94).

Inserting D = I — CM in the second relation of (3.95) we obtain

CMJ — (CMJ)T = J. (3.98)

We make the ansatz

1

CM 2 5(1 + JS). (3.99)

This is always possible for some matrix S. Insertion of (3.99) in (3.98) gives that 5

must be symmetric, i.e.

ST = S, (3.100)

but can otherwise be arbitrary. Thus we obtained

= — (1 + JS) M", (3.101)

[
0
l
e

H

(I - JS)- (3.102)
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Therefore, every generator type belongs to an equivalence class [S] associated with

—JM"1 J

( )(1 + J8) M-1 § (1 — J8) ) ’ (3103)

and represented by the symmetric matrix S.

Given an arbitrary type of generating function, how do we know which equivalence

class it belongs to? We saw that

C = (CM+D)"1C', D = (CM +D)-1D, (3.104)

and similarly

~ 1 _1 ~ 1

C=§(I+JS)M ,D=§(I—JS). (3.105)

We can express CM — D from the first two and second two relations respectively,

obtaining

(CM + D)‘1 (CM — D) = J8, (3.105)

or equivalently

8 = —J (CM + D)"1 (CM — D). (3.107)

To remind ourselves, equivalence means that generating functions from the same

equivalence class will produce indistinguishable results if used to symplectify a given

order n symplectic map. Thus we just proved the following theorem.

Theorem 7 Every generating function type associated with a linear conformal sym-

plectic map that exists at least locally for a given symplectic map belongs to an equiv-

alence class represented by a symmetric matrix. An arbitrary type of generator, as-

sociated with a linear a satisfying conditions (3.95) and (2.111), belongs to a class

associated with (3.103), and characterized by the symmetric matrix given by (3.107).
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3.3.1 Application to the Conventional Generating Function

Types

To exemplify the process, we Show how the general theory contains the traditional,

Goldstein type, generating functions. Because of (3.107), without loss of generality

we can assume that the symplectic maps have identity as linear part. More explicitly,

fixing the linear part does not affect the calculation of the matrices A, B, C, and D,

but it does influence the calculation of 5. However, for a different linear part, use of

(3.107) will give the appropriate matrix S in each case. Here we arbitrarily fix the

linear part to identity to exemplify the calculation process. In canonical coordinates

(5,15), an origin preserving symplectic map acts as

0' 9'
_, = _. , .1M ( p ) ( P ) (3 08)

The type F1 is the solution of the implicit relations

7 (1' _ 15
(VB) (C ) — ( _13 ). (3.109)

Clearly, in this case a can be chosen as a linear map, so in view of (2.107) we have

(VF)T(C(%)+D(g))=A(%)+B(g). (3.110)

Wechoose

A = (3: PI), B=(8: 3:), (3.111)

(1:638) D=(é:g) (3.112)

These matrices satisfy the constraints (2123-2125) and clearly substitution into

(3.110) gives (3.109). We say that the F1 type of generating function is associated to

0,, 0,, 0,, 1,,

0,, —I,, 0,, 0,,
Jac ((2,) = On On In On , (3.113)

1,, 0,, 0,, 0,,
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or that F, is of type a).

Similarly, the Goldstein type 2 generating function F2, given by

007542)
is associated with

0,, 0,, 0,, I,,

I,, 0,, 0,, 0,,

Jac ((12) = on on In On

0,, I,, 0,, 0,,

amp

mum

It can be easily checked from (3.107) that it belongs to the class represented by

0 IS,=-,( 0).

The conventional type three (F3 determined byL

001533)
is associated with

0 0 —I 0

0 —I 0 0

Jac (a3) = 0 '0 0 I ,

I 0 0 0

and belongs to the class

0 I

$‘(1 0)’

differing only by a sign from the type F2

S3 = —Sg.

Finally, the conventional type four (F4) is determined by

) = ( T)
Q 7
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and is associated with

Jac (a4) = (3.122)

O
O
N
O

N
O
O
O

C
O
O

O
N
O
O

It is well-known that the type F1 cannot be used in the case when M = I. This

naturally follows from the general theory, due to the fact that the transversality

condition is not satisfied. That is,

det (C - I + D) = 001; ( ,1," 8T ) = 0. (3.123)

Therefore, it does not belong to any equivalence class for symplectic maps having

identity as linear part. The transversality condition is also violated in the case of the

F4. On the other hand, in the case of the F2 the transversality condition is satisfied

for the identity map, as expected

det(C-I+D)-—det<0" g”)=1 . (3.124)

An analogous result is found for F3 too.

Thus, we recovered from the general theory the well known facts that F, and F4

cannot, while F2 and F3 can be used to represent at least locally symplectic maps

having identity as linear part. Also, we identified the equivalence classes which F2

and F3 belong to. The only difference if the symplectic maps do not have identity as

linear part is that we obtain different symmetric matrices, and hence classes, which

also can be computed using (3.107).
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3.4 Equivalence of Symplectification with and with—

out Linear Part

Symplectification can be performed on the nonlinear part only by first factoring out

the linear part, or on the whole map. The next question that arises naturally is

whether there is something to be gained if one first factors out the linear part of

the symplectic map to be symplectified. This section answers the question in the

negative. Moreover, combining results of this section, we show in subsection 3.4.1

that not even a linear symplectic change of variables can provide additional freedom

in the symplectification process.

We write the symplectic map to be symplectified as

M = M + H, (3.125)

where M is the linear part, and H the higher order terms. We can distinguish three

symplectification procedures: symplectify M,, directly, symplectify ML,” obtained

from

ML=I+M_10H, (3.126)

or symplectify MRm obtained from

MR=I+HoM‘1. (3.127)

In the latter two cases we first factored out the linear part from the left and right

respectively. The relations among the maps are the following:

M = MOML, (3.128)

M = MRoM. (3.129)

The question is whether these relations continue to hold for the symplectified versions

of M,,, ML,n) and MR.n- Suppose we symplectify the maps using a generator of type
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a with

Jac(a) : < 21, g ) . (3.130)

The local existence conditions are

det (CM + D) ¢ 0 (3.131)

in the first case, and

det (C + D) 7e 0 (3.132)

in the second and third case. Being linear, we use M for the Jacobian of M too.

Equations (3.131) and (3.132) are not compatible in general. Thus in general not

every type of generating function exists in all three cases. The right question to ask

is the following. Suppose one uses some type of generator to symplectify a given map,

using the approach of one of the three cases. Then, are there other types of generators

which produce the same symplectification for the other two cases? In other words,

we would like to find the appropriate type of generators such that relations (3.128)

and (3.129) hold for the symplectified maps.

To this end, any generator for the first case is associated to one of the following:

_JM-1 J

Its inverse is given by

1.. 2
(Jac(al) " ( _%J(I+SJ) I )

(3.134)

Denoting the generator by F5], Jac (VF[5])T =,, N15], and the symplectification of
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M,, by M[3] we obtain

JaC(M151) = [( two—SJ) M)(N,‘T )] (3.135)

[( -%J(I+SJ) I)(1‘)Sl)] (3.136)

= M-(§J<I—SJ>-N,S)+I)- (3.137)

(_%J(,+SJ,_N,S,+,)T (3.138)

Now we turn our attention to the second case. Here the possible generators belong

to one of the following classes:

—J J

Clearly its inverse is

1 _

—1 = EJU‘S!) I
(Jac (13)) ( _%J(1+SJ, I . (3.140)

Again, denoting the symplectified version of ML,” by M143] we obtain

 

Jac(ML[§]) = -( §J(1—8J) I ) ( 1‘13] H . (3.141)

, —1

( —)J(I+8J) I ) ( NF] H (3.142)

= GUI—SJ) -N[5.] +1) (3143)

(—1J(I+8J) -N- +1)1 (3144)
2 l5] ’ '

T

where we used the notation Jac (VFlSl) 2,, lel Next, we use the transformation
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property (3.34) with IC : M‘1. It follows that

F5)”, 2 FfionM. (3.145)

Also notice that B o TIC = a if and only if S = S. In this case

NF] = N151. (3.145)

Comparing (3.137) and (3.143), and using (3.146) we can conclude that

M,,, = M 0 N14,], (3.147)

if and only if

8 = 8. (3.148)

This proves that the symplectified version of (3.128) is (3.147), and holds only if

(3.148) is satisfied.

We can proceed to the third case and follow the same route. To symplectify M3,,

we choose a generator type from the pool

Jac(')) = ( 1 (I—J ~ 1 J ~ ) , (3.149)

5 + J8) ,(1 — JS)

with inverse

Jac , ‘1 = f] (I_SL]) I . 3.150
( (7)) —%J(I+SJ) I ( )
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If we denote the symplectification of M3,, by Mngl we get

Jac (MR[§])

1 ~ —1

—5J (I + SJ) -N[§] + I) , (3.154)

T

using the notation Jac (VFW) 2,, lel Now using the transformation rule (3.32)

with A = M“1 we obtain

F‘NMR = FyoTA,JM- (3.155)

A straightforward calculation gives that

Jac()oTA) = ( 1 (1:25,) 1 (I 31:15,) M ), (3.156)

2 2

with inverse

(Jac (T) 0 TA))_1 = ( %J (I — SJ), I \ . (3.157)

—-;-M‘1J(I+SJ) M-1 )

Then, (3.153) can be expressed as

Jac (MR[§]) = X . M'l, (3.158)

where we introduced the notation

1 " 1 —1 ~ —1 _1
X : -2—J (I — 8J) .VF,.T,,M + I . -—§M J (I + 8J) .VF,.T,,M + M .

(3.159)
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But as one can see from (3.157) this is nothing else than the Jacobian of the sym-

plectified map obtained from AA,1 and generator of type (3.156). As shown in section

3.3 this generator type for .Mn belongs to the equivalence class represented by the

symmetric matrix calculated using formula (3.107). A short calculation gives the

result,

S = MTS’M. (3.160)

Combining this result with (3.158) and (3.159) we can conclude that

Mm = MLlSl o M. (3.161)

This proves that the symplectified version of (3.129) is (3.161), and holds only if

(3.160) is satisfied. Therefore, the main result of this section can be formulated as

the following theorem.

Theorem 8 The symplectified version of (3.128), i.e. (3.147), holds if and only if

(3.148) is satisfied, and the symplectified version of (3.129), i.e. (3.161), holds if and

only if {3.160) is satisfied.

The main point we learned is that from the optimal symplectification point of

view there is no difference which way one proceeds. Once we obtained the best

type of generator for one case, the best generators for the other cases automatically

follow from (3.148) and (3.160). Therefore, there is nothing to be gained by factoring

out linear parts and symplectifying the nonlinear parts only. Moreover, the first

case (without factorization) is the most efficient when implemented numerically on a

computer.

67



3.4.1 Equivalence in the Case of Symplectic Maps Conju-

gated by Linear Symplectic Maps

Combining the left and right factorizations in linear and nonlinear parts just discussed,

we can address the special case of the linear symplectic change of variables. From

(3.128) and (3.129) we can infer that

MHzMoMLoM_1, (3.162)

and from (3.147) and (3.161) that

Map] = M 0 A445] 0 M“, (3.163)

if

5" ~_— MTSM. (3.164)

The two maps are conjugated by a linear symplectic transformation. However, this

case is very special, since both MR and ML are obtained from the same map M.

We could relax the conditions, and ask if any two symplectic maps are conjugated by

an arbitrary linear symplectic map, then the same holds true for their symplecified

counterparts. That is, suppose that M and N are symplectic maps such that

NleoMolC‘l, (3.165)

for some linear symplectic IC. The possible types of generating functions are associated

with

—JKM-1K-1 J

Jac (a) ’ ( gu + JS)KM-1K-1 %(I — JS) ) (3'166)

for N", and

—JM-1 J

Jae”) — ( $(1 + .13) M-1 §(I — JS) ) (3'167)
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for M,,. As before, we denoted M = M + H and Jac (IC) = K. The transformation

rule to be used here is

Fan = FaoTx,Ma (3.168)

where

Jac(TK) = ( I; 10{ > . (3.169)

Following now well established procedures, it is straightforward to show that

MS]: ICoM[§]oIC'1 (3.170)

holds for the symplectified maps if

S = KTSK. (3.171)

Therefore, there is no additional freedom in the symplectification process if the sym-

plectic map is first subjected to a linear symplectic variable change.

3.5 Implementation

In this section, the implementation of the extended generating function symplectifi-

cation method to COSY INFINITY is described. The method starts with .Mn given,

and some arbitrary initial condition z. Utilizing (2.9) with a given by (3.103), the

truncated a-generating function Fn+1 is obtained. The arbitrary symmetric matrix S

must be specified, fixing the type of generator utilized. All the necessary operations of

map composition, map inversion, differentiation and integration are readily available

in COSY. Then, notice that (2.9) can be expressed as

2—M-z=M-J-(VFn)T(C-(2—M-z)+2), (3.172)
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where we denoted 2 = MW] (z), (”[3] representing formally the symplectified map,

and

C = $0 + JS)M-1. (3.173)

To avoid as much as possible any problems with cancellation of digits, we denote

w = 2 —- M - .2, (3.174)

which leads to

w = M - J - (VFn)T (C - w + 2). (3.175)

This can be solved by a fixed point iteration for w, and gives the final result by

2 = w + M - 2. (3.176)

The orbit of z is then computed by iteration of the procedure (in the next step we

take 2 as the initial condition, etc).

Writing (3.175) as w = f (w), we observe that to be able to solve (3.175) by a

fixed point iteration, it is sufficient (but not necessary) for the right hand side to be

contracting for a fixed 2, i.e. is guaranteed to succeed if

If ('wz) - f (w1)l S q - lwz — wll, (3.177)

for some q < 1. To have a good chance of contractivity over an extended region,

the derivatives of the generating functions must be small. From our experience, in

general the fixed point iteration converges in the region where the generating function

is defined.

We compiled a table with the number of iterations needed for convergence, for a

few relevant examples that will be presented in more detail in the next chapter. The

examples that we tracked are: two maps generated from random Hamiltonians, an
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Using S = 0
 

 

 

 

 

  
 

   

Example Number of iterations

Small ampl. Medium ampl. Large ampl.

Random map 1 1 [4,10] :9, 29:

Random map 2 1 [1,9] :3, 34:

Anharmonic oscillator 1 [1,8] :1, 28

Quadratic map 1 1 1

LHC [4, 5] [7, 10] [8,68]   
 

Table 3.1: Number of iterations needed for convergence in solving (3.175) for several

examples, using the generator type associated with S = 0. The orbits of the particles

of small, medium, and large amplitude, respectively, have been followed for 100 turns,

and the number of iterations needed is enclosed in the intervals appearing in the table.

 

 

 

 

 

    
 

 

  

Using F1

Example Number of iterations

Small ampl. Medium ampl. Large ampl.

Random map 1 :1, 4] [6, 36: [7, 56]

Random map 2 :1, 8| [3, 46: not stable

Anharmonic oscillator 1 [1,8] [1,27]

Quadratic map [4, 15] [13, no] [7, no]

LHC [4,7] [7, 16] not stable    
 

Table 3.2: Number of iterations needed for convergence in solving (3.175) for several

examples, using the conventional generator type F1. The orbits of the particles of

small, medium, and large amplitude, respectively, have been followed for 100 turns,

and the number of iterations needed is enclosed in the intervals appearing in the table.

In the table, n.c. stands for no convergence in 100 iterations, and “not stable” means

that the respective particle is predicted by the algorithm to be unstable.

anharmonic oscillator, an exactly symplectic quadratic maps, and the Large Hadron

Collider with fringe fields included. For more details see next chapter. The results

are summed up in Table 3.1 (using the generator associated with S = 0) and Table

3.2 (using the conventional F1 type).

Of course, (3.175) can be expressed as f (w) —— w = 0, and solved for w by New-

ton’s method. We noticed that the results not only are sometimes dependent on the

generating function type employed, but also on the numerics, that is the particular

numerical method used to solve the implicit equations. Of course, if we start with an
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exactly order n symplectic map, and the convergence to the solution of the implicit

equations is achieved over the tracking region for both methods, then the resulting

pictures are identical. However, in practice the fixed point iteration works in a more

stable manner. It is faster than Newton’s method when many particles are tracked si-

multaneously, and, in the vast majority of cases studied, its domain of convergence is

larger. For maps of practical interest, Newton’s method often does not converge close

to the dynamic aperture, and sometimes gives misleading results. Moreover, if the

symplectification starts with truncated maps that are not exactly order n symplec-

tic, the results depend on the way the truncated generating functions are computed.

It seems that the general theory provides a good order n symplectification scheme.

More about the performance of the algorithm is presented in the next section, where

the attention is turned to examples.

For a better overview of the theory and aspects of the implementation, the Figure

below shows a flow diagram, which explains the algorithmic steps involved in the

symplectic approximation/tracking process.

 

 

 

 

 

 

 

 

 

] 1. Compute order n truncation of the map JV!n 7

[ 2. Choose a symmetric matrix S, by ithis fixing the generator type utilized ]

[ 3. Use (2.9) to compute the order n + lltruncation of the generator of type [S] I

] 4. Solve (3.175) by iterations, and ilse (3.176) to obtain the final result ]

f 5. Iterate 4. until the desired number of turns is reached ]
 

We mention that every step is efficiently implemented in COSY INFINITY, and by

vectorization of the algorithm, many particles can be tracked simultaneously. Choos-

ing different generator types, by specifying different symmetric matrices S, the track-

ing algorithm will give different tracking pictures.
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Chapter 4

Examples

This chapter is devoted to illustrate the performance of the extended generating func-

tion symplectification method through several examples. First we generate symplectic

maps from random Hamiltonians. In two dimensions this can be done easily to high

orders. We can assume that these high order truncated maps are approximating the

exact maps well enough to be considered numerically symplectic over a sizable phase

space region. Then we can compute the generating functions, truncated as some mod-

est order (say 7 or 11), and use them to generate exactly symplectic maps according

to the above symplectification procedure. Finally, we can compare the various maps

obtained this way. We will present some typical cases.

Next, we study two examples that have been studied previously in the symplec-

tification literature: an anharmonic oscillator [16, 14], and an exactly symplectic

quadratic map [51]. These are important cases, as the exact solutions are known and

can be compared with the symplectified ones.

We apply our method to a lattice of the proposed Neutrino Factory [52], and the

FNAL Proton Driver [53]. Although we track the muons for their lifetime (only 1000

turns), it is still an interesting case due to the wide array of nonlinear effects which

the lattice exhibits [11, 12, 13]. Finally, some tracking results for the LHC are also
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provided.

4.1 Maps Generated from Random Hamiltonians

We generate polynomials in two variables, starting with quadratic terms. The co-

efficients are chosen randomly, evenly distributed in [—1,1]. Regarding the random

functions as Hamiltonians, we compute their time 1 maps to very high order, say

19. The vanishing linear part of the Hamiltonians guarantee that the resulting maps

will be origin preserving. We show two dimensional examples because the maps can

be computed to very high orders, and generically in four or more dimensions the

symplectic maps are unstable. The few stable cases that we obtained were linearly

coupled and chaotic. As it is well known, chaos cannot happen in time independent

one degree of freedom Hamiltonian systems. Although in 2D symplecticity is equiv-

alent to area preservation, we chose to show some 2D examples because due to their

regular features it is easier to compare the various tracking pictures involved.

At order 19 most of the resulting maps can be considered numerically symplectic

over some region of phase space. Thus, we take them as the “exact” results. Then, we

compute their generating function truncated at some lower order, and we use them

to generate exactly symplectic maps according to the symplectification methods of

the previous chapters. We use different types of generating functions, and finally we

compare the resulting maps.

For one of the random seeds, the 19th order Taylor map tracking picture for 1000

turns, of some particles launched along the q axis, looks as in Figure 4.1 (the coor-

dinate axes are always q and p). The symplectified map from the order 19th Taylor

map with S = 0 looks almost identical; see Figure 4.2. To asses the performance of

the symplectification method for this example, we show the 3rd, 7th, and 11th order
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Figure 4.1: 1000 turn tracking of a random two dimensional symplectic map with the

19th order Taylor map (considered to be essentially the exact result).

Taylor maps, and the corresponding symplectified maps with S = 0 tracking pictures

in Figure 4.3.

While the low order Taylor maps give very poor results, the symplectified maps

show the right qualitative behavior right from the beginning. The dynamic aperture

is overestimated, but the agreement gets better as the order is cranked up, and at

order 11 we get almost the same picture as with the 19th order tracking, except

perhaps slightly changed tunes of some outer particles. Therefore, at least in this

case an 11th order symplectified map predicts the right dynamic aperture.

We can compare the 11th order S = 0 symplectified tracking picture with the

conventional (Goldstein) generator types. We track using 6 different 11th order gen-

erators: F1, F2, F3, and F4 for the full map, and F2 and F3 for the nonlinear part

only. These are the cases traditionally used in the past. The results are depicted in

Figure 4.4. The superiority of the S = 0 method is clear.

The above random map turned out to be the most nonlinear seed. As a second
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Figure 4.2: 1000 turn tracking of the random two dimensional symplectic map ob-

tained from the 19th order Taylor map, by symplectifying it with the generator type

associated with the S = 0 symmetric matrix.

example in this group, we show results obtained for another seed, which is much less

nonlinear. First of all, the 19th order Taylor map tracking for 1000 turns of some

particles, launched with vanishing momenta, is shown in Figure 4.5. Actually, already

the 15th order Taylor map gives visually identical results, so we assume the order 19th

map to be the exact map. As Figure 4.6 shows, the 19th order S = O symplectified

map tracking gives the same result as the corresponding Taylor map, even for the

tunes. Of course, the lower order symplectifications shown in Figure 4.6 give slightly

worse results, but still acceptable, and give a quite accurate estimation of the dynamic

aperture. For comparison, the results using the conventional generators are presented

in Figure 4.7. We also studied many other seeds for random map generation, and all

give similar results.
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Figure 4.3: 1000 turn tracking of the random two dimensional symplectic map with

the 3, 7, and 11th order Taylor maps, and S = O symplectified map, respectively.
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Figure 4.4: 1000 turn tracking of the random two dimensional symplectic map with

the symplectified maps utilizing the F1, F2, F3, F4 generating function types for the

full 11th order Taylor map, and F2 and F3 for the nonlinear part of the 11th order

Taylor map respectively.
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Figure 4.5: 1000 turn tracking of another random two dimensional symplectic map

with the 19th order Taylor map (considered to be essentially the exact result).

0.27 0.27

  

 

 

 
Figure 4.6: 1000 turn tracking of the second random two dimensional symplectic map

with the 3, 7, 11, and 19th order S = 0 symplectified maps respectively.
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Figure 4.7: 1000 turn tracking of the second random two dimensional symplectic map

with the symplectified maps using the conventional generator types F1, F2, F3, and

F4 respectively.
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4.2 An Anharmonic Oscillator

We consider the 2D anharmonic oscillator described by the Hamiltonian

1

H : (102 + q2) — 4(14’ (4.1)

[
\
D
l
i
—
a

which has been studied previously in [16] to compare various symplectification meth-

ods, and in [14] to study Optimal Cremona symplectification. To make the comparison

easier we follow the same guidelines, and present the performance of our method by

symplectifying the order 3, 7 and 11 Taylor maps of the time 1 map of the flow of

(4.1). We track for 1000 turns and use as initial conditions

{ q = 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0,99, 1-0 , (4.2)
p = 0

We present the order 19 Taylor map for comparison purposes. Figure 4.8 shows

the orders 19 and 7 non—symplectified Taylor map tracking, and Figure 4.9 the S = 0

symplectified tracking pictures obtained by symplectifying the order 3, 7, 11 Taylor

maps respectively. First of all, notice that this system is quite nonlinear close to the

dynamic aperture. However, the symplectified tracking pictures are similar to the

19th order Taylor maps already from the order 3 symplectification. The agreement

is of course better at order 7, and at order 11 also the edges at the hyperbolic fixed

points are becoming visible. Moreover, the tunes of the inner particles become more

accurate as the symplectification order increases.

For completeness, we also show the order 7 symplectic tracking pictures using

the conventional generators in Figure 4.10. Notice that F1 is the best conventional

generator for this example. In [16] the conventional generator types F1 and F2 are

used; F2 after factoring out the linear part, and F1 for the full map, including the linear

part. Some unexpected discrepancies have been observed. By the general theory

presented in this dissertation, the reason behind it should be clear: the two types
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Figure 4.8: 1000 turn tracking of a anharmonic oscillator with the 19th (considered

to be essentially the exact result) and 7th order Taylor maps.

 

 

 

 
 

Figure 4.9: 1000 turn tracking of an anharmonic oscillator with the 3, 7, and 11th

order S = 0 symplectified maps respectively.
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Figure 4.10: 1000 turn tracking of an anharmonic oscillator with the symplectified

maps from the 7th order Taylor map, using the conventional generator types F1, F2,

F3, and F4 respectively.

of generators fall into different equivalence classes. Hence, they generate different

symplectic maps, with different long-term properties. In the same paper it is stated

that the two unstable fixed points of the symplectified maps are moved away from

(q, p) = (:tl,0), the locations which correspond to the exact solution. As a matter

of fact, this is always the case, for any generating function symplectification method.

The explanation lies in Hofer’s metric, and a deep connection between fixed points

of symplectic maps and critical points of generating functions (see next chapter). As

a consequence, if two symplectic maps have the same fixed points, they coincide.

But because symplectification can never restore the true solution, the symplectified

maps will always have their fixed points moved away from the locations of the exact

solution.
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Figure 4.11: 1000 turn tracking of an anharmonic oscillator, with two random gener-

ating function types associated with symmetric matrices with entries in [-1, 1] and

[—10,10] respectively.

In the next step we studied random generator types, i.e. generators associated

with randomly generated symmetric matrices S. In general, if the elements of S are

chosen to be small, we obtain better results than if we increased the norm of S. For

example see Figure 4.11 for two random types with Si) 6 [—1,1] and Sij E [—10, 10]

respectively. These figures represent typical results.

