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ABSTRACT

MINIMALITY OF FLOWS AND ALMOST PERIODICITY OF POINTS UNDER

VARIOUS CONSTRUCTIONS IN TOPOLOGICAL DYNAMICS

By

Alica Miller

In Chapter 1 we deal with the minimality of the flows obtained by various con-

structions from compact minimal abelian flows. We first find a criterion for minimality

of “syndetic” restrictions of compact minimal abelian flows in terms of eigenvalues

(and a criterion for total minimality of compact minimal abelian flows). Using the

criterion for minimality of restrictions we give a new proof of a classical theorem of

W. Parry about minimality of group-extensions of compact minimal abelian flows.

Then we prove a criterion for minimality of products of two compact minimal abelian

flows, one of which is almost periodic, in terms of eigenvalues. For each of the cri-

teria we give several applications. We also introduce the notion of SK groups, and

use it to generalize some statements which relate total minimality, weak mixing and

triviality of the structure group, as well as to improve various conditions which imply

non—total-minimality of compact minimal abelian flows.

In Chapter 2 we deal with the question whether almost periodicity of a point in a

flow transfers to the appropriate points in the flows obtained by various constructions



Alica Miller

applied to the original flow, like restrictions, subflows, factors, extensions, products,

etc. The most difficult is the case when we have a morphism f : X —> y, an almost

periodic point y in y, and a point a: E f"1(y). In general a: is not necessarily almost

periodic, but several conditions are known under which that happens. They fall into

either “compact” or “noncompact” conditions, depending on whether X and y are

assumed to be compact or not. In “noncompact” conditions other assumptions are

restrictive. We find a criterion for lifting of almost periodicity of y, which generalizes

both “compact” and “noncompact” statements at the same time.
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0.1 Introduction

The thesis consists of two chapters. We will first roughly describe the content of each

of the two chapters; then we will give a more precise description of each section of

each of the chapters.

In Chapter 1 we deal with the minimality of the flows obtained by various con-

structions from compact minimal abelian flows. We first find a criterion for minimality

of “syndetic” restrictions of compact minimal abelian flows in terms of eigenvalues

(and a criterion for total minimality of compact minimal abelian flows). Using the

criterion for minimality of restrictions we give a new proof of a classical theorem of

W. Parry about minimality of group—extensions of compact minimal abelian flows.

Using Parry’s theorem we prove a criterion for minimality of a product of two com-

pact minimal abelian flows, one of which is almost periodic, in terms of eigenvalues.

For each of the criteria we give several applications. Among other things, we intro—

duce the notion of SK groups, well adjusted to work with the criteria, prove some

properties of this notion, and then use it to generalize some statements which re—

late total minimality, weak mixing and triviality of the structure group, as well as

to improve various conditions which imply non-total-minimality of compact minimal

abelian flows.

In Chapter 2 we deal with the question whether almost periodicity of a point in a

flow transfers to the appropriate points in the flows obtained by various constructions

applied to the original flow, like restrictions, subflows, factors, extensions, products,

etc. The most difficult is the case when we have a morphism f : X ——> )7, an almost



periodic point y in y, and a point a: E f‘1(y). In general :1: is not necessarily almost

periodic, but several conditions are known under which that happens. They fall into

either “compact” or “noncompact” conditions, depending on whether X and y are

assumed to be compact or not. In “noncompact” conditions other assumptions are

restrictive. We find a criterion for almost periodicity of :c, which generalizes both

“compact” and “noncompact” statements at the same time.

The questions investigated in Chapter 1 and Chapter 2 are naturally related to

each other since, in the case of compact flows, almost periodicity of a point can be

expressed via minimality. In particular, in a compact minimal flow every point is

almost periodic.

We now give a more precise description of each section of each chapter. First

let us mention that in Section 0.2 we give the notation and the terminology we use

throughout the thesis, as well as some relevant basic facts.

We first give a description of each section of Chapter 1.

In Section 1.1 we introduce the notions of the X- envelope of a syndetic subgroup

S of T and of an X- enveloped subgroup of T. We prove some properties related to

these notions and give some examples which illustrate them.

Using these notions, in Section 1.2 we formulate and prove two results, which

we name as a criterion for minimality of restrictions and a criterion for total mini-

mality. The first criterion gives necessary and sufficient conditions for a restriction

X5 = (S, X), S syndetic, of a compact minimal abelian flow X : (T,X) to be

minimal. One of the conditions is in terms of eigenvalues, the other one in terms

of X-envelopes. The second criterion gives necessary and sufficient conditions for a

2



compact minimal abelian flow X 2: (T,X) to be totally minimal. We apply these

criteria to the cases T = Z and T = R. The statement we deduce in the case T = IR

is a result of J. Egawa.

In Section 1.3 we investigate skew-extensions of compact minimal Z—flows. In

the context of a classical theorem of Parry we apply the criterion for minimality of

restrictions to an appropriately defined flow and conclude that the condition coming

from the criterion is equivalent to the well-known Parry’s condition. In that way we

get a new proof of this theorem.

In Section 1.4 we give a new proof of a more general theorem of Parry about

minimality of group—extensions. In the proof we use the criterion for minimality of

restrictions.

In Section 1.5 we formulate a criterion for minimality of a product of two com-

pact minimal abelian flows X and )7, one of which is almost periodic, in terms of

eigenvalues, and prove it using Party’s theorem. Applying this criterion we deduce a

new proof of a characterization of minimality of X x y in terms of common factors.

In Section 1.6 we introduce the notion of SK groups, give examples and prove

some properties of this notion. These properties will then be used in Sections 1.7

and 1.8.

In Section 1.7 we investigate the relation between weak mixing and total minimal-

ity in the context of SK acting groups (using the criteria developed in Section 1.2).

We generalize a statement of N. Markley (about the equivalence of weak mixing and

total minimality) and a statement of W. Gottschalk (about total minimality of X in

terms of the structure group I‘(X)) by extending the class of acting groups for which

3



their statements remain valid.

In Section 1.8 we use the criteria developed in Section 1.2 to investigate some

conditions which, when imposed on compact minimal abelian flows, necessarily imply

non-total-minimality. In that way we generalize and give a shorter proof of a result

of H. Chu (in which for example we avoid the use of Pontryagin’s duality theory), as

well as several other results.

Now we give a description of each section of Chapter 2.

Morphisms of flows with not necessarily the same acting group were not seriously

considered in the literature since it seems that they don’t give anything more than

“standard” morphisms of flows with the same acting group. In fact there is only one

paper in which these “new” morphisms of flows were considered; namely [26]. There

in total three propositions involving this notion were proved and no example was

given. In Section 2.1 we call these morphisms “skew-morphisms” and give several

natural situations where they appear. We use them in a systematic manner in the

rest of this chapter.

In Section 2.2 we give facts about almost-periodicity of a point in various con—

structions. Some facts are stated for skew-morphisms instead of morphisms and, in

some instances, it is illustrated that, using skew-morphisms, we sometimes get sim-

pler and more natural proofs, as well as new statements. Some statements show that

it is much easier to deal with almost periodicity of a point in the case of compact

flows (since in that case there is a natural connection between almost periodicity of

a point and minimality of flows).

Our goal is a theorem which unifies various known statements about lifting of

4



almost periodicity of a point in both the compact, as well as not necessarily compact,

case. The first important statement about lifting was given by R. Ellis in [12] for

compact flows. (Applications of this statement to free abelian topological groups are

given in [11].) Later Markley and others obtained some statements for not necessarily

compact flows. In [27] Markley said that his results “differ from other results of this

genre in that we do not assume that either space is compact.” But his other assump-

tions were quite restrictive and were later relaxed a little bit by S. H. A. Kutaibi,

F. Rhodes and others. Some other related results appeared later, like for instance

a theorem of V. Pestov [30]. In order to extract what is essential in all these state-

ments, in Section 2.3 we introduce the notion of a skew-morphism good over a point

with respect to orbit-closures and give some natural examples.

In Section 2.4 we give several more complicated examples of skew—morphisms good

over a point with respect to orbit closures.

In Section 2.5 we formulate and prove a criterion for lifting of almost periodicity

of a point, which works for not necessarily compact flows.

In Section 2.6 we show that various other statements about lifting of almost peri-

odicity of a point (both “compact” and “non-compact”) are corollaries of our criterion.

As corollaries we get results of Ellis, Markley, Kutaibi-Rhodes, Pestov.



0.2 Notations and preliminaries

0.2.1 General topology; topological groups

0.2.1. If X is a set, we denote its cardinality by |X|. All topological spaces are

assumed to be Hausdorff. If X, Y are topological spaces, then Homeo(X) denotes the

group of homeomorphisms of X, and C(X,Y) denotes the set of continuous maps

from X to Y. The map (x,y) t—> a: (resp. (x,y) v—> y) from X X Y to X is denoted

by prl (resp. prg). If T is a topological group, Td denotes the group T equipped with

the discrete topology.

0.2.2. Let X,Y be topological spaces, f : X —> Y a continuous map. Then the

map 9 : X —> Gr(f), defined by g(a:) = (3:,f(:r)), is a homeomorphism. (Here

Gr(f) = {(51:,f(:1:))|:1: E X} is considered as a subspace of X X Y.)

0.2.3. T will denote the topological group of complex numbers of module 1. If T is

an abelian group, the continuous homomorphisms X : T —-) T, are called continuous

characters of T. The set of all continuous characters of T will be denoted by T.

0.2.4. Let T; and T2 be topological groups and let X E T372. Then for all t1 6 T1

and t2 6 T2, x(t1,t2) = x(t1,1) -X(1,t2). If we denote by X1 the continuous character

t1 r—> x(t1,1) of T1 and by X2 the continuous character t; H x(1,t2) of T2, we

have X(t1,t2) = X1(t1)xz(t2). Whenever no confusion can arise, we will simply write

X = X1X2. Similarly for products of any finite number of factors.

0.2.5. We use the theory of uniform spaces as it is presented in [40]. We call an en-

tourage what is called a connector in [40], or an index in [2], [13],[22],[38]. Entourages

6



are denoted by small greek letters: a, B, etc. If X is a uniform space, a an entourage

of X and a: E X, then a[:c] denotes the set of all y E X such that (z,y) E a.

On a compact topological space X there is exactly one uniform structure com—

patible with the topology of X. The entourages of this uniform structure are all

neighborhoods of the diagonal A in X x X.

0.2.6. Let T be a topological group. A subset A of T is syndetic if there exists a

compact subset K of T such that T = KA. If S' is a syndetic subgroup of T, the

quotient space T/S is compact. A subset A of T is discretely syndetic if it is a syndetic

subset of T4.

Lemma 0.2.7. Let h : T ——> T’ be a surjective group homomorphism. Then for every

discretely syndetic subset S' of T’, h‘1(S') is discretely syndetic in T.

Proof. There is a finite subset F’ = {b’1,,--- ,b;} of T’ such that T' = F'S'. For

every b; E F' let b.- E T be such that h(b.) 2 b2. Let F 2 {b1,--- ,bn}. We claim

that T = Fh“(S'). Indeed, for t E T, let h(t) = b’s’. Put 3 = b'lt. Then

h(s) : h(b)'1h(t)= b’—lb’s’ = s’, so 3 E h‘1(S'). We havet = b-b‘lt E F-h"1(S"). Cl

Remark 0.2.8. Let h : T —> T’ be a surjective group homomorphism having the

compact-covering property (i.e. for every compact K’ in T' there is a compact K in

T such that h(K) = K’). Then if S’ is a syndetic subset of T', h"1(S') is a syndetic

subset of T.

This statement is from [26]. The proof is analogous to the proof of Lemma 0.2.7.

Lemma 0.2.9 ([27]). Let T be a topological group, S a syndetic subset ofT, SI, - - ~ , 3,.



subsets ofS such that S 2 UL, 5;, t1, - -- ,tn elements of T. Then the set U?=1tiSi

is syndetic.

Proof. Let K be a compact subset of T such that T = KS. We have: (U27:1 Kti—l) ’

(Ufl ItiSs') 3 U?=1Kt;“t.-S. = U?__.1K55 = K(U?=1 5;) 2 KS 2 T, and the set.

—-

—

”_ Kt-_1 is com act. So the set ”_ t,S',- is syndetic. C]
3-1 a p t_l

0.2.10 ([4]). Let X and Y be topological spaces, f : X ——> Y a continuous map.

We say that (X, f) is a covering of Y if for each point y E Y there is an open

neighborhood V of y such that f"1( V) is a nonempty disjoint union of open subsets

U,, i E I, of X, on which the restrictions f, : U,- —> V of f are homeomorphisms.

An open neighborhood V of a point y E Y is called elementary if it satisfies the

above condition. An open neighborhood U of a point :1: E X is called elementary if

there is an elementary neighborhood V of the point y = f(x) such that U is one of

the disjoint open subsets Ug, i E I, of X, whose union is equal to f‘1(V).

