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ABSTRACT

MODAL ANALYSIS OF NON-DIAGONALIZABLE
CONTINUOUS SYSTEMS WITH APPLICATION TO WIND

TURBINE BLADES

By

Xing Xing

This work represents an investigation of the modal analysis of distributed parameter

systems whose stiffness or damping terms are non-diagonalizable with an undamped modal-

coordinate transformation. The non-diagonalizability may be caused by nonmodal damping

or stiffness that includes parametric excitation. The modal properties for these kinds of

problems will be investigated.

An approach for analyzing the complex modes of continuous systems with nonmodal

damping is first developed. As an example, a cantilevered beam with damping at the free end

is studied. Assumed modes are applied to discretize the eigenvalue problem in state-variable

form, to then obtain estimates of the natural frequencies and state-variable modal vectors.

The finite-element method is also used to get the mass, stiffness, and damping matrices

for the state-variable eigenvalue problem. A comparison between the complex modes and

eigenvalues obtained from the assumed-mode analysis and the finite-element analysis shows

that the methods produce consistent results. The assumed-mode method is then used to

study the effects of the end-damping coefficient on the estimated normal modes and modal

damping. Most modes remain underdamped regardless of the end-damping coefficient. There

is an optimal end-damping coefficient for vibration decay, which correlates with the maximum

modal nonsynchronicity.

As an experimental example of a non-modally damped continuous system, an end-damped



cantilevered beam is studied for its complex modal behavior. An eddy-current damper is

applied considering its noncontact and linear properties. The state-variable modal decom-

position method (SVMD) is applied to extract the modes from impact responses. Char-

acteristics of the mode shapes and modal damping are examined for various values of the

damping coefficient. The eigenvalues and mode shapes obtained from the experiments are

consistent with the numerical analysis of the model, although there is variation relative to

sampling parameters. Over the range of damping coefficients studied in the experiments, we

observe a maximum damping ratio in the lowest underdamped mode, which correlates with

the maximum modal nonsynchronicity.

The vibration model of a horizontal-axis wind turbine blade can be approximated as a

rotating pretwisted nonsymmetric beam, with damping and gravitational and aeroelastic

loading. The out-of-plane (flapwise) and in-plane (edgewise) motion of a wind turbine blade

are examined with simple aeroelastic damping effects. Hamilton’s principle is applied to

derive the in-plane and out-of-plane equations of motion, and the partial differential equation

is linearized and then discretized by the assumed-mode method. A simple quasi-steady blade-

element airfoil theory is applied to obtain the aeroelastic damping. The analysis is performed

on three blades of different size. The effects of nonproportional damping are not strong, but

are seen to become more significant as the blade size increases. The results provide some

experience for the validity of making modal damping assumptions in blade analyses.

A perturbation approach is developed to analyze the perturbation effect of the parametric

excitation on the unperturbed linear modes. The method is applied in the examples of

a three-mass system and a wind turbine blade. In wind-turbine blades, the parametric

excitation has a weak effect on the non-resonant unperturbed linear modal responses.
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Chapter 1

Introduction

1.1 Objective and Motivation

Self-adjoint, undamped distributed parameter systems have real normal modes and natural

frequencies. We can use separation of variables to generate a differential eigenvalue problem.

In some simple situations, we can then solve the equation of motion governing the free

vibration without damping. Typically whether the geometry is simple or complicated, the

eigenvalue problem often needs a numerical solution.

For a damped distributed parameter system, the normal modes are the same as the

undamped modes if the system is modally damped in the sense of Caughey [1]. When

the system is nonmodally damped, the eigensolutions can have complex values and therefore

involve mathematical difficulties in solving the complex differential eigenvalue problem [2–8].

Complex modes have some properties that are different from the real modes. When

modes become complex, modal motions may be nonsynchronous [9]. In industry, when

rotating parts exist in the system, then the modes could be complex and real normal modes

may not be enough as a tool to study the vibration system.

The objective of this work are listed as below.

Our goal is to study vibration problems with the following two features: nonmodal damp-

ing and parametric excitation stiffness. In these two cases, the damping matrix or the stiffness

would be non-diagonalizable with an undamped modal coordinate transformation.
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First, we aim to develop an approach for studying the complex modes and the associated

modal properties of a nonmodally damped continuous system. We expect to develop a

straightforward, noniterative approach for solving the complex eigenvalue problem. Then

this approach will be applied to a cantilevered beam example to examine the modal properties

such as modal damping and modal nonsynchronicity.

Second, we intend to conduct an experiment of a nonmodally damped beam to verify the

complex modal properties which we obtain from the theoretical model based on the approach.

With an adjustable damping coefficient, we aim to obtain the modal properties at different

damping levels. We also will test the functionality of a pair of complex modal identification

methods, state-variable modal decomposition and orthogonal modal decomposition.

Third, in the operation of a wind turbine, the blade endures a variety of loads, such as

gravitational forces, centrifugal forces and aerodynamic forces. The objective is to study the

modes of a rotating wind-turbine blade under these loading conditions. The aerodynamic

forces could cause nonmodal damping in the continuous beam model. Therefore, we will

apply the approach that we developed to study the nonmodal damping in the vibration of a

wind-turbine blade.

Fourth, rotation can bring parametric excitation terms in the equation of motion of

a wind-turbine blade, and make the modal analysis more difficult. We aim to develop a

perturbation analysis approach to study the parametric excitation effect.

2



1.2 Research Background

1.2.1 Nonmodally Damped Distributed Systems

In distributed parameter systems, like strings, beams, shafts and rods, the mass, stiffness, and

a certain class of damping operators are diagonalizable with the undamped modal coordinate

transformation. The system may not be diagonalizable when the damping is nonmodal in

the sense of Caughey [1], or the stiffness includes the parametric excitation.

The partial differential equation of motion governing the free vibration of an undamped

or proportionally damped beam can be solved by using the standard separation of variables

method, which leads to a differential eigenvalue problem that often requires a numerical so-

lution. When non-modal damping is introduced to the structure, the natural frequencies and

modes of vibration become complex and the usual separation of variables solution becomes

much more difficult. The general formulation for complex eigenvalue problems is still under

development.

Singh and others [10–12] developed the eigenproblem formulation and solution techniques

which allow the determination of the complex eigenvalues and complex normal modes of

transversely vibrating beams having a wide variety of non-proportional viscous damping

configurations. An iterative Newton’s method was applied to compute the eigenvalues and

further the modal parameters. Hull [13, 14] developed a closed-form series solution for the

axial wave equation with a viscously damped boundary condition at the free end. Oliveto et

al. [15–17] analyzed a simply supported beam with two rotational viscous dampers attached

at its ends and developed the complex mode superposition method. A numerical procedure

was also applied to obtain the complex frequencies and modes of vibration. Krenk [18–20]

used a state-variable formulation to express the partial differential equation (PDE), which
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is second-order in time derivatives, as a system of two PDEs, that are first-order in time

derivatives. He then used separation of variables to establish an eigenvalue problem system,

which was solved iteratively. Sirota and Halevi [21] presented the solution of the free response

of damped boundary structures to general initial conditions in the form of an infinite sum

of products of spatial and time functions by Laplace domain approach. Some other research

studying complex modes can be found in [22–24].

In this work we describe a non-iterative method based on assumed modes, and apply into

the complex modal analysis of an end-damped beam.

1.2.2 Modal Identification Methods of Experimental Modal Anal-

ysis

Output-only modal analysis methods only use output signals such as acceleration, velocity

and displacement to extract modal information, which is an advantage in some applica-

tions which the input signal is hard to capture. The output-only modal analysis can be

time-based or frequency based. A few time-based methods include the eigensystem real-

ization algorithm [25], Ibrahim time domain method [26], independent component analy-

sis [27, 28], least squares complex exponential method [29], Prony’s method [30, 31] and

stochastic subspace identification methods [32]. Some frequency-based approaches include

orthogonal polynomial methods [33], complex mode indicator function [34] and frequency

domain decomposition [35].

As variants of proper orthogonal decomposition methods, the smooth orthogonal decom-

position (SOD) [36–38] and the state-variable modal decomposition (SVMD) [39–41] are new

time-domain output-only methods developed in recent years and have shown good results for
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modal analysis of free response simulations. Compared to the Ibrahim time domain method

and Prony’s method, SOD or SVMD do not involve the possibility of oversized state matrices

and their spurious modes. Compared to frequency domain decomposition, these methods do

not involve spectral density functions.

In the work of Farooq [41, 42], the state-variable modal decomposition method was ap-

plied to the modal parameter identification of structural systems. When applied to a beam

experiment, the decomposition method showed good results compared to the theoretical re-

sults of an Euler beam. Quantitative assessment was conducted to investigate the effects of

samples number and time record length on the accuracy of modal identification. A sensitiv-

ity analysis was also conducted to verify the limitations on the number of sensors in the real

experiments regarding to the number of active modes.

Experimental modal analysis on complex modes is an important topic for the analysis of

the nonmodal damping, common in complicated engineering problems, and also wave mo-

tions. Ibrahim presented a technique for computing a set of normal modes from a set of

measured complex modes [43]. Ewins proposed an approach for the modal identification of

lightly damped structures [44]. Feeny presented a complex generalization of proper orthog-

onal decomposition [9, 45], and used it to decompose wave motion and to extract dominant

complex modes.

1.2.3 Eddy Current Damping

There are many ways to induce damping in mechanical systems. Eddy currents can provide

a contact-free, nearly linear damping source. Eddy currents are generated when a non-

magnetic conductive metal moves in a magnetic field [46–48]. These eddy currents induce

their own magnetic field with opposite polarity of the applied field, which causes a resistive
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force. Eddy currents have been used for many interesting dynamics applications [47]. Eddy

currents can be applied to brake system by using the rotational movement of a conductive

medium between two oppositely poled magnets to induce an electro-motive force in the

material [49–56]. Eddy current damping can be applied to rotational systems to suppress

the lateral vibrations of rotor shafts [57–59]. Some other applications of magnetic damping

can be seen in [60–62].

Inman et al. [46, 63] built an eddy current damper with permanent magnets and a con-

ducting sheet, and then applied it to the vibration suppression of a beam. The theoretical

model for the eddy current damper was derived using the electromagnetic theory, which

can help to predict the damping characteristics and therefore the dynamic behavior of the

structure. Two geometries of electromagnetic fields were investigated for the eddy-current

damping, including the cases when the direction of motion of the conducting sheet is per-

pendicular and parallel to the magnet’s face.

In this work, eddy-current damping will be used to provide linear, but nonmodal damping

in an experiment.

1.2.4 Wind-Turbine Blade Modeling

Research on rotating cantilevered beams has been popular for years. Such engineering prob-

lems include turbine blades and helicopter blades. Here, we summarize just some of the

papers which have investigated the vibration of rotating beams. Yoo et al. [64–67] analyzed

the coupled bending-axial vibration and uncoupled bending vibration using the Rayleigh-

Ritz method. Coupled bending-bending-torsion vibration analysis was presented by Anghel

et al. [68]. With the development of computer and software, mode shapes, and especially

complex mode shapes, were investigated in an easier way [69–72] since the large load of cal-
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culation is easier to handle. Cooley and Parker [73,74] generalized previous works and inves-

tigated coupled bending and torsional motion. Extended operators and the Galerkin method

were applied to discretize the equations. Other related research can be found in [75,76].

There has been a variety of work on modeling of rotating turbine blades. Hodges and

Dowell [77] derived the nonlinear partial differential equations of bend-bend-torsion motion

for a twisted helicopter rotor blade. Equations of motion for a rotating wind turbine blade

were developed by Wendell [78, 79]. Then, in application to horizontal-axis wind-turbine

blades, Kallosoe added gravity and pitch action into the equations of motion [80]. A nonlinear

model was developed by Larsen and Nielsen [81, 82] for the coupled edgewise and flapwise

bending vibrations of pre-twisted wind-turbine blades with a periodically moving support and

applied a reduced form of the model to carry out stability analysis. Turhan and Bulut [83,84]

investigated the in-plane bending vibration of a beam rotating with a periodically fluctuating

speed. Nonlinear equations that model the flexural potential in non-uniform beam have

been developed by Caruntu [85]. Ishida et al. [86] investigated the fundamental vibration

characteristic of an elastic blade of the wind turbine. The nonlinear vibration analysis of the

superharmonic resonance was performed. Ramakrishnan and Feeny [87] used the method

of multiple scales to analyze resonances of the forced nonlinear Mathieu equation, as an

approximate representative of blade motion.

With the recent increase in the size of wind turbines, the stability and vibration of wind

turbine blades has become more important. Sandia National Laboratories have some work

on developing a large blade for horizontal-axis wind turbines. A 100-m blade for a 13.2 MW

horizontal axis wind turbine was presented [88], and therefore new challenges come with the

increase of the size, such as strength, fatigue, deflection and buckling. The research in this

area includes the aerodynamic performance of the blades, resonance analysis, and modal
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analysis. Bir and Oyague [89] showed the modal chracteristics of the 23-m GRC (Gearbox

Reliability Collaborative) turbine blade. The modes of natural vibrations of a particular

63-m wind turbine blade were partly investigated in the work of Kallesoe [80,90].

In time-periodic systems, such as wind turbine blades under steady operating speeds, the

time-periodic stiffness matrix presents challenges to modal analysis. In experimental modal

analysis, there are a few methods, such as Floquet modal analysis, for analyzing the time

varying modes based on data measurements. Allen [91–96] proposed a system identification

routine for estimating the modal parameters of a linear time-periodic system including the

periodic mode shapes, and applied this to simulated measurements from a model of a rotating

wind turbine. However, there is no mature theoretical method for analyzing the effect of the

parametric excitation on the modal response of the stationary system.

1.2.5 Aerodynamics of Wind Turbine Blades

Wind turbines have been used for centuries. However, research on the aerodynamics on wind

turbines has become a popular topic within the last 30 years. Horizontal-axis wind turbines

frequently experience high aerodynamic loads during normal service, and these aerodynamic

loads bring excessively high stress on the turbine blades, which will finally reduce the service

life of the wind turbine [97]. A lot of sources such as the stochastic nature of the wind,

flexibility of the wind turbine structure, and the unsteady, three-dimensional character of

the flow, combine to make the accurate estimation of the loading impossible [98].

Wind-turbine-blade aerodynamic phenomena can be broadly categorized by machine op-

erating states into two primary cases. Rotational augmentation determines the blade aero-

dynamic response at zero and low rotor yaw angles. Dynamic stall dominates blade aerody-

namics at moderate to high yaw angles [99]. Rotational augmentation includes research such
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as rotationally induced cross flows and centrifugal forces in the presence of flow separation.

Dynamic stall occurs when the effective angle of attack of the airfoil is above its normal

static stall angle and accompanied with much larger phase variation in the unsteady airloads

due to significant hysteresis in the flow [100].

A simple model for aeroelastic analsyis of a rotor was created by Eggleston and Stod-

dard [101], in which steady, linear aerodynamic assumptions were employed. Oregon State

University developed a computer code FLAP and the analysis was constrained to allow only

flapping motions for a cantilevered blade. FLAP uses a linearized blade element method

(BEM) aerodynamic model with a frozen wake and can predict the blade load in steady or

turbulent winds [98]. To reduce the undertainties in the calculation of aerodynamic loads, the

computational fluid dynamics (CFD) methods are applied to the rotor and wake flow [102].

The flow field of wind turbine blades is complex due to a variety of factors, which is shown

in previous research [103,104]. Eggers and Digumarthi formulated a model for characterizing

the centrifugal and Coriolis effects on a deeply stalled wake residing on the blade suction

surface [105]. The rotational and inertial effects were introduced to wind-turbine blade flows

by the empirical stall delay model of Tangler and Selig [106].

Hansen [107] presented two experimental methods for estimating the modal damping of a

wind turbine during operation. The first method is based on the assumption that a turbine

mode can be resonated by a harmonic force at its natural frequency, and thus the decaying

response after the end of excitation can be used to estimate the damping. The second method

is operational modal analyisis based on stochastic subspace identification [32].

9



1.2.6 This Work

In this work we aim to analyze some continuous systems which cannot be decoupled using the

undamped modal coordinate transformation. We focus first on nonmodal damping, where

we present a method of analysis and apply it to a structure with concentrated damping

elements and then to wind-turbine blades. Wind-turbine blades then prompt us to examine

multi-degree-of-freedom and continuous systems with parametric excitation.

We first describe an assumed-modes approach for the modal analysis of nonmodally

damped continuous systems. Real assumed modes are applied to discretize the system.

The discretized eigenvalue problem is then cast in state-variable form to obtain the natural

frequencies and state-variable modal vectors based on the assumed modal coordinates. Dis-

placement parts of real and complex state-variable modal vectors are recombined with the

assumed modes to approximate characteristic shapes of the original system. The approach

is applied to an end-damped cantilevered beam, and characteristics of the mode shapes and

modal damping are examined for various values of the damping coefficient. As a comparision,

the finite-element method is also applied to get the mass, stiffness, and damping matrices

and which are then used to solve the eigenproblem in state-variable form.

A cantilevered beam setup with an adjustable eddy-current damper at the end is built and

experiments are conducted to verify the modal behavior with the variation of the damping

coefficient. State-variable modal decomposition (SVMD) is applied to extract the complex

modes from the measured response. The finite-element method is applied to build a theoreti-

cal model. The trends of modal properties such as damping ratio and modal nonsychronicity

with varying damping coefficient are studied experimentally and compared with the predic-

tion from the model. As verification, complex orthogonal decomposition (COD) is also
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applied to obtain the modes and modal properties from the free response and compare with

the results from SVMD. This is the first work in which SVMD is applied to an experiment

with decidedly complex modes.

We applied Hamilton’s principle to derive the in-plane and out-of-plane equations of

motion of a horizontal-axis wind-turbine blade. The equations of motion are discretized by

the assumed-mode approach with uniform cantilevered beam modes. We examine the modal

properties with varying rotation speeds and compare the modal properties with and without

rotation effects. Nonmodal aerodynamic damping is derived from a quasi-steady lift/drag

aerodynamic model. The complex modes are analyzed while neglecting the effects of rotation

to single out the effect that aerodynamic damping may have on the modes. Modal properties

including damping ratio and modal nonsynchronicity in this nonmodally damped system are

investigated. Data from 23-m, 63-m, and 100-m wind turbine blades are applied to the

theoretical model. We compare the difference of the modal properties with the variance of

the size of blades.

