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ABSTRACT

ELECTRONIC STRUCTURE OF NARROW GAP SEMICONDUCTORS:

UNDERSTANDING GAP FORMATION AND THERMOELECTRIC

‘ PROPERTIES

By

Paul Melvin Larson

Electronic band structure calculations are invaluable theoretical tools to under-

stand structural, transport, and optical properties of materials. We have used this

tool in the search for new high performance thermoelectric materials, which are usu-

ally narrow-gap semiconductors. We have studied the electronic structures of. these

systems both to understand which properties of the band structure are most impor-

tant for thermoelectric prOperties and the nature of the gap formation.

Narrow-gap semiconductors lie between metals and wide-gap semiconductors, so

understanding the nature of the gap formation is very important. The small band gaps

in the systems we have studied generally arise from hybridization between different

hands. We have used the local density approximation (LDA) and the generalized

gradient approximation (GGA) within density functional theory (DFT). These have

been implemented using the full-potential linearized augmented planewave (FLAPW)

method within the WIEN97 package. This state-of-the—art method is among the most

accurate methods for calculating-the electronic structure of solids.

We have studied four classes of compounds. These include the half-Heusler com-
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pounds, the ternary Zintl-phase compounds, the simple chalcogenides, and the com-

plex chalcogenides.

The ternary half-Heusler compounds, considered having a stuffed NaCl structure,

Show promising thermoelectric properties. The band gap formation is understood by

starting with the semi-metallic binary NaCl compounds from which they are formed.

Adding the transition (or noble) metal atom causes a strong p-d hybridization near

the Fermi energy which Opens up the band gap. This hybridization also leads to

highly anisotropic effective masses at the conduction band minimum which are found

in the best thermoelectric materials. Similar band gap formation is found in the

ternary Zintl-phase compounds which are considered a stuffed Th3P4 structure. The

band gaps in these ternary compounds are larger than experiment, unlike what one

usually finds in LDA/GGA calculations. We explain this discrepancy by the noting

that the position of the d-levels are too high in energy in LDA/GGA calculations

which increases the hybridization near the Fermi energy and gives a larger gap.

The best known thermoelectric materials belong to the class of simple chalco-

genides, including Bi2Te3 for room temperature (300 K) and PbTe for high tempera-

ture (700 K) applications. In contrast to the previous materials, here the relativistic

effects are important and the band gaps are found to agree very well with experiment.

We also find that the band structure of these materials show large band degeneracy

and highly anisotropic effective masses at the band extrema as well as a narrow band

gap, ideal for good thermoelectrics. We have searched for these properties in complex

chalcogenides BaBiTe3, CsBi4Te6, and KzBlgsela. We have found that the best ther-

moelectric of these three, CsBi4Te6, has the highest anisotropic effective mass ratio,

similar to what we had found for BI2T83.
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CHAPTER 1

INTRODUCTION

Technological needs have fueled a. search for new thermoelectric materials. These

materials, which can be used in either solid state refrigeration or power generation,

produce a temperature gradient from an applied electric current or, conversely, an

electric current from an applied temperature difference. These devices have no moving

parts, produce no waste products to be released into the environment, and are scalable

to any size needed. They have been used as power generation in deep space probes

and as cooling units in portable refrigerators. The problem Of using these materials

on a wider scale is that their coefficient of performance (or efficiency) is much lower

than current technologies.[1, 2, 3]

AS will be discussed in detail in the next chapter, the coefficient of performance

(or efficiency) of a thermoelectric device is determined by the dimensionless quantity

ZT given by

(1)

ZT : SQUT/I'i,

where S is the Seebeck coefficient, a is the electrical conductivity, T is the average

absolute temperature, and K is the thermal conductivity. The highest values Of ZT

are found to be about 1 and are seen in doped narrow-gap semiconductors having a

large Seebeck coefficient and electrical conductivity but a low thermal conductivity.

Finding a material with ZT z 3 would make thermoelectric devices competitive with

Several. existing technologies for cooling and power generation, but any improvement

0f ZT would lead to immediate applications.[1, ’2, 3]



The search for new thermoelectric materials requires both experimental (synthesis -

. and measurement) and theoretical studies, especially electronic structure calculations.[4]

Thermoelectric properties depend on subtle features of the electronic structure near

the Fermi energy (E1:), so electronic structure calculations provide a method to pre-

dict and understand new thermoelectric materials- The optimum materials usually

have band gaps on the order of 10kBT (where T is the Operating temperature), de-

generate bands near Ep, and anisotropic transport Of the doped system.[1, 2, 3, 4]

In this dissertation, we will discuss the band structure of four general classes of

narrow-gap semiconductors to understand both the formation of their semiconduct-

ing gaps and their thermoelectric properties. These materials are synthesized based

on the guiding principle of combining Simple structures, such as cubic or rhombohe-

dral, to form more complex structures with a more glass-like thermal conductivity

and yet maintaining the high electrical conductivity of a simple crystal[5] (electron

crystal/phonon glass[6]). The first Of these classes of materials is the half-Heusler

. compounds formed by stuffing transition metal ions into the pockets Of a NaCl

lattice.[7, 8, 9] This class provides numerous elemental replacements of individual

atoms which can affect the electronic structure. The half-Heusler compounds are

closely related to the next class, the ternary Zintl phase compounds, where Ni atoms

are stuffed in a more complex Th3P4 lattice in order to produce lower values of n.[10]

The third class consists of the simple chalcogenides, the best known bulk thermoelec-

tric materials for almost 40 years, including PbTe at high temperatures and BI2T€3

at room temperature.]ll, 12] The final class consists of complex structures formed

from combinations of units with the crystal structure of the cubic PbTe and the

rhombohedral BigTeg, such as BaBiTe3[11, 13], CsBi4Te6]14, 15], and K2BiSSe13I16].

Understanding the electronic structure of these materials gives us an insight into



which features of the electronic structure, such as band degeneracies, size of band

gap, and anisotropic effective masses, are most important for high values of ZT. We

hope to Show that electronic structure calculations provide an invaluable theoretical

tool to understand the properties of thermoelectric materials.



CHAPTER 2.

THERMOELECTRICITY

2.1. GENERAL PRINCIPLES

Thermoelectricity is a transport property which relates the thermal gradient to the

electrical current in a material. Thermoelectric devices can be used either to trans-

form an induced electric current into a temperature gradient in a material, used for

refrigeration, or transform an induced temperature gradient into an electric current,

used for power generation.[1, 2, 3, 4]

Figure 1 shows a schematic of a two-leg thermoelectric device which can be used

for heating or cooling. The device consists of an n-dOped sample, where the carriers

are electrons, and a p—doped sample, where the carriers are holes. AS the current

enters the device from the right, the Slightly more energetic electrons (for a typical

doping, 1019/cm3, E~0.1 eV) travel against the current, thereby heating the bottom

of the device and leaving the top cooler. As the current goes down the left leg, the

slightly more energetic holes (E~0.1 eV) travel in the direction of the current, again

heating the bottom of the device and leaving the top cooler. An equilibrium is reached

as phonons transmit the heat back through the lattice from the hot end to the cold

end. A large temperature difference can be best maintained if the system has a low

thermal conductivity.[17, 18]

The main disadvantage Of thermoelectric devices is their low coefficient of perfor-

mance (efficiency) for use in refrigeration (power generation) compared with more

conventional technologies, such as Freon cooling. The best thermoelectric devices

have only about 1 /3 the efficiency of Freon refrigerators. Thermoelectric devices fill a
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niche market for cooling computer chips and‘infrared detectors as well as their largest

use in automobile beverage coolers which plug into the car’s cigarette lighter.[‘19]

Figure 1. Schematic Of a two-leg thermoelectric device. Current travels from

right to left, up through the n-type leg and down the p-type leg

to produce cooling on the upper surface[1]

 

   

  
   

If we consider no coupling between these currents, the electrical and thermal cur-

rents depend On their sources Of the electric field and thermal gradient, respectively,

(2)

J 2 0E,

Q = - KVT,

(3)

where J is the electrical current, Q is the thermal current, E is the electric field,
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and VT is the temperature gradient. In any real material, the. electrical current flow

causes slightly more energetic electrons to move from one end of the material to the

other, producing a temperature gradient. Conversely, a temperature gradient induces

a movement of electrons Opposite the direction of this gradient. In order to explain

this interrelation, one defines a quantity S known as the Seebeck coefficient (also

called the thermoelectric coefficient or the thermopower) as a coupling term between

the thermal and electrical currents produced and the sources of the electric field and

the temperature gradient[17, 18, 20, 21], i.e.,

(4)

J = OIE - SVT]

Q : (O’TS)E - rtVT

(5)

The coefficient Of performance can be derived for a thermoelectric material by

studying the rate at which heat is removed only from the cold reservoir (at temper-

ature TC). This rate can be written as a sum of three terms. The first is the Peltier

cooling due to the current in the material

(6)

(IPeltier = STCJ-

The second term is the Joule heating, written as a negative quantity since it adds

heat.

(7)

quule . I ' %JR2

Here R is the resistance rather than the resistivity (R = (a A/L)‘1 where L is



the length and A the area of the device). The third term is the heat due to thermal

transport due to both electrons (or holes) and phonons which move from the hot

reservoir to the cold reservoir. This is also written as negative Since it adds heat to

the cold resevoir.

(8)

thermal = - K AT

Here K is the total thermal conductance rather than the thermal conductivity (K r:

K. A/L where L is the length and A the area of the device) and AT is the temperature

difference across the device. The total heat removed from the cold reservoir is then[17]

(9)

(Ic = ClPeltz‘er + (1.1er + QThermat = STCJ - %JR2 - K AT.

Integrating both Sides of Equation 4 , we can get a relationship for the voltage in

the system.

(10)

V 2 SAT + JR

The power necessary to remove qC from the cold reservoir is the product of the

voltage and the current.

(11)

P 2 VJ => (SAT + JR)J :> SJAT + PR

The coefficient of performance (GOP) is defined as the ratio of the heat removed

and the power necessary to remove the heat, a quantity which may be larger than 1.



n = qC/P = (STCJ - 51R2 - KAT)/(SJAT + PR)

It is inconvenient for the COP to depend on the current. For given system param-

eters (S, It, R), the Optimum COP can be found by defining m = JR/S so that

(13)

1) = (mTC - ém2 - (KRAT/S?))/(mAT + m2)

Maximizing 77 with respect to In (361% : 0) solves for the In which maximizes the

COP in Equation 13 to Obtain

(14)

72...... = (Tc/ AT) {[01 - (Th/TCH/(w + 1)},

where the Carnot efficiency (TC/ AT) is modified by the factor {[612 - (Th/TC)]/(w

+ 1)}, where

w : (I + ZT)%,

the factor ZT = SzaT/K (defined in Chapter 1). This modifying. factor approaches

1 as w ——> DO. A graph of Ignaz/770mm, (545,.) asa function Of ZT for different values

Of the ratio Th/Tc is Shown in Figure 2 (T1, is the temperature of the hot end of the

device).[17] A conventional Freon compressor refrigerator, in order to maintain an air

temperature of 270 K, must have the two sides Of the compressor cool from 330 K to

250 K. These refrigerators, with Th/TC ~—- 1.3, have nmar/ 770mm, (27%) : 0.26.]21]



Figure 2 Reduced coefficient of performance firms/7706mm (2715,.) for various

values of ZT.]17]
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A similar derivation for the efficiency, 6, Of a thermoelectric power generator yields

(16)

5mm: 2 P/Qh:,(AT/Th) {(w ' 1)/[w + (TC/Th)”,

where P is the power output and qh is the rate of heat observed at Th. Again the
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Carnot value (AT/Th) is modified by a factor {(02 - 1)/[w + (Tc/Th)”. This factor

approaches 1 as w -> 00. A graph of emu/egamo, (577,.) as a function of ZT is shown

in Figure 3.]17] The typical efficiency in a temperature range from 300 K to 900 K Of

a good thermoelectric device made out Of PbTe is about 19% while that of a modern

central power steam engine is about 40%.]21]

Figure 3 Reduced efficiency Ema/acorn“ (577,.) for various values of ZT.]17]
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2.2 MAXIMIZING COP AND EFFICIENCY

From our previous discussions, it is is evident that to maximize the COP (effi-

ciency) of a thermoelectric refrigerator (power generator), one must maximize the

dimensionless quantity ZT, known as the thermoelectric figure of merit. The largest

value of ZT found experimentally for bulk systems is on the order of 1 (for BI2T€3

alloys at room temperature), but must be about equal to 3 to have a comparable

GOP to a conventional compressor refrigerator.[1, 2]

In order to maximize ZT at a given T, one must not only have a large Seebeck co-

efficient, but the electrical conductivity must be largewhile the thermal conductivity

remains small. This is difficult since most materials with large electrical conductivi-

ties, such as metals, also have large thermal conductivities, while systems with a small

thermal conductivities, such as insulators, also have small electrical conductivities.]2]

One must be careful to realize that, in the case of metals, the Wiedemann-Franz

law states that there is a limiting relationship between the thermal conductivity and

the electrical conductivity (where k3 is the Boltzmann constant and e the electron

charge)

- 2 k‘ 2

3': 33‘ (f) T

which means that the thermal conductivity can be reduced only so far before

reducing the electrical conductivity. All of thematerials which we will discuss have

a larger thermal conductivity than given by this limiting relationship.[22]

To bypass the limitations of the Wiedemann-Franz law, one needs a material where

the electrons travel freely as if through a crystal, to increase the electrical conductivity,

11
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(a should be small enough so that It is dominated by phonons instead Of electrons),

but phonons are scattered as if through a glass, to reduce the thermal conductivity.

Slack’s electron crystal/phonon glass concept[6, 23] has been central in finding new

thermoelectric materials, although different groups have used different methods to

achieve this goal. One tries to use systems with complex unit cells since high thermal

conductivity is found for systems containing light elements, forming densely packed

crystals, and formed largely through covalent bonds. Lower thermal conductivity is

found for systems containing heavier elements with more ionic bonding.[20]

The best thermoelectric materials tend to be narrow-gap semiconductors. The

electrical conductivity (0) and electron thermal conductivity (Is?) are increasing func-

tions of carrier concentration (n).

(18)

a : 118;}.

It 2 03;; (EEVT : neglig- (LEI-VT

(19)

The Seebeck coefficient (S) is a more complicated function of carrier concentration

(11), but increases for decreasing n and becomes very small (~EEBF—T 80 nV/K) for

metallic systems where n reaches 1022/cm3.[21] Calculations of the electrical resistivity

(equal to the reciprocal of the electrical conductivity). Seebeck coefficient, thermal

conductivity, and ZT are shown in Figure 4 for an idealized semiconductor as a

function of carrier concentration.[2]

It can be seen that S decreases with increasing carrier concentration while a and

K. increase. A maximum for ZT = Ssz/K is found near 1018 carriers/cm3, which is

the concentration associated with doped, narrow gap semiconductors.]2]

12



Figure 4 Plot Of p (2 1/0), S, It, and ZT for an idealized semiconductor as a

function of carrier concentration, n. S decreases with n while a and

K. increase. The maximum ZT occurs near n :- 1019/cm3.[2]
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For semiconductors, one must in general consider transport of both electrons,

with Seebeck coefficient 8., and electrical conductivity 0.3, and holes, with Seebeck

coefficient 8,, and electrical conductivity 0),. The total Seebeck coefficient is

<20)

where S, is negative and Sh is positive. In order for the hole and electron transport

not to cancel each other due to intrinsic electron-hole excitations, but to allow for

a large enough electrical conductivity (by doping), the band gap of the material

should be on the order Of 10 k3T.[1, 2, 3] Further, if there are a multiply-degenerate

band extrema, such as when one lies at a general point in the Brillouin zone, the

thermopower adds up as before for each extrema. For the same carrier concentration

in N identical pockets, the carrier concentration for each pocket is lower. As seen in

Figure 4, a lower carrier concentration corresponds to a larger Seebeck coefficient in

each pocket which gives a larger total Seebeck coefficient. Therefore, degenerate band

extrema also are expected to increase the Seebeck coefficient for a materiallll, 24]

Scattering, due-to impurities, grain boundaries, etc., greatly affects a and K, but

has a much less of an effect on S. S = limATfiofi-i—If- which makes this quantity fairly

insensitive to morphology while a and K3 are very sensitive to the direction which they

are measured.[21]

2.3. ZT FROM BOLTZMANN TRANSPORT EQUATION

Since S, a, and It, which control the .ZT parameter, are transport coefficients.

one can solve the Boltzmann transport equations in order to better understand their

14
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behavior as a function of material parameters. The details of the derivation can be

found elsewhere.]24] Using the electronic dispersion relation for a single anisotropic

parabolic band in the energy independent relaxation-time approximation as a function

Of the momentum k,- and effective masses In,- (so is an offset energy)

 

(21)

h2k2 62k; 62k?

8(k33’ ky’ k3) : 2mr Zmy + 27712 + 80

ZT can be written in terms of Fermi-Dirac integrals F,, where

(532)

.. 2k T 3 1 ..fd-

F1 : Fi(C ) : 47!- (7%)?(mxmylnzIZfoooetrT-C‘T+l

and (‘2 C/kBT where C is the chemical potential so that ZT is[24]

(23)
5F3

%(37:'12—C*I2F%

_ 2

ZT — 25F§ ’

I 7

3+2]:37757711

, 2

Where the quantity B appears in the denominator of Equation 23 is given by

(24)

2k T 3 1 k2 T11.
B : "371,7 7(7§—)2(m1mym2)2—h—7

with band degeneracy ’7, mobility in the direction of transport #1,, phonon thermal

conductivity mph, and effective masses m,- (the other terms are fundamental constants).

As B increases, ZT also increases, as Shown in Figure 5.]24]

Hicks and Dresselhaus pointed out that to increase B, one must reduce aph, the

phonon contribution to the thermal conductivity, as expected, but also maximize the
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product of the effective masses multiplied by the mobility in the direction of transport

(here chosen to be along x). However, the mobility is inversely proportional to the

effective mass parallel to the direction of transport.|24]

(25)

Hz CX —

Figure 5 Plot of ZT vs. B parameter (Equation 23).]24]
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This implies that the effective mass in the direction of transport Should be small

to maximize the mobility, but the effective masses perpendicular to the direction Of

transport should be large. As already mentioned, one wants a large degeneracy (7)

Of the band extrema for both the conduction and valence bands to increase S. While

the value of 7 has a maximum of 48 in cubic systems, this effect does not propor-

tionately increase ZT by a factor Of 48 but has a more subtle effect on increasing the

thermopower.[11] Mahan and Sofo[25] have also predicted that a good thermoelec-

tric should have a narrow distribution Of carriers with a high carrier velocity in the

direction of the applied field, which again can be obtained in anisotropic systems.
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2.4. GUIDANCE FOR THE BAND STRUCTURE

In order to search for new materials with high ZT, electronic structure calculations

cannot give us directly the transport coefficients such as thermopower or thermal and

electrical conductivity. However, several properties which appear to be important

for good thermoelectric materials can be discovered from electronic structure cal-

culations. We look for systems with a semiconducting band gap on the order of

IOkBTII, 2, 3], degenerate band extrema[11, 24], and anisotropic effective masses at

the band extrema[24]. Electronic structure calculations of the best known thermo-

electric materials can be used to see if the band gaps are about IOkBT, to check

if the high ZT arise's frOm degenerate band extrema, to calculate the effective mass

anisotropy by fitting a the calculated energies to second order polynomials, and use

the information about the wavefunctions to understand the transport in these materi-

als. Understanding how these properties lead to a large ZT in these known materials

will allow for making predictions in the most promising new thermoelectric materials.

In order to find systems with band gaps on the order of 10k3T (~0.25 eV for room

temperature applications), we should not look for semiconductors with large charge

transfers since the gaps in these systems are generally too large (i.e. Gal’As”: Gap

2 1.52 eV[29]). Therefore, it is best to look at semiconductors whose gaps form

through some sort Of hybridization mechanism.

Hybridization may also be key in forming the anisotropic effective masses associ-

ated with these materials. Let us consider the band structure of Hg1_ICdee alloy.

CdTe is a typical semiconductor while HgTe is semimetallic with an inverted band

gap where the S level is energetically beneath the p level at the I‘ point (Figure 6).
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The more dispersive .9 levels lie above and below Ep with less a dispersive p level

lying between. Changing the value of x can finely tune the band gap by shifting the

position of the p level with respect to the S level.[19]

Figure 6. Conduction and valence bands of HgTe (left) and CdTe (right). Upon

alloying (Cd1_IHgITe) the bands cross.[19]
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lic system where the overlapping bands lie at different positions in the Brillouin zone.

Addition of a d level to this semiconductor can produce hybridization between the d

and more dispersive p orbitals. The resulting hybridization mayproduce a narrow-

gap semiconductor where the hybridized p-d level may have d-like character and be

non-dispersive in one direction of k-space but more p-like and dispersive in another

direction in k—space. This satisfies two criterion for good thermoelectric materials,

formation Of a narrow-gap semiconductor and highly anisotropic effective masses.

This will be the reasoning behind looking at the half-Heusler compounds.[7]
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Figure 7. Semiconducting gap Opening due to p—d hybridization.
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The schematic of p-d hybridization (Figure 7) shows two p-bands which both cross

the Fermi energy at different positions. After hybridization with an added non-

dispersive d-band, a gap opens in the spectrum. For simplicity, the details of the

d-bands have been left out of the picture.

The presence Of Off-axis band extrema can come about due to strong spin-orbit

hybridization. Consider the band structure for a narrow-gap semiconductor before

the inclusion of spin-orbit interaction. While there may be several Off-axis extrema,

consider the semiconducting gap forming at the F point. It is well known that the

spin-orbit interaction generally reduces the band gap, so a rigid shift may cause a

hybridization Of the bands forming the gap, leaving the off-axis extrema as the band
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extrema (Figure 8). This is the reasoning behind our study of BizTe3 and related

materials. [1 1]

Figure 8. Off-axis gap formation due to spin-orbit hybridization.
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Optimum characteristics in the band structure may be a result of the crystal

structure itself. Layered structures, such as those seen in Bi2Te3[11], BaBiTe3[11],

and CsBi4Te6[15] suggest that the transport (effective masses) should be highly

anisotropic. It is, therefore, important to compare the calculated anisotropy found in

the band structure with experiment.

The different physical reasons discussed above will be shown to be important for

the gap formation of promising thermoelectric materials. An important focus of this

20



work is to study the electronic structure Of known thermoelectric materials as well as

promising new thermoelectric materials in order to understand which features. such

as a narrow band gap, anisotropic effective masses, and off-axis band extrema, are

indeed seen in the electronic structure calculations. With this information it will be

then possible to predict which are the best new thermoelectric materials.

In order to be considered for thermoelectric applications, a new system must be

comparable with the previously studied materials. The best room temperature ther-

moelectric materials for nearly 40 years are BI2T€3 alloys which have ZT~1. The best

high temperature thermoelectric materials are PbTe with ZT~0.8 at about 700 K and

Si-Ge alloys with ZT~1 at about 1200 K. CsBi4Te5 has a maximum ZT~0.8 at 225

K[26] and Bi-Sb alloys have ZT~0.6 at about 100 K, lower due to the the reduced value

Of T (in ZT) and the lower electron mobility at low temperatures.[3] High values of

ZT have also been reported in PbTe-Pb(Se,Te) quantum-dot superlattices by Harman

et al.[27] and in p—type BI2Te3/Sb2T83 superlattice films by Venkatasubramanianl28].
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CHAPTER 3.

FIRST-PRINCIPLES AB INITIO

ELECTRONIC STRUCTURE CALCULATIONS

Electronic structure calculations are a valuable tool to understand the structural,

transport, and optical prOperties Of materials. Recent improvements in calculational

methods and computer speeds have made these calculations not only a more powerful

predictive tool but also have allowed for larger and more complex systems to be

studied.[30]

The basis Of electronic structure calculations lies in the nature of electrons in

solids. Electrons interact through strong Coulomb repulsions which makes it seem

difficult at first to describe them as distinct entities. However, electrons in solids

do not act as “bare” particles, rather surrounding themselves with positively charged

polarization clouds. The electron and screening cloud form a “quasiparticle” which

weakly interacts with other quasiparticles in the solid. Despite the strong interactions

between the bare particles, the weak interaction of the quasiparticles allows for an

effective single particle approximation, particularly for low energy properties where

they can be treated as acting in the mean field of the other quasiparticles in the

solid. Such an approximation appears to be valid in a large class Of solids (simple

metals, semiconductors, and insulators) but not in systems with strong electron-

electron interactions and weak screening, such as in magnetic insulators.[31]

Electronic structure calculations involve solving a single particle Dirac equation

within a single-particle approximation. This involves forming a one-particle potential

and technical methods for solving the Single-particle equations.]31] We will discuss
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these aspects separately.

3.1. SOLVING THE DIRAC EQUATION

3.1.1. FULLY—RELATIVISTIC ONE-PARTICLE EQUATIONS

Assuming that a single particle description is valid, one still has to solve the

Dirac equation for an electron because the full relativistic effects applied to electronic

structure are included in this equation[32, 33]. The Dirac Hamiltonian is given by

(26)

HD 2 ca ' p + (13 - 1)mec2 + V(r)

where a and 13 are 4 x 4 matrices

(27)

0 a I O

a z 5:

a 0 0 —I

0;, (Ty, and 0,, being Pauli spin matrices. p is the four-component momentum,

me is the free-electron mass, 0 is the speed of light, and V(r) is the effective Single-

particle potential. The eigenvectors, \II, of the Dirac Hamiltonian can be written as

four component spinors consisting of two component spinors, <I> (the large component)

and X (the small component).

(‘28)

This leads to a set of coupled equations

23



cta- Plx = (...--164

(“(0' p)<I* : (E - V + 2mec2)x

(30)

Solving for X in Equation 29 and inserting this into Equation 30 yields an equation

for (I) alone,

(31)

. E—V _ / r

2:2.(0' p)(1+ 2mecg) 1 (0' p)<I> + V<I>= 5(1)
  

3.1.2. SCALAR RELATIVISTIC APPROXIMATION

Equation 31 is still the exact Dirac equation. This equation serves as the basis for

relativistic electronic structure calculations which have been increasing in popularity

in recent years.[34] However, for valence electrons in solids, where the relativistic

effects are not usually strong, one can make the following approximation

(32)

 

and use the relationships

pV = Vp - ihVV

(U'VV) (U'p) = (VV'P) +iU' lV.p]

(3 II

so that Equation 31 can be written as a linear, second-order differential equation

in <1).
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[(1 2771602)}:2m 3 \](I) 4771::’(VVVQ)' 471:3(9 (fwd) : 5(1)

In a spherically symmetric potential, V(r), this equation can be simplified further.

  

(35)

2 4 2 .

.I’_ ;_ P _ 5 611/ 6 1 d_l__’1 __

I 27718 + \ Srngc'2 4771302 dr 07‘ + 2771.262 dr rII 5)”) — 5(1)

The first two terms are the nonrelativistic Schroedinger Hamiltonian while the

third and fourth terms are the massvelocity and Darwin terms, respectively. The

last term is the spin-orbit interaction (SOI). Due to this SOI term, 1 and s are not

good quantum numbers while their sum, j : l + s, is a good quantum number. In

practice one solves a new equation which is Equation 36 without the last term]32. 33]

(37)

 

I 2%. + V 875:0) ’ 471’]; (2:53?“ If I 5‘8

called the scalar relativistic Schroedinger equation where l and s are still good

quantum numbers. However, spin-orbit effects are important, especially in heavier

elements (which are present in most thermoelectric materials with high values of

ZT[4]). The first thing that is done is to write 65 in terms of radial functions (f(r) and

g(r)) multiplied by spherical Harmonics, Ylm.

(38)

gem...

-'if(7‘)Yzm

The scalar relativistic equations are then solved with this choice of (,6. To include

801, one method is to double the entire basis set to accommodate H80
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1's 0

H ._ h_i_lil

>0 0

50 ”— fllcz dr 1'

where M is the relativistic mass M : me + 5%. This approach is usually com-

putationally expensive. An alternative, called the second variational method, does

not involve doubling the size of the basis. Rather, spin up and spin down states are

considered separately using the eigenvectors of the scalar relativistic calculation, but

for a finite number of states near Ep. This reduces the number of basis sets involves

in the calculation of the energy bands in the presence of SOI.

