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ABSTRACT

MANY-ELECTRON TUNNELING IN A MAGNETIC FIELD

By

Tatyana Sharpee

The dissertation is devoted to the study of tunneling decay in a magnetic field. In

its standard form, the semiclassical solution of the decay problem relies on tunneling

trajectories in real space with purely imaginary momenta and time. Because of the

broken time-reversal symmetry, trajectories of such form do not exist in a magnetic

field. A semiclassical solution is presented which is valid for an arbitrary magnetic

field and a three-dimensional potential, so that there is no need to treat magnetic

field or some part of a potential as a perturbation. The decay rate and the outcoming

wave packet have been found from the analysis of the set of Hamiltonian trajectories

and its singularities in the complex phase space. A path-integral formulation for the

tunneling decay problem in a magnetic field is provided as well.

The developed semiclassical solution to the problem of tunneling decay in a mag-

netic field was used to analyze tunneling from a strongly correlated system of in-

teracting electrons. We show that the electron—electron interaction in a low density

two—dimensional system can affect the rate of out-of the layer tunneling exponentially.

The strongest and most interesting effects arise in the presence of a magnetic field



parallel to the layer. The tunneling rate becomes exponentially larger than that in the

single-electron approximation. The physical mechanism is a dynamical Mossbauer-

type recoil, in which the in-plane Hall momentum of the tunneling electron is partly

transferred to the electron system as a whole. The interrelation between the char-

acteristic rate of momentum exchange between electrons (plasma frequency) and the

imaginary time of motion under the barrier determines what portion of the total mo-

mentum is transferred in a recoil-free way. The remaining part of the Hall momentum

of the tunneling electron corresponds to excitation of phonons. Explicit results are

obtained assuming that the electrons form a 2D Wigner crystal.

We show that, at higher temperatures, there is a possibility that the magnetic field

parallel to the layer will increase, rather than suppress the out-of—plane tunneling

rate. The B-enhanced tunneling allows to control the tunneling rate over several

orders of magnitude just by changing magnetic field and temperature, without altering

parameters of the tunneling barrier. Magnetic field can also induce switching between

tunneling from different intra-well states, as well as switching from escape via over—

barrier activation to tunneling escape, and vice versa.

The results, obtained with no adjustable parameters, were compared with data on

tunneling from a correlated electron system on liquid helium surface. They are in both

qualitative and quantitative agreement with the experimental data in a broad range

of magnetic fields and temperatures. Therefore, tunneling experiments in a magnetic

field can be used as a relatively simple and direct way to reveal electron correlations

in other 2D systems, such as those in semiconductor heterostructures. The range of

parameters for the tunneling experiments in heterostructures was provided.
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Chapter 1

Introduction

Tunneling is a basic quantum phenomenon. As soon as a particle is described by

a wave function, there is a finite probability to find it in regions of space that are

classically inaccessible to it, that is where the potential energy U(r) is bigger than

the total energy E of the particle. Moreover, if this classically forbidden region has a

finite width, then there is a finite probability to classically observe the particle behind

the barrier.

Tunneling lies at the core of many physical and chemical phenomena ranging

from alpha-particle decay in nuclear physics [1, 2], field ionization of neutral atoms

[3], to tunnel splitting of molecular spectra [4] and scanning tunneling microscopy in

condensed matter physics. In particular, Fowler and Oppenheimer [5] Showed that

tunneling could explain cold emission of electrons from a metal, a phenomenon that

remained unexplained since Lilienfeld [6] discovered it in 1922.

Over the course of time much progress has been made in solving various tunneling

problems. The semiclassical approximation turned out to be particularly useful in



solving tunneling problems, because the general solution can be obtained for an arbi-

trary potential, as long as it is sufficiently smooth [7]. The semiclassical approxima-

tion was originally used by Wentzel, Kramers, Brillouin [8] to solve a one—dimensional

Schriidinger equation, and since then the method is called the WKB approxima-

tion. In the classically allowed region, the motion of a particle is semiclassical if its

de Broglie wavelength /\D = h/p is much smaller than the characteristic length of the

potential. A semiclassical approximation can also be applied to describe the wave

function in a classical forbidden region. Here, the appropriate condition is that the

decay length is much smaller than the characteristic length of the potential [the decay

length can be thought of as an imaginary part of a de Broglie wave length, which

becomes imaginary in the region where there are no classically propagating solutions].

In other words, the tunneling barrier should be much wider than the particle’s decay

length. Therefore, the tunneling rate obtained in the semiclassical approximation

will be exponentially small. A semiclassical solution of a one-dimensional tunneling

problem is discussed in Chapter 2.

Numerous physical applications, chemical reactions being one of them, stimulated

the extension of the semiclassical method to finite temperatures and beyond the one-

dimensional approximation [9]-[15]. It is also very important to understand how

tunneling occurs in cases where the particle motion is coupled to the bath [16] and

where the underlying classical dynamics used to construct the semiclassical solution

becomes chaotic [17]-[21].

A magnetic field can have a strong effect on the tunneling rate of charged parti-

cles. The exponential increase of resistance in semiconductors with increasing mag-



netic field has been known for years [22]. The conductance mechanism there is that

of electron hopping between sites localized on defects. The magnetic field B leads

to an exponential suppression of tails of the wave functions in the direction perpen-

dicular to B, thus leading to an exponentially smaller overlap, and ultimately, to

the exponentially smaller conductance value. Recently, this effect was used to probe

two-dimensional electron systems (2DESS) in semiconductor heterostructures [23]-[33]

and on a helium surface [34]. In the case of electron tunneling from a 2DES, as we

shall Show the rate of tunneling transverse to the magnetic field is very sensitive not

only to the value of magnetic field, but also to electron correlations and temperature.

However, despite its interest and generality, even the problem of single-particle

decay in a magnetic field lacked a semiclassical solution. Existing results, although

highly non-trivial, are limited to the cases where the potential has a special form

[16, 35, 36, 37], e.g. parabolic [35], or a part of the potential or the magnetic field are

in some sense weak [38]—[45]. Chapter 3 of this dissertation will contain a discussion

of a semiclassical solution to the problem of single—particle decay in a magnetic field

[46, 47]. The proposed method applies to a three-dimensional potential of a general

form and arbitrary magnetic fields. We assume, however, that the intrawell wave

function is known and use to obtain the initial conditions which parametrize the set

of tunneling trajectories. One of the unexpected results is that the tunneling particle

has a finite momentum and velocity when it escapes from the barrier (see Fig. 1.1).

This is in contrast to what happens for B = 0 where the particle comes out of the

barrier with zero momentum on the line E = U(r). The magnetic field breaks the

time-reversal symmetry of the classical equations of motion, which in turn leads to



complex momentum of the tunneling particle under the barrier. The imaginary part

goes to zero at the escape point, but the real part stays finite. To calculate the

tunneling probability it is therefore insufiicient to just find the probability for the

particle to reach the classically allowed region E = U(r) The probability to reach

the escape point can be exponentially smaller.

The physical situation to which the proposed method will be applied is tunneling

transverse to the field from low density 2DESS. In the low density limit Coulomb

interaction dominates the exchange interaction, and as a result, electrons in the layer

form a strongly correlated liquid, or, for yet lower densities, a 2D Wigner crystal

(WC) cf. Fig 1.2. Strong electron correlations Show up dramatically in many unusual

transport properties [48]-[53]. The out-of—plane tunneling can also be very sensitive

to electron correlations [54]. In double layer heterostructures, for example, a giant

increase of the interlayer tunneling was recently observed and was related to interlayer

electron correlations in the quantum Hall regime [55]. In the case of 2DESS on a

liquid helium surface, it was known experimentally since 1993 [34] that the tunneling

rate at low temperatures is exponentially larger than predicted by the single-electron

approximation. This fact, however, was unexplained until the present work [56, 57].

A magnetic field parallel to a 2DES usually exponentially suppresses the out-of-

plane tunneling. This can be understood from the following arguments. Consider

an isolated electron, which is separated from the continuum states by a 1D potential

barrier U(2), see Fig. 1.2, and is free to move in the plane. When the electron moves a

distance 25 away from the layer, it acquires the in-plane Hall velocity V” = (e/c)B x z.

The corresponding kinetic energy mvf, /2 E 771(1)sz /2 is subtracted from the energy

4
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Figure 1.1: Tunneling in a two-dimensional potential U(m, z) transverse to a magnetic

field B pointing in the y direction. Initially the particle is localized in a metastable

state behind the barrier, with energy E. In contrast to the case B = 0, a particle

emerges from the barrier with a finite velocity, and therefore the exit point is located

away from the line U(r) = E.

of the out-of—plane tunneling motion (a)C = |eB|/mc is the cyclotron frequency), or

equivalently, there emerges a “magnetic barrier” mwfz2/2. This leads to a sharp

decrease of the decay rate.

For an electron that is confined in-plane, however, the in-plane force from the

confinement can partly compensate the Lorentz force, thus reducing the suppression

of the tunneling rate caused by B. In this way, the confining potential absorbs part of

the in-plane Hall momentum of the tunneling electron. In a strongly correlated 2DES

the in-plane confinement originates from Coulomb interactions with other electrons.



The idea that the momentum transfer may lead to strong increase of tunneling was

first discussed in [38]-[40] in the context of scattering by defects. A confining potential

from a defect has a limited range (in particular, in the tunneling direction), and could

be considered by perturbation theory. In our problem, the confining potential is

formed by Coulomb interaction with other electrons. It remains strong for distances

~ 71—1/2 (12 is the electron density), which, for a strongly correlated electron system,

are larger than the tunneling distance L. Therefore a perturbation theory may not

be used, and an exact analysis is required.

If one adOpts the Einstein model in which the in-plane electron motion is a

harmonic vibration about an equilibrium position, with one frequency w, then the

problem is effectively reduced to a single-particle problem with in-plane potential

mw2(x2 + y2)/2 [directions it and I] are in-plane, 2 is the out-of—plane direction].

Characteristic frequencies w are of the order ofthe plasma frequency cap, which is

1/2. AS we will see below,related to the electron density n by top = (27r62n3/2/m)

modeling electron-electron interaction by such an effective single-particle potential

results in an adequate explanation of experimental results.

The electron system accommodates the in—plane Hall momentum of the tunneling

electron in a way similar to how it happens in the Mossbauer effect. In the latter effect

the atom of a crystal emits the gamma quantum without recoil, if the momentum

of the quantum is distributed to all atoms in the crystal. In the case of tunneling

from a 2DES, however, the dynamics of the interelectron momentum exchange is

very substantial [56]. The characteristic momentum exchange rate is also given by

the zone-boundary plasma frequency w,,. In the limit where wp exceeds the reciprocal
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Figure 1.2: The geometry of tunneling from a correlated 2DES transverse to a mag-

netic field; electrons vibrate in the plane with frequencies of the order of the plasma

frequency cup.

duration of under-barrier motion in imaginary time T; 1 and we, other electrons in the

WC adiabatically follow the momentum of the tunneling electron. As a result, the

Hall velocity is the same for all electrons, and ’0” oc 1/N —) 0 (N is the number of

electrons). The effect of the magnetic field on tunneling is then fully compensated.

For wp'r, ~ 1 the compensation is only partial, yet very substantial. One can say

that tunneling is accompanied by creation of phonons of the WC, and the associated

energy adds to the magnetic barrier]. However, the barrier turns out to be smaller

 

1The problem of tunneling between the lattice sites of WCs at the edges of a. quantum Hall

system was discussed by ME. Hastings and LS. chitov, Phys. Rev. Lett. 77, 4422 (1996). This

problem is qualitatively different from that investigated in the present work, as are the results. In

particular, opposite to the present. case, the tunneling probability was determined by coupling to

the low-frequency long-wavelength WC modes, it oscillated with B, and went to zero for T —> 0.



than for a free electron, and the tunneling rate is then exponentially larger. Still, for

T = 0 it is much smaller than for B : 0.

The field B parallel to a 2DES couples the out-of—plane tunneling motion of an

electron to its in-plane motion. AS discussed, for T = 0 this results in the energy

transfer from the out-of—plane direction to the in-plane one, and ultimately, in the sup-

pression of the tunneling rate by B. For T > 0, however, the transfer of energy may go

in the Opposite direction: thermal in-plane energy is converted into the out-of—plane

motion. One can say that the in-plane motion with a velocity v changes the tunnel-

ing barrier by adding an effective out-of—plane electric field c‘lv x B, as illustrated

schematically in Fig. 1.3. For an appropriate direction of v the field pulls an electron

from the layer, and only these velocity directions contribute to the thermal-averaged

tunneling rate. This result is rather unexpected, because it opens a possibility for

an exponential increase of the tunneling rate with B [57]. The effect is analyzed in

detail in Chapter 5, including specific calculations for some model potentials.

The crossover from suppression to enhancement of tunneling by the field occurs

for a crossover temperature Tc. This temperature can be estimated by noticing that,

for B = 0, the tunneling rate from the ground state It}, o< exp[—2So] exponentially

depends on the energy E9 of the intrawell electron motion transverse to the layer

[So is the mechanical action for under-barrier motion; in what follows we use units

where h 2 k3 = 1]. The derivative T0 = BSD/OEg gives the imaginary duration of the

under-barrier motion. The magnetic field effectively transfers the in plane electron

energy Eplane into the out-of-plane energy E], at least in part. The probability to

have an energy Eplane is oc exp(—E,,1a,,e/T). Therefore the overall probability, which
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Figure 1.3: Magnetic field induced lowering of the tunneling barrier by thermal in-

plane motion (schematically; the lowering is superimposed on the magnetic barrier

for T = 0). The effective electric field 8 is determined by the T-dependent optimal

in—plane velocity, 5 = vopt x B/c.

is determined by the product of the two exponentials, depends on the interrelation

between T and T0, and one may expect that TC ~ 70-1.

The time To also often determines the temperature Ta for which there occurs

a crossover from tunneling decay to decay via activated over-barrier transitions for

B = 0 [58, 59]. Therefore Ta and TC are of the same order of magnitude. The

interrelation between these temperatures is determined by the parameters of the

system, and various interesting situations may occur depending on these parameters.

For example, the logarithm of the escape rate may increase with B even for T > Ta,

because in a certain B-range, the rate of tunneling from the ground state exceeds the

activation rate, even though it is smaller than the activation rate for B = 0. Similarly,

with increasing B there may occur switching from tunneling from the excited intrawell

states (see Fig. 1.3) to tunneling from the ground state. Different switching processes



are considered in Chapter 5.

For T < TC, on the other hand, the tunneling rate decreases with increasing B.

For large enough B the tunneling rate becomes smaller than the rate of activated

escape, which then determines the overall escape rate and generally weakly depends

on B.

Although the thermal B—induced tunneling enhancement is generic, as we Show

it arises only in systems where intrawell motion transverse to the layer is not semi-

classical. This is typical for 2DESS, where the confining potential U(z) is usually

non-parabolic near the minimum, and even non-analytic 2. In contrast, the enhance-

ment does not arise if the tunneling rate can be found using the instanton (bounce)

technique [9], which is traditionally applied to describe tunneling for B = 0 [37].

The approach given in Chapter 4 allows one to calculate the tunneling rate from a

potential well that is strongly non-parabolic both at finite and zero temperature. In

addition to strong quantization of the intrawell motion, the instanton method has to

be modified, because the magnetic field breaks time-reversal symmetry, and therefore,

except for the case where the Hamiltonian of the system has a special form [16], there

are no escape trajectories in real space and imaginary time, and the system comes

out from the barrier with a finite velocity [46].

Explicit results on the effect of electron correlations on tunneling will be obtained

assuming that the electrons form a Wigner crystal. Because of strong correlations,

overlapping of the wave functions of individual electrons is small, and electrons can

 

2For example, in the case of a 2DES in heterostructures the potential has a step, and in the case

of electrons on helium, the part of the potential which is due to image forces has a singularity on

the surface.

10



be “identified”. The problem is then reduced to the tunneling of an electron coupled

to in—plane vibrations of the Wigner crystal. As discussed below, the results provide

a good approximation also for a correlated electron liquid.

Comparison with experimental data on tunneling from a liquid helium surface

is carried out in Chapter 6. The results, obtained with no adjustable parameters,

provide full qualitative and quantitative explanation of the experimental data [34] in

a broad rage of magnetic field and temperature. We Show that the corresponding

experiments on tunneling in heterostructures will be very sensitive to both electron

correlations and in-plane electron dynamics. The range of parameters for such exper-

iments is provided.

Part of the material presented in this dissertation has been published [46, 56, 77],

submitted for publication [57], or is being prepared for publication [47].
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Chapter 2

Semiclassical solution of a 1D

tunneling problem

It is natural to suppose that the motion of a particle with a small de Broglie wave

length A(:I:) = fi/p(:r), i.e. much smaller than the characteristic length of a potential,

should be similar to the motion described by classical equations of motion. We start

with a Scr6dinger equation

___ + With!) = 31/) (2.1)

In the limit where Plank’s constant It ——> 0, one should recover the classical equations

of motion. However, it would be inappropriate to set h = 0 directly in the Eq. 2.1.

Instead, similarly to how the limit of geometric optics is obtained through the eikonal

equation, we look for the wave function in the form:

I/)(:I:) : exp[iS(:r.)/h], (2.2)
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and substitute (2.2) back into the Schrodinger equation. This gives us an equation

for the function S (:r)

1 d 2 r 2
_(3) +U($)_¢_Lfi_§=E (2.3)

2m dIL'2

Now, we can use our assumption of small )1, and look for S as a power series in terms

of h:

n a 2
S = So + T81 + “z,— SQ. (2.4)

In the lowest order, Eq. (2.3) becomes just the Hamilton-Jacobi equation of classical

mechanics:

1 (ISO 2 _

2m

Therefore, it is the classical action SO that determines the exponent of the wave

function (2.2). According to (2.5), for a 1D case we have:

 

30 = i /p(:1:)d:r, p = \/2m[E — U(x)]. (2.6)

Here, p(:r:) = dSo/dzr is the classical momentum of a particle. One can also calculate

the next order in expansion (2.4) to find that S1 : —% 1n p(:r). The semiclassical wave

function consists then of two waves:

Cl 3 _ CQ 7,

tb(a:) :2 p(.’L‘) exp [E /pda[ + ——])(1:) exp [—_fi fpdx] , (2.7)

where the first term describes the wave propagating in the positive x-direction, while

 

the second term corresponds to a wave propagating in the negative x-direction. Most

of the essential physics is already present in (2.7). Taking higher order terms in It

leads to changes of the first and higher orders of h in the prefactors.
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The turning points where p(:z:) = 0 have to be treated with care in the semiclassical

approximation. The prefactor diverges at a turning point, signaling the fact that

the approximation becomes invalid. Indeed, the semiclassical approximation can be

justified only if the zeroth order term in (2.3) is much larger than the one that we

neglect:

dZS/dzr2

(dS/d$)2

_1

—27r

(1A7

L da'

<<1

    

Since the de Broglie wave length /\ 2 13‘1, the approximation certainly does not work

where p(:1:) = 0, i.e. at a turning point.

So far we have found the semiclassical wave function in a classically allowed region

where E > U(3:). In a similar fashion to (2.2)-(2.6) the semiclassical approximation

can be used to find the wave function in a classically forbidden region where E < U(3:)

One of the first distinctions to be seen, is that momentum p(:1:) from (2.6) is no longer

real, but is purely imaginary. Because of the imaginary momentum, action So also

becomes imaginary:

 

so = a / lp(a:)ldrr, liven = «mu/(2:) — E], (2.8)

with the next order correction being SI 2 —% ln |p(:r)|. Therefore, deep under the

barrier (far from the turning points p(:r) = 0), the semiclassical wave function consists

of an exponentially decaying and exponentially growing waves:

we): |S[$)lexp[%/|12ldx]+ fiend—[flan], (2.9)

The semiclassical solutions (2.7) and (2.9) together describe the wave function

  

everywhere except near the turning points. What one would like to have is a relation
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between amplitudes (31,2 of propagating waves in the classically allowed region and

amplitudes Ci,2 of evanescent waves in the classically forbidden region. There are two

possibilities to achieve this. The first one is to solve the Schrfidinger equation near a

turning point using a linear function to approximate the potential. The solution can

then be extended to regions far enough from from the turning point, where both the

WKB and the linear approximation of the potential are valid.

Another method, which we will use below, is to analytically continue the semi-

classical solutions (2.7) and (2.9) into the complex :1: plane [7]. Then it becomes

possible to match the solutions continued from classically forbidden and allowed re-

gions without going near the turning point where the WKB approximation breaks

down.