While one might say that F1 is acceptable for estimating the dynamic aperture,

but clearly S = 0 gives better results. So, can we find an even better generator type?

We applied the following strategy: by considering the 19th order Taylor map as the

exact map, and wanting to improve the agreement between the Taylor map and the

symplectified map for the outermost particle (where the discrepancy is the largest,

and expecting that this will not spoil the good agreement for the inner particles),

starting with the S = 0 type of generator, we fitted the symmetric matrix S to

minimize the radial correction introduced by the symplectification to the trajectory

of the last particle, after one turn. We obtained the following symmetric matrix:

5,, = ( 001 _8.4 ) (4.3)

The corresponding tracking results are displayed in Figure 4.12. Comparing the

various symplectic trackings with the order 19 Taylor map, we see that apparently the

84



 

 
 

Figure 4.12: 1000 turn tracking of an anharmonic oscillator, with the generating

function type associated with the symmetric matrix Sb, which was fitted to give the

best results.

generator based on Sb is the best one, followed closely by the type associated to S = 0.

Notice that the separatrix is very well reproduced, and indeed, the excellent agreement

for the inner particles is not spoiled. Also, the tunes are predicted accurately over

a large phase space region. Therefore, at least for this example, order 7 seems to

be enough to estimate the dynamic aperture, if we use the best type of generating

function symplectification.

It is worthwhile to note that by fitting S using different criteria (such as minimize

radial distance over more than one turn and/or more than one particle simultaneously)

we get slightly different results. In fact, only Sb (1, 1) is somewhat sensitive to these

criteria (up to approximately 10% of its magnitude), but overall the tracking pictures

using the different matrices look identical, or almost identical. Moreover, we start

fitting these matrices from S = 0, and stop at the first minimum. Thus, we do not

know whether Sb corresponds to a local or a global minimum. But since S = 0

is already a pretty good choice for an initial guess, we doubt that there exist better
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Figure 4.13: 2000 turn tracking of an anharmonic oscillator, with the generating

function type associated with the symmetric matrix S = 0, using the 11th order 1/2

time Taylor map.

choices of symmetric matrices than Sb. The answer to why is S, the better than S = 0

for this specific case will be given in the next chapter on optimal symplectification.

The high degree of nonlinearity close to the separatrix plays a significant role in

the outcome of the various symplectifications. Naturally, we can compute the time

1 /2 map of the same Hamiltonian flow, track it for 2000 turns, and plot every second

turn. As a result, we track the same system for the same amount of time, hence the

tracking pictures should look the same. However, the maps are less nonlinear, and

hence the domain of definition of the generators should enlarge. We did just that

with the S = 0 type and order 11, and obtained Figure 4.13. Now the results are

much better, and a closer look reveals that the 11th order time 1/2 map symplectified

with S = 0 is better than the 11th order time 1 or even time 1/2 map symplectified

With 31,.

As a side note, we mention that the square root trick could be used to gain more

confidence in the accuracy of our symplectified maps. Namely, if we track with a
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symplectified map N turns (N z 103) and plot every turn, then track 2 - N turns

with its square root and plot every second turn, we should get the same pictures. If

not, we keep taking square roots until the pictures become almost identical. Then,

the resulting map can be more or less trusted for long term tracking (N > 103).

Finally, to get a better feeling of what the symplectification does at the local

level, we plot the corrections introduced by the symplectification method to the tra-

jectory of the stable particles over one turn. For example, Figures 4.14, 4.15, and

4.16 show the corrections (magnified by a certain factor for convenient viewing) of

the F,-, i = 1, 2,3,4 and S = 0 types to the order 7th order Taylor approximation.

The spikes point in the direction of the correction, and their length is pr0portional to

the magnitude of the correction. We used color coding to express correction radially

outwards (lighter spikes; green in the pdf file), or radially inwards (darker spikes;

red in the pdf file). The three initial conditions for the three sets of pictures are

(q,p) 2: (0.1,0);(0.5,0) ; (0.9, 0). The general conclusion that can be drawn from

these pictures is that if the Taylor map is accurate enough, the best symplectification

method introduces the least amount of correction, in both radial and angular direc-

tion. Moreover, the corrections in the radial direction are usually much smaller than

the correction in the angular direction (the actual values are shown in the upper part

of the figures in the following order: number of particles, average radial correction,

and average angular correction). This suggests that for dynamic aperture (i.e. region

of stability) estimation there is a slightly lower precision needed than for the accu-

rate prediction of the tunes (i.e. average angle advances per turn). As expected, the

corrections’ magnitude are increasing with distance from the origin and number of

turns.

In the introduction (chapter 1), it was mentioned that one of the favorable prop-

erties of the symplectic methods is their linear global error propagation, in contrast

87



1000 0.3E—3 0 8 0.19E—4 1000 0.52E—3 0.58E-4

_\ § _.._

1000 0.52E—3 0.58E-4 1000 0.57E—3 0.71E—4

0 8 0.8

 

  

  

1000 0.81E—6 0.24E—9

Figure 4.14: Corrections introduced by the symplectification to particles of small

amplitude, which are predicted by symplectic tracking with generating function type

associated with the symmetric matrix S = 0 to be on a invariant curve (a stable

particle). The figure shows the correction with respect to the 7th order Taylor map

of the symplectifications using the convential (the magnification factor is 103) as well

as the S = 0 (the magnification factor is 106) generator types.
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Figure 4.15: Corrections introduced by the symplectification to particles of medium

amplitude, which are predicted by symplectic tracking with generating function type

associated with the symmetric matrix S = 0 to be on a invariant curve (a stable

particle). The figure shows the correction with respect to the 7th order Taylor map

of the symplectifications using the convential (the magnification factor is 1) as well

as the S = 0 (the magnification factor is 102) generator types.
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Figure 4.16: Corrections introduced by the symplectification to particles of large

amplitude, which are predicted by symplectic tracking with generating function type

associated with the symmetric matrix S = 0 to be on a invariant curve (a stable

Particle). The figure shows the correction with respect to the 7th order Taylor map

0f the symplectifications using the convential (the magnification factor is 1) as well

as the S = 0 (the magnification factor is 10) generator types.



with quadratic error propagation of nonsymplectic methods. To illustrate quantita-

tively this phenomenon, we tracked a particle, with initial condition (q, p) = (0.5, 0),

1000 turns through the time one map of the anharmonic oscillator’s flow, using the

exact solution (represented by the 19th order Taylor map), the 7th order Taylor map,

and symplectic tracking with the order 7 Taylor map and generator type associated

with S = 0. As shown in Figure 4.17, for a few tens of turns the Taylor map tracking

is more accurate than the symplectic tracking, then the error of the nonsymplectic

tracking grows fast, while the symplectic tracking stays at small error levels through-

out the 1000 turns. The linear global error propagation of the symplectic method

versus quadratic error propagation of the nonsymplectic method is clear from Figure

4.18, where we superimposed two lines with slopes one and two, respectively, for easy

identification. Interestingly enough, initially, for a short period of time, the nonsym-

plectic method is accurate enough to pass as a “pseudo—symplectic” one by having

slope one, but after z 50 turns the slope suddenly becomes approximately two.

4.3 An Exactly Symplectic Quadratic Map

In [51] the following quadratic map is considered:

M =NO£, (4.4)

Where

0086 sinO

£_ ( —sin0 0086 )’ (4'5)

With 9 = g, and

-3(q+p)2
N( ‘1 ) = ( q . 4.6

p 19+3(q+p)2 ( )

It is easy to check that it is exactly symplectic. We study this map because it is

a Simple map with a nontrivial behavior under iteration, and it is exactly symplec-
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Figure 4.17: Global error propagation in the case of nonsymplectic versus symplectic

tracking of a particle for 1000 turns of the anharmonic oscillator’s time one map.

For the tracking, the order 7 Taylor map was used for nonsymplectic tracking, and

generator of type associated with S = 0 for the symplectic tracking. After a short

transient period, the nonsymplectic method gives large errors, while the symplectic

method’s error stays small.

 

 

  
 

Figure 4.18: The global error propagation in a log-log scale of the case shown in

Figure 4.17. After a short transient period, the nonsymplectic method’s slope is two,

and the symplectic method’s slope is one. The dotted lines have exact slopes one and

W“), respectively.
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Figure 4.19: 1000 turn tracking of a quadratic symplectic map with the 3rd order

Taylor map (the exact result), and the 3rd order S = 0 symplectified map (which

also gives the exact result).

tic. Moreover, in [51] it is shown that symplectification of (4.4) using conventional

generating functions gives very poor results. As in [51], we also use third order sym-

plectification. The exact result and the S = 0 symplectified result for some choice of

initial conditions is shown in Figure 4.19. The agreement is excellent. In fact, the

results coincide; S = 0 gives the exact solution. As a comparison, Figure 4.20 shows

the results for the Goldstein generators, and indeed they give very poor results.

The generating function of type S = 0 for (4.4) computed according to (2.9) is

F ((7.10) = 0-04903810567665787-q3—0.5490381056766573-
q2p

+2.049038105676657 - qp2 — 2.549038105676658 . p3. (4.7)

Moreover, it can be shown that the S = 0 generator type can represent exactly any

quadratic symplectic map. We also mention that there exist other generator types

that can be used to represent exactly any quadratic symplectic map. However, in this

group there are none from the conventional, or even the Poincaré types.

It was mentioned in section 3.5 that the numerics used for solving the implicit

e<luations also plays an important role in tracking. The tracking pictures in Figure

4-20 have been obtained using fixed point iterations. The same set of tracking pictures
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Figure 4.20: Symplectic tracking with the four conventional generator types (F1

through F4), for the exactly symplectic quadratic map, using fixed point iterations

t0 Solve the implicit equations.
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Figure 4.21: Symplectic tracking with the four conventional generator types (F1

through F4), for the exactly symplectic quadratic map, using Newton’s method to

solve the implicit equations.

obtained by solving the implicit equations utilizing Newton’s methods is shown in

Figure 4.21. Clearly, we obtained different pictures for F1 through F3, and identical

Pictures for F4. This points out quantitatively the importance of the numerics, namely

the Size of the domain of convergence of the two methods. As expected, the F4 case

produces identical pictures, because it is the only case where both methods converge

over the region of the particles tracked in this example.
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4.4 Muon Accelerators

In this section we study the effects of symplectification on truncated Taylor maps of

rings of the proposed Muon Collider and Neutrino Factory complex, utilizing lattices

of the Neutrino Factory Storage Ring [52] and the Proton Driver [53] to illustrate

the effects. For an overview of the current status of the muon collider research and

development see [54], as well as the earlier feasibility study on muon colliders [55].

Since the amount of nonlinearity and emittance in the muon machines far exceed that

of other machines, the muon accelerators are not comparable to most machines, and

for these machines it turned out that even for short term tracking symplectification

is essential.

4.4.1 A Neutrino Factory Lattice

Previous work exposed a variety of nonlinear effects in the lattice described in [52],

of the proposed Neutrino Factory. Nonlinearities are due to the so-called kinematic

effect, fringe fields, small circumference and large aperture. The muons’ lifetime is

less than 1000 turns. In spite of such a short tracking time, it is still interesting to

see how the generating function symplectification method works in a case of practical

interest, where nonlinearities play an important role. We computed order 8 maps of

several realization of the Neutrino Factory. In the following we present side-by—side the

tra'Cking pictures obtained from order 8 Taylor map tracking and the corresponding

S 2 0 symplectic tracking.

In particular, we take 4 different realizations of the Neutrino Factory by tracking

the ideal lattice with 4 sets of fringe fields which differ both in fall-off shape and

length [13]. We will refer to them as case 1, 2, 3, and 4. Figure 4.22 represents the

result of case 1 for some initial conditions along the horizontal axis. We see that the
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Figure 422: 1000 turn tracking of the case 1 of a lattice of the proposed Neutrino

Factory with the 8th order Taylor map, and the corresponding S = 0 symplectified

map.
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Figure 4.23: 1000 turn tracking of the case 2 of a lattice of the proposed Neutrino

Factory with the 8th order Taylor map, and the corresponding S = 0 symplectified

map.
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Figure 4.24: 1000 turn symplectic tracking of the case 2 of a lattice of the proposed

Neutrino Factory with the conventional generating functions (F1 through F4).

 

 

  

Figul‘e 4.25: 1000 turn tracking of the case 3 of a lattice of the proposed Neutrino

act30ry with the 8th order Taylor map, and the corresponding S = 0 symplectified

map
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Figure 4.26: 1000 turn tracking of the case 4 of a lattice of the proposed Neutrino

Factory with the 8th order Taylor map, and the corresponding S = 0 symplectified

map.

Taylor map is not accurate enough to give a good estimation of the dynamic aperture,

or to resolve the third order resonance. With the S = 0 symplectified tracking we

obtain a clear third order resonance, bigger dynamic aperture, as well some higher

order island structure. Also notice that for a few particles close to the origin, where

even the 8th order Taylor map is accurate enough for short term tracking, the two

pictures are alike, including the tunes. We mention that case 1 was one of the most

nonlinear realizations of the Neutrino Factory.

A less nonlinear lattice is case 2. The corresponding pictures are presented in

Figure 4.23. Here, the 8th order Taylor map looks more accurate than in the previous

case, and has a clearly defined 7th order resonance structure. We can see that this

resonance is preserved by the symplectified map, and again we get a somewhat bigger

dynamic aperture. By comparison, the conventional generators for this case cannot

be used to reliably estimate the DA, as depicted in Figure 4.24.

Case 3, presented in Figure 4.25, is interesting because the Taylor map predicts a

Cha.Otic region, and just on the outside rim of it something that looks like the remnants

0f Some high order resonance. Indeed, the symplectified map confirms that there is a

7th Order resonance just outside the dynamic aperture, but there is no chaotic region
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whatsoever, as required by theory.

Finally, in case 4 we are looking at some particles launched along the diagonal

in geometric space. As expected, Figure 4.26 shows reduced dynamic aperture, and

the onset of the chaotic region. However, while the Taylor map predicts a completely

chaotic trajectory, the symplectified map shows that there is still some structure left

in the phase space trajectory of the outermost particle.

4.4.2 The FNAL Proton Driver

The ideal lattice of the Proton Driver is quite nonlinear. Hence, symplectification

introduced considerable changes even when applied to the order 15 truncated Tay-

lor map. The correctness of the symplectic tracking with generator type associated

with S = 0 has been checked against accurate numerical integration, giving excellent

agreement. The tracking results in the (:1: — a) and (y — 0) planes without and with

symplectification are depicted in Figure 4.27. Notice that the third order resonance

in the (.r — a) figure is missing completely in the Taylor map tracking, but accurate

numerical integration shown in Figure 4.28 confirms its existence, increasing the con-

fidence level in the correctness of the symplectification approach. The particles were

launched along the :1: and y axes respectively, and were tracked for 1000 turns.

4.5 The Large Hadron Collider (LHC)

ADOther interesting case for symplectification is provided by the LHC. Here we present

nOIL-symplectic tracking of the LHC v.5.1 versus symplectic tracking, with seven dif-

ferent generator types. In Figure 4.29, tracking 105 turns utilizing the order 8 Taylor

map of the ideal lattice, the S = 0 generator type, and F1, F2, F3, F4 for the full map

are presented. The same results, with a detailed account of fringe fields included in
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(b) (y - b) tracking pictures

Figure 4.27: 1000 turn tracking of the FNAL Proton Driver with the 15th order

Ta3"lor map, and the corresponding S: 0 symplectified map.
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Figure 4.28: 1000 turn (:5 —— a) tracking of the FNAL Proton Driver with the element-

by-element numerical integration.

the simulation (for more information on accurate fringe field maps for the LHC see

chapter 10) are shown in Figure 4.30. For the sake of completeness, wedepict the

results without and with fringe fields for the case of F2 and F3 symplectified nonlinear

parts of the map in Figures 4.31 and 4.32. Again, the terrible performance of some of

the generator types point out the necessity of optimal symplectification studies, and

shows that the right generator type (S = 0) gives excellent results once again.

The topic of optimal symplectification from a very general standpoint is the sub—

ject of the next chapter.
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(a) 8th order Taylor map (b) S = 0 symplectified map
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(c) F1 symplectified full map (d) F2 symplectified full map
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(e) F3 symplectified full map (f) F4 symplectified full map

Figure 4.29: 105 turn tracking of the LHC with the 8th order Taylor map, and the

CorrGaponding various symplectified maps, without fringe fields taken into account.
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(e) F3 symplectified full map (f) F4 symplectified full map

Fig‘lre 4.30: 105 turn tracking of the LHC with the 8th order Taylor map, and

e Corresponding various symplectified maps, with detailed fringe fields taken into

aCCOunt.
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(3) F2 symplectified nonlinear part of the (b) F3 symplectified nonlinear part of the

map map

Figure 4.31: 105 turn tracking of the LHC with the F2 and F3 symplectified nonlinear

parts of the 8th order Taylor map, without fringe fields taken into account.

0.0003 0.0003

(3.) F2 symplectified nonlinear part of the (b) F3 symplectified nonlinear part of the

map map

Figure 4.32: 105 turn tracking of the LHC with the F2 and F3 symplectified nonlinear

parts of the 8th order Taler map, with detailed fringe fields taken into account.
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Chapter 5

Optimal Symplectification

Among many systems of practical interest, hadron colliders in the single particle

approximation can be modeled as Hamiltonian systems. Hamiltonian systems are

uniquely characterized by their symplecticity [10]. One of the fundamental quantities

in accelerator physics is the dynamic aperture (DA), which, roughly, is the region of

space containing stable particle orbits over long times. Since the system is so complex

that an exact solution is not within reach, simulations are needed to estimate the

DA [13, 56]. This can be achieved by iteration of the so—called one-turn map, i.e.

Poincaré section map, of the system. Unfortunately, only some approximation of the

one-turn map, as, for example, the order n truncation of its Taylor series, is available

[24]. While the Taylor map preserves the symplecticity up to order n terms in the

expansion, in general fails to be exactly symplectic. The numerical simulations in

chapter 4 show that the truncation often generates inaccurate results. Therefore,

restoration of the exact symplecticity of the one-turn map is desirable.

There are several symplectification methods [14, 15, 57]. While every method

produces exactly symplectic maps, the results are not equivalent. The symplectified

maps depend on the specifics of the methods. Several examples are presented in chap-

ter 4 using the formalism of generating functions of canonical transformations. For
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some generators, the results are not satisfactory. Therefore, it is not only important

to symplectify, but also to symplectify the right way. The purpose of this chapter is

to give a precise meaning for how to symplectify “the right way” [58].

5.1 Formulation of the Problem

As with any approximation method, a criterion for closeness is needed; mathemati-

cally speaking, a suitable metric is necessary. In our case, the metric should provide

a way to measure distances between Hamiltonian symplectic maps, and should have

some desirable properties, namely:

1. The symplectification should work well for every particle in a given Poincaré

section,

2. The outcome of the symplectification should not depend on the specific Poincaré

section used,

3. The symplectification should work just as well after any N > 1 turns as after

one turn, and

4. Based on the previous three conditions, the assessment of the optimality of the

symplectification should be unambiguous.

These conditions can be captured by the requirement that if a symplectification

method yields the best result, say M, with respect to the metric, then the same

Symplectification gives the same result for A o M o A'l, A being any symplectic

map, which entails coordinate independence of the metric. It is h0ped that such

Special purpose metrics would capture better the details of the dynamics than general

Purpose metrics (as, for example, the well-known C0 metric), and would give an
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as unambiguous as possible way to measure distances. Therefore, mathematically

speaking, we would like to have a bi-invariant metric for Hamiltonian symplectic

maps. The importance of bi-invariant metrics has been pointed out also in [59]. It

also can be thought of as a certain generalization of subsection 3.4.1, where it has been

shown that linear symplectic variable changes do not matter, to the nonlinear case.

The question is whether such a metric exists at all. Indeed, existence of such a metric

is highly nontrivial over an infinite dimensional non-compact Lie group, like the Lie

group of symplectic maps. A negative example from the field of motion planning for

robotic systems is provided by [60], where it is shown that over the relevant Lie group,

i.e. SE(3), no such “natural and unequivocal concept of distance” exists. Hence the

results are task or designer biased.

5.2 Hofer’s Metric and the Optimality Condition

Fortunately, there exists an outstanding metric that satisfies our needs, and sym-

plectic topology provides a way to formulate the necessary conditions for optimal

symplectification. This is astonishing, since despite Hamiltonian systems have been

studied for such a long time, there was no symplectic topology 25 years ago. Now

symplectic topology is a very lively research field, and we will use and extend some

results concerning Hofer’s metric. In [18], a surprising intrinsic metric has been intro-

duced, now called Hofer’s metric, on the space of compactly supported Hamiltonian

symplectomorphisms, Hamc (1112"). Recall that a symplectic map is called Hamilto-

nian if it is the time one map of the flow of some function defined on phase space.

The fact that such a Finsler metric exists on a non-compact infinite dimensional Lie

group points out the special nature of Hamiltonian systems.
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5.2.1 Hofer’s Metric

We give a short description of this norm [45]. In general, let G be a Lie group with

Lie algebra L. A norm H . ]| on L is called invariant if it is invariant under the adjoint

action of G

|I€ll=||9‘1€9|| (5.1)

(defined through the exponential of I; at t = 0) for every E 6 L and every 9 E G. Any

such norm gives rise to a bi-invariant intrinsic metric on the Lie group via

400.9.) = 13f / || gage)“ n dt (52)

for go, 91 E G. The infimum is taken over any smooth path 9 : [0, 1] —> G connecting

90 = 9(0) to 91: 9(1)-

Specifically, the compactly supported Hamiltonian vector fields of R2" can be iden-

tified with the space of compactly supported functions Cf" (112") via the isomorphism

mentioned in subsection 2.2.1. The velocity vector of (5.2) is the Hamiltonian vec-

tor field. Hence, Hofer defined the following L°°-type norm on compactly supported

Hamiltonian functions

IIXH,” é sup Ht (.3) — inf Ht (2.) (5.3)

z€R2n zeRZn

For convenience we denote it as ||Ht||. This norm is called the oscillation norm. The

adjoint actions are the symplectic variable changes. For the Hamiltonian functions

the adjoint actions are the transformations H +———> H 0 1,0, for every H E Cf,” (1112")

and every 7,0 6 Symp (112", J). The oscillation norm is obviously invariant under the

adjoint action

llHtll = “Hwy“ (54)
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In fact, the norm stays invariant under the larger diffeomorphism group of R2". The

induced length spectrum for paths {45,}, t E [0, 1] in Hamc (1112") is given by

({4} = / IIHtlldt (5.5)

where H, is the, possibly time dependent, generating Hamiltonian. For any two

90, 1/1 E Hamc (1112"), the distance between them is defined as

1

72(34):, inf 414.}: inf ,/ llHtlldt (5.6)
0

¢o=¢1¢1=w (For-@1451:

The infimum is taken over all smooth paths in Hamc (1112") from cp to 7,1). The following

proposition holds [46]:

Proposition 9 For all 90,90,117 E Hamc (112") the following hold:

0 No.90) Z 0,

p(¢.¢)=p(<p,¢),

p(¢.w)Sp(<b.so)+p(</a¢),

p051) = 1000009941).

p(wo¢,w0«p) =p(<b,<p) =p(</>ow.¢ow)

the map t —-> p(¢,,I) is uniformly continuous.

The first three properties mean that p is a pseudo-metric. The highly nontrivial

fact is [46]:

Theorem 10 Let 05,99 6 Hamc (1112"). Then

p(¢.so)=0 15> ¢=<p (5.7)
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Therefore, Hofer’s metric ,o is an essentially unique, genuine, intrinsic, bi-invariant,

Finsler metric, i.e. it satisfies the positive definiteness, separation and symmetry

axioms, the triangle inequality, and the fifth statement of the above proposition. It

has been shown in [61] that all the invariant LP norms, 1 S p < 00,

11an = ([271 mm") 1).. (58)

give rise to pseudo-metrics, but not genuine metrics. So, the only non-trivial case is

p = 00. We also mention that varying the metric in the t direction gives equivalent

metrics. Thus Hofer’s metric satisfies all the conditions we wanted to, and can be

used for our purposes.

Assume that M is the exact one—turn map of our system, Mn its order n Taylor

approximation, and N is an exactly symplectic map produced from M,, by some

symplectification method. In practice M and N will not be compactly supported. In

fact, a priori it is not even clear that N will be Hamiltonian since it is the symplectifi-

cation of some non-symplectic map. However, we need M, N E HamC (112") to be able

to use Hofer’s metric. The problem can be solved as follows. From the practical point

of view, the particles in the accelerator are constrained to move within the evacuated

beam pipes, and any particle that hits the tube is lost. Mathematically this can be

modeled as a cut-off of the particles’ Hamiltonian. Indeed, choosing suitable bump

functions [43], it is possible to replace the original Hamiltonian with another one

Which agrees with the original Hamiltonian inside the beam tube, it is zero outside,

and has arbitrary fast fall-off. Moreover, we are interested in the dynamics in this

finite region of phase space only. These compactly supported Hamiltonians will gen-

erate, as time one maps of their flows, compactly supported Hamiltonian symplectic

maps which will agree with the original maps over the desired region. The arbitrary

fast decay of the cutoff function guarantees that this effect does not influence the
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numerical results (since this region of the phase space can be made arbitrarily small,

in particular smaller than any floating point number that can be represented on a

computer). Therefore, for all practical purposes, this region can be taken as a delta

function, as it saves the complication of working with compactly supported maps in

practice. Knowing that every symplectic map can be interpolated by the flow of some

Hamiltonian in time one, the problem is solved. Indeed, in R2" the group of symplec-

tic maps coincides with the group of Hamiltonian maps. For completeness, the next

subsection gives more details about the connectedness of the group of Hamiltonian

symplectic maps.