.,_ 9T(7‘)Yzm ,,_ 91(rlem
69 — 99‘-

-ifl(7‘)Yzm —ifl(7“)Yzm

The states denoted in Equation 40 are used as the new basis set for the expansion

of the wavefunction (I) in Equation 36. The total Hamiltonian including SOI can be

solved with less effort since the number of qbl and (1)1 in the space of orbitals of the

low lying bands (reduced vectors space) are usually much less than in the original

eigenvalue problem.[32, 33, 35]

One shortcoming of the second variational method was found in the case of metal-

lic Pb where there were significant differences between the results using this method

and a fully-relativistic calculation. The Pb 612% state strongly mixes with the 63%.

the latter coming very close. to the nucleus where relativistic effects are strong. The p

states used as basis functions in the second variational treatment do not approach the

nucleus like the 3 states, since the good quantum numbers in the scalar relativistic

calculation are l and s, not j. The strong mixing of the 6p% and 63% orbitals should
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also in principle affect the band structures of Bi, Hg, and T1, though these effects

have not been explicitly studied[36]. However, the second variational method has

found to be quite successful in predicting the band structures of PbTe[37, 38, 39] and

Bl2T€3[11, 12, 13, 40], so the applicability of the second variational method to semi—

conducting compounds containing heavy atoms has not yet been critically examined.

In this dissertation, second variational procedure for spin-orbit will be used due to

the simplicity of its implementation and we will check its reliability by comparing

our calculations with published fully-relativistic calculations (i.e. solving the Dirac

equation) wherever available.

3.2. DENSITY FUNCTIONAL THEORY (DFT)

3.2.1. DERIVATION OF KOHN-SHAM (KS) EQUATIONS

A major theoretical and computational advance in the electronic structure of solids

was made by Pierre Hohenberg and Walter Kohn[41] and later by Walter Kohn and

Lu Sham[42] with the advent of density functional theory (DFT). This theory states

that the ground state electronic properties of a material are determined solely through

its electron density.[30] The Hohenberg-Kohn proof starts from a Hamiltonian for M

nuclei and N electrons with the form

(41)

j>l ]T','—7‘j]

E T + \I’Coul + lev'cxt(r)a

--N12 N N__1_ N M 2,3

He " X31:1 5 V: + 2i=1 2 ‘ E32:1 >3A=1 IRA-7‘1]

where the first term, T, is the kinetic energy, the second, Vow, is the electron-

electron Coulomb repulsion, and the third, sglvexm, is the nuclear-electron at.-
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traction (ZA is the atomc number and RA the nuclear position). The Hamiltonian

depends on the positions of the nuclei which create an external potential, Vert(r), on

the electrons. The essence of DFT is the fact that the terms T and V00”) are the

same in all N-electron systems, and the external potential, which differs from system

to system, can be written as a single-particle function. The universality of T and

VCo”, are the basis of the universal functional Fln] (using wavefunctions \11)

(42)

F[n] Z m17L¢,2_,n(r)<‘I/ ] T + VCoul ] \IJ>,

where the Kohn-Sham total energy can be written as

(43)

EKS[n] = F[n] + fVm(r) n(r) dr

The Kohn-Sham energy must be minimized under the constraint N z fn(r) dr

(44)

6IEKslnI - u (N - n(r) dr>1 = 0

While it is a Lagrange multiplier-in Equation 44, the functional derivative defines

the chemical potential, MN, in DFT.

(45)

Wln(r)=no(r) = #-N

In order to obtain the Kohn-Sham equations, the kinetic energy operator, TOIn],

is written separately from EK5]n].

(46)

Toln] I minwzdn(,)<\ll ] $372 I \IJ>
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It is customary to separate F [11] into a Hartree piece where the Hartree energy,

EH[n] (derived from the Hartree potential, VHIHD, is

(47)

'EHlnl = flfflfiEL/TZ dl‘ dr’ 2 éfVHU‘) (11‘,

so that the difference between F[n] and T0]n] is EH]n] and a remainder, EICIn],

which is called the exchange-correlation energy.

(48)

F[n] — T0]n] : EH]n] + Erc]n]

The exchange-correlation potential, VIC]n], is derived from Em]n]

(49)

6Elcl7z] _

6n(r) ]n(r>=no(r> = Vuln]

In order to satisfy the fermion nature of the electrons, the total wavefunction must

be antisymmetric, and to accommodate this requirement, it is convenient to write the

total wavefunction, \II, as the Slater determinant of single particle wavefunctions, C1,.

(50)

C11 C12 - - CW

(21

_ l

\I} —'\7;:\—',-! £th

LCNI - - - CNNd  
so that the total density is a sum of the squares of these one-electron wavefunctions]43]
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IMP) =1 3i.k|C{i(r)l2

This choice of \1' makes it possible to calculate Toln] and the minimization over all

\Il such that W]2 -—> n(r) gives rise to the following one-particle equations (known as

the Kohn—Sham equations)

(52)

l-%V2 + VNe + VH "r Viclnll 5.4?) = 5%: 51.-(r) E HA'sC?k(r)

In Equation 52, -%V2 is the single particle kinetic energy, VNe is the nuclear-

electron attraction, VH is the Hartree potential, and Vgcln] is the exchange-correlation

(XC) potential. The single particle states, &(r), are called the Kohn—Sham orbitals

and efk are the Kohn-Sham energies. The XC potential depends on the electron

density, n(r), but the density is obtained from the solutions of the one-particle

Schroedinger equations, 5c.[43, 44] Since the XC potential is a part of the Hamil-

tonian, it affects the wavefunctions, and the wavefunctions determine the charge

density and, hence, the XC potential. This means that the electron density and KC

potential must be solved self-consistently.[35, 43, 44]

The XC potential includes correlation effects, which keep electrons of opposite

spin from coming too close to each other, and exchange effects, arising from the

fermion nature of electrons. VNe and VH are local, i.e. (VNef)(r) :2 VNe(r)f(r) and

(VHf)(r) : VH(r)f(r), but the XC potential is inherently non-local, i.e. (Vuf)(r) :

fch(r,r’)f(r’)dr’ . One of the most commonly used exchange-correlation potentials is

the local density approximation (LDA) where VIC' depends only on the density n at

position r.[44]
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LDA : ch(nl(r)i n](r)) : f(IlT(I‘), n](r))

LDA does not always do a good job in finding the ground state properties of ma-

terials. An important example of this is that LDA finds that ferromagnetic FCC

Fe has a lower energy than BCC Fe by about 6 mRy, contradicting experimental

evidence.[45, 46] Some of the non-local nature of the XC potential can be incorpo-

rated by including derivatives of the charge density in what is called the generalized

gradient approximation (GGA). This approximation is developed by expanding the

XC potential to second order in gradients of the density (Vn) and cutting off spurious

long-range contributions-in real space. This leads to a fairly complicated expression

which favors a less homogeneous electron density than LDA.[47, 48]

(54)

GGA : mom). ni(r)) = mum. mm, mm, mm)

In many cases, GGA improves the values of calculated properties compared to

experiment, such as cohesive energies, total energies, and work functions.[46] While

LDA predicted the wrong ground state for Fe, GGA correctly predicts that BCC

Fe has a lower energy than FCC Fe by about 11 mRy.[45] However, GGA tends to

overestimate lattice parameters while LDA tends to underestimate them. Most of the

improvements of GGA over LDA are modest, and sometimes GGA does not explain

properties of some materials as well as LDA, so special care should be taken that

spurious results do not occur due to the choice of the XC potential.[29, 46]
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3.2.2. PHYSICAL PROPERTIES OF DFT CALCULATIONS

In DFT, the Kohn-Sham eigenfunctions, (fur), solved in Equation 52 have no

rigorous physical meaning; they are simply functions calculated in an intermediate

step to solve for the charge density in Equation 51. The eigenvalues found in equation

52 are not single-particle excitation energies, although they are often compared to

experimental results as if they were. Surprisingly, DFT results often agree very well

with experiments. However, one should not overlook some of the general results of

DFT which have direct physical interpretation.[31]

The ionization energy, I, is the energy required to remove an existing electron from

a solid while the electron affinity, A, is the energy gained by adding an electron to a

solid. These can be identified in an N-electron system as[31]

(55)

I = E,“ - EN ‘ A = EN - EN“

where EM is the ground-state energy of an M-electron system. In a metal, one can

associate (Equation 45) the chemical potential, pN, or the Fermi energy, Ep, with

the highest occupied Kohn-Sham orbital. In a semiconductor one has[31]

(56)

I : ‘ENJV A I 'NNH : '5N+1,N+1a

and the band gap, Egap, is given by the difference of I and A,]31]

Egap = I - A = 5N+1,N+1 - €N,N = Axc + 5N.N+1' €N,N-

In the above, 5N,M is the MM Kohn-Sham eigenvalue of an N-particle system and
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A“ : 5N+1,N+1- eN,N+1 is the energy difference between the highest occupied .Kohn-

Sham orbital in the (N + 1)-electron system and the lowest unoccupied Kohn-Sham

orbital in the N-electron system. This difference arises from a discontinuous jump in

the XC potential, VIC, when adding an electron.[31]

(58)

Arc = ch,N+1(r) - \f'xc,~(r)

This difference, A“, is positive and usually position independent, so the XC po-

tential changes only by a constant. This is the source of the “band-gap problem” in

DFT where the band gaps can be 0.5 -2 eV smaller than experiment[31]. In most of

the band gap calculations in this dissertation, we will ignore this correction and only

use E a: EMA/+1 - EMA; as an estimate of the band gap.

3.3. METHODS OF CALCULATION (DFT)

There are many methods to solve the Kohn-Sham equations in a solid. In or-

der to solve for 5c(r) self-consistently, one must start with a reasonable trial func—

tion which satisfies the crystalline periodicity and appropriate boundary conditions.

Planewaves and atomic orbitals form complete basis sets which are often used in

several methods to expand the wavefunctions[35, 49]. To simplify the numerical

alculation, several methods, such as the linearized muffin-tin orbital method in the

omic sphere approximation (LMTO-ASA), make approximations to the intera-tomic

tentiaI, V(r) [50, 51]. The method which we have used, the full potential linearized

newave (FLAPW), makes no approximations to the shape of the potential and

arates the space into two- regions, spheres about the atomic positions and an inter-
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stitial region. The wavefunctions are expanded in atomic orbitals inside the spheres

and in planewaves in the interstitial region.[35, 51, 52, 53] We will briefly discuss these

expansions and see how they are implemented in LMTO-ASA and FLAPW.

3.3.1. PLANEWAVES AND ATOMIC ORBITALS

Planewaves form a complete basis, easily programmable, and describe well nearly-

free electron states. The most general type of expansion in a planewave basis can be

written as follows in terms of the reciprocal lattice vectors G. (cG(k) are expansion

coefficients)

(59)

((1.) :eik'r Ea c(;(k) eiG‘r

The major strength of the planewave expansion is the ability to expand in the

:omplete basis of planewaves to achieve greater improvements in approximating the

wavefunctions. This also turns out to be the major weakness, since it may take from

everal thousand to several million planewaves to adequately represent the localized

;ates associated with the atomic orbitals near the atomic positions.[35]

Atomic orbitals and planewaves prove to be the most important basis set for ex-

Lnsion of the wavefunctions within DFT, but the method of calculation used is often

.med after the method to approximate the potential. Tight-binding calculations are

8 most direct application of using atomic orbitals. but require a large number of

pansion coefficients since the atomic orbitals cannot describe the regions far from

2 atomic positions.[22] The pseudopotential method (used with both atomic orbital

i planewave expansions) is a very successful scheme to reduce the time necessary
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in the calculations. In this method the potential associated with the core electrons is

replaced by a function which reproduces the full-electron result when solving for the

valence electrons self-consistently.[35, 49, 54]

3.3.2. LINEARIZED MUFFIN-TIN ORBITAL METHOD WITHIN

THE ATOMIC SPHERE APPROXIMATION (LMTO-ASA)

An important and popular method of solving the Kohn-Sham equations within

DFT is the linearized muffin-tin orbital method within the atomic sphere approxima-

tion (LMTO-ASA) which arose from the previously used cellular method.[22] In this

method, approximations are made to the interatomic potential, V(r), which drasti-

cally reduce the computational time while still giving reliable results. The solid is

separated into two regions, overlapping spherical regions around the atomic positions

ind the region outside of these spheres(Figure 9).

Figure 9. Overlapping atomic spheres surrounding each atom of a crystal

in the ASA.[50]
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The total potential is kept the same'as the actual potential inside the atomic sphere

radius, ras, but becomes a constant value, VMTZ, outside the spheres.

(60)

V(r): { V(r) r < rag

7 \

{ V MTZ r 2 I‘as

The wavefunctions are defined in terms of atomic orbitals (o1(E,r)) and power law

terms.

(61)

C,m(E, r) : i’Yf"(r) { ¢1(E,r) + pl(E) (r/ras)l r <‘ rag

{ (ras/r)’ r > ras

The term p,(E) is required to keep the solution continuous and differentiable in all

space where

(52)

_ DI(E]+I+1 _ 7' id;

ME) — D:(E)-l WE) — Elam—m...) ar' m...

This method has solutions for the region outside of the spheres which extends into

1e other spheres, as can be seen by Equation 61. The correct one-center expansion in

re sphere is in terms of atomic orbitals for r < ras is (aft, are expansion coefficients),

(G3)

emu-«3, r) = 23,... a); i‘Y{"(r) ¢1(E,r).

The tails from the expansions for all of the other spheres (r > r03) must cancel

Ede the sphere for Equation 63 to be the correct expansion.
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(54)

sz(E, 1') = 21m afrlfr i'Ysz‘) ME) (F/ras)’

The expansions outside the spheres (Equation 64) must be cancelled by Sfc’mz’lmz

(65)

2,... ail; [2(21+ 1) p,(E) at, am..- spmwj = o

is called the structure matrix which contains the information aboutwhere Sfi‘m
flan

the atomic positions given by[50]

(66)

Sf’,m’.l,m ‘-= gt',m'.z,m 2W0 9'“? (:fiillflfllv 4” il Y,’,’S"(r)]*

where gumghm are Gaunt coefficients, 1” :‘ l’ + l, and m” = m’ - m. Finding

:he eigenfunctions (and eigenvalues) of the Schroedinger equation within this method

‘equires solving for the tail cancellation in Equation 65. However, p,(E) explicitly

lepends upon energy. The linearization in LMTO comes about by expanding these

mctions about specific energies near the center of the bands as in Equation 67. This

: done by introducing linearization energies, E,, at the middle of the bands so that

m(r) does not explicitly depend on E.[51]

(67)

sz(l‘) = i’an(r) { Arm¢z(Ez,r) + PI(E1) (r/I‘as)l F < I‘as

{ (rue/r)l
r :> [as
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3.3.3. FULL-POTENTIAL LINEARIZED AUGMENTED PLANEWAVE

METHOD (FLAPW)

The method which we have used, the full-potential linearized-augmented planewave

(FLAPW) method, incorporates several of the aspects of the methods described be-

fore. Similar to the LMTO-ASA method, the space is separated into two regions, non-

overlapping spheres about the atomic positions and the regions between the spheres

(Figure 10).

Figure 10. Partitioning of the unit cell into atomic spheres (I) and an interstitial

region (II).[53]

 

II

  
 

The wavefunctions are expanded with atomic orbitals inside the spheres and planewaves

in the interstitial region between the spheres, combining the expansions of the tight-

binding and planewave methods. Like the pseudopotential method, the electrons arc-

separated into core and valence states, but the core states are not replaced but an-

kept within the self-consistent cycle and affect the final band structure.[35]
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LAPVV is a linearized version of the augmented planewave (APW) method. In the

LPVV method, the wavefunctions are expanded in terms of basis functions which de-

)end explicitly on the energies (Equation 68). Region I is inside the spheres while Re-

gion II is the interstitial region (with volume V and expansion coefficients Cj’m(k,,))]52]

(68)

Region I =5 Cfi'lreE) = z31m fm(K)¢1(F,E) Yzm(r)

Region II :> (fir) : VlveiK'f

where K = k + G. In order that the basis functions do not depend explicitly on

energy (so that ‘11 in H\II = E‘II is linear in energy), the radial parts of the wavefunction

are expanded about specific linearization energies (E) which lie near the center of

the bands, as in the LMTO method. In order to have the function and the derivative

equal at the sphere boundaries, the function and its derivative are included in the

expansion (for expansion coefficients Afm and B?,,,).]51, 53]

(69)

Region I => Cfnlr) I EzrnlAf’mézfiaEI) + BfmédraErlermU)

Region II :> ka(r) : fab",

where a,(r,r~:,) z {fameangzfl The full-potential LAPW (FLAPW) method

has been put in a convenient collection of programs which we have used, WIEN97I55].

This package contains SOI as a second variational method and solves for the full

potential with no approximations to shape. Both the LDA of Perdew and Wang|47|

and the GGA of Perdew, Wang, and Ernzerhofl48] has been used for the KC potential.

To further improve the convergence, the LAPW basis set can be expanded to

include a radial function at a second energy (Em), called a local orbital (LO).
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(70)

Region 1 => (3,0) = szlAi’mabKnEhz) + B?,.,<151(r,E1.z) + Cfin¢z(r,E2.z)IYzm(r)

Since there are no approximations to the potential or core electrons, the FLAPW

method is a very useful method to obtain highly accurate electronic structures. How-

ever, this progress comes at a price of longer times for convergence compared to the

pseudopotential or LMTO-ASA methods. This means that large systems, containing

perhaps 100’s of atoms, cannot be achieved using the level of accuracy in LAPW

methods due to the problem of N3 scaling with the total number of e1ectrons.[35]

3.4. OTHER METHODS OF CALCULATION (NON-DFT)

There are other electronic structure methods beyond DFT which can either be

used separately or in conjunction with DFT methods in order to better describe

correlation effects within the material. Some of these methods have similar time and

size requirements as most DFT methods while others, though improving the quality

of the results, are so computationally demanding that they can only be used only for

simple systems.

3.4.1. HARTREE-FOCK (HF) METHOD

One of the earliest methods is the Hartree-Fock (HF) method where the N-particle

wavefunction, \II, is written, as the Slater determinant of the individual single particle

wavefunctions.[56]

40





 

  

C11 C12 - « CiN

C21

‘IJHF :\/%V_! det

_ CN1 - - - CNN _

where C,(rj) E Cij describes the jth electron occupying the orbital (,(r). These

wavefunctions are used to solve the Schroedinger equation (Equation 36). Unlike in

DFT where the wavefunctions were merely a construction to produce the electron

density, the wavefunctions in HF have physical meaning. In HF according to Koop—

man’s theorem[56], the ionization energy is I : ~5N,N and the electron affinity is A :

- EMA/+1, so the band gap is simply E90,, : I - A : amt/+1 - EMN with no correction

as in DFT by way of the Kohn-Sham eigenvalues. The results of HF tend to overes-

timate the band gaps in contrast to LDA/GGA which underestimates the band gap.

The overestimation of the band gaps in HF is usually associated with the omission of

correlation effects.[44]

3.4.2. GW METHOD

Both LDA and HF give poor account of excitation energies in solids, particularly

he band gaps in semiconductors. In recent years, a Green function approach for the

[uasiparticle excitations which was originally developed for interacting homogeneous

~lectron gas problem has been applied to real solids. An approximate version, callml

3W method has been proven to be quite successful for a large class of semiconductors.

.‘he single particle Green function, G(r,r’;E), which contains the information about
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quasiparticle excitations is given by

G‘1(r,r’;E ) = G61(r,r’;E) - 2mm).

where G51(r,r’;E) is the reciprocal of the Green function for a reference system

and E(r,r’;E) is the self-energy correction. The GW method gets its name from

calculating the self energy (E(r,r’;E)) as the product of a dressed Green function

(G(r,r’;E - w)) and the dynamically screened Coulomb interaction (W(r,r’;w)). In

this approximation, the self-energy correction E(r,r’;E) is given by[31, 57, 58]

(73)

E(r,r’;E) = 237;] do) e—i6“G(r,r’;E - w) W(r,r’;w)

Starting either from the Kohn-Sham or HF eigenvalues and eigenfunctions, one can

construct the self energy, 2(r,r’;E). The GW method produces values of gaps (Egap)

and band dispersions for a wide range of semiconductors which are much closer to ex-

periment than LDA/GGA (see Figure 11. Note Eé‘gf < Egg it: E525). Unfortunately.

this method is computationally very expensive, with most results found on fairly sim-

ple monatomic or diatomic crystalline systems. While this approach is quite useful

in understanding the gap structure of semiconductors, it cannot be readily applied to

the complex systems which we have studied in this dissertation.]31, 57, 58]
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Figure 11. Comparison of characteristic direct and indirect LDA, GW, and

experimental energy gaps for all semiconductors for which GW

calculations have been reported (For references see Aulbur[31]).
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CHAPTER 4.

HALF-HEUSLER COMPOUNDS

Half-Heusler compounds are among the most common and versatile intermetallic

materials. These compounds can be semiconducting (such as in the MNiSn (M :

Ti, Zr, Hf))[7, 59], metallic (such as in MCoSb (M = V, Nb))[60], and even may dis—

play half-metallic ferromagnetic behavior (MMnSb (M : Co, Ni)).[61] Some of these

systems also display heavy-fermion characteristics (MYbBi (M 2 Pt, Ni))[62] The

semiconducting half-Heusler systems are interesting from a thermoelectric perspective

due to the large power factors (PF : 820) observed in several of these semiconduc-

tors (MNiSn (M 2 Ti, Zr, Hf)).[61] An interesting feature of these semiconductors is

the nature of the gap formation. The full-Heusler alloys with two Ni atoms/formula

unit (such as MNigsn (M 2 Ti, Zr, Hf)) are weakly semi-metallic as are the binary

compounds MSn where the Ni atoms are completely removed. This means that the

inclusion of the Ni atom has a subtle effect in opening the gap, an effect which will

be explored in detail in this dissertation.[7, 59]

The half-Heusler structure (F4-3m) can be described as a filled NaCl structure

(of YSb in Figure 12) where transition metal atoms are inserted in the octahedrally-

coordinated interstitial sites. In this description, Ni atoms can be considered as guest

atoms in a Y3+Sb3“ network. In the full-Heusler compounds, the Ni atoms occupy all

of the tetrahedral holes in the lattice. An alternate way to describe the half-Heusler

structure is to consider this as a filled adamantane, [NiSb]3", ZnS zinc-blend-type

lattice in which the Y3+ occupy the octahedral holes in a diamond lattice.[63] The

FCC Brillouin zone used for the electronic structure calculations of the half-Heusler

compounds is given in Figure 13.
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Figure 12. Two different perspectives of the cubic half-Heusler structure (YNiSb)

Left: Ni atoms inserted in a YSb NaCl-type lattice.

Right: Y atoms inserted in a NiSb ZnS—type lattice.
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Figure 13. FCC Brillouin zone.
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4.1. GAP FORMATION AND ELEMENTAL REPLACEMENTS

4.1.1. GAP FORMATION IN YNiSb AND ZrNiSn

The half-Heusler crystal structure includes many constituent compounds due to the

large number of elements which can fOrm the NaCl substructure and the transition (or

noble)metal atoms which can go into the octahedrally-coordinated pockets. In order

to find narrow-gap semiconductors for thermoelectric applications[25], it is necessary

to know which combination of elements may produce semiconductors. In systems

with s—p bonding there is the well known 8-electron rule which states that the valence

electron count (EC) should equal 8 as seen in several semiconductors, where the binary

compound can be written as ANBB‘N where element A has N valence electrons and

element B has 8-N. Typical examples are given in Table I.[64]

Table I. 8 Electron Rule of Elemental Covalent Crystals[64]

 

 

 

 

 

 

Elements in Semiconductor AB A Electron Count: N B Electron Count: 8-N

A) & B) C, Si, Ge, a-Sn 4 4

A) P, As, Sb; B) Al, Ga, In 5 3

A) S, Se,Te; B) Zn, Cd, Hg 6 2

A) Br, I; B) Cu, Ag, Au 7 1     
 

A similar electron-rule has been suggested for ternary systems which have filled (1

shells. One can imagine placing atoms with filled d shells into known binary semicon-

ductors to form ternary semiconductors, assuming that the d orbitals interact very

weakly with the s-p bonds. The filled d shell adds 10 valence electrons to the bi-
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#y semiconductor, which follows the 8 EC rule, to yield the 18 EC rule for ternary

npounds.[65] This explanation has been applied to a wide variety of ternary sys-

ns, including half-Heusler compounds. All known half-Heusler compounds which

e semiconductors have EC 2 18, while those known systems where EC # 18 are

rmi-metallic, half-metallic, or metallic.[60, 61] To understand the gap formation of

he half-Heusler compounds, one must determine whether EC 2 18 is sufficient for

.he formation of the band gap or if it is only a necessary component.

One of the first semiconducting half-Heusler compounds which has been stud-

ied extensively for thermoelectric applications was ZrNiSn.[59, 66] This material has

EC 2 18 and a simple charge balance argument suggests the valences should be

Zr4+Ni°Sn4". In the ternary compound ZrSn forms a NaCl lattice with the Ni atoms

entering in an FCC configuration within the octahedrally-coordinated pockets. This

material forms a semiconducting gap of about 0.17 eV[59, 66], in the right range for

thermoelectric applications.[1, 2, 3] An obvious avenue to look for new semiconductors

is to find new half-Heusler compounds where the valence of the atoms in the NaCl

structure is changed without changing the transition metal atom so that EC 2 18.

One such system is YNiSb, where EC 2 18 and a simple charge balance argument

should yield Y3‘V’NiOSb3’, which will be discussed here.[7, 8, 67, 68, 69]

Before investigating the similarities and differences between ZrNiSn and YNiSb, it

is important to understand the differences between the full-Heusler (Fm-3m) YNizsb

and half-Heusler (F-43m) YNiSb. According to the nominal valence count, i.e., Y3+,

Ni", and Sb3‘, both of these systems should be semiconducting, but, as one can

see in Figure 14, the full-Heusler YNisz is metallic while the half-Heusler YNiSb

is semiconducting, the same results seen in ZrNigsn and ZrNiSn.[59] The d-bands in

the half-Heusler compound are about the same width in both compounds. The Ni d
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itals interact with Y d orbitals the in the half-Heusler compound (Figure 14) while

5e bands simply cross in the full-Heusler compound. This appears to be due to

higher symmetry of the full-Heusler compounds which does not allow for the

oridization of the flat Ni d bands with the more dispersive Y d bands. A periodic

ray of vacancies within the half-Heusler lattice, increasing the interaction of the Ni

and Y d orbitals, appears to be necessary for the formation of the semiconducting

ap.]70]

Figure 14. Band structure and comparison of the Ni d orbital characters in YNiSb

and YNizsb. The size of the circles is proportional to the orbital
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The electronic structure calculation of ZrNiSn (along with that of HfNiSn and

TiNiSn) have been performed previously using a pseudopotential method by Ogut &

Rabe[59, 66]. We have performed FLAPW calculations in these materials and in a new

set of compounds, YNiSb and related systems.[7, 9] Our FLAPW calculations agree
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scale, the electronic structures of these two materials look very similar (Figure 15).