Let us consider a specific example in which the two classically allowed regions are

separated by a tunneling barrier for 331 < a: < 2:2 [mm are the corresponding turning

points]. The solution we would like to find is that of a tunneling problem: the particle

wave packet is incident on the barrier from the left, part of it is reflected back, and an

exponentially small part is emitted from the barrier on the other side. The boundary

condition for this problem is the absence of a semiclassical wave incident on the barrier

from the right. The wave function has the form:

{/13 exp [72; f; dasp(:r)] + -% exp [—,—’l f; dzrp(a:)] :1: < 2:1

 

 1()(33) = [2m(U(x)C—E)]-1/4 exp [—% [:1 (1:1:\/2n2,[U(1:) — E]] 2:1 < :1: < :52 (2-10)

% exp [% f1: (1:1:p(:r)] 1132 < 1?

where for :1: < 51:1, the first term describes the wave incident on the barrier from the

left, and the second describes the wave reflected back.
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To find the relation between coefficients A, B, and C, let us track what happens

to the exponentially decaying solution as we go around the turning point $1 in the

upper half plane. The phase of the difference [U (:5) — E] cc (3: —— x1) is incremented

by 7r, so that the decaying solution transforms to the reflected wave

 

(j -*in/4 . x

efi exp [—% d:rp(:r)] (2.11)

As we go around the turning point in the lower half plane, the phase of U(2:) — E is

incremented by —7r, and the decaying solution goes over to the incident wave

ifl/4 ' x

C317 exp [%/ d1:p(:1:)]
(2.12)

By comparing expressions (2.11) and (2.12) with the original one (2.10), we find that

 

B = —iA, C = exp[—i7r/4]A. (2.13)

To find the coefficient D, and the tunneling probability with it, let us rewrite the

decaying under barrier solution as:

 

 

 

zParacaiyingC’I?) = [2m(U($)CI_ E)]-1/4 exp [*% [1: da:\/2m[U(:2:) " El] ,

C' = Cexp [—% [:2 dIII\/2’m,[U($) —— E]] (2.14)

The function wdecayingtr) describes the wave with an amplitude that exponentially

increases into the barrier (with increasing [1: —:r2|). The tunneling current is described

by the emitted wave in (2.10) for :1: > $2. Let us analytically continue this wave into

the upper half plane. As we go around the turning point 1:2, the difference U(:13) — E

acquires an extra phase of 7r, so that the emitted wave goes over into ’t/Jdecaying($) with

C’ = De-W“. (2.15)
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We could also continue the emitted wave from (2.10) in the lower half plane, but

this would result in a semiclassical solution that exponentially decreases in amplitude

with increasing x2 — :r. We neglect this wave, because it is exponentially smaller than

I/Jdecaying(x) everywhere in the tunneling barrier region.

By comparing (2.13), (2.15), we find the amplitude of the emitted wave D:

 

g- = exp[—h‘IImS($2,:r1)] = exp [— [$2 h—1\/2m[U(a:) — E]da:] . (2.15)

Therefore, we have constructed a semiclassical solution for all value of :r by matching

different semiclassical solutions across the turning points. An important feature of

the final wave function is that the semiclassical wave valid on opposite sides of a

turning point differ only by a phase factor, and have the same amplitudes. The decay

of a wave function across the tunneling barrier is described by the imaginary part of

a classical action S, as given by (2.16). The tunneling probability is given by |D/A|2.

Note that it does not depend on phase factors accumulated as a result of matching

the semiclassical solution across the turning points (although in this case, the total

phase is 0).

In preparation for the upcoming discussion of tunneling problems where the mo-

tion is not restricted to 1D, it is useful to write the action So (2.6) in the classically

allowed region as an integral along a classical trajectory r(t):

So = :t/p(r) ~dr, 1' = fi, 1') = —VU. (2.17)

Such a generalization becomes less straightforward in the classically forbidden region,

where there is no real classical trajectory because momentum is imaginary under

the barrier. Therefore we need to find some other trajectory (possibly in a different
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potential) that would result in the action equal to the right hand side of (2.16).

In order to achieve this, one could employ the following trick. Consider the usual

Hamiltonian trajectory with dr/dt = P/m and (IP/dt = —VU(r) and change t —>

—iT. With P being imaginary, these equations can be solved! They have the form

1 1
‘1’ z 2., LB — +VU(r), [P = ip] (2-18)
717 m (17' _

which describes classical equations of motion in time 7' in the potential —U(r) The

 

absolute value of momentum is given by \/2m[U(r) — E]. The corresponding classical

action SE evaluated along the trajectory

550‘) = /p(r) -dr (2.19)

is related to that evaluated in real time by SE = i5. Therefore, an appropriate

generalization to the 1D answer (2.16) would be

D
_ : exp[—h—ISE(rla

1.2)],

with the tunneling probability given by

2

T = [Q = exp [_Qh“lSE(r1,r2)] a
A  

In summary, the 1D tunneling problem has a general solution in the semiclassical

approximation. It uses the semiclassical solutions in regions that are separated by

turning points, where the approximation breaks down. However, it is possible to relate

the amplitudes of these semiclassical solutions by analytically continuing them into

the complex plane, where they should match one another. The tunneling probability

is given by the ratio of amplitudes of the wave incident on the barrier and the wave
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emitted from the barrier on the other side. The method could also be extended to

tunneling problems where the motion is not restricted to one dimension [15, 62].

19



Chapter 3

Multidimensional tunneling decay

in a magnetic field

This chapter is devoted to the discussion of the problem of a single-particle tunneling

decay in a magnetic field. The semiclassical solution applies to a smooth three-

dimensional potential of a general form and for arbitrary magnetic fields that also

have to be smooth (i.e., the characteristic lengths of the potential and the magnetic

field should much larger than the particle’s de Broglie wave length, if we discuss a

classically allowed region, or the decrement of the semiclassical wave function, if we

discuss a classically forbidden region. The method developed here will be used sub-

sequently to analyze tunneling from a strongly correlated 2DES. In the semiclassical

approximation we look for the wave function in the form:

'¢/;(r) = D(r) exp[iS(r)] (ft = 1). (3.1)
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Here, S(r) is the classical action. It satisfies the classical Hamilton-Jacobi equation

with the Hamiltonian:

H = (p + eA(r))2/2m + U(r), (3.2)

where A(r) is the vector potential. The action S can be found from the corresponding

Hamiltonian equations

S = p - r, I- = OH/Bp, p = —aH/ar. (3.3)

The difficulty of solving the tunneling problem in a magnetic field lies in the

absence of a time-reversal symmetry of the Hamiltonian equations (3.3). As discussed

in the previous Chapter, this symmetry is essential for the standard approach to the

problem of tunneling decay [11]-[13], [15] where after changing to imaginary time

and momentum we have obtained the real Hamiltonian equations of motion. The

equations then take the form of equations of classical motion in an inverted potential

—U(r), with energy —E 2 —U(r). Such a procedure is appropriate in the absence of

a magnetic field when the Hamiltonian (3.2) remains real. When the corresponding

action S(r) is purely imaginary, it describes a decay of wave function in the classically

forbidden region (E < U(r)) The solution in this region then has to be matched to

a wave function in the classically accessible region (E > U(r)) that is found from the

classical Hamiltonian equations of motion with real time. The tunneling exponent

is given by twice ImS at the end point of motion in imaginary time that lies on

the boundary of the classically forbidden region B = U(r). The tunneling particle

“emerges” from under the barrier at this line with p -: 0.

The presence of a magnetic field breaks the time-reversal symmetry of trajectories
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(3.3). For B 7E 0, we can no longer change If —> —it, p —> ip, r ——) r, U(r) —> —U(r)

and keep the Hamiltonian real. As a result it is impossible to match trajectories

(and, therefore, wave functions) in the classically allowed and forbidden regions that

have respectively real and complex E. It becomes clear that to solve the tunneling

problem in the presence of a magnetic field, it is necessary to look for trajectories of

a different kind.

Let me note in passing that there are some important cases where certain specific

symmetry of a potential U(r) allows us to use the standard method after some mod-

ifications. A particular case is when a canonical transformation of variables can be

found that would restore the time-reversal symmetry of the Hamiltonian. This, for

example, applies to tunneling of a particle coupled, for finite B, to a bath of harmonic

oscillators [16], where the potential U (r) is parabolic in the coordinates of the bath

oscillators. We will encounter such coupling of the form [2 x B]pkj in Chapter 4 in

the discussion of tunneling from a Wigner crystal. Even though the time reversal

symmetry may be broken by a magnetic field, it can be restored by a canonical trans-

formation from coordinates ukj and momenta pk] to the new canonical coordinates

and momenta ij = pkj and ij = —ukJ-. In the new representation, the tunneling

trajectories can go with real coordinates ij and imaginary momenta ij.

In Sec. 3.1 we concentrate on the exponent of the tunneling rate in the presence of

a magnetic field. The technique can be applied both in the case where the potential is

parabolic near the intrawell minimum and in the case where the potential is singular,

which is of relevance to tunneling from a 2DES. In a magnetic field the tunneling

trajectories start to intersect, giving rise to a branching form of the action S(r) and
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corresponding singularities of the set of Hamiltonian trajectories. For the problem

of tunneling decay, the most important among these singularities are caustics, or 2

envelopes of trajectories. Section 3.2 deals with matching of different semiclassical

solutions across caustics. We discuss generic features of the manifold of Im S near the

branching point in complex space and its projection onto real Space. In Sec. 3.3 we

discuss the tunneling decay problem for B yé 0 in the path-integral formulation. The

corresponding “bounce” technique for tunneling out of a potential minimum is closely

related to the instanton method for turmeling between two minima of a potential. The

method applies in cases where the intrawell potential is parabolic near its minimum.

3.1 Tunneling exponent

The main idea is to consider Hamiltonian trajectories (3.3) that evolve in complex,

rather than imaginary, time t in complex phase space (p,r). Motion along the tra-

jectories occurs with real energy E equal to that of the metastable state. This cor-

responds to the analytical continuation of the WKB wave function (3.1) to complex

variables. The action S will now have both real and imaginary parts, so that the wave

function will be oscillating and decaying in space, which is natural in the presence of

a magnetic field.

The tunneling trajectories (3.3) start in the vicinity of the localized metastable

state at t = 0. The initial conditions can be obtained from the usually known form of

the wave function near the potential well. This can be done both in the case where

the potential is parabolic near its metastable minimum, so that z/2(r) is semiclassical
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Figure 3.1: (a) Complex t plane for integrating the Hamiltonian equations (3.3) in

the escape problem. The line Im t = const corresponds to the classical trajectory

of outgoing electron. (b) The classical trajectory on the (a3,z) plane. The solid

lines in (a) and (b) show the range of Re t where the amplitude of the propagating

wave exceeds the amplitude of the decaying underbarrier wave function, and the

corresponding “visible” part of the trajectory. The escape occurs at the point where

classical trajectory intersects the anti—Stokes line (thin solid line in (b)). Note that

particle emerges from under the potential barrier with finite velocity and for a: 75 0.

Thus the initial symmetry 2: —> —:I: is broken by the magnetic field. The data refer

to the potential (3.17) with won, : 1.2 and wcro = 1.2, time in (a) is in the units of

To = 2mL/y.

inside the well [9]-[14], and where the potential is nonanalytic, which is of interest

for 2D electron systems. 111 either case the trajectories (3.3) can be parameterized

by two complex parameters 1313(0), e.g. the in-plane coordinates for a given out-

of—plane coordinate, for tunneling from a 2DES. The in-plane momenta are then

1213(0) = 85(0)/8:r1,2.

With initial conditions at hand, the equations of motion (3.3) can be solved to find

the action S(t,:r1,2(0)), together with p(t,:1:1,2(0))) and I‘(t,.’L‘1,2(0)). The tunneling

rate is determined by 21m S at the point where the particle emerges from the barrier
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as a semiclassical wave packet that propagates in real time along a real classical

trajectory rc1(t). This trajectory is yet another classical real-time solution of the

Hamiltonian equations, the first one corresponding to the particle trapped in the

well. To find the tunneling exponent we have to find such paths r(t),p(t) (3.3) that

would start in the vicinity of the well with some complex 2713(0), then go in complex

time and space to reach the classical trajectory rp,(t). In other words, one has to find

such 3313(0) that, for some t, both r(t) and p(t) become real,

Im r(t) = Im p(t) 2 0. (3.4)

This is a set of equations for complex 3512(0) and Im t. The number of equations

is equal to the number of variables, taking into account that H is real. The Re t

remains undetermined: a change in Re t in (3.4) results just in a shift of the particle

along the classical trajectory rc,(t), see Fig. 3.1. Such a shift does not change Im S.

We note that 3313(0) are real for B = 0.

The tunneling exponent R is given by the value of Im S at any point on the

trajectory rd,

72 = 2 Im S(rd), (3.5)

For a physically meaningful solution, Im S should have a parabolic minimum at rd as

a function of the coordinates transverse to the trajectory. Respectively, the outgoing

beam will be Gaussian near the maximum.

From (3.4), the tunneling exponent can be obtained by solving the equations of

motion (3.3) in imaginary time, with complex r. However, that solution does not

give the wave function for real r between the well and the classical trajectory rd.
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Neither does it tell us where the particle shows up on the classical trajectory.

To obtain a complete solution of the tunneling problem, we have to take into

account that S is a nmltivalued function of r even though it is a Single-valued function

oft and 1313(0). This means that several trajectories (3.3) with different t and $1,2(0)

can go through one and the same point r. The wave function 1,0(r) is determined by

one of the branches of the action S (r). How to match different branches to construct

the wave function is discussed in the next section.

3.2 The action manifold

3.2.1 Branching lines - caustics

In multidimensional systems, branching generally occurs on caustics, or envelopes of

trajectories [60, 62]. Their role in a multidimensional tunneling problem is analogous

to that of turning points zt in a 1D tunneling decay [see Chapter 2 for a discussion].

The common feature is the divergence of the prefactor D(r) in the WKB wave function

(3.1). In the case of a 1D tunneling, D o< p‘l/z, leading to a branching action

S — S Ct (z — z¢)3/2 near the turning point z]. The caustic is the line where the

transformation between coordinates 3:1, .732 , .3 on the trajectory and parameters t,

1:1(0), $2(0) loses its uniqueness:

0(1L'1, 1:2, 2:)

8(:1:1(0),;1;2(())7 t) '
(3.6)J(r) = 0, J(r) = 

As we will now show, the prefactor in the WKB wave function is D = const x J‘1”.

Indeed, the next-to leading order term in the expansion of action in powers of h,
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S = So + £5.51 satisfies the equation:

2vVS1 = —divv, (3.7)

where v = 1" is the velocity along a trajectory, and the Coulomb gauge was used for

the vector potential. The left-hand side of (3.7) is 2S1. In the right-hand side, let us

express the derivatives B/Br in terms of those with respect to t, 3313(0):
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and we find that $1 = —J/2J, so that the next correction is

S] OC J—l/Q,

and indeed diverges on the caustic. Therefore the WKB approximation does not

apply close to it (cf. [60, 61]). Similarly to the 1D case, the different branches of

action can be matched by going around the caustic line in complex space.

3.2.2 Local analysis near caustics

In our problem, in contrast to the usual case, the trajectories r(t) will be complex,

as will also be the caustics. The caustic of interest is the one where the WKB wave

function corresponding to the tail of the intrawell state is connected with the WKB

wave function that describes the escaped particle [cf Fig 3.2]. Both of the WKB

solutions are analytically continued to complex r, and merge on the caustic in the

complex place.

Local analysis near the caustic will be similar to that in the 1D case [60, 61]. It

is convenient to change to the variables 23’, y’, and 2’ which are locally parallel and

perpendicular to the caustic surface, respectively. We set 2’ = 0 on the caustic. Let

us write the wave function near the caustic surface as:

l ' I

W(I‘c + r’) : e'pcr ¢>(z'; re). (3.10)

Here, pc is the momentum along a trajectory going through the point rc of the

caustic surface. For B 75 O, the component of momentum perpendicular to the caustic

surface is finite, but the velocity pc + eA(rc) should be tangent to the surface. As a
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Figure 3.2: The complex tunneling trajectories (solid lines) and the complex caustic

surface (dashed line) are shown in the (Re 2, Im so) plane. The tunneling trajectory

(2) reaches the clasical trajectory of an escaped particle for Im a: = 0. At this point

(shown by empty circle) the momentum is real along the trajectory (2). Even though

other trajectories (1) and (3) cross the line of Im :1: = 0, it can be seen from the figure

that Im pz 72 0 for Im :1: = 0. Therefore these trajectories do not touch the classical

trajectory. Note that the point z 2 2C where the caustic goes through real space is

not the point where the tunneling trajectory (2) becomes real.

result, in the Schrodinger equation for (23(z’; rc) motions along the caustic surface and

perpendicular to it separate. In the perpendicular direction, the equation for (25(2’; rc)

is identical to that near a 1D turning point in the absence of a magnetic field:

17,2 ([2

2m (iz’2

+ U'(rc)z' 95(3'; rC) = 0. (3.11) 

Therefore, we will be able to match semiclassical solutions of the wave function 2,0

across the caustic line, if we can find the proper asymptotes of the function ¢(z’, ; rc).

As a solution of Eq. (3.11), gb(z’) may be given in terms of a linear combination of Airy

functions. Even though the function (j)(z’) is single-valued, its asymptotic behavior is
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determined by one of the two branching functions:

 101,2 2 [2mU’(rC)z']‘1/4 exp (3.12)

7” 3h.

 

.2 27nU’(rc) 2,3/2]

Combining Eqs. (3.10) and (3.12), we find that the action for small |z’| behaves

S(zL", y', 2') z S(:L", y', 0) + (le' + (1.22'3/2 (3.13)

The linear term reflects the fact that momentum perpendicular to the caustic remains

finite, and, in general, complex (see Fig. 3.5). Therefore, the classical trajectory does

not necessarily go through the caustic surface, contrary to the case without magnetic

field.

Another way to understand the branching form (3.13) of the action S is to consider

Hamiltonian trajectories near the caustic surface. Because of v2, = 0, z’ is quadratic

in the increments 6:131,2(0),6t. Therefore 6:r1,2(0), 6t are nonanalytic in 2’, as is also

the action S. Taking into account cubic terms in 6:1:1,2(0), (525 we obtain (3.13), where

the coefficients 01,2 E o1,2(:r’, y’) can be expressed in terms of the derivatives of S, r

over $13 (O),t on the caustic.

Having obtained the branching form for the action S (3.13), we now need to find

out which of the branches describes the profile of the wave function W in the global

variables. The boundary conditions usually specify the asymptotic behavior at a

particular value of 0 = arg z’, the angle in the complex z'-plane. Our goal is then to

find the asymptotic behavior throughout the complex z’-plane. When, and how, it

can be done in the general case is discussed next.

30



Asymptotic analysis near a 1D turning point: the Stokes phenomenon.

The matching of asymptotes across a 1D turning point was extensively studied in the

complex plane [7, 60, 61]. The difference with the analysis done in the context of 1D

tunneling without magnetic field [7] is that now we need to know not only asymp-

totes for 6 = 0, :trr but for all values of 6 [in a 1D tunneling problem, the classically

allowed region may, for example, correspond to 6 2 0, and classically forbidden re-

gion t0 6 = :l:7r]. The asymptotic behavior at large p = [2’ |[2mU' (re) /WW3 >> 1 [a

combination [112 /2mU’ (rc)] "/3 is appropriate to scale 2’ , since it has the correct dimen-

sion of length] of the function ob is given by a linear combination A(6)w1 + B(6)2122.

The functions w1,2 are the first terms in the asymptotic expansion in h‘l. In our

case, the inherent error associated with an asymptotic expansion is of the order of

 

h/\/2mU’(rc)lz’|3. For some 6, the function ml is exponentially larger (dominant

wave) than 102 (subdominant wave). At other values of 6 the asymptote 1122 be-

comes dominant, and 1121 becomes subdominant. The subdominant asymptote may,

and should, be omitted, when it is smaller than the inherent error of an asymptotic

expansion.

The branch cut from 2’ = 0 may be inserted arbitrarily. When going across

the branch cut in the positive direction asymptotes interchange w] —) —z'w2 and

2122 —-) —iw1, with the property of dominance and subdominance preserved in the

process. G.G. Stokes [63] was the first to notice that in order for the function ¢(z’)

to be single-valued, the coefficients A and B should change with 6. Indeed, suppose

the asymptotic behavior for 6 = O was described by A (01 + 3102. Then incrementing
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6 by 271‘ leads to —z'B'w1 — z'Auzg, which can be satisfied only if both A and B are zero.

The coefficient A can change without causing a change in d>(z’) only if the appro-

priate term is less than the error of the asymptotic expansion. In other words, the

coefficients A (or B) can change only when (i) B (A) is non-zero, (ii) the asymp—

tote wl (1122) is subdominant. The change is ccmcentrated in a narrow region around

the so called Stokes line where the difference in amplitudes between the subdomi-

nant and dominant waves is maximal. In our problem the Stokes lines correspond

to Re 2’3/220: 6 = in/3,7r. The width of the region where coefficients change is

66 ~ [hlz’ |3/2/W]1/2 ~ [13” [60]. For our purposes, this change is equiva—

lent to a jump [65], which is usually described in terms of a Stokes constant T. Upon

crossing a Stokes line where ml is subdominant the coefficient changes as A —+ A+BT.

One can find all three Stokes constants from the requirement that the function

¢(z’) should be single-valued. Indeed, let the asymptotic behavior at 6 = 0 be given

by Awl + 81122. The asymptotes ml and reg interchange the property of dominance

and subdominance upon crossing lines where their amplitudes are equal. In our

case, these so-called anti-Stokes lines are found from the condition Im 2’3/2 2 O

( = 0, i27r/3). The branch cut, together with three Stokes and three anti-Stokes

lines, divides complex plane into seven sectors, as shown in Fig. 3.3. The asymptotic
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behavior in each sector is:

I : Awld + ngs; 2 : —iAu)2d — 182015; 3: 41.42010! — i(B + AT1)w15;

4: —z'Aw23 — i(B + AT1)wld; 5: —2'[A + T2(B + AT1)]w23 — z'(B + AT1)wld;

6: —Z[A + T2(B + 44T1)]'LU2(1—Z(B + AT1)YL713;

72 —Z[A + T2(B + AT1)]‘?L’2(1 — ([B + 4T1 + 4T3 + T2T3(B + AT1)]’UJ13 (3.14)

The single-valuedness for the function ¢(z’) is achieved if

A = —z‘[B + AT1+ AT3 + T2T3(B + AT1)]; B = —z‘[A + T2(B + AT1)], (3.15)

which gives equal Stokes constants on all three of the Stokes lines: T1 = T2 = T3 = i.

This calculation also shows that if we know the asymptotic behavior on one of the anti-

Stokes lines, we can find it at all values of 6. In contrast, if the asymptotic behavior is

Specified on a Stokes line, then we have no knowledge about the coefficient in front of

the subdominant wave, and therefore, are not able to uniquely specify the asymptotic

behavior through out the complex plane.

Boundary conditions.