5.2.2 Connectedness of the Group of Hamiltonian Symplec-

tic Maps

There is a lot of information scattered in the literature on the connectedness of the

group of symplectic and Hamiltonian maps [41, 45, 46]. There is also some confusion

regarding certain aspects of this topic. For self consistency, the most important results

are presented in this subsection.

It follows from the existence of generating functions (or the so-called Weinstein

charts) that the group of symplectic maps (compactly supported symplectic maps) are

locally contractible, and consequently are locally connected by smooth arcs. Then,

the identity components consist of all symplectic maps which are isotopic to the

identity through symplectic maps (compactly supported symplectic maps). Smooth

isotopies are in one-to-one correspondence with families of smooth vector fields, i.e.

if <25, is such an isotopy, then it gives rise to the vector fields

d¢ _
Xt: d—ttO tl' (5.9)

If the isotopy is symplectic, then so is the vector field. 0n simply connected manifolds,

the symplectic vector fields are Hamiltonian (in general, on connected manifolds, only
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locally Hamiltonian). Therefore, on R2" every symplectic isot0py is Hamiltonian.

Moreover, it can be shown that in this case the group of symplectic and Hamiltonian

maps coincide. Indeed, given any M E Symp (112"), to show that it is Hamiltonian,

according to the above discussion, it is enough to show that M is the endpoint of a

symplectic isotopy.

Denote the constant part of M by c, i.e. M (0) = c. Homot0p M = c + Mo to

an origin preserving symplectic map by Mt = tc + M0, t E [0, 1]. We have that Mt

is symplectic for each t and M0 (0) = 0. Using the Alexander trick, an arc can be

found from the linear part of M0, L, to M0, that is

1

M2 = EM0 0 t2, (5.10)

for t E (0,1]. It is easy to see that M? is symplectic for each t (the Alexander trick

being in fact only a change of scale), and from the Taylor expansion of M? is follows

that

lim M? = L. (5.11)
t—>0

Furthermore, L = Jac (L) E Sp (2n,R), and it is well-known that Sp (2n,R) is con-

tractible. There are several ways to see this. For example, any L E Sp (2n, R) can be

written as

L = eJSIerz, (5.12)

Where Sl, S2 are symmetric matrices [62]. Therefore, it is enough to define the arc

£3 = e"781 o e‘jSQ, (5.13)

t E [0,1] to obtain the final part of the total isotopy. Putting together the different

Parts by juxtaposition of paths, we obtain the following piecewise smooth isotopy:

Lt, te [0,1/3],

M. = M2, tE (1/3,2/3], (5.14)

tc+M°, tE (2/3,1].
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By replacing the parameter t by a smooth function f : [0.1] —+ [0,1] such that

it is constant in the neighborhoods of the non-smooth points, we finally obtain a

smooth isotopy from the identity to M, showing that every M E Symp (112") is in

fact E Ham (112").

The next natural question is the following: if M E Sympc (112"), then is it true

that M E Hamc (112”)? In general, the answer is not known. It is true for n < 3

[50]. Moreover, it is known that Hamc (112") is the C'0 closure of Symp“ (1112“) for

any n. Again, there are several ways to see this. Perhaps the easiest is to notice

that for any compactly supported diffeomorphism ()5 such that supp(¢) C D, and any

diffeomorphism 6, supp(0 o ()5 0 6") C 0 (D). It follows that any M E Sympc (1112")

can be conformally rescaled to have support in an arbitrary small neighborhood of a

point. Then, the Alexander trick (5.10) gives an isotopy from M to an element in

Sympc (1112") arbitrarily C'O-close to the identity. Therefore, for computational pur-

poses we can always interchange symplectic with Hamiltonian, even in the compactly

supported case.

5.2.3 The Optimality Condition

To this end, Hofer’s metric can be applied to the problems of interest to us. There—

fore, optimal symplectification can be defined as the symplectification method that

minimizes the distance in Hofer’s metric between the exact map and the symplectified

maps. That is, if the set of all possible symplectification methods is denoted by E,

the best result is achieved by any symplectic map New which satisfies

p(MaN0pt) = 1gp (MA/1) - (5-15)

While being very general, there is a problem with this formulation of the optimal

symplectification, namely it is not very useful for practical computations. The reason
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is that in general it is not known yet how to compute the Hofer distance between two

arbitrary maps in Hamc (112" ). The difficulty lies in the necessity of consideration of all

the Hamiltonians generating the two maps, or equivalently, the paths in Hamc (112")

from M to .N,. However, by the nature of our optimality condition, we are interested

only in the maps N;- that are already close to M in some sense. Obviously, this

necessary condition can be achieved by sufficiently increasing the value of n, the

degree of the polynomials M,, with which the exact maps are initially approximated.

Thus it would be sufficient if a suitable neighborhood of M can be parametrized in

such a way that (5.15) becomes computable. Clearly, any symplectic map that does

not fit into this neighborhood cannot be optimal.

5 . 3 Link to the Extended Generating Function The-

ory

Indeed, parametrization of a neighborhood of M is possible in the C'1 topology, uti-

lizing the theory of [generating functions. The first results in this direction have been

Obtained in [63] for Hamiltonian maps 01 close to identity and Poincaré’s generating

function, and then it was extended to Hamiltonian maps C1 close to identity and

all compactly supported generating functions in [64] and [45]. While the approach

of [64] is more general, as it holds on any symplectic manifold, we are only inter-

ested in R2“, and the method of [63] lends itself more easily to generalizations. The

main idea is to replace the Hamiltonian maps by their generating functions, and try

to BXpress Hofer’s metric between two maps as some norm of the difference of their

generating functions. In [63] this was proven to be possible in some cases. However,

in the extended theory of generating functions of chapter 2 it was shown that in fact

there exist uncountably many generator types for any symplectic map, some of which

are not compactly supported. To be able to decide which generating function type
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provides the optimal symplectification, the result of [63] must be generalized to every

generator type.

More precisely, introducing a map (1),, that sends a symplectic map M into its

generating function F of type a, we prove that (Do, is an isometry. Formally, we can

state the result as the following theorem:

Theorem 11 There exists a neighborhood 8 of any M E Ham“ (112"), and a neigh-

borhood Z of0 in Cf" (112") such that the map

<1, : s —> 3 CD0 (M) = F (5.16)

is isometric. That is, for every F, G E Z,

1 1

p(M.N)=—Il‘1>a(M)-<1>8(N)||=—||F-G||o (5-17)
lul lul

As a consequence, the inverse of the isometry takes any function from (Z, l] - ll)

into a Hamiltonian symplectomorphism in (E, p) depending on a. This shows that,

considering the space (Z, I] - H) a flat space (in which straight lines are minimal

geodesics), their image under (1);,1 : Z —-> E in HamC (112") remain locally flat min-

imal geodesics. That is why this results is called the local flatness phenomenon.

The proof uses three main ingredients. First, there is an intimate relationship

between fixed points of symplectic maps and critical points of generating functions,

which is presented in the next subsection. Second, the proof in [63] is based on the

Hamilton—Jacobi equation. In subsection 5.3.2 the generalized Hamilton-Jacobi is

derived, adapted to our situation. It provides the time evolution of any generator

type. Finally, the proof uses a theorem of Siburg [65], which is stated without proof

in subsection 5.3.3. The theorem essentially states that paths without nontrivial fixed

points are absolutely length minimizing for Hofer’s metric.
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5.3.1 The Fixed Point-Critical Point Relationship

In this subsection we study an interesting property of generating functions. A point

Zf is called a fixed point of the symplectic map M if it acts on it as the identity

map, that is M (zf) = 2;. It follows that the iterates of the map have the same fixed

points,

Mk (2,) = Mk“1 0 M (2,) = Mk"1 (2;) = = M (2,) = 2,. (5.18)

Moreover, the inverse M‘1 also has the same fixed points,

M"1(zf) = M‘1 0 M (2f) 2 zf. (5.19)

To sum up, we can say that any integer power of a symplectic map has the same fixed

points as the map itself. Thus the set of fixed points form a topological invariant

of the map under iteration. Generating functions can be connected with these fixed

points. For start, let us consider a special class of generating functions. We assume

that the generating functions are globally defined, otherwise the theory is valid for

the fixed points in the regions where it is defined. The critical points of functions in

this set are the fixed points of the symplectic maps, and conversely, the fixed points

of the map are critical points of the function. If the symplectic maps are compactly

supported, then these generating functions are exactly the generating functions with

compact support. This can be easily seen if we argue geometrically. Recall that the

symplectic map is a Lagrangian submanifold in the product manifold. Then, the

fixed points of the map are exactly the intersection points of this submanifold with

the diagonal. On the other hand, the critical points of the generating function are the

intersection points of the Lagrangian submanifold determined by the function with

the zero section. Now, if we identify the diagonal with the zero section by a, the fixed

points of the map will go into critical points of the generating functions.
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Explicitly, given a symplectic map, we can choose only as that satisfy the transver-

sality condition. On the other hand, identification of the diagonal with the zero section

requires that

a (A) = Z, (5.20)

which further restricts the pool of as. A necessary condition is that the generating

functions in this class can generate the identity map. If the map is close enough to the

identity, then also the transversality condition is satisfied automatically. Equation

(5.20) can be expanded as

(11 0

(5.21)

N
N
H
H

E

II

A

N
O

V

E

(120

Applying Zf to (2.107), we obtain that

VF0020(AI/t)(zf)=alo('/\IA)(zf), (5.22)

which is equivalent to

VF00720(§)(zf)=alo(§)(zf). (5.23)

Using (5.21) we arrive to

VF(wf) = , (5.24)

where wf is given by 2f and the identification process. From the explicit constraints

we will see that actually to; = 2,7. Hence, the fixed points of the map are critical

points of the generating functions from this set.

The next question is whether this is true conversely: are all the critical points of

generating functions in this set fixed points of the map? As has been shown in section
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2.4,

M=(010(VZF ))o(a2o(VIF ))_l, (5.25)

M0 (02 o ( VIF )) (w,) = (010 ( VIF )) (we), (5.26)

where we are the critical points of F. From (5.20) it follows that

01‘

a” (Z) = A, (5.27)

(m=(§)er on)

N
o
N
o

Combining what we have derived sofar, we are able to answer the question about

critical points. Using VF (we) 2 0, from (5.26) and (5.28) we obtain

M (2c) = 26. (5.29)

Again, 26 is the point corresponding to we via the identification, and we will see that

2:C = we. Hence, we are fixed points of the symplectic map. In conclusion, there is a

one-to—one correspondence between fixed points of the map and critical points of the

generating functions in this set.

Now we elaborate in the direction of finding the explicit constraints for this class

of generating functions. Beside the constraints (2123-2125) we have another set

given by (5.21), which in terms of the entries in the Jacobian of a read

A (z, z) + B (2, z) = 0, (5.30)

C (2, z) + D (2, z) = I. (5.31)
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But we already know from chapter 3 that, with M = I, this set is nothing else than

generating functions constructed via any a of the form

_ —uJ a] MER"

a—(%(I+JS) %(I—-JS)) 5:57“ (5°32)

The critical points of these generators are in one-to-one correspondence with the fixed

points of the map. Now it is straightforward to check that for any generating function

in this set indeed w; = Zf and 2C 2 we.

The above results can be extended to any generating function, with the condition

that it can be used to generate the identity map. The difference between the above

set and the other generating functions is that they will not identify the diagonal with

the zero section, but some other section. However, this little inconvenience can be

circumvented by noticing that subtracting from the generating function the function

that generates the identity map, we get almost the same results. That is, suppose we

have the following:

vroago(’;’)(z)=alo(“‘z")(z), (5.33)

vrooago(§)(z)=a,o(§)(z), (5.34)

where we denoted by F0 the same type of generating function as F, but which gen-

erates the identity map. Then, if z = 2;, the right hand sides are the same, and we

obtain that

V (F — F0) (wf) = 0. (5.35)

The fixed points can be obtained from

2, = (526 ( g ))_l (15,). (5.36)
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So, there is still a one—to—one correspondence between fixed points of symplectic maps

and critical points of generating functions in the above modified sense. Of course, in

the case of the (5.32) set F0 = 0, and the previous results can be recovered.

Finally, to put the results in the form that we will need them to prove the theorem,

consider the case when the same generator type 0 exists for two symplectic maps M

and N. It follows that

vroa2o(/‘I”)(z):a,o(";)(z), (5.37)

“IfVGoago(';/)(z)=alo< )(z). (5.38)

Then, on the set of common fixed points Zf of M and N we obtain that

v (F — G) (w,) = o. (5.39)

5.3.2 The Generalized Hamilton-Jacobi Equation and Appli-

cations

In this subsection we prove the most general Hamilton-Jacobi equation, associated

to the time evolution of any generating function. As we have seen, critical points

of generating functions are closely related to fixed points of the map. But more can

be said. We will Show that, actually every generating function of compact support

assumes the same value at the fixed points of the map. These numbers are called the

action of the fixed points, that is, if z, is a fixed point of M, define A (2,, M, ,u) as

the value taken by any generating function. Call the set of all such numbers, as 2f

spans all the fixed points, the action spectrum of M

011(M)={A(Z;.M,u) M4021) = Zrl- (5-40)

The spectrum depends parametrically on the conformality factor a of a, and is a

symplectic invariant of the map. To show the claim, we need to prove that the
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generating functions satisfy a generalized Hamilton-Jacobi equation. Based on the

proof in [28] for linear as, here we present the general proof. Assume that the flow

is generated by the time-dependent Hamiltonian Ht, and the corresponding time t

maps can be represented at any moment by a time-dependent generating function Ft.

We claim the following.

Theorem 12 The following Hamilton-Jacobi equation is satisfied for any w E R2":

391E (w) = “H, o (510 ( AI“ )) (7.0), (5.41)

where F, is the generating function associated to any a satisfying (2123-2125), and

M = (VFt)T at every moment t.

Proof. We are situated in the (1114", J4") symplectic space, with symplectic coordi-

nates (10,722). Consider the extended phase space 1R4"+2 by including the canonical

pair of variables (t, —H,). The symplectic structure modifies to

w = (.00 — (ll /\ dHt, (5.42)

the differential form of Cartan. Take the one-form

 

 

 

e = lL’d'lU + tht, (543)

where H, = “H, o (a1 o ( g? )). We prove that A6 is closed. We have that

2" 610 2" an 2" 6H 6H
_ __i , ,. . i . _£ . ___‘d1, 11:1 awjdu, /\ dw, + 2:; 61th dw, + 2:; 6w.- dw, /\ dt + at dt /\ dt

2" 2" an air
_ 22; (Jac(/Vt) — (Jac(/Vt) )) dw, /\ dlb; + 2(61: 3%) dt /\ dw,

2" (9'12? 0H'2' t
= —— -— dt /\ d ,-. ..2; ( at 016,-) w (5 44)

122



On the other hand

dw an

-c_l—t: = M (w) = Jac (M (w)) - w + 5;, (5.45)

@5112 = N, (w) — Jac (N, (1.5)) .25. (5.46)

Recall that

w = a2 0 ( A2” ) (z), (5.47)

13 = a1 0 ( A2“ ) (z), (5.48)

and 2 = Mt (z) is the solution of the initial value problem

d2 .

a Z JVgHt (Z), (5.49)

2 (t = 0) = z. (5.50)

We compute

3H, _ f M \
Ei-v— (w) _ ,qu (Ht 0 (a1 0 K I )f) (w) (5.51)

T

= a [Jae (a1 0 ( 'gt )) (w)] 'VgH (2?) (5.52)

. N. T -
= u [( A“ B“ )-( I )] ~V2H(z) (5.53)

= )1 (AaNt + B“)T - v.11 (2) (5.54)

= )1 (MAJ + BOT) ~V5H (2), (5.55)

where in the second row we used 2 = a1 0 ( ‘9.“ ) (w), in the third row Jac (M) = N,

and the notation for the Jacobian of a—1

_ A“ B“

a# = Jac (a 1) = ( C0 D“ ). (5.56)
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In the last row the fact that N, is symmetric, N,T = N, is also utilized. We can

express a# in terms of entries of a#. From (2.113) it follows that

1 ..

a# = ——-J4,,a;J,,, (5.57)
p

_ 1 J2n 02n AT CT O2n I2n

— —; < 0211 —J2n ) ( BT DT ) ( —I2n 02n ’ (5.58)

which reads explicitly

1 1

AC! = —J,,,CT, 130 = ——J2,,AT, (5.59)

H H

a 1 T a 1 T

C = ———J2,,D , D = —-J2,,B . (5.60)

It H

Finally, we obtain

LH‘ « — v.4” BOT v H *

3w (w) — #(1 t + l 2 1(2) (5‘61)

Analogously, the calculation of ‘33—? proceeds as follows

an d d

‘37- : 81(01 (2,2)) —Nt' 'd—t(C12(Z,Z)) (5.63)

_ 8a1(é,2) (12 802 (2,2) d2

— o2 'E‘N’ a2 '5 (5°64)

Hence, dAe = 0. The vanishing first cohomology class guarantees the existence of a

function F, (w) such that

dF, (w) = A, = wdw + H, (w) dt, (5.66)

(9F, (1U) 3F, (TU) _ A . — .

8w dw + at dt — wdw + H, (w) dt. (5.67)

Comparing coefficients, we get that indeed F, (w) is the generating function

VF, (w) = N, (w) = 25, (5.68)
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and the advertised result

BFng) = 17H; 0 (0,10 ( AI/t )) (,0) (5.69) 

Finally, as an application, it can be shown that compactly supported generating

functions assume the same value at the fixed points of the symplectic map. Notice

that the right hand side of (5.69) can be expressed as

H,o (515 ( A; )) (w) = H,0 (51555 ( ”2‘ )(z)) (5.70)

= H, o M, (2). (5.71)

In the derivation we used the following

_ a1 0 a
aloa=(a2oa)=l. (5.72)

Therefore, a1 o a is the identity for the first 2n components and 0 for the second 2n

components. Also, if we consider only time-independent Hamiltonians, H is invariant

under its own flow at any time, H 2 H o M,, since H is constant along the solutions

of the Hamiltonian dynamical system. Reparametrization with respect to time, such

that M is the time 1 flow of H,, and integration of (5.66) gives

Foa,o(/‘I”)(2)—Fooa,o(§)(2)= (5.73)

[1:11) VF (w) - dw + ”/01 H, 0M, (z)dt. (5.74)

We used M0 = I, and the notation F, = F. If 2 = 2;, the first term on the right

hand side is vanishing because in this case w (0) : w (1) as can be seen from (5.47).

Hence, we get

(F — F0) (24.) = u [0 H. o M. (2,) dt. (5.75)
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with

I

w, : a2 0( I > (2,). (5.76)

In particular, for compactly supported generating functions (5.75) takes the form

1

F(zf)=u/ HtOMt(Zf)dt=A(Zf,M,/,t). (5.77)

0

This means that generating functions in this set, with the same conformality factor,

take the same value at the fixed points of the symplectic map. In general, the other

generating functions, after subtracting the part that generates the identity, take the

same value at points that are in one-to—one correspondence with the fixed points.

In [45] it is shown that the action of a fixed point is related to the area enclosed

by certain loops, thus is no surprise that the action depends parametrically on the

conformality factor.

It is also known that the action spectrum of compactly supported Hamiltonian

maps is compact and nowhere dense, and in general does not depend continuously

with respect to M. For details we refer the reader to [46]. On the other hand,

Weinstein proved that the fixed points of a perturbed symplectic map are close to

the fixed points of the unperturbed map [32]. A related result is due to Viterbo, who

proved that any compactly supported symplectic map has infinitely many periodic

points inside its support [66].

5.3.3 Siburg’s Theorem

Some preparation is needed before the theorem statement.

Definition 3 Let I C IR be a connected subset with non-empty interior. A smooth

path {(0,} : I —+ HamC (1112") is called regular if XH, # 0 for every t E I.
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Definition 4 Let {(25,} : I ——> Hamc (R2n) be a smooth regular path.

0 {(25,} is called a minimal geodesic if for all a, b E I, such that a < b,

5 {‘15:} l[a.b] = P (9’55, $5) (578)

holds.

0 {(15,} is called a geodesic if for every t E I there exists a neighborhood U C I of

t such that {96,} [U is a minimal geodesic.

The following proposition is proved in [63].

Proposition 13 Let H : [a, b] X R2" ——2 R be a smooth compactly supported function.

The following two conditions are equivalent:

- ffllHtlldt = Ilfth(z)dtll

0 There exist two points z_, 2+ E R2" such that supH, = H, (2+) and ian, =

2

H, (2-), for allt E [a, b].

Definition 5 A function H, (2) which satisfies one of the conditions in the proposi-

tion above is called quasi-autonomous. Each autonomous path is quasi-autonomous.

We are interested under what conditions the length-minimizing property of a path

is achieved. Lalonde and McDuff [64] proved the necessary condition, which holds for

any symplectic manifold.

Theorem 14 A regular path {05,}, t E I, in HamC (112") is a geodesic if and only if

its generating Hamiltonian has at least one fixed maximum and one fixed minimum

at each moment.
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Hence, every geodesic is generated by quasi-autonomous Hamiltonian functions.

To prove that a path is length—minimizing is much harder. Fortunately, in R2" one

can obtain more results than in the general case. First, we need another definition.

Definition 6 A fixed point, 2f, of a map (15, E HamC (1113") is called constant if it is

a fixed point of its flow, that is 03,2, 2 2,, for every t E [0,1].

We say that a smooth path {005,311} starting at the identity has no non-constant

fixed points if for any fixed 7 E (0,1] and 2, such that

(151(21) = 21' => <15, (21) = Zr (5-79)

for any t E [0,1]. In case {mew} does not start at the identity, (5.79) should be

modified to

<1), (31) = 450 (2;) => 1910?!) = $0 (Zfl- (5-80)

We are ready to state the following theorem [65].

Theorem 15 Any regular path {(86,311} in HamC (112") that is generated by a quasi-

autonomous Hamiltonian, and has no non-constant fixed points in time less than 1,

is a minimal geodesic, that is absolutely length-minimizing for Hofer’s metric.

It is conjectured that a similar theorem holds for any symplectic manifold. The

case of autonomous Hamiltonians has been proved recently [67].

5.3.4 Proof of the Main Theorem

Now we are ready to derive the so-called local flatness phenomenon. We want

to measure the distance between two compactly supported Hamiltonian symplectic

maps, say go and 1]). Suppose that for some type a the two generating functions

128



associated with a for (0 and w are Fa and 0,,. Take the convex combination of the

two generating functions

S, = (1 - t) Fa + tGa 2 Fa + t (Ga —- Fa). (5.81)

The corresponding path {0,} in Hamc (112") is generated by a Hamiltonian H,. The

path satisfies the following relations: (to = p and (b, = w. Noticing that S0 = Fa, if

z, is a fixed point of (1),, for some fixed r E (0, 1], according to (5.39) it follows that

V (S. - 50) (w!) = T ' V (Ga - Fa) (wf) = 0. (55-82)

that is w, is a critical point of Ga — Fa. Obviously, this implies that wI remains a

critical point of Go, — F0, for any t E [0,1], which in turn means that Zf is a fixed

point of o, for any t E [0,1]. Indeed, as in (5.36), it follows that in this case

2, = (526( g ))1 (25,). (5.83)

According to subsection 5.3.1, we just proved that all the fixed points of {¢,€[0,1]}

are constant. Also, a careful look at the Hamilton-Jacobi equation (5.69) reveals

that the path {Ftélmlll is generated by quasi-autonomous Hamiltonians. Since, as

follows from above, the left hand side is quasi-autonomous, the right hand side must

be quasi-autonomous too. Moreover, the points where the left hand side achieves

its maximum and minimum values are critical points of Ga — Fa; hence at these

points .N,(w,.) = VS,(w,) = VFa (we) is time independent, showing that indeed

H, is quasi-autonomous. We remark that the same arguments show that paths with

these pr0perties are never unique, as in the definition of S, any function of t such that

f (0) == 0 and f (1) = 1 can be taken instead of t. In our specific case, i.e. f (t) = t,

in fact autonomous paths are obtained. As a side note, this shows that symplectic

maps close to identity always can be generated by autonomous Hamiltonians.
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To this end, the conditions of theorem (15) are satisfied, and the Hamilton-Jacobi

equation provides a method to compute the distance between symplectic maps. Using

(5.71) in (5.69), taking norms on both sides of (5.69), and using the invariance of the

oscillation norm under the adjoint action, we obtain

“Ga - all: lllthOM1||= lltlllHtll- (5-84)

Integration gives

llGa - all = lul '€{¢t}1 (5-85)

and according to Siburg’s theorem we finally arrive at

1

p (r. w) = mllGa - Fall. (5-86)

In summary, as long as the same type of generating function exists for two com-

pactly supported Hamiltonian maps, the Hofer distance between them can be mea-

sured as the oscillation norm of the difference between their generators. From our

point of view, it is very important that this result holds for any generator type, sub-

ject to the existence condition. This is always the case if cp and w are sufficiently close

in the C1 topology. However, it is a local result in the sense that it does not provide

a way to compute Hofer’s distance between any two arbitrary Hamiltonian maps. It

is worthwhile to note that for any autonomous Hamiltonian H, there exists an e > 0

such that the time 1 flow of 5H has only constant fixed points [45]. Also, it auto-

matically follows that flows of quasi-autonomous Hamiltonian systems are geodesics,

that is they minimize length on sufficiently small time intervals. It was known from

[46] that this is true for autonomous Hamiltonians, and examples of time dependent

(quasi-autonomous) Hamiltonians can be found in [68].
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5.4 The Best Generating Function Type

Now we are ready to transfer the problem of solving (5.15) to solving

, 1
leWopt) = gmllqh (M) - (Pa (M) ||- (587)

Denote (Do, (M) = F0. Unfortunately, Fa is unknown, and to minimize the right hand

side of (5.87) a good approximation of Fa is needed. All the information about the

system that is available in practice is contained in M,,. This entails that, with some

a priori fixed a, the best approximation for Fa is obtained by solving as accurately

as possible (2.9). The necessary operations of truncated map computation, map

composition and order m inversion, and integration are readily available in the code

COSY INFINITY [24], and, as a consequence, the order m Taylor expansion of F0',

F3, can be easilyobtained. Then, it follows that the best result is achieved by the

symplectic map Nap, which satisfies

1

0 =' f— a— a . .
10(M1Npt) (IIIEIEI/IlllF lel (5 88)

where (1),, (.N,) = F,‘;',. Apparently, minimization of the right hand side of (5.88) is

equivalent to the choice of the generating function type that achieves this minimiza-

tion. It is worthwhile to note that, due to the one-to-one correspondence between gen-

erating functions of a fixed type and symplectic maps, p (M,N,,,,,) > 0 always, which

means that the true solution can never be recovered by symplectification. Therefore,

the differences among symplectification methods is caused by the truncation of the

generating functions. However, F,‘,", is the most that can be computed in practice.