The valence band maximum (VBM) forms at the I‘ point while the conduction band

minimum (CBM) is at the X point. The dispersion about this minimum is highly

anisotropic, very flat along XF but much more dispersive along XW (Figure 15).]7, 8]

Photoemission studies of ZrNiSn show that the Ni d peak appears approximately 2 eV

below Ep[71] as predicted by our and previous calculations[7, 11‘, 59]. However, the

 

TB-LMTO-ASA band structure for ZrNiSn provided by Slebarski et 01. appears to be

incorrect, the VBM forming along either FM or I‘K instead of at the I‘ point.[7, 11. 59]

Figure 15. Electronic structure of ZrNiSn and YNiSb.
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‘he half-Heusler compounds ZrNiSn and YNiSb contain parent binary compounds

1 and YSb, respectively, as part of their NaCl sublattice. These compounds should

miconducting according to a nominal valence count (Zr4+Sn4‘and Y3+Sb3‘) and

" = 8 rule[64], but our calculations, performed at the ternary’s equilibrium

e parameter (Figure 16), show semi-metallic behavior, violating the EC : 8
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rule. The number of states at Ep for YSb is found to be 0.19 states/eV, a factor

of 2.5-3 smaller than the earlier LDA results.[72] Ogut and Rabe (OR)[59] pointed

out the significance of p-d hybridization along the FX direction on the energy gap of

ZrSn. They argued that a strong k-dependent hybridization between Zr d” and dyz

and Sn p3 and 1),, along (001) is one of the two reasons behind the gap formation at

Ep. The strength of the Sn p and Zr d orbitals are shown in Figure 16a, and 16b, the

strengths of the orbital characters being proportional to the size of the circles. The

band labeled 2’ starts out with Sn p character at the F point and changes over to Zr

a’ character at the X point. The band labeled 2 shows just the Opposite behavior,

evidence of strong k-dependent p-d hybridization between bands 2 and 2’, as pointed

)ut by OR]59]. In YSb, however, this Sn p-Zr d hybridization is very weak, as seen in

‘igure 16c and 16d, yet the addition of Ni to form the half-Heusler structure opens

very similar band gap. Therefore, it appears that, contrary to the suggestion of

R]59], strong p-d hybridization is not a prerequisite for the formation of the band

p in the half-Heusler compounds. Rather, as we argue in this dissertation, the

esence of Ni d orbitals plays a significant role in the gap formation.]7]
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Figure 16. Comparison of the different orbital characters of ZrSn (a) Sn p and

(b) Zr d, and YSb (c) Sb p and ((1) Y d. The size of the circles is

proportional to the orbital character.
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n ZrNiSn the Ni d orbitals affect the band structure in two ways. The hybridized

r-Zr d band with a large dispersion (labeled 1 in Figure 17a, which starts from

I" point with F12 symmetry at ~0.5 eV and goes to ~-2.5 eV at the X point

X4: symmetry) in ZrSn hybridizes strongly with the Ni (1 orbitals (Figure 17c)



and become the lowest conduction band (also labeled 1 in Figure 17a, along FX with

X3 symmetry at the X point). In addition, the strongly hybridized Sn p-Zr d band

(labeled 2 in Figure 17a, which starts from the F point at ~0.0 eV and goes to ~01

eV at the X point) gets slightly modified. The energy of this band at the X point

drops below that at the F point by about ~0.5 eV. The net effect is the formation of

an indirect gap semiconductor with a gap of 0.50 eV, which agrees very well with the

previous calculation. [59]

The situation appears to be different in YNiSb. The lowest Y d band, which has

a downward dispersion from F to X (labeled 1 in Figure 17d) strongly hybridizes

with the Ni d band and somewhat weakly with the Sb p band. This hybridization

pushes the CBM at the X point above the VBM at the I‘ point. The net result is the

formation of an indirect narrow gap semiconductor, but in this case the gap is 0.28

eV, almost a factor of two smaller than that of the isoelectronic compound ZrNiSn. In

spite of the basic differences in the nature of bonding, the electronic band structure

in the neighborhood of the Fermi energy is remarkably similar in ZrNiSn and YNiSb.

(Figure 17)]7]
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Figure 17. Comparison of different orbital characters between ZrNiSn (a) Sn p,

(b) Zr d, (c) Ni (1, and YNiSb ((1) Sb p, (e) Y d, (f) Ni (1. the size of

the circles is proportional to the orbital character.
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OR stated that the gap formation in ZrNiSn was due to the both strong Sn p-Zr

d hybridization and the reduction of the crystal symmetry when a neutral Ni atom

enters half of the octahedrally-coordinated sites of ZrSn.[59] In order to test this

idea, we have placed He atoms in the Ni positions of ZrNiSn to form the hypothetical

compound ZrHeSn. He will not contribute any orbitals to hybridize with ZrSn, but

will reduce the crystal symmetry from NaCl to half-Heusler. No gap exists in ZrHeSn

(Figure 18) since He has no d orbitals to hybridize with the Zr d orbitals. Thus the

presence of Ni (1 orbitals to hybridize with Y/Zr (1 orbitals, rather than only lowering

the symmetry produced by adding Ni to the NaCl sublattice to form the half-Heusler

structurel59], is necessary for the formation of the small band gap in ZrNiSn and

YNiSb.

Figure 18. The electronic structures of ZrHeSn and ZrNiSn using the same

lattice parameter
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4.1.2. ELEMENTAL REPLACEMENTS: CHANGING THE PNICTIDES

It is well known that thermoelectric properties depend sensitively on the details

of the electronic structure near Ep. The half-Heusler structure allows for a wide

variety of elemental replacements which may affect these subtle features of the band

structure while maintaining a semiconducting gap. We will discuss several of such

replacements.

The first of these modifications which we will discuss is the change of the pnictides

from As to Sb to Bi. Band structure calculations for YNiAs, YNiSb, and YNiBi show

that all three are narrow-gap semiconductors (Figure 19). The band structures near

Ep remain very similar, but the effects of SOI become more prominent in going from

As to Bi. This is seen in the band gaps which decrease from 0.53 eV (YNiAs) to 0.31

eV (YNiSb) to 0.13 eV (YNiBi) in this series. The reduction in the band gap appears

to correlate with the lowering of the pnictide .5 band (Figure 19), lying above EF,

and moving closer to Ep near the F point in going from As to Bi. In YNiAs, the As

.9 orbital is nearly degenerate with the Y d orbitals at the F point but move down

further in YNiSb and YNiBi. As these pnictide 3 levels become lower at the F point,

the band along FX becomes flatter and the gap decreases.



Figure 19. Comparison of the electronic structures of YNiAs, YNiSb, and YNiBi.

The size of the circles is pr0portiona1 to the pnictide s orbital character.
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4.1.3. ELEMENTAL REPLACEMENTS: CHANGING THE TRANSITION METAL

The second type of elemental replacement we discuss is the change of the tran-

sition metal from Ni to isoelectronic Pd and Pt. In YNiSb, the Ni d orbitals lie

approximately 2 eV below Ep while in YPdSb and YPtSb they are lower in energy,

approximately 4 eV below Ep (Figure 20). Therefore, we would expect that the

band gaps for YPdSb and YPtSb would be smaller than that for YNiSb since the

Y d-Pt/Pd d hybridization in YPdSb and] YPtSb would be weaker than the Y d-Ni

d hybridization in YNiSb. However, the band gaps change from 0.31 eV (YNiSb)

to 0.15 eV (YPdSb) to 0.21 eV (YPtSb), so that the Pd compound conforms to our

expectations but the Pt compound does not. A second effect is also seen, stronger

relativistic splitting at the valence band maximum (VBM) at the F point. The SOI

splitting increases from 0.13 eV in YNiSb to 0.24 eV in YPdSb to 0.64 eV in YPtSb.

A third effect is also present, which was also seen in the substitution of the pnictides,

where the transition metal valence s orbitals move down closer to EF. It is important

to note that the gap becomes direct at the F point in YPtSb while the CBM is at

the X point. Combination of these effects in YPtSb, including greater splitting of the

VBM which moves down this peak, and the CBM moving from the X point to the F

point due to the lowering of the Pt 3 band, explain the lower Pt d levels do not lead

to a reduced band gap.
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Figure 20. Comparison of the electronic structures of YNiSb, YPdSb, and YPtSb.

The size of the circles is proportional to the transition metal 3 orbital

character.
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4.1.4. ELEMENTAL REPLACEMENTS: ROLE OF FILLED, UNFILLED,

AND PARTIALLY FILLED f-LEVELS

A third type of elemental replacement comes from changing Y to a rare-earth

element. It is well known that LDA/GGA calculations have difficulty with highly

localized partially-filled f-shells, where the Fermi energy (Ep) is always placed in the

middle of the very narrow f-band. Corrections such as LSDA+U can be introduced

to partially correct for this in an ad hoc manner.]73] We have avoided this problem by

replacing Y (Figure 21a) with atoms with either filled f-levels (Lu) or empty f-levels

(La). The empty f-levels in LaNiSb lie approximately 3 eV above the Fermi energy,

and have little effect on the band structure near the Fermi energy. (Figure 21b) On

the other hand, the filled f-levels in LuNiSb, which lie at approximately -4.5 eV and

-6 eV below Ep with a SOI splitting of 1.52 eV, push up the conduction band states

slightly to reduce the band gap in this material. (Figure 21c) This can be seen in the

band gaps going from 0.31 eV (YNiSb) to 0.40 eV (LaNiSb) to 0.19 eV (LuNiSb).[7]

The observation that the empty Lu f-levels do not affect the band structure as much

as the filled La f-levels maybe due to greater f—d hybridization in the Lu compound

or a lack of splitting of the La f—levels in the conduction band states which are not

treated correctly in DFT[31].

The experimental structure for LaNiSb is actually known to be hexagonal instead

of half-Heusler. The difference in the coordination of the Ni d orbitals and differ-

ent hybridization between the Ni (1 and La d orbitals lead to a metallic instead of

semiconducting behavior in this compound (Figure 21d).[69]
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Figure 21. Electronic structures of (a) YNiSb, (b) FCC LaNiSb, (c) LuNiSb, and

(d) hexagonal LaNiSb. The Ni d bands and La and Lu f bands are
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Although LDA/GGA is not adept for partially-filled, narrow-band systems, it has

shown some success in handling f-electron systems with one electron (Ce) or one hole

(Yb). In YbNiSb, Yb has one hole in the f-shell and is most likely a mixed-valence,

heavy-fermion system.[68] Similar attempts to study the band structure of mixed-

valence systems have been successfully made in C8R112812.]74] The only previously

published electronic structure of YbNiSb[67] (aside from our own[7]) was carried out

at the scalar relativistic level within LDA using LMTO-ASA. Unfortunately, these

results differ significantly from that of a closely related system, YthBi[62], and the
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calculated band structure[67] appears strange with several flat portions, implying a

lack of convergence in the band structure calculation.

The metallic behavior of YbNiSb can be understood using the same technique as in

the semiconducting compounds YNiSb and ZrNiSn by first studying the parent NaCl

binary compound YbSb. YbSb displays a strong f—p hybridization near Ep although

the majority of the f-1evels are below Ep (Figure 22a). The SOI is quite strong for

the f-levels and the splitting between fg and f; is about 1.25 eV (Figure 22b). The

f-levels also become flatter as seen in the increase in the density of states (DOS) with

SOI (Figure 22c, d).

Figure 22. Electronic structure of YbSb (a) without and (b) with SOI. The

corresponding DOS (c) without and (d) with SOI are also given.
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Insertion of Ni in the lattice to form YbNiSb places the Ni d orbitals below the f
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levels, which get pushed up in energy. As a result, there is a partial charge flow from

the Yb f levels into the Sb p bands. (Figure 23a) Yb f levels become partially occupied

and YbNiSb acquires a heavy fermion character much like YthBi, the splitting

between fg and f; remaining about 1.25 eV (Figure 23b), in agreement with the

calculations for YthBi.[62] The total density of states (TDOS) (Figure 23d) at the

Fermi level, N (ep), is 12.6 states/eV, 77% of which is of Yb f character. In comparison,

the corresponding numbers for YthBi are 4.5 states/eV and 60%, respectively.]62]



It should be emphasized that if we do not include SOI (Figure 23c), N(€F) reduces

to about 6.9 states/eV and the f character is also reduced to about 61%. Therefore,

SOI should play an important role in the low-energy properties (the linear term in

the heat capacity and the transport properties) of this system.

Figure 23. Electronic structure of YbNiSb (a) without and (b) with SOI. The

corresponding DOS (c) without and (d) with SOI are also given.
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(c) 10 YbNiSb - No SOI .
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4.1.5 ELEMENTAL REPLACEMENTS OF NiO WITH AuH/AgH/Cu1+

More semiconducting half-Heusler phases can be found if the transition metal is

changed from Ni to another transition or noble metal with a valence other than 0

(+1, -1, +2, -2, etc.) with a corresponding change in the valence of the elements in

the NaCl substructure so as to maintain EC 2 18. When changing Ni to Cu (Ag,
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Au), the valence goes from Ni0 to Cu+1(Ag+1, Au“). Curiously, MgCuBi is the only

On containing and MgAgAs the only Ag containing half-Heusler compounds which

might be semiconductors, but no gap opens in either of these materials (Figure 24).

It is clear that the EC 2 18 rule does not work in these cases (Mg: N = 2, Cu: 1’

= 11; Bi: N = 5; Mg: N = 2, Ag: N = 11; As: N = 5).]65, 70] It is important

to note the lack of empty d valence orbitals in Mg compared to Zr, Y, La, Lu, etc.,

which were found to be the predominant factor in the gap formation of YNiSb and

ZrNiSn.[7] It seems that the EC 2 18 rule is a necessary but not suflicient condition

for the opening of a semiconducting band gap.

Figure 24. Electronic structure of semi-metallic MgCuBi and MgAgAs.
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There are several potential semiconducting half-Heusler compounds containing

Au. We will compare one of interest, Lu3+Au1+Sn4‘ to the previously studied Ni

compound Lu3+Ni°Sb 3’. The Au 0! orbitals appear at approximately 6.0 eV below

Ep (Figure 25a) compared to the Ni d orbitals which appear at approximately 2.0
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eV below Ep (Figure 25b). Consequently, the hybridization of the Au d levels with

the d orbitals of Lu is much smaller compared to that with the Ni (1 levels. The Au

(1 contribution to the CBM at the X point in LuAuSn (Figure 25a) is much smaller

than the Ni 11 contribution to the CBM at the X point in LuNiSb (Figure 25b). The

strength of the Au (1 or Ni (1 characters in Figure 25 are proportional to the size of

the circles. The weaker hybridization leads to a reduction in the band gap, becoming

slightly negative in LuAuSn compared to 0.19 eV in LuNiSb (Figure 25).

Figure 25. Electronic structure of LuAuSn and LuNiSb. The Ni d bands lie

closer to Ep than the Au d bands. The size of the circles is

proportional to the orbital character.
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4.1.6. ELEMENTAL REPLACEMENTS OF NiO WITH Col’/R111“

Replacing Ni0 by Col" and Rhl‘ has the opposite effect of replacing Ni0 by Au1+ .

We will consider a representative compound, Ti4+Col’Sb3‘, whose band structure can

be compared with that of Ni-containing Ti4+Ni°Sn4‘. The band structure of TiNiSn

is roughly the same as that of ZrNiSn with nearly the same band gap, 0.50 eV (Figure

26b).[59] The calculated band gap for TiCoSb is significantly larger, 1.08 eV (Figure

26a). The band structure for TiCoSb is different from all the semiconducting half-

Heusler systems discussed so far. Its VBM moves from the F point, still predominantly

of Sb 1) character, to the L point, primarily of Co d and Zr d character, as is the case

for the CBM at the X point. The C0 d level not only has a significant contribution

below Ep, around -1 eV, but also above Ep around 2 eV. The flat Co (1 levels lying

about 1.5 eV below E1: along WL push up the hybridized Co d and Ti d orbitals at

the L point above the Sb p levels at the F point. The greater hybridization of the

Ti (1 orbitals with Co (1 (Figure 26a) compared to Ni d orbitals (Figure 26b) near Ep

leads to an increase in the band gap.

This relationship between the position of the transition (or noble) metal d orbitals

and the band gap could be modeled by an effective Hamiltonian. The size of the band

gap for a generic half-Heusler system could be predicted by knowing, for instance,

the position of the Ni 01 orbitals in relation to the Zr (1 orbitals in ZrNiSn, and by

comparing the calculated values of the band gaps. While we will not do this, our

results suggest that such a modeling would be useful in further understanding the

band gaps of the half-Heusler compounds.
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Figure 26. Electronic structure of TiCoSb and TiNiSn. The Co (1 bands lie

closer to E; than the Ni d bands. The size of the circles is

proportional to the orbital character.
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Unlike TiCoSb, in Ti4+Rh1“Sb3’ the VBM moves back to the the F point from the

L point as in Ti4+Ni°Sn4’, with an even larger gap, 1.16 eV (Figure 27). The band

along WL, which was pushed up to form the maximum in TiCoSb, is not pushed up

as much in TiRth. The CBM also changes significantly in TiRth. In both of these

materials, there are two bands near the CBM, a flat hybridized band of Rh d and Ti

d and a more dispersive unhybridized Ti (1 band. In TiCoSb, this more dispersive

band is 0.25 eV below the less dispersive band at the X point while in TiRth the

flatter band is below the more dispersive band by about the same amount. This

change in the dispersion in the conduction band should have an important effect on

the thermoelectric properties of the electron doped system.
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Figure 27. Electronic structure of TiRth.
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4.1.7. ELEMENTAL REPLACEMENTS OF NiO WITH Fe2'/Ru2‘

The last elemental replacement we will discuss is changing NiO to Fez" and Ru2‘.

Again we will compare Y3+Ni°Sb3" with a representative material, Nb5+Fe2’Sb3‘.

As in TiRth, the LCB consists of two bands, a more dispersive unhybridized Fe (1

band and a flatter hybridized Fe d-Nb d band. The more dispersive Fe (1 band lies

below the flatter hybridized Nb d and Fe d band, now by about 1 eV. As in TiCoSb,

Fe (1 orbitals in NbFeSb split at about -0.5 eV to push up the bands between WL,

producing a VBM at the L point. The calculated band gap is 0.53 eV, larger than

the value of 0.28 in YNiSb.
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Figure 28. Electronic structure of NbFeSb and YNiSb. Note the difference in

curvature near the X point in the LCB.
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4.1.8. ELEMENTAL REPLACEMENTS OF Ni0 WITH Mn3‘

Finally, the logical extension is to try Mn3“ as the transition metal in the half—

Heusler structure. This does not yield any new semiconductors, since Mn often has

a mixed valence. However, half-metallicity has been predicted in MnNiSb, where

Mn forms part of the NaCl substructure rather than replacing the transition metal

Ni atoms.[75] Half-metallic systems have a metallic majority spin (here up) state

with a semiconducting minority (here down) spin state (Figure 29). Subsequent

photoemission and transport measurements have found that the polarization, unlike

the 100% which should exist in a truly half-metallic system, is only about 50%.]76] In

the presence of weak Mn-Sb disorder (even on the order of 5%) the semiconducting

gap seen in the minority spin channel disappears and the system becomes completely

metallic (though still ferromagnetic)[75], consistent with nearly 10% Mn-Sb disorder
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which is seen experimentally.]76] -

Figure 29. Calculated DOS of half-metallic MnNiSb for (a) up and (b) down

spin states.
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4.2. STRUCTURAL STABILITY OF HALF-HEUSLER COMPOUNDS

4.2.1. TOTAL ENERGY OF THE TERNARY SYSTEMS IN DIFFERENT

STRUCTURAL CONFIGURATIONS

We have studied elemental replacements as important for the gap formation, but

the positions of the atoms in the unit cell of the half-Heusler compounds also play an

important role in the semiconducting gap formation and structural stability. There

has been some confusion regarding the nature of the ordering of the atoms within the

unit cell and which ordering gives the lowest energy. Ogut and Rabe (OR) have stud-

ied the stability of ZrNiSn, using LDA and the pseudopotential plane-wave method,

within three possible configurations. They correctly identified the configuration of

atoms with the lowest energy, the same configuration seen experimentally.]59] They,

however, concluded that the inclusion of Ni atoms into the octahedrally coordinated

pockets of the NaCl-type basis structure ZrSn had energetically very little effect on

the stability of the final compound ZrNiSn. This would imply that Ni atoms essen-

tially enter the above pockets as neutral atoms and do not take part in any sort of

bonding with the neighboring Zr and Sn atoms. However, in the previous section we

showed that hybridization of Ni atoms played a significant role in the gap formation.

The effect of Ni atoms was not just simply to lower the local symmetry compared to

the binary compounds, thereby leading to additional hybridization between Zr and

Sn orbitals, forbidden in the absence of Ni, as envisaged by OR.[7, 9]

A recent paper by Ishida et al.[77] analyzed the structural stability of a series of

half—Heusler compounds (without reference to the results of OR), using the LMTO-

ASA method and LDA, and found that the lowest-energy configurations for most
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members studied were different from those seen experimentally.]66] This has led us

to reevaluate the question of structural stability of the half-Heusler semiconductors

using FLAPW.]11] To this end we have investigated the energetics of the same six

systems studied by Ishida et al.[77]: NiTiSn, NinSn, NinSn, NiSch, NiScSn, and

NiTiSb.

Within this section only, the possible configurations of the constituent atoms inside

the unit cell can be written in the same shorthand notation used by Ishida et al.[77]

For a half-Heusler compound NiMP (M 2 Ti, Zr, Hf, Sc; P 2 Sn, Sb), this notation

denotes the Ni atom as X, the M atom as Y, and the P atom as Z. The order of X, Y,

and Z tells the relative positions of the atoms within the cell. The first letter refers to

the atoms within the octahedrally coordinated pockets located at the position (7}, i,

A) while the second refers to the atom at position (%, %, %) and the third to the atom

at position (0, 0, 0). Therefore, a configuration designated by XYZ has the Ni atom

in the octahedrally coordinated pocket with the M and P atoms forming the NaCl

substructure (written as NiMP) while YXZ exchanges the position of the Ni and M

atoms within the cell (written as MNiP) (Figure 30). These different configurations

can also be distinguished by the Greek nomencl’atures (a, B, 7) where (1 refers to

the XYZ configuration, B refers to the ZYX configuration, and '7 refers to the YXZ

configuration, respectively.]59]
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Figure 30. Half-Heusler crystal structures (a) XYZ, (b) ZYX, and (c) YXZ.
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The total LAPW-GGA energies of one system of interest, NiTiSn, for these three

different configurations of the constituent atoms in the unit cell as functions of the

lattice parameter are given in Figure 31 (the lowest energy is set to zero).

Due to symmetry, interchanging the positions of the atoms comprising the NaCl

substructure without changing the position of the atom within the octahedrally coor-

dinated pocket gives the same energy within the convergence prescribed by the self-

consistent iterations. The configuration which has the lowest energy is XYZ where the

Ni atoms lie in the octahedrally coordinated pockets. The energy difference between

this lowest-energy structure (XYZ) and the other two structures is about 2 eV/unit

cell. The equilibrium lattice parameters for the YXZ and ZYX configurations also

differ by about 0.2 A from that of the XYZ. The XYZ structure is the most compact,

and there is a small energy difference between the YXZ and ZYX arrangements which

is less than 0.1 eV/ unit cell. These results hold for all of the systems studied, includ-

ing NinSn (Figure 32), whose results are consistent with the earlier pseudopotential

calculationl59].

74



Figure 31. Total energies as a function of lattice parameter for the three

different configurations of NiTiSn (the lowest energy is set to zero).

 

 

 

 

 

 

 
 

 
 

c XYZ

o ZYX

o YXZ

NiTiSn

2.5, .. -.-.,--

i ' 1 1

2‘ * 332.333.33.138 .

A 1.5’ 1

E i 1

S I .
L.

g _ l

L” 0.5] ‘ ‘

f I

OL °Onne::¢nn0

I .

-0.5l1Lm1111 1-1;.1..1_11-..

5.8 5.9 6 6.1 6.2 6.3

Lattice Parameter (A)

Figure 32. Total energies as a function of lattice parameter for the three

different configurations of NinSn (the lowest energy is set to zero).
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Our LAPW-GGA results for the six different compounds investigated by Ishida

et al.[77] are listed in Table II. The first column lists the systems (XYZ) and their

experimental lattice parameters (in a.u.), where available. The next three columns

give the calculated equilibrium lattice parameters of the three types of atomic ar-

rangements while the final three columns give the energy differences (in eV) between

these different configurations. The configuration for each compound which Ishida

et.al.[77] found to have the lowest energy is italicized. The results of LAPW-GGA

differ dramatically from those of LMTO-ASA LDA, but these LAPW-GGA results

for NinSn agree very well with those obtained with the pseudopotential LDA.[59]

In order to see whether these differences were caused by LDA/GGA, both LDA and

GGA were tested for NinSn. The differences between these two methods showed

energy differences only on the order of 1-2%.

Table II. Experimental and calculated equilibrium lattice parameters and

total-energy differences for half-Heusler systems (GGA).

 

 

 

 

 

 

 

 

 

 

System Exp. (XYZ) XYZ (a) ZYX (l3) YXZ (7) ZYX-XYZ YXZ-XYZ YXZ-ZYX

(a.u.) (a.u.) (a.u.) (a.u.) (eV) (eV) (eV)

NinSn 11.187 11.261 11.516 11.595 2.03 2.12 0.09

NinSn 11.463 11.572 11.955 12.150 2.43 2.67 0.24

NinSn 11.546 11.607 12.042 12.168 2.30 2.68 0.38

NiSCSb 11.442 11.607 11.942 12.107 1.66 2.39 0.74

NiSCSn NA 11.690 12.080 12.121 2.23 2.19 -0.01

NiTiSb 11.187 11.291 11.589 11.663 1.51 1.37 -0.14       
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Figure 33. The electronic structures of (a) XYZ, (b) ZYX, and (c) YXZ

configurations of NiTiSn.
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Figure 34. The electronic structures of (a) XYZ, (b) ZYX, and (c) YXZ

configurations of NinSn.

(a) 3 o NinSn

 

   

 

4
_
n
_

.
1
.

L
1

.

.
.
.
.
.

.
.
.
.
.

  

 

.
0

 

E
n
e
r
g
y
(
e
V
)

 
 

       
 

 

 

        
 

 

        

78



Comparison of the electronic structure in these three configurations shows a drastic

effect. The electronic structures for NiTiSn in the XYZ (NiTiSn), ZYX (SnTiNi), and

YXZ (TiNiSn) configurations are given in Fig. 32. As can be seen. the lowest energy

configuration, NiTiSn, is a semiconductor with the VBM at. the F point and the

CBM at the X point, as seen in the previous calculations.[77] In SnTiNi, the lowest

conduction band (LCB) along I‘X drops to form a zero-gap semiconductor. In TiNiSn,

the LCB moves below Ep while the highest valence band (HVB) shifts away from the

F point to the K point and moves above Ep to form a metallic system.[ll]

These results also hold for the other semiconducting systems studied (NinSn,

NinSn, NiSch). The results for the different configurations of NinSn in Figure 34

agree with the pseudopotential calculations by OR.[59]

It is unclear from the paper by Ishida et al.[77] which lattice constants were used

in their calculations. Also, the values of the energy differences between the different

configurations were not given and the nature of the electronic states of these half-

Heusler compounds in configurations other than XYZ were not discussed. They

claimed that their results were sensitive to the muffin-tin radii (MTR) chosen, so

the same MTR was kept the same for each configuration of the individual systems,

given in Table III. In view of our present calculations, their suggestion that these

half-Heusler systems can exist in configurations other than XYZ is not likely. Also it

would disagree with several experiments on these materials.[66]

In order to understand the reason for the gap reduction in the ZYX and YXZ

configurations, we have investigated the orbital character of the band structure at

the relaxed lattice positions for the three configurations. A significant difference is

seen in the position of the Ni d orbitals in each of these configurations (Figure 35).

In the XYZ configurations, where Ni lies in the octahedrally coordinated pockets, the

Ni d orbitals lie about 2 eV below Ep. In the ZYX configuration, where Ni forms
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part of the NaCl substructure with Ti and Sn is in the octahedrally coordinated

pockets, the Ni d orbitals play a more prominent role in the valence band with less

importance in the lowest conduction band which moves down to reduce the gap. In

the YXZ configuration, where Ni forms in the NaCl substructure with Sn and Ti is

in the octahedrally-coordinated pockets, the Ni d orbitals hybridize less with the Ti

d orbitals and become prominent both above and below Ep, the system becoming

metallic (Figure 35).

Table III. Muffin-tin radii of half-Heusler systems.

 

 

 

 

 

 

 

 

System Muffin-tin radii (a.u.)

NiTiSn .' ‘ 2.33

NinSn i 2.30

NinSn 2.36

NiSch 2.31

NiScSn 2.37‘

NiTiSb 2.24    
 

A few words should be said about NiTiSb and NiScSn, the two metallic half-Heusler

structures which we have studied. As in the semiconducting cases, the lowest energy

configuration is the XYZ, the same as seen experimentally. This means that the

stability of this configuration need not be due to the formation of a band gap in the

system. However, the YXZ has a lower energy than the ZYX in these two cases. In

comparison, when XYZ was semiconducting, ZYX was a zero-gap semiconductor while

the YXZ was metallic, while in these two systems all configurations are metallic.|11]
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Figure 35. The electronic structures of (a) XYZ, (b) ZYX, and (c) YXZ

configurations of NinSn. The size of the circles overlying the

bandstructure are directly proortional to the with the Ni d

character at each point.
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4.2.2. ANALYSIS OF THE STABILITY OF THE TERNARY COMPOUNDS

BASED ON THE STABILITY OF THE BINARY PAIRS

Since we have found that the XYZ configuration has the lowest energy, we will

follow the analysis by OR[59] who studied the energetics of the binary compounds

which form in three different configurations in order to see which types of bonds

lead to the stability of the ternary compounds. The half-Heusler compounds can be

considered either as a NaCl lattice with atoms placed in half of the octahedrally-

coordinated pockets or as a ZnS lattice with atoms placed within the voids of this

network (Figure 12). The lowest energy configuration should in principle lower the

interaction energy between all three components in the structure, so it is worthwhile

to understand how each pair of atoms within the lattice interact in order to form the

lowest energy configuration. In NinSn (XYZ), Nin forms a diamond structure while

ZrSn for a NaCl structure while in ZrNiSn(YXZ) ZrSn and Nin both form diamond

structures. In the calculation of OR[59], first the energies of the binary compounds

were studied at a “fixed” lattice parameter for all three ternary configurations and

were then compared to energies obtained at “relaxed” lattice parameters. We will

show that a better understanding of the energetics arises from using the relaxed

lattice parameters appropriate for these different configurations.