In the problem of tunneling decay the boundary condition that we need to satisfy is the

absence of the wave incident on the barrier from large positive 2. After transformation

(3.10) to local variables x’, y’, z’, the incident and outgoing waves in global variables

become familiar 1D waves described by exp[ii [02' (lz’p(z’)/I‘L] with arg z’ = = 0.

Indeed, the coordinate-dependent amplitude is eliminated by a factor exp[ipcr’], which

has complex pc. The direction of incident and outgoing classical waves is therefore
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Figure 3.3: Sectors of complex z’-plane with different asymptotic behavior of the

wave function around a 1D turning point with a first order zero. The anti-Stokes

(solid) lines correspond to values of 6, where both asymptotes have equal amplitudes,

6 = 0, 27r/3,47r/3.

projected onto one of the anti-Stokes lines, and we can always choose it to be the one

with 6 = 0. As a result, the absence of the incident. on the barrier wave in global

variables eliminates the asymptote w] for 6 : 0.

To find the asymptotic behavior across the caustic line, we now can set coefficients

A = 0 and B = 1 and use the previously calculated asymptotes (3.14) in complex

space around a 1D turning point. The result is shown in Fig. 3.4. In the semiclassical

approximation, we take into account only the exponentially larger, dominant wave.

Therefore different waves will determine the profile of the wave function on different

sides of an anti-Stokes line, where two waves have equal amplitude. It is interesting

to note that because we have specified that there is only one solution 102 at the

anti-Stokes line for 6 = 0, there is also only one solution on the anti-Stokes line
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the line of

switching

 
Figure 3.4: Complex 2’ plane perpendicular to the caustic surface at z’ = O. The

anti-Stokes lines (solid) are located at arg z’ = 0,27r/3,47r/3. They divide regions

where the solution is exponentially large and small. If there are two solutions on

the anti-Stokes line, the one that was exponentially smaller in one region becomes

exponentially larger after crossing the line. The subscripts s and d denote whether

the solution is exponentially small or large, respectively, in a particular region. The

dashed lines show Stokes lines, where the difference between the exponentially small

and large solution is maximal. The wavy line shows the branch cut.

at 6 = —47r/3, and no switching occurs on it. The only anti-Stokes line where the

switching between branches does take. place is at 6 : —27r/3.

Switching between branches is accompanied by a change in phase by 7r/2. A

useful check is that it is exactly the phase factor obtained in 1D tunneling between

the incident and reflected wave [cf Eq. 2.13], as well as between the outgoing and

decaying wave1 [cf. Eq. 2.15]. The amplitude remains unaffected. Therefore, the

tunneling exponent (3.5) can be interpreted as a sum of the action Im S(re) for the

tail of the intrawell wave, function continued to a point rC on the caustic, and the

action Im S(rcllrc) for the outgoing wave from this point to a point on the classical

 

1An extra phase factor of 7r /4 is due to the difference between definitions of asymptotes 101,2 oc

(ZI)--l/4 and wdecaying OC IZ'|_l/4-



trajectory rd:

’R 2 21m S(r,.|r(0)) + 21m S(rdlrc). (3.16)

Since S is analytic in :I:1,'2(0)9 t, this sum is independent of the intermediate point rc.

Notice that the two terms in (3.16) may have different signs.

3.2.3 Projection onto real space

According to (3.10), there is a one-to-one correspomlence between asymptotes 101,2

of the function ¢(z’;rc) in complex z’-plane and WKB solutions D(r)exp(z’Sl,2(r))

for the wave function eb(r) in real space (the subscript in SL2 enumerates branches).

After projection into real space r the caustic of interest, being a surface in complex

space, will become a line (a point for a 2D potential). The relevant anti-Stokes surface

after projection will remain a surface (a line in 2D). .-\s in a complex space, it starts

from the caustic line and separates the regions where Im S is smaller for one or the

other of the solutions connected on the caustic. Only the solution with the smaller

Im S should be held in the WKB approximation. Therefore across the anti-Stokes line

there occurs switching between branches of action that describe physically different

wave packets. The relevant example would be switching from the branch describing

the tail of the intrawell state to the branch des(‘:ribing the wave packet of an escaped

particle propagating along a real classical trajectory. The particle escapes from under

the barrier at the point where the classical tra.je(‘:tory intersects the anti-Stokes surface

(see Figs. 3.1, 3.7 in the case of a 2D potential). In other words, the probability to

observe the tunneling particle at a point rd on the classical trajectory having real
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momentum (branch 52 on Figs. 3.6(a) and (b)) should be larger than that to observe

it at that same point with a complex momentum (branch S1 describing the tail of the

intra well state).

We note that the position of the escape point is not generic: it is not located

at the boundary of the classically allowed region E : U(r), and not on the caustic

surface. Interestingly, the tunneling particle is first observed with a non-zero kinetic

energy, in contrast to the situation without magnetic field.

Let us consider, for example, tunneling through a potential:

A,2

_32 , 2 I _ ;
(.L + y )+ 2771 (1 L) (z > 0), (3.17)

2
mwo

2

 U(r) :

which is relevant for the problem of tunneling from a. correlated 2DES on a helium

surface. This system was experimentally investigated in Ref. [34], and showed an

unexpected dependence of the tunneling rate on B. as addressed in a recent paper

[46].

We specify initial conditions at the plane 2 : 0, neglecting the effect of the mag-

netic field on the wave function near the well. This can be justified if the characteristic

intrawell localization length 1/7 is small compared to the tunneling length L. Then,

even though the magnetic field has strong cumulative effect on the tunneling rate,

it only weakly perturbs intrawell motion. The out-of—plane and in-plane motions are

uncoupled, and we get:

2(0) 2 0, p40) = 2‘7. 5(0) -_- intwu(.r(())2 + 11(0)?) /2,

[5(0) 2 imwozt'w), 1231(0) : Humor/(0). (3.18)

If we choose B along the y axis, then the. motion in the y direction is decoupled and
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Figure 3.5: Two branches of the action on the symmetry axis x = 0 as a function of the

tunneling coordinate 2: before the branching point, for the same parameter values as

in Fig. 3.1. ImS is shown before the branching point 2c in the real space. The vicinity

of the cusp 2C is zoomed in the inset to show that the upper branch is nonmonotonic.

Its extremum at zm lies on the classical trajectory of the escaping particle shown in

Fig. 3.1(b). However, the particle emerge from the barrier for z > zm and a: 79 O.

the problem becomes two-dimensiona1. The Hamiltonian equations (3.3) are linear,

and we can find trajectories explicitly. The syn'n'netry U(:1:, y, z) = U(21:33, :lzy, 2:) gives

rise to a specific symmetry of the set of the trajectories (3.3):

t —> t", :17 —> —:L'*, y —> —y*, z —> .:*,S —> —S* (3.19)

The caustic of interest goes through real space at the point :1: = y = O, z = 2:6

(2C 2 L for B = 0) on the symmetry axis. Knowing the momentum pC at this point,

we find that the complex plane perpendicular to the caustic is

z' = (z — zc) cosh a — 2'1: sinh a, a : tanli—1[1m Fez/(Par + wczc)la
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where the parameter a is positive for B > 0 in this problem. Therefore, positive

:1: corresponds to the lower half-plane in the complex z’-plane. Near the caustic,

the outgoing wave is described by asymptote 1122 from (3.12). From examination of

Fig. 3.4, we find that only one branch of action is physically meaningful for negative

2: (the upper half of 2’ plane). For positive 1‘ however, both of the branches of Im S

should be taken into account. The one with smaller 1111 S determines the profile of

the wave function. Below we describe the resulting picture.

For 2 S zc, the function Im S has two branches each of which is symmetrical in :13.

The branch 1 describes the tail of the intrawell wave function before branching. The

branch 2 corresponds to the wave “reflected” from the caustic. Their cross-sections

are shown in Fig. 3.5, 3.6. The branch 1 has a minimum at a: = 0 and monotonically

increases with :1: and 2. As expected, the slope 8 1111 9/62 is finite at the branching

point 2C (see inset in Fig. 3.5). The branch 2 is nonmonotonic in z for :1: = O, with a

minimum at zm < zc. As it turns out momentum of the particle described by branch

2 is real at z = zm. The point z = 2m, :1; = 0 belongs to the classical trajectory and

is the point where the trajectory comes closest to the well (z = O) as it approaches

the barrier from large 2 and negative 3:, and goes away to large 2: and positive :1:

(Fig. 3.1(b)). Note that the velocity of the particle is not equal to zero at any point

on the classical trajectory. Although branch 2 describes a classical particle at z = 2m,

:1: = 0, it is not the exit point for the tunneling particle, because the probability for

it to have real momentum as described by branch 2 is smaller than that to have a

complex momentum as described by branch 1 (Fig. 3.3). For z", < 2 S zc, the branch

2 is nonmonotonic in 1:, with local warrant/.111 at :1; : 0 and with two symmetrical
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Figure 3.6: Cross sections of function ImS for constant :5 near the branching point zc:

(a) zm < z < 26; (b) 2 = 26; (c) z > 26. The parameter values are the same as in Figs.

3.1,3.5. The solid line shows the branches of Im S that determine the exponent of

|1/2|. The minima of the branch 2 lie on the classical trajectory shown in Fig. 3.1(b).
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minima. These minima lie on the classical trajectory shown in Fig. 3.1(b). For

2 = 2m, the maximum and the minima merge together.

For 2 > 20, S (11:, 2) on one of the two branches is equal to —S*(—x, 2) on the other

branch (cf. Fig. 3.6). The appropriate minima of Ira S(x, 2:) continue to follow the

classical trajectory. As discussed above, 11118 is constant on the classical trajectory.

One may verify that the value of ImS at the minima of branch 2 have the same value

for all cross-sections with different z = const. The exponent of [sz is determined by

either branch 1 or branch 2. It is plotted by solid line in Figs. 3.6. The switching

takes place where Im51 (r) = ImSg(r), that is on the anti-Stokes line that starts from

the caustic point z = zc, :1: = 0 [compare to the anti-Stokes line for arg z’ = 47r/3

on Fig. 3.4]. The escaped particle can be seen moving along the classical trajectory,

if 72/2 2 ImSg(rd) < ImS1(rd). Therefore, it “shows up” at the point where the

classical trajectory intersects the anti-Stokes line. The fact that the exit point is

located for a: 75 0 even for a symmetric potential (3.17) demonstrates the symmetry-

breaking induced by a magnetic field.

3.2.4 Exactly solvable non-symmetric model

The considered tunneling problem provides an insight into the dependence of the

tunneling exponent on B and the electron density observed for electrons on helium

[34], and can be applied to correlated electron systems in heterostructures [66]. Due

to the specific symmetry (3.19) it can be also solved by a standard technique by

considering (pm, 2:) as coordinates of the tunneling particle instead of (x, 2). In this
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formulation, the kinetic energy 113/2711. + 111,1112232/2 does not include the magnetic field.

The tunneling problem is therefore mapped onto the problem of multidimensional

tunneling without magnetic field. To check that our approach works equally well in

a case where there is no specific symmetry, we consider tunneling in a potential with

a symmetry-breaking term c1232.

1 ‘ 2

U(CL‘, z) : imwgaj + (m2 + 21-7; (1 — %) (z > 0). (3.20)

Such a form of the tunneling potential accounts for the change in electron-electron

interaction as the tunneling electron moves out of the 2D layer. The symmetry (3.19)

is broken and there is no transformation of variables that would reduce the role of

magnetic field to the potential energy only. We now show that the generic features

of the solution remain unchanged.

The Hamiltonian equations (3.3) are linear even with the symmetry-breaking term,

and can be solved exactly for the new potential (3.20). The same initial conditions

(3.18) are used to construct the wave function 111(r) = D(r) exp[z’S(r)]. The caustic of

interest crosses the real space at the point LL‘ 2 rec, z : 756 (2C 2 L, soc = 0 for B = O)

and is marked by a cross on Fig. 3.7. The escaped particle moves along the classical

trajectory that comes from large 2: and negative 3: and goes to positive :1: and large

2. Note that the classical trajectory does not cross the line U(r) = E. The velocity

of the escaped particle is not equal to zero at any point, including the exit point.

As before, the function ImS has two branches, which, however, are no longer

symmetrical in :r. The cross sections for constant 2 are shown in Fig. 3.8. Apart from

the symmetry :1: —> —:1:, which is naturally no longer present, the main properties
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Figure 3.7: The classical trajectory of the escaping particle for potential (3.20) with

01 = 0.5 and same values of parameters teen) and won, as in Figs. 3.1, 3.5, 3.6. The

cross marks the branching point for function ImS - the point where caustic goes

through the real space. The anti-Stokes line starts from the branching point. The

escape takes place at the point where classical trajectory intersects the anti-Stokes

line. Note that the trajectory lies away from the line of zero velocity U(:r, z) = E.

of the manifold remain unchanged (refer to Fig. 3.6). For 2 < zc, the branch 1

describes the tail of the intrawell state. It has a minimum for a: 71: 0 and monotonically

increases with z. The branch 2 descrilms the wave “rel lected” from the caustic and is

nonmonotonic in both :1: and 2. Let us denote by zm the closest point on the classical

trajectory to the well at z : 0. For 2.", < z < 20, the branch 2 of ImS as a function of

a: has two minima that correspond to the classical trajectory. For 2 = zm these two

minima merge together. The value of ImS at the minima is independent of 2, as it

should be. For 2: > zC, ImS is 1"CI)I‘()S(I‘.Ilt(-‘.(l by two branches, one of them describing
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Figure 3.8: Cross-section of function Im S for constant 2 near a branching point

(136,26): (a) zm < z < zc; (b) 2 = zc; (c) z > zc. The tunneling potential is (3.20)

with the symmetry-breaking parameter a = 0.5, and other parameters are the same

as in Figs. 3.1, 3.5, 3.6, so that won, 2 1.2 and 1.11070 : 1.2. Although the symmetry

m —+ —:1: is no longer present, all of the main features of the solution remain the same.

The minima of the branch 2 lie on the classical trajectory shown in Fig. 3.7.
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the wave coming from large z (unphysical) and the other describing the wave going to

large 2 (escaped particle). The minima of the branches continue to follow the classical

trajectory.

The wave function is determined by one of the branches of action S(r) The

switching between two branches takes place 011 the anti-Stokes line that starts form the

caustic point a: = .126, z = z... The exit point is located where the classical trajectory

intersects the anti-Stokes line (see Fig. 3.7). The exponent of the tunneling rate is

’R = 2ImS(rC1). It can be found by solving the equations in imaginary time.

To summarize, the proposed solution to the tunneling problem in magnetic field

does not rely on a special symmetry of the tunneling potential. The characteristic

features of the action manifold, shown in Figs. 3.5, 3.6, remain unchanged.

3.3 The path-integral formulation in a magnetic

field

In the absence of a magnetic field, the problem of tunneling decay has a very elegant

solution in the path-integral formulation [9, 10, 16]. One of the main advantages of

this method is that the escape rate can be calculated at: finite temperatures, while the

answer for T = 0 can be obtained by taking the appropriate limitz. Just like in the

WKB approximation, the tunneling exponent is equal to the Euclidean action, which

is calculated along a trajectory going in imaginary time with imaginary momentum

 

2However, the method heavily relies on the fact that the tunneling potential is parabolic near

its minimum. Desire to calculate the tunneling rate from a 2DES, where the tunneling potential is

strongly non-parabolic motivated the formulation of the WKB approximation presented in Sec. 4.2.
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and real coordinates. The tunneling trajectory - “bounce”- starts from the well,

reaches the boundary of classically allowed region and returns back to the well. In the

presence of magnetic field, the time-reversal symmetry is broken, and it is therefore

clear that not only regular WKB at‘iproximation, but also the “bounce” technique has

to be significantly modified if it is ever to be used for B 75 0. An attempt is provided

in this section.

The general tunneling problem is formulated with non-Hermitian boundary con—

ditions - current flowing from the well to infinity. Consequently, the energy E of a

particle localized in the metastable state acquires a. small imaginary part that de-

scribes exponentially small decrease of the probability to find a particle in the well as

time goes. The tunneling probability is defined as a ratio of the current behind the

well to the population of the well [64].

, 1 1

W =j [fdrh/JV] , j = — [112* (p — EA)1/J + 6.0] .

, 2711 c

On the other hand, from the Schrodinger equation, we know that

2iImE [f drltblz] = g; / dr [—1/)*V21/)+ W211" + age/21W} + wAV¢*)]

_ :1 [yep—iv — SAM/1 + MN - EMW]
2711.

= —-1Ij(r). (3-21)

We have recovered the result valid in the absence of a magnetic field that the proba-

bility of tunneling from a state with energy E is given by

U(E) = —2ImE.

The overall tunneling rate can be obtained by averaging over all states, W =
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—2(ImE). The fact that the tunneling rate is exponentially small implies that the

imaginary part of energy Im E is exponentially smaller than its real part Re E. This

is also true regarding the partition function Z, whose imaginary part is exponentially

smaller than its real part. This results in a simple expression for the tunneling rate

in terms of a partition function:

W : —2Z“l 2 (111115) (FE/”r z 2TZ“1I1n [Z chi/T] z 2Tlmln Z, (3.22)

which coincides with the answer known to be valid for B = 0.

In the path-integral formulation, we represent the partition function as an integral

over all closed paths that return to the well in time T‘l [9, 10, 16]:

z = / dr(0) '/(0):rm) Dr(T) exp [—SE[r( an (13 = T- ), (3.23)

where the path-integral is taken over various real paths I‘(T) that satisfy periodic

boundary conditions. The exponent is given by the classical Euclidean action in a

magnetic field

"’3 111 (1r 2 _e ,

The path-integral (3.23) is dominated by paths that provide extremum to the

Euclidean action, so that (SS15 = 0. The extremal paths r(r) therefore satisfy:

(Fr , ,e 111“

711,—, : VD (r) + z— — x B . (3.25)

(172 c (IT

Without a magnetic field, Eq. 3.25 describes classical I rajectories f(T) in the inverted

potential -—U(r), which are real. For finite magnetic field both coordinate r and

momentum p along the extremal trajectory become complex. The complex value
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of dynamical coordinates present no difficulties, even though the integral (3.23) is

evaluated over real paths 1‘(T). This is because we can always shift the integration

contour into complex value of r in the spirit of the steepest descent method.

The extremal path f(T) is also called “bounce” because it starts close to the top

of the inverted potential —U(r) (minimum of the potential U(r)), then goes far away

across the of —U(r), and returns back to the top. Along this trajectory, most of the

time is spent near the starting and ending points, where the velocity exponentially

decreases. The fast oscillation occurs over time Q" r» [Ul’T’mx l (curvature near the top

of the real potential barrier. or equivalently near the bottom of the inverted potential).

The actual instant of imaginary time 70 where this fast oscillation occurs becomes

arbitrary in the limit T ——> 0. We will use this idea when discussing the prefactor of

the tunneling rate in Appendix A.

The fact that the dynamical coordinates take complex values along the bounce

is a consequence of a broken time-reversal symmetry. However the equations of mo-

tion (3.25) preserve a symn'ietry under a simultaneous action of complex conjugation

and time inversion. Periodic boundary conditions f'(()) = f‘(/3) guarantee that this

symmetry is valid for the extremal trajectory as well:

l"(T) = f‘*(1')’ — 7'), 13(7) :- —f)*(.)’ — T), (3.26)

Due to the property (3.26), the maxinmm value of exponent given by the Euclidean

action SE[f‘] along the extremal trajectory is real.

An interesting feature of the “bounce” trajectory in a magnetic field, is that

momentum, and generally velocity. does not become zero at the turning point for
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'r = 6/2. The symmetry (3.26) only requires that the real part of df/dT is zero for

7' = 6/2. This is in accord with the results for WKB approximation in magnetic field

[see Sec. 3.2], where the velocity is generally not equal to zero on the trajectory of

an escaped particle in the classically allmvcxl region. Heal momentum of the escaped

particle corresponds to purely imaginary momentum for the motion in the inverted

potential. Therefore, if at the turning point of the “bounce”, the momentum along f

matches that for the trajectory of classically propagating particle, it has to be purely

imaginary. On the other hand, in the absence of a magnetic field the “bounce”

trajectory is purely real. The velocity at the turning point is equal to zero, but so is

that for a classically propagating particle.

In the path-integral (3.23), integration over fluctuations around the extremal tra-

jectory f(r) determines the prefactor. It is important that this prefactor is imaginary,

since we are calculating the (exponentially small) imaginary part of the statistical

sum. The detailed analysis of it is given in Appendix .-\.

3.4 Summary

In the semiclassical approximation, the problem of single particle tunneling in a mag-

netic field can be solved by analyzing the Hamiltonian trajectories of the particle in

complex space and time. The connection of decaying and propagating waves occurs

on caustics of the set of these trajectories. This approach does not require us to

consider either any piece of the electron potential or magnetic field as a perturbation

and can be applied to a three-dimensional potential of a general form. It gives an
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escape rate which is generally erpmrcntially smaller than the probability for a parti-

cle to reach the boundary of the classically accessible range U (r) = E. The escaped

particle “shows up” from the tunneling barrier with finite velocity and beyond the

line U(r) = E. Finally, it was shown that in cases where the intrawell potential is

parabolic near its minimum, the escape rate in the presence of magnetic field can still

be calculated using the “l'x’iunce” techni('1ue, if we allow the tunneling coordinates to

take complex values. The “bounce”, as well as instanton, technique is a thermody-

namic method and gives the escape rate for both zero and finite temperature. Part

of the next chapter is devoted to a finite-temperature calculation of the escape rate

in cases where the intrawell potential is strongly non-parabolic near the minimum, as

is certainly true for tunneling from 2D electron systems.
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Chapter 4

Tunneling transverse to a magnetic

field from correlated 2D electron

systems.

