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ABSTRACT

Relative bounded cohomology and Relative ¢; homology
By

HeeSook Park

In his renowned paper ‘Volume and Bounded Cohomology’, M. Gromov developed
the theory of bounded cohomology and ¢;-homology of topological spaces. His theory
applies both to the absolute case and the relative one. While the theory of absolute
bounded cohomology is fairly well understood algebraically from works of R. Brooks
and N. Ivanov, this is not so for the relative case.

The goal of this paper is to provide the principal algebraic foundations to the
theory of bounded cohomology and ¢; homology in the relative case. Moreover, we
give the proofs of Gromov’s Equivalence theorem and Relative mapping theorem for
both relative bounded cohomology and relative ¢, homology, which Gromov states
in his paper without proofs. We also define locally finite ¢; homology of spaces in
terms of relative £, homology of spaces and prove the Gromov’s Vanishing-Finiteness

theorem for locally finite ¢, homology.
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Introduction

The absolute bounded cohomology was first defined for discrete groups. It appeared
in a version due to P. Trauber of a theorem of Hirsch and Thurston to the effect
that the bounded cohomology of an amenable group is zero. Afterwards, M. Gromov
[7] defined the bounded cohomology of topological spaces and proved a number of
profound theorems about it. Moreover, Gromov (7] applied the theory of bounded
cohomology to Riemannian geometry, thus demonstrating the importance of this
theory. The proofs in [7] are based on a specific technique developed by Gromov,
which he called the theory of simplicial multicomplexes, rather than on standard
ideas of algebraic topology.

The first step in understanding the theory of bounded cohomology from the point
of view of homological algebra was made by R. Brooks [3]. He based his approach on
the ideas of the relative homological algebra. However, his approach was incomplete
in at least two respects: it did not let one construct the natural norm which one has
on bounded cohomology groups precisely and it used Gromov’s fundamental theorem
about the bounded cohomology of simply connected spaces.

In (8] N. Ivanov improved Brook’s approach using a suitable version of relative
homological algebra, modified so that they take into account a natural seminorm in
the bounded cohomology. He also proved the Gromov’s vanishing theorem for the
bounded cohomology of simply connected spaces by using the results of Dold and

Thom, and an analogue of Leray’s theorem about coverings in the theory of bounded



cohomology by using the theory of sheaves.

The present paper extends the theories of both the absolute bounded cohomology
and absolute £; homology to the relative ones using the ideas of relative homological
algebra. While Gromov defined both relative bounded cohomology and relative ¢,
homology only for a pair of spaces X and Y C X as similar to the ordinary relative
cohomology and homology, we define them for continuous map of spaces which also
induce the standard cases.

For a topological space X, we denote by S,(X) the set of n-dimensional singular
simplices in X. The ¢, homology of a topological space X, denoted by H! (X), is
defined as the homology of the complex C%(X) of ¢, chains ¢ = 2, rio; with the
¢, norm ||cll; = Y2, |ri] < oo, where r; € R and 0; € S,(X). Thus C2(X) is
the norm completion of the ordinary chain complex C,(X) and so it is a Banach
space. In [7] Gromov used this ¢; norm mainly for defining the simplicial volume of
open manifolds. By taking the dual Banach space of C%(X), we obtain a cochain
complex Hom(C%(X),R) and its cohomology is called bounded cohomology of X
and is denoted by H™(X).

It is more convenient, in some respect, to deal with the bounded cohomology
with the following independent description, which we will use, rather than with the
dual space of ¢; chain group. We define H "(X) as the cohomology of the complex
B*(X) = {B"(X),0,}, where B"(X) is the space of bounded real valued functions
on S,(X) (see Section 1.2). We define the norm of f € B™(X) by setting ||f|]| =
sup{|f(c)| | o € Sn(X)} which turns it into a Banach space. Thus on H*(X)
there is a natural seminorm ||a|| = inf ||f||, where f runs over all bounded cocycles
representing o € H(X).

There is a group-theoretic analogue of bounded cohomology, which is discussed in
detail in 8]. Here we briefly introduce the bounded cohomology of groups by using the

standard resolution. For a discrete group G, let B(G™) = {f: G > R | ||f|| < o0},



where | f|| = sup{|f(g1,--- ,gn)| | (91,---,9s) € G™}. Then B(G") is a bounded
G-module by which we mean B(G") is a real Banach space together with the G-action
9-f(g91,-+ ,9a) = f(91,-+ ,gng) such that ||g-f|| < ||f]|. Then there is a G-resolution

of the trivial G-module R
d_, do 2y di 3y d2
0> R — B(G) = B(G*) = B(G®) > ---

which is called the standard G-resolution, where the boundary operators are defined

by the formulas d_;(c)(g) = c and for every n > 0

dn(f)(gly e ’gn+2) = (_1)n+1f(g2)' o agn+2)

n+l

+ Z(_l)n+l——if(glv 5 GiGit1, 0 7gn+2)-

i=1

Also we let B(G™)¢ = {f € B(G") | g-f = f for all g € G}. Then we have a complex
0 = B(G)® = B(G*® = B(G*® — ... .

The cohomology of this complex is called the bounded cohomology of G and is denoted
by H*(G).

An important feature of the theory is that the bounded cohomology of a topolog-
ical space and its fundamental group coincide. That makes it possible to study them
simultaneously from two view points: group theory and topology.

Let ¢: Y — X be a continuous map of spaces. We consider the mapping cone

B"(X)@ B™'(Y) and its boundary operator defined by
dn(un, vn—l) = (6nun, —)‘nun - a:;—]vn—l)a

where 0, and 0. are the boundary operators on B*(X) and B*(Y) respectively and
A*: B*(X) — B*(Y) is a cochain map induced by . Then {B™(X)@ B*'(Y), d..}
is a complex. We call the n-th cohomology of this complex the n-th relative bounded

cohomology of X modulo Y and denote it by H*(Y % X). We define the norm || - |

3
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on B*(X)@ B™!(Y) by setting
| (tn, vn-1) || = max{||ual], [|[va-1ll}-

This norm induces a seminorm || - || on H v 5 X).

Similarly, for a homomorphism of groups ¢: A — G we define H *(A % G) whose
seminorm depends on the choice of a pair of G- and A-resolutions. As an important
example, the group H *(A 5 G) is defined as the cohomology of the complex of map-
ping cone {B(G™*!)¢ @ B(A")*} induced from the standard G- and A-resolutions.
The seminorm on which is in fact the canonical one, i.e., the infimum of seminorms
which arise from all pairs of G- and A-resolutions which define H ‘A5 0).

If we consider a pair of spaces X and Y C X and an inclusion map ¢: Y — X,

then there is an exact sequence
0 = ker(p") = B"(X) & B*(Y) = 0,

where p" is the cochain map induced by . It is obvious that {ker(p*)} is a complex.
The n-th cohomology of the complex {ker(p*)} is the relative bounded cohomology
group, by Gromov’s definition. It is denoted by H "(X,Y). In fact, there is a canonical

isomorphism of vector spaces
H*(8): H*(X,Y) » H"(Y % X)

which carries the seminorm on H™*(X,Y) to a norm equivalent to the seminorm on

H "(Y % X). In fact, we have an explicit estimate as the following:

IS IE @I NI for 1] € ALY,

For a pair of groups G and A C G, as an analogue of Gromov’s definition of
H*(X,Y), we can define the relative bounded cohomology group H*(G, A) by using

the exact sequence
0 — ker(p") = B(G™*)C¢ 2 B(A™)4 - 0.

4



Thus, for a pair of spaces X and Y C X, we can define H (7 X,mY) only when
the natural inclusion map Y < X induces an injective homomorphism m;Y — m; X.

In this case, there is an isomorphism
HY(X,Y) > H"(m, X, m,Y)

which carries the seminorm on H "(X,Y) to a norm equivalent to the seminorm on
H "(m X, mY). The difficulty arises from the fact that the induced homomorphism
mY — m X is not injective in general.

From our definition, for a continuous map ¢: ¥ — X and the induced homomor-

phism ¢, : Y — 7, X, we shall construct the cochain map
B"(X)@P B"(Y) = B((m X)) X @ B((mY)")™

and we shall see that the group H "y % X ) is canonically isomorphic with the group
H "(mY £ 7,X) and this isomorphism carries the seminorm on H "Y % X) to
the canonical seminorm on H "(mY £5 m1X). So the relative bounded cohomology
of spaces also coincides with the relative bounded cohomology of their fundamental
groups. Thus it appears that our definition of relative bounded cohomology is more
natural.

Amenable groups, whose definition is recalled in Section 1.3, play a special role in
the theory of bounded cohomology. One of the important facts is that the bounded
cohomology of an amenable group is zero. We shall see that H *(Y % X) is isomet-
rically isomorphic with H *(X) if the group m,Y is amenable.

As similar to the relative bounded cohomology, we also define the relative ¢,
homology groups Ho (Y % X) and H& (A % G) for a continuous map ¢: Y — X of
spaces and for a homomorphism ¢: A — G of groups respectively by using mapping
cones. Then we see that the relative ¢, homology of spaces also coincides with the

relative ¢; homology of their fundamental groups.



Now we describe the content of the paper. In Chapter 1, we review the basic def-
initions and results of the theory of absolute bounded cohomology following Ivanov’s
paper [8], which is the main source of the ideas of the present paper.

In Chapter 2, we construct the theory of the relative bounded cohomology of
discrete groups following the ideas of relative homological algebra. For a group ho-
momorphism ¢: A — G, we define the relative bounded cohomology of G modulo A
and denote it by H*(4 % G) [Definition 2.3]. We also define the norms || - ||(w) on
H *(A % G) for every w € [0,00] and prove that the canonical seminorm coincides
with the seminorm induced by the standard G- and A-resolutions [Corollary 2.8]. For
an amenable group A, we prove that the groups H*(G) and H*(4 % G) are isomet-
rically isomorphic for the norm || - || [Theorem 2.14] and that the norms || - ||(w) on
H*(A % G) are equal for every w € [0, 00] [Theorem 2.15]. Also, for a subgroup A
of G and the natural inclusion map ¢: A — G, we prove that the group H *(G,A) is
isomorphic to H *(A % @) and the isomorphism carries the seminorm on H *(G, A)
to the norm equivalent to the canonical seminorm on H*(A % G) [Theorem 2.19]. It
is not known if they are actually equal.

In Chapter 3, we define the relative bounded cohomology of a space X modulo
Y of a continuous mép Y % X and denote it by H*(Y % X) [Definition 3.2]. Also
we define the norms || - ||(w) on H*(Y % X). The main result of this section is that
B*(Y % X) and H*(mY £5 7, X) are isometrically isomorphic [Theorem 3.3]. We
also prove in Corollary 3.4 and Theorem 3.5 respectively Equivalence theorem and
Relative mapping theorem which are stated in the Gromov’s paper [7].

In Chapter 4, we construct a theory of £; homology of discrete groups. We denote
the ¢, homology of a group G by H(G). The main results of this section are that
the canonical seminorm in H!(G) coincides with the seminorm induced by the bar
resolution [Theorem 4.2] and that H!(G) is zero if G is amenable [Theorem 4.10].

In Chapter 5, we define the relative ¢; homology of a group G modulo A for a



group homomorphism A % G and denote it by H%(A % G)[Definition 5.3). We
prove that the groups H%(G) and H%(A % G) are isometrically isomorphic for
the norm || - ||;(w) for an amenable group A [Corollary 5.10] and that the norms
|- |l1(w) on H(A % G) are equal for every w € [0,00] for an amenable group
A [Theorem 5.8]. For a subgroup A of G, we also define H: (G, A) following the
usual approach to the relative homology of groups. Then we prove that the groups
HY(G, A) and H(A % G) for the natural inclusion map ¢: A < G are isomorphic
and this isomorphism carries the seminorm on H! (G, A) to a norm equivalent to the
canonical seminorm on H% (A % G) [Theorem 5.12].