The energy differences between different configurations of the binary compounds

are given in Table IV using LDA and the fixed lattice parameter, as was used by

OR.[59] In the top third of the table, the results of the pseudopotential calculation

of OR, in the middle third our LAPW-LDA results at the fixed lattice parameter.

and in the final third our LAPW-GGA results at the fixed lattice parameter. The

first column gives the binary system studied, the next three columns gives the crystal
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structure within the XYZ, ZYX, or YXZ configuration of the half-Heusler system,

and the energy differences are tabulated in the last three columns, first between the

half-Heusler systems and then between the binary systems from which it is composed.

Table IV. Total-energy differences for NinSn and different binary systems

with fixed lattice parameters calculated using the pseudopotential

LDA [Ogut and Rabe[59]] and using LAPW within LDA and GGA

 

  

 

 

 

 

 

 

 

         
 

 

  

 

 

 

 

 

 

        

NinSn XYZ ZYX YXZ ZYX-XYZ YXZ-XYZ YXZ-ZYX

OR [59] Pseudopotential (LDA)

11.546 a.u. 2.28 eV" 2.85 eV° 0.57 eV°

Diamond-NaCl Diamond-NaCl Diamond-diamond

ZrSn NaCl Diamond Diamond 2.03 eV 2.03 eV 0 eV

NaCl-diamond Diamond-diamond Diamond-NaCl

Nin Diamond NaCl Diamond 0.26 eV 0 eV -0.26 eV

Diamond-diamond NaCl-Diamond NaCl-diamond

NiSn Diamond Diamond NaCl 0 eV 0.23 eV 0.23 eV

NinSn XYZ ZYX YXZ ZYX-XYZ YXZ-XYZ YXZ-ZYX

LAPW (LDA)

11.546 an. 2.63 eV 3.29 eV 0.66 eV

Diamond-NaCl Diamond-NaCl Diamond-diamond

ZrSn NaCl Diamond Diamond 2.03 eV 2.03 eV 0 eV

NaCl-diamond Diamond-diamond Diamond-NaCl

Nin Diamond NaCl Diamond 0.50 eV 0 eV -0.50 eV

Diamond-diamond NaCl-Diamond NaCl-diamond

NiSn Diamond Diamond NaCl 0 eV 0.76 eV 0.76 eV
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NinSn XYZ ZYX YXZ ZYX-XYZ YXZ-XYZ YXZ-ZYX

 
 

l

l 1.pr (GGA)

 

1 1 .546 a.u. 2.60 eV

 

 

 

3.25 eV 0.65 eV

Diamond-NaCl Diamond-NaCl Diamond-diamond

ZrSn NaCl Diamond Diamond 2.33 eV 2.33 eV 0 eV

 

NaCl-diamond Diamond-diamond Diamond-NaCl

 

 
 

 

        
Nin Diamond NaCl Diamond 0.22 eV 0 eV -0.22 eV

Diamond-diamond NaCl-Diamond NaCl-diamond

NiSn Diamond Diamond NaCl 0 eV 0.51 eV 0.51 eV

 

“Energy differences for ternary compounds calculated by OR[59] computed at relaxed

lattice parameters

Overall, the calculated energy differences between the different configurations ob-

tained using pseudopotential-LDA and LAPW-LDA agree fairly well (Table IV). The

largest energy difference is seen for the ZrSn configuration in a NaCl over a diamond

structure. However, there still are differences between the methods. The difference

in the energies between the NaCl and diamond structures in Nin is found to be 0.50

eV in LAPW compared to 0.26 eV in the pseudopotential method. Also, the energy

difference between the NaCl and diamond structures in NiSn is found to be 0.76 eV

in LAPW compared to 0.23 eV in the pseudopotential method. As has been noted

before, this pseudOpotential calculation missed a significant contribution to the CBM

above Ep which came from the Ni (1 orbitals. Comparison of the pseudopotential-

LDA and LAPW-GGA finds that these actually have better agreement compared

to the pseudopotential-LDA and LAPW-LDA. The difference between Nin in the

NaCl and diamond phases is only 0.22 eV in the LAPW-GGA compared to 0.26 eV

in the pseudopotential calculation and for NiSn it is only 0.51 eV in the LAPW-GGA
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compared to 0.23 eV in the pseudopotential calculation.[59]

Table V. Relaxed equilibrium lattice parameters and total-energy differences for

NinSn and different binary subsystems calculated using LAPW

within LDA and GGA.

 

 

 

 

 

 

 

 

         
 

 

 

 

 

 

 

 
 

 

NinSn XYZ ZYX YXZ ZYX-XYZ YXZ-XYZ YXZ-ZYX

LAPW (LDA)

11.546 an." 11.429 8.11. 11.735 a.u. 11.928 a.u. 2.50 eV 2.98 eV 0.48 eV

Diamond-NaCl Diamond-NaCl Diamond-diamond

ZrSn NaCl Diamond Diamond 1.99 eV 1.89 eV -0.10 eV

NaCl-diamond Diamond-diamond Diamond-NaCl

Nin Diamond NaCl Diamond 1.08 eV 0.72 eV -0.37 eV

Diamond-diamond NaCl-Diamond NaCl-diamond

NiSn Diamond Diamond NaCl 0.32 eV 1.49 eV 1.17 eV

NinSn XYZ ZYX YXZ ZYX-XYZ YXZ-XYZ YXZ-ZYX

LAPW (GGA)

11.546 a.u.." 11.261 a.u. 12.042 a.u. 12.168 a.u. 2.30 eV 2.68 eV 0.38 eV

Diamond-NaCl Diamond-NaCl Diamond-diamond

ZrSn NaCl Diamond Diamond 1.78 eV 1.71 eV -0.07 eV

NaCl-diamond Diamond-diamond Diamond-NaCl

Nin Diamond NaCl Diamond 1.16 eV 0.68 eV -0.47 eV

Diamond-diamond NaCl-Diamond NaCl-diamond

NiSn Diamond Diamond NaCl 0.36 eV 1.30 eV 0.95 eV       
“Experimental value.[59]

These energetics are found to be dependent also on the lattice parameters chosen.
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Table V is set up in the same way as Table IV except that the lattice parameters for

the minimum energy configurations for the three different arrangements (XYZ, ZYX,

YXZ) are used in the calculation of the energetics of the ternary and binary systems

in our LAPW calculations.

For NinSn the energy difference between the XYZ and ZYX (YXZ) configuration

for LDA is 2.50 eV (2.98 eV)/unit cell and for GGA is 2.30 eV (2.68 eV)/unit cell,

whereas the energies of the ZrSn substructure originating from the XYZ and ZYX

(YXZ) configurations for LDA is 1.99 eV (1.89 eV)/unit cell and for GGA is 1.78

eV (1.71 eV) /unit cell, about three-fourths of the energy gain found in the ternary.

The energy difference between the XYZ and ZYX structures for Nin is 1.08 eV for

LDA and 1.16 eV for GGA, 30-50% less than that for ZrSn. Similarly, the energy

difference between the XYZ and YXZ structures for NiSn is 1.49 eV for LDA and 1.30

eV for GGA, each about 25% less than that for ZrSn. Comparing these numbers to

those obtained at fixed lattice parameters, it is clear that the relaxation has a strong

effect on the relative energies of the binary compounds. For example, comparing the

NaCl and diamond phases of Nin and ZrSn, for GGA the Nin energy difference is

onlyM of that for ZrSn using the fixed lattice parameters but becomes 65% that

of ZrSn using the relaxed parameters. Similar values are found for both LAPW-LDA

and LAPW-GGA. Also, we have showed that the LAPW-LDA and LAPW—GGA give

similar results to the previous pseudopotential calculation at fixed lattice parameters,

so the difference in the analysis is due to the effects of lattice relaxation.[59]

The energy differences for NiTi and NiSn in the incorrect configuration using the re-

laxed parameters showed that they were an appreciable part of the relaxation energy,

much more than obtained using the fixed lattice parameters. Also, the pseudopo-

tential calculation by ORI59], which attributed so much to having TiSn in the NaCl

configuration as the main lowering in energy in the half-Heusler structure, missed the
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important contribution of the Ni (1 orbitals in the CBM which are so important to

the gap formation. Therefore, in the structural stability of the half-Heusler system,

the Ni d orbitals play an important, although secondary role to the configuration of

TiSn, in the structural stability of the half-Heusler system.

4.2.3. ENERGETICS OF ANTI-SITE DEFECTS

Anti-site defects within NiMP compounds have been used to explain why the

calculated band gaps of the half-Heusler systems are larger than the experimental

values[81], an unusual property since LDA usually underestimates the band gaps

of semiconductors. OR performed a series of calculations within the virtual-crystal

approximation for Ni(Sn1-erx)(Sanr1_3) for a few values of z lying between a: r: 0

and a: = 0.5. They found that the band gap indeed decreased with increasing a: to

produce a semi-metal when x = 0.15.[59]

This argument for the band gap reduction is based on x-ray diffraction studies

done at low temperatures (<250 K) which found anti-site disorder in the NaCl sub—

lattice of ZrNiSn (ZrSn) but no disorder in the Ni sublattice after annealing.[78] The

temperature range in which these materials are expected to be used for thermoelectric

applications is anywhere from 300 to 700 K[66], where the structure has not been fully

investigated. In fact, a Ni-defect phase was detected before annealing with different

lattice parameters a; and a“ which disappears after annealing.[79] Therefore, defects

in the Ni sublattice and within the MP framework and their effect on the electronic

structure need to be investigated.

We have investigated the effects of Ni and Zr-Sn disorder in the simple cubic

supercell (NinSn)4. This allows for changing the positions of the 12 atoms (4 Ni,

4 Zr, and 4 Sn) to see the effects of disorder within the lattice either by exchanging
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their positions or moving atoms from their ideal positions to one of the 8 octahedrally-

coordinated sites (4 of which are occupied in the ideal structure). Configurations of

these atoms with disorder in the ZrSn sublattice are shown in Figure 36.

Figure 36. Crystal structures of (NiMP)4 supercell for (a) Ni4(Zr38n)(Sn3Zr),

(b) (Ni3Sn)Zr4(Sn3Ni), and (c) (Ni3Zr)(Zr3Ni)Sn4.

N‘Wfl'XI'J-W W33X503W0 (MW

  

 
 

 

  

    
 

 

 
 

   
 
 

     

(a) (b) (C)

We find that exchanging the positions of Sn/Zr atoms with the Ni atoms or other

Sn/Zr atoms within the supercell (to produce a different configuration) produces a

fairly substantial increase in the energy. Using the relaxed parameters and atomic

radii used for the lowest energy configuration, the total energy differences are given in

Table VI. Switching one Ni and one Zr (Sn) atom increases the energy by a fairly large

amount, 1.71 (1.98) eV/FCC unit cell while switching one Zr atom with one Sn atom

has a smaller energy increase (1.25 eV/FCC unit cell). This is in agreement with our

calculations for the structural stability of MP NaCl and the greater stability of Ni

within the octahedral pockets of MP. In order to understand the effects of Ni when

switching the Zr and Sn positions, we have also calculated the difference in energy

in switching the position of one Zr and one Sn atom in Ni4Zr4Sn4 and compared
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that with the energy change when the same positions where switched in Zr4Sn4. The

energy difference was 1.25 eV/FCC unit cell in Ni4Zr4Sn4 compared to 1.10 eV/FCC

unit cell in Zr4Sn4, the Ni contributing 0.15 eV/unit cell due to the changed Zr/Sn

environment.

Table VI. Energetics of site-switching on NaCl substructure of NinSn

supercell (GGA).

 

 
 

 

 

 

 

 

 

 

System Energy - energy Ni4Zr4Sn4 (eV) AE/FCC unit cell (eV)

Ni4Zr4Sn4 0 0

Ni4(Zr38n)(Sn3Zr) 4.99 1.25

(Ni;,Sn)Zr4(Sn3Ni) 6.82 1.71

(Ni3Zr)(Zr3Ni)Sn4 7.93 1.98

Zr4Sn4 0 0

(Zr;;Sn)(Sn3Zr) 4.39 1.10     
 

In each of the cases where the positions have been changed, the band structure

becomes metallic (Figure 37). OR claimed that the band gap closed for 15% Sn-Zr

disorder[59], whereas we have studied only 25% disorder in the supercell.
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Figure 37. Electronic structures of (a) Ni4Zr4Sn4, (b) Ni4(Zr3Sn)(Sn3Zr),

(c) (Nigsn)Zr4(Sn3Ni), and (d) (Ni3Zr)(Zr3Ni)Sn4.
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A different scenario for anti—site defects in half-Heusler is for the Ni atoms, within

the octahedrally-coordinated pockets, to lie outside an FCC configuration by exchang-

ing positions with the unoccupied sites. In order to investigate this possibility, the

total energies of several rearrangements of the Ni sublattice have been calculated,

again using the same lattice parameter and atomic radii for the relaxed FCC cell.

(Figure 38) The first configuration is obtained by moving one Ni atom into one of the
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four empty sites; the second configuration is obtained by moving two Ni atoms into

empty sites to form an eclipsed arrangement; and the third configuration is obtained

by moving two Ni atoms into empty sites to form a staggered configuration.

Figure 38. Crystal structures of (NiMP)4 supercell for rearrangements of the Ni

lattice.

. ff.
M 4 l .

 

 

 

 

 
 

  
 

 

    
 

 

       
 

 

 

 

 

    
       

(a) (b) (c)

0M 0 P o M

The energy increases above the half-Heusler structure of these three configura-

tions are much smaller than those associated with the rearrangements of the NaCl

substructure by about a factor of 2 (06-08 eV/FCC unit cell compared to 1.3—2.0

eV/FCC unit cell), shown in Table VII.
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Table VII. Energetics of site-switching on Ni sublattice of NinSn supercell

 

 

 

 

 

 

(GGA).

System Energy - energy (Ni4Zr4Sn4) (eV) AE/FCC unit cell (eV)

Ni4Zr4Sn4 0 0

Ni4Zr4Sn4 - 35a 2.37 0.59

Ni4Zr4Sn4 - 35b 2.66 0.67

Ni4Zr4Sn4 - 35c 3.14 0.78     
 

These systems are also metallic, but there are fewer bands crossing Ep compared

to systems with disorder in the NaCl sublattice for the three configurations given

in Figure 38 (Figure 39). The reduced formation energy and less metallic behavior

seems to imply the configurations containing disorder in the Ni lattice would be

preferred over those with disorder in the NaCl substructure, contradicting what is

seen experimentally.[78]

The results of this analysis do not agree with experimental measurements which

find that there is Zr/Sn disorder in NinSn but no disorder of the Ni atoms out of an

FCC configuration.[78] It is possible that Ni defects have been annealed out of these

samples while the Zr-Sn defects, perhaps due to large energy barriers, are quenched

at low temperatures.
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Figure 39. Electronic structures of (a) Ni4Zr4Sn4 - 38a, (b) Ni4Zr4Sn4 - 38b,

and (c) Ni4Zr48n4 - 380.
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The Zr/Sn disorder in NinSn is believed to be due to the similarity of the atomic

radii of Zr (0.160 nm) and Sn (0.158 nm) and has been suggested as the mechanism to

reconcile the differences between the band gaps found experimentally from that in the

electronic structure calculations of the ordered NinSn.[81] The effect of Ni disorder

within the octahedrally-coordinated pockets should also reduce the band gaps of

the half-Heusler compounds. The experimental value for the band gap (0.19 eV) for

NinSn is much smaller than the value obtained from electronic structure calculations

(0.51 eV). The electronic structure calculations performed by OR[59] in the virtual-
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crystal approximation found that the band gap decreased to zero for about 15% Zr/Sn

anti-site disorder. On the other hand, the atomic radii of Ti (0.147 nm) and Sn (0.158

nm) are different enough that anti-site defects should be extremely rare in NiTiSn.[79]

However, the experimental value for the band gap in this compound (0.12 eV[7'9]) is

also much smaller than that of the ordered NiTiSn obtained in electronic structure

calculations (0.51 eVI59]). Since one system displays anti-site disorder on the NaCl

sublattice while the other does not, while the calculated and experimental values

are nearly the same, it seems unlikely that anti-site disorder can completely explain

the band gap difference in these materials. One cannot blame LDA/GGA which

usually underestimates rather than overestimates the band gaps in binary or covalent

semiconductors. We will return to this question after discussion our calculation of

the other ternary compounds in the Zintl phase.

4.3. THERMOELECTRIC PROPERTIES OF HALF-HEUSLER COMPOUNDS

An understanding of the band structure of the half-Heusler compounds allows for

study of their thermoelectric properties. Half-Heusler compounds have been studied

extensively for their thermoelectric properties.[59, 80] With the considerable variety

of changes seen in the band structure in the semiconducting half-Heusler phases, it

is necessary to understand what properties would be best for thermoelectric applica-

tions. In order to maximize ZT —- Son/n, it is necessary to have a large S and a and

a low re. From the derivation of ZT from the Boltzmann transport equations, the B

parameter (Equation 24 in Chapter 2) gives insight about how to increase ZT.[2~1| As

stated before, to increase B, which then increases ZT, one needs to look for systems

with low mph, multiply degenerate band extrema to increase 7, and highly anisotropic
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effective masses, small effective masses in the direction of transport in order to max-

imize and large effective masses perpendicular to the direction of transport.[24]

Several of the half-Heusler systems seem to be ideal candidates for electron-doped

thermoelectric materials based on the concept of anisotropic effective masses since

there is a very flat band along the FX direction which becomes more dispersive along

XW. Recently, Uher et al.[81] have studied the transport properties of ZrNiSn and

related compounds. They have estimated the effective mass of the states near the

bottom of the conduction band to be about 2-3me, where me is the free-electron

mass. We have calculated the effective masses associated with the conduction band

minimum (at the X point) and find the effective mass along I‘X to be about 10mg,

whereas along the other directions are about me. This gives an average effective

mass of 10%me which is consistent with Uher et al.’s findings.[81] Similar effective

mass values have been found in YNiSb where the heavy electron mass along the FX

direction is a factor of 2 larger. In contrast, the hole effective masses are not as large

and nearly isotropic.

Experimentally, these systems display a large S (~-40 to -250 uV/K) and large a

(0.1-10/mQ-cm) in the electron-doped regime. This gives a large power factor (PF)

(Son~0.8-1.4 W/mK).[80] This is consistent with our calculation for a system with

highly anisotropic effective masses. Unfortunately, I: is very large in these materi-

als (~10 W/mK compared to 1.5 W/mK for BizTe3), leading to values of ZT of

around 0.03 near room temperature (RT) and 0.29 (TiNiSn), 0.26 (ZrNiSn), and 0.22

(HfNiSn) obtained at 700K using the RT values for the thermal conductivity.[66, 81,

82,83]

In order to reduce n and further increase the power factor, many studies of ZrNiSn,

HfNiSn, and TiNiSn alloys have been performed.[66, 81, 82, 83] Doping on the Ni site
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shows little improvement of PF, but doping of the Sn site by Bi and of an alloyed site

of Zr, Hf, and Ti by Nb and Ta show marked improvements in PF by as much as an

order of magnitude. However, the phonon thermal conductivity is not substantially

reduced, leading to ZT at RT which is nearly an order of magnitude smaller than that

of B12T83.]66, 81, 82, 83] One possibility to reduce rt is to use this materials in mul-

tilayer systems which have been shown to improve ZT in PbTe-PbSeTe quantum-dot

superlattices[27] and in p—type B12T€3 /Sb2T€3 superlattice films]28], mainly through

reduction of n.

The effective masses in YNiSb are larger and more anisotropic than those in Zr—

NiSn, but these improvements are not sufficient to expect dramatic improvements in

ZT. One of the reasons for the high thermal conductivity is the higher symmetry of

the half-Heusler crystal structure. This high symmetry can be used to our advantage

by increasing the band degeneracy factor, 7, to a maximum value of 24 provided the

extrema occur at a general point in the Brillouin zone.

In ZrNiSn and YNiSb, the CBM lies at a high symmetry point X where '7 : 3.

The degeneracy factor, and hence S, can be increased if the minimum were to lie at a

more general point in the Brillouin zone (BZ).[7] This feature was found in TthSb

(Figure 40) with the CBM moving to halfway between 1" and X, which increases its

degeneracy factor to 'y = 6. The VBM at the W point is nearly degenerate VBM at.

X and I‘. We find a gap of 0.68 e\' "rhich is larger than measured value of 0.44 eV for

the isostructural URth.[84]

96



Figure 40. Electronic Structure of TthSb. Note the off-axis LCB.
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This off-axis CBM was also seen in ThNiSn. The previous calculation[10], without

the inclusion of SOI, showed a band structure very similar to that of TthSb with

the CBM forming halfway between 1" and X, but here the SOI is very important. The

inclusion of SOI reduces the band gap to less than zero, which is smaller than the

measured value of about 0.06 eV]85], but the CBM has shifted closer toward the X

point which increases the degeneracy factor to 'y = 12 (Figure 41). Unfortunately,

this material has not been studied yet for its thermoelectric properties.
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Figure 41. Electronic structure of ThNiSn. Note the LCB lies at a general point.
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In summary, the half-Heusler compounds are still interesting for their potential

thermoelectric properties provided that their K can be reduced by a factor of 5 to 10.
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CHAPTER 5.

TERNARY ZINTL PHASE COMPOUNDS

As discussed in detail in the last chapter, the half-Heusler structure has been de-

scribed as a stuffed NaCl structure where transition metal ions form an FCC lattice

within the pockets of a NaCl structure (Figure 12).]7, 59] With different chemical con-

stituents within the structure, half-Heusler compounds can display semiconducting[7,

59], half-metallic[75, 76], or metallic behavior[62, 67, 74]. The narrow gap semicon-

ductors of this class have been studied for thermoelectric applications.[4] While these

materials have respectable values for their thermopower (S) and electrical conductivity

(0)]4, 80] which lead to a large power factor (PF 2 820), due to their simple, isotropic

crystal structure, their thermal conductivity, n, has been fairly large.[4, 66, 81, 82, 83]

Since the thermoelectric efficiency of a material depends on the dimensionless

thermoelectric figure of merit, ZT= S20T/Iill, 2, 3], attempts to reduce the thermal

conductivity in half-Heusler compounds have proven only moderately successful since

the power factor has been observed to also reduce with alloying.[4, 66, 81, 82, 83]

The large values of K. in the half-Heusler alloys have proven the major difficulty in

using these materials for thermoelectric devices. A similar class of materials, Zintl

phase compounds in the structure Y3Au38b4, contain several of the same elements

as the half-Heusler compounds, have similar bonding and gap formation, but, due

to their cage-like structure and complex units cells, have a low n.[4] Due to their

potentially high ZT values, a thorough understanding of this new class of potential

thermoelectric materials is therefore needed through electronic structure calculations,

and is the topic of this chapter.
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5.1. CRYSTAL STRUCTURE AND ZINTL CONCEPT

Zintl ions and Zintl phases have been studied for over a century, but their properties

are not widely known.[86] Zintl ions are clusters or aggregates of “polar” intermetallic

ions with strong charge transfer between elements. Zintl phases form out of Zintl ions

arranged to produce polar or salt-like compounds which include binary or ternary

compounds formed between alkali or alkali-earth elements and the main-group ele-

ments from group IV on. Most of these compounds are expected to be semiconducting

or semimetallic due to the inherent charge balance necessary for their formation.[87]

Zintl phase compounds of the form Y3Au3Sb4 are understood as a stuffed Th3P4

structure. Cubic Y3Sb4 (Th3P4 structure) derives from doubling the unit cell of BCC

Sb (2 Sb atoms/unit cell) in all three directions to produce a Sb supercell (16 Sb

atoms/unit cell). The Sb atoms are then displaced slightly along the 111 direction of

the supercell to produce two different types of Sb polyhedra: regular disphenoidsl88]

and distorted tetrahedra. The Y atoms enter the center of the disphenoids and are

8-fold coordinated to Sb to form Y35b4 (Figure 42a). The noble (or transition) metal

atoms, such as Au, enter the distorted Sb4 tetrahedra in Y38b4 to form the ternary

compound Y3Au3Sb4 (Figure 42b). After Au is added, Y is 4-fold coordinated to Sb

and 4-fold coordinated to Au, Au is 4-fold coordinated to Sb and 4-coordinated to Y,

and Sb is 3-fold coordinated to Au and 4-fold coordinated to Y. In the half-Heusler

compounds such as YNiSb, Ni is 4-fold coordinated to Y and 4-fold coordinated to Sb,

and the Ni-Sb and Ni-Y distances are the same. However, in the Y3Aung4 structure,

due to the distortions of the tetrahedra, the different coordinations of the elements

are at slightly different distances.]89] The BCC Brillouin zone used in the electronic

structure calculations for the Zintl phases is given in Figure 43.
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Figure 42.(a) Crystal structure of Y38b4 and (b) crystal structure of Y3Ni38b4.

The large open circles are Sb, the small open circles are Y, and the

filled circles are Ni.

  

 

  

Figure 43. BCC Brillouin zone.
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Zintl phases and half-Heusler compounds share many similarities including the

formation of their crystal structure from parent binary structures and the nature of

the opening of their band gaps.[90, 91, 92, 93] Both of these structures contain a

backbone compound which is predicted to be either semiconducting or semimetallic

(such as ZrSn or Zr3Sb4 (isostructural to Y3Sb4)) where transition (or noble) metal

atoms enter into the octahedrally-coordinated pockets of this parent compound. In

both the half-Heusler and Zintl phases, Ni is octahedrally coordinated to 4 Zr and 4

Sn (Sb) atoms, while 4 Ni atoms form a tetrahedra about the Zr atoms. However,

there is a fundamental difference between these two structure types in regard to the Ni

coordination with Sn (Sb). In the half-Heusler phase, Ni forms tetrahedra about Sn,

but in these Zintl phases there are only 3 Ni atoms about the Sb positions, even though

the corresponding Ni-Sb—Ni angle (114.88°) is close to the tetrahedral angle. This

difference in local coordination may be the reason certain noble or transition metals

appear to prefer one structure over the other. While Ni prefers to form semiconductors

in the half-Heusler structure, Cu forms more stable semiconducting compounds in this

Zintl phase configuration for R3Cung4 (R 2 Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho,

Er).[93] In fact, some of the U-containing compounds can be in either phase (UNiSn

and U3Ni38n4, UPtSn and U3Pt38n4, URth and U3Rh3Sb4).[93]

As discussed in Chapter 2, the search for new thermoelectric materials involves

finding new narrow-gap semiconductors.[1, 2, 3] Several semiconducting members of

this class of Zintl compounds have been found and studied experimentally.]lO, 89,

90, 91, 92, 93, 94] Th3Ning4]10] has been found both experimentally and theoret-

ically to be a narrow-gap semiconductor. Both U3T3Sb4 (T = Ni, Pd, Pt)[90] and

Ce3Pt3Bi4[91] are heavy-fermion, narrow-gap semiconductors with magnetic moments

on the U and Ce sites, respectively. However, these heavy-fermion, narrow-gap semi-

conductors do not have large thermoelectric coefficients at room temperature.]95]

In this dissertation we will present our investigations of the electronic structure
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of three Zintl phase compounds of the Y3Au38b4 structure type, namely Zr3Ni3Sb4,

Hf3Ni38b4, and Zr3Pt33b4. The reasons for studying these systems is (i) to understand

the role in the gap formation of Ni/Pt d hybridization in comparison with the half-

Heusler compounds, such as ZrNiSn, and (ii) to understand the electronic origin of

their thermoelectric properties.