A low-density 2DES is a very interesting system. Strong electron correlations that are

present in it are very different from electron correlations found in the quantum Hall

systems, in particular they are not necessarily imposed by the magnetic field. The

unusual properties of in-plane transport characteristics [49]—[51] can be understood by

taking many-electron effects into account [52] Therefore it is natural to suppose that

measuring the out-of-plane tunneling current can also be useful in revealing electron

correlations. Such tunneling ex16)eriments deal with tunneling from the 2DES into

the vacuum, not into the 2DES. In addition, magnetic field is applied parallel, not

perpendicular to the layer.



The effect of electron correlations on the tunneling rate may not be described

in terms of a phenomenological tunneling Hamiltonian: it is the tunneling matrix

element itself that is sensitive to the electron correlations. Therefore we have to solve

the coupled tunneling problem where the in-plane degrees of freedom change together

with the tunneling coordinate. It. is possible to do that. using the approach developed

in Chapter 3, where the multidimensional decay in a magnetic field was considered

at zero temperature. During the escape, the tunneling electron transfers a part of

its Hall momentum, which it acquired when moving out—of-plane perpendicular to

B. The momentum transfer occurs dynamically. The overall effect is very similar to

what happens in the h‘losslmuer effect. where the momentum of a gamma quantum

is transfered to a whole crystal, and consequently there is no frequency shift in an

absorption line.

The vibrations of electrons in the plane occur with frequencies of the order of the

plasma frequency top, which therefore characterizes the rate of inter-electron momen-

tum exchange. The interrelation between the plasma frequency wp and the tunneling

duration Tf determines how much of the Hall momentum is transfered to the crys-

tal. The remaining part goes into the excitation of phonons, and can be viewed as

a remainder of the single-electron magnetic barrier. .-\s a result, the tunneling ma-

trix element depends strongly, and very specifically. on electron density, and also on

temperature and the magnetic field. In particular, if nPTf >> 1, then all of the Hall

momentum is transfered to the crystal. and the suppression of the tunneling rate

by B is completely eliminated. Because of such strong dependence, it is possible to

study the electron correlations and iii-plane dynamics for frequencies comparable to
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the reciprocal imaginary tunneling time that an electron spends under the barrier.

Explicit results on the effect of electron correlations on tunneling will be obtained

assuming that electrons form a Wigner crystal. Because of strong correlations, over-

lapping of the wave functions of individual electrons is small, and electrons can be

“identified”. The problem is then reduced to the tunneling of an electron coupled to

in-plane vibrations of the Wigner crystal. As we will see, the results provide a good

approximation also for a correlated electron liquid.

In Sec. 4.1 we formulate the model. In Sec. 4.2 we obtain the general expression for

the tunneling rate in the WKB approxii‘nation for finite temperatures. In the analysis,

the discreteness of the energy spectrum of electron motion transverse to the layer is

taken into account. The result can be understood in terms of the tunneling trajectory

where the duration of motion transverse to the layer (in imaginary time) is not fixed,

it has to be found for given parameters of the tunneling barrier, temperature and the

magnetic field. In Sec. 4.3 we derive the tunneling exponent. After the elimination of

phonon variables, the tunneling exponent takes the form of a retarded action for 1D

motion. The exponent depends on phonon frequencies and the form of the tunneling

potential. The limits of T = 0 and the case of small phonon frequencies are analyzed

in detail. As discussed in Sec. 4.4 the role of in-plane confinement in out—of—plane

tunneling can be effectively described in terms of one characteristic phonon frequency.

This corresponds to using the Einstein model of a crystal. For an Einstein solid,

the many-electron problem is described by a. single—particle potential. The transfer

of in-plane Hall momentum from the tunneling electron to the electron system as

a whole in a many-electron formulation corresponds to the momentum transfer to
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the static confining potential in the effective single-electron problem. Two typical

tunneling potentials are analyzed: (i) triangular barrier represents smooth tunneling

potentials, where the tunneling length changes with the intra-well energy level; (ii)

square barrier represents geometrically defined barriers. where the tunneling length

is independent of the intra—well energy, at least in some broad range. It turns out

that the tunneling rate has some qualitatively different features in these two cases.

4.1 The model: tunneling from a harmonic

Wigner crystal

A 2D electron system displays strong correlations if the ratio F of characteristic

Coulomb energy of the electron-elect.ron interaction (’2(7r7‘1)1/2 to the characteristic

kinetic energy is large (here. 11. is the electron density). In degenerate systems the

kinetic energy is the Fermi energy 7111/11), whereas in nondegenerate systems it is

the thermal energy T. An example of a strongly correlated nondegenerate 2DES is

electrons on helium. The experimental data for this system refer to the range I‘ > 20

[53]. A classical transition to a \‘Vlgllel‘ crystal (“T“) was observed for F z 130

[67, 68]. Recently it became. possible to achieve a strongly correlated regime with

values of F ~ 40 in low-density electron and hole. systems in semiconductors. This is

expected to be sufficient for Wigner crystallization in a degenerate system [48, 66].

The effect on tunneling of the magnetic field B parallel to the electron layer is most

pronounced if the tunneling length L is long. because the in-plane Hall momentum
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due to tunneling mwcL is simply 1*)roportional to L. Respectively, of utmost interest

to us are systems with broad and ctnnparatively low barriers. Yet in experimental

systems the barrier widths are most likely to be less than 103A. Therefore, in order

to somewhat simplify the analysis we will assume (although this is not substantial)

that L is less than the average inter-electron distance ~ 11“”. In this case, since-

electrons in a strongly correlated system stay away from each other, the in-plane

electron dynamics only weakly affects the tunneling potential [69] in the absence of a

magnetic field. We will neglect the corresponding coupling that is present regardless

of the presence of a magnetic field, and concentrate only on those effects of in—plane

dynamics that are specific for finite B.

The major effect on tunneling comes from a. few nearest neighbors, and the pres-

ence or absence of long-range order in the 2DES does not affect the tunneling rate.

Therefore we will analyze tunneling assuming that the electron system is a Wigner

crystal. As we will see, the results will indeed depend on the short-wavelength modes

of the WC, as expected from the above. arguments.

In a strongly correlated system where the characteristic energy of Coulomb inter-

action is much larger than the Fermi energy. exchange effects are not significant, and

one can identify the tunneling electron. Its out-of—plaue motion for B = 0 is described

by the Hamiltonian

It”:

2111

The potential U (.2) has a well which is separated by a tunneling barrier from the

extended states with a quasi—continuous s].)ectrum, cf. Fig. 1.2. The well is non-

C
.
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parabolic near the minimum, in the general case. The metastable intra well states

are quantized. We will consider temperatures for which nearly all electrons are in the

lowest level, with energy E9.

The magnetic field B parallel to the layer mixes the out-of—plane motion of the

tunneling electron with the in-plane vil')rations of the Wigner crystal. The full Hamil-

tonian is of the form

H : H0 + 1111+ H... (4.2)

with

l _1 .,

H, = 2: [m pkjpnq + rrzngukju_kj] (4.3)

RJ

and

1 . .7 .

HB : 3111:11sz — w(..:.\"_1'/2 2H3 >< pkj]z. (4.4)

_ k3],

Here, pkj, Ukj, and wkj are the 2D momentum, diSplacement, and frequency of the

WC phonon of branch j (j : 1, 2) with a 2D wave vector k. We chose the equilibrium

in-plane position of the tunneling electron to be at the origin. Then its in-plane 2D

momentum is p : N‘l/2 Z pkj for B = 0.

The interaction Hamiltonian Hn (4.1) does not. conserve the phonon quasi-

momentum k. The Hall momentum of the tunneling electron, pH = (e/c)[B x z],

is transferred to the WC as a whole. The term H3 couples the out-of-plane motion

to lattice vibrations. The problem of many-electron tunneling is thus mapped onto

a familiar problem of a particle coupled to a bath of harmonic oscillators [70, 16],

with the coupling strength controlled by the magnetic field. The distinctions from

the standard situation stem from the non-parabolicity of the potential well near the
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minimum and from the fact that coupled by HB are the electron coordinate z and

the in-plane momenta of the lattice. These (plantities have different symmetry with

respect to time inversion. In the general case [for example, where the potential energy

of the system has odd-order terms in the displz-Icement s ukj], the broken time-reversal

symmetry requires a special approach to the analysis of tunneling [46]. The results

discussed below can be ap1'*)ropriately generalized using this approach.

For the model (4.2), the analysis is simplified by the structure of the Hamiltonian

(cf. [16]). For vibrations with the Hamilttmian H, (4.3), one can always make a

canonical transformation from the canonical coordinates and momenta “kj and pk,-

to the new canonical coordinates and momenta pk,- and —ukJ-, respectively. This

transformation interchanges the time-reversal symmetry of the in-plane dynamical

variables, it makes pkj and ukj even and odd in time, respectively. Because HB

is independent of ukj and is linear in pkg}, in the new variables it takes on a more

familiar form of a potential coupling which depends only on coordinates z, pkj. In this

representation the kinetic energy is given by 713/2711 + ij mwijukju_kj/2 and does

not depend on the magnetic field. The symmetry under time—inversion is therefore

restored.



4.2 A many-body WKB approximation

4.2.1 General formulation

We will evaluate the tunneling rate IV in the WI\' ll approximation. The major

emphasis will be placed on the tunneling exponent. We will assume that the escape

rate is much less than the intrawell relaxation rate for relevant states, and there is an

established thermal distribution over the intrawell states of the system. This is not

necessarily true for 2D systems. Our results can be generalized to the case of slow

intrawell relaxation, see Sec. 6.2.

We consider the decay of the metastable il‘itrawell st ates or = [{n, nkj}], with decay

rate rates W0, where phonon states are (_’.Illllll(‘.l“dt-C(l by their occupation numbers nkj,

and the index n enumerates states quantized in the out —of'—plane direction. These rates

sharply increase with state ermrgies Ea, whereas the Boltzmann intrawell distribution

exponentially decreases with E,,. As a result. there is a. comparatively small group of

states which mostly contribute to the escape from which the system is most likely to

escape (for fast intrawell relaxation, the relative population of these states remains

unchanged). This allows one to characterize escape by a single rate W. To logarithmic

accuracy,

W : 2‘12 II}, («m—(512.). (4.5)

. .. . .1 2

ll 11 : ( (I (Kl) {—2541 (£13 ginlf '( 'H (€in)l ‘

Here, we introduced a vector 5 = (.3, {pk_,-}) with components which enumerate the

z-coordinate of the tunneling electron and the “coordinates” pkj of the phonons,
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Z z exp(—6E1) is the partition function calculated neglecting escape, 610(5) is the

intrawell wave function, and (Z, are the prefactors in the partial escape rates [although

we will not discuss them here. they will be calculated for a particular tunneling

problem in order to compare the theory with the ex1')erimental data [34] in Chapter 6].

The exponents in the rates II}, are determined [7] by the wave functions 610(6) at

the turning points 5, on the btmndary of the classically accessible ranges (5f depend

on a, see below). It is conytmient to evaluate ”1;“.t(,(§f) in two steps, each of which gives

an exponential factor. The first factor, (.‘X[)[—S(,(€I~. £,,,)], describes the decay of the

wave function under the barrier. Formally, it relates 1;,(5f) to 1120“,“). The point 5m

is chosen close to the well. yet. it lies under the barrier, so that So can be calculated

in the WKB approximation. The second factor is '1,“,,(§,,,) itself. The resulting rate

should be independent of 13,”.

We start with the function .S',,(§. 5,"). To the lowest order in h, for systems with

time-reversal symmetry (which we restored by the canonical transformation) it is

the action for a classical underbarrier motion in imaginary time T = it with purely

imaginary momenta [9]

I): I / (LS/0.2 11k] 1‘ —’1(‘)S 'tlpkj. (4.6)

AS a function of the imaginary time T, the action S(‘E. 5,“) is given by the integral of

the Euclidean Lagrangian Lu.

-T

Snfg, gin) Z / LEdT — 111,71 (4.7)

I ()

The Lagrangian LE is obtained from the Hamiltonian (3.2) using the Legendre trans-

formation L : pz(dz/dt) — 2: uk,(tlpkj/tlt) — II, follt twcd by the transition to imagi-
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nary time, which gives

LE 2 L0 ‘1" L" ‘1‘ L1}. (4.8)

liere,

III (I: 2 .

L() I ‘7 E + (”(3) 14,- : H8, (4.9)

and L, is the Lagrangian of the phonons, Ll, : 2k) [k], with

l 1 (kaj dP-kj

Lk' = _pk'p—k' + .
J 13111. J J Qtlzwfij (IT (1T

 (4.10)

The classical equations of motion in imaginary time have the standard form

(I OLE UL [C
  

. . : f). 4.11

(17 ()5 0.5 ( )

where overdot means diffmentiation over T. To calculate the escape rate, one has

to find the trajectory which goes from 5(0) : 5m to the boundary of the classi-

cally accessible range 5, at. a certain time Tf and calculate the action So, along this

trajectory.

If the potential barrier 6(2) is smooth. the wave. function and its derivatives under

the barrier have to match the WKB wave function in the classically allowed range

behind the barrier. The. matching occurs at a turning point of the classical motion

(4.11) where the derivatives of the both wave functions become equal to zero [7], i.e.

for aSa/Bz = BSa/Bpkj : (I. i.e.

73(Tf) =0, pk,(rf) : 0. (4.12)

Eq. (4.12) is also the condition of the extremum of S” with respect to the points 5

on the boundary of the classically accessible range: the escape rate is determined
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by the minimum of So on this boundary. A detailed analysis of the behavior of

multidimensional tunneling trajectories in imaginary time for systems with time-

reversal symmetry is given in lief. [15].

Time-reversal symmetry of the. equations (4.11) in coordinates (z, pkj), together

with the condition (4.12), shows that. if the. equations of motion are extended beyond

Tf, the system will bounce off the turning point and then move under the barrier back

to the starting point. The section of the trajectory for T > Tf is mirror-symmetrical

to that for T < T],

2(7’f + T) : :(Tf — T), pk.,(Tf + T) = [Mg-(TI — T), (4.13)

where 0 S T g 7'}. As a result. the tunneling exponent 250 can be calculated along

the trajectory (4.11) that reaches the turning point at T; and returns to the well at

2T,.

The time Tf is determined by the boundary conditions (4.12) and by the initial

conditions on the trajectory, which are given by tt’.t.,(£in). If the intrawell dynamics

is semiclassical, the dominating contrilmtion to the overall rate W (4.5) comes from

the energies E, for which the duration of the tunneling motion Tf = 6/2 [9]. In the

general case this is no longer true.

4.2.2 The initial conditions

We are consider the situation where, at least for low-lying intrawell states 71, the

characteristic lengths 1/11" of localization in the z-direction are much less the typical

widths L of the tunneling barrier, so that. 7,, << L. Then, even where the effect of
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the magnetic field accumulates under the barrier and the tunneling rate is strongly

changed, the field may still only weakly perturb the intrawell motion. In this case,

inside the well and close to it, the out—of—plane electron motion is separated from the

in-plane vibrations. Respectively, the states of the electron-phonon system can be

enumerated by 11. and the phonon occupation numbers nkj, i.e. a = (n, {nkj}), and

the energies are

Ea 7— En + E 5k}: fig 2 wkjnkj. (4.14)

k?

Usually the interlevel distances EH1 — En >> com, for low-lying levels.

Because of the separation of motions, we can choose a plane .2 = zin under the bar-

rier but close to the well, so that, for g a: g the wave functions t/Ja(£) are semiclassical
in

and at the same time can be factored,

[fr/futhikj } (E) (X e—ynz 8X1) [_ Z Snkj (1310)] ' (415)

k}

The action Snk, determines the dependence of the wave function on the phonon co-

ordinates.

For 6 = 5,“, Eq. (4.15) gives the initial values of the dynamical variables {(0) E {in

and 6(0) on the WKB trajecttn'y (4.11). hi particular if, for z z zin, the potential

U(z) varies over the distance nmch bigger than l/‘m. then

 

‘2 .3» — ”2
~[l ( In) Enj] , (4.16)

m

2(0) 2 3,“, 5(0) : h = [

77).

and 7,, (4.16) is independent of the exact position of the plane .2 = 2,“.

It is convenient to write SH,” and pkj in Eq. (4.15) in the energy-phase represen-

tation, using the phonon energy 5k,- and the imaginary time Tkj it takes for a phonon
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1/2 of the classically allowedto move under the barrier from the boundary (27115“)

region to the given pkj. With the Euclidean Lagrangian of the phonons (4.10), we

have for pkj = [pkjjin 3 PkaO)

-0

Snkj (pkj(())) I / (17'ij(7') — Eijkja (4.17)

' "Tkj

and

pk,(e) : ek,(2mekj)1/2 cosh wkjrkj, (4,18)

. , . 12 .
pkj(0) :- e_kj (Zekjmwfij) / srnh wijkj

[ekj is the polarization vector of the mode. (k, 3)].

4.2.3 A three-segment optimal trajectory

To evaluate the escape rate W to logarithmic accuracy, one can, following Feynman’s

procedure, solve the equations of motion (4.11) for the vibration “coordinates” ka-(T)

in terms of z(T) and the initial energies ekj and phases wijkj. Then, from the

boundary condition (4.12), one can express Tkj in terms of other variables, and then

do thermal averaging by integrating the escape rate over ekj with the Boltzmann

weighting factor. Here we reverse the order and give an alternative derivation, which

provides a better insight into the structure of the tunneling trajectory. In this section

we average over phonon energies ck,- to find times Tkj. In the next section we eliminate

the phonon variables to obtain the tunneling exponent. We note that, from Eqs. (4.5),

(4.7), (4.15), and (4.17), the partial escape rate I470 can be written as W0 oc exp(—sa),

63



with

or, 2n+m

:Ej l; (17' Lk](7' .)___/ (17' [43(7) + E f (17' ij(7') — 2En7'f

. t) 2
kj TI

—2 2819(7): + Tk‘j). (4.19)

K?

(the term ynzin in (4.15), which is small compared to 30 ~ ynL, is incorporated into

the prefactor, see Sec. 6.3.

Eq. (4.19) suggests that one can think of the optimal trajectory as consisting

of 3 segments. In the first segment. from -7'kj to 0, the z-motion of the tunneling

electron is disconnected from the vibrations. The electron stays at z = 0, while

each vibrational mode moves for the. time Tkj, starting from the boundary ukj = 0

[cf. Eq. (4.17)]. This motion is determined by the Lagrangian ij. At T = 0 the

interaction is turned on, and in the second segment the electron and the vibrations

move together for the time 27']. with the. Lagrangian LE. During this motion, the

trajectory (4.11) bounces off the turning point (4.12), and the electron comes back to

z = 2,". After that, in the 3rd segment, the coupling is turned off again, the electron

stays at zin, while the vibrations continue to move for the times Tkj back to ukj = 0.

The three-segment vibration trajectory is continuous.

To logarithmic accuracy, the tunneling rate W is given by (exp(—2SE)). The

averaging here should be performed over the intrawell vibration energies ekj [we note

that Tf and Tkj in S]; are determined by ekj],

. T!

IV or 2:] H 11.71., exp [(2Tf — (3)1?” — 2 / (lTLE(T)

n k) ' 0

-(1

_2 Z/ (lTLk_,‘(T) + (2713' 'f‘ 2Tf — ,8)?ij . (4.20)

kj —Tk,-
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The integral over 5kj should be calculated by the steepest descent method. From

Eqs. (4.12), (4.17) it follows that the partial derivatives of SE over the times T, and

fig (which depend on 519-) are equal to zero. The condition of the extremum of S3

with respect to ekj then gives

1

To = .328 — Tfa (4.21)

This expression shows that the duration of motion Tkj is the same for all vibrational

modes. Moreover, the overall duration of the three-segment optimal trajectory of

each vibration is 2(7‘kj + Tf) : .1’. Examples of the trajectories are shown in Fig. 4.1.

For low temperatures, 6 > 27‘], the direction of time along the vibrational tra-

jectory does not change. In this case the value of Tkj (4.21) which provides an ex-

tremum to the integral over 511, is positive. The corresponding branch of the intrawell

vibrational wave function oc exp[—S,.;( 0)] decays with the increasing pkj in the classi-

cally forbidden region pk]- > (Brushy/3. ()n the other hand for higher temperatures,

6 < 27f, we have Tkj < 0. This shows that. the extremum of the integrand in Eq. (4.20)

is reached if the intrawell vibrat ional wave function is analytically continued from the

decaying to the increasing branch.

For Tkj = ([3/2) — T) < 0, the “free-vibrations” term SE(0) in the Euclidean

action SE is negative, it gives rise to the decrease of the tunneling exponent. This

is the formal reason why an in—plane magnetic field can increase the tunneling rate

compared to its B = 0 value by coupling thermally-excited in-plane vibrations to

tunneling.

If the intrawell motion tl‘zlllSV'CI‘Sc‘. to the layer were semiclassical, the sum over
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Figure 4.1: The optimal trajectories of the tunneling electron z(T) and of one of the

vibrational modes pH(T) for 6 > 2T] (a) and 6 < 2T, (b). The numerical data refer to

the Einstein model of the Wigner crystal, pH is the p-component of the vibrational

momentum in the Hall direction 2 x B. The arrows show the direction of motion

along the optimal trajectory when 6 < 2Tf. The tunneling potential is of the form

(4.38), with dimensionless cyclotron frequency wCTO = 2.0, where To = 2mL/7 is the

imaginary transit time for B : 0. The phonon frequency is pro = 1.0.

the energy levels of this motion E,, in Eq. (4.20) could be replaced by an integral. It

could then be evaluated by the steepest descent method, as in the case of in-plane

vibrations, with the result T, : ,6/2,Tk.,- = 0. This is the familiar result of the

instanton theory, in which the whole system moves under the barrier from the well

to the turning point and back over the imaginary time 6 [9]. Clearly, in this case one

should not expect the tunneling rate to be enhanced by a magnetic field.