A homeomorphism g : X —> X, a: H gar, is called a deck-transformation of the

covering (X, f) if f(gm) = f(:r) for all x E X. The deck-transformations form a group

A under composition (written as (g, g’) i~—> gg’). We say that A is transitive on the

fiber f'1(y) of a point y E Y if for any two elements :12, x' E f—1 (y) there is an element

9 E A such that x' = gm.

If (X, f) is a covering of Y, the fibers of f are discrete. Also f is a surjective local

homeomorphism. In particular, f is open. (A continuous map f : X —-> Y is a local

homeomorphism if for each a: E X there is a neighborhood U of a: such that f(U) is

a neighborhood of f(x) in Y and the map U —> f(U) which coincides with f on U is



a homeomorphism.)

0.2.2 Flows

0.2.11. A triple X = (T, X,7r) consisting of a topological group T, a topological

space X and a continuous action 7r : T X X —> X of T on X is called a flow on X.

We write tn: or ta: for rr(t,a:). We say that X is compact (respectively abelian), if X

is compact (respectively if T is abelian). We say that X is trivial if [X] = 1. For

:1: E X we denote by 7r’ : T -—> X the orbital map t I——> t.:r. For t E T we denote by

7r; E Homeo(X) the transition homeomorphism a: I—> t.:r.

0.2.12. When we have a Z-flow on X, X = (Z,X, 7r), then the transition homeomor-

phism h := 7n completely defines the action: 7r(n, 1‘) = h"(:r). In that case we simply

write X = (X, h) when no confusion can arise.

0.2.13. Every flow X5 = (S, X, it lXxS)s where S is a subgroup of T, will be called a

restriction of the flow X = (T, X, 7r). Usually it is denoted simply by X5 = (S, X). If

a subset Y of X is invariant under the action of T, then the canonical flow (T, Y) is

a subfiow of X. If X = (T, X), y = (T, Y) are two flows with the same acting group

T, then we define a T-flow on X X Y by t.(:r,y) = (tz,ty), for t E T, :2: E X, y E Y.

This flow is called the product of the flows X and y and denoted by X X y.

0.2.14. Let X = (T, X) and y = (T, Y) be flows. A map f : X ——> Y is a morphism

of flows ifit is continuous and f(tx) = tf(a:) for all t E T and :1: E X. Iff is surjective,

y is a factor of X, and X is an extension of )7. Endomorphisms, isomorphisms and

automorphisms of flows are defined in a standard way.

9



0.2.15. Let X = (T,X) be a flow. A continuous function r] : X —> T is an eigen-

function of X if there is a continuous character X E T such that r)(t.x) = X(t)r)(.1:) for

(t, 2:) E T X X. In that case X is an eigenvalue of X (the eigenvalue which corresponds

to n) and 17 is an eigenfunction which corresponds to X. The following are equivalent:

(i) X is trivial;

(ii) 77 is constant on some Ta: (.1: E X);

(iii) 7} is constant on every 3 (:1: E X).

If X contains a point with dense orbit, then X is trivial iff r] is constant.

0.2.16. A flow X : (T,X) is minimal if the orbit T.:1: of every point :1: E X is dense

in X. It is totally minimal if the flow X5 is minimal for every syndetic (equivalently,

closed syndetic) subgroup of T. If f : X —> y is a surjective morphism of flows, then

if X is minimal (respectively totally minimal), y is minimal (respectively totally

minimal). Two compact minimal abelian flows X = (T,X) and y = (T, Y) are

disjoint if the product X X y is minimal. They are weakly disjoint if the product

X X y has a point with dense orbit.

0.2.17. Every compact flow contains a minimal set. (The proof uses Zorn’s lemma

([2], [13]» [22], [38])-)

0.2.18. For :1: E X and U,V C X, the dwelling set D(U, V) (resp. D(:1:,V)) is the

set of all t E T such that t.Ufl V 75 0 (resp. t.:2: E V).

Lemma 0.2.19. Let X = (T, X,7r) be a flow, :1: E X. Then for every neighborhood

V of :1: there are a neighborhood W of :1: and a neighborhood 0 of the unit element

6 E T such that 0D(:1:,W) C D(:1:, V).

10



Proof. Fix a neighborhood V of 1:. Since 7r : T X X —> X is continuous at (6,510),

there is a neighborhood W of :1: and a neighborhood 0 of e such that 0W C V. We

claim that then 0D(a:, W) C D(:1:, V). Indeed, let 0 E 0 and let t E D(:1:, W). Then

ta: E W, hence 0(tx) E 0W, hence (ot)a: E V, i.e. ot E D(:1:, V). [:1

0.2.20. The Ellis semigroup E(X) of a flow X = (T, X,7r) is Cl{7r,|t E T} in XX

(i.e. in Fp(X, X)) with the operation of composition. (Here Fp(X, X) denotes the set

of all maps from X to itself, equipped with the topology of pointwise convergence.)

If X is a compact flow, E(X ) is a compact Hausdorff right semitopological semigroup

([38, p.301]).

0.2.3 x-envelopes; orbit-closures

0.2.21. Let X = (T,X) be a flow. For :16 E X and S C T, the x-envelope of S ,

denoted by S”, is the set {t E T I tn: E SE}. S” is a closed subset of T, it contains

S, and S‘a = E. If S is a syndetic normal subgroup of T, then S“ is a closed

subgroup of T. ([22, 2.08—2.10])

0.2.22. If S is a normal subgroup of T the following properties are easy to verify:

 

(i) t3? = S.t.:1: for all t E T, :1: E X;

(ii) If SE is a minimal subset of X under S, then:

(1) 1% = 5—41:- if and only ift E S“;

(2) (Vy E X) t.y E E if and only if LE; 2 fl.

0.2.23. Let X = (T,X) be a flow. It is easy to see ([22, 223]) that the following are

equivalent:
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(i) the set of orbit closures under T is a partition of X;

(ii) (VxeX) (VyEX)yET—.—;®T_.y=fi;

(iii) every orbit closure under T is minimal under T.

0.2.24. Let X = (T, X) be a flow and S a syndetic normal subgroup of T. Then the

set of orbit closures under S is a partition of X iff the set of orbit closures under T

is a partition of X. In particular, if X is minimal, the set of orbit closures under S is

a partition of X. ([22, 2.24])

We denote by 05 the set {Salt E X} and by R(Og) the relation (:13, y) E 12(05) <:>

3—9: ’53 on X. If X is compact minimal, R((’)3) is an equivalence relation which is

open ([22, 2.30]) and closed ([22, 2.32]).

0.2.25. Let X = (T,X) be a minimal flow, S a syndetic normal subgroup of T, and

K a compact subset of T such that T = KS. The following are easy to verify:

(i) K.§ = X for every :1: E X;

(ii) in particular, for every .27, y E X there is a k E K such that his? 2 Si; (and

consequently kg: E 31]).

0.2.4 Almost periodicity, proximality, distality, weak mixing

0.2.26. Let X = (T,X) be a flow.

(i) A point :1: E X is almost periodic (in X) if for every neighborhood U of :1: there

is a syndetic subset A of T such that As: C U, i.e. the dwelling set D(a:, U) is syndetic

in T. A point :1: E X is discretely almost periodic if it is almost periodic in the flow

Xd = (Td,X), where T; is the group T equipped with the discrete topology. Every
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discretely almost periodic point is almost periodic.

(ii) A point :1: E X is regularly almost periodic if for every neighborhood U of

:1: there is a syndetic subgroup S of T such that 5:1: C U. Every regularly almost

periodic point is almost periodic.

(iii) A point :1: E X is locally almost periodic if for every neighborhood U of :1:

there is a neighborhood V of :1: and a syndetic subset A of T such that AV C U.

Every locally almost periodic point is almost periodic.

A flow X is pointwise almost periodic (resp. pointwise regularly almost periodic;

pointwise locally almost periodic) if every point :1: E X is almost periodic (resp. regu-

larly almost periodic; locally almost periodic). (The adjective “pointwise” is omitted

in the case of regularly and locally almost periodic flows.)

A flow X = (T, X,7r) on a uniform space (X, LIX) is uniformly almost periodic

(resp. equicontinuous) if for every 0 E LIX there exists a syndetic A C T such that

A.:1: C a[:1:] for every :1: E X (resp. if the family {71, | t E T} of transition homeomor-

phisms is equicontinuous). In case of compact flows, uniformly almost periodic flows

are the same as equicontinuous ones, and are simply called almost periodic flows.

0.2.27. Let X = (T,X) be a flow, :3 E X. The following are equivalent:

(i) :1: is almost periodic in X;

(ii) for every neighborhood U of :1: there is a compact subset K of T such that for

every t E T, Kta: F) U 7&4 0;

(iii) for every neighborhood U of a: there is a compact subset K of T such that

Ta: c KU ([2],[13],[22],[38]).
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0.2.28. Let X = (T, X) be a flow, at E X. If :1: has a compact neighborhood, then :1: is

almost periodic iff T; is compact minimal. In particular, a point :1: in a compact flow

X is almost periodic if and only iffl is minimal. ([2, p.11], [13, p.10], [38, IV(1.2)])

0.2.29. Let X = (T,X) be a compact flow. The following are equivalent:

(i) X is almost periodic;

(ii) E(X ) is a compact topological group and the canonical map E(X ) X X —> X

is a continuous action of E(X ) on X;

(iii) E(X ) is a group and its elements are homeomorphisms of X.

If in addition X is minimal, these conditions are equivalent to

(iv) E(X) is a topological group. ([2, p.60], [13, p.25], [38, IV(3.34)])

0.2.30. Let X = (T, X) be a compact minimal abelian flow. The following are equiv-

alent:

(i) X is almost periodic;

(ii) for every :1: E X there is an abelian group structure on X with the unit element

:1:, such that the orbital map 7r‘r : T —> X is a continuous group homomorphism;

(iii) there is an element 6 E X such that there is an abelian group structure on X

with the unit element e, such that the orbital map 7re : T —> X is a continuous group

homomorphism. ([36, Corollary 2.10], [38, IV(3.42)])

In particular, every nontrivial compact minimal abelian flow has a nontrivial eigen-

value ([38, p.409]).

0.2.31. Let X be a compact flow. There is a smallest closed invariant equivalence

relation on X, denoted S}, such that the quotient flow X/S; = (T, X/5}) is almost
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periodic ([2, p.125], [13, p.32] or [38, p.398]). The equivalence relation 5'; is called

the equicontinuous structure relation of X. Then the Ellis semigroup E(X/5}) is a

compact topological group, called the structure group of X and denoted by I‘(X).

0.2.32. Let X = (T, X,7r) be a flow on a uniform space (X, LIX).

(i) A pair (x,y) of points in X is proximal (and the points x,y are proximal to

each other) if for every 01 E LIX there is a t E T such that (tx, ty) E a. The flow X is

proximal if every pair of points in X is proximal.

(ii) A pair (x,y) of points in X is regionally proximal (and the points x,y are

regionally proximal to each other) if there is a point z E X such that for every neigh-

borhood V of z and every neighborhood U1 ofx and U2 of y, D(U1, V)flD(U2, V) 75 lb.

The flow X is regionally proximal if every pair of points in X is regionally proximal.

(iii) A pair (x,y) of points in X is distal (and the points x,y are distal to each

other) if either x = y or (x, y) is not proximal. The flow X is distal if every pair of

points in X is distal. A point x E X is distal if every pair (x,y), y E X, is distal. If

X is compact, X is point-distal if there is a distal point :1: E X with dense orbit.

0.2.33. Let X be a compact flow. Then if X is almost periodic, it is distal ([2, p.65],

[13, p.36], [38, IV(2.21)]).

0.2.34. If X = (T, X) is compact minimal abelian and x E X, then every pair (x, tx),

t E T, is distal ([22, 1007]).

0.2.35. Every nontrivial distal compact minimal flow has a nontrivial almost peri-

odic factor ([2, p.104], [38, V(3.33)]). In particular, every nontrivial distal compact

minimal abelian flow has a nontrivial eigenvalue ([2, p.105]).
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0.2.36. Let X, y be distal compact minimal flows, f : X ——> y a morphism of flows.

Then f is an open map ([2, p.98], [38, V(2.3)]).

0.2.37. Let X = (T, X,7r) be a flow on a uniform space (X,L(X). A pair (x,y) of

points in X is proximal iff it belongs to the subset

PX: n Ta

aEux

of X X X, which is called the proximal relation in X. This relation is reflexive,

symmetric, invariant, but is not transitive nor closed in general ([2, p.66]). In case of

compact flows, if Pg is closed, it is an equivalence relation ([2, p.88]).

