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ABSTRACT

Infinitely many Periodic Solutions of Nonlinear Wave Equations on 8"

By

Jin- Tae Kim

The existence of time periodic solutions of nonlinear wave equations u“ — Anu +

(fig—lyu = g(u) — f(t, x) on n-dimensional spheres is considered. The corresponding

functional of the equation is studied by the convexity in suitable subspaces, minimax

arguments for almost symmetric functional, some comparison principles and Morse

theory. The existence of infinitely many time periodic solutions is obtained with suit-

able assumptions on the growth of the nonlinear term g(u) when the non-symmetric

perturbation f is not small.
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Introduction

During the past three decades, the initial value or Cauchy problem has played the

central role in the theory of evolutionary differential equations, which describe many

fundamental physical processes of interaction. The Cauchy problem has been studied

extensively with considerable success. In spite of a great deal of recent activity, many

physically and mathematically important difficult problems still remain, even when

global existence and unicity have been well established. Among the most interesting

problems of this type are those of the existence, regularity and stability of time-

periodic solutions.

This dissertation is focused on the nonlinear wave equation

Au = g(u) — f(t,a:), (t,a:) E S1 x S", n > 1, (1)

where Au = u“ — Ann + (Lil-Va, and f(t,:c) is 21r-periodic fimction in t. We are

concerned with the existence of multiple 27r-periodic solutions for the case where g is

superlinear, i.e., g(§)/§ —+ 00 as |§| —-> 00.

The existence of time-periodic solutions has always played an important role in the

theory of differential equations and mathematical physics. Even the existence of the

periodic solutions for nonlinear ordinary differential equations is nontrivial, requir-

ing Poincare-Bendixson theory to study the periodic orbits of general 2-dimensional

autonomous systems. In this case, periodic orbits together with the steady state

significantly influence the behavior of all other orbits. There is no question that



the existence of periodic solutions for partial differential equations is a much harder

problem.

The reason we choose the compact space S“ instead of the usual IR" is motivated

by several considerations. First, 3” is a naturally curved physical space going back

to Einstein space. There is no reason to believe that the complete flat R" is a

better choice for consideration. Secondly, the usual Minkowski space R x R“ can be

conformally embedded into the Einstein Universe Rx S", with the usual wave operator

[:10 = 0,2 — Ann is transforming into the operator A in this dissertation. Third, some

recent developments in constructive quantum field theory [13, 14, 21, 22, 26] are based

on the analysis of the Einstein Universe R x S", which requires us to understand the

classical differential equations on it. Also, we want to point out that many simple

interactions like g(u) = 11.3 on ]R x R“ have no periodic solutions because of the

necessary decay properties of their solutions.

The main difficulty of problem (1) is the lack of compactness. When n is odd, the

null space of A is infinite dimensional, and the component of u in this eigenspace is

very dificult to control. This fact makes the problem much harder than an elliptic

equation Au = g(z, u), or than a Hamiltonian system in which every eigenspace is

finite dimensional. The associated functional of (1) is indefinite in a very strong sense.

In particular, it is not bounded from above or from below, and it does not satisfy the

Palais-Smale compactness condition in any reasonable space.

In the case of n = l, Bahri, Brezis, Coron, Nirenberg and Rabinowitz [5, 8, 9, 10,

16] have proved the existence of nontrivial periodic solutions of (1) under reasonable

assumptions on g(u) at u=0 and u at infinity, and the monotonicity of g. For n > 1,

Benci and Fortunato [7] proved by using the dual variational method that (1) possesses

infinitely many 21r-periodic solutions in LP in the case g(u) = lulp‘zu, 2 < p < 2 + %

and f = 0. The existence of a nontrivial periodic solution in the case of g(O) = O



and f = 0, and the existence of multiple, in some cases infinitely many, time periodic

solutions for several classes of nonlinear terms which satisfy symmetry and growth

conditions were established in Zhou [29, 30]. These conditions include time translation

invariance or oddness; f = 0 and g(u) ~ lulp‘zu as u —+ co, (2 < p < 321—?2).

Their proofs involved variational methods; a suitable and complicated approximation

scheme; index and pseudo-index theory; Sobolev type embedding theorem for the

operator A and the best estimate on the spherical harmonics obtained by Sogge [23].

The monotonicity of g played an essential role in their proof to compensate for the

infinite dimensional null space of A.

In this dissertation, we are going to study the effect of perturbations which are

not small, destroy the symmetry with f 75 0, and show how multiple solutions persist

despite these nonsymmetric perturbations, provided the growth of the nonlinear term

at infinity is suitably controlled. Our method is based on the following ingredients.

(1) The elimination of the null space from the underlying Hilbert space to establish the

Palais-Smale condition for a new fimctional; (2) A variational technique developed for

nonlinear nonsymmetric elliptic equations by Rabinowitz [l7]; (3) The construction of

a comparison fimctional which can be used to estimate the size of the critical values;

and (4) The estimate of Morse index at the critical points.

Our main result is the following

 Theorem 0.1 Suppose that 2 < p < 7”“?(3151‘n’2nl'9 and g(é) E C(R,R) satisfies

(91) [9(51) - 9(52)l(€1 - 52) Z alléi - 52]”;

(92) there exists 1' > 0 such that

5

o <pG<o 2p] grow 5 59(5) for I6! 2 r;

(93) there exists a2 > 0 such that

lg(€)l .<_ 02(IEIP—1 + 1) for £6 1R;

3



(94) 9(5) = 005]) at 5 = 0-

Then for any f(t,a:) E LJ"/("”1)(Sl x S“), 27r-periodic in t, the above non-linear wave

equation (1) has infinitely many periodic weak solutions in I}"(S1 x S") nH(S1 x 5'").

Remark 0.1 By a weak solution of (1), we mean a function u(t, a2) satisfying

n-l

/ lust. — A.¢ +( 2 >245) + g(u)¢ — f¢l dz dt = 0
Sle"

 

for all a e (:°°(sl x 3").

Remark 0.2 For the p as in the theorem 0.1 and 1 < q < p, the following types of

functions

g(x, 2) = h(=v)l2|”"22 + g(-’L‘)|Z|”'l + k(=v)|2|"‘22,

where h(:r), g(m), k(:i:) 6 C°(S", (0, 00)), satisfy conditions (g1) -— (g4). In Chapter

2, we will deal with the simplest case g(u) = |u|P‘2u, p > 2 which shows the ideas

involved, but the estimates are much easier to obtain than the general case.

Remark 0.3 In general we cannot expect the equation (1) to have nontrivial solution

if g is not super-linear [29].

Remark 0.4 The regularity results in the case of n = 1 are obtained by Brezis and

Nirenberg [10] for asymptotically linear g and by Rabinowitz [16] for superlinear g.

For n even regularity results are obtained by Jerison, Sogge and Zhou [11] and for

n = 3 by Zhao and Zhou [28] for the spherically symmetric solutions. However for

n > 3 and n odd, the regularity of weak solutions of the equation (1) is still open.

In [29], the existence result is proved for the case g is an odd function and for 2 <

9n — l

n 1 )1/2), where finite-dimensional approximation is used to overcome

the lack of compactness mentioned above. Using, however, Tanaka’s idea [24], we

 

l

p<-2-(1+(

get around these difficulties by maximizing the original fimctional F(u) associated

4



with the equation (1) with respect to N. That is, we consider the fimctional I(u) =

max F(u+ v) for u in the orthogonal complement of N. Due to a compact embedding

theorem 1.1 for this new space, we can prove that I(u) has the desired compactness

properties. And it is easy to see that each critical point of I(u) corresponds to a

unique critical point of F(u).

We are able to improve on p without the restriction of oddness on g. In the case of

f(t, :r) E 0, the equation (1) has a natural symmetry and the fimctional F(u) is S]-

invariant. We will address the case where f(t, x) is not identically 0 as a perturbation

from symmetry by using the ideas from [17]. The situation for the wave equation

is more complicated since the operator A has infinitely many positive and infinitely

many negative eigenvalues. The idea is based on some topological linking theorems.

The key in this argument is to estimate the size of some explicitly constructed critical

values. To do this, we will introduce a symmetric comparison flmctional K(u) defined

only on the positive eigenspace. Using the symmetry we will construct critical values

of K(u), and will establish the relations between critical values of I(u) and K(u) An

argument by Morse index theory on K(u) will finally prove the needed estimates.

This dissertation will be organized as follows. We will give some preliminaries in

Chapter 1, to serve as background in understanding later presentation. In Chapter 2,

we will consider the case where g(u) = |u|”"2u, p > 2, which is relatively easier than

the more general case of Theorem 0.1 because of the explicit form of the nonlinear

term and, more importantly, that we just need to consider the Z2-action instead of

the Sl-action. Finally in Chapter 3, using the ideas in Chapter 2, we carefully will

show how to modify the fimctional, check the Palais-Smale conditions of the modified

functional, establish the S1 covariant version of Borsuk-Ulam theorem, and find the

connection between the Morse index of some critical points and their critical values.



CHAPTER 1

Preliminaries

Let A the linear wave operator such that

n—l
 Au = u“ — Anu + ( )2u,

where (t,:r) E S1 x S", n > 1. It is well known that the eigenvalues of A are

n—1 n—1
 

and the corresponding eigenfunctions in L"’(Sl x S") are

¢1,m(:c) sinjt, ¢,,m($) cos jt, m = l, 2, ..., M(l, n),

where 451,",(23), m = 1,2, ..., M(l,n), are spherical harmonics of degree 1 on S” and

= (2l+n—1)I‘(l+n—l)

I‘(l + 1) I‘(n) = Owl—ll
M(l,n) 

Then u E L2(S1 x S") can be written as

u = Z: uz,,-,me""¢z,m(:v),

him

where “him are the Fourier coeficients with um," = a,,_,-,m. Hence

(’chlul-I')L2 = Z A(I:.7.)l'u’l,.7}"'ll2'

l,j,m



And the Sobolev space we will work on is defined as

H = {u e L205“ x S") = Hunt = Z |»\(l.j)llw,j.m|2 + Z amt < oo}.

Clearly H is a Hilbert space with the inner product

{will}! = Z |A(l,j)|u,,,-,mvz,,-,m + Z “l.j.m1—’l.j.m-

l,j,m A(l,j)=0

We decompose H into invariant subspaces:

N = {u 6 Hluza-m, = 0 for A(l,j) # 0},

E+ = {u E HluIJ-Jn = 0 for A(l,j) S 0},

E“ = {u E HIuIJ-Jn = 0 for /\(l,j) Z 0}.

As can be seen from the expression of the eigenvalues, if the space S“ is odd di-

mensional, i.e., n odd, the kernel N of the operator A is infinite dimensional and

HuIIH = IIUIIL2 for u E N. Consequently, a compact embedding theorem of the type

E <—+ D", (p > 2) for E = E+ QB E' the orthogonal complement of N:

 

 

Theorem 1.1 (Zhou [30]) For any 2 S p < 2: +12, E r—i LP is compact.

. . . 2n 2 . . .

Remark 1.1 The surprising fact is the exponent “j, , which is almost optimal. Note

that ||u||H is much smaller than ||u||L2 + IquIle = ”Ullwl,2(slx3n). And we have the

continuous the embedding Wm H L‘p for 2 g p S 27"}13, and the compact embedding

W1'2HL" onlyfor 23p< 333%.

Remark 1.2 Unlike the 1-dimensional case where the existence result is obtained for

all of 2 < p < oo (Tanaka [24], Zhou [29]), the above embedding theorem 1.1 presents

a crucial restriction on p for any existence results of wave equations on S", n > 1.

Note that in 1-dimension the compact embedding E H LP works for all of 2 < p < oo

([10, 27, 29]).



Remark 1.3 If n is even, than N = 0 and H = E, and hence problems are much

easier to handle [29].

Next we introduce some definitions on group actions that will be used throughout

the paper. Let G be a compact Lie-group and X a topological space. An action of

G on X is a map 43 : G x X —-> X, ¢(g, x) = gx with the following pr0perties:

(i) 1x = x for each x E X, 1 is the unit element in G,

(ii) 91(9237) = (9192):”, 91, 92 E G, 1? E X-

We denote by 0., = {gxlg E G} the orbit of x. A subspace X1 of X is called

invariant under the action of G if 02 C X1 for all x 6 X1. The closed subgroup

G3 = {g | gx = x} is called the isotropy group ofx. Isz = G, we say that x is a

fixed point under the action of G, we will denote by Fix(G) all the fixed points of

X under the action of G.

A functional F : X —> IR is said to be G-invariant if F(gx) = F(x) for each

x E X and g E G. IfX and Y are two G-spaces, we say that a function F: X —-> Y

is G-equivariant if F(gx) = gF(x) for each x E X and g E G. In this paper we will

use two groups, 22 = {id, —id} and S1 = {e‘9 [9 E [0, 2n)}. For example, any linear

topological space is Z2 space and any Hilbert space H is an S1space if we define a

group action T9 on H as

(Tou)(x,t) = u(x + 0,t) for any 0 e [0,27r) and u E H.

Finally we set up a variational formulation for the equation (1). The ftmctional

corresponding to the equation (1) for u 6 H is given by

PM = gum)” - ] (0(a) — f - untdx,
n

where G(§) = [5 9(7) dr, fl = S1 x S", and L is the continuous self-adjoint operator

in H associated with the operator A, i.e.,

<LU,’U)H = (AU,’U) = Z: A(l’j)ulrjrmfiltjtm.

l’j’m

8



Using the Hilbert Space norm defined above, for u = u+ + u‘ E E, u+ E E+, u’ E

E“ and v E N, F(u) canbe written as

1 + 2 1 — 2
F(U+v)=§llu Ills-5Hu IIE- n(G(’u+v)-f°(U«+v))fllt0l-'E, (1-1)

which is in 02(E EB N, R).

