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ABSTRACT

Infinitely many Periodic Solutions of Nonlinear Wave Equations on S™
By

Jin-Tae Kim

The existence of time periodic solutions of nonlinear wave equations uy; — A,u +
(252)%u = g(u) — f(t,z) on n-dimensional spheres is considered. The corresponding
functional of the equation is studied by the convexity in suitable subspaces, minimax
arguments for almost symmetric functional, some comparison principles and Morse
theory. The existence of infinitely many time periodic solutions is obtained with suit-
able assumptions on the growth of the nonlinear term g(u) when the non-symmetric

perturbation f is not small.
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Introduction

During the past three decades, the initial value or Cauchy problem has played the
central role in the theory of evolutionary differential equations, which describe many
fundamental physical processes of interaction. The Cauchy problem has been studied
extensively with considerable success. In spite of a great deal of recent activity, many
physically and mathematically important difficult problems still remain, even when
global existence and unicity have been well established. Among the most interesting
problems of this type are those of the existence, regularity and stability of time-
periodic solutions.

This dissertation is focused on the nonlinear wave equation
Au = g(u) — f(t,2), (t,z) € S* x §", n > 1, (1)

where Au = uy — Apu + (252)%u, and f(¢,z) is 2r-periodic function in t. We are
concerned with the existence of multiple 27-periodic solutions for the case where g is
superlinear, i.e., g(§)/é — oo as || — oc.

The existence of time-periodic solutions has always played an important role in the
theory of differential equations and mathematical physics. Even the existence of the
periodic solutions for nonlinear ordinary differential equations is nontrivial, requir-
ing Poincare-Bendixson theory to study the periodic orbits of general 2-dimensional
autonomous systems. In this case, periodic orbits together with the steady state

significantly influence the behavior of all other orbits. There is no question that



the existence of periodic solutions for partial differential equations is a much harder
problem.

The reason we choose the compact space S™ instead of the usual R" is motivated
by several considerations. First, S™ is a naturally curved physical space going back
to Einstein space. There is no reason to believe that the complete flat R” is a
better choice for consideration. Secondly, the usual Minkowski space R x R™ can be
conformally embedded into the Einstein Universe R x S™, with the usual wave operator
O = 82 — A~ is transforming into the operator A in this dissertation. Third, some
recent developments in constructive quantum field theory [13, 14, 21, 22, 26] are based
on the analysis of the Einstein Universe R x S™, which requires us to understand the
classical differential equations on it. Also, we want to point out that many simple
interactions like g(u) = u® on R x R™ have no periodic solutions because of the
necessary decay properties of their solutions.

The main difficulty of problem (1) is the lack of compactness. When n is odd, the
null space of A is infinite dimensional, and the component of u in this eigenspace is
very difficult to control. This fact makes the problem much harder than an elliptic
equation Au = g(z,u), or than a Hamiltonian system in which every eigenspace is
finite dimensional. The associated functional of (1) is indefinite in a very strong sense.
In particular, it is not bounded from above or from below, and it does not satisfy the
Palais-Smale compactness condition in any reasonable space.

In the case of n = 1, Bahri, Brezis, Coron, Nirenberg and Rabinowitz [5, 8, 9, 10,
16] have proved the existence of nontrivial periodic solutions of (1) under reasonable
assumptions on g(u) at u=0 and u at infinity, and the monotonicity of g. For n > 1,
Benci and Fortunato [7] proved by using the dual variational method that (1) possesses
infinitely many 27-periodic solutions in L in the case g(u) = |u[P~%u,2 <p <2+ 2

and f = 0. The existence of a nontrivial periodic solution in the case of g(0) = 0



and f = 0, and the existence of multiple, in some cases infinitely many, time periodic
solutions for several classes of nonlinear terms which satisfy symmetry and growth
conditions were established in Zhou [29, 30]. These conditions include time translation
invariance or oddness; f = 0 and g(u) ~ |ufP%u as u — oo, (2 < p < Hrtl),
Their proofs involved variational methods; a suitable and complicated approximation
scheme; index and pseudo-index theory; Sobolev type embedding theorem for the
operator A and the best estimate on the spherical harmonics obtained by Sogge [23].
The monotonicity of g played an essential role in their proof to compensate for the
infinite dimensional null space of A.

In this dissertation, we are going to study the effect of perturbations which are
not small, destroy the symmetry with f # 0, and show how multiple solutions persist
despite these nonsymmetric perturbations, provided the growth of the nonlinear term
at infinity is suitably controlled. Our method is based on the following ingredients.
(1) The elimination of the null space from the underlying Hilbert space to establish the
Palais-Smale condition for a new functional; (2) A variational technique developed for
nonlinear nonsymmetric elliptic equations by Rabinowitz [17]; (3) The construction of
a comparison functional which can be used to estimate the size of the critical values;
and (4) The estimate of Morse index at the critical points.

Our main result is the following

Theorem 0.1 Suppose that 2 < p < 2t 2(32:1‘1)‘ 2849 gnd g(¢) € C(R,R) satisfies

(91) [g9(&) — 9(&2))(& — &2) = a1|&y — &2fP;
(92) there ezists r > 0 such that

4
0<pG)=p [ glr)ir <Ea(e) for Iel 2
(93) there ezists az > 0 such that

9(E)] < az([§[P~* + 1) for £ eR;

3



(94) 9(€) =o(|¢]) at £ =0.
Then for any f(t,z) € LP/P~1(S! x S™), 27-periodic in t, the above non-linear wave

equation (1) has infinitely many periodic weak solutions in LP(S* x S*)NH(S* x S™).
Remark 0.1 By a weak solution of (1), we mean a function u(t,z) satisfying

[ (e = Do+ (C520%0) + 9w - 16 dzdt =0
SixSn
for all ¢ € C™(S* x S™).

Remark 0.2 For the p as in the theorem 0.1 and 1 < q < p, the following types of

functions
9(z,z) = h(z)|z[P72z + g(z)|2[P~" + k(z)|2|" 22,

where h(z), g(z), k(x) € C°(S™, (0,00)), satisfy conditions (g1) — (g4). In Chapter
2, we will deal with the simplest case g(u) = |u|P~%u, p > 2 which shows the ideas

involved, but the estimates are much easier to obtain than the general case.

Remark 0.3 In general we cannot expect the equation (1) to have nontrivial solution

if g is not super-linear [29].

Remark 0.4 The regularity results in the case of n = 1 are obtained by Brezis and
Nirenberg [10] for asymptotically linear g and by Rabinowitz [16] for superlinear g.
For n even regularity results are obtained by Jerison, Sogge and Zhou [11] and for
n = 3 by Zhao and Zhou [28] for the spherically symmetric solutions. However for
n >3 and n odd, the regularity of weak solutions of the equation (1) is still open.

In [29], the existence result is proved for the case g is an odd function and for 2 <
p< (1 + ( )1/ 2), where finite-dimensional approximation is used to overcome
the lack of compactn&s mentioned above. Using, however, Tanaka’s idea [24], we

get around these difficulties by maximizing the original functional F(u) associated
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with the equation (1) with respect to N. That is, we consider the functional I(u) =
max F(u+v) for u in the orthogonal complement of N. Due to a compact embedding
theorem 1.1 for this new space, we can prove that I(u) has the desired compactness
properties. And it is easy to see that each critical point of I(u) corresponds to a
unique critical point of F'(u).

We are able to improve on p without the restriction of oddness on g. In the case of
f(t,z) = 0, the equation (1) has a natural symmetry and the functional F(u) is S!-
invariant. We will address the case where f(t, z) is not identically 0 as a perturbation
from symmetry by using the ideas from [17]. The situation for the wave equation
is more complicated since the operator A has infinitely many positive and infinitely
many negative eigenvalues. The idea is based on some topological linking theorems.
The key in this argument is to estimate the size of some explicitly constructed critical
values. To do this, we will introduce a symmetric comparison functional K (u) defined
only on the positive eigenspace. Using the symmetry we will construct critical values
of K(u), and will establish the relations between critical values of I(u) and K(u). An
argument by Morse index theory on K(u) will finally prove the needed estimates.

This dissertation will be organized as follows. We will give some preliminaries in
Chapter 1, to serve as background in understanding later presentation. In Chapter 2,
we will consider the case where g(u) = |u|P~2u, p > 2, which is relatively easier than
the more general case of Theorem 0.1 because of the explicit form of the nonlinear
term and, more importantly, that we just need to consider the Z;-action instead of
the S'-action. Finally in Chapter 3, using the ideas in Chapter 2, we carefully will
show how to modify the functional, check the Palais-Smale conditions of the modified
functional, establish the S! covariant version of Borsuk-Ulam theorem, and find the

connection between the Morse index of some critical points and their critical values.



CHAPTER 1

Preliminaries

Let A the linear wave operator such that
n—1,
Au=uy — Au+ (T) u,
where (t,z) € S! x S®,n > 1. It is well known that the eigenvalues of A are

Mbd) = @+ 25 - )+ P

+J)’ la] =0,12,..,
and the corresponding eigenfunctions in L?(S? x S™) are
dim(z) sinjt, @im(z)cosjt, m=1,2, ..., M(,n),

where ¢y ;m(z), m = 1,2,..., M(l,n), are spherical harmonics of degree 1 on S™ and

_@+n-1r(l+n-1)
B I'(l+1)I(n)

M(l,n) = o(I* ).

Then u € L%(S! x S™) can be written as

U= u;me"dim(z),

l,jm

where u; j» are the Fourier coefficients with v jm = 1, jm. Hence

(Au,u)p2 = AL, 5)|wjm|

Ljm



And the Sobolev space we will work on is defined as
H={ue L} x5 :lully = Y AEA)ugml + D Jwiml? < oo}
L,jm A(l,5)=0
Clearly H is a Hilbert space with the inner product
<u’ U)H = Z |A(l’ j)lulrJym’l-}lerm + Z ul,j,mﬁl,j,m-
lLjm A,3)=0

We decompose H into invariant subspaces:

N = {u € H|u;m = 0 for A(l, ) # 0},
E* = {u € H|u;m = 0 for A(l,j) <0},
E~ = {u € H|u ;m = 0for A(l,5) > 0}.

As can be seen from the expression of the eigenvalues, if the space S™ is odd di-
mensional, i.e., n odd, the kernel N of the operator A is infinite dimensional and
||u|lar = ||ul||L2 for u € N. Consequently, a compact embedding theorem of the type
E — [P, (p>2)for E= E*® E~ the orthogonal complement of N:

2n +12, E — L? is compact.

Theorem 1.1 (Zhou [30]) For any 2 <p< —

.. . Mm+2 . . .

Remark 1.1 The surprising fact is the exponent *+2, which is almost optimal. Note
that ||u||g is much smaller than ||u| 2 + ||Vu||L2 = ||u|lwr2(s1xsny. And we have the
continuous the embedding W2 — LP for 2 < p < -2,%}12, and the compact embedding

W12 — LP only for 2<p < 242,

Remark 1.2 Unlike the 1-dimensional case where the existence result is obtained for
all of 2 < p < oo (Tanaka [24], Zhou [29]), the above embedding theorem 1.1 presents
a crucial restriction on p for any existence results of wave equations on S™, n > 1.
Note that in 1-dimension the compact embedding E — LP works for all of 2 < p < o0
([10, 27, 29)).



Remark 1.3 If n is even, then N = 0 and H = E, and hence problems are much
easier to handle [29].

Next we introduce some definitions on group actions that will be used throughout
the paper. Let G be a compact Lie-group and X a topological space. An action of
Gon Xisamap¢:Gx X — X, ¢(g,z) = gz with the following properties:

(i) 1z = z for each z € X, 1 is the unit element in G,

(ii) 91(922) = (9192)z, 91, 2 € G, z € X.

We denote by O, = {gz|g € G} the orbit of z. A subspace X; of X is called
invariant under the action of G if O, C X, for all z € X;. The closed subgroup
G: = {g | gz = z} is called the isotropy group of z. If G, = G, we say that z is a
fized point under the action of G, we will denote by Fiz(G) all the fixed points of
X under the action of G.

A functional F : X — R is said to be G-invariant if F(gz) = F(z) for each
z€ Xand g€ G. If X and Y are two G-spaces, we say that a function FF': X —» Y
is G-equivariant if F(gz) = gF(z) for each z € X and g € G. In this paper we will
use two groups, Z; = {id, —id} and S! = {¢ | € [0,27)}. For example, any linear
topological space is Z, space and any Hilbert space H is an S'-space if we define a

group action Tp on H as
(Tou)(z,t) = u(z + 6,t) for any 0 € [0,27) and u € H.