Hence, we can state the following conclusion:

Optimal symplectification with respect to Hofer’s metric is achieved by the order n

truncated generating function type that has the smallest oscillation norm of the terms

neglected, above order m.
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Thus, the remaining question is that, based on this limited information, which

generator type will give Optimal results in general? To answer this question we need

to pick a generator type, or equivalently an a, that minimizes ”Fa—F3,”/p. Again, for

an arbitrary M this turns out to be a difficult problem, because in general nonlinear

as would be required, and it is difficult to construct useful nonlinear maps that satisfy

(2.6). For accelerator physics applications this turns out not to be a problem since the

maps of interest are in general weakly nonlinear maps around equilibrium points. For

these types of maps linear choices of a are sufficient, which simplifies the construction

of generating functions. Also, in principle any nonlinear Hamiltonian map can be split

into a composition of Hamiltonian maps which are only weakly nonlinear. Therefore,

the final step is to find the linear a, which can be considered as matrices, such that

HF“ — Ffizll/H is minimized in general.

One of the main results of chapter 3 is that the set of linear maps satisfying (2.6)

can be organized into equivalence classes, meaning that for symplectification purposes

the following are the only independent generator types:

_ ~1

0’ 2 ( 3(1 5%) M-1 5(1 i JS) ) ’ (5'89)

where M is the linear part of M, and S represent arbitrary symmetric matrices. For

a given M with linear part M, the classes characterized by some symmetric matrix

S is denoted by [S]. We note that M is know from M,,, and p = 1 for every a

from (5.89). Thus optimal symplectification is map dependent, that is, there is a

different optimal symplectification for every symplectic map having a different linear

part. Then, which class [S] gives the optimal symplectification for symplectic maps

having the same linear part? To answer the question, first is observed that instead

of the requirement of minimization of HF" — F3“, minimization of ||F°|| could be

required. The two requirements are not strictly equivalent. In one direction there is
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no problem; if we require F“ to be small, it follows that the tail F“ — Ff; will be also

small. Indeed, the only way that F“ — F3, will not be small for some m when F“ is

small is by cancellation of large terms in the Taylor expansion of F“. However, as

it will be seen below, this cannot happen due to the fact that C0 smallness implies

C1 smallness. The other direction is not necessarily always true, that is, in general a

small F“ — Ff}, does not imply a small F“. However, as have been shown in subsection

2.2.5, a large F“ does imply in general a small domain of definition of F“. For further

studies that support this conclusion, utilizing several examples, see [44]. It was shown

that, indeed, lower bounds for the domains of generating functions can be guaranteed

tooenclose the dynamic aperture, if the corresponding types are small enough. Since

we are interested in estimation of the DA, the generating functions should be defined

in a rather large domain in phase space. Putting together the facts, we can conclude

that for our purpose it is sufficient if ]|F“|| is minimized.

To this end, notice that, with the notations 23 = M (2) and w = a2 (2, z), (2.9)

can be expressed as

VwF“ (w) = a1(2,z). (5.90)

Integration, which can be along an arbitrary path according to Stokes’ theorem, gives

F“ (w) 2 /0w a, (2, z) -dw'. (5.91)

Taking norms on both sides of the equation the following estimate is obtained:

nwmwm(?)5Mw(?)1 6%

It is rather straightforward to check from (2.9) and (5.89) that

a, (2,2) = 0+o(22), (5.93)

a2(2,z) = I-z+%(I+JS)-(’)(z2). (5.94)
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From these equations it can be inferred that indeed CO smallness implies C1 smallness.

Therefore, a, (2, z) is already small if M is weakly nonlinear, and its norm does not

depend on the type of generating function. Hence, minimization of “F“H in the end

is equivalent to minimization of I + (I + JS) /2 - O (22). The only free parameter is

the symmetric matrix S. Because the 0 (22) comes from the nonlinear part of the

symplectic map M, a simple calculation shows that S = 0 is the best choice if M is

allowed to be free.

To see this, denote the Jacobian of M by M + N, where N is the nonlinear part.

Because M is symplectic, we have the following relation:

NTJN + NTJM + MTJN = 0. (5.95)

We also observe that minimization of (5.94) and of

1

|]J(I+§(I+JS)-N) I] (5.96)

are equivalent, since J just reorders the entries. Suppose we found some S such that

J(I+%(I+JS)-N)=J+$JN—%8Nz0. (5.97)

Hence we have the relations

MTJN z MTSN—2MTJ, (5.98)

NTJM z NTSM + 2JM, (5.99)

which inserted into (5.95) gives

[NTJN] + [MTSN + NTSM] + [2.1M — 2MTJ] z 0. (5.100)

We separated the terms into three groups: the first contains 4th and higher order

terms, the second group starts with second order terms, and the last group is purely

linear. Therefore, S cannot influence the linear part of (5.100). Also, in the region
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of interest to us the second and third order terms dominate over fourth and higher

order terms. In fact, there is a good chance that in the region where fourth order

terms dominate, the generating function is not even defined anymore, especially since

we are working with Taylor expansions. Hence, for best results, we have to choose S

in such a way to minimize the second and third order terms in (5.100). Clearly, this

is achieved for any M by

s = 0. (5.101)

With this result, it can be concluded that the optimal symplectification is achieved

by the class of generators [S] obeying S = 0, and associated with the following a:

—JM‘1 J

aopt : ( %M_1 %I > - (5.102)

Interestingly enough, it turns out that if in aop, the linear part M is replaced with

the unit matrix I, the resulting matrix gives a valid generator type, which exists

for symplectic maps close enough to identity. It was first used by Poincare in the

restricted three body problem for a completely different purpose [39], and hence

called the Poincaré generating function. Our aop, can be regarded as a dynamically

adjusted Poincaré generator, to symplectic maps not having identity as linear parts.

That is why we call it the EXtended POincaré (EXPO for short) generating function

type. Finally, the best symplectified map Now, in the sense presented in this chapter,

is obtained if the symplectification is performed using the EXPO generator type, i.e.

Nopt E NEXPO- (5.103)

Many examples of EXPO can be found in chapter 4. Indeed, the pictures confirm

the conclusions of the optimal symplectification theory, i.e. EXPO is in general by

far superior to any other generator type studied, including the traditionally used
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conventional Goldstein types. It is expected that the EXPO will become the method

of choice for symplectic tracking in COSY INFINITY.

5.5 Some Further Remarks

In general, Hofer’s metric is rather little understood. It determines a kind of C“1

topology on HamC (112"), and gives rise to a paradox. Sikorav [69] showed that every

one-parameter subgroup of Ham“ (112") remains a bounded distance from the identity.

So, we could draw the paradoxical conclusion that, according to the theorem proved

in subsection 5.3.4, every point has a flat neighborhood, but in some sense a positive

curvature is apparent. In any case, geometry on the group of Hamiltonian symplec-

tomorphisms with respect to Hofer’s metric gives rise to a different way of thinking

about Hamiltonian dynamics, and we can expect quite some progress in this direction

in the near future. The understanding of the global features and properties of Hofer’s

metric could give insight into the long term properties of Hamiltonian systems, and

perhaps provide an exciting method to compute the region of stability without the

time intensive tracking.

Finally, we mention that there exists another, related metric on Hamc (1112"), in-

troduced in [66]. However, in [63] and [65] it was proved that they coincide locally

on R2", so we need not consider it. We use Hofer’s metric because it is easier to work

with.

Put in a different perspective, according to (5.88), since we are working with

Taylor expansions of generating functions, the best generating function is which has

the fastest convergence inside its support. The first thought to minimize the left

hand side is to choose the conformality factor )1 as large as possible. However, this is

deceiving as has been seen in section 3.2. Here, another method is presented to the
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same effect. Consider any admissible a, of the form (5.32) with ,a = 1. Compute the

corresponding distance from (5.88). For another a in the same class, which differs

just by ,1 >> 1, the corresponding generating function is equivalent to the generating

function of a with p = 1, subjected to the transformation a, 1——+ pal. However, we

have seen in the section on transformation properties of generating functions that this

transformation is equivalent to F 1——> pF. Hence, we get the same distance in both

cases. At the same time, consider the transformation a2 1—2 paz. It follows from

(3.27) that the generating functions transform according to F 1——-> ,uF 0 p‘ll'. The

simultaneous transformations a, »—-> pa, and a2 +——-> ,u‘laz leave the conformality

factor equal to 1 and give F 1—> F 0 p1, according to (3.21). Hence, inserting them

into (5.88), again we get the same distances. It follows that the conformality factor

does not add any flexibility. Therefore, the conformality factor does not influence the

outcome of the symplectification, hence )a = 1 is always assumed.

As a side note, we mention that the conformality factor does play a role in the

numerical stability of the algorithms. For example, if a generating function with

I] S ]|>> 1 is computed, (some entries in) the primitive function might be scaled down

to zero on a computer (which in reality are tiny, but still non-zero), and it might be

obtained that the generating function vanishes, 'which is obviously wrong. This follows

from the fact that I/2 + JS/2 z JS/2 if I] S ||>> 1, and if we write S on 2,1], then u

can be considered as a conformality factor induced by the transformation a2 1—-> flag,

which in turn induces the F 1———-> pF 0 [1,—II transformation of the primitive function.

Hence, if a >> 1 numerical problems arise in the nonlinear part of F. This constitutes

another reason for working with p = 1 only.

Intuitively, Hofer’s metric measures what is the minimal Hamiltonian needed,

averaged over time, to generate a symplectic map from identity. Actually, Hofer

himself calls the distance from the identity of a map the symplectic energy of the
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map. In view of the KAM theorem for symplectic integration methods [70, 2], which

roughly says that the behavior of symplectic maps obtained by symplectic integration

applied to a integrable system should be close to the integrable system (at least in the

region where invariant tori still exist), this provides a strong support for our closeness

criterion for optimal symplectification based on Hofer’s metric, and points out that

Hofer’s metric is a natural choice.

There is an alternative interpretation of Hofer’s metric applied to beam dynamics.

Notice that, due to bi—invariance of Hofer’s metric we have

p(M,N) =p(N-16M,I). (5.104)

Therefore, by computing the distance between symplectic maps in Hofer’s metric,

actually what is computed is the minimum Hamiltonian needed to generate the initial

conditions of N from the initial conditions of M, such that both M and N applied

to the respective initial conditions give the same final results. If the result of the

norm minimization is small, the two sets of initial conditions are connected by a

map close to identity, hence the two sets are close to each other. From a practical

point of View this can be considered as not knowing exactly the properties of the

injected beam. Such small uncertainties always occur in practice, and to be able to

build robust accelerators, one should look for realizations that are not too sensitive

to small errors. This is done by considering different error sources, each realization

of the errors giving a different symplectic map. The incoming beam quality can be

considered one type of such an error effect. Hence, from this viewpoint it does not

matter whether M or N is used for the simulation of the accelerator.

The optimality condition can be given a nice geometric interpretation. Minimizing

the norm of the generating function is equivalent with finding the generating function

type, which maps the Lagrangian submanifold determined by the symplectic map as
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close as possible to the zero section. In fact, for any symplectic map, a generating

function type can be found, such that it is globally defined and it is identically

zero. This corresponds to the case when the corresponding generator type maps the

Lagrangian submanifold exactly to the zero section. However, in practice this Obser-

vation is worthless, because the problem of finding the respective type of generator

is equivalent with representing the symplectic map on a computer, rendering the

symplectification procedure pointless. To see this, just replace in (5.89) M with the

total map M. Nevertheless, the observation it is very useful in another sense. In the

present chapter the optimality condition has been formulated for the most general

case, but the solution has been found only for generator types of linear a, which was

enough for the symplectic maps of practical interest, i.e. weakly nonlinear. In case

M is strongly nonlinear, nonlinear aa are needed to map the respective Lagrangian

submanifolds closer to the zero section. Thus, nonlinear a type of generators become

a necessity, since with nonlinear as the Lagrangian submanifolds can be mapped

closer to the zero section than with any linear a generator type. This observation

hints towards the right direction to look for the appropriate nonlinear as.

There are also other interesting consequences of these results, specifically concern-

ing symplectic integration. The only difference between symplectic integration and

symplectic tracking is the method for obtaining the truncated generating function.

In the case of symplectic tracking, it is obtained from M,, using (2.9). In symplec-

tic integration, it is obtained by direct solution of the generalized Hamilton-Jacobi

equation (5.69). Thus, in this case, the linear part M is not known. Therefore, the

prescription for Optimal symplectic integration is to use Poincaré’s generating func-

tion and a sufliciently small time step (by this keeping the linear part of the resulting

symplectic map as close as possible to identity). Moreover, if the Poincaré generator

is expanded in a power series in the time step, from the Hamilton-Jacobi equation it
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follows that, as first order approximation in time Fp (w) = H (z). The corresponding

integration method then reduces to the well-known implicit midpoint rule.

To conclude this chapter, we would like to make a clearer connection between

Hofer’s metric and the visual aspects of the assessment of Optimality Of symplectifica—

tion. That is, while the Optimal symplectification theory says that in general EXPO

is optimal, it has been seen that, in the case of the anharmonic oscillator of section

4.2, the generator type S, gave visually (or equivalently, in a C0 sense) better results

than EXPO. What is the explanation in the light of the optimal symplectification

theory? Well, S, is “more Optimal” than EXPO because over the region which in-

cludes all trajectories Of interest, the Hofer distance between the exact map and the

symplectified map with S, is smaller than the distance between the exact map and

the map symplectified with EXPO. Unfortunately, we cannot compute Hofer’s dis-

tance exactly. However, considering the 19th order Taylor map as the exact solution,

according to (5.86) we can approximate the distance very accurately from

dEXPO z“ FgXPO — FEXPO H, (5.105)

and

d5, as“ F159" — F151” H, (5.106)

respectively. We plotted F19 — F1, (magnified by some constant factor) with Mathe-

matica for the two cases, and we obtained Figure 5.1. We can read Off the plots

dEXPO z 3, (5.107)

Obviously, S, is better than EXPO. Notice that the sharp deviation from zero Of the

distance function occurs only in the region close to the dynamic aperture, where we

already noticed most of the discrepancies among the various maps. This Observation
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(a) EXPO symplectification

 

(b) S, symplectification

Figure 5.1: Plot of Hofer’s distance between the exact and the symplectified maps

over the region enclosing the dynamic aperture of the anharmonic oscillator studied

in section 4.2.

141



opens the prospect of using Hofer’s metric as a local indicator beside the global one

that we already know.

142



Chapter 6

Summary of Part I

The extended theory of generating functions of canonical transformations was de—

veloped. Using a modified definition of the generating function, it was showed that

there are many more generating functions than commonly known, and some always

are defined globally. The set of generating functions turned out to be very degenerate

from the symplectification point of view. However, employing some transformation

properties of the generating functions, it was possible to reduce the pool of generat-

ing functions to equivalence classes associated with linear conformal symplectic maps.

The remaining independent types were characterized by symmetric matrices. Also, it

was proved that by choosing apprOpriate types of generators, there is no advantage in

factoring out linear parts and symplectifying only nonlinear parts, or first subjecting

the map to be symplectified to a linear symplectic coordinate change.

The performance of this symplectification method was illustrated by a variety

of examples. It was showed that different generator types Often give significantly

different long term behavior of the symplectified maps. This fact pointed out the

necessity for optimal generating function symplectification studies, which were solved

in a very general setting based on Hofer’s metric.

Using Hofer’s metric, a condition for optimal symplectification was given. After
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a few manipulations, Hofer’s metric for Hamiltonian symplectic maps was expressed

in terms of associated generating functions. Therefore, finding the best symplectified

map turned out to be equivalent to finding the appropriate generator type. It was

shown that the generator type which satisfies the optimality condition in general

is given by (5.102), and it was called the EXPO type. Consequently, the symplectic

map NExp0, obtained by symplectification of M,, using EXPO, gives Optimal results

in general. However, these results do not exclude the existence Of custom tailored

generator types that give better results for specific symplectic maps. EXPO is not

only optimal, but it is also fast due to its simplicity, implementation using fixed point

iterations, and vectorization.

Throughout part I methods of symplectic geometry and topology have been uti-

lized. The unifying concept behind these methods is the flows of Hamiltonian systems.

The accelerators of interest to us can be modeled as Hamiltonian systems. The time

evolution of these systems (i.e. the flow, or the particle orbits) can be regarded as

curves on the space of Hamiltonian symplectic maps. The geometric properties of

these curves with respect to Hofer’s metric are deeply related to the dynamics. In

this dissertation we exposed and exploited several aspects of this relationship. More

precisely, the Hamiltonian system representing the real accelerator lattice is replaced

by another Hamiltonian system, and instead of simulating approximately the real

accelerator, we track exactly a nearby accelerator, where closeness is measured in

Hofer’s metric. Then we hope that the perturbations so introduced are small enough

that in the light of the KAM theorem most invariant tori, and hence most Of the

geometric structures, survive, and it leads to a more reliable and faster estimation of

the dynamic aperture.

Finally, while the results obtained in this dissertation have been derived with

accelerator physics motivation in mind, their relevance go beyond beam physics, and

144



directly apply to any other weakly nonlinear problem in Hamiltonian dynamics.
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Part II

Accurate Simulation of Eringe

Field Effects
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Chapter 7

Introduction and Theoretical

Background

In part I it was shown that symplectification of the truncated Taylor maps, in general,

is necessary, and it must be done by using the appropriate generating function type,

EXPO. As a prerequisite of symplectification, it was assumed that the truncated,

order n symplectic, Taylor maps represent the systems well over short times. If this

is not the case, it is easy to find examples for which no symplectification can give good

results. For example, consider two truncated Taylor maps representing two different

systems, which agree through order 17., but differ by a large amount starting at order

n + 1. This can happen, for example, if the amplitude dependent tune shifts of both

systems agree up to order n, but only one of the system has some very large tune

shifts at order n + 1. This entails that no symplectification can predict the behavior

of the system with large tune shifts, if the order n truncated Taylor map is used for

symplectification. The reason is that important information was neglected about the

system, which renders the order n truncated Taylor map inaccurate, even for short

times. Therefore, for successful symplectic tracking, the order n needs to be high

enough (the exact value being system dependent), and every relevant effect must be

incorporated into the Taylor map. One of the effects that requires more sophisticated
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methods for their inclusion in'the one-turn Taylor map, are the effects of fringe fields.

In part II of this dissertation, the theory relevant for accurate fringe field effects

simulation is developed, the effects are studied generically in chapter 8, new methods

for multipole decomposition of superconducting magnets are introduced in chapter 9,

and the results are applied to a few examples. For the LHC, a detailed study draws

some conclusions about the effects of realistic fringe fields on the nonlinear dynamics

Of particles in chapter 10.

Due to the diversity of the field of nonlinear beam Optics, the mathematical meth-

ods employed and the formalisms utilized can be very different depending on the

specific design requirements. One of the topics for which traditionally very different

approaches have been carried out in different subfields are the fringe fields, or end

fields. For the purpose of simulations of large storage rings, fringe field effects are

Often neglected. Sometimes this is a quite good approximation. However, strictly

speaking, it is an unphysical model, as the electromagnetic fields of the model do

not satisfy Maxwell’s equations. The simplest method to take fringe fields into ac-

count is to approximate their effect with a kick (i.e. impulsive momentum change,

while position is unchanged) characterized by the integrated field value [71]. While

this model may alleviate some problems, it is not a cure, and more sophisticated

models are needed for accurate simulations. Besides the kick, the effect of the fringe

fields has been characterized by a sudden shift in position at the so-called effective

field boundary [72, 73, 74, 75]. For a specific field falloff, in [76] the third order

aberrations and their scaling with fringe field extension have been computed for the

quadrupole. Also, leading order hard edge fringe field effects have been studied in

[77]. Fringe fields have been shown to adversely affect the PEP-II dynamic aperture

[78]. However, an extensive study of fringe field effects has so far not been available.

The nonlinearities due to fringe fields have been well-known in the field of high
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resolution particle spectrographs for a long time [74, 79]. Also, as recently has been

shown, they tend to become significant in small rings, especially at larger emittances

[11, 12]. The latter studies motivated us to look more deeply, at a fundamental level,

 at the fringe field effects.

The introduction of the methods used to study the fringe field effects, first requires

the development of a theoretical framework. In the following we assume straight

optical axis, and a source-free region surrounding the axis. In this divergence-free,

curl-free region of the magnets it is possible to derive the magnetic field components

from a magnetic scalar potential that satisfies the Laplace equation. The general

solution expanded in cylindrical coordinates with axial coordinate s, in the so—called

multipole expansion form is [80]

00

’B = Z (bk,,(s) sin lcb + ak,,(s) cos lob) r“. (7.1)

171:0

The functions b,,,(s) are called the normal and a,,,(s) the skew multipoles, respec-

tively. The components, according to l = 0, 1, 2, 3, are called the solenoid, dipole,

quadrupole, sextupole, etc. components, respectively. Defining H,,,(s) and M,,,(s) by

 

 

53116;”(8) = —:::((:)), (7.2)

Mk,1(5) = (/bz,.<s>+at.<s>. (7.3)

we have an equivalent form

VB = Z M,,,(s) cos (13 + e,,,(s)) rk, (7.4)

k,l=0

which Shows that any normal (skew) component can be obtained from the corre-

sponding skew (normal) component by an s-dependent rotation around the 8 axis.
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The link between the two forms in the other direction is

bk'((8) = —1Wk‘1(s)sin6k‘1(s) (7.5)

(lvk,((8) = A’Ihz(8)COSQk‘1(S).

Inserting (7.1) in the Laplace equation in cylindrical coordinates

 

_ 1 0 TaVB 1 82V3 82VB _

AVB—;a7(ar)+fi‘aa7+—asz——°’ (76)

we obtain

2 l(bk.l(8l(k2 - 12) + ”if—2.48)) Sin “.5 + (alc.z(8)(k2 —12)+ 025-2,z(8)) 608105] T” = 0.

lc,l=0

(7.7) i

using the convention that the coefficients vanish for negative indices. Due to the fact

that the above equation must hold for every r and co, and the sin and cos are linearly

independent, it follows that

bk.z(8)(k2—12)+ 232.1(8) = 0 (7-8)

ak‘((8)(k2 —12) + az_2,,(s) = 0. (7.9)

Furthermore, it can be shown that the following recurrence relations hold:

 

 

b (s) = bmsl (710)
”2"” H32. (12 — (1+ 2142) '

(2n)
_ “1,1 (3)

and the coefficients that cannot be obtained by these relations are zero. The terms

that contain s-derivatives are called pseudo—multipoles. It is worth mentioning that,

as one can see from (7.2), the recurrence relations (7.10) do not hold in general for
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M,,.)(s). However, when the Bus are s-independent, (7.10) holds for Mk,)(s). Inserting

relations (7.10) in (7.1), we get for the potential

 

 

 
 

 

VB 2 Z (f)(r, s) sin [to + g)(r, s) coslgn) 7’, (7.12)

1:0

where

(lb(2n) (8 ) 2n

fl(T,8l :: Zbl+2n,(5)l =2 anl —(l+ 2V)2 )7‘ (7.13)

bliks) 2 bite) ._ rifle) 6

‘ (“(8) — 4(1+1)r + 32(1+1)(1+ 2) 384(1 + no + 2)(l +3)T + "

00 (271)

a (8)
=Zar+2nz(8)1 =2; anl 2,111+ 2V)?2)r2" (7.14)

ali’o) 2 alto) . alto)
= 011(3) -

4(r+1)r + 32(z+1)(z+2)f _ 384(l+1)(l+2)(l+3)
76+...

 
 

The functions f)(r,s) and g)(r,s) represent the “out of axis” expansion of the mul-

tipoles. The magnetic field components in cylindrical coordinates can be calculated

using the well known formulas

resulting the expressions

Br (7‘, (b, s) =

B¢(T, ¢, 8) :

Bs(r, a, s) =

 

_ avg
B, — 35 (7.15)

_ 1 VB
B, _ T w (7.16)

_ avg
B, _ E’ (7.17)

§0(r, s) + Z [fl(r, s) sin 1gb + §)(r, 3) cos lab] 7"—1 (7.18)

[:1

Z[l(f,((r, 3) cos [o5 g1(r, s) 8111 l¢)] (7.19)

(:1

Z [f,'(r, s) sinlqb + g;(r, 3) cos lo] 7", (7.20)

(:0
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where prime denotes derivative with respect to s and

 

°° °° (1+2n)bf2")s() 2..

(7‘ 8) : :L_:O(((+271))b1+2n[(8 =nzzo 1111:1(“2 (1+ 2V)2 )7‘ (7.21)

[+2117 5 H411“; [+6 11“”
=1b1,[(8)—( )l,l( ) 2 ( ) (3) 4 ( ) (8) T6+...