We close this section by introducing the notion of Palais-Smale compactness con-

dition (P.S.) which plays an essential role in applying minimax methods.

Definition 1.1 A difi'erentiable functional F(u) on a Hilbert space H is said to sat-

isfy Palais-Smale compactness condition (P.S.) if the following holds: whenever {Uj}

is a sequence in H such that F(uj) is uniformly bounded and F’ (u,-) -+ O in H" as

.l —* 00, then {uj} is precompact in H.

Remark 1.4 Note that often (P.S.) is not satisfied even by simple smooth functions,

e. g., consider F : R —r IR with F(u) = cosu or F(u) = c, c some constant and take

uj =j7r for eachj 6N.



CHAPTER 2

The simple case g(u) = |u|p_2u

In this chapter we consider the simpler case where g(u) = lulp‘zu and we prove the

following theorem.

 Theorem 2.1 For the same 2 < p < 7nfl+2z3ffn4ni9 as in Theorem 0.1 and

f(t, x) E L551 27r-periodic in t, the following non-linear wave equation

Au = ]u|p_2u — f(t,x), (t,x) E S1 x S", n > 1, (2.1)

has infinitely many periodic weak solutions in L”.

The procedure for the proof of the above theorem is motivated by Tanaka [24], where

the existence of infinitely many solutions of the l-dimensional wave equation (for

2 < p < 00) is obtained using Morse theory and eigenvalue estimates. Although

most of the proofs in Tanaka works for S" with some n-dirnensional modifications,

we found that the eigenvalue estimates in his paper using interpolation theory did

not work for the n-dimensional case due to the big multiplicity of the eigenvalues of

A in n-dimensions. We take a different approach in Section 2.5 to prove the result.

We will treat this Chapter as preparation for Chapter 3.

We will assume 2 < p < 3&9}? throughout in this thesis in consideration of the

compact embedding Theorem 1.1. First we formulate the variational scheme for the

proof of the theorem 2.1.

10



2. 1 Variational Scheme

2.1.1 Introduction of a new variational formulation

As mentioned in the preliminary Chapter 1 the corresponding functional to the equa-

tion (2.1) is given by, for w =u+v E H,u E E and v E V,

l 1 _ l

F(W) “ §IIU+II2E - 5”“ His — 1-0 IIU+vII£+ (f,u+v)- (2-2)

We instead study the functional I(u) on E,

I(u) =gga13¢F(u+v) = gurus - gnu-Hi —Q(u), (2.3)

where

can = 1151i; Ilu + vii; — (f, u + 22>], (2.4)

which is easier to handle due to the compact embedding Theorem 1.1 on E. In

Section 2.5, we will show that critical points of I(u) are also those of F(u) First, in

the following lemmas we study the functional Q(u) in detail to prepare for the proof

of a compactness result for the functional I(u)

Lemma 2.1 (i) For all u E L1"+1, there exists a unique v(u) E N such that

l

Q(U) = 1.9 IIU+v(U)||£ - (f,u+ v(U))- (25)

(ii) The map v : LP —+ N is continuous.

(iii) Q: E—+lR is in C'1 andfor allu,h E E,

(Q'Mih) = (|u+v(u)|P'2(u+ v(11)) — f, h)- (2-6)

Moreover, Q’ : E ——> E“ is compact and there are constants 01,02 > 0 depending on

Ilfllp/(p_1) such that for all u E E,

  “62’ E. 5 Queen?" +1), (2.7)

I<Q'(u).u> -pc2(u>| 3 Cinema + 1). (2.8)

11



Proof: (i) Because the map v i—r 119”” + v”; — (f,u + v) is strictly convex

and coercive on N, there is a minimum at, say, v(u) by the generalized Weierstrass

Theorem.

(ii) Suppose that Uj -—* u in L”. We will show that v(uj) —> v(u) strongly in

N 0 LP. Since v(uj) is the minimizer for Uj, we have

1 P— u- vu -l-u- vu- 9— u. vu-Elluj+v(U)Hp (f, 2+ ()).>_ pll 1+ (2)||p (f, 1+ (1))-

Then {v(u,-)} is bounded in L9 and hence there is a subsequence {up} of {uj} such

that v(u,-:) -* a in N. We will denote {up} by {Uj} for simplicity. Letting j —> oo

in the above inequality, we get

1 —.—— 1

5H” + v(‘U)|l‘D - (f, u + v(u» Z 1.1530(1-Dlluj + ”(is)”; - (f, Us + v(ujll)

1

> E|Iu+v||§— (f,u+v).

This implies BEE ||u + v(uj)||p = Hu+ v(u)||p and v = v(u) by the uniqueness of v(u).

Hence v(uj) —r v(u) strongly in N 0 LP.

(iii) By the convexity of the function v H illu + vllz — (f, u + v), we have for all

u,hEEand T>O,

Q(u + 7'h) - Q01) = (ll'u + Th + v(u + TMIIS - “U + v(Mllifi?)
l

P

—(f, Th + v(u + Th) — v(u))

Z (lu + v(u)]p‘2(u + v(u)) — f, Th + v(u + Th) — v(u)).

Noting that v(u + Th) — v(u) E N, we get

Q(u + Th) — Q(u) Z T(|u + v(u)]p'2(u + v(u)) — f, h).

By interchanging the role of Q(u + Th) and Q(u), we have

Q(u + Th) — Q(u) S T(|u + Th + v(u + Th) [1"2

(u + Th + v(u) + Th)) — f, h).

12



Taking limit T -—i 0 in the above two inequalities, we obtain the derivative formula

(2.6). Therefore Q E C1 (E, R). Moreover from the compact embedding Theorem 1.1

and the continuity of v(u) : LP“ ——> N, we conclude that Q’(u) : E —> E" is compact.

On the other hand by (2.6) and Theorem 1.1,

IIQ'(U)||2.~ = “grilflu + v(u)|”'2(u + v(u» - f, h)

S Cpl] l'u + v(it)|”"2(u + v(u» - fllP/(p—1)-

Applying Héilder’s inequality and (2.5), we get

“cum. 3 or; llu + v(u)ll£‘1 + 1) s cums-WP + 1).

Inequality (2.8) can be easily obtained from (2.6), (2.7) and Holder’s inequality. In

all we have obtained the desired results. [I]

For later use we introduce Q0 6 C1 (E, R) defined by

, 1 p 1 ,
Qo(U) = £95119; llu + ”Hp = 5 H“ + ”OWN,” (29)

where v0 (u) can be given uniquely as in Lemma 2.1. In the following we list some

properties of Q0 that will be needed in constructing a modified functional in Section

2.1.2. First by setting f = 0 in Lemma 2.1, we obtain, for u, h e E,

(Qua). h) = (I'u + vo(U)|"‘2(u + vo(U)), h), (2.10)

llQb(u)llE‘ S C(Qo(U)‘P'1)/” +1), (2-11)

<Qz,(u),u> s on(u) + C(Qo(u)‘/P + 1)- (212)

Similarly, as in the proof of the previous lemma, we can easily show the following

relations between Q(U) and Q00“)-

13



Lemma 2.2 There is a constant C > 0 depending on I] f llp/(p_1 such that for u e E,

|Q(U)l S C(Qo(U)+1), (2-13)

IQ(u) - Qo(u)l .<_ C(Qo(u)‘/P + 1). (2.14)

Now we verify the Palais-Smale compactness condition (P.S.) for I(u) which plays

a crucial role in applying minimax methods to I(u).

Proposition 2.1 I(u) 6 Cl(E, IR) satisfies (P.S.).

Proof: Let M > 0. Suppose I(uj) g M for all j and I’(u,-) —+ 0 in E". We have

fOIUj=U;+U;eE+®E-=E,

(I’M), h> = (u; — u3')
h) — (Q’(uj), h) for h E E.

First we will show that {uj} is bounded in E. Then the compactness of Q’ will

immediately prompt the existence of a convergent subsequence of {Uj}. Setting h = u,-

+

orh=u- —u7J J,we get

”Wills - Haj—Ilia - (Q’(uj),uj>| S mllujlle, (2-15)

|||uj||213- (01%),“? - u;)| S mllujller (2-16)

 
where m = sup ||I’(u,-)| 3.. From I(Uj) g M, we have

1 + 2 1 —- 2
film,- HE — 5w»,- IIE — as.) s M,

which combined with (2.15) leads to

1

§(Q’(u,),u,-) - QM“) S M + mllujlle-

Thus by (2.8), we get

(3 —1)Q(u.-)— 02(|Q(uj)|"” +1) 3 M + muujug.

14



which implies

QM) S C(Ilujlls +1), for all 3', (217)

where C > 0 is independent of j. Now it follows from (2.7) and (2.17) that

I(Q’(uj),'u;-F - ufll S IIQ’(uj)l|E-||ujlla

C(|Q(uj)l(’"1”" + DHUJ'HEI
A

-1

s C(IlujHE ”Handle.

This, substituted into (2.16), yields

Hug-Ilia; S mllujIIE + (00%),“? - 2g)

—1

< mnujuwcmujng ”’+1)lluj||E.

Thus {uj} is bounded in E.

Finally note that I’(u,) = u; — u; — Q’(uj) where Q’ : E —-> E“ is compact and

I’(u,-) —> 0 as j —+ 00. We can easily see that {Uj} is precompact in E. [:1

2.1.2 {Modified functional

Next we replace I(u) by a modified fimctional J(u) for which it is easier to construct

the critical values. Let x E C°°(lR, R) be such that X(T) = 1 for T S 1, X(T) = 0

for T22 and—2Sx’(r)$0, OSx(T)_<_l, forTEIR. Foru=u++u‘€

E+ GB E‘ = E and a = max{1, 12%}, let

(NU) = “(10102 + 1)1’2, MU) = X(‘1’(U)'1Qo(U))-

Define

1 + 2 1 — 2
J(U) = '2-llu ”E - 5”“ “E - Q00!) - ¢(U)(Q(U) - 62001)),
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where Qo(u) is as defined in Section 2.1.1.

The reason for introducing J(u) is that the first assertion of the following propo-

sition which says J(u) is almost an even ftmctional, holds for J(u) but not for I(u).

Using the following proposition, we will then show that large critical values of J(u)

are also critical values of I(u)

Proposition 2.2 (Proposition 1.2 of Tanaka [24]) The functional J(u) E CI(E, IR)

satisfies the following:

(i) there is a = a(||f||p/(p_1)) > 0 such that for u 6 E,

W») — J<—u>| s a(|J(u)|i + 1). and

(ii) there is Mo > 0 such that J(u) 2 Mo and [[J’(u)|
 
E. _<_ 1 implies J(u) = I(u)

Proof: (i) Ptom the definition of J(u), we have

|J(-U) - J(U)| S i/J(U)|Q(U) - Qo(u)| + ¢(-U)IQ(—U) - Qo(-U)|- (2-18)

Suppose that —u E supp w, i.e., Qo(u) g 2€l5(—u) = 2a(I(—u)2 + 1)1/2. Ptom the

definition of J(u),

I(-U) = J(U) + (0001) - Q(-U)) - WUXQM - 62000)-

By Lemma 2.2, we get

II(—u)l s IJ(u)I + C(Qo(u)1/p + 1)

< [J(u)] + Cd5(-u)1/".

Using Young’s inequality, we deduce that

|I(-U)| S 2|J(U)| + 0-

Hence we get for —u E supp w,

Qo(u) S 245(—u) = 2a(I(—u)2 + 1)”2

< G|J(u)l + C. (2.19)
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Similarly we have for u E supp w,

Qo(u) S G|J(u)| + C. (2.20)

It follows (2.13), (2.18), (2.19) and (2.20) that for u E E

|J(-u)-J(u)l s C(w(u)+z/z(—u))(oo(u)1/P+1)

< a(|J(u)|1/” +1).

This proves the first assertion of the proposition.

(ii) To prove the second assertion of the proposition, we need the following two

lemmas.

Lemma 2.3 There is a constant M1 = M1(||f||p/(p_1)) > 0 such that J(u) _>_ M1 and

u e supp v imply I(u) 2 §J(u).

Proof: From the definition of J(u),

1(a) = I(U) - (1 - v(u))(Qa) - Qo(U))

S I(u) + C(Qo(u)1/P +1).

By definition of v, we get for u e supp w,

J(u) S I(u) + C(II(u)l1/’”+ 1)

< I(u) + %|I(u)| + 01.

