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ABSTRACT

ADAPTIVE COMPENSATION OF SENSOR RUNOUT

AND MASS UNBALANCE

IN ACTIVE MAGNETIC BEARINGS

By

Joga Dharma Setz'awan

Active magnetic bearings (AMBs) have increasingly become the choice for high-

speed, high-performance rotating machinery because they provide the scope for con-

tactless and frictionless operation. Since magnetic bearings are open-100p unstable,

they require careful control system design. Although general feedback control tech-

niques have been proposed for precise shaft levitation, the problem of sensor runout

(SRO) has been largely overlooked due to its similarities with unbalance in creating

periodic disturbances. Ehrthermore, the important problem of synchronous SRO and

unbalance compensation has not been adequately investigated.

To improve the accuracy of magnetically levitated rotors, we pr0pose for the first

time an adaptive control framework that can compensate SRO and unbalance, both

individually and simultaneously, while providing shaft stabilization about the geo-

metric center. In our approach, bias currents in the magnetic coils are periodically

perturbed to create persistency of excitation that guarantees individual identification

of the harmonic components of the synchronous disturbances. Through feed-forward
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cancellation of the disturbances and careful control system design, the algorithm pro-

vides geometric center stabilization that is robust to uncertainty in plant parameters

values. While Lyapunov stability theory and its derived passivity formalism provide

a solid theoretical framework for the algorithm, corroborating experimental results

establish the simplicity of the design and implementation procedure. The algorithm

applies to both 8180 and MIMO systems involving a rigid rotor and future studies

are expected to broaden its applicability to flexible rotor models.



Copyright © by

Joga Dharma Setiawan

2001



To my parents



lthanlt all

ti their cnntri':

nnmnlete. ln ;

llnlherjt-e. it:

amt pleats}:

Clark J. ml

(
/
2

law. for his

nonlinear ('(Ili'

magnetism at;

n}- dwnw

l’nin‘ersity of '

salable rm»;

mum in the

l llldllll
ll .

rlilting am;

”all Hi)” typo:

lW‘mltl lilu

r“ .-
AE.

and
low

 



ACKNOWLEDGMENTS

I thank all those who contributed to the completion of this research. Without each

of their contributions, this work would have been more difficult, if not impossible, to

complete. In particular, the author wishes to thank my major advisor, Dr. Ranjan

Mukherjee, for his support, guidance, enthusiasm, and patience. It has always been

a great pleasure to work with him. I thank the members of the Ph.D committee: Dr.

Clark J. Radcliffe, for sharing his mechatronics experimental experience; Dr. Steve

Shaw, for his input on rotor vibration; Dr. Hassan M. Khalil, for making sure the

nonlinear control aspects went smoothly; and Dr. Mahanti, for his input on electro-

magnetism and its principles.

My deepest gratitude goes to Dr. Eric H. Maslen, from the ROMAC Laboratory,

University of Virginia, whose expertise in active magnetic bearings has been an in-

valuable resource. His kindhearted assistance and encouragement have been prime

movers in the completion of this research.

I thank Roy Bailiff, a very reliable staff in the department. His prompt assistance

during experimental set-up is greatly appreciated. I thank Craig Gunn, who proof-

read my typo-ridden first draft, and focused my later editions.

I would like to give special thanks to my wife Esti K. Wardhani for her faithfulness,

care, and love, and to my parents, who have morally supported me throughout.

vi



list 01 Tabli 
List 01 Figur

1 Introduct

1.1 Mutt-1

1.? Liter.-

1.3 Script

1.1 Noun

 
2 Magnetic

2.1 1mm

..2. 811121

2-3 Stan.-

2-4 301151

‘25 011-1

26 1:111);

2.7 Um

AdaptiW

3'1 liitrt

3'2 Clio

3.3 PM

3.4 Rul,

3;] C011

3'6 Sim

C
A
)

F
a
n
)

.
C
’
A
’

(
1
7
'

—
I

I
I

‘
.

‘
w
‘

.
.
4

c
}
:

f
)



TABLE OF CONTENTS

List of Tables

List of Figures

1 Introduction

1.1 Motivation .................................

1.2 Literature Review .............................

1.3 Scope and Content of the Thesis .....................

1.4 Nomenclature ...............................

2 Magnetic Bearing Modeling

2.1 Introduction ................................

2.2 Single Degree-of-Freedom Model .....................

2.3 Standard PD Controller .........................

2.4 Sensor Runout (SRO) Disturbance ...................

2.5 Off-line SRO Identification ........................

2.6 Unbalance Verification Using a Trial Mass ...............

2.7 Definition of Most Commonly Used Terms ...............

3 Adaptive Sensor Runout Compensation (ASRC)

3.1 Introduction ................................

3.2 Choice of Adaptive Controller ......................

3.3 Proof of Stability and Parameter Convergence .............

3.4 Robustness to Parameter Uncertainties .................

3.5 Convergence Rate Analysis Using Averaging ..............

3.6 Simulation Results ............................

3.6.1 Known Plant Parameters Case ..................

3.6.2 Uncertain Plant Parameters Case ................

3.7 Experimental Procedure .........................

3.8 Experimental Results ...........................

3.9 Summary and Remarks ..........................

vii

xi

Q
u
i
n
t
o
n
—
I
i
i

C
O
C
O

12

13

13

15

15

18

18

18

20

24

28

31

31

33

37

41

44



1 Simultan

Using .\1'

1.1 lntril

1.? C011?r

1.3 Sim.

1.1 Praill

1.5 Sun:

5 Simultan

n'a Bias I

5.1 Intru-

5.2 Add}

5.3 PM.

5.1 Ruin

5.1.1

5.4.3

5.1.3

5-5 Slim;

5-6 Siiim

5'7 Expi-

‘38 EXpi-

5-9 llliPr

5‘10 Sunni

6 EXtenSim

6-1 lntru

6.2
.\11.\1

6-3 13121

6.31

6.3.2

SRL‘i

6.1.1

6.4.2

38111

Slim:

6.1

6.5

5.6

C .~ oncluSIC

1.1 Rifgpk 



Using Multiple Speeds

4.1 Introduction ................................

4.2 Controller Design .............................

4.3 Simulation Results ............................

4.4 Practical Implementation Issues .....................

4.5 Summary and Remarks ..........................

4 Simultaneous Sensor Runout and Unbalance Compensation (SRUC)

47

47

47

53

54

56

Simultaneous Sensor Runout and Unbalance Compensation (SRUC)

via Bias Current Excitation (BCE)

5.1 Introduction ................................

5.2 Adaptive Control with Bias Current Excitation ............

5.3 Proof of Stability and Parameter Convergence .............

5.4 Robustness to Parameter Uncertainties .................

5.4.1 Mass Uncertainty .........................

5.4.2 Magnetic Stiffness Uncertainty ..................

5.4.3 Actuator Gain Uncertainty ....................

5.5 Simulation Results ............................

5.6 Simulation Studies of the Convergence Rate ..............

5.7 Experimental Procedure .........................

5.8 Experimental Results ...........................

5.9 Interpretation of Experimental Results .................

5.10 Summary and Remarks ..........................

Extension to MIMO Systems

6.1 Introduction ................................

6.2 MIMO Model of Magnetic Bearing with Rigid Rotor .........

6.3 ASRC for 2—DOF systems ........................

6.3.1 Controller Design .........................

6.3.2 Simulation Results ........................

6.4 SRUC-BCE for 2—DOF Systems .....................

6.4.1 Controller Design .........................

6.4.2 Simulation Results ........................

6.5 ASRC-BCE for 2-DOF systems .....................

6.6 Summary and Remarks ..........................

Conclusions

7. 1 Research Summary ............................

viii

57

57

58

62

66

66

69

71

72

78

81

83

88

92

94

94

94

100

100

103

103

103

107

108

111

114

114



732 Fun:

Appendicesl

.1Expor2:

.11 .‘

12>

.13 l

.11 l

.17) "I

.16 1

.17 1

.18 .

B. Anal».

Bl .9

8.2 i

8.3.5

C. Parana

Cl (

C? (

D- Passiv:

 



7.2 Future Work ................................ 116

Appendices 118

A. Experimental Set—up ............................ 118

A.1 Magnetic Bearing Set-Up ...................... 118

A2 Structural-Dynamic Analysis of Two-Bearing Rotor ........ 118

113 Plant Parameters ........................... 123

AA Power Amplifier Data ........................ 126

A.5 Analog PD Control Circuit ..................... 127

A.6 Radial Position Sensor ........................ 129

A.7 Digital Signal Processors ....................... 129

A8 Absolute Encoder .......................... 130

B. Analysis of Persistently Exciting Condition ................ 131

3.1 ASRC: Equation 3.14 ........................ 132

B2 SRUC Using Multiple Speeds: Equation 4.25 ........... 132

8.3 SRUC-BCE: Equation 5.41 ..................... 133

C. Parameter Convergence Using Averaging Method ............ 138

0.] Convergence Rate of ASRC ..................... 138

C2 Convergence Rate of SRUC-BCE .................. 140

D. Passivity ................................... 144

Bibliography 152

ix



3.1

3.2

3.3

4.1

5.1

5.2

5.3

5.4

6.1

A.1

A.2

A.3

A.4

LIST OF TABLES

Time constants of the averaged system .................

Parameters for ASRC simulation ....................

Numerical values of variables assuming m, c, K,, Kc are over-estimated

by 100% in the actual case ........................

Parameters for Simulation ........................

Experimental results with the balance disk located at the rotor

midspan: part (a) ............................

Experimental results with the balance disk located at the rotor

midspan: part (b) .............................

Experimental results with the balance disk located closer to hearing

B: part (a) .................................

Experimental results with the balance disk located closer to bearing

B: part (b) .................................

Simulation parameters for 2—DOF magnetic bearing systems .....

Two—bearing rotor data ..........................

Free-free undamped natural frequencies of rotor ............

Magnetic bearing parameters for single-DOF Model ..........

Servo amplifier specifications .......................

30

32

33

53

90

91

102

119

121

123

127

 



2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

4.1

4.2

4.3

5.1

5.2

5.3

5.4

LIST OF FIGURES

Diagram of a typical active magnetic bearing system .........

Single-DOF model of magnetic bearing with rotor schematic .....

Off-line SRO identification ........................

Unbalance verification using a trial mass ................

Block diagram of magnetic bearing system with ASRC ........

Block diagram of closed-loop system in the presence of uncertain plant

parameters .................................

Estimated parameters of sensor runout .................

Stabilization of rotor geometric center using ASRC ..........

Transients of currents of ASRC .....................

Averaged approximation of ASRC ....................

Time constants of estimated parameters in ASRC ...........

Sensor runout estimation in uncertain plant ..............

Stabilization of rotor geometric center using ASRC in uncertain plant

Transients of currents of ASRC in uncertain plant ...........

Averaged approximation of ASRC in uncertain plant .........

Time constants of estimated parameters in uncertain plant ......

Trajectory of estimated rotor geometric center and regenerated sensor

signals ...................................

Trajectory of estimated Fourier coefficients of sensor runout .....

Trajectory of control currents ......................

'Itajectory of estimated rotor geometric center and regenerated sensor

signals ...................................

'Itajectory of estimated Fourier coefficients of sensor runout .....

'Ikajectory of control currents ......................

Block diagram of SRO and unbalance compensation framework . . . .

Geometric center :1: and sensor signal with runout 1:, .........

Estimated Fourier coefficients ......................

Block diagram of SRUC via bias current excitation ..........

Geometric center a: and sensor signal with runout :c, .........

Estimated Fourier coefficients ......................

Top and bottom bias currents ......................

xi

 

11

14

15

19

25

34

35

37

38

38

39

39

40

42

43

43

44

45

45

48



5.3 E11»-

513 1311:“

5.7 Elli

5.8 Eiiwl

3.9 Eflt-sl

5.10 E1511

5.11 Eilcl

5.1‘3 Tin-l

73.131111“

6.1 PM?

6.? Gem:

for?

6.3 Higli‘

15.1 CM

BCE

5-5 Higl

5-5 Gm

8C1

6.? Hi“;

.11 .\1ag

.12 P“.

.13 Di:

.11 fit-

15 Rt,

.16 [3,,

.17 3.[

.18 1,},

.19 M

.111) B,

“1.1:

.112 B,

3’13 Si

“-1 r.

 

 



5.5 Effect of mass uncertainty to SRUC-BCE ................ 75

5.6 Effect of magnetic stiffness uncertainty to SRUC-BCE ......... 76

5.7 Effect of actuator gain uncertainty to SRUC-BCE ........... 77

5.8 Effect of excitation amplitude; fe = 0.5f ................ 79

5.9 Effect of excitation amplitude when fe # 0.5f ............. 79

5.10 Effect of excitation frequency ...................... 80

5.11 Effect the number of excitation harmonics ............... 80

5.12 Time history of geometric center at and position sensor signal 1:, . . . 85

5.13 Time trace of estimated Fourier coefficients for Expt. 2 in Table 5.1 . 87

6.1 Freebody diagram of a magnetically levitated rigid-rotor ....... 95

6.2 Geometric position, sensor signal, and DC component error of ASRC

for 2-DOF system model ......................... 104

6.3 Higher harmonics error of ASRC for 2-DOF system model ...... 105

6.4 Geometric position, sensor signal, and DC component error of SRUC-

BCE for 2—DOF system model ...................... 109

6.5 Higher harmonics error of SRUC-BCE for 2-DOF system model . . . 110

6.6 Geometric position, sensor signal and DC component error of ASRC-

BCE for 2-DOF system model ...................... 112

6.7 Higher harmonics error of ASRC-BCE for 2-DOF system model . . . 113

A.1 Magnetic bearing rig schematic ..................... 118

A2 Picture of magnetic bearing set-up ................... 119

A.3 Dimension of two-bearing rotor with balanced disk .......... 119

AA Free-free modes shapes of rotor ..................... 120

A.5 Rotor critical speed map ......................... 120

A.6 Bode plot of single-DOF magnetic bearing model ........... 124

A.7 3-D Plot of magnetic force surface .................... 124

A8 Magnetic force vs. Position ....................... 125

A9 Magnetic force vs. Current ........................ 125

A.10 Bode plot of servo amplifier ....................... 126

All Analog PD control circuit ........................ 127

11.12 Bode plot of analog PD controller VW¢(S)/V,~n(s) ........... 128

A.13 Simulink block diagram for the absolute encoder ............ 130

DJ Feedback configuration for passivity analysis .............. 145

xii



CHAP

Introd

1.1 Mn

Attire magm  leai Upt‘l’alli 11

higher efficiei

include the e

Sillléilillli)‘ Iii]

riatartetistit

lite featnrts.

inrntatitig
s

llhl‘tls. prPci

The (1N:

..;:, fl 1
l’uilf'b “film

v
"

,r.