In the case of 2D electron systems. the potential well is not parabolic and the

low-lying intrawell states are not semiclassical. Therefore the sum over E, in (4.20)
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may not be replaced by an integral. each term has to be considered separately, and

the duration of motion T, for each energy level has to be found from the boundary

condition (4.12).

4.3 The tunneling exponent

Eqs. (4.5) and (4.19) allow us to write the escape rate as a sum of the escape rates

for different intrawell states 11. To logaritlnnic accuracy, the overall escape rate is

determined by the maximum of the escape rate with respect to the intrawell state

71., with account taken of the thermal population of the state [here we assume that

thermalization inside the well occurs faster than escape],

IV 0( max exp(—II’,, — HE”), R, = ngir; Rn[Z(T)], (4.22)

The functional 7%,,[3] is a retarded action functional for a 1D motion normal to the

electron layer. It is determined by the functional so for the nth state from which

the the dynamical variables of the in-plane vibrations have been eliminated. The

elimination can be done in a standard way [70] by solving the linear equations of

motion (4.11) for ukj,pk_,- with the boundary conditions (4.18), (4.12), and (4.21).

This gives

2” tn dz 2 ,, l 2 2

72,,[z] = 0 (1T1 3 E7: +0(z)+§mwcz (T1) +Ree[Z]—2TfEn (4.23)

(we have set the energy of the intrawell ground state By 2 0).

The term Ree is the retarded action describing the effects of electron-electron
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interaction that we modeled by electrtm-phonon coupling [cf. 4.4],

(.02 '2Tf '7']

R0,.[z] : ——2£/ / (lTldTQZ(T1)Z(T2)X(’/'1 — T2) (4.24)

0 . e

Here, the X(7’) = (pH(T)pH(0)) is the correlation function of the in-plane momentum

p” of an electron in the correlated 2DES. For electrons forming a Wigner crystal, it

is simply related to the phonon Greens function,

7n — w -T —. —w 'T
X(7') 2 W 21:60]” [”ij k] + (7ij +1)8 k] ] (4.25)

1 is the thermal occupation number).(file = lexpffiwkj) — 1]—

The term 72..., is negative. It means that the electron-electron interaction in a

correlated 2DES always increases the tunneling rate in the presence of a magnetic

field. Moreover, when this term exceeds (mane2 /2) f Z2dT, the tunneling exponent as

a whole decreases with the increasing B.

Two physical phenomena are described by the term ”Ree. One is the dynamical

compensation of the Hall momentum of t he tunneling electron by the WC as the elec-

tron moves under the barrier in the .z-direction. The other is thermal “preparation”

of the Hall momentum for the tunneling electron, which is then transformed by the

magnetic field into the momentum of motion in the z-direction. These effects are

analyzed in the following subsections.

4.3.1 Zero temperature limit

It would be natural to think that, since tunneling is accompanied by creation of

phonons for T = 0, then the higher the phonon frequency the lower the tunneling

rate. In fact just the opposite is true.
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The effect of the electron-electron interaction on tunneling, as characterized by

”Ree, depends on the interrelation between the characteristic phonon frequency (up

and the tunneling duration Tf. The quantity 1.2,, also characterizes the rate of inter-

electron in-plane momentum exchange. When the tunneling electron is “pushed” by

the Lorentz force, it exchanges the in-plane momentum with other electrons. The

parameter prf determines what I'Iortion of the momentum goes to the crystal as a

whole during the tunneling (note that the tunneling motion goes in imaginary time,

and the quantity Tf characterizes the time uncertainty rather than the actual duration

of a real process, see Ref. [71]). In the adiabatic limit of large prf, all electrons

have same in-plane velocity, with an accuracy to quantum fluctuations. Therefore

the Lorentz force produces no acceleration, and no phonons are created during the

tunneling. The effect of the magnetic field on tunneling should then be eliminated.

These arguments are confirmed by the analysis of Eq. (4.24). If the electron

system is rigid enough, so that wijf >> I, the major contribution to 72..., comes from

T1 — 7'2 ~ (1);; << Tf. Therefore Z(T~2) z Z(T1), and we could use an expansion:

|
t
-
*

55(72) z 3(71) + 73(71)sz2 — TI) + 5(T1)(T2 - 702 (4-26)‘

[
\
J

in the functional Re... The upper limit. in the integration over 7'2 can be extended to

infinity, since it introduces only an exponentially small error. Then the leading term

in expansion (4.26) cancels the term (X :32 in (4.23), which represent the single-particle

magnetic field barrier. The linear term in expansion (4.26) gives a zero contribution.

The uadratic term leads to an effective renormalization m —> m" of the electron
q

69



mass in a magnetic field:

 
.. . 1 .1} 2 —1 “’2

m z 711. [1+ 27—11 0 dTT X(T)] z 711. [1+ (2N) g]: (”[22] . (4.27)

Tunneling occurs as if the electron were disconnected from the phonons, and did not

experience a magnetic field. The only effect of the magnetic field is that the electron

mass in Eq. (4.23) is effectively incremented by a B-dependent factor. This change

is reflected in all of the tunneling characteristics, including the tunneling time T, =

(m*/m)1/2T0, and most. importantly, the tunneling exponent becomes appropriately

R —> H m RBzo- (4'28)

177.

This analysis is quite general and applies for arbitrary form of potential U(z)

renormalized:

 

This includes potentials where the tunneling length is well defined by a jump in

the potential, as it happens in semiconductor heterostructures. Expressions (4.23),

(4.24) for the tunneling exponent still apply provided that the tunneling trajectory

for T > Tf is now defined through Z(T) : Z(2Tf — T). In addition, because z'(Tf) 75 0

expansion (4.26) has to be changed to:

. (7'2—7'1), for ’7’] <Tf or Tf <7'2

2(7'2) % Z(Tl) + 2(7'1) X (4.29)

(2T; — T1 — T2), for 72 < T, < T1

Details of the analysis for a square potential can be found in Appendix B. The scaling

behavior of the tunneling time Tf and the tunneling exponent ”R can be also checked

using the explicit answers for a triangular barrier (4.41) and for a square barrier (5.6),

(5.7).
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In this derivation we assume that the major contribution to the integral over 7'

comes from times 7' ~ l/wp << 7,. Respectively, for a Wigner crystal, the major

contribution to the sum over (k, j), comes from wk]- ~ cap. The integral only weakly

depends on the upper limit Tf, which also provides the inverse of the lower cutoff

frequency in the sum over (k, j). For a Wigner crystal, the dependence of the mass

renormalization on Q is logarithmic.

The tunneling rate approaches its value for B = 0 with increasing (up. On the other

hand, the SIOpe of the logarithm of the tunneling rate as a function of we depends

explicitly on tap, for wc 2, up. This provides a means for measuring wp.

For prf ~ 1, only a part of the Hall momentum can be taken by the electron

crystal. The rest goes into the in-plane kinetic energy of the tunneling electron,

and ultimately into creations of WC phonons. However, the major contribution to

Ree still comes from high-frequency phonons. It can be shown from (4.24) that

this contribution monotonically increases with increasing wkj [see Appendix B for a

derivation]. This is because the more rigid the electron system is, the more effectively

it compensates the in-plane Hall momentum. An important consequence is that,

since high-frequency vibrations have small wavelengths, the major effect on tunneling

comes from the short-range order in the electron system.

On the whole, for T : 0, the magnetic-field induced term in the tunneling

exponent is positive, i.e. the tunneling rate decreases with the magnetic field.

This can be seen from Eqs. (4.23), (4.24) by replacing 2(7'1)z(7'2) in Ree with

(1/2)[z2('rl) + 22(72)] 2 Z(T1)Z(T2) and then integrating the function x(7’1 — 7'2) =
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exp[—wkj(n — 72)] over 72 [for the term 2201)] and over 7'} [for the term 220-2)]:

 

1le 2T} 1'}
r

-Reelzl< ' wakJ-f / dTidT2[z2(n)+z2(T-2)]e“’ki(“”2)
8N M 0 0

 

2 2Tf

mw . _ . _ . _
: c E dleZ(7‘1) (2 — 6 wk!“ — 8 ”1(21’ 72))

8N _ 0

k3

By dropping the exponentials in the integrand, we eliminate dependence on wkj, and

the sum over phonons gives a factm 2N. As a result, we get an upper bound for the

many-electron term in the exponent:

1 27f

—Ree[z] < imwf/ (1722(7), (4.30)

0

The last expression describes the suppression of the tunneling rate by B for non-

interacting electrons. Therefore. many-electron effects at T = O can lead at most to

a compensation of the suppression introduced by the magnetic field. The tunneling

rate cannot exceed its value for B = 0.

Electron correlations exponentially reduce the effect of the magnetic field on the

tunneling rate in a magnetic field. For specific models, the dependence of the tunnel-

ing rate on B and the vibration frequencies will be illustrated in Sec. 4.4. The results

will also be compared with the experiment in Chapter 6.

4.3.2 High temperatures and small phonon frequencies

The analysis of the tunneling rate somewhat simplifies in the case of comparatively

high temperatures and small phonon frequencies, where the vibrations are classi-

cal and their frequencies are small compared to the reciprocal tunneling duration,
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wkjfl,wkjrf << 1. In this case

., . “U
7280(3] = —2mTw(2.Tf§2, 'z' : ”Ff—1 / (172(7). (4.31)

0

Note that the origin of the z-axis has been chosen in Eq. (4.2) in such a way that z = 0

inside the potential well where the electrons are localized (or that the diagonal matrix

element of 2 on the intrawell ground state wave function is equal to zero). Therefore

in Eq. (4.31) 2 79 0 for an optimal tunneling trajectory, and correspondingly the value

of Ree on this trajectory is nonzero and negative.

Eqs. (4.23), (4.31) describe also the tunneling action of a single electron, with the

Maxwell distribution of the in-plane momentum inside the well exp(——p2/2mT). The

coupling of the i x B component of the momentum to the out-of-plane motion gives

rise to the term —2pwc f0” drz(7) in the tunneling action [cf. Eqs. (4.4), (4.7)]. The

extreme value of the sum of this term and —])2/2m,T is just equal to —’Ree[z] as given

by (4.31).

The single-electron form of the. tunneling exponent is to be expected in the limit

of small wkj, because the distribution over in-plane momenta of electrons forming a

Wigner crystal is Maxwellian, in the classical limit. For small wkj’rf the momenta do

not change over the tunneling duration, therefore, only the momentum of the tunneling

electron itself is imptn'tant. The above (.lerivation provides an independent test of the

derivation used to obtain the general expression (4.23), (4.24).

Let us note that the action 72%.[25] (4.31) is still retarded, it does not correspond

to a local in time Lagrangian. The functional form of 7%,... remains the same even

for temperatures T < wk, provided the phonon frequencies are small compared to
N
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TF1 and we. In this case T in Eq. (4.31) has to be replaced by (4N)‘1 Zwkj(2fikj +

1). This factor explicitly depends on the phonon dispersion law, but again, the

major contribution comes from sllort-wavelength high-frequency phonons, which are

determined by the short-rzmge order in the electron system.

4.4 Effect of in—plane confinement on the tunneling

rate

4.4.1 The Einstein approximation for a Wigner crystal

The exchange of momentum between electron in the layer is realized more efficiently

by higher frequency phonons, as was discussed in subsection 4.3.1. This is also re-

flected by the fact that high frequencies dominate the electron-electron interaction

term Ree in the exponent. Therefore it may be natural to use the Einstein model for

a Wigner crystal and set all frequencies equal to a characteristic value: wkj 2 cap. The

plasma frequency for a 2D crystal is w], : (27re272,3/2/7zz.)1/2, where n is the electron

density.

In the Einstein approximation the Hamiltonian Hv of in-plane vibrations can be

written as:

H,, = 1) Z: [In—Ipi + Iliwgui] (4.32)

n—t

n

and the Hamiltonian coupling between out—of-plane and in-plane motions due to the



presence of magnetic field:

1 9 A

H3 : Emwgzg — w(.:[B x p], (4.33)

where p E p0 is momentum of the. tunneling electron. As one can see by examining

Eqs. (4.32), (4.33), the motion of electrons in the crystal becomes uncoupled. The

tunneling electron now moves in a static potential created by other electrons in the

crystal. Its in-plane motion is a harmonic vibration about the equilibrium position

with frequency w,,. The problem is effectively reduced to a single-particle problem,

which mimics the many-electron one.

The single-particle character of the solution in the Einstein approximation can

be also traced from the equations of motion (4.11). Indeed, pkj oc egg-(eh- [B x z]) ,

where factors independent of kj have been omitted. Consequently, pn o< 6no[B x 2],

which shows that only the tunneling electron is moving in the plane.

If we choose B along the y axis, then the problem becomes effectively two-

dimensional, with the Hamiltonian

(1).; + mesPZ)2 1 2 .2 p3

' + —mw a: + —“ -+- U z . 4.34

2711.. 2 p 2m ( ) ( )

 H:

The Coulomb interaction between electrons in the lay-'er not only provides the in-

plane confinement for the tunneling electron, which as discussed in the Introduction,

is so important for tunneling transverse to B, but also lowers the tunneling barrier

U(2) For nL2 << 1, the change in potential energy for the tunneling electron to move

a distance 2 01.1t—of-plane is given by:

2 .2 2

, ’ (3 ’(.’ ,. ’6

06(3) 2 E —— — E — a: —.:"I E — (4.35)
/-2 2 1' 3
A. + r I". Tn

11.. '1 TI 7L

_,
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Using the sum rule ij mwfij : 2N2,13%; = 2NZn'eQmg, where the A; are

diagonal elements of the dynamical matrix of the Wigner crystal. Therefore the

“correlation-hole” potential [72, 34] may be written as

U(::(Z) = —mt2)222 (4.36)

where the mean square frequency a; for a triangular lattice [73] is approximately:

1/2

. . 1 2

a; = [Z nail/2N] z (4.4582713/2/777.) / (4.37)

kj

We now illustrate the role of electron correlations on the tunneling rate for two

model potentials. A triangular tunneling potential was chosen to represent a class

of problems where the tunneling length varies with intrawell energy (we will refer

to such potentials as smooth). Tunneling through a rectangular barrier represents

the opposite case where the tunneling length L is geometrically defined and does not

change with energy.

4.4.2 Triangular barrier

In many tunneling experiments, the escape is measured for a finite applied voltage.

For electrons above helium surface and in certain types of semiconductor heterostruc-

tures, the potential U (z) in the barrier region (2: 2 O) is then determined by the

electric field which pulls electrons away from the intrawell states. Although the

correlation-hole potential Uc(z) (4.36) has strong effect on the tunneling rate, its role

is similar whether or not the magnetic field is applied. Therefore, to illustrate purely

the role of in-plane confinement on the rate of of tunneling transverse to B we do



not take UC(z) into account. The effect of the correlation-hole potential Uc(z), as

well as other corrections important for small z [cf. Eq. (6.4) below], will be studied

in detail in Chapter 6, where the quantitative comparison with experimental data is

made. Counting the energy from the ground intrawell state, so that E9 = 0, we have:

N2

U(z) = 2:” (l - %) (z 2 0). (4.38)
 

Here, 7 E 71 is the inverse localization length of the ground-state wave function

1129 E 2,01 near the well, (2 ln tel/Oz : —*y for z = 0, cf. the discussion before Eq. (4.16);

L is the tunneling length in the ground state for B = 0. We assume that 7L >> 1.

In order to calculate the ground-state tunneling exponent, it is convenient to solve

directly the equations of motion (4.11) with the boundary conditions (4.16), (4.18),

(4.12), and (4.21). For a triangular potential, these equations are linear. This allows

us to obtain for the tunneling exponent a simple expression

T2 = —1/5T3d + 31/,,T,d(1 - 7rd) coth[wa/2 — uprrd] + 3

+3Trd(l/2 — 1), R. = 2m: 3112. 4.39
.1

Here, up = wpro and uc : (.2670 are the dimensionless in-plane and cyclotron frequencies

scaled by the tunneling duration 70 for B = O, and V2 = V]? + V3.

The quantity Tm : Tf/To in Eq. (4.39) is the reduced tunneling duration. It is

given by the equation

[(1 — 7',d)I/,[,1/2 coth[wp[3/2 — z/prm] — 113] tanh I/Trd : 1/[1/Srrd — V2] (4.40)

The tunneling exponent in the limit T —> 0 can also be obtained by solving the

equations of motion (4.11) in the (:1:,:~:) representation, according to the method of
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Figure 4.2: The dependence of the tunneling rate at zero temperature on magnetic

field, W = W(B)/W(O). The curves 1 to 4 refer to wpro = 0,0.2,0.4,0.6. Magnetic

field eliminates single—electron tunneling for wc'ro 2 1 (cf. curve 1). Inset: tunneling

exponent vs in-plane frequency w,, for 0.,ng : 1.0, 2.0, 3.0 (curves a,b,c).

Chapter 3. Because of the symmetry .1: —> —;r of the potential on the tunneling

trajectory with imaginary time t : —z'7‘, variables pa, and z are real, meanwhile a: and

19; are imaginary. The tunneling exponent is given by

T2 = —1/27:f, — 31/p(1 — Tm)? + 3(1+ up)(1 — 7rd) + 3V2Trd, (4.41)
pr

[I/2I/p(l — Tm) — Vf] t2111llUTrd : I/(VgTrd — V2) (4.42)

Note that expressions (441,442) coincide with (439,440) for T = 0.

The role of the many—electron effects is particularly important in the limit T -—) 0.

From (4.41), (4.42), we have that without the magnetic field 7rd = 1 and R = 4/3

(the “duration” of underbarrier motion in imaginary time is To). In the single-electron
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approximation (cup : (l) the tunneling duration T, and the tunneling exponent R9

diverge for we ——> To“ [34], as shown in Fig. 4.2 on curve 1. This happens because

the effective single—electron potential U (z) + (1/2)mw§zz, which takes into account

the parabolic magnetic barrier, does not have classically allowed extended states with

energy E, = 0 behind the barrier. Formally, T ——> 00 for 1/,, : 0,1/C ——> 1‘)

Even comparatively weak in-plane confinement eliminates this effect. The reduc-

tion of the tunneling suppression is significant already for small wpro, and increases

fast with increasing wpro. For wCTO > 1 and T = 0, the tunneling exponent is a steep

function of the exchange rate cap in the limit of slow exchange, pro < 1. In the

opposite limit of the fast momentum exchange, top > 761, from Eqs. (4.39), (4.40)

he”. 'I‘herefore, with increasing wp beyond we, thewe obtain that R9 = j“ L 1 + we 1],

exponent of the tunneling rate approaches the zero-magnetic-field value of 47L/3.

The tunneling time becomes Trd z 1 [i.e., 7f x 7‘0]. On the other hand, for large and

but finite wp, the slope of the logarithm of the tunneling rate as a function of mag-

netic field provides a direct measurement of the characteristic frequencies of in-plane

electron vibrations. The. tunneling exponent for zero temperature as a function of

camwc is shown in Fig. 4.2. The overall dependence of the tunneling exponent on (up

is shown in the inset.

For a given magnetic field, the dependence of the tunneling exponent R9 on the

frequency cup becomes much less steep with increasing temperature, as seen from

Fig. 4.3. This happens because at finite temperatures the tunneling electron may

transfer its in-plane Hall momentum not only in a recoil-free way to electron system

as whole (“zero-phonon” process), but also compensate it with a thermal in-plane
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Figure 4.3: The tunneling exponent in the ground state for a triangular potential

barrier (4.38) as a function of the phonon frequency cup in the Einstein model of the

Wigner crystal for w(.T() -_— 2. The time '0 :2 mL/y is the duration of tunneling for

B = 0 and T = 0. The curves 1 to 3 refer to reciprocal temperatures fl/To = 7, 5, 3.

The dashed line is the result of the direct variational method, with one variational

parameter 7,. The relative importance of many-electron effects is demonstrated in

the inset. Here, the difference between the full many-electron tunneling exponent and

that obtained in the single-electron approximation is plotted as a function of inverse

temperature. The many-electron tunneling exponent was calculated for wpro = 3.0.

momentum. The recoil—free process depends very strongly on in-plane frequencies,

because they determine how much of the Hall momentum will actually be compen-

sated. Compensaticm by thermal momentum is present. even in a non-interacting

limit, does not have strong frequency (lepmulence. This is again very similar to what

happens in a l\/Iiissbauer effect, where the zero-phonon line disappears with increas-

ing temperature. For large wpro, tum, the curves for different temperatures merge
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together and approach the. B = 0 asymptote.

The value of R9 can be calculated independently from the functional 72,, (4.23)

using the direct variational method. Even a simple approximation where Z(T) is

quadratic in T, with the only variational parameter being the tunneling duration

Tf, gives a reasonably good result, which is shown in Fig. 4.3 by a dashed line for

[3 = 3T0. Such calculation gives a good approximation for higher temperatures, and

also for lower temperatures but not too small pro- For low temperatures and small

pro the trajectory Z(T) is strongly nonparabolic, and more then one parameter is

required in the variational calculation.

The above results provide an explainition of the magnetic field dependence of the

tunneling exponent for electrons on helium, which was observed to be much weaker

[34] than it would be expected from the single-electron theory. Detailed comparison

with the data [34] will be discussed below in Chapter 6.