Finally we set up a variational formulation for the equation (1). The functional

corresponding to the equation (1) for u € H is given by

F(w) = £ (Lu,u) - / (Gw) - f - u)dt da,
Q
where G(§) = f(f g(t)dr, Q= S! x S*, and L is the continuous self-adjoint operator

in H associated with the operator A, i.e.,

(Lu,v)g = (Au,v) = Z A, J)utjmPt,jm-

l’j’m

8



Using the Hilbert Space norm defined above, for u = u* +u~ € E, ut € Et,u™ €

E- and v € N, F(u) can be written as

Flu+o) =5l - gl I - [ (@)= f- wroddeda, (1)

which is in C*(E & N, R).
We close this section by introducing the notion of Palais-Smale compactness con-

dition (P.S.) which plays an essential role in applying minimax methods.

Definition 1.1 A differentiable functional F(u) on a Hilbert space H 1is said to sat-
isfy Palais-Smale compactness condition (P.S.) if the following holds: whenever {u;}
i3 a sequence in H such that F(u;) is uniformly bounded and F'(u;) — 0 in H* as

j — oo, then {u;} is precompact in H.

Remark 1.4 Note that often (P.S.) is not satisfied even by simple smooth functions,
e.g., consider F : R — R with F(u) = cosu or F(u) = ¢, ¢ some constant and take

uj = jm for each j € N.



CHAPTER 2

The simple case g(u) = |u[P~%u

In this chapter we consider the simpler case where g(u) = |u/P~?u and we prove the

following theorem.

Theorem 2.1 For the same 2 < p < 7"ﬂ+2("3fffl)‘ nt9 g5 in Theorem 0.1 and

f(t,z) € L 2m-periodic in t, the following non-linear wave equation
Au = |ulP~%u - f(t,2), (t,z) € S'xS™ n>1, (2.1)
has infinitely many periodic weak solutions in LP.

The procedure for the proof of the above theorem is motivated by Tanaka [24], where
the existence of infinitely many solutions of the 1-dimensional wave equation (for
2 < p < o0) is obtained using Morse theory and eigenvalue estimates. Although
most of the proofs in Tanaka works for S™ with some n-dimensional modifications,
we found that the eigenvalue estimates in his paper using interpolation theory did
not work for the n-dimensional case due to the big multiplicity of the eigenvalues of
A in n-dimensions. We take a different approach in Section 2.5 to prove the result.
We will treat this Chapter as preparation for Chapter 3.

We will assume 2 < p < %‘1—2 throughout in this thesis in consideration of the
compact embedding Theorem 1.1. First we formulate the variational scheme for the

proof of the theorem 2.1.

10



2.1 Variational Scheme

2.1.1 Introduction of a new variational formulation

As mentioned in the preliminary Chapter 1 the corresponding functional to the equa-

tion (2.1) is given by, forw =u+ve€ Hue€ Eand v eV,
1,0 1o _p 1 )
F(w) = 3llu’lls - 5l IIE—;I|U+"IIp+(f,u+v)- (2.2)

We instead study the functional I(u) on E,

() = max Fu+v) = gllutll} — 5l [} - Q). (23)
where
Q) = migl: llu+ vlfy - (f,u+ ) (2.4)

which is easier to handle due to the compact embedding Theorem 1.1 on E. In
Section 2.5, we will show that critical points of I(u) are also those of F(u). First, in
the following lemmas we study the functional Q(u) in detail to prepare for the proof

of a compactness result for the functional I(u).
Lemma 2.1 (i) For all u € LP*1, there erists a unique v(u) € N such that
1
Qu) = > |lu+v(w)[f - (f,u+v(w). (2.5)

(1) The map v : LP — N is continuous.

(iii)) Q : E - R is in C? and for allu,h € E,
(Q'(w), h) = (lu+v(u)P~*(u+v(w)) - £, h). (2.6)

Moreover, Q' : E — E* is compact and there are constants C;,C; > 0 depending on

| fllp/o—1) such that for allu € E,

1Q']le» < CLIQ)|F +1), (2.7)
Q' (1), u) — pQ(u)] < Ca(IQ(w)|7 + 1). (2.8)

11



Proof: (i) Because the map v — %llu + v|[p — (f,u + v) is strictly convex
and coercive on N, there is a minimum at, say, v(u) by the generalized Weierstrass
Theorem.

(ii) Suppose that u; — u in LP. We will show that v(u;) — v(u) strongly in

N N LP. Since v(u;) is the minimizer for u;, we have

1 1

7 lluj + v ()} — (£, 45 +v(u) 2 ’ [l + v(u)[[} — (45 + v(wy)).
Then {v(u;)} is bounded in L? and hence there is a subsequence {u;} of {u;} such
that v(uj) — @ in N. We will denote {u;} by {u;} for simplicity. Letting j — oo

in the above inequality, we get

;‘, u+ v@) | — (f,u+ o) > T ( ; s + 0(u;)|E = (£, 15 + v(u5)))

j—oo

> %||u+t'1||§—(f,u+ﬁ).

This implies lim ||u + v(w;)|| = ||u + v(u)||, and ¥ = v(u) by the uniqueness of v(u).
Hence v(u;) — v(u) strongly in N N L?.
(iii) By the convexity of the function v — %Hu + | — (f,u + v), we have for all
u,he€e Eand 7> 0,
1
Qut7h) - Q) = Z(llutrh+o(u+t Th)|[5 — [lu + v(u)][7)
—(fith+v(u+7h) —v(u))
> (Ju+v@)P~2(u+v(u)) = f,7h + v(u+ Th) — v(u)).
Noting that v(u + 7h) — v(u) € N, we get
Q(u +7h) — Q(u) = 7(ju + v(u) P (u + v(w)) — £, h).
By interchanging the role of Q(u + 7h) and Q(u), we have
Qu+7h)—Qu) < 7(lu+Th+v(u+ Th)|F?
(u+ Th+v(u) + Th)) — f,h).

12



Taking limit 7 — 0 in the above two inequalities, we obtain the derivative formula
(2.6). Therefore @ € C'(E, R). Moreover from the compact embedding Theorem 1.1
and the continuity of v(u) : LP*! — N, we conclude that Q’(u) : E — E* is compact.
On the other hand by (2.6) and Theorem 1.1,

IRz = ||,3}1p=1(|u +o(w)P(u + v(u) — £,h)

< ol lu+v(w)P?(u + v(w) = fllp/p-1)-
Applying Holder’s inequality and (2.5), we get
1l 1 - -
1Q" (W)l < C(z_) llu+v(w)|[E! +1) < C(1Q(w)| #1774+ 1).

Inequality (2.8) can be easily obtained from (2.6), (2.7) and Holder’s inequality. In

all we have obtained the desired results. m]

For later use we introduce Qo € C! (E, R) defined by

1 1
= i —_— p = - p
Qo(w) = min ~{[u+ vlfp = 7 {lu+ (W)l (2.9)
where vp(u) can be given uniquely as in Lemma 2.1. In the following we list some

properties of @, that will be needed in constructing a modified functional in Section

2.1.2. First by setting f = 0 in Lemma 2.1, we obtain, for u,h € E,

(@o(u), h) = (Ju+ vo(w)P~*(u + wo(u)), h), (2.10)
1Q0(w)lle- < C(Qo(w)®~D/7 + 1), (2.11)
(Qo(w),u) < pQo(w) + C(Qo(w)"/” +1). (2.12)

Similarly, as in the proof of the previous lemma, we can easily show the following

relations between Q(u) and Qo(u).

13



Lemma 2.2 There is a constant C > 0 depending on ||f||p/(p-1 such that for u € E,

|Q(u)| < C(Qo(u) +1), (2.13)

|Q(x) — Qo(u)| < C(Qo(w)'/? +1). (2.14)

Now we verify the Palais-Smale compactness condition (P.S.) for I(u) which plays

a crucial role in applying minimax methods to I(u).
Proposition 2.1 I(u) € C!(E, R) satisfies (P.S.).

Proof: Let M > 0. Suppose I(u;) < M for all j and I'(u;) — 0 in E*. We have

foruj=uf+u; e EY®E =E,
(I'(uj), h) = (uj —uj,h) —(Q'(u;),h) forh € E.

First we will show that {u;} is bounded in E. Then the compactness of Q' will

immediately prompt the existence of a convergent subsequence of {u;}. Setting h = u;

or h=ul—u;

j i we get

luf IE = llu 1% = (Q'(us), u)| < mluslle, (2.15)

sl = (Q'(w5), uf — u5)| < mllu;le, (2.16)
where m = sup ||I'(u;)||g-. From I(u;) < M, we have
Loz _ L o2
gl Il = 3lluslle — Q) < M,
which combined with (2.15) leads to
1
§<Ql(uj)auj) - Q(uj) < M + m||uj||g.
Thus by (2.8), we get
(£ - DQ(w) - CalIQ)? +1) < M+ mlus |z,

14



which implies
Q(y;) < C(llujlle + 1), for all j, (2.17)
where C > 0 is independent of j. Now it follows from (2.7) and (2.17) that

(Q(u),uf —ui)l < 1Q'(xy)
C(IQ(u)|*DP + 1) jus||

e |lulle

IA

-1
ClluslIEV7 + 1)||uy] 5

IA

This, substituted into (2.16), yields

luille < milulle +(Q(u;), uf —uy)

-1
< mllulle + C(llus|ED + 1)||u|| -

Thus {u;} is bounded in E.
Finally note that I'(u;) = u} — u; — Q'(u;) where Q' : E — E* is compact and

I'(uj) — 0 a8 j — co. We can easily see that {u;} is precompact in E. O

2.1.2 Modified functional

Next we replace I(u) by a modified functional J(u) for which it is easier to construct
the critical values. Let x € C°(R, R) be such that x(7) =1 for 7 <1, x(7) =0
for 7>2 and -2 < (1) <0,0< x(r) <1, forreR. Foru=u*+u" €

E* @ E~ = E and a = maz{l, 4}, let
®(u) = a(I(u)* +1)"/%, 9(u) = x(®(u) ' Qo(w)).
Define

J(w) = 311l = 31w — Qolw) — $()(Q(w) — Qo)

15



where Qo(u) is as defined in Section 2.1.1.

The reason for introducing J(u) is that the first assertion of the following propo-
sition which says J(u) is almost an even functional, holds for J(u) but not for I(u).
Using the following proposition, we will then show that large critical values of J(u)
are also critical values of I(u).

Proposition 2.2 (Proposition 1.2 of Tanaka [24]) The functional J(u) € C'(E, R)
satisfies the following:
(i) there is a = o(|| f||p/@-1)) > O such that for u € E,
|7(u) = J(=w)| < a(|J(w)]7 +1), and
(ii) there is My > 0 such that J(u) > My and ||J'(u)||g- < 1 implies J(u) = I(u).
Proof: (i) From the definition of J(u), we have
|J(—u) = J(u)] < ¥(u)|Q(u) — Qo(u)| + Y(—u)|Q(—u) — Qo(—u)l. (2.18)
Suppose that —u € supp 1, i.e., Qo(u) < 2&(—u) = 2a(I(—u)? + 1)*/2. From the
definition of J(u),
I(~u) = J(u) + (Qo(x) — Q(—u)) — ¥(u)(Q(x) — Qo(u)).
By Lemma 2.2, we get
[I(—u)] < |J(u)]+C(Qo(w)'/" +1)
< |J(u)| + CH(—w)'/?.

Using Young’s inequality, we deduce that
[I(—u)| < 2|J(u)| + C.
Hence we get for —u € supp 9,
Qo(u) < 28(—u) = 2a(I(—u)? +1)1/2
< C|J(u)|+C. (2.19)
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Similarly we have for u € supp ¢,
Qo(u) < C|J(u)| +C. (2.20)
It follows (2.13), (2.18), (2.19) and (2.20) that for u € E

|J(—u) — J(u)| < C(h(u) + p(—u))(Qo(w)/F + 1)
< ol J@)|M? +1).

This proves the first assertion of the proposition.

(ii) To prove the second assertion of the proposition, we need the following two

lemmas.

Lemma 2.3 There is a constant M, = M (|| f||p/(p-1)) > O such that J(u) > M, and

u € supp ¢ imply I(u) > 3J(u).

Proof: From the definition of J(u),

Jw) = I(u) = (1—9(u)(Qu) — Qo(u))
< I(u) + C(Qo(u)'? +1).

By definition of 1, we get for u € supp 9,

J(w) < I(u)+C(I(w)["?+1)

< Iw)+ 5@+ C.

Choosing M; = 2C}, we get the desired result. a

Lemma 2.4 Forallu=ut*+u " € E=Et®E~ andh€ E,

(J'(uw),h) = (1+Ti(w){u* —u,h) — (1 + To(u))(Qo(u), k)
—(¥(u) + Ti(w)|(Q'(v) — Qo(u), h),

17



where Ty (u), T>(u) € C(E, R) are functionals satisfying
sup{|Ti(u)|;u € E,J(u) > M, i=1,2} - 0 as M; — oo. (2.21)
Proof: Forallu=ut+u~ € F and h € E, we have
(J'(u), h) = (u* —u™,h) — (Qo(u),h) — (¥'(u), R)(Q(x) — Qo(u))
— P(u)(Q'(u) — Qo(u), k), where
W'),h) = X (P(u)"Qo(w))P(u)
x [—a®I(u)(I'(u), ) Qo(u) + B(u)*(Qo(w), h)],
(I'(w),h) = (u* —u7,h) —(Qo(u), k) — (Q'(x) — Qo(u), h).