-1 control

3



CHAPTER 1

Introduction

1 .1 Motivation

Active magnetic bearings (AMBs) levitate rotors and enable contactless and friction-

less operation. They have a number of advantages over conventional bearing including

higher efficiency. longer life, and ability to operate at higher rpm. Other advantages

include the elimination of mechanical maintenance of the bearing and lubrication,

suitability for clean or vacuum room operation, and adjustable stiffness and damping

characteristics achieved through active control of bearing forces. Due to the attrac-

tive features, magnetic bearings have been implemented in a variety of applications

in rotating systems. These applications include flywheel energy storage, momentum

wheels, precision machinery, turbomachinery, vacuum pumps, and medical devices.

The design of magnetic bearing systems requires the knowledge of several disci-

plines including mechanical/rotor dynamics, electromagnetics, electronics and feed-

back controls. This is due to the fact that a rotor supported by magnetic bearings is

an open-loop unstable system, stabilized through feedback control. The integration

of the feedback control strategy must carefully consider the dynamics of the rotor.

Moreover, the feedback control in magnetic bearings necessitates the knowledge of

Position sensors with signal conditioning, switching-power amplifier, either analog

circuits or digital signal processor (DSP), and magnetic coils as the actuators.
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Due to the rapid progress in electronics including DSPs technology, there are

abundant research problems in AMBs. Performance improvement, cost reduction,

and additional design objectives within specific applications are some of the examples.

In the recent years, researchers working on magnetic bearings have been focusing in

areas such as (1) rotor vibration minimization using modern control method such

as multi-variable controls, robust controls, non-linear controls, and adaptive controls

in order to minimize rotor vibration; (2) levitation of flexible rotors;(3) robust self-

sensing schemes; (4) integration of magnetic bearings with electric motor; and (5)

zero-power magnetic bearings using superconductor materials.

This thesis focuses on utilizing modern control methods to improve the perfor-

mance of magnetic bearings without demanding additional precision in the manufac-

turing process. In particular, this thesis explores a new adaptive control framework

to reject the effect of the most common periodic disturbances in AMBs.

1.2 Literature Review

Periodic disturbances are common in rotating machinery. Such disturbances are crit-

ical to the performance of systems using AMBs. The dominant sources of periodic

disturbance in magnetic bearings are mass unbalance and sensor runout (SRO). Mass

unbalance results from lack of alignment between the geometric axis and the principal

axis of inertia, which results in an unbalance force synchronous with rotor angular

Speed. Mass unbalance can be significantly reduced in industrial applications, if

n0t completely eliminated by rotor balancing. In comparison, sensor runout is un-

avoidable since it results from manufacturing imperfections in the magnetic bearing

assembly. Specifically, SRO disturbance originates from a lack of concentricity of the

sensing surface and non-uniform electrical or magnetic properties around the sens-

ing Surface. Unlike mass unbalance, SRO also generates a disturbance at multiple
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harmonics of angular speed. Despite differences between mass unbalance and sensor

runout disturbances, the control objective for their compensation is often similar.

Stabilization of the rotor about the geometric center, which is the objective for SRO

compensation, is often the objective for unbalance compensation.

Though few researchers [11, 33] have addressed the problem of compensation of

combined unbalance and SRO disturbances, there exists a large volume of research on

compensation of individual disturbances. Some of the early work on unbalance com-

pensation has been based on the insertion of a notch filter in the control loop [2]. The

drawback of this approach stems from negative phase of the notch transfer function,

which can reduce stability margin of the closed-loop system and lead to instability

[15, 3, 24]. Another approach for periodic disturbance cancellation is adaptive feed-

forward control [34, 9], where Fourier coefficients of the disturbance are continually

estimated and used for cancellation. These adaptive controllers, operationally bear

resemblance to the notch filters [24] and can result in instability if designed without a

consideration for the underlying structure of the system. To preserve stability of the

closed-loop system, Herzog et a1. [7] developed the generalized notch filter and Na and

Park [24] proposed a variation of the least mean square algorithm. Other approaches

that compensate unbalance while ensuring stability include adaptive auto-centering

[19] and output regulation with internal stability [21]. Both these approaches achieve

rotor stabilization about the center-of-mass.

Though unbalance compensation has been widely studied with the objective of

stabilization about the mass center, most users and vendors push for geometric cen-

tering, accepting that the real objective is to avoid seal or aero tip collisions. While

geometric center stabilization has been addressed by a few researchers [8, 37] both

problems were investigated in references [28, 22]. These results indicate that stabiliza-

tion about mass center or geometric center can be achieved through cancellation of

disturbance in the current signal or the displacement signal, respectively. In a general
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and experimental approach for disturbance attenuation by Knospe et a1. [16, 17], any

form of rotor vibration that can be measured can be attenuated using pseudo-inverse

of the pro-computed influence coefficient matrix. The stability and performance of

the algorithm in the presence of uncertainties were investigated, and experimental

results were used to demonstrate effectiveness. The method decouples the problem

into two independent control tasks; and while it has been demonstrated to work suc-

cessfully, there is no theoretical basis for stability of the two interacting processes.

Some of the other approaches employed for unbalance compensation include robust

control designs [6, 30], Q—parameterization control [23], and neural networks [27].

Unfortunately, most of the approaches found in the literature do not lend them-

selves to runout estimation in the presence of significant mass unbalance. This prob-

lem, widely acknowledged in the literature but essentially unsolved, stems from a lack

of observability of disturbances with the same frequency content. A credible way to

distinguish between these disturbances is to perturb the operating conditions of the

plant or its parameters. However, recent studies [11, 33] that propose variation in

rotor angular speed as a means to enhance observability may not be acceptable for

most applications.

1.3 Scope and Content of the Thesis

Our approach to the problem is based on traditional adaptive control designs that has

seen applications with a variety of electromechanical systems [4, 31] but not magnetic

bearings. The objective of rotor stabilization is to precisely spin the rotor about the

geometric center in the presence of SRO and unbalance. In our approach, we individ-

ually identify synchronous mass unbalance and SRO at constant rotor speed through

Persistence of excitation. Our adaptive control framework enable us to uniquely excite

the regressor vector, if necessary, to provide the persistently exciting (PE) condition.
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It is widely known in adaptive control field that PE conditions can contribute to an

asymptotic convergence of estimated parameters to the true values and provide some

level of robustness [25].

The thesis is organized as follows. In Chapter 2 we introduce the problem of SRO

and unbalance using a simplified single-degree of freedom magnetic bearing model.

An off-line SRO identification that is useful for verification of the results given by

adaptive algorithms is also presented. In Chapter 2 we include the most commonly

used variables to avoid repeating their definition in the next chapters. In Chapter

3 an adaptive sensor runout compensation (ASRC) is presented including proof of

stability, parameter convergence, robustness to plant parameters uncertainty, and

averaging analysis to approximate the convergence rate of adaptation. Simulation

and experimental results are also provided in Chapter 3. In Chapter 4 we discuss

the challenge posed by the combined SRO and unbalance problem and the limitation

of adaptive control implementation via multiple angular speeds. Chapter 5 present

a solution to the combined SRO and unbalance problem by excitation of the bias

currents. The robustness of the algorithm is studied using a passivity analysis. The

convergence rate of adaptation is investigated using the averaging method. Both

simulation and experimental results are provided in Chapter 5. Chapter 6 extends

the adaptive algorithms in Chapters 3 and 5 for implementation in MIMO magnetic

bearing systems. Chapter 7 provides concluding remarks and provides suggestions

for future research problems.
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1 .4 Nomenclature

Arabic Symbols

at" bi

C

fu

fc

P41

Harmonic Fourier coefficients of sensor runout

Constant

Sensor runout disturbance

Weighted sum of position error and velocity error

Magnetic force

Disturbance force due to mass unbalance

Force due to controlled current

Gravity

Controlled current

Identity matrix

Axial moment of inertia of rotor

Transverse moment of inertia of rotor

Harmonic number

Top bias current

Bottom bias current

Electromagnetic constant

Actuator gain or current stiffness

Bearing stiffness or position stiffness

Nominal air gap

Highest harmonic number considered

Mass

Harmonic Fourier coefficients of mass unbalance

Time



Greek Symbols

7i

7p: 7q

Geometric center position

Position sensor signal

Regressor Vector

Lyapunov’s function

Bias current excitation

Dimensionless parameter

Eccentricity

Adaptation gain matrix for SRO part

Adaptation gain matrix for unbalance part

Adaptation gain constants for SRO part

Adaptation gain constants for unbalance part

Error gain

Rotor angular speed

Vector containing Fourier coefficients of sensor runout

Vector containing Fourier coefficients of mass unbalanced

Phase of mass unbalance

Nominal value

Estimated parameter

Difference between the actual parameter and

the estimated parameter



Acronym

AXIB

ASRC |

BCE

DSP

MNO

SPR

SRO

SRI’C

OperatOr,

Rey)

  



Acronyms

AMB

ASRC

BCE

DSP

MIMO

PE

RPM

8180

SPR

SRO

SRUC

Operators

Ref )

(' )7

(° )‘1

 

Active magnetic bearing

Adaptive sensor runout compensation

Bias current excitation

Digital signal processor

Multi-input multi-output

Persistently exciting

Revolutions per minute

Single-input single-output

Strictly positive real

Sensor runout

Sensor runout and unbalance compensation

Real part

Matrix or vector transpose

Matrix inverse
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CHAPTER 2

Magnetic Bearing Modeling

2.1 Introduction

In this chapter, we present the dynamics of a rigid rotor magnetic bearing used in

our research. We start our study by considering a single degree of freedom magnetic

bearing model. The effects of unbalance and sensor runout (SRO) are then introduced.

We outline the procedure to manually identify SRO and present the most commonly

used terms in the development of our adaptive algorithms.

2.2 Single Degree-of-Freedom Model

AMB systems have, in general, five degrees-of-freedom (DOF): two radial DOF at

each of the shaft ends and perhaps one axial DOF. However, this chapter considers

a one DOF system only by assuming that the dynamics in all four radial directions

are similar and can be controlled independently and that the rotor is axially fixed.

In our study we assume that the effect of non-collocation between the gap sensor and

the magnetic coil actuator is negligible. The typical diagram of a magnetic bearing

System with a decentralized feedback control is shown in Figure 2.1. The feedback

control stabilizes the rotor position in the following manner. The differential gap

Sensors measure the location of the center of geometry relative to the stator. After
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comparing the position measurement to the reference position, the resulting error is

sent to the compensator. The compensator, which can be an analog circuit or a DSP,

provides the necessary command to the power amplifiers that drive currents in the

magnetic coils. The signs of the signal sent to the top and the bottom amplifiers are

arranged to be opposite to each other.

To magnetic cell

1

Stator

Power ~

4?. Compensator —

Powe

ME“ amplifier

 

 

 

 
 

 ii  

 

   

    

    
  
 

 

 
Fromgapsensor

 

 Differential

sensing

   
   

Figure 2.1. Diagram of a typical active magnetic bearing system

Now consider the magnetically levitated rigid rotor in Figure 2.2. The rotor has

two degrees-of-freedom along the :1: and y axes; the displacements along these axes are

measured by non-contact gap sensors. The dynamics of the rotor along these axes,

which are both inclined at 45° with the horizontal, are decoupled but similar. Along

the 2: axis, one may write

mit=F—m§+f.. gég/x/é (2.1)

where m is the mass of the rotor, a: is the position of rotor geometric center, F is the

magnetic force, fu is the unbalance force, and g is the acceleration due to gravity.

10
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Note: .1: Geometric Center. :2: Mass Center

Figure 2.2. Single-DOF model of magnetic bearing with rotor schematic

The magnetic force can be expressed as

(3°31)? _ (30:31)? (2.2)

where k is the magnetic force constant, I is the nominal air gap, 2'10, 2'20 are the bias

F=k   

 

currents in the top and bottom electromagnets, and I is the control current. By

linearizing Eq.(2.2) about :1: = O, I = 0, Eq.(2.l) can be written as

mftszx+fc+fu (2.3)

f6 2 Kc] (2.4)

K, 9.: 21: (if, + 2'30) /13 (2.5)

Kc s 21: (im + 2'20) /l"’ (2.6)

where fc is the control force, K, and K6 are the magnetic stiffness and actuator gain

of the magnetic bearing respectively. The unbalance force due to mass eccentricity

11
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can be modeled as

f“ = mw2e cos(wt + 0n) = mu)2 [psin(wt) + qcos(wt)] (2.7)

where p = —5 sin(0u) , q = 5cos(0u) , 0,, is the phase of unbalance, w is the rotor

angular speed, and 5 is the eccentricity of the rotor.

2.3 Standard PD Controller

Ignoring the external disturbances in Eq.(2.3), the transfer function of the plant can

be written as

X(s) K6

1(3) : ms2 —— K, (28)

 

It can be seen that without a closed-loop controller the linearized system is unstable.

K

The plant has eigenvalues at :t‘ / 7:.

To stabilize the rotor, a proportional-derivative (PD) controller Gc(s) is commonly

used as the compensator shown in Figure 2.1.

K

06(3) = K, (1 + —“— s) (2.9)

Kr

where Kp > 0 is the proportional gain and K; > 0 is the derivative gain. The stable

closed-loop system can be described by

 

_ (KP + Kd 3)Kc
K3

061(3) — ms? + Kchs + (Kn Kc _ Ks) where Kp > Kc (2.10)

In the presence of the unbalance, the rotor geometric center will fluctuate around

the origin if this standard PD controller is used. The rotor performance is further

degraded as the sensor signal contains periodic disturbance due to sensor runout.

l2
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2.4 Sensor Runout (SRO) Disturbance

The true location of the rotor’s geometric center is not available for a magnetic bearing

with sensor runout. Instead, the gap sensors provide the signal :r,.

2:, = a: + d (2.11)

where, d, the sensor runout disturbance, can be expressed by the Fourier series

d é a0 + i [a,- sin(z'wt) + b,- cos(iwt)] = YTqS (2.12)

v e [1 sin(wt) cos(wt) sin(nwt) cos(nwt) )T (2.13)

Q5 2 [00 a1 b1 . . . an bn ]T (2.14)

In the above expression, n is the number of harmonics, no is the DC component, and

a,-, b,, i = 1, 2,. . . , n, are the harmonic Fourier coefficients.