The turbine-blade PDEs derived from Hamilton’s principle, under the assumption of

steady wind and steady rotation, have parametric excitation. We develop a simple per-

turbation approach to analyze the perturbation effect of the parametric excitation on the

unperturbed system. Since wind turbines are defined to operate well below the first modal

frequency, in this initial work, we look at the nonresonant condition. The perturbation of

the parametric excitation terms in the equation of motion of a wind turbine blade is ana-

lyzed, to investigate the perturbation effect of the parametric excitation terms on the modal

response of stationary system. We also take a three mass system as an example to illustrate

the modal parametric effect.
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1.3 Contributions

The contributions of this work are listed below

� We present a noniterative analytical and numerical approach to describe complex

modes in nonmodally damped continuous systems. Most previous studies require it-

erative solutions or difficult numerical solutions. We sort out the complex and real

modes in the original coordinates. The convergence with two choices of assumed-mode

trial functions is studied.

� We study the behavior of an end-damped Euler-Bernoulli beam for various levels of

damping, and show its modal damping and nonsynchronicity. We also reveal the

behavior of the fundamental undamped mode as it becomes a real mode pair with

increased damping.

� The behavior of the beam is examined in an experiment. Modes are extracted by

SVMD in its first application to a system with complex modes.

� The modal analysis of the damped wind-turbine blade provides insight to the value of

using static lab studies to represent rotating blades operating in the wind.

� The perturbation study of the parametrically excited systems gives some understanding

of the perturbation of modal behavior in non-resonant conditions.

12



Chapter 2

Complex Modal Analysis of a

Non-Modally Damped Continuous

Beam

2.1 Chapter Introduction

This chapter outlines a method in which real assumed-mode trial functions are applied to

discretize the system. The discrete eigenvalue problem is then cast in state-variable form

to obtain the natural frequencies and state-variable modal vectors. Displacement parts of

real and complex state-variable modal vectors are recombined with the assumed-mode trial

functions to approximate characteristic shapes of the original system.

The approach is applied to study the behavior of the end-damped cantilevered beam.

As a comparision, the finite-element method is also applied to get the mass, stiffness, and

damping matrices, which are then used to solve the eigenproblem in state-variable form.

Characteristics of the mode shapes and modal damping are examined for various values

of the damping coefficient. The nonsynchronicity of the complex modes is quantified by

a traveling index. The convergence with the variation of the number of assumed modes

of different assumed-mode trial functions is examined. The real modal pair is defined and
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studied when the damping coefficient is large. The optimal damping coefficient for modal

properties such as damping ratio and traveling index are presented.

2.2 Problem Formulation

In this section we outline a scheme for modal analysis of a nonmodally damped continuous

system, and apply it to an end-damped Euler-Bernoulli beam. This approximately represents

elastic structural components in bending, with concentrated dampers. The scheme involves

two stages of coordinate transformations, including an assumed mode expansion and discrete-

system diagonalization. This is similar to the approach used in [80, 108], except here the

discrete system is examined in state-variable form.

2.2.1 Assumed-Mode Formulation of a Damped Beam

The example of a cantilevered beam with a damper at the free end is shown in Figure 2.1.

The lumped damper leads to non-proportional damping. Based on the Euler-Bernoulli beam

theory, the equation of motion of the beam is obtained as

ρü+ cu̇δ(x− l) +
∂2

∂x2

(
EI(x)

∂2

∂x2

)
u = 0 (2.1)

where u(x, t) is the transverse displacement, ρ is the mass per unit length, δ(x − l) is the

Dirac delta function, in m−1, c is the damping coefficient in kg/s, E is Young’s modulus,

I is the cross-sectional area of moment of inertia, and the dots indicate partial derivatives

with respect to time, t. Since the damper is lumped directly into the PDE, the boundary

conditions are
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u(0, t) = 0

∂

∂x
u(0, t) = 0

∂2

∂x2
u(l, t) = 0

∂3

∂x3
u(l, t) = 0.

Figure 2.1 Cantilevered beam with damper at the free end

An assumed modal expansion, which is based on the Galerkin projection [109], is used

to reduce the order of the model. The transverse displacement is expanded as u(x, t) ≈∑N
i=1 ui(x)qi(t), where ui(x) are the assumed mode trial functions, which satisfy the geo-

metric boundary conditions, and qi(t) are the generalized modal coordinates of the chosen

trial function. We substitute this expansion into equation (2.1), multiply by uj(x), and

integrate over the length of the beam to obtain a set of second-order ordinary differential

equations, for j = 1, · · · , N . The reduced-order model then has the form

Mq̈ + Cq̇ + Kq = 0 (2.2)
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where q is a vector of N assumed modal coordinates, and M, K, and C are the mass,

stiffness, and damping matrices. The elements of N ×N matrices M, K, and C are

mij =

∫ L

0
ρ(x)ui(x)uj(x)dx (2.3)

kij =

∫ L

0
EIu′′i (x)u′′j (x)dx (2.4)

cij =

∫ L

0
cui(x)uj(x)δ(x− l)dx (2.5)

for i, j = 1, · · · , N , where the primes indicate derivatives with respect to space, x. Since

the assumed modes are not the true normal modes, M,C and K are generally non-diagonal.

Furthermore, C is generally non-modal (non-Caughey [1]).

Also, since equation (2.2) represents a self-adjoint system, matrices M,C and K are

symmetric. In this case, M,C and K would also result if an assumed-mode (trial function)

expansion for u(x, t) were applied to the energy expressions and virtual work in a direct

variational derivation.

Equation (2.2) can be put in state-variable form by letting yT = [q̇TqT ], and introducing

the equation Mq̇−Mq̇ = 0 [110]. As such,

Aẏ + By = 0 (2.6)

where matrices A =

 0 M

M C

 , B =

−M 0

0 K

 are 2N × 2N . Seeking a solution of the

form y(t) = φeαt leads to a general eigenvalue problem,

αAφ+ Bφ = 0 (2.7)
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Furthermore, the modal solution can be written as y = [q̇TqT ]T = φeαt. The eigenvec-

tors have the form φT = [vTwT ] = [αwTwT ], where w is the displacement partition of the

modal vector [111].

In matrix form, the eigenvalue problem is AΦΛ + BΦ = 0, where Λ is a diagonal matrix

of eigenvalues α, and Φ = [φ
1
, φ

2
, . . . , φ

2N
] is the state-variable modal matrix.

The state-variable modal matrix can be written in terms of its velocity and displacement

partitions as

Φ = [φ
1
, φ

2
, . . . , φ

2N
] =

 V

W

 =

 WΛ

W

 , (2.8)

where matrix W = [w1,w2, . . . ,w2N ] is the displacement configuration modal matrix. Thus

the multimodal solution is  q̇

q

 = Φz =

 WΛ

W

 z, (2.9)

where z is a vector of state-variable modal coordinates. Then a general response is q = Wz.

For the complex-modal oscillations, wj and αj(t), and hence zj , come in complex con-

jugate pairs. The real form of the associated modal oscillation in q can thus be expressed

as

qj = (wjzj + w∗jz
∗
j )/2, (2.10)

where the symbol * denotes complex conjugation. So q is the vector of “assumed-mode” trial

function coordinates, i.e. coordinates that modulate the trial functions, and z is a vector of

2N modal state variables, and is a linear combination of vectors q and q̇. Using y = Φz in

equation (4.31) leads to equations that are decoupled in the modal state variables z.

We can organize the state-variable modes to separate the real modes, wjr, j = 1, . . . , 2m,
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from the complex modes, wk, k = 1, . . . , 2n, and put them in a modal matrix as

W = [w1r, . . . ,w2mr,w1,w
∗
1,w2,w

∗
2, . . . ,wn,w

∗
n] = [Wr,Wc]. (2.11)

We then write the general response as q = Wz, where the modal state variables are now

ordered as z = [z1r, . . . , z2mr, z1, z
∗
1 , . . . , zn, z

∗
n]T = [zTr , z

T
c ]T , where the vector zr contains

the real-valued state variables and the vector zc contains the complex-valued state variables.

The displacement can thus be expressed as

q = qr + qc = Wrzr + Wczc = Wrzr + Hh + H∗h∗, (2.12)

where the matrix Wc has been organized such that half of its modal vectors are listed in H,

and the other half, the complex conjugates, are in H∗, and likewise the corresponding halves

of the complex state variables in vector zc are contained in h and h∗.

Thus, the real-valued displacement modal vectors in Wr characterize the part of the

motion in the original M,C, and K system that has real eigenvalues and eigenvectors in the

associated state-variable system (4.31), which are the over-damped part of the response, and

the complex-valued modal vectors in H (or equivalently H∗) characterize the underdamped

part of the M,C, and K system.

If the damping were proportional (or more generally “modal” in the sense of Caughey [1],

i.e. diagonalizable with the undamped modal coordinate transformation), then the real modes

would come in pairs that are either identical or proportional, and the displacement partitions,

Wc, of the complex modes could also be expressed as real (numerical software may produce

complex eigenvectors with linearly dependent real and imaginary parts), although they would
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correspond to the complex eigenvalues of the state-variable system (4.31). In the case of real

eigenvalues, the pairs of identical (or proportional) real eigenvectors are associated with

pairs of distinct eigenvalues (if not critically damped) which provide the two time constants

of exponential decay of the composite over-damped displacement mode. When the damping

is non-modal in the sense of Caughey, there are no longer pairs of identical (or proportional)

real eigenvectors, and therefore no associated pairs of time constants that define a single

composite displacement mode. However, if the damping matrix can be considered to be a

small perturbation of a modal damping matrix, it is likely that “similar” pairs of real modal

vectors can be associated.

Now we relate the complex modes of the M,C, and K system to the original continuous

system whence they came, for which

u(x, t) ≈
N∑
j

uj(x)qj(t) = U(x)q, (2.13)

where U(x) = [u1(x), . . . , uN (x)] is a 1 × N matrix of assumed modal functions. Using

q(t) = Wz(t), and particularly equation (2.12), with equation (2.13), we have

u(x, t) ≈ U(x)q(t) = U(x)[Wrzr(t) + Hh(t) + H∗h∗(t)], (2.14)

or

u(x, t) ≈ U(x)Wrzr(t) + U(x)Hh(t) + U(x)H∗h∗(t). (2.15)

In this expression, u(x, t) generally can consist of an over-damped contribution (should

m 6= 0 and over-damped modes exist) of modal shapes, contained in Ur(x) = U(x)Wr,

which are modulated by exponentially decaying state-variable modal coordinates. Since
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U(x) is 1×N and Wr is N ×2m, the matrix of real modal functions Ur(x) is 1×2m. More

commonly for vibration systems, u(x, t) typically consists of an under-damped contribution

(i.e. n 6= 0) of modal shapes, contained in matrix function Uc(x) = U(x)H, or its complex

conjugate, which are modulated by exponentially decaying complex state-variable modal

oscillations. Since U(x) is 1 × N and H is N × n, the matrix of complex modal functions

Uc(x) is 1× n.

The n complex modal functions have real and imaginary parts, which collaborate to

describe a non-synchronous oscillation (e.g. see [9]).

In the analysis that follows, we will choose assumed modal functions organized in matrix

U(x) to discretize an example system (a cantilevered beam with end dashpot) into the

form (2.2), and then do a state-variable modal analysis on the state-variable description

(4.31) of the assumed-mode discretized system (2.2) to obtain the displacement partitions

of, generally, real and complex state-variable modal vectors, listed in Wr and H. We will

then characterize the real and complex mode shapes of the non-modally damped cantilevered

beam as

Ur(x) = U(x)Wr (2.16)

Uc(x) = U(x)H. (2.17)
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2.3 Example : End-Damped Cantilevered Beam

2.3.1 Assumed-Mode Formulation

In this specific example, the beam properties are: elastic modulus E = 190 GPa, density ρ =

7500kg/m3, width w = 0.051 m, thickness t = 0.003 m. These parameters imply a mass per

unit length m = 1.1907 kg/m, and cross-sectional area moment of inertia I = 1.17× 10−10

m4.

The damping coefficient is set to c = 50 kg/s. Both real and imaginary plots of the first

four modes are shown in Figure 2.2, of which the solid lines are real parts, and the dashed

lines are imaginary parts. A real mode pair is also depicted. It turns out that the real mode

pair is associated with mode 1 of the undamped system, as we will see later, and the complex

modal pairs are associated with other modes. The terminology used here is that “real mode

1” and “real mode 2” refer to the real mode pair associated with mode 1. “Mode 2”, “mode

3” and “mode 4” refer to the associated complex-conjugate modal pair. Figure 2.3 shows

the complex domain plots, i.e. imaginary part versus real part parameterized in x, as solid

lines. Thus x = 0 is the location of the clamp and is at the origin of the plots. The real

mode pair, having no imaginary parts, is instead plotted as real mode 2 versus real mode 1.

If a complex mode (or a real mode pair) were synchronous, the plots would form a straight

line, since the real and imaginary parts (or a real mode pair) would be proportional. The

deviation from the straight line indicates nonsynchronicity, which will be quantified later.

2.3.2 Convergence Study of Different Assumed Mode Functions

The convergence of eigenvalues with varying assumed modes number was also investigated.

The assumed mode functions applied in this work are the uniform beam modes, as shown in
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Figure 2.2 Real (solid lines) and imaginary (dashed lines) parts of the sampled displacement
modal functions generated from the assumed-mode method. In the top left, two real modes
are grouped as a “real mode pair”.

equation (2.18).

Φ(x)n = sin βnx− sinh βnx− (
sin βnl + sinh βnl

cos βnl + cosh βnl
)(cos βnx+ cosh βnx) (2.18)

Using the uniform-beam modes as assumed modes, as the number of assumed modes

increases, the eigenvalues converge rapidly, such that the first three pairs of the complex

eigenvalues have converged by n =6, and the real eigenvalues converge as n gets larger

than about eight. But when the number is larger than 15, an inaccuracy caused by the

hyperbolic function calculations emerges, and the eigenvalues diverge, as shown in Figure
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Figure 2.3 Real and imaginary parts plotted against each other in the complex plane
(assumed-mode method shown with solid lines, and finite-element method shown with dots).
The top left shows two modes of the real mode pair plotted against each other.

2.4 and Figure 2.5. Therefore, the assumed mode number in this paper is set to be eight. A

similar convergence behavior was shown in [64], in which the assumed modes functions were

polynomial functions.

A few modal analysis papers have applied different kinds of polynomial functions as

the assumed-mode trial functions, such as Legendre, Chebyshev, integrated Legendre, or-

thogonalized Duncan, Bardell’s functions and Kwak’s functions [112–115]. Here we applied

Karunamoorthy’s modified Duncan polynomials [116] as a comparison to the uniform beam

characteristic modal functions. Duncan polynomials for bending are given as

φ(x)n =
1

6
(n+ 2)(n+ 3)xn+1 − 1

3
n(n+ 3)xn+2 +

1

6
n(n+ 1)xn+3 (2.19)

These equations satisfy the boundary conditions of a cantilevered beam and are linearly
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Table 2.1 Eigenvalue comparison from two kinds of assumed-mode functions and finite ele-
ment method, c = 50 kg/s

Mode No. Uniform Beam
Modes

Modified Duncan
Polynomials

Finite-element

real mode
1.6146 + 0i 1.6145 + 0i 1.6145 + 0i

pair 759.12 + 0i 808.71 + 0i 798.41 + 0i

mode 2 7.856 + 76.312i 7.860 + 76.286i 7.858 + 76.288i

mode 3 25.309 + 253.11i 25.492 + 252.862i 25.454 + 252.88i

mode 4 44.367 + 537.20i 45.498 + 536.642i 45.285 + 536.68i

mode 5 57.906 + 925.38i 61.519 + 924.687i 60.326 + 925.12i

mode 6 65.505 + 1414.9i 68.250 + 1463.61i 69.26 + 1412.1i

mode 7 67.567 + 1992.3i 288.414+2560.78i 74.297 + 1994.7i

mode 8 65.295 + 2667.4i 158.606+3985.17i 77.201 + 2672.3i

independent. By othogonalizing Duncan trinomials using the Gram-Schmidt process, we

could obtain the modified Duncan polynomials. By applying the polynomial assumed-mode

functions to our problem, the convergence result is shown in Figure 2.6. The convergence

is worse for higher modes compared to the results using uniform beam characteristic modal

functions.

The eigenvalues obtained from the two kinds of assumed-mode functions are listed in

Table 3.2. The number of assumed-mode functions are both set to be eight. It shows there

is significant difference for the higher modes.

2.3.3 Finite-Element Method

As a second way to solve this problem, and to compare the results obtained from the assumed-

mode method, the finite-element method (FEM) is used to find the mass and stiffness ma-

trices, and further to form the discretized equations of motion. FEM discretizes the whole

domain of the beam into smaller elements, and calculates the displacements at discrete nodes.

Each beam element has two nodes, and at each node, the transverse nodal displacements di

and rotations θi are considered. So four degrees of freedom exist in each element matrix:
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Figure 2.4 Variation of the eigenvalues with increasing number n of assumed modes (uniform-
beam modes)

FEM node point deflections d1 and d2, and rotations θ1 and θ2. The element matrices for

an Euler-Bernoulli beam are [117,118]

Me =
mh

420



156 22h 54 −13h

22h 4h2 13h −3h2

54 13h 156 −22h

−13h −3h2 −22h 4h2


(2.20)

Ke =
EI

h3



12 6h −12 6h

6h 4h2 −6h 2h2

−12 −6h 12 −6h

6h 2h2 −6h 4h2


(2.21)

where h is the length of the beam element.

Once the element mass and stiffness matrices have been computed for each element,
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Figure 2.5 Variation of the eigenvalues with increasing number n of assumed modes (uniform-
beam modes) for the real mode pair

they can be combined using a method of superposition to obtain global mass and stiffness

matrices [117]. The global damping matrix was obtained from the boundary condition, as

C =



0 · · · 0 0

...
. . .

...
...

0 · · · c 0

0 · · · 0 0


(2.22)

This process leads to the equations of motion of the form Mẍ + Cẋ + Kx = 0, where

x = [d1, θ1, . . . , dn, θn].

The vector of modal displacements, and the natural frequencies of the system, can be

determined by solving the eigenvalue problem. Since C is nonproportional and non Caughey,

we solve the eigenvalue problem in state-variable form, and keep the displacement partition

of the eigenvectors. In this example, 50 elements were used in the calculation, as 50 falls

into the convergence range.
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Figure 2.6 Variation of the eigenvalues with increasing number n of assumed modes defined
as modified Duncan Polynomials

For plotting, the transverse displacements terms d1, d2 of the modal vectors were ex-

tracted from the eigenvectors, dropping the terms of rotations θ1, θ2. Both real and imagi-

nary plots of the first four transverse-displacement modes are shown in Figure 2.8, of which

the solid lines are real parts, and the dashed lines are imaginary parts. Dotted lines in Figure

2.3 show two modes of a real mode pair plotted against each other and the real parts and

imaginary parts of the three complex modes plotted against each other in the complex plane.