By regrouping terms, we get the desired expression for (J'(u), h) for

Ty(u) = ax'()P(u)*I(u)Qo(u)(Q(x) — Qo(w)),
T(w) = Ti(u)+x'()P(u) " (Q(x) - Qo(u)).

Now suppose that u € E satisfies J(u) > M,. From (2.14), we get
|T1(u)] < C|X'(-)| (u)~2Qo(u) (Qo(w)"/? +1).

If u ¢ supp ¢, then T} = 0. Otherwise, by the definition of ¥(u), we have Qo(u) <
2&(u). On the other hand we get from Lemma 2.3, #(u) > I(u) > 3J(u) > ;M,.

Hence we obtain
ITi(u)| < CH(u)~ VP < CM;P VP 0 as M, — .
Similarly we have T5(u) — 0 as My — oo. m]
Let us now prove the second assertion of the proposition. Recall that by definition
of J(u) it suffices to show that 1(u) = 1. Thus we need to show
Qo(u) < P(u), (2.22)
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for u € E such that J(u) > M, and ||J'(u)||g- < 1. For sufficiently large My > 0, we
can assume by Lemma 2.4 that J(u) > M, implies |T(u)| < 1, |T2(u)| <1 and
pl+Tw) , p-2_,
21+ Thi(u)) 4
From (2.21), we obtain

1 ,
m(«] (u),u)

— —O(u 1+ T3(u) , u

P(u) +Th(u), ,
S T @) ~ (e,
p(L+ Ty(u)
2(1 + Ty (u))
Y() +Ti(y) , ., ,
T T (@)~ Qo))

= (I)+{II)+ (II).

I(w) -

+

= ( — 1)Qo(u) — (Q(w) — Qo(u))

But by (2.14) we easily see that
[(11)] < C(Qo(w)'/? +1).
On the other hand it follows from (2.8), (2.13), (2.14), and (2.12) that

HQ'(v) - Qo(u),w)] < |pQ(u) — (Q'(u),u)| + plQ(u) — Qo(v)]
+C(Qo(u)? +1)
< C(Qo(w)'/? +1),
which implies
(111)] £ C(Qo(w)*/? +1).

Thus we have

1 )
W(J (u),u)

BT — 1)Qo(w) - C(Qle) + 1)

> bQo(u) - C. (2.23)

I(u) —

Y
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Now letting h = u* — 4~ in Lemma 2.4, we get

(J(w),ut —u7) = (1+Ti(w)lullz - (1 + Te(w)(Qo(u), u* —u”)

—(¥(w) + Ti(w))(Q'(u) — Qo(u), vt —u7).

We estimate the second and third term on the right hand side of the previous equation.

By (2.11), we have
{Qo(w), ut —u7)| < |Qo(w)e-|lulle < C(Qo(w)?~V/P + 1) [ulle.
Similarly by (2.7) and (2.13),
(@ (u),ut —u7)| < C(Qo(w) VP + 1)||ul| .

Recalling that |Tj(u)| < 1 and the assumption that ||J'(u)||g- < 1, we then have

IN

17" ()| 2 llel | + C(Qo(w)*~/7 + 1) ull

C(Qo(w)® V7 + 1)|lulle,

1
il

INA

which leads us to
llulle < C(Qo(w)® V7 +1). (2.24)

It follows from (2.23) and (2.24) that

1 y
W(J (u),u) + bQo(u) - C

=C||J' (w)||e~|ulle + bQo(u) — C
bQo(u) — C(Qo(uw)® V77 + 1)
bQo('u)/Z bt Co.

I(u)

v IV IV

v

Finally we remark that

inf {Qo(u); ||/'(u)||e- <1 and J(u) > M} - 00 as M — oo.
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This follows from (2.24) since J(u) — oo implies bQ—"ﬁ(22 — Cp > 0; hence I(u) >
bQo(u)/3. Combining these estimates yields

Qo(u) < al(u) < (u).

Thus the proof of the lemma is completed. )

Immediate consequences of the above proposition are the following two corollaries
which ensures that large critical values of J(u) are also critical values of I(u), and
that the (P.S.) condition holds for large values of J(u).

Corollary 2.1 If J'(u) = 0 and J(u) > My for u € E, then I(u) = J(u) and
I'(u) =0.

Corollary 2.2 J(u) satisfies (P.S.) on the set {u | J(u) > Mo}.

2.2 Minimax methods

2.2.1 Construction of critical values

We rearrange the positive eigenvalues of the wave operator A as 0 < p; < pg < u3z <
-+, and let e;, ez, €3, - - be the corresponding orthonormal eigenfunctions. Then the

positive eigenspace Et can be written as
E* =3pan {e;: j € N}.

Define

E} =3span{e;:1<j <k}
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Note that |ju||g < uy/? ||u||z2 for u € E. For u = u* +u~ € E} ® E-, by Lemma
2.1 and Lemma 2.2, we have

1 1, _
J@) = SltllE = 5l ~ Qo) ~ ¥(u)(Q() ~ Qo(u))

1 1, _

< Sl - 51l - Qo(w) + C(Qo(w)? +1)
1 1 1. _

< ?IluﬂI”E—EQo(u)—Ellu Ik +C

1 1

— 2 -112

= glitlE - gl w(lp - 5l +C
L2 +,,— p_ Ly 2

< SllutllE — ellutu +vo(w)|lf ~ Sllu7liE +C
1 1, _

< SlutllE — el — Il +C
1 - 1, _

< it — eIt - SlleTllE + C.

Hence there is an Ry > 0 such that J(u) < 0 for all u € Ef & E~ with ||u||g > Rx.
We may assume that R, < Ry, for each k € N.

Now we construct minimax values following Rabinowitz’s procedure [17]. Let By
denote the closed unit ball of radius R in E, Dy = Bg, N (E; & E~) and

Iy = {y € C(Dx, E); v satisfies () — (73)}, where

(m) v is odd in Dy,

(72) 7(u) = u for all u € Dy,

(13) v(v) = at(u)ut + o (uw)u™ + &(u), where at € C(Dy,[0,1]) and a~ €
C(Dx, [1, a@)) are even functionals (& > 1 depends on v ) and « is a compact operator
such that on D, o(u)=at(u)+ o (u)=1and k(u) =0.

Define
b = ’1715 sug) J(v(u)), keN.

u€D;

If f =0 and J is even, it can be shown as in [1] that the numbers b are critical
values of J. If f is not identically 0, that need not be the case. However we will use
these numbers as the basis for a comparison argument. To construct a sequence of

critical values of J, we must define another set of minimax values. Let
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Uk = D41 N {u € E; (u, ex41) > 0};

Ax = {) € C(Ux, E); ) satisfies (\) — (\3)}, where

(A1) Alp, € T,

(A2) A(u) =u on 9U; \ Dy,

(A3) Mu) = at(uw)ut + & (u)u™ + K(u), where a* € C(Ui,[0,1]) and &~ €
C(Ux, [1,a]) are even functionals (& > 1 depends on A ) and & is a compact operator
such that @(u) =1 and &(u) = 0 on Uy \ Dx.

Now define

Ck = }1\1615‘3;1({ J(M(u)) keN.

By definition of b, and c; we easily see that ¢, > b,. The key to this construction is
that we have the following existence result.
First recall that J satisfies the (P.S.) condition (Corollary 2.2) on {u € E; J(u) >

M,} and J'(u) is an operator of the form:
J'(u) = (1+ Ti(uw))(ut — ™) + compact,

where |T3(u)| < 1/2 on {u € E; J(u) > Mo} (see proof of Proposition 2.2). Thus we

have the following deformation lemma.

Lemma 2.5 (cf.[18, 19]) Suppose that ¢ > My is a regular value of J(u), that is,
J'(u) # 0 whenJ(u) = c. Then for any € > 0, there ezist an € € (0,€] and n €
C([0,1] x E, E) such that

(i) n(t,-) is odd for all t € [0,1] if f(t,z) =0;

(ii) n(t,-) is a homeomorphism of E onto E for all t;

(11i) n(0,u) = u for all u € E;

(i) n(t,u) =u if J(u) € [c—E,c+E];

(v) J(n(1,u)) <c—¢ if J(u)<c+e;

(vi) n(1,u) satisfies (A3).

23



Proposition 2.3 Suppose cx > by > M. Let § € (0,cx — by) and
A(6) ={rA € Ax; J(A) < b+ 6 on Dyi}.
Then

ck(6) = inf sup J(A(u)) (> c)

A€AL(6) uelUy

is a critical value of I(u).

Proof: By Corollary 2.1, it is enough to show that c,(6) is a critical value of
J(u). First note that by definition of b and Ak, A¢(8) # 0. Choose & = 1(cx—bx—6) >
0. Now suppose that ck(6) is not a critical value of J. Then by Lemma 2.5 there exist

e € (0, €] and 7 as in the lemma. Choose H € Ax(8) such that
max J(H(u)) < ck(6) + €.
k

Let H = n(1, H). We need to show H € A;. Clearly H € C(Us, E). (A1) and ()A;)
easily follow from the choice of H and (iv) of Lemma 2.5. Since H satisfies (A3), so
does H by Lemma 2.5. Moreover on Dy, J(H(u)) < cx(6) — £ and hence J(H(u)) =
J(H(u)) < b + 6 on Dy, again by (iv) of Lemma 2.5. Therefore H(u) € Ax(6) and
by (v) of Lemma 2.5,

max J(H(u)) < c(9) — ¢,

which contradicts to the definition of cx(6). Hence ck(6) is a critical valueof J O
Therefore, to establish the existence of critical values, it suffices to show that there
exists a subsequence {k;} such that

Ck,~>bk,~2M0 for jeN and bkj—>00 as j — o0o. (225)
Arguing indirectly we have the following proposition.
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Proposition 2.4 If ¢, = by for all k > ko, then there exists a constant C > 0 such

that
by < C kPP~ forall keN. (2.26)

Proof:  We refer [17] for the proof using the property of almost symmetry of
J(u) ((i) of Proposition 2.2). 0

Our goal in the rest of Chapter 2 is showing the existence of subsequence {k;} with the
property (2.25). In fact, by Proposition 2.4, we will prove that there exists {k;}, € > 0
and C; satisfying

bk, > C.k?/®717) for all j € N. (2.27)

2.2.2 Comparison functional K(u)

To show (2.27), we introduce a comparison functional. By the definition of Qo(u) and

(214) foru=ut+u- € E=Et® E-,

Jw) = SlwtIE = o1l Ik~ Qofe) - Y()(@(w) ~ Qo(w)
> Sl - il - 2Q0(w) - o

1 1, _ 2 -
= It - Il = S (I - e

v

1oz _ Ly 2 _ 2+ —|P
w1 = Gl I = Sl ol

A"

1 1, _ ag ao,, _

I 1 = Gl = Sk = 2l — an,

where ag > 0, a; > 0 are constants independent of u. For u € E™, set
1 ag

K(u) = §|Iu+lli~ - ;IIu’“IIZ € C*(E*, R).

Then we can easily see the following.
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Lemma 2.6 i) J(u) > K(u) —a; forall ue E*.
it) K (u) satisfies the (P.S.) on E+.

In the next section, we will construct critical values §; of K(u) such that G, <

br + a; and we will deal with (3, instead of b to prove (2.27).

2.3 Critical values [ of K(u)

2.3.1 Babhri-Berestycki’s max-min value Gi; (3, 4]
For m > k, k, m € N, set

™ — {0 € C(S™* E});0(~z) = —o(z) for all z € S™*}
and

Bt = sup min K(o(z)).

o€ Ap zES™—k

We list some properties of ;" in the following proposition.

Proposition 2.5 (1) 0 < G < iy, < oo forall m, k € N;
(i) for all k € N, there exists v(k) and v(k) such that

0<vu(k) <A <i(k)<oo forall m>k+1;
(111) moreover, v(k) — oo as j — oo.

Proof: (i) For any 0 € Ay, it is clear that there is a ¢ € Ap,, with
G(S™*-1) c o(S™*). Hence we have 8 < B ,. To prove (ii) and (jii) of the

proposition, we need the following lemmas.
Lemma 2.7 For all o € AP,
o(S™ YN E} #0.
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Proof: Applying Lemma 2.9 in Section 2.3.2to h=0:S™* — E} andg =

id: Ef — E}, we easily get the result. O

Lemma 2.8 For all § € (0,1/p), there is a Cy > 0 independent of k € N such that
lullp < Comlllulle for w e (B,

where (E})t ={ve€ E*;(v,e;)=0fori=1,2,...,k}.