2.5 Off-line SRO Identification

In this section we present a method for manual off-line identification of sensor runout.

This method will be used to verify the accuracy of the on-line adaptive sensor runout

compensation scheme (ASRC) in Chapter 3 and the combined sensor runout and un-

balance compensation scheme (SRUC) in Chapter 5. Off-line SRO identification,

which has to be performed separately for each axis of the bearing, requires the rotor

to be spun at low speed to avoid the effects of unbalance. We will first levitate the

rotor using a PD controller, as shown in Figure 2.3. Using a DSP to generate function

E0 = A0, we close the feedback loop using the signal (2:, — E0). We then adjust the

magnitude of A0 such that (x, — E0) has a zero mean. Once this is accomplished, we

13
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will have identified the DC component of SRO.

Next, we generate the signal E1 = A1 sin(0, + 61), where 0, é wt is the rotor

angular position obtained from the shaft encoder. We select 01 such that E1 is in

phase with the first harmonic of (x, — E0). We then change the feedback signal to

:r, — E0 — E1 and adjust A1 by trial and error such that (2:, — E0 — E) has no first

order harmonics.

Having identified the first harmonic of SRO, we then sequentially identify the

second harmonic E2 = A2 sin(200 + 02) and higher order terms in the same manner.

Eventually, we will have the complete SRO signal

E = (E0 + E, + E2) = A0 + A, sin(t9, + 01) + A, sin(29, + 02) (2.15)

This signal can be subtracted from the sensor signal 22,, preferably using an analog

circuit, to recover the position of the geometric center, E, = :r. In our experiments,

we plot E, to verify rotor stabilization about the geometric center in the presence of

significant unbalance.

  
 

   

 

Unbalance Sensor MEWS. SRO

u Geometnc d l E = A,+A,sin(e,+e,)

Center

 

0 + PD I Magnetic Bearing

*‘ 3...... ‘
 

If Es=0 for all 00,

then E = d

Figure 2.3. Off-line SRO identification
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2.6 Unbalance Verification Using a Trial Mass

In this section we outline the procedure for verification of rotor unbalance estimated

by our adaptive algorithm. Let cu, 0U be the estimated magnitude and phase of

the initial unbalance. We will add a trial mass mT to the rotor and re-estimate the

unbalance using our algorithm. If 67, 07- are the magnitude and phase of the trial

mass, we can verify the efficacy of our algorithm if the new unbalance vector £3, 03 is

a vector sum of the initial unbalance and the unbalance due to the trial mass. This

is explained with the help of Figure 2.4.

 
= initial unbalance vector

m = initial unbalance T = unbalance due to trial mass

m-r = trial weight mass £9 = resultant vector

Figure 2.4. Unbalance verification using a trial mass

2.7 Definition of Most Commonly Used Terms

In the development of our adaptive algorithms, there are several variables that will

be used repeatedly. We introduce the variables here to avoid repeating the same

15
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definition in next chapters.

We define the estimated geometric position or position error as

5: a 2:, — d (2.16)

where

d 3 [to + Z [(1,- sin(z'wt) + f),- cos(z’wt)] = YTgf (2.17)

i=1

is the estimated SRO disturbance,

65% [do a, I}, a, 13,17" (2.18)

is the estimated parameter vector of the SRO, 610 is the estimated value of a0, and (1,,

f),- are estimated values of 0,, b,, respectively, for z' = 1, 2,. . . , n. Using Eqs.(2.1l) and

(2.16), it can also be expressed as

H
I H H + 9
—
2

(2.19)

~

where, d, the error in the estimate of sensor runout disturbance, is given by the

relation

is (d — d) = v76 (2.20)

The parameter error vector 6 is defined as

a0

5% «xi-ch: 5, (2.21)

in

Where 50 g [51 51 1T, 53 g [52 52 an En 1T, 00 _ (a0 - [10), and at _

16



Other mos

(risition error

where I is a (t...

 
and the adapt

Wllf’l’e q“ l _

lhdl0<3‘



Other most commonly used terms include the weighted sum of the estimated

position error and the estimated velocity error

6 2 i + Ar (2.22)

where A is a positive constant, the regressor vector

Ym é K,Y — mi'r, Ym 6 32‘2"“) (2.23)

and the adaptation gain for SRO components

F g diag(70) ,711 717 ' ' ° 2 7m ,7"), F E R(2fl+l)X(2n+1) (224)

where 7,, i = 0,1, 2,. . .,n are positive constants. These constants are chosen such

that 0 < A < 1 where A is a dimensionless parameter defined by

A a YTer = Z 7,- (K, + m(iw)2) (2.25)

i=0

17
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CHAPTER 3

Adaptive Sensor Runout Compensation

(ASRC)

3.1 Introduction

In this section we present an adaptive algorithm to reject the effect of sensor runout

in the single degree of freedom magnetic bearing model presented in Chapter 2. In the

absence of mass unbalance, the adaptive sensor runout compensation (ASRC) scheme

is designed to stabilize the geometric center of the rotor to the origin. The proof of

stability and parameter convergence is provided. The robustness of the algorithm to

the uncertainties in plant parameters is evaluated and the convergence rate of the

estimated parameters is approximated through averaging analysis. The algorithm is

then verified through simulations and experiments.

3.2 Choice of Adaptive Controller

Assuming the unbalance force, fu is negligible, the equation of motion in Eq.(2.3)

becomes

m2? = K,:1:+KCI (3.1)

18
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For estimation and cancellation of sensor runout, and stabilization of the rotor geo-

metric center, we propose the control action

1

I: Kc (K,:r + mAi: + cé) (3.2)

along with the adaptation law

5 = r Ym (E (3.3)

where K, and K, are defined in Eqs.(2.5) and (2.6), 2‘: is defined in Eq.(2.16), e and

A are defined in Eq.(2.22), I‘ is defined in Eq.(2.24), Ym is defined in Eq.(2.23), and

c is a positive constant. The derivative term :i: is assumed available by taking the

derivative of the measured signal 2'3. The block diagram of the closed-loop system is

shown in Figure 3.1. The controller can stabilize the rotor geometric center to the

origin in the presence of sensor runout. The stability proofs and convergence analysis

are provided in the next section.

Sensor

Unbalance Runout

1,, = O Geometric

1 1 Center

' x
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Figure 3.1. Block diagram of magnetic bearing system with ASRC
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3.3 Proof of Stability and Parameter Convergence

From the definition of Y and Ym in Eqs.(2.13) and (2.23), we can establish

YTer = o, YTI‘Ym = o (3.4)

Substituting Eq.(3.2) into Eq.(3.1), the dynamics of the controlled rotor can be de-

scribed by

mi} = —K,£i— mAi: — cé (3.5)

Using the relation If 2 :‘i‘ + (I from Eq.(2.19), and e = 57} + Asia from Eq.(2.22), the

above equation can be rewritten as

mézmd— K,J—cé (3.6)

The term (I can be derived from Eq.(2.20)

if = YTJ + 2Y7}; + YT;

= 3'ng + as (3.7)

and substituted in Eq.(3.6) to obtain

m (1 — A)e' = —Y,T,,$ — cé (3.8)

knowing the relations in Eqs.(2.25), (3.3) and (3.4). Thus, the closed loop system

dynamics can now be described by

is = —A:r + 6 (3.9a)

l
______m(1 _ A) (Y£$+ cé) (3.9b)c

o
r

||
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r3 = I“ Ym é (3.9c)

The following observations can now be made with respect to the closed-loop system.

Theorem 3.1 Consider the sub-system described by Eqs.(3.9b) and (3.9c). For this

system, (6, if) E (0,0) is an asymptotically stable equilibrium.

Proof: From Eqs.(3.9b) and (3.9c) first notice that (12,6) = (0, 0) implies (é, (7;) =

(0, 0). Therefore, ((2, a) E (0, 0) is an equilibrium point. To show that this equilibrium

is asymptotically stable, we define the continuously differentiable, positive definite

function

~ 1 ~ ~

V(é,¢) = 5m (1 - A) E2 + -12-¢TI‘“¢, 0 < A < 1 (3.10)

The derivative of V can be computed as

V = m (1 — A) 66? + {FTP-‘37 (3.11)

Using Eqs.(3.9b) and (3.9c), we obtain

V = — 4 g o (3.12)

Since V is positive definite and V is negative semi-definite, we conclude that

(e, J) E (0, 0) is stable. In addition, since V is uniformly continuous, we use Barbalat’s

lemma [13] to deduce V —> 0 as t ——> 00. This implies e —> 0 as t —> 00. By

differentiating Eq.(3.9b), we can show that 5 = §(t,$,é) is bounded. This implies

that e is uniformly continuous. Since 6 —) 0 as t —) 00, we once again use Barbalat’s

lemma [13] to deduce é -—) 0 as t —-> oo. Knowing e, e —> 0 as t —> 00, we can conclude

from Eq.(3.9b)

Y3}; —> o (3.13)

21
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Furthermore, we can show that there exist positive constants al, 02, and To, such

that

1+7},

(121 Z Yngdr 2 ml (3.14)

t

where I is the identity matrix, I E 32(2"+1)(2"+1). Therefore Ym is a persistently

exciting (PE) signal [13]. The proof of the PE condition is provided in Appendix 3.1.

This implies from Eq.(3.13) that if —) 0, as t —> oo. Knowing 12,3 —-> 0, as t —+ 00,

we can now assert that (e, o) E (0,0) is an asymptotically stable equilibrium. This

concludes our proof.

~

Lemma 3.1 The origin of the closed-loop system in Eq.(3.9), (’,é,q§) E (0,0,0), is

an asymptotically stable equilibrium point.

Proof: The closed loop system in Eq.(3.9) is an interconnected system of the

form

21 = f1(t, 21,22) (3.153.)

22 = f2(t, 22) (3.15b)

where 21 é 5:, and 22 3 (6 6T )T are the state variables of the two sub-systems.

We know from Theorem 3.1 that 22 = 0 is an asymptotically stable equilibrium of

the sub—system in Eq.(3.15b). Also, 21 = f2(t, 21,0) has an asymptotically stable

equilibrium point at 21 = 0. This can be readily established from Eqs.(3.15b) and

(3.9c). Using the asymptotic stability theorem for cascaded systems [13], we conclude

that (5:, e, (if) E (0,0,0), is an asymptotically stable equilibrium.

Theorem 3.2 The coordinate (2;, 2:, 5) E (O, 0, 0) is a stable equilibrium point for the

closed loop system defined by Eqs.(2.3), (3.2), and (3.3).

Proof: : Using Eqs.(2.19), (2.20), (3.2), (3.3), and (2.25), we can show that at
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(27,233) E (0, 0,0), we have

d=YT$=0, i=$+d=0,

d: (YT; + YTZ'J) = vTeré = A6 = A(53 + Ar) = A5;

Also, at(:r,:i:,$) 5 (0,0, 0), d: (:i: — at) = is = 0, since 0 < A < 1. From Eqs.(2.3),

(3.2), and (3.3), it follows that (2:,513, g) = (0,0,0). Therefore, (35,232) E (0,0,0) is

an equilibrium point. The fact that (x, it, (15) E (0,0,0) is asymptotically stable can

now be deduced from:

1. The equilibrium point (58,6,3) E (0, 0,0) is an asymptotically stable equilib-

rium. This fact follows from Lemma 3.1,

2. The transformation matrix P that maps (215,3) to (2:, 2:, (if)

a: 2‘:

a: = P E (3.16)

<75 J

1 o —YT

Pé —,\ (l—A) —YT (3.17)

0 o E

where E E 32(2"+1)x(2"+1) is the identity matrix, is well defined and upper

bounded, and

3. The inverse transformation P‘1 exists, and [l P’1 [I is also upper bounded.

Theorem 3.2 establishes that the adaptive controller proposed herein guarantees

stabilization of the rotor geometric center through identification and cancellation of

sensor runout disturbance.
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3.4 Robustness to Parameter Uncertainties

In this section we establish that the ASRC scheme is robust to uncertainties or varia-

tion in plant parameters. Specifically, we shall show that ASRC guarantees stabiliza-

tion of rotor geometric center and exact cancellation of sensor runout in the absence

of exact knowledge of rotor mass, m; magnetic stiffness, K,; and actuator gain, K,.

To this end, we estimate the values of these parameters to be m, K,, and K, and

modify our control action and adaptation law in Eqs.(3.2) and (3.3), as follows:

1 - .

I = —-I={— (K,2 + mm + 06) (3.18)

35' = I“ Ym E (3.19)

where

in, é K,Y - mi? (3.20)

Substitution of Eq.(3.18) in Eq.(3.1) indicates that the closed-loop system takes the

form

mi: + gfom + c)i‘: + [LE-(R, + cA) — IQ] if: = mil— Kfi (3.21)

C

Using Eqs.(2.20), (2.23) and (3.19), the right hand side of Eq.(3.21) can be sim-

plified as follows:

md- K,d= m (W24? + 2Y7"; + YTii) - K,YTq~3 (3.22)

= _Yfi+ m [2YTI‘i'fmé + YTI‘ (Ymé' + 37%)] (323)

Using the identities YTI‘Ym = O and YTI‘It'm = 0, we get

md— K,d= —Y;,$ + mAé (3.24)
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A é YTI‘?,,, = 27,- (R, + filizwz) (3.25)

i=0

Substituting Eq.(3.24) into Eq.(3.21), we get the closed-100p system dynamics

M53 + Cr + Ki: = —Y,T,,$ (3.26)

where M, C and K are defined as follows:

M s m(1 — A) (3.27:1)

a K. _ -
C = R—(mh -l- c) — m/\ A (3.27b)

K £- [gfu'g + c/\) — K,] (3.27c)

The closed loop system, described by the dynamics of the rotor in Eq.(3.26) and

the adaptation law in Eq.(3.19) is represented by the block diagram in Figure 3.2,

which is a feedback inter-connection of two linear systems. The following observations

can be made regarding these linear systems.

 

 

  
 

  
 

 

 

 

   

Strictlypassivesystem

/ -------------- \

l - \

V=0 + “1 1 i l Y=9

z :> 5+7» r 1 >

- ‘ M32+Cs+K )

\.__.__._.._.__.; _____ /

Passivesystem

T~

Y2=Ym¢ 1- r— A U2

Yang-Y", V

   

Figure 3.2. Block diagram of closed-loop system in the presence of uncertain plant

parameters
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Lemma 3.2 The linear system in the forward path in Figure 3.2, defined by the

transfer function

3 + A

M.92 + Cs + K

 0(3) = (3.28)

is strictly passive if M, C, K > 0, and C — AM > 0.