Choosing M1 = 201, we get the desired result. El

Lemma 2.4 For allu=u++u‘ EE=E+EBE“ anthE,

(1'01), h) = (1 + T1(U))(u+ - U“. h) - (1+ T2(U))(Q6(U), h)

-(¢(U) + T1(U))(Q’(U) - 62600.11),

17



where T1 (u), T2 (u) E C(E, IR) are functionals satisfying

sup{|T2(u)|;u E E, J(u) 2 M2, i = 1,2} -—> 0 as M2 —> oo. (2.21)

Proof: For all u = u+ + u" E E and h E E, we have

(NU), h) = (11+ - U'ah) - (Q6(U),h) - (i/J'(U),h)(Q(u) — 0001))

- 1P(U)(Q'(U)- 0601),”, where

(Math) = 2501501)'1Qo(U))4’(u)’3

X {-02101) (1'01). h)Qo(U) + 2(U)2(Q6(U)i h)l,

(1'01), h) = (‘u+ - u‘. h) - (92600.11) - (0'01) - QM“), h)-

By regrouping terms, we get the desired expression for (J’ (u), h) for

T101) = 02X'(-)¢(U)’3I(U)Qo(U)(Q(U)-Qo(U)),

T201) = Ti(u)+X'(°)4’(U)'l(Q(u) "Qo(u))-

Now suppose that u E E satisfies J(u) 2 M2. Ftom (2.14), we get

|T1(U)| S C IX'(°)| 4500—2920(11) (62001)”? +1)-

If u ¢ supp w, then T1 = 0. Otherwise, by the definition of ’l/J(’u), we have Qo(u) S

245(u). On the other hand we get from Lemma 2.3, @(u) 2 I(u) Z %J(u) 2 §M2.

Hence we obtain

[2130.)] s C§D(u)’(P“1)/P g CMflP'lW —» o as M2 —» 00.

Similarly we have T2(u) —+ 0 as M2 ——> 00. Cl

Let us now prove the second assertion of the proposition. Recall that by definition

of J(u) it suffices to show that w(u) = 1. Thus we need to show

Qo(u) S 9(a), (2.22)
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for u E E such that J(u) 2 Mo and ||J’(u)||E. _<_ 1. For sufficiently large Mo > 0, we

can assume by Lemma 2.4 that J(u) 2 Mo implies |T1(u)| 5 %, |T2(u)| S l and

 

 

 

P(1 + T2(“)) P — 2 _

2(1 +T1(u)) — 1 >T = I"

From (2.21), we obtain

= —Q ul + T201)

)+ 2(1 +T1(‘U.)) (Q0(U),’U)(11

(g(u) +T1(U) I I

_ p2(l+T2(u)) _ u _ u _ u

11’0“) + T1 (u) , I

+ 2(1 + T1(u)) (Q ("l — QM), u)

S (I) + (II) + (III).

 

 

 

But by (2.14) we easily see that

K”)! S C(Qo(U)1”’+ 1)-

On the other hand it follows from (2.8), (2.13), (2.14), and (2.12) that

I<Q’(U) — Q6(u),u)l S IpQ(u) — (Q’(u),u)| + p|Q(U) — Qo(u)l

+G(Qo(u)l/” + 1)

S C(Qo(u)"" + 1),

which implies

I(III)| s C(Qo(u)l/p + 1).

Thus we have

1 I

2(1+ T1(u)) (J (“Ml

(3812):]; — noun) — C(Qo(U)1"’ + 1)

2 bQo(u) — C. (2.23)

 

I(U) -

I
V
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Now letting h = 11*” - u“ in Lemma 2.4, we get

(1111),?1+ - U") = (1+ T1(u))IIUII2I:- (1+ T2(U))(Q6(u),u+ - 11‘)

-(1/)(U) + T1(u))(Q'(u) - Q1301), 11+ - 1F)-

We estimate the second and third term on the right hand side of the previous equation.

By (2.11), we have

I(QMUM+ - u’ll S llQb(u)E‘llullE S C(Qo(U)(’"”’” + 1)||UIIE-

Similarly by (2.7) and (2.13),

I(Q’(U),u+ - u’)| S C(Qo(U)(’”1)”’ +1)llullE-

Recalling that |T1(u)| S % and the assumption that ||J’(u)||E. g 1, we then have

|
/
\

IIJ'(U)I ulli: + C(Qo(U)(”‘”"’ + 1)|Iu|le~

macaw-1W + unuue,

   

l

,Huui e-

l
/
\

which leads us to

llullE S C(Qo(u)(fl)/P +1). (2.24)

It follows from (2.23) and (2.24) that

1
I

2(1 + Tia» (" (“W + b62001) - c

-C||J'(U)l Ulla + b62001) - C

 I(u) I
V

I
V

   

boom) —- C(Qo(u)"“’/” + 1)

bQo(u)/2 — C'0-

I
V

I
V

Finally we remark that

inf {Qo(“); llJ'(U)l  
3:31 and J(u)ZM}—>oo as M-+oo.
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This follows from (2.24) since J(u) —> 00 implies b9—0é32 — Co 2 0; hence I(u) 2

bQo(u)/3. Combining these estimates yields

Q0(u) g aI(u) S @(u).

Thus the proof of the lemma is completed. CI

Immediate consequences of the above proposition are the following two corollaries

which ensures that large critical values of J(u) are also critical values of I(u), and

that the (RS) condition holds for large values of J(u).

Corollary 2.1 If J’(u) = 0 and J(u) 2 M0 for u E E, then I(u) = J(u) and

I’(u) = 0.

Corollary 2.2 J(u) satisfies (RS) on the set {u | J(u) 2 M0}.

2.2 Minimax methods

2.2.1 Construction of critical values

We rearrange the positive eigenvalues of the wave operator A as 0 < #1 S [22 S M S

- - - , and let e1, e2, e3, - - - be the corresponding orthonormal eigenfunctions. Then the

positive eigenspace E+ can be written as

E+ =span {ej :j E N}.

Define

E: =span{e,- : l Sj _<_ k}.
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Note that ||u||E 3 pin ||u||L2 for u E E;. For u = u+ +u‘ E E; 69 E", by Lemma

2.1 and Lemma 2.2, we have

1 1 _

J(u) = gurus — ,Hu Hi: — one) - waxes) - com»

1 1 _

s gums—gnu Iii-Qo(u)+0(oo<u>l/P+1)

1 1 1 -

s §l|u+lli3-§Qo(U)--2-llu ”2+0

1 l 1 _

= §|lu+lli~-%IIU+vo(u)II£-§llu ”2+0

1 + 2 + — P l - 2

S §|lu Ilia-ellu u +vo(u)|l2-§|lu “3+0

1 l _

s yant-wmss—pm12+c

1 _ 2 l _

s gurus-cu." ||u+ll%-§llu “2+0.

.Hence there is an Rk > 0 such that J(u) _<_ 0 for all u E E; 69 E" with ||u||E 2 R1,.

We may assume that R], < RH] for each k E N.

Now we construct minimax values following Rabinowitz’s procedure [17]. Let BR

denote the closed unit ball of radius R in E, D), = BR“ n (E: 619 E”) and

I‘k = {'7 E C(Dk, E);7 satisfies (71) — (73)}, where

(71) '7 is odd in D1,,

(72) v(u) = u for all u E 6D,“

(73) 7(u) = a+(u)u+ + a’(u)u" + k(u), where 01+ E C(Dk, [0,1]) and a" E

0(0),, [1, 62]) are even fimctionals (62 _>_ 1 depends on 7 ) and Is: is a compact operator

such that on 0D)“ a(u) = a+(u) + a‘(u) = 1 and rc(u) = 0.

Define

bl, = inf sup J('y(u)), k E N.

761‘ 06D):

If f E 0 and J is even, it can be shown as in [1] that the numbers bk are critical

values of J. If f is not identically 0, that need not be the case. However we will use

these numbers as the basis for a comparison argument. To construct a sequence of

critical values of J, we must define another set of minimax values. Let

22



Uk = Dk+l O {U E E; (utek-i-l) Z 0};

Ak = {A E C(Uk, E); A satisfies (A1) — (A3)}, where

(31))le 6 Pk:

(A2) A(u) = u on 6U). \ 0).,

(A3) A(u) = c'iJ'(u)u+ + 6F(u)u‘ + ii(u), where (1+ E C(Uk,[0,1]) and c"!— E

C(Uk, [1, 61]) are even fimctionals (dz 2 1 depends on A ) and Fe is a compact operator

such that &(u) = 1 and iri(u) = 0 on 0U,c \ Die.

Now define

ch = inf sup J(A(u)) k E N.

By definition of bk and ck we easily see that ck Z bk. The key to this construction is

that we have the following existence result.

First recall that J satisfies the (RS) condition (Corollary 2.2) on {u E E; J(u) 2

Mo} and J’(u) is an operator of the form:

J’(u) = (1 + T1(u))(u+ — u’) + compact,

where |T1(U)l S 1/2 on {u E E; J(u) _>_ Mo} (see proof of Pr0position 2.2). Thus we

have the following deformation lemma.

Lemma 2.5 (of. [18, 19]) Suppose that c > M0 is a regular value of J(u), that is,

J’(u) 74 0 when J(u) = c. Then for any 5 > 0, there exist an e E (0,5] and 77 E

C([0, 1] x E, E) such that

(i) r)(t, .) is odd for all t E [0,1] if f(t, x) E 0;

(ii) r)(t, ) is a homeomorphism of E onto E for all t;

(iii) 11(0, u) = ufor all u E E;

(iv) n(t,u) = u if J(u) E [c — €,c+ E];

(v) J(fl(1,u)) S c- 6 if J(U) S 6+6;

(vi) n(l,u) satisfies (A3).
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Proposition 2.3 Suppose ck > bk 2 Mo. Let 6 E (0, ck — bk) and

Add) = {A E Ak; J(A) S bk + 6 on Dk}.

Then

06(6) = “1:13;” 3215‘ J(A(u)) ( 2 cl.)

is a critical value of I(u)

Proof: By Corollary 2.1, it is enough to show that ck(6) is a critical value of

J(u) First note that by definition of bk and A1,, Ak(6) 74 0. Choose E = %(ck—bk—6) >

0. Now suppose that ck(6) is not a critical value of J. Then by Lemma 2.5 there exist

5 E (0, E] and n as in the lemma. Choose H E Ak(6) such that

“(If J(1701)) S 61(5) + 8-

Let H = 71(1, H). We need to show H E Ah. Clearly H E C(Uk, E). (A1) and (A2)

easily follow from the choice of H and (iv) of Lemma 2.5. Since H satisfies (A3), so

does H by Lemma 2.5. Moreover on Dk, J(H(u)) S ck(6) — E and hence J(H(u)) =

J(H(u)) S be + 6 on Dk, again by (iv) of Lemma 2.5. Therefore H(u) E Ak(6) and

by (v) of Lemma 2.5,

19ft J(H(14)) S 61(5) - e,

which contradicts to the definition of ck(6). Hence ck(6) is a critical value of J D

Therefore, to establish the existence of critical values, it suffices to show that there

exists a subsequence {k,} such that

ckj>bijMo forjEN and bkj—>oo asj—->oo. (2.25)

Arguing indirectly we have the following proposition.
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Proposition 2.4 If ck = bk for all k 2 k0, then there exists a constant C > 0 such

that

bk S ka/(P-I) for all k E N. (2.26)

Proof: We refer [17] for the proof using the property of almost symmetry of

J(u) ((i) of Proposition 2.2). [:1

Our goal in the rest of Chapter 2 is showing the existence of subsequence {kj} with the

property (2.25). In fact, by Proposition 2.4, we will prove that there exists {kj}, e > 0

and 0,3 satisfying

bk, > Cekf/(P'l‘el for all j e N. (2.27)

2.2.2 Comparison functional K(u)

To show (2.27), we introduce a comparison functional. By the definition of Q0(u) and

(2.14) for u= u+ +u‘ E E: E+ EBE‘,

J(u) = gurus — gnu-Hi — one) — v(uxoe) - one»

2 guru;-éllu-IIt-zoo(u)—a1

1 1 _ 2 _

= glltf’llia-gll'uNils-13W“?u +vo(U)||i3—al

I
V 1 + 2 1 - 2 2 + -

— u —— u —— u +u P—al2|| llE 2l| llp pll llp

I
V

1 1 _ a0 00 _

§llu+llzp - gllu Ilia - gllui’ll; - —-|l'u ll; - at

where a0 > 0, a1 > 0 are constants independent of u. For u E E+, set

1 ac

KW) = §llu+|li~ - FIIU‘LIIS E C2(E+, IR).

Then we can easily see the following.
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Lemma 2.6 i) J(u) Z K(u) — al for all u E E+.

ii) K(u) satisfies the (RS) on E1“.

In the next section, we will construct critical values S), of K(11) such that 2,, S

bk + a1 and we will deal with file instead of bk to prove (2.27).

2.3 Critical values S), of K(u)

2.3.1 Bahri-Berestycki’s max-min value 3),; [3, 4]

For m>k, k, mEN, set

:3 = {0‘ e ass-hem; o(—x) = —o(x) for all x e sr-k}

and

3],": sup min K(o(x)).

06A? IESm-k

We list some properties of 3;" in the following proposition.

Proposition 2.5 (i) 0 S BL” S £2.11 < 00 for all m, k E N;

(ii) for all k E N, there exists u(k) and 17(k) such that

0Su(k)Sfi,'c”Si7(k)<oo forall m2k+l;

(iii) moreover, u(k) ——» 00 as j —i 00.

Proof: (1) For any a E A1", it is clear that there is a 6 E A?“ with

6(Sm'k'1) C o(S"‘""). Hence we have 5}," S 37:11- To prove (ii) and (iii) of the

proposition, we need the following lemmas.

Lemma 2.7 For all a E AL",

0(Sm—k) n E; 75 (ll.
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Proof: Applying Lemma 2.9 in Section 2.3.2 to h = a : Sm”c —> E; and g =

id : E; -§ Eg, we easily get the result. [:1

Lemma 2.8 For all 0 E (0,1/p), there is a Ca > 0 independent of k E N such that

ll’ullp S Cofligllulle for U 6 (Bill,

where (Eg)i = {v E E+; (v,e,-) = 0fori=1,2,...,k}.

Proof: We have by the definition of H - I] E and [1):

Hunt 3 uilflllvlle for u e (Err.