A pair (:1:, y) of points in X is regionally proximal iff it belongs to the subset

QFn-za
aeux

of X X X, which is called the regionally proximal relation in X ([38, p.283]). Every

proximal pair in a compact flow is regionally proximal. The relatioan is reflexive,

symmetric, invariant and closed, but not necessarily an equivalence relation ([38,

p.401]). If X is compact, S} is the smallest closed invariant equivalence relation on

X which contains Q1 ([38, p.399]). In case of compact minimal abelian flows, Qx is

an equivalence relation, and hence in that case Q3» 2 S}([2, p.130] or [38, p.404]).

0.2.38. A compact flow X is proximally equicontinuous if P4» = Qx ([38, V(1.7)2]). In

that case P31 is closed, hence Px (i.e. Qx) is an equivalence relation. So P3: = Qx =

S}. All compact equicontinuous (i.e. almost periodic) and all compact proximal flows

are proximally equicontinuous. Also all compact (pointwise) locally almost periodic

flows are proximally equicontinuous ([38, p.364]).
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0.2.39. A flow X = (T,X) is weakly mixing if for any open subsets U, U’, V, V’ of

X there is a t E T such that at the same time tU (1 V # (b and tU' H V’ 7t 0, i.e.

D(U,V) fl D(U’, V') # (b ([38, p.273]). If X is compact minimal abelian, then X is

weakly mixing iff S; = X X X ([33, p.279], [2, p.133] or [38, V(1.19)]). Intuitively

speaking, this says that weakly mixing compact minimal abelian flows are opposite to

the almost periodic flows: the equicontinuous structure relation is the whole X X X,

i.e. maximal possible, which is opposite to the case of almost periodic flows where the

equicontinuous structure relation is equal to the diagonal Ax, i.e. minimal possible.

The only almost periodic factor of a weakly mixing compact minimal abelian flow is

the trivial flow.

0.2.40. If X is a weakly mixing compact flow, every eigenfunction of X is constant.

If X is a compact minimal abelian flow, then if every eigenfunction of X is constant,

X is weakly mixing ([38, p.409]).

0.2.41. If X is a nontrivial compact minimal abelian flow on a metric space X, then

if X is weakly mixing, it is not point-distal ([38, p.408]).
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Chapter 1

Minimality of restrictions,

group-extensions and products of

compact minimal abelian flows

1.1 The notion of an X-enveloped subgroup

Proposition 1.1.1. Let X = (T, X) be a minimal abelian flow, and let S be a syndetic

subgroup of T. Then S” = S” for every x,y from X.

Proof. Let K be a compact subset of T such that T = K + S. Fix any x, y from X.

There is a k in K such that —k.x = y' E S—y. Then x = k.y', y' E S—y. Let s E S”.

We have:

s.y E 3.Ty = s.S.y’ = 3.5. — k.x = s. — lag = —k.s.fi = —k.S.s.x = —k.S.x =

 
 

 

 

S. — k.x = S.y' 2 S3. Hence 3 E S”. Thus 5” C S”. By symmetry S” C 3"". Hence
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S‘ = S”. E]

Definition 1.1.2. Let X = (T, X) be a minimal abelian flow, and let S be a syndetic

subgroup of T. The X-envelope (or simply envelope) of S, denoted by S‘, is the subset

of T which is equal to S”, where x is any element of X.

By the previous proposition the notion of the X-envelope of S is well defined.

Definition 1.1.3. Let X be a minimal abelian flow. A syndetic subgroup S of T is

called an X-enveloped (or simply enveloped) subgroup of T if S = 5“.

Note that a subgroup S of T may be enveloped with respect to some flow X =

(T,X), and at the same time not enveloped with respect to some other flow y =

(T, Y).

Proposition 1.1.4. Let X = (T, X) be a minimal abelian flow and let S be a syndetic

subgroup ofT. Then S“ is an enveloped subgroup ofT and it is the smallest enveloped

subgroup of T containing S.

Proof. 5* is syndetic and (5’)” = 5". So S“ is an enveloped subgroup of T. Let E

be an enveloped subgroup of T containing S. Then:

E=E*={teT|t€E}3{teT|te§3}=S*.

Thus an enveloped subgroup of T, containing S, contains S*. E]

19



Example 1.1.5. Let 0 7t 0 be a real number. Consider the compact minimal abelian

flow X = (R,T,7r), defined by 7r(t,z) = 62"“62, t E R, z E T. Let a E R, a 75 0.

Consider the action of the subgroup Z01 of R on T, induced by it. The orbit in this

action of an element 2 E T has the form

Za.z : {no.2 In E Z} = {chimes ] n E Z}.

,21rin019 2rrinE

Ist case: 010 E Q. Suppose 00 = 1}, (k,l) = 1. Then every 6 = e 1 is one of

. . 1-

2m? 2m 1‘

’ I...’ ethe elements 1, e k. Hence

2m} hull—733
Za.z = {2,e z,...,e 2}.

So m = Za.z. To calculate (Z01)" it is enough to calculate (Za)z for any 2 E T,

for example (Za)l. We have:

3 E (Za)l (i) 62“”.1 = shim” for some n E Z (i) ehwwm") = 1 (i) 0(fl—na) = q

for somquZ<=>fi= $q+na®flEZa+Z%=Z%4—Z%=Zia.

Thus we have Za‘ = Zia, where 09 = %, (k,l) = 1.

2nd case: 010 E Q. Then {ezflmoz I n E Z} is dense in T for every 2 E T, so

Za.z = '11. Then (zar = (Za)l = {s e R | err/39 e 'II‘} = R.

More concretely, let 0 = 1. Then for example: (Z?,—)" = Z; = (Zfi): (Z\/2)l = R,

etc. There are many subgroups of R that are enveloped, and many that are not.

Example 1.1.6. Let X be an almost periodic compact minimal abelian flow with X

non-connected. X can be written as a disjoint union X = Y U Z of two nonempty

clopen sets Y and Z. Let a : (Y X Y) U (Z x Z). Since X is compact and 01 is
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an open neighborhood of the diagonal AX, a is an entourage of the unique uniform

structure on X.

Claim:

S := fl D(x,a[x])

xEX

is a proper enveloped subgroup of T.

Since X is almost periodic, S is a syndetic subset of T. Note that for y E Y,

a[y] = Y, and for z E Z, a[z] = Z. So S = {t E T I (Vy E Y) t.y E Yand

(VzEZ)t.zEZ}={tET|t.YCYandt.ZCZ}={tET|t.Y=Yand

t.Z = Z}. It follows that t1,t2 E T implies t1 + t2 E S, and t E S implies —t E S.

Thus S is a syndetic subgroup of T. Now consider any element of X, for example some

y E Y. Since X is a compact minimal abelian flow, 3" = S” = {t E T I t.y E S_y} C

{t E T | t.y E Y}. (The inclusion holds because S.y C Y and Y is closed.) Since this is

true for any y e Y, we have 5* c flyit e T | t.y e Y} = {t e T | (\7’y e Y) t.y e Y}.

we

If we do the same thing for every 2 E Z and combine the results, we get 5* C S.

Thus 5" = S.

To prove that S is proper, consider any y E Y. Since X is minimal and Z is open,

there is a t E T such that t.y E Z. This t does not belong to S. The claim is proved.
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1.2 A criterion for minimality of restrictions and

a criterion for total minimality

Proposition 1.2.1. Let X = (T,X) be a flow and S a normal syndetic subgroup of

T. Let X E T be an eigenvalue of X. The following are equivalent:

(i) ker (X) D S;

(ii) ker (X) 3 S” for every x E X;

(iii) ker(X) D S” for some x E X.

Proof. (iii) => (i): clear, since S” D S.

(ii) => (iii): clear.

(i) :> (ii): Fix any x E X. Let r] be an eigenfunction of X which corresponds to X.

We have:

170$) = X(t)r(=v) (*)

for all t E T, and, in particular, h(sx) = 17(x) for all s E S. If we let 2 = 77(x), we

have r7(S.x) = {2}. By continuity 17(5) 2 {z} and consequently 17(S“.x) = {2}.

Hence from (:1:), X(s) = 1 for all s E S”, i.e. ker(X) D S”. E]

Corollary 1.2.2. Let X : (T, X) be a minimal abelian flow and S a syndetic sub-

group of T. Let X E T be an eigenvalue of X. Then ker (X) D S if and only if

ker(X) D 5*. Cl

Theorem 1.2.3 (criterion for minimality of restrictions). Let X = (T, X,71)

be a compact minimal abelian flow. Let S be a syndetic subgroup of T and let X5 =

22



(S,X). The following statements are equivalent:

(i) X5 is a minimal flow;

(ii) X has no nontrivial eigenvalue whose kernel contains S;

(iii) 5* = T.

Proof. By Proposition 1.2.1, (ii) is equivalent with

(ii ’) X has no nontrivial eigenvalue whose kernel contains S“.

So we will prove the above theorem with (ii) replaced by (ii'). First we make some

observations.

 

Note that 05 2 {SE | x E X} is the same as 05- since '33? = S*.x. The

 

equivalence relation R = R(05.), ((x,y) e R e m = S*.y) is open and closed

by 0.2.24. Hence X/R is compact Hausdorff. We denote by pX : X —> X/R = X the

quotient map and by pT : T —> T/S"' the canonical homomorphism. The elements of

X will be denoted by 5: = pX (m). The map 71' : T x X —> X is compatible with the

relations (mod 5*) x R on T x X and R on X. Hence it induces a continuous map

ir : T X X/( mod S‘) X R —> X. Since mod 5" and R are both open, we may identify

T x X/(mod 5*) x R with :1:/s: x X/R = :1:/s: x X. With this identification we

have

7~r°(pr><px)=px°7r- (1)

~

It follows that y = (T/S*,X, fr), with ((t + 5*).5: =2 t.x), is a flow.

Fix a point a E X. Denote rr [Tx{a} by 1,0, and ir [T/5.x{(-,} by 5. We have

~

(Have:tenczcescnememzszete5-.
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Hence the stabilizer of a in the flow 32 is the identity subgroup of T/S’“, hence 5 is

injective. Also (5 is surjective, by 0.2.25(ii) and the equality (1). Now since T/S“ X {a}

is compact, 1,5 is a homeomorphism.

Now using these observations we show the equivalence of the statements (i),(ii’)

and (iii).

(i) (:1 (iii) : X3 is minimal iff X consists of one element iff T = 5* (since (,5 is

bijective).

(iii) => (ii') : clear.

(ii’) => (iii) : Suppose S’“ aé T. Define a continuous map f : X —-> T/S'“ by

f = prl 095‘10px. Fort E Tlet translme : T/S“ ——> T/S“ be defined by translpT(,)(t’+

S“) = pT(t) + t' + S“. Then for every t E T

f o 71, = translme 0f. (2)

To prove (2), put f = prl o if)“. For t1 E T we have

f(tx)=t1+S*¢1f(tx)=t1+S* e¢(t,+sr,a)=t em=fiem=

fie 111$: tfie (—t+tl)E= ’S‘ie ((—t+t1)a)"’ = a 4: ¢(—t+t1+S*,&) =

i c) f(i) = -—t+t1+S* a) f(x)=(—t+S*)+(t1+S*)©(t+S*)+f(x)=t1+S*.

Thus (2) holds. Now let X : T/S* —> T be any nontrivial character of T/S“. For

t E T let translxm : T —> T be defined by translx(t)(z) = X(t)z. It is easy to see that

for every t E T

X 0 translpTU) = transl(XopT)(,) OX. (3)
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Let r) = X o f : X —) T. Then 77 is a continuous function which satisfies

7} o 71, = transluopflu) 077

for all t E T. (This follows from (2) and (3).) So 77 is an eigenfunction of X whose

eigenvalue X 0 pp is nontrivial and whose kernel contains S*. [:1

Corollary 1.2.4 (criterion for total minimality). Let X = (T, X) be a compact

minimal abelian flow. The following statements are equivalent:

(i) X is a totally minimal flow;

(ii) X has no nontrivial eigenvalue whose kernel is syndetic;

(iii) T has no proper X-enveloped subgroup.

Proof. By Corollary 1.2.2, (ii) is equivalent to

{ii’} X has no nontrivial eigenvalue whose kernel contains an enveloped subgroup

of T.

So we will prove this corollary with (ii) replaced by (ii’).

(i) => (ii’) : clear from Theorem 1.2.3.

(ii’) => (iii) : clear from Theorem 1.2.3.

(iii) => (i) : Suppose (iii) holds. Let S be a syndetic subgroup of T. By assumption

(iii), 3* = T (since 3* is enveloped). By Theorem 1.2.3, X5 is minimal. Cl

As the first applications of these criteria, we investigate Z and R—flows.