Mode plots obtained from the assumed mode method and the FEM are compared in

Figure 2.3, and they match very well. The eigenvalues of the lower modes are shown in Table

3.2. The results show the natural frequencies generated from the assumed-mode method and

finite-element method are highly consistent.

The modal assurance criterion (MAC) values comparing the assumed-mode method and

finite-element method are shown in Table 2.2. The function of the MAC [119] is to provide

a measure of consistency between two estimates of a modal vector. This provides an addi-

tional confidence factor in the evaluation of modal vectors from different modal parameter
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Figure 2.7 Beam element with nodal displacements and rotations

Table 2.2 MAC values comparing the assumed mode (uniform-beam modes) and FEM meth-
ods with varying damping coefficient. (*Mode 1 is a real mode pair when c = 50 kg/s and
1000 kg/s.)

damping coefficient c 0 1 50 1000

mode 1∗ 0.9997 0.9996
0.9998
0.9940

0.9998
0.9434

mode 2 0.9997 0.9996 0.9956 0.9955
mode 3 0.9886 0.9886 0.9840 0.9836
mode 4 0.9709 0.9709 0.9648 0.9659

estimation algorithms. The MAC modal scale factor is defined as

MACcdr =
|ψcrTψ∗dr|

2

ψcr
Tψ∗crψdr

Tψ∗dr
(2.23)

The values near unity in Table 2.2 show that the modes from the assumed-mode method

using undamped uniform beam modes and finite-element method are highly consistent.

2.3.4 Interpretation of Beam Modal Properties

The real and imaginary parts of the modes plotted with various damping coefficients c are

shown in Figure 2.9. The imaginary part dominates the modes when the damping coefficient

is set to be 1 or 1000 kg/s. When either part, alone, dominates, the modal motion is nearly
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Figure 2.8 Real (solid lines) and imaginary (dashed lines) parts of the displacement modal
vectors generated from the finite-element method. In the top left, two real modes are grouped
as a ”real mode pair”.

synchronous. As c approaches zero, the modes approach those of the cantilevered beam.

When c is around 50 kg/s, the real and imaginary parts are at comparable scales for the

modes shown. When the damping coefficient becomes sufficiently larger, the real parts of

modes 2, 3 and 4 become small, making their modal motions become more synchronous.

As the damping coefficient becomes very large, modes 2, 3 and 4 (and presumably higher

modes) of the fixed-free boundary condition with the lumped damper approach the first,

second, and third (and presumably higher) modes of a fixed-pinned boundary condition, as

shown in Figure 2.10. This is because the damper is nearly rigid. As c increases, mode
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1 of the cantilevered beam will have become a real mode pair which approaches a static

deformation as c reaches infinity. A similar behavior was seen in the case of a torsional

damper approaching a fixed-sliding-roller condition [120,121].

Figure 2.11 provides the plot of the locus of eigenvalues in the complex plane for the

first four modes with changing damping coefficient c. The real parts are near zero when c

is small. For each eigenvalue except for mode 1, the real part reaches a minimum (most

negative) value, and becomes less negative with further increase in the damping coefficient.

Thus, each persistently complex mode’s modal damping decay constant has a local max-

imum with respect to the damping coefficient c for this dashpot arrangement. As the value

of c increases, the damped modal frequency gradually decreases, with the most significant

decrease occuring in the range in which the decay rate is largest. The decrease in frequency

would be consistant with the damped frequency with modal damping. A similar plot was

computed in [12] using an iterative numerical scheme. The results in [12], however, did not

capture the real mode. The mode pair which is real for c = 50 kg/s comes from a mode

that is a complex conjugate pair for low values of c. The associated eigenvalues are plotted

with square symbols in Figure 2.11. Certainly as c approaches zero, the modal response is

oscillatory, with complex conjugate eigenvalues. When increasing c hits a critical value, the

eigenvalues become real and split apart very quickly with further increasing c.

The undamped modal frequency cannot be faithfully compared to that computed from

non-modally damped eigenvalues, since the non-modally damped eigensolution does not

decouple the M, C, K system in the same way. However, considering the complex modal

pair as a “mode”, the associated eigenvalues can be expressed in a form α1,2 = −ζωm ±

iωm
√
ζ2 − 1, from which a “modal” frequency ωm and damping ratio ζ can be computed.

These values are shown in Table 2.3 for the case of c = 50 kg/s. Compared to the undamped
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Table 2.3 Damping ratio and modal frequencies (c = 50 kg/s) compared to undamped modal
frequencies

Modes No. ζ ωm ωn(c = 0)

real mode pair 10.864 35.01 17.14
mode 2 0.1025 76.69 107.4
mode 3 0.1002 254.16 300.7
mode 4 0.0841 538.58 589.21

natural frequencies ωn in the undamped case (c = 0), the “modal” natural frequencies ωm

are decreased by the effect of non-modal damping. Figure 2.12 shows the plot of damping

ratios with changing damping coefficient c. Mode 1 is underdamped when c is small and

becomes overdamped when c comes to the critical point around c = 9 kg/s. For each of

modes 2, 3 and 4, the value of damping ratio increases with c, before it comes to a local

maximum, and then decreases.

A nonsynchronicity index or “traveling index” [9] indicates the degree of nonsynchronic-

ity of the real and imaginary parts of the complex modes. The nonsynchronicity index is

defined as the reciprocal of the condition number of the matrix whose two columns are the

real and imaginary components of the complex mode. The condition number, and thereby

the nonsynchronicity index, simultaneously capture the degree of linear independence, and

the relative magnitudes between the two vectors, both features of which conspire to affect

nonsychronicity. In the case of computing the nonsynchronicity index of a real-mode pair,

both vectors are independently normalized, and so the index only captures the degree of

linear independence. The relative strength of participation of the real mode pair depends on

initial conditions. If the nonsynchronicity index has a value near zero, this is an indication

that the modes are highly synchronous, while a value near unity indicates that the modes are

highly nonsynchronous. Nonsynchronous modal motions can be used to describe traveling

waves, and hence the term “traveling index” was used in [9], although “nonsynchronicity

31



Table 2.4 Traveling index computed from the complex modes with varying damping coeffi-
cient. (*Mode 1 is a real mode pair when c = 50 kg/s or 1000 kg/s.)

damping coefficient c 0 1 50 1000

mode 1∗ 0 0.005 0.510 0.646
mode 2 0 0.034 0.221 0.011
mode 3 0 0.018 0.342 0.017
mode 4 0 0.012 0.383 0.023

index” may be more general.

In reference [12], effort was made to quantify nonsynchronicity by computing the Im/Re

ratio, which is a ratio between the magnitudes of the imaginary and real parts of a complex

mode. The Im/Re ratio, however, is dependent on an arbitrary complex scalar constant

that can multiply the eigenvectors. It also does not regard the relative shapes of the real

and imaginary parts.

Table 2.4 provides the values of the nonsynchronicity index for different values of the

damping coefficient c. Figure 2.13 shows the variation of the nonsynchronicity indices with

increasing damping coefficient c. The nonsynchronicity index of a given mode starts from

zero for the undamped case, then increases to a maximum value if the mode remains complex,

and finally decreases with further increase in the damping coefficient. For the case of the

mode that became a real-mode pair, the traveling index continued to increase with increasing

c.

Comparison between Figures 2.11 and 2.13 shows that the maximum nonsychronicity of

each mode correlates with the mode’s maximum decay rate. As the value of c reaches values

for which the dashpot effectively dissipates energy, the modes behave nonsynchronously for

this dashpot arrangement. The large c value in Table 2.4 shows how the synchronicity returns

for oscillations with large end damping.
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2.4 Conclusion

We have outlined a scheme for the complex modal analysis of non-modally damped dis-

tributed parameter systems, and applied this approach to the analysis of an end-damped

cantilevered beam. The method involves the use of assumed modes of the undamped sys-

tem, which are combined based on the state-variable eigensolution of the discretized system.

The finite-element method was also utilized to get the mass, stiffness, and damping ma-

trices and further to build and solve a state-variable eigenproblem. The eigenvalues and

modal vectors obtained from the assumed-mode method were consistent with those from the

finite-element method, as indicated by nearly unit MAC values.

These results show that the distributed parameter assumed-mode based method is an

efficient way to solve the complex mode problem when non-modal damping is included. The

assumed-mode method involves computations of integrals for the low-order modeling of mass,

damping and stiffness matrices, and subsequent computations are noniterative and involve

lower-order matrices. The assumed-mode method should be equally applicable to structures

with nonuniformities, without significant changes in the approach.

We applied this method to study features of the end-damped cantilevered beam as a

function of the damping coefficient c. With this damping arrangement, most modes are

underdamped regardless of c. Each underdamped mode has optimal values of c for generating

modal damping and modal nonsynchronicity. As c gets large, the damper becomes more rigid,

and the beam behavior approaches that of a clamped-pinned beam.

Thus, the contributions of this work are in the presentation of a noniterative method

for approximating real and complex modes in continuous, generally damped systems, its

verification through comparisons between finite-element discretizations and two choices of
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assumed-mode trial functions with convergence studies, and in the study of the end-damped

beam and the dependence of its modal damping and modal nonsynchronicity on the damping

coefficient.
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Figure 2.9 Mode shapes from the assumed-mode method with varying damping coefficient.
(When c = 1 kg/s, mode 1 is complex, so real mode 1 and 2 are real part and imaginary
part of mode 1 respectively. ) (a) real parts (b) imaginary parts except for the cases of the
real mode pair (c = 50 and 1000 kg/s), in which the second real modes are plotted.
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Figure 2.11 Variation of the eigenvalues with increasing damping coefficient
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Figure 2.13 Variation of the nonsynchronicity index with increasing damping coefficient
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Chapter 3

Experimental Study on Complex

Modes of an End Damped Continuous

Beam

3.1 Chapter Introduction

In this chapter, a cantilevered beam experiment setup is built, with an eddy-current damper

applied at the end as nonmodal damping. The state-variable modal decomposition (SVMD)

is applied to extract the modes from the free impact response of an end-damped cantilevered

beam and to study the modal properties such as mode shapes, modal frequencies, damping

ratios and modal nonsynchronicity. The experimental results of the modal properties are

compared with the model based on the theories in Chapter 2. State-variable modal coor-

dinates and modal assurance criterion values are used to evaluate the quality of the modal

decomposition. Complex orthogonal decomposition is applied in comparison to the modal

identification results obtained from SVMD.
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3.2 Eddy Current Damping Formulation

An eddy-current damper was built and applied as the damping in this experiment, chosen

based on its non-contact and linear properties. The theoretical model for the eddy current

damper is derived using the electromagnetic theory in [46,63], which can help to predict the

damping characteristics and the dynamic behavior of the structure. Two arrangements of

electromagnetic fields were investigated for the eddy-current damping, including the cases

when the moving direction of the conducting sheet is perpendicular and parallel to the

magnet’s face. In our experiment, we placed the conducting sheet parallel to the magnet’s

face in order to obtain linear damping when the conducting sheet moves in the magnetic

field.

Figure 3.1 The magnetic field of the eddy-current damper

When the conducting sheet moves in the magnetic field of a permanent magnet, as

shown in Figure 3.1, eddy currents are induced, based on the induction effect discovered by

Faraday [48]. These eddy currents induce their own magnetic field with opposite polarity

of the applied field, which causes a resistive force in the opposite direction of the velocity.

Thus the movement of the conducting sheet is resisted by forces induced by eddy currents,

which can therefore be applied as a non-contact damping mechanism.
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If the surface charges are ignored [47,122], the current density J induced in the conducting

sheet is defined as

J = σ(v ×B) (3.1)

where σ is the conductivity of the conducting sheet, v is the velocity of the conducting sheet,

J is the current density, and B is the magnetic flux density.

The eddy current force is defined as

F =

∫
V

J×BdV (3.2)

where V is the volume between the magnet and the conducting sheet.

Substituting equation (3.1) into equation (3.2), as an approximation, the force induced

by the eddy currents can be expressed as

F = −σδB2
zSev (3.3)

where δ is the thickness of the conductor plate, B2
z is the magnitude of the magnetic flux

in the z direction, Se is the equivalent contact area between the conducting sheet and the

magnet, and v is the velocity of the conducting sheet. This force oppose the velocity, and

can be interpreted as a damping force, F = −cv

The damping coefficient c can be identified as

c = σδB2
zSe (3.4)

So the induced repulsive force is proportional to the velocity of the conductive metal,

and the damping is linear as long as the magnetic flux, conductivity, and sheet thickness are
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constant. This can be applied in a cantilevered beam [122] to provide nonmodal damping as

described in Chapter 2.

3.3 State-Variable Modal Decomposition

As a kind of output-only experimental modal analysis method, the SVMD method [41,108]

can be applied to extract the state-variable modes from free responses in the cantilevered

beam experiments. The state-variable modal decomposition method enables frequency,

damping, and mode-shape estimations from free-response ensemble data for damped lin-

ear systems. The eigenvalue problem is formed from correlations of state-variable ensembles.

The SVMD eigenvalue problem can be related to the linear model’s state-variable eigenvalue

problem and therefore can be used for determining modal parameter information.

In SVMD, a generalized eigenvalue problem is derived from measured state-variable en-

semble data. Sensed outputs from the free response of the system are incorporated into en-

semble matrices and these ensemble matrices are used to create correlation matrices. Then

the eigenvalue problem is generated based on the correlation matrices. The method han-

dles both modal and nonmodal damping cases, regardless of whether the modes are real or

complex.

First, an ensemble matrix Y is built, which is constructed by velocity and displacement

vectors

Y = [y(t1),y(t2), · · · ,y(tN )] (3.5)

where y(t) = [ẋ1(t), · · · ẋM (t);x1(t), · · ·xM (t)]T .

Then a correlation matrix is built as P = YYT

N and a second correlation matrix is built
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as Q = YWT

N , where W(t) = [ẏ(t1), · · · , ẏ(tN )].

Then the SVMD eigenvalue problem is cast as

αPφ = Qφ (3.6)

Matrix Q is unsymmetric, which allows for complex eigensolutions. The solution of this

eigenvalue problem produces an eigenvalue matrix and an eigenvector matrix which contain

modal information. In principle, the real and imaginary parts of the eigenvalues indicate

modal decay rates and frequencies. The inverse transpose of the eigenvector matrix contains

the mode shapes. That is, if Φ = [φ
1
, φ

2
, · · · , φ

2N
], then Ψ = Φ−T = [ψ1, · · · , ψ2N ]

contains estimates of the state variable modal vectors, ψ
j
, j = 1, · · · , 2N [41].

Since y = [ẋT ;xT ]T as in equation 3.5, and the state variable modal vectors ψ represent

characteristic shapes of y, the lower half of the ψ
j

indicate the displacement modal vectors.

That is, if ψj = [zTj , w
T
j ]T , then wj are the displacement modes.

3.4 Cantilevered Beam Experiment

3.4.1 Experimental Setup Description

This section describes the modal parameter estimation of a cantilevered beam experiment,

under varying end-damped conditions. SVMD was applied to extract the modes from the

free response of the system. The experimental setup is described below.

A uniform aluminum beam as shown in Figure 3.3 was used in this experiment. 30

PCB model number 352B10 accelerometers were placed on the beam via beeswax, equally

spaced from the clamp to the beam tip. The beam material properties were taken to be the
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standard values: elastic modulus E = 68.9 GPa and density ρ = 2700 kg/m3. The beam

had a width w = 0.025 m and thickness t = 0.003 m. The mass per unit length with sensors

was m = 0.29 kg/m (without the sensors mass m = 0.21 kg/m from the parameters, but

mass of the sensors was accounted for in calculating the theoretical natural frequencies of

the system), and the cross-sectional area moment of inertia was I = 5.625× 10−11 m4.

As shown in Figure 3.2, a piece of copper plate was glued to the end of the cantilevered

beam as the conducting sheet in the eddy-current damper. A permanent magnet was placed

below the copper plate. The distance between the magnet and the copper was adjustable,

and thus the damping coefficient was variable. The length and width of the copper plate

was 2 inches and 1 inch. The composition of the permanent magent is NdFeB52 and the

maximum magnetic flux of the magnet was measured to be 5000 Gauss. The conductivity

of copper is σ = 5.8× 107Ω/m, the thickness of the copper was δ = 1.09× 10−3m, and the

effective area was Se = 9.78× 10−4m2. The magnitude of magnetic flux in the experiment

was measured by a Gauss meter at the point A shown in Figure 3.2. The direction of B was

assumed to be normal to the copper plate, such that equation 3.3 applies. In the experiment,

the distance between the permanent magnet of the copper plate was adjusted between 1 mm

and 10 mm, and the magnetic flux was measured to vary between 2800 Gauss and 4500

Gauss. Based on the eddy-current damping theory described above, the damping coefficient

was calculated to vary between 5 and 12.5 kg/s.

The beam was excited with an impact hammer, and the resulting multi-modal free re-

sponse was monitored. Measurement signals from the accelerometers were then sampled

using a National Instruments data acquisition system (PXI-1042Q). The data was sampled

at a rate of 25 kHz.

Acceleration signals were first obtained from the experiments and therefore the ensemble

43



Figure 3.2 A schematic diagram of the experimental steup

Figure 3.3 The experimental setup of the cantilevered beam with an eddy-current damper

matrix of acceleration was first built. The velocity V and displacement X ensembles were

obtained by using the Matlab integration routine “cumtrapz”. All ensembles were then

processed to remove the respective means. Data were high-pass filtered at a filter frequency

of 2 Hz in order to remove a low frequency “drift” in the integrated signal ensembles. The

frequency 2 Hz is about half of the theoretical first modal frequency, which is chosen based

on the study in [42]. A second order high-pass filter was applied prior to and after each

numerical integration of the signals. The correlation matrices P = YYT

N and Q = YWT

N

were then built. Further mode extraction was done in Matlab by post processing.
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3.4.2 Analysis of the Model

Chapter 2 describes a modal-analysis approach for nonmodally damped continuous systems,

in which the continuous system is discretized by using assumed modes or finite elements,

and the resulting discretized system is analyzed in state-variable form. The state-variable

eigenvalues approximate the modal parameters, and the eigenvectors are recombined with

the basis functions of the discretization to describe the system modes.

In this section, finite-element analysis (FEA) is used to generate the discrete model.

The mass and stiffness matrices of the cantilevered beam were obtained from the FEA and

the damper at the boundary was used to generate the damping matrix. Then a state-

variable eigenvalue problem was generated and the modal frequencies and modal vectors

were determined.

The uniform beam model was modified to accomodate the added component in this

experiment. Since a copper plate was added to the end of the beam, the mass of the copper

was approximated and added to the relevant beam elements. 60 elements were used in the

calculation. The damping force was distributed into the related beam elements (the last two)

in the area of the copper plate. The mass per unit length parameter was modified based on

the approximate mass of the 30 sensors.