On the other hand, by Theorem 1.2 (Compact Embedding)

||u||q S qulullE for all u E E and q E [2, (2n+ 2)/(n —1)).

Using Hfilder’s inequality, we get for q E (p, (2n + 2)/(n — 1))

Hall» S HUHEIIUIIi’T for u 6 E+,

where T = 3%3—3] E (0, fi). Thus

Hull. 5 Cl"u;”2llulle for u e (Err,

which is the desired result. E]

(ii) We now prove the existence of 17(k). By the linking Lemma 2.7 we have for

all a E AL",

min K(o(x)) S sup K(u). (2.28)
—l¢

Recalling that ||u||E S ui’2||u]|2 on E3, we have on E;

K <1 2—C p<_1_ 2—C’ -p/2 p

(u) _ 2llullE llullz - leullE #1 “alle-
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Thus the right-hand side of (2.28) is finite and independent of o and m. Set

17(k) = sup K(u) < oo,

uEE:

which implies

fife" = sup min K(o(x)) S 17(k).

06A? 365m-“

Then we prove the existence of u(k). First we define a map a : Sm"c —> Eff,\{0}

by

u(x) = ctr/("‘2’”manly/(Hue),
m

where w(x) = Z xie, and SM" is understood as

i=k

sm-k = {x = (23),, ...,xm) e rim-k“; Ex? = 1}.

i=lc

Then obviously a E AL". Since ||w(x)||E = l on Sm‘k, we have

mm» = (é — gnaw—2’1matte/r”).

Since w(x) E (E;_1)i, ||w(x)]|E = 1 for all x E Sm‘k, it follows from Lemma 2.8

that

llw($)llp S 00111231 for 27 6 SW”,

where 6’ E (O, 1/p) and Co is a constant independent of k and x. Thus

K(o(x)) 2 C; pin/(”2) for all x E Sm'k.

The right-hand side is independent of m. Set u(k) = 09' p225“). Then we have

5]," 2 min K(o(x)) _>_ u(k) for m > k,

xESm‘*

which completes the proof of (ii) of the proposition.

(iii) From the definition of u(k), it is easy to see that u(k) —> 00 as n —> 00 since

u(k)—»ooask—+oo. Cl
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As in Proposition 2.1 we can verify the following compactness conditions

(123)., (as)... for Km).

(P.S.).: If {u,,,},i',‘,’=1 C E+ satisfies um E 13;, K(um) S C and

ll(KlE;)'(%)llE;' —> 0 as m —> 00, then {um} is relatively compact in E+;

(P.S.)m: If {uj};-’;1 C E; satisfies K(uj) S C and (Klml'Wj) —> 0 asj ——> 00,

then {Uj} is relatively compact in E;

Since K is an even fimctional satisfying above (RS). and (RS), we have the follow-

ing result via standard argument.

Proposition 2.6 Suppose u(k) > 0. Then 3;," is a critical value of K | 15:3,; , and the

limit of any convergent subsequence of SI," as m -—+ 00 is a critical value of K.

By (ii) of Proposition 2.5 choose a sequence {mj} such that m,- —> 00 as j —+ co and

[3,, = 11in; fig" exists for all k E N.

Then we have the following facts about the ,Bk’s due to Proposition 2.5 and 2.6:

Corollary 2.3 i) Bk ’3 are critical values ofK E C2(E+, IR) for each k E N;

ii) 16k S 51:“ for all k 6 N;

iii)flk—>ooask—-voo.

2.3.2 The relation between S), and other minimax values

To estimate bk we establish the following relation between bk and m.

Proposition 2.7 For all k E N,

bk 2 file — 01, (2-29)

where a1 is the number in Lemma 2. 6.
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To prove this proposition, we need several topological linking lemmas. We first state

a version of the Borsuk-Ulam theorem.

Lemma 2.9 Let a,b E N. Suppose h E C(S“, IR“+”) and g E C(IR", IR“+”) are odd

functions and there exists r0 > 0 such that g(y) = y for [y] 2 r0. Then h(S“) fl

9011") r 0-

Proof: We choose R Z '70 such that R > maxxesa |h(x)|. Write

D"+1 = {tx E IR““;t E [0,1],x E 5“}, Db = {y E IR"; [y] S R}.

Define F E C(6(D‘l'+1 x Db),IR"+b) by

F(tx, y) = th(:16) - g(y)-

This is well defined and odd on 6(Da+1 x Db). Note that 6(D"+1 x Db) c: 8"”

(odd homeomorphic). Thus by the Borsuk-Ulam theorem, there is a (toxo, yo) E

0(0‘”l x D”) such that

F(toxoiyo) = 0, 136-, toh($o) = 9(yo)-

Since 6(D"+l x Db) = S“ x Db U D“+1 x 00", the following two cases should be

considered:

i) to = 1,20 e S“ and :10 e 0";

ii) to e [0,1),xo e S“ and yo e 60”.

Case 1. We have h(xo) = g(yo). So we have h(S“) fl g(IR”) 79 (ll. This is the desired

result.

Case 2. Since g(y) = y on 6D”, we have |g(yo)| = lyol = R. On the other

hand, by the choice of R, we get |t0h(xo)| < R. These are incompatible with

toh(xo) = g(yo). So this case cannot take place. [3

From the above lemma, we can deduce the following.
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Lemma 2.10 For all '7 E I“,c and for all a E A1,",

((pmr)(Dk) U {u e E; a e- : llulle 2 Rt}) 0 g(sm-k) 7e 0,

where Pm : E —> E; EB E“ is the usual orthogonal projection.

Proof: Let 7 E l";c = {7 E C(Dk,E);7 satisfies (’)1)—('73)},D,c = BRkfl(Ef€B

E“). We extend '7 to ’7 E C(Ejf EBE“,E) by 7(a) = 7(a) if ||u||E S Rk, and '7(u) =

u if ||u||E Z Rk. Obviously, flu) is well defined and odd in E; EB E“ and since

m > k,

13,.ng e E“) = Pm 7(1),.) 11 {u e E; e E“; IIuHE 2 Rk}.

Therefore, it suffices to prove Pm "f(E;L 69 E“) n o(S’"“’°) 74 (I). We rearrange

{¢¢,m(x)cosjt,¢I,m(x)sinjt : A(l,j) < 0,m = 1,... ,M(l,n)} as follows, denoted

by f1,f2,f3,-~ . We set for l E N,

E1. = span{f,-;1S j S l}

and let Pmy : E = E“ EB E+ -r E; 8—) E," be the orthogonal projection. Consider the

operators

0 : S’"“" —» e; c EgeBEf, Pmn : I}; 99E; s mesa

Applying Lemma 2.9 for h = o and g = Pmyfir, there exists x; E Sm“’° and u; E

E; 63 E,“ such that

u(xl) = Pmyr'flul). (2.30)

Since Sm“" is compact, there is a subsequence x11. such that

xzj —i x in Sm“", u(xlj) —> u(x) in E;

On the other hand, by ('73),

Pm', '7(u,) = PmJ [chr (u)u,+ + a—(u)uf + k(u;)] = a+ (u)u,+ + a' (u)u,' + Pm,1n(ul),
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where a‘(u) 2 l on E- 6 E: and w(E‘ 6 ED = w(Dk) is compact. Hence we have

_-—1— —ox¢—nu¢
ul —a_.(ul)PE,[( ) ( )l

and {uf} has a convergent subsequence {1%}.me the boundedness of u; and

Dtm(E,*,;) < 00, at has a convergent subsequence. Passing to the limit in (2.30), we

obtain

Pm 3(a) = 0(a), i.e., Pm '7(E,'c+ 6 E’) 00(Sm'k) aé 0.

This completes the proof. [:1

Let us define

bi.“ = inf sup J(meu»
'76P). 156D);

and recall that bk = 211? sup J(7(a)). Then we have

'7 '3 uEDg

Lemma 2.11 For k E N, bk = lim bi".
m—boo

Proof: Since PmI‘,c = {Pam 'y E Pk} C h, it is clear that bk 3 by," for all

m > k. Let’s prove the other direction i.e., bk 2 limsup b}? for k E N. From the

m—mo

definition of bk, for any 5 > 0 there is a 'y E I‘k such that

sup J(7(u)) S bk + c.

1160;.

By (73), 7(a) = a+ (u)u+ + a“(u)u‘ + 5(a), where ozi satisfies the condition in (73)

and 5(Dk) is compact. Since

Pmn(u) —-) n(u) as m —> oo uniformly in Dk,

we have

Pm7(u) = a+(u)u++a’(u)u_+Pmn(u) —> a+(u)u++a‘(u)u_+n(u) = 7(a) uniformly in Dk.
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Hence

sup J(Pm'y(u)) —* sup J(7(u)) as m —* oo.

uEDk uEDk

Thus we obtain

limsup b? g limsup sup J(Pm'y(u)) = sup J(7(u)) S bk + e.

m-+oo m—wo uEDy. uEDk

Since the above inequality holds for any 5 > 0, we get the desired result. C]

Using above lemmas, we now prove Proposition 2.7.

Proof: Since J(u) S 0 on {u E E$6E' : ||u||E 2 Rk}, Lemma 2.10 concludes

that

min 107(3))-< sup J(Pm'7(U)),
zESm-k uEDh

forall 76F,c andall aEAL". Thus

min K(o(:r)) — a1 < sup J(Pm'y(u)),

zESm“* uEDk

which implies

sup gn1nK(o(:r)) — a1 < inf sup J(Pm'y(u)).

aEA’" "“k

Thus ,6}? — a1 S b}? and by letting m = m,- —> 00, we get

fik — a1 3 limsupr‘ = bk.

This establishes the proof. [I

2.4 Estimate of m using Morse Index

In this section some index properties of 3,; are discussed. The lower bound for the

index of K" obtained here and the upper bound estimate in the next section give the

growth estimate (2.27) that we are looking for.
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Definition 2.1 For u E E+, we define an index of K”(u) by

index K”(u) = the number of nonpositive eigenvalues ofK”(u)

= max {dim S; S S E+ such that (K”(u)h, h) 5 0 for allh E S}.

Here ”A S B” in the bracket means A is a subspace of B.

Proposition 2.8 Suppose ,3], < Sh“. Then there exists uk E E+ such that

K(uk) S 161:)

K’(uk) = 0,

indexK”(uk) 2 It.

By definition of 3,, is a critical value of K(u), the result without the last assertion

is obvious. To prove the last assertion, we first consider finite dimensional case.

Proposition 2.9 Suppose fife" < @211, m > k+ 1. Then there exists a u}? E E); such

that

KW?) S [312",

(K|E$)I(ulcn) = 0:

index (K IE; )”(u?) 2 It.

To prove the above proposition, we will use a theorem from Morse theory, i.e., a

result concerning the relationship between certain homotopy groups of level sets of

a flmctional and its critical points. First we need a theorem to treat the case where

critical points may be degenerate.

Proposition 2.10 (Marino-Prodi [15]) Let U be a 02 open subset in some Hilbert

space H and o E C2(U, IR). Assume 45" is a Fnedholm operator (of null index) on the

critical set Z(9’)) = {x E U; d)’ (x) = 0}, (1) satisfies (PS) and Z(43) is compact. Then,
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for any 8 > 0, there exists «t 6 WW, IR) satisfying (RS) and with the following

properties:

(i) w(x) = 45(93) if distance {13, Z(45)} 2 5;

(ii) I1/J(=v) - ¢(m)l, Nil/(x) - ¢’(-’B)ll, III/Hm) - ¢"($)ll S e for all x 6 U;

(iii) the critical points of u are finite in number and nondegenerate.

It is easy to see that K | E; satisfies all the assumptions of the above Proposition.

That is,

1) K's; E 02(E;, 1R) satisfies (RS) and Fredholm.

2) All critical value of K|E; are non-negative because

K<u> = K<u> - generate = (g —1—1,>aonun;2 o.

3) Z(K |E; ) is compact. In fact, note that there exists it," > 0 such that K(u) < 0

for u E E; with ||u||E Z R"; hence Z(K|E$) is bounded.

Applying Proposition 2.10 to KlE; , for all e > 0 there exists the E 02(E,*,‘,, 1R) satis-

fying (RS) and for all E E;

I454“) - K(U)| < 6,

||¢2(U) - (KIE;)’(U)|| < 8,

HM“) - (KIE;)”(U)|| < 8; (2-31)

the critical points of 9125 are finite and non-degenerate. (2.32)

Form>k and e>0,let

fl?(€)= sup min «be-(0(3))-
06A}? 368m_h

Then by (2.31),

gangrene”.
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Moreover we have

Lemma 2.12 Suppose that a,5 E IR satisfies flffle) < as — 25 < a. < 333.1(5)- Then

7rm—k—1([¢e Z aelmap) 74 0 for some P 6 [$6 2 aelmr

when? [45: Z 05]". = {u E Egg; ¢E(u) 2 as} and um is the rn - th homotopy group.

Proof: We argue by contradiction. Suppose that

7rm—k—1([¢e Z aelmrp) = 0 for all p E [¢E 2 aelm-

By the definition of cage), there is a o E A)?“ such that 0(Sm‘k‘1) C [ng > a5]m.

Since rrm_k_1([¢e Z a5]m, p) = 0, there is a homotopy

H: [0,1] x 3”“ _. [¢. 2 a]...

such that

H(O,x) = o(x), H(1,x) = p for all x E Sm'k‘l.

Write

5"” = {(t,x);x 6 RW", t 6 1R, |:z:|2 + t2 = 1}.