5.2. ELECTRONIC STRUCTURE OF ZINTL PHASE (STUFFED Th3P4)

COMPOUNDS

5.2.1. GAP FORMATION AND THE ROLE OF d-HYBRIDIZATION

The gap formation in the half-Heusler compounds Y3+NiOSb3’and Zr4+Ni0Sn4‘ de-

rives from a charge transfer between the elements of the NaCl substructure combined

with the strong interaction of the Ni d and Y/Zr (1 orbitals.[7, 59] Similarly, in the

Zintl compounds the charge transfer in the binary parent compound (Zr4+)3(Sb3')4

to form the ternary (Zr4+)3Nig(Sb3‘)4 should be important in understanding the

gap formation in these materials. The only previous electronic structure study of

Zr3Ni38b4, Hf3Ning4, and Ti3Ni38b4, is the calculation of the DOS using extended

Huckel calculations[94], with their inherent limitations.

Zr3Ni3Sb4, Hf3Ni38b4, and Zr3Pt38b4 were identified by Wang et al.[94] to have the

same crystal structure as the better studied Y3Au35b4, the first compounds in this

structure type to not contain Y or an f-electron element. As discussed for Y3Au3Sl>_..

in Zr3Ni3Sb4 Ni has 4 Zr and 4 Sb neighbors, Zr has 4 Ni and 4 Sb neighbors, and Sh

has 4 Zr and 3 Ni neighbors. The shortest Zr-Sb distance is 2.9144 A, the ShOI‘tOsl

Zr-Ni distance is 2.7746 A, and the shortest Ni-Sb distance is 2.4858 A.[94]
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In their analysis of Zr3Ni3Sb4, Wang et al.[94] claim that, in a Zintl-phase concept,

Sb is considered a nonmetallic element since it is the most electronegative component.

They claim the observed short Zr-Ni distance, 2.7746 A, produces a strong covalent

bonding between Zr and Ni, so that Zr3Ni3 forms the covalent network which then

has a predominantly ionic bonding with the interpenetrating Sb atoms. This picture

is consistent with their extended Huckel calculation which showed a reduced charge

on Zr. However, this description disagrees with Jingtai et al. [96] who studied similar

metallic rare-earth (RE)-copper Zintl phases, RE3Cung4. They claim that, due

to the shorter Cu-Sb distance (2.630 A compared to the Cu-RE distance of 2.868

A), Cu38b4 forms the covalent network, and the interpenetrating RE atoms, in the

distorted octahedra of Cu3Sb4, have ionic bonding with the Cu38b4 covalent network.

As in Zr3Ni38b4, the electronegativity of Sb is larger than that of the rare-earth

atom.[96] Both Wang et al.[94] and Jingtai et al.[96] agree that there should be a

strong charge transfer between Zr and Sb in Zr3Ni3$b4.

5.2.2. COMPARISON OF ngNi3Sb4 WITH THE HALF-HEUSLER

COMPOUND ZrNiSn

Due to the similarities between the half-Heusler and Zintl phase compounds, we

find the gap formation of these two classes of materials to be very similar. Let us

briefly review the gap formation in the half—Heusler compound ZrNiSn (for details see

Chapter 4). The gap formation in the half-Heusler compounds has been understood

by first studying the parent binary compound ZrSn and then investigating the effects

of the inclusion of the Ni (1 levels in the gap formation in the ternary compound. In

ZrNiSn, there is a strong Ni d-Zr d hybridization in the conduction band near the
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X point which is important for the formation of the band gap.[7, 59] An important

question to ask is whether it is possible to understand the gap formation of Zr3Ni3Sb4

by studying what effect the Ni (1 orbitals would have on semimetallic Zr38b4. Using

the experimental value of the lattice constant of the ternary compound[7], we have

calculated the band structure of Zr38b4 (Figure 44). It can be seen that the electronic

structure of Zr38b4 is slightly semimetallic with a conduction band crossing Ep near

the F point and a valence band crossing above Ep along FH and along FN (Figure

44). This is consistent with the self-consistent APW calculation for Th3Sb4, which is

a known existing compound.]10] As can be seen, the majority of Zr (1 bands lie above

Ep, the majority of the Sb p bands below, consistent with the view that these are

mostly polar salts in the Zintl phase.[87] The important question is how the inclusion

of Ni changes the bonding within this network.

Figure 44. The (a) Zr d and (b) Sb p orbital characters of Zr3Sb4.
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In Th3Ni3Sb4[10], it has been found that the Th d-Ni d hybridization at the I‘ point

was much stronger than the Sb p-Ni d hybridization and that the former hybridization

leads to the formation of the semiconducting gap. This is true even though the Ni-Sb

distance (2.644 A) is smaller than the Ni—Th distance (2.874 A).]10] Therefore, the

interatomic distance is not a clear indicator of the local bonding, as is commonly

used. We also find that, when Ni is added to Zqu.; to form Zr3Ni3Sb4, the gap

formation is similar to that of the half-Heusler compounds, when Ni is added to ZrSn

to form ZrNiSn. The strengths of the orbital characters in ngNi38b4 (Figure 45)

show that the Ni (1 hybridizes more strongly with Zr d than with Sb p. The Zr d-Ni

d hybridization at the 1" point is much stronger than the Sb p-Ni d hybridization

and leads to the formation of the semiconducting gap in Zr3Ni3Sb4. Again, the Ni-

Sb distance (2.4858 A) is smaller than the Ni-Zr distance (2.7746 A). The physics

of the gap formation in the half-Heusler and Zintl-phase compounds is very similar:

the introduction of Ni atoms into the semi-metallic binary compound (ZrSn, YSb,

or Zr3Sb4) results in a strong Ni d-Y/Zr d hybridization which opens a narrow band

gap. Since Zr, Sb, Sn, and Niare not heavy elements, the inclusion of 801 has only

a small effect on the band structure, such as minor splitting of degenerate bands and
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a small reduction of the band gap, but with no change in the shape of the LCB or

HVB.[7]

Figure 45. The (a) Zr d, (b) Sb 1), and (c) Ni (1 orbital characters of Zr3Ni38b4.

(a) Zr3Ni3Sb4 Zr (1
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The similarity between the gap formation in these Zintl-phase compounds and the

half-Heusler compounds also can be seen when changing the transition metal atom

from Ni to Au or Cu. In the half-Heusler compounds, such as LuAuSn, the reduced

Au d-La d hybridization compared to the Ni d-La d hybridization in LuNiSb led to a

reduction of the band gap in the former material (note that for charge compensation

that Sb —+ Sn if Ni -—» Au). Weaker Au/Cu d-Y d hybridization has been seen in

Y3Au38b4 and Y3Cu3Sb4.]89] Zr3Ni38b4 has a band gap of 0.39 eV compared to 0.23

eV for Y3Cu33n4 and Zr3Pt38b4 has a band gap of 0.78 eV compared to 0.61 eV in

Y3Au33n4.]89] In these compounds, the Au and Cu d levels lie about 5 eV below the

VBM[89], while the Ni (1 levels lie only about 2 eV below and Pt d levels lie only

about 34 eV below the VBM[7, 59] Previous calculations of the band structure of

La3Au3Sb4 found that the gap was 0.17 eV, half of that for Th3Ni38b4. This difference

was attributed directly to the reduced Au d-La d hybridization due to the lower Au

(1 levels in the former compound.[10] Reduced Zr/Y/La d-Cu/Au d hybridization

compared to Zr/Y/La d-Ni/Pt d hybridization leads to a reduction of the band gap

in both the half-Heusler and Zintl phase compounds.

5.2.3. UNUSUAL DISCREPANCY BETWEEN THE BAND GAPS FROM

THEORY (LDA/GGA) AND EXPERIMENT

As in the half-Heusler structure, there seems an unusual discrepancy between the

experimental and theoretical band gaps, the theoretical values being much larger

than the experimental values[7, 10, 59], the opposite of what is usually found in

LDA/GGA calculations.[31] The situation seems even more confusing due to the

comparisons of the electronic structure calculations of the binary compounds Th3X4
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(X = P, As) with the ternary Tthi38b4. The calculated band gap for the binary

system Th3P4 by Takegahara et al.[10] gives 0.007 eV compared to the experimental

value of 0.40 eV, whereas in Th3As4 they find 0.05 eV compared to the experimental

value of 0.43-0.44 eV. For Th3Sb4 they find a negative gap (semimetal) compared to

the experimental value of 0.48 eV. The reason for this discrepancy was attributed the

inadequate treatment of the XC potential in LDA/GGA. The trend for the band gaps

in the ternary compounds is just the opposite. The calculated value of the gap for the

ternary Th3Ni3Sb4 is 0.36 eV compared to the experimental value of 0.07 eV. These

calculations were performed without the inclusion of SOI which can be important for

heavy atoms like Th and are likely to play an important role in changing the band

gap]10]

The discrepancy of finding a larger band gap in a band calculation than found

experimentally has been seen also in the half-Heusler compounds. Ogut & Rabe[59]

tried to explain the observed smaller values of the band gap in ZrNiSn by invoking

disorder in the ZrSn lattice. Similar arguments have been put forward to explain

the observed smaller gap in these Zintl-phase compounds.[lO] However, our supercell

calculations for the half-Heusler compounds[11] (Chapter 4) showed that this type

of disorder is found to be energetically unfavorable compared to Ni disorder. Also,

while disorder of the ZrSn lattice has been seen in ZrNiSn[78], there is no experimental

evidence of disorder in these Zintl-phase compounds, where the Zr and Sn sites are not

equivalent. Therefore, we will try to understand this dramatic discrepancy between

theory and experiment from a different perspective.

The observed discrepancy between the experimental and theoretical band gaps may

lie in the uncertainty in the positions of the Ni (1 orbitals in different calculations.

As seen in Chapter 4, when the transition metal at orbitals lie closer to Ep, such as
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in TiCoSb[80], the Ti d-Co d hybridization is stronger, leading to a larger band gap

in the material. It is well known that LDA/GGA calculations place the d orbitals

of transition metals too high in energy while other methods, namely Hartree-Peck,

place these (1 orbitals too low in energy.[97] Only a small shift, less than 0.5 eV, in

the position of the d orbitals changes the gap from 0.51 eV in TiNiSn[59] to 1.08

eV in TiCoSb[80]. Shifting of the d levels down reduces the band gaps. In the

Zintl phases, we find that Zr3Ni33b4 has a band gap of 0.39 eV compared to 0.23

eV for Y3Cu38n4 and Zr3Pt38b4 has a band gap of 0.78 eV compared to 0.61 eV in

Y3Au38n4.[89] In these compounds, the Au and Cu d levels lie about 5 eV below the

valence band maximum[89] while the Ni d levels lie only about 2 eV below the valence

band maximum.[7, 59] The position of the Ni d level[97] may be the source of the

overestimation of the band gap in the half-Heusler and Zintl phase compounds, not

disorder between Zr and Sn/Sb.[10, 59]

5.2.4. COMPARISON OF Zr3Ni3Sb4 WITH Hf3Ni3Sb4 AND Zr3Pthb4

Zr3Ni38b4, Hf3Ni3Sb4, and Ti3Ning4 are isoelectronic Zintl-phase compounds, the

first compounds in the Y3Au38b4 structure type not containing Y or an f-electron

atom. The electronic structures of all three compounds show small semiconducting

gaps (Figure 46). We find that the effect of SOI is to lower the band gap from 0.58

eV to 0.51 eV in Hf3Ni3Sb4, from 0.45 eV to 0.39 eV in Zr3Ni3Sb4, and from 0.86 eV

to 0.78 eV in Zr3Pt3Sb4. Though extended Huckel calculations rarely do a good job

in predicting band gaps, the previous calculation for Zr3Ni38b4 (without SOI) gave a

gap of 0.57 eV, consistent with our results.[94]
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Figure 46. Electronic structures of (a) Zr3Ni38b4, (b) Hf3Ni3Sb4, and

(C) ZI‘3Pthb4.
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The electronic structures of Zr3Ning4, Hf3Ni3Sb4, and Zr3Pt3Sb4 are remarkably

similar with valence band maxima forming along the same directions in k-space. The

HVB in each of the compounds is apparently multiply degenerate with maxima along

FN, PH, and PP (Figure 46). These bands arise primarily from Hf/Zr d-Ni/Pt d

hybridization, with some Sb p hybridization. In each case, the effect of SOI is to

remove degeneracies from the bands and reduce the observed band gap by about

0.07 eV. As in the half-Heusler systems, the bands near Ep arise due to a strong

hybridization of the three metallic elements.

A closer study of the effective masses of these materials shows that there are only

two VBM along PH and PP in Zr3Ni38b4, and Hf3Ni3Sb4, the supposed maxima

along I‘N in these two compounds, which has a slightly lower energy than the other

two, is really a saddle point with a minimum along the z-direction. The calculated

reciprocal values of the effective masses (0,- = [mi/marl) are given in Table VII.

These effective masses have not been measured experimentally. The CBM at the I‘

point is doubly degenerate, one band more dispersive than the other. The values of

the reciprocal effective masses are very similar in the three compounds, except that

the Pt compound has heavier CBM effective masses and no saddle point along FN.
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Table VIII. Calculated reciprocal effective masses of ngNing4, Hfgl 'i;,Sb4,

and Zr3Pthb4.

 

 

 

 

 

 

 

 

  

a,- -——]m,o,/me]‘1 Zr3Ni38b4 Hf3Ni3Sb4 Zr3Pt3Sb4

CBM(I‘) a: : ay 2 02 1.46 1.53 0.07

OzI = (1,, = 02 0.72 0.57 0.08

VBM (FN) a: = 0,, 0.21 0.27 0.50

a: -0.04 -0.23 0.54

VBM(I‘H) a: 2 0y : (1,, 0.17 0.19 0.12

VBM (PP) aI = 0;, 0.47 0.40 0.26

a, 1.26 1.24 0.88     
 

Zr3Ni38b4, Hf3Ni3Sb4, and Zr3Pt3Sb4 have a low 5 due to the complex unit

cells.[94, 95] Our calculations also show anisotropic effective masses, though much

less anisotropic than the half-Heusler compounds. As pointed out for Y3Aung4

and Y3Cu3Sb4[89], the multiply degenerate VBM away from the high symmetry

points leads to a large thermopower in these systems.[ll, 24] The different values

for the band gaps allows for shifting the temperature range at which the materials

are useful. These Zintl-phase compounds have promising power factors, like the half-

Heusler compounds, however with a much lower K. due to the more complex crystal

structure.[94, 95] Further experimental studies of these materials for their thermo-

electric properties is warranted.
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CHAPTER 6.

SIMPLE CHALCOGENIDES

Both half-Heusler compounds (Chapter4) and Zintl-phase compounds (Chapter 5)

are potential candidates for new thermoelectric materials. However, the best currently

available bulk thermoelectric materials belong to a class called simple chalcogenides.]4]

These include alloys of BIQT€3 with B12883 and Sb2T€3 for room temperature (~300K)

and PbTe for higher temperatures (~600K) applications.[3, 25] The search for new

thermoelectric materials has focused on using these materials as building blocks

for synthesizing novel materials with complex structures which will have high ZT

values.[4]

While there are general expectations about what one should look for in a good

thermoelectric material (Chapter 2), studying the electronic structure of known ther-

moelectrics allows one to see which mechanisms are the most important. Also, before

studying the electronic structure of complex chalcogenides, we will discuss the physics

of gap formation in simple chalcogenides which have been extensively studied in the

past. We will present our FLAPW results and then compare with the previous calcu—

lations which were performed using different methods, and to understand the features

which are found in the electronic structure of the best known thermoelectric materials.

6.1. PbS, PbSe, PbTe

6.1.1. BAND STRUCTURES OF PbS , PbSe, AND PbTe

PbS, PbSe, and PbTe, commonly referred to as the lead salts, are compounds in
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the NaCl structure type with 2 atoms/FCC unit cell. The lead salts have been used

in many applications, including near-infrared photoconductive detectors[98], photo-

conductive and photovoltaic conductors[99], and p—n injection lasers]100]. PbS, PbSe,

and PbTe are also good thermoelectric materials near 700 K with a maximum ZT

around 1.[3, 25] These materials have also been used in quantum dots and multilayer

systems which show even higher values of ZT, mainly due to reductions in n.[4, 27, 28]

The lead salts are among the few materials where the temperature coefficient

(Ea—5%?) is positive, which means that the semiconducting gap increases with tem-

perature. Almost all other elemental or binary compound semiconductors exhibit

negative values of the temperature coefficient. In fact, all three compounds have

about the same temperature coefficient, (fa—$33 z 4.7 x 10’4 eV/K (Table IX). This is

related to the negative pressure coefficients (ea—g?) for all three systems and positive

volume coefficients of thermal expansion, (1. Therefore, as the temperature increases,

the lattice expands, acting like a negative pressure (6%:g3), which then increases the

band gap (215%12 > 0). Another unusual feature is that the band gap decreases going

from PbS to PbSe but increases going from PbSe to PbTe (Table IX). Generally, there

is a monotonic decrease of Egap with increasing atomic number.[101]
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Table IX. Experimental energy gaps in eV for PbS, PbSe, and PbTe as a function

of T. (For experimental references, see Dalven [101])

 

 
 

 

 

 

 

 

T(K) PbS PbSe PbTe

4.2 0.286 :l: 0.003 0.165 2}: 0.005 0.190 :1: 0.002

12 0.286 0.145 0.187

77 0.307 i 0.003 0.176 :t 0.005 0.217 i 0.002

300 0.41; 0.42 0.27; 0.29 0.31; 0.32

373 0.44 0.31 0.34      
PbS, PbSe, and PbTe have been extensively studied in the past, and their electronic

structures have been calculated by several authors using different methods. These

include tight-binding (TB) calculations[102], the augmented planewave method]103,

104], the k'p method]105, 106], the Green function method]107], the orthogonalized

planewave (OPW) method]108], the empirical pseudopotential method]109, 110, 111,

112, 113, 114, 115], the relativistic LMTO method]116, 117, 118], and the FLAPW

method including SOI[37, 38, 39]. Early calculations[102, 103, 104, 105, 106, 107,

108, 109, 110, 111, 112, 113] correctly predicted the position of the direct gap at the

L point in the BZ. However, many of these calculations included the band gap as an

input parameter. The later papers[37, 38, 39, 115] note that, even after including

SOI, the LDA/GGA band gaps are too small compared to experiment, which has

been noted in many other semiconductors.[31]

Our FLAPW calculation of the band structures of these three compounds (includ-

ing SOI) at the experimental lattice parameters (corresponding to T = 4 K) shows

that the band gaps are much smaller than experiment, 0.10 eV for PbS, 0.01 eV for

PbSe, and 0.09 eV for PbTe, though the trend in the bands gaps going from PbS to
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PbTe is reproduced.

Figure 47. Electronic structures of (a) PbS, (b) PbSe, and (c) PbTe using

the experimental lattice parameters (corresponding to 4 K).
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Several calculations of these materials have tried to improve the band gaps for bet-

ter agreement with experiment. All of these have been zero temperature calculations,

so the attempts have been to reproduce the experimental values of 0.29 eV for PbS,

0.17 eV for PbSe, and 0.19 eV for PbTe.[119] One of these calculations uses a one-

dimensional multipole expansion for SOI to yield 0.24 eV for PbSe]115]. In a similar

vein, another calculation expands the SOI using a Slater-Koster approach in order to

fit the gap in PbTe[38]. Another adds a constant potential to the conduction-band

states in an FLAPW calculation to obtain the experimental values of the gapsl37].

There is an ab initio relativistic full-potential LMTO calculation which yields 0.069

eV for PbS, 0.141 eV for PbSe, and 0.31 eV for PbTe[117]. Finally, one group uses

the lattice parameters appropriate to the minimum energy configuration within an

FLAPW-GGA calculation to yield values of the gap of 0.26 eV for PbSe and 0.15 eV

for PbTe[39].

It is clear that some of these approaches seem more reasonable than others.

Though the band gaps do not agree very well with experiment, the fully relativis-

tic calculation]117] seems the most reasonable, since it is known that including SOI

in a second-variational procedure has problems with Pb 612% states in metallic Pb]36].

The one-dimensional multipole expansion[115] and Slater-Koster expansion[38] of SOI

also seem reasonable approaches, but are unduly complicated for this problem. The

addition of a constant potential to the conduction-band states[37] seems rather ad

hoc, especially within an ab initio FLAPW approach.

The method to obtain the gap which seems to make the most sense (in terms of

computational efficiency) is calculating the band structure using a second variational

approach for SOI after finding the minimum energy lattice parameters[39]. DFT

calculations are only approximate solutions since the XC potential is not exactly
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known[31]. Therefore, one should choose a reasonable model of the system to study,

which can be done by first finding the minimum energy configuration of a crystal.

Also, it is known experimentally that the band gap increases with increasing lattice

parameter]101], so an increase in the theoretical lattice constant is expected to also

increase the calculated band gap. The minimum energy configuration for each system

in GGA was found by increasing the lattice parameters which gives good agreement

with the experimental band gaps. In LDA, the minimum energy configuration for

each system was found by reducing the lattice parameters which further reduces the

calculated band gaps.[39] We will try to reproduce the published results[39] using

GGA to better understand the effects of lattice relaxation.

The total energy was calculated within GGA for PbS, PbSe, and PbTe, and is

plotted as a function of lattice parameter in Figure 48 for PbS. We have found the

total energy has a minimum with lattice parameters approximately 1-2% larger than

the experimental value. The equilibrium lattice parameters changing in PbS from

11.204 a.u. to 11.422 a.u., in PbSe from 11.573 a.u. to 11.725 a.u., and in PbTe

from 12.176 a.u. to 12.376 a.u. The arrow in Figure 48 gives the position of the

experimental lattice parameter.
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Figure 48. Total energy of PbS as a function of lattice parameter (in a.u.)

obtained in GGA. The points were plotted using the computer

program KALEIDAGRAPH[120]. The experimental value

is given by the arrow.
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Electronic structure calculations performed at these larger lattice parameters do

not change the shape of the bands appreciably, but the band gaps increase to nearly

the experimental values for the three systems (Figure 49), in PbS to 0.26 eV compared

to the experimental value of 0.29 eV, in PbSe to 0.08 eV compared to the experimental

value of 0.17 eV, and in PbTe to 0.17 eV compared to the experimental value of 0.19

eV.[119] These calculations suggest that it might be important to calculate the energy

gaps using equilibrium lattice parameters instead of experimental ones. This is also

a case, such as in the determining the minimum energy configuration between BCC '

Fe and FCC Fe]45], where GGA better reproduces the properties of the system than

LDA. We find that GGA increases the band gaps of these materials close to the
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experimental values while the previous LDA calculation[39] reduced the gaps even

further.

Figure 49. Electronic structures of (a) PbS, (b) PbSe, and (c) PbTe using the

relaxed lattice parameters from GGA and including SOI.
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6.1.2. THERMOELECTRIC PROPERTIES OF THE LEAD SALTS

Most of the electronic structure calculations on the lead salts focused on the prob-

lem of correctly predicting the band gaps instead of using this information to better

understand the thermoelectric properties of these materials. Due to the increase of

the band gap with temperature[101], the band gap is on the order of about 10kBT

at 700 K[l, 25, 3, 4], estimated to be about 0.5 eV for a recent estimation of ZT in

these materials[19]. If we assume that the CBM and VBM remain at the L point,

the degeneracy of the band extrema is small, which is insufficient to explain the large

ZT at high temperatures.[ll, 24] One must, therefore, look at the anisotropy of the

effective masses.

The effective masses in PbS, PbSe, and PbTe are known to be highly nonparabolic

and temperature dependent[101, 121] as well as highly anisotropic[122]. As seen in

Table X, the effective mass along the (100) direction (defined as longitudinal) is much

different from that of the (111) direction (defined as transverse).[122] The effective

masses have been calculated (using the band structure for the relaxed lattice), but

the reciprocal values are written to compare with B12T€3 in the next section.

The agreement between the theoretical and experimental values looks reasonable.

The largest anisotropy is found in PbTe, which is the best thermoelectric material

of the three.[19] According to the mass dependence of the B parameter (Equation 24

of Chapter 2), higher ZT should occur in systems with large band degeneracy and

highly anisotropic effective masses.[11, 24] The mechanism for the high ZT in PbTe

seems to be the highly anisotropic transport mass with only a small enhancement

from the band degeneracy factor.

122

 

 



Table X. Comparison of calculated components of the reciprocal effective mass

 

 
 

 

 

 

 

tensor with experiment[122] (a, = [mt/me]—1 and a, = [mt/marl).

] PbS PbSe PbTe

] Experiment Theory Experiment Theory Experiment Theory

] Conduction a; 7.25 13.53 16.39 18.58 30.30 24.48

] at 8.13 9.55 10.31 10.06 4.24 5.45

] Valence a; 6.70 12.89 16.13 16.41 33.33 18.89

] at 6.13 7.91 8.33 8.19 2.39 3.55       
 

 

6.2. B12T83, B12883, Sb2T83, .AND RELATED SXISTEIVIS

The best room temperature thermoelectric materials are alloys of B12T€3 with

Bi28e3 and SbgTeg. While the thermoelectric properties of these materials were opti-

mized nearly 40 years ago]123], there is no accepted theoretical explanation of their

high observed ZT values. The effects of SOI in these materials is very important to

their gap formationlll, 40, 124], but only one other band structure calculation has

been performed where SOI has been included self-consistently]11, 40]. Understand-

ing the features of the band structure relevant for the high ZT in these materials is

therefore important in the search for new thermoelectric materials, several of which

contain portions of the B12T83 crystal structure in their complex unit cells.[4]

6.2.1. BIQT€3 CRYSTAL STRUCTURE

The crystal structure of BI2T€3 is rhombohedral with the space group D3,, (R-3m)

with five atoms in the unit cell. These atoms form five atom layers called “quintuple-

layer leaves” of Te-Bi-Te-Bi-Te along the z direction with primarily ionic and covalent
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bonding within the layer with Van der Waals bonding between the layers.[63]

Figure 50. Crystal structure of B12T63 along the XZ plane showing the quintuple

layer leaves of Te-Bi-Te-Bi-Te separated by a Van der Waals gap.

'
9

f
"

The five atoms in the unit cell reduce to three inequivalent atoms identified at Tel,

Te2, and Bi as indicated in Figure 51. The corresponding Brillouin zone is given in

figure 52.
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Figure 51. (a) Rhombohedral and (b) hexagonal representations of the unit cell

of BlgTEg. In (b) the Te atoms are open circles and Bi are shaded circles.

 

  
Figure 52. Brillouin zone of B12T83 (corresponding to the rhombohedral unit cell).
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6.2.2. BAND STRUCTURE AND GAP FORMATION IN BIQT€3

The electronic structure of Bl2T€3 has been studied extensively in the past[40,

124, 125, 126, 127, 128, 129, 130], but there have been few studies of the electronic

structure of analogs containing either Sb or Se[40] or those containing both Se and

Te. Some of these materials are found to be good thermoelectrics while others are

not. Since the lattice contribution to re depends mostly on the rhombohedral crystal

structure, which is the same in all of the compounds, the differences in the ther-

moelectric properties must be electronic in origin and should be seen in the band

structure. Before discussing the electronic structure of these structural analogs, let’s

first understand the electronic structure of B12T63.

The importance of relativistic effects, especially that of SOI, has been noted in

each of the previous calculations. However, several questions remain to be resolved

in the band structure of Bi2Te3. For example, Thomas et al.[124] explained the

physics of the gap formation by incorporating SOI, but were unable to incorporate

it self-consistently into their ab initio LAPW calculation. Later, Mishra et al.[40]

did include SOI self-consistently in their ab initio LMTO calculation, but they did

not explore the nature of the bands that hybridized (leading to uncrossing) near

Ep. More recently, Youn et al.[130] used the LAPW method with a different XC

functional and a different cut-off energy between the valence and core states to find

the CBM at a different location in k-space than the previous calculations[ll, 40].

While the degeneracy of the hole pockets in the previous calculations agreed with

the de Haas-van Alphen experiments[131, 132, 133, 134], only Youn et al.[130] found

agreement with the degeneracy of the electron pockets, a result which we could not

epeat using the WIEN97 program.[55] A careful study of the electronic structure of
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BlgT€3 is therefore needed to understand the formation of the semiconducting gap

and the thermoelectric properties.