Corollary 1.2.5. Let X = (Z,X) be a compact minimal Z-flow. Then the following

statements are equivalent:

(i) X is totally minimal;
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(ii) X has no eigenvalue XA = aha” such that A E Q \ Z;

(iii) X has no eigenvalue X(n) = z" with z 76 1 offinite order in T.

Proof. (ii) and (iii) are clearly equivalent. We will show (i) (i) (ii). Every character

of Z has the form XX 2 e”"”’\('). We have ker(XX) = {n E Z I e”’”"" =1} 2 {n E Z I

An = k E Z}. Now by the criterion for total minimality, X is totally minimal iff X

has no nontrivial eigenvalue XA such that {n E Z I An = k E Z} is syndetic in Z, iff

X has no eigenvalue XA with A E Q \ Z. C]

Remark 1.2.6. The direction (i) => (ii), i.e. (i) 2) (iii), of the Corollary 1.2.5 is well

known; see for example [5], p.108. The opposite direction is probably also known,

but the author could not find a reference.

Corollary 1.2.7 ([9, Theorem 1]). Let X = (R,X) be a compact minimal R- flow.

Let

A(X) = {A E R I Xx = e”"i)‘(‘) is an eigenvalue of X}

and let

M) =13 | A 6 M). n e Z\ {0}}.

Let S = Z01, where a > 0 is a real number, and let X5 = (S,X). Then X5 is minimal

gmwomyggexmm

Proof. By the criterion for minimality of reduced flows, X5 is not minimal iff X has

an eigenvalue X» A 7t 0, such that {t E R I At E Z} 3 Za, iff X has an eigenvalue )0,

A 75 0, such that Zfi 3 Z01, iff X has an eigenvalue X), such that i = g, n E Z \ {0},

ingeMxy
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1.3 A new proof of a theorem of Parry

We will now investigate skew—extensions of compact minimal Z-flows. We will show

that, in the special situation described in Theorem 1.3.1, the criterion for minimality

of restrictions is equivalent to the well known Parry’s condition. The proof illustrates

the way in which one can end-up with Parry’s condition after a sequence of natural

steps, starting with the condition from the criterion.

Theorem 1.3.1 ([2, p.72], [28, p.98], [38, II(8.22)]). Let G be a compact abelian

topological group. Let y : (K?) be a compact minimal Z-flow, 1p : Y —+ G a

continuous map, X = Y X G and let a E Homeo(X) be defined by

001,9) = My), «Rh/)9)- (1)

Then the compact Z-fiow X = (X, a) is minimal ifl

has no solution f E C(Y, T), 7 E C, with 7 751.

Proof. Define a (compact abelian) flow Z = (Z X G,X) by

(mm-3 = (pm(0"(x)),pr2(0”(:v))g), (2)

for n E Z, 9 E G, x E X. Writting x = (y,g’), we get from (1) and (2)

fl

(nag)-(y,g') = (7"(y).Hr(T""(y)) - 9’9),

i=1
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fl

(-n,g)-(y,g’) = (r-"(yin-‘(yn

i=1

—1

HTS):

for n 2 0. From these formulas we can see (using minimality of 31) that Z is minimal

(the orbit (Z X G).(y,g') of (y,g’) has the form D X G, where D is a dense subset of

Y).

Let S = Z X {1}. Since (n,1).(y,g’) = o"(y,g’), which is n.(y,g’) in X, we may

identify flows ZS and X. So we have

X is not minimal (:1 Z5 is not minimal. (:1:)

Now consider the following sequence of conditions:

(CONDI) 17((n,g).(y,g')) = X(n,g)17(y,g'), n E Z, g, g’ E G, y E Y, has a solution

1) E C(X,T)» X E Z/X\G, with X # 1 and ker(X) D Z x {1};

(COND2) n((n,g)-(y,g’)) = 7(g)n(y,g’), n E Z, 9, g’ E G, 11 E Y, has a solution

77 e C(X,'II‘), 7 e 6:, with 7 7e 1;

(COND3) h((1,9)-(y,g’)) = 7(9)n(y,g’)i g, g’ E G. 11 E Y, has a solution 17 E

C(X,'lI‘), 7 e 6:, with 7 751;

(COND4) r;((1,g).(y,1)) = 7(g)17(y,1), g e G, y e Y, has a solution 7 e C(X,'Ii‘),

7EC,with77£1;

(COND4’) n(r(y),r(y)g) = 7(9)n(y,1)7 g E C, y E Y, has a solution 77 E C(XaT),

7EC,with77€1;

(COND5) 17mg), 1) = 7(e(y))—‘n(y, 1), g c G, y e Y, has a solution 7 e C(X,T),

7EC,with77é1;

(COND6) f(r(y)) = 7(o(y))-‘f(y), y e Y, has a solution f e C(Y,'II‘), 7 e 6:, with

7 75 1-
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We have (CONDl) (a) (COND2) by 0.2.4. Let’s see that (COND3) => (COND2). If

we put g = 1 in (COND3), we get

17(0(y,g’))= h(yig'), y E Y, 9’ E G-

Hence

n(0"(y,g’)) = 170/..(1’), n E Z, y E Y, 9’ E G- (3)

Then we replace (y, g’) by 0""l(y,g’) = (n—1,1).(y, g’) in (COND3) and get (COND2)

using (3). So (COND2) (:1 (COND3). Also (COND3) :> (COND4) <=> (COND4’) =>

(COND5). Now if we put

f(y) = h(y, 1)

we get (COND5) => (COND6). Also (COND6) (i) the negation of the condition from

the statement of the proposition.

Conversely, suppose that (COND6) holds and define

17(y.g') = 7(9’)f(y)- (4)

We will show that these 77, 7 satisfy (COND3). We have

n((1,g)-(y.g’)) = n(7(y)ir(y)g’g) = 7(r(y’))7(g’)7(g)f(r(y)) = (from

= 7(9)n(y,g’)-

Thus (COND6) => (COND3) (i) (CONDI).

Now since S is a syndetic subgroup of Z X G, by the criterion for total minimality

of reduced flows and (at), X is not minimal iff the condition (CONDI) holds. But, as
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we have just shown, (CONDI) is equivalent to the negation of Parry’s condition from

the statement of the proposition. This completes the proof. El

Remark 1.3.2. We could omit the proof of this version of Parry’s theorem since we

are giving in Section 1.4 a proof of a more general theorem of Parry (from which this

one can be deduced), also by applying the criterion for minimality of restrictions.

But we decided to keep this proof as well, since it illustrates how the (“natural”)

condition from the criterion for minimality of restrictions can be transformed, in a

complicated concrete situation, to a condition which looks misterious and for which it

is not clear where it is coming from. So we may say that the criterion for minimality

of restrictions also sheds some light on Parry’s theorem.

Remark 1.3.3. Some related types of skew—extensions are discussed in [19] and [17].

1.4 Minimality of group-extensions

In this section we give a new proof of a more general theorem of Parry about mini-

mality of group-extensions, using the criterion for minimality of restrictions.

Definition 1.4.1 ([2], [28], [38]). Let X = (T,X) and y = (T, Y) be compact flows,

K a compact topological group. An extension p : X —> y is called a K-extension if

the following conditions are satisfied:

(i) there is a continuous action K on X which commutes with the action of T on

X;

(ii) the fibers of p are precisely the K—orbits in X.
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If in addition {K acts effectively} {K acts freely} {every character of K is an eigen-

value of (K,X)}, we say that p is an {efiective} {free} {simple} K—extension.

If we don’t want to specify the group, we say group-extension instead of K-

extension.

Example 1.4.2. Let y = (T, Y) be a compact flow, K a compact topological group.

Put X = Y X K. Let t.(y,k) : (ty,k) and k.(y,k’) = (y,kk’). Let p : X —> Y be

defined by p(x,y) = y. Clearly (X,p) is a free K-extension of y. Let X E K. Put

fx(yak) = x(k). Then we have

fair-(317(3)) = fx(y,kk') = X(kk') = X(k)x(k') = X(k)fx(yik')-

So (X, p) is a simple free K-extension of y.

In what follows, if 7 is an eigenvalue of some flow, we denote by f.7 an eigenfunction

of 7.

Theorem 1.4.3 ([28]). Let X = (T,X) and y = (T, Y) be compact Abelian flows,

y minimal, K a compact Abelian topological group. Suppose that (X, p) is a simple

free K-extension of y. Then X is minimal ifl the functional equation

f(t_P__($)) ___f7(t-$)

has no solution f, f,, with f E C(Y, T) and 7 E K \ {1}.

Proof. Define a (compact Abelian) flow Z = (T X K,X) by

(t,k).x = t(kx) = h(tx),
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for t E T, k E K, x E X. This flow is minimal. ( Indeed, let x E X and let U be an

open subset of X. Since p(U) is open in Y and y is minimal, there is a t E T such

that tp(x) E p(U), i.e. p(tx) E p(U). Then tx E p‘1(p(U)) = 'LeJU Kx’. Hence there

is a k E K such that h(tx) E U.)

Let S = T X {1}. Since (t, 1).:1: = tx, we may identify flows Z5 and X. So X is

not minimal iff Z5 is not minimal. By the criterion for minimality of restrictions of

compact minimal Abelian flows and 0.2.4, 25 is not minimal iff the following condition

holds:

(:1:) r;((t,k).x) = 7(k)17(x) , t E T, k E K, x E X, has a solution 1] E C(X, T), 7 E K,

with 7 7‘— 1.

It remains to Show that the condition (:1:) is equivalent with the negation of the

condition (1). Suppose that (at) holds. Define f E C(Y, T) by

f(P($)) = f7($)/77($)i x E X

' ' ' h(k”) _ “7(sz (37} _ fvil')
(This is well defined Since by (:1:) "U“, _ 7(k)ri(x) — "(3, .)

Since n(t.x) = h(x), for t E T, x E X (which follows from (:1:) for k = 0), we easily

get (1).

Conversely, suppose that the negation of the condition (1) holds. Define 17 E

C(X31?) by

 

Then we have:

«(mm = new) = —f(](’°,:,), = ———7(f’“(),fj(f,”,” = 7s) 



fortET,xEX,kEK. Cl

Remark 1.4.4 ([23]). Fix 7 e 1?\{ 1}. In the context of Theorem 1.4.3 the following

are equivalent:

(i) there is an eigenfunction f, of 7 such that the equation ( 1) has a solution f, f,,

with f E C(Y, T);

(ii) for every eigenfunction f,’, of 7, the equation (1) has a solution f’, 1,, with f' E

C(Y, T).

(Indeed, (ii) :> (i) is clear. Conversely, suppose that (i) holds. If ff, is any other

eigenfunction of 7, then (%)(gx) = (ii-)(x) for all g E G, x E X, so T} can be written

as h o p for some h E C(Y, K). Therefore

f(t-p(:r)) = ff,(t$)h(P(t$)) = f;(t$)h(tp(a=))

f(p(2=)) f1,(:v)h(p($)) ff,(9=)h(p($)) ’

  

so the equation (1) has a solution f’ = '5, f4.)

Remark 1.4.5. Let X = (T,X) be a simple free K—extension of y = (T, Y), where

X, y are compact Abelian flows, and y minimal. For every 7 E K fix an eigenfunction

f, of 7 (for the flow (K,X)) Then the flow X is minimal iff the equation (1) has a

solution f, f; with f e C(Y,'r) and 7 e 1?\ {1}.

(Indeed, the direction 4: is clear. The direction => follows from Remark 1.4.4.)
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1.5 Minimality of a product of two compact min-

imal abelian flows, one of which is almost pe-

riodic

In this section we use Parry’s theorem to prove a criterion for minimality of a product

of two compact minimal abelian flows X and y, one of which is almost periodic, in

terms of eigenvalues. We also give some applications of this criterion.

Theorem 1.5.1 (criterion for minimality of products). Let X = (T, X, 71),

y : (T, Y, p) be compact minimal abelian flows and suppose that y is almost periodic.

Then the product X X y is minimal if and only ifX and 32 have no nontrivial common

eigenvalue.

Proof. Fix any 6 E Y. Since y is almost periodic, there is a compact abelian group

structure on Y such that e is the identity element and the orbital map p“3 : T ——> Y,

t I—> te, is a continuous group homomorphism (0.2.30). Denote the group operation

on Y by *. We have t(y :1: y’) = ty :1: y’, for t E T, y,y’ E Y. Define an action of the

group You X X Yby y.(x,y’) = (x,yaky’) and amapp : X X Y ——> X by p(x,y) = x.

In this way (X X y, p) becomes an Y-extension of X. If for every 7 E Y we define

f1, : X X Y —> T by f;(x, y) = 7(y), we can conclude (as in Example 1.4.2) that X X y

is a simple free Y—extension of X. Now by Remark 1.4.5, X X )7 is minimal iff the

functional equation
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has no solution f E C(X,T) with 7 E Y, 7 75 1. Since teary = ty for t E T, y E Y,

X X y is not minimal iff the functional equation

f(tiv) = 7(t€)f($) (2)

has a solution f E C(X,T) with 7 E Y, 7 76 1. We show that this condition is

equivalent with X, y having a nontrivial common eigenvalue.