Define 6 : S'""‘ —> E; by

p if t=1, x=0,

H(t,x/|x|) if 0<t£ l,

—H(—t, —x/|x|) if — 1 < t S 0,

_p ift=—1,$=0.

Obviously 5(SL'H‘) C [die > a5]m, where we denote 83"“ = {(t,x) E Sm'k;t >

0(< 0)}. On the other hand, we obtain from (2.31) and evenness of K(u) that

|¢5(—u) — ¢E(u)| S 25 for u E E;
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So we have 5(ST'k) C [abs 2 as — 26]m. Consequently, we have 6(Sm'k) C [abs 2

as — 25],". Horn the definition of 3;,”(5),

which contradicts with the assumption. Thus the proof is completed. C]

Using property (2.32), we can apply a classical theorem from Morse theory to (ts

and we obtain

Lemma 2.13 For a regular value a E R of 43s , set

L(€; 0) = maX{ indewflx); ¢e($) S a, 452-03) = 0}-

Then

1r1([¢s 2 a]m,p) = 0 for all p E [43s 2 a]m, ls m — L(e;a) — 2.

Proof: Let b E R, b < a be such that ¢s has no critical values in (~00, b]. By

the “noncritical neck principle” (cf. Theorem 4.67 of Schwartz [20]), [43s 2 b]m is a

deformation retract of 13;. Hence

1n([¢s 2 b]m,p) = 0 for all l E N and for all p.

Using theorem 7.3 in Schwartz [20] ,

rrl([gbs Z b]m, [¢s > a]m) = 0 for l S m — L(e; a) — 1.

Considering the homotopy exact sequence:

’7 7r!+1([¢5 Z blma [ch Z alm) _’ 7Tl([¢e Z almap) _’ 7rl([¢6 Z blmrp)

_’ WI([¢E 2 blmr [¢e Z alm) _" - ' '3

we get the result. CI
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Now we can prove Proposition 2.9.

Proof: Since 3;: < fig, and the critical points of ¢s are finite and nondegen-

erate, by Sard’s theorem there exists a sequence as E R (O < e S 50) such that as is

a regular value of ¢s and

33(5) < “5-25 < a. <fi7.’.‘.1(e), a. 45,2" as e—»o.

By Lemma 2.12 and 2.13, we have L(5; as) 2 k for 0 < e < 50 and hence there exists

us E E; such that

¢e(ue) S. as: ¢;(ue) = 0) index ¢:(ue) Z k

It follows from (2.31) that (us) satisfies

K(us) is boundedas e—>0,

(KIE;)’(us)—tO as 5—40.

Since K|E; satisfies (P.S.) on E;, we can choose a convergent subsequence usJ. —-+ u}?

for some u}? E E; Then we have

Ker) s a". KlssM") = o and indeX(K|E,t,)"(uL") 2 k.

This completes the proof. Cl

Finally we prove Proposition 2.8, the main result in this section:

Since m, < ,Bk+1, we have 2" < 3231 for sufficiently large j. By Proposition 2.9, there

exists ur’ E E; satisfying, K(u?) 5 fig” and (K |E; )’(u?) = 0. Since K E 02(E+, 1R)

satisfies (P.S.)., (it?) —> uk for some subsequence mj: of m,-, we have K(as) S flk

and K’(us) = 0

Let us prove the last assertion: index K"(uk) 2 It.

First of all, we have

indexK”(u?) 2 index (K |E; )”(u?) for all m E N.
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On the other hand, we observe that K”(us) is an operator of type: K”(uh) = id + n

where It is a compact operator. Note that

(K"(uk)h,h) S 0 if and only if (w(uk)h,h) S —(h, h)

and X,- -—; 0 where A: are eigenvalues of K. Hence there exists an e > 0 such that

for h E E+,

index K”(uk) = index (K"(uk) - 5).

Since K E C2(E+, R), we have for some 3'6,

“Knuth — K”(u:c)ll < .- for 2" 213.

Thus for j’ 2 3'6 and h E E+,

<K"(u.)h,h> — euhnt s <K"(u’;‘9‘>h,h>,

i.e.,

index (K” (us) - e) Z index K”(u?)

Now by Proposition 2.9, we have

index K”(uk) 2 k,

which completes the proof of Pr0position 2.8

2.5 Proof of the existence of the solutions

By Proposition 2.3 and Proposition 2.4, we know that (2.27), the growth estimate

on fik’s, ensures the existence of an unbounded sequence of critical values. We now

prove (2.27). First note by Proposition 2.8 that there exists {ukj} such that

1 a0 1 1

fit,- 2 K(uk,-) = §llualli~ - -p-||uk,-||£ = (-2- - yaollujllfé- (2.33)
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Thus, by Proposition 2.8 again, we need to get an upper bound of index K”(ukj) in

terms of ”uh,- II; in proving (2.27).

For u, h,w E E+, K”(u) is given by

(K”(U)wnh> = (wrh) - (P - 1)0'0(|u|p_2h9h)'

Thus by the definition of index,

indexK”(u) = max{dimS; S S E+, (p— 1)ao(|u|p_2h, h) 2 ||h||23,h E S}.

Define an Operator D : L2 —+ E+ such that for u(x, t) = Z u,,j,m¢z,me‘j‘,

(Dv)(x,t)=Z Z M(l,j)l"‘/2nzg,mh,me‘j‘.

m A(l,j)>0

Remark 2.1 D is an isometry from L1 = WL2{¢1,me‘j‘;A(l,j) > 0} to E+ and

D = 0 on WL2{¢l,meijti A(Li) S 0}-

Remark 2.2 Setting h = Do in the above expression of index, we get

indexK"(u) = max{ dimS; S S L2 at (p — l)ao(|u|p‘2Du,Dv) 2 ||u||§,u E S}

#{ug zn. 2 1, engennnnenz (wag -1)aoIUI”‘2)D}-

Proposition 2.11 There exist 0 > 0 such that for u E E+,

indexK”(u,-) S C'||u||:,

2 2 —2
wherer=fil§fi ands=5%lm.

Proof: We try to find a big enough I such that

(p - 1)ao(IUI"'2Dvn DU) S llvllg. 0n E+\Ez‘:1n
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which implies index K,' (u) S I. First we have the following estimate on E+\E,‘:1

AID’UPI
UIP-z

S C(ffllel
2q)%(/Q

lu|(?—2
)q—ZT)1

;—l

= CIIDvllgqllull‘;_2,+.

|
/
\ 2 1—

CIIDvlli’llellq‘ ”Ilu«tug-3%,

l
/
\ 2(1—8)

Cfillvlh2||v||2 ll“”(p-2)-3—’

1 2 p-2

CA—funngnnans,

2 2 1 1 —

where (j = -:—:—, — = 3 + _cj_3 and to get the second last inequality, we used

the facts llDuHZE S lAll’lllullis on E+\E,*_'_l and ”Dung = H’Ullia and the compact

embedding theorem 1.1. Thus to have f ID’uli’lull"2 S Hullg, we need

Hum;2,2}-< |/\z|’ ~ Cur/'3 s = (n +1 — (n — 1)g)/2g, i.e.,

(13-2)91,‘ 5—ln- )

a_—C”u”(p_2)_s_+l 1 q ~1-

Let Z = [a + 1]. Then

/ lelzlulp“ s llvllie for an n e E+\E;:.-

2n

and therefore index K(u) S l-— [a + 1] < Ca—— C||u||:_gal—("”5" D

We now prove bk). > C ij-1_‘ (2.27) : From Proposition 2.11 and Proposition 2.8

we have

jS indexK”(ukj) g Cllut ”(J—3W: 2 < < Egg—1a.

Note that

Hutu; zcnntlltg... ifg >2

so that

He. ups/<1"’r—rt—r if g2;
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In order to have (2.27) it needs

 

Wm

(p—2)(n+1)—(n—1)q (00-1)“

Since film is an increasing function of q, choose q = ‘23. Then we finally obtain

 

7n+1+\/25n2-2n+9

2<<

p 2Gn—D ’

 

for which (2.27) is satisfied.

Remark 2.3 This upper bound of p may not be optimal and we are still trying to

improve it.

Now there exists a sequence us C E of critical points of I(u) such that as k —+ co

1+2 1 _2 1 p

[(1%) = 5H“): “E — §lluk||1~3 - 5 HUI: + ”(uh)“p — (fink + v(u).» —* 00-

Since I’ (us) = 0, we have

(I'(uk)nuk) = Huzllh - “villi; — (luk + v(’We)|”_2(uk + “(um + f, u]. + ”(1140) = 0-

Above two equations combined gives

1 l l
(‘2- '- 1;) Huh + v(uk)|]; + -2—(f,uk + v(uk)) —* 00 as Tl —) 00. (2.34)

By direct calculation we can easily see that the {ugc + v(uk)} are critical points of

F(u), so it follows from (2.34) that

||u,s + v(uk)||p —» 00 as k —t 00.

This ensures the existence of a unbounded sequence of critical points for F(u), which

is a unbounded sequence of the weak solutions of the nonlinear wave equation (1) on

S".

We have proved the result for the simple case where g(u) = |u|P‘2u. Now we turn

to the more general case where g(u) satisfies the conditions (91) — (94) of Theorem

0.1.
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CHAPTER 3

The existence for general

nonlinearity

Here we apply similar ideas as in Chapter 2 to prove Theorem 0.1, but we have to use

S1 index theory to replace Zg—action and hence estimates are much more complicated.

We first state Theorem 0.1 again.

 Theorem 3.1 Suppose that 2 < p < 7"+1i2("32n5:‘1)"2"+9 and 9(5) E C(IR, 1R) satisfies

(91) [9(51) — 9(52)](€1 — £2) 2 “1'51 — 52V;

(92) there exists r > 0 such that

t

o <pG(€) sen/o gmde s 69(5) for IEI 2 e;

(93) there exists a2 > 0 such that

|9(€)| S arg(|€|“"1 + 1) for 66 R;

(94) 9(5) = 0(|€|) at 5 = 0-

Then for any f(t,x) E If”(”-1)(S1 x S"), 2rr-periodic in t, the above non-linear wave

equation (1) has infinitely many periodic weak solutions in L”(S1 x S") FWH(Sl x S").

3. 1 Variational Scheme
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3.1.1 A new variational formulation

As we did in Chapter 2.1, we introduce a new functional on E.

I(u) = $3er + n) = gunfire — gnu-Ht — g(u), (3.1)

where

Q(u)=miAIII/(G(u+v)—f-(u+v))dtdx, 9:31 xs". (3.2)
v6 0

It turns out that the functional I(u) is in 01(E, IR) and much easier to handle in

proving the Palais—Smale (P.S.) condition due to the compact embedding Theorem

1.1. Moreover, it is shown in Section 3.5 that the critical points of I(u) are also the

critical points of F(u).

By Properties (92) and (g3), we have the following facts:

Remark 3.1 (g2’) cllsl" s 0(5) + e. s gage) + cg).

Remark 3-2 (93’) Ig(€)|”“‘"” S C4(£g(€) + 1)-

We will use (g2’) and (g3’) to verify the (RS) condition for I(u)

Lemma 3.1 (i) For all u E L”, there exists a unique v(u) E Np such that

Q(u) = fnmu + v(u)) — f . (u + v(u))) dt an, (3.3)

(ii) Suppose u,- -—> u in E. Then v(uj) _. v(u) in I)" and g(uj + v(u,-)) __.

g(u + v(u)) in Lefi,

(iii) Q(u) is of class C’1 on E and for all u, h E E,

(Q’(u), h) = [new + v(u)) — f) . h dt dx. (3.4)

In particular, Q’(u) : E —> E‘ is a compact operator.
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From now on we denote by C' various constants which depend on ||f||,,/(p_1) and are

independent of u E E.

Proof: (i) Fix u E E. Then the fimctional v H / [G(u + v) — f - (u + v)] dt dx

is strictly convex and coercive and hence there exists unique v(u) that minimizes this

functional.

(ii) Suppose u,- —e u in E. Then Uj —e u in D" by the compact embedding Theorem

1.1. Since v(uj) is the minimizer for {Uj}, we have

[n [C(uj + v(u)) '— f ° (“j + v(u))] dt dx

2 / [ann- + v(u.» — f - (n.- + n<n.->>1dtde. (3.5)
0

Since (g3) and (g4) imply

0(6) S (6 9(6) +0) 5 C(IEI”+ |€|) +01,
.1.
u

the left hand side of 3.5 is bounded. Further (g1) concludes that

M 2 [[006 + ”('12))— f ' (“j + ”(ujlll 6“ div.
0

Z [[CIUJ' + ’U(’Uj)|p+l — f ' (Uj + v(u,-)) + Cy] dt d3.

0

Thus v(uj) is bounded in L" and hence v(uj) —-e a in U’. Also, the left hand side of

(3.5) converges to fn[G(u + v(u)) —— f . (u + v(u))] dt dx as j —> 00 and so we have

fn [as + v(u)) — f - (n + v(u))] dtde

2 liminf/ lam. + v(u.» — f - (n.- +n<n.-)>1dtdn
J-’°° a

2/n[G(u+v)—f-(u+‘v)]dtdx,

where last inequality is due to the weak lower semi-continuity of w H In[G(w) - f -

w] dt dx. Thus v(u) = a by the uniqueness of v(u), which implies v(uj) —e v(u) in L1".
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Now we will show g(uj +v(uJ-)) —e g(u+v(u)) in DOM-1). Note that g(uj +v(u,-))

is bounded in LP/(P‘I) by (g3). Thus g(uj + v(u,-)) _. n in L”(19“). We have to show

g(u + v(u)) = n, which will be done by Minty’s trick:

For any w E L”, we have from the monotonicity of g({)

(g(ug' + 0(6)) — g(uj + w), 11(6) — w) 2 0- (3-6)

Since g(uj + ”(“2” — f E NsL/(pn), (g(uj + v(uj)) - f, v(1%)) = 0 and hence

T, _ f E N13L/(p_1). Thlls

(g(ug- + v(Ug))nv(ug')) = (f,v(ui-)) -> (f,v(U)) = (n,v(U))-

Taking limit in (3.6), we have

(n —g(u+w),v(u) — w) 2 0 for all w e D”.