Proof: We have by the definition of || - ||z and p

llulle < g llulle foru € (BH)*

On the other hand, by Theorem 1.2 (Compact Embedding)

llullg < Cyllullg for all wu€ E and q € [2,(2n +2)/(n — 1)).
Using Holder’s inequality, we get for ¢ € (p, (2n +2)/(n — 1))
llullp < lullzllullg™ for u € E,
where 7= H € (0, 2). Thus

lull, € C2 e |ulls for u € (BF)L,

which is the desired result. O

(ii) We now prove the existence of (k). By the linking Lemma 2.7 we have for
all o € A7,

min K(o(z)) < sup K(u). (2.28)
zesm-k ueEk

Recalling that ||u||z < pi/?||ull; on E{, we have on E;
1 1 —p/2
K(u) < Sllullz - Cllulf < Sllullz - Cp Pl -
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Thus the right-hand side of (2.28) is finite and independent of ¢ and m. Set

p(k) = sup K(u) < oo,
uEE:'

which implies

By’ = sup min K(o(z)) < (k).

aeA'k" zES™—

Then we prove the existence of v(k). First we define a map o : S™ % — E}\{0}
by
o(z) = a5V 7| |w()|, " *Dw(z),

m
where w(z) = Zx,-e,- and S™* is understood as
i=k

Sk = {z = (zx, ..., Tm) € R™FH1, fo =1}.

i=k

Then obviously o € AP. Since ||w(z)||g = 1 on S™*, we have
1 1, _9/p- —2p/(p—
K(o()) = (5 = 2)ag " llw(@)l|; /¢,

Since w(z) € (Ef_,)*, |lw(z)||g = 1 for all z € S™F, it follows from Lemma 2.8
that

lw(@)llp < Copicly for z € S™7F,

where 6 € (0,1/p) and Cj is a constant independent of k and z. Thus
K(o(z)) > C';u:o_pl/(p_2) for all z € S™F.

The right-hand side is independent of m. Set v(k) = C, uiipl/ ®-2) Then we have
Gt = xen;?.@_k K(o(z)) > v(k) for m >k,

which completes the proof of (ii) of the proposition.

(iii) From the definition of ¥(k), it is easy to see that v(k) — oo as n — oo since

u(k) — oo as k — oo. O
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As in Proposition 2.1 we can verify the following compactness conditions

(P.S.)sy (P.S.)m for K(u).

(P.S)e: If {um}, C E* satisfies u, € E! K(un) < C and

|(K|gt) (um)llgt+ — 0 as m — oo, then {uy} is relatively compact in E*;
(P.S.)m: If {u;}52, C EY satisfies K(u;) < C and (K|g+)'(u;) — 0 as j — oo,

then {u;} is relatively compact in E;,.

Since K is an even functional satisfying above (P.S.), and (P.S.), we have the follow-

ing result via standard argument.

Proposition 2.6 Suppose v(k) > 0. Then [ is a critical value of K|g+, and the

limit of any convergent subsequence of B;* as m — oo is a critical value of K.

By (ii) of Proposition 2.5 choose a sequence {m;} such that m; — oo as j — oo and
Br = ,li% B exists for all k € N.

Then we have the following facts about the 3;’s due to Proposition 2.5 and 2.6:

Corollary 2.3 i) 8 ’s are critical values of K € C*(E*+, R) for each k € N;
i) B < Br41 for allk €N;

iii) Bx — 00 as k — oo.

2.3.2 The relation between §; and other minimax values
To estimate by we establish the following relation between b, and [.
Proposition 2.7 For allk € N,

b 2> Bk — ai, (2.29)

where a, is the number in Lemma 2.6.
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To prove this proposition, we need several topological linking lemmas. We first state

a version of the Borsuk-Ulam theorem.

Lemma 2.9 Let a,b € N. Suppose h € C(5°, R**?) and g € C(R?, R**®) are odd

functions and there exists ro > 0 such that g(y) = y for |y| > ro. Then h(S%) N
9(R®) # 0.

Proof: We choose R > 7 such that R > max;cge |h(z)|. Write
Do+l = {tz € R**};t € [0,1],z € S°}, D® = {y € R% |y| < R}.
Define F € C(8(D**! x D*),R+®) by

F(tz,y) = th(z) — g(y)-

This is well defined and odd on 8(D,+; x D%). Note that 8(D**! x D) ~ Se+b
(odd homeomorphic). Thus by the Borsuk-Ulam theorem, there is a (tyzo,%0) €
d(D**! x D") such that

F(tozo,y0) = 0, i.e., toh(zo) = g(wo).

Since 9(D**! x D) = §° x D® U D**! x ADP, the following two cases should be
considered:

i) to=1,z9 € S® and y € Db,

ii) to € [0,1),z0 € S® and yo € OD".

Case 1. We have h(zo) = g(yo). So we have h(S®) N g(R®) # 0. This is the desired
result.

Case 2. Since g(y) = y on AD®, we have |g(v0)| = |yo|] = R. On the other
hand, by the choice of R, we get |toh(zo)] < R. These are incompatible with

toh(zo) = g(yo). So this case cannot take place. m]

From the above lemma, we can deduce the following.
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Lemma 2.10 For all v € Ty and for all 0 € AP,
((em)(Dx) U{u € E{ ® E™ : |[u|lg 2 Re}) Na(S™7%) # 0,
where Py, : E — E} & E~ 1is the usual orthogonal projection.

Proof: Let vy € 'y = {y € C(Dx, E); satisfies (1) —(73)}, Dk = B, N(EF @
E~). We extend v to ¥ € C(EY @ E~,E) by ¥(u) = v(u) if ||u||g < R, and F(u) =
u if ||u||g > Rx. Obviously, ¥(u) is well defined and odd in E;} & E~ and since
m>k,

PrA(Ef ® E™) = Pny(Dx)U{u € E}f ® E~;||ul|z > Rk}

Therefore, it suffices to prove P, ¥(Ef @ E~) N o(S™*) # 0. We rearrange
{p1m(z)cos jt, pim(z)sinjt : A(l,j) < O,m = 1,... ,M(l,n)} as follows, denoted
by fi, fo, f3, -+ . Weset forl € N,

Ef =span{fj;1<j <1}

and let Pp;: E=E- @ E* — E}, ® E be the orthogonal projection. Consider the

operators
c:S"* E}CE'®E , Pni7:Ef®E - E,®E].

Applying Lemma 2.9 for h = ¢ and g = P,,; 7, there exists z; € S™* and vy €
E} @ E[ such that

o(z1) = Pma¥(w). (2.30)
Since S™* is compact, there is a subsequence z;; such that
z, — z in S™*, o(z;,) — o(z) in E},.
On the other hand, by (73),

P 7(w) = Py lat ()t + o~ (w)yy + s(w)] = at (w)uf + a™ (w)y; + Py s(w),
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where a~(u) > 1 on E_ @ E and x(E- ® E}') = k(D) is compact. Hence we have

1
a ()

and {u;'} has a convergent subsequence {u; }. From the boundedness of w; and

a(w) B [o (1) — w(w)]

u, =

Dim(E},) < oo, u; has a convergent subsequence. Passing to the limit in (2.30), we

obtain
Pny(u) =o(z), ie, P.J(EF®E)Na(S™F) #0.
This completes the proof. O
Let us define
= inf sup J(Pm7y(u))
€Tk u€E Dy
and recall that b, = mf sup J(7(u)). Then we have

Te ueD Y

Lemma 2.11 For k € N, by = lim b}

m—0o0

Proof: Since Py = {Pn7Y; v € 'k} C Ik, it is clear that b < bF for all

m > k. Let’s prove the other direction i.e., bx > limsup bf* for k € N. From the

m—00

definition of b, for any € > 0 there is a 4 € It such that
sup J(y(u)) < bg +e.
u€ Dy
By (73), 7(u) = a*(u)u* + o~ (u)u~ + x(u), where a* satisfies the condition in (v3)

and x(Dy) is compact. Since
Pnk(u) — k(u) asm — oo uniformly in Dy,
we have

Pay(u) = at(w)ut+a~ (u)u™+Puk(u) = a* (u)ut+a~ (u)u”+x(u) = y(u) uniformly in Dk.
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Hence

sup J(Prny(u)) — sup J(y(u)) as m — oo.

u€EDy, u€D;

Thus we obtain

lim sup b < limsup sup J(Pry(u)) = sup J(y(u)) < bg +e.

m—o0 m—oo u€ED,

Since the above inequality holds for any € > 0, we get the desired result. m]

Using above lemmas, we now prove Proposition 2.7.
Proof: Since J(u) <0 on {u € E}®E~ : ||u||g > Ry}, Lemma 2.10 concludes

that

min J(o(z)) < sup J(Pmy(u)),
z€ u€Dy

for all y €I'x and all o € AP. Thus

min K(o(z)) — a; < sup J(Prny(uw)),

zeSm—k
which implies

sup minK(o(z)) - < inf sup J(Pry(u)).
oEAD m—k

Thus G —a, < bf* and by letting m = m; — oo, we get
Bk — a1 < limsup b = by.
m—0o0

This establishes the proof. ]

2.4 Estimate of §; using Morse Index

In this section some index properties of (i are discussed. The lower bound for the
index of K obtained here and the upper bound estimate in the next section give the

growth estimate (2.27) that we are looking for.
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Definition 2.1 For u € E*, we define an indezx of K"(u) by

indez K"(u) = the number of nonpositive eigenvalues of K" (u)

= max {dimS;S < E* such that (K"(u)h,h) <0 for allh € S}.
Here ” A < B” in the bracket means A is a subspace of B.

Proposition 2.8 Suppose B < Bry1. Then there exists uy € E* such that

K(ux) < B,
K’(uk) = 0,

index K" (ux) > k.

By definition of f; is a critical value of K (u), the result without the last assertion

is obvious. To prove the last assertion, we first consider finite dimensional case.

Proposition 2.9 Suppose G;* < B, m > k+1. Then there exists a uf* € E}, such
that

K(ul) < B¢,
(K|g) (ui) =0,

index (K| g+ )" (uf*) > k.

To prove the above proposition, we will use a theorem from Morse theory, i.e., a
result concerning the relationship between certain homotopy groups of level sets of
a functional and its critical points. First we need a theorem to treat the case where

critical points may be degenerate.

Proposition 2.10 (Marino-Prodi [15]) Let U be a C? open subset in some Hilbert
space H and ¢ € C*(U, R). Assume ¢ is a Fredholm operator (of null indez) on the
critical set Z(¢) = {z € U; ¢'(z) = 0}, ¢ satisfies (P.S.) and Z(¢) is compact. Then,
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for any € > 0, there exists Y € C?*(U, R) satisfying (P.S.) and with the following
properties:

(1) ¥(z) = ¢(z) if distance {z, Z(¢)} 2 ¢;

(i) [¥(z) — ¢(z)), ¥/ () = ¢ (@)||, [¥"(z) — ¢"(z)l| < € for all z€U;

(11) the critical points of 1 are finite in number and nondegenerate.

It is easy to see that K|+ satisfies all the assumptions of the above Proposition.
That is,

1) K|g+ € C*(E}, R) satisfies (P.S.) and Fredholm.

2) All critical value of K|+ are non-negative because

K(w) = K() - 3((Klgg) (). 0) = (5~ ) aolullp 2 0.

3) Z(K|gy) is compact. In fact, note that there exists R, > 0such that K (u) <0
for u € EZ with ||u||g > Rm; hence Z(K|g3) is bounded.
Applying Proposition 2.10 to K|+, for all € > 0 there exists ¢. € C*(E}, R) satis-
fying (P.S.) and for all € E,
|¢e(u) — K(u)] <,
lige(u) — (Klg£Y W)l < e,

llge (u) = (Klgg)" (@)l < & (2.31)

the critical points of ¢, are finite and non-degenerate. (2.32)
For m > k and € > 0, let

Bi*t(e) = sup min ¢ (o(z)).

€A zES™k

Then by (2.31),

By — ¢ < Bp(e) < B +e.
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Moreover we have

Lemma 2.12 Suppose that a. € R satisfies B7(¢) < ac — 2¢ < a, < B7%,(€). Then
Wm—k—l([d’e > ae]myp) # 0 for some p € [¢s > as]m:
where [@e > ac|m = {u € E}; ¢.(u) > a.} and 7, is the m — th homotopy group.

Proof: We argue by contradiction. Suppose that

7rm—k—l([‘be > ae]m,p) =0 for all PE [¢e > as]m-

By the definition of 85}, (€), there is a 0 € Af,, such that o(S™ %) C [¢c > ac|m.