The undamped modal frequencies with and without the added mass were compared (the

mass of sensors have already been approximated into the model in both cases), as shown in

Table 3.1. It shows that the modal frequencies are significantly reduced when the mass was

added to the cantilevered beam. Therefore, the modes have also been affected by the mass,

and the comparison for the first four undamped modes is shown in Figure 3.4.

A “traveling index” [9,72] indicates the degree of nonsynchronicity of the real and imag-
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Table 3.1 Undamped modal frequencies comparison with and without added mass (Hz)

Parameter without mass with mass
ω1 5.95 4.8
ω2 37.3 32.5
ω3 104.4 94.6
ω4 204.5 189.9

inary parts of the complex modes. The comparison of the traveling index, for various values

of the damping coefficient, with and without the added mass is shown in Figure 3.5. It shows

that without the added mass, the peak value of the traveling index for mode 2 is 0.6, while

this value drops to 0.32 with the added mass. With added mass, the peak traveling index

decreases, and reaches its maximum at larger values of damping coefficient compared to the

curve without added mass. Without added mass, it reaches the peak when the damping

coefficient is 6 kg/s, while the peak point moves to 9 kg/s with the added mass. For mode 3

and mode 4, the peak value of the traveling index has also been reduced by the added mass.

The peak points also shift towards a larger damping coefficient value with the added mass.

The peak points for mode 3 and mode 4 shift from 11 kg/s to 22 kg/s and from 16 kg/s to

43 kg/s, respectively.

The comparison of the variation of the damping ratio with and without the added mass

is shown in Figure 3.6. It shows that without the added mass, the peak value of the damping

ratio for mode 2 is 0.23, while this value drops to 0.12 with the added mass. With added

mass, the damping ratio decreases and reaches the peak at larger damping coefficient values

compared to the curve without added mass. Without added mass, it reaches the peak when

the damping coefficient is 6 kg/s, while the peak point shifts right to 9 kg/s with the added

mass. For mode 3 and mode 4, the peak value of the damping ratio has also been reduced

by the added mass. The peak points also shift towards a larger damping coefficient value
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Figure 3.4 The comparison for the first four modes with and without mass at undamped
case

with the added mass. The peak point for mode 3 and mode 4 shift from 10 kg/s to 21 kg/s

and from 15 kg/s to 43 kg/s, respectively.

3.4.3 Modal Identification Results

We first verified the modal frequencies and the damping by the fast Fourier transform (FFT).

The FFT plot was generated to show the amplitude across the modal frequencies. As shown

in Figure 3.7, we can see that the peaks at the first three modal frequencies (modes 2, 3 and

4) have an obvious reduction, presumably, by the effect of damping.

The first mode was not obtained in the experiments because the first modal frequency

4.8 Hz is below the limit of the accelerometers (5∼10 Hz). So we were unable to generate

a meaningful first mode in our modal decomposition results. Furthermore, as the damping
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Figure 3.5 Comparison of the variation of the traveling index with and without added mass,
with increasing damping coefficient

coefficient increases, the first mode becomes a real mode pair, which is not a decaying

oscillation but an exponential decay. Essentially, it is a zero-frequency mode and cannot be

captured by the accelerometers. The first modal frequency could be raised by shortening

the beam or increasing the thickness of the beam. However, the damping will become less

significant in that case.

The first N = 12500 points (0.5 seconds) were kept for data processing to minimize the

contribution of the high frequency noise dominating the decayed signals in the later part

of the ensembles [41]. For extracting modes 3 and 4, since the high-frequency modes were

damping out faster, the data were further pared down to N = 3000 points (0.12 seconds)

or N = 2000 points (0.08 seconds). The acceleration of sensor 1 with different time length

is shown in Figure 3.8. When number of the samples are 12500 (0.5 seconds), the signal

still has a small oscillation in the latter part, which we expect to include mostly the mode
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Figure 3.6 Comparison of the variation of the damping ratio with and without added mass,
with increasing damping coefficient

information for mode 2. Therefore, it is reasonable to use a longer sampling time like 12500

(0.5 seconds) to identify mode 2. When the number of samples are 3000 or 2000, there are

more high frequency effects shown in the signal. So a shorter samples could give a better

modal identification result for higher modes. A detailed comparison of results with different

data sampling is shown in Appendix A.

The theoretical frequency values, the frequency values from the FFT, and the SVMD

identified modal frequencies are shown in Table 3.2. These values were obtained when the

damping coefficient was 10 kg/s. The theoretical frequencies of modes 2, 3 and 4 are 32.5,

94.6 and 189.9 Hz, and the SVMD identified experimental modal frequencies are 32, 95.2

and 189.8 Hz. The modal frequencies between the finite-element model and the experimental

results were consistent, although with a difference between 1% and 3%.
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Figure 3.7 The FFT plot of the cantilevered beam experiment with and without eddy-current
damper

Table 3.2 Modal frequencies obtained from the model and experiments (Hz)

Parameter FEA model FFT SVMD

ω2 32.5 32.9 33.6
ω3 94.6 96.0 93.8
ω4 189.9 190.0 187.9

The eigenvalues in comparison to the theoretical results from the model with varying

damping coefficients are shown in Figure 3.9. The values were obtained using different data

sampling and filter frequencies, and optimal values are presented. The model predicts that

the real parts are nearly zero when c is small. When c increases, each real part reaches

a minimum (most negative) value, and becomes less negative with further increase in the

damping coefficient. The variation of the experimental results coincides with those results

from the model.
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Figure 3.8 The acceleration signal shown with different number of samples

The experimental modes obtained from SVMD were compared with the theoretical modes

from a computational model. Figure 3.10 shows the modes plotted in complex plane, with

imaginary part against the real part. Figure 3.11 shows the modes plotted with imaginary

part and real part separately. For modes 2 and 3, the modes were obtained using N = 12500,

with the filter frequency set as 2 Hz. For mode 4, the mode were obtained using N = 3000,

with the filter frequency set as 2 Hz. A detailed study and comparison of the mode shapes

with the variation of data sampling and filter frequency can be found in Appendix A.

We can see from both Figure 3.10 and Figure 3.11, that the modal identification of the

lowest underdamped mode, i.e. mode 2, is good. The modes selected from the experimental

result are highly consistent with the model. For mode 3 and mode 4, the experimental modes

and model’s modes nearly coincide with each other, with a small deviation at the latter half.

The consistency between the experimental results and the model can be quantified by the
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Figure 3.9 The variation of the eigenvalues with increasing damping coefficient (circles indi-
cate the experimental values)

values of MAC, which will be shown later. The quality of the modes could also be indicated

by the modal coordinates and will be presented in next section.

Considering the complex modal pair as a “mode” [72], the associated eigenvalues can be

expressed in the form α1,2 = −ζωm ± iωm
√
ζ2 − 1, from which a “modal” frequency ωm

and a “modal damping ratio” ζ can be computed. The values of damping ratios calculated

with various damping coefficients are shown in Table 3.3. They are compared with the

model and shown in Figure 3.12. As with the modal frequencies and mode shapes, the

values were obtained using different data sampling and filter frequencies, and optimal values

are presented. The model predicts that with the increase of the damping coefficient, the

damping ratio of mode 2 increases to a maximum value when the damping coefficient is

around 10 kg/s, and then decreases. For modes 3 and 4, the damping ratio keeps increasing

in the range of the experimental damping coefficient. The trend of the experimental results
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Figure 3.10 The modes comparison in complex plane when the damping coefficient is 10 kg/s

matches with the model prediction.

The values of traveling indices calculated with various damping coefficients are shown

in Table 3.4. They are compared with the model results and shown in Figure 3.13. The

model predicts that with the increase of the damping coefficient, the traveling index of mode

2 increases to a maximum value when the damping coefficient is around 10 kg/s, and then

decreases. For modes 3 and 4, the traveling index keeps increasing in the range of the

experimental damping coefficient. The trend of the presented experimental results obeys

the model prediction. The nonsynchronicity is also apparent in the plot of the modes when

the damping coefficient is 10 kg/s, since the phases of the real and imaginary parts have a

significant difference, as shown in Figure 3.11, and the complex mode plot is not confined to
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Figure 3.11 The modes comparison when the damping coefficient is 10 kg/s

a line, as in Figure 3.10.

The modal assurance criterion (MAC) values comparing the selected modes from the

experiment and the model are shown in Table 3.5. The function of the MAC [119] is to

provide a measure of consistency between two estimates of a modal vector. This provides

an additional confidence factor in the evaluation of modal vectors from different modal

parameter estimation algorithms. A value near unity means the modes compared are highly

Table 3.3 Damping ratio comparison for different values of damping coefficient (kg/s)

mode number c=5 c=7.5 c=10 c=12.5

mode 2 0.078 0.108 0.123 0.113
mode 3 0.026 0.031 0.05 0.055
mode 4 0.007 0.009 0.012 0.018
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Table 3.4 Traveling index comparison for different values of damping coefficient (kg/s)

mode number c=5 c=7.5 c=10 c=12.5

mode 2 0.197 0.283 0.319 0.271
mode 3 0.069 0.121 0.137 0.159
mode 4 0.018 0.052 0.062 0.069
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Figure 3.12 The damping ratio comparison between the model and experiments at different
damping coefficients

consistent. The MAC modal scale factor is defined as

MACcdr =
|ψcrTψ∗dr|

2

ψcr
Tψ∗crψdr

Tψ∗dr
(3.7)

where the ∗ denotes complex conjugation.

The values in Table 3.5 show that the modes from the experiments and those from the

model are particularly consistent for the first mode.
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Figure 3.13 The traveling index comparison between the model and experiments at different
damping coefficients

Table 3.5 MAC values comparing the modes from the experimental results and from the
model with various damping coefficient (kg/s)

damping coefficient c 5 7.5 10 12.5

mode 2 0.9807 0.9780 0.9985 0.9892
mode 3 0.9556 0.9193 0.9767 0.9857
mode 4 0.9242 0.8497 0.9231 0.8126

3.4.4 Modal Coordinates

Modal coordinates can help to distinguish the true modes from the spurious modes, and

indicate the quality of the decomposition [41, 42]. The state-variable vector can be written

as

y(t) =
n∑
i=1

qi(t)ψ (3.8)

where qi(t) are the modal-coordinate state variables.
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In ensemble matrix form,

Y = ΨQ (3.9)

where elements of the ith row of Q are the ith sampled “state variable modal coordinates”

(SVMC) or “modal state variables”.

Thus the modal state variables are simply estimated by

Q = Ψ−1Y = ΦTY (3.10)

In vector form, y(t) = Ψq(t), and q(t) = ΦT y(t).

The modal coordinates obtained from the SVMD are shown in Figure 3.14, for the case of

N = 2000. A smooth periodic non-noisy modal coordinate history can indicate a true mode.

From the plot, we can see mode 2 and mode 3 have smoothly shaped modal coordinates.

For mode 4 and mode 5, the latter half of the modal coordinate history is distorted by noise.

We can still consider the mode as a candidate for an actual mode if the first half is “good”.

Quantification of “good” is discussed in detail in [42]. The quality of the modal frequencies

can help further to determine if the mode is a true mode or a spurious mode.

The modal coordinates obtained from the SVMD when the samples are 12500 are shown

in Figure A.12. From the plot, we can see mode 2 has a smoothly shaped modal coordinate.

For mode 3, 4 and 5, the latter half of the modal coordinate history is distorted by noise.

Since higher modes generally dissipate quickly, when the samples are large, the latter part

cannot capture the the higher modes. Therefore, it is better to use a small sample to identify

the higher modes. The effect of the data record length N is examined in more detail in the

appendix.
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Figure 3.14 SVMD modal coordinates are shown for mode 2 to mode 5 based on N = 2000
sample points

3.5 Complex Orthogonal Decomposition Verification

3.5.1 Complex Orthogonal Decomposition Theory

Here we would like to use another modal decomposition method, complex orthogonal de-

composition (COD) [9], to check what we have obtained from SVMD.

First, real measured signals need to be expressed in complex form. Suppose the real signal

is yj = y(xj , t), j = 1, · · · ,M where M is the number of sensors distributed on the structure.

Applying the Hilbert transform of yj(t), i.e. yHj(t) = Im(zj(t)), then the complex analytic

signal can be written as zj(t) = yj(t) + iyHj(t) [9, 123].

Given the signals zj(t), j = 1, · · · ,M , we generate vectors zj = [zj(t1) · · · zj(tN )]T , by

sampling at times t1 through tN . Then an M ×N complex ensemble matrix is assembled as
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Figure 3.15 SVMD modal coordinates are shown for mode 2 to mode 5 based on N = 12500
sample points

Z = [z1 · · · zM ]T . Then we built a complex correlation matrix R = (1/N)ZZ̄T , where the

bar indicates complex conjugation.

Since R = R̄T is complex Hermitian, it has real eigenvalues and complex eigenvectors.

The Hermitian nature of R implies that the normalized eigenvectors satisfy ūTi uj = δij

where δij is the Kronecker δ, and uj are dimensionless normalized eigenvectors.

The eigenvectors of a complex correlation matrix R are the complex orthogonal wave

modes (COMs), and the eigenvalues (COVs) indicate the mean squared amplitudes of COD

modal coordinates [9]. A theoretical connection between COMs and linear normal modes

has not been established. However, if one mode dominates, we might expect it to be repre-

sentative.
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3.5.2 Modal Identification Results

The experimental modes obtained from COD were compared with the theoretical modes from

the model. Figure 3.16 shows the modes plotted in the complex plane, with the imaginary

part against the real part. Figure 3.17 shows the modes plotted with imaginary part and

real part separately. The COVs corresponding to modes 2, 3 and 4 were 5.95× 103, 4.13×

103, and 1.15 × 103, respectively, indicating that modes 2 and 3 were dominant, but not

overwhelmingly.

−0.1 −0.05 0 0.05 0.1
−0.4

−0.2

0

0.2
mode 2

Real part

Im
ag

in
ar

y 
p

ar
t

 

 

Experiments
Model

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
mode 3

Real part

Im
ag

in
ar

y 
p

ar
t

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
mode 4

Real part

Im
ag

in
ar

y 
p

ar
t

Figure 3.16 The modes comparison in complex plane when the damping coefficient is 10 kg/s

We can see from both Figure 3.16 and Figure 3.17, that the modal identification of the

lowest underdamped mode, i.e. mode 2, is very good. The modes from both the experimental

result and the model are highly consistent. For mode 3 and mode 4, the experimental modes

and the model correlate with each other, but have small deviations at the latter half. The

modes obtained from COD are supportive of the SVMD results.
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Figure 3.17 The real and imaginary parts of the modes when the damping coefficient is 10
kg/s

3.6 Conclusion

We have conducted an experiment for investigating the complex modal behavior of an end-

damped cantilevered beam. Eddy-current induced damping was applied at the end of a

cantilevered beam, to generate the nonmodal damping. SVMD was applied to extract the

complex modes from the free response of the cantilevered beam and to analyze the modal

properties, including modal frequencies, mode shapes, damping ratio and modal nonsy-

chronicity.

The modal properties from the experimental results were compared with those from a

numerical analysis of the model. The extracted modal parameters were quite sensitive to

sampling parameters, the study of which was added to the appendix. The trends of the

modal frequencies and mode shapes obtained from the experiments were consistent with

those from the model. The variation of the damping ratio and traveling index with varying
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damping coefficient also followed the predictions from the model. Over the range of damping

coefficients studied in the experiments, we observed a maximum damping ratio in the lowest

underdamped mode, which correlated with the maximum modal nonsynchronicity.

The results of modal assurance criterion values showed that the SVMD modes were

consistent with the modes from the model. This is the first experiment in which SVMD

was used to extract structural normal modes that were anticipated to be complex. As

verification, the COD method also produced similar results as SVMD method. The mode

shapes obtained from COD correlated with the modes from the model very well.
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Chapter 4

Modal Analysis of a Wind Turbine

Blade

4.1 Chapter Introduction

Modal analysis of wind-turbine blades involve complicated issues, such as rotation and aero-

dynamic effects. In this chapter, we will look at these effects separately. Chapter 5 will

address the modes with dynamic rotation.

A horizontal-axis wind-turbine blade can be considered as a rotating cantilevered beam,

subjected to gravitational loading and aerodynamic loading. Industry tends to consider

in-plane (edgewise) deflection separate from out-of-plane (flapwise) flection, and we will do

the same in this work. The in-plane and out-of-plane motions are examined with simple

aeroelastic damping effects. The aeroelastic model used is based on a simple quasi-steady

blade-element airfoil theory. The complex modes are analyzed while neglecting the rotation

effects and parametric excitation terms, and thus the nonmodal damping effect could be

isolated.

The assumptions in this work include: the beam is inextensible, and therefore, the axial

displacement is not considered (See Appendix 2); the rotation speed of the blade was assumed

to be constant; a quasi-steady model was applied for lift coefficient formulation; the airfoil

type was assumed to be the same along the length of the blade for the nonmodal damping
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modal analysis.

4.2 Equation of Motion Formulation

The equation of motion of the rotating beam is obtained by applying the extended Hamil-

ton’s principle [124]. Referring to Figure 4.1 and Figure 4.2, we sketch the process for an

inextensible beam with large deflection (a detailed explanation of the inextensible assump-

tion could be found in Appendix B), rotating in a horizontal axis with flexure in the plane

of rotation. The potential energy is formulated to include gravitational loading, nonlinear

curvature for large excitation, and the effect of the shortening of projection of the beam.

Figure 4.1 The deflection of an in-plane inextensible beam

In the structure of a horizontal-axis wind turbine, the turbine blade is attached to a hub

which we assume to rotate at a constant rate. In reality, the speed will be slowly varying,

considering the aerodynamic forces on the blades, the coupling of blades to the rotor, and
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the factors brought by generator, gear box, friction and control. Here we start with the case

of fixed angular speed Ω. We will first formulate the edgewise bending equation of motion,

and then the flapwise bending equation.

Figure 4.2 The three-dimensional deflection of an inextensible beam. The coordinate system
depicted rotates with the hub.

4.2.1 Edgewise Bending

In Figure 4.2, y(x, t) is the edgewise deflection. For the edgewise bending, the kinetic energy,

the gravitational potential energy and the bending potential energy are obtained as

T =

∫ L

0

1

2
m(x)v · vdx+

∫ L

0

1

2
J(x)(y′ + φ̇)2dx

Vg =

∫ L

0
m(x)g[x(1− cosφ) + s(x, t) cosφ+ y(x, t) sinφ]dx

Vb =

∫ L

0

1

2
EI(x)y′′2(1− 3y′2)dx

(4.1)
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where the velocity is v = (−ṡ−Ωy)er+[Ω(x−s)+ ẏ]eφ, and the foreshortening at a position

x along the beam is s(x, t) =
∫ x

0 (y
′2
2 + y′4

8 )dx.