A

First note that for every 7 e Y, 7 o pe is an eigenvalue of 31 (since 7(a)) =

7(te*y) = 7(te)7(y)). Now if (2) has a solution f e C(X,T) with 7 e Y, 7 7e 1, then

7 o p" is a common eigenvalue of X and y, which is 7” 1 (since (7 o pe)(T) is dense

in Y). Conversely, suppose that 6 e i", 5 at 1, is a common eigenvalue of X and 31.

Then there is a 7 e C(Y, 11) such that 7(ty) = 6(t)7(y) and we can choose 7 so that

7(e) = 1. Then 7(te) = 6(1) and 7(te =1: t’e) = 7((t + t’)e) = 5(1 + t’) = 7(te)7(t’e). It

follows that 7 e Y, 7 a 1. Also there is a f e C(X, '1‘) such that f(tx) = 6(t)f(x).

Hence f(tx) = 7(te)f(x), i.e. (2) has a solution f E C(X, T) with 7 E Y, 7 751. [:1

Remark 1.5.2. A measure-theoretic analogue of Theorem 4.1 was proved in [29]:

let X and y be metric compact abelian flows which support closed ergodic invariant

measures. Then X and y are weakly disjoint iff they have no nontrivial common

eigenvalue.

Remark 1.5.3. (a) The above theorem can also be proved using the criterion for

minimality of restrictions instead of Parry’s theorem. We would consider the flow

Z = (T X Y,X X Y), defined by (t,y).(x,y’) = (tx,ty’ at y) and its restriction Z5,

where S = T X {e}. (Here * and e would be the same as in the above proof.)

(b) Here is one more way to prove the easy direction (=>) of Theorem 1.5.1.
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Suppose that X and y have a nontrivial common eigenvalue X. Let f : X —> T,

g : Y —> T be the corresponding eigenfunctions. Then the function fg : X X Y ——> T,

defined by fg(x,y) : f(x)g(y), is nonconstant and invariant. Hence X X y is not

minimal.

Example 1.5.4. Consider almost periodic compact minimal flows X = (IR, T, 71) and

)7 = (R, T, p), defined by 71(t,z) = e”"‘°“z and p(t, z) = 62"”5‘z, where (1,6 E R. The

eigenvalues of X (resp. y) are all Xm : t 1——> 62"”"0‘ (resp. Xng : t +—> e””‘"”‘), n E Z.

Hence, by Theorem 1.5.1, X X y is minimal iff 01 and 6 are linearly independent over

Q.

Similarly the eigenvalues of the restriction Xz (resp. yz) of X (resp. y) are all

Xm : k 1—> 62mm" (resp. Xng : k H 62’2"“), n E Z. Hence, by Theorem 1.5.1, XZ X yz

is minimal iff a, )8 and 1 are linearly independent over Z.

Corollary 1.5.5 ([2, p.161]). Let X, y be compact minimal abelian flows, and

suppose that X is almost periodic. Then the product X X y is minimal if and only if

X and 37 have no nontrivial common factor.

Proof. (=>) Let Z be a nontrivial common factor. Then Z X Z is minimal, as a factor

of a minimal flow X X 3). Hence Z is trivial, a contradiction.

(<:) Let X and 31 have no nontrivial common factor. Suppose that X and y are

not disjoint. Then by Theorem 1.5.1, they have a nontrivial common eigenvalue X.

Let f : X —+ T and g : Y ——> T be the corresponding eigenfunctions. We may assume

that there are points x0 E X and yo E Y such that f(xo) = 1, g(yo) : 1. Then

f(Txo) = g(Ty0) = X(T). If X(T) is finite, then by continuity of f, f(Tfr—S) = X(T)
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and similarly g(Ty—6) = X(T). If X(T) is infinite (so dense in T), then f(m) =

“Ty—0) = T, since the sets f(Tx—o) and g(TTJ) are compact and contain a dense

subset of T. In both cases, minimality of X and 3) implies f(X ) = g(Y). Hence the

subflow on f(X) = g(Y) of the flow (T, T), (t,z) l—-> X(t)z, is a nontrivial common

factor of X and y, a contradiction. [:1

Remark 1.5.6. A different proof of the statement of this corollary is given in [2],

p.161. Also note that, conversely, Theorem 1.5.1 can be deduced from this corollary.

Remark 1.5.7. If we don’t assume that either of the flows X, y is almost periodic,

it is possible to construct two nondisjoint compact minimal abelian flows with no

nontrivial common factor. A complicated example was given in [20]. The analogous

problem with eigenvalues is trivial: take any weakly mixing flow X and put 32 = X.

They are nondisjoint, but have no nontrivial common eigenvalue. Ergodic analogues

of these questions are discussed in [39].

Remark 1.5.8. Let X and y be compact minimal abelian flows. It is known that if

X is distal and y is weakly mixing, the product X X y is minimal; i.e. X and y are

disjoint ([2, p.163], [15, Theorem II.3], [38, IV(2.39)1], [41, VI.2.18]). The first proof

of this fact was given by Furstenberg ([15]) who showed that a group extension of a

flow disjoint from all weakly mixing compact minimal flows is itself disjoint from all

weakly mixing compact minimal flows if it is minimal.

Recall that a compact minimal abelian flow 3) is weakly mixing iff y has no

nontrivial eigenvalue ([33]). So it is natural to ask whether, more generally, X and y

are necessarily disjoint if we assume that X is distal and X and 3) have no nontrivial
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common eigenvalue. If we want to construct a counterexample, y must be non-

weakly-mixing (the statement above) and also at least one of the spaces X, Y must be

non—metric (this can be deduced from [2], p.161). We know of no such counterexample;

i.e. we know of no example of two non-disjoint compact minimal abelian flows X and

y, with X distal, and X and 31 having no nontrivial common eigenvalue.

1.6 SK groups

In this section we introduce the notion of SK groups, which will be used in Sec-

tions 1.7 and 1.8. For example, Proposition 1.6.6 below will play a role in the proof

of Proposition 1.8.5(ii). The motivation for introducing SK groups comes from the

criterion for minimality of restrictions and the criterion for total minimality.

Definition 1.6.1. A topological group T is said to be SK, if the kernel of every

continuous character X E T is a syndetic subgroup of T.

Remark 1.6.2. The name “SK” means “syndetic kernels.”

Example 1.6.3. (i) R. (ii) Every compact group. (iii) Every abelian minimally

almost periodic group; in particular, every abelian extremely amenable group, see

[23, 23.32] for examples of such groups.

(Recall that an abelian topological group T is called minimally almost periodic if

it has no nontrivial continuous characters. A topological group T is called extremely

amenable if every T-flow on a compact space has a fixed point. It is easy to see that

every abelian extremely amenable group is minimally almost periodic.)
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Example 1.6.3(iii) shows that there are non-LCA SK groups. Also, not all LCA

groups are SK, for example Z, Rd, Td, R X Rd, etc.

Proposition 1.6.4. A finite product of SK groups is an SK group.

Proof. Let T,,...,T,, be SK groups and let T = T1 x x T... Let x e T. For

each (x1,...,x,,) E T we have X(x1,...,x,,) = X(x1,0,...,0)... X(0,0,...,x,,). For i =

1,2,...,n denote by X,- the continuous character x,- +—> X(0,...,x,-,...,0) of T,-. So we

have X(x1,...,x,,) : X1(x1)...X,,(x,,), where Xi E T,- (i = 1,2,...,n). Let S,- = ker(Xg),

and T,- = S,- + K,, where K, is a compact subset of T,- (i = 1,2, ....,n) Since ker(X) D

S] X X S", and 51 X X 5,, is syndetic (K = K1 X X Kn is compact and

31 X X Sn + K = T), ker(X) is also syndetic.

Corollary 1.6.5. Every connected LCA group is SK.

Proof. By [23, 9.14], connected LCA groups have the form R" X C, where n 2 0 and

C is a compact connected abelian group. Since R and C are SK, the corollary follows

from Proposition 1.6.4. Cl

Proposition 1.6.6. Let T be a topological group, S a subgroup of T. Let X E T be

such that: (i) X(S) = T, and (ii) ker(XI5) is syndetic in S. Then ker(X) is syndetic

in T.

Proof. Let S’ = ker(X I 5). We have S = S’ + K for some compact subset K of

S. For each t E T, let 3, be an element of S such that X(St) = X(t)'1. Then

t+st+5’ C ker(X) (Indeed, X(t+31+5’) = X(t)-X(Sz)-X(5’) = X(t)-X(t)"l ° {1} =
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{1}.) Thus ker(X) D U (t+st+S'). Now ker(X) + K D U (t+s¢+S') + K =

tET tET

U (t + st + S’ + K) = U (t + S) = T. So ker (x) is syndetic in T. Cl

tET teT

Corollary 1.6.7. Let T be a topological group which contains a connected SK sub-

group S. Let X E T be such that S ¢ ker (x). Then ker (x) is syndetic in T.

Proof. Conditions (i) and (ii) of the previous proposition are satisfied. D

Corollary 1.6.8. Let T be an LCA group, To its connected component of identity.

Let x E T be such that To ¢ ker (x). Then ker (x) is syndetic in T.

Proof. To is connected and it is SK by Corollary 1.6.5. So the statement follows from

Corollary 1.6.7. El

Example 1.6.9. Let T = R X Td. Then To = R X {0}. If e is the trivial character

of R, then ker(c - 2dr) 2 R X {0} and this is not a syndetic subgroup of T. For any

other character X E Iii, ker(X - idT) is a syndetic subgroup of T by Corollary 1.6.8.

(For notation X1 - X2 see 0.2.4.)

Remark 1.6.10. Abelian SK groups in a natural way generalize minimally almost

periodic groups (which are never LCA unless trivial), but also contain connected LCA

groups. The fact that in recent years it has become clear that extremely amenable

(and minimally almost periodic) groups are not “exotic” ([32]), can give some impor-

tance to SK groups. In connection with this, let us mention that it is not known if

minimally almost periodic groups are extremely amenable ([31]) even in the case of

monothetic groups. It is proved in [18, Theorem 3.3], that an example of a polish

minimally almost periodic group, which is not extremely amenable, would solve in
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the negative the old problem from combinatorial number theory and harmonic anal—

ysis, asking if the set S — S, where S is a syndetic subset of Z, is big enough to be

a neighborhood of 0 in the Bohr topology on Z. (Recall that the Bohr topology on

an abelian topological group T is the weakest topology on T in which all originally

continuous characters of T remain continuous.)

Let us also mention that an abelian topological group T is extremely amenable

iff every compact minimal T-flow is trivial, iff the universal compact minimal T-flow

MT 2 (T, MT) is trivial. (Recall that for every topological group T, the universal

compact minimal T-flow is defined as a compact minimal T—flow MT 2 (T, MT) such

that for every compact minimal T-flow X = (T,X) there exists a morphism of flows

of MT onto X. It is well-known that MT exists and is unique, see [2, p.115-117],

[13, p.61-62], [38, IV(3.27)], and also [37, Appendix]. It is shown in [37] that MT

is not 3-transitive.) Obviously, if a topological group T admits at least one compact

minimal non-totally-minimal flow, then MT is not totally minimal.

1.7 Total minimality of X in terms of the structure

group l‘(X)

Remark 1.7.1. Combining 0.2.40 and 0.2.15, for compact minimal abelian flows we

have: X is weakly mixing iff every eigenvalue of X is trivial. (Another characterization

of weakly mixing compact minimal abelian flows was recently given in [3].)

Proposition 1.7.2. Let X = (T,X) be a compact minimal abelian flow and suppose
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that T is an SK group. Then X is totally minimal ifl X is weakly mixing.

Proof. From 1.7.1 and the criterion for total minimality we conclude that if a compact

minimal abelian flow is weakly mixing, it is totally minimal. Suppose now that X

is totally minimal. By the criterion for total minimality, X has no nontrivial eigen-

value whose kernel is syndetic. Since T is SK, this implies that X has no nontrivial

eigenvalue at all. By Remark 1.7.1 X is weakly mixing. [:1

Remark 1.7.3. Let X be a compact minimal abelian flow. The direction “X weakly

mixing implies X totally minimal” is true without T being SK (see [24, p.480] for

another proof). According to [24, p.480], the equivalence “X is weakly mixing iff X is

totally minimal” was first proved by N. Markley for T 2 IR. Proposition 1.7.2 extends

this result since R is SK.