Since Tm—k—1([e = ac)m,p) = 0, there is a homotopy
H:[0,1] x S™ 1 = (¢ > ac]m
such that
H(0,z) = o(z), H(1,z) = p for all z € S™*~1,

Write
S™* = {(t,z);z e R™ ¥ t R, |z|> +t* =1}

Define 6 : S™* — E}, by

([ p if t=1, x=0,
H(t,z/|z if 0<t<1,
ey | HO/ED
—-H(-t,—z/|z|) if —1<t<0,
[ —P ift=-1,z=0.

Obviously #(ST*) C [¢e > ac]m, where we denote Sk = {(t,z) € S™k;t >

0(< 0)}. On the other hand, we obtain from (2.31) and evenness of K(u) that

|pe(—u) — ¢e(u)| < 26 foru € E}.
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So we have 5(S™ %) C [¢e > ac — 2¢]m. Consequently, we have 5(S™*) C [¢, >

ae — 2€|m. From the definition of 8*(¢),

Br'(e) > min ¢.(5(x)) > ac — 2,

zeSm—k

which contradicts with the assumption. Thus the proof is completed. O

Using property (2.32), we can apply a classical theorem from Morse theory to ¢,

and we obtain

Lemma 2.13 For a reqular value a € R of ¢., set
L(e; a) = max { indez ¢, (z); e(z) < a, ¢i(z) = 0}.
Then
T([@e > a]m,p) =0 forall p€ [pe > alm, | <m— L(e;a) — 2.

Proof: Let b€ R, b< a be such that ¢. has no critical values in (—oo, b]. By
the “noncritical neck principle” (cf. Theorem 4.67 of Schwartz [20]), [¢e > b]m is a

deformation retract of E;}. Hence
71([pe > b]m,p) =0 for all | € N and for all p.
Using theorem 7.3 in Schwartz [20] ,
m([@e > blm, [P = a]m) =0 for I < m — L(g;a) — 1.
Considering the homotopy exact sequence:

= M41([@e > blm, [0e > alm) — m([@e = a]m,p) — m([¢e > blm,P)

i 7rl([¢e 2> b]my [¢s > a]m) ...,

we get the result. ]
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Now we can prove Proposition 2.9.
Proof: Since 87" < (¢}, and the critical points of ¢, are finite and nondegen-
erate, by Sard’s theorem there exists a sequence a, € R (0 < € < &) such that a, is

a regular value of ¢, and

Bi(e) < ar — 2e < ar < Pgy1(€), a.— B as € — 0.

By Lemma 2.12 and 2.13, we have L(g;a,) > k for 0 < £ < € and hence there exists

ue € E} such that
Pe(ue) < a, ¢Ie(ue) =0, mdex¢;,(ue) > k.
It follows from (2.31) that (u.) satisfies

K(u.) is bounded as & — 0,
(K|gt) (ue) =0 as €—0.

Since K|+ satisfies (P.S.) on E, we can choose a convergent subsequence u.;, — uj*

for some u* € E},. Then we have
K(uf) < B, Klgy (uf") = 0 and index(K|g)" (uf) > k.

This completes the proof. m]

Finally we prove Proposition 2.8, the main result in this section:
Since Bk < Bi+1, we have B¢ < (3,7, for sufficiently large j. By Proposition 2.9, there
exists u,? € E}, satisfying, K (u) < B and (K|g+ ) (uf) = 0. Since K € C*(E*, R)
satisfies (P.S.)., (u:‘; ) — uy for some subsequence m; of m;, we have K(ux) < B
and K'(ux) =0

Let us prove the last assertion: index K" (ux) > k.

First of all, we have
index K" (uy") > index (K|gs+ )" (uf’) for all m € N.
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On the other hand, we observe that K”(uy) is an operator of type: K”(ux) =id + &

where & is a compact operator. Note that
(K"(ux)h,h) <0 if and only if (k(ug)h,h) < —(h,h)

and A; — 0 where ), are eigenvalues of k. Hence there exists an € > 0 such that
for h € E,
index K" (ux) = index (K" (ux) — €).

Since K € C?(E*, R), we have for some jj,

K" (up?) — K" (ue)]| < € for 7' > 5o,
Thus for 5/ > ji, and h € E*,

(K" (ux)h, b) = el|hlf% < (K" (uf)h, ),

ie.,

index (K" (ux) — €) > index K”(u;n;).
Now by Proposition 2.9, we have

index K" (ux) > k,

which completes the proof of Proposition 2.8

2.5 Proof of the existence of the solutions

By Proposition 2.3 and Proposition 2.4, we know that (2.27), the growth estimate
on f’s, ensures the existence of an unbounded sequence of critical values. We now

prove (2.27). First note by Proposition 2.8 that there exists {u,} such that

1 agp 1 1
Br; > K(uy;) = §||Uk,||25 - ;Huk,uﬁ o (5 - 5)“0”“:‘”5- (2.33)
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Thus, by Proposition 2.8 again, we need to get an upper bound of index K"(uy,) in
terms of ||uy,||? in proving (2.27).

For u,h,w € E*, K"(u) is given by
(K"(u)w, h) = (w,h) = (p — Dao(|ulP~2h, h).
Thus by the definition of index,
index K”(u) = max {dimS; S < E*, (p — 1)ao(|u["%h, h) > ||k||%, h € S}.
Define an operator D : L? — E* such that for v(z,t) = 3" vy ; mérme™,

(D’U)(.’L‘,t) = Z Z: I’\(laj)l—lnvl.j,md)l,meijt-

m A(17)>0
Remark 2.1 D is an isometry from L2 = span{dime’*; \(l,j) > 0} to E* and
D=0 on spanp{d,me”; A(l,j) < 0}.

Remark 2.2 Setting h = Dv in the above ezpression of indez, we get

indez K" (u) = max{dimS; S < L?s.t. (p—1)ao(|ulP~2Dv, Dv) > ||v||%,v € S}

# { u; : pj > 1, eigenvalues of D*((p — 1)ao|u[P~%)D}.
Proposition 2.11 There ezist C > 0 such that for u € E¥,

indez K" (u;) < Cllull;,
-wherer=% ands=%)ﬁ.

Proof: We try to find a big enough ! such that

(p — Dao(JuP~*Dv, Dv) < ||v]}3, on E*\E[L,,
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which implies index K" (u) < I. First we have the following estimate on E+\E;'

[1por2 < o[ i / Qul D),
(1]

= C||Dvll5|lullf ) o,
anvuz'lleui“ el s,

IN

IA

2(1-
nvnz’uvnz‘ Ol %,

—2
cA—‘,||v||§||uuz;2,q_5,

9 _
:jlz’ 2_1q = % + ——1 7 and to get the second last inequality, we used

the facts ||Dv||% < [M|7M|v||22 on E¥\E}, and ||Dv||% = ||v||?; and the compact

where ¢ =

embedding theorem 1.1. Thus to have [ |Dv|?|u[P~2 < ||v]|3, we need

lullf 7y o, < NI~ CHIP™, s = (n4 1= (n—1)g)/2q, ice,

(P 2) n —(n
@ = Cllullg ™t
Let | = [@ + 1]. Then
/‘|D1)|2|'u|""1 < ||v||32 for all v € ET\E},.

2n
and therefore index K'(u) <l=[a+1] < Ca = C||u||((: Z;n—ur(f—m O

We now prove by, > C k;?=T=< (2.27) : From Proposition 2.11 and Proposition 2.8

we have
C s (P—2) 2(n+2
j < index K"(w,) < Cllullg_p &0 =™, 2<p< ___51_1).
Note that
. Y4
||ur; |15 > Clluk,'||§’,[,_2)q_g_1 if ¢ 73,
so that

g > 7T if g2 2.

41



In order to have (2.27) it needs

2ng
(p—z)(n+1)—(n—1)q < (p—l)

Since m;h is an increasing function of ¢, choose ¢ = £. Then we finally obtain

Tm+1++v25n2—-2n+9

2<p< 2@3n-1) ’

for which (2.27) is satisfied.

Remark 2.3 This upper bound of p may not be optimal and we are still trying to

improve 1t.

Now there exists a sequence ux C E of critical points of I(u) such that as k — oo

1, .2 1, 5 1 )
Iur) = 3l |l — 5llui Il — » [k + v(we)l[f — (f, ux + v(uk)) — oo.
Since I'(ux) = 0, we have
(I'(ui), we) = |l 115 — lugllE = (e + o(ur) P~ (ux + o(ux)) + £, ue + v(ur) = 0.
Above two equations combined gives
1 1 b 1
(5 - ;) |k + v(u)| P + §(f,uk +v(ux)) = 00 as n — oo. (2.34)

By direct calculation we can easily see that the {ux + v(ux)} are critical points of
F(u), so it follows from (2.34) that

||uk + v(ux)||p — 00 as k — oco.

This ensures the existence of a unbounded sequence of critical points for F(u), which
is a unbounded sequence of the weak solutions of the nonlinear wave equation (1) on

S,

We have proved the result for the simple case where g(u) = |u[P~2u. Now we turn
to the more general case where g(u) satisfies the conditions (g1) — (g4) of Theorem

0.1.
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CHAPTER 3

The existence for general

nonlinearity

Here we apply similar ideas as in Chapter 2 to prove Theorem 0.1, but we have to use
S?! index theory to replace Z;-action and hence estimates are much more complicated.

We first state Theorem 0.1 again.

Theorem 3.1 Suppose that 2 < p < THLEPR =043 gnd g(€) € C(R,R) satisfies

(91) [9(&1) — 9(€2))(61 — &2) > arlés — Laf?;
(92) there exists r > 0 such that

3
0<pG)=p [ glr)ir <Ea(e) for l€12
(93) there exists a; > 0 such that
9(&)] < az([€P~! +1) for £ €R;

(94) 9(§) = o(|¢]) at £ = 0.
Then for any f(t,z) € LP/®-1)(S! x S™), 2n-periodic in t, the above non-linear wave

equation (1) has infinitely many periodic weak solutions in LP(S* x S*) N H(S! x S™).

3.1 Variational Scheme
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3.1.1 A new variational formulation

As we did in Chapter 2.1, we introduce a new functional on FE.

I(w) = max Fu+v) = 2l 13— 5”13 ~ Q(u), (31)
where
Q(u)=mi11}/(G(u+v)—f-(u+v))dtdz, Q=_35"x 85" (3.2)
veE 0

It turns out that the functional I(u) is in C*(E, R) and much easier to handle in
proving the Palais-Smale (P.S.) condition due to the compact embedding Theorem
1.1. Moreover, it is shown in Section 3.5 that the critical points of I(u) are also the
critical points of F(u).

By Properties (g2) and (g3), we have the following facts:
Remark 3.1 (52) aléP < G(€) +cx < 7 (€9(6) + ).
Remark 3.2 (¢3) [9(€)"/®™V < cu(€g(€) +1).
We will use (g2') and (g3’) to verify the (P.S.) condition for I(u).
Lemma 3.1 (i) For all u € LP, there erists a unique v(u) € N, such that
Q) = /,, (Gl + v(w)) — f - (u+v(u))) dt d, (3.3)

(it) Suppose u; — u in E. Then v(u;) — v(u) in L? and g(u; + v(u;)) —
g(u + v(u)) in L¥1,
(iii) Q(u) is of class C! on E and for allu,h € E,

(Q(w), h) = /ﬂ (9(u+v(w) — f) - hdtdz. (3.4)

In particular, Q'(u) : E — E* is a compact operator.
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From now on we denote by C various constants which depend on ||f||,/(»-1) and are
independent of u € E.

Proof: (i) Fix u € E. Then the functional v — / [G(u+v)— f-(u+v)]dtdz
is strictly convex and coercive and hence there exists un‘i)que v(u) that minimizes this
functional.

(ii) Suppose u; — u in E. Then u; — u in L? by the compact embedding Theorem

1.1. Since v(u;) is the minimizer for {u;}, we have
/ [G(uj +v(u)) — - (uj +v(uw))] dtdz
0
> [(6us+v(w)) - £ - (us + v(u)] de . (3.5)
Q
Since (g3) and (g4) imply
GI€) < (€ 9(6) +C) < CEP +1€) +Ci,
the left hand side of 3.5 is bounded. Further (gl1) concludes that
M > /[G(“j +v(u;)) — f - (u; + v(uy))] dt dz,
)
> [ [Clus+ ow)lP - £+ s+ o)) + Cldeds,
0

Thus v(u;) is bounded in L and hence v(u;) — ¥ in L. Also, the left hand side of

(3.5) converges to [;[G(u + v(u)) — f - (v + v(u))] dt dr as j — oo and so we have
/n (Clu+v(w) - f - (u+ v(w)] dt do
> liminf [ [Glu +0(u)) = 1 - (a5 + o(u))] de o

> /Q[G(u+5) — [+ (u+7)]dtdz,

where last inequality is due to the weak lower semi-continuity of w — [;[G(w) — f -

w] dt dz. Thus v(u) = T by the uniqueness of v(u), which implies v(u;) — v(u) in LP.
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Now we will show g(u; +v(u;)) — g(u+v(u)) in LP/®=1. Note that g(u; +v(u;))
is bounded in LP/®~1 by (g3). Thus g(u; + v(u;)) — n in L?/*~1), We have to show
g(u + v(u)) = n, which will be done by Minty’s trick:

For any w € LP, we have from the monotonicity of g(£)
(9(u; + v(u;)) — 9(u; + w),v(u;) —w) > 0. (3.6)

Since g(u; + v(y;)) — f € Nyj,_1)s (9(uj +v(u;)) = f,v(u;)) = 0 and hence

(9(u; + v(wy)), v(w;)) = (f,v(u;)) = (f,v(u)) = (n, v(uw)).
Taking limit in (3.6), we have
(n — g(u+w),v(w) —w) >0 for all we L~.
Set w = v(u) — 7w(r > 0,4 € L?), divide by 7 and let T — 0,
(n — g(u+v(w)),w) >0 for all & € L.