Set w = v(u) — rw(r > 0,222 6 LP), divide by g and let 1' _. o,

(n — g(u+ v(u)),w) 2 o for all it 6 LP.

Therefore 17 = g(u + v(u)).

(iii) By the convexity of 0(5), we have for all u, h E E and z E IR

Q(u + rh) — Q(u) = fn[G(u + rh + v(u + Th))

—G’(u + v(u)) — f - (Th + v(u + rh) — v(u)] dt dx

ll

q

>
:
2
g + 2 E
, I

"
H
v

3
‘

& 9
.
.

9
6
-
?

since g(u + v(u)) — f E NFL/(1H) and v(u + rh) — v(u) E Np.

Similarly we have by interchanging the role of Q(u + rh) and Q(u)

Q(u + rh) — Q(u) S r/n(g(u + rh + v(u + Th)) — f)hdt dx.
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Letting r —i 0, we get

(Q’(u),h) = A(g(u + v(u) — f)hdtdx for all u, h e E.

Hence by (ii) and the compact embeddings of E ¢—+ LP and its dual

(0’)" = LP/(P'l) =—-+ E‘, Q’ : E —+ E‘ is continuous and compact. Cl

Proposition 3.1 Under the conditions (g1)-(g3) and f E HAP—1), I(u) E 01(E, R)

satisfies the Palais-Smale compactness condition (P.S.).

Proof: From the assumptions of (RS), we have

1

[(112) = 5 (IllG-“ll2 - Hug—“2) - Q(ui) S M,

I(I'(ug')ih)| = I(Uf - will) - (Ql(uj)ah)| S mllhllsi

  
where m = sup ||I’(uj) En.

Setting h = u,- in (3.8), we have

IIIUQ-ill2 - lluill2 - (Q’(’uj),’ug')| S mllujH-

This then combined (3.7) with gives

1

l§(QI(ui)iuj) - Q(U)| S M + mllug'll-

Since fn(g(uj + v(u,-)) — f)v(u,-) dt dx = 0, it follows from (3.9) that

[$06 + v(uj))9(uj + ”(Th)) - C(uj + v(uj)) + g f - (u,- + v(u,-))] dt dx

n

g M+m||uj||. (3.10)

We want to get an estimation of the left-hand side of (3.10).
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From (92) the first term of left-hand side is estimated as

/n (u.- + v(u.))g<n.- + v(u.» gun

I

s 0 [Risen + n<n.->)g(n.- + v(u») — Gm.- + n<n.->>I me + c.

and from (95) the second term as

| /n f-(ui- +v(ug-))| s llfllp/cn-lillui +n<n.->II.

s C(fnnn + v(nmgm. + v(u.» dine)?

Two terms combined yield

C/QWJ' + v(u,-))g(u,- + ”(Th)) 6“de — C(fflWj + v(uj))9(uj + "(“1” dt dfl>)‘%

Thus

[not + n<n.-)>g(n.- + v(u.» s Cllug-lle + 0.

Using (93’), we have

~57

”g(ug' + v(uj))||;521 S 015% + v(u,-))g(u,- + v(“1)) dt d3? + C S Cllujlls + 0.

Consequently,

“g(u.- + v(uj))llg/<p—1) s C(Iluillg'w” + 1). (3.11)

Let h = u: — u].- in (3.8) to get

Hujllig - (Q'(uj)iuf - u;) = Hujlli: — /n(g(uj + v(112)) — f)( f— u;) dtdx

S mllujlla

Thus

llujllig — ”g(uj + ”(“1” - films—DH“) - “Illp S mllug'lls-
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By (3.11) and the embedding theorem 1.1,

Hui-Hi: — gaming—1”" + 1)||ug-lln s mllug-IIE-

Thus {u,} is bounded in E. Now from

u) — “j— = 1'09) + Q’(u,-),

where I’ u- -—> 0 and Q’ is compact, we can conclude that u. has a convergent
J J

subsequence. C!

For later use we define

one) = 52%: [n 0(2 + v) dtdx.

Note that Q0(u) is an S1-invariant and satisfies the following properties as Q(u) does:

(i) for all u E E, there exists a unique vo(u) E Np“ such that

Qo(u) = (a G<n+no(n>)dtde.

(ii) if un —> u in E, then vo(u,,) —> vo(u) in Np and

g(ufl + vo(u,,) —e g(u + vo(u)) in Lp/(P‘l),

(iii) Qo(u) is of class C1 on E, Q, : E —-> E“ is compact and for all u, h E E,

<Qa(n).h> = [a g(u + no(n>>hdtdn

We show the following relations between Q(u) and Q0(u):

Lemma 3.2 There are constants C1,C2, - - - , C7 > 0 such that for all u E E,

||u + v(u)“; S CIQ(u) + C2, (3.12)

||u + v0(u)||£ S C1Q0(u) + C2, (3.13)
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(Q’Mm) Z pQ(u) - 03(|Q(U)|1/” +1), (3-14)

<Qt(n>.n> 2goo(n) -03, (3.15)

|Q(u)l _<.. 04(Qo(u)+1). (3.16)

Qo(u) s 04(|Q(u)| + 1). (3.17)

IQ(u) — Qo<n)I s 05(Qo(U)1/" + 1), (3.18)

IQ<n> — Qo(n>I s Cs(|Q(U)ll/p + 1). (3.19)

IIg<n + v(u))! 28:1; 3 Ce<Q’(u), u) + Cinder? + 1). (3.20)

IIg<n + ng(n))II;;g:3 s Ginsu). n> + g... (321)

Proof: We will prove (3.12), (3.14), (3.16), (3.18) and (3.20). The rest imme-

diately follows from these with f E 0. To prove (3.12) it is enough to get

lél‘” S C(0(6) - f-E) + CHIP/(”‘1’ + C for E 6 R.

which follows from (g5) and Young’s inequality on f - 5. We again use (g’2) to get

now = gntGnn + v(u)) — f . (n + v(nndtde

[002+ v(u)) -g(u + v(u)) —pf- (u + v(u))dtdx + c

S (Q'(u)iu) + Cllpr/(p-DHU + v(U)||p + C

S (Q'(’u)iu) + CIQ(U)|1/p + C by (3-12),

l
/
\

which implie (3.14). Next we prove (3.16). First by the definition of Q(u), we get

Q(’U) — Qo(u)

S /G(u + vo(u)) — f - (u + v0(u)) dt dx - / C(u + v0(u)) dt dx

0 n

= —/f ' (u+ ’Uo(’U.))dtd$

S Ilfllp/(p—1)Hu + ”0(a)”?

s C(Qo(u)”‘°+l) by (3.13).
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Thus we have (3.16) by Young’s inequality. And (3.18) can be similarly proved . It

follows from (93’), (3.12) and (3.16) that

IIg<n + v(u))nzlgji = [a Ig(n + v(uiIifi dtdn

C/(u+ v(u) -g(u + v(u)) dtdx + c
Q

C<Q'(n),n> + C IIfIIn/e—n - He + v(u)”. + C

C(Q’(u),u> + 0 I001)!” + C|
/
\

|
/
\

|
/
\

|
/
\

C(Q’(u),u) + CQo(u)1/” + C,

which yields (3.20). a

3.1.2 Modified functional

As in Rabinowitz [17], we replace I(u) by a modified functional J(u) E C1(E, IR).

Foru=u++u' E E, weset

1 l _

A(n) = 5 IIn+IIig — 5 In H22

and a1 E 4/(p+2) E (0,1). Let 6 > 0 be a constant such that 60 E a1(1 +6)3 E (0,1)

and set a0 E a1(1 + (5)2. Let x E C°°(IR, IR) be a function such that x(r) = 1 for

rSl, x(r)=0 for r21+6 and 0Sx(r)S1forallrEIR.Furtherweset

__ Q(u) + b

71’1“!) - X aI(A(’u)2 +1)1/2)i

Q00!) + bo )

ao(A(u)2 + I)“2 ’

 

 

1M“) = 1 — X(

where b, b0 > 0 are constants such that

Qo(U) +b0 Z 1, Q(u) +b 2 1,

Qo(u) + ()0 S (1 + 6)(Q(u) + b) for all u e E.
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Note that the existence of b, be > 0 is ensured by (3.18). By the choice of b, b0 and

the definitions of w1(u) and wo(u), we observe that I

supp wo(u) fl supp 1/11 (u) = (l) (3.22)

and for u E suppw1(u) U supp(l — wo(u)),

IQo(U)|, |Q(U)| S 5olA(U)| + C- (323)

We now define for u E E,

J(u) = gunni-gun-II}.—guide—names)

_%(1—¢0(n)+¢1(u))Q(u) 6 OWE, 1R)-

First we state an inequality that will be often used. For all u E E, it follows from

(3.18) that

We) - (gums - gun-Hi — Qo(u))l s C(anwp +1). (324)

where C > 0 is a constant independent of u E E. The reason for introducing J(u) is

that the first assertion of the following proposition, which says J is almost invariant,

holds for J(u) but not for I(u) Using the following proposition, we will show that

large critical values of J(u) are also critical values of I(u)

Proposition 3.2 The functional J(u) E C1(E, IR) satisfies:

(2) there is a constant a > 0 such that for u E E and 0 E [0,2rr),

|J(Tou) - J(u)| S a(|J(u)|1/p + 1),

where (Tou)(t,x) = u(t + 0, x) for 0 E [0, 2r) 2 SI.

(ii) there is a constant Mo > 0 such that J(u) 2 Mo and ||J’(u)||;.3 S

min [J(u)"”/(1"1), 1] imply that J(u) = I(u)
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Proof: Since Q0(T9u) = Qo(u) and ’I/Jo(To’U.) = wo(u) for all 0 and u, we have

from the definition of J(u),

1

Join) — J(u) = — 5(1 -- no<n))(Q(Ten) — one» + gimme) — one»

— gndnnxomni — one».

By (3.18), we have

|Q(Tnu) — owl, |Q(u) — Qo(u)|, lama) — Qo(u)I s C(Qo(u)’/” + 1).

Hence we get

|J(Tou) — J(u)I s C((1 — new» + In (u) + ¢1(Tnu)(Qo(U)l/" + 1).

We may suppose that u E supp (1 — 1/J0(°)) U supp w1(e) U supp ¢1(T9-). Otherwise

we have J(Tau) = J(u) It follows from the definition of J(u) and (3.24) (note that

60 E (0,1)) that

|J(U)l I
V

IA<n>I - one) — own) + new

2 IA<n>I — 60|A(u)l — C<IA<n>I +1>W

Z Ci|A(u)l - 02 Z CiQo(U) - 05.

which leads us to the conclusion:

|J(ToU) - J(U)| S C"(Qo(U)’/” +1) S C"(|J(u)ll/“’ + 1)-

Proof of (ii) of the proposition using the following lemma can be similarly done

as in [25] (see also the proof of Proposition 2.2).

Lemma 3.3 (Tanaka/25]) For u = u+ + u" E E and h E E,

(J'(’U)i h) = (1+ T2(u))(’u+ — “_ih)

—§(1 + new) — gdn) + To(n))<oa(n>, I»)

—§(1 — gee) + We) + T1 (n))<Q'<n). n),
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where To(u), T1(u), T2(u) E C(E, IR) and

supst C suppi/Js- fori=0,1,

sup {lT}(u)|; i=0,1,2,J(u) Z M} —i 0 as M—i 00.

As corollaries to (ii) of Proposition 3.2 and Proposition 3.1, we have

Corollary 3.1 Whenever u E E satisfies J’(u) = 0 and J(u) 2 M0, then I(u) =

J(u) and I’(u) = 0.

Corollary 3.2 J(u) satisfies the (RS) condition on {u E E; J(u) 2 Mo}.

Corollary 3.1 ensures that large critical values of J(u) are critical values of I(u)

Hence in what follows we will seek for critical points of J(u) with large critical values.

3.2 Minimax methods and existence result

First we define an S1-action on E which plays an important role in constructing

critical values of the functional I(u)

Definition 3.1 We define a group action To on E by (Tau)(t,x) = u(t + 0,x) for

9 E [0,2rr) 2 S1 and u E E. Suppose E is a subspace of E, then E is said to be

invariant under the action T9 if T9(E) = E.

We rearrange positive eigenvalues of A in the following order counting multiplicity,

denoted by

0<fl1£fl2$fl3£°”-
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Recall that ¢¢,m(x) sin jt and ¢,,m(x) cos jt corresponds to the same eigenvalues of A.

We may arrange eigenflmctions corresponding to the positive eigenvalues in such a

way e)” , e9” , e9), e512) , - - - that

(1)

k
i) e = ¢1,m(x) sinjt; eff) = ¢1,m(x)cosjt for same l,m,j, and k = 1,2,3, . -- ,

and

ii) corresponding eigenvalues are such that

0<ui” =u§2’ <14” =29” < ~---

We define subspaces E; (k E N) by

n: =Wiei". es, en es... es.“ es}.