In Chapter 6, we define the relative ¢; homology of a space X modulo Y of a
continuous map ¢: Y — X and denote it by H2 (Y HX ) [Definition 6.3]. The main
result of this section is that the groups H2 (Y 5 X ) and H: (mY 2 omX ) are
isometrically isomorphic [Theorem 6.4].

In Chapter 7, we define the locally finite £; homology group of a space X as the
inverse limit of an inverse system of relative ¢; homology groups H!!((X — K;) — X)
for every compact subspaces K; C X and the inclusion maps X — K; — X. We
denote it by H®(X) [Definition 7.1]. We also define the norms || - ||, and || - ||;(w) on
H>(X) [Definition 7.2). The group H®(X) is an analogue of the group H,(X) in
[7] which Gromov defined with the locally finite singular ¢;-chains ¢ = -, 70; such
that each compact subset K of X intersects only finitely many (images of) simplices
0;. On H,(X) there are the norms || - ||; and || - ||1(8) for every 8 € [0, 0] induced
by the norms |||y = Yoo, |ri| and ||c|[1(8) = |lc|l: + 6]|0c||: respectively. In fact,
for every 6 € [0,00], Gromov defined the norm ||A||;(f) of h € H,(X) as the limit
lim; o0 ||h;]|1(6), where h; € H,(X,U;) is the homomorphic image of h € H.(X) for a
sequence of subsets U; C X which are large, i.e., the closure of X —U; is compact, and
such that only finitely many U; intersects any given compact subset of X. It seems

plausible that the groups H*(X) and H,(X) are isomorphic and the norms || - ||, and



| - lli(w) are equivalent to the norms || - ||; and || - ||1(@) for w = € respectively but
we leave it as an open question. We consider an amenable covering of X. A subset
Y of X is called amenable if for every path connected component Y’ of Y the image
of the inclusion homomorphism m;Y’ — m; X is an amenable group. A covering of
a space X is amenable if all its elements are amenable (see Section 1.3.2). We prove
Equivalence theorem, which is only stated in the Gromov’s paper [7], to the effect
that on H2°(X) the norm || - ||, is equal to the norms || - ||;(w) for every w € [0, oo] if
a space X is amenable at infinity, i.e., every large set U C X contains another large
amenable subset U’ C U [Theorem 7.5]. Finally, let a space X admit an amenable
covering. Then we prove the Gromov’s vanishing theorem in [7] for H%(X) and for
H®(X) to the effect that the norm || - ||; on H%(X) and the norm || - ||, on HZ(X)
are equal to zero for n > m if every point of X is contained in at most m elements
of this covering [Theorem 7.7 and Corollary 7.8]. We also prove the Gromov’s finite
theorem for H°(X) to the effect that the norm || - ||, on H(X) is finite for n > m
if there is a large set every point of which is contained in at most m elements of
this covering [Theorem 7.9]. In [7] Gromov proved Vanishing-Finite theorem for the
group H,(X) using locally finite diffusion operators u*, where u is a non-negative
real valued function on a group G such that |||l = > |p(g9)] = 1. Then for an ¢,

function f on X and a group G acting on X, the diffusion operators are defined as

(u* f)(z) = dec u(g)f(g'z) for r € X.



CHAPTER 1

Absolute bounded cohomology

groups

In this chapter, we review the basic definitions and results of the theory of bounded
cohomology in [8].

Throughout this chapter G denotes a discrete group.

1.1 Bounded cohomology of groups

1.1.1 Bounded G-modules

By a bounded left G module we mean a real Banach space V together with a left
action of G on V such that ||g - v|| < ||v|]| for all g € G and v € V. We define a
bounded right G-module analogously. We shall call a bounded left G-module simply
G-module. For two G-modules V and W, a bounded linear operator V' — W which
commutes with the action of G is called a G-morphism. The simplest and also an
important example of G-module is R, considered together with the trivial action of G.

Another important example of G-module is B(G™) the set of all bounded functions

f:G" = R, where G" = G x G x --- x G is considered together with the action:

n



g f(gl)” : agn—lygn) = f(gla' e )gn—l,gng)~

More generally, for any Banach space V, we consider the space B(G, V) of func-
tions f: G — V such that ||f|| = sup{|f(g9)| | ¢ € G} < c©. Then B(G,V) is a
Banach space with the norm || - || and the action defined by g - f(h) = f(hg) turns it
into a G-module. It is clear that the space B(G™*?!) is isomorphic with B(G, B(G")),

where B(G™) is considered simply as a Banach space.

1.1.2 Relatively injective G-modules

An injective G-morphism of G-modules i: V — W is said to be strongly injective if
there exists a bounded linear operator o: W — V such that 0 o =id and ||o]| < 1.
We call a G-module U relatively injective if, for any strongly injective G-morphism
of G-modules i: V — W and any G-morphism of G-modules a: V — U, there exists
a G-morphism 3: W — U such that f§oi = a and ||8|| < ||a||. For example, for
any Banach space V, the G-module B(G, V) is relatively injective. In particular, the

G-modules B(G™) are relatively injective (see Lemma 3.2.2 in [8]).

1.1.3 Resolutions

By a strong relatively injective G-resolution of a G-module V' we mean a sequence of

G-modules and G-morphisms of the form
05V ISV, &V 4y,

which is exact as a sequence of vector spaces and satisfies the following two conditions:

i) the sequence is provided with a contracting homotopy, i.e., a sequence of
bounded linear operators k,: V, — V,_; such that d,_; o k, + k,41 0o d, = id for
every n > 0 and kg od_, = id and also || k, ||< 1;

ii) every G-module V,, is relatively injective.

10



We consider a G-resolution of the trivial G-module R of the form
0-RI5BG) ™ B(GY) % BGYH %S ... |
where the boundary operators are defined by the formulas d_;(c)(g) = ¢ and

dn(f)(gla e vgn+2) = (—1)n+1f(g2) te 7gn+2)

n+1

+Z n+1 tf g1, 1, 9iGi+1," " 7gn+2)'

This G-resolution becomes strong relatively injective with the contracting homotopy

R(k—B(G)TB(G2)<-—---,

k2

where k,(f)(g1,- - ygn) = f(g1,- " ,gn,1). We call this resolution the standard G-

resolution. It will play an important role in the theory of bounded cohomology.

1.1.4 Bounded cohomology of groups
For any G-module V, we denote by VC the space of G-invariant elementsin V, i.e.,
={veV|g-v=wv forall g € G}.
For any strong relatively injective G- resolution of the trivial G-module R
0O-R->Vy-oV-oV, >
the induced sequence
02Vl VEs Ve

is a complex and the cohomology of this complex depends only on G. Its n-th co-
homology group is called the n-th bounded cohomology group of G and is denoted by
H "(G). Note that in H*(G) there is a natural seminorm which induces a natural
topological vector space structure on it. Also note that this seminorm depends on

the choice of resolution.

11



We define the canonical seminorm on H *(G) as the infimum of the seminorms
which arise from all resolutions. In fact, this infimum is achieved by the standard
resolution, i.e., the seminorm on H* (G), defined by the standard G-resolution, coin-
cides with the canonical seminorm (see Theorem 3.6 in [8]). Remark that H *(G)isa

contravariant functor of G.

1.2 Bounded cohomology of topological spaces

Let X be a topological space. For every n > 0, we denote by S,(X) the set of n-
dimensional singular simplices in X and by C"(X) the real n-dimensional singular
cochain group, i.e., the set of arbitrary functions S,(X) — R. As is well known, the

sequence

0— COX) L Ccl (X)L C3(X) & ...

is a complex, where d is defined by d,, f(o) = Z:’:g(—l)‘ f(0;0) and O;o is the i-th
face of the singular simplex o.

The cohomology of this complex is H*(X) the real singular cohomology group of
X. Let B*(X) C C™*(X) be the space of bounded functions S,,(X) — R. Its elements
are called bounded cochains. There is a natural norm || - || in the space B"(X) given
by [|f]l = sup{|f(c)| | o € Sa(X) } which obviously turns it into a Banach space. It
is clear that d,B"(X) C B"*!(X).

The cohomology of the complex
0 BY(X) % BY(X) % BX(X) % ...

is called the bounded cohomology of X and is denoted by H *(X).
In ﬁ‘(X ) there is a natural seminorm || - | defined by ||[c]|| = inf|f|| for a
cohomology class [c] of H*(G), where the infimum is taken over all bounded cochains

f in B*(G) lying in the cohomology class [c]. Remark that the inclusions B"(X) —

12



C™(X) induce a canonical map H *(X) = H*(X), which in general is neither injective
nor surjective.

The first basic result of the theory is that the bounded cohomology of a simply
connected space is equal to zero (see Theorem 2.4 in [8]). Moreover, H *(X) depends

only on the fundamental group m;(X) (see Theorem 4.1 in [8]).

1.3 Amenable groups and amenable coverings

Amenable groups play a special role in the theory of bounded cohomology. The tech-
nical aspect of this role is, roughly speaking, that for bounded functions on amenable
groups one can define their mean value in a natural way. One of the important facts

is that the bounded cohomology of an amenable group is zero (see Theorem 3.8.4 in

8])-

1.3.1 Amenable groups

Let S be a set. As is well known, the space B(S) of all bounded functions on S is
a Banach space with the norm | f|| = sup{|f(z)| | £ € S}. A linear functional

m: B(S) — R is called a mean if
inf{f(z) |z € S} <m(f) <sup{f(z) |z € S} forall fe€ B(S).

Let the group G act on S on the right. Then G acts on B(S) on the left by the
formula g - f(s) = f(s-g), where g € G, f € B(S), and s € S. The mean m on
B(S) is called right-invariant if m(g- f) = m(f) for all g € G, f € B(S). If thereis a
right-invariant mean on B(G), then the group G is called amenable. The important
facts are that abelian groups and the homomorphic images of amenable groups are

amenable.

13



1.3.2 Amenable covering

A connected subset Y of the space X is called amenable if the image of the inclusion
homomorphism 7, (Y) — m(X) is an amenable group. An arbitrary subset of the
space X is called amenable if all its components are amenable. Finally, a covering
of the space X is called amenable if all its elements are amenable and in addition it
satisfies the following conditions i) and ii):

i) the space X, all elements of the covering, and all their finite intersections, are
homotopy equivalent to countable cellular spaces;

ii) either the covering is open or it is closed and locally finite and the space X is
paracompact.

For example, if 7r1(Y’) is amenable, then Y is amenable.

1.4 Main properties of absolute bounded cohomol-

ogy

Now, we state the main results of the theory of absolute bounded cohomology. We

refer the proofs to [8].

Theorem 1.1. Let X be a countable cellular space. If X is simply connected, then
H™(X) =0 for alln > 1.

Theorem 1.2. Let A be an amenable normal subgroup of G. Then the map
p*: fl‘(G/A) — H*(G), induced by the canonical homomorphism ¢: G — G/A,

s an isometric isomorphism, i.e., it preserves the canonical seminorm.
Corollary 1.3. If G is amenable, then fAI"(G) =0 foralln > 1.

Theorem 1.4. Let X be a connected countable cellular space. Then H *(X) is canon-
ically isomorphic with H *(w1X). The seminorm in H' (X ) is carried to the canonical

seminorm in H *(m1X) through this isomorphism.

14



Proof. For our further use, we sketch the proof of this theorem.

Let m: X — X be a universal covering of X.