4.4.3 Square barrier

In many physically interesting systen‘is. the tunneling barrier U(z) is nearly rectan-

gular. This is often the case for semiconductor heterostructures, where the barrier is

formed by the insulating layer. If we count U off from the intrawell energy level E9

and set the boundaries at .3 = 0 and 2 :‘—‘ L, the barrier has the form

U(z) = 72/2m — ‘11).(IJ222, 0 < z < L (4.43)

Here, 1/7 is the decay length under the barrier, cf. Eq. (4.16), and the mean square

frequency (I) is given by (4.37).
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We assume that, behind the barrier (,3 > L), an electron can move semiclassically

with all energies. The picture of tunneling depends on the parameter Q = fiLDTo

where To = mL/y is the imaginary “time of flight” under the barrier for (I) = 0. For

9 < 1 the particle comes out from the barrier at the point z = L where U(z) is

discontinuous, cf. Fig. 2b. Then the decaying underbarrier wave function has to be

matched to an appropriate propagating wave behind the barrier at z = L. In contrast

to the case of a smooth barrier, because the potential U (z) is discontinuous at z = L,

the z-component of the momentum should not be the same on the opposite sides

of the boundary. However, the in—plane “momentum” components ukj, which are

imaginary under the barrier, still have, to be continuous. Respectively, the boundary

conditions (4.12) for the tunneling trajectory should be changed to

25(7'f) : L, ukJ-(Tf) = 0. (4.44)

In fact, the condition ukJ- = 0 gives the in-plane values of pkj for which the wave

function is maximal for z : L.

With the boundary conditions (1.4!). elimination of phonon variables from the

Euclidean action 5,; in the tunneling exponent is similar to what was done for a

smooth barrier. The resulting expression for the retarded functional 72,,[2] coincides

with Eq. (4.23), provided Z(Tf + :r) is definml as Z(Tf — :17), for 0 S a: g Tf. In the

Einstein approximation the boundary conditions (4.44) become:

z(Tj~) : /,. .r(Tf) = 0. (4.45)

For higher electron densities wln~~>re $2 > 1, potential U (z) is no longer discontinu-
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Figure 4.4: Exponent of the tunneling rate —R from a 2D WC in a semiconductor

heterostructure as a function of scaled electron density 9 = \/2tDTo (To = mL/y).

Electron correlations increase the tunneling exponent both for B = 0 (dashed line)

and in the presence of magnetic filed (solid line refers to wcTo = 1.0). With increasing

9 the tunneling rate in the magnetic: field approaches the zero-field line. Inset (a):

relative tunneling rate fl" = W(B)/11(0) vs magnetic field for (3T0 = 0.5. Inset

(b): electron potential with (bold line) and without (thin line) the reduction of the

tunneling barrier due to the effect of electron correlations.

ous and the usual boundary conditions apply

[)2(Tv,~) : ll. 517(7’f) = 0. (4.46)

The tunneling exponent is calculated along the tunneling trajectory satisfying that

boundary condition out of two possible (4.45) and (4.46) which gives the smallest

value. In the absence of a. magnetic field, the transition from one boundary regime

to another occurs for Q : 1. In the presence of a magnetic field, the transition

shifts towards larger (2. The detailed calculation is rather tedious, and is provided in
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Appendix C. The result for the tunneling exponent in the Einstein approximation is

plotted in Fig.4.4.

For B = 0 the tunneling exponent is 25;; = 7L[f2‘1 arcsinQ + (1 — SPY/2] [

28;; = TryL/2Q, for 52 > 1]. Magnetic field causes SE to increase and the tunneling

rate to decrease, respectively. For weak fields, the increment of SE is quadratic in B.

Tfansfer of the Hall momentum of the tunneling electron to the WC strongly reduces

suppression of tunneling by a magnetic field. Fig. 4.4 shows also how SE is decreased

by electron correlations even for B : t). in the case of a broad barrier.

4.5 Summary

In the presence of a magnetic field parallel to a 2DES, the tunneling rate becomes

exponentially sensitive to the presence of electron correlations in the system. These

electron correlations are not imposed by t he magnetic field, contrary to the case where

magnetic field is applied perpendicular to the layer. Because the tunneling rate is

exponentially small, one can consider tunneling of different electrons independently,

and therefore single out the tunneling electron. Electron correlations affect the out-of-

plane tunneling rate through an interelect ron intn'nentum exchange from the tunneling

electron to the electron system as a whole. The mechanism is therefore similar to a

Mossbauer effect. The tunneling electron usually transfers only part of its in-plane

momentum to the electron system in a "recoil—free” way. The interrelation between

the characteristic momentum exchange rate and the reciprocal duration of tunneling

in imaginary time 1 /Tf determines what portion of the in-plane momentum will be
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transfered, so that the dynamics of electron motion under the barrier becomes very

important.

With increasing temperature, the dependence of the tunneling rate on in-plane

vibrational frequencies becomes less steep. This happens because at such temper-

atures the in-plane Hall momentum can be compensated by a thermal momentum,

and not only through a recoil-free transfer to a whole electron system. This is again

analogous to what happens in a Mossbauer effect, where the zero-phonon line disap-

pears with increasing temperature. "l‘herefore, tunneling experiments could probe the

phonon spectrum of the 21) system. if they are done at sufficiently low temperatures.

At higher temperatures, the tunneling rate can be described in the single-electron

approximation. The. dependence of the tunneling rate on temperature and magnetic

field, however, is expected to be a very non-monotonic function and have interesting

features, as discussed in the next chapter.

Correlated 2D electron systems in semiconductor heterostructures have been in-

vestigated by tunneling mostly for the magnetic field B perpendicular or nearly per-

pendicular to the electron layer. cf. [.33]. The data on tunneling in a field parallel to

the layer refer to high density 2Dl25s [3 l] where correlation effects are small.

It is expected that the effect of a parallel magnetic field will be most pronounced in

systems with shallow and broad barriers U(z). For example, in a GaAlAs structure

with a square barrier of width L : (1.1 pm and height 72/2m = 0.02 eV, for the

electron density n, = 1.5 x 10'0 cm 3 and B : 1.2 T we have pr0 z 0.6 and won) z 1

(To = mL/7 is the tunneling duration for n. = B = 0). The results of Sec. 4.4.3

for square barriers, where we have taken into account the correlation-hole potential
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(4.36), Show that the interelectron momentum exchange should significantly modify

the tunneling rate in this parameter range, provicgled the 2DES is correlated [56]. One

can therefore expect that tunneling experiments on low-density 2DESS in parallel

fields will reveal electron correlations net imposed by the magnetic field, give insight

into electron dynamics, and possibly even reveal a transition from an electron fluid

to a pinned Wigner crystal with decreasing 7r.



Chapter 5

Magnetic-field-enhanced tunneling

This chapter is devoted to the theory of the enhancement of the tunneling rate by

a magnetic field parallel to the electron layer. Its applications can be very useful,

because it allows to increase the tunneliu g rate without changing the parameters of a

tunneling barrier. A magnetic field parallel to the electron layer couples out-of-plane

and in-plane degrees of freedom. For T : 0, this leads to the energy transfer from out-

of-plane tunneling motion to the iii—plane vibrational motion, which, in turn, results

in the suppression of the tinmeling rate by magnetic field. For finite temperatures,

the direction of the energy transfer may be reversed, so that the energy of thermal

in—plane motion can be used to assist the tunneling. Because coupling is proportional

to the magnetic field, this is a qualitative reason why the magnetic field can enhance

the tunneling rate. 011 the formal level. the B-enhanced tunneling is a consequence

of the increase, with increasing temperature, of the absolute value of the term Ree

(4.24) in the tunneling action. Since this term gives a negative contribution to the

tunneling exponent R, the whole B-dependent term in R becomes negative starting
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with a certain crossover temperature T... and then the tunneling rate increases with

B.

The increase of the tunneling rat e with magnetic field does not occur in all systems.

In systems where it does occur, it happens in the range that is limited in both T and

B. The range boundaries are not universal and depend on the potential U(z) and the

phonon spectrum. The main 1f)1‘ocesses that limit this range are switching to tunneling

from the next intrawell level or switching to the escape via thermal activation. The

enhancement may start from B : t) or have a finite threshold in B. The later variant

occurs when escape for B = 0 occurs through tunneling from the next excited state

or by over barrier activation. With increasing of magnetic field there occurs switching

from one of these processes, which determined the escape rate for B = 0, to tunneling

from the ground intrawell state, where the tunneling rate increases with B. However,

very strong fields suppress rather than enhance. escape.

In Sec. 5.1 the physical limits on the lower and upper temperature bounds for B-

enhanced tunneling are discussed. The various switching processes that can take place

with increasing of T or B are different iu cases where the potential barrier is smooth

(tunneling length is determined from If : l’fr)) and discontinuous (the tunneling

length is geometrically defined). Explicit results are obtained in Sec. 5.2 using the

Einstein model of a Wigner crystal, in which all phonons are assumed to have the same

frequency. As an example of a smooth tunneling barrier we take a triangular barrier,

which is relevant for tunneling in the presence of applied electric field. Square barrier

models the potential f'orn‘ied by the iusulat ing layer in semiconductor heterostructures.
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5.1 General properties of the transition

5.1.1 The temperature of crossover for small magnetic fields

The lower temperature bound of the enhancement domain is the crossover tempera-

ture TC. It can be determined from the small-B expansion of the tunneling exponent

for the ground state [77. = g in Eq. (4.22)],

Rg(wc) 2 129(0) + Ag(T)w3, wcro << 1 (5.1)

where T0 is the tunneling time in the ground state for B = 0. The role of the ground

state is special in that the barrier width is bigger for the ground state energy than

for the energies of the excited states. Therefore the effect of the magnetic field, which

accumulates under the barrier, is most pronounced in the ground state.

The value of Ag is given by the terms oc tag in the action Rg (4.23) calculated

along the tunneling trajectory z0(r) for B = 0. From the analysis in subsection 4.3.1,

it follows that Ag > 0 for T —> 0. The crossover temperature is given by

Ag(TC) = 0. (5.2)

For T > To the tunneling exponent Rg decreases and the tunneling rate increases

with B, for small B.

In the limit of low phonon frequencies, (Ukj << 1/7'0, TC, from Eqs. (4.23), (4.31) it

follows that 56 E 1/TC = 2702—02/23, where 2'5 is the average coordinate 2 (4.31) for

the B = 0 trajectory with energy E9, and E02— is the mean square value of z on the

same trajectory,

272,: 704/ mge) (E = E9).

0
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Clearly, in this case fie < 270. It follows from Eq. (4.24) that 270 is also the limiting

value of BC in the opposite case of high phonon frequencies, (Ukj >> 1/7'0. On the

whole, we have the bounds on temperature for the tunneling enhancement in the

ground intrawell state

—2

27'02é‘2 < ,Bc < 2T0. (5.3)

30

As noted above, 5 is nonzero, and generally 237% ~ 1.

It follows from the above arguments that the value of the crossover temperature

Tc = 1/5C decreases with increasing phonon frequencies, that is the crossover is de-

termined by high-frequency phonons which, in the case of 2D electron systems, have

large wave numbers and are determined by the short-range order. Note that there

is no threshold in B for tunneling enhancement for T > TC from the range (5.3),

provided the system is tunneling from the ground state.

5.1.2 Upper temperature limit for enhancement for small

magnetic fields

A threshold-less tunneling enhancement starting from B = 0 occurs for temperatures

bounded from above by the condition that the system tunnels from the ground state

rather than from excited intrawell states or via thermal activation over the barrier.

In principle, even for excited states, the tunneling rate may increase with B, but this

does not happen for simple model potentials investigated below.

If the tunneling is enhanced only in the ground state, the upper temperature

bound is often the temperature T1_,2 where the probability of tunneling from the first
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excited state, weighted with the occupation factor, exceeds that from the ground state,

for B = 0. It can be estimated for smooth tunneling barriers, where the tunneling

duration 70(E) for B = 0 often decreases with the increasing energy E. In fact,

the function 70(E) may be nonmonotonic even for simple potentials U(z); a detailed

analysis of this function lies outside the scope of this work, but generalization of the

results to appropriate cases is straightforward. From (4.23), for decreasing 70(E),

switching from tunneling from the ground state (71 = 1) to that from the first excited

state (n = 2) occurs for the reciprocal temperature

E2 70(E)dE

31—)222 E232_E1 ( 1;- 9)-
 

This value lies between 2T0(E2) and 270(E1). Depending on the tunneling potential,

[3H2 can be smaller or larger than tic (5.3). If a magnetic field does not increase the

rate of tunneling from the state 72 = 2, threshold-less tunneling enhancement occurs

for Tc < T < T1_,2.

Alternatively, for B = 0 the system may switch to activated escape over the

barrier with increasing temperature for T 2 T, < TC. The threshold-less tunneling

enhancement by the magnetic field does not occur in this case. However, both for

Tc > Ta and Tc > T142 there may still occur a B-induced enhancement of the escape

rate starting with some nonzero B. We note that in the above arguments, it was

assumed that thermalization 1 inside the well occurs before the electron escapes.

 

1The Boltzmann distribution over in-plane energies is established very rapidly, on times of the

order of w; 1. In Chapters 4, 5 we assume that the Boltzmann distribution over out-of-plane intrawell

states also occurs much faster than the process of the tunneling escape. It is not always true, since

the thermalization proceeds through scattering on defects inside the quantum well (for a 2DES in

heterostructures), or on ripplons (for a 2DES on a surface of liquid helium). Extension of the results

to account for slow intrawell thermalization is straightforward, and will be done for electrons on

helium in order to compare the theory with the experimental data [cf. Eq. 6.9].
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5.1.3 Field-induced switching between tunneling from the

ground state, excited states, and over-barrier activa-

tion

Even in the temperature range T > T192 a sufficiently strong magnetic field can

increase the tunneling rate, provided T > TC. This happens if the tunneling exponent

for the ground state Rg(wc) E R4,:1(wc) exceeds that in the first excited state Rn:2(wc)

and its zero-field value Rfl:2(0). In a certain temperature range where T > T142, the

tunneling rate for B = 0 is determined by tunneling from the excited state n = 2.

This rate decreases with increasing B (the tunneling exponent anz increases with B).

For some B the exponents Rn=2(wc) and R,,=1(wc) become equal to each other. For

larger B the system tunnels from the ground state, and the tunneling rate increases

with B.

Similarly, since the activation rate is only weakly affected by B, in a certain

temperature range where escape already occurs via activation for B = 0, starting

with some B it may again go through tunneling from the ground state. This happens

if the tunneling rate for the ground state becomes bigger than the activation rate and

only happens in a limited range of B, see Sec. 5.2.1. For a special model the switching

is illustrated in Fig. 5.2 below.
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5.2 Tunneling enhancement for the Einstein model

of a Wigner crystal

In what follows we will illustrate the general results and apply them to specific 2D

systems using the Einstein approximation for the phonon spectrum, wk]- 2 wp. This

is motivated by the fact that tunneling is determined primarily by short-wavelength

vibrations, which have a comparatively weak dispersion. The magnetic-field-enhanced

tunneling can be observed in experiments with smooth tunneling potentials. As

before, we take a triangular barrier as a representative for such potentials. The case

of tunneling through potentials where the tunneling length that does not change with

intrawell energy is qualitatively different: tunneling enhancement is not expected

to occur there [again, assuming that the intrawell relaxation is fast enough, with an

approximate rule that the cleaner the sample is, the slower is the intrawell relaxation].

However, switching from tunneling to thermal activation can occur with increasing

of magnetic field for such tunneling barriers.

5.2.1 Smooth potentials: field-induced tunneling enhance-

ment and switching from activation to tunneling

Below we use the explicit expression for the tunneling exponent obtained earlier (4.39),

(4.40) to analyze the effects of tunneling enhancement and magnetic field induced

switching to tunneling. In the small-B limit, where we << “22,70— 1, the tunneling

exponent R9(B) is seen from Eq. (4.39) to be quadratic in B. The coefficient Ag in
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Figure 5.1: The dependence of the tunneling exponent R(B) E Rg(B) on the magnetic

field (4.39) for wpro = 1/3 near the crossover temperature fie z 1.6770 (5.4). The

curves 1 to 3 correspond to (B — fig/To = 0.2, 0, —0.3

Eq. (5.1) can be easily calculated. From the condition A9 = 0 we obtain the value

of the reciprocal temperature BC which corresponds to the crossover from decrease to

increase of the tunneling rate due to a magnetic field,

2 1/ 31/ — 3+z/2 tanhu

fiC——-2TO+—tanh—1 p[ p ( p) p] 5.4

wp V3 — 31/1,, + 3 tanh up ( )

 

In agreement with (5.3), 5,, monotonically increases with cap from 570 /3 at cup 2 0 to

270 for cup ——> 00.

The dependence of the tunneling exponent (4.39) on the magnetic field for different

temperatures is shown in Fig. 5.1. Above the crossover temperature ([3 < 56), R(B)

decreases with B. Then R(0) — R(B), and the tunneling probability with it, increase

with the increasing field, for small B. The slope dR/BdB (X B — [30 for B ——> 0.
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Figure 5.2: Magnetic field induced switching from activation (a) and from tunneling

from the excited state (b) to tunneling from the ground state, for wpro = 1/3. In

(a), there is only one intrawell state in the potential well U(z), and the transition

to activation for B = 0 occurs for B/TO = 4/3. The curves 1, 2 correspond to

(B — fic)/To = —0.35, —0.4. In (b), the position E2 of the excited level (n = 2) is

chosen at 0.272 /2m below the barrier top (E1 = 0). The temperature is chosen at

(5 — fic)/TO = —0.16, so that for B = 0 the system tunnels from the excited state.

The observable (smaller) tunneling exponents for a given B are shown with bold

lines, whereas dashed lines show the bigger exponents, which correspond to smaller

tunneling rates.

However, for strong fields the tunneling rate decreases with the increasing B, because

the Hall momentum can no longer be compensated by thermal fluctuations.

It is clear from the data in Fig. 5.1 that, for the barrier chosen, the magnetic

field induced increase of the tunneling exponent R is numerically small. However,

for typical R 2, 50 it can still be noticeable, although strictly speaking it is on the

border of applicability of the approximation in which only the exponent is taken into

account.

The expression (4.39) gives the tunneling exponent only for low enough temper-
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atures where the system escapes from the ground state. For higher temperatures,

one should take into account the possibility of escape from excited states and via

an activated transition over a potential barrier. The positions of the excited levels

depend not only on the barrier shape, but also on the shape of the potential U(2)

inside the well. The analysis for a realistic system, electrons on the surface of liquid

helium, is done in the next section. Here, in order to illustrate different options, we

discuss two cases: a narrow well, in which case the ground state is essentially the only

intrawell state, and a well with a comparatively shallow excited state for which still

the intrawell relaxation rate is higher than the tunneling rate, so that its occupation

is given by the Boltzmann factor.

We start with the discussion of the case of a single-state potential well. For

B = 0 and a triangular barrier U(z) (4.38), switching from tunneling to activation

occurs here for the temperature Ta E l/fia = (Aim/3)“. This temperature is higher

than the crossover temperature 1/3c (5.4), and therefore there is a region where the

enhancement of tunneling by a magnetic field can be observed, as discussed above

(cf. Fig. 5.1). However, even though for T > Ta the B = 0—escape occurs via

over-barrier transitions, the increase of the tunneling rate with the increasing B can

make tunneling more probable for sufficiently strong B. If the activation rate is

independent of B, the overall dependence of the exponent of the escape rate R(B) =

minn[R,,(B) + ME" — E1)] oc 1n W(B) on B is shown in Fig. 5.2a. In this case,

R(O) = 72/2mT is the barrier height over temperature. Switching to tunneling and

to the increase of the escape rate with B occurs where the tunneling exponent Rg(B)

as given by Eq. (4.39) becomes less than 12(0).
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A similar switching occurs in the temperature range where tunneling from the

first excited level is more probable than from the ground state, for B = 0. Since with

increasing B the tunneling rate in the ground state increases, the system switches to

tunneling from the ground state starting with a certain value of B. This is illustrated

in Fig. 5.2b.

In narrow-well potentials, a magnetic field may strongly affect the wave functions

with energies close to the barrier top. As a result, new bound metastable states may

appear in a strong field. The field also shifts the energy levels of the existing states.

The rate of interlevel transitions may also change, since the field mixes together the

in-plane and out-of—plane motions. The related effects may become important with

increasing temperature.

5.2.2 Square barrier: field-induced crossover to thermal ac-

tivation

Tunneling through a rectangular barrier is special in that respect that the tunneling

length L does not decrease with increasing of intrawell energy. As a result, the

tunneling time 70(E) = —dSO/dE for B = 0 monotonically increases with energy E,

and correspondingly the energy level found from the condition fl = 27'(E) gives not

a maximum of the function —[3E — 2SO(E), but a minimum. The maximum value,

which gives the probability of tunneling with energy E with account taken of the

occupation factor, corresponds either to the transition from the ground state or to

activation over the barrier.
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Consider, for example, the simplest case of a square barrier with boundaries at

z = 0 and z = L, which mimics the tunneling barrier formed by a insulating layer in

semiconductor heterostructures.

U(z) 2 72/2722, 0 < z < L. (5.5)

Here, we count U off from the intrawell energy level Eg; 1/7 is the decay length

under the barrier, cf. Eq. (4.16), and we have neglected the lowering of the barrier

due to the electrostatic field from other electrons at their lattice sites, which is a good

approximation for nL2 << 1.

Switching to activation occurs for the temperature Ta = 72/4mSo(Eg) E

7/4mL = (4TO)‘1. It is lower than the temperature Tc of the crossover from B-

suppressed to B-enhanced tunneling as given by Eq. (5.3), and therefore we do not

expect the crossover to occur in systems with a square barrier.

If the temperature T < Ta, escape for B = 0 occurs via tunneling, and its prob-

ability decreases with the increasing B. Starting with some B, where the tunneling

exponent becomes bigger than the activation exponent 72/2mT, it becomes more

probable to escape by activated transition than by tunneling. To a good approxima-

tion, the escape rate becomes independent of the magnetic field.