Remark 1.7.4. If T is not SK, Proposition 1.7.2 is not true in general. Consider

for example a compact minimal (almost periodic) Z—flow X = (Z,T,7r), defined by

7r(n, z) = e2"‘9"z, for n E Z and z E T, where 0 E R is irrational. This flow is totally

minimal. (Follows from 1.8.1 below, but it is also easy to check directly.) However

this flow is not weakly mixing. (Follows easily from the definition of weak mixing.)

More generally, any nontrivial compact minimal Z-flow X on a connected space

X, which satisfies S} # X X X, is totally minimal but not weakly mixing. (Total

minimality follows from 1.8.1 below. Weak mixing follows from 0.2.39.)

Corollary 1.7.5. Let X = (T,X) be a compact minimal abelian flow and suppose

that T is SK. Then X is totally minimal if and only if the structure group I‘(X) is

trivial.

42



Proof. For compact minimal abelian flows, X is weakly mixing if and only if S} =

X X X (0.2.39). Hence (by Proposition 1.7.2) X is totally minimal iff S; = X X X.

Finally, since X is minimal, S} = X X X iff I‘(X) is trivial. (Indeed, if S} = X X X,

then clearly P(X) is trivial. Conversely, if I‘(X) is trivial, E(X/Sf-r) = {idX/Sft}. So

all elements of T fix every element of X/S}. This means that for every equivalence

class C C X of the relation S3,, t.C C C for all t E T. Thus C is a (closed) invariant

subset of X under T. Since X is minimal, there is only one equivalence class; i.e.

I‘(X) is trivial.) El

Remark 1.7.6. Thus the class of abelian topological groups for which the total

minimality of every compact minimal abelian flow X is equivalent with the triviality

of I‘(X ), includes abelian SK groups. (It would be interesting to characterize this

class.) In the case that T is a connected LCA group, the previous corollary was

stated by Gottschalk ([21, p.56]). Since, by Corollary 1.6.5, connected LCA groups

are SK, we have a larger class of acting groups for which the statement holds.

1.8 Compact minimal abelian flows that are not

totally minimal

1.8.1. Although total minimality is a strong condition, there are many examples of

totally minimal flows. For example, the following statement holds ([22, 228]): every

minimal flow X = (T,X), with T discrete and X connected, is totally minimal.

Indeed, if S is a syndetic normal subgroup of T, then T = FS 2 SF for some
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finite set F c T. Let :1: e X. Then (using 0.2.21, 0.2.23 and 0.2.24) X = T3 =

 

FS.:c = FIST; = U LS}, where F1 is some subset of F and the union is disjoint.

tEF1

Since X is connected, it cannot be a finite union of > 1 disjoint closed sets. So

X 2 SE. Since this holds for any a: E X, X is totally minimal.

1.8.2. In [16, p.36] a family of examples of minimal Z—flows on T" (n 2 1 any integer)

is given. By 1.8.1, these flows are necessarily totally minimal. (See also [38, lll(l.l8)—

III(1.20)] and [14].)

1.8.3. There exists a minimal continuous R—flow on T2, with no nontrivial continuous

eigenvalue ([25]). By 1.7.1(ii) and (iv), this flow is necessarily totally minimal.

1.8.4. Note that by 1.8.1 and Corollary 1.2.5, every nontrivial eigenvalue X,\ = 62’7”)

of a compact minimal Z—flow on a connected space X, satisfies /\ E Q. (But not every

such flow has a nontrivial eigenvalue. However, it is proved in [14, Theorem 5.1] that

every minimal Z—flow on T2, X = (T2,h), such that the homeomorphism h is not

homotopic to the identity transformation, has a nontrivial eigenvalue.)

We will now give some conditions on compact minimal abelian flows which necessarily

imply non—total—minimality.

Proposition 1.8.5. Let X = (T, X,7r) be a compact minimal abelian flow. Then in

each of the following situations X is not totally minimal:

(i) X almost periodic, X non-connected;

(ii) X almost periodic, T contains a connected SK subgroup which acts nontrivially

on X;
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(iii) X proximally equicontinuous, T contains a connected SK subgroup which acts

nontrivially on X;

(iv) X/S} non-connected;

(v) X distal, X totally disconnected, [X] > 1;

(vi) X point-distal, T SK, X metric, [X] > 1;

(vii) X regularly almost perodic at at least one point, T contains a connected SK

subgroup which acts nontrivially on X, X metric.

Proof. (i) Follows from Example 1.1.6 and the criterion for total minimality.

(ii) Let S be a connected SK subgroup of T and a E X, and suppose that |S.a| > 1.

By 0.2.30, X has a compact abelian group structure such that a is the identity

element and the orbital map 7r“ : T ——> X is a continuous group homomorphism and

 

7r°(T) 2 T3 = X. Since STE is a nontrivial closed connected subgroup of X, there is a

surjective continuous character of 3:, f0 : m —-> T. Let f be a continuous character

of X which extends f0.

Define X E T by X = f 0 7r“. Since 7r°(S) 2 So is a nontrivial connected subgroup

of X, which is dense in —S.—a, x(S) = f(7r“(S )) is a nontrivial connected subgroup of

T. Hence x(S) = T. By Corollary 1.6.7, ker (x) is a syndetic subgroup of T. Since

f(ker (x).a) = (f o 7r“)(ker(X)) = {1}, we have f(ker(x).a) = {1}. Ift E ker(X)“,

then x(t) = f(t.a) E f(ker(X).a) : {1}. Hence t E ker (x). Thus ker(X)“I C ker(X).

Hence ker (x)* = ker (x)a = ker (x). So ker (x) is a proper enveloped subgroup of T.

Now by the criterion for total minimality ((i) 4:) (iii)) X is not totally minimal.

(iii) Let S be a connected SK subgroup of T and a E X, and suppose that
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|S.a| > 1. Since X is proximally equicontinuous, Pg 2 S; (0.2.38). Consider the

almost periodic flow (T, X/3}) This flow satisfies the conditions of (ii). Indeed, if

b 79 a is an element of S.a, then a and b are distal (0.2.34). Hence the images a and

bof a and b in X/S} are distinct points, and b E Sci. Now by (ii), (T, X/Sfr) is not

totally minimal. Consequently X is not totally minimal.

(iv) The flow (T, X/ S3,) is almost periodic with a non-connected phase space. By

(i), (T, X/S3.) is not totally minimal. Consequently X is not totally minimal.

(v) Since X is distal and [X] > 1. S} # X X X (0.2.35). The canonical map Lp :

X —+ X/S3, is not only closed, but also open (0.2.36). Since X is totally disconnected,

its image X/Sff under a continuous clopen map is totally disconnected. In particular,

X/S} (having more than one element) is not connected. By (iv), X is not totally

minimal.

(vi) Follows from Proposition 1.7.2 and 0.2.41.

(vii) By [22, 5.24] X is locally almost periodic. Hence it is proximally equicontin-

uous. Now by (iii) X is not totally minimal.

C]

Remark 1.8.6. (i) The statement 1.8.5(ii) was first proved in the case T = R by

E. E. Floyd (see [22, 4.55 and 4.87]). It was generalized by H. Chu to non-totally—

disconnected LCA groups with the connected component of the identity acting non-

trivially on X ([6]). We extend the class of acting groups for which the statement

is true. Also our proof is simpler than that in [6] (no need for Pontryagin’s duality

theory).
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(ii) We could finish the proof of 1.8.5(ii) in a different way, by showing that X is a

nontrivial eigenvalue of X whose kernel is a syndetic subgroup of T. For this purpose

it remains to show that f(t.a) = X(t)f(;r) for all (t, :1:) E T X X. Denote the operation

in X by * . We have (t1 + t2).a = 7r“(t1+t2) = 7r“(t1) =1: 7r“(t2) = t1.a * t2.a for any

t1,t2 E T. For any a: E X there is a net tXa —> :1:. Hence for any t E T, t.a * a: =

t.a * (limtXa) = lim(t.a * ma) = lim (t + tX).a = limt.(t,\.a) =t.(1imt,.a) = t.a. So

f(t.a) = f(t.a * :1:) = f(t.a)f(:c) = X(t)f(:c) for any (t,a:) E T X X. Now we use the

criterion for total minimality ((i) 4:) (ii)).

(iii) The statement 1.8.5(iii) for X locally almost periodic (hence proximally

equicontinuous) and T non—totally-disconnected LCA group with the connected com-

ponent of identity acting nontrivially on X, was proved in ([7, p.380]). We extend

the class of acting groups and replace ”locally almost periodic” by a weaker condition

”proximally equicontinuous”. The part of the proof in which the statement (iii) is

reduced to the statement (ii) follows [7]. The proofs of (ii) are different.

(iv) The statement 1.8.5(v) was proved in [24, 3.2] as an application of a cri-

terion for weak mixing that was formulated and proved there. Although 1.8.5(v)

implies 1.8.5(iv), we stated both of them since the proof of 1.8.5(v) reduces to the

proof of 1.8.5(iv).

(v) A complete characterization of flows which satisfy 1.8.5(vii), with T = R, in

terms of their eigenvalues, is given in [10, Theorem 2].

Remark 1.8.7. Note that proximal compact minimal abelian flows are trivial [38,

IV(2.18)], in particular totally minimal.
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Chapter 2

Almost periodicity of a point

under various constructions

2.1 The notion of a skew-morphism of flows

Definition 2.1.1. Let X = (T, X), y = (T’, Y) be two flows. A pair of maps

(h, f), where h : T —> T’ is a continuous group homomorphism and f : X —% Y is a

continuous map, is called a skew-morphism of flows if

fl”) = h(13)f(il7)

for alltE T and all a: E X. We write (h,f) : X —> y.

A skew-morphism (h, f) is called a skew-isomorphism if h is an isomorphism of

topological groups and f is a homeomorphism.

Example 2.1.2. Let X = (T,X), y = (T, Y) be two flows with the same acting

group T and let f : X —> Y be a morphism of flows. Then (idT,f) : X -—> y is a
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skew—morphism. Also if Xd = (Td, X), then (idT, idx) : Xd ——+ X is a skew-morphism

(but not necessarily a skew-isomorphism).

Example 2.1.3. Let X = (T,X) be a flow, f : X -—> T be an eigenfunction of X

and X E T the corresponding eigenvalue. Let T = (T,T) be the flow defined by the

action of the unit circle T on itself by multiplication. Then (f,X) : X ——> T is a

skew-morphism.

Example 2.1.4. Let X = (T,X), y = (T’,Y) be two flows, (h,f) : X —> y a

skew-morphism, y E Y, a: E f‘l(y). Since f(Tx) C T’y, we have f(TE) C T—’y.

Let f1 : T; —> T—’y be the restriction of f to these sets. Let X’ = (T, fl) and

y’ = (T’,T’y) be the canonical flows. Then (h, f1) : X’ —> y’ is a skew-morphism of

flows.

Example 2.1.5. Let X = (T, X,7r) be a flow, 5 a normal subgroup of T, :1: E X,

t E T. Consider the canonical flows y = (S, SE) and Z = (S,m) Notice that

.572: 21:5. Let h = Int. : S —> S, h(s) = tst‘l, and let f = 7r. : X —> X, 7r.(x) 2 tr.

Then (h, f) = (Inthm) : )7 -—> Z is a skew-isomorphism of flows. In T is abelian,

Int, 2 ids, so we have a skew-isomorphism (ids, 7n) : ST —> Sta.

Example 2.1.6. Let X = (T, X, 7r) be a compact minimal abelian flow, S a syndetic

subgroup of T. The orbit-closures under S form a partition of X. Let R be the

equivalence relation on X defined in that way, X = X/R, px : X —> X/R the

canonical map. For T E X denote by i: the element pX(:r) of X. Let S‘ be the X-

envelope of S, p1 : T —) T/S* the canonical homomorphism. The function fr : T/S" X

X/R —+ X/R, given by ir(t + S‘,:i:) = t}, defines a flow X = (T/S*,X/R,i'r) (follows
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from the proof of the criterion for minimality of restrictions). Then (pp, px) : X —-> X

is a skew-morphism of flows.

Proposition 2.1.7. Let X = (T,X), y = (T’,Y) be two flows, (h,f) : X —+ y a

skew-morphism.

(i) Ifh is surjective, then f(X) is an invariant subset of y (and hence (T’,f(X))

is a subflow of 32).

(ii) If X is minimal and f is surjective, then y is minimal.

(731;an is totally minimal, h,f are both surjective and h has the compact-covering

property, then y is totally minimal.

Proof. (i) and (ii) are easy.