Therefore 7 = g(u + v(u)).
(iii) By the convexity of G(£), we have for all u,h € FE and z € R

Qu+7h) - Q(u) = /,, (G(u + 7h + v(u + Th))

—G(u+v(u)) — f- (th+v(u+ Th) — v(u)]dtdz

> /(g(u +v(u) — f)(th + v(u + Th) — v(u) dtdz
n

T /ﬂ(g(u-{-v(u) — f)hdtdz,

since g(u + v(u)) — f € Nyy,_;) and v(u + Th) — v(u) € N,.
Similarly we have by interchanging the role of Q(u + 7h) and Q(u)

Qu+7h)—Qu) <7 /n(g(u + 7h +v(u+Th)) — f)hdtdz.
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Letting 7 — 0, we get

(Q'(u),h) = /ﬂ(g(u+v(u) — f)hdtdr forall u,h € E.

Hence by (ii) and the compact embeddings of E <+ LP and its dual

(LP)* = LP/*-Y) — E*, Q' : E — E* is continuous and compact.

O

Proposition 3.1 Under the conditions (g1)-(g3) and f € LP/®?-YV, I(u) € C'(E, R)

satisfies the Palais-Smale compactness condition (P.S.).

Proof: From the assumptions of (P.S.), we have

1) = 2 (g I = oy 1) - Qu) < M,

(I (w3), B)| = [ — g, h) — (Q'(u;), B)| < m||hl|g,

where m = sup ||I'(u;)||g--

Setting h = u; in (3.8), we have
| e 112 = 117 12 = (@' (us), us)| < mllujl.
This then combined (3.7) with gives
1
5@ (5),5) — Q)] < M + .

Since [(g(u; + v(u;)) — f)v(u;)dtdz = 0, it follows from (3.9) that

[+ 0(u))glas + v() - Glus +0(w)) + 5+ (s + olus))] ded
0

(3.10)

< M +ml|uyj||.

We want to get an estimation of the left-hand side of (3.10).
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From (g2) the first term of left-hand side is estimated as

[+ utugtus + () deas

1
< C./Q[E(Uj + v(u;))g(uj + v(u;)) — G(u; + v(u;))]dtdz + C.

and from (g5) the second term as

| [ £+ s+ 9@l < W llyo-sllus + o(a)lly

< O (s +o(u)glu; +v(w)) deda).
Two terms combined yield
C [ (w5 + wgtus + vtwatds €[ (us + o(ulus + olus) de o)}
< M + ml|ujl|.

Thus
s+ o(watus + () < Cllusle + €.
Using (g3'), we have
|lg(u; + v(“j))“;_z:’:f < C/ﬂ(u,- +v(u;))g(u; + v(u;)) dt dz + C < Cllusl|e + C.

Consequently,

llg(u; + v(u))lprp-1y < C(lluil|EV77 +1). (3.11)
Let h = u} — u; in (3.8) to get
lusll% = (@ (us), uf —vu;) = |lull% - / (9(u; + v(w;)) — f)(uf —uy) dtdz
< mllujl|e.

Thus
luillE — llg(us +v(u;)) = fllpe-plluf —ujlly < mllujl|e.
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By (3.11) and the embedding theorem 1.1,
llusl & = ¢ U 1377 + Dlluslls < mlfws]|s.
Thus {u;} is bounded in E. Now from
uf —uj = I'(y) + Q'(y;),

where I'(u;) — 0 and Q' is compact, we can conclude that {u;} has a convergent

subsequence. ]

For later use we define

Qo(u) = min | G(u + v)dtdz.
VGN’ [e)

Note that Qo(u) is an S'-invariant and satisfies the following properties as Q(u) does:

(i) for all u € E, there exists a unique vp(u) € Np4; such that
Qofu) = [ Glu+vo(u) de s,
(ii) if u, — u in E, then vo(un) — vo(u) in N, and
9(un + vo(un) — g(u + vo(u)) in LP/@~Y,
(iii) Qo(u) is of class C! on E, Qf : E — E* is compact and for all u,h € E,
(@41 = [ glu-+ m(w)hdtds
We show the following relations between Q(u) and Qo(u):

Lemma 3.2 There are constants C,,Cs, -+ ,C7 > 0 such that for allu € E,

lu+v(W)|lf < C1Q(u) + Co, (3.12)

llu + vo(u)|[f < C1Qo(u) + Co, (3.13)
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Proof:

diately follows from these with f = 0. To prove (3.12) it is enough to get

(@ (w),u) 2 pQ(x) — Cs(IQw)|"? + 1),
(@b(u), u) > pQo(u) — Cs,
1Q(u)| < Ca(Qo(u) + 1),
Qo(u) < Ca(|Q(w)| +1),
|Q(u) — Qo(u)| < Cs(Qo(w)"/” + 1),
1Q(x) — Qo(u)| < C5(IQ(w)|V? +1),

llg( + v(@)|E/271 < Co(Q (1), 1) + Cr(Qo(w)'? +1),

llg(u + vo(w)|ZE-D < Co(Qp(u),u) + Cr.

(3.14)
(3.15)
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)
(3.21)

We will prove (3.12), (3.14), (3.16), (3.18) and (3.20). The rest imme-

EIF < C(G(€) — £+ &) + CIfP/*™V + C for € €R,

which follows from (g7) and Young’s inequality on f - £&. We again use (g5) to get

P = p /n (Gl + v(u)) -

which implie (3.14).

Q(u)

Al IA

IA

IA

[ (u+v(u)]dtdz

/n (4 +0()) - 9(us + v()) — pf - (u+ v(w) de dz + C

< (@), uw) + Cllfllp/-nllu + v(w)ll, + C
< (Q(u),w) +ClRQW)|"? +C by (3.12),

Qo(u)

/ G(u+ v(u)) — f - (u+ vo(u)) dt dz — / G(u + vo(u)) dt dz
Q Q

—/f~ (u + vo(u)) dtdz

|1 £lp/-1)llw + vo(w)|lp

C(Qo(w)/? +1) by (3.13).
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Thus we have (3.16) by Young’s inequality. And (3.18) can be similarly proved . It
follows from (g3'), (3.12) and (3.16) that

lotu+o@NIEED = [ lou-+ vl deds
C/(u +v(u) - g(u +v(u))dtdz + C
Q

C(Q'(u),u) + C || fllp/@-1) - [lu +v(u)[], + C
C(Q' (u),u) + C Q)P +C

IAIN A

IA

C(Q'(u),u) + C Qo(u)? + C,

which yields (3.20). o

3.1.2 Modified functional

As in Rabinowitz [17], we replace I(u) by a modified functional J(u) € C'(E, R).

For u =u*t +u~ € E, we set
1 1, _
A = 3 Ity — 3 I

and a; = 4/(p+2) € (0,1). Let § > 0 be a constant such that § = a;(1+6)3 € (0,1)
and set ag = a;(1 + 6)%. Let x € C°(R, R) be a function such that x(7) =1 for
7<1, x(r)=0for 7>1+6 and 0< x(7) <1 for all 7 € R. Further we set

_ Q(u)+b
¢l(u) = X(GI(A(’U)2 + 1)1/2),

o) = 1= Xt )

where b, by > 0 are constants such that
Qo(u) +bo >1, Qu)+b2>1,

Qo(u) + b < (1 +6)(Q(u) +b) for all u € E.
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Note that the existence of b, by > 0 is ensured by (3.18). By the choice of b, by and
the definitions of v, (u) and o(u), we observe that "

supp Yo(u) N suppy(u) = 0 (3.22)
and for u € supp ¢, (u) U supp (1 — yo(u)),

|Qo(u)], |Q(u)| < ol A(u)| + C. (3.23)
We now define for u € F,
1, 42 1, _2 1
Jw = It = 5 IR = 5 1+ do(u) - ¥1(4)Qo(w)

~5 (1= %(w) + $1(w)Q(w) € C'(E, R)

First we state an inequality that will be often used. For all u € E, it follows from
(3.18) that

) = Gl I = 1l llE - Qo] < C(Q@P +1),  (3:24)

where C > 0 is a constant independent of u € E. The reason for introducing J(u) is
that the first assertion of the following proposition, which says J is almost invariant,
holds for J(u) but not for I(u). Using the following proposition, we will show that
large critical values of J(u) are also critical values of I(u).

Proposition 3.2 The functional J(u) € C'(E, R) satisfies:

(i) there is a constant a > 0 such that for u € E and 6 € [0,27),
|J(Tou) = J ()| < (| I ()P + 1),

where (Tyu)(t,z) = u(t +0,z) for 6 € [0,2m) ~ S*.
(ii) there is a constant My > 0 such that J(u) > M, and ||J'(u)||y <
min [J(u) P/ 1, 1] imply that J(u) = I(u).
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Proof:  Since Qo(Tpu) = Qo(u) and ¢o(Tyu) = yo(u) for all # and u, we have
from the definition of J(u),

ITow) = ) = = 51— o()(@(To) ~ Q) + 35 ()(Q) ~ Qo(w)
— S (T)(Q(Tow) - Qofe).
By (3.18), we have
1Q(Tsw) - Q) Q) — Qo(w),1Q(Tow) ~ Qo(a)] < C(@o(w)? +1).
Hence we get
1I(Tu) — J(@)] < C((L = do(w)) + $1() + 1 (Tou) @o()? +1).

We may suppose that u € supp (1 —o(-)) U supp ¥1(-) U supp ¥1(Tp-). Otherwise
we have J(Tyu) = J(u). It follows from the definition of J(u) and (3.24) (note that
% € (0,1)) that

|A('U,)| - Qo(‘d) - C(QO(U) + bo)l/P
> |A(u)| — bolA(w)| — C(|A(u)| +1)*/7

| (u)]

v

> Ci|A(u)| = C2 2 C1Qo(u) — Gy,
which leads us to the conclusion:
J(Tow) — )] < € (Qo)? +1) < C" (@7 +1).
Proof of (ii) of the proposition using the following lemma can be similarly done
as in [25] (see also the proof of Proposition 2.2).
Lemma 3.3 (Tanaka[25]) Foru=u*+u~ € E andh € E,
(J'(u),h) = (1+To(u))(ut —u,h)
~ 51+ do(u) — ¢ (1) + To(w))(Q(u), )
~5(1 = 9o(w) + () + Ty () (Q'(w), ),
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where Typ(u), Ti(u), T>(u) € C(E, R) and
suppT; C suppyy; fori=0,1,

sup {|Ti(u)|; 1=0,1,2,J(u) > M} - 0 as M — oo.

As corollaries to (ii) of Proposition 3.2 and Proposition 3.1, we have

Corollary 3.1 Whenever u € E satisfies J'(u) = 0 and J(u) > My, then I(u) =
J(u) and I'(u) = 0.

Corollary 3.2 J(u) satisfies the (P.S.) condition on {u € E; J(u) > My}.

Corollary 3.1 ensures that large critical values of J(u) are critical values of I(u).

Hence in what follows we will seek for critical points of J(u) with large critical values.

3.2 Minimax methods and existence result

First we define an S'-action on E which plays an important role in constructing

critical values of the functional I(u).

Definition 3.1 We define a group action Ty on E by (Teu)(t,z) = u(t + 0,z) for
6 € [0,2rr) ~ S* and u € E. Suppose E is a subspace of E, then E is said to be

invariant under the action Ty if Ty(E) = E.

We rearrange positive eigenvalues of A in the following order counting multiplicity,
denoted by

O<piSpa<ps<---.
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Recall that ¢y m(z) sin jt and ¢ m(z) cos jt corresponds to the same eigenvalues of A.
We may arrange eigenfunctions corresponding to the positive eigenvalues in such a
way egl), egz),egl), eg‘)) ,*++ that

i) eg) = P1.m(x) sin jt; e{") = ¢1.m(z) cos jt for same I,m,j, and k =1,2,3,---,

and

ii) corresponding eigenvalues are such that

o<l =P <) =P <
We define subspaces E} (k € N) by

Ef = Waﬁ{egl), e§2), egl), egz), e ,efcl), ef)}.