Proof: If M, C, K > 0, (3(3) is Hurwitz. Furthermore, if C — AM > 0, we have

G(jw) + G(—jw) > 0, C(00) = 0, 3110M [C(jw) + G(—jw)] > 0

Therefore, C(s) is strictly positive real (SPR) according to lemma D.4 obtained from

reference [13, 18];thus, G(s) is strictly passive.

Lemma 3.3 The linear system in the feedback path of Figure 3.2 is passive.

Proof: The adaptation law in Eq.(3.19) can be written as

5}, = 70K, 6? (3.29a)

ii,- = 7,- [R, + mi2w2] sin(iwt) e (3.2%)

3,: 7,-[K + mm2] cos(iwt) e, i = 1,2,. . .,n (3.29c)

Using these relations, and defining

K, + mizto2
z. = _ . 3.30

p 7,-(K, + m22w2) ( )

 

for i = 0, 1, 2, . . . , n, we can express the net energy flow into the system as

t t ~

[31211th =/ YT¢édt

o

t

_—K, fat"aoe' dt + 123K + mi2w2)] [:itsin(iwt)e + b,cos(iwt)é] dt

0

‘Pofaoaodt'l'Z/h/ [aias++33]
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—_—%[&%(t)— 0M0) 4.2:;‘2—‘(65 t()+b,2(t)-a(0)—gi(0)]

= wow] — We)1 (331’

where W[$(t)] is a positive definite energy storage function given by the relation

~ 1.. ~ _

W[¢(t)] é §¢TM¢1 M 2 dlag (p0!p1?p13p2$p23"',” . ,PmPn)

From Eq.(3.31) we claim passivity [13, 18].

We now present our final result with the help of the following theorem.

Theorem 3.3 Asymptotic stability and robustness The control and adaptation laws

in Eqs.(3.18) and (3.19) guarantee asymptotic stability of the equilibrium (:r,i:, 5) E

(0,0, 0) of the magnetic bearing system in Eq.(2.3) in the presence of uncertainty in

rotor mass, m; magnetic stiffness, K,; and actuator gain, Kc, provided the error and

adaptation gains are chosen to satisfy M, C, K > 0, and C — AM > 0.

Proof: Through proper choice of the error gains (c, A), and adaptation gains

(7i, i = 0, 1,2,. . .,n), we can easily guarantee M, C, K > O and C - AM > 0. Using

Lemmas 3.2 and 3.3, we can then conclude that the closed-loop system is a feedback

interconnection of a strictly passive system and a passive system. Using the passivity

theorem from the appendix of [18], we claim (it, it, a) E (0, 0, 0) is globally uniformly

stable, and 5,5: —+ 0 as t —+ 00.

Now, to show (as, 23, a) E (0, O, 0) is an asymptotically stable equilibrium, we first

need to show that (Lilli) 5 (0,0,0) is an equilibrium. This can be verified using

Eqs.(2.3), (2.20), (3.18), and (3.19). The fact that (23,113, a) E (0,0,0) is stable follows

from:

~

1. The equilibrium point (5:, :‘r, <25) E (0, 0, 0) is globally uniformly stable.

~

2. The transformation matrix P(t) that maps (2:, :r,¢) to (:12, :‘r, (b) is well defined
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and II P H is upper bounded.

3. The inverse transformation P‘l exists, and II P‘1 H is also upper bounded.

Finally, we prove (aging) —+ (0,0,0) as t —+ 00. Since 513,52 —+ 0, e —-> 0. Also, from

Figure 3.2 we claim u1 = 312 —> 0. This is true since the mass-spring—damper system

in Figure 3.2 cannot have zero output for nonzero input. Since Y3; is persistently

exciting, as discussed in the proof of Theorem 3.1, y2 = 0 implies 3 = O, and d =

YT; = 0. Also, (if = (YT; + YT¢) = YT; == YTI‘Yme = 0. We conclude the proof

by simply showing a: g (:7: - d) —> 0 and :i: é (sir — d) ——> 0.

3.5 Convergence Rate Analysis Using Averaging

The method of averaging is an asymptotic method, which permits the analysis of

qualitative behavior of time-varying systems through a time-invariant (averaged) sys-

tem obtained by time-averaging of the system. This method has become the general

method for the analysis of nonlinear ordinary differential equations (ODEs) with a

small parameter [38], including the determination of the existence and stability of

periodic or almost periodic solutions as well as the analysis of the transient behavior

of the time-varying system.

The objective of this section is to approximate the convergence rate of the esti-

mated parameters as represented by time constants. We first apply the two-time scale

averaging analysis given in reference [32] to the proposed adaptive system in the pres-

ence of uncertainties in the plant parameters. We determine the variables that affect

the convergence rate of the estimated parameters. These results are finally reduced

to obtain the time constants of estimated parameters when the plant parameters are

known.

~

The error signal in Figure 3.2 can be seen as the result of signal (—Y;-’,;¢) being

28



passed thror

where Gls)

Eq.(3,323 u

T0 app!

adaptation

is Sufficient

and COMM

Zr\‘Umptim

will? Ol [h

approxjm3

Where T \

m

I
I
I

(
4

Cmmm

when; R l,



passed through an SPR transfer function G(s).

é = —G.[Y?.‘.Ei§] % —G(Y3.1)-[$1 (3.32)

where G(s) is defined by Eq.(3.28). Note that C(Yi) is a signal vector. Substituting

Eq.(3.32) to the adaptation law in Eq.(3.19) we obtain

<3: 4‘37... [G(Y3,",) 3] (3.33)

To apply the averaging method, we need to treat the above equation as a slow

adaptation process. For this purpose we must assume that the adaptation gain I‘

is sufficiently small and the true values of parameter at belongs to a given compact

and convex set for which the frozen (I‘ = O) closed-loop system is stable. Using this

assumption, we can separate the slow time scale of adaptation from the fast time

scale of the other signals. By applying the averaging method given in [32], we can

approximate the original system in Eq.(3.33) by using an averaged system such as

A, 1 t0+T_ _ ~

¢...=— [— Ymcwzwdt]
T to

= 4“ 11(0) 37..., (3.34)

where T = 33 , $0,, is the averaged estimated error vector, $0,, E 320"“), and R(0) is

a symmetric positive-definite cross correlation matrix provided that A < 1 and c > 0.

11(0) —_— diag(Ro, R1, R1, R2, R2, . . . , Rn, R.) (3.35)

where 11(0) 6 32(2"+1)(2"+1), and its components are

R0 = K,K, C(33) = 0), (3.36)
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= [K, + m(iw)2] [K, + m(iw)2]

2 Re{G(J'(iw))} (337)R,- 

for i = l, 2,. . ., n. It can be observed that R0, R,- > 0 if G(s) is SPR. The details of

the derivation of the correlation matrix is given in Appendix C. It should be noted

here, however, that both R(0) and I‘ are square diagonal matrices; thus, the dynamics

of each component in $0” is decoupled, exponentially stable, and can be represented

by a set of simple first-order dynamics with time constants shown in Table 3.1. The

averaging theorem in Sastry and Bodson [32] proved that, as long as the cross correla-

tion matrix R(O) exists and l" is sufficiently small, the original system is exponentially

stable within a finite ball B). if the averaged system is exponentially stable. In this

particular case the equilibrium point 6 = O for the system in Eq.(3.33) is locally,

exponentially stable. Therefore, we can conclude that the estimated parameters (5

ultimately converge to the true values (1) exponentially fast.

Table 3.1. Time constants of the averaged system

 

 

 

 

  

  

Known plant parameters Uncertain plant parameters

1' __ c r _ K

0 ’70 K32 0 70 [KsKsA]

. __ 2[m(1— A)(iw) + c] r- _ f 2 [M(iw)2 + C(iw) + K]

‘ 7.. (K, + m(iw)2]2 ' 7.. [K. + m(iw)2] [K, + m(iw)2] [(iw) + A]  
Note: i=1,2,...,n

Several observations can be made regarding the results shown in Table 3.1. First,

we can easily derive the time constants for the known plant parameters case by remov-

ing the bar signs and knowing that instead of going through the filter in Eq.(3.28),
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the signal (—Y,7,",$) passes through

1

_ m(1—A)s+c

 

0(3) (3.38)

as it can be obtained from Eq.(3.8). The above transfer function is also SPR. Thus,

R0, R.- > 0. It can also be concluded that if the plant parameters are known, the

time constants are independent of the gain A. Furthermore, we can observe that

in both cases the time constant of the DC component is not affected by the rotor

angular speed w, while the time constants of higher harmonics are subject to w. The

numerical results of the time constants are presented in the next section.

3.6 Simulation Results

3.6.1 Known Plant Parameters Case

Simulations are performed using Matlab/SimulinkTM to demonstrate the effective-

ness of the ASRC algorithm. Though the controller was designed using a linearized

model of the plant, we use the nonlinear plant model in Eq.(2.1) to simulate the

real situation. The bearing parameters were assumed to be known. These values,

determined in our experimental hardware, can be referenced from Table A.3. Other

parameters used in simulations are shown in Table 3.2. The SRO compensation was

performed up to the third harmonics. For the magnitude of SRO given in Table 3.2,

we can assume that the effect of SRO to the system will not introduce significant

nonlinear dynamics at steady state, even without adaptation. This can be evaluated

by using the resulting magnetic force as function of I and 2: shown in Figures A.7 to

A.9. Note that using Eq.(2.25), A is found to be 0.235, which is relatively far from

the stability limit of 1.

The simulation results are shown in Figures 3.3 through 3.5. These figures indicate
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that estimation of runout is successfully completed within 0.3 second, and the rotor

geometric center is effectively stabilized to the origin. The transient-currents during

adaptation are within a reasonable range as seen in Figure 3.5.

Table 3.2. Parameters for ASRC simulation

 

Angular speed: as = 2r x 20 rad/s

 

Sensor runout:

co = 10 um

01 = 67.615 um; bl = 18.117 um;

(12 = 7.071 pm; b2 = 7.071 pm;

a,=b,=0 fori23

 

Error gains:

A = 400 s“; c = 1200 kg/s

 

Adaptation gain matrix:

I‘ = diag(1, 2,2,1,1,0.5,0.5) x 10“7 m/N

 

Plant initial conditions:

:r(t =0) = —0.1x10‘3 m; i:(t =0) = 0

 

Initial conditions of estimated parameters:

a,(t=0)=0; b,~(t=0)=0 fori=0, 1, 2, and3   
Using the averaging method explained in section 3.5, the time constants of the

estimated parameters are To = 0.064 3, r1 = 0.065 3, r2 = 0.097 s, and r3 = 0.13 s.

The dynamics of the averaged system are compared to the original dynamics as shown

in Figure 3.6. In this figure without loss of generality, we omit to show results in the

third harmonic components. It can be concluded that the averaged dynamics are

quite well matched with the dynamics of the original systems.

The effect of changing angular speed to the convergence rate of estimated param—

eters can be explained using the results shown in Figure 3.7. The results suggest

that we can choose adaptation gains such that all estimated parameters converge at
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the same rate for a given operating rotor speed w. We can also notice that at low to

the convergence rates are relatively sensitive to the change of 6). It is clear that the

convergence rate of the higher harmonics are more sensitive to the change of w.

3.6.2 Uncertain Plant Parameters Case

To demonstrate robustness of the ASRC to parameter uncertainties, we present sim-

ulation results using the nonlinear model of our magnetic bearing; assuming over-

estimation of the uncertain parameters, namely, rotor mass, magnetic stiffness, and

actuator gain by 100%. The nominal parameter values were assumed to be the ones

in Table A.3. The Fourier coefficients of sensor runout, rotor initial conditions, an-

gular velocity, error gains, and adaptation gains were chosen as in Table 3.2. It can

be verified from the calculation results in Table 3.3 that the conditions for asymp—

totic stability in theorem 3.3 are always satisfied. The simulation results in Figures

3.8 through 3.10 show that the ASRC remains stable and able to correctly identify

the sensor runout despite of the quite large over-estimation in plant parameters. In

addition, the coil currents are still within a reasonably range as seen in Figure 3.10.

Table 3.3. Numerical values of variables assuming m, c, K,, Kc are over-estimated by

100% in the actual case

 

Variable Nominal value Actual value due to Unit

100 % over-estimation of parameters

 

A 0.24 0.47 -—

M 1.86 1.29 (kg)

C 1.94 x 103 1.12 x 103 (kg/s)

K 4.8 x 105 2.4 x 105 (N/m)

(0' — AM) 1.2 x 103 0.6 x 103 (kg/s)      
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Figure 3.3. Estimated parameters of sensor runout
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Figure 3.5. Transients of currents of ASRC
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Figure 3.6. Averaged approximation of ASRC
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Figure 3.7. Time constants of estimated parameters in ASRC

A comparison of Figures 3.3 through 3.5 and Figures 3.8 through 3.10 indicates

that the closed-loop system with 100% over-estimated parameters has a faster conver-

gence rate than the closed-loop system with known parameters. The approximation

results using the averaging analysis as shown in Figure 3.11 also confirm this faster

transient performance. However, the stability limit to...” of the ASRC has reduced

to about 350 rad/s as seen in Figure 3.12. Previously, coma; was about 560 rad/s as

shown in Figure 3.7.

3.7 Experimental Procedure

To experimentally verify the effectiveness of the ASRC, the control action and the

adaptation law in Eqs.(3.18) and (3.19) were implemented in the Matlab/SimulinkTM

environment and downloaded to a Digital Signal Processor (DSP) board manufactured
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Figure 3.8. Sensor runout estimation in uncertain plant
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Figure 3.9. Stabilization of rotor geometric center using ASRC in uncertain plant
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Figure 3.11. Averaged approximation of ASRC in uncertain plant
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Figure 3.12. Time constants of estimated parameters in uncertain plant

by DSpace. The DSP board, sampling approximately at 13 KHz, was used to control

the rotor along both bearing axes, independently. The specifications of the DSP are

presented in Appendix AA. The sensor runout estimation was performed up to the

second harmonics. Under this computation load, the DSP allowed us to store ten

signals in real time. For the :2: axis we stored the estimated position, :2; current,

1,; and the DC component and estimated Fourier coefficients of the first harmonic:

("103, 61,, (31:. The estimated coefficients of the second harmonic were found to be

negligible but could not be stored due to DSP limitations. The sensor signal, 2,, was

regenerated from stored data :2, (10;, 613, and 511, using Eq.(2.16). Since the second

harmonic coefficients were used in the computation of fit, regeneration of z, from 5: in

the absence of these coefficients may lack some accuracy at relatively very low order.