(iii) Fix a syndetic subset S’ of T’ and an element y E Y. By Remark 0.2.8, S =

h‘1(S’) is a syndetic subset of T. Let a: E f’1(y). Then S; = X. Hence: S—’y_ =

 

h(S)y = h(S)f(.c) = f(Sat) 3 f(fi) = f(X) = Y. So )2 is totally minimal. [3

2.2 Almost periodicity of a point under various

constructions

Proposition 2.2.1. Let X = (T,X) be a flow, at E X. Let Y be an invariant subset

ofX which contains a: and let y = (T, Y) be the subflow ofX on Y. Then :1: is almost

periodic in X if and only if a: is almost periodic in y.

Proof. Follows from the definition. Cl
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Remark 2.2.2. Let X = (T,X), y = (T’, Y) be two flows, (h,f) : X —> y a skew-

isomorphism, a: E X, y = f(3:) Then a: is almost periodic in X if and only if y is

almost periodic in y.

Proposition 2.2.3 ([2],[13],[22],[38](for morphisms)). Let X = (T,X), y =

(T’, Y) be two flows, (h, f) : X —> y a skew-morphism with h surjective. Let :c E X,

y = f(x). Then ifx is almost periodic in X, y is almost periodic in y.

Proof. Let V be a neighborhood of y and let U be a neighborhood of a: such that

f(U) C V. Let S be a syndetic subset ofT such that S1: C U. Then, from f(Sa') C V,

h(S)y C V. Also T’ = h(T) = h(KS) = h(K)h(S). Since h(K) is compact, h(S) is

syndetic. Thus y is almost periodic. Cl

Remark 2.2.4. The above proof is the same as the proof in case of morphisms. The

next three propositions however illustrate how sometimes, using skew—morphisms, we

can easily get simpler and more natural proofs of known statements, as well as new

statements.

Proposition 2.2.5 ([2, page 13]). Let X = (T, X, 7r) be aflow, S a normal subgroup

of T, X5 = (S, X) a restriction of X, a: E X. Then ifa' is almost periodic in X5,

every tx, t E T, is almost periodic in X5. (In particular, if :1: is almost periodic in X,

every point tx, t E T, is almost periodic in X.)

Proof. Fix t E T. Consider the canonical flows y = (S, E) and Z = (S, We.) By

Example 2.1.5 and Proposition 2.2.1 we have: a: is almost periodic in X5 <=> a: is

almost periodic in y (i) tax is almost periodic in Z 4:) ts: is almost periodic in X5. E]
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Proposition 2.2.6. Let X = (T, X,7r), )7 = (T, Y, p) be two flows with the same

acting group T, r, s e T. Consider a continuous group homomorphism h : T —> TxT,

given by h(t) = (rtr‘1,sts"1) = (Int,(t),lnt,(t)). Suppose that the subgroup h(T) of

T x T has the topology induced from T x T and consider the flow 2 = (h(T), X x Y),

defined by

(tlat2)($ay) = (7r(t1,$)p(t2,y)) = 0193,7329),

where (thtg) e h(T) and (x,y) e X x Y. Then a point (x,y) is almost periodic in

X X y if and only if (rm, sy) is almost periodic in Z.

Proof. (h,7rt X p,) : X X y ——> Z is a skew-isomorphism (by 0.2.2 and a routine

checking) and (rrt X p,)(a:,y) = (rx,sy). [:1

Corollary 2.2.7. Let X = (T,X), y = (T, Y) be two abelian flows with the same

acting group T.

(i) If a point (:1:, y) is almost periodic in X X y, then every point (rm, sy), r, s E T,

is almost periodic in X X y.

(ii) If a point a: is almost periodic in X, then every point (rat,s:r), r,s E T, is

almost periodic in X X X.

Proof. (1) The diagonal of T X T can be identified with T.

(ii) a: is almost periodic in X if and only if (:1:, .r) is almost periodic in X X X, so (ii)

follows from (i). [:1

Remark 2.2.8. The statement (i) is used in [1]. The statement (ii) is Lemma 8

from [8].
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Proposition 2.2.9. Let X = (T,X) be a flow, f : X —> X an endomorphism of X.

Then ifa' is almost periodic in X, (:1:, f(x)) is almost periodic in X X X.

Proof. Consider the subflow y = (T, Gr(f)) ofX X X. Let g : X —> Gr(f) be given by

g(x) = (3:, f(x)). Then (idT,g) : X —> y is a skew-isomorphism (using 0.2.2 and the

assumption that f is a morphism). Hence, since :1: is almost periodic in X, (:1:, f(03)) is

almost periodic in y. By Proposition 2.2.1, (:1:, f(zr)) is almost periodic in X X X. C]

Remark 2.2.10. Note that, using Proposition 2.2.9, we can again deduce (ii) from

Corollary 2.2.7, if we observe that in the case of an abelian flow X all transition

homeomorphisms :r r—> tr are endomorphisms of X.

Proposition 2.2.11 ([2],[13],[22],[38]). Let X = (T,X) be a compact flow. Then:

(i) a point a: E X is almost periodic if and only if it is discretely almost periodic;

(ii) X is pointwise almost periodic if and only if every orbit closure in X is min-

imal;

(iii) if X is minimal, every point :r E X is almost periodic;

(iv) there is at least one almost periodic point of X;

(v) let S be a syndetic normal subgroup of T, X5 = (S,X) a restriction of X,

:1: E X; then a: is almost periodic in X if and only if :1: is almost periodic in X5.

Remark 2.2.12. All statements from Proposition 2.2.11 can be easily proved us-

ing 0.2.17 and the natural connection 0.2.28 between almost periodicity of a point

and minimality in the case of compact flows.

Proposition 2.2.13 ([12], [38, II(7.10)] (for morphisms)). Let X : (T,X),

y = (T’, Y) be two compact flows, (h, f) : X —-) y a skew-morphism with h surjective.
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Let y E Y be an almost periodic point of )7. Then the set f"1(y) contains an almost

periodic point of X.

Proof. Let N 2 TE. This is a minimal subset of Y by Proposition 2.2.11. The

set f‘1(N) is a nonempty closed invariant subset of X. Also f‘1(N) is compact.

Hence (by 0.2.17) f‘1(N) contains a minimal subset M. Then f(M) is a closed

nonempty invariant subset of N. Hence f(M) = N. In particular, there is a point

.7: E M such that f(x) = y. Since we must have T; = M, a‘ is almost periodic by

Proposition 2.2.11. [:1

Remark 2.2.14. The above proof is the same as the proof in the case of morphisms.

2.3 The notion of a skew-morphism good over a

point with respect to orbit-closures

Definition 2.3.1. Let X and Y be topological spaces, y E Y. A continuous map

f : X —> Y, is said to be good over y if the fiber f"1(y) = {x,- | i E I} is nonempty

finite and if given neighborhoods U.- of 13,-, i E I, there exist neighborhoods W,- of 10,-,

i E I, and V of y, such that:

(G1) W.- C U;, i E I;

(G2) ifiyéj then VIC-OW,- =0, i,j E I;

(G3) f(U... w.) = v;

(G4) f"(V) = U.e,W.-.

Example 2.3.2. Any homeomorphism f : X —> Y is good over any y E Y. More
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generally, if X is a topological space and F a finite (discrete) space, then prl : X X F —>

X is good over any :1: E X.

Remark 2.3.3. Let f"1(y) = {r1,-~ ,xn} and suppose that there exist neighbor-

hoods U, ofT,, i = 1,--- ,n, and V ofy, so that each f: U,- —> V, i = 1,--- ,n, is a

homeomorphism. Still f is not necessarily good over y. (Consider the subsets of R2:

X = {(a,b)| — 1 S a _<_ 1, b E [0,1}} \ {(0,1)}, Y = {(a,0)| — 1 S a S 1}, the map

f 2 pr], and the point y = (0,0).)

Proposition 2.3.4. Let X and Y be compact spaces, f : X —+ Y a surjective con-

tinuous map, y E Y. Then if the fiber f‘1(y) is finite, f is good over y.

Proof. Let f“(y) = {x1,-~ ,xn} and let U,- be an open neighborhood of a:,, i =

1, - - - , n. We may asssume that the U,- are pairwise disjoint. The set X’ = X\U?:1 U,

is compact. For any point z E X’ choose disjoint open neighborhoods 0; of y and

0 of f(z). Then Az = f‘1(0) and B2 = f"l(0,) are disjoint open neighborhoods of

f‘l(f(z)) and f“(y) respectively. The set X’ is covered by UzEX’ Az, so there are

finitely many points 21,. ~ .2. e X’ such that X’ c UL. A2,. Consider (13;, 32,.

That’s a saturated (with respect to f) open neighborhood of f‘1 (y) (as an intersection

of saturated neighborhoods). Also ((1le sz)n(U§=, A2,.) = 0. Since UL, Az, D

X \ ug, U.-, we have 03;, 3., c UL. (1.. Put W.- = (0;, B.,)nU.-, i = 1,... ,n.

Now UL, W, 2 fig, sz = 05:, f‘1(0z,.) = f‘l(fl§:, 02,). Since f is surjective,

flu; W.) = f(njz, 82,.) = 0;, 0.,. Put v = 0le 0., The neighborhoods W,-

i = 1, - -- , n, and V satisfy the conditions (G1)—(G4). E]

Remark 2.3.5. If the condition (G3) from the previous definition is replaced by
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(G3’) f(W.) = V for all i E I,

(and if the fiber f‘1(y) is not necessarily finite), f is said to be locally surjective

over y. This notion was considered in [35]. Other than this definition, the line of

investigation we pursue has no connections with this paper. The map f from the

previous proposition is not necessarily locally surjective over y. (Consider the subsets

of R2: X = {(a,0)| — 1 S a S 1} U {(0,1)}, Y = {(a,0)| — 1 S a S 1}, the map

f : pr], and the point y = (030).)

Definition 2.3.6. Let X = (T,X), y = (T’, Y) be two flows. A skew-morphism

(h, f) : X -—> y is said to be good over y with respect to orbit closures if the following

two conditions hold:

(GR) for any :1: E f‘1(y), the restriction f1 : T; —+ TE of f is good over y;

(0C) for any :1:,x’ E f"1(y), :r’ E T? implies :1: E fl.

A morphism f : X —> y of flows X = (T,X) and y = (T, Y) is said to be good over

a point y E Y with respect to orbit closures if the skew-morphism (idT, f) : X —) y is

good over y with respect to orbit closures.

Example 2.3.7. If (h,f) : X —) y is a skew-isomorphism of flows X = (T,X) and

y = (T’, Y), then for any y E Y, (h, f) is good over y with respect to orbit closures.

Example 2.3.8. Let X = (T,X) be a flow and let X; = (Td,X). Let (idT, f) : X; —>

X be a skew-morphism with f a homeomorphism. Then for any y E Y, (h, f) is good

over y with respect to orbit closures.

Example 2.3.9. More generally than in the previous example, let X = (T,X) and

y = (T’, Y) be two flows, (h,f) : X —> y a skew—morphism with h surjective and
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f a homeomorphism. Then for every y E Y, (h, f) is good over y with respect to

orbit—closures.

(Indeed, let f‘1(y) = {:1:}. Since f is a homeomorphism, f(-T_;r) is a closed subset

of Y, hence of TE. Since it contains a dense subset T’y of TE, we have f(TE) 2 T75.

So f1 : T; —> T73] is a homeomorphism. Hence (GR) holds. Also (0C) holds since

each fiber has exactly one element.)

2.4 Examples of skew-morphisms good over a point

with respect to orbit-closures

Proposition 2.4.1. Let X = (T, X), y = (T’,Y) be two flows, (h,f) : X —> y a

skew-morphism with h surjective. Suppose that (X, f) is a covering of Y whose all

fibers are finite. Let y E Y. Suppose that each deck-transformation of (X, f) is an

automorphism of the flow X and that the group of deck-transformations of (X, f) is

transitive on f‘1(y). Then (h, f) is good over y with respect to orbit closures.

Proof. Fix any .7: E f‘1(y). Consider the restriction f1 : E ——> T—’y of f. Let’s

check that fl is surjective. Indeed, let y’ E m. Suppose to the contrary, i.e.

f‘1(y’) fl T—x~ = 0. Let f'1(y’) = {Tfi- | i E I}. Take an elementary neighborhood

U,’ of each of the elements :1::(i E I). We may assume that all of them are disjoint

from W. Let V’ be the corresponding elementary neighborhood of y’. There is an

element t’y E V’ (since y’ E T—’y). Let t E T be such that h(t) = t’ and consider tr.