Then E} is S'-invariant, Ji, Ef = E*, and ||u|lg < pllull2 for u € E}t. For

u=ut+u" € Ef @ E~, we have, by (3.24) and (3.13),

Jw) < It = 5 Il -~ Qo) + C(Qu@)”? +1) by (324
< 3 ltl — 2 Il — 5 Qo) +C
< It~ 5 I — Cullu+ w@) +C; by (3.13)
< 3 Il = 5 Il = Cillu+ vo(w)l + C
< 3 Il = Cls™ sty — 5 ™I + C

Hence there is a constant Rx > 0 such that
J(u) <0 forall ue€ Ef ® E- with ||u||g > Rx.

We may assume R, < Ry4; for all k. To construct a family of minimax sets, we

introduce another(simpler) S'-action Ty on E by

(Tou)(t,x) = Z u, J.'mei%ism(j) ¢z,m($) elit.

l,5,m

95



Recall that ¢y m(z) sin jt and ¢y m(z) cos jt corresponds to the same eigenvalues of A.

We may arrange eigenfunctions corresponding to the positive eigenvalues in such a

way esl), egz),egl), e§2), -+« that
i) eil) = ¢1.m(z) sin jt; eff) = ¢y m(z) cos jt for same l,m,j, and k =1,2,3,---,

and

ii) corresponding eigenvalues are such that
O<p=p <pd =pPd<....
We define subspaces E; (k € N) by
n @ 1) @) (1 (@

M )
E} =span{e;’, e;”, e5’, €3",-+- ,e.’, € }.

Then E} is S'-invariant, | Ji>, Ef = E*, and ||u||g < pxl|ull2 for u € E}f. For

u=ut+u" € E} @ E-, we have, by (3.24) and (3.13),

IA

Jw) < LIl - 3 I~ Qofw) + C(@w) P +1) by (324)
1
It = 3 1™ = 5 Qofed) +C

1 1, _
St = S 71 - Cillu+ w3 +C2 by (3.13)

IANIA

IA

1 1 _
> It = 5 171 = Cillu + (W)} + Co

IA

1 —p/2 1, _

5 1l = Gl 1 — 5 w1 + Ca.
Hence there is a constant Ry > 0 such that

J(u) <0 forall u€ E} @ E~ with ||u||g > Rx.

We may assume Ry < Ry4 for all k. To construct a family of minimax sets, we

introduce another(simpler) S'-action Ty on E by

(Ta‘U) (t, :E) = Z ul,j,meioaign(j)(ﬁl,m(x)eijt,

l,j,m
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We denote by X = (E, Tg) the space E with S'-action Ty and E = (E, Tp) the space
E with Sl-action T,. We also denote by X*, X}, X~ the spaces E*, E}, E~ with

Sl-action Tj. Let
FixS' = {ue X : Tyu = u for all 6 € [0,27)}.
Definition 3.2 A mapping h: X — E is said to be S'- equivariant if and only if
(hoTy)(u) = (Tyo h)(u) for ue X and 6 € [0,2n] =~ S*

The usual identity map is not S!(X, E)-equivariant. Let us define a new map 7 :
X — E which is S'(X, E)-equivariant and will play the role of the identity map. For

U= 3 jm Mime 5 b m(z)e, let

(1))(t:2) = 3" s s gy m(z)e,

Lim
where
M,j,m = N,—jm nNon-negative for all I, j,m
01—jm = —O1jm forall l,5,m and 6, ;m € [0,27] for j > 0.

Note that the mapping n : X — FE is linear and isometry and it is easy to see the
following properties of 7:
Lemma 3.4 (i) n(u) € C(X,E);

(ii) n(u) is S'-equivariant;

(i) (X & X~) = Ef ® E~ and ||n(u)||g = ||ullg for all u € X;

(iv) If K is precompact in E, the n~!(K) is also precompact in X.

Now, similarly as in Chapter 2 we can define a family of minimax sets. Let By is
the closed unit ball of radius R in E about 0, Dy = {Bg, N (X & X7)}, and

I, = {7y € C(Dx, E) : y satisfies (m1) — (13)},
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where

(1) v is S'- equivariant,

(72) 7(u) = n(u) for all u € (D NABg,) U (Di N FizS)),

(73) v(uw) = at(u)n(u)t + a (u)n(u)” + B(u) for all u € Dy, where a* €
C(Dx,[0,1]) and a~ € C(Dy,[1,a)) is an S'-invariant functional (& > 1 depends on
v) and 3 € C(Dk, E) is a compact and S'-equivariant mappings such that o(u) = 1
and B(u) = 0 on (Dx N &Bg,) U (Dx N FizS?).

Moreover, set
Ur = {u € Di,y; u=:c+pe£21, zeXfd X, p>0},
A = {) € C(Ui, E) : ) satisfies (\;) — (A3) in the following },

(M) Alp, € Ty,

(A2) A(u) =n(u) for all u € (UxNOBg,,,)U(UcN (X} ®X ™)\ Dr)U(UxNFizS,),

(A3) Mu) = at(u)n(u)* + o (u)n(u)~ + B(u) for alu € U,, where a* €
C(Ux,[0,1])) and = € C(Ui,[1,a@)) (o > 0 depends on v) and 8 € C(Uy,E) is a
compact mapping such that a(u) = 1 and B(u) =0 on (Ux N dB,,,) U (U N (XS &
X~)\ Di) U (Ux N FizSY).

Note that 'y # @ and Ay # 0 since 7|p, € T'x and 7|y, € Ax. Define

bi = inf sup J(y(u)), cx = inf sup J(A(u)).

i
Y€k ue Dy

Then we easily see that ¢, > by, moreover if ¢, > by, we have the following existence
result.
First we have the same Deformation Lemma as in Chapter 2 since J satisfies

(P.S.) condition (Corollary 3.2) and J'(u) is an operator of the form
J'(u) = (1 + Ty(w))(ut — u~) + compact,

where |T1(u)| < 1/2 on {u € E; J(u) > Mo} (see proof of Lemma 3.3). We state it

again here.
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Lemma 3.5 (c¢f. [18], [19]) (Deformation Lemma) Suppose C > M, is a regular value
of J(u). Then for any € > 0 there ezist an € € (0,) and an one parameter family of
homeomorphisms &(t,-) of E, 0 <t <1 with the properties:

(i) (t,u) =u, if t =0, or |J(u) — c| > E;

(1) (1, Acye) < Ac—c where Ac={u € E: J(u) < c};

(iii) #(1,u) = at(u)ut + a~(u)u™ + k(u), where o+ € C(E,[0,1)), a~ €

C(E, [1,a)) (&> 1 constant) and k is a compact operator.

By standard contradiction argument using this Lemma, we get the critical values

{ck(6)} of J(u) as in the following lemma.

Lemma 3.6 Suppose ¢, > by > M,. Let § € (0,cr — bx) and
Ax(6) ={X € Ax : J(A) < bk + 6 on Dy }.

Let

c(8) =, inf ‘max J(A(u)) (= cx)-

Then cx(8)is a critical value of I(u).

Therefore the existence of a subsequence of {cx}3>; which satisfy cx, > bx; > Mp
ensures the existence of critical values of I(u). In what follows, we will show that

there is a subsequence {k;}{2, such that

ck; > by, forj €N,
b, — 00 as j — oo.

Arguing alternatively, we have

Proposition 3.3 Assume ¢, = by for all k > kg, then there is a constant C > 0
such that
by < CKP/®V) forall k € N.
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Proof: Note that Dy, = U To(Uk) and for any u € Diyy \ (X 0 X7)
0€(0,27)
there is a unique (z, ) € (Ux\Dx) x [0,27) such that Tyz = u. For any given A € Ay,

we define v : Dy, — E by

A(u) = Ty(A(z)) for u = Tpz € Diyy where (z,8) € U x [0,27).

We can see A is well-defined (by ()\;)), continuous and belongs to I'.,. Moreover

by (i) of Proposition 3.2, we have

IA

sup J(AMu))= sup J(TpA(z))

u€Dg 4, z€Uy,0€(0,27)

< fg&[J(A(z)) +a (|J(A@))[7 +1)].

b1

Since A € Ay is arbitrary, we deduce
bryr < cx + a(c,lc/p +1) forallk.
If ¢, = bi for k > ko , we obtain
besr < be + a(B/P +1) for k> ko.
An induction argument yields the desired result. m]
Our goal in the next two sections is proving that there exists a subsequence
{kj}321,€ > 0 and C, > 0 satisfying

bk, > Cek?/®179) for all j € N. (3.25)
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3.3 Critical values [; of a comparison functional

K(u)

3.3.1 Introduction of comparison functional K(u)

To estimate by, we introduce a new comparison functional K (u) here. By (3.24), the

definition of Qo(u) and (g3), we have for u* € E+

J(ut)

v

1
2 |[u*]|% = CQo(ut) — C

v

% l[wt|[2 - C/QG(tﬁ)dtd:z _c

I\

1 a _
3 1% = 2l - s,

where C,a;,a; > 0 are constants independent of u* € E*. We define a comparison

functional K on Et by
K(w) = = [u*|1% — 2t
2 E p P

Then K(u) € C?(E*, R) and it is easy to show that K(u) satisfies the (P.S.) condi-

tion. So we have the following lemma:

Lemma 3.7 (i) J(u) > K(u) — @ for allu € E*.
(i1) K satisfies the Palais-Smale condition (P.S.).

3.3.2 Bahri-Berestycki’s max-min value [

First let us define a family of max-min sets for K (u). Recall that
S2m—2k+1 — {z c Cm—k+l; IZI — 1},

and the group S* = {e*} acts naturally on it by

0

i 0, _if 0 _ 2m—2k+1
ez = (€°2,,€%2, ..., zpk41) for z=(z1,22,..., 2m-k4+1) €S .
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For m > k, k, m € N, set
= {o € C(S*™ 21 E}): 0(e?z) = Tyo(z) for all z € §2m-2k+1},

= su min K(o(z)).

b aeAp;" z€SIM-2k+1 (U( ))
We will prove that G = lim; o ﬂ,':" is a sequence of critical values of K(u) and
b > Bx + C. To get some estimates on 3;*’s, we need several lemmas. First we state

a version of a Borsuk-Ulam lemma.

Lemma 3.8 Let a,b,N € N. Suppose that g € C(RN x C° RN x C**®) and h €
C(S%+!, RN x C°*b) satisfy the following conditions:
(i) 9= (91--/ 9N, GN+1, s GN+asb) and h = (hy,...,AN1ass) are S -equivariant in

the following sense: forall1 <j< Nandl<l<a+b,

gj(z’ eioy) = gj(x’ y)’ 9N+z($,€iay) = eiklogN+l(z’ y)’

hj(e®z) = hj(2), hns1(e¥2) = e¥®hyi(2)

for all (z,y) € RN x C° and z € S?*!, where k; # 0 are integers;
(ii) g(z,0) = (z,0) for all z € RV;

(i11) there is a o > 0 such that
l9(z,9)I* = |z + lyI* for |a® +Jy|* 2 3.
Then

h(S®*) N g(RN x C°) # 0.

Proof: Consider the following S!-equivariant continuous mapping.
F:RVN xC®x CH! - RN x C* x C% F(z,y,tz) = g(z,y) — th(z), where z €
RN, y € C* and tz € C**! = {tz;t > 0,z € S**!}. Set R = max {7, max {|h(2)|;z €

S%+11} +1 and

Q = {(z,y,t2)i |al* + |22 < R%,t € [0, 1), 2 € S**1}.
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Applying S!-version of Borsuk-Ulam theorem to F : 82 — R" x C® x C?, there

exists (zo, Yo, toz0) € N = {(z,y,tz) € Q; |z|?> + |y|* = R? or t = 1} such that
F(zo, yo, tozo) =0, i.e., g(zo, yo) = toh(zo).
From the choice of R, F(z,y,tz) # 0 on 8Q N {(z, y,tz); |z|* + |y|*> = R?}. Therefore
we have to = 1 and g(zo, ¥0) = h(20). O
We also need the following technical lemma(same as Lemma 2.8).
Lemma 3.9 For all 6 € (0,1/p), there is a Cy > 0 independent of k € N such that
llullp < Con’llulle for u € (EF)*,
where (E})t = {v € E*;(v,e;) =0 for i=1,2,....k}.
Now we can prove the following estimates on [7*’s(see Proposition 2.5).

Proposition 3.4 (i) 0 < G < Gy, < oo forall m, k € N;
(i1) For allk € N, there erists v(k) and v(k) such that

0<v(k) <GP <i(k)<oo forall m>k+1;
(ii3) v(k) — oo as k — oo.