The tunneling exponent that describes the escape rate for T < Ta can be obtained

directly from the [linear, in this case] equations of motion (3.3) with the boundary

conditions (4.16), (4.18), (4.44). It has the form:

R = 7L [7rd + I/CK.(Trd)]. (5.6)

where the function firm) and the reduced tunneling time Trd : Tf/TO in Eq. 5.6 is
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Figure 5.3: The logarithm of the escape rate R(B) compared to its B = 0 value

R(O) = 250(Eg) E 27L, which is determined by tunneling through the square barrier

(5.5). Curves 1-4 correspond to (B — flc)/ro = 3,4, 5, with T0 = mL/y, and £6 = for

chosen top = 1/27’0. As were increases, there occurs a transition from tunneling to

thermal activation.

found from the following equations:

I/C(C0Sh VT“, — 1)
 

n 7' E( rd) V3 + V; cosh VT“, + yup coth[wp,6/2 — uprrd] sinh VpTrd

_ 1 113(2 — 2cosh VTrd + VTrd sinh VTrd) ‘ VsiTrd - 1) Sinh ”Tm (5 7)
you: (1 — cosh urrd)(1 -- 113/113) + I/Trd sinh VTrd

 

Here, as before, the dimensionless in-plane and cyclotron frequencies up = pro and

12C 2 wcro are scaled by the inverse tunneling duration for B = 0, 'r0’1 = ’y/mL, and

2 __ 2 2
I/ — up + V6.

The B-dependence of the escape rate for different temperatures is illustrated in

Fig. 5.3. With increasing of either temperature or magnetic field, the tunneling
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exponent (5.6) becomes bigger than the activation exponent 72/2mT = 7Lfi/2’ro.

Then it becomes more probable to escape by activated transition than by tunneling.

The temperature of switching to activation is given by the equation Ta =

72/2ng. From (5.6), (5.7), R9 increases with the magnetic field, and therefore

the switching temperature Ta decreases with B. However, it follows from the analysis

of the above equations that T, remains lower than 1/(47'0).

The effect of saturation of the escape rate with increasing B is not limited to square

barriers, of course. For strong enough B and nonzero temperatures, the tunneling

rate becomes less than the activation rate, and the system switches to activation;

the switching may go in steps with increasing B, via tunneling from excited intrawell

states.

5.3 Summary

Coupling between out-of—plane and in-plane degrees of freedom that is realized by

magnetic field parallel to the layer leads at low temperatures to the suppression of the

tunneling rate, and to the enhancement of it with B at higher temperatures. Because

coupling strength is proportional to the magnetic field, one may be able therefore

to control the tunneling rate in a broad range, just by changing temperature and

magnetic field, without changing parameters of the tunneling barrier.

The overall escape rate as a function of B and T is expected to display a number

of other unusual features. These include switching from activated escape to tunneling

and vice versa, and switching between tunneling from the ground and excited states.
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These switchings have been analyzed for simple but realistic models of the tunneling

barrier.

Sufficiently strong magnetic fields will always suppress the tunneling rate. There-

fore, the enhancement of tunneling occurs in a limited range of magnetic field. Other

competing processes, such as tunneling from higher intra—well states, and over-barrier

escape, limit the range of temperatures for B—enhanced tunneling. For a given geom-

etry of the tunneling barrier, this effectively sets the limits on how fast the escape

rate can be enhanced. However, in some cases, such as for high mobility samples,

low in-plane scattering rate probability results in the suppression the rate of tunnel-

ing from higher intra—well levels and the rate of over-barrier escape. This happens

because the occupation of higher levels depends on a scattering amplitude into these

states and no in-plane momentum from the ground state and large in-plane momen-

tum. In other words, there is no equilibrium distribution of states inside the well2.

Because the competing escape processes are suppressed, the B-enhanced tunneling

occurs for higher temperatures, where the effect is bigger. In particular this happens,

for electrons on helium, where the electron mobility is N 108 Vs”1cm"2. If there were

equilibrium distribution inside the well, then the over-barrier activation would be a

dominated process even for T < Tc, and the enhancement of tunneling would not

occur at all. Contrary to this, B-enhanced tunneling is indeed observed.

 

2This can also happen in classical systems, if they are highly underdamped.
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Chapter 6

Comparison with experimental

data on tunneling from helium

surface

In this Chapter tunneling experiments are discussed. The only tunneling experiment

known to me, where tunneling occurrs from a strongly correlated 2DES in the presence

of magnetic field parallel to the electron layer was done for electrons on helium. Such

systems are advantageous from the point of view that several major parameters that

control tunneling can be easily varied. In addition, the electron mobility is very high.

The tunneling rate, obtained from the model with no adjustable parameters, is in

qualitative and quantitative agreement with the experiment [34] in a broad range

of fields, electron densities, and temperatures. In particular, the results explain an

exponentially strong deviation at low temperatures of the tunneling rate from the
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predictions of the single-electron theory.

6.1 The tunneling potential for electrons on he-

lium

The formation of an electron layer on a liquid helium surface occurs because of two

forces. On one hand, there is an attractive image force on electrons because they

polarize the dielectric. The effective charge is Ae = %(:+;11)l, where e z 1.057 is the

dielectric constant of helium. On the other hand, a very high affinity potential for

helium (a: lev) prevents electrons from penetrating into the dielectric. The corre-

sponding Schrédinger equation for a model potential

Uim = (6.1)

with the appropriate boundary condition 72(0) 2 0 can be solved exactly. This so-

lution [74, 75] gives the energy levels E, = 7,2, /2m, where the intrawell localization

length of the n-th level is 7,, = 71/77. = Am/n, (7 E 71). The ground state is described

3/2zexp(—7z), with 7‘1 = 76Aand energy E9 % 7.5K.by a wave function 1721(2) = 27

The smallness of E1 justifies the use of the infinite barrier approximation. The av-

erage distance to the surface for an electron is (z) = 3/27 z 114A. This problem

was analyzed more precisely in Ref. [74], taking into account the finite value for the

affinity potential, but the results yield only small corrections to the above expression.

In experiment [34], electrons were injected from above into a cylindrical cell of

height 2.5 :l: 0.05 mm that is half filled with liquid helium. A negatively biased guard
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ring of diameter 18 :t 0.05 mm prevents electrons from escaping to the sides. The

helium surface was kept close to the middle of the cell: d 2 ch (with the uncertainty of

i0.025 mm), where d and h are distances from the layer to top and bottom electrodes.

A voltage V, applied between the top plate and the grounded bottom plate creates

the external electric field —Vt/(d + h/e) that can either additionally confine electrons

or extract them from the layer. The tunneling rate is measured as the difference in

the number of electrons before and after the extracting pulse of the electric field. In

addition to the applied electric field, there is an electric field from charges induced in

the t0p and bottom electrodes by electrons of the 2DES. As a result, the total electric

field becomes density-dependent [76]:

V: d—h

'5” Z d+h/e ‘4” l e l (€+1)(d+h/e)

 (6.2) 

In the presence of electric field, the ground state energy changes. This change can

be found by the first-order perturbation theory in electric field. The ground state

energy becomes:

__1’1_ __7_2 _3_
E1— 2m [€8_L[<Z> — 2m (1+ 27L) , (6.3)

where the tunneling length L = 72/ (2m[e8j[). The energy shift is small as an inverse

of 7L, which is a large parameter of the theory. Large 7L is also necessary for the

adiabatic approximation to be valid. For electrons on helium this condition is well

satisfied with 7L ~ 30.

The tunneling potential is also affected by the Coulomb interaction between elec-

trons. The corresponding “correlation—hole” potential [69, 72] can be obtained by

keeping only the lowest-order terms in the ratio of the tunneling length L to the
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—1/2
inter-electron distance n , as discussed in paragraph 4.4.1, and has the form

—mt0222, where t?) (X 723/2. The conditions 7’1 << L << nil/2 are typically very

well satisfied in experiment, with the decay length 1/7 = 1/Am z 0.7 x 10“6 cm,

L ~ [Eg/efjl z 72/2mle8jl ~ 2 x 10‘5 cm, and 71‘1/2 ~ 10‘4 cm [in the estimate of

L we used that [E9] >> |e£i[/7,m032/72, and that [eELI/7 2, CD].

We can now write the total tunneling potential and separate terms that are small

as ML)”:

0(2) 2 #— [U0(z) + 71LU1(Z)] , z > 0 (6.4)

Uo(z) = 1 — g — $027: (32 (6.5)

2 3 3_2 22:

U1(Z)——(—Z/—L5+‘2‘+§w TOE (6.6)

Here, the energy is counted from the ground state energy. The linear term in Eq. (6.4)

describes the electric field that pulls electrons out of the layer. The parameter To =

2mL/7 is the imaginary tunneling time in the limit 77. —> 0. Although the image

1
potential o< 1/z provides the major contribution for 2: ~ 7‘ , it becomes small deep

under the barrier.

6.2 Exponent of the tunneling rate

To compare the predicted dynamical effect of the electron-electron interaction with

the experimental data [34], we use the Einstein model of the WC, and set all

the phonon frequencies wkj to be equal to the characteristic plasma frequency

top = (27re2n3/2/m)1/2. The numerical results change only slightly when this fre-
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quency is varied within reasonable limits, e.g., is replaced by the root mean square

frequency 0'). Note that the correlation-hole potential is determined by the mean

square frequency 0?) = (4.4562713/2 /m)1/2.

The magnetic field dependence of the tunneling rate for different T is calculated

from Eqs. (4.11). The actual calculation is largely simplified by the fact that, deep

under the barrier, the image potential —A/z in (6.4) can be neglected. The equations

of motion (4.11) become then linear, and can be explicitly solved. In what follows we

will use dimensionless frequencies VC 2 were, up = 01,070, 17 = (1270, and 1/2 = V: + V3.

The coordinates :1: and z are given in units of the tunneling length L, and momenta

pa, and pz are given in units of 7/2. The tunneling trajectories then take the form:

  

 

 

A A

3(7) 2 -—:\—:— sin A17 + T12 cos A17 - T:- sinh A27 — Xj cosh A27;

12 + A2 A2 — V2

192(7) = /p 1(.42 cos Alr — A1 sin A17) + 2 p (A3 sinh A27 + A4 cosh A27);

”CAI /\2Vc

V2 + A?

2(7) = I; A2 (A1 cos /\1T + A2 sin A17)

c 1

A3 — 113 . __2

2 (A3 cosh A27" + A4 smh A27") — 1/ ;

110A2

19,,(7) = A1 cos A17 + A2 sin A17 + A3 cosh A27 + A4 sinh A27- — 1162(7). (6.7)

Here, the eigenvalues A12 of the matrix derived from the equations of motion are

given by:

 

A? —_= [2172 — V2 + (A2272 — V2)2 + 81721;; ,

 

[
\
D
I
H

[
Q
t
y
—
t

 
A3 = [1,2 — 2172 + \/(2172 — V2)? + 8.72ng .
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The constants A,, 2' = 1, 2, 3, 4 are determined from the initial conditions (416,418):

_ 21/6 + VpIL'(0)(I/2 -— Ag) coth[wpfl/2 — uprm]
 

 

 

 

A _

1 A? + A3

A _ 417211C — (I/2 — )t§)(21/C — 123310))

2 _ /\1(/\i + A3)

21/C + 1/,,.2:(0)(1/2 + A?) coth[wa/2 — uprrd]

A3 = - 2 2
/\1 + /\2

A _ ~4172uc + (i/2 + A¥)(2Vc — 1432(0))

4 — A203 + A3)

According to the boundary condition (4.12), at the exit point $(7’rd) = pz(T,.d) = 0,

which allows to find Trd and 23(0). In particular, as it follows from expressions for

33(7) and 192(7) on the tunneling trajectory (6.7), this is equivalent to requiring that

A1 sin A17“, 2 A2 cos A1 Trd and A3 sinh Agrrd = —A4 cosh /\2Trd.

The tunneling exponent is then given by:

2 2

R: L2,.+—,——— +—- +1—— .
7 [ Td 172 (1 A?) Ali/C ( Ag) 12,22] (6 8)

  

Expression (6.8) is plotted in Fig. 6.1 for the quantity W(B)/W(O). The correction to

R(B) —R(0) from the image potential and other terms of U1(z) in Eq. (6.6) is ~ 1/7L.

This results in changes to the theoretical curves that are smaller than the uncertainty

in R(B) — R(O) due to the uncertainties in n and Si in the experiment [34]. Note,

however, that the potential U1(z) has to be taken into account when comparing the

tunneling rate W itself with experiment.

As seen from Figs. 6.1, 6.2 the dynamical many-electron theory is in good qualita-

tive and quantitative agreement with the experiment, without any adjustable param-

eters. At low temperatures (T = 0.04 K), the many-electron tunneling rate is bigger

than the single-electron estimate [34] by a factor of 102 for B = 0.25 T, see Fig.6.2.
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Figure 6.1: The relative rate of electron tunneling from helium surface W(B)/W(O)

as a function of the magnetic field B for the electron density n = 0.8 x 108cm‘2 and

the calculated pulling field SL = 24.7 V/cm (solid curve). Solid lines show how the

theory compares to the experimental data [34]. The errorbars show the uncertainty

in the theoretical values due to the uncertainty in the parameters of the experiment.

For this temperature, the tunneling rate is well described by the T —> 0 limit, cf [56].

The B-dependence of the tunneling rate is very sensitive to temperature. It becomes

less pronounced for higher T, and the role of dynamical many-electron effects becomes

less important, too. Interestingly, the theoretical data on the ratio of W(B)/W(O)

become less sensitive to the experimental uncertainties in the cell geometry (which

determines EL) and the electron density n for intermediate temperatures T N 0.14 K.

This is because the corresponding errors in W(B) and W'(0) compensate each other

for such temperatures.
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Figure 6.2: The rate of electron tunneling from helium surface W(B) as a function

of the magnetic field B for the electron density n = 0.8 x 108cm"2 and the calculated

pulling field El 2 24.7 V/cm (solid curve). Solid line is the theoretical calculation

for T = 0. The experimental data are taken from [34] for T = 0.04 K. For such

low temperature, predictions of finite and zero temperature theory are very close to

each other, as can be noted by comparing with Fig. 6.1, where the finite-temperature

curve is given. The error bars show the uncertainty in the theoretical values due

to the uncertainty in the parameters of the experiment. The dashed curve is the

calculation [34] for T = 0.04 K without inter-electron momentum exchange.

The crossover to magnetic-field enhanced tunneling occurs for temperature Tc 2

0.19K, for the parameters in Fig. 6.1. The expected increase of the tunneling rate

with B for T > Tc is shown in Fig. 6.1. It has indeed been observed in the experiment

[34]. The analysis of the experiment requires to establish whether, for temperatures

of interest, escape actually occurs via tunneling. To that end we note first that, as

it follows from a direct variational calculation, the potential U(z) (6.4), with the
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parameter values specified in Fig. 6.1, has only one metastable intrawell state.

If the intrawell relaxation were fast enough, the temperature of the crossover

from tunneling to activation Ta for B = 0 would be given by the condition that

the tunneling exponent R9 be equal to the activation exponent (Um,x — Eg)/T [here,

Umx is the maximal value of the potential U(2)] This would give Ta z 0.15 K.

However, activated escape requires that the in-plane thermal energy of an electron be

transformed into the energy of its out-of—plane motion. This involves a large transfer

of the in-plane momentum ~ [2m(U,,,a_x —— Eg)]1/2. The electron-electron interaction

does not give rise to such a transfer in a strongly correlated system, since the reciprocal

inter-electron distance is n1/2 << [2m(Um,,x — Eg)]1/2.

The major process which gives rise to the momentum transfer is scattering by

capillary waves on the helium surface, ripplons [53]. Electron-ripplon coupling is

weak [77]. As a result, the prefactor in the activation rate, which is quadratic in the

coupling constant, is small. For B = 0 it is N 72T2/ha [78], where o is the surface

tension of liquid helium. For temperatures T < 0.25 K this prefactor is less than the

prefactor in the tunneling rate (h7z/m) exp(—2) by a factor < x10‘5. Therefore the

crossover from tunneling to activation occurs for higher temperatures than it would

follow from the condition of equal tunneling and activation exponents.

For the parameters in Fig. 6.1, the rates of activation and tunneling escape be-

come equal for temperatures slightly higher than 0.26 K (for B = 0). Therefore the

experimentally observed increase of the escape rate with B is indeed due to the dis-

cussed mechanism of B-enhanced tunneling. The smaller experimental values of the

relative escape rate W(B) /VV(0) for T = 0.26 K can be understood by noticing that
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the activation rate is close to the tunneling rate for such T, and since it presumably

only weakly depends on B, the overall slope of ln[I/V(B) /W(0)] should be smaller than

that of the theoretical curve which ignores activation (approximately, by a factor of

two).

To include the activation processes in the overall escape probability, W = VVtunn +

W’act, the probability of the over-barrier escape was calculated following the logic of

the paper [78]:

_ m 2 kBT —E,. k T
Wact -— CEUCBT) Ea (1+ 3“???) 8 / B , (6.9)

where the numerical factor C = 1.42 differs by a factor of 4 from those in Ref. [78].

The barrier height gives the activation exponent Ea = Umax — E9. The result for the

escape rate for T = 0.26 K is shown by the dashed line in Fig. 6.1. This calculation

neglects the change in the probability of over-barrier escape with magnetic field.

Although the rate of activation escape indeed only weakly depends on B, there are

several factors that could affect the over-barrier escape in a magnetic field. First, the

field may “push” the ground state upward in energy, by mw§[(zz) —- (2)2]/2, for a

weak field (the averaging is performed for the ground state). A second factor is the

change, by the magnetic field, of the wave functions with energies close to the barrier

top. For B = 0.4 T the magnetic length l = (fic/eB)”2 is ~ 0.6 of the distance from

the helium surface to the barrier top position (A/ l6£i|)1/2. Both factors decrease the

activation energy for over-barrier escape.
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6.3 The prefactor

The dependence of the potential U (z) (6.4) on 11 gives rise to the density dependence

of the tunneling rate W'(B) even for B = 0. We can calculate the exponent and the

prefactor in W(O) by matching the WKB wave function under the barrier for 1 /7 <<

2 << L with the tail of the non-WKB intrawell solution (here, L :2 h272/2mle5jl is

the characteristic barrier width). In the spirit of the logarithmic perturbation theory

(LPT) [79], the wave function of the ground state inside the well and not too far from

it can be sought in the form

wg(z) = const x zexp[—A(z)] (6.10)

[we explicitly take into account that the function 729(2) has a zero in the ground state].

Near the well (z << L) the first term in (6.6) provides the major contribution

to the potential. The solution can be found by considering the last two terms in

the potential U0(z) (6.5) as a perturbation 6U(z), which is polynomial in 2. Using

the anzats (6.10 for the wave function, one gets a Riccati equation for the function

f (z) E dA/dz:

d

d_j;+.:.(f_7)—f2+72:2m(E—6U). (6-11)

The function f has to equal to 7 for z = 0. The general solution has the form:

2

f E 7 +/ dzl2m(E — 6U(zl))% exp[—27(z — 21)] + Bz‘2 exp[27z]. (6.12)

C

Since we are looking for the localized state wave function, f has to go to zero as

2 -—) 00. Therefore, coefficient B = 0 and integration constant C : 00. The energy

112



E can be found from the condition that function f remains finite as 2 —> 0:

fooo (1.22.'2(5U(z)e‘27z
E :

fooo dzz2e—272

 (6.13)

From expression (6.13), it si clear that the contribution to the energy E from different

orders in z of potential (5U are independent and additive, so that for the perturbation

6U(z) = Cz“, the energy is given by

E = (27ml + 2)1/2, (6.14)

and the function f has the form

p—l

—i p—i (H 'l' 2)!

Near the well, the linear term oc El dominates the quadratic one in (6.5). To the first

order in EL, the exponent A(z) of the wave function can be obtained by integrating

over 2 the function f from (6.15), with 11 = 1 and C = —|e8j| E —72/2mL:

A(z) z 72. (1 — 2151:) . (6.16)

The correction to A (6.16) is small for 2 small compared to the barrier width L.

We note that the exponent A(z) has an overall functional form which differs from

that of the commonly used [53] variational wave function 72(2) cc 2 exp(—7z), with 7

being the variational parameter.

The expression for A (6.16) matches the small-z/L expansion of the action S of

the WKB wave function under the barrier for L >> 2 >> 7‘1. This allowed us to find

the prefactor in the WKB wave function and in the tunneling rate. The resulting

tunneling rate is shown in Fig. 6.3. It fully agrees with the experiment (see also
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Figure 6.3: The rate of electron tunneling from the helium surface W(0) for B = 0

as a function of the electron density. The dots Show the experimental data [34]. The

pulling field 8; for n ——> 0 is calculated for the parameters used in the experiment to

be 26.7V/cm.

Ref. [80], where a good agreement was obtained between measured and numerically

calculated tunneling rates without magnetic field for electrons on helium).
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Chapter 7

Conclusions

We have developed a semiclassical theory of tunneling decay in a magnetic field. We

show that, as in the case without the magnetic field, the tunneling exponent can be

found from the classical equations of motion. However, in contrast to the B = 0-case,

decay of the wave function under the barrier is accompanied by oscillations. Related

to this is the conclusion that the particle appears from under the barrier with finite

real velocity, and behind the boundary U(r) = E of the classically allowed region.

In the presence of a magnetic field it is no longer sufficient to find the wave function

just at the boundary of a classically allowed region: it is necessary to find both the

exit point (or any point on the trajectory of the escaped particle), and the absolute

value of the wave function along it.

From the technical point of view, the semiclassical solution of the tunneling prob-

lem in a magnetic field is based on the analytic continuation of the wave function to

complex space. In the semiclassical approximation this corresponds to considering

trajectories with complex coordinates, momenta and time. The action S(r) calcu-
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lated along such tunneling trajectories will have both real and imaginary part, and

this would describe both decay and oscillations of the wave function. The condition

for the particle to become classically observable is that its coordinate and momentum

become real, i.e. Irn r=Im p20. The real part of momentum (or velocity) is not

necessarily equal to zero, and gives the initial momentum of the escaped particle.