Let || - || denote the canonical seminorm on H *(m1X) and let || - ||s the seminorm
on H “(X).

First, it is shown that the sequence
0—- R — B%X) - B'(X) = B}(X) - --- (1.4.1)

is a strong relatively injective 7y X-resolution of the trivial 7r; X-module R. Since
the map 7n*: B*(X) — B*(X) establishes an isometric isomorphism B*(X) —
B*(X)™X and commutes with the boundary operators, the bounded cohomology

H *(71X) induced from the complex
0 — B%(X)™* - B'(x)"X — B*(X)™X - B3(x)"X - ...

coincides with H *(X) as topological vector spaces.

Remark that the seminorm on H *(X) coincides with the seminorm on H*(m1X)
induced by the resolution in (1.4.1). So we have || - || < | - ||

On the other hand, for every n > 0, it is shown that there is a 7r; X-morphism

¢": B((w1X)"*!) = B"(X) of the resolutions

0 » R » B(mX) — B((mX)?) — B((mX)}) — -

L owl el e ‘

0 » R y B(X¥) — BY(X) —— B¥X) — -

extending idg and such that ||("|| < 1 for n > 0. Namely, let Xy C X consist of
one element from each 7, X-orbit. For each singular simplex o: A, =& X we set
{6} = (g0, ,9n), where g; € w1 X such that o(v;) € gn_i---gaXo and v; is the
i-th vertex of the simplex A,. Then we define (" by the formula(*(f)(c) = f({o})
for every f € B((m1X)"*'). Since ||¢"|| < 1, this shows that we have || - ||, < || - ||.

Hence the seminorm in H *(X) is equal to the canonical seminorm in H (mX). O
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Corollary 1.5. The group ﬁ‘(X) is zero if w1 X is amenable.

Theorem 1.6. Let X, and X, be connected countable cellular spaces and let f: X; —
X, be a continuous map. If the homomorphism f,: X, — 7 X, is a surjection with
an amenable kernel, then the homomorphism f": H (X2) — H *(X,) is an tsometric

isomorphism.

Theorem 1.7. Let X be a topological space, U be an amenable covering of the space
X, N be the nerve of this covering and |N| be the geometric realization of the nerve.
Then the canonical map H*(X) — H*(X) factors through the map H* (|N]) —
H*(X).

Corollary 1.8. If X admits an amenable covering such that each point of X is con-
tained in no more than m elements of the covering, then the canonical homomorphism

H™(X) —» H™(X) vanishes for n > m.
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CHAPTER 2

Relative bounded cohomology of

groups

Throughout this chapter, G and A denote the discrete groups.

Let ¢: A — G be a group homomorphism. Then any G-module U can be made
into an A-module by defining the action of A to be a-u = ¢(a) - u for a € A and
ueU.

We recall that H *(G) is a contravariant functor of G. This functoriality can also

be described in terms of arbitrary resolutions, as follows: Let
0O-R->Uy—»U; -+ and 0-R-2>Voa>V -

be strong relatively injective G- and A-resolutions of the trivial G- and A-module R,
respectively. Then the map idr extends to an A-morphism of resolutions, i.e., to a

commutative diagram:

0 > R y Ug — Uy —— ---
|l ol
0 » R > Vo y V1
where M(p(a)-u) =a-\(u) fora€ AandueU.

v

It follows from the last formula that A(US) C V4, and hence there is an induced

homomorphism ¢*: H *(G) — H *(A), which depends only on ¢ (see Lemma 3.3.2 in

17



[8]). Also remark that ||o*| < 1.

Definition 2.1. Let ¢: A — G be a group homomorphism. A strong relatively injec-

tive G-resolution of a G-module U

2

o- d Is,
0_)17_1.)1]0_8_0)1)1_1)1)2_)...

ko ky k2 k3
and a strong relatively injective A-resolution of an A-module U
8 8 8, a
0—)U—1)‘/0-—0‘)V1—1')V2-—1)
— e
tg t) tg t3
are called an allowable pair of resolutions for (G, A;U) if idy can be extended to an
A-morphism of resolutions A\": U, — V,, such that A\ commutes with the contracting

homotopies k, and t,, for alln > 0.

Proposition 2.1. Let ¢: A = G be a group homomorphism. The standard G- and
A- resolutions of the trivial G- and A-module R are an allowable pair of resolutions

for (G, A;R).
Proof. Recall that the standard G- and A-resolutions

0> RIHBG) % BGY) % BGYH S ... |
— — ‘- —

ko k kg k3

-

0 - R %2 B(a)
(_

to

B(A%) & B(a%) &, ..
— —

t2 t3

s

-
-

of the trivial G- and A-module R are strong relatively injective. Also recall that

the contracting homotopy k,: B(G™*') — B(G™) is defined by the formula

kn(f)(glv"' )gn) = f(gl, ’gml)

and that G acts on B(G™) by g f(g1,*-* ,9n) = f(91, " ,9n9).

18



It suffices to show that there is an A-morphism of the standard G-resolution to

the standard A-resolution

0 y R —=% B(G) —* B(G?) - B(G®) —2 ...

Lowl ol el
0 —— R -2 B(4) %, B(4?) %, B(A%) —%, ...
extending ¢dr and such that p" commutes with the contracting homotopies k, and

t, for every n > 0.
We define p™ by the formula
P (f)a1, -+ yans1) = flplar), - p(ant1))

for f € B(G™!) and (a1, --@n41) € A™L. It is easy to check that p® commutes
with the boundary operators and has the norm ||p"|| < 1.

Note that, for a € A and f € B(G™*!), we have
p*(a- f)(a1, - ans1)
=p"(p(a)- f)(ar, -+ ,ant1) = (0(a) - f)(p(ar), -, (ant1))
= f(p(a1), -, p(ans1)p(a)) = f(p(ar), -, p(ani1a))
=p"flar, -+ ,ann1a) =a-p"flar, - ,an41)

and so the map p" commutes with the action of A. Thus p" is an A-morphism.

Now, for every f € B(G) and r € R, we have
(idrko — top°) (f)(r) = idrko(f)(r) — tp®(f)(r) = f(1) = f(1) = 0.
Also, by noting that (1) = 1, we have for every n > 0
(P ka = tap™)(f)(ar, -+, an)
=p""'ka(f)(a1,- -+ ,an) — tap"(f) (a1, , an)
= kn(f)(p(a1), -+ o(an)) —p"(f)as, -+ ,an, 1)

= f((p(al)v ’(p(an))l) - f(so(a’l)v ,QO(G,,),LP(].))

= 0.
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Thus the A-morphism p™ commutes with the contracting homotopies k, and ¢,. This

finishes the proof. O
Definition 2.2. Let ¢: A — G be a group homomorphism. Let
0O-R-o2Uy—>U —:--- and 0-R->Vgo2>V— ..

be an allowable pair of resolutions for (G, A;R). For every n > 0, the mapping cone
M™(A % G) and the mapping cylinder EM™(A % G) of the cochain complezes

induced by ¢ are defined as follows:

MM(ASG)=US PV,

EM"A%G) =V APUEPVA,
for every n > 0 and where VA = 0.
Lemma 2.2. Let ¢: A — G be a group homomorphism. Let
0RZS5 U 20, % and 00R I By 5

be an allowable pair of resolutions for (G, A;R), and let \*: U, — V,, be an A-

morphism of resolutions commuting with the contracting homotopies. Then the se-

quences
05 MMUBG)DBMULE) B MALGS ... (2.2.1)
05 EMAHG) L EM(ASHG) BHEMADG) S ... (2.2.2)

are complezxes, where the boundary operators d,, are defined by the formulas

An(Un, Vn-1) = (Onln, —A"up — O),_1Un_1) on M"(A S G)

dp(Vn, Un, Un—1) = (O, Un, Onln, Vn — A"Un — O} _1Un_1) on EM™(A S G).
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Proof. We check d,,+1d, = 0 for EM"(A % G).

dn+1@n (Vn, Un, Vn-1)

= dp11(0,Vn, Onlln, Vpn — AU, — 8, _1Un_1)

= (0,4104Un, Ons10aUn, Ohvy — A" (Baun) — 8 (Un — AMup — 8y_1Un-1))
= (0, 0, 8 vn — A" 10 u, — OLvn + O A un + 8L0)_ 1 Vn—1)

= (0, 0, 0).
By the same way, it is easy to check d,;1d, = 0 for M (4 5 G). O

Definition 2.3. The n-th cohomology of the complex in (2.2.1) is called the n-th
relative bounded cohomology of G modulo A and is denoted by H (A% G). Also the
n-th cohomology of the complez in (2.2.2) is denoted by ﬁ"(EM(A % G)).

We define the norm || - || on EM™(A % G) = VAQPUS @ VA, by setting
[|(vn, tn, vn1)ll = max{[[vnll, luall, [[vn-1ll},

and similarly on M*(4 % G) by setting ||(un, vn_1)|| = max{|[un||, [[ta-1l}-
Remark that these norms define the seminorms || - || on H*(A % G) and
H “(EM(A % G)) respectively.

Furthermore, for every w > 0, we define a norm ||-||(w) on M"(A % G) by putting

| (%n, vn-1)l[(w) = max{|lun||, (1 +W)_1”Un—l”}-

Observe that all norms || - ||(w) are equivalent to the norm || - || = || - ||(0). Now with
this norm on M*(A % G) we have the corresponding norm || - ||(w) on I?‘(A % G).
Finally we define this norm || - ||(w) on H *(A % @G) for all w in the closed interval

[0, o0] by passing to the limits.
Proposition 2.3. Let ¢o: A — G be a group homomorphism. Let
- l 8’- 8’ 8'
0oREL UL, B0, % .. and 05RBV D0 S
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be an allowable pair of resolutions for (G,A;R), and let \*: U, — V, be an A-
morphism commuting with the contracting homotopies. Then the natural projection

map p": EM™(A % G) - US induces an isometric isomorphism
H"(p): HEM(A % @) » H(G).
Proof. We consider the exact sequence
0 VAPVA, = EMNA5G) =VAQPUEPVL, S UE —o.

It is easy to check VA@ VA, is a complex. If (v,,v,_;) is a cocycle of the complex
VAP VA,, then we have 0 = d(vn,Vn_1) = (8., vn — 8,_1Vn_1) and so v, =
0p_1Vn-1- Thus (vn,vn-1) = (8},_1Vn-1,Vn-1) = dn-1(vn-1,0) and thus (v,,v,_;) is a
coboundary. This shows that the cohomology of the complex V,A @ VA, vanishes so

that the map H"(p) is an isomorphism.

For (Un,Un,vn_1) € EM"(AS G)=VAQUEPVA,, we have
Hpn(vmumvn—l)” = ”un” < ma-x{“Un”v ”un”) ”Un—lll} = ”(vmumvn—l)”'

This shows that ||p"|| < 1 and so ||[H™(p)| < 1.
On the other hand, we define amap p": US - VAP UL @ VA, by the equation

P (un) = (A™up, un, 0). Then we have
dnpup = (O AN "Un, Ontin,0) = (A\"T18,up, Onttn,0) = p" 1 0,u,

and so the map p" commutes with the boundary operators. It is clear that p"p" = id.

Note that, for every u, € U, we have
12" (un) |l = [[(Attn, tn, 0)]| = max{[|[A"unl|, lunll, 0} < ||unl|

and so ||p"|| < 1. This shows that the inverse map (H"(p))~! of H"(p) also has the

norm ||(H"(p))~!|] < 1. Hence the isomorphism H"(p) is an isometry. O
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Let ¢: A — G be a group homomorphism, and let

o- F;) o &’ o'
0-RILU, 20,2 ... and 05 RBV, 2V 2.

be an allowable pair of resolutions for (G, A; R).