SOI affects the band structure of B12T€3 significantly. Before SOI is included, the

band structure shows a direct gap semiconductor at the F point with a band gap of

0.37 eV. (Figure 53) This is about twice the value reported by Thomas et al.[124]

who used a different LDA XC potential. There are two additional peaks in the HVB

(along the Fa and ZF directions) and two valleys in the LCB (also along the l"a

and ZF directions) which have an energy slightly lower than the VBM and slightly

higher than the CBM, respectively. An orbital analysis reveals that the LCB and the

HVB arise primarily from an admixture of Bi p and Tel p bands. The conduction

band is predominantly Bi p in nature whereas the valence band is predominantly

Tel p. Note that the Tel atoms are in the layers that straddle the Van der Waals

gap. Te2 p states lie primarily below the HVB although there is a small amount of

Te2 p character in the HVB. In the presence of SOI, the band structure near EF is

dramatically changed. The main effect of SOI is to move the conduction band bottom

down relative to the top of the valence band, due to the different SOI of Bi and Te,

so that the bottom of the conduction band crosses the top of the valence band at F

(Figure 54). The resulting hybridization, which leads to an uncrossing of the bands,

opens a new gap which is indirect. This point was made by Thomas et al.[124] in

their tight-binding parameterized calculations. They pointed out, however, the need

for a complete self-consistent calculation including SOI to understand the subtle gap

structure of Bi2T€3.]11]
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Figure 53. Band structure of Bl2T83 without SOI.
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Including SOI keeps the shapes of the off-axis peaks virtually unchanged, but

moves them closer by approximately 0.50 eV. The strong hybridization occurring

near I‘ depresses the HVB peak to such an extent that the two valence band side

peaks now have higher energy and form the VBM (Figure 54). (This hybridization

near F is much stronger than for that of the side peaks in the valence and conduction

bands, so the overall shift is not rigid.) The two VBM lie on the yz plane of the B2,

which is a plane of reflection symmetry. They will be denoted as 01 (along Pa) and

v2 (along ZF). Similarly the hybridization caused by the SOI shifts the CBM away

from the F point to a point between I‘ and Z, denoted as CO. The net result is an

indirect-gap semiconductor with a band gap of 0.13 eV, in very good agreement with

the previously published LMTO-ASA calculation[40] of 0.11 eV. In addition to this

minimum, there are two higher-lying minima, c1 (along Pa) and c2 (along ZF). The

gap between 221 and CI is 0.27 eV and that between v2 and C? is 0.23 eV.

Thomas et al.[124] have carried out optical measurements in Bi-doped B12T€3 and

find an indirect gap of 0.15 d: 0.02 eV and a direct gap of 0.22 :l: 0.02 eV, which

agrees rather well with our values of 0.13 eV and 0.19 eV, respectively. Shubnikov-

de Haas and de Haas-van Alphen measurements[131, 132, 133, 134] of both p. and

n-doped Bi2T€3 give six-fold degenerate valence and conduction band extrema. The

VBM 22.? appears to be the one seen in experiment. A recent calculation by Youn et

al.[130] shows that, using a FLAPW method and the Hedin-Lundqvist form of the

XC potential]135] for 60 special k-points and a cut-off energy between the valence and

core states of -1.8 Ry, the band which we have called c2 moves down by ~0.10 eV,

with little difference in the rest of the band structure, to become the CBM. This point

has the six-fold degeneracy for the conduction band seen experimentally, whereas our

calculation does not, but their band gap has decreased to 0.06 eV. (It is interesting

to note that we have better agreement with the band gap while Youn et al.[130] find

better agreement with the degeneracy of the CBM.) They further find that the true
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extrema lie slightly off of the high symmetry lines which are plotted in Figure 54.]130]

Using the WIEN97 program[55] and the identical input parameters, the result of a six-

fold degenerate CBM could not be reproduced. As is well known, DFT calculates the

occupied valence band states well, but does not do as good a job for the unoccupied

conduction band, especially on the energy scale of ~0.1 eV.[31] It is disconcerting,

however, that these results could not be reproduced with our program.

The orbital characters of the LCB and HVB in the presence of SOI are given in

Figure 55 where the size of the circles is proportional to the orbital character. The Bi

p, Te1 p, and Te2 p bands are all involved in different amounts in the bonding near

Ep, but the LCB has a larger amount of Bi p character than Te1 p or Te2 p character,

and the HVB has a larger Te1 p character than Bi p or Te2 p character.

The orbital character also can be seen in the DOS of the Bi p, Te2 p, and Tel

p partial densities of states (Figure 56) lying above and below Ep. Te 1 lies on the

Van der Waals gap, bonded to one layer of Bi atoms below (or above) and weakly

to a Te1 atom across the gap, while Te2 is bonded to two layers of Bi atoms, one

above and the other below (Figure 50). The result is the stabilization of the Te2 p

bands which lie primarily below Ep and contribute relatively less to the conduction

band. The n-type transport is primarily through hybridized Bi p and Tel p orbitals

(contributing to the LCB) and p-type transport through hybridized Te1 p, Bi p, and

Te2 p orbitals (contributing to the HVB). This is consistent with the results of carrier

scattering lifetime measurements[124] and a previous calculation of electronegativity

of each of the constituent atoms.[136] Finally, the Tel, Te2, and Bi valence 3 states

lie approximately 10 eV below Ep and do not play any significant role in the bonding

and transport properties.[11]
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Figure 55. Band structure of BIQT€3 with SOI. Included are (a) total band

structure and the orbital characters of the bands: (b) Bi p, (c) Tel p,

and (d) Te2 p. The size of the circles overlying the band structure

is directly proportional to the strength of the orbital character.
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Figure 56. Total and partial DOS for BigTe3. Included are (a) total DOS and

(a)

s
l
a
t
e
s
/
9
V

(b)

(C)

(d)

s
t
a
t
e
s
l
e
V

s
t
a
t
e
s
/
e
V

st
al
es
/e
V

partial DOS: (b) Bi p, (c) Tel p, and (d) Te2 p.

Total

 

d

  
 
 

 

 
 

- Eros-r9); [é )-   
 

 

  

 

 

 

- E-ne.rg)—/ [é ]

-1 O 1 5345—6—1'

 

   
-6 -5 -4 -:3 - -1

Energy [a ]

132

   
O  1 2 3 4 5 6



6.2.3. BAND STRUCTURE AND GAP FORMATION OF BigTe3 ANALOGS

A. B12803 AND Sb2T03

The gap formation in Bl2T€3 is drastically affected by strong SOI of the Tel p and

Bi p orbitals. The SOI effects of Bi and Te cannot be separated since both are heavy

elements and the LCB and HVB are strongly hybridized. We expect that the effects

of SOI are larger for Bi than for Te, so that the electronic structures of 812883 and

Bl2T€3 will have more similarities than those of Sb2T83 and BIQT63. However, the

opposite is true. This difference is important for understanding the thermoelectric

preperties, since Bl2T83 and Sb2T83 have been widely used as thermoelectric materials

but Bi28e3 has not.]4] The lattice constants used in the calculations within this section

are given in Table XI.

The present calculation for B12893 (Figure 57) agrees very well on the global scale

with the previous LMTO-ASA calculation.[40] Our LAPW-GGA calculations give a

gap of 0.32 eV, slightly larger than the previous calculated value of 0.24 eV.[40], but

both results are close to the experimental value of 0.2-0.3 eV.]137] The differences

between our and the previous calculation[40] is that we find a larger lowering of the

valence band peak at the F point (after inclusion of SOI) so that this peak has nearly

the same energy as the two secondary peaks along UaI‘ and ZF (Figure 57), whereas

the F point peak was found to have a higher energy in the previous calculation.[40]

In fact, in our calculation what appears to be a peak in the valence band at the

F point is really a saddle point with a maximum only in the FZ direction. While

electron-doped Bi28e3 is known to have a minimum at the F point, in agreement

with our and the previous calculations[40], hole-doped BigSeg has not been studied
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experimentally.]138] It will be interesting to check the prediction of the theoretical

results in this regard for two six-fold degenerate hole pockets at general points of the

BZ and one saddle surface near the F point.[139]

Table XI. Lattice constants in atomic units (a.u.) and u and 1) parameters

for Bl2T€3 and its analogs in the combined representation of the unit

cell with hexagonal lattice constants and rhombohedral atomic

coordinates used in these calculations. (Bi at 2t(u, u, u),

Tel at :l:(v, v, v), and Te2 at (0, 0, 0) in BigTe3.

For details see Wyckoff.[63])

 

  

 

 

 

 

 

 

 

 

      

System Lattice constants (a.u.) u v

a c

BigTe3 8.2836 57.6121 0.3990 0.2080

812893 7.8197 54.1220 0.3990 0.2060

Sb2T83 8.0313 57.4477 0.4000 0.2110

BigTegSe 8.0880 56.4272 0.3961 0.2117

BigTegS 8.1560 56.7107 0.3920 0.2120

SbgTeQSe 7.914 56.5730 0.3942 0.7854

Bi2Se2Te 7.9710 55.5960 0.3985 0.2115

SngegTe 7.7570 55.7530 0.3953 0.2146
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Figure 57 . Band structure of Bi28e3 (a) without and (b) with SOI.
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The only previous electronic structure calculation of Sb2T83 was a tight-binding

(TB) study which only calculated the DOS.[140] We find that the electronic structure

of Sb2T83 more closely resembles that of BI2T83 than B12383. The VBM of szTe3

lies along UaI‘ and ZF with the CBM lying along [‘2 with higher lying states along

UaI‘ and ZF (Figure 58), very much like that in Bl2T93. Before the inclusion of SOI,

Sb2T83 is a zero—gap semiconductor at the I‘ point with secondary peaks along UaI‘

and ZF (Figure 58a). The inclusion of SOI causes the HVB to come closer relative to

the LCB (and overlap) (Figure 58b) as in BIQT83. This produces an uncrossing of the

bands with an opening of a new, larger gap of about 0.14 eV. While Sb p is mostly

above BF and Te p mostly below Ep, a strong hybridization of the Sb p and Tel p

occurs along I‘Z, similar to B12T83.l11] The Te2 p orbitals do not appear to play any

significant role near Ep, similar to what was found in BigTe3.[11]
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Figure 58. Band structure of szTe3 (a) without and (b) with SOI.
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B. BigTeQSe, BlzTegs, SbgTegse, BigSegTe, AND Sb28€2T€

There has been no theoretical or experimental studies of the band gaps in BizTegse,

BIQTGQS, Sb2T€2S€, Bi2Se2Te, or SbgsegTe. We have carried out electronic structure

calculations in a series of such compounds to see how the gap structure changes

when one or two of the three Te atoms are replaced by Se or S. Band structures

of Bi2(Te,Se,S)3 generally resemble Bl2T€3 or Bi2Se3, depending which element is in

greater abundance in the system. We find the physics of gap formation is the same in

all these systems but the final band structures differ due to the size of the band gap

before including SOI and the relative strengths of the Bi/Sb and Te/Se/S SOI. The

crystal systems differ from that of BigTeg, Bi2Se3, or szTe3 by changing the atom at

the Te2/Se2 site which we did not find to play an important role in the gap formation

in BigTe3.

The unit cells of BigTegSe and BizTe2S differ from that of B12T83 by replacing one
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of the three Te atoms by a Se or S atom, respectively, this atom going into the Te2

site.]l4l] Before the inclusion of SOI, the band gap in BigTe2Se is 0.10 eV and in

BIZTQQS is 0.32 eV, the gaps forming at the F point with secondary peaks along UaF

and ZF (Figure 59a,c). The inclusion of SOI causes the HVB to come closer relative

to the LCB (and overlap) as in Bi2Te3 and Sb2T83. This produces an uncrossing of

the bands with an Opening of a new indirect gap. The HVB forms along UaF and

ZF, while the bottom of the conduction band forms along I‘Z (Figure 59b,d). This

more closely resembles the band structure of Bl2T83 than Bi2Se3.[11, 40] While Bi

p is mostly above E; and Te p mostly below Ep, a strong Bi p-Tel p hybridization

occurs along FZ, similar to BigTe3.[11] The Se2 p and S2 p orbitals do not appear to

play any significant role near Ep, similar to what was found for Te2 p in B12T83 and

Se2 p in Sb2T83.]11]

Figure 59. Band structures of BizTegSe (a) without and (b) with SOI and

Bi2Te28 (c) without and (d) with SOI.
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(c) l n BiZTeZS - No SOI (d)l 0 BiTe2S - SOI
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While only one atom in the unit cell of SbgTegse differs from that of Sb2T83,

specifically the atom at the Te2 site[141] which does not strongly hybridize with Te1

or Sb near Ep at the I‘ point in either compound, the band structures are significantly

different.(Figure 58, 60). Before the inclusion of SOI, SbgTe2Se has a band gap of

0.03 eV. The VBM and CBM have a maximum at the I‘ point along Pa and F2, with

secondary peaks along UaI‘ and ZF, but this point is a local minimum along FF and

FL(Figure 60a). The inclusion of SOI causes the HVB to come closer relative to the

LCB so that the two bands overlap, drastically changing the bands near the I‘ point.

The CBM moves away from the 1" point, similar to that in BigTeg or SbgTeg, but

remaining closer to F. Due to the smaller SOI of Sb and Se in the Te2 site (and

different hybridizations of Te1-Se2 compared to Te1-Te2), the VBM remains at the

F point (Figure 60b), similar to Bi28e3, and the band gap increases to 0.31 eV. Here,

the atom occupying the Te2 site plays a role in the gap formation by changing the

band gap before inclusion of SOI (0 in Sb2T83, 0.03 in SbgTe2Se) so that the degree

of overlap of the LCB and HVB differs after including SOI, which then change the

final band structures.
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Figure 60. Band structure of SbQTBQSe (a) without and (b) with SOI
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The gap formation of Bi2Se2Te and Sb2Se2Te is far simpler than those in the

previously studied systems. The unit cells of BigSegTe and szsegTe differ from

those of BiZSe3 and (hypothetical rhombohedral) Sb2Se3, respectively, by replacing

one of the three Se atoms by a Te atom, this Te atom going into the Se2 site.[141]

Before the inclusion of SOI, the band gap in Bi2Se2Te is 0.56 eV and in SbgsegTe

is 0.18 eV, both of these gaps forming at the F point with secondary peaks along

Uaf‘ and ZF (Figure 61a,c). The inclusion of SOI causes the HVB to come closer

relative to the LCB but they do not overlap so the gap remains direct (Figure 61b,d),

decreasing to 0.06 eV in Bi2Se2Te and to 0.05 eV in SbQSegTe. Again, changing the

atom at the Se2 site increases the band gap before inclusion of SOI so that the LCB

and HVB do not come close enough to overlap in these two systems.
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Figure 61. Band structure of BigSegTe (a) without and (b) with SOI and

Sb2Se2Te (c) without and (d) with SOI
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While S lies in the same column as Se and Te, Bi2S3 forms in a different crystal

structure than B12T83 and Bi2Se3. Bi283 has been studied for thermoelectric appli-

cations in the past. While it was found to have promising values of thermopower

and thermal conductivity, its electrical conductivity was found to be too small.[142]

Due to its larger band gap, it has also been investigated as a prospective material
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for photovoltaic converters.[l43] While this material has been studied extensively

experimentally[143], its band structure has not been inveStigated yet.

The crystal structure of Bi283 is orthorhombic in the space group V},6 (anm) with

twenty atoms in the unit cell.[63] The orthorhombic unit cell and its corresponding

BZ are shown in Figure 62. The crystal structure consists of sheets of atoms parallel

to the z-axis with each S surrounded by three Bi atoms and each Bi atom surrounded

by three S atoms.[63] These twenty atoms reduce to five inequivalent atoms identified

as Bil, Bi2, S1, S2, and S3. The lattice parameters (a, b, e) are 11.15 A, 11.30 A,

and 3.981 A, the atomic positions taken from Wyckoff. [63]

Figure 62. (a) Orthorhombic unit cell of Bi2S3 (shown in the a-b plane) and its

(b) corresponding Brillouin zone.
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The electronic structure of Bi2S3 shows a large number of bands within a few

eV of Ep. Before the inclusion of SOI, an indirect gap of 1.55 eV forms between the

CBM at S and the VBM along FX (Figure 62). After the inclusion of SOI, the HVB is

practically unchanged, but the CBM moves from S to a point along I‘X (Figure 63) to

form a nearly direct band gap of 1.24 eV. The band gap has been measured by several

groups to be between 1.2-1.7 eV[142, 144], one of the most recent measurements giving

a value of 1.3 eV[142].

Figure 63. Band structure of Bi2S3 (a) without and (b) with SOI.
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In order to understand the electronic structure of this material near the gap region,

an orbital analysis of the bands near Ep was performed. We find that Bil and Bi2

p orbitals contribute primarily to the bottom of the conduction band while 81, S2,

and S3 p orbitals contribute to the top of the valence band. While there is some

hybridization between these orbitals, it is much less that that between Bi p and Te/Se

p in B12T83 and Bi28€3.[11, 40] Thus, Bi283 is more ionic. These differences for Bi283,

with respect to Bi2T€3 and Bi28e3, may be due to both the different crystal structure

of Bi283 compared to BI2T€3 and Bi28e3 and the different electronic affinities of S, Se,

and Te.

6.2.4. EFFECTIVE MASSES OF THE BAND EXTREMA OF Bi2T€3

In the last two sections of this chapter, we will test the validity of our band struc-

ture calculations (aside from comparing the band gap values which has already been

done) by comparing them with several experiments on these materials. In this section,

the orientation of the carrier pockets and effective masses of the doped Bi2T83, which

determine the properties close to E1: ('~0.1 eV), will be compared. These properties

are important to understand the thermoelectric properties of these materials. The

next section will compare the calculated DOS to results of photoemission studies over

a larger energy range (~10 eV) in Bi283, BigSeg, BizTegse, and BigTeg.

Shubnikov-de Haas and de Haas-van Alphen experiments have found six-fold de-

generate CBM and VBM in BI2T63. While these experiments cannot locate the posi-

tion of the extrema in k-space, the number of extrema and the effective mass tensor

associated with these extrema have been repeatedly studied in BigTe3.[131, 132, 133,

134] The effective mass tensor is defined as[22]
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where me is the free electron mass and 27m is Planck’s constant. In most cases,

the off-diagonal terms of the mass tensor are small, so diagonal elements of the mass

tensor, an, accurately give the inverse of the effective mass parameters m, (i = 1, 2,

3). In the general case, however, the mass tensor has to be diagonalized to obtain the

effective masses associated with the principal directions. We fit the calculated E vs

k along different orthogonal directions to parabolas and obtained the coefficients 0,,

All of our calculated extrema in BI2T€3 lie on planes of reflection symmetry (the

z axis is the trigonal axis, the y axis is the bisectrix axis, and the yz plane is one of

the three reflection planes) the energies near the top of the HVB and the bottom of

the LCB can be fitted using the equation

(75)

2me/h2 5k: anki + ayy k: + azzkf + 2(yyzkykz

where a constant term has been omitted and k is measured from the extrema. Note

that the de Haas-van Alphen measurements find sixfold-degenerate hole and electron

pockets lying on the reflection planes (containing the trigonal and bisectrix axes).

The cross sections of these pockets in the yz plane are ellipses whose major axes

make an angle 6 with the y axis (the bisectrix axis). The angle 6 is given by[131, 133]

(7G)

6 : éarctaleQyZ/(Qu ' 013131)]

The effective masses for BigT€3 were obtained by fitting values of the energy close to
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different LCB minima and HVB maxima to Equation 75 while moving along suitably

chosen directions in the BZ, (Figure 64). The energy dispersion curves near the

LCB minima and HVB maxima of Bi2T€3 are known to display strong nonparabolic

behavior[131, 132, 133, 134], but a fair approximation to a parabolic band can be

made if points are chosen close to the band extrema.

Theoretical values of the coefficients 01,,- are given in Table XII along with their

experimental values. They agree quite well with the previous LMTO calculation[40],

though using the values in their paper, 0 should be approximately 40° not 35° as

reported in their paper. The curvature in the x direction is obtained using values very

close to the HVB maximum and LCB minimum and, as we can see, the theoretical

values are about a factor of 3 too large compared to experiment. For higher doping, i.e.

for larger k1, the effective mass decreases due to nonparabolic effects which improves

the agreement with experimental values.

Figure 64. Fitting of the energy band near the conduction band minimum to a

parabola for BIQT€3 using the computer program KALEIDAGRAPH[120].
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parameters associated with the conduction band minima and valence

band maxima for BI2T83.

Table XII. Theoretical and experimental values of the effective mass tensor

 

 
 

 

 

 

 

 

 

 

 

 

 

 

‘ Conduction band c0 61 c2 Experiment[131] (i10%) J

5,, = [rm/m..|,-;,,1 20.25 112.75 95.84 46.9

6,, = [m/me ,7; 3.97 2.87 3.56 5.92

5,, = [m/m. .31 3.75 5.49 6.20 9.50

6,, = [m/me ,7; 2.93 2.54 2.39 4.22

0 —43.9° 313° 327° 335°

Valence band 01 02 Experiment[133] (i10%)

an = [m/me]; 107.51 90.05 32.5

ayy : [m/m,.,]_;yl 3.97 2.91 4.81

an = [m/me g; 5.54 5.60 9.02

ayz 2 [m/me 37,} 2.76 2.34 4.15

9 37.1° 30.0° 31.5°       
 

The positions of the electron and hole pockets CI, 62, 01 , and 02 on the reflection

planes as well as the angle 9 associated with these pockets are accurately reproduced

compared to experiment (Figure 65). The angle 6 of the electron pocket associated

with the CO minimum is nearly 90° away from that seen in experiment. This, along

with the more recent calculation[130], suggests that 60 does not correspond to a

conduction band extrema seen experimentally.[131, 132, 133, 134]
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Figure 65. Positions of the electron and hole pockets lying on the reflection

plane of the Brillouin zone for BI2T€3 for (a) CBM and (b) VBM.
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As already stated, the nature of the bands near Ep play an important role in

the the observed large room temperature values of ZT in these materials. First, in

applications, B12T€3 is alloyed with Bi28e3 and Sb2T83 to reduce re. However, the

large S and a values must have an electronic origin. The B parameter (Equation
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24 in Chapter 2)]11, 24] suggests highly anisotropic effective masses and large band

degeneracy will produce high ZT. We find that in BI2T63, the effective masses, while

fairly small, are highly anisotropic. Unlike the half-Heusler alloys, these masses are

much closer to those found in other doped semiconductors. Further, there is a 6-fold

degeneracy in the VBM and CBM which enhances the thermopower. We find that in

Bi2863 the VBM and CBM have a lower degeneracy which can explain the lower value

of ZT seen in this material compared to BI2T€3. The combination of anisotropic (but

not large) effective masses and highly degenerate band extrema, coupled with the low

s, are the reason for the large ZT values seen in BI2T€3. These features should be

investigated in other thermoelectric materials.[11, 12, 13]

6.2.5. COMPARISON OF THE BAND STRUCTURE WITH

PHOTOEMISSION EXPERIMENTS

Photoemission experiments allow for a testing the band structure calculations over

a larger energy scale. Photoemission spectroscopy (PES) is a direct probe of a ma-

terial’s occupied states. In these experiments, photons incident on a sample result

in ejection of electrons which are then collected and energy analyzed. In the re—

verse experiment, inverse photoemission spectroscopy (IPES), electrons are incident

on the sample while photons are ejected and studied to analyze the unoccupied states.

Angle-resolved PES (ARPES) allow for a comparison with the calculated E(k) vs.

k. On the other hand, an angle-integrated PES spectrum gives information about

the occupied DOS modified by energy dependent matrix elements between initial and

final states. [145]

Angle—resolved photoemission on BI2T€3[146] and BigSe3[147] have been performed
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recently in order to compare the experimentally determined E(k) vs k with our band

structure. Greanya et al.[146] studied the band dispersions of p- and n-doped BI2T€3

along two k-space directions, FZ and UaI‘, the directions which one should find 01,

60, and c1. Their measured overall width of the valence band states of 5-5.5 eV

for both systems agreed very well with the current calculation.[ll] They found the

six-fold VBM along UaI‘, consistent with the current calculation[11] and Shubnikov-

de Haas and de Haas-van Alphen experiments[131, 132, 133, 134] The position of

the maxima was found not at the calculated position, however, which may be due

to anti-site doping of Bi into the Te sites[146] known to play a large effect in the

band structure near Ep[11]. Their doping was insufficient to find the CBM. They

also found that the dispersion along FZ, through the Van der Waals gap was much

smaller than predicted[11], though this might be due to electron-phonon interaction,

electron-electron interaction, anti-site defects, and the limited penetration depth of

the photons into the material along this direction. Greanya et al.[147] also studied

n-doped Bi28e3 along FZ, FaU, FF, and I‘L to find a single VBM at the F point

with a close lying local maximum about 0.1 eV below along FF. Greater dispersion

is seen along FZ than in Bi2T83, though these bands are still fairly flat. Again, the

differences between the experiment and the band calculation may be due to anti-site

defects and electron-electron Iinteractions.[147]

Several angle-integrated PES studies have been performed on Bi2X3 (X : Te, Se,

S) systems in the past[139, 148, 149, 150]. Two fairly recent photoemission studies

will be compared with our calculations for Bi2T83, BigTeQSe, 1312383, and B1283. We

find that the positions of the peaks in our DOS agree rather well with the measured

PBS, and, in general, increases in the energy resolution of the PES spectrum tends

to improve the agreement between experiment and our calculations.
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While there have been several sets of photoemission data performed on BI2T93-

related systems, most of these have been x-ray photoemission (XPS) measurements

with a low energy resolution which makes comparison with the calculated DOS unre-

liable. Debies ct al.[148] studied BI203, Bi283, Bi28e3, and BI2T83, where the energy

resolution was not explicitly specified, but was fairly low. Nascimento et al.[150]

studied Bigse3 with an energy resolution of 0.8 eV. Ueda used both PBS and IPES

measurements to study the filled and empty states of Bi283, Bi2Se3, BigTegse, and

Bi2T€3 with an energy resolution of 0.2 eV for the PES experiments and 0.58 eV for

the IPES experiments. More recently, Greanya et al.[139, 146, 147] used PES studies

to understand BiQSe3 and BI2T€3 using an energy resolution of 0.08 eV.

Figure 66 gives the PES spectra and the positions of the dominant spectra found

in the experiment of Ueda et al.[149] for Bi283, BiZSe3, BigTeQSe, and BigTe3. In Ueda

et al.’s[149] experiments, Ep is maintained by electrical contact between the sample

and substrate on which it is mounted.[145] In the electronic structure calculations,

Ep, which should be somewhere in the middle of the band gap, can be anywhere

between the VBM and the CBM. Since we do not know the experimental value of

EF, its exact position depending on doping, etc., we will compare our theoretical

results with experiment by rigidly shifting the theoretical DOS such that the highest

valence band peak coincides with that seen in the experiment. The positions of the

peaks obtained by Ueda et al.[149], are numbered cI-c3 in the conduction band and

111-072 (n = 3 for BigTeg, n = 5 for Bi28e3 and BigTe2Se , and n = 4 for B1283) in the

valence band, and these numbers are placed in the calculated DOS plot (Figure 67),

CI and 01 lying closest to Ep.
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Figure 66. Valence-band photoemission (UPS) and conduction band

inverse-photoemission (IPES) for BI283, Bi28e3, BigTeQSe, and BI2T€3

crystals. UPS and IPES spectra for each crystal are connected at Ep.

Energies are referred to Ep. (courtesy of Yoshifumi Ueda).[149]
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Figure 67. Total DOS of (a) Bi283. (h) Bizseg, (c) BigTeQSe, and (d) BizTEg.

The arrows indicate the positions of the photoemission peaks seen

in the work by Ueda.[149]
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A close look at Figure 67 shows that the double-peaked structure near the VBM

is found in the PES of all three compounds, Bi2T83, BigTegSe, and BiQSeg, while

Bi283, which has a completely different crystal structure, displays a single prominent

peak in this experiment. The separation between these two peaks is 0.3-0.4 eV, very

close to that seen in the calculated DOS. The DOS peak near the VBM obtained

in the previous LMTO-ASA calculation had only one peak[40], in contradiction to

these experiments.[139, 149] Also, this double-peak is found to'come primarily from

Te1/Sel and Te2/Se2 p states. It appears that the narrow width of these two peaks

is consistent with the picture preposed by Ueda et al.[149] who ascribed these to lone

pair states of Sel and Se? in BigSeg. A similar picture must be true for Bi2T€3 and

BigTegse which have similar local coordination geometry.

For Bl2T€3 the energy separation between the HVB peaks is found to be 0.5 eV' in

the measurement[149] compared to 0.3 eV found in our calculation.[139] There is only

one peak seen at -3.5 eV. For the IPES results, within the experimental resolution

(0.56 eV) the conduction band peak c1 corresponds to the calculated peak positions

at 0.5 and 1.0 eV while c3 at 3.4 eV lies slightly below the calculated peak position

at 2.9 eV. Matrix element effects and noise affect the heights and positions of the

PES peaksll45], but while these have not been included in the DOS calculation, the

agreement between the theoretical DOS peak positions and experiment is fairly good.