This momentum was accumulated due to the magnetic field during motion under

the barrier. As we show, the set of complex under barrier trajectories has caustics.

The semiclassical approximation breaks down at the caustics. Different branches that

correspond to decaying and increasing solutions, and to incident and outgoing waves

match at the caustic, and we show how to choose the appropriate solutions to account

for the boundary conditions.

We have also analyzed the single-particle decay problem in a magnetic field for fi—

nite temperatures. We have modified the known bounce technique for the problem of

decay from a parabolic metastable potential well. In the presence of a magnetic field,

the bounce trajectory becomes complex. However, as we Show, the corresponding

action remains real, and the prefactor in the partition function is purely imaginary,

although the structure of the related eigenvalue problem is totally different (the eigen-

values become complex).

If the tunneling potential cannot be approximated as parabolic near its minimum,

at least in one direction, the “bounce” technique no longer works regardless of the

presence of a magnetic field. Such a situation is relevant in tunneling from 2DES,

where the out-of-plane motion is quantized and the tunneling potential is strongly

non-parabolic in the out-of—plane direction (either singular, as it is in the case of
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electrons on helium, or discontinuous, as in the case of 2DES in semiconductor het-

erostructures).

Of central interest for 2D science are the effects of electron correlations. We

Show that tunneling in a magnetic field provides a unique tool for revealing and

investigating these effects. They lead to an exponential increase of the tunneling

rate as compared to the predictions of the non-interacting electrons picture. The

mechanism responsible for such an increase is similar to a Mossbauer effect, where a

gamma quantum can transfer its momentum to the crystal as a whole. In our case the

momentum that is transfered to the electron system as a whole is an in-plane Hall

momentum acquired by the tunneling electron during its motion out of the layer.

In the non-interacting picture it is this in-plane Hall momentum that leads to an

exponential suppression of the tunneling rate in a parallel to the layer field. However,

complete transfer of this momentum almost never occurs, as it requires that the rate

of inter-electron momentum exchange (plasma frequency) be much larger than the

inverse characteristic imaginary time of motion on the tunneling trajectory. When

these two quantities are of the same order, only a part of the Hall momentum is

transfered in the “recoil-free” way, which results in a partial, yet very substantial

compensation of the suppression to the escape rate introduced by the parallel field.

Similarly to a Méssbauer effect, there is no need for a long-range order in an electron

system for our mechanism to work. The effect should be seen even if electrons form

a strongly correlated fluid without the long-range order.

At high temperatures the tunneling rate is expected to exhibit a number of new

unusual features. One of the most interesting of them is that a parallel magnetic field
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may enhance, rather than suppress the tunneling rate. Such B-enhanced tunneling

does not happen in all systems. Competing processes, such as tunneling from higher

in energy intra-well states or activation, limit the range of temperatures where B-

enhanced tunneling can be observed. On the other hand, sufficiently strong magnetic

fields will always suppress the tunneling rate, which set the limits on magnetic fields

that enhance tunneling. Nevertheless, the possibility to increase the tunneling rate

without changing parameters of the tunneling barrier is not only unexpected, but

also very useful. For example, in the development of quantum cascade lasers, high

tunneling rates are necessary to achieve an inverted level occupation, meanwhile the

parameters of the tunneling barriers are essentially fixed by other requirements.

The B-enhanced tunneling leads in turn to several types of switching effects,

such as switching between tunneling from different intra—well states, and from over-

barrier activation to tunneling, and vice versa. These switching processes may differ

qualitatively for barriers, where the tunneling length changes with intra-well energy,

as opposed to barriers, where the length does not depend on the energy. Both cases

have been analyzed in detail using simple models of a triangular and a square potential

in order to describe the first and second situation, respectively.

The results have been compared to the tunneling data from experiments on

strongly correlated electron systems formed on liquid helium surface [34]. The ana-

lytically calculated tunneling rate and its evolution with field and temperature are

in full qualitative and quantitative agreement with the experimental data, with no

adjustable parameters. This proves that tunneling experiments with a magnetic field

parallel to the layer can be used in order to reveal strong electron correlations and in-
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vestigate in-plane electron dynamics in a 2DES. The measurable quantity is the auto-

correlation function of the in-plane momentum of an electron in a strongly correlated

2DES. Of particular interest are low-density 2DESs in semiconductor heterostruc-

tures. Until now correlated systems in semiconductors have been investigated by

tunneling mostly for the magnetic field B perpendicular or nearly perpendicular to

the electron layer. We show that for typical densities used in low-density systems,

and with barriers grown with standard techniques tunneling experiments designed to

probe in-plane correlations would require easily attainable values for magnetic field

and temperature.
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Appendix A

The instanton method in a

magnetic field: analysis of the

prefactor

To find the prefactor in Z, we consider paths that are close to the extremal trajectory

f(r) + 6r(r), and show that the integral (3.23) provides an imaginary contribution to

Z. The action SE along these paths can be expanded as:

 

1 6233

R: . _ — d I i ' ’ .SE Sg[r(r)] + 2// rdr 6ri(r)6rj(r’)6r (r)6r,(r) (A 1)

To evaluate the integral (3.23), we would like to diagonalize the operator for 6255,

and therefore have to look at the eigenvalue problem:

 if d ' 6st ' -—/\ A2/_ .. ,ri(T),rj(T,)w..-tri— me) ( .)
l

27‘

We need to investigate some prOperties of the eigenvectors 1/2(r) before we could use

them to expand the fluctuations 6r(r) around the extremal trajectory f'(r). In the
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presence of a magnetic field the operator itself in (A.2) becomes non-Hermitian. For

example, in the case of a uniform B it may written as F(r) 1/Jn(7') = An ¢n(r) with

. d

' C.,--B— A.+me63k ldT ( 3)

m d2 6-- + 02U

dr2 U agar,-
F110) =

The eigenvectors of the problem (A.2) form a biorthogonal set, meaning that eigenvec-

tors {wn} are orthogonal to eigenvectors {¢,,} of the Hermitian conjugate operator:

FI4)” = A;¢n. Taking into account the symmetry (3.26) of the extremal trajectory

f(r), and counting the imaginary time from the middle point 6/2, we find that the

operator F belongs to the class of ”PT-symmetric non-Hermitian Hamiltonians:

Fl(r) 2 F(—r) : F*(r). (A.4)

In our case, variable r is a space coordinate, so that inversion ’P corresponds to r —>

—r, while time reversal T is a complex conjugation. Therefore we have come upon

yet another example of PT—symmetric Hamiltonian. Recent physical applications of

non-Hermitian Hamiltonians include depinning of vortices in type-II superconductors

[81] and growth of populations [82]. Bifurcation of the initially real eigenvalues [83]

into the complex plane with increasing of an imaginary external field (in our case -

magnetic field) indicates the delocalization transition.

The symmetry (A.4) is a strong property, and in particular it shows that 1,0,,(r) =

(V (7'). Then the orthogonality relation reads:
71

'fl/2

[62 dT1/)m(T)I/Jn(7') = Andmn, (A.5)

where An is a normalization factor.
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Because the operator F is non-Hermitian, some of the eigenvalues An will be

complex. Let us compare the spectra of operators F and FI. In general, they are not

the same, but in our case it will be true. We start with the eigenvalue equation for

operator Fl:

MUN/12(7) = Ali/4(7),

perform the time inversion, and then use the symmetry (A.4) to get

F(T)¢*(-T) = AWN-T)-

The last equation does not mean that all eigenvalues A" are real. Instead, it shows

that the spectrum of operators F is identical to that of operator FI. The eigenvalues

An are either real, or are present in pairs of complex conjugated numbers.

We are now in position to expand the fluctuations around the extremal trajectory

r(r) — f(r) in terms of eigenvectors '1/)n(r):

6/

MT) = Ail/2 26111117.“). 0n = 1451/2] 2 dT‘SrWanT), (A5)

—fi/2

Note that by multiplying an eigenvector 1])” by a phase factor em does change the

phase of the normalization factor An by 201. However the coefficients of expansion

{en} remain unchanged. The second-order correction to the action is diagonal in 0,,

variables,

SE z 5.311(7)] + 2 1,13, /2. (11.7)

The statistical sum is therefore given by a Gaussian integral in variables {ca}. One
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could formally rewrite (3.23) as

—1/2

Z = [/ / Dr(T)Dr*(7)8—Sslrfr)l-szr‘(r)l]

r(—fi/2)=r(t3/2) r‘(-13/2)=1"(t9/2)

—1/2

oc e”SElf(T)] U [/ den/dc; exp[—/\nc?, — Ancfi] (A8)

The integration over variables cn is easy to perform, the prefactor will be propor—

tional to

Z oc HAgl/2e_sElf(Tll, for An 75 0. (A9)

Integration in (A8) over variable c,- that corresponds to A,- = 0 will be done below.

Since the spectrum of operator F contains complex eigenvalues in pairs, they provide

positive contribution to the prefactor. We now turn our attention to the real part of

the spectrum of operator F. The real negative eigenvalues are of utmost importance,

and there should be an odd number of them, in order for SE[f(r)] to determine the

exponent of the imaginary part of statistical sum Z.

First of all, one of the eigenvectors is known - it is 1/21 2 df/dr. This can be

checked by a direct substitution to the eigenvalue equation (A.2):

 

T among-(TI) dr’ _ 6r.(r)

 d

a 2 -./T I (533 dl‘]_ ($53 :0. (A10)

.1.

Therefore, 11), corresponds to A1 = 0. In the integral (3.23) we integrate over various

paths 6r(r). According to transformation (A.6), the shift in 6r(r) due to a change in

coefficient Cl is given by

Ar(r) = Ail/2Acl¢1(r)

On the other hand, the shift of the middle point of the “bounce” may be regarded as
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one of the possible fluctuations around r(r)

Ar(r) = _dr(r_ T0)AT0 = —A1—1/21/)1(T)AT0

dTO

Assuming that 5 >> 1 (we consider the limit of low temperatures), the position of

the middle point can be anywhere in the interval (—6/2, 6/2). A shift in the middle

point results only in an exponentially small change of initial values. By comparing

the last two formulas, we find that Acl 2 Am, and therefore

.3/2

del =>/ dTQZ

5/2

The integration over c1 that correspond to /\1 = 0 has thus been performed. No

divergence occur in the prefactor (A9) due to the presence of the zero eigenvalue. It

is to be excluded from the product in (A9) Instead, we obtain a very natural factor

of 6 = T“, which eliminates a linear dependence of the tunneling rate (3.22) on

temperature.

Presence of a zero eigenvalue is not related to magnetic field, and occurs without

the magnetic field as well [9, 10]. For B = 0, the first eigenvector 1/21(r) = drc1(r)/dr,

where the path rc1(r) is real and corresponds to a classical trajectory in the inverted

potential —U(r) The fact that the eigenvector ¢1(r) gives the first excited state can

be seen by noting that it has one, and only one, zero at the middle point of motion

along the “bounce” trajectory: 1,.(0) = 0. Without a magnetic field, operator F is

Hermitian, so that the oscillation theorem is valid, and number of zeros enumerates

the eigenstates, with the ground state eigenvector not having any zeros. Therefore

there is one and only one negative A0 < 0, which makes the prefactor imaginary.
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Let us follow the evolution of eigenvalues An as we turn on the magnetic field. As

we know the eigenvalue A1 = 0 is not shifted, other eigenvalues, however, will change.

We also know that complex eigenvalues are present in complex conjugate pairs, and

therefore have the same real part. Because the overall number of eigenstates remains

unchanged with increasing of magnetic field, pairs of real eigenvalues first have to

merge together. Only when their real parts are equal, the imaginary part may appear.

The state with A = 0 does not mix with any other solutions. Suppose the opposite

were true, so that two different states ’l/Jl = df/dr and 1/22 satisfy the condition

F1,121,2 = 0. We can subtract these two equations from each other to obtain that

d . . -

a; [was + «pa/)2 — ichl¢1 x «121] = 0.

Because the eigenvectors are zero at boundaries at :tfl/2, the following is true as well

—¢2¢1 + $11212 + iwcwzltbr X B] = 0.

Remembering that 72, = df/dr and using the equations of motion (3.25) for f we

find that 11211212 — VU1122 = 0. This is a first order equation, and one solution is

known to be df/dr. It is also possible to show that the components of 1,122 which are

perpendicular to 1b, are equal to zero. The eigenvectors 1P1 and 1&2 differ only by a

constant.

We have just shown that state of the zero eigenvalue A1 = 0 remains non-

degenerate. Therefore, it separates the negative eigenvalue A0, which corresponds

to the ground state, from the rest of positive eigenvalues, and prevents the ground

state from mixing with higher levels.
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After complex conjugate pairs have formed, they could, upon further increase of

a magnetic field, change the sign of their real part from positive to negative, while

having non-zero imaginary part. Then it is possible for the imaginary part to become

zero again with increasing of the field. However, even if this were to happen, it would

add an extra pair of real negative eigenvalues, and therefore the overall number of

real negative eigenvalues would remain odd.

To summarize, we know that integration over paths close to the extremal path

11(7) provides an exponentially small imaginary part to the statistical sum Z. The

exponent of the tunneling rate W = 2TIm Z/Re Z is given by the Euclidean action

SE calculated along the extremal trajectory r(r) that satisfies the equations of motion

(3.25).
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Appendix B

Many-electron influence functional

ReelZ] at zero temperature

The scaling behavior of the tunneling exponent given by Eqs. (4.27) and (4.28) is quite

general and takes place for all tunneling potentials provided characteristic frequency

02,, > rf. Below, the derivation is presented for a square barrier. Such potential is

special because the velocity 2(rf) at the final point along the tunneling trajectory is

not zero. The symmetry (4.13) is imposed. Under these circumstances it is easier

rewrite the original retarded kernel Ree[z] as an integral from 0 to r]:

Ree[z] = —w3 [on [on drldrgz(r1)z(rg)[x(rl — r2) + x(2rf — r1 — 73)] (B.1)

At zero temperature, the kernel x(r) = m(2N)“l 2:ij exp[——wkjr]. It is clear that

different frequencies component are independent, therefore let us examine a kernel

x(r) 2 me) exp[—wr].

Because of the exponential dependence of the kernel x(r), the major contribution
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comes from r = 0. For the first term in (B1), this corresponds to r1 — r2 < w”, and

we can use the expansion (4.26) as before [for convenience I rewrite it here]:

zen.) z 2e.) + 2(71)(T2— T.) + game. — m2

For the second term in (8.1), both TI and r2 have to be close to Tf. Therefore both

z(r1) and 2(r2) have to be expanded near T):

471.2)“ Zle) + 2(Tl)(71.2 - T!) + %5(Tf)(71,2 — Tf)2 (B2)

A straightforward integration gives the following answer for the influence functional:

2
”Ian

2N

 Reelz] = — Tl dr22(r) +w;].22(r)2(r) — z(r )z (r )w—2J (B.3)
U [A f2 f k

As for a smooth tunneling barrier, the term o< 22(r) cancels the single-electron mag-

netic barrier in (4.23). If potential is purely square, then 25(r) E 0 [hard to imagine,

but to just to show that the scaling results (4.27), (4.28) hold in this case]. Mass

renormalization1S then due to the boundary term or Z(Tf)Z (rr,,) since for constant 2",

we can always write it as an integral

ReelzlE ~"meg/OT! dr [2%) )‘Ingfzzm (B4)

On the other hand, if 'z' is not identically zero on the optimal trajectory, then the

same answer (B4) is achieved by one integration by parts.

Frequency-dependence of the influence functional is studied next. It is shown

below the larger the phonon frequency wkj, the larger is the absolute value of the

contribution from this mode to the many-electron influence functional Reelz]. For

T : 0, the function that we sum over phonon frequencies in R842] is given by:

2Tf T1

f(w.n)= / dri/ dr2Z(T1)Z(T2)we"‘"T“T‘” (13.5)
0 0
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We will show now that this function is monotonic in terms of the frequency parameter

w. Indeed, its derivative with respect to w is:

2T] Tl

f1,(w,rf) 2/ drlz(rl)/ dT22'(7'2)(1—’ w(r1 — T2))€—w(Tl—T2)

0 0

Using the symmetry z(2rf — r) = 2(7') of the tunneling trajectory, we can change

the upper integration limit from 27') to rf. Because for r; 3 r1 g T), tunneling

trajectory z(r) monotonically increases with r, we have z(r2) < 2(r1). Therefore one

can substitute z(r1) by a smaller quantity 2(r2):

TI TI

fuvaf) > 2/ dTi/ dr222(r2) [(1 — W(Ti — r2))e“"(“"’2)

0 0

+(1 — w(2rf — 71 — r2))e—“’(27f'“’72)] (86)

Changing the order of integrations in order to integrate over r1, we get:

T] 2

fttw. 7;) = 4 / dr2z2(r2)(n — me"- wW-ct > o
0

In this way, we know that terms corresponding to higher phonon frequencies provide

larger contribution to 7299M. In addition, the density of phonon states also favors

larger wkj. To summarize we can conclude that at least for T = 0, the tunneling

rate is determined by high-frequency phonons, which in the case of Wigner crystal

correspond to short-range vibrations. The out-of—plane tunneling probes the short-

range order in a 2DES.
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Appendix C

Square barrier: calculation of the

tunneling exponent.

In the Einstein approximation of a Wigner crystal, the tunneling problem is formu-

lated for one-particle with an effective tunneling potential:

1 2 r12 2 1

H = %(px + 0162)2 + 21:; + 2;; + imwga:2 — mgr/:2 (C.1)  

In what follows, we will scale the coordinates by the tunneling length L, meanwhile

the momenta will be scaled by h7/2. This results in the scaling of the energy by

11272 / (4m), and the action S by h7L/2. The frequencies found in the Hamiltonian

(C.1) will be scaled by combination h7/(2mL), which indeed has the appropriate

dimension of 3‘1, and is half the imaginary tunneling time for B = 0. The dimen-

sionless frequencies are therefore defined as up,c : 2mep,c/h7 and 17 = 2mLtD/h7.

The Hamiltonian in these dimensionless variables takes the form:

13:

2

1 1

H = 5(1):; + 14,2)2 + + 2 + 51/5232 — 17222
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The corresponding equations of motion are linear:

dpz__21722_yc_i£ dp$_ V23? dz_ . d2:

dr _ Cdr’ dr _ p ’ dr—pz’

  

and have real and imaginary eigenfrequency of vibrations:

 

A; = [u2 — 2172 + \/(1/2 — 2172)2 + 817212;] /2

 

if 2 [—1/2 + 2172 + \/(1/2 - 2172)2 + 8521/15] /2

Using the initial conditions for the trajectories (4.16), the tunneling trajectories can

be found to be:

  

  

A A A

:1:(r) 2 __ATI cos Alr + A12 sin Alr + "AT: cosh /\27' + -/\—: sinh A2r;

1x2 — A2 V2 + A2

pz(r) = p 2 [A3 cosh /\27' + A4 sinh Agr] + p 1 [—A1 cos Alr + A2 sin Alr]

VCAQ All/C

2 A2 A2 _ 2

z(r) = — V _+ 1 [A1 sin Alr + A2 cos Alr] + 2_ V [A3 sinh Agr + A4 cosh Agr]

21/2126 21/211C

p3,.(r) : —1/cz(r) -—- [A1 sin Alr + A2 cos A17" + A3 sinh ugr + A; cosh /\2T]

where constants A,, i = 1, 2, 3, 4 are given by:

V§(Ag — V2).’Eo — 2wcAf. 14,2093 — 1x2)
  

  

A1 = A1(A¥ + Ag) , A2 = (A? + A3) coth[wp(B/2) — uprrd];

1/2CEO(V2 + A2) —- 21.6 A2 1/ 220(1/2 + A2)
_ p 1 C 2 , _ P l _

Here, rrd = rf/(2mL/h7).

Until now, the boundary conditions at the exit point have not yet been taken into

account. The tunneling potential (Cl) is special in that respect that there a two

possible boundary conditions depending on the parameters of the Hamiltonian. For

17 > 1 and B = 0, the boundary condition is

met?) = weft) = o, (0.3)
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where the superscript denotes that the imaginary tunneling time was found using

condition (C.3), or equivalently from:

 

A1 V2 + A2 VP

£112 _ A; lA—Z cosh A2r(d) + coth[wp(5/2) — V12Tr(d1)lSinh )9de )] COS A1756)

—_[§- COS A173) UCOthle(B/2) VPTrd1)lSin )‘1Trd )[ COSh )‘2Tr(d) (C4)

1

The corresponding tunneling exponent is given by 5);) = 2751i)-

Upon either increasing of the magnetic field or decreasing (2, there appears another

tunneling trajectory, which satisfies the condition:

2(53’) =1 :r(5.?) =0, (0.5)

In the explicit form, the equation for TS) is

21721/51/C(cosh Agrfj) — cos A175?) [A1 sinh Agra) _,\2 sin A1752)

—\/217coth[1/p(fl/2 — rf:))](cos A17}? — cosh Agrf§))]

E [(1/2 + A9)” (sinh Agrfd) coth[1/p(fl/2—(rd))]+11);:- coshA2r(23))

l

x [A (172 + A2)sin 11¢}? — 12(13— 1/)sinh 12753) — 172m +A3)] (C6)

The tunneling exponent calculated along the trajectory with boundary condition

(C5) is given by

St” = 2755:” + pea/2. (0.7)

In the range of parameters where both trajectories exist, then the exponent of the

escape rate will be given by the smaller of 5:3) and 5):). Switching between the

regimes where the tunneling exponent is determined by one or the other boundary
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conditions leads to singularity in the derivative of tunneling exponent, as can be seen

in Fig. 4.4.

In summary, tunneling through a square barrier have been analyzed taking into

account the “correlation-hole” potential from the electrons remaining in the layer.

The tunneling exponent have been found exactly by solving the equations of motion

(C2). The result describes tunneling at finite temperatures, including the T = 0 case

as an appropriate limit.
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