Remark that there is an exact sequence of complexes
0 M(ASHG) S EMMAS G L VAS, (2.1)

where 1" and p" are natural inclusion and projection maps respectively. This exact

sequence in (2.1) induces a long exact sequence
o HYY(A) » HNA S G) - H(G) » HY(A) > - . (2.2)

Recall that the canonical seminorm on H *(G) is defined as the infimum of the
seminorms which arise from all strong relatively injective G-resolutions of the trivial

G-module R.

Theorem 2.4. The canonical seminorm on H *(G) is induced by the standard G-

resolution.

Proof. Let

a- 1]
0-RBU, 20, 50,2 ...

— R e

ko ky k2 k3

be a strong relatively injective G-resolutions of the trivial G-module R.
From Theorem 3.6 in [8], it is proved that there is a morphism ¢, from this

resolution to the standard resolution
0 > R > Ug —_— U 1 E— U2 _ -

[l el el e
0 » R > B(G) —— B(G?) —— B(G3®) —— ---

extending idg and such that ||a,|| < 1 for every n > 0, where the morphism a, is

defined by the formula

an(f)(g1,- 1 9ns Gnr1) = Ko(g1 - K1(- -+ (kno1(gn - Kn(gns1 - ) -++).
This finishes the proof. O
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Corollary 2.5. The seminorm on H*(EM(A % @G)), induced by the standard reso-

lutions, coincides with the canonical seminorm on H*(G).
Proof. Remark that the standard G- and A- resolutions define the complex
EM"(A _f) G) — B(An+])A@B(Gn+I)G®B(An)A

and the cohomology of which is H *(EM(A % @)). Hence it follows from Proposition
2.3 and Theorem 2.4. a

Remark that, for a group homomorphism ¢: A — G, a seminorm on H A5 G)

depends on the choice of an allowable pair of resolutions for (G, A; R).

Definition 2.4. We define the canonical seminorm || - ||(w) for every w € [0,00] on
H ‘(A5 G) as the infimum of the seminorms which arise from every allowable pair

of resolutions for (G, A;R).

As in H*(G) and ﬁ"(EM(A % G)), we shall see the canonical seminorm on

H *(A % Q) is also induced by the standard resolutions.

Lemma 2.6. Let ¢: A — G be a group homomorphism. Let

01 [ & 0., A 3
0O-R—Uy—U —- and 0-R— VgV — ...

“ % % I T

0 1 2 0 1 2

be an allowable pair of resolutions for (G, A;R), and let A™: U, — V, be an A-
morphism of resolutions commuting with the contracting homotopies. Then there is
a commutative diagram

An

UG vA

l !

B(Gn+1)G p" 3 B(A"“)A,

where p* is defined by p"f(a1, -+ ,ant1) = f(p(ar), -+, @(ans1)).
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Proof. In the proof of Theorem 2.4, there is a cochain map a,: US — B(G"*!)¢

defined by the formula

an(f)(91, 1 9n, Gn+1) = ko(gr - k1(- - (kn=1(gn - kn(gns1- £))) - --)-

Similarly, we define a cochain map 7,: V.¢ — B(A"*!1)4. It is clear that they have
the norms ||a,|| < 1 and ||y, < 1.

We prove that y,A" = p"a,. Let f € US and (a1, -+ ,@n,any1) € A™*L. Then

WA (f)(a1, -+ s @ny Ansa)

= to(ar - ti(- - (ta=1(an - ta(ans1 - A(f))))) - -)

= to(ar - t1(- -~ (tn-1(an - ta(A"(9(@ns1) - £)))) -+ )

= to(ar -t (- (tn-r(an - A" hn(@(ans) - £)))) -+ +)

= to(ar - t1(- - (tam1 A" ((an) - kn(@(ans1) - £)))) )

= tO(al . tl(' . (/\n_zkn—l(go(an) : kn(‘p(an-l—l) : f)))) U )

= 7:deO(‘P(al) : kl( o (kn—-l(‘P(an) : kn(‘P(an+l) : f)))) e )

and also
pnan(f)(alv e 7an1an+1)
= an(f)(‘P(al)» vt 1(;0(0’11), (p(a’n-f-l))
= ko(w(a1) - ki1 -+ (ka—1((an) - kn(p(@ns1) - £))) -+ +).
Thus p"a, = 7,A" for every n > 0. a

Theorem 2.7. The seminorm || - ||(w) on }AI"(A % @), induced by the standard G-

and A-resolutions, coincides with the canonical seminorm for every w € [0, co).
Proof. Let

0-R—->Uy—-U;—>:--- and 0->R->Vi—-o2>V —---
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be an allowable pair of resolutions for (G, A;R), and let A": U, — V,, be an A-
morphism of resolutions commuting with the contracting homotopies.

Note that we have two complexes US @ VA, and B(G"*')¢ @ B(A™)* which
are induced from the resolutions above and the standard resolutions respectively. It

is enough for us to prove that there is a cochain map
Bn: USE@P VL, - B(G™)° P B(A™)*

such that it has the norm ||5,|| < 1.
For simplicity, we denote all boundary operators by the same notation d.

Recall that, from Lemma 2.6, there is a commutative diagram

G A" A
U, — V.

anl l%

B(Gn+1)G P N B(An+1)A
in which the maps have the norms ||a,|| <1 and ||y,|| < 1.

We define 3, by Bn(un,vn-1) = (@ntn, Yn-1Vn-1). Then we have

Br+1@n(Un, Un-1)

= Bnt+1(dnttn, —A"Un — dao1Vn-1) = (@nt1dnlin; —VaA " Un — Yndn-1Vn-1)
= (daQnUn, —P"Cnln = dn-1Vn-1Un-1) = dn(Cnln, Yn-1Vn-1)

= dnBn(Un, Vn-1)

and so 3, commutes with the boundary operators.

Now let w > 0. Then we have

I Bn (n, Un—l)”(w)
= ”(anum ’7,,_11)"_1)”((4}) = max{”anun”’ (1 +w)—l”7n—lvn—1”}

< max{||uall, (1 +w) vac1ll} = [[(%n, vaz1)ll(w)

and so the map (3, has the norm ||3,]| < 1 for the norm || - ||(w). d
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Corollary 2.8. The seminorm ||-|| on H*(A % G), induced by the standard G- and

A-resolutions, coincides with the canonical seminorm.

Proof. This follows from Theorem 2.7 by setting up w = 0. O

One of the important examples of H ‘A5 G) arises from a subgroup A of G.

Recall that B(S), the set of all bounded functions on a set S, is a Banach space with
the norm ||| = sup{If(s)| | s € S}.

In the following, we introduce another strong relatively injective G-resolution
which also provides for the canonical seminorm in H*(G).

Let A be a subgroup of G. Then G/A, the set of all (right) cosets Ag of A in G,
has a right G-action given by Ag- g’ = Agg’. We note that the space B((G/A)") is a

G-module with the action:

g - f(Ag, -+, Aga) = f(Ag1,- -+ , Agng').

The canonical map ": B((G/A)") — B(G") is a G-morphism and it has the norm

"] = 1.

Lemma 2.9. Let A be an amenable subgroup of G. Then there is a G-morphism
™. B(G") = B((G/A)") such that ™" =id and ||7"| < 1.

Proof. From Lemma 3.8.1 in [8], it is proved that there exists a G-morphism
m: B(G) = B(G/A) such that moi =1id and ||7|| < 1. In fact, 7 is defined by the
formula 7(f)(Ag) = my(f|Ag), where mgy is a mean on B(Ag) induced from a right
invariant mean on B(A). Also from Corollary 3.8.2 in [8], it is proved that this G-
morphism 7 provides a G-morphism 7": B(G") — B((G/A)"™) such that 7" 0" = id

and ||7"|| < 1 for every n > 1. O

Proposition 2.10. Let A be an amenable subgroup of G. Then the sequence

0-R “:> B(G/A) g B((G/A)?) j-_» B((G/A)®) :_'-_» (2.10.1)
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15 a strong relatively injective G-resolution of the trivial G-module R, where the bound-
ary operators d,, and the contracting homotopy k, are defined as the same ways with

the standard resolution.

Proof. 1t is easy to check that the sequence in (2.10.1) is a strong G-resolution.
By using the G-morphism #": B(G") — B((G/A)") in Lemma 2.9 and the fact
that B(G™) is the relatively injective G-module, it is proved that B((G/A)") is the

relatively injective G-module from Lemma 3.8.3 in (8]. a

Note that the resolution in (2.10.1) induces the complex
0 = B(G/A)® = B((G/A)*)® = B((G/A)*)® — --- (2.3)
and the cohomology of which is H*(G).

Corollary 2.11. Let A be an amenable subgroup of G. Then the seminorm on ﬁ"(G),

induced by the complex in (2.8), coincides with the canonical seminorm.

Proof. In H *(G), let || - ||lc denote the canonical seminorm induced by the standard
G-resolution and let || - || denote the seminorm induced by the complex in (2.3).
Recall that there is the canonical G-morphism i*: B((G/A)") — B(G") such that
it has the norm ||2"|| = 1. This shows that || - || < || - |-
Also, from Lemma 2.9, there is a G-morphism 7": B(G") — B((G/A)") such that

" o1 = id and ||7"|| < 1. This shows that || - || < || - ||.- a

Note that A/A, the set of cosets of A in A, consists of only one element which we
will denote by {A}. Hence B({A}") consists of all bounded functions on one element
{A}" and so it is isomorphic with R.

If A is an amenable group, then there is a strong relatively injective A-resolution

of the trivial A-module R

0- R =5 B({4}) & B{4)) & BUAP) & B{a)) & -
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This resolution induces the complex
0 B{AD* B BUAP)* % BUAF)* & BUAP)* 5 .. (2.4)

and the cohomology of which is H*(A).

From definition of the boundary operators, d,(f)({A}, --,{A}) is the n + 2
2
n+
alternating sum of f({A},---,{A}) and so
1
n+

id if n is odd,

[/
3
Il

0 if niseven.

Note that this gives another proof of the bounded cohomology of an amenable group

is zero.

Corollary 2.12. Let A be an amenable subgroup of G. Then the sequences

0 - R — B(G/A) - B((G/A)?*) — B((G/A)®}) = --- and

0 — R — B({A4}) —» B({4}?) —» B({A}®) —»
are an allowable pair of resolutions for (G, A;R).

Proof. We define a map p": B((G/A)"*') — B({A}**') by the formula
pn(f)({A}’ a{A}) = f(A’ ’A)

n+1 n+1
It is clear that p™ is an A-morphism of resolutions extending ¢dg. Also, as the

same way we proved in the standard resolutions, it is easy to check that p” commutes

with the contracting homotopies. O

Proposition 2.13. Let A be an amenable subgroup of G. Let p: A — G be a natural
inclusion map. The seminorm || - ||(w) in H*(A 5 G), induced by the complez

B((G/A)™1)? @ B({A}™)4, coincides with the canonical seminorm for every w €

[0, o0].
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Proof. For all w > 0, let || - ||.(w) denote the canonical seminorm in H*(A % G)

and let || - ||(w) denote the seminorm in H *(A % G) induced by the complex

B((G/A")¢ @ B({A}")4. By definition of the canonical seminorm, we have
Il lle(w) < || - I(w). So, it suffices for us to show that || - ||(w) < || - ||c(w).