Our choice of acquiring signals for the y axis was exactly the same as that for the x

axis.
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The schematic of the bearing-rotor rig used for the experiment is shown in Figures

A.1. and A.2. The rotor is arranged such that there are node points between a sensor-

actuator pair for the mode shape closest to the controller bandwidth. In this case,

we avoid the non-collocation effect of sensor and actuator in the lowest flexible mode

as suggested by Figure AA and Table 7.2. The calculation of the modes shape was

performed using the finite element analysis software from ROMAC, program MODAL

with the input shown in Appendix A.1. The critical speed map of the rotor, obtained

using program CRTSP.2 of ROMAC, is shown in Figure A.5

The electromagnets were driven by switching power amplifiers, a product of Ad-

vanced Motion Control, Operating with 1.6 KHz bandwidth. The Bode plot of the

power amplifiers is shown in Figure A.10. To ensure negligible effects due to unbal-

ance, the rotor was well balanced and spun at the relatively low rpm of 1200. This

speed is 20 times less than the first critical speed of the rotor, and guarantees negligi-

ble effects due to flexibility, which was not considered in our model. We used analog

PD controllers shown in Appendix A.3 to stabilize the rotor in bearing B. Thus, only

bearing A is the interest of our study, controlled by the DSP. The error and adap-

tations gains of the adaptive controller were chosen as A = 400 s“, c = 1200 kg/s,

and F = diag(1.0, 1.7,1.7, 1.5, 1.5) x 10‘7 m/N.

In controller implementation, the derivative of the estimated position signal, 5:,

was numerically computed by passing the signal :2 through the transfer function

25003/(3 + 2500). This eliminates potential problems arising from infiltration of wide-

band noise into the sensor signal.

3.8 Experimental Results

We first present experimental results based on our best knowledge of the values of

the plant parameters m, K3, and Kc as provided in Table A.3. Therefore, in this case
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we can assume that the control action and adaptation law are in accordance with

Eqs.(3.2) and (3.3).

The trajectory of the rotor’s estimated geometric center (5:, 37) and regenerated

trajectory of the geometric center provided by the position sensors (3,, 31,) are shown

in Figure 3.13. These trajectories indicate that while the sensors continue to provide

geometric center positions corrupt with runout disturbance, their estimated values are

stabilized to the origin with ASRC. It is seen from Figure 3.14 that the estimation of

Fourier coefficients of runout is completed in 0.3 seconds. In the same time, sinusoidal

variation in the control currents vanish in Figure 3.15. These zero steady-state control

currents imply stabilization of rotor geometric center to the origin in the absence of

mass unbalance. Indeed, we can verify from Eq.(3.1) that the rotor would become

unstable if this was not the case. We ensured negligible mass unbalance effects in our

experiments through rotor balancing and by spinning the rotor at low rpm. Knowing

that the rotor geometric center has stabilized to the origin, runout disturbance was

obtained from the Fourier coefficients in Figure 3.14. The trajectories of :53, y, in

Figure 3.13 also provide this information.
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Figure 3.13. Trajectory of estimated rotor geometric center and regenerated sensor

Signals
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Figure 3.15. Trajectory of control currents
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To demonstrate the robustness of ASRC to parameter uncertainty, we used control

and adaptation laws in Eqs.(3.18) and (3.19). The parameter values 772, K” and Kc

in the control law were chosen to be 25% larger than the values of m, K,, and Kc

provided in Table A.3. The results obtained from our experiments are shown in

Figures 3.16 to 3.18. These results indicate that runout is eliminated and the rotor

geometric center is successfully stabilized to the origin despite error in the model used

to construct the controller.
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Figure 3.16. Trajectory of estimated rotor geometric center and regenerated sensor

signals

3.9 Summary and Remarks

This chapter presents a simple, yet robust, algorithm for adaptive compensation of

sensor runout in active magnetic bearings. The algorithm is based on a rigid rotor

model with no mass unbalance and assumes the angular speed of the rotor to be

known and constant. Using powerful tools such as Lyapunov stability, persistence of

excitation, and passivity, the algorithm is shown to guarantee perfect cancellation of

runout harmonics and stabilization of the rotor geometric center. Through modeling,

estimation, and cancellation of the DC component of runout, the algorithm generates
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the equivalent action of integral feedback for elimination of steady state errors. The

algorithm is robust to significant variation in plant parameters that include rotor

mass, magnetic stiffness, and actuator gain.

The effect of controller gains to the system performance has been evaluated using

the averaging method. This approximation method successfully predicts the conver-

gence rate of estimated parameters. Thus, the averaging method can be very useful

during control design, in particular during the selection of controller gains of the

ASRC to achieve an optimum performance. Furthermore, by using the averaging

method we can claim that the estimated parameters ultimately converge to the true

values exponentially fast.

The effectiveness of our algorithm is validated through numerical simulations, as

well as experiments. We present experimental data that confirm stabilization of the

geometric center of a rotor with negligible mass unbalance effects, even when the

modeled plant parameters are quite different. Our algorithm can also be used for

compensation of mass unbalance, but in such applications the rotor will be stabilized

about its inertial center. The problem of rotor stabilization about the geometric

center in the presence of both unbalance and rounout will be addressed in Chapter 5.
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CHAPTER 4

Simultaneous Sensor Runout and

Unbalance Compensation (SRUC) Using

Multiple Speeds

4.1 Introduction

In this chapter we present a technique to compensate the effect of the first harmonic

components of sensor runout and the unbalance in the single DOF magnetic bearing

model described in Chapter 2. Using the technique in this chapter, theoretically, we

can individually identify the harmonics components of the two disturbances. Simu-

lation results are presented and implementation issues are also discussed.

4.2 Controller Design

The equation of motion, in this case, as given in Eq.(2.3) is

mi = K32: + fc + fu (4.1)
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Figure 4.1. Block diagram of SRO and unbalance compensation framework

The estimate of the unbalance force can be written as

f. é YZa‘s. (4.2)

where

A

Y: é mu)2 [sin(wt) cos(wt)], (15,, é [15 (HT (4.3)

The terms 15 and (j are estimates of Fourier coefficients p and q respectively. We define

the errors in the estimation as 5 = p - 13, E = q — (j and

~

«5.. é [:3 (7] (44)

With the objective of converging :2: to zero, we propose the Lyapunov function

candidate

V = [(1 - A)mé2 + (WP-15+ $3P;1$,] (4.5)

(
\
D
l
t
-
I
‘

I‘u é diag<7pi 7q)1 I.‘u E 322x2 (46)

where 7,, and 7., are positive constants.
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In this Multiple Speeds approach, the top and bottom bias currents 2'10, 2'20 are con-

stants. Thus, the term A in Eq.(2.25) is constant. From the definition of Eqs.(2.13)

and (2.23), we can establish

YTer = 0, and WW... = o (4.7)

Further, the control force

f6 = — [Ksi + mAi‘: + cé + mw2 [fisin(wt) + écos(wt)]] (4.8)

is chosen along with the adaptation laws

45 = F Ym 6 (4.9)

25,, = —ruv., 6 (4.10)

Substituting Eq.(4.8) into Eq.(4.1) and using Eqs.(2.20) and (4.4), the closed-loop

dynamics can be described by

mr'i = —K,YT$—mAi-cé+Yf$u (4.11)

Using the relations 57} = if + d from Eq.(2.16), and I? = 5: + A5: from Eq.(2.22), the

above equation can be rewritten as

m. = mdv— KsYTg—cé+YI$u (4.12)C
b
l

From the relations in Eqs.(2.20), (2.25), (4.7) and (4.9), we can write

5= {(755 + 23?qu + Y7}; (4.13)
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= WE + Aé‘ (4.14)

and Eq.(4.l2) becomes

m(1 — A)é = —Y3,",¢3' — cé + YZ‘J, (4.15)

The derivative of the Lyapunov function in Eq.(4.5) is

V = m(1 — A)éé + JTP"$+ (ERIE... (4.16)

Utilizing Eqs.(4.9), (4.10) and (4.15), we obtain V = —ci§2 S 0. Since V is positive

definite and V is negative semi-definite, by Barbalat’s lemma we can conclude that

V —) 0 and E —> 0. Taking the derivative of Eq.(4.15), we can show that e is bounded,

=> é is uniformly continuous, => e —+ 0. Therefore, from Eq.(4.15)

~

Y3}, 35 —>0 as t—)oo (4.17)

45..

where

Yfmé [Y,7,‘, —Y,'f] (4.18)

Due to the orthogonality of components, we can separate Ym into Ya, which contains

the first harmonic components only, and YE, which contains the DC, second and

higher harmonic components. Thus, the following conditions also hold:

YZ‘J. — YZJ. a 0 (4.19)

YEJE —> 0 (4.20)
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where

Y: 3 (K, + mw2) (sin(wt) cos(wt) )T (4.21)

Y; é (K, Yg) (4.22)

f (K, + m(2w)2) sin(2wt) V)

(K, + m(2w)2) cos(2wt) 1

Y5 é (4.23)

(K, + m(nw)2) sin(nwt) J

K (K, + m(nw)2)cos(nwt) }  
~ ~ ~ T

452 2 (cm 423) (4.24)

It can be shown that there exist positive constants al, 02, and To, such that

1+7},

(121 Z YEYng Z ml (4.25)

t

where 12”-; is a 2n-1 identity matrix. Therefore, YE is a persistently exciting signal

[13] as shown in Appendix 0.2. This implies from Eq.(4.20) that $1.; —> 0 as t —> 00.

Therefore, using the definitions in Eqs.(2.14) and (4.24), we can conclude that do, 61,-,

and 3.- for i = 2,. . . , n converge to their true values.

On the other hand, in Eq.(4.19) the signal vector Yam 2 (Ya Y“ )T is not per-

sistently exciting in the subspace of B“. This implies that the estimated parameters

3,, and Eu, instead of converging to zero, converge to a plane in the parameters’ space.

This condition can be alternatively described by

Eil = m3 and Z, = ”a (4.26)

where

2
_A mw

14w) —— _‘K.+ 2 (4.27)
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By operating at two different angular speeds, two values of p can be obtained; and

the four unknowns a1, b1, p, and q can be determined by solving four algebraic equa-

tions given by the expressions in Eq.(4.26). The results of this algebraic calculation

are then used to update the adaptation laws to

3., = FaYaé + nacho — 43..) (4.28a)

:53 = FEYEé (4.28b)

$19 = _FuYué + 7711(4311 "' 43a) (4.28C)

where Pa 6 2112“, FE E 31(2"'1)X(2"‘1), no, 6 312”, and 17., 6 912”" are positive definite

matrices.

With the new adaptation laws in Eq.(4.28), the Lyapunov derivative in Eq.(4.16)

becomes

V 1' —Cé2 — ~Zna$a _ $577114; S 0 (429)

Since V is positive definite and V is negative semi-definite, by Barbalat’s lemma we

can conclude that V —> 0 and 6 —-) 0. Taking the derivative of Eq.(4.15), we can show

that 6, $0, and a.) converge to zero as t -—) 00. Therefore, using Eqs.(2.14) and (4.4)

we can show that 611, (31, 13, and (j converge to their true values. Furthermore, the

convergence of 53 to zero depends on the persistent excitation of the signal vector

YE which can be claimed using the same arguments as before. From Eq.(4.15), as

before it implies that éis bounded, => 8? is uniformly continuous, => 6": —-> 0. Therefore,

the condition in Eq.(4.20) still holds and the signal vector YE is persistently exciting

=> $5; —> 0 as t —) 0, which implies that no, 61,-, and 5, for z' = 2,. . .,n converge to their

true values. In summary,all estimated parameters will converge to zero as t —> O.
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4.3 Simulation Results

A numerical simulation of the Multiple Speeds approach was performed using the

parameters shown in Table 4.1. Though the controller was designed using a linearized

model of the plant, we used the nonlinear plant model in Eqs.(2.1) and (2.2) to

simulate the real situation. In the simulation, the SRO identification was arranged to

Table 4.1. Parameters for Simulation

 

Gains: A = 400 3“, c = 1200 kg/s

F = diag(1.4, 3, 3,3, 3) x 10‘7 m/N

I“u = diag(3, 3) x 10'5 m/N

 

 

ICs: :1:(t= 0) = —100pm/s

:i:(t = 0) = O

¢(t=0)=0, ¢u(t=0)=0

SRO: a0 = 2.5pm

a1 = 18.35pm, bl = 4.92pm

a2 =1.77pm, ()2 = 1.77pm

 

Unbalance: p = 86.6 p m, q = 50.0 p m   
 

adapt up to the second harmonic. The bearing parameters were assumed to be the

ones in our experimental hardware listed in Table A.3. In this approach iio = ifo,

2'20 = 2'30, Kc = K,;, and K, = K} The rotor angular speed was initially set to

1500 rpm and then increased linearly at t = 0.43 to 2100 rpm within 0.2 s. The

angular speed was held constant after t = 0.6 3. After computation of the true values

of 0;, b1, p, and q had been accomplished, the adaptation law was switched from using

Eqs.(4.9) and (4.10) to Eq.(4.28) at t = 13. We used [‘0 = diag(3, 3) x 10‘7 m/N,

P5- = diag(1.4,3, 3) x 10‘7 m/N, 17,, = diag(10, 10) s“, and 1),, = diag(10, 10) s".

It can be observed in Figures 4.2 and 4.3 that (“11, I31, 15, and q“ reach different steady

states values for each angular speed while the DC and second harmonics components
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of SRO, do, 612, 52 converge to their true values within 0.23 for each speed. After

t = 1.5 s, all estimated parameters have converged to the true values. At this time,

as shown in Figure 4.2 the rotor is stabilized to the origin. Unmodeled effects due to

angular speed acceleration can be seen t between 0.43 and 0.6 s. We avoid further

discussion on this topic but advice to change the angular speed slowly.
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Figure 4.2. Geometric center :1: and sensor signal with runout x,

4.4 Practical Implementation Issues

In implementation, the Multiple Speeds approach suffers several major drawbacks.