For BigSeg, the separation of the double-peaked structure is 0.5 eV compared to

the calculated value of 0.4 eV. The calculated peak at -2.9 eV may correspond to M.

shifted by -0.5 eV, while peaks at -3.8 eV and -4.6 eV may be seen as the single pmk

v4 . The calculated peak at -5.4 eV agrees well with U5. The two lowest peaks in tin-

conduction band at 0.8 eV and 1.3 eV lie within the experimental resolution of c2 and

c3, respectively.[149] For Bi28e3, the overall agreement between the theoretical DOS

153



and experimental PBS (and IPES) is very good.

In BigTeQSe, the separation between the valence band peaks v1 and 122, the double-

peak structure at the top of the PES spectra[149] is 0.5 eV compared to the calculated

value of 0.4 eV. The peak predicted at -2.9 eV may be peak 213 shifted by -0.5 eV, the

peaks at -3.9 and -4.6 eV may correspond to the single peak v5 at -4.2 eV, and the

peak predicted at -5.3 eV correspond to '05 . As regards to the conduction band, three

peaks (c1, c2, and c3) are seen experimentally (0.7, 2.5, and 3.7 eV), two of which

agree well with our calculated DOS peaks (0.7 and 3.7 eV).[149|

Finally, for Bi283, which has a different crystal structure than the above three

compounds, the general structure of the calculated DOS (Figure 66) agrees very well

with the PES spectra[149]. Experimentally one sees a dominant valence band peak

below Ep, while our calculation predicts a double peak with a separation of 0.7 eV with

a fairly smooth background between -3.5 and -7 eV. In order to facilitate comparison

between theory and experiment, the energy reference (Ep) will be set so that v1 lies

between the calculated double peak structure. It is surprising that the double peak

structure could not be resolved in experiment in spite of the resolution of 0.2 eV for

the valence band. Perhaps matrix element effects can explain this discrepancy. The

three rather broad peaks seen in the experiment ('02, v3, and 214) are seen in our

calculated DOS as a single broad peak. The overall agreement with the conduction

band is also fairly good. Several features in the calculated DOS agree well with the

positions of the measured peaks c1 , 62, and c3, the lowest predicted conduction peak

lying within the energy resolution of peak c1.[139]

More recently Greanya et al.[139, 146] have carried out high resolution angle-

integrated PES experiments on Bi2T€3 and Bi2383. We will next compare our the-

oretical results with their experiment. The photoemission spectrum for Bi2T€3 by
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Greanya ct al.[139, 146] is shown in Figure 68, that for BizSeg in Figure 69. The

PES data was taken using a synchrotron radiation source which allows for the effects

of matrix element and atomic cross-sections to be examined by measuring spectra at

several different photon energies. As can be seen, six peaks (numbered 1-6 and shown

by the arrows in Figure 68) were found in the valence band for Bi2T€3 and nine peaks

for BigSeg (numbered 1—9 and shown by the arrows in Figure 69), several of these

peaks seen at certain photon energies but not at others. These measurements did not

have an energy reference, so the bands were rigidly shifted so that the topmost peak

agreed with the previous calculation, as had been done with the theoretical DOS.[139]
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Figure 68. Photoemission spectra for BigTe3 by Greanya et al.[139]. Peaks

1-6‘ are indicated by arrows. For the purpose of comparison, the energy

reference (zero of energy) was set such that the lowest binding energy

peak in the spectra coincides with the position of the corresponding

peak in the data of the previous UPS experiment by Ueda et al.[149]
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Figure 69. Photoemission spectra for Blgse3 by Greanya ct al.[139]. Peaks

1-9 are indicated by arrows. For the purpose of comparison, the energy

reference (zero of energy) was set such that the lowest binding energy

peak in the spectra coincides with the position of the corresponding

peak in the data of the previous UPS experiment by Ueda et al.[149]
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The positions of the peaks found in the PES study of Bi2T€3 and Bi28e3 by Greanya

et al.[139, 146] are shown in Figure 70 over our calculated DOS plots.
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Figure 70. Total DOS of (a) Bl2T€3 and (b) BiQSeg. The arrows indicate the

positions of the photoemission peaks seen in Greanya et al.[139].

For the purpose of comparison, the energy reference (zero of energy)

was set such that the highest valence band DOS peak coincides with

the position of the corresponding peak in the data from the

experiment of Ueda et al.[149]
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The double-peak structure at the VBM for Bl2T€3 has an energy separation of 0.27

eV, in much better agreement with the calculated value of 0.3 eV. The positions of

the next three peaks in this experiment.[139, 146] (peaks 3, 4, and 5 ) agree very well

with the calculated positions at -2.1, -2.6, and —3.9 eV, respectively. Experimental

peak 6 is slightly below a DOS peak while the DOS peak at -5.3 eV is not seen in

this experiment.[139, 146]

For Bigseg this experiment[139] find nine peak positions compared with the experi-

mentally determined eight, more than the five found by the previous experiment[149].

The double peak structure has a separation of 0.36 eV compared to the calculated

value of 0.4 eV. The calculated peak at -2.9 eV corresponds well to peak 3. The

experimentally observed peaks 4 and 5, seen at —2.64 and -3.08 eV, respectively, lie

symmetrically on either side of the calculated peak at -2.9 eV. Peak 6 (-3.52 eV) lies

about 0.3 eV above the calculated peak at -3.8 eV. Peaks 7, 8, and .9 clearly corre-

spond to the calculated peaks at -4.4, -4.6, and -5.4 eV, respectively.[139] For both

Bi2T€3 and Bi2Se3, improvements in the energy resolution[139, 149] lead to better

agreement of the experimental PBS and theoretical DOS peaks. Further increasing

the energy resolution of the experiments and addition of matrix element effects into

the calculation should further improve this agreement.

Finally, we summarize the peak positions found in the theoretical DOS and those

in different PES measurements in Table XIII. The first columns of Table XIII give

the peak positions for both the valence and conduction bands by Debies et al.[148],

Ueda et al.[149], and Nascimento et al.[150], in the systems where they have been

reported. In BigSeg and Bl2T93, the results of Greanya et al.[139] have been reported

in the second to last column. The last column (with the heading “DOS”) presents the

positions of the peaks obtained from our electronic structure calculations. Clearly
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the agreement between theory and experiment improves when uses the experimental

data with the best resolution.

Table XIII. Comparison of the photoemission and calculated DOS peaks for

(a) Bi2Te3, (b) BigTegSe, (c) BiQSe3, and (d) BIQS3. For a, b, and c

the theoretical reference energies are chosen such that the highest

valence band peak positions coincided with experiment.[149]

For d, the theoretical reference energies are chosen so that the top

two theoretical bands lie equidistant from the highest

experimental peak.[149] ~

Bl2T€3

 

Valence Band Valence Band Valence Band DOS

 

 

 

 

Debies[148] Ueda[149] Greanya[139]

-1.2 eV -l.1 eV -1.10 eV -1.1€V

-1.6 eV -1.37 eV -1.4 eV

 

-2.07 eV -2.0 eV

 

-2.66 eV -2.5 eV

 

 

 

 

 

 

 

      

-3.4 eV -3.5 eV -3.77 eV -3.8 eV

-4.51 eV -4.2 eV

~52 eV

Conduction Band

Ueda[149] DOS

0.7 eV 0.5 eV

1.7 eV 1.0 eV

3.4 eV 2.9 eV
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BigTegSe

Valence Band DOS

Ueda|149]

-1.1eV -1.1eV

-1.6 eV -1.5 eV

5-2.0 eV

-2.9 'eV

-3.5 eV -3.9 eV

-4.2 eV -4.6 eV

-5.3 eV

Conduction Band DOS

Ueda[149]

0.7 eV 0.7 eV

1.4 eV

1.8 eV

2.5 eV 3.1 eV

3.7 eV 3.7 eV  
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Bi2Se3

Valence Band Valence Band Valence Band Valence Band DOS

Nascimentoll50] Debies[148] Ueda[149] Greanyal139]

—1.1 eV) -1.10 eV -1.1 eV

—1.6 eV -1.6 eV -1.46 eV -1.5 eV

-2.1 eV -2.03 eV -2.1 eV

-2.64 eV -2.9 eV

-3.08 eV

-3.3 eV -3.52 eV -3.8 eV

-4.4 eV -4.4 eV -4.2 eV -4.26 eV -4.4 eV

-4.66 eV ~4.6 eV

-5.4 eV -5.62 eV -5.4 eV

Conduction Band Conduction Band DOS

Nascimentol150] Ueda[149]

1.0 eV 0.9 eV

1.4 eV

2.5 eV 2.1 eV

3.5 eV 3.8 eV 3.1 eV    
 

162

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

81283

Valence Band Valence Band DOS

Debies[148] Ueda[149]

-2.2 eV -2.2 eV -1.9 eV

-2.6 eV

-3.4 eV -3.5 eV

-3.8 eV

-4.1 eV

-4.6 eV -4.5 eV

-5.0 eV

-5.7 eV -5.7 eV

-6.7 eV

Conduction Band DOS

Ueda[149l -

0.4 eV

0.9 eV 0.9 eV

1.5 eV

2.5 eV 2.7 eV

4.0 eV 4.1 eV   
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CHAPTER 7.

COMPLEX CHALCOGENIDES

Technological needs have driven a search for new thermoelectric materials.[4] Since

bulk materials are more easily amenable for fabrication in electronic circuitry and

superconducting devices, classes of materials such as skutterudites[23], half-Heusler

alloys[7, 11, 81], clathrates[151], and pentatelluridesl152] are being studied both ex-

perimentally and theoretically for their potential thermoelectric properties. We have

already looked at half-Heusler alloys, Zintl phases, and simple chalcogenides in previ-

ous chapters, but the best new thermoelectric materials are likely to be skutterudites,

clathrates, or complex chalcogenides.[4] These systems appear to have large carrier

effective masses, high carrier mobility, large degeneracy of the valence and conduc-

tion band extrema, and low lattice thermal conductivity, all of which are necessary

to enhance the thermoelectric figure of merit, ZT = S20T/K.

Different approaches have also been attempted to look for new thermoelectric ma-

terials. Hicks and Dresselhaus[24] argued that systems displaying large anisotropy or

reduced dimensionality (quantum confinement) in their charge transport can also

exhibit a significant enhancement in ZT. Mahan and Sofo[25] predicted than in

good thermoelectric materials the energy distribution of the carriers should be nar-

row and have a high carrier velocity in the direction of the applied field. Conse-

quently, nanofabrication of one- and two-dimensional arrays of materials have been

attempted, and high values of ZT have been reported in PbTe-PbSeTe quantum-dot

superlattices by Harman et al.[27] and in p—type B12T93/Sb2Te3 superlattice films by

Venkatasubramanian[28]. The major source of improvement for the enhanced ZT in

these superlattice systems appears to be in their reduced thermal conductivity (K)
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rather than an increase in the power factor (PF 2 S20).

Since the best bulk materials for thermoelectric applications are simple chalco-

genides, specifically PbTe and BlgTe3 alloys[2, 3], complex chalcogenides provide a

promising avenue for searching for new thermoelectric materials. Complex chalco-

genides with large unit cells containing weakly bound atoms or molecules, called

“rattlers”, have been studied to reduce the phonon contribution to K. without affecting

S and a. The basic principle underlying the synthesis of new thermoelectric mate-

rials by Dr. Mercouri Kanatzidis’ group in the Chemistry Department at Michigan

State University is to synthesize complex bismuth chalcogenides to reduce n while

maintaining the high values of S and a of BigTe3. This is done by combining portions

of existing structures such as PbTe (FCC) and B12T€3 (rhombohedral) to form new,

more complex structures with enhanced thermoelectric properties.[5] Three represen-

tatives of these systems, BaBiTeg, CsBi4Te6, and K213188613 contain highly layered

and anisotropic crystal structures with weakly bound Ba, Cs, and K atoms, respec-

tively. These cations act as “rattlers” off which phonons are expected to scatter to

reduce m, but allowing for electron transport within the layers to maintain a large

S and 0. Electronic structure calculations of these materials should lead to a bet-

ter understanding of the transport and electronic contributions to the thermoelectric

properties of these materials.

7”]. BaBiTe3

7.1.1. GENERAL FEATURES OF THE BAND STRUCTURE OF BaBiTe3

BaBiTe3 belongs to a class of compounds which are derived from the BIQTG3 crystal
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structure.[153] The Bi/Te building blocks from BIQT€3 are arranged side by side in

layers connected by Te atoms. The heavy Ba atoms lie between the layers.[153, 154,

155] The structure of BaBiTe3 also contains Teg’ (Te-Te) units which serve to connect

the Bi/Te blocks into layers. The unit cell of BaBiTe3 is more complicated than that

of B12T83. Its crystal structure is orthorhombic rather than rhombohedral, the space

group being P212121 with 40 atoms in the unit cell [A = 4.47 A, B = 16.53 A, C =

17.89 A][153, 154], but internal symmetries reduce the number of inequivalent atoms

to ten: Ba1-2, Bil-2, and Te1-6.~ The crystal structure of BaBiTe3 and, for comparison

with that of the parent compound, BlzT€3 (projected onto the yz plane) are shown

in Figure 71. The underlying local BigTe3-like structures (shown by the shaded area)

connected by Te5—Te6 chains existing in BaBiTe3 can easily be seen in Figure 71. The

Te2 and Te4 atoms lie on the edges of the layers and are bonded to only one layer of

Bi atoms while the Tel and-Te3 atoms are bonded to two layers of Bi atoms. The

Te1 atom has, however, a low Bi coordination and is likely to behave more like Te2

and Te4. In B12T83, the Tel atom is bonded to one layer of Bi atoms and lies near

the Van der Waals gap, whereas the Te2 atom is bonded to two layers of Bi atoms.

As a consequence, the Te2 p bands in B12T€3 have a lower energy and appear away

from Ep.[11] Therefore, one would expect that in BaBiTeg, Te1, Te2, and Te4 p bands

would act more like the Tel p bands in B12T83, contributing to the top of the valence

band DOS near Ep, whereas Te3 p bands would act more as Te2 p bands in BigTeg,

stabilized several eV below Ep with little contribution to the DOS near Ep. Also, Bi

p states will contribute primarily to the conduction band. Since Te5 and Te6 have no

counterparts in B12T83, the bands associated with these atoms will be new features

in BaBiTe3.[11]
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Figure 71. Projection of the crystal structures inthe yz plane of (a)

orthorhombic BaBiTe3 and (b) rhombohedral B12T63. The Bi/Te

blocks are highlighted in the shaded area for BaBiTe3.
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Electronic structure calculations were performed both with and without spin orbit

interaction (SOI). The band structure of BaBiTe3 is much more complicated than

that of B12T€3 due to the larger number of atoms in the unit cell. We will focus,

therefore, on the region close to Ep. The bands are plotted along the high symmetry

directions of the orthorhombic Brillouin zone, shdwn in Figure 72.

Before discussing the theoretical band structure in detail, we wish to discuss

the room temperature diffuse reflectance spectroscopy (Figure 73) for B12T€3 and

BaBiTeg. These experiments in BaBiTe3 reveal absorptions at 0.42 eV (which is the

intercept found by extending the linear portion to the axis) and at 0.28 eV (where

the spectrum extends to zero after the linear portion). This absorption spectrum in

BaBiTe3 is unusual in the sense that it has two values. This was not seen in B12T€3

(Figure 73) which has one at the band gap value of 0.13 eV.

Figure 73. Infrared absorption spectra of BigTe3 and BaBiTeg. The

semiconductor energy gaps are indicated in the spectra.
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Due to the atomic arrangement inside the unit cell and the presence of the Ba2+

ions, the orbital characters of the HVB and LCB in BaBiTe3 are distinctly different

from those seen 111.812TC3. As a result, the effect of SOI is not as dramatic. The

energy bands without SOI centered in the range of ~2 eV about Ep are given in

Figure 74. The VBM occurs at a point between F and Z (this HVB in the FZ

direction is extremely flat) while the CBM lies at the Z point. The band gap at Z is

calculated to be 0.45 eV, in good agreement (but see below for a discussion when SOI

is included) with the larger of the two band gaps found experimentally, 0.42 eV. This,

however, cannot explain a second smaller gap of 0.28 eV also seen experimentally.]153]

Our results agree rather well with a previous unpublished LMTO calculation which

also did not include SOI.’[156]

Introducing SOI has some broad general effects, such as lifting the degeneracy of

several bands and moving the CBM and VBM closer together (Figure 75). However, it

has little effect on the position of the VBM, while the CBM moves to a point between

F and Z to produce a nearly direct gap. A careful analysis of our results shows the

VBM is at (0, 0, 0.325) and the CBM is at (0, 0, 0.3625), in units of the primitive

reciprocal lattice vectors. The new band gap is about 0.26 eV, in good agreement with

the smaller experimental value of 0.28 eV.]153] There exist several other indirect band

gaps in the Spectrum, such as the 0.34 eV gap between the VBM at F and the CBM

between F and A. As pointed out before, the direct band gap at the F point is 0.47

eV, which is comparable to and may be identified with the larger of the experimentally

observed band gaps of 0.42 eV.]153] The unusual shape of the experimental absorption

spectrum near the threshold of the smaller band gap (0.28 eV) may result from the

forbidden pep transitions when Ak = 0. More accurate measurements and a detailed

calculation of the optical absorption spectrum will clarify this issue.
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Figure 74. Band structure of BaBiTe3 without SOI.
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The orbital characters of the bands in the neighborhood of Ep have been care-

fully analyzed, but will not be shown to save space. It is observed that the main

contribution in the LCB near the CBM is associated with the Bil p, Te5 p, and Te6

p states while the Tel p, Te2 p, and Te4 p states contribute most strongly to the

VBM. This is in agreement with the analogy made between the bonding found in

BlgTeg and BaBiTe3 with respect to the position of the atoms within the layerslll].

The bands contributing to the DOS near Ep consist of Te and Bi p bands, the Ba 5p

bands lying about 13 eV below and the Ba 5d and 63 bands lying several eV above

Ep. Therefore, Ba 5p, 5d, and 6s orbitals contribute very little to the states near

Ep, the Ba2+ ion acting mainly as a spacer. The interesting case is that of the Te5

and Te6 atoms which connect the Bi/Te blocks together through the Te—Te chains

along the z axis and have no analogy in BizTe3. As mentioned before, the Te 5 p

and Te6 p states contribute to the LCB along with the Bil p and Bi2 p orbitals, pri-

marily the former. The crystal structure of BaBiTe3 can be considered as [Bi4Te10]8"

segments separated by Ba2+ ions and connected by Te5-Te6 chains. The previous

extended Huckel calculation assigned a 3+ oxidation state to Bi with an electronic

configuration of 6326p0, the two remaining 63 electrons acting as a “lone pair”. A

strong hybridization between the “lone pair” states was found with the atoms in the

Te5-Te6 chains for the lowest conduction band. Our band structure calculation finds

these Te5-Te6 orbitals playing an important role in the LCB, in agreement with the

“lone pair” (20*) description.[154]

The nature of the charge transport in this anisotropic material depends on the

dispersion of the bands along different directions. In the conduction band, the dis-

persion along the FY direction, perpendicular to the Ba2+ layers, is very small while

that along the FZ direction, i.e., through the Te5-Te6 necks is appreciable. One also
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sees that there is a large dispersion along the FA direction which should be similar

to that seen in the'xy plane of BigTe3.[11] Thus, n-doped BaBiTe3 can be treated as

quasi-two—dimensional system with respect to charge transport. The valence band has

what appears to be similar dispersions in several directions, so requires more careful

analysis.

Since the inclusion of SOI does not cause as drastic a change in the band structure

as in B12T€3I11] (Chapter 4), the position and degeneracy of the calculated CBM

should be more reliable than in B12T83. However, several off-axis minima, whose en-

ergies lieabove the CBM by about 0.1 eV, will also contribute to the charge transport

and effectively increase the band degeneracy, thereby leading to a higher ZT value.

7.1.2. EFFECTIVE MASSES AND THERMOELECTRIC PROPERTIES OF

BaBiTe3

As has been discussed in previous chapters, the thermoelectric properties of a ma-

terial can be understood by studying the B parameter (Equation 24 in Chapter 2).

Increasing B, by way of a large band degeneracy, increases the figure of merit, ZT.

Unlike BigTeg, the lower symmetry of the more complicated unit cell of BaBiTe3 im-

plies that the degeneracy factor of the band extrema, 7, is reduced. Also, in BaBiTe3

the Bi/Te blocks are connected through Te5-Te6 atom chains. Orbital analysis of the

band structure shows that they contribute significantly to the CBM along with the

Bi atoms. Therefore, while electrons can flow through the layers, the Te5-Te6 chains

will block the holes from traveling through the Tel, Te2, and Te4 layers. It is there-

fore necessary to study the effective masses of the band extrema to understand how

anisotropic the charge transport will be for both the holes and the e1ectrons.[17, 18]
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Since the mobility, p, is inversely proportional to the effective mass in the direction

of transport, in order to increase B (and therefore ZT), one would like to find systems

with small effective masses in the direction of charge transport to increase )1. and large

effective masses perpendicular to the direction of transport (Equation 24 in Chapter

2). The off—diagonal terms of the mass tensor (Equation 74 in Chapter 6) must vanish

due to the orthorhombic symmetry, so diagonal elements of the mass tensor, a,,-, give

the inverse of the effective mass parameters m,, (i = 1, 2, 3). These effective masses

for BaBiTe3 were obtained by calculating values of the energy close to different LCB

minima and HVB maxima while moving along suitably chosen directions in the BZ.

The 01,-,- values are given in Table XIV.

All the band extrema in BaBiTe3 lie along the FZ direction and hence are two-fold

degenerate. Large values of (1,,- correspond to small effective masses which give a

large mobility in that direction. A large mobility is found for the electrons in the XZ

plane, corresponding to charge transport through the Bi/Te layers. This is similar to

what is seen in B12T€3 and is consistent with the description of the Te5-Te6 chains

connecting the Bi/Te blocks and contributing to the LCB. The hole transport, on the

other hand, a large mobility is found in the XY plane, perpendicular to the Bi/Te

layers. For the holes are unable to move through the Te5-Te6 chains, leading to their

charge transport perpendicular to the Bi/Te layers. However, the values of cm in the

X and Y directions are a factor of 2-3 smaller than those in the conduction band,

implying that the mobility of the electrons is better than that of the holes.
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Table XIV. Theoretical values of inverse effective mass parameters associated

with the conduction and valence band extrema of BaBiTeg.

 

Conduction band rz

an = [m/me]; 11.61

am, : [m/me ,7; 2.79

on = [In/me g.) 13.16

Valence band FZ

an 2 [m/me]; 7.61

ayy = [m/meh‘é,1 5.40

z 2: [m/me ;:1 2.89
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In comparison with the effective masses of BlzTeg (Table XII), the first important

point is that these inverse effective mass parameters for BaBiTe3 are much more

symmetric. For the CBM, am for B12T93 is calculated to be 112.75me’l compared

to ayy of 2.87m; 1, a ratio of almost 40. The ratio in BaBiTe3 is only about 4.

Similarly for the VBM, a” for B12T€3 is calculated to be 107.51m;1 compared to ayy

of 3.97m; 1. a ratio of about 25, The ratio in BaBiTe3 is only about 1.5. Also, in

B12T€3 am, < an, the dispersion through the Bi/Te network stronger than through

the Van der Waals gap for each extrema. However in BaBiTeg, am, > an for the

valence band, the hole transport blocked by the Te5-Te6 chains through the Bi/Te

network.[11]

The larger band gap, the more isotropic effective masses, and the reduction in the

mobility of the hole transport through the Bi/Te network due to the Te5-Te6 chains

explains why BaBiTe3 is not as promising a thermoelectric material as B12T63, even

though the complex unit cell reduces Ii. These calculations suggest that attempts to

optimize BaBiTe3 should aim at preparing solid solutions of the type BaBi1_beITe3,
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so that the Te sites are not disrupted. Given that the Te states are dominant near

the VBM, Sb substitution at the Bi sites should have minimal effect on the hole

mobilities. Any substitution, however, at the Te sites (e.g., Se) is expected to greatly

degrade the hole mobilities. On the other hand, attempts to optimize BaBiTe3 as an

n-type materialare expected to be more challenging because the CBM has substantial

contribution from Bi and Te (Te5-Te6) states. Therefore, any substitution of either

Bi or Te will likely have serious negative effects on electron mobilities.

7.2. CsBi4Te6

7.2.1. CRYSTAL STRUCTURE AND OBSERVED PROPERTIES

CsBi4Te5, like BaBiTeg, belongs to a class of compounds which are derived from

the BigTe3 crystal structure.[153] The unit cell of CsBi4Te6 is monoclinic with space

group 0.2/m containing 88iatoms/unit cell [A 2 97.425 a.u., B 2 8.264 a.u., C 2

27.424 a.u., (3 2 101.438°]. This unit cell is shown in Figure 76 where the different

atoms in the cell have been numbered. It has a layered anisotropic structure with

anionic [Bi4Te6] laths connected through Bi-Bi bridges to form two-dimensional slabs,

and these Bi/Te slabs are separated by layers of Cs+ ions. Bi-Bi bonds have not been

found in chalcogenide compounds before. The axis of the laths (normal to the paper)

is the direction of the highest charge 'mobility and is usually referred to as the needle

axis.[26, 155] There is a gross structural resemblance of this compound with BigTe3

and BaBiTeg where the Bi/Te slabs are separated by a Van der Waals gap and a

Ba++ ion layer respectively.[11]
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Figure 76. Monoclinic crystal structure of CsBi4Te6.



In order to reduce computer memory used in the electronic structure calculations,

_ we have used an equivalent triclinic unit cell (Space group: P-I) 'with 44 atoms/unit

cell was used in our electronic structure calculation [A = 49.233 a.u., B = 49.233 a.u.,

C = 27.424 a.u., a = 101.438°, fl = 101.438°, 7 = 9.693°]. This crystal structure and

its corresponding Brillouin zone are given in Figure 77.

Figure 77. (a) Triclinic crystal structure and (b) Brillouin zone of CsBi4Te5 used

in this calculation.
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CsBi4Te6, as seen in Figure 78, has a larger figure of merit (ZT~0.8 at 225 Kelvin)

than conventional optimized Bi2_IbeTe3 alloys at these temperatures.[26] Doping

studies of this material shows that the hole-doped samples show a much larger ZT than

the electron-doped samples.[158] The thermal conductivities of these two materials

are comparable, which suggests that the improved ZT for CsBi4Te6 is electronic in

origin. Therefore, a careful analysis of the electronic structure of this material is

necessary to understand the origin of the high ZT for this system.

Figure 78. Comparison of ZT for the best current doping of CsBi4Te6 and

optimally-doped Bi2_IbeTe3 alloy. The peak for CsBi4Te6

(ZT~0.8) occurs at 225 Kelvin.
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7.2.2. GENERAL FEATURES OF THE BAND STRUCTURE AND GAP .

FOR.l\=’IATION OF CsBi4Te6

Electronic structure calculations show that CsBi4Te5 is a narrow-gap semiconduc-

tor with a band gap of approximately 0.04 eV (Figure 79), smaller than the measured

value of 0.05-0.11 eV[26] (usually seen in DFT calculations[3ll). In the absence of SOI

(Figure 79a), the band gap is 0.37 eV. The introduction of SOI (Figure 79b) produces

an almost rigid shift of the conduction band toward the valence band. Similar shifts

are also seen in BaBiTe3 and Bl2T83llll, but in Bl2T€3 the shift is so large that new

hybridization gaps form, thereby giving completely different positions for the valence

and conduction band extrema. In CsBi4Te6, the top of the valence band occurs at

the F point while the bottom of the conduction band occurs at a general point in

the Brillouin zone (denoted as C‘) (C‘ =- (0.88125, 0.88125, 0.175) in terms of the

reciprocal lattice vectors.) In addition, there are several local conduction band min-

ima appearing slightly above this point (~0.1 eV above), along FZ and RV directions

in the Brillouin zone, which may contribute to the charge transport. By looking at

the equation for the B parameter (Equation 24 of Chapter 2), where increasing B

increases the figure of merit, ZT, a large band degeneracy, '7’, can give large values of

ZT.[11]
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Figure 79. Band structure of CsBi4Te6 (a) without and (b) with SOI.