From Theorem 2.7, the canonical seminorm in H “(A % G) is induced by the

complex B(G™*1)¢ @ B(A™)A. Recall that there are canonical chain maps
B((G/A)™1)¢ > B(G™)C and 4™: B{A}™1)A > B(A™1)4

such that ||@"|| =1 and ||3"|| = 1. Also, from Lemma 2.9, there are chain maps
B(G™NC = B((G/A)™C and A": B(A™1)A — B({A}™)4

such that 7"a™ = id and A™y" = id and they have the norms ||7"|| < 1 and

IA*|| < 1. We consider the following diagram

B(G"H)G q" E B(AnH)A

”"l lxn

B((G/A)*)¢ = B{A})A
in which ¢" and p" are defined as the restriction maps so that they have the norms

llg™|l <1 and ||p"|| < 1. We prove that this diagram is commutative. Note that

A"t f({A}, - {A}) = m(q"f) = m(flann)
— 7" f(A,--- , A)

=p"r" f({A},---,{A}),

where m is a mean on B(A™*!). Thus we have \"¢" = p"n™.

Now we define a map

B*: B(G™)¢ P B(A™)"* —» B((G/A)")° P B({A}")*
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by the formula B"(f, f') = (7" f, A"~!f'). Then we have
dg™(f, f') = (=" f, X" f') = (dn" f, —p"7"f — dA*T f)
— (7r"+1df, _)\nqnf _ /\ndf’)
= "N (df, —¢"f — df') = B"*'d(f, f')

and so /" commutes with the boundary operators. Finally, note that

18™(f, £)l(w) = max{||7" ], (1 +w) T A" 11}
< max{[|f[l, (1 +w) T £} = I(f, F)ll(w)
and so the map " has the norm ||3"|| < 1 for the norm || - ||(w). This shows that

| [l(w) < ||+ lle(w). Thus we have || - ||(w) = || - ||c(w) on fl‘(A 2, G) for every

w € [0, 00] by passing to the limits. O

Notation: We always distinguish a (co)homology class from a (co)chain by us-
ing brackets: for example, [f] stands for a (co)homology class while f stands for a

(co)cycle.

Theorem 2.14. Let A be an amenable subgroup of G, and let p: A — G be
an inclusion homomorphism. Then, for every n > 2, the induced homomorphism
H™(i): ﬁ"(A % G) —» H™(G) is an isometric isomorphism for the norm || - ||, i.e.,

H™ (i) preserves the canonical seminorms.

Proof. By Proposition 2.3 and Proposition 2.13, it is enough for us to consider the

complexes in the sequences (2.3) and (2.4). We define the complexes
M"(4 5 G) = B((G/A)™)° @ B({4}")
EM™(A % G) = B{AY"")* @ B((G/A)")° @ BHAM™.
Then the exact sequence
05> M AHG) S EM(ASG) - B{A)""HA 50
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induces a long exact sequence
o BN A) o B A S 6) 2D v G) - B A) -

Since A is amenable, the map H*(7) is an isomorphism. Also it is clear that the map
H*(i) has the norm ||H*(7)|| < 1. We denote by 0. and &, the boundary operators
on B((G/A)‘)G and B({A}*)? respectively.
Let (f",f, f') € B{A}"')4 D B((G/A)"“)G & B({A}")* be a cocycle. Then,
by definition of the boundary operator, we have
0.f"=0, 0.f=0, and f"—p.f—0,,f =0.

Let n be odd, so that 0, = id. Then we have f” =0 and so

d(f’ f’) = (anf, _pﬂf - a:;—lf,) =
It is easy to check that (H™(:))~'([f", f,f']) is represented by a cocycle (f,f’) €
M™(A % G) and [|(H())™"| < 1.
If n is even, then &,_, = id. So there is an element fJ € B({A}")? such that
' fi = f" and [|f"]| = || f2]l. Then we have
(f”af’fl) _d( (I)I,O’O) = (O’fvfl _f(;,)
and also d(f, f' — fi) = (Onf,—p"f — 0o, f' + 0,,_,f)) = (0,0). Now it is easy to
check that (H™(:))~*([f”, f, f']) is represented by a cocycle (f, f'— fi). Remark that
If" = Sl = 10 (f = SO = 1f" = puf = G i oIl = llpa fIl < NI

Thus we have

ICH @) £, FDI S S f = f)ll = max{lIFIL 1L = foll} = £
< max{|[f"Il, IF 1L ILF} = N7 O
This shows that ||(H"(:))7!|| < 1 is also true for every even n.

Thus the isomorphism H"(7) is also an isometry. O
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From Theorem 3.8.4 in (8], it is proved that, if A is an amenable normal subgroup
of G, then the groups H*(G/A) and H*(G) are isometrically isomorphic. Hence, by
Theorem 2.14, the groups H*(A % G) and H*(G/A) are also isometrically isomor-

phic.

Theorem 2.15. Let A be an amenable subgroup of G and let p: A — G be an
inclusion homomorphism. Then the norms || - ||(w) on the group H*(A % G) are

equal for n > 2 and for every w € [0, 00].

Proof. Let w > 0. Since it is clear that || - ||[(w) < || - || = || - ]|(0) for every w € [0, 00]
from definition, we only show that || - |[(w) > || - ||

By Proposition 2.3 and Proposition 2.13, it is enough for us to consider the com-
plex B((G/A)™)° @ B({A}")*.

If (f, f') is a cocycle of the complex B((G/A)"“)G@B({A}")A, then we have
0 = du(f,f) = (Buf,—p"f — Busf), where p: B((G/A)*)® = B{A}") is
defined as a restriction map and so it has the norm |[p*|| < 1. Also d and @ are the
boundary operators on B((G/A)*)¢ and B({A}*)? respectively.

Recall that, since the group A is amenable, if n — 1 is odd, then &;,_; = id and so

—p*f—0,_f =—-p*f — f ' =0. Thus f' = —p"f. This shows that

ICf, SN = max{|I Il 1711} = max{|lf1, [Ip" £} = I£1]
= max{[[f[l, (1+w) " [Ip"flI} = max{||fll, (1 +w) " II£II}
= [I(f, F)ll(w)

and so ||[f, f]ll < lI[f, fl(w).
On the other hand, if n — 1 is even, then 9;,_; = 0. So &,,_,f' = 0 and so f' €

ker(8,_,) = Im(8._,). Note that 8! , = id. Thus there is an element f” € B(A*"1)4

such that 8),_,f" = f' and ||f"|| = || f'||. Note that

(f, £) +daa(0, ) = (f, f) + (0, =0, o f") = (£,0).
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Thus we have [[[f, f]ll = [I[f, O]l < max{||f[|,0} = [[fll = [I(f, 0)ll(w) and so
L £IE< LS Olll(w) = 1I[f5 Il (w).-
By passing to the limits, we have ||[f, f']l| < |I[f, f']ll(w) for every w € [0, o0].

This finishes the proof. (]

Theorem 2.16. Let ¢: A - G and ¢': A’ - G’ be the group homomorphisms
respectively. Let a: G — G' and v: A — A’ be the surjective homomorphisms with
the amenable kernels respectively and such that a o ¢ = ¢’ o«. Then the groups
ﬁ‘(A’ LN G') and ﬁ‘(A % G) are isometrically isomorphic for the norm || - ||(w)

for every w € [0,00]. This isomorphism preserves the canonical seminorms.

Proof. Denote ker(a) and ker(y) by K and N respectively. We identify the groups G’
and A’ with G/K and A/N respectively and denote the homomorphism A/N — G/K

by p. Then we have a commutative diagram
A —"5 A/N
wl pl
G —— G/K.
Remark that p is defined by the formula p(Na) = K¢(a).

It suffices for us to show that H*(A/N % G/K) and H*(A % G) are isometri-
cally isomorphic. Since K and N are amenable normal subgroups of G and A respec-
tively, the groups H*(G) and H*(A) are isometrically isomorphic with H*(G /K) and
H*(A/N) respectively. We consider the standard G/K- and A/N-resolutions of the
trivial G/K- and A/N-module R. Note that there is a diagram

B((G/K)™)® = B(G™)° — B((G/K)"™)°
! 7| v
B((A/N)1)* L Barya 22, B((4/N)v)!
where each row consists of the maps in Lemma 2.9 such that 7":" = id and A"j" = id

and also they have the norms |i*|| = 1, ||j*|| =1, ||#*|| £ 1, and ||A"|| £ 1. The
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maps p" and ¢" are defined by the formulas

P far, - s an11) = fp(ar), -+, p(an41))

q"f'(Nay, -+ ,Nany1) = f'(Kp(a1), -, Kp(ans1))-

We prove that this diagram is commutative. It is easy to check that the first square

is commutative. For the second square, we note that

¢"m"f(Nay, -+, Nan1) = 7" f(Kp(a1), -, Kp(ant1))
= mean of f on (Ktp(al)a T ’K‘p(an+l))

= mean of p"f on (Nay, - ,Nan41)

= )\npnf(aly e aa'n+1)

and so we have ¢"7" = A"p".

From definitions, we have the following complexes

M"(A/N % G/K) = B((G/K)"*")° @ B((4/N)")"
EM"(A/N % G/K) = B((4/N)"*)* @ B((G/K)"")° @ B((4/N)")"
M" (A% G) = B(G™")° P B(A™)*
EM"(A% G) = B(A™)A @D B(G™")° P B(A™)*.
We consider the following diagram

0 M™(A/N & G/K) —— EM"(A/N % G/K) —— B((A/N)")* =0

g | |
0o>M(AHG — EMMAHG —— BAMNA-S0

in which each row is exact and each column is defined by the formulas
an(f”af, f,) = (jnfllainfvjn——lf,)) :Bn(f) f,) = (infvjn_lf')’ 7nf” =jnf"'

It is easy to check that these maps commute with the boundary operators and the

diagram is commutative. Also this diagram induces the following commutative dia-
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gram

H"'(A/N) —— H"(A/N % G/K) —— H"(G/K) —— H"(A/N)

H"“('y)l H"(B)l H"(a)l H"(v)l

HAH'(A) —  HA4%G6 —— HYG) —— H"(A).
Since H*(a) and H*(7) are isomorphisms, the map H*(3) induced from $* is also an
isomorphism. Also note that we have ||5"|| < 1 for the norm || - ||(w) for every w > 0.
So the induced map H™(f3) has the norm ||H"(3)|| < 1 for the norm || - ||(w) for every
w € [0, 00].
On the other hand, we define (3" M*(A % G) - M*(A/N & G/K) by the
formula B"((, ¢') = (7¢, A""1¢’"). Then we have

d"lgn(c,cl) — dn(ﬂ,nC, An—1<l) — (dnﬂ_nc’ _qnﬂ,ng _ dﬂ—lAn—ch)
= (a"dNG, —ApNG = AN = BTG, —pt - d ()

= A" (¢, ()

and so [3"‘ commutes with the boundary operator. It is easy to check that B"E" =
id. Since we have ||7"|| < 1 and ||A\"7!|| < 1, it is clear that the map B" has the
norm ||B"|| < 1 for the norm || - ||(w) for every w > 0. Hence the induced map
H*(8): H*(A % G) » H"(A/N % G/K) is the inverse of H*(8) and also has the
norm ||H"(E)“ < 1 for the norm || - ||(w) for every w € [0,00]. Thus the isomorphism

H"™(B) is also an isometry. a

Corollary 2.17. Let A be an amenable group, and let ¢: A — G be a group homo-
morphism. Then the groups I?"(A % G) and ﬁ"(G) are isomorphic. Furthermore,
the norms || - ||(w) in PAI"(A %, G) are equal to the norm || - || in ﬁ"(G’) for every

w € [0, 00].