First, the results of the algebraic calculation is very sensitive to the value of [2. Un-

certainty in m, K,, and w may easily yield to a large calculation error. Secondly,

the approach practically requires two far away operating speeds in order to decouple

the four algebraic equations. Third, the controller was derived using the Lyapunov

method by assuming a constant angular speed. Thus, the stability during the chang-

ing angular speed is not guaranteed. Moreover, in many applications changing the

angular speed may not be desirable.
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4.5 Summary and Remarks

We have presented the technique that can be used to identify the synchronous distur-

bance of sensor runout and unbalance. The technique requires the rotor to be spun

at two different angular speeds because only partial convergence of the estimated pa-

rameters is achieved in Eq.(4.17). In the adaptive control, this problem is attributed

to the lack of “sufficient richness” [31], which means that the regressor vector does

not contain enough frequencies for the parameter error to converge to zero. In the

partial convergence condition, estimated parameters may drift even with small ex-

ternal disturbance [31]. It is generally known [25, 31, 36] that for linear systems, r

sinusoids or frequencies in the regressor vector provides for the convergent estimation

of (27‘ + 1) parameters. It can be observed that the regressor vector in Eq.(4.17) has

1' = n frequencies while the number of parameters to be estimated is (211 + 3). This

observation suggests that additional perturbations with frequencies other than the

frequencies already contained in the regressor vector will facilitate convergence of the

parameters.
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CHAPTER 5

Simultaneous Sensor Runout and

Unbalance Compensation (SRUC) via

Bias Current Excitation (BCE)

5.1 Introduction

In this section we present a new algorithm for rotor stabilization about its geometric

center in the presence of both unbalance and sensor runout. The new algorithm effec—

tively compensates the effects of both unbalance and runout at constant rotor speed

and is based on the adaptive control framework presented in Chapter 4. The control

framework is recognized to have a unique feature that allows us to directly perturb

the parameter in the regressor vector to create a persistently exciting condition. This

is achieved through variation of the bias currents in opposing electromagnetic coils in

a manner that does not alter the equilibrium condition of the rotor. The method of

bias current excitation is discussed in section 5.2. The mathematical foundation of

the adaptive algorithm is laid in section 5.3 and robustness of the algorithm is inves-

tigated in section 5.4. Simulation results are presented in sections 5.5 and 5.6, and

experimental results are presented and discussed in section 5.7, 5.8 and 5.9. Section

5,10 provides a summary of the main contribution and concluding remarks.
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5.2 Adaptive Control with Bias Current Excita-

tion

Consider the magnetic bearing model shown in Eqs.(2.1) and (2.2)

m4=F—mg+f.. gag/«i (5.1)

(i;o_+xl)2 _ (1:04-11)? (52)

Without changing the angular speed, in order to generate persistence excitation, we

 F=k  

 

intend to perturb the top and bottom bias currents 2'10 and 2'20 by 61 and 62 in manner

that does note alter the equilibrium condition of the rotor:

310 = 2:0 + (51, 7:20 = 230 + 62 (5.3)

In Eq.(5.3) 2'10 and 130 are constant currents in the top and bottom coils. Therefore,

the total magnetic force shown Eq.(5.2) becomes

_ 110+61+I 2_ 230+62—I 2
F($,I,61,62)—k [(_—_l—x) (——_-l+$ (5.4)

and its linearization about a: = 0 and I = 0 yields

  

0F 6F

F(z,I,61,62)zF(0,0,61,62)+ — 127+ — I (5.5)

‘9” 7:8 61 7:8

where

., 2 ., 2

F(0,0.51,52) = k [(11%) " (22%) ] (5-6)

6F 2k ., .,.

5; = K.(61.62) = 73‘ [(2.0 + 61)2 + (220 + 62V] (5-7)
2:0 
I 0
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8F 2k ,, .,

57 723 = K461, 62) = 1—2 [’10 + 61+ 22. + 62] (58)

Additionally, the bias force in Eq.(5.6) can also be approximated by linearization

about 61 = O and 62 = 0.

  

 

 
 

 

  

 

0 6 6 F 6 6

F(0,0,61,62)zF(0)+ an ’0’ 1’ 2) 61+ a (”’0’ 1’ 2) 52 (5.9)
061 61:0 062 61:0

62:0 62:0

where

k ., .,

me) = ,—. (2.3 — 2.3) (5.10)

0F(0,0,61,62) __ 21:0

861 61:0 — (2 61 (5.11)

62:0

6F(0, 0, 61, 62) 2150

662 51:0 — - l2 62 (5.12)

62:0

It can be seen that if we choose

.5, = 2.1—05, (5.13)

220

the effect of the bias current excitation to the bias force in Eq.(5.9) is negligible

F (0,0,61,62 = SEQ-61) Ft: F(0) (5.14)

20

Furthermore, the open loop stiffness and the actuator gain in Eqs.(5.7) and (5.8) can

be expressed as function of 61 only and approximated by

8K,
 

 

 

 

K, 6 m K; + 6 5.15( .) 6,1 .2. . ( >

BKC

KC(61) x K; + 61 (5.16)

861 61:0

where

K: é 2k (2'13 + 2‘53) /13 K; é 2k (2'1. Han/12 (5.17)
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8K8 81:2"0
= ’ 5.18

5‘51 51:0 13 ( )

8Kc 2k ( 1’0)

= —--— 1 + 4— 5.19

661 61:0 12 250 ( )

For simplicity, we may choose the excitation as

61 = Asin(wet), we 2 27rfe (5.20)

where A is the amplitude of excitation, fe is the frequency of the excitation. The

value of A should be chosen such that the above linearization is valid; A at about 10

to 15 % of 2'10 may be used. The effect of using several different values of A and fa is

later discussed in sections 5.2 and 5.3.

In summary we again obtain the same linearized model as in Eq.(2.3) with the

exception that K, and Kc are now time varying.

mi = st + KCI + fu (5.21)

where

a: - A Skifo

K3 2 K3 + 6381110418”, £3 = TA (5.22)

K,; = K; + £6 sin(wet), {c 2 2:6—2/4 (1+ ;zl—Q) (5.23)

20

and fu is defined in Eq.(2.7).

The proposed framework of SRUC using bias current excitation is illustrated by

the block diagram in Figure 5.1 in which we define the feedback law as

C

I = —Kl_ [K,i + mAi: + (c + émAV: + chfu] (5.24)
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Figure 5.1. Block diagram of SRUC via bias current excitation

along with adaptation laws

37: FY... E (5.25)

5,, = —I‘.,Y.,é (5.26)

where i, é, I‘ and Y... are defined in Eqs.(2.16), (2.22), (2.24) and (2.23) respectively.

A and c are positive constants

I‘u 24‘: diag(yp,7q), 1“,, E 312” (5.27)

where 7,, and 7., are positive constants, and

Y3" é mw2[sin(wt) cos(wt)], 43,, £- [13 (HT (5.28)

The terms 15 and (j are estimates of Fourier coefficients p and q. The parameter error

vector for the unbalance component can be written as

~

(bug-[13' if]. 5310-1“). (7361-4 (5-29)
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The term :5 is obtained by taking the derivative of the measured signal it. The

term A’can be derived from Eq.(2.25) knowing that YTI‘Ym = O, YTI‘Y = 0, and

YTrY<3> = 0.

A = YTI‘Ym = K, 2 '7,- where K, = {,w, cos(w,t) (5.30)

i=0

It should be noticed that 7,- is the diagonal components of the adaptation gain I‘; and

the adaptation law in Eq.(5.25) has the regressor vector Ym that now varies according

to K,.

5.3 Proof of Stability and Parameter Convergence

The control and adaptation laws presented in Eqs.(5.24), ({refadpsrobce), and (5.26)

stabilizes the closed-loop system and converges all estimated parameters to their true

values. This can be proven in the following manner. Substituting Eq.(5.24) into

Eq.(5.21) and using Eq.(2.20), the dynamics of the controlled rotor can be described

by

mi = ——K,YT$ — m A11: — (c + émAfi + YIE, (5.31)

Using the relations If: 2 it + (7 from Eq.(2.16), and 5 2 Pi: + A5: from Eq.(2.22), the

above equation can be rewritten as

me: = mg. K,YT$ _ (c + gm). + 14.1., (5.32)

From Eqs.(2.20) and (5.25), we can write

07 = YTJ + 237T; + YT; (5.33)

2 1%+ 2YTeré + YTeré + YTI‘Ymé (5.34)
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Knowing YTI‘Ym --- 0 and Eq.(2.25) the above equation becomes

71: YTEB + A6 + Aé‘ (5.35)

Utilizing Eqs.(2.23) and (5.35), we can express Eq.(5.32) as

m(1 — A)é = 4,7,5 + émAé _ cé + 1735., (5.36)

Using the Lyapunov function candidate

v = g [(1 — A)mé2 + (PT-13' + 551133,] (5.37)

we obtain

V = m(1 — meg — émAéz + $11425 + £53;1135., (5.38)

From Eqs.(5.25), (5.26) and (5.36), we get V = —cé2 S 0. Again, positive definite in

V and negative semi-definite in V imply e —+ 0 as t —> oo. Knowing V is uniformly

continuous, from Barbalat’s Lemma [13], we can claim that V —+ 0 => 6 —) 0. Taking

derivative of Eq.(5.36), we can show that 5 is bounded => 5 is uniformly continuous

=> 5? -> 0. Therefore, similar to the conditions in Eqs.(4.19) and (4.20) except now

we do not need to separate the components of Ym, from Eq.(5.36) we can argue that

~

Y3,“ j) —+0 as t—~>oo (5.39)

45..

where

may}; —Y.T] (5.40)

As shown in Appendix B.3, if we ¢ 10 then Y3,“ is a persistently exciting signal [13],
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which can be verified from the condition

H-To

C121 2 YmuYZde Z ml (5.41)

t

where 01, 02, and T, are positive constants and I is a 2n+3 identity matrix, we can

conclude that 3 —) 0 and 3,, —+ 0. Therefore £10, 61,-, and 5,- for 2' = 1, . . . , n and 13 and

(1‘ all converge to their true values.

From Eqs.(5.25), (5.26) and (5.36), the closed-loop dynamics can be written as

:7: = -).2‘: + é (5.42a)

m(1 — 71).“; = —Y,"’,",$ + émAé — c'é + Y3}, (5.42b)

5: I‘ Y... é (5.42c)

5,, = I“, Y, e (5.42d)

Thus, we can make the following observations.

~

Lemma 5.1 The origin of the closed-loop system in Eq.(5.42), (12,305, I,,) E

(0,0,0,0), is an asymptotically stable equilibrium point.

Proof: The closed loop system in Eq.(5.42) is an interconnected system of the

form

:21 : f1(ti 21, 22) (5.433.)

i2 = f2(t, 22) (5.43b)

where zl 9- :2, and 22 é (6 5T 5: )T are the state variables of the two sub—systems.

We know previously that Z2 = 0 is an asymptotically stable equilibrium of the sub-

system in Eq.(5.43b). Also, 2'1 = f2(t, 21, 0) has an asymptotically stable equilibrium

point at zl = 0. This can be readily established from Eqs.(5.42b) and (5.43a). Us-
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ing the asymptotic stability theorem for cascaded systems [13], we conclude that

(it, e, E, a") E (0, 0, 0, 0), is an asymptotically stable equilibrium.

Theorem 5.1 The coordinate (x,i,q~5,$u) 5 (0,0,0, 0) is a stable equilibrium point

for the closed loop system defined by Eqs.(5. 21) through (5.26).

Proof: : Using Eqs.(2.19), (2.20), (2.25), (5.42a) and (5.42b) , we can show

that at (23,57, a, an) E (0,0,0,0), we have

{i 2 (wt+ YTQE) = YTI‘Ymé = A6 = act + An?) = As

Also, at(z,s,$,$,) E (0,0,0,0), ii: (5: - 23) = a = 0, since 0 < A < 1. From

Eqs.(5.31), (5.42c), and (5.42d), it follows that (i,i,$,$u) = (0,0,0, 0). There-

fore, (x,i:,$,$,,) E (0, 0, 0,0) is an equilibrium point. The fact that (m,:i:,$,5u) E

(0, 0,0, 0) is asymptotically stable can now be deduced from:

1. The equilibrium point (12,6, J, (bu) E (0, 0,0,0) is an asymptotically stable equi-

librium. This fact follows from Lemma 5.1,

2. The transformation matrix P that maps (5:,6, a, an) to (23,:b, a, an)

    

( ml ( El

‘1”, z p i (5...)
1 ¢ * <25

W.) W

( 1 0 —YT 0 \

—,\ (l—A) —YT 0

Pé (5.45)

O 0 E2n+l 0

K o o 0 15:.2 )
  



 

 lb

al)‘.

0U!

par

5.4

[H il

assu

Eda;



where E2n+1 E R<2n+llxl2fill and E2 E 332””) are the identity matrices, is well

defined and upper bounded, and

3. The inverse transformation P‘l exists, and H P" H is also upper bounded.

The above theorem establishes that our adaptive controller, in conjunction with si-

nusoidal excitation of the bias current, guarantees stabilization of the rotor geometric

center in the presence of both SRO and unbalance. This achieved through individual

identification and feedforward cancellation of both SRO and unbalance disturbances.

5.4 Robustness to Parameter Uncertainties

The effect of uncertainties in plant parameters namely mass m, open-loop stiffness

K,, and actuator gain Kc, to the performance of the SRUC-BCE algorithm is an-

alyzed in this section by considering uncertainty in each parameter independently.

Our particular interest is to evaluate the behavior of the rotor geometric center and

parameter estimates.

5.4.1 Mass Uncertainty

In implementation, we used a mass value of m 2 pm +m instead of the nominal value

m, where m is the nominal mass and pm is the mass uncertainty. It is reasonable to

assume that pm is constant and lpml < m. The feedback law in Eq.(5.24) and the

adaptation laws in Eqs.(5.25) and (5.26) become

_L 1-» 8'21“
I — Kc [K,1:+m)\:c+ (c+ 2mA)e+ (1 + m)Y“¢"] (5.46)

5: Pine (3,, = —(1 + pfifl‘u Yué (5.47)

Y", é K,Y - m? (5.48)



Substituting Eqs.(2.19), (2.20) and (5.46) to Eq.(5.21) we obtain

m5 — ma“: —K,YT$ — m At: — (c + immé + Yfi}, — 95x38. (5.49)

From Eqs.(2.20) and (5.47), we can write

3= WE+ 2YT$ + YT;

.. .. . _ (5.50)

= we + A5 + A"?

where

A :9— YTer = Z 7.- (K, + m(iw)2) (5.51)

i=0

A=52K327i (5.52)

‘=0

Therefore, in view of Eqs.(2.22), (5.48), and (5.50) we can rewrite the dynamics in

Eq.(5.49) as a linear time-varying system with an input of ul

M(t)5t + C(t);i: + K(t):r: = u1(t) (5.53)

where

“1“) g —Y77n$ + ngu — BTBWLYIQ’Su (5'54)

M(t) .9.- m(1 — A)

C(t) é c+ $77213. + (m — mA)/\ — mA

The left hand side of Eq.(5.53) can always be recast to a state space representation

H1(A(t),]B(t),C(t)) shown in Eq.(D.6) such that its input u; is defined by Eq.(5.54)

and the output y1 = e knowing Eq.(2.22), The closed—loop system can be viewed as
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a feedback configuration illustrated in Figure D.1. Notice that A(t), B(t), and C(t)

are bounded since M(t), C(t), and K(t) can be seen as having nominal parameters

with the addition of relatively small periodic perturbations.