Then E; is Sl-invariant, @311ch+ = E+, and IIuIIE S ukllullz for u E E;. For

u = u+ + u" E E: ® E‘, we have, by (3.24) and (3.13),

1 1 _

J(u) s sums—sun IIi—Qo(n)+0(oo<n)1/P+1> by (3.24)

l 1 _ 1

g. allu+llh‘§llu Ile—5Q0(u)+C

1 l _

s summit—sun II’Ig-CiIIU+vo(U)l|£+Cz by (3.13)

1 l __

S §Hu+llb—§llu llb—Cillu+vo(u)lli+02

1 _ l _

s §||u+llig-Ciui’/2llu+llig-§llu niece

Hence there is a constant R’s > 0 such that

J(u) < 0 for all u E E}: 6E” with ||u||E 2 Rs.

We may assume Rk < Rk+1 for all It. To construct a family of minimax sets, we

introduce another(simpler) Sl-action To on E by

(Tau) (t, x) = Z u,,,,mei98*9"<i>¢,,m(2)eifi.

1Jim
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Recall that ¢;,m(x) sin jt and dim, (x) cos jt corresponds to the same eigenvalues of A.

We may arrange eigenfunctions corresponding to the positive eigenvalues in such a

way e9) , 6&2), egl), e53), - - - that

i) 6):) = ¢1,m(x) sinjt; e)? = ¢¢,m(x)cosjt for same l,m,j, and k = 1,2,3, - -- ,

and

ii) corresponding eigenvalues are such that

1 2 1 2

0<M)=A)SA’=%’S~~

We define subspaces E; (k E N) by

E; = spank)”, 632), 8%”, e52),--- ,efcl), 69)}.

Then E; is Sl-invariant, U214 E}: = E+, and ||u||E S uk||u||2 for u E E3. For

u = u+ + u" E E: $ E", we have, by (3.24) and (3.13),

J(u) s éllufllze-éIlu’ll’g-Qo(u)+C(Qo(u)‘/”+1) by (3.24)

s. gums—gunni—§QO<n>+c

s §IIn+IIi—$-IIn-IIi-o.IIn+no(n)IIi+ce by (3.13)

s gums—gunni— illu+vo(u)ll’2'+02

s gIIn+IIt— ins/”unfit—glIn-‘Iliwg.

Hence there is a constant B), > 0 such that

J(u) < 0 for all u E E: 6E‘ with Hull); 2 Rs.

We may assume Rs < Rh“ for all It. To construct a family of minimax sets, we

introduce another(simpler) S1-action To on E by

(Tau)(t, x) = Z u,,j,me’98i9"(j)45),m(x)e’j’.

1.13m
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We denote by X = (E, To) the space E with Sl-action To and E = (E, T9) the space

E with Sl-action T9. We also denote by X1", X3“, X‘ the spaces E+, E3”, E‘ with

Sl-action To. Let

FixS1 = {u E X : Tau = u for all 9 E [0,27r)}.

Definition 3.2 A mapping h : X —> E is said to be Sl- equivariant if and only if

(h o Tg)(u) = (To 0 h)(u) for u E X and 0 E [0,2rr] x S’.

The usual identity map is not S1 (X, E)-equivariant. Let us define a new map r) :

X -> E which is S1 (X, E)-equivariant and will play the role of the identity map. For

u = 21,33". ’Yz,j,m€’9"""”¢z,m($)€ijti let

(M))(,t 1‘) =Z71jmei91.jom
|jl¢l,m($)eijt

l ,j,m

where

710-)", = mfl-m non-negative for all l, j,m

017,3", = -01J,m for all l,j,m and 91m: E [0,21r] for j > 0.

Note that the mapping 1) : X —i E is linear and isometry and it is easy to see the

following properties of 17:

Lemma 3.4 (i) g(u) E C(X, E);

(ii) g(u) is Sl-equivariant;

(.2) nos: e X-) = E: e E- and ||n(U)||e = llullg for an n e x;

(iv) If K is precompact in E, the 17"1(K) is also precompact in X.

Now, similarly as in Chapter 2 we can define a family of minimax sets. Let BR is

the closed unit ball of radius R in E about 0, D’s = {83, 0 (X: 6 X')}, and

I): ___ {27 E C(Dk,E) : 7 satisfies (’71)—(73)}n
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where

(71) 7 is Sl- equivariant,

(72) 7(u) = g(u) for all u E (D,c n 633*) U (D,c fl FixSl),

(73) 7(u) = a‘“(u)r)(u)+ + a“ (u)n(u)‘ + 5(u) for all u E 0),, where (1+ E

C(Dk, [0, 1]) and a’ E C(Dls, [l,c‘i)) is an Sl-invariant functional (62 > 1 depends on

7) and S E C(Dk, E) is a compact and Sl-equivariant mappings such that a(u) = 1

and H(u) = 0 on (D)c fl 6BRk) U (D)c fl FixSl).

Moreover, set

U), = {u E Dk+1;u=x+pe)cl_:1,x E XIEBX', p 2 0},

As = {A E C(Uk, E) : A satisfies (A1) — (A3) in the following },

(A1) Alp, 6 Pk,

(A2) /\(u) = g(u) for all u E (UkflBBRH,)U(U)sfl(X,:6X‘)\Dk)U(UkflFixS1),

(A3) Mu) = a+(u)n(u)+ + a‘(u)r)(u)‘ + 3(u) for all u E U”, where a+ E

C(Uk, [0,1]) and of E C(Uk,[l,5:)) (a > 0 depends on 7) and ,3 E C(Uk,E) is a

compact mapping such that a(u) = 1 and fl(u) = 0 on (U,c n 68”,) U ((U;c n (X; 6

x-) \ Bk) 0 (U,c n FixSl).

Note that I‘k 75 0 and A). 75 0 Since nlp,c E I‘k and r7|Uk E Ak. Define

bk = inf sup J(7(u)), ch = Ainf sup J(A(u)).

761‘). uEDh 61": uEUps

Then we easily see that ck Z bk, moreover if ck > bk, we have the following existence

result.

First we have the same Deformation Lemma as in Chapter 2 since J satisfies

(P.S.) condition (Corollary 3.2) and J’ (u) is an operator of the form

J’(u) = (1+ T1(u))(u+ — u”) + compact,

Where |T1(u)| S 1/2 on {u E E; J(u) 2 Mo} (see proof of Lemma 3.3). We state it

again here.

57



Lemma 3.5 (cf. [18], [19]) (Deformation Lemma) Suppose C > M0 is a regular value

of J(u) Then for any E > 0 there exist an e E (0,2?) and on one parameter family of

homeomorphisms 45(t, ) of E, 0 S t S 1 with the properties:

(i) @(t,u) = u, if t = 0, or |J(u) — c] 2 E;

(ii) 45(1,As+s) S As_s where Ac = {u E E: J(u) S c};

(iii) 45(1,u) = a+(u)u+ + a'(u)u‘ + rc(u), where 01+ E C(E, [0,1)), 0‘ E

C(E, [1,&)) (61 > 1 constant) and K. is a compact operator.

By standard contradiction argument using this Lemma, we get the critical values

{ck(6)} of J(u) as in the following lemma.

Lemma 3.6 Suppose ck > bk 2 M2. Let 6 E (0,c;s — bk) and

A146) = {A 6 Ah 2 J(A) S bled-60’", D’s}.

Let

CIe(<5) = (61%” {‘26}: J(6(a)) (2 Ct)-

Then ck(6)is a critical value of I(u)

Therefore the existence of a subsequence of {cflfiil which satisfy ck, > bk]. 2 Mo

ensures the existence of critical values of I(u). In what follows, we will show that

there is a subsequence {kj }:32, such that

ij>bkj fOT‘jEN,

bkj—ioo asj—+oo.

Arguing alternatively, we have

Proposition 3.3 Assume ch = bk for all k 2 he, then there is a constant C > 0

such that

b,c g ore/W) for all k e N.
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Proof: Note that Dk+1 = U T9(Uk) and for any u E DH; \ (X: 6 X’)

OE[O,21r)

there is a unique (x, 0) E (Uk\D,s) x [0, 2r) such that Tax = u. For any given A E As,

we define 7 : Dk+1 —+ E by

A(u) = T9(A(x)) for u = Tax E Dk+1 where (x,0) E Us x [0,2rr).

We can see A is well-defined (by (A1)), continuous and belongs to Pk“. Moreover

by (i) of Proposition 3.2, we have

bk+1 S sup J(A(u))= sup J(T9A(x))

uEDk+1 xEU)s ,OE [0,21r)

S agglJbV-‘IID + a (|J(/\($))|’/" +1)I-
: I:

Since A E A). is arbitrary, we deduce

I),c+1 g e. + a(e,‘,/P + 1) for all k.

Ifck=bkfork2ko ,weobtain

hIc+l g h,c + 2(1),?” + 1) for k 2 k0.

An induction argument yields the desired result. El

Our goal in the next two sections is proving that there exists a subsequence

{lg-highs > 0 and Cs > 0 satisfying

bk, > Cskf/‘P‘I‘E’ for 211 j e N. (3.25)
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3.3 Critical values 6); of a comparison functional

K00

3.3.1 Introduction of comparison functional K(u)

To estimate bk, we introduce a new comparison functional K(it) here. By (3.24), the

definition of Q0(u) and (g3), we have for u+ E E+

l

J(U+) Z 5 ||u+||23 - CQo(u+) — C

2 é||u+||§3—C/G(u+)dtdx—C
n

I 51 _

Z §Hu+|l2E—“I;Hu+||£“a2i

where C, (‘11, 52 > 0 are constants independent of u+ E E+. We define a comparison

functional K on E+ by

Knr=hnflt—§ani
2 p 1"

Then K(u) E C2(E+, IR) and it is easy to show that K(u) satisfies the (RS) condi-

tion. So we have the following lemma:

Lemma 3.7 (i) J(u) 2 K(u) — (12 for all u E E+.

(ii) K satisfies the Palais-Smale condition (P.S.).

3.3.2 Bahri-Berestycki’s max-min value 6),

First let us define a family of max-min sets for K(u) Recall that

s2m-2k-I-1 = {2' E Cm—k+1;lzl = 1},

and the group S1 = {em} acts naturally on it by

'9 'o '9 i0 _ 2m—2k+1
e' z = (e’ z1,e' 22, ...,e zm_k+1) for z — (21,22,...,Zm_k+1) E S .
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Form>k, k, mEN, set

L" = {o E C(S2m‘2"+1,E,‘;) : 0(ei9x) = T90'(CC) for all x E Szm-2k+1},

= su min K x .

flirt 06:41:" 3652m-2k-l-1 (0( ))

We will prove that 6,. = limbs,o 6,?” is a sequence of critical values of K(u) and

bk 2 6;. + C. To get some estimates on Sims, we need several lemmas. First we state

a version of a Borsuk-Ulam lemma.

Lemma 3.8 Let a,b,N E N. Suppose that g E C(IRN x C“, IRN x C“+”) and h E

C(Sfl’+1, IRN x C“+“) satisfy the following conditions:

(1)9 = (gl--':gN:gN+l: "'rgN-I-a-I-b) and h = (hlr ---rhN+a+b) are SI -equivariant in

the following sense: for all 1 S j S N and l S l S a + b,

w(z, e‘ay) = sin-(m. y), g~+z(z, e‘oy) = e"""9~+z(1‘i y),

hj(ewz) = (11(2): hN+1(€wZ) = (Bream/“(2)

for all (x,y) E IRN x C“ and z E 32"“, where k, aé 0 are integers;

(ii) g(x,0) = (x, O) for all x E IR”;

(iii) there is a 70 > 0 such that

lg(a:.y)|2 = IIL‘I2 + lyl2 for Incl2 + lyl2 Z 73-

Then

h(SZb+1) flg(IRN x C“) 31$ 0).

Proof: Consider the following S1-equivariant continuous mapping.

F : IRN x C“ x C"+1 —+ IRN x C“ x Cb; F(x,y,tz) = g(x,y) — th(z), where x 6

IR", y E C“ and tz E C"+1 = {tz;t 2 0,2 E S2“+1}. Set R = max{7o,max{|h(z)|; z E

Sm1}}+ l and

9 = {(x,y,tz); Icnl2 + IzI2 < R'flt e [0.1m e 52"“)
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Applying S1-version of Borsuk-Ulam theorem to F : 652 —> IRN x C“ x C”, there

exists (x0, yo, tozo) E 00 = {(x,y,tz) E (2; |x|2 + Iyl2 = R2 or t = 1} such that

F(xo, yo, tozo) = 0, i.e., g(xo, yo) = t0h(zo).

From the choice of R, F(x, y, tz) 76 0 on 652 0 {(x, y, tz); |x|2 + lyl2 = R2}. Therefore

we have to = l and g(xo,y0) = h(zo). D

We also need the following technical lemma(same as Lemma 2.8).

Lemma 3.9 For all 0 E (0,1/p), there is a Ca > 0 independent of k E N such that

IIUIIp S CoflZOIIUIIE f0r u E (133i,

where (E:)J- = {v E E+; (v,e,-) = 0 for i = 1,2, ...,k}.

Now we can prove the following estimates on ,BL"’S(see Proposition 2.5).

Proposition 3.4 (i) 0 S ,8}? S @211 < 00 for all m, k E N;

(ii) For all k E N, there exists u(k) and 17(k) such that

0SV(k)SS,',"Sz7(k)<oo forallm2k+l;

(iii) V(k)—+oo ask—+00.