The virtual work due to nonconservative forces per unit length, f(x, t), is δW =
∫ L

0 f(x, t)δydx.

By applying extended Hamilton’s principle,
∫ L

0 (δT −δV +δW )dt = 0, an integral-partial

differential equation of motion for edgewise bending vibration is obtained as

m(−ÿ + Ω2y + 2ωṡ) + (Jz(x)ÿ′)′ − (EIy′′ − 3EIy′′y′2)′′ − (3EIy′′2y′)′

−m(s̈+ 2Ωẏ + Ω2(x− s) + g cos(Ωt))(y′ + y′3/2)

+

∫ L

x
m(s̈+ 2Ωẏ + Ω2(w − s) + g cos(Ωt))dw(y′ + y′3/2)′

+f(x, t) = mg sin Ωt (4.2)

with boundary conditions y(0, t) = y′(0, t) = 0 at x = 0 and

Jz(L)ÿ′ + (EIy′′ − 3EIy′′y′2 + 3EIy′′2y′) = 0

EIy′′ − 3EIy′′y′2 = 0

at x = L, where y(x, t) is the transverse beam displacement, w is an integration variable for

the x domain, E is the Young’s modulus, I is the area moment of inertia of a cross-section

of the beam and Jz is the mass moment of inertia per unit length, both about the neutral

axis in the z direction.
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4.2.2 Flapwise Bending

In Figure 4.2, z(x, t) is the flapwise deflection. For flapwise bending, the kinetic energy, the

gravitational potential energy and the bending potential energy are obtained as

T =

∫ L

0

1

2
m(x)v · vdx

Vg =

∫ L

0
m(x)g[x(1− cosφ) + s(x, t) cosφ]dx

Vb =

∫ L

0

1

2
EI(x)z′′2(1− 3z′2)dx

(4.3)

where the velocity is v = −ṡer+Ω(x−s)eφ+żek, and the foreshortening at a position x along

the beam is s(x, t) =
∫ x

0 (z
′2
2 + z′4

8 )dx. The virtual work of nonconservative aerodynamic

and damping forces is δW =
∫ L

0 f(x, t)δzdx.

The equation of motion for flapwise bending vibration is obtained as

−mz̈ + (Jy(x)z̈′)′ − (EIz′′ − 3EIz′′z′2)′′ − (3EIz′′2z′)′

−m(s̈+ Ω2(x− s) + g cos(Ωt))(z′ + z′3/2)

+

∫ L

x
m(s̈+ Ω2(w − s) + g cos(Ωt))dw(z′ + z′3/2)′ + f(x, t) = 0 (4.4)

with boundary conditions z(0, t) = z′(0, t) = 0 at x = 0 and

Jy(L)z̈′ + (EIz′′ − 3EIz′′z′2 + 3EIz′′2z′) = 0

EIz′′ − 3EIz′′z′2 = 0
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at x = L, whereI is the area moment of inertia of a cross-section of the beam and Jy is the

mass moment of inertia per unit length, both about the neutral axis in the y direction.

In the equation of motion obtained, there are geometric nonlinear terms, linear terms with

parametric excitation, i.e. sin Ωt, cos Ωt terms. These terms derive from the gravitational

potential energy and possibly the aerodynamic force as well.

4.3 Linearization and Modal Reduction

To linearize the equation of motion 4.2, we ignore the nonlinear cross terms with the velocity

and acceleration via the ṡ and s̈ terms, and drop the aerodynamic force term, to get the

equation for the edgewise model as

mÿ + (EIy′′)′′ −mΩ2y +mΩ2xy′ − (

∫ L

x
mΩ2wdw)y′′

+mg cos Ωty′ −
∫ L

x
mgdw cos Ωt = mg sin Ωt (4.5)

The flapwise bending vibration is governed by the equation of motion as shown in equation

(4.4). When linearized, this equation reduces to

mz̈ + (EIz′′)′′ +mΩ2xz′ − (

∫ L

x
mΩ2wdw)z′′

+mg cos Ωtz′ −
∫ L

x
mgdw cos Ωt = 0 (4.6)

These equations are parametrically excited, which poses complications. For wind turbines
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that are not too large, we can ignore this. We address it later.

An assumed modal expansion is used to reduce the order of the linearized equation of

motion. According to the assumed-modes method, the transverse displacement is expanded

as y(x, t) ≈
∑N
i=1 ui(x)qi(t), where ui(x) are the assumed modes derived from the uniform

cantilevered beam, and qi(t) are the assumed modal coordinates. This expression is substi-

tuted into the equation (4.5). Multiplying by uj(x), and integrating over the length of the

turbine blade, we get the second-order ODE as

q̈j

∫ L

0
m(x)uiujdx+ qj

∫ L

0
EI(x)ui

′′uj
′′dx− qj

∫ L

0
mΩ2uiujdx

+qj

∫ L

0
m(x)Ω2uiuj

′dx− qj
∫ L

0
Ω2(

∫ L

x
mwdw)uiuj

′′dx

+qj

∫ L

0
m(x)guiuj

′dx cos Ωt− qj
∫ L

0
g(

∫ L

x
mdw)uiuj

′′dx cos Ωt = mg

∫ L

0
uidx sin Ωt

(4.7)

The second order ODE which governs the flapwise bending vibration is obtained in a

similar way as

q̈j

∫ L

0
m(x)uiujdx+ qj

∫ L

0
EI(x)ui

′′uj
′′

+qj

∫ L

0
m(x)Ω2uiuj

′dx− qj
∫ L

0
Ω2
∫ L

x
mwdwuiuj

′′dx

+qj

∫ L

0
m(x)guiuj

′dx cos Ωt− qj
∫ L

0
g(

∫ L

x
mdw)uiuj

′′dx cos Ωt = 0 (4.8)
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4.3.1 Edgewise Bending Modal Analysis

Without considering the aerodynamic force and parametric excitation, the damping matrix

is neglected, and then the mass and stiffness matrices are obtained as

mij =

∫ L

0
m(x)uiujdx

kij =

∫ L

0
EI(x)ui

′′uj
′′dx−

∫ L

0
mΩ2uiujdx

+

∫ L

0
m(x)Ω2uiuj

′dx−
∫ L

0
Ω2
∫ L

x
mwdwuiuj

′′dx (4.9)

The dimensional parameters of a 23-m blade were obtained from the National Renewable

Energy Laboratory (NREL) technical report of Bir and Oyague [89]. Figure 4.3 shows the

plot of the modal frequencies of the first four modes with varying rotation speed. The range

of the rotation speed varies from 1 rad/s to 10 rad/s in the figure. However, for most wind

turbine blades, the speed is around 1-2 rad/s. The modal frequencies obtained show good

agreement with the values published in the report of Bir and Oyague. It is observed that

when the rotation speed increases, the modal frequencies increases slightly. This is because

the centrifugal inertia forces increases as the angular speed increases. It obeys the prediction

shown in reference [64]. Over the 1-2 rad/s of most wind turbines, however, the rotation

speed has little effect on the modal frequencies.

As such, we consider the edgewise bending mode shapes without rotation, which means

the terms with rotation speed in the mass and stiffness matrices are neglected at this moment

as
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Figure 4.3 The modal frequencies for edgewise bending vibration with the variation of rota-
tion speed

mij =

∫ L

0
m(x)uiujdx

kij =

∫ L

0
EI(x)ui

′′uj
′′dx (4.10)

The first four vibration modes are shown in Figure 4.4.

To check the effect of rotation on the mode shapes, we then include the terms with

rotation in the calculation and compare the mode shapes under the two conditions, the

static case which doesn’t include the rotation terms and the operational case which include

the rotation terms. Figure 4.5 shows the mode shape variation with and without rotation.

The dashed lines represent the mode shape when the wind turbine blade is stationary. The

cross marked lines represent the mode shape when the wind turbine blade is rotating. The
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Figure 4.4 The first four modes for edgewise bending vibration without rotation

Table 4.1 Comparison of edgewise modal frequencies (Hz) of 23-m turbine blade between the
static case and the operational case, when Ω is 1.5 rad/s

Modes No. static case operational case

mode 1 3.14 3.16
mode 2 10.10 10.12
mode 3 22.95 22.98
mode 4 42.88 42.91

rotation speed here is 1.57 rad/s. We can see there is no observable difference between

the modes shapes under the two conditions. But this will change when the rotation speed

increases.

Figure 4.6 shows the mode shapes when the rotation speed is set to 15 rad/s. We can

see a small difference between the modes without rotation and those with rotation.

The edgewise modal frequencies between the static case and the operational case are

compared. The comparison of modal frequencies (Hz) of 23-m turbine blade with and without

rotation effect is shown in Table 4.1.

The comparison of modal frequencies (Hz) of 63-m turbine blade with and without rota-
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Figure 4.5 The comparison between the edgewise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 23-m blade when the rotation speed
is 1.5 rad/s

tion is shown in Table 4.2. The dimensional parameters of a 63-m blade were obtained from

the NREL technical report of Jonkman [90]. Figure 4.7 shows the mode shape variation with

and without rotation.

The comparison of modal frequencies (Hz) of 100-m turbine blade with and without

rotation is shown in Table 4.3. The dimensional parameters of a 100-m blade were obtained

from the Sandia National Laboratories technical report of Griffith and Ashwill [88]. Figure

Table 4.2 Comparison of edgewise modal frequencies (Hz) of 63-m turbine blade between the
static case and and the operational case, when Ω is 1.25 rad/s

Modes No. static case operational case

mode 1 1.06 1.07
mode 2 3.95 3.97
mode 3 9.17 9.19
mode 4 16.74 16.77
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Figure 4.6 The comparison between the edgewise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 23-m blade when rotation speed is
15 rad/s

4.8 shows the mode shape variation with and without rotation.

4.3.2 Flapwise Bending Modal Analysis

The flapwise bending vibration of the wind turbine blade is governed by the equation (4.8).

Without considering the aerodynamic force and parametric excitation, the damping matrix

is neglected, and then the mass and stiffness matrices are obtained as
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Figure 4.7 The comparison between the edgewise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 63-m blade when rotation speed is
1.25 rad/s

mij =

∫ L

0
m(x)uiujdx

kij =

∫ L

0
EI(x)ui

′′uj
′′dx+

∫ L

0
m(x)Ω2uiuj

′dx−
∫ L

0
Ω2
∫ L

x
mwdwuiuj

′′dx

(4.11)

Compared to the edgewise case in equation 4.9, the flapwise stiffness has one less term.

Table 4.3 Comparison of edgewise modal frequencies (Hz) of 100-m turbine blade between
the static case and and the operational case, when Ω is 0.78 rad/s

Modes No. static case operational case

mode 1 0.64 0.65
mode 2 1.91 1.93
mode 3 4.67 4.69
mode 4 8.23 8.25
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Figure 4.8 The comparison between the edgewise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 100-m blade when rotation speed is
0.78 rad/s

Figure 4.9 shows the variation of the modal frequencies with the increace of the rotation

speed. The range of the rotation speed varies from 1 rad/s to 10 rad/s. It is observed that

when the rotation speed increases, the modal frequencies increase slightly more than in the

edgewise case. However, again the effect of rotation on the frequencies is negligible in the low

Ω operating range. The modal frequencies obtained show good agreement with the values

published in the report of Bir and Oyague.

Then we could include the terms with rotation in the calculation and compare the mode

shape under the two conditions. Figure 4.10 shows the mode shape variation with and

without rotation. The dashed lines represent the mode shape when the wind turbine blade

is stationary. The solid lines represent the mode shape when the wind turbine is operating at
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Figure 4.9 The modal frequencies for flapwise bending vibration of 23-m blade with the
variation of rotation speed

the rotation speed 1.57 rad/s. We can see there is no observable difference between the modes

shapes under the two conditions, but this will change when the rotation speed increases.

Figure 4.11 shows the mode shapes when the rotation speed is set to 15 rad/s. We can see

from mode 1 that significant difference already shows between the modes without rotation

and those with rotation.

However, when the size of wind turbine blade increases, the difference between the modal

frequencies of the static case and those of the operational case increases. The comparison

of modal frequencies (Hz) of 63-m turbine blade with and without rotation at Ω = 1.25m/s

is shown in Table 4.4. The dimensional parameters of a 63-m blade were obtained from the

NREL technical report of Jonkman [90]. Figure 4.12 shows the mode shape variation with

and without rotation.

The comparison of modal frequencies (Hz) of 100-m turbine blade with and without
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Figure 4.10 The comparison between the flapwise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 23-m blade when the rotation speed
is 1.5 rad/s

rotation at Ω = 1.25m/s is shown in Table 4.5. The dimensional parameters of a 100-m

blade were obtained from the Sandia National Laboratories technical report of Griffith and

Ashwill [88]. Figure 4.13 shows the mode shape variation with and without rotation.

Table 4.4 Comparison of flapwise modal frequencies (Hz) of 63-m turbine blade between the
static case and the operational case when the rotation speed is 1.25 rad/s

Modes No. static case operational case

mode 1 0.66 0.71
mode 2 1.90 1.96
mode 3 4.40 4.46
mode 4 7.92 7.98
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Figure 4.11 The comparison between the flapwise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 23-m blade when the rotation speed
is 15 rad/s

4.4 Study of the Effects of Rotational Position due to

Gravity

A horizontal-axis rotating blade is affected by its rotational position and the rotational

motion. We studied the effects of rotation speed on the modes in section 4.3.1 and section

4.3.2. Relative to the angular position, the blade undergoes changing gravity forces, and so

the modes of the blade at different rotation positions could be different. The stiffness of the

blade will increase due to added tension in the downward position, and it will decrease due

to added compression in the upward position. Therefore, it is insightful to study the effect

of rotational effect on the modes of the blade at different rotation positions.
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Figure 4.12 The comparison between the flapwise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 63-m blade when rotaton speed is
1.25 rad/s

The modes of 23-m wind turbine blade at different rotation positions (downward position

and horizontal position) were investigated and compared. As shown in Figure 4.14 and Figure

4.15, there is no significant difference for the edgewise and flapwise modes in horizontal and

downward positions.

The modal frequencies of the 23-m blade at the downward and horizontal positions have

minor differences, as shown in Table 4.6 and Table 4.7. It can be seen that the modal

Table 4.5 Comparison of flapwise modal frequencies (Hz) of 100-m turbine blade between
the static case and the operational case when the rotation speed is 0.78 rad/s

Modes No. static case operational case

mode 1 0.51 0.54
mode 2 1.54 1.58
mode 3 3.38 3.46
mode 4 5.87 5.94
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Figure 4.13 The comparison between the flapwise bending modes of the static case (dashed
lines) and those of the operational case (solid lines) for 100-m blade when the rotation speed
is 0.78 rad/s

frequencies of the first four modes have minor differences, around 1%.

Next, the modes of 63-m wind turbine blade at different rotation positions (downward

position and horizontal position) were investigated and compared. As shown in Figure 4.16

and Figure 4.17, there is no significant difference for the edgewise and flapwise modes at

horizontal and downward positions.

However, although the differences of mode shapes of the 63-m wind turbine blade are

indistinguishable, the modal frequencies of the blades in the downward and horizontal posi-

tions have minor differences, as shown in Table 4.8 and Table 4.9. It can be seen that the

modal frequencies of the first flapwise mode have a difference around 6.4%. The vertical

(downward) frequencies of mode 1 is larger than the horizontal frequencies, because the ef-
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Figure 4.14 The edgewise modes comparision for 23-m wind turbine blades when the blade
rotates at horizontal and downward positions

Table 4.6 Comparison of edgewise modal frequencies (Hz) of the 23-m wind turbine blade at
different rotation angles

Modes No. downward position horizontal position

mode 1 3.189 3.161
mode 2 10.145 10.124
mode 3 23.013 22.978
mode 4 42.988 42.911

fect of the gravity forces increases the stiffiness at downward position and therefore raises

the frequency.

The 100-m blade has a visible difference between the mode shapes of horizontal position

and downward position, as shown in Figure 4.18 and Figure 4.19. The modal frequencies of

the blades in the downward and horizontal positions have a significant difference, as shown

in Table 4.10 and Table 4.11. It can be seen that the modal frequencies of the first edgewise

mode have a difference around 12%, while the modal frequencies of the first flapwise mode

have a difference around 9.3%.
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Table 4.7 Comparison of flapwise modal frequencies (Hz) of the 23-m wind turbine blade at
different rotation angles

Modes No. downward position horizontal position

mode 1 2.017 1.995
mode 2 5.459 5.442
mode 3 11.767 11.728
mode 4 22.096 22.039

Table 4.8 Comparison of edgewise modal frequencies (Hz) of the 63-m wind turbine blade at
different rotation angles

Modes No. downward position horizontal position

mode 1 1.112 1.075
mode 2 4.017 3.978
mode 3 9.293 9.201
mode 4 16.938 16.779

Table 4.9 Comparison of flapwise modal frequencies (Hz) of the 63-m wind turbine blade at
different rotation angles

Modes No. downward position horizontal position

mode 1 0.735 0.688
mode 2 1.975 1.902
mode 3 4.489 4.328
mode 4 7.956 7.738

Table 4.10 Comparison of edgewise modal frequencies (Hz) of the 100-m wind turbine blade
at different rotation angles

Modes No. downward position horizontal position

mode 1 0.688 0.645
mode 2 2.016 1.933
mode 3 4.835 4.694
mode 4 8.516 8.256

Table 4.11 Comparison of flapwise modal frequencies (Hz) of the 100-m wind turbine blade
at different rotation angles

Modes No. downward position horizontal position

mode 1 0.594 0.539
mode 2 1.639 1.581
mode 3 3.604 3.463
mode 4 6.166 5.935
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Figure 4.15 The flapwise modes comparision for 23-m wind turbine blades when the blade
rotates at horizontal and downward positions

4.5 Nonmodal Aerodynamic Damping

Wind turbine blades are often tested in a lab, which seldom accounts for rotational and

aerodynamic effects. A wind turbine blade in the field can have aerodynamic loads that,

if expanded, will have terms proportional to deflection rate, which can classify as linear

damping terms, although the proportionality may be x dependent. Thus wind turbines are

likely to have non-modal damping. In this section, we derive for the aerodynamic force and

introduce this into the EOM. The modal properties of the nonmodally damped system such

as damping ratio and modal nonsychronicity are investigated.

The goal of this work is to formulate the complex modes of flapwise motion and edgewise

motion, due to the non-modal damping generated from a very simple quasi-steady aerody-

namic model, see whether the complexity of modes is significant, and compare the results

from a variety of different blades. Compared to blades in the lab, blades in the field have

additional aeroelastic loads, and also centrifugal and cyclic effects due to rotation. This
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Figure 4.16 The edgewise modes comparision for 63-m wind turbine blades when the blade
is in horizontal and downward positions

work focuses on the damping due to aeroelasticity based on a simple model, and provides

some experience for understanding whether laboratory modal testing can be representative

of blades in the field.