 
  

4(z+1) T +32(r+1)(zl+2)r —384(l+1)(l+2)(l+3)

 

   

~ 001+271)al(2ln) (3) 2n

91(r,s) = "231+ 2n)ar+2n,(81=z H3: (12 _ (1+ 211) )1 (7.22)

_[ ()_ (1+2)al1’s(8),. (1+4)a§‘1’(s) 14_ (1+6)11;f‘,’(s) 16+

_ 111,3 4(l+1) 32(l+1)(l+2) 384(l+1)(l+2)(l+3)

It can be seen that every multipole, except for l = 0, is multiplied by 7"”. For the

special case I = 0, we obtain

 

31(7‘18) = ="—Z(1)k+lmah2:)(3lr2k_l (7-23)

k=1

B¢,(7‘,s) = 0 (7.24)

B,(r,s) = w:1)k+122k:!k!a32§+1>(s)1~2k. (7.25)

k=0

In the Differential Algebraic (DA) picture, the field calculations are done locally, as

Taylor expansions of the fields with respect to the Cartesian coordinates :c, y, 3. Hence,

we need the following equations relating the cylindrical and Cartesian components of

the magnetic fields:

B10“, (15, s) = 3,0“, d), 3) cos a5 — B¢(r, (15, s) sin (15 (7.26)

By(r, o, s) = Br(r, a, s) sin (25 + B¢(r, a, 3) cos (1’), (7.27)

and 33(7‘, ab, 3) is unchanged.
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Chapter 8

Generic Efiects

For a better understanding of the fringe field effects, we start their study in this

chapter, by performing a study of the effects that one may miss by not considering

the influence of the fringe fields. We keep the study generic, and use lattices of the

muon storage rings, which, however, are available only at a preliminary design stage,

and to illustrate general trends in small footprint (i.e. small effective area occupied by

the accelerator), large acceptance rings. Specifically, we use a version of the proposed

30 GeV Neutrino Factory [52], and of the FNAL Proton Driver [53].

The fringe fields’ falloff are modeled by a six parameter Enge function

 F(s) = 1 (8.1)

1 + exp (2 a,- (s/D)"—‘)

i=1

where s is the arclength along the reference trajectory, used as the independent vari-

able. D denotes the full aperture of the magnet, and the a,- (1' = 1, 2, ..., 6) are called

Enge coefficients. For practical calculations, the Enge coefficients are either fitted

to represent measured data [81], or obtained by multipole decomposition of detailed

field computations as in chapter 9. We look at fringe field effects as a function of

magnet aperture and falloff shape. This is achieved by varying the magnet apertures

D, and the Enge coefficients a,-.
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The fringe field effects can be particularly easily studied in the map picture using

Differential Algebraic methods [82, 9, 10]. The consequences of the fringe field effects

influence all orders of the motion, beginning with the linear behavior. The pseudo-

multipole nonlinearities of the fringe fields couple to higher derivatives of the multipole

strengths. In practice this entails that fringe field effects become more and more

relevant the more the particles are away from the axis of the elements, which, of

course, is directly connected to the emittance of the beam. Also, it is clear that

the falloff shapes, and implicitly the apertures, have an influence on the induced

nonlinearities. Complete treatment, to any order, of detailed fringe field effects is

possible in the code COSY INFINITY [83, 84, 24, 85]. To quantify the effects, we

compute linear tunes, amplitude dependent tune shifts, Chromaticities, resonance

strengths, and estimate dynamic apertures. In the following sections we present

observations related to aperture (section 8.1) and shape dependent effects (sections

8.2 and 8.3). In section 8.4 it is presented briefly that neglect of the high order

pseudo-multipoles can also give misleading simulation results. Moreover, in section

8.5 it is pointed out that, in general, symplectification is not sufficient to undo the

errors made in neglecting important information about the system (such as higher

order pseudo-multipoles).

8.1 Aperture Dependent Effects on Linear Tunes

and Chromaticities

In some perturbation theories the linear or first order effects are not considered. In

others, the first order effect is characterized by a kick [71], or as a sudden change in

position and momentum at the so-called effective field boundary [74]. Here, using

the 30 GeV Neutrino Factory lattice, we compute with COSY INFINITY the linear

tunes and Chromaticities as a function of the magnet apertures. We assume that all
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Dipole Quadrupole Sextupole

al 0.478959 0.296471 0.176659

a2 1.911289 4.533219 7.153079

a3 —1.185953 —2.270982 —3.113116

a4 1.630554 1.068627 3.444311

a5 —1.082657 ——0.036391 —1.976740

a6 0.318111 0.022261 0.540068

 

 

 

 

 

      
 

Table 8.1: Enge coefficients of the default fringe field falloff used in COSY INFINITY

for dipoles, quadrupoles, and sextupoles, respectively.

the magnets have the same aperture, and the falloff is given by the Enge coefficients

of Table 8.1 [86]. We will call them hereafter the default Enge coefficients. It is

important to note that the Enge function model can be used for a global fit of the

magnetic fields, including the out of axis expansion. This has been demonstrated in

several real situations, as for example the NSCL’S S800 spectrograph [87], the GSI

QD kaon spectrometer [88], and even the rather peculiar LHC HGQ lead end [81].

The aperture is varied between 1 mm and 300 mm. Fig. 8.1 gives the results for

the :1: and y center tunes (tunes in the linear approximation). In the stable regions

the tunes change continuously and monotonically with the aperture. However, in

general there is a nonlinear relationship between center tunes and the aperture. As

the linear motion is uncoupled, for linear stability the absolute values of the traces

of the :1: - a (horizontal phase plane) and y — b (vertical phase plane) submatrices

respectively need to be less then 2. The variables a, b are scaled momenta, conjugate

to a: and y, respectively. The nonlinear dependence of the traces on the apertures is

also clear from Fig. 8.2. The trend regarding Chromaticities is included in Fig. 8.3

and 8.4.

It has been noticed that the main impact of the fringe fields is coming from only

a few matching quadrupoles in the arcs [12]. We repeated the computations of this

section for the same ring, with the respective matching quadrupole fringe fields turned
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Figure 8.1: Center tunes as a function of aperture. The fringe field shape is given by

the default Enge coefficients.

off. As one can see from Fig. 8.5 and 8.6, the results are different only quantitatively,

but qualitatively the situation remains the same.

8.2 The Sharp Cutoff Limit

As already mentioned, the sharp cutoff, or hard-edge, approximation is a contradiction

in itself, as far the physics goes. However, as a purely mathematical approximation,

it still can be analyzed in some detail. Qualitatively, it can be characterized as

follows. The function that describes the falloff is called the cutoff function, or a

bump function. It is well-known in the mathematical literature [43, 89] that infinitely

often continuously differentiable (C'°° smooth) bump functions can be found such that

they take the value 1 on one closed set, and assume the value zero on the complement

of another closed set; one of the closed sets lying in the interior of the other closed
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Figure 8.2: Traces of the a: - a and y — b submatrices versus aperture. The fringe

field shape is given by the default Enge coefficients.

set. For our case the inner closed set can be taken as the region of the main field

of the magnet, and the complement of the outer closed set the region where the

fields practically vanish. Furthermore, the two sets are arbitrary except the already

mentioned conditions. This means that the two sets can be taken arbitrarily close

to each other in some sense (for example in the Hausdorff metric). Thus, the falloff

speed can be arbitrarily fast, and at the same time the smoothness can be kept intact.

This is why the sharp cutoff limit gives satisfactory numerical results when fringe

fields are not important: in principle, the falloff regions’ width always can be taken

smaller than the smallest step of any integrator, and thus escapes from any numerical

issues. On the other hand, as a rigorous mathematical limit, the sharp cutoff limit

corresponds to the case where the two closed sets “touch” each other. In this case,

any bump function tends to the sum of two Heaviside functions, which then end up in
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Figure 8.3: First and second order :0 Chromaticities as a function of aperture. The

fringe field shape is given by the default Enge coefficients.

the Hamiltonian. However, as it is well-known, the dynamics is not governed by the

Hamiltonian itself, but by its gradient. The Heaviside function’s derivative being the

Dirac delta function, it follows that the sharp cutoff limit gives rise to divergences.

The divergences show up as blowing up of some of the map elements, and, as a

consequence, some of the tune shifts and resonance strengths.

Hence, blow-up of amplitude dependent tune shifts in the sharp cutoff limit occurs

regardless of the exact shape of the falloff. However, in the perturbative order-by-

order approach, the divergence can occur at different orders depending on the specific

fields involved. For the case of the homogeneous dipole, it has been derived [90] that

the lowest order map element that causes divergence is (blyyy), that is the element

that shows how the final angle in the vertical phase plane depends on the initial

position in the vertical direction.
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Figure 8.4: First and second order y Chromaticities as a function of aperture. The

fringe field shape is given by the default Enge coefficients.

For multipoles with straight optical axis, the divergences occur at higher orders.

Recently, under some simplifying assumptions, estimates for the second order ampli-

tude dependent tune shifts of a quadrupole fringe field have been calculated [91]. It is

shown that, in the integrated field approximation, the second order tune shifts tend

to a finite non-zero value in the sharp cutoff approximation. This is derived from a

few integrals that are part of the integrated Hamiltonian, and taking limits as the

extension of the fringe region goes to zero. Within its domain of validity, the estimate

gives good agreement with the exact values computed by COSY INFINITY, at least for

the cases studied.

The second order tune shifts (i.e. the quantities that represent the quadratic

dependence of the tunes on the amplitudes) are functions of the third order map

elements. To compute the third order map elements of a quadrupole, integrals of the
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section, where most of the fringe field effects are concentrated.
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type

3e

12 = / r3 (3)5212 (s)ds (8.2)

8b

appear, where 52,2 (3) is the second order derivative with respect to s of the quadrupole

strength, and 3b and 38 are the beginning and end of the fringe field, respectively. The

function r (s) is the initially unknown orbit. To evaluate the above integral within

the framework of perturbation theory, one can distinguish two cases. In the approxi-

mation that the orbit does not change over the fringe region, that is r (s) =constant

over 3 6 [3b, 38], the result is 12 = "r3 (85) (52,2 (36) —— 52,2 (53)) . Because at the begin-

ning and end, the fringe fields have assumed their plateaus b(s) = 0 and b(s) = 1,

respectively, we have 52.2 (36) = bin (31,) = 0, and hence altogether 12 = O. This

approximation yields the prediction that there are no second order tune shifts, inde-

pendent of the specific shape of b2‘2(3).

On the other hand, we obtain a different, and more precise, answer performing

perturbation theory successively over small equidistant subintervals of the interval

[5b, 88], which in the limit of all subintervals going to zero leads to the correct result

in much the same way as numerical integration schemes. Again we assume pertur-

batively that r(s) is constant over the interval in question, which in the i-th step of

the perturbation theory spans 3 E [3,, 8H1]. If A3 = 3H1 — s,- is small enough, this

approximation will become better and better. However, unavoidably r(s) will change

slightly over different time steps. Consider the specific case of performing N sub-steps
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of the perturbation theory. Then an estimate for [2 is

N 3i+1 N

12%er (3.) / b32<s>ds=§jr3<so(areas—bans») (83)
1:1 2' i=1

N

= -7‘3 (81) bin (31) — [2: 52,2 (3H1) (7'3 (5241) — 7‘3 (Sil):l (8.4)

+ 7‘3 (SN) 52,2 (3N+1)
(8'5)

= ‘ Z bi... (s...) (Ma-+1) — r3 (so) <86)

where we used as before that 52,2 (31) = b’2,2 (8N+1) = 0. Performing a Taylor expansion

of r (8H1) we have

 ms...) —r3<s.-) =2 (A?) ('r3)""<s.-) (8.7)

 

i=1 J '

and therefore, the estimate becomes

N 00 j

12 z — Z bfz2 (314.1) E (Ajf) ('T3)(j) (81') . (8.8)

i=1 j=l

To estimate the behavior of 12 as a function of aperture D, we first observe that the

derivative b’2,2(s) scales with 1 /D, and thus

I Ci

b2,2 (3m) 0< 73-13 (8.9)

where c,“ are suitable constants; similarly, we have

86—81, D
 

 

A3 = 814.1— s,- = N or N' (8.10)

Inserting (8.9) and (8.10) in (8.8) we obtain

N 00 -

DJ“ (*>
12 z — ZCH-l Z lej (7'3) J (8i) . (8.11)
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In the sharp cutoff approximation, D —> 0, only the j = 1 terms survive the limit.

Thus, finally we obtain the qualitative behavior

N I

— Zeal - (r3) (3.) (8.12)

i=1

where we absorbed various constants into c;+1. Instead of being zero, the integral

now approaches a constant and usually nonzero value as D —> 0. Therefore, the

convergence to a constant of the second order quadrupole tune shifts in the sharp

cutoff limit can be qualitatively understood. We mention that the limits of the

extension of the fringe fields or the size of the apertures going to zero are equivalent.

On the other hand, in the case of fourth order tune shifts in the sharp cutoff limit

we obtain completely different qualitative behavior. The fourth order tune shifts are

functions of fifth order map elements. In this case we need to estimate integrals of

the type

3e

14 =/ 1"”r’(.<s)b;4)2 (s)ds (8.13)

Sb

containing fourth order derivatives of b2,2(s). Proceeding the same way as above we

obtain that

 I4~ 5:: .+1ZD,;,5(”((32'), (8.14)

due to the fact that the third order derivatives b§?;(s,-+1) scale with 1/D3. Hence, we

obtain that in the sharp cutoff limit the integral diverges as

b

for some constants a, b, c. In a log-log plot the slope of the resulting curve will be

between 0 and 2 depending on the exact values of a,b and c. Generalizing this

argument to a rectilinear Zl-pole, we see that the first divergence occurs always at

order 21 + 1.
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The perturbative view employed in the above arguments can reveal the qualitative

behavior of the situation, yet is less fruitful for the quantitative study of the effects to

very high orders of the motion, which would require the treatment of more and more

integrals like those appearing above. In the map picture employed in COSY INFINITY,

all dynamics can be solved by the ability of the DA approach to obtain the map to

any order of interest, and then to obtain the tune shifts of interest to any order using

DA-based normal form methods.

For the example of the default COSY falloff, we explicitly obtained the divergence

of the second and fourth order amplitude dependent tune shifts. See Figure 8.7 and

8.8. Only one second order tune shift blows up, which shows that the single map

element responsible for this effect comes from the dipoles’ (blyyy). This behavior can

be seen in the logarithmic scale plots of Figure 8.9, where the slope 1 seems to be the

limiting maximum slope. Although the constants k,- (D) in general will be different at

every time step, we expect that the divergence of some of the fifth order quadrupole

map elements will be roughly with the second power of the aperture. As it turns

out, this implies also the divergence of the amplitude dependent tune shifts, and the

logarithmic plots reveal the blow-up with slope at most 3 (Figure 8.10).

We performed the same studies for the ring with the matching quadrupoles’ fringe

fields turned off. As expected, qualitatively we obtained the same results. The main

difference is that the blow-up of the fourth order tune shifts begin at somewhat smaller

apertures.

8.3 Shape Dependent Effects

Rescaling of the length of the fringe field region, for example by changing the aperture,

is a first example of shape dependent effect. This has been studied in section 8.1.
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Dipole Quadrupole Sextupole

a1 —0.003183 0.00004 —0.0001 17

(1.2 1.911302 4.518219 7.135786

 

 

     
 

Table 8.2: Enge function with only two parameters, computed by slightly modifying

the second default Enge coefficient (a2), such that the corresponding Enge function

has the same integral as the default six parameter one.

In this section we are interested in falloff shape alterations, modulo translation and

rescaling. It can be achieved by different sets of Enge coefficients for the same lattice

and different falloffs only for the quadrupoles. Also, the same falloff is assumed at

both ends.

For example, one may want to choose a benign Enge function. This can be

achieved by utilizing only the first two coefficients instead of 6. Furthermore, one may

want the same effective field boundary in both cases. Hence, for the Enge coefficients

of the default case we obtain the values listed in Table 8.2. In the following we

list two other sets, taken from fitting measured or simulated magnetic field data of

specific quadrupoles. The Large Hadron Collider’s High Gradient Quadrupoles of

the interaction regions have been designed by G. Sabbi of Fermilab. Based on the

magnet end design described in [92] we obtained the Enge coefficients listed in Table

8.3 [81]. Finally, another set has been obtained by F. Méot [88] for a warm, large

aperture (diameter ~ 30 cm.) quadrupole that belongs to a QB kaon spectrometer in

operation at GSI; the values are a1 = 0.1122, a2 = 6.2671, a3 : —1.4982, (14 = 3.5882,

(15 = —2.1209, (15 = 1.723. These fits represent the fields globally as well as along the

optical axis.

Altogether, there is a total of 6 cases according to the above sets: quadrupoles

with default dipole, default quadrupole and default sextupole, LHC HGQ lead end,

two parameter default quadrupole Enge function, and GSI QD spectrometer type

fringe fields. For each case we computed the maps at four different apertures: 25, 50,
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Lead end Return end

a1 —0.939436 —0.585368

a2 3.824163 3.603682

(13 3.882214 2.037629

a4 1.776737 0.768748

a5 0.296383 0.216590

a6 0.013670 0.035435

 

 

 

 

 

 

    
 

Table 8.3: Enge coefficients fitted for the LHC HGQ lead and return ends, respec-

tively.

75 and 100 mm. Using the map we obtained the tune shifts and resonance strengths

via normal form methods [10], and the dynamic apertures by symplectic tracking

with the order 8 map. For the tracking we followed the prescription of the Optimal

generating function symplectification (EXPO), described in part I.

Table 8.4 represents the results of the computation of some of the amplitude

dependent tune shifts in the horizontal plane in all of the 6 cases for an aperture

of 25 mm. The same data is given in Tables 8.5, 8.6 and 8.7 for apertures of 50,

75, and 100 mm. Interestingly, there are only moderate changes, with both aperture

and shape, of the second order tune shifts, with the exception of a few cases where

significant changes can be observed. For example, the LHC HGQ type fringe fields,

and to a lesser extent the default dipole type, differ significantly from the other types

when the aperture is around 75 mm. Also, the small tune shift with horizontal action

of the LHC HGQ type for aperture 25 mm is somewhat surprising. On the other hand,

starting with the fourth order, the tune shifts depend significantly on the details of

the fringe field shape.

In general, the results on the dynamic aperture and resonance strengths point

in the same direction. Here we include only some of the representative cases. We

will present the results for the 75 mm aperture for all the 6 fringe field shapes. The

tracking pictures show the horizontal phase plane of on-energy particles launched
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Aperture 2 25 mm

Type of fringe field Amplitude dependent tune shifts

5.11.) (24%) (14.113) (may) (avg)
Default dipole 479 722 541992 56513171 —26570420

Default quadrupole 500 753 1040229 52370674 —22335176

Default sextupole 513 774 —177824 —536329 —404400

LHC HGQ lead end 138 773 4930507 —200333148 100929561

2 para. Enge func. 499 751 950741 37684628 —15400818

GSI QD 514 776 1455256 63871881 —26392343  
 

Table 8.4: A few amplitude dependent tune shifts for the 25 mm aperture case. All

6 studied fringe field falloff shapes are included.

 

 

 

 

 

 

 

 

      

Aperture 2 50 mm .

Type of fringe field Amplitude dependent tune shifts

(VIIJI) (VrlJy) (Vleg) (Vleny) (Vxljg)

Default dipole 480 738 —424782 44639316 —2501083

Default quadrupole 472 713 284406 26926490 —12828937

Default sextupole 492 ~ 741 727021 26941101 —10996773

LHC HGQ lead end 411 953 —19501 —65824924 23955356

2 para. Enge func. 469 707 246449 18213525 —8614039

GSI OD 494 746 522581 32686302 —14724215  
 

Table 8.5: A few amplitude dependent tune shifts for the 50 mm aperture case. All

6 studied fringe field falloff shapes are included.

 

Aperture 2 75 mm
 

Type of fringe field Amplitude dependent tune shifts
 

 

 

 

 

 

      

(Vlex) (Vxljy) (VIIJE) (VxIJny) (inJg)

Default dipole 957 1466 —16023679 456668857 —293452875

Default quadrupole 475 718 —416016 —1258842 —952296

Default sextupole 477 720 —239001 —721214 —544239

LHC HGQ lead end 1261 1773 —54679213 —227089388 —22890174

2 para. Enge func. 459 702 551115 12895677 —6894978

GSI QD 480 762 65222 36938218 4364284 
 

Table 8.6: A few amplitude dependent tune shifts for the 75 mm aperture case. All

6 studied fringe field falloff shapes are included.

172

 



 

Aperture = 100 mm

 

 

 

Type of fringe field Amplitude dependent tune shifts

(”will") I (Vley) 1 (Vle3) l (Vleny) l (Vle:)

Default dipole unstable

 

Default quadrupole 532 834 -1043654 —3274271 —2568105

Default sextupole 463 678 80182 28804518 7992446

LHC HGQ lead end 426 621 —1958026 —21897965 5483897

2 para. Enge func. 483 757 —909438 6770949 —8894670

GSI QD 488 749 —313590 16526843 —10581676

 

 

 

        
 

Table 8.7: A few amplitude dependent tune shifts for the 100 mm aperture case. All

6 studied fringe field falloff shapes are included.

along the x axis with vanishing transversal momenta. The resonance strengths have

been calculated along the diagonal in action space, at a value that approximately

corresponds to the dynamic aperture.

We grouped the dynamic aperture pictures in Fig. 8.11, and the resonance

strengths pictures in Fig. 8.12 for the 75 mm aperture case. Notice that there is no

really good correlation between the three different quantities computed. The lattice

with dipole type fringe field has larger than average amplitude dependent tune shifts

and resonance strengths, which results in a smaller dynamic aperture. On the other

hand, the LHC HGQ type fringe fields result in even larger tune shifts, but the track-

ing shows a relatively clean looking phase space with an average dynamic aperture.

Furthermore, in spite of the quadrupole type fringe fields having larger resonance

strengths than the sextupole type, the dynamic apertures and the second order tune

shifts are approximately equal. Even between the maximum value of the resonance

strengths of the 6 parameter, respectively the two parameter default quadrupole type

Enge function there is a factor 5 difference in the resonance strengths, but they pro-

duce similar dynamic apertures. This may serve as an indication that it is wise to

study fringe field effects on a case-by-case basis.
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Figure 8.11: Tracking pictures of on-energy particles launched along the :r-axis with

vanishing transversal momenta, magnet aperture of 75 mm, for all six types of fringe

fields. From left to right and from top to bottom the following fringe field types are

depicted: default dipole, default quadrupole, default sextupole, LHC HGQ lead end,

two parameter Enge function, and GSI QD spectrograph.
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8.4 Nonlinear Effects Due to Pseudo-Multipoles

High order terms in the map arise from intrinsic nonlinearities, as for example in the

map of a pure quadrupole, and from nonlinearities related to s—dependent effects, as

in the case of fringe fields. For an accurate representation of the system, the maps

have to be computed to a sufficiently high order. However, the exact value of the

order needed is system dependent.

It follows from (7.12) that in the regions of s-dependent fields the potential is

given by a double infinite series. However, at least in the case of an ideal lattice,

the normal and skew multipole strengths vanish for sufficiently high I. To compute

the order n map of the system, it is necessary to know the potential to order n + 1,

which in particular requires the knowledge of high order derivatives of the falloff,

a frequently non-trivial task outside the Differential Algebraic framework [93]. The

question arises whether the truncation of the pseudo-potential expansion in (7.13) and

(7.14) at various orders less then n+1 makes a difference. We studied this question by

tracking a lattice of the proposed Neutrino Factory with fringe field effects taken into

account. First, it was verified that in this case the order eleven map is sufficient. In

Figure 8.13 we present the results of tracking for 1000 turns through lattices in which

the potential has been truncated at orders 4, 6, and 8. For lattices with potential

truncation higher than order 8 we obtained similar pictures with the order 8 case.

These pictures are to be compared with the order eleven symplectic tracking that is

shown in Figure 8.14.

It was shown in [11] that fringe fields effects are significant for this lattice. Figures

8.13 and 8.14 show that the pseudo-multipole part of fringe fields are also important,

up to reasonably high orders. Therefore, again we arrive to the conclusion that it is

important to simulate fringe field effects as accurately as possible.
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Figure 8.13: Tracking pictures of the Neutrino Factory, with the potential truncated

in the pseudo- potential part at orders: 4 for (a), 6 for (b), and 8 for (c).

0.003

 

  

Figure 8.14: Symplectic tracking picture (map and potential expansion at full order)

of the Neutrino Factory for the same initial conditions as in Figure 8.13.
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Figure 8.15: Symplectic tracking pictures of the Proton Driver, for -4% momentum

offset, (a) with full potential, and (b) with 6th order potential truncation.

8.5 Symplectification

Close to the dynamic aperture, both the Neutrino Factory and the Proton Driver

lattices are quite nonlinear. As a consequence, even for short term tracking, sym-

plectification of maps turned out to be appropriate; in the case of the Proton Driver

even for Taylor maps up to order 18 and without fringe field effects. Also, it turned

out that fringe fields are not as important for the Proton Driver as are for the Neu-

trino Factory. In cases when fringe field effects were taken into account, we studied

the question whether symplectification alone can restore the information neglected

by truncating the pseudo-potential part of the expansion at lower orders than the

needed map order. For the example of the Proton Driver, differences between the two

symplectic tracking pictures are still noticeable. Here we present the case with full

potential and momentum offset -4%, and the same system, but potential truncated

at order 6 (Figure 8.15). Therefore, even for cases when fringe fields are not very detri-

mental, the effects of high order pseudo-multipoles are visible, and symplectification

cannot undo the errors made in neglecting them.
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8.6 Summary

Recognizing that fringe fields might be important for the design of some of the pro-

posed machines and accelerators under construction, we undertook a systematic study

of the effects that one could expect. Using the example of the proposed 30 GeV Neu-

trino Factory, we experimented with 6 different types of fringe fields at many different

aperture settings. The main message of this chapter is that fringe fields induce a va-

riety of effects, and it is not always straightforward to anticipate their effects without

accurate simulation studies. The results point out that it is important to decide

ahead of time on the end field designs for the proposed machines. We used fringe

fields modelled by Enge functions for the Neutrino Factory because at this stage the

exact shape is not known, as no model exists yet. As we mentioned, there is such a

model for the LHC HGQs. Using Differential Algebraic techniques, it is possible to

compute the multipole decomposition and accurate fringe field maps, up to arbitrary

order, for such a model, as shown in chapter 9. Once the necessary maps are available,

the subsequent dynamical studies can proceed with no additional overhead compared

to the case when no fringe field effects are taken into account. This includes normal

form based quantities like tune shifts, resonance strengths and resonance webs, and

tracking (see chapter 10 for a case study of the LHC). It is also worthwhile to note

that symplectic tracking with fringe fields is of the same level of effort as without

fringe fields, as was shown in part I. In conclusion, a study of fringe field effects

appears to be indicated for a detailed analysis of any ring lattice.