We have f(tr) = t’y. Hence ta: E U,’ for some i, a contradiction. Thus fl is surjective.
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Let ff1(y) 2 {:1: = 231,3:2, - -- ,n,} and let U; be a neighborhood of :1:.- in fl (i =

1, - -- , n). There are elementary neighborhoods W,’ of these points which all corre-

spond to the same elementary neighborhood V’ of y and are such that W, = WIDT—T’ C

Us [Here we use finiteness of the fiber f—1(g).] Let V = V' 0 TE. We want to show

that these IV,- and V satisfy (G1)-(G4) (in that way the condition (GR) for (h,f)

will be checked). Let :r’ E W5. Then f(x’) E f(W.) C f(l/V,’) = V’. Also there is a

net tax —> r'. Hence f(tax) —> f(r'), i.e. h(ta)y ——> f(s'). Hence f(r') 6 TE. Thus

f(x’) E V’ (WT—’y = V. So f(W.) C V for i = 1,-~ ,n. Let now b E V. Since fl is

surjective, there is an a e T? such that f1(a) = b. This a must belong to f‘1(V’),

hence to the one of WY, hence to the one of l/V,.

Let’s check (OC). Observe that for every g E A and :c’,a‘” E X, :1:” E W im-

plies gr” 6 W since g is an automorphism of X. Consider r.- e f-'(g) n Tr.

Let g E A be such that gr: 2 13;. From gm E T—a: we have (using the observation)

g2rr e T—gr‘ c E. Then gm: 5 TE c T7,}, etc. Since all elements :1:,gzr:,g2:c,---

are in the finite set f‘1(y), there is a smallest n 2 1 such that g".r = :1:. We have

fl=T—g"T—CTgTa—:C CngCfi. Hencefi=TE=T$_,-. Hence (OC)

holds. Cl

Lemma 2.4.2. Let X = (T,X), y = (T’,Y) be two flows, let a: E X, y E Y and

suppose that X = T—T, Y 2 TE. Let (h,f) : X —-) y be a skew—morphism with h

surjective and f(0:) = y. Suppose that y has a neighborhood V such that K :2 f‘1(V)

is compact. Then the restriction f’ : K —> V of f is surjective. In particular, V is

compact.
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a
Proof. Let z E V. Since T’y fl Int(V) is dense in V, there is a net t’ y —> z in Int(V).

For each t; let to, be an element of T such that h(ta) = t;. Since f(tax) = tgy E V,

tax E K. Since K is compact, there is a convergent subnet tgr. Let tax —> w E K.

Then f(tgx) ——+ f(w), i.e. tby ——) f(w). Hence f(w) = 2. Cl

Proposition 2.4.3. Let X = (T,X), y = (T’,Y) be two flows, (h,f) : X —-> )7 a

skew-morphism with h surjective. Suppose that whenever 2:1, .732 E X are in the same

fiber, their orbit-closures are either equal to each other or disjoint. Let y be a point

of Y which has a neighborhood V such that f"1(V) is compact and let :1: E f’1(y)

be such that TED f‘1(y) is finite. Let f’ : II? —> T’—y be the restriction off and let

X’ = (T, T?) and y’ = (T’,T’_y) be the canonical flows. Then (h,f’) : X’ ——> 37’ is

good over y with respect to orbit closures.

Proof. Let f‘1(y) fl Ta? = {:1: = .731, $2, . -- ,xn}. Since, by assumption, T; = W for

i = 1, 2, - - - , n, (h, f’) is good over y with respect to orbit closures iff f’ is good over

y. The set V’ = V D m is a neighborhood of y in TE. Note that for every subset

of m its closures with respect to T—’y and with respect to Y are the same. Since

V7 C Vfl TE, f’—1(V) C f'1(V). Since f’_1(W) is closed in T}, it is closed in X.

Hence it is compact.

Let U,- be a neighborhood of :1:.- in E (i = 1,2,--- ,n). Denote K = f’-1(V).

We may assume that U.- C K for all i since K is a neighborhood of f”‘1(y) in

T30. The restriction f” : K —> V7 of f’ is surjective by Lemma 2.4.2. Hence, by

Proposition 2.3.4, f” is good over y. So there are open neighborhoods W, C U.- of

:r; in K and V” of y in V7, which satisfy (G1)—(G4). They are at the same time
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neighborhoods in T; and in T73). So f’ is good over y and consequently (h, f’) is good

over y with respect to orbit closures. Cl

Proposition 2.4.4. Let X = (T, X) be afiow all of whose orbit closures are compact

(for example a compact flow) and let y = (T’, Y) be a compact flow. Let (h, f) : X —>

y be a skew-morphism with h surjective and f locally injective. Let y E Y be a point

with a nonempty fiber. Then if y is almost periodic in y, (h,f) is good over y with

respect to orbit-closures.

Proof. Suppose that y is almost—periodic in y. Let :1: E f‘l(y). Since y is a compact

flow, T—'y is minimal. Hence the restriction f1 : E —> T73; of f is surjective. For

each point z E T3:— we can choose an open neighborhood Oz of z in E such that fl is

injective on Oz. Since Ta: is compact there are finitely many points z], 22, - - - . 2,, such

that 0;, U - - - U 02,, covers T—afi Each of these sets can contain at most one element

from ffl(y). Hence ff1(y) is finite. By Proposition 2.3.4, fl is good over y. So the

condition (GR) is satisfied.

Let :r’ be another point from f‘1(y) and suppose .r’ E TE. Suppose that :1: E T337.

Let ff1(y) = {:1: 2 $1,x2,--- ,a" :- xm,.rm+1, - - - ,xn}.Without loss of generality we

may assume that T170 ffl(y) = {r,n,:rm+1, - -- ,a'n}. Using compactness of E and

the fact that fl is good over y, we can find open pairwise disjoint neighborhoods W,- of

13,-, i 2 1, 2, . - - , n, and V of y, so that at the same time the conditions (G1)—(G4) are

satisfied, fl is injective on each of W,, i = 1,2, - -- , n, and T—T’ is disjoint from every

W, i = 1,2,~~- ,m — 1. Let S’ = D(y,V). Then by Proposition 2.2.11 T’ = F’S’,

where F’ is a finite subset of T’. Hence by Lemma 0.2.7, T = Fh"1(S’), where F is a
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finite and S = h‘1(S’) a syndetic subset of T. There is a net tasaatl —> arm with to E F

and so, E S. The net (to) in F has a convergent subnet t5 -—> t. Since tgsgal —+ am,

we have ts/ggrl ——) .73.". Hence 352:1 —-> t‘la‘m. Since f(sgml) = h(sg)y E V, 33131 E

UL1 IV.- = f”1(V). At the same time t'lxm E T17. Since T737 is disjoint from each

W,- for i = 1,2,--- ,m — 1, we have that for S 2 30 (for some So) all 351:1 are in

UL", W5. Fix some 35.731 E Wj,j E {m,m+1,--- ,n}. For each i = m,m+1,-~- ,n,

3541:,- E UL", Wp (must be in Til-:7 and in UL1 W,- at the same time). So there are two

of the points 353:1, sBTm, 35xm+1,- - - , 352:" in one of the sets Wm, - -- , W... The image

under f1 of each of them is h(35)y. Since fl is injective on each of Wm, - - - , Wn, these

two points should be equal to each other, a contradiction. Hence a: E W, i.e. the

condition (CC) is satisfied. [:1

2.5 A criterion for lifting of almost periodicity of

a point

Theorem 2.5.1 (criterion for lifting of almost periodicity of a point). Let

X = (T,X), y = (T’, Y) be two flows, (h,f) : X —-> y a skew-morphism with h

surjective. Let y E Y be a point such that (h, f) is good over y with respect to orbit-

closures and let at E f‘1 (y). Then y is almost periodic in y if and only ifs: is almost

periodic in X.

Proof. (é) : Suppose y is almost periodic in y. The restriction f1 : T; —> T—’y

of f is good over y. In particular the fiber f1_l(y) is finite. Let ff1(y) = {T =
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x1,x2,-~ ,xn}. Fix any neighborhood U of 11:1 in W. Put U1 2 U and t1 = e. For

each i E {2,3, - -- ,n} we have :1:] E TE.- (since (h,f) is good over y with respect to

orbit-closures). Hence for each i E {2,3, - -- ,n} there is an open neighborhood U.-

of :1:; in To: and t,- E T such that thg C U. Choose open neighborhoods W; C Ug,

i = 1, 2, - ~ . , n, of the points :1:,- in fl and an open neighborhood V of y in T—’y so that

the conditions (G1)-(G4) are satisfied. By Lemma 0.2.19, there is a neighborhood V’

of y in T737 and a neighborhood 0 of the unit element er in T’, such that 0D(y, V’) C

D(y,V). Also there is a compact K’ C T’ such that T’ = K’D(y,V’). We have

A” C F’O for some finite subset F’ of T’. Thus T’ C F’0D(y, V’) C F’D(y, V) C T’,

so T’ = F’D(y,V). By Lemma 0.2.7, there is a finite subset F of T such that

T = Fh'1(D(y,V)) = FS, so S = h'1(D(y,V)) is syndetic in T. We have 5171 C

UL, W.- (since for every 3 E S, f(sx1)= h(s)y E V). Let S.- = {s E Sstl E 147,-}, i :

1,2,--- ,n. Iffor s E S, sxl E W.- for some i = 1,2,--- ,n, then 23,-st E tJ/V; C t.-U.' C

U, hence for every 3 E S, s E S.- implies t.-s E D(scl,U). Cosequently D(x1,U) 3

UL, thi. Since S = UL, 5,, the set UL, thg is syndetic in T by Lemma 0.2.9. Hence

D(xl, U) is syndetic and so :1: = 3:1 is almost periodic.

(=>) : Follows from Proposition 2.2.3. D
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2.6 Applications of the criterion for lifting of al-

most periodicity of a point

Corollary 2.6.1. Let X = (T,X) be afiow whose all orbit-closures are compact and

let y = (T’,Y) be a compact flow. Let (h,f) : X —) y be a skew-morphism with h

surjective and with f locally injective. Let y E Y be an almost periodic point in y

with a nonempty fiber. Then every x E f"1(y) is an almost periodic point of X.

Proof. By Proposition 2.4.4, (h, f) is good over y with respect to orbit—closures. Hence

by Theorem 2.5.1, every 2: E f‘1 (y) is an almost periodic point of X. [:1

Corollary 2.6.2 ([12, Proposition 3]). Let X = (T,X), y = (T, Y) be two com-

pact flows and f : X —> y a surjective locally injective morphism. Let y be an almost

periodic point of 3). Then every :1: E f‘1(y) is an almost periodic point of X.

Proof. Follows from Corollary 2.6.1. [:1

Corollary 2.6.3. Let X = (T, X), y = (T’, Y) be two flows, (h,f) : X ——> y a skew-

morphism with h surjective and f a homeomorphism. Let y E Y and let :c E f’1(y).

Then y is almost periodic in y if and only if :2: is almost periodic in X.

Proof. By Example 2.3.9, (h, f) is good over y with respect to orbit closures. So the

statement follows from Theorem 2.5.1. [3

Corollary 2.6.4 ([30, Theorem]). Let X = (T,X) be a flow and a: a point of X.

Then .7: is almost periodic if and only if it is discretely almost periodic.

63



Proof. Consider a skew—morphism (idT,idx) : Xd -—) X, where Xd = (Td,X) and

apply Corollary 2.6.3. Cl

Corollary 2.6.5 ([26, Proposition 4.3] (with T = T’ and h = idT)). Let X =

(T, X), y = (T’, Y) be two flows, (h,f) : X —> y a skew-morphism with h surjective.

Suppose that whenever $1, $2 E X are in the same fiber, their orbit-closures are either

equal to each other or disjoint. Let y be a point of Y which has a neighborhood V

such that f'1(V) is compact and let a: E f‘1(y) be such that Tin f‘l(y) is finite.

Then y is almost periodic in y if and only if a: is almost periodic in X.

Proof. Let f’ : T; —> m be the restriction of f, X’ = (T, fi), 37’ = (T’,T_’y) the

canonical flows. Then, by Proposition 2.4.3, (h,f’) : X’ —> y’ is good over y with

respect to orbit-closures. Hence, by Theorem 2.5.1, y is almost periodic in 37’ iff .r is

almost periodic in X’. Also, by Lemma 2.4.2, y is almost periodic in )2 iff y is almost

periodic in y’ and a: is almost periodic in X iff .1: is almost periodic in X’. Thus y is

almost periodic in y iff x is almost periodic in X. [:1

Corollary 2.6.6 ([27, Theorem 2.1] (with T = T’ and h = idT)). Let X =

(T,X), y = (T’, Y) be two flows, (h, f) : X —+ y a skew-morphism with h surjective.

Suppose that (X, f) is a covering of Y all of whose fibers are finite. Let y E Y and

let :1: E f’1(y). Suppose that each deck-transformation of (X, f) is an automorphism

of the flow X and that the group of deck-transformations of (X, f) is transitive on

f’1(y). Then y is almost periodic in y if and only if x is almost periodic in X.

Proof. By Proposition 2.4.1, (h, f) is good over y with respect to orbit-closures. So

the statement follows from Theorem 2.5.1. Cl
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