As the angle of attack of an airfoil increases, the lift coefficient increases until it comes to

the stall condition [125]. Airfoils in dynamic stall exhibit large hysteresis loops in lift curve.

However, in our case we are concerned with small motions and the stability of equilibrium,

which does not involve stall. Measurements of lift coefficients with dynamically varying

angles of attack involve hysteresis, such as in Figure 4.20 reproduced from [126]. Stall

involves large hysteresis loops, as in the right column of the figure. As we are interested

in small oscillations without nonlinear stall, we expect small hysteresis effects as in the left

column of the figure. A quasi-steady model neglects this hysteresis. The neglected hysteresis

omits some energy added to the system (reducing the effective damping) [125]. As such, the

quasi-steady model is a simplifying approximation. Some applications or study of quasi-
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Figure 4.17 The flapwise modes comparision for 63-m wind turbine blades when the blade is
in horizontal and downward positions

steady model can be found in reference [127–131].

4.5.1 Flapwise Bending

Adding aeroelastic forces to the linearized equation of motion 4.20 for flapwise bending

vibration, and omitting the direct excitation term for modal analysis, yields

mz̈ + F (z, ż) + (EIz′′)′′ +mΩ2xz′ − (

∫ L

x
mΩ2wdw)z′′

+mg cos Ωtz′ −
∫ L

x
mgdw cos Ωt = 0 (4.12)

where z is the out of plane flexural displacement, x is the location along the axis of the

blade, t is the time, the primes indicate derivatives with respect to space, x. F (z, ż) =

F0(x) +A(x)ż+Bż2 are the aerodynamic forces per unit length from a quasistatic lift/drag

model, as derived below. In this section we isolate the effect of nonmodal damping, i.e. we
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Figure 4.18 The edgewise modes comparision for the 100-m wind turbine blade when the
blade are at horizontal and downward positions

omit for now the effect of excitation and linearize about equilibrium.

We take a cross section from the chord of the blade, and consider the aerodynamic forces

per unit length which the blade endures dummy operation, as shown in Figure 4.21. L is

the lift force, D is the drag force, vrel is the relative velocity of the wind with respect to

the blade, β is the pre-twist angle and θ is relative wind angle. We will first consider the

aerodynamic force projected in the flapwise bending direction.

The relative velocity with flapwise deformation is vrel = vwind−vblade = −uk−(Ωxeφ+

żk)), where Ω is the rotating speed of the hub, u is the wind speed, k is the unit vector of the

coordinate in the z direction, and eφ is the unit vector of the coordinate in the x direction

tangential to the circular path of rotation.
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Figure 4.19 The flapwise modes comparision for the 100-m wind turbine blade when the
blade are at horizontal and downward positions

Then the magnitudes of lift and drag forces per unit length are derived as [101]

L =
1

2
ρCL(α)cV 2

rel

D =
1

2
ρCD(α)cV 2

rel (4.13)

where ρ is the air density, c is the chord length, CL(α) is the lift coefficient, and CD(α)

is the drag coefficient. CL(α) = CL0
+ CL1

α + · · · , CD(α) = CD0
+ CD1

α2 + · · · , where

CL0
, CL1

, CD0
and CD1

are constants generated from experiments and could be obtained

in technical reports. Since the blade cross-section varies along its length, these quantities
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Figure 4.20 A comparison plot of lift coefficient between experiment data and ONERA
dynamic stall model

are all functions of x.

Considering the geometry,

tan θ =
u+ ż

xΩ
(4.14)

where β is the pretwist angle, and so the angle of attack is α = β + θ = β + tan−1 u+ż
xΩ .

The aerodynamic force per unit length projected in the k direction for flapwise bending is

expressed as

Fk = L cos θ +D sin θ

=
1

2
ρCL(α)cV 2

rel cos θ +
1

2
ρCD(α)cV 2

rel sin θ

= (
1

2
ρCL(α)cΩx+

1

2
ρCD(α)c(u+ ż))

√
(u+ ż)2 + (Ωx)2

(4.15)

Expanding in Taylor series about ż and dropping the higher order terms, we obtain

√
(u+ ż)2 + (Ωx)2 ≈

√
u2 + (Ωx)2 +

u√
u2 + (Ωx)2

ż (4.16)

Substituting equation (4.16) back into equation (4.15), and taking the linear part, we
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Figure 4.21 Translating airfoil with lift and drag forces acting

obtain Fk = Fk0
+ Fk1

ż + · · · , where

Fk1
= [(

1

2
ρcCL1

(Ωx)2

(Ωx)2 + u2
+

1

2
ρc(CD0

+ CD1
(β + tan−1(

u

xΩ
))2)

√
u2 + (Ωx)2

+ (
1

2
ρcCL0

Ωx+
1

2
ρcCL1

Ωx(β + tan−1(
u

xΩ
))

u√
u2 + (Ωx)2

]ż

(4.17)

An assumed modal expansion is used to reduce the order of the linearized equation of

motion. According to the assumed-modes method, the transverse displacement is expanded

as z(x, t) ≈
∑N
i=1 ui(x)qi(t), where ui(x) are the assumed modes derived from the uniform

cantilevered beam, and qi(t) are the assumed modal coordinates. This expression is sub-

stituted into the equation of motion (4.12). Multiplying by uj(x), and integrating over the

length of the turbine blade, we get a set of second-order ODEs as
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Mq̈ + Cq̇ + Kq = Q0 (4.18)

where Q0 is due to the constant term in the aerodynamic force. Then we shift the coordinates

q̂ = q −K−1Q0, drop the hat, and have equation 4.18 about the static deflection.

Omitting the parametric excitation terms for now, such that we focus on the structural

and aeroelastic contributions to the modes, the elements of the N ×N matrices M, K, and

C are

mij =

∫ L

0
m(x)uiujdx,

kij =

∫ L

0
EI(x)ui

′′uj
′′ +

∫ L

0
m(x)Ω2uiuj

′dx−
∫ L

0
Ω2
∫ L

x
mwdwuiuj

′′dx

cij ≈
∫ L

0
[(

1

2
ρcCL1

(Ωx)2

(Ωx)2 + u2
+

1

2
ρc(CD0

+ CD1
(β + arctan(

u

xΩ
))2)

√
u2 + (Ωx)2

+ (
1

2
ρcCL0

Ωx+
1

2
ρcCL1

Ωx(β + arctan(
u

xΩ
))

u√
u2 + (Ωx)2

]uiujdx

(4.19)

for i = 1 · · · , N and j = 1 · · · , N .

4.5.2 Edgewise Bending

The equation of motion for edgewise bending vibration is obtained as

mÿ + F (y, ẏ)ẏ + (EIy′′)′′ −mΩ2y +mΩ2xy′

−(

∫ L

x
mΩ2wdw)y′′ +mg cos Ωty′ −

∫ L

x
mgdw cos Ωt = 0 (4.20)
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For aerodynamic loading in the edgewise direction under edgewise deflection, the relative

velocity is vrel = vwind − vblade = −uk − (Ωxeφ + ẏeφ)), where y(x, t) is the edgewise

deflection displacement.

Considering the geometry

tan θ =
u

xΩ + ẏ
(4.21)

Then the linear part of the aerodynamic force projected in the eφ direction for edgewise

bending is derived as

Feφ = L sin θ −D cos θ

=
1

2
ρCL(α)cV 2

rel sin θ −
1

2
ρCD(α)cV 2

rel cos θ

= (
1

2
ρCL(α)cu− 1

2
ρCD(α)c(Ωx+ ẏ))

√
(Ωx+ ẏ)2 + u2

(4.22)

Expanding the nonlinear terms in Taylor series in ẏ, and dropping the higher order terms,

we get

1

Ωx+ ẏ
≈ 1

Ωx
− 1

(Ωx)2
ẏ√

(u+ ẏ)2 + (Ωx)2 ≈
√
u2 + (Ωx)2 +

Ωx√
u2 + (Ωx)2

ẏ

(4.23)

Applying to equation 4.22, we get Feφ = Feφ0
+ Feφ1

ẏ + · · · , where
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Feφ1
= [(

1

2
ρcCL1

u2

(Ωx)2 + u2
+

1

2
ρc(CD0

+ CD1
(β + arctan(

u

Ωx
))2)

√
u2 + (Ωx)2

− (
1

2
ρcu(CL0

+ CL1
(β + arctan(

u

Ωx
))) +

1

2
ρcΩx

((CD0
+ CD1

(β + arctan(
u

Ωx
))2)))

Ωx√
u2 + (Ωx)2

]ẏ

(4.24)

Applying the assumed modal expansion described in the previous section, and casting

the modal coordinates about the equilibrium due to the constant Feφ0
term, the equation of

motion about equlibrium are Mq̈+Cq̇+Kq = 0, where the elements of the N×N matrices

M, K, and C are obtained as

mij =

∫ L

0
m(x)uiujdx,

kij =

∫ L

0
EI(x)ui

′′uj
′′ +

∫ L

0
m(x)Ω2uiuj

′dx−
∫ L

0
Ω2
∫ L

x
mwdwuiuj

′′dx

cij =

∫ L

0
[(

1

2
ρcCL1

u2

(Ωx)2 + u2
+

1

2
ρc(CD0

+ CD1
(β + arctan(

u

Ωx
))2)

√
u2 + (Ωx)2

− (
1

2
ρcu(CL0

+ CL1
(β + arctan(

u

Ωx
))) +

1

2
ρcΩx

((CD0
+ CD1

(β + arctan(
u

Ωx
))2)))

Ωx√
u2 + (Ωx)2

]uiujdx

(4.25)

for i = 1 · · · , N and j = 1 · · · , N .

4.5.3 Effect of Equilibrium on Stiffness

In the previous derivation, we dropped the constant terms Fk0
and Feφ0

. Here we do a

detailed analysis to check the effect of the constant terms on the equilibrium of the system,
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and in turns, the effect on the linearized systems.

We start with the equation of motion, choosing edgewise bending as an example as

mÿ + L(y) + εfs(y) + f0 + εfa(ẏ) = 0 (4.26)

where fs(y) represents the nonlinear stiffness terms in the equation of motion, where y is a

list of y and its derivatives, as needed in the expression, and fa(ẏ) represents the nonlinear

terms from the aerodynamic damping.

Letting ẏ = ÿ = 0, we obtain the equilibrium y0(x) from

L(y0) + εfs(y0) + f0 + εfa(0) = 0 (4.27)

Considering small motions about equilibrium, we let u = y−y0 and insert it into equation

(4.26) to produce

mü+ L(y0 + u) + εfs(y0 + u) + f0 + εfa(u̇) = 0 (4.28)

Expanding the nonlinear terms in a Taylor series, we obtain

mü+ L(y0) + L(u) + εfs(y0) + εDfs|y0u+ o(2) + f0 + εfa(0) + εDfa|0u̇+ o(2) = 0 (4.29)

Then with the equilibrium equation (4.27), we obtain

mü+ L(u) + εDfs|y0u+ εDfa|u0u̇ = 0 (4.30)
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The third term is a stiffness term, and the fourth term is a damping term.

Assuming u and its derivatives are small, the terms εDfs|y0u have a small effect on the

system stiffness, and so they are neglected as we study the modal issues associated with the

damping term, εDfa|u0u̇.

4.5.4 Modal Analysis Results

Equation (4.18) can be put in state-variable form by letting yT = [q̇TqT ], and introducing

the equation Mq̇−Mq̇ = 0 [110]. As such,

Aẏ + By = 0 (4.31)

where matrices A =

 0 M

M C

 , B =

−M 0

0 K

 are 2N × 2N . Seeking a solution of the

form y(t) = φeαt leads to a general eigenvalue problem,

αAφ+ Bφ = 0 (4.32)

Solving the eigenvalue problem and recombining the eigenvectors φ
j

with the assumed

modal functions ui(x) in the way described in Chapter 2, allows us to approximate the

modes. Eight assumed modes were used in the assumed-modes method, as we applied it to

three example blades: the 23-m NREL, the 63-m NREL and the 100-m Sandia blade.

Each of these blades has a varying profile with x. For simplicity, we assumed a constant

airfoil type, NACA-64 airfoil. The dimensional parameters of a 23-m blade were obtained

from the NREL technical report of Bir and Oyague [89]. The parameters used in the calcu-

lation are: CL0
= 0.58, CL1

= 3.1, CD0
= 0.1, CD1

= 8.25, ρ = 1.18 kg/m3, Ω = 1.57 rad/s
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and u = 16m/s. With these parameters, the tip speed is ΩL = 36.6 m/s, and the tip speed

ratio is ΩL/u = 2.29.

Considering the complex modal pair as a “mode”, the associated eigenvalues can be

expressed in the form α1,2 = −ζωm±iωm
√
ζ2 − 1, from which a “modal” frequency ωm and

a “nonmodal damping ratio” ζ were computed. The modal frequencies and damping ratio

obtained under the aerodynamic damping are shown in Table 4.12, where ωn is undamped

modal frequency. The first four modes including the real and imaginary parts of the complex

modes of flapwise bending are shown in Figure 4.23. The damping ratios of the flapwise

modes are small, and the modes are dominated by the real part, so the turbine blade can be

well approximated by real modes of stationary beam. This can be verifed by the comparision

between the modes of the nonmodally damped case and those of the undamped case, as shown

in Figure 4.22. The dotted lines in the plot represent for the undamped mode, and match

with the solid lines very well, which represent for the imaginary part of the complex mode

in the nonmodally damped case.

The first four modes of the edgewise bending for the 23-m wind turbine blade are shown

in Figure 4.24, and the modal frequencies and damping ratio are shown in Table 4.13. The

damping ratios of the edgewise modes are smaller compared to those of the flapwise modes.

Table 4.12 Damping ratio and modal frequencies compared to the undamped modal frequen-
cies for flapwise bending of 23-m turbine blade at rated wind speed u = 16 m/s and Ω = 1.57
rad/s

Modes No. ζ α ωm ωn

mode 1 0.071 0.892±12.450i 12.482 12.533
mode 2 0.023 0.805±34.104i 34.113 34.194
mode 3 0.009 0.670±73.608i 73.611 73.688
mode 4 0.004 0.606±138.40i 138.41 138.476

The effect of nonmodal damping is more significant on the 63-m wind-turbine blade. The
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Figure 4.22 The comparision between the modes of the nonmodally damped case and those
of the undamped case for 23-m blade

dimensional parameters of a 63-m blade were obtained from the NREL technical report of

Jonkman [90]. For an operating speed Ω = 1.25 rad/s and wind speed u = 11.4 m/s, the

tip speed is ΩL = 78.7 m/s, and the tip speed ratio is ΩL/u = 6.9. The first four modes

of flapwise bending are shown in Figure 4.25, and the modal frequencies and damping ratio

are shown in Table 4.14. The modal frequencies and damping ratio of edgewise bending are

listed in Table 4.15. Compared to the 23-m wind turbine blade, the damping ratio of the

Table 4.13 Damping ratio and modal frequencies compared to the undamped modal fre-
quencies for edgewise bending of 23-m turbine blade at rated wind speed u = 16 m/s and
Ω = 1.57 rad/s

Modes No. ζ α ωm ωn

mode 1 0.031 0.608±19.889i 19.898 19.860
mode 2 0.009 0.617±63.596i 63.599 63.734
mode 3 0.004 0.549±144.35i 144.35 144.372
mode 4 0.002 0.475±269.59i 269.59 269.913

97



0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4
flap mode 1

Axial location (m)

 R
ea

l a
n

d
 im

ag
in

ar
y 

p
ar

ts
 

0 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3
flap mode 2

Axial location (m)

 R
ea

l a
n

d
 im

ag
in

ar
y 

p
ar

ts
 

0 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3
flap mode 3

Axial location (m)

 R
ea

l a
n

d
 im

ag
in

ar
y 

p
ar

ts
 

 

 

0 5 10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3
flap mode 4

Axial location (m)

 R
ea

l a
n

d
 im

ag
in

ar
y 

p
ar

ts
 

Real
Imaginary

Figure 4.23 The first four modes of the flapwise bending of 23-m wind turbine blade with
nonmodal damping

flapwise modes increases. The aerodynamic loading exerts a significant damping on the large

wind-turbine blade.

The first four modes of edgewise bending are shown in Figure 4.26, and the modal

frequencies and damping ratio are listed in Table 4.15. The damping ratios of the first four

modes increase compared to the values of 23-m blade, but are much smaller than those of

the flapwise modes.

Table 4.14 Damping ratio and modal frequencies compared to the undamped modal fre-
quencies for flapwise bending of 63-m turbine blade at rated wind speed u = 11.4 m/s and
Ω = 1.25 rad/s

Modes No. ζ α ωm ωn

mode 1 0.173 0.732±4.165i 4.229 4.457
mode 2 0.048 0.581±12.014i 12.028 12.325
mode 3 0.019 0.536±27.757i 27.762 28.048
mode 4 0.010 0.505±49.852i 49.855 50.141
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Figure 4.24 The first four modes of the edgewise bending of 23-m wind turbine blade with
nonmodal damping

The trend continues with the 100-m wind-turbine blade. When the length of the blade

increases, the damping ratio increases. The dimensional parameters of a 100-m blade were

obtained from the Sandia National Laboratories technical report of Griffith and Ashwill [88].

For an operating speed Ω = 0.78 rad/s and wind speed u = 11.3 m/s, the tip speed is

ΩL = 78 m/s, and the tip speed ratio is ΩL/u = 6.9. The first four modes are shown in

Figure 4.27, and the modal frequencies and damping ratio are listed in Table 4.16. The modal

Table 4.15 Damping ratio and modal frequencies compared to the undamped modal fre-
quencies for edgewise bending of 63-m turbine blade at rated wind speed u = 11.4 m/s and
Ω = 1.25 rad/s

Modes No. ζ α ωm ωn

mode 1 0.057 0.384±6.653i 6.664 6.748
mode 2 0.015 0.374±24.860i 24.863 24.979
mode 3 0.006 0.359±57.664i 57.665 57.783
mode 4 0.003 0.351±105.25i 105.25 105.37
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Figure 4.25 The first four modes of the flapwise bending of 63-m wind turbine blade with
nonmodal damping

frequencies and damping ratio of edgewise bending are shown in Table 4.17. Compared to

63-m blade, the damping ratios increase and the value of the first flapwise mode reaches

0.25.