In the last two sections we considered the question of the implications of truncation

of some pseudo-multipoles, and of the symplectification of the so resulting maps. It

is well known that symplectic integration methods have many favorable properties,

and in general it is necessary to maintain symplecticity when tracking Hamiltonian

179



dynamics (see part 1). However, as examples Show, symplecticity alone cannot make

up for fundamental errors made at the level of representation of the system by its

individual elements, such as truncating the higher order pseudo—multipoles.

We studied more specifically the lattices of the Neutrino Factory and the Proton

Driver. Figures 8.17 and 8.16 show some tracking pictures without and with fringe

fields for both lattices, from which it follows that the default fringe fields induce the

shrinkage of the DA by a factor of 10 for the Neutrino Factory, and does not have

almost any effect on the DA of the Proton Driver.

In summary, we examined the order of the map needed, nonsymplectic versus

symplectic tracking, off-energy tracking, full fringe field effects, and the influence of

the truncation of the expansion of the potential into pseudo multipoles. Accurate

modeling of Muon Accelerators requires the correct treatment of the equations of the

motion, in which the potentials are included in accordance to Maxwell’s equations.

Moreover, a sufficiently high order map is needed, especially for off-energy tracking,

and symplectic tracking is essential.
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Figure 8.16: Tracking pictures of the Proton Driver without and with default fringe

fields, and momentum offsets of 0 and :l:4%, respectively.
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Figure 8.17: Tracking of the Neutrino Factory without and with default fringe fields.
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Chapter 9

Multipole Decomposition of

Magnets Represented by

Wire-Currents

The performance of the modern high energy accelerators, such as the Large Hadron

Collider to be built at CERN, depends critically on the field quality of the super-

conducting magnets employed to guide and focus the circulating beam [94]. The

nonlinearities of these magnets drive resonances, rendering the motion of particles at

large amplitudes unstable [95]. The shrinkage of the useful region in space, called the

dynamic aperture, due to magnet nonlinearities is very detrimental to the stringent

high luminosity requirements, so a careful design of these magnets is in order. The

design is performed by sophisticated codes like ROXIE [96]. The accurate placement

of the superconducting wires, followed by extensive Optimization produces an analyt-

ical model of the magnet. Using the Biot-Savart law, the resulting magnetic field is

computed on the surface of a coaxial cylinder with the optical axis, and subsequently

Fourier analyzed numerically to reveal its multipole content. Several iterations are

necessary to obtain a magnet model that satisfies the design specifications. However,

once the magnet model is ready, the dynamical studies can use only the multipole

data output of the magnet design codes, usually organized in tables, which contain
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the integrated values of the multipoles [92]. This is satisfactory for the dynamical

studies of the so-called straight sections, where the fields are independent of the ar-

clength s, which is used as the independent variable. However, it is not necessarily

accurate enough for the end regions, the fringe fields, where the s dependence of the

fields could result in unusual local dynamics not revealed by the integrated values.

In this chapter, the theory that solves this problem is developed, by computing the

magnetic fields, and their multipole content, based on Differential Algebraic meth-

ods. This method allows not just the extraction of the multipole strengths, but also

their full s-dependence, allowing analytical computation of s—derivatives, which are

necessary for “exact” fringe field map computations. The first steps in this direction

have been done in [97]. Here we present the theory in its full generality. In sec-

tion 9.1 we derive an improved, numerically stable version of the Biot-Savart law for

straight line current wires in 3D and explain the principle of DA based field compu-

tation. Section 9.2 develops two methods for multipole extraction. The importance

of enforcing Maxwell’s equations is presented in section 9.3. In fact, there are two

methods to enforce Maxwell’s equations: a local (section 9.3.1) and a global (section

9.3.2) approach. Finally, section 9.5 contains examples of multipoles, and section 9.6

applications to map computation.

9.1 Biot-Savart Law and Field Computation

The magnetic field computation is based on the Biot-Savart law. As will be shown

in section 9.2, to solve the equations of the motion, and hence to get the map of a

magnetic element it is necessary to compute not just the value of the field at a certain

point in space, but also its derivatives, i.e. its Taylor expansion. So, why do we want

to use Differential Algebraic methods [82, 9] to achieve this? In principle, it is possible

to get the derivatives analytically and implement it in some code to evaluate them.
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Order 3% (0,0,0)

77. Comp. t[sec] Mem. used bytes] Fortran lines Eval. t[msec]

0 0.02 890672 4 0.3

1 0.09 912192 20 0.8

2 0.33 1025616 69 2.4

3 0.94 1306056 188 7.0

4 2.50 1931872 457 16.0

5 6.26 3213192 1009 36.0

6 12.95 5709304 2078 72.9

7 27.23 10274512 4059 140.9

8 50.16 18590928 7567 267.0

9 96.73 33132056 13603 480.0    
 

Table 9.1: Results of transforming the analytic derivatives of the Biot-Savart law,

computed with Mathematica, to Fortran code.

We did it using Mathematica. The results are presented in Table 9.1. We mention

that the calculations have been done in only one variable (2:), for one field component

(By), and one single line current. On every computer we tried, Mathematica ran

out of memory at the computation of the order 10 derivative. Therefore, it is clear

that for realistic magnet models, consisting of several 105 line currents, in at least 2

variables up to high orders this way is practically intractable. As a comparison, Table

9.2 shows how fast is the DA method, and at the same time preserves the accuracy

of the computed derivatives. Technically, all we need to get the Taylor expansion of

the field components around a specified point in space, is the evaluation in DA of the

Biot-Savart law.

While the exact form of the formula is not critical for the evaluation of the mag-

netic field value at a certain point in the space, as long it is mathematically accurate,

it does have a significant influence when it is used to compute also the Taylor expan-

sion of the field around a point. This is exactly what we attempt by evaluating it in

DA. Some of the shortcomings of a naive implementation have been pointed out in

[97]. Another numerical instability has been noticed by us when we utilized it at a
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Order $3 (0,0,0)

71 Evaluation time in psec up to order n

1 4.8

5 6.8

10 10.7

15 20.5

20 47.8

25 93.7    
 

Table 9.2: Computation time of the Taylor expansion of the y-component of the

magnetic field in DA at various orders.

point where some of the wire currents were exactly or almost colinear with the point

of expansion. Therefore, we made several modifications to the standard form of the

Biot-Savart law, and found a numerically stable version which has a good behavior

in any situation.

As a consequence of Ampere’s law, the elementary magnetic flux density at a point

7" generated by a filamentary current wire dfsituated at 7" is given by the Biot-Savart

formula

 (9.1)

To compute the magnetic field generated by an extended straight line current we

parametrize the line by A 6 [0,1] and define 1"(A) = F, + Al“and r; = F, +1: where 7:,

Fe represent the starting and endpoint respectively of the line current to the point F.

Integrating over the line

  B’zkI/de3772kI/lfx(F’+:f)dx=k1(fxe,)/IJ’\——3, (9.2)

[7"] 0 F,+Al] 0 F,+Al]
  

with k = —/10/(47r). Introducing the shorthand notations a z: [7",]2 , b = 27", f ,
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2

c = [I] , the integral gives the result

 

1 d/\ 1 2b 2b 4c

/, (a+b/\+cz\2)3/2 z b? — 4ac (Vi ‘m’ 7712—?) ' (9'3)

While mathematically accurate, this formula exhibits several severe numerical pitfalls

that restrict its direct practical use, in particular when high-order derivatives are to

be computed. Indeed, first the formula apparently exhibits a problem of cancellation

of closeby numbers if b + 6 < a. Introduction of the quantity 5 = (b + c) /a yields

  

[3'2 kI(fos) [2b(1—-—1—)— 4c ] (9.4)

fi(b2—4ac) \/1+e \/1+5

The first problem can be substantially alleviated now by observing that

1
 

  

e
_____: , 9.5

1+5 1+e+\/1+s ( )

which yields the formula

g— k1(zxf'.) [ 255 _ 4c 1 (96)

—,/a(b2—4ae) 1+e+¢m m1 '

However, there is a second numerical difficulty if the line current and the observation

point are lying exactly or almost on the same line, because in this case b2 and 4ac

assume similar values, which makes the evaluation of b2 — 4ac prone to numerical

inaccuracies. To avoid this effect we rewrite the formula in terms of the angle 6

between T and 7",. The relations among the angle and the products of vectors are

  
 

fx 7",

|sint9| = , (9.7)

[I] ' [F3]

1” 7’",
 c086 = ' . . (9.8)

. [rs

.
.
.
“
.
J
L

1

187



This implies the relationships

  
   

2

b2—4ac = —4|7=;|2]z] sin26, (9.9)

4 r 1 9 r 1 9 12 22b: 4c _ In] ]cos (2I7‘3I [cos +[]) 4H [72's]

1+E+V1+€ 1+8 [Fel(lFel+lFsl) [Fe] '

Finally, we obtain the magnetic field expressed in terms of F, and f as

[F3] cos26 + [I] 0036 —

sin2 6

 

n+1]

  

Ts] +

  

(9.10)

Denoting ml cos2 6 + [Z] cos 6 = a and

 

f; + l] = 6, we manage to eliminate the sin2 6

term in the denominator with the help of the identity (1 — 6 = (02 —- 62) / (a + 6).

2

7“, +l] ). Altogether

 

Direct calculation shows that a2 — B2 = — sin2 6 ([175]2 cos2 6 +

we obtain the final result

 
  

   

_. 2

# M (l x a) Inf c0826 + 7", +1]

3 = I'F'sl + , , (9.11)

IFSI2 Fs+l] F3+f]+|7"3|) |F8|cosz6+]l]cos6+ Fs+l]

The only case where this is numerically unstable is when [F3] cos2 6+ [1] cos 6+ 7'", + l]
 

approaches zero, that is 6 -—> 7r and ml 3 [I]; but this corresponds to a point in the

close proximity of the wire.

The necessary ingredients for the DA field calculation are the above formula and

the analytic model of the magnet, consisting of line wire currents. To this end, the

entire field in space is calculated by summing up the fields created by wire currents.

At each step, the evaluation of (9.11) in DA yields not only the value of the magnetic

field at the respective point, but also its derivatives, that is the Taylor expansion with
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Be (13.8.21) By ($18.21)

Coefficient Order Exp. (33,3,y) Coefficient Order Exp. (:r,s,y)

0.93844739E11 0 0 0 0 -.83395100E—11 0 0 0 0

0.10229458E—09 1 1 0 O 17.49010593690 1 1 0 0

0.14301198E—09 1 0 1 0 -.13045929E—09 1 0 1 0

17.49010593689 1 0 0 1 0.95844482E-10 1 0 O 1

-.60674194E—09 2 2 0 0 0.55438195E-09 2 2 O 0

0.36025250E—08 2 1 1 0 -3.80475173597 2 1 1 0

0.12053635E-O8 2 0 2 0 -.11068638E-08 2 0 2 0

-.20145723E—08 2 1 0 1 0.19416855E-08 2 1 0 1

-3.80475173613 2 0 1 1 0.34442337E08 2 0 1 1

-.59862145E—09 2 0 0 2 0.55248205E-09 2 0 0 2

-.22827223E—07 3 3 0 0 -1.66625730542 3 3 0 0

-.92745885E—09 3 2 1 0 0.12449044E-09 3 2 1 0

0.71839210E—07 3 1 2 O 9.99754389589 3 1 2 0

0.55577595E09 3 0 3 0 -.21654983E-10 3 0 3 O

-4.99877197923 3 2 O 1 -.30524801E—08 3 2 0 1

-.11331539E-06 3 1 1 1 0.11068027E—06 3 1 1 1

9.99754389364 3 0 2 1 0.69547317E-07 3 0 2 1

-.33575741E—08 3 1 0 2 -4.99877197953 3 1 0 2

-.739876993E—09 3 0 1 2 -.59531324E—10 3 0 1 2

-1.66625730477 3 0 0 3 -.22164947E-07 3 0 0 3
  
Table 9.3: Taylor expansion Of the magnetic field components Bx and By. The

columns represent the expansion coefficients, the order in the expansion and the

exponents Of (:r, 3, y), respectively.

respect to coordinates. The result for the return end of the Large Hadron Collider’s

High Gradient Quadrupole, up to order 3, is presented in Table 9.3. The correctness

Of our results have been checked against data obtained from Fermilab. The Fermilab

data contains the values of the components Of the field on the surface of a coaxial

cylinder with the Optical axis, and have been supplied by G. Sabbi.

To show that the Biot-Savart law implementation based on (9.11) is much more

stable then, for example, based on (9.6), we use as indicator the 3 component of the

curl of the field. From Table 9.4 it is clear that the naive implementation goes wrong

as low as second order in the curl. Due to lack Of space, we presented the result only
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(V x D) from (9.11) (Y x D) from (9.6)

Coefficient SOrder Exp. (:r,s,y) Coefficient Order Exp. (x,s,y)

0.64481753E-11 0 0 0 0 0.64517280E—11 0 0 0 0

0.31233362E-08 1 1 0 0 0.31233356E—O8 1 1 0 0

0.15774093E-09 1 0 1 0 0.15770096E—09 1 O 1 0

0.31389284E—08 1 0 0 1 0.31389279E-08 1 0 0 1

0.62971751E-07 2 2 O 0 0.336831253164 2 2 0 0

0.11356437E—06 2 1 1 0 0.11356393E—06 2 1 1 0

0.22546586E—08 2 0 2 0 0.22374493E-08 2 0 2 0

0.61018801E—09 2 1 0 1 0.61014426E-09 2 1 0 1

0.11216003E—06 2 0 1 1 0.11215921E—06 2 0 1 1

-.65226274E—07 2 0 0 2 -.336831255411 2 0 0 2

—.10351639E-06 3 3 0 0 0.84829867E—06 3 3 0 0

0.36038492E-05 3 2 1 0 -1010523.36223 3 2 1 0

0.23104571E—05 3 1 2 0 0.44302147E-06 3 1 2 0

0.23642363E—07 3 0 3 0 -.31176547E—04 3 0 3 0

-.19778205E—05 3 2 0 1 -.38402254E—05 3 2 0 1

0.94348351E-08 3 1 1 1 0.94491708E—08 3 1 1 1

0.22561792E-05 3 0 2 1 0.62955066E-05 3 0 2 1

-.199990078E-05 3 1 0 2 -.20901225E—05 3 1 0 2

-.367474004E-05 3 0 1 2 101052336227 3 0 1 2

-.927884933E—07 3 O 0 3 0.50706360E-05 3 0 0 3
 

 
Table 9.4: Comparison Of the 3 component of the curl, up to order 3, computed by

two different implementations of the Biot-Savart law ((9.11) and (9.6), respectively).

up to order 3, but our results show that the behavior of (9.11) is good up to very high

orders. Also, we mention that probably this is the most straightforward and accurate

way to compute the curl and hence verify whether Maxwell’s equations are satisfied.

9.2 Multipole Extraction Algorithms

9.2.1 The Direct Method

Using the field computation of the preceding section, it is possible to extract the

multipole content of magnetic fields directly, in a very elegant way that is arbitrary

in order.
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Obviously, if we evaluate the above equations in the midplane (y = (p = 0), then

B,('r, c5 = 0, s) In”: 31(1):, y = 0, s), (9.12)

B¢(1‘, ti) = 0, s) [“412 By(17, y = 0,3). (9.13)

Therefore, all the information we need to extract the multipoles up to the order of

calculation are the Cartesian components of the fields in the midplane

B(.1:,y=Os)=go(:1:,s) +2541: (9.14)

By(:1:, y = 0, s) :2 :lf1(:r,3) - :1:’_1. (9.15)

1:1

This is possible due to the previously mentioned fact that any multipole strength

Of order I is multiplied by 27"]. Starting at l = 1, (11,1(3) is extracted as the :1:-

independent part of B3, and analogously b1,1(s) from By. Evaluating (11,1(3) and

b1,1(s) at s = 0 yields the skew and normal dipole components, respectively. From

a1,1(s) and b1,1(s) the functions f1 (17,3), §1(.r,s) are generated up to the order Of

calculation and subtracted from Bx (.1:1:,—y-— O, s), and By(.1:,y : 0,3), respectively.

This cancels the pseudo-multipoles generated by the s-dependence of a1,1(s) and

b11(s) (see (7.10)), which otherwise would make the distinction between sextupole

terms and pseudo-dipole terms impossible. The procedure can be iterated for the

higher order multipoles, up to the order of calculation. After the k-th step, the

remainder of the field components should contain just (k + 1)-th and higher order

multipoles.

However, there is an additional problem in the case of solenoidal fields (the case

I = O). In this case, we have an a.0,0(s) in the potential, but its contribution vanishes

from the field components BI and By, so the function §o(.1:, 3) cannot be generated

from the information available in Bl. and By. Fortunately, it can be generated from
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the B8 component, which evaluated at :1: = y =2 0 yields 115,0(3). From this function

we can calculate (109(3) up to a constant and generate the l = 0 contribution to Bx,

§0(:r, .9). Once this is subtracted from Bx, the method works as previously described,

starting with l = 1.

Finally, two notes: the method relies on the fact that the magnetic field can be

generated by a magnetic scalar potential that satisfies the Laplace equation. There-

fore, it is really important that the curl of the field vanishes. If the fields are calculated

from line currents by the Biot-Savart law, that means that the model should consist

only Of closed circuits to ensure vanishing curl. Maxwellification of the field ensures

a better numerical stability Of the algorithm. Secondly, only in the regions where

the magnetic field is not s-dependent the functions f; and g, are equal to the true

multipoles, and [fl = )6, lg; = 1),, an assumption that is sometimes made even for the

s-dependent region too.

9.2.2 Multipole Extraction by Analytical Fourier Transform

There is an alternate way to extract the multipOles. The field computation being

performed in COSY in Cartesian coordinates (a:,y,s), it is possible to perform an

analytical pseudo-Fourier transform, i.e. a series of coordinate transformation in

DA, keeping throughout the r and s dependences. This is done by our S—Dependent

Differential Algebraic Analytical Fourier Transform briefly presented below.

Initially, the field components are in the form Of (9.33). The first transformation

is (:13, y, s) 1-—> (r, cos d), sin (15, s) by :r = 1‘ cos ()5 and y = r sin 3. At the same time, using

(9.35), we switch to cylindrical coordinates, obtaining the field components in the form

of (9.39). Note that we are going from a 3 variable representation to a 4 variable one,

hence some Of the information in the new representation will turn out to be redundant

for our purpose. The next transformation is (7', cos 4), sin 45, s) 1—-> (r, 6"”, e“’¢, s), that

192



is a complex exponential representation, using cosqb = (6’4’ + e‘w’) /2 and Sing!) =

(6” — 6....) M21).

We show in section 9.4 that it does not matter which field component is used for

Fourier transformation, so assume that we are working with B,. Then, we have it at

this stage in the form B,(r, e’d’, e‘w’, s).

Now, in principle, it is possible to recombine various products of powers of 6"" and

e‘w’ to trigonometric functions involving multiple angles. However, the key point is

to notice that we can Obtain the true multipoles by setting eff’ = 0. This is true due

to the fact that all the terms Of the form ewe—”’1’, with q, p # 0, are responsible for

the pseudo-multipoles. This becomes clear if one takes a closer look at (9.43). By

setting 6"" to zero, we get rid of all the pseudo-multipole terms and we are going back

to a 3 variable representation

n+1

B,(r, 67w, 3) = Z z,(s)e"“¢r’"1, (9.16)

[:1

where 2:1(3) are complex functions of 5. By comparison with (9.57) it is Obvious that

one term of (9.16) can come only from [211(3) cos 1gb + Bl(3) sin lqb] 7"”1, which also can

be expressed as

[ts-““5 (552(3)- + egg—82) + e“¢5 (912(1) — 1512(2)] 7H. (9.17)

After setting 6’” to zero and comparison with (9.16) we Obtain the result 81(3) =

2 Re (21(3)) and A,(s) 2 21m (21(3)). As a final step, we take the true multipoles as

given by

01,1(8) ‘= — Re (21(5)), (9.18)

az,z(s) = -l—Im(zl(s)). (9.19)
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9.3 Enforcing Maxwell’s Equations

9.3.1 Local Maxwellification

Given a magnet model consisting of line currents, it is possible to compute the mag-

netic field generated by the Biot-Savart law in the DA framework as a local Taylor

expansion with respect to the Cartesian coordinates (.1:,y,s), as has been demon-

strated in section 9.1. The magnetic field should be divergence and curl-free in the

regions of interest, as implied by Maxwell’s equations in a source-free region: V-B = 0

and V x B = 0. This is the case only when the magnet model consist of closed loops

Of current. Realistic magnet models, as for example the LHC HGQ end regions as

modeled by the code ROXIE and supplied by G. Sabbi of FNAL, are not closed due

to presence of image currents, “leads” and separate treatment of the two end regions

(lead end and return end). One way to fix this problem is to input as much physical

intuition as possible to close the magnet model, compute the field generated by this

model, which should differ as little as possible from the original model. This is the

first step of Maxwellification. Obviously, the solution is not unique due to infinitely

many ways Of closing the model. The closing is important to guarantee vanishing

curl, as it is required by the Maxwell equations, and in this case the field is deriv-

able from a scalar potential. From the DA computational point of view it is also

important, because it is enough to compute the field components only in the mid-

plane (see section 9.2). The computer time needed for computing a magnet model

of several 105 line currents to high order in one end region of the LHC HGQ’s scales

much worse with the increase of the number of variables than with the increase of

line currents, which should be linear. Besides computer time, the second step Of the

Maxwellification provides a way to correct for small computational errors or magnet

model imperfections. One specific example is the method of the next section. A1-

194



though the curl is already small, as shown in Table 9.4, the numerical stability of

the multipole extraction algorithm is improved by local Maxwellification of the field,

which is described below.

If we restrict ourselves to elements with straight optical axis for simplicity, the

second step of Maxwellification proceeds as follows. Given Bx($,0,8), By(:r,0,s),

B,(a:, 0, s) (y = 0 representing the midplane) we can compute the field components in

the whole space. From a scalar potential V(:1:, y, s) that satisfies the Laplace equation

82V(:r,y,s) 82V(r,y,s) 82V(x,y.s)

T+T+T_O’ (9.20)

the field results from the well-known relation B(51:, y, s) = VV(:L‘, y, s) (we neglect the

sign which is irrelevant in our discussion). We transform the Laplace equation to a

fixed point problem by isolating the y derivative term and integrating with respect

   

  

 

 

  

to y

(92V(a:,y,s) 82V(:r,y,s) 82V(:r,y,s)

7y?— — ‘ (_‘a2—‘ +T) (921)

y, all/(33.438) ,, y, 32V(x.y”.8) 32V(~T.y”.8) ”
/0 By”? dy -— - f0 ( 02:2 + 8.92 )dy (9.22)

, I II y’ 2 , II 2 II

2, 3V(a:.y.8) : 3V(:v.y .8) _/ (0 Witty .8) + 5‘ Way ,8) dy".

61/ 61/” y”=0 0 6:1:2 832

Integrating once more

31 V I

/ Wdy' = V(.r, y, s) — V(.r, 0, s) (9.23)

0 631'

y H

:> V(:c,y, s) = V(.1:,0,s) +/w dy' — (9.24)

0 0y y":0

y ”I 52V(-’r.y”,8) 32V(Iay",8) ” 1
f0 /0 ( (912 + 032 )dy dy, (9.25)
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we Obtain a fixed point problem for V(;1:,y,s). In the DA picture it converges to

the exact solution in [11/2] steps, where n is the order of computation [98]. Since

the Laplace equation is a second order PDE, we need two initial conditions. One is

immediate from

[y 6V(.1:,y”,s)

0 6y”

 

dy' = yBy(;r, 0, s), (9.26)

yu:0

because by definition BV/By = By. This is already known, and the other initial

condition to be calculated is the potential in the midplane V(a:, 0, s).

In the ideal case the potential in the midplane is computed by a path integral,

along an arbitrary path. This is the case when the curl of the initial field is exactly

vanishing. Due to various causes previously mentioned this is almost never true.

Nevertheless, the curl it is usually small. Then, one should use a path along which

the field is deemed more accurately computed, yielding a potential, and subsequently

field components that are close to the original, and curl that is vanishing. Hence the

name Maxwellification.

Most of the time it is not obvious where the fields are computed more accurately.