Using the adaptation laws in Eqs.(5.47) and (5.26) we can view the system in the

feedback path H2 having u2 = e as the input and y2 = ng-YIJ.+ 334%.. as the

output. For a sufficiently small pm we can prove H2 is a passive system as shown by

lemma D.2. in Appendix D. Assuming that H1 remains strictly passive and satisfies

the conditions in definition D.3, the following observation can be made regarding the

convergence of the estimated parameters.

1. As t ——> 00, by theorem D.1 we can claim that at, is, fit and e converges to zero.

2. From Eq.(5.53)

( fl. -YT ) ¢ pm . —> o (5.55)

¢u - (1+ Eldlu

3. The persistence of excitation in the regressor vector yields

~

¢—)0

¢u-(l+p—m')é§u—+O

m

Therefore the estimate parameters of the SRO converge to the true values while

m

m+pm¢u
 the estimate parameters of the unbalance ([3,, —->

4. Since :7: —> O and (b -—> 0, from Eqs.(2.19) and (2.20) we can argue that x —) O.

In conclusion, the rotor geometric center is still stabilized to the origin despite of

mass uncertainty. However, this conclusion is true only as long as H1 remains strictly

passive. The passivity of H1 depends on the nominal plant parameters and the choice

of controller gains besides the level of the uncertainty in the mass parameter.
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5.4.2 Magnetic Stiffness Uncertainty

The uncertainty in the open-loop stiffness parameter is studied by assuming that the

controller uses the K, 3 p, + K, where p, is the amount of the uncertainty. Due to

the excitation on the bias currents, it is logical to assume that p8 is time varying and

Ipslm < K,. The feedback law in Eq.(5.24) and the adaptation law for the SRO in

Eq.(5.25) become

1 - . 1 . .

I = ——-K— [K,zi: + mAi' + (c + -2-mA)é + deu] (5.56)

.73 = r Y... a, (5.57)

Y", 9: K,.Y — mi? (5.58)

Note that the adaptation law due to the unbalance part is the same as in Eq.(5.26).

Since ,5, 74 0 we obtain the following.

3?", = Y... + p,Y + p.Y (5.59)

A = ’17"er = A + psYTI‘Y = A + p, :7.- (5.60)

i=0

A = A+p.§:7. (5.61)

i=0

Substituting Eqs.(2.20) and (5.56) to Eq.(5.21), we can write

mfv' = —K,YT$ — m A5 — (c + émjlfi + Yfis', (5.62)

From Eqs.(2.20) and (5.57), we can derive

2'= 3'??? + 2YT$ + YT; (5.63)
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= ’i'r'TJ + A6 + A6 (5.64)

Using Eqs.(2.22), (5.48) and (5.50) we rewrite the dynamics in Eq.(5.62) to

M(t)5i: + C(t)§: + K(t):5 = u1(t) (5.65)

where

M(t) é -Y3{.$+ ngu (5-66)

M(t) 2“: m(1 — A)

C(t) é c+§m5+m [(1— [AM—[A]

K(t) A (c+—1.5.5-5] A

[
0

Using similar procedures as in the previous section we can use the feedback con-

figuration Figure D.1 in which H1 is the state space representation defined by the

left-hand side terms in Eq.(5.65) having ul shown in Eq.(5.66) as the input and e as

the output knowing Eq.(2.22). The system H2 has the input 112 = e and the output

3;; = Ygg - YZE". As shown by lemma D3 in Appendix D2, H2 is passive for a

sufficiently small p,. Assuming the system H1 in the forward path remains strictly

passive and satisfies the conditions in definition D.3, by theorem D.l we can argue

that

i,i,§3,é—+O as t—>oo

which implies

~

(373,“, 4(3) :1) —+0 (5.67)

45..

Since the regressor vector is PE, 6,66,, —+ 0. Therefore, all estimated parameters
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converge to their true values and the rotor geometric center converges to the origin.

5.4.3 Actuator Gain Uncertainty

The controller uses Kc é pc + Kc where pc is the amount of the uncertainty in the

actuator gain. We assume that Ipclmaz < K,. Due to the bias current excitation, )66

may vary at the frequency of the excitation. The feedback law in Eq.(5.24) becomes

I = _Ki [K312 + mAi: + (c + émAk? + qubu] (5.68)

C

and the adaptation laws shown in Eqs.(5.25) and (5.26) are still valid. Substituting

Eq.(5.68) to Eq.(5.21) and using Eqs.(2.19), (2.20), (2.22) and (5.35) we obtain

M(t);i": + C(t)ft + K(t):7: = u1(t) (5.69)

where

m(t) g 4’55+ YIJ. + {-iinéu (5.70)

M(t) é:- m(1 — A)

C(t) é (1— 7%) [c + émA + mA] — m(A + AA)

C

K(t) s A [(1— fix” émA) — mA] — 7% ,

Again, we can recast Eq.(5.69) such that the passivity argument can be used. In this

case, the system H2 has the input u; = e and the output y2 = Yfi—YEEE, — fiYZun.

As before, we assume that H1 remains strictly passive. Knowing H2 is passive for a

sufficiently small pc, shown by lemma DA in Appendix D, by theorem D.1 we can

argue that

—+O as t—>oo

”
H
I

“
H
P

H
I

”
(
b
l
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which implies

( an‘ _Y: ) Pc . —+ 0 (5.71)

¢u "’( - krwbu '

Since the term 1% is function of time, the estimate parameter 43., is perturbed. Since

the harmonics of the unbalance are coupled with the first harmonics of the SRO, the

estimate parameter (b is also perturbed and so is d Knowing 5i: -) 0, from Eq.(2.19)

we can conclude that uncertainty in actuator gain may cause a fluctuation in the

rotor geometric center.

5.5 Simulation Results

Simulation results are presented in Figures 5.2, 5.3, and 5.4 to demonstrate the ef-

fectiveness of the SRUC-BCE when the plant parameters are known. As before, for

simulation, we used the nonlinear plant model in Eqs.(2.l) and (2.2), parameters in

Tables 4.1 and A.3, and the rotor angular speed of 1500 rpm. The SRO identification

was performed for up to the second harmonic. In the simulation, we excite the bias

currents at time interval 5 < t < 35 s using an amplitude of 02/1 and frequency of

10 Hz. As seen in Figure 5.2, for t < 5 s, the geometric center oscillates with constant

amplitude due to sensor runout and unbalance. Without bias current excitation, Fig-

ure 5.3 indicates that for t < 5 s the estimated parameters 61, b1, 6, and q converge

to arbitrary values while do, 62, and b2 converge to the true values. After we turned

on the bias current excitation, the parameters 61, b1, 6, and q converge to the true

values within 303, which results to the stabilization of the geometric center about

the origin shown in Figure 5.2. During the excitation, in Figure 5.3 we can observe a

diminishing slight fluctuation of the parameters do, {12, and b2 about the true values.

As shown in Figures 5.2 and 5.3, after all parameters have converge to the true values

i.e. t > 35, turning off the excitation has a negligible effect. The geometric center
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remains at the origin and the estimated parameters stay at the true values. Turning

off the excitation at this time has an advantage of causing less effort in the power

amplifier as indicated by Figure 5.4.

The effect of plant parameters uncertainties to the performance of the SRUC-BCE

is illustrated in Figures 5.5 to 5.7 assuming that each parameter is over-estimated by

30 %. The strictly passivity condition discussed in section 5.4 is still satisfied knowing

that the closed-loop system is still stable in the simulation results. As seen in Figure

(5.5), the mass uncertainty does not affect the convergence of the geometric center to

the origin. However, it should be noticed that parameters 6 and 5 do not converge

to the true values. The simulation results in Figure 5.6 show that the convergence

of parameters to the true values is not affected by the uncertainty in the magnetic

stiffness. In Figure 5.7 we can observe that the uncertainty in the actuator gain cause

a relatively small and steady fluctuation in the rotor geometric center. It can be seen

that the parameters (11, b1, 6, and q do not converge to the true values while other

estimate parameters converge to the true values.
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Figure 5.2. Geometric center at and sensor signal with runout z,
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5.6 Simulation Studies of the Convergence Rate

To approximate the convergence rate of the SRUC via bias current excitation, we

utilize the averaging method that has been useful in the ASRC system as seen in

Chapter 3. The detail of derivation of the averaging method for the SRUC-BCE is

provided in Appendix 0.2. In simulation we used the parameters in Tables 4.1 and

A.3, and the rotor angular speed of 1500 rpm. As seen in Figures 5.8 and 5.9 it is

clear that a higher amplitude of bias current excitation can result to faster convergence

rate. The simulations shown in Figures 5.8 and 5.9 also indicate that the averaging

method can accurately predict the convergence rate of the original system when the

excitation frequency fe is about one-half of the rotor frequency f. It was realized by

simulations during our investigations that this occurrence is specific to the choice of

adaptation gains.

We investigate the effect of the frequency of bias current excitation to the conver-

gence rate using 0 < f, < f. It can be seen in Figure 5.10 that for the rotor frequency

of f = 25 Hz, the convergence rate is highest when the frequency of the bias current

excitation is about 15 Hz. Therefore, there exists an Optimum excitation frequency

that can result to the fastest convergence rate. However, the analytical solution to

the optimum frequency is still an open problem.

The effect of having more harmonics in the excitation can be investigated using

the simulation results in Figure 5.11. It can be seen that having two harmonics in

the excitation and imposing the same total excitation amplitude A = A1 + A2 may

decrease the convergence rate of the adaptation. Thus, excitation with one harmonic

only, in this case, is preferable.
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5.7 Experimental Procedure

We performed experiments to validate the efficacy of our algorithm on synchronous

runout and unbalance compensation. The schematic of our test rig is shown in Figure

A.1. We used a steel rotor, 43.2 cm in length and 2.5 cm in diameter, with a balance

disk for adding trial masses for unbalance. As shown in Appendix A.2, the rotor was

quite rigid with the first flexible mode frequency at approximately 438 Hz, which was

six times higher than the bandwidth of the closed-loop system. At one end, the rotor

was connected to an absolute encoder using a bellows-type torsionally rigid coupling.

Without introducing significant radial forces on the rotor, the coupling accommodates

lateral misalignments. The encoder output was used in generating the feed-forward

terms in our adaptive algorithm. At the other end, our rotor was connected to a

motor via a flexible rubber coupling. An optical speed sensor was used to provide

feedback to an analog controller unit to maintain the speed of the rotor at a constant

desired value.

The rotor was levitated using two bearings, A and B. Among them, both axes

of bearing B were controlled using analog PD controllers shown in Appendix A.3.

Although both axes of bearing A were computer-controlled, unbalance and runout

was compensated in one of the axes. A PD controller was used to control the ro-

tor along the other axis. The currents in the electromagnets of both bearings were

driven by switching power amplifiers, operating with a bandwidth of 1.6 KHz. The

physical parameters and operating conditions of bearing A are provided in Table

A.3. The rotor mass enumerated in this table pertains to that of the whole rotor.

We programmed our adaptive algorithm for synchronous runout and unbalance com-

pensation in Matlab/SimulinkTM environment and downloaded it to a Digital Signal

Processor (DSP) board, manufactured by dSPACETM. The sampling rate of the

board was set at 13 KHz for on-line identification and control. A separate DSP board
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sampling at 5 KHz, along with suitable analog circuits, was used for manual identifi-

cation of runout. The manually identified runout was used to determine the position

of the rotor geometric center from the sensor signal.

Before implementation of our algorithm, we levitated the rotor using a PD con-

troller and manually identified runout following the procedures outlined in Section

2.5. Although the first harmonic of runout was significant, higher harmonics of runout

were negligible. On the basis of these results, we set n = 1 in our algorithm for esti-

mation of runout.

We performed experiments with the balance disk at two different locations, shown

in Figure A.1 . For each location, we implemented our algorithm three times. In the

first experiment, Expt. 1, we did not introduce any unbalance but estimated the

initial unbalance of the rotor. In line with our discussion in section 2.6, we added a

trial mass in the second experiment, Expt. 2, and re—estimated unbalance. The third

experiment, Expt. 3, was performed by introducing the trial mass at a different phase

angle. Although a trial mass was added to the balance disk, unbalance was compen-

sated only in bearing A. Since bearing B did not have unbalance compensation, we

conducted two sets of experiments with the balance disk at two different locations to

gain a high level of confidence in our results.

We performed our experiments at constant rotor speed of 1500 rpm (25 Hz). We

used the control law in Eq.(5.24) and the adaptation laws in Eqs.(5.25) and (5.26)with

the following choice of gains

A = 400 s“, c =1200 leg/s, r = diag (1.4, 3,3, 3,3) x 10'7 m/N

l"u = diag (3, 3) x 10"5 m/N

The derivative term i: in the control law was numerically computed using the

transfer function 2500 s/(s + 2500). This eliminates potential problems arising from

infiltration of wideband noise into the sensor signal. During adaptation, the top bias
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current was excited using 61 = 0.2 sin(201rt) Amperes. The excitation frequency was

therefore less than half of the rotor frequency. After estimated parameters reached

steady state, adaptation and bias current excitation were both discontinued.

In our algorithm, bias currents are excited concurrently with estimation. This

eliminates drift in the estimated Fourier coefficients of unbalance and the first har-

monics of runout in the absence of persistent excitation. Compared to standard

implementation, our algorithm requires an extra D/A channel for every axis of im-

plementation since both coils of each axis are excited independently.

5.8 Experimental Results

We first performed experiments with the balance disk located at rotor midspan. The

results are provided in Tables 5.1 and 5.2. The first column of data in Tables 5.1

and 5.2 (Expt. 0) pertains to the manually identified values of sensor runout. This

data includes the DC component and the first harmonics of runout only since second

and higher harmonics were found to be negligible. The phase of the first harmonic

was set to zero through encoder calibration. The second column of data (Expt. 1)

corresponds to our experiment performed without a trial mass. This data includes the

DC component and first harmonics of runout, and the harmonics of initial unbalance

of the rotor.