Comparing the motion-dependent angle of attack in flapwise bending and edgewise bend-

ing, in flapwise bending, α = β + θ = β + tan−1 u+ż
xΩ = tan−1 u

xΩ + xΩ
(Ωx)2+u2 ż. In edgewise

bending, α = β + θ = β + tan−1 u
xΩ+ẏ = tan−1 u

xΩ −
u

(Ωx)2+u2 ẏ. As a rough estimate, the

coefficient of ż compared to the coefficient of ẏ is increasing with the increase of the length

of the blade, i.e. the tip speed ratio increases, and thus the angle of attack of the flapwise

direction varies more than that of the edgewise direction. Therefore, this implies a greater

variation in the force with changes of velocity in the flapwise motion, and so the nonmodal

damping in flapwise direction is much stronger than that of the edgewise direction.
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Figure 4.26 The first four modes of the flapwise bending of 63-m wind turbine blade with
nonmodal damping

A “traveling index” [9] indicates the degree of nonsynchronicity of the real and imaginary

parts of the complex modes. The traveling index is defined as the reciprocal of the condition

number of the matrix whose two columns are the real and imaginary components of the

complex mode. The traveling index of the flapwise bending modes of the three blades are

listed in Table 4.18. The values of mode 2 are higher compared to the values of the other

Table 4.16 Damping ratio and modal frequencies compared to undamped modal frequencies
for flapwise bending of 100-m turbine blade at rated wind speed u = 11.3 m/s and Ω = 0.78
rad/s

Modes No. ζ α ωm ωn

mode 1 0.256 0.845±3.197i 3.307 3.382
mode 2 0.072 0.711±9.782i 9.808 9.931
mode 3 0.029 0.633±21.624i 21.633 21.747
mode 4 0.015 0.559±37.151i 37.156 37.272
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Figure 4.27 The first four modes of the flapwise bending of 100-m wind turbine blade with
nonmodal damping

three modes, which means mode 2 is more nonsynchronous. With the increase of the size of

the blade, the modal nonsynchronicity increases. However, in all cases, the modes are highly

synchronous.

The wind speed is varying in a wide range in the real operation of wind turbines. The

typical cut-in and cut-out wind speeds are 3 m/s and 25 m/s [88–90]. Figure 4.29 shows

the variation of the nonmodal damping ratios of flapwise bending for the 23-m wind turbine

blade. Figure 4.30 shows the variation of the nonmodal damping ratios of flapwise bending for

the 100-m wind turbine blade. We can see that the damping ratio increases with the increase

of the wind speed for both of the two blades. The damping ratio of 23-m blade increases

more with wind than that of the 100-m blade, since the Ωx term in the denominator increases
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Figure 4.28 The first four modes of the edgewise bending of 100-m wind turbine blade with
nonmodal damping

from 23-m blade to 100-m blade.

4.5.5 Quantification of the Nonmodal Damping

Nonsynchronous modes occur when the damping is significantly nonmodal, i.e. non-diagonalizable

by the undamped modal coordinate transformation, but also when the damping is signifi-

cant. Here we want to define criteria to quantify the degree to which the damping is non-

modal and significant. The undamped modal coordinate transformation gives UTMU = I,

UTKU = Λ, UTCU = D, where U is the modal matrix deriving from the eigenvalue prob-

lem of the mass and stiffness matrices, K − ω2M = 0. If the damping is modal, then D is

diagonal.
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Table 4.17 Damping ratio and modal frequencies compared to undamped modal frequencies
for edgewise bending of 100-m turbine blade at rated wind speed u = 11.3 m/s and Ω = 0.78
rad/s

Modes No. ζ α ωm ωn

mode 1 0.066 0.263±3.956i 3.965 4.053
mode 2 0.021 0.256±12.045i 12.047 12.140
mode 3 0.009 0.262±29.398i 29.399 29.478
mode 4 0.005 0.264±51.768i 51.769 51.850

Table 4.18 Traveling index for flapwise bending of the three blades at rated wind speed

Modes No. 23−m 63−m 100−m
mode 1 0.009 0.015 0.021
mode 2 0.024 0.046 0.057
mode 3 0.014 0.023 0.030
mode 4 0.008 0.015 0.021

To quantify the size of the damping terms relative to the stiffness terms, we define a

“nonmodal ratio” as the summation of the singular values of matrix D over the summation

of the singular values of matrix Λ, where the singular values quantify the amplitude of a

matrix. The “nonmodal ratio” of the three blades are shown in Table 4.19. It shows that

with the increase of the size of the blades, the amplitude of the damping matrix becomes

larger compared to the stiffness matrix, which correlates with the variation of the damping

ratio of the three blades.

We then define a “nondiagonality” to quantify how nondiagonal the matrix D is. Each

eigenvector uj of matrix D has angles with each basis vector. For each eigenvector, we find

the minimum angle of the vectors uj to the basis vectors. Then define the “nondiagonality”

as the maximum over the eigenvectors of these minimal angles. Max cosine corresponds to

Table 4.19 “Nonmodal ratio” for flapwise bending of the three blades at rated wind speed

Blade 23−m 63−m 100−m
“Nonmodal ratio” 1.46e-6 1.26e-5 2.93e-5
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Figure 4.29 The variation of flapwise bending damping ratio with varying wind speed for
23-m blade

Table 4.20 “Nondiagonality” for flapwise bending of the three blades at rated wind speed

Blade 23−m 63−m 100−m
“Nondiagonality” 1.052 1.055 1.081

minimum angle. For a given uj , we seek the max cosine to represent the minimum angle to a

basis vector of D. We then take the maximum of these angles (minimum of cosines), over all

eigenvectors uj . Mathematically, this is mini(maxi(abs(uji))). If the matrix D is diagonal,

then its eigenvectors line up with the vector basis of D. The “nondiagonality” of the three

blades at rated wind speed are shown in Table 4.20. It shows that with the increase of the

size of the blades, the value of the “nondiagonality” increases, i.e. the nondiagonality of the

matrix D increases.
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Figure 4.30 The variation of flapwise bending damping ratio with varying wind speed for
100-m blade

4.5.6 A Review of Unsteady Dynamic Stall Lift Model

There are many methods that could be used for the prediction of the aerodynamics of

unsteady lift model of wind turbine blade, such as Theodorsen theory [132], ONERA method

[133–135], Leishman-Beddoes method [100] and Larsen’s approach [126].

Theodorsen’s theory is a tool for modelling the sectional aerodynamics using unsteady

thin aerofoil theory. It simulates the quasi-periodic first harmonic variations in angle of

attack. Added mass and wake vorticity effects are included compared to quasi-steady thin

airfoil model [136, 137]. Some comparison between Theodorsen’s unsteady theory and mea-

surements of the unsteady lift on airfoils can be found in [136]. In [137], the Theodorsen’s

unsteady aerodynamic model was cast into a low-dimensional, state-space representation.
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CL = π[ḧ+ α̇− aα̈] + 2π[α + ḣ+ α̇(
1

2
− a)]C(k) (4.33)

where the first term in the equation represents for the added-mass effect, while the second

term accounts for the lift attenuation by the wake vorticity. C(k) is the transfer function,

which can be expressed in Hankel functions.

The ONERA model describes the unsteady dynamic stall with a set of differential equa-

tions. Tran and Petot [133,134] first presented a system of differential equations relating the

aerodynamic forces and the variables of the airfoil section to simulate the time delay effects

of the flow. The parameters in the equations were obtained by identification of the test

results (engineering tests in wind tunnel), so the ONERA model is a semi-empirical model.

Peters [135] then presented a modification of the ONERA model, including the pitch-plunge

distinction, the unsteady free-stream, and large angles of attack. For small angles of attack,

the model reduces to Theodorsen theory for steady free stream.

In the ONERA model, the relation between the lift coefficient of the airfoil and the angle

of attack can be expressed by a set of equations as follows

dCl1
dτ

+ λCl1 = λaθ + (λs+ δ)
dθ

dτ
+ s

d2θ

d2τ

d2Cl2
d2τ

+ ᾱγ̄
dCl2
dτ

+ γ̄2(1 + ᾱ)2Cl2 = −γ̄2(1 + ᾱ)2[∆Cz + C̄
d∆Cz
dθ

dθ

dτ
]

Cl = Cl1 + Cl2

(4.34)

where Cl1 and Cl2 are the lift coefficients in the linear and non-linear regions of angle of

attack, θ is the total angle of attack, and ∆Cl is the difference between the extended linear

lift curve and the acual static lift curve [138]. The parameters λ, a, δ, ᾱ, γ̄, C̄ are functions of
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angle of attack and can be obtained from wind tunnel tests by parameter identification.

A more recent model was presented by Larsen [126], which is based on a backbone curve

in the form of the static lift as a function of angle of attack. The static lift is described by two

parameters, the lift at fully attached flow and the degree of attachment. The nonstationary

effects are formulated by three mechanisms, a delay of the lift coefficient of fully attached

flow, a delay of the development of separation, and a lift contribution due to leading edge

separation. The total lift coefficient can be expressed as

cL(t) = cL,d(t) + cL,v(t)

= cos4(
1

4
θd(t))[cL0(α)− c1(t)− c2(t)] + cL,v(t)

(4.35)

where the first term cL,d(t) represents for the time delay of the lift coefficient, and the

second term cL,v(t) represents for the value of the induced lift after the initiation of the

diminishing effect. The static coefficient to be determined is cL0(α), which can be found

from experimental static lift coefficient.

We focus on linear modal analysis in the nonmodal damping. In this case, the variation

of the hesteresis phenomena could be less significant. Therefore, we apply the quasi-steady

model first for the formulation of the nonmodal damping, and the unsteady lift models could

be brought into the formulation in the future.

4.5.7 Conclusion

In this work, the quasi-steady aerodynamic loading in both flapwise and edgewise directions

were formulated and the associated damping terms were derived for analysis. We isolated
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the effect of nonmodal damping in the equation of motion for a rotating wind-turbine blade

and further solved for the modes in flapwise and edgewise bending. The data from the NREL

technical reports were applied in the computations and the samples of 23-m, 63-m and 100-m

wind turbine blades were analyzed.

The plots of the first four modes and the calculation of damping ratios show that the

aerodynamic loading has a stronger damping effect on the flapwise bending compared to

that of the edgewise bending. With the increase of the length of wind turbine blades, the

damping ratio and nonsynchronicity increase. The aerodynamics loading exerts a more

significant effect on large size wind turbine blades. The damping ratio increases with the

increase of the wind speed. The high synchronicity of the modes suggests that the modes can

be approximated well by real modes. Therefore, considering aerodynamics (but not rotation

effects), modal studies in labs on fixed blades should be representative of modal shapes of

aerodynamically loaded blades.

The aerodynamic loading modeling of the wind turbine blade in this paper used a simple

quasisteady aeroelastic model, and it could be improved by applying a dynamic model, in-

corporating the unsteady aerodynamic effects such as stall hysteresis. We also approximated

the calculations by using a uniform airfoil type in each blade. In our next calculations, we

will apply the spatially variable airfoil type as indicated in the technical reports for each

blade studied here.
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Chapter 5

Modal Analysis of Parametrically

Excited Systems

5.1 Chapter Introduction

In time-periodic systems, such as wind turbines, the time-periodic stiffness matrix will bring

difficulties to modal analysis. In experimental modal analysis, there are a few methods, such

as Floquet modal analysis, for analyzing the time varying modes based on data measure-

ments, as mentioned in the introductory chapter. However, there is no mature theoretical

method to analyze the effect of the parametric excitation on the modal response of the sta-

tionary system. So here we develop a perturbation approach to analyze the perturbation

effect of the parametric excitation on the unperturbed system.

5.2 Perturbation Approach for Nonresonant Response

Basically one obtains the response of the nonlinear system by perturbing the response of the

linear system which is obtained by deleting all the nonlinear terms [139]. There are a few

ways to implement the perturbation methods, such as straightforward expansion, multiple

scales, harmonic balance and averaging method. Here we use straightforward expansion

method to solve for non-resonant responses. Since wind turbines are defined to operate well
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below the first modal frequency, in this intial work, we look at the nonresonant condition.

A small, dimensionless parameter ε is introduced, which is the order of the amplitude of

the motion and can be used as a crutch in obtaining the approximate solution. So we start

with the equation of motion, which can be written as follows:

Mq̈ + (K0 + εK1 cos(Ωt))q = 0 (5.1)

where the dimensions of M,K0,K1,q are N ×N , N ×N , N ×N and N × 1, respectively.

We assume the solution of the response can be represented by an expansion having the

form

q = q0 + εq1 (5.2)

Substituting equation (5.2) into equation (5.1), we get

M(q̈0 + εq̈1) + K0q0 + εK0q1 + εK̃1(t)q0 = 0 (5.3)

with K̃1(t) = 1
2K1(eiΩt + e−iΩt)

Equating the coefficients of ε, we obtain

Order ε0

Mq̈0 + K0q0 = 0 (5.4)

Order ε1

Mq̈1 + K0q1 = K̃1(t)q0 (5.5)

Equation 5.4 can be solved assuming synchronous motion, leading to the familiar eigen-
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value problem, (K0 − ω2
0M)φ = 0, which has eigenvectors φ

j
and eigenvalues ω0j , j =

1, · · · , N . Therefore, equation (5.4) has a modal solution of the form

q0j =
1

2
a(e

i(ω0jt+β)
+ c.c.)φ

j
(5.6)

where φj and ω0j are eigenvectors and eigenvalues of (K0 − ω2
0jM)φ

j
= 0, j = 1, · · · , N ,

and a and β regulates the amplitude and phase of the mode. Substituting equation (5.6)

into equation (5.5), we get

Mq̈1 + K0q1 =
1

4
AK1φj(e

i(Ω+ω0j)t
+ e

i(Ω−ω0j)t
+ c.c.) (5.7)

where A = 1
2ae

iβ . We introduce ωij as

ω1j = Ω + ω0j

ω2j = Ω− ω0j

(5.8)

We seek a particular solution to equation (5.7) of the form

q1j =
2∑
i=1

χ
ij
e
iωijt + c.c. (5.9)

and we obtain

χ
ij

=
1

4
A(K0 − ω2

ijM)−1K1φj (5.10)

provided K0 − ω2
ijM is invertible, which means ωij is not equal to a natural frequency of

the unperturbed system. Substituting equation (5.10), (5.9) and (5.6) into equation (5.2),
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we obtain the “modal” solution of the response

qj = A(e
iω0jt + c.c.)φ

j
+

1

4
εA

2∑
i=1

(K0 − ω2
ijM)−1K1φje

iωijt + c.c. (5.11)

where ω2
ij 6= ω2

0k. Under this condition, from equation (5.8), the analysis breaks down when

Ω = 0 and Ω = |ω0j ± ω0k|. In this straightforward perturbation scheme, a and β in the

constant A = 1
2ae

iβ are determined by initial conditions.

Thus, the jth perturbed nonresonant modal response consists of an unperturbed modal re-

sponse of shape φ
j

plus a series of perturbations of the shapes χ
ij

= 1
4A(K0−ω2

ijM)−1K1φj

modulated at frequencies ωij = Ω ± ω0j . The net response is quasiperiodic of fluctuating

shape.

So at this point, we have obtained the non-resonant response of the time periodic system,

in the form of a system of original stationary equation of motion solutions plus a series of

corrected solutions from the parametric excitation perturbation. The result can show the

perturbation effect of the parametric excitation on a specific linear mode. For each particular

mode, we can plot the solution in equation (5.11) to visualize how the perturbed part affects

the modes of the original system.

In the application of wind turbine, the rotation speed Ω is much smaller compared to

the modal frequencies of the blade ωi. A detailed comparison of the Ω and the first modal

frequency ω1 of edgewise and flapwise bending can be obtained in Table 5.1. Therefore, we

can focus on the non-resonant case of the perturbation response.
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Table 5.1 Comparison of the Ω and the first modal frequency ω1 of edgewise and flapwise
bending (Unit:rad/s)

Blade 23−m 63−m 100−m
Ω 1.57 1.25 0.78

Edgewise ω1 19.86 6.75 4.05
Flapwise ω1 12.53 4.46 3.38

5.3 Example: Three Mass System

We start with a three mass system as an example of the perturbation analysis on a multi-

degree-of-freedom system. Figure 5.1 shows an example of the three mass system.

Figure 5.1 The example of three mass system

The properties of this three degree of freedom system are assigned as follows: m1 = m2 =

m3 = m, k1 = k2 = k3 = k4 = k.

The equations of motion are obtained as

m1ẍ1 + k1x1 + k2(x1 − x2) = 0 (5.12)

m2ẍ2 + k2(x2 − x1) + k3(x2 − x3) = 0 (5.13)

m3ẍ3 + k3(x3 − x2) + k4x3 = 0 (5.14)

Combining all three equations, we can obtain the matrix form of the equations of motion
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for this discretized mass system:


m 0 0

0 m 0

0 0 m




ẍ1

ẍ2

ẍ3

+


2k −k 0

−k 2k −k

0 −k 2k




x1

x2

x3

 = 0 (5.15)

So

M =


m 0 0

0 m 0

0 0 m

K0 =


2k −k 0

−k 2k −k

0 −k 2k

 (5.16)

Now introducing the excitation matrix K1 , the equations of motion become

Mẍ + (K0 + εK1 cos Ωt)x = 0 (5.17)

where K1 = K0 in this example.

Now we can use the approach developed in the previous section to solve for the solutions

of this discretized mass system. Substitute the matrices M, K0 and K1 into equation 5.11

and plot the response, then we can get the the plot of the three modes in Figure 5.2.

In this example, the value of ε is set to 0.1. The plot in Figure 5.2 is a certain instant

randomly selected from a video of the response. In Figure 5.2, the solid line is the modal

response without perturbation, while the dashed line is the one with perturbation. We could

see that the mode shapes with perturbation and without perturbation don’t completely

coincide with each other, which means the perturbations did affect the modal response of

the unperturbed system.
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Figure 5.2 The comparison between the condition without perturbation and with perturba-
tion for three mass system

5.4 Example : Wind Turbine Blade

In the previous three mass example, the perturbation with the parametric excitation shows

an effect on the modal response of the stationary part of the system. Now we want to

apply the perturbation analysis to the wind turbine blades, and see what effect it has. The

elements of matrices M, K0 and K1 are obtained from equation 4.7 in Chapter 4, as

mij =

∫ L

0
m(x)uiujdx

k0ij =

∫ L

0
EI(x)ui

′′uj
′′dx−

∫ L

0
mΩ2uiujdx

+

∫ L

0
m(x)Ω2uiuj

′dx−
∫ L

0
Ω2
∫ L

x
mwdwuiuj

′′dx

k1ij =

∫ L

0
m(x)guiuj

′dx cos Ωt−
∫ L

0
g(

∫ L

x
mdw)uiuj

′′dx cos Ωt

(5.18)

The plots of wind turbine blade perturbed modal responses show a snapshot from the

animated motion, as shown in Figure 5.3, Figure 5.4, and Figure 5.5, when the time is 0 and a

quarter of the period of vibration. The solid line is the modal response without perturbation,

while the dotted line is the one with perturbation. The data from three different blades,

the NREL 23-m blade, the NREL 63-m blade, and the Sandia 100-m blade were applied.
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The results are shown in Figure 5.3, Figure 5.4, and Figure 5.5. From these plots, we

could see that the mode shapes with perturbation and without perturbation coincide with

each other pretty well, which indicates the perturbed excitation doesn’t significantly affect

the modal response. The perturbation part doesn’t show a significant effect on the wind

turbine modal response, because the periodic excitation matrix is much smaller compared

to the unperturbed modal matrix. Comparing between the three mass system and this wind

turbine blade example, it may indicate the perturbation effect depends on the magnitude of

the parametric excitation matrix over the orignial modal matrix.