Then, one could try different paths and choose the one giving the smallest change in

the field components. Convenient choices of paths are along the sides or diagonal of a

rectangle in the midplane with Opposite corners at (0, 0) and (:13, s). In the midplane

we have ell/(7") = BU") - (11", where F: (51:, 0, 3). Integrating, we get

w) = V(6) + for B’ (F) . df‘. (9.27)

We can neglect the immaterial constant V(0), and integration along the sides in one

direction gives

V(.1:,O,s) :/ Bx(x',0,0)dsr'+/ B,(.1:,0,s')ds’. (9.28)

o o
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Integration along the sides in the other direction gives

V(.1:,0, s) = / B,(0, 0, s’)ds’ +/ Bx(.1:’,0, s)d;r'. (9.29)

o o

For integration along the diagonal we set 7" = AF with A 6 [0,1]. Then, (11" = Fd).

and

1 1

V(:r,0,s) = :r/ Bx(/\:1:,0,/\s)d)\+ s/ B,(/\:r,0,)\s)d/\. (9.30)

o 0

One can check by direct calculation that indeed Bx(:1:, 0, s) =Wand B,(a:, 0, s) =

map—’3’. This completes the Maxwellification procedure. Once we have V(:r, y, s) we

can compute the field components satisfying Maxwell’s equations in the whole region

of interest by mere differentiation.

In DA, the field components are computed as local Taylor expansions, so the

method provides a local Maxwellification. That’s why, beside choosing the right

path, it might be useful to average over a certain region to decide which approach is

the best. Finally, it should be Obvious how to extend all the equations in the case of

full 3D Maxwellification, if originally the field components are given in all 3 variables

(31:, y, s). For example, (9.28) is extended as

:1: s y

V(:r, y, 8) :2/0 BI(:1:', 0, 0)d:1:' +/O B3(;1:, 0, s')ds' +/0 By(:1:, y', s)dy', (9.31)

and in the same way in other cases. In this situation, of course, there are many more

path choices and no fixed point transformation of the Laplace equation is needed.

As an example, in Table 9.5 we present the 3 component of the curl of the Maxwelli-

fied field of Table 9.3. We mention that the now we present the results up to order

12 in the curl and the first non-vanishing element occurs at order 6. Also, notice the

improvement in comparison with the curl in Table 9.4.
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(V x B) after Maxwellification

Coefficient”I Order Exp. (.1:, 3, y)

-.4547473508864641E-12 6 2 0 4

-.1455191522836685E—10 7 2 1 4

0.3051757812500000E—04 8 6 0 2

-.2328306436538696E—09 8 4 2 2

-.3051757812500000E-04 8 2 0 6

0.1862645149230957E-08 9 4 3 2

-.1862645149230957E—08 10 6 2 2

-.1490116119384766E—07 10 4 4 2

-.1490116119384766E—07 10 2 4 4

-.1455191522836685E-10 10 2 0 8

-.2842170943040401E—13 11 5 0 6

0.1490116119384766E—07 11 4 1 6

~.3552713678800501E—14 11 2 0 9

0.5960464477539063E—07 12 2 2 8  
 

 
Table 9.5: The 3 component Of the curl, up tO order 12, after Maxwellification Of the

field in Table 9.3.

9.3.2 Global Maxwellification

We saw that local Maxwellification is possible based on a closed magnet model consist-

ing of line currents. One might imagine cases when the magnet model is not closed,

and for some reason it is practically impossible to close it, or the actual closings

change the original fields significantly. For such cases the S-Dependent Differential

Algebraic Analytical Fourier Transform (SDDAAFT) of subsection 9.2.2 provides a

way for global Maxwellification and minimal modification of the original fields in

a neighborhood of the Optical axis. The only drawback compared to the previous

method is that we need the field computation Of the unclosed model in all 3 variables

(11:, y, s), which implies increased computer time.

We start with the magnetic field vector B(:r,y,s) representing the field Of an

unclosed magnet model computed using Biot-Savart law. Therefore, V - B = 0 and

V x B ¢ 0. Then, there exists another vector B(:1:, y, s), which stands for the field
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generated by fictitious line currents representing the closings Of the model. Obviously,

if is not unique, due to infinitely many possibilities of closing. It follows that V -

If = 0 and V x (B+ If) = 0. Taking the cross product V x V x (B + 11’) =

v (V- (E + 11)) —A (13+ 1'1”) : 0, we Obtain A (B,- + 11.): 0; B, and R.- being the

components in cylindrical coordinates of B and B. Now, we know from the general

theory what is the structure of a function in cylindrical coordinates that satisfies the

Laplace equation. Hence, we get

00

12,-(1‘, (b, 3) = Z (f,,1(r, s) sin 10’) + 911(1', 8) cosltb) 1" — B;(1‘,(b,s). (9.32)

1:0

Apparently, we get the smallest R, in the vicinity of the Optical axis if we choose the

free parameters in f,j(r,s) and gi,1(r, s), the true multipoles, such that they cancel

the corresponding terms in B,-. This way we fix uniquely the true multipoles, that are

anyway the dominating part, and let R,- to contribute only for the pseudo-multipole

parts. Here we define as being a true multipole Of order I the s—dependent function

that is the coefficient of 1"“ cos [(1) or 1"” sin 13, respectively, in the expression Of B,-.

This definition makes sense, since it reduces to the usual definitions in the case when

the fields are derivable from a magnetic scalar potential.

Once the principle is understood, in practice we do not need to calculate explicitly

R,. It is enough to have B, and extract the relevant terms, the true multipoles, then

the out of axis expansion is performed, the potential is built up and the new fields

are computed. The new fields will satisfy Maxwell’s equation; hence the name global

Maxwellification.

Still, one thing remains to be proved. The solution is really unique if we prove that

the true multipoles are invariant with respect to which component of the original field

We choose, B, or 3,1,. This result is easily Obtained in case we impose the vanishing

curl and divergence conditions, as has been shown in the direct method. It can be
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shown that this is also the case without imposing any constraints on the coefficients.

This is the subject of section 9.4.

All the methods described have been implemented in the DA based code COSY

INFINITY [83, 84, 24].

9.4 Structure of B7. and B.) for Non-Maxwellian

Fields

We start with the Cartesian components

Bx($1y18) = Z aij(8)$iyj1

i,j=0

By(I.y,8) = Zbij(S)$’t/j1

131:0

(9.33)

(9.34)

as given by the field computation, without imposing any relations among the aij’s

and b,j’s due to Maxwell’s equations; 11. is the order of computation. Transformation

to cylindrical coordinates gives

B, = B, cos¢+ Bysin 05,

B.) 2 —B1 sin¢+ By cos 05,

:1: = rcosgb,

y = rsinp.

Inserting (9.33) in (9.35) we obtain

11

B,.(r, (b, 3) = Z Ti+jCOSi¢S1nj ab (a,j(s) cosrb + b,j(s) sin (15),

i,j=0

n

B¢(r, (b, 3) = 2 1:3” cos’ absinj ab (—a,~,~(s) sin (b + bij(8) cos 05).

231:0
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(9.35)

(9.36)

(9.37)

(9.33)

(9.39)

(9.40)



The next step is to transform the products of trigonometric functions into a sum Of

trigonometric functions involving multiple angles, i.e.

i+j+1

+1asinih : Z 0),“ cos k3 + 13),“sin ko, (9.41)

. . i+j+1 _ '

cos' 055m”1 (1) = Z 7):) cos 1199 + (5):) sin kqfi, (9.42)

[:20

where OkJ J,BkJJ , 7): J,6kJJ are real constants depending on j. Hence, we obtain

B i 1+) 919(3) 22:1 (01:0) cos k4) + 130') sin 19¢) + (9 43)

r = 7' . .
, .

i,j:0 529(5) 230“ (’7),(J) cos ltd) + 6(JJ sin k3)

J’ . . —a.: (s) J+J+1 7(1) cos k3 + 6(JJ sin k9) + J

B¢ : 2 74+] 3 146:11 29) J2) ) J . (944)

1,):0 bij(3) 231:0J okJ cos kg) + (31] sin k3)

Now we can use the definition of the multipoles to retain in B, and B4, just the true

multipoles: we need to keep only the terms with k = i + j + 1, all others giving

rise to pseudo—multipoles. We neglect the solenoidal terms, which are always treated

best separately from 3,. Then, the components Of the field containing just the true

multipoles are

a,j(s) (051),.“ cos (i +j + 1) 05 + BBL-“sin (z +j + 1) (15)
n

B, = E 1"”

”:0 +b,~,-(s) (7823+, cos (1' + j + 1) <3 + 6,.+,+, sin (2' +j + 1) as)

B i H], -a,-j(s) (7[§j+1cos(z+j+1)¢+6[1J5+1sin(i+j+1)¢

¢> : T . 1

+£1.13) (a532,... cos 9' + ,- + 1) <1 + when (1+ 1 + 1) 1>
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or by rearranging terms the results are

8,: Z
14:0

11

i,j=0  
(’aij(3 )

n . . F (aij(s)a£i)j

_ + (4493313)“ + b..<s>632“) sin (4 +1 + 1) 4

0')

+1 + bij(3)7i+j+1) COS (i +j + 1) 4b

( ) J)

3731341 + bij(8)0i+j+1)

_ + (—a,.,-(s)5§{3,.+1 + b.1(s)3§1’,+,) sin (2: +j + 1) 4

cos(z'+j+1)q§

. (9.46)

By expanding the trigonometric functions in terms of exponentials, it can be seen

that: for j even we get

C!
(J) _

i+j+1 "

59141 = 0’

7923'“ = 01

6513)“ = 2 “HM—1)“?

and forjodd

0521'“ — 01

5%“ 2—(i+j) (_1)(j‘1)/2’

151))“ : _2—(i+j)(_1)(j-1)/2

(SEQJ‘H : 0-

3

(9.47)

(9.48)

(9.49)

(9.50)

(9.51)

(9.52)

(9.53)

(9.54)

Separation of the double sum into summation over 2', and j-even, respectively j—odd

leads to

n 27.1 . ri+j aij (3) COS8(2 + j +1)¢)+B. : Z
3:01—even

bij(SSiln(’l +j + 1)¢

r i: 27' . ri+j 11(8) CO5(2 +3 +1)¢)+
1:1 J—odd

aij S) sin(i + j +1)¢

,. D . big-(s) (2' +1 + W) -B _ Form a0(3) sin(i +j + 1)¢

¢ i=0 Z" . ri+j “0(3) COS (i +j + IMH-
Jzi J-odd 1),-(5)sin(iz+j +1)<D
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2—(2'+j) (_1)j/2 +

] 2-(i+j) (_1)J'/2 +

] 241-+3) (_1)(j—1>/2

2—(H—j) (_1)(j—1)/2



The symmetry of the above equations is clear. 3, and f3"), have the same number of

terms, and if the symmetry holds term by term, then it also holds for their sum. By

introducing a new index I : 2' + j we obtain relations of the form

3, = 2 [141(3) cos((1+1))(15 + B,(s)sin(l+1)¢]r’, (9.55)

R), : Zn: [81(3) cos(l + 1)¢ — Al(s) sin(l + 1)¢] 7". (9.56)

[:0

where A¢(s), 31(3) are sums over (1,-3(3), big-(3) with i + j = l. Shifting the origin

of summation to make comparison easier with the direct method, and using the

convention that the l = 1 component corresponds to dipole gives the final form

n+1

B,(r,gb,s) = ZlAz(S))cosl¢+B)(s)sinl¢]rl"1, (9.57)

n+1

B,(r,¢,s) = Z[B1(s)coslq>—Al(s)sinl¢]r’"1. (9.58)

By identification, it is apparent that (9.57) is of the same form as the field components

derived from a scalar potential, containing only the true multipoles. For example, up

to order 5 we can derive the following relations:

A1(s) 2 000(8), (9.59)

42(3) = gem—boas», . (9.60)

43(3) = 211'(a20(3)—b11(3)‘ao2(5l)a (961)

44(3) = $9309) — 141(8) — 012(3) + 1903(3)), (962)

45(8) = game) — b31(3) — a22<s> + b13(5) + 414(3)); (963)
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81(8) 2 b00(8), (9.64)

82(3) = §<bm<s>+am<s>>, (965)

33(8) = §<bzo<s>+au<s>—b02<s>>. (9.66)

34(5) = ,1; (530(3) + 021(3) — 42(3) —- aw», (96?)

35(3) = 136(b40(s)+a31(s) 4122(3) —a13(s)+b04(s)). (9.68)

The differences between the constrained cases (by the Maxwell equations) and arbi-

trary coefficients now can be analyzed. Clearly, the dipole component will give the

same result in every method. The differences start to show up at the quadrupole

component. For example, the normal quadrupole is given in general by B2(s) =

é— (b10(8) + a01(s)). If we impose V - B = 0, as it is always the case for magnetic field

computations, it gives just (110(8) + (201(3) + 660(8) 2 0, that is, it does not impose

any constraints between b10(s) and (101(8). On the other hand, if V X B = 0, the 3

component imposes: b10(3) = a01(s). If the curl is not vanishing, i.e. b10(s) # (101(3),

the method will take as the quadrupole component the average value. The same type

of analysis can be performed on higher order multipoles to emphasize the importance

of vanishing curl.

As a conclusion, we proved that the method can be used for global Maxwellifi-

cation, with a unique solution, that alters the original fields by a minimal amount.

However, we remind the reader that B, and B), do not contain all the terms, the

whole field expressions for B, and B), have contributions from pseudo-multipoles that

cannot be written in the form of (7.18) in case of non-vanishing curl.

9.5 Examples of Exact Multipole Decompositions

Using the methods developed in this chapter, we computed the multipole strengths as

a function of 3 for the LHC interaction region’s High Gradient Quadrupoles. These
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quadrupoles have two end regions, the lead end (Figure 9.1) and the return end

(Figure 9.2), where the fields are s-dependent.

We computed the multipoles up to 28—poles for both ends. The field computation

has been performed up to order 13, at 1 cm equally spaced points along the optical

axis. Figure 9.3 shows the allowed (due to symmetry considerations) normal and skew

multipole strengths as functions of s, for the lead end. The same data is depicted in

Figure 9.4 for the return end. Notice that the skew multipoles vanish for the return

end.

As previously mentioned, the map computation needs also the s-derivatives of the

multipoles. These are easily obtained as a by-product of the multipole extraction

algorithms, because we always keep their 3 dependence; derivative computation in

DA in an elementary operation. It yields very accurate results without the need to

resort to numerical differentiation. The even order s derivatives (which enter the

potential expansion (7.12)) of multipoles presented in Figures 9.3 and 9.4 are shown

in Figures 9.5, 9.6. and 9.7 (for lead end’s b2 (5), b6 (8), and (he (8)), Figures 9.8, 9.9,

and 9.10 (for lead end’s a2 (3), a6 (8), and (110(3)), and Figures 9.11, 9.12, and 9.13

(for return end’s b2 (3), b6 (8), and bm (3)). The multipoles and their derivatives have

been interpolated for plotting by a derivative preserving interpolation scheme. Also,

the two multipole extraction algorithms were checked against each other and found

to be in complete agreement.

The importance of vanishing curl has been stressed at several points through-

out the chapter. To show the influence on the extracted quadrupole strength and

its derivatives of the effect of non-vanishing curl, we compare two cases: multipole

extracted from a magnet model that generates field with non-vanishing curl, and

multipole extracted from the same magnet model after all the open-ended Wires have

205

 

 



 
Figure 9.1: Lead End of the High Gradient Quadrupoles of the Large Hadron Collider.

 

Figure 9.2: Return End of the High Gradient Quadrupoles of the Large Hadron

Collider.
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Figure 9.3: Multipole strengths of the lead end as functions of s.
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Figure 9.4: Normal multipole strengths of the return end as functions of s: b2(3),

06(8), [910(8), and 014(8).

been closed at “infinity” (in practice meaning far away from the observation points).

The result is contained in Figure 9.14. It can be seen that, although the agreement

is pretty good for the quadrupole strength, the small differences are amplified for the

higher order derivatives.

9.6 Computation of Fringe Field Maps

As an application of the multipole decompositions, we describe very accurate high-

order map computations of s—dependent fields. There are two ways to calculate maps.

In the first case the following three steps are needed: using the analytical magnet

model, the field expansions at selected support points along the optical axis are

computed. In case it is necessary, the Maxwellification is included in this step. Then

follows the extraction of the multipoles. Finally, the multipoles are interpolated by

Gaussian interpolation [99], and using the integration algorithm of COSY, described
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Order Opening aberrations (:r|a")

71 Return end Lead end

2 0 0

3 0.2497609620388847 0.2995410193258450

4 0.6293863605053251E—13 -.3054844395050998E—13

5 0.1903231022089257 0.1962270889999381

6 0.6911276300083234E—12 -.6125473066348172E—12

7 0.1699451387437771 0.9019387229287767E01

8 -.1364626459777126E—09 0.2013346179046971E-09      
Table 9.6: Opening aberrations, (x|a"), for the return and lead ends’ exit focusing

maps.

in [24], the map is generated.

The alternate way’s first step is the same. However, the scalar potential at sup-

port points is anyway computed in the process of Maxwellification. We can use this

potential to integrate the equations of the motion, with an interpolation scheme that

preserves the derivatives at the support points, yielding the map.

Both methods have been implemented in COSY, and they give essentially the same

results. Especially at high orders, the Gaussian method is faster due to the smoothing

properties of Gaussian interpolation [99]. Although to list the whole map it would be

too long, to get a feeling of the resulting fringe field maps for the above mentioned end

regions we list the opening aberrations in both ends up to order 8 in Table 9.6. Once

we have the maps, they can be employed for dynamics studies, which is actually the

final purpose of the whole theory and methods developed in this chapter. We applied

the methods to study the fringe field effects in the LHC. Some of the results are

presented in chapter 10.
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Chapter 10

Fringe Field Effects on the

Nonlinear Dynamics of the LHC

Recently, many studies have been published on single particle dynamics in the Large

Hadron Collider to be built at CERN. See [100] and references therein. Specifically, at

collision energy it has been shown that the dynamics is dominated by the interaction

region’s high gradient quadrupole triplets. This is due to large variations of the [3

functions across the quadrupoles. The studies concentrate on many possible realiza—

tions of the LHC lattice, that is, on computing the effects of the so-called systematic

and random body errors, and perhaps other effects like crossing angle, beam-beam

interaction, misalignment, etc. The fringe fields, traditionally, are taken into account

at most at the level of lumped thin lenses (kicks), characterized by integrated multi-

pole strengths. However, it is not obvious whether this simplistic approach is enough

to give an accurate account of the dynamics under the influence of fringe fields. This

chapter attempts to fill this gap, by assessing the impact of fringe fields via very ac-

curate fringe field maps, at least for the LHC, and specifically for the low-B insertion

quadrupoles shown in Figures 9.1 and 9.2.

We showed in chapter 9 how to take into account the local structure of s-dependent

fields, resulting in the computation of very accurate fringe field maps. We use the
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fringe field maps computed with the methods of section 9.6 to study systematically

their effect on the nonlinear dynamics of the LHC. Starting from a simplistic model of

the lattice, we gradually include more and more effects (described in more detail in the

next section) and study their influence measured by tune-shifts, resonance strengths

and sometimes resonance webs. We keep an eye on the importance of the exact

shape of fringe fields and relative importance with respect to body errors. Results

concerning off-energy particles are included too.

10.1 Methods of Analysis

We use as measures for the dynamics indicators that have been proven effective in

predicting the performance of existing accelerators, and were useful for construction

of correction schemes for proposed machines. We will employ tune footprint, tune

shift, resonance strength and resonance web calculations. All of them are based on

normal forms of symplectic maps. We assume that the LHC is accurately described

by the n-th order Taylor expansion of the system’s true map, M. Because hadron

accelerators can be regarded as large Hamiltonian systems, the truncated map will

be symplectic to order n. It means that relative to some symplectic coordinates 2' its

Jacobian, M, satisfies the symplectic condition to order n

MTJM = J. (10.1)

The truncated map can be subjected to an order by order symplectic change of

variables that finally yields its normal form. That is, there exist symplectic maps .An

such that

N = AnOM 0 94,11, (10.2)

The symplectic map N takes a particularly simple interpretation; it is a rotation with

radius dependent frequency. See [101] for details. The angles of advancement of a
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point on a torus after one application of the map are called the tunes of the respective

particle. Its deviation from the tune of a particle with 0 amplitude (the linear tune)

is called the tune-shift. Due to the fact that the normal form of a symplectic map

is unique, also the tune—shifts are uniquely defined. We compute these quantities

for the various cases studied. In general, for good performance of accelerators, large

tune—shifts are to be avoided.

In this setting, the resonance condition is defined as

I; - [1' (J13) = m (mod 27r), (10.3)

for a vector of integers I: and integer m. The tunes are denoted by Ii, f represents

the action variables (the radii), and 3 the parameters. Although the normal form

transformation can be used to compute the tunes only in the non-resonant case, it is

our hope that extrapolation of the results close to the resonant case can give insight

into the dynamics of resonant orbits. For this purpose, we study (10.3) as a function

of f. By adding to the right hand side a small quantity 8 << 1, with fixed maximum

value, we plot in action space the actions j that satisfy the resonant condition. This

gives insight into the resonance orbit structure of the phase space directly. This

picture of the location and width of resonance lines is called the resonance web. The

intuitive interpretation of the role of s is that it translates a fixed, small distance

in tune space around exactly resonant orbits into oscillation of the action variables

around exactly resonant orbits. The amount of oscillation gives a measure of the

width of the resonance lines. Overlapping of resonance lines are considered signs of

chaos, which is not necessarily bad in theory, but it is usually in practice. Often,

the dynamic aperture is close to the chaotic boundary. Hence, the closeness of the

resonance lines to the origin in action space again can be a useful indicator.

It is not straightforward to explain the method of computing the resonance strengths
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without getting into unnecessary details. This is partly due to the fact that the reso-

nance strengths are not defined uniquely. Usually it is based on the normalizing map,

An, which is known to not be unique. Moreover, the manipulation of the elements

of An is somewhat arbitrary. Nevertheless, as a general rule, the resonance strengths

are directly proportional to the nonlinearity of the underlying map and its distance

from resonances, measured by the resonance denominators, which are the left hand

sides of (10.3). For more details of a method similar in spirit to our calculation we

refer the reader to [102]. The difference between the two methods is that we do not

use Lie algebraic techniques, but we work directly with the Taylor expansions of the

components of the normalizing map. Despite all this, the correction ofdominating res-

onances proved to be an effective tool for improving the performance of accelerators.

We could say that, although the exact numerical values of the resonance strengths do

not really have relevance (as they are method dependent), the qualitative picture it

is useful (for example identifying the dominating resonances).

We mention that none of the above indicators have an absolute correlation with

the behavior of particles in accelerators. In some cases one of them can have a better

correlation with the dynamic aperture, in other cases another indicator, or none.

However, altogether probably they can reveal the gross features of the dynamics, and

are useful in practice.

10.2 Cases Studied

All maps, fringe field and rest of the lattice (LHC v.5.1), have been computed at

order 8 using the code COSY INFINITY [24]. Due to sensitivity to numerical er-

rors, eSpecially at high orders, of the tune—shift computation, and occurrence of

large numbers in the maps, we performed all the calculations in quadruple pre-
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cision on an Alpha workstation. The effects of RF cavities have been neglected,

i.e. we computed the maps in two transversal degrees of freedom, with energy as

a parameter. At the specific location of the lattice where we fixed the Poincaré

section, the r.m.s. beam sizes are 01, = 1.267 ~ 10‘4m and 0,, = 2.981 - 10‘4m,

respectively. It is also known from the design specifications that the r.m.s. nor-

malized emittance is EN = 3.75 . 10‘6m . r and the r.m.s. energy deviation is

01.3 = 1.1 - 10’“. For body errors we used the table MQXB (FNAL High Gradi-

ent Quad) Reference Harmonics at Collision v. 2.0, available on theW at the

address http://www.agsrhichomebnl.gov/LHC/fnal/v2.0/hgq..col_v2p0.txt. The de-

tailed analysis of the body errors were not the main purpose of our studies, so we used

only one seed for the random body errors, which gives “average” results in some sense

(for example, dynamic aperture). For the systematic part of the errors we employed

their full uncertainty, with the two possible signs. That is, if we denote by (1),.) the

average value of a multipole, then the multipole value due to uncertainty lies between

—d (2),.) + (bn) 3 bn S +d (bn) + (bn) . Hereafter we will refer to the two cases of full

uncertainty by their sign, (-) or (+).

To assess the importance of fringe field shape, we use two different models. One

is the “detailed” shape, based on the exact shape of the fringe field computed using

the model HGQSOI [92]. The other is a “default” fringe field shape, as implemented

in the code COSY Infinity, based on the falloff modeled by an Enge function [24].

The detailed fringe fields detune the ideal lattice and also introduce linear coupling

between the planes. To obtain meaningful results we have to retune and decouple

the lattice. We achieve this in a rather elegant way using an ideal local correction.

Moreover, the method provides a way to keep the design linear lattice completely
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unchanged. It is done by splitting the fringe field maps into two parts

Mn = Lff + NH» (10-4)

where Lff is the linear part and Nff is the nonlinear part. Application of the inverse

of the linear map, which can be thought of as the zero length insertion ideal local

corrector, we obtain for the fringe field map

MffZI-l-L-f-fIOfo, (10.5)

where I is the identity map. The identity as linear part ensures that the linear

layout of the lattice remains unchanged. Of course, we would get a slightly different

result if we were to apply L}; from the right. However, Lff is close to identity, so

L}; is also close to identity, and hence almost commutes with the nonlinear part.

Again, this is an ideal case, and it is very likely that any real world correction scheme

would introduce more nonlinearities in the map of the system. This method has been

implemented in COSY INFINITY as a new fringe field mode. As a final remark, we

mention that it is enough to compute only the exit focusing fringe field maps, and

obtain the other variants by mirroring operations and rotations. Also, we use the

same symmetry based tricks to get the correct maps for the proposed layout of the

interaction regions, which includes rotations of quadrupoles around their vertical axis.

The respective procedures are described in section 10.4.

Table 10.1 contains all the cases studied, starting from the simple to the more

complex. In the following section we describe the results obtained for each of them.

We will refer to the specific case by their number in the table.