Proof. We note that the image ¢(A) is an amenable subgroup of G and also note that

ker(y) is an amenable subgroup of A.
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We denote by p: ¢(A) — G an inclusion map and consider the diagram
A — p(A)
I
¢ 2% G.
It is clear the diagram is commutative and the horizontal maps are the surjective
maps with the amenable kernels respectively. Then, by Theorem 2.16, the groups
H* (A% G)and H "(p(A) & G) are isometrically isomorphic for the norm || - ||(w).
Now, by Theorem 2.14, the groups H"(¢(A) & G) and H"(G) are isometrically
isomorphic for the norm ||-||. Also, by Theorem 2.15, the norms || - ||(w) on the group

H"(p(A) % G) are equal to the norm || - [|(0) = || - ||. O

In the rest of this chapter, we let A be a subgroup of G and let ¢: A — G be
an inclusion homomorphism. Then we give another description of relative bounded

cohomology of G modulo A.
Definition 2.5. Let
a' / /
RIS UL, B0, and 0 RIEL, 20 5.

be an allowable pair of resolutions for (G,A;R), and let \": U, — V, be an A-
morphism of resolutions commuting with the contracting homotopies as in Definition
2.1. If A* induces a surjective map A\": US — VA as the restriction map of A" for

every n > 0, this pair of resolutions is said to be proper.
Proposition 2.18. The pair of standard G- and A-resolutions is proper for (G, A; R).

Proof. From Proposition 2.1, the standard G- and A-resolutions are an allowable pair

for (G, A;R). Note that the map p”: B(G™*!) — B(A™*!) is defined by the formula

pn(f)(al’ e 1an+1) = f(ah U aan+l)-
It suffices to show that the restriction map p": B(G"*!)¢ — B(A"*!)4 is surjec-

tive. Note that for every G-invariant element f in B(G™*!) the value of f at every
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(91,92, ,9n,gn+1) € G™*! is independent of g,,;. So we can identify a function
f € B(G™*1')C with the function f € B(G") defined by the formula f'(g1,--- ,gn) =
f(g1,-++ ,gn,1). Conversely a function f € B(G") is identified with the function
f € B(G™")C defined by the formula f(g1,** ,gn,gn+1) = f (91, ,9n). Thus
the subspace B(G™*!')¢ of G-invariant elements in B(G™*!) can be identified nat-
urally with B(G™), and similarly B(A™*') with B(A"). Hence the surjectivity of

the restriction map, B(G™*')¢ — B(A™*!)4, follows from the fact that the maps

p"!: B(G") — B(A™) are surjective for all n > 1. This finishes the proof. a
Let
a’ / /
05REL U, 20,2 ... and 05RZ V20 5.

be a proper pair of resolutions for (G, A;R). Then there is an exact sequence
0 - ker(p®) - U - VA 0.
It is easy to check that the sequence
0 — ker(p®) — ker(p') — ker(p?) — - (2.5)
is a complex.

Definition 2.6. The n-th cohomology of the complex in (2.5) is denoted by ﬁ"(G, A).

As an important example, the standard G- and A-resolutions induces an exact

sequence

0 - P"(G, A) - B(G™)¢ T B(A™1)A 0,

where P™(G, A) = ker(p™). Also this exact sequence induces a long exact sequence

.o H™Y(A) > H™(G, A) » H"(G) » H*(4A) > - - -
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Theorem 2.19. The groups I?"(G, A) and ﬁ"(A ¥% G) are isomorphic. This
isomorphism carries the seminorm on I?'(G,A) to a seminorm equivalent to the

canonical seminorm on H*(A % G).
Proof. Recall that the complexes induced from the standard resolutions

M"(A % G) = B(G™")° @ B(A™)*

EM"(A % G) = BA"")* @@ B(G™")° P B(4™)*

We consider the following diagram
0 PG, A) —=» B(GH)E I, B(AM1)A 50
,Bnl anl 'YnJ'
0> M (ASG) L EM* (A5 G) = B(A™1)4 50,
where a,(f) = (puf, f,0), 7 (f") = f", and B,.(f) = (f,0). It is clear that the

diagram is commutative and so there is an induced commutative diagram

- H*Y(4A) —— H"(G,A) —— H"(G) — H"(A) >

i | o | a)l A |
— HY(A) — H"A % G) — H™G) —— H™(A) -
Note that the maps H*(a) and H*(y) are the (isometric) isomorphisms. So the map

H*(B) is an isomorphism. Also, since ||B.(f)|| = ||(f,0)]| = || f]|, the map H*(8) has
the norm || H*(8)|| < 1.

Let (f,f') € M"(A 5 G) = B(G"*')¢ @ B(A")* be a cocycle. Then 8,f = 0
and also 0,_,f' = —pnf. Since p,_; is surjective, we can choose an element f; €

B(G™)¢ such that p,_1fi = f' and [ fi]| = ||f']|. Then

pnf: 1f = n 1Pn— lfl = _pnan—lfl

so that f+30,_1f1 € P*(G,A) and O,(f + 0.-1f1) = 0. Now it is easy to check that
(H™(8))"([(f, f')]) is represented by a cocycle f + 0,-1f1 € P*(G, A). Then

1f + Ontfull S AN+ N8n-alllLArll = IIfII + (n + DI
< (n+2) max{|If|l, 1} = (n + 2)I(£ £
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This show that, for [f] € H"(G, A), we have

1
n+2

AN < TH* BN < NA-
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CHAPTER 3

Relative bounded cohomology of

spaces

Throughout this chapter, we assume all spaces are connected countable cellular

spaces.
Recall that the bounded cohomology of a space X, denoted by H *(X), is defined

by the cohomology of the complex
0 - B°(X) - BY(X)—> B*(X)— -,

where B™(X) is a space of real bounded functions on S,(X) the set of all singular

n-simplices. There is a natural norm || - || in B™*(X):

I£1l = sup{|f(0)l|o € Sa(X)}

which turns it into a Banach space. Thus in H"(X) there is a seminorm ||[f]|| =
inf || f||, where the infimum is taken over all cochains f lying in the cohomology class
(f] € fI"(X). A continuous map a: U — X induces a homomorphism a*: B*(X) —

B*(U) and the norm of a* is bounded by one as ||a*(f)|| < ||f]| for all f € B*(X).

Definition 3.1. Let ¢: Y — X be a continuous map of spaces. The mapping cone

M™(Y % X) and the mapping cylinder EM™(Y % X)) of cochain complezes induced
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by ¢ are defined as follows:
MY % X)=B"(X) B"'(Y)
EM"Y % X)=B"(Y)@P B (X)@ B \(Y).

We define the boundary operators on M*(Y % X) and EM™(Y % X) by the

same formulas as in Lemma 2.2, i.e., on EM™(Y % X)
d(Vn, Un, Un_1) = (dUn, dtn, vy — AUy — dvp_y),

where \"*: B"(X) — B*(Y) is a cochain map induced by a continuous map ¢: Y —

X. Then we have the complexes

0 MY B X))o MY SHX) MY SHX)— .- (3.1)

0 EM Y H X)) EM(Y S X)) EMA(Y H X)) > - (3.2)

Definition 3.2. The n-th cohomology of the complez in (8.1) is called the n-th relative
bounded cohomology of X modulo Y and is denoted by H"(Y % X). Also the n-th
cohomology of the complex in (3.2) is denoted by I?"(EM(Y % X)).

We define the norm || - || on EM™(Y % X) and on M™*(Y % X) by setting
| (Uny tny va—1)|| = max{||vnll, [uall, [[va-11}
| (uny va—1)ll = max{[[un|l, [[vn-1l}-

Also, for every w > 0, we define the norm || - ||(w) on M™*(Y % X) by sctting

[1(tn, vn-1) Il = max{||uall, (1 + w) ™ va-ill}-
Note that there are corresponding seminorms || - || on the groups H “(EM(Y % X))
and H*(Y % X) respectively. Also there is corresponding seminorms || - ||(w) on

H*(Y % X) for every w > 0. Finally we define these norms || - ||(w) on H(Y % X)

for all w in the closed interval [0, 00| by passing to the limits.
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Proposition 3.1. Let p: Y — X be a continuous map of spaces. Then the groups

H*EMY % X)) and H*(X) are isometrically isomorphic.

Proof. Note that there is a map A"™: B"(X) — B"(Y) induced by the map ¢: Y —
X. Then, as in Proposition 2.3, the natural projection map EM*(Y % X) - B*(X)
induces the isometrically isomorphic groups H™(EM Y % X)) and H™(X). O

Remark that there is an exact sequence
0 MY S X))o EMY(Y % X) - B"(Y)—>0
and it induces a long exact sequence
s HNY B X)o HYX) o H (YY) HPW (Y B X) > - . (3.3)

Recall that, as shown in Theorem 1.4, the group H *(X) is canonically isomorphic
with H*(m1X) and this isomorphism carries the seminorm in H *(X) to the canon-
ical seminorm in H *(71X). Thus it is natural to consider the relationship between
H *(Y % X) and the fundamental groups 7, X and 7,Y. Note that from the induced
homomorphism ¢,: m;Y — m; X, we can define the relative bounded cohomology

ﬁ‘(ﬂ'ly &) 1I'1X)

Remark 3.1. Let 7: X — X be a universal covering of X. As shown in Theorem

1.4, the sequence
0> R - B%X)— BY(X) > B}X)—> --- (3.4)

is a strong relatively injective 7, X-resolution of the trivial 7y X-module R. Also the
induced map 7*: B*(X) — B*(X) establishes an isometric isomorphism B*(X) —
B*(X)™* so that the bounded cohomology H *(m;X) induced from the resolution

in (3.4) coincides with H *(X) as topological vector spaces.
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Lemma 3.2. Let ¢: Y — X be a continuous map of spaces. Let X - X and) =Y

be the universal coverings of X and Y respectively. Then the sequences

0> R - B%X)— BY(X) - B}(X) > ---

0—R— B%Y)— BY(Y) = B*Y)—--- (3.2.1)

are an allowable pair of resolutions for (w1 X,m Y ;R). Furthermore, there is a

commutative diagram (3.2.2)

Bn(x)-rnx ; B((,n.lx)n+l)1r1X ) Bn(x)-irlx

v g 0|
Bn(y)'rrlY ) B((ﬂ.ly)n+1)1n}’ ) Bn(y)ﬂ'lY’
where the maps A" and p" are induced by a lifting map A\: Y = X and p.: mY —

m X respectively.

Proof. We denote by G and A the fundamental groups 7; X and m;Y respectively.
As explained in Remark 3.1, the sequences in (3.2.1) are strong relatively injective G-

and A-resolutions respectively. From Theorem 2.4 in [8], the contracting homotopy
0+ R« B%X) « BY(X) ¢« ---

is defined by using the cone construction S,(X) — Sp4+1(X).

By standard calculation, it is easy to check the map A": B"(X) — B"()) is an
A-morphism and it commutes with the contracting homotopies. Thus the sequences
in (3.2.1) are an allowable pair of resolutions for (G, A; R).

Now we consider the diagram in (3.2.2)

B (x)¢ =, B(G™)¢ L Br(x)C
el vl el
Br(Y)4 AN B(A1)A AN B (Y)A.
The maps o™ and 4" are defined by the same formulas in Lemma 2.6. Also the maps

¢™ and n™ are defined by the same formulas in Theorem 1.4.
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Since the resolutions in (3.2.1) are an allowable pair for (G, A; R), it follows from
Lemma 2.6 that the first square is commutative.

On the other hand, let 0: A, — ) be a singular simplex. Also let (ag, - ,a,) €
A™*! be such that o(v;) € an_;---a,Yo, where ), is a fundamental set for the action
of A on Y(see Theorem 4.1 in [8]).