CsBi4Te6 - No SOI(a)
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7.2.3. EFFECTIVE MASSES AND THERMOELECTRIC PROPERTIES OF

CSBI4T€5

The 0.04-0.11 eV band gap in CsBi4Te6 follows the lOkBT criterion for a good

thermoelectricIl, 2, 3, 4] because S is expected to peak at 225 K, though it had been

believed that only semimetals were good thermoelectrics below room temperature.[19]

While multiple conduction band extrema may be a reason for anticipating a large ZT

value in the electron-doped CsBi4Te6 (large thermopower values in n-doped systems

have not yet been seen[158]), the single maximum of the valence band at the F

point requires another explanation for the large observed values of ZT in the hole-

doped compound. In order to explore whether anisotropy in the charge transport

(confinement idea of Hicks & Dresselhaus[24]) may play a role, we have computed

the effective carrier masses along different directions and have analyzed the detailed

nature of the electronic states (orbital character and parentage, i.e, Bi p or Te p,

etc.) associated with the valence band maxima (holes) and conduction band minima

(electrons).

Considering the effective mass dependence of the B parameter (Equation 24 of

Chapter 2), we see that since the mobility, pm is inversely proportional to the effec-

tive mass in the direction of transport, B depends on the effective mass parameters

as m—Hm—T : Rm. For an isotropic system, R = 1. For an anisotropic system we

can assume the smallest effective mass along the x direction, the direction of charge

transport, while one or both of the effective masses associated with the other direc-

tions are larger.. Considering two cases (i) m2 : my 2 mz/w, (ii) In; : my/w : m: a'.

w > 1, we find that the ratio R is larger than the isotropic case by a factor x/J for (i)

and by a factor w for (ii). (When the three masses are different one has to generalize
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this slightly.) Thus the effective mass anisotropy can significantly affect ZT.

In CsBi4Te6 the effective masses along three specific directions, i.e., the needle

growth direction (I‘X), the direction of the Bi/Te slabs (FV), and through the Cs+

atom layer (I‘Z) were computed. Since the system is triclinic, the full reciprocal mass

tensor must be computed and diagonalized (Equation 74).[22] In most cases, the off-

diagonal terms of the mass tensor are small, so diagonal elements of the mass tensor,

om, accurately give the inverse of the effective mass parameters m,, (i = 1, 2, 3).

In the general case, however, the mass tensor has to be diagonalized to obtain the

effective masses associated with the principal directions. We fit the calculated E(k)

vs k along different orthogonal directions to parabolas and obtained the coefficients

02'2”-

The effective masses for CsBi4Te5 were obtained by calculating values of the energy

close to different LCB minima and HVB maxima while moving along suitably chosen

directions in the BZ using the equation

(75a)

2me/h2 5k: amkf. + a,, k5 + aukg + 2a,,k1k, + 2ayzkykz + 2aukrkz

where a constant term has been omitted. The three orthogonal directions lying

closest to) the three directions mentioned above will be denoted as X, Y, and Z,

respectively. The effective masses obtained from the eigenvalues of the inverse mass

tensor are given in Table XV. Due to the observed large number of hybridized bands

near Ep, the band extrema rapidly become nonparabolic, so that the effective mass

approximation is not expected to hold at large carrier concentrations. However, up

to carrier concentrations consistent with the optimum doping of this system (~3 x

1018/cm3[26, 158]), the agreement between the calculated dispersions and parabolic
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fit was found to be excellent.

Table XV. Effective masses of CsBi4Te6 associated with the valence and

conduction band extrema along three principal axes and the angles

these axes make with a set of three suitably chosen orthogonal axes

 

 

 

 

 

 

 

 

 

(see text).

Valence Band (F) Angle Ina/me

X (needle) 12.37° 0.02

Y (Bi-Bi bonds) 097° 0.16

Z (Cs layer) 12.35° 0.09

Conduction Band (C’)

X (needle) 12.38° 0.04

Y (Bi-Bi bonds) 3.17° 0.47

Z (Cs layer) 11.98° 0.16    
 

The corresponding eigenvectors define different directions in k-space. For both the

electrons and the holes, the lightest effective mass direction makes an angle of about

12° with the needle axis while that with the intermediate mass direction also makes

an angle of 12° with the axis perpendicular to the Cs+ atom layers. The direction of

the heaviest carriers lie within 1-3° of the Y axis, i.e., parallel to the Bi-Bi bonds. The

heaviest valence band mass is a factor of 50 larger than the lightest valence band mass

while the heaviest conduction band mass is only a factor of 10 larger than the lightest

conduction band mass. Thus the valence band holes are more spatially restricted

than the electrons, particularly along the direction of the Bi-Bi bonds. These results

suggest that the effective hole transport takes place not along the Bi/Te slabs but

in planes nearly perpendicular to the slabs containing the needle axis. A similar
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situation was found in BaBiTeg, but the degree of anisotropy was much smaller.[11]

Also the effective masses in BaBiTe3 were a factor of 5-6 higher leading to a lower

overall mobility (lower conductivity). The charge transport in B12T€3 is generally

along the layers with much less dispersion through the Van der Waals gap while a

much stronger charge transport is seen in hole doped CsBi4Te5, perpendicular to the

Cs+ atom layer and in the needle growth direction, but not along the Bi/Te network.

The effective masses in the transpOrt directions are, however, comparable to those of

CsBi4Te6.[11]

To understand the nature of the electron and hole states near the respective band

extrema further we have analyzed the wave functions in some detail. When the

strengths of the orbital character associated with these states are analyzed for dif-

ferent atoms, it is seen that the valence band charge density forms a quasi-two di-

mensional layer lying almost perpendicular to the |Bi4Te6] slabs while the conduction

band charge density is more three—dimensional, consistent with our effective mass

calculations. We find that the states corresponding to the CBM are mostly of Bi

character, especially Bi7 and Bi8, the atoms forming the Bi-Bi bond which connects

the Bi/Te laths together, a bonding not before seen in chalcogenides. These arise

from the anti-bonding state of the Bi-Bi pair, the bonding state lying below the va-

lence band maxima. This may be understood in terms of the stabilization of the

donor electron from Cs by this Bi-Bi bond which is necessary for the formation of a

semiconductor.[26] (The Cs atoms act primarily as electron donors with little contri-

bution near the top of the valence band or the bottom of the conduction band).

We find the states corresponding to the valence band maxima consist of Bi (Bil,

B16) and Te (Te1, Te3, Te6, Te8) (Figure 76) atoms, the charge density associated with

these atoms forms corrugated, two-dimensional sheets separated by approximately 13
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O

A (Figure 80). There are very few atoms lying between the sheets with contributions

to these states (which would have allowed for transport in the direction of the Bi-Bi

bonds), consistent with the large effective mass found in this direction. The Bi-Bi

bonds, connecting the Bi/Te network together, have their anti-bonding states in the

conduction band and their bonding states deep in the valence band with only a small

contribution to the states near the valence band maxima. This implies that hole

transport through the Bi-Bi bonds will be blocked in this direction, explaining the

large effective masses and two-dimensional sheet-like transport.[15]

Greanya et al.[159] recently performed an ARPES study of CsBi4Te6 to find the

CBM at the I‘ point, in agreement with our calculation. While they found both dis-

persions along IV and FZ to be much flatter than that in the FX direction, they were

only able to obtain a few experimental points in the two nondispersive directions due

to the needle-like morphology. They were also able to estimate a band gap of 0.05 eV,

consistent with our calculation[15] and the previous experiments[26]. These results

give further confidence in our analysis of the electronic structure of this complex novel

material.
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Figure 80. Quasi-two dimensional sheets contributing to hole transport

overlying the crystal structure of CsBi4Te5.
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To summarize our results for CsBi4Te6, systems with different structures have been

synthesized to exploit low dimensional transport which result in enhanced ZT.[27, 28,

160] The vast majority of these attempts, however, revolve around nanofabrication

of quantum wells or multilayer films. CsBi4Te6, on the other hand, quite naturally

displays quasi-two dimensional hole transport with regions of the crystal of several

A width participating very little in the charge transport. These “insulating” regions

are sandwiched between conducting regions, leading to structures similar to quantum

wells or multilayers, but in a _b_ulk material. The source of this anisotrOpic hole trans-

port arises from the Bi-Bi bonds, which are not seen in other bismuth chalcogenides.

It is possible to take advantage of this novel quantum architecture in other Cs-Bi-Te

compounds where the Bi-Bi bonds are closer together or further apart. While the

conduction band has several degenerate minima, the transport in this band is much

more isotropic. However, large values of ZT are still possible for the electron-doped

systems when several of these local minima get occupied. BaBiTe3, which has a strong

structural similarity to CsBi4Te5, does not show as large an anisotropy as the latter

compound. Furthermore the effective mass along the optimum direction (needle axis)

is a factor of 10 larger in BaBiTe3 than in CsBi4Te5. This may explainthe low ZT

values observed in BaBiTe3.[11]

7H3 KgBlgselg

The third member of the complex Bi-Te-Se systems which has great potential

for high thermoelectric performance is fl—KgBigSe13II6]. K2Bi3Se13 forms in two dis-

tinct crystal structures, a-KgBigSe13 and fi-KzBigsem, both of which are stable phases

within a limited temperature window. These two systems are formed of similar build-
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ing blocks, Bl2T83-, NaCl-, Cdl2—, and Sngeg-type rod fragments, which arrange in

the same stoichiometrybut with different architecture[16]. The inclusion of alkali

atoms stabilizes the covalent bonding in the Bi-chalcogen framework with cages. The

K atoms occupy the positions inside these cages as K+ ions and can act as “rattlers”[5],

consistent with the concept of an electron crystal/phonon glass.[6]

In order to determine the figure of merit, ZT = SazT/n, in these compounds,

S, a, and K. have been measured as a function of temperature. The highest room

temperature (RT) values for a in a4K2Bi8Se13 is 2 S/cm compared to fi-KzBigSelg

with 250 S/cm.[16] The largest RT value of S for both a- and fi-KgBi8Se13 is —200

uV/K, which means that the carriers are electrons. The thermoelectric properties

of [3-K2Bi8Se13 are believed to be enhanced by the disordered Bi-K sites within the

lattice which reduces the phonon thermal conductivity (Ii); a value of 1.28 W/m'K

has been seen compared to 1.31 W/m'K for BlgTeg alloys. This yields a value of 0.22

for ZT in unoptimized fi-KgBigSe13.[16] Values of n for a-K2BiSSe13, with no disorder,

have not been measured due to the low a values.[161]

7.3.1 (l-KgBlgselg,

The crystal structure of a-K2Bi8Se13 is triclinic with space group P-I [A : 26.108

a.u., B = 22.858 a.u., C = 7.872 a.u., a = 89.98°, fl = 98.64°, '7 = 87.96°][16]. This

crystal structure is given in Figure 81 with its corresponding Brillouin zone in Figure

82.
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Figure 81. Projection of the crystal structure of a-KgBiSSelg viewed down the

b-axis. Bl2T€3-, Cdlr, and szseg-type building blocks in the

structure are highlighted by the shaded areas.
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Figure 82. Brillouin zone for a-KgBigSem.

k3

 

The band structure of a-KzBi38e13 with and without SOI is given in Figure 83.

The effect of SOI is to shift the conduction band down relative to the valence band

and thereby decrease the gap values. Both with and without SOI, a semiconductor

forms with the VBM at the I‘ point and the CBM at the X point. When SOI is

included the calculated band gap is 0.47 eV (Figure 83b) compared to the measured

value of 0.76 eV.[161] There are however direct gaps at the X point of 0.74 eV and at

the V point of 0.72 eV. V i
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Figure 83. Band structure of O-KgBlgsel3 (a) with and (b) without SOI.

(a);0 K2Bi88613- No SO
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The low a and high S are consistent with a wide-gap semiconductor found in this

system. The thermoelectric properties in this material may also be influenced by

anisotrOpic effective masses, which can lead to a high ZT.[24, 11] The effective masses

of the band extrema in a-KgBi38e13 were calculated assuming that the angles a and

'7 are 90°. In this approximation, the effective masses were obtained by calculating

values of the energy close to different LCB minima and HVB maxima while moving
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along suitably chosen directions in the BZ. These values were then fitted using the

equation

(75b)

2 _ .2 . .
2rne/h 5k — amkx + ayy k5 + o'zzkg + 2arzkxkz,

where a constant term has been omitted. Generally, the off-diagonal terms are

small so the reciprocal of the diagonal terms, 0,, (i = 1, 2, 3), 'can be considered

the effective mass parameters. As can be seen (Table XVI) the effective masses

of the valence band maxima are fairly isotropic. We find that the Sng€3 fragments

connecting the Cdlz layers together, consisting of Sel-7 and hybridized Bi4 p orbitals,

having a strong contribution to the HVB. On the other hand, these Sb28e3 fragments

do not contribute strongly to the LCB, which consist mainly of Bil-3 p orbitals. This

leads to a more 2D transport of the electrons within the CdIZ layers, similar to what

is seen in the layers of Bl2T€3.[11, 59] This suggests better thermoelectric properties

from the electron-doped system compared to the hole-dOped system.

Table XVI. Components of the reciprocal effective mass tensor for a-KgBlgsem

 

Int/me mc/me

a” = [m/me];1 1.05 5.56
1:

ayy : [m/me ,7; 1.44 1.09

ozzz : [m/me ;,1 1.19 7.69

ozM = [m/melgz1 0.71 2.94

 

 

 

 

 

     

192



7...?)2 fi-KgBlgsem

While having the same stoichiometry as a-KQBI88813, ,6-1<2Blgsel3 is isostructural

to K2B18813l162] in space group P21/m and is formed of BI2T€3-, NaCl-, and Cdlg-

type infinite rod-shaped blocks to form a much more 3-D structure.[16] The or form

is slightly less dense than the 6 form, because in the a form the Bi atoms are in

octahedral or higher coordination geometry compared to the ,6 form where the Bi

atoms are found in a trigonal-pyramidal geometry. The Bl2T€3 and Cdlg rods in the

3 form are arranged side-by-side to form layers perpendicular to the c-axis where the

NaCl units connect the layers to build a 3-D framework with "tunnels filled with K+

ionsll6]

The monoclinic crystal structure of ,B-KgBlgsem is closely related to that of Sr4BiGSe13,

i.e., one replaces two Sr2+ atoms with two K+ atoms and the remaining two Sr2+ atoms

with Bi3+ atomsll63]. This leads to a mixed occupancy of Bi and K atoms within the

crystal structure. The K2 position is fully occupied by K+ atoms and Bil-7 are fully

occupied by Bi3+atoms. However, the site K1/B9 has 62% K and 38% Bi occupancy

while the K3/Bi8 site has 62% Bi and 38% K occupancy.[16] A very similar type

of disorder is found in the isostructural compound K2BI3813, but in this compound

the disorder is between K1/Bi9, K3/Bi8, and K2.[162] The K1 /1319 site has three

bonds ranging from 2.85 to 3.07 A and five longer ones from 3.44 to 3.70 A, while the

K3/Bi8 site has three bonds from 2.84 to 3.04 A and five longer ones from 3.31 to

3.68 A.[16] However, the two sites are not. equivalent to each other. The Bi8/K3 site

lies at the corner of one of the NaCl blocks while the Bi9/K1 site lies along the side

of the block next to Se9 which lies on the corner. Electronic structure calculations of

fi-KgBigSelg should in principle incorporate the Bi9/K1 and Bi8/K3 disorder. The
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CdIz-type

Figure 84. Crystal structure Of ,B-KgBlgselg .

ryst

90.49°] is given in Figure 84 and the corresponding Brillouin zone in Figure 85.

monoclinic c al structure [A : 33.056 a.u.,B=79Mah. , C, = 34.804 a.u..5:



Figure 85. Brillouin zone of fi-KzBigSew.

k7.

 

 
  

Our electronic structure program[55] cannot treat sites as partially occupied, such

as in the virtual crystal approximationl164]. Therefore, we will perform preliminary

band structure studies to understand the effects of disorder. Different configurations

will be studied with the extreme occupancy of the K1/Bi9 and K3/Bi8 sites. As

already mentioned, the site K1/B9 has 62% K and 38% Bi occupancy while the

K3/Bi8 site has 62% Bi and 38% K occupancy.[16] The first arrangement, which will

be called Configuration 1 will place K at the K1/Bi9 site and Bi at the K3/Bi8 site.

Configuration 2 will have these positions reversed, Bi at the K1/Bi9 site and K at

the K3/Bi8 site.

Configuration 1 seems closest to the structure seen experimentally.[16] Both before

and after the inclusion of SOI, Configuration 1 yields a semi-metallic or metallic

behavior (Figure 86) with some very flat bands along I‘Y and ABI‘, in the plane

perpendicular to the needle axis (defined in Figure 84).
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Figure 86. Band structure of fi-KgBigSelg - Configuration 1 (a) without and

(b) with 301.

(a) K2Bi8$el3 - No SOI

  

  

(b) KZBi8Sel - SOI
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These flat regions existing at Ep ar‘e incOnsistent with the measured band gap of

0.59 eV.[16] An orbital analysis of these bands shows that they correspond to Bi8 p

and Se9 1) states. (Figure 87) Se9 lies on.th‘e edge of the NaCl block next to the K

atom in the disordered Bi9/K1 site. Also, the other bands crossing Ep correspond to

the Bi atom in the Bi8/K3 site. It appears that the Se9-K1 bonding is too weak to
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form a bond so that the Se9 orbitals float to Ep to form a semi-metallic or metallic

behavior.

Figure 87. Orbital character of (a) Bi8 and (b) Se9 overlying the

band structure of ,B-KzBlgselg - Configuration 1 with SOI.

The size of the circles overlying the band structure is

directly proportional to the strength of the orbital character

(a) KZBi8Sel 3 Bi8 tot

E
n
e
r
g
y
(
e
V
)

 

(b) 2 o K2Bi8$el3 Se9 tot

 

 

 

 

     

_\

l.5 "§\

\——a

10 /<>l\

’ Ir"

E 0.5

>1
an 00 EF

2
LU ‘0" —

-l.

ll.

-2.

r Y C Z D E A B F Z

Configuration 2 has Bi is in the Bi9/K1 site and K is in the Bi8/K3 site. The total
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energy of this configuration is 1.49 eV/formula unit lower than that of Configuration

1. Before the inclusion of SOI, there is a band gap 0.38 eV, the VBM along the very

flat bands along ABF and FY and the CBM along AB. While there is a band gap, the

HVB is unusually flat, so that the bonding is very weak in some directions. After the

inclusion of SOI, the band gap disappears and the band structure of Configuration 2

looks very similar to that of Configuration 1.

Figure 88. Band structure of fil-KzBiBSelg,~ - Configuration 2 (a) without and

(b) with SOI.

(a) KzBisse13 - No SOI

     

  

   

.(b) ' K2Bi8$e13 — SOI
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Figure 89. Band structure of B-KgBiSSelg - Configuration 3 (a) without and

(b) with SOI.
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A third configuration has been tried which differs from Configuration 2 by ex-

changing Bi on the Bi9/K1 site with K on the K2 site. This type of disorder has been

seen in K2Bi8813 but not in fi-KgBiSSelg. This configuration has a slightly higher

energy than Configuration 2, by 0.03 eV/formula unit. Before the inclusion of SOI.

the CBM is at the A point while the VBM is between A and B to produce a gap of



0.35 eV. After the inclusion of SOI, the band gap decreases to 0.04 eV, smaller than

the experimental value of 0.59 eV[16]. The HVB is much more dispersive along ABF

and f‘Y meaning the bonding along these directions is stronger.

While the Bi-K disorder in fi-KzBiSSem has been suspected to reduce r416], this

disorder also has a profound effect on the band structure near Ep. We have found

either narrow-gap semiconducting or semi-metallic behavior depending on the position

of the atoms on the disordered sites on the lattice and the calculated gap is much

smaller than the measured value of 0.59 eV[16]. In order to better understand the

band structure of this material, the band gap should be measured as a function of

temperature to see if the low temperature value difl'ers from the room temperature

value (as in the lead salts[101]). Also, though the virtual crystal approximation[164]

generally reduces the band gaps in semiconductors[59], such a calculation should be

performed since the ratio of Bi/K atoms in the disordered sites is likely to have a

profound effect on the band structure.
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CHAPTER 8.

CONCLUSIONS

In this dissertation we have investigated the electronic structure of a wide variety

of systems including an extensive study of the half-Heusler compounds and simple

chalcogenides along with a detailed study of more complicated structures such as

Zintl phases and complex chalcogenides. We have investigated the subtle properties

of the gap formation in these semiconductors and used these results to understand

their thermoelectric properties.

The focus of this dissertation is two-fold. First, we have used our calculations to

understand which properties in the band structure are the best for thermoelectric

properties and which materials display these properties. We have found that systems

with highly anisotropic effective masses (though not large values) and multiply de-

generate band extrema have the best thermoelectric properties, as predicted by the

B parameter (Equation 24 in Chapter 2). The anisotropic effective masses seem even

more important as they may describe reduced dimensionality in the charge transport

in bulk materials which was found important in CsBirTee. [15] These are valuable

criteria for finding new thermoelectric materials using band structure calculations.

Our analysis of anumber of systems explained why certain materials were bet-

ter thermoelectrics than others. We found that the six-fold degenerate VBM and

CBM in B12T€3 and Sb2T€3 explain their improved thermoelectric performance com-

pared to B12583 with CBM and VBM at the I‘ point. Also, we found that the highly

anisotropic masses in Bl2T83 and CsBi4Te5 enhance their thermoelectric properties

While the more isotropic effective masses in BaBiTe3 lead to a less promising thermo-

electric material. We have also predicted that the anisotropy inthe CBM effective
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masses in the half-Heusler compounds would make the n-doped systems better for

thermoelectric applications than the p—doped systems.

The second focus of this dissertation is to understand the gap formation of these

narrow-gapsemiconductors. Most of these semiconductors are formed from hybridiza-

tion of different bands which lead to their small gaps. After the presentation of the

numerous band structures which have been given in this dissertation, it is important

to give a short critique of the methods we have used and how reliably we can trust

these results. These include ground state properties, such as the total energies and

band dispersions, and excited state properties, such as the band gaps.[30, 41]

The structural properties have been shown to be found correctly in DFT in many

systems, such as in BCC Fe where GGA correctly finds this has a lower energy than

FCC Fe while LDA did not.[45, 46] Our calculations found that in half-Heusler systems

containing Ni, disorder of the Ni sublattice is energetically favorable to disorder of

the NaCl substructure[11]. Experimentally one doesn’t see Ni sublattice disorder

at low T, instead higher energy defects are seen in the NaCl substructure (Zr-Sn

disorder in ZrNiSn)[78]. Further theoretical and experimental study of disorder in

the half-Heusler compounds is necessary to understand this result.

Relaxation of the lattice parameters within the electronic structure calculation also

is valuable for obtaining reliable results. DFT is in general exact, but LDA/GGA

are only approximate since the XC potential is treated approximatelyl31]. Therefore.

a model crystal structure, such as relaxing the lattice parameters, often gives band

gaps and total energies in better agreement with experiment. In PbS, PbSe, and

PbTe, the lattice relaxation nearly reproduced the experimental band gaps[115]. The

effects of lattice relaxations were not as profound in the other simple chalcogenides

or half-Heusler systems which we have tried, while lattice relaxation on large systems
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becomes nearly impossible due to the number of configurations and time necessary

to find the minimum energy structure. We strongly believe that lattice relaxation is

necessary to obtain an accurate band structure.

The band dispersions (effective masses) are also ground state properties within

DFT, so these should be predicted correctly because k is a good quantum number.[30,

. . -1 _ __ -2 (92E .

41] The effect1ve mass tensor 18 defined as ]m],-,- — am- — h [81:61: , ].[22] In most cases

1 J

 

when the correct orthogonal directions in the crystal are chosen, the off-diagonal terms

of the mass tensor are small, so diagonal elements of the mass tensor, afi, accurately

give the inverse of the effective mass parameters ma (i = 1, 2, 3). The effective masses

of the semiconductors GaAs, InAs, and AlAs have been studied extensively both ex—

perimentally and theoretically. A good agreement is found between the most of the

calculated values and the measured values[165] which confirms the belief that DFT

calculations do a good job in measuring these ground-state properties. The large cal-

culated effective masses of the half-Heusler compound ZrNiSn[7] agrees well with the

measured value.[81] Even in the case where the bands are known to be nonparabolic,

such as in BigTeglll] and the lead salts[122], reasonable agreement can be found

between theory and experiment. Since we found that anisotropic effective masses

were very important for high values of ZT, finding systems With highly anisotropic

effective masses is an effective use of electronic structure calculations in finding new

thermoelectric materials.

One of the most well known problems in LDA/GGA is that semiconducting band

gaps are usually found to be smaller than experiment. This is not surprising since

the Kohn-Sham energies are related to the band gap by Egap = Arc + eN,N+1 - ENN

where A“ 2: €N+1.N+1 - ENJV is the shift of the exchange-correlation energy when

adding an electron.[31] There is no way to estimate A“, so the LDA/GGA band
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LDA/GGA
gaps which have been reported are simply Egap = 8N,N+1 - EN‘N. The band

gap is actually an excited state property because both I and A in Egap : I - A are

both excited state properties. Therefore, it is not surprising that the band gaps

in LDA/GGA do not agree with experiment. In most group IV, III-V, and II-VI

semiconductors, such as Si, Ge, InSb, GaAs, etc., the predicted band gap is smaller

than what is seen experimentally.]31, 57, 58] The CW method explicitly adds and

removes an electron to compensate for this problem and gives much better agreement

between the theoretical and measured values for, the band gaps.[31]

The semiconductors discussed above are either strongly covalent or strongly ionic

compounds. In contrast to these compounds, we find that the band gaps in BaBiTe3[11],

BlgTeglll, 40, 130], and CsBi4Te5[15] agree very well-with the experimental values.

In the best thermoelectric materials which we have studied, the effects of SOI are

very important. This may be a serious problem since LDA/GGA calculations within

the scalar-relativistic method using second-variational treatment of SOI have been

linked to poor prediction of the positions of the bands compared to full relativis-

tic calculations for the 6p metallic elements Hg, Tl, Bi, and Pb.[36] However, the

second-variational treatment of SOI has found good agreement in PbTe[37, 38, 39]

and Bi2T€3.[11, 12, 13, 40] Is it possible that there is a happy cancellation taking

place between these two approximations of SOI and LDA/GGA which leads to a bet-

ter than expected agreement between experiment and theory? This point needs to

be investigated further using fully-relativistic DFT calculations.[34]

The band gaps of some semiconductors are overestimated in LDA/GGA calcu-

lations. This is seen in the half-Heusler compounds, such as ZrNiSn With 0.50 e\'

compared to the measured value of 0.12 eV[7, 59]. This is difficult to reconcile with

Equations 57 and 58 since A“ should be positive and GW calculations give larger
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band gaps than LDA. Therefore, another explanations must be introduced. In Zr-

NiSn, it is claimed that virtual crystal calculations predict that 15% Zr-Sn disorder

leads to a closing of the band gap in this material.]59] However, TiNiSn has the same

structure and nearly the same predicted and measured band gaps as ZrNiSn. How-

ever, while anti-site disorder has been observed in ZrNiSn, no such disorder has been

observed in TiNiSn, which makes the argument difficult to accept at best.[8, 66]

The above discrepancy is more evident in the Zintl-phase compounds where the

gap formation is similar to that in the half-Heusler compounds. The calculated band

gaps for the binary parent compound Th3Sb4 by Takegahara et al.[10] gives a negative

gap compared to the experimental value of 0.48 eV. The calculated value of the gap

for the ternary Tthi3Sb4 is 0.36 eV compared to the experimental value of 0.07

eV.[IO] Since disorder on the parent binary compounds substructure is expected to

reduce the gap in the ternary compound, the discrepancy of finding a smaller band

gap for the binary compound and a larger value for the ternary compound becomes

harder to fathom. We suggest another possible mechanism discussed below.

It is well known that LDA/GGA. calculations place the d orbitals of transition

metals too high in energy while other methods, namely Hartree-Fock, place these

d orbitals too low in energy.[97] As explained in greater detail in Chapter 5, shift-

ing of the d levels down reduces the band gaps while moving them closer to Ep

increases the gaps. The Co—containing half-Heusler compounds all had larger gaps

than the Au-containing half-Heusler compounds. The lack of disorder in TiNiSn and

the discrepancy between the gaps in the ternary Zintl phases and in their binary

parent compounds make this a more believable explanation than reduction of the

gaps through disorder. This should be studied further using GW[31] calculations and

LSDA+U[73] within DFT calculations which better handle narrow d- and f-bands.
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