Proof: (i) For any 0 € AP, o|szm-2x-1 € AR, and o|szm-2-1(S?™~2%-1) C
o(S52m-2k+1) Hence we have 87 < A,.
(ii) First we prove the existence of (k). Applying Lemma 3.8 to h = o :

S2m-2k+l _, B and g =id : Ef — E};, we can see that

(S NEF#£0 forall o€ AP
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Thus we have for all o € A,

zesm“l K(o(z)) < useué K(u). (3.26)
For u € E;f, we have
1 ag
Kw) = llullz- —||u||£ < '2‘HU'IIE = Cllull?

IA

1 -
5 Ilulll = Cu™lull.
Thus the right-hand side of (3.26) is finite and independent of & and m. Set
v(k) = sup K(u) < oo,
uGE:'

then we obtain

B =sup min K(o(z)) < (k).

o€ AT TESIM—2k+1

Now we show the existence of v(k). We construct a special & € A* as follows:

write
2m+1
S2m-—2k+1 {1‘ _ ($2k, x2m+l) € ]R2m—2k+2; Z .’B? — l}
i=2k
and set o : S?™m~2k+1 _, F+\0 by
o(z) = o577 ||w(@) ;7 Puw(a),
2m+1
where w(z) is defined by w(z) = Z z;e;. Obviously we have 0 € AP. Since
i=2k
llw(z)||g = 1 on S?™-2k+1 we have
1 —2/(p— —2p/(p—
K(o(z)) = (5 = =) a7 uw(z)| ;2.

On the other hand w(z) € (E;_,)*, ||w(z)||g =1 for all £ € S?™~2+1 and hence it

follows from Lemma 3.9 that

”w(x)“p <Gy p;fl forz € SZm—2k+1’
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where 6 € (0,1/p) and C is a constant independent of k and z. Therefore
K(U(:L')) > C;“iipl/(l’—ﬂ for all = € S2m—2k+1.

The right-hand side the above inequality is independent of m. Set v(k) =

C, pi‘_’_pl/ ®-2) Then we have

Byt > zesrzr'lnigkﬂ K(o(z)) > v(k) for m > n.

(iii) Since pu(k) — oo as n — oo, we obtain v(k) — oo as k — oo. o

As in Proposition 3.1, we can prove the following compactness conditions
(P.S)m, (P.S.), for K(u):

(P.S.)m: If {u;} C E}, satisfies K(u;) < C and (K|g+)'(u;) — 0 as j — oo, then
{u;} is relatively compact in E},.

(P.S.)a: If {um} C E* satisfies uy € Ef,, K(um) < C and ||(K|gz) (um)ll(gx)s —
0 as m — oo, then {uy,} is relatively compact in E*.

Since K is an even functional, we have the following results via standard argument.

(Bahri and Berestycki [4])

Proposition 3.5 Suppose v(k) > 0. Then B* is a critical value of K|g+. And the

limit of any convergent subsequence of B;* as m — oo s a critical value of K.

By (ii) of Proposition 3.4, choose a sequence {m;} such that m; — oo as j — oo
and

B = lim 8,7 exists for all k € N.
j—00
Then by the above Proposition 3.5, we have the following properties for (.
Proposition 3.6 i) By is a critical value of K € C*(E*, R) for each k € N;

1) Bk < Br1 for allk €N;

i41) B — 00 as k — oo.
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Here we establish the comparison result between critical values of J(u) and K (u).
Proposition 3.7 For allk € N,
b > Bk — @z,
where a; is the number appeared in Lemma 3.7.

First we state a linking lemma which can be proved using Borsuk-Ulam Lemma
3.8.

Lemma 3.10 For all v € T'x and for all 0 € A},
((Pm7)(De) U{u € E{f @ E™ : |Jullg 2 Re}) No(S™2+1) £ 0,
where P, : E — E} & E~ is an orthogonal projection.
Proof: Let v € Iy and extend v to ¥ € C(X] & X*,X) by F(u) =

v(u) if |lulle < Rk, and (u) = n(uv) if |[u|lz > Ri. Obviously, ¥(u) is well

defined and S!-equivariant. Since m > k, by definition of n(u) we have
Pn(Xy © X7) = Pny(Di) U {u € E{ © E7;|lulls > Re}-
Therefore it suffices to prove P, ¥(XF & X~) N o(S?™-2k+1) £ §. We rearrange
negtive eigenfunctions and denote by f, f2, f3,... . We set for | € N,
By = span{f1< 5 <1}

and let Pny: E=E* ® E- — E} ® E be the orthogonal projection. Consider the

operators

0:8™ % LBt CEFOE, Pmy: X 0X - EL®E.
Applying Lemma 3.8 for h =0 and g = Pn; 7| X}oxq» We get some z; € G2m—2k-1
and y; € E,‘: &b E,—,
o(z1) = P 7(w). (3.27)

Since S2™-2k+1 js compact, there is a subsequence {z;,} such that
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z, — z in S**H o(z,) - o(z) in E},.

Now, using (v;) similarly as in the proof of Lemma 2.10 we can show that there

exists u € X7 & X~ such that P,, 5(u) = o(z). This completes the proof. ]

Now we prove Proposition 3.7, the main result of this section.
Proof:  First we recall that J(y(u)) < 0 for u € Ef & E~ with ||u||g > Rx by

the choice of Ri. Using Lemma 3.10 and Lemma 3.7, we can see

b = mf sup J(Pny(u)) > sup min J(o(z))

Tk ueD, o€ AP z€SIm—2k+1

> min K —a
> sp _min, Ko@) -a

that is,

by’ > By’ — ag for all m > k.

Hence we have

liminf b;* > B — a@,. (3.28)
On the other hand, we have
lim sup b < by. (3.29)

In fact, it follows from (v3) that for v € I

Pny(u) = a*n(u)ta™n(u)” + Pup(u) — aFnu) o n(u)” + Bu) = 7(u),
uniformly in D, as m — oo. Hence we have

sup J(Ppny(u)) — sup J(7(u)) as m — oo.

u€EDy

Choosing v € I, such that sup J(y(u)) < bx + €, we obtain

u€ED,

limsup b < limsup sup J(Pp,vy(u)) = sup J(y(u)) < b + €.
u€Dy

m—oo m—oo u€D,

Thus (3.29) holds since the above inequality holds for any £ > 0. Combining (3.28)

and (3.29), we get the estimate of the proposition. O
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3.4 Morse index and [

We want to get Gy, > Cck;’/ P=1-) gor all J € N. Estimates of Morse index at (;’s

will give the result. We proceed similarly as in Chapter 2.
Definition 3.3 For u € E*, we define a index of K"(u) by

indez K"(u) = the number of nonpositive eigenvalues of K" (u)

= max {dim S; S < E* such that (K"(u)h,h) <0, h € S}.
Here “A < B” in the bracket means A is a subspace of B.

Proposition 3.8 Suppose Bi < Biy1. Then there exists uy € Et such that

K(uk) S ﬂk)
K’(uk) = 0,
indez K" (ui) > 2k — 1.

By definnitin of Gk, the result without the last assertion is obvious. To get the

last assertion, we first consider finite dimensional case.

Proposition 3.9 Suppose Bg* < B, m > n+ 1. Then there ezists uy* € E}, such
that

K(uf') < B¢,
(K|g) (ui?) =0,
index (K| g+ )" (up') > 2k — 1.

To prove the above proposition, we will use a theorem from Morse theory, i.e., a
result concerning the relationship between certain homotopy groups of level sets of
a functional and its critical points. We proceed as in Chapter 2. First we need a

theorem to treat the case where critical points may be degenerate.
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Proposition 3.10 (cf. Marino-Prodi [15]) Let U be a C? open subset in some Hilbert
space H and ¢ € C*(U, R). Assume ¢ is a Fredholm operator (of null index) on the
critical set Z(¢) = {x € U; ¢'(z) = 0}, ¢ satisfies (P.S.) and Z(@) is compact. Then,
for any € > 0, there exists ¢ € C*(U, R) satisfying (P.S.) and with the following
properties :

(i) ¥(z) = ¢(z) if distance {z,Z(¢)} > ¢,

(i5) [¥(z) — ¢(2)], 1¥/(z) = ¢ (@), |1¢" (z) = ¢"(2)l| < & for allz € U;

(#11) the critical points of ¢ are finite in number and nondegenerate.

We can easily prove that K|+ satisfies all the assumptions of the above proposi-
tion, that is,
1) K|z € C*(E}, R) satisfies (P.S.) and Fredholm.
2) All critical value of K|+ are non-negative because
1 , 1 1 »
K (1) = K(u) - 5((Klgg) (u),0) = 5 = 2) ool 2 0.
3) Z(K|gz) is compact. In fact, note that there exists R, > 0such that K(u) <0
for u € E, with ||u||g > Rn; hence Z(K|gz) is bounded.
Thus by Proposition 3.10, for all ¢ > 0 there exists ¢. € C?(E};, R) satisfying
(P.S.) and
|¢e(v) — K(u)] <,
ll¢e(w) — (Klgg) (W)l <&,

llge (w) — (Klg2)" (Il < & (3.30)

the critical points of ¢, are finite and non-degenerate. (3.31)

For m > kand ¢ > 0, let

Bi(e)= sup _min  dc(o(z)).

~2k+1
Ap zeS2m
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By (2.31),
Bn —e < Bit(e) < B +e.
Moreover, we have
Lemma 3.11 Suppose that a. € R satisfies G7'(€) < ac — 2e < a, < fy,(€). Then

Tom—2k—1([@e > @e|m,w) # 0 for some w € [ > ac)m,
where [@e 2> aclm = {u € EF; ¢e(u) > ac}.
Proof: We argue by contradiction. Suppose that
Tom—2k—1([Pe > @e]m, w) =0 for all w € [P > ac|m-
Then there is a homotopy
H:[0,1] x §?™2~1 (4, > a¢)m
such that H(0,z) = o(z), H(1,z) = w for all z € S?™~ %1, Write

S = {€ = (C,pe¥); (€ C™7F, peR, [¢] +p" =1},

By the definition of B, (¢), thereisao € AT, such that o(S*™%1) C [¢. > ac]m.

Define & : §?™-2%-1 , E+ by

o(¢) if p=1,¢|=1,
5(Cpe®) = { ToH(e*%) if p#0, ¢ #0,
Towo if p=-1,(=0.

Then we can easily check that & € AJ. Since K is invariant under the action Ty, by
(3.30), we have
|pe(u) — pe(Tou)| < 2¢ for u € E},.
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Thus ¢¢(5(¢, pe?)) > ac—2¢, ie., 5(S?™ %*+1) C [§ > a,—2¢]sm. From the definition
of A7'(¢),
B(e) > min ¢ (6(z)) > ac — 2e.

zeS?m-—ﬂH-l

But this contradicts with the assumption. Thus the proof is completed. O

Now the proofs of Proposition 3.9 and Proposition 3.8 can be similarly done as
those of Propositon 2.9 and Proposition 2.9 using Lemma 3.11 and the following

Lemma 3.12.

Lemma 3.12 For a regular value a € R of ¢., set
L(e; a) = max { indez ¢, (z); ¢(z) < a, ¢.(z) = 0}.
Then

M([Pe = a)m,w) =0 forall p € [pe 2 ac|m, | < 2m — L(g;a) — 2.

3.5 Proof of the Main Theorem

By Lemma 3.6 and Proposition 3.3, we know that (3.25), the growth estimate on
Bx’s, ensures the existence of an unbounded sequence of critical values. We now

prove (3.25). First note by Proposition 3.8 that there exits ux; such that
1 2 Qo 1 1
Br; 2 K (uk;) = 5 lux ||z — ;llwc,-llﬁ =5~ ;)ao |l |15-

Due to Proposition 3.8, we can get an upper bound of index K”(u;) same as in

Proposition 2.11.
Proposition 3.11 There exist C > 0 such that for u € Et,
indez K" (u;) < C|lull},

— _2(p=2)nq — (P24
where T = arl—(n—1)7 and 8 = PR
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Then by the same proof as in the case of g(u) = |u[P~2u, we get (3.25) for the
same p’s satisfying 2 < p < Ttliy25n-2nts

2(3n-1)
This establishes the existence of a sequence {ux} C E of critical points of I(u)
such that as k — oo,

I(ux) = oo and I'(ux) = 0.

Let @ = ux + v(uk). Then it can be shown that @ is a critical point of F(u) by

direct calculation. On the other hand since I’(u;) = 0, we have
) _ |
I(u) = / Eg(uk) ax — G(ax) + §fuk dz dt — oo.
n

Finally it follows from (g3) that {#:} is a unbounded sequence in LP. We have
proved that there exists a unbounded sequence of critical points for F'(u), which is a

unbounded sequence of the weak solutions of the nonlinear wave equation (1) on S™.
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