5.4.1 Quantification of the Nonmodal Stiffness Matrix

Similar to the “nonmodal ratio” defined in section 4.5.5, here we want to define criteria

to quantify the degree to which the parametric excitation stiffness matrix is nonmodal and

significant. The undamped modal coordinate transformation gives UTMU = I, UTKU =

Λ, UTCU = D, where U is the modal matrix deriving from the eigenvalue problem of the

mass and stiffness matrices, K − ω2M = 0. For parametric excitation stiffness matrix, we

have

UTK1U = P

We define a “nonmodal ratio” as the summation of the singular values of matrix P over

the summation of the singular values of matrix Λ, where the singular values quantify the

amplitude of a matrix. The “nonmodal ratio” of edgewise bending for the three blades are

shown in Table 5.2 and those of the flapwise bending are shown in Table 5.3. It shows that

with the increase of the size of the blades, the amplitude of the matrix K1 becomes larger

compared to the matrix K0.
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Table 5.2 “Nonmodal ratio” for edgewise bending of the three blades at rated wind speed

Blade 23−m 63−m 100−m
“Nonmodal ratio” 3.75e-5 1.27e-4 2.56e-4

Table 5.3 “Nonmodal ratio” for flapwise bending of the three blades at rated wind speed

Blade 23−m 63−m 100−m
“Nonmodal ratio” 4.59e-5 1.58e-4 2.55e-4

5.5 Conclusion

We developed an approach for the perturbation analysis of the parametric excitation in the

wind turbine equation of motion. The example of three mass system shows the perturbed

effect on the unperturbed system by the excitation terms when the stiffness matrix is of

a different size. It is shown for wind turbine blades, the parametric excitation does not

have a significant effect on the modal response of the blade. However, if nonlinear terms or

resonances are considered, this could be different. On the other hand, this result shows that

it is reasonable to neglect the parametric excitation when investigating the mode shapes of

the turbine blades with a relative small size.
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Figure 5.3 The comparison between the conditions without perturbation and with perturba-
tion for 23-m blade (a) when t = 0 (b) when t = quarter period.

119



0 20 40 60
−2

−1

0

1

2
mode 1

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t 

0 20 40 60
−2

−1

0

1

2
mode 2

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t 

0 20 40 60
−2

−1

0

1

2
mode 3

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t 

 

 

Without Perturbation
With Perturbation

0 20 40 60
−2

−1

0

1

2
mode 4

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t

(a)

0 20 40 60
−2

−1

0

1

2
mode 1

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t 

0 20 40 60
−2

−1

0

1

2
mode 2

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t 

0 20 40 60
−2

−1

0

1

2
mode 3

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t 

 

 

0 20 40 60
−2

−1

0

1

2
mode 4

Axial location (m)

M
o

d
al

 D
is

p
la

ce
m

en
t

Without Perturbation
With Perturbation

(b)

Figure 5.4 The comparison between the conditions without perturbation and with perturba-
tion for 63-m blade (a) when t = 0 (b) when t = quarter period.
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Figure 5.5 The comparison between the conditions without perturbation and with perturba-
tion for 100-m blade (a) when t = 0 (b) when t = quarter period.
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

We have investigated the modal analysis of non-diagonalizable vibration systems, particularly

continuous systems when the damping is nonmodal and there is parametric excitation in the

system.

6.1.1 Complex Modal Analysis of a Nonmodally Damped Contin-

uous Beam

We have outlined a scheme for the complex modal analysis of non-modally damped dis-

tributed parameter systems, and applied this approach to the analysis of an end-damped

cantilevered beam. The method involves the use of assumed modes of the undamped sys-

tem, which are combined based on the state-variable eigensolution of the discretized system.

The finite-element method was also utilized to get the mass, stiffness, and damping ma-

trices and further to build and solve a state-variable eigenproblem. The eigenvalues and

modal vectors obtained from the assumed-mode method were consistent with those from the

finite-element method, as indicated by nearly unit MAC values.

These results show that the distributed parameter assumed-mode based method is an

efficient way to solve the complex mode problem when non-modal damping is included. The
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assumed-mode method involves computations of integrals for the low-order modeling of mass,

damping and stiffness matrices, and subsequent computations are noniterative and involve

lower-order matrices. The assumed-mode method should be equally applicable to structures

with nonuniformities, without significant changes in the approach.

We applied this method to study features of the end-damped cantilevered beam as a

function of the damping coefficient c. With this damping arrangement, most modes are

underdamped regardless of c. Each underdamped mode has optimal values of c for generating

vibration decay and modal nonsynchronicity.

6.1.2 Experimental Study on Complex Modes of an End Damped

Continuous Beam

We have conducted an experiment for investigating the complex modal behavior of an end-

damped cantilevered beam. Eddy-current induced damping was applied at the end of a can-

tilevered beam to generate the nonmodal damping. SVMD was applied to extract the com-

plex modes from the free response of the cantilevered beam and to analyze the modal prop-

erties including modal frequencies, mode shapes, damping ratio and modal nonsychronicity.

The modal properties from the experimental results were compared with those from a

numerical analysis of the model. The modal frequencies and mode shapes obtained from

the experiments were consistent with those from the model. The variation of damping ratio

and traveling index with varying damping coefficient also agreed with the predictions from

the model. Over the range of damping coefficients studied in the experiments, we observed

a maximum damping ratio in the lowest underdamped mode, which correlated with the

maximum modal nonsynchronicity.
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The results of modal assurance criterion values showed that the SVMD modes were

consistent with the modes from the model. As verification, the COD method also produces

similar results as SVMD. The mode shapes obtained from COD correlated with the modes

from the model.

6.1.3 Modal Analysis of a Wind Turbine Blade

We applied the assumed-mode complex modal analysis to study HAWT blades. Based on the

equations of motion of a turbine blade, the edgewise and flapwise bending modes of turbine

blades were analyzed. Comparing the natural frequencies obtained with the technical report

of Bir and Oyague [89], it shows a good agreement. It was shown that when the rotating

speed of the hub is slow, i.e. at the speed range of an rotating wind turbine, the mode shapes

do not depend significantly on whether the conditions are with or without rotation. The

modal frequencies of the blade in the vertical and horizontal positions have minor differences.

This provides the theoretical foundation for the research work by building a small model of

the turbine blade in the lab. However, the difference between the modal frequencies at

horizontal and vertical positions becomes larger when the size of the turbine blade increases

and it is verified on the 63-m and 100-m wind turbine blades.

The effects of rotational position due to gravity of the three different blades, the NREL

23-m blade, the NREL 63-m blade and the Sandia 100-m blade, were compared. With the

increase of the size of the blade, the difference of the modal frequencies at different rotation

positions (horizontal position and vertical position) increases.

The aerodynamic loading in both flapwise and edgewise directions were derived and the

damping terms were derived for analysis. We isolated the effect of nonmodal damping in the

equation of motion for a rotating wind turbine blade and further solved for the modes in
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flapwise and edgewise bending. The data from the NREL and Sandia technical reports were

applied in the computation and the samples of 23-m, 63-m and 100-m wind turbine blades

were analyzed.

From the plot of the first four modes and the calculation of damping ratios, it shows that

the aerodynamic loading has a much stronger effect on the flapwise bending compared to

the edgewise bending. With the increase of the length of wind turbine blades, the damping

ratio and nonsynchronicity increased. The aerodynamic loading exerts a more significant

effect on large wind turbine blades. The damping ratio increases with the increase of the

wind speed. However, the damping ratios vary greatly for 23-m blade, and vary little for

100-m blade, which means the effect of the wind speed on the nonmodal damping of the

wind turbine blades is different for different blades.

The aerodynamic loading modeling of the wind turbine blade in this paper used simple

quasisteady aeroelastic model, and it could be improved by applying a dynamic model,

considering the unsteady aerodynamic effects such as stall hysterisis [100, 133, 134]. The

rotational effects were not considered in this Chapter, and could be further added into

modeling in the future.

6.1.4 Modal Analysis of Parametrically Excited Systems

We developed an approach for the perturbation analysis of the parametric excitation in the

wind turbine equation of motion. The example of three mass system shows the perturbed

effect on the unperturbed system by the excitation terms when the stiffness matrix is of

a different size. It is shown for wind turbine blades, the parametric excitation does not

have a significant effect on the modal response of the blade. However, if nonlinear terms or

resonances are considered, this could be different. On the other hand, this result shows that
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it is reasonable to neglect the parametric excitation when investigating the mode shapes of

the turbine blades with a relative small size.
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6.2 Future Work

Future work will include the following:

� The assumed-mode approach for complex modal analysis can be applied to more

severely nonmodally damped systems, such as the flutter of a flag. It also may be

worthwhile to consider the large hydropower turbine blade. In this case, a much larger

density of water will bring a more significant nonmodal damping, and the associated

modal properties could be investigated.

� The experiment in Chapter 3 did not capture the first mode. However, if we replace

the accelerometers with strain gages and redo the experiment, the first mode should

be obtained. The strain gages have a better ability of measuring low frequency signals.

Then we can have a better knowledge of the real mode pair of the first mode.

� We can consider replacing the eddy-current damper with other kinds of concentrated

dampers, such as VIBEX, which is a damping product produced by the Permawick

Corporation. It would be worthy to experimentally quantify the damping properties

and complex modes, and to see how they change when the damping material changes

in the real experiment.

� The aerodynamic loading modeling of the wind turbine blade in this paper used simple

quasi-steady aeroelastic model, and it could be improved by applying a dynamic model,

such as the unsteady modeling of ONERA [133, 134]. The rotational effects were not

considered in the nonmodal damping, and could be further added into the model in

the future.

� The perturbation analysis of parametrically excited MDOF systems presented here
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was explortory, and only considered nonresonant conditions. It would be important

to futher interpret and improve the perturbation analysis of the parametric excitation

in wind turbine application. A comparison between the numerical modal solution and

the perturbation modal solution would be useful. Future work could more closely tie

the concepts to nonlinear normal mode theory, or analyze resonant cases, e.g. with the

multiple scale method.
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Appendix A

Study of the Effect of the Number of

Samples and Filter Frequency on

SVMD

The number of samples applied in SVMD can have a significant effect on the extracted

modes, as in reference [42]. The filter frequency set in the high-pass filter could also have

an effect on the extracted modes. Therefore, here we present a more detailed study of the

dependence of the results on the number of samples N and the high-pass filter frequency.

Number of Samples

As mentioned in Chapter 3, a large data sampling could contribute a better mode for lower

modes and a relatively small data sampling may be better for higher modes, considering

higher modes decay faster. However, state-variable modal coordinates need to be examined

because even if for higher modes, in the latter part of the modal coordinates, small oscillations

may still contain modal information. Therefore, a detailed study of the dependency of

number of samples is necessary.

The damping ratio, traveling index, and modal frequencies obtained when the number of

samples N = 12500 are plotted against the results from the model and shown in Figure A.1.
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The lines represent the values from the model, the triangles represent the values of mode 2,

the circles represent the values of mode 3, and the asterisks represent the values of mode

4. The mode shapes obtained when N = 12500 are shown in Figure A.2. The plots of the

modal properties by using the number of samples N = 6000 are shown in Figure A.3. The

mode shapes obtained by using N = 3000 are shown in Figure A.4. The plot of N = 3000

are shown in Figure A.5. The mode shapes obtained when N = 3000 are shown in Figure

A.6. The plot of N = 2000 are shown in Figure A.7. The mode shapes obtained when

N = 2000 are shown in Figure A.8.
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Figure A.1 The comparison of damping ratio, traveling index, and modal frequencies based
on N = 12500 sample points

The state-variable modal coordinates for each different data sampling case when damping

coefficient is 10 kg/s are shown in Figure A.9, Figure A.10, Figure A.11 and Figure A.12.

The mode shapes obtained fromN = 12500 were better compared to those fromN = 2000

for mode 3 and mode 4. Compare the modal coordinates of N = 12500 and N = 2000, we

can see in the latter half of N = 12500, there was still some oscillation for mode 3 and mode

4, which could contain some mode information. Therefore, in this experiment, N = 12500

produced a better mode.
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Figure A.2 The comparison of the real and imaginary parts of the mode shapes based on
N = 12500 sample points when c = 10 kg/s

Modal Identification with Different Filter Frequencies

As mentioned earlier in Chapter 3, to remove a low frequency “drift” in the integrated signal

ensembles, data were high-pass filtered. A higher filter frequency can remove the drift better,

but brings in more similar time constant, perhaps distortion. A previous study in reference

[42] showed that a maximum of one half of the fundamental frequency by FFT should be

employed as the filter frequency. The first fundamental frequency cannot be captured in this

experiment due to the low limit of the accelerometers and real mode pair of the first mode.

We filtered the signal with different filter frequencies, and the results are presented below.
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Figure A.3 The comparison of damping ratio, traveling index, and modal frequencies based
on N = 6000 sample points
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Figure A.4 The comparison of the real and imaginary parts of the mode shapes based on
N = 6000 sample points when c = 10 kg/s
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Figure A.5 The comparison of damping ratio, traveling index, and modal frequencies based
on N = 3000 sample points

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

0.3
mode 2

Real part

Im
ag

in
ar

y 
p

ar
t

 

 

Experiments
Model

−0.2 0 0.2

−0.2

−0.1

0

0.1

0.2

0.3
mode 3

Real part

Im
ag

in
ar

y 
p

ar
t

−0.1 0 0.1

−0.2

−0.1

0

0.1

0.2

0.3
mode 4

Real part

Im
ag

in
ar

y 
p

ar
t

0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4
mode 2

location (m)

R
ea

l &
 Im

ag
in

ar
y 

p
ar

t

0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4
mode 3

location (m)

R
ea

l &
 Im

ag
in

ar
y 

p
ar

t

0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4
mode 4

location (m)

R
ea

l &
 Im

ag
in

ar
y 

p
ar

t

Figure A.6 The comparison of the real and imaginary parts of the mode shapes based on
N = 3000 sample points when c = 10 kg/s
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Figure A.7 The comparison of damping ratio, traveling index, and modal frequencies based
on N = 2000 sample points
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Figure A.8 The comparison of the real and imaginary parts of the mode shapes based on
N = 2000 sample points when c = 10 kg/s
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Figure A.9 SVMD modal coordinates are shown for mode 2 to mode 5 based on N = 2000
sample points
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Figure A.10 SVMD modal coordinates are shown for mode 2 to mode 5 based on N = 3000
sample points
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Figure A.11 SVMD modal coordinates are shown for mode 2 to mode 5 based on N = 6000
sample points
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Figure A.12 SVMD modal coordinates are shown for mode 2 to mode 5 based on N = 12500
sample points
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Figure A.13 The comparison of the real and imaginary parts of the mode shapes based on
N = 2000 sample points with filter frequency at 5 Hz when c = 10 kg/s
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Figure A.14 The comparison of the real and imaginary parts of the mode shapes based on
N = 2000 sample points with filter frequency at 10 Hz when c = 10 kg/s
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Figure A.15 The comparison of the real and imaginary parts of the mode shapes based on
N = 3000 sample points with filter frequency at 5 Hz when c = 10 kg/s
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Figure A.16 The comparison of the real and imaginary parts of the mode shapes based on
N = 3000 sample points with filter frequency at 10 Hz when c = 10 kg/s
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Figure A.17 The comparison of the real and imaginary parts of the mode shapes based on
N = 12500 sample points with filter frequency at 5 Hz when c = 10 kg/s
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Figure A.18 The comparison of the real and imaginary parts of the mode shapes based on
N = 12500 sample points with filter frequency at 10 Hz when c = 10 kg/s
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Table A.1 MAC values comparing the modes from the experimental results and from the
model with varying number of samples and varying filter frequency (ff) when c = 10 kg/s

Mode Number ff type N = 12500 N = 6000 N = 3000 N = 2000

mode 2
ff=2 Hz
ff=5 Hz
ff=10 Hz

0.9985
0.8908
0.9146

0.9149
0.9675
0.9124

0.9800
0.8944
0.9077

0.8737
0.8897
0.8702

mode 3
ff=2 Hz
ff=5 Hz
ff=10 Hz

0.9767
0.9765
0.9680

0.9765
0.9791
0.9790

0.9729
0.9665
0.9675

0.9666
0.9662
0.9664

mode 4
ff=2 Hz
ff=5 Hz
ff=10 Hz

0.9318
0.7197
0.9419

0.9309
0.9297
0.9341

0.9231
0.9285
0.9230

0.9240
0.9271
0.9296

A calculation of the MAC values for different filter frequency are listed in Table A.1.
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Appendix B

Comparison for the axial stiffness and

bending stiffness in a rotating beam

In reference [64], Yoo and Shin derived equations of motion (EOM) of a rotating beam,

including the EOM in axial direction and bending direction. Here we did a rough comparison

between the first modal frequency of the axial direction and the bending direction.

Suppose the assumed modal functions for the bending and axial displacement are the

same in this rough estimation, as

φi = 1− cos γx (B.1)

Here we neglect Ω2 terms, as we see in Chapter 4, Ω has little effect on modal frequencies

of wind-turbine blades. The first element of the stiffness term in the axial direction is

obtained in a simplifying form as

Ka
11 = EA

∫ L

0
φ1,xφ1,xdx = EA(

2π

L
)2
∫ L

0
sin2(γx)dx (B.2)

where E is Young’s modulus, A is the cross-sectional area, φ1,x is the first order derivative

of the assumed modal function with respect to x.

The first element of the stiffness term in transverse direction is obtained in a simplifying

form as
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Kb
11 = EI

∫ L

0
φ1,xxφ1,xxdx = EI

∫ L

0
γ4 cos2(γx)dx (B.3)

where I is the area of moment of inertia of a cross-section of the beam.

Then after intergration, we obtain

Ka
11 =

EAπ2

8L

Kb
11 =

EIπ4

32L3

(B.4)

The ratio between these two stiffness terms are
Kb11
Ka11

= 1
48(h

2π2

L2 )

Since in a wind turbine blade, h is much less than L, the ratio between the bending

stiffness and the axial stiffness is very small. Therefore, the axial stiffness is very large,

and we can assume the beam to be inextensible when we derive the equation of motion in

bending.
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