Note that, if o(v;) = a,_; - - - a,y for some y € Yy, then
Ao (vi)) = Man-i -+ any) = @u(@n-i) - - @u(an) A(y)- (3:2.3)
Also note that we have 15" f(0) = p"f(ag, - ,an) = f(pu(ao)y+-+ ,pu(an)) and
A f(o) = ("f(Aoo) = f(p.(an), - ,¥.(an)), where the second equality follows

from the equation (3.2.3). This shows that the second square in (3.2.2) is commuta-

tive, so that n™p™ = A"(™. This finishes the proof. a

Theorem 3.3. Let ¢: Y — X be a continuous map of spaces, and let ¢,: mY —
w1 X be an induced homomorphism. Then the groups I:I"(Y % X) and I?"(mY RN
7, X) are isometrically isomorphic for the norm || - ||(w) for every w € [0,00]. This
isomorphism carries the seminorm in FI"(Y % X) to the canonical seminorm in

F]"(ﬂ'ly &) 7l'1X)

Proof. Let G and A denote the groups 7 X and m;Y respectively.

Recall that the canonical seminorm in H "(A % G) is induced by the complex

B(Gn+l)G @B(A")A
Let my: X = X and m;: Y — Y be the universal coverings of X and Y respec-

tively. By Remark 3.1, we can identify
B"(X)PB*'(Y) = BNX)° P B (V).
We prove that there are cochain maps
om: B"(X) P B (V) — BG) P B(AMN)*  and

yr- B(G"-H)G@B(A")A 5 Bn(X)G$Bn—l(y)A
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such that ¥"®" is chain homotopic to id and they have the norms ||®"|| < 1 and
|[¥"|| < 1. Recall that there is the commutative diagram in (3.2.2)
B (x)¢ s B(Gr")¢ £ Br(X)C
v gl 0|
B (¥)* —— B(a™)* o Br()4
so that p"a™ = 4"A™ and A\"(" = n"p". Note that, from definitions, the maps {"a™
and n"4" are chain homotopic to idgn(x)c and idgn(y)a respectively. Also they have

the norms [la™|| <1, [[("| <1, |ly"[| <1, and |In*] < 1.

We define " and ¥" by the formulas
O*(f, f) =(@"f,7"'f) and ¥"(w,u) = (("u, ")
For simplicity, we denote all boundary operators by the same notation d. Then
OIP(f, f) = O df, A" f = ) = (@S, =" A f =y d L f)
= (d"a"f, —p"a"f - """ f)
=d"(a"f, "7 f") = "¥"({, f')
and so " commutes with the boundary operators. Also for every w > 0

[2"(f, )l (w) = ll(a”f, v~ F)ll(w)
= max{fle" ||, (1+w)7"Iy" 7" I}

< max{[|f[l, (1 +w)7"IF 1} = I(f, F)llw).

Thus we have ||®"|| < 1 for the norm || - ||(w) for every w > 0.

By the same way, we can prove that ™ commutes with the boundary operators
and it has the norm ||¥"|| < 1 for the norm || - ||(w) for every w > 0.

Finally, from definitions, the map $"¥" is chain homotopic to the identity and
HMY % X) and H"(mY % m,X) are isomorphic. Also, since we have ||®" < 1
and ||¥"|| < 1 for the norm || ||(w) for every w > 0, these groups are isometric for the

norm | - ||(w) for every w > 0 and so for all w € [0, 00] by passing to the limits. O
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We recall that the group H *(X) is zero if ;X is amenable.

Corollary 3.4. Let ¢: Y — X be a continuous map of spaces such that the fun-
damental group mY is amenable. Then the groups I?"(Y % X) and ﬁ"(X ) are

isometrically isomorphic for the norm || - ||.

Proof. We have the following sequence of isometrically isomorphic groups

H (Y % X) = B*(mY £ 1 X) by Theorem 3.3
>~ q™(mX) by Corollary 2.17
~ H"(X) by Theorem 1.4.
This finishes the proof. a

Theorem 3.5. Let ¢: Yy, = X, and p: Y, = X, be the continuous maps of spaces
respectively. Let a: X; = Xy and +v:Y); — Yz be the continuous maps of spaces
such that a o ¢ = po~y. Let the induced homomorphisms a,: m1X; = m X, and
Y. WY1 — m1Ys2 be the surjective maps with the amenable kernels respectively. Then,
for every w € [0, 00|, the groups H*(Y: 5 X,) and H*(Y, D X,) are isometrically

isomorphic for the norm || - ||(w).

Proof. Let ¢,: mY7 - m X, and p.: mYs = m; X, be the induced homomorphism
by ¢ and p respectively. We consider the following diagram

mY, — w 172

“"l p.l

mX: —— mXo.
It is clear that this diagram is commutative and the horizontal maps v, and a, are

surjective maps with the amenable kernels. Thus we have the following sequences of
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isometrically isomorphic groups

ﬁ"(YQ 5 X,) = FI"(wllfz LN ™ X5) by Theorem 3.3
=] fI"(mYl o1 Xh) by Theorem 2.16
~ B, 5 X)) by Theorem 3.3.
This finishes the proof. (]

In the rest of this chapter, we consider a pair of spaces X and Y C X and denote
it by (X,Y).

Remark that, as in the ordinary cohomology, there is an exact sequence
0 — ker(p") = B*(X) &5 B*(Y) — 0, (3.5)

where p" is defined as the restriction to S,(Y). We denote ker(p™) by P*(X,Y).

Then there is an induced sequence

0—- P°(X,Y) = PY(X,Y) = PX(X,Y) > --- (3.6)
which is obviously a complex.
Definition 3.3. The n-th cohomology of the complez in (3.6) is denoted by ﬁ"(X, Y).

For a pair of spaces (X,Y’), there is a natural norm || - || on P*(X,Y) induced
from the norm || - || in B*(X) by the inclusion P*(X,Y) — B*(X). Thus there is a
natural seminorm || - || in ﬁ‘(X,Y).

Note that the exact sequence in (3.5) induces a long exact sequence
oo HY(X,Y) —» HY(X) > HY(Y) » H*Y(X,)Y) > --- . (3.7)

As we will see in the next theorem, if ¢: Y < X is an inclusion of a subspace
Y into X, then the groups H Y % X) and H *(X,Y) are canonically isomorphic.

Moreover, as the same theorem shows, the natural seminorms on these groups are
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equivalent. Nevertheless, there is no reason to expect that these norms are equal.
From our point of view, the group H *(Y % X) with its seminorm is more natural

invariant of a pair of spaces (X,Y’) and we consider it to be primary invariant.

Theorem 3.6. Let (X,Y) be a pair of spaces and p: Y — X be an inclusion map.
Then the groups H"(X,Y) and H*(Y % X) are isomorphic and the seminorms are

equivalent.

Proof. From definition, the group H "(Y % X) is the cohomology of the complex
MM (Y % X)=B"(X)@P B~ (Y).

Also from Proposition 3.1, we can define the group H "(X) as the cohomology of the
complex
EM"Y % X) = B"(Y)P B (X)P B"\(Y).
We consider the following diagram (3.6.1)
0—- P(X,Y) ——» B (X) X5 B(Y)-0
- .| vl
0o MY S X) -2 EMMY % X) - B*(Y) >0
where a”(f) = (p*f, f,0) and 4" = id and B"(f) = (f,0). Then it is clear that this

diagram is commutative and it induces the following diagram

,,n_lml H"(ml H"(a)l H"('r)l

- HY(Y) — BYY 5 X) — H™(X) — H(Y) >.
Note that the maps H*(y) and H*(a) are (isometric) isomorphism. So the map H*(03)

is an isomorphism.
Since [|8"(f)Il = [I(£,0)]l = max{||f]|,0} = [If|l, we have ||3"|| = 1 and so the
map H™(3) has the norm ||H"(8)|| < 1.
Let [f, f'] € H*(Y % X) and we represent it by a cocycle
(f,f) e M (Y 5 X) = B*(X) B \(Y).
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For simplicity, we denote every boundary operator by the same notation d. From the

definition of the boundary operator, we have

0=d"(f,f)=(d"f,—p"f —d""'f'), sothat d"f =0 and p"f = —d""' f".
Since the map p"~! is surjective, we can choose an element f” € B"~!(X) such that
p*7f" = f"and [|f"]| = ||f'll. Then

Prf+d T ) =P f T f =t T T = f AT =0
and so f +d"1f" € P(X,Y). Alsod"(f +d*!f") =0andso f+d"!f"is a

relative cocycle. It is easy to check (H™(8))"![f, f'] is represented by this relative

cocycle f +d" ! f". Remark that

L+ a1 < AN+ I < I+ (4 DI
< (n+2)max{||f]l, If'I} = (n + (S, £

and so [[(H™(8))7'[f, f1ll < (n+2)II[£, £1]II.
Thus, for [f] € ﬁ"(X,Y), we have

1 n
A< HET @) < AN
This finishes the proof. O

Corollary 3.7. The groups ﬁ‘(X, Y) and fI‘(mY ¥y 7.X) are isomorphic and this
isomorphism carries the seminorm in H *(X,Y) to a seminorm, which is equivalent

to the canonical seminorm, in H*(m,Y £ 7, X).

Proof. From Theorem 3.3, the groups ﬁ‘(Y % X) and ﬁ"(mY ¥ 7, X) are iso-

metrically isomorphic. Hence it follows from Theorem 3.6. O

Corollary 3.8. Let (X,Y) be a pair of spaces and let the fundamental group mY be
amenable. Then the groups H "(X,Y) and H "(X) are isomorphic and the seminorms

are equivalent.
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Proof. Let ¢: Y — X be an inclusion map. From Theorem 3.6, the groups H "(X,Y)
and H "(Y % X) are isomorphic and the seminorms are equivalent.

Since m,Y is amenable, the groups A*(Y % X) and H™(X) are isometrically
isomorphic by Corollary 3.4. Hence the groups H "(X,Y) and H "(X) are isomorphic

and the seminorms are equivalent. O
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CHAPTER 4

¢1 homology of groups

We now dualize the notion of relatively injectivity to define ¢; homology group of
groups.

Throughout this chapter, G denotes a discrete group. Recall that R and the B(G")
are the important examples of G-modules for the theory of bounded cohomology.

Now we introduce another G-module which will be useful for computing the ¢-
homology of groups. Let C! (G) be a free R-module generated by the (n + 1)-tuples
(go, -+ , gn) of elements of G, with the G-action given by g-(go, - ,9n) = (9°90,- " , 9"
gn). We take the (n+1)-tuples whose first element is 1 which represent the G-orbits of
(n+ 1)-tuples. We write such an (n + 1)-tuple in the form (1, g1,9192, " , 9192 ** gn)

and introduce the bar notation

(91192] - 19a) = (1, 91,9192, 9192 - * Gn),

and define C,,(G) as the free R-module generated by the n-tuples [g1]|gz]| - - - |gn] With
the G-action. Since the operation on a basis with an element of g € G yields an
element g[gi| - - |gn] in Cn(G), we may describe C,,(G) as the free R-module generated
by all g[g:1] - |gn] so that an element of C,(G) can be written as a finite sum of the
form > 7:9:(gi,| - 19:,] where r; € R, g; € G.

In particular, Cy(G) has one generator, denoted by [], so its element is a finite
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sum of the form Y r;g;[]. We define the ¢; norm || - ||; in C,,(G) by putting

1Y rgilanl - lgilli =D Il

Now let C%(G) be the norm completion of C,(G). Thus

Co(G) = {ani[gill o 1gin] | Z |r:] < oo}

is a Banach space with the G-action such that ||g - ¢|l; < ||¢||; for every g € G, c €
C%(G). Hence C“(G) is a G-module.