PI‘OOf: (i) For any 0 6 AL", OISZm—Wc—l E A?“ and UlS2m—2k—1(S2m—2k_1) C

0(S2m‘2k“). Hence we have 6;,” S 3:11-

(ii) First we prove the existence of 17(k). Applying Lemma 3.8 to h = o :

32""2"+1 —> E; and g = id : E; —> E; we can see that

0(S2m"2k+1) H E; 51$ 0 for all a E AL".
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Thus we have for all a E AL",

ssshrniil—nani K(o(x)) S 8111: K(u). (3.26)

11613,:

For u E E:, we have

_ 1 2 0’0 p 1 2 P

K(U) — 5 IIUHE - FIIUIIP S '2-II’UIIE - CIIUH2

|
/
\

l _

5 llull'i’e — Cusp/ZIIUII‘E-

Thus the right-hand side of (3.26) is finite and independent of o and rn. Set

17(lc) = sup K(u) < 00,

116E:

then we obtain

HI: = 036111;" zesglnjgk‘fl K(U($)) S 17(k).

Now we show the existence of u(k). We construct a special a E AL“ as follows:

write

2m+1

SZm—2k+l = {x = (32," ...,$2m+1) E R2m-2k+2; Z x? = 1}

i=2k

and set a : SZ""'2"+1 ——> E;\0 by

g(n) = gal/“‘2’”mans/(rims).

2m+1

where w(x) is defined by w(x) = Z xs-es. Obviously we have a E A7,". Since

i=2k

||w(x)||E = l on Szm‘ZkH, we have

I 1 _ _ _ _

K(e(n)) = (5 — pee”? 2’Ilw(w)llp”’/“’ 2’.

On the other hand w(x) E (E;_1)i, ||w(x)||E = 1 for all x E Szm‘2k“, and hence it

follows from Lemma 3.9 that

||w($)||p S (Jo/1:1 for x E S2m’2k“,
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where 0 E (0, 1/p) and Co is a constant independent of k and x. Therefore

K(o(x)) 2 C; pig/(r2) for all x E Szm'zk“.

The right-hand side the above inequality is independent of m. Set u(k) =

C; 1122“?” . Then we have

fl)? 2 “512113ng K(o(x)) 2 u(k) for m > n.

(iii) Since u(k) —-> 00 as n —> 00, we obtain u(k) —> 00 as k —> 00. D

As in Proposition 3.1, we can prove the following compactness conditions

(P.S.)m, (P.S.). for K(u):

(P.S.)m: If {Uj} C E; satisfies K(Uj) S C and (K|E$)’(u,-) —> 0 as j —+ 00, then

{u,-} is relatively compact in E;

(P.S.).: If {um} C E+ satisfies um E E;, K(um) S C and ||(K|E$)’(um)||(E$). —)

0 as m —i 00, then {um} is relatively compact in E+.

Since K is an even functional, we have the following results via standard argument.

(Bahri and Berestycki [4])

Proposition 3.5 Suppose u(k) > 0. Then 6;" is a critical value of K| 33;. And the

limit of any convergent subsequence of 6;," as m —> 00 is a critical value of K.

By (ii) of Proposition 3.4, choose a sequence {m,-} such that m, —> 00 as j —+ co

and

m = _lim 6:” exists for all k E N.

J"’°°

Then by the above Proposition 3.5, we have the following properties for 6k.

Proposition 3.6 i) m is a critical value of K E C2(E+, IR) for each k E N;

ii) 31: S ,Bk-I-l for all k E N;

iii),Bk—+ooask—>oo.
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Here we establish the comparison result between critical values of J(u) and K(u).

Proposition 3.7 For all k E N,

bk 2 fire - 512,

where 62 is the number appeared in Lemma 3. 7.

First we state a linking lemma which can be proved using Borsuk-Ulam Lemma

3.8.

Lemma 3.10 For all 7 E F). and for all 0‘ E A2“,

((Pm7)(D,.) U {u 6 Eli €19 E“ = IIUHE 2 Rk}) 0 “Sm—2"“) 75 0,

where Pm : E —> E; 6 E‘ is an orthogonal projection.

Proof: Let 7 E I‘k and extend 7 to 7 E C(X: 6 X+,X) by 7(u) =

7(u) if Hulls S Re. and 5(11) = v(U) if HUIIE .>_ Rk- Obviously, ’70!) is W611

defined and Sl-equivariant. Since m > 'k, by definition of 17(u) we have

Pew: e X’) =- mm.) u {n e E: s E: IInIIE 2 12.}.

Therefore it suflices to prove Pm 7(X: 6 X‘) fl o(S’""2k+1) aé 0. We rearrange

negtive eigenfunctions and denote by f1, f2, f3, . We set for l E N,

E“ = span{fg;1 Si S l}

and let Pm.) : E = E+ 6 E‘ -—> E; 6 E,’ be the orthogonal projection. Consider the

operators

g : sen-2"+1 —» E; C E; e 13;. Pm,l i : x; e X,‘ .. a; e 13,-.

Applying Lemma 3.8 for h = a and g = PM Tlxtex,‘i we get some 171 E 32m-2k—1

and u; e E; 6 By,

0(a) = Pmd 7(uI)- (3.27)

Since Sm"2lc+l is compact, there is a subsequence {931,-} such that
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2k+l
x11. -—» x in Szm‘ , o(x¢j) —> 0(x) in E3;.

Now, using (73) similarly as in the proof of Lemma 2.10 we can show that there

exists u E X3 6 X‘ such that Pm 7(u) = o(x). This completes the proof. C!

Now we prove Proposition 3.7, the main result of this section.

Proof: First we recall that J(7(u)) S 0 for u E E3 6 E‘ with Hull); 2 R), by

the choice of Rs. Using Lemma 3.10 and Lemma 3.7, we can see

b'":— nf J m > J7163361115: (P v(u)) _ 0113413" $651,151,192,“ (0(3))

> sup min K(o(x))—&2,
aEA'" zES‘Zm—Zk-{d

that is,

bEZW—c‘tg forall m>k.

Hence we have

liminf b}? 2 ,6), — 62. (3.28)

On the other hand, we have

limsup b]? S bk. (3.29)

In fact, it follows from (73) that for 7 E B,

Pm7(U) = a+n(U)+a’n(UI‘ + Pmfl(U) —> a+n(U)+a‘n(U)’ + 6(a) = 7(a),

uniformly in D)c as m ——> 00. Hence we have

811p J(Pm7(U)) -* sup J(7(u)) as m -> 00-
1560). “GDI:

Choosing 7 E 1“,, such that sup J(7(u))< bk + e, we obtain

11601.

Email) b7." S IimSUP sup J(Pm7(u)) = sup J(7(u)) S be + 8-
m—voo m—ooo uEDgs uED5

Thus (3.29) holds since the above inequality holds for any 5 > 0. Combining (3.28)

and (3.29), we get the estimate of the proposition. El
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3.4 Morse index and 6;;

We want to get Bk). 2 Cskg/00—1—6) for all j E N. Estimates of Morse index at Ski’s

will give the result. We proceed similarly as in Chapter 2.

Definition 3.3 For u E E+, we define a index of K”(u) by

index K”(u) = the number of nonpositive eigenvalues ofK”(u)

= max {dimS;S S E+ such that (K"(u)h, h) S 0, h E S}.

Here “A S B” in the bracket means A is a subspace of B.

Proposition 3.8 Suppose Bk < (3),“. Then there exists u)c E E+ such that

K(uk) S Bk)

K’(Uk) = 0,

indexK”(u,s) 2 2k — 1.

By definnitin of Bk, the result without the last assertion is obvious. To get the

last assertion, we first consider finite dimensional case.

Proposition 3.9 Suppose 6;," < 6,211, m > n + 1. Then there exists uZ’ E E3; such

that

(KIE;)'(uic") = 0,

index(KIE¢;)”(uL") 2 2k — 1.

To prove the above proposition, we will use a theorem from Morse theory, i.e., a

result concerning the relationship between certain homotopy groups of level sets of

a functional and its critical points. We proceed as in Chapter 2. First we need a

theorem to treat the case where critical points may be degenerate.
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PrOposition 3.10 (cf. Marino-Prodi [15]) Let U be a C2 open subset in some Hilbert

space H and 4') E CQ(U, IR). Assume a)" is a Fredholm operator (of null index) on the

critical set Z((1)) = {x E U; 45’ (x) = O}, 43 satisfies (RS) and Z(43) is compact. Then,

for any 8 > 0, there exists 1!) E C2(U, IR) satisfying (RS) and with the following

properties :

(1') Wm) = 43(50) z'f distance {at Z(45)} 2 5;

(ll) W17) - ¢($)|i |l¢’($) - ¢'($)lli Nil/(50) - ¢"($)|| S 8 for all-1‘ E U;

(iii) the critical points of 11) are finite in number and nondegenerate.

We can easily prove that K|E; satisfies all the assumptions of the above proposi-

tion, that is,

1) K |E; E C’(E3;, IR) satisfies (PS) and Fivedholm.

2) All critical value of K |E; are non-negative because

K(u) = K(u) - §<<KI2Y<n>n> = (é — 1%,) no IInII; 2 o.

3) Z(K |E; ) is compact. In fact, note that there exists R... > 0 such that K(u) < 0

for u e E3, with nuns 2 11...; hence Z(K|E;) is bounded.

Thus by Proposition 3.10, for all e > 0 there exists ¢s E C2(E3;, IR) satisfying

(PS) and

|¢e(U) - K(u)l < e,

||¢'e(“) — (KIE;)'(")|| < 6,

H4521“) - (Kln;)”(1l)ll < 6; (3-30)

the critical points of qbs are finite and non-degenerate. (3.31)

Form>kands>0,let

AF(€)= sup min ¢e(0($))-
m-2k+l

06A? 2682
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By (2.31),

m-sSBLWE) SBL"+E.

Moreover, we have

Lemma 3.11 Suppose that as E IR satisfies 63(5) < as — 25 < as < gill-1(5)- Then

7T2m_2k_1([¢5 Z as]m,w) =,.é 0 for some w E [tbs Z as]m,

where [¢s _>_ as]m = {u E E3;; ¢s(u) 2 as}.

Proof: We argue by contradiction. Suppose that

7I'2m_2k_1([¢5 Z as]m,w) = 0 for all w E [¢s Z as]m.

Then there is a homotopy

H : [0,1] x [92"“2'”1 -+ [452 Z aelm

such that H(O,x) = u(x), H(l, x) = we for all x E S2m'2k'1. Write

32m‘2k+1={£ = (Ci/Jew); C 6 Cm‘k. p G 1R. ICI2 +122 =1}-

By the definition of Salk), there is a o E A}?+1 such that 0(S2m’2k‘1) C [43s 2 as]m.

Define 5‘ : Sim-2""1 —+ E3; by

0(C) if p= 1. ICI =1,

6(4. p6”) = T9H(e““;l’;&-l) if p 74 o, c at 0,

Tgwo if p= —l, C = 0.

Then we can easily check that 6 E AL". Since K is invariant under the action Tn, by

(3.30), we have

|¢s(u) — ¢s(Tgu)| S 25 for u E E3;.
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Thus ¢s(&(C,pe’9)) Z as—25, i.e., 6(SQm‘2k“) C [gbs Z as—25]m. From the definition

Of 3.1" (5),

63(5) 2 min ¢s(&(x)) 2 as — 25.

:r:ES""""2"+1

But this contradicts with the assumption. Thus the proof is completed. [:1

Now the proofs of Proposition 3.9 and Proposition 3.8 can be similarly done as

those of Propositon 2.9 and Pmposition 2.9 using Lemma 3.11 and the following

Lemma 3.12.

Lemma 3.12 For a regular value a E IR of its , set

me; a) = max{ index eye); the) s n, the) = 0}.

Then

rn([¢s 2 a]m,w) = 0 for all p E [45s 2 as]m, l S 2m — L(5; a) — 2.

3.5 Proof of the Main Theorem

By Lemma 3.6 and Proposition 3.3, we know that (3.25), the growth estimate on

Bk’s, ensures the existence of an unbounded sequence of critical values. We now

prove (3.25). First note by Proposition 3.8 that there exits us). such that

l 2 a0 1 1

file,- 2 K0112): §||ukjllig — glluml; = (5 — 1;)00 Huh-ll?-

Due to Proposition 3.8, we can get an upper bound of indexK” (uj) same as in

Proposition 2.11.

Proposition 3.11 There exist C > 0 such that for u E E+,

indexK”(u,-) S C||u||:,

—2 —2
2 "q and s - Sip—)3.

n+l—(n—1 q _
where r = q_l

70



Then by the same proof as in the case of g(u) = |u|P“2u, we get (3.25) for the

same p’s satisfying 2 < p < 7”+1+2V(32:fl)‘2”+9. 

This establishes the existence of a sequence {us} C E of critical points of I(u)

such that as k —-+ 00,

I(uk) —-> 00 and I’(uk) = 0.

Let 174s = uk + v(uk). Then it can be shown that it), is a critical point of F(u) by

direct calculation. On the other hand since I’ (us) = 0, we have

1 _ _ _ l _

I(uk) = / §g(uk) uk — G(uk) + ifuk (111) (it —) 00.

0

Finally it follows from (g3) that {21),} is a unbounded sequence in D“. We have

proved that there exists a unbounded sequence of critical points for F(u), which is a

unbounded sequence of the weak solutions of the nonlinear wave equation (1) on S".
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