10.3 Results and Discussion

The results shed light on the relative importance of intrinsic nonlinearities of the ideal

lattice, the fringe field induced nonlinearities, and body errors induced nonlinearities.
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[ CASE 1 SYSTEM
 

 

 

 

 

 

 

 

 

   

1 Interaction regions at order 8, rest linear

Fringe fields and body errors OFF

2 Interaction regions at order 8, rest linear

HGQ detailed fringe fields ON

3 Interaction regions at order 8, rest linear

Only quadrupole components of HGQ fringe fields ON

4 Interaction regions at order 8, rest linear

HGQ default fringe fields ON

5 Whole lattice at order 8

Fringe fields and body errors OFF

Whole lattice at order 8

6 detailed fringe fields for HGQ, and default fringe

fields for rest of ring ON; body errors OFF

7 Whole lattice at order 8

fringe fields OFF, body errors (—) ON

8 Whole lattice at order 8

fringe fields OFF, body errors (+) ON

9 Whole lattice at order 8

fringe fields from case 6 ON, and body errors (—) ON

10 Whole lattice at order 8

fringe fields from case 6 ON, and body errors (+) ON
 

Table 10.1: The various LHC realization cases studied.
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The tunes are visualized in two different ways. The 2D pictures represent the usual

tune footprint style, and the 3D pictures show the tune shift of particles as a function

of initial amplitudes in geometric space, in units of r.m.s. beam sizes, up to 60. The

tune-shifts in the 3D pictures are all in units of 10‘“. The resonance strengths

are computed close to the expected dynamic aperture, along the diagonal in action

space. The units are arbitrary, and we denote I; = (q, p). Also, for cases 9 and 10

we computed the resonance strengths on a grid of points to identify the dominating

resonances in different locations of phase space. Every case is subdivided in 3 subcases

according to energy: 6 = —2.503, 0, +2503. For the computation of resonance webs

we used a maximum value of 5 = 10‘3. The size of the beam at the expected dynamic

aperture is approximately J; = Jy = 5 - 10’4m.

We start with the most simple case. Case 1 represents the linear LHC lattice with

only the intrinsic nonlinearities of the interaction region quadrupoles added. As we

expected, Figures 10.1, 10.2 and 10.3 Show that the nonlinearities are insignificant.

The tune footprints have regular shapes, but practically vanishing in size. For

off-energy particles the dominating resonance is (2,0), which is 2 orders of magnitude

bigger than the dominating resonance for on-energy particles, (2, -—2).

Case 2 is actually case 1, to which we add the detailed fringe fields of the High

Gradient Quadrupoles of the interaction regions. The acceptance guidelines require

a tune shift of less than 10’3 at 60.

We can see that the nonlinearities introduced by the fringe fields are considerable.

See Figures 10.4, 10.5 and 10.6. However, tune shifts are still inside the safe region.

Also, the tune footprints get bigger and have highly irregular shapes. Maximum

values of tune shifts and size of tune footprints decrease as the energy increases. The

sharpest decrease with energy is experienced by particles with small initial y and large
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Figure 10.1: Tune footprints for the LHC case 1.

 
Figure 10.2: Tune shifts for the LHC case 1.
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Figure 10.3: Resonance strengths for the LHC case 1.

initial :10. Dominating resonances are the (2, -2), also encountered in case 1, and a

newly excited resonance, the (1, —-1). There is an increase in the absolute values of

the resonance strengths, compared with case 1. The resonances are almost invariant

with respect to energy. Also, their magnitudes are slightly increasing with energy, an

opposite tendency when compared to tune shifts.

Next, we studied what is the relative importance of the quadrupole components

with respect to the rest of the multipoles. Therefore, case 3 is case 2 without the

sextupole components in the fringe fields. For the results, see Figures 10.7, 10.8 and

10.9.

We notice a 5 times decrease for the maximum tune shift for negative energy dis-

persion particles, and some more modest decreases for the other particles. The tune

footprints are becoming a little bit smaller and regular, triangle shaped, hence the

irregularities of case 2 are caused by the sextupole components in the fringe fields.

Overall, the importance of the sextupole components are decreasing as the energy

increases. There are noticeable differences between resonance strengths of cases 3

and 2. The magnitudes drop by 2 orders of magnitude, and become comparable with

off-energy particle’s resonance strengths of case 1. Moreover, they are not invariant

anymore with respect to energy. While the dominating resonance, regardless of en-
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Figure 10.4: Tune footprints for the LHC case 2.
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Figure 105: Tune shifts for the LHC case 2.
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Figure 10.6: Resonance strengths for the LHC case 2.

ergy, is (2, —2), which we carried along since case 1, again (2,0) from case 1 makes

its appearance for off-energy particles, and (1, ——1) completely disappears. We con-

clude that the intrinsic nonlinearities of the quadrupoles excite the (2, 0) and (2, —2)

resonances, all components of the fringe fields contribute to the (2, —2) resonance,

making it the dominating one, and the (1, -1) resonance is excited only by the sex-

tupole components, which is comparable in magnitude with (2, —-2). The magnitudes

of the resonance strengths hold the slightly increasing behavior with energy.

Now we turn our attention to the question of the exact shape of the fringe fields.

For easy comparison we created case 4, which is case 3 with the detailed fringe fields,

containing only the quadrupole components, replaced by a generic fringe field shape,

that has a falloff modeled by an Enge function with 6 parameters.

As one can see, the differences between the set of Figures of case 3, Figures 10.7,

10.8 and 10.9, and the Figures of case 4, Figures 10.10, 10.11 and 10.12, are marginal.

The pictures are almost identical, with a small decrease in all the indicators for the

generic fringe field. We conclude that, at least for the main component of the fringe

fields, the exact shape is not critical.

As the next step, we studied the nonlinearities of the ideal lattice, that is no errors

at all, only the intrinsic nonlinearities of the whole ring up to order 8. This is case 5,
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Figure 10.7: Tune footprints for the LHC case 3.

 
Figure 10.8: Tune shifts for the LHC case 3.
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Figure 10.9: Resonance strengths for the LHC case 3.

and the relevant Figures are 10.13, 10.14, 10.15 and 10.16.

The effects of the intrinsic nonlinearities of the whole lattice are comparable with

those created by the fringe fields of the interaction regions. In the case of 6 < O

the fringe fields cause a bigger maximum tune-shift, while for 6 2 0 the intrinsic

nonlinearities are marginally bigger. Also, the tune footprints are roughly the same,

but in this case the shapes are regular, triangle shaped. However, the resonance

strengths are more than one order of magnitude smaller than in case 2, and they are

almost invariant with respect to energy. Many more resonances are excited than in the

previous cases, with (2, —-2) remaining the dominant one. Other excited resonances

are (1,2), (1,0) and a few smaller: (1,—2), (3,0) and (2,0). The (2,0) is almost

completely missing for 6 = 0, hence it is excited mostly by off-energy particles. The

resonance web shows the chaotic boundary to be at approximately 3 - 10‘3m. A

beam of 9: 1202.1: occupies 2 4 — 5 . 10‘4m in this picture, therefore this region is

completely free of low order resonances. We estimated the following resonances to

be the “thickest”, in decreasing order: (1,—1), (2,—2), (3, —3), (4, —4), (6,1) and

(8, —1).

Case 6 represents case 2 and case 5 superimposed, and additionally generic fringe

fields are set on for the remaining of the ring.
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Figure 10.10: Tune footprints for the LHC case 4.

Figure 10.11: Tune shifts for t
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Figure 10.12: Resonance strengths for the LHC case 4.

Figures 10.17, 10.18 and 10.19 show that the tune shifts and footprints of case 6 are

almost like adding up the corresponding pictures from cases 2 and 5. The resonance

strengths are looking similar to those of case 2. This proves that the dominating

fringe field effects are concentrated in the interaction regions, which has been showed

to hold for other effects too, which are limiting the dynamic aperture.

The next two cases deal with the body errors. As mentioned in section 10.2,

we have two possible signs for the uncertainty part of the errors. We use the same

“average” seed for the random part in both cases. Case 7 is the (—) case, and case 8

is the (+) case.

For case 7, Figures 10.20, 10.21 and 10.22 show a little bigger tune shifts and

footprints than for case 6, but still inside the safe region. The footprints are elongated

and curved, and even overlapping for 6 = —2.5aE and 6 = 0, respectively. On the

other hand, the resonance strengths are amplified by 3 orders of magnitude. The

new dominating resonance is (0,3). The resonances that are excited mainly by fringe

fields and intrinsic nonlinearities are negligible.

Case 8 is the first situation where the maximum tune shift exceeds the acceptable

level of 10‘3 at 60 (Figure 10.24). See also Figures 10.23 and 10.25.

Comparison of cases 7 and 8 proves that the systematic errors are important.
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Figure 10.13: Tune footprints for the LHC case 5.

 
Figure 10.14: Tune shifts for the LHC case 5.
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Figure 10.19: Resonance strengths for the LHC case 6.

However, notice that only a small fraction of the total particles, with predominantly

horizontal initial amplitude, have tune shifts bigger than 10‘3. The other tune shifts

are still bigger than in case 7, but within acceptable limits. The tune footprints are

regular, triangle shaped, very elongated in one direction. The dominating resonance

is still (0,3), with an important contribution from (1, 2). Despite the fact that the

tune shifts are bigger than in case 7, the magnitude of the resonance strengths are

slightly smaller in case 8. The resonance structure is invariant with respect to energy.

The last two cases are the closest to reality among all studied cases. We included

the whole lattice at order 8, detailed fringe fields of the High Gradient Quadrupoles

in the interaction regions and generic fringe fields for the rest of the ring, and body

errors for interaction regions with the two possible signs. So, case 9 is actually cases

6 and 7 superimposed, and case 10 is cases 6 and 8 superimposed, respectively.

Figures 10.26 and 10.27 show that the tune footprints are only slightly distorted

compared to case 7. The only case when the fringe fields clearly have a considerable

effect is for 6 < 0 particles, but still inside acceptable limits. From Figure 10.28 it

is obvious that the dominating resonances are excited by the body errors. Hence,

th e body errors dominate the fringe field effects. Note that the fringe fields alter

the natural chromaticity (even change its sign). It is interesting to compare Figures
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Figure 10.20: Tune footprints for the LHC case 7.

 
Figure 10.21: Tune shifts for the LHC case 7.
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Figure 10.22: Resonance strengths for the LHC case 7.

10.29 and 10.16. The resonance channels in this case move much closer to the origin,

inside the region occupied by the beam at target dynamic aperture. The chaotic

boundary is around the target dynamic aperture. The thickest resonance channels

remain (1, —1), (2, —2), (3, —3), (4, —4), (0,3) and (1,2).

Beside the fact that the tune shifts for 6 < 0 are much bigger in case 10, Figures

10.30, 10.31 and 10.32 tell the same story as case 9. Again, the situation resembles

case 8, only in this case the fringe fields have a little more influence than they had in

case 9.

We computed the resonance webs for 6 = —2.503 and 6 = 0 to show a general

conclusion, that the resonance web structure is essentially invariant with respect to

energy. This is consistent with the invariance of resonance strengths with energy.

From Figure 10.33 results that the closest resonance lines are slightly farther away

from the origin than in case 9. Also, in general the magnitudes of the resonance

strengths increase with energy, and the resonance strengths of case 10 are smaller

than the resonance strengths of case 9. It is exactly the opposite for the tune shifts;

the biggest are of case 10.

Finally, for cases 9 and 10 we computed the resonance strengths for 6 = 0 on a

grid in action space, to identify the dominating resonances at different locations. Due
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Figure 10.23: Tune footprints for the LHC case 8.

 
Figure 10.24: Tune shifts for the LHC case 8.
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Figure 10.25: Resonance strengths for the LHC case 8.

to lack of space, only the picture that summarizes the conclusions is shown in Figure

10.34.

Obviously, (0,3) is the dominating resonance in a major part of action space.

For exactly horizontal motion (3, 0) is the dominating one, and there is a narrow

region of predominantly horizontal motion for which (1, ——1) for case 9, and (1,—1)

or (1,2) for case 10 are the dominating resonances, respectively. As we saw, the

(1, —1) is excited by the quadrupole component of the fringe fields. Hence, there is a

small region where the dominating resonance is given by fringe fields. However, the

magnitudes of the respective resonances are very small. Actually, the magnitude of

the resonance strengths increase much more quickly in the vertical direction. Also,

from the resonance web pictures results that the closest resonance line to the origin

is always along the vertical.

In a final paragraph we draw a few general conclusions. While the fringe fields

generate important dynamical effects, as far tune shifts, footprints and resonance

strengths are concerned, they are dominated by body errors. If there is a correlation

between dynamic aperture and these quantities, than also the DA is determined by

body errors. The fringe fields do decrease the dynamic aperture of the ideal lattice

by a factor of around 6, as was shown in section 4.5. In this sense, they have a
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Figure 10.27: Tune shifts for the LHC case 9.
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Figure 10.30: Tune footprints for the LHC case 10.

 
Figure 10.31: Tune shifts for the LHC case 10.
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Figure 10.32: Resonance strengths for the LHC case 10.

huge effect. However, this reduced DA is still way above the expected DA; the

approximate DA value with fringe fields is around 200. However, the body errors

alone decrease the DA to the level where is starts to hit a lower acceptable limit, and

the fringe fields do not affect it very much anymore. Indeed, this is confirmed by

tracking; the loss in DA due to fringe fields is at most 05%0- On the other hand,

the DA cannot be correlated exactly with both tune shifts and resonance strengths.

This can be seen from the fact that we do not get the largest tune footprints for

the case with the largest resonance strengths and vice versa. However, roughly it is

correlated with both indicators. The resonance strength and resonance web results are

consistent in the sense that resonance lines closer to the origin give larger resonance

strengths. Regarding the shape of fringe fields, we could conclude that the exact

shape does not matter. However, intrinsically the fringe field effects are not very

important for the LHC, and for other situations, like the proposed Muon Collider,

where the relative importance of the fringe fields are greater, the shape of fringe field

is also important. For the LHC, most of fringe field effects are generated by the High

Gradient Quadrupoles. The energy dependence of the tunes show that in general

tune shifts are maximized for predominantly horizontal motion for 6 < 0, and as

energy increases, the maximum decreases and shifts towards predominantly vertical

motion. For on—energy particles the tune shifts are approximately symmetric with
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Figure 10.34: Dominating resonances for the LHC cases 9 and 10.
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respect to diagonal, with minimums attained around the diagonal. This implies that,

if the tune shifts are correlated with the DA, the estimation of the DA using only

on-energy particles launched along the diagonal will result in an overestimation of

the DA. Resonance strengths and resonance webs are roughly invariant with respect

to energy. However, a marginal increase of the resonance strengths with energy

is usually observed. The trend for the tune shifts is exactly opposite. In some

cases, a substantial decrease of the footprints is observed as energy increases. Over

a large portion of action space the dominant resonance is (0,3). The resonance

strengths increase in magnitude faster in the vertical direction. The magnitudes of

the dominating resonances in the strip of predominantly horizontal motion are much

smaller than in the rest of action space. The biggest jump in the magnitudes is

observed at around 2 - 10‘4 along the vertical, which, by coincidence or not, is the

location of the closest resonance line to the origin in the resonance web pictures.

10.4 Map Transformations Under Orientation Flips

Sometimes, orientation changes of particle optical elements in an accelerator lattice

are used as a mean to compensate or correct nonlinearities, improving the character-

istics of the accelerator. One specific case is the LHC HGQS in the interaction regions

[103]. The question arises what are the proper symmetry operations on certain maps

that give the correct answer for maps of systems that differ by some symmetry trans-

formation. That is, knowing the map of an element in a “default” orientation, what

kind of transformations are necessary in order to obtain the maps of the “flipped”

elements? Specifically, we need 3 different (similarity) transformations on the map,

corresponding to mirroring the “default”, or “forward” element with respect to a

plane. Here we use W. Wan’s nomenclature [104]. Mirroring the forward element

with respect to the a: — y plane gives the “reversed” element, with respect to the y — z
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plane gives the “switched” element, and with respect to the a: - 2 plane gives the

“upside-down” element. In [104] it is explained how to obtain the map of mirrored

elements knowing the map of the forward element.

The map of the reversed element in the (3:, a, y, b, l, 6) symplectic basis is given by

MR: ROM—10R, (10.6)

where

  

{100000\

0—10000

001000

R” 0 0 0 —1 0 0 (10'7)

000010

\00000—1)

is an involution: R o 72 = I, I being the identity. It follows that R“: ’R. The map

M is the map of the forward element.

Analogously, the switched map can be obtain from the forward map as

  

M5=SOMOS, (10.8)

with

f —1 0 0 0 0 O \

0 -—1 O 0 0 O

O 0 l 0 0 0

5‘ 0 0 0100 (109)

0 O 0 0 1 0

k 0 O 0 0 0 1 )

possessing similar properties as 72: S o S = I, and S“: S.

The last one is the upside-down transformation

MU=U0M0L1, (10.10)
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with

  

{100000\

010000

00—1000
u_ 00 0 _100 (10.11)

000010

\000001}

Again, U o 11 = I, and LI"1: LI. It is well known that an element satisfying midplane

symmetry is invariant under the upside-down transformation.

Next, we show under what conditions an element is invariant with respect to

reversion. The conditions can be deduced from Hamilton’s equations. In the case

of planar reference orbit, no electric fields, and s-independent magnetic fields (in

which case the fields are derivable from the vector potential component A,, and AI =

Ag 2 0), the most general Hamiltonian [105] is invariant under the transformation

R. Moreover, the canonical equations of motion, and hence the map of a such an

element, are invariant under the transformation 720., where a means that it inverts

the sign of the independent variable 3, when acting on a map:

ROOM = M 0 R0. (10.12)

In the Lie Algebraic notation, the map can be written in the form

M = 6“”; (10.13)

where : H : is the Poisson bracket operator attached to the Hamiltonian of the system.

Hence, 01(M ) = M"1, since : H : commutes with itself. Inserting it in the invariance

relation we obtain that

”ROM“ = MoR (10.14)

.M = ROM—10R. (10.15)



Comparison with the map of the reversed element gives the result

In the specific case of the LHC HGQs, 180 degree rotations of quadrupoles around

the y axis are performed. This transformation is equivalent to mirroring the forward

element with respect to the :1: — y plane, and then with respect to the y — 2 plane.

In other words, we obtain a “combined” element as the combination of the reversed

and switched element. Finally, we can identify the combined element’s map with the

map of the “opposite” quadrupole’s map. For details, see [103].

Now we can show that the combined element is unique, that is the reversed and

switched, and switched and reversed elements have the same map. i.e. the two

symmetry operations commute.

1) Reversed and Switched

MC: 80 (ROM—10R) 08. (10.17)

2) Switched and Reversed

M’C -_—. Ro(soMo.S)‘lo7z (10.18)

= RosoM-losok (10.19)

= soRoM-lokos (10.20)

= 50 (ROM—1072) 03 (10.21)

= MC. (10.22)

We used the fact that S‘1 = S, and being diagonal matrices [12,5] = ROS—S0R 2

0. Actually, all the individual transformations commute due to the fact that they are

generated by diagonal matrices.
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So we have an easy procedure to compute the maps of arbitrary “opposite” el-

ements from the “default” ones. Moreover, the map approach is valid for arbitrary

field configurations, including detailed fringe fields and compositions of several maps.

In the case of s-independent elements, we obtain simplifications due to invariance

under reversion. This property is relevant for the implementation of the body errors

in section 10.3, in which case we can get the map of the Opposite quadrupole by

switching the default map. Of course, in the case of detailed fringe field maps, one

needs to perform the reversion too.

To compare the above results with the rules for multipole sign changes due to

orientation changes [103], we derive the results based on field multipole expansion.

Suppose that (10.23) gives the multipole expansion in the default reference frame.

B, + 1B,, = 2(1),, + M,,) (.2: + iy)". (10.23)

As a contrast with the map methods, this formula, and hence the derivation, is valid

only for s-independent elements, or the integrated strengths in the end regions. In

the same way, we assume that the expansion in the opposite frame is

. I , r I , r 11

By! + szt = Z (0,, + tan) (:1: + 2y) . (10.24)

n

First, the reversion consists of the following transformations:

:1." —> a: y' —> y z’ —> —2, (10.25)

BI; —> —B,, By: ——> —B,,:. (10.26)

Inserting them in the expansion gives

B, +13, = Z — (0;, + ia’n) (1: +131)". (10.27)

Comparing coefficients with (10.23) we obtain that

b E -b,,, (10.28)

a E —a,,. (10.29)
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The switching can be cast in a similar way to correspond to the following trans-

formations

:r' —> —:c y’—>y z'—+z,

B... —> B, B,.—>—B,,,

_3, +18, = Z (0;, +1a’n) (—x + iy)".

11

Taking the complex conjugate of the above expression we arrive to

—By — 18,, = Z (b;I — 20;) (—a: — 13))"

11

3,, + 18,, = Z(—1)” (—b;, + 10;) (:1: + 1y)".

11

Comparing coefficients with (10.23) we obtain

0’ a (—1)"+lb,,,

a E (—1)"a,,

The upside-down transformation can be expressed as

I

a: —+ :1: y’-—>—y z'——>z,

BI! —) —Bx ByI—-)Byl,

B, - 1'3, = Z (0’, +15”) (1: — 1y)" .

11

Taking the complex conjugate expression we arrive to

By 1.in = Z (0,,, - 20;) (.1: + 1y)",

n

which gives the relation between multipole coefficients,

0 E 0,,,

a E —a,,.
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Finally, we get the rule for the combined (opposite) element as the commutable

product of the reversion and switching transformation

0
"

II
I

A

|
p
—
l

V

:
3

Q
“

3

(10.43)

a s (—1)"+1a,,. (10.44)

in agreement with [103]. Direct calculation shows that the above results are in com-

plete agreement with [103] for every case, after, in case it is necessary, the polarity is

changed following the transformation such that the fundamental term remains posi-

tive.

As a conclusion, the above map manipulations based on the matrices R, S, and

U form a complete set of commutable transformations to perform any flip scenario,

including arbitrary s-dependent fields, and maps of composed elements. All the nec-

essary map computations, compositions and inversions are easily performed in the

Differential Algebra based code cosy INFINITY.
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Chapter 11

Summary of Part II

Accurate simulation of fringe field effects requires more effort than the traditional

piecewise arclength independent fields. While some approximations and simplifica-

tions work in some cases, there is the danger that one always relies on them, and as

a consequence, yield inaccurate or misleading results in situations were fringe fields

cannot be safely neglected anymore. It was shown that, in general, fringe fields af-

fect the motion at all orders, starting with the linear part of the transfer map, and

induce modifications in every indicator used to asses the single particle dynamics:

center tunes, Chromaticities, tune shifts, resonance strengths, and dynamic apertures.

Moreover, it is not straightforward to asses a priori the importance of fringe fields,

and it is recommended to deal with fringe fields on a case-by-case basis. It was shown

that fringe fields are important “in absolute value” for the LHC, but not a limiting

factor, are a limiting factor for the dynamic aperture of the Neutrino Factory, and in-

duce only a very slow diffusion for the Proton Driver, which does not alter the short

term dynamic aperture. Further work identified that only a few matching section

quadrupole fringe fields are responsible for the drastic reduction of the DA of the

Neutrino Factory, and increasing their length, with the simultaneous reduction of the

strength, restored the DA above the target value [12]. More detailed fringe field and

other nonlinear effects simulations of the Muon Accelerators can be found in [56].
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In the end, careful consideration of fringe field effects amounts to integration of the

correct ordinary differential equations of the motion, in which the nonlinear effects are

accounted for, including the electromagnetic fields in accordance to Maxwell’s equa-

tions. Besides fringe fields, the so-called kinematic effect can also lead to inaccurate

results [56]. It was shown that the sharp cutoff approximation leads to divergences in

the map, truncation of high order pseudo—multipoles can also give inaccurate results,

and not even symplectification can undo the errors made in modeling the systems,

as, for example, neglect of details of the fringe field shapes.

It was shown that it is possible to obtain very accurate fringe field maps for

current dominated superconducting magnets, using Differential Algebraic methods.

The procedure includes field computation of current wires in the Differential Algebra

framework, employing a novel form of the Biot-Savart formula for rectilinear currents.

The method was illustrated by the multipole decomposition and map computation

of the LHC’s HGQ ends. Clearly, the method can be used unaltered for any element

with large enough radius of curvature, and can be adapted for bending elements by

using different coordinate systems. Moreover, it is also possible to obtain multipole

information from measured field data, for example from data on the surface of a

cylinder, or in one or several planes. All is needed is some good interpolation method,

that interpolates both the field values and the derivatives accurately. Although more

research is needed in this direction, the Gaussian interpolation is promising [106].

The need to satisfy Maxwell’s equations in the ODEs resulted in the development

of two methods to enforce them. It was shown that, in the Differential Algebraic

framework, it is trivial to check and enforce Maxwell’s equations locally as well as

globally. These methods are useful to correct small computational errors or occasional

magnet design flaws.
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Finally, a detailed study of fringe field effects on the LHC single particle dynam-

ics revealed that the fringe fields introduce large nonlinear effects, and decrease the

dynamic aperture typically by a factor of six, but the resulting DA is still well above

the target. The fringe field effects are concentrated in the interaction regions. It was

shown that the fringe field effects are dominated by the HGQ body errors. How-

ever, we mention that for the body errors the worst case scenario was utilized for the

systematic parts of the errors, and the fringe field errors were neglected.

In conclusion, fringe fields can be important for any accelerator, and there are

methods that allow a careful and accurate representation and simulation of their

effects on the dynamics. Once the fringe field maps have been computed, the effort

pays off by noticing that the subsequent dynamical studies require the same effort

with fringe fields as without, including normal form based quantities such as tunes and

tune shifts, Chromaticities, resonance strengths and webs, and symplectic tracking for

fast, efficient, and reliable dynamic aperture estimation.
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