Definition 4.1. A surjective G-morphism of G-modules m: V. — W is said to be
strongly projective if there exists a bounded linear operator o: W — V such that
moo =1id and ||o|| < 1. Also a G-module U is said to be relatively projective, if for
any strongly projective G-morphism of G-modules w: V. — W and any G-morphism
of G-modules a: U — W there exists a G-morphism 3: U = V such thatmo 8 = a

and ||B]| < |la||. The definition is illustrated by the following diagram (4.1.1):
U —_— U

I
Vv > W
Lemma 4.1. The G-modules C%(G) are relatively projective for alln > 0 .
Proof. Let m: V. — W be strongly projective G-morphism of G-modules. We consider
the situation pictured in diagram (4.1.1), in which U = C4(G) and all the rest are
given.
Let z = 3 2, rigiu; € U, where u; = [g;,| -+ |g:,] and g;, € G. We define 3 by the

formula
o o]

ﬂ(z Tigil;) = rigioa(u;).
im1 im1

Then 73 = a follows from the following:

W,B(Z Tigiu;) = W(Z rigica(u;)) = ZT;giw(aa(ui))
1=1 i=1 i=1
= Zrigia(ui) = a(z rigiui)~
i-1 i=1
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Also note that for every ¢’ € G

e o) [ ] [ o]
Q'ﬁ(z rigiui) =4 Z rigioa(u;) = Z rig' gioa(u;)
i=1 i=1 i=1

= 5(2 rig'giui) = B (g’ Zrigiui)

and so 8 commutes with the action of G. Finally,

18 rigaw) h = Y rigioa(u)|h

o o] o0
<Y rlllgdalieflial <7 | llell,

ie, [1B(z)lh < llzlhllall, for any z = 3272, rigiu; € U.

Hence 3 is a G-morphism such that 7o 8 = a and ||8|| < ||a]|- O

Recall that a G-resolution is said to be strong if it is an exact sequence (as a
vector space) of G-modules and G-morphisms which is provided with a contracting

homotopy whose norm is less than or equal to 1.

Definition 4.2. A strong G-resolution of a G-module V
R L e 2 A Z e A A
is said to be relatively projective if all G-modules V, are relatively projective.
Now we consider the sequence of G-modules and G-morphisms
o= CH(G) = CE(G) = CH(G) = C{HG) = R — 0, (4.1)
where the boundary operator 8,: C%(G) = C* ,(G) for every n > 0 is defined by
Onlg1l -~ 9] = (=1)"g1[g2] - - - |gn]
+ HZ—I(_l)n_i[gﬂ o 1gigix1| - |gn] + (91 -+ - lgn-1],
i=1
while €[] = 1 is a G-morphism ¢: C&'(G) — R.
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Also we define s_;: R — C{(G) and s,: C&4(G) — C,,(G) by the formulas

n

respectively:

s.il=[] and  sa(glo1l---lgn)) = (=1)"*"'[glg1] - - Ign].

By the standard calculation and by Lemma 4.1, it is clear that the sequence in (4.1)

is a strong relatively projective G-resolution of the trivial G-module R.
Definition 4.3. The sequence in (4.1) is called the bar resolution of G.

Definition 4.4. For any G-module V' the space of co-invariants of V', which is de-
noted by Vg, is defined to be the quotient of V by the additive submodule generated

by the elements of the form gv — v for allg € G andv € V.

For any strong relatively projective G-resolution
e Vo2 ViV —-R—-0
of the trivial G-module R, it is easy to see that the induced sequence
= (Vo)e = (Vi) = (Vo) = 0 (4.2)
is a complex and the homology of this complex depends only on G.

Definition 4.5. The n-th homology group of the complez in (4.2) is called the n-th
¢, homology group of G and is denoted by H: (G).

Note that the homology of the complex in (4.2) has a natural seminorm which
induces a topological vector space structure. Also note that this seminorm depends

on the choice of a resolution.

Definition 4.6. We define the canonical seminorm in H(G) as the supremum of
the seminorms which arise from all strong relatively projective G-resolutions of the

trivial G-module R.
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We shall see the canonical seminorms on H!(G) can be achieved by the bar

resolution of G from the following theorem.

Theorem 4.2. Let
V2 V1 Vo R—-0

12 ‘l to l_l

be a strong relatively projective G-resolution of trivial G-module R. There ezists a

G-morphism of the bar resolution of G to this resolution

-
o

v

— ch@G) 25 ch6) 25 chiiG) —4=> R

l f3 l f2 lh lfo idRr l

_ V5 —— VI — W

—

w
&
W

o

extending idg and such that || f,|| < 1 for every n > 0.

Proof. We define f, by the formula

falglar] -+ 1gn]) = (=1)"gta1(g1tn-2(g2 - - (gn-1t0(gnt-1(1)) ).

It is clear g- fu([g1]- - |gn]) = fn(glg1] - - - |gn]) so that f, commutes with action of G.
Moreover, since ||t.]| < 1 and ||g - z|l; < ||z||; for all g € G,z € V., the map f, is a
G-morphism and has the norm || f,|| < 1.

Note that, for n = —1, we have €'fy[] = 1 = ¢[]. It remains for us to verify that

faOns1 = 0441 frs1 for every n > 0. First, note that

far1([91] - 1gn+1]) = (1) ta(gita—1(g2 - - to(gns1t-1(1)) -+ )

= (_1)n+1tn (glfn([gi’l e |9n+1]))-

Then we assume f, 10, = 0,f, and we prove that f,0,41 = 0., fn+1 by the
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induction on n. Since 0, ,t, + t,_10, = id, we have

O furt((g1] -+ lgnii]) = Oyt (1) (ta(g1 fu(g2] - 1gn+1]))
= (=1)""' 0, 1t (91 fallg2] - - |gns1)))

= (=1)""(id = ta18,) (91 fa([g2] - - - |gns1)))

= (=D aufallge] -+ lgn1]) = (=1)"" 80210, (91 fa([g2] - - 19ns1]))
= (=)™ falgilg2] - - - [gns1]) + (=1)"tn-1 (918, fa(lg2] - - - |gn+1]))
= (=1)"" falglge] - 9n1]) + (=1)"tn-1(91 fa-18a([g2] - - |gn+1]))

= (=)™ ful@1lge] -+ 1gns1]) + (=)™ tn1(g1fac1((=1)"g2[gs] - * - |gn+1]

n

D (D) go - Agigisal -+ Ignsa] + [g2] -+ - gn)))

1=2

= (—1)"+1fn(91[92| o |gna1]) + (—l)n(—l)"tn—l(9192fn—1([93| T |9n+1]))

—+

+ Z(—l)nﬂ_i(—1)"tn—191fn—1([92| “++19igiv1] -+ |gn+1])

+ (=1)"tn191 fa-1([g2] - - |gn])

= (1" falgrlgel - - - 1gn+1]) + (=1)" fa([91921g3] - - - |gn+1))

+ Z nH tfn 91|92| 19iGis1] -~ ]9n+1]) + fn([gll T Ig"])

= (=1)"" fu(g1lg2] - |gn+1])
+ i(—l)"“fn([gllgzl - 1gigi+al -+ |gna1]) + fallga] - - 1gn])
= faOn+1([g1] -+ 19n+1])-
Thus we have fnd11 = 8,1 far1- O

Corollary 4.3. In H4(G) the seminorm induced by the bar resolution of G coincides

with the canonical seminorm.

Proof. 1t follows from Theorem 4.2. a
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Recall that the ordinary cochain groups of a space are defined as the algebraic
dual space of the chain groups. Now we describe bounded cochain groups as the dual

space of ¢; chain groups.

Proposition 4.4. The space B(G™™)¢ is the dual space of C4(G)g. Moreover
the boundary operator d,_,: B(G™)® — B(G™"*')C is the adjoint of the operator
0n: CE(G)g = C11(G)e-

Proof. If z = 5" ri[g,]| -+ |gi,) € C2(G)¢ and f € B(G™!)C, then
<z f>= an(gm"' y Gins 1)
Also for every f € B(G")¢
<z dprf >= Y rilda1f)(Gis 5 Ginr 1)
_Zrz 1)"f(gizy 5 Gins 1)

+Z n Jf Givy " 58038955407 aginvl)) +f(gi1"" yGin_11Gin * 1)

= Zrt l)n 912,"' agtnal)+z _Jf Givs " 5 8i;Gij40" ,gi,.,l))

+ f(Gis 2 Ginir 1)
=< i ((=1)"ger] -~ lgin] + Z[g,l 19, Giyen | 19ia] + G0 ] -+ 19is]) f >
=< Opz, f > .
This finishes the proof. a

Remark 4.1. In [10] Theorem 2.3 shows that if Im{C%,,(G) LZZN C%(G)} is closed
in C4(G), then H "+1(G) is isomorphic with the dual Banach space of H'. (G). Also
it is known that H!'(G) = 0. In fact, by using the bar resolution of G, it is easy to see
that 8, = 0. Also for any [g] € C!*(G)g, it is constructed S([g]) = S 5irr (9% | ¢%]
which is clearly ||S([g))|l, = 1 and 8,5([g]) = [g] showing that H{(G) = 0.
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Note that H(G) is a covariant functor of G. As in the bounded cohomology, this
functoriality can also be described in terms of arbitrary resolutions as follows: given
a group homomorphism a: G — H and strong relatively projective resolutions U« and
V of the trivial G- and H-module R, respectively, we can regard V as a strong G-
resolution via a. So we have an augmentation preserving G-morphism of resolutions
7: U — V, well-defined up to homotopy. The condition that 7 be a G-morphism is
expressed by the formula 7(g9z) = a(g)7(z) for ¢ € G and =z € U. Clearly T induces
a map Ug — Vy, well-defined up to homotopy, hence we obtain a well-defined map
a,: H4(G) — H4(H) which depend only on a. Note that ||a.] < 1.

Now we shall see the relationship between amenable groups and ¢; homology. Let
A be an amenable subgroup ‘of G. We consider G/A, the set of (right) cosets Ag of A
in G. Since the set of cosets Ag has the G-action by right translation, we can define
C4(G/A) as the same manner with C(G). Namely, we can take C(G/A) as the
free R-module generated by the n-tuples of the form [Ag,|---|Agn]. The action of a
G-module is given by the formula ¢'[Ag)| - - - |Agn] = Ag’[Ag:1|- - - |Agn]. The canonical
map p,: C4(G) - C%(G/A) is a G-morphism and has the norm ||p,|| < 1.

Lemma 4.5. Let A be an amenable subgroup of G. Then there erists a G-morphism

Q: C'f‘ (G/A) —» Cf’(G) such that p; o q; = id and ||| = 1.

Proof. Recall that there is a right invariant mean on B(A), i.e., the linear functional
m: B(A) — R so that m(a- f) = m(f) where a- f(a') = f(d'a) for a,a’ € A and f €
B(A). Also recall that, on any coset Ag, the map m defines a mean m,: B(Ag) - R

by mg(p) = m(f), where f(a) = ¢(ag).

For each = € G, consider the characteristic function ,: G — R, i.e.,

1 ify=z,
6z(y) =

0 otherwise.
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For every Ag'[Ag] € C!(G/A), we define ¢, by the formula
a1(Ag'[Ag)) = Y my(é| )9 ).
zeG
Since 0 < 51|Ag <1, we have 0 < mg(éxlAg) < 1 and also
> [mo(8el 1p)] = Do mabil 1) = Mg el 1) = mg(Tag) = 1, (4.5.1)
zeG z€CG zeCG
where 1,, is a constant function on Ag with value 1. Thus we have ||q;|| = 1.

Note that

proai([Ag)) =i (D_my(5:],,)z])

zeG
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