The two columns, labeled Expt. 2 and Expts. 1, 2 in Table 5.1, of data pertain to

our experiment with the addition of a trial mass of eccentricity 61 = 91.1 pm. The

eccentricity value was computed from the mass of the trial weight, which was 10 gms,

the radial distance of the trial weight, 4.45 cms, and the total mass of the rotor, which

Was 4.87 kgs, in the following manner: 671 = {0.01 / (4.87+0.01)} x 0.04445 = 91.1pm.

The phase of the trial weight was 07 = —56°.

The Expt. 2 column provides experimentally obtained values of runout and unbal-
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ance. The column marked Expt. 1, 2 provides computed values of unbalance solely

due to the trial mass. The computed values were obtained in line with our discussion

in section 2.6, as follows

CT 407‘ = (63 £03 — 6U 40(1) = (86.74—61.30 - 12.94—91.80) = 75.94—56.40

The last two columns of data in Table 5.2 pertain to experimental results obtained

with the same trial mass, located at the same radial distance, but at the new phase

angle OT = —146°. Among these two columns, the left column provides Fourier

coefficients of runout and unbalance obtained through experiments (Expt. 3). The

right column provides computed values of unbalance solely due to the trial mass. This

data was obtained as follows

67‘ [07' = (63 £03 - ((1 40(1) 2 (82.1 1—14290 - 12.91—91.80) = 7474-15060

The time history of the rotor geometric center position, 2:, and sensor signal,

$6,, are provided in Figure 5.12 for one of the experiments, Expt. 2. The geometric

center position was evaluated from the sensor signal through cancellation of manually

identified runout. The time scale in Figure 5.12 is divided into three distinct regions:

(a) t S 0, where runout and unbalance were not compensated, (b) 0 S t S 300,

where runout and unbalance were adaptively estimated and compensated, and (c)

t 2 300, where runout and unbalance were completely compensated and bias current

excitation terminated.

Due to the relatively long duration of the experiment, we acquired data over the

sub-intervals -—0.2 S t g 0.3, 120.0 g t 3 120.5, and 299.6 3 t 5 300.2. The time

trajectories of the estimated Fourier coefficients of runout and unbalance are shown

in Figure 5.13, with final values of the coefficients shown with dashed lines. The

sensor runout coefficients show larger fluctuations than those of unbalance. This can

be primarily attributed to the difference in scale of the plots.
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Table 5.1. Experimental results with the balance disk located at the rotor midspan:

part (a)

 

initial

unbalance estimation

S plus of

r5333: manual trial weight trial weight

and SRO initial GT = 91.1 £11 = 91.1

unbalance identification unbalance 97' = -56 97‘ = -56

Expt. 0 Expt. 1 Expt. 2 Expts. 1, 2

 

 

{to 0.0 -0.5 -O.1 —

611 40.0 38.5 39.0 -

b1 0.0 -0.6 0.2 -

Mag., A1 40.0 38.5 39.0 —

p — 12.9 76.1 —

q — -04 41.6 —

Mag., 5,, — 12.9 86.7 75.9

Phase, 0,, — -91.8 -61.3 -56.4       
 

Note: units of measurement are pm and degrees
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Figure 5.12. Time history of geometric center :1: and position sensor signal at,
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Table 5.2. Experimental results with the balance disk located at the rotor midspan:

 

 

 
 

 

part (b)

initial

unbalance estimation

plus of

$3333: manual trial weight trial weight

and SRO initial 67 = 91.1 67 = 91.1

unbalance identification unbalance 97‘ = -146 or = -146

Expt. 0 Expt. 1 Expt. 3 Expts. 1, 3

£10 0.0 -0.5 -4.4 —

(21 40.0 38.5 37.2 —

b1 0.0 -O.6 -0.3 —

Mag., A1 40.0 38.5 37.2 —

Phase, 01 0.0 1.0 -0.4 —

p — 12.9 49.5 —

q — -0.4 -65.5 —

Mag., 6,, — 12.9 82.1 74.7

Phase, 0,, — -91.8 -142.9 —150.6     
 

Note: units of measurement are pm and degrees
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Figure 5.13. Time trace of estimated Fourier coefficients for Expt. 2 in Table 5.1
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5.9 Interpretation of Experimental Results

First consider the Fourier coefficients of sensor runout presented in Tables 5.1 and

5.2. These values, identified by our algorithm, are very similar for Expts. 1, 2, and 3,

performed with varying degrees of unbalance. Furthermore, the identified coefficients

closely match the manually identified values of runout, Expt. 0. We can therefore

claim that sensor runout has been correctly identified.

Next, investigate the estimated magnitude and phase of unbalance due to the trial

mass alone, for the two cases in Tables 5.1 and 5.2. The estimated magnitudes, 75.9

pm and 74.7 um, are similar and therefore consistent, and their respective phases,

—56.4° and —150.6°, compare very well with the true values, —56° and —146°, re-

spectively. The average value of the estimated magnitudes of unbalance, 75.3 pm, is

approximately 82% of the trial mass eccentricity of 91.1 um, added at rotor midspan.

Other than this percentage factor, which will be discussed later, the above data indi-

cates that our algorithm determines the phase of unbalance accurately and provides

consistent estimates for eccentricity over repeated trials.

Now consider the plot of the rotor geometric center position, 2:, in Figure 5.12.

Although this plot specifically pertains to Expt. 2, it is representative of the general

behavior of the rotor geometric center with our algorithm. It can be seen from Figure

5.12 that the geometric center initially fluctuates about a nonzero mean value but

this fluctuation is virtually eliminated with our algorithm. The stabilization of the

rotor geometric center to the origin convinces us that both mass unbalance and sensor

runout have been correctly estimated and compensated.

A second set of experiments were performed with the balance disk closer to Bearing

B, as shown in Figure A.1. The results of these experiments, provided in Tables 5.3

and 5.4, are very consistent with the results in Tables 5.1 and 5.2. Specifically, the

estimated values of sensor runout are very similar to the values in Table 5.1 and
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5.2, and closely match the manually identified values. The magnitude of estimated

unbalance is consistent over repeated trials and the phase of unbalance closely match

the phase of the trial mass for both experiments. The plots of the rotor geometric

center, not shown here due to their similarity with the plot in Figure 5.12, also indicate

geometric center stabilization.

The ratio between the average magnitude of estimated unbalance and trial mass

eccentricity is 0.51 for the experimental results in Table 3. Although this value is less

than the 0.82 ratio obtained with the balance disk at rotor midspan, as one would

expect, both values are higher than expected. An explanation of the higher values

would require further analysis that takes into consideration: (a) characteristics of

the support provided by Bearing B under PD control, in the absence of unbalance

and runout compensation, (b) performance of our adaptive algorithm, formally de-

veloped for a single degree-of-freedom rotor with collocated sensor and actuator, in

our experimental test-rig, and (c) additional stiffness and unbalance introduced by

the couplers at the two ends of the rotor. It will however not be worthwhile pursuing

such analysis since our adaptive algorithm will have to be extended to a complete

rotor model before it can be implemented in any industrial rig. Our experimental

results amply demonstrate the basic feasibility of our algorithm but significant work

remains to be done before it can be adopted by commercial vendors.

We conclude this section with our comments on the time taken for synchronous

disturbance compensation. It can be seen from Figures 5.2 and 5.12 that compensa-

tion in simulation requires a shorter time than compensation in experiments. This

can be attributed to the fact that only one of the bearings in our experimental setup

was compensating the disturbances. The other bearing, in the absence of unbalance

and runout compensation, acted as a source of additional periodic disturbances. We

expect the time to reduce significantly when both bearings compensate for distur-

bances, and amplitude and frequency of bias current excitation are chosen optimally.
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The time taken for compensation in our experiments, nevertheless, should not be

construed as significant. This time will be required during rotor spinup only. During

steady state operation, adaptation and bias current excitation will be implemented

for a few seconds periodically to account for possible drift in runout and unbalance.

Depending upon the type of application, periodic implementation may occur few

times every hour to once every few hours.

Table 5.3. EXperimental results with the balance disk located closer to bearing B:

part (a)

 

 

 

initial

unbalance estimation

Sensor - plus. - 0f .
runout manual trial welght trial weight

and SRO initial 67 = 91.1 (T = 91.1

unbalance identification unbalance 9'1“ = -56 9T = -50

Expt. 0 Expt. 1 Expt. 2 Expts. 1, 2

£10 0.0 -0.2 -1.3 —

til 40.0 40.0 40.0 —

b1 0.0 -0.7 1.5 —

Mag, A1 40.0 40.0 40.0 —

Phase, 91 0.0 -1.0 2.1 —

p — 10.9 45.0 ~—

6 — 4.1 36.8 -

Mag., 6,, -— 11.6 58.2 47.3

Phase, 0,, - -69.4 -50.7 -46.2       
 

Note: units of measurement are pm and degrees
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Table 5.4. Experimental results with the balance disk located closer to bearing B:

 

 

 

 

part 0))

initial

unbalance estimation

Sensor - plus. - Of-
runout manual trial weight trial weight

and SRO initial CT = 91-1 6T = 91.1

unbalance identification unbalance 9T = -146 9T = 40

Expt. 0 Expt. 1 Expt. 3 Expts. 1, 3

61.0 0.0 -0.2 -1.1 —

(11 40.0 40.0 38.6 -

b1 0.0 -0.7 0.9 —

Mag., A1 40.0 40.0 38.7 -

Phase, 61 0.0 -1.0 1.4 —

p — 10.9 -21.2 —

q — 4.1 36.5 -

Mag., 6,, — 11.6 42.2 45.6

Phase, 0,, — -69.4 30.2 44.7       
 

Note: units of measurement are pm and degrees
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5.10 Summary and Remarks

A new adaptive algorithm has been designed to identify the harmonic components

of sensor runout and unbalance at constant rotor speed. The algorithm relies on

persistency of excitation generated by methodical bias current excitation. The bias

current excitation amplitude is small and carried out in a manner that does not alter

the equilibrium condition of the rotor. The algorithm enables us to stabilize the rotor

geometric center to the origin in the presence of simultaneous sensor runout and

unbalance. After the geometric center has been stabilized to the origin, one may stop

the bias current excitation without causing problems to the closed-loop system. If the

harmonic components of the disturbances drift, the bias current excitation procedure

may be invoked for a brief duration to identify the new values of the harmonics.

Depending upon the application, bias current excitation may be invoked few times

an hour to once every few hours. The efficacy of our algorithm was demonstrated

both through simulations as well as experiments.

The effect of plant parameter uncertainties on the performance of the algorithm

has been investigated. In general, as shown by simulations, the algorithm can with-

stand to small uncertainties in the plant parameters . It was observed that the strict

passivity condition of II; should be evaluated case by case. The passivity of H1 is

important for ensuring closed-loop system stability and convergence of estimated pa-

rameters to their true values. Further investigation is needed to show the interaction

between the nominal plant parameters and choice of gains in the algorithm to meet

the strict passivity condition in H1. Furthermore, it is realized that more work should

be done to reduce the effect of the uncertainty in the actuator gain.

In Chapter 3, we had shown that the averaging method was a good analytical tool

to predict the convergence rate of parameters in ASRC. Unfortunately, this method

is not directly applicable to the SRUC algorithm and further research is required to
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predict convergence rates of parameters. Our simulations show that the optimum

adaptation speed can be achieved when the frequency of excitation is between 50 to

75 % of the rotor frequency. However, further studies are needed to understand the

effect of nominal plant parameters and controller gains on the optimum frequency of

excitation. Our simulation results also show that for a fixed total amplitude of bias

current excitation, faster convergence is achieved with one harmonic of excitation

rather than multiple harmonics. This should however be verified analytically.
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CHAPTER 6

Extension to MIMO Systems

6.1 Introduction

In this section we investigate the effectiveness of ASRC and SRUC-BCE algorithms

in MIMO magnetic bearing systems. By assuming the gyroscopic effect to the system

to be negligible, we decouple the 4-DOG MIMO system into two identical 2-DOF

systems. We then analyze the 2-DOF dynamics of the rotor being controlled by

the MIMO versions of the adaptive algorithms. The stability analysis of the 2-DOF

systems is provided. The convergence of estimated parameters is studied through

simulations.

6.2 MIMO Model of Magnetic Bearing with Rigid

Rotor

A free body diagram of the rigid rotor is shown in Figure 6.1. The forces F,- for

j = 1, ..., 4 are provided by the two radial bearings, which are at distances L from

the rotor center of geometric. 0 — XYZ is the inertial frame fixed in the space, 2:,

y are the displacements of the center of geometric along the X and Y directions.

Both X and Y axes are inclined at 45° with the horizontal. The rotor is assumed
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constrained along the Z directions. The :r and y displacements are given with respect

to the inertial frame. It is assumed in this analysis that the nominal gaps and forces

in the bearings are in the same radial plane; thus, the effects of non-collocation are

ignored. 0 and 't/J are angles of rotation about the X and the Y axis respectively.

These angles are assumed to be small. We also assume that the center of mass does

not coincide with the geometric center. However, the axis of rotation is still aligned

with the rotor’s major principal axis; therefore, the dynamic unbalance is neglected

and only static unbalance is assumed. In Figure 6.1, the static unbalance 5 is the

 

Figure 6.1. Freebody diagram of a magnetically levitated rigid-rotor

distance between the rotor’s geometric center 0 and its center of mass 0m on the x—y

plane. The resulting dynamics equations, in terms of 2:, y, 0, and 1b, are given by

mi} 2 F, + F; + "1.4025 cos(wt + 0,) — mg/\/2 (6.1a)

my 2 F3 + E, + 771.6028 sin(wt + 0,) — mg/\/2 (6.1b)

176' = (F, -— F2)L — lam/3 (6.1C)
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1,5 = (F3 — F,)L — Iawé (6.1d)

where m is the total mass of the rotor, I,l and IT are the axial and transverse mass

moment of inertias, and the forces

i-+i- 2 i-—i- 2
F,=k[(—E’l——J—) -(fl”———’)] j=1,...,4 (6.2)

l- 2:,- l+ 1:,-

Linearization of the external forces about 2:,- = 0 and i,- = 0 gives

F) = FOj "l' ch'lj + Kijj (6.3)

Since the bearings are identical and symmetrical, we may write in),- = 210 and izoj =

izo. Also, we can obtain K,;,- = K, and K,,- = K, that are defined by Eqs.(2.6) and

(2.5). Assuming the static unbalance 5 is small compared to L, the following relations

can be obtained from geometry:

x1:a:+Ll9, xgzx—LO, x3=y+Lib, x4=y—Lz/) (6.4)

and we can write the equation of motion about a: = 0, y = 0, 0 = 0, and 1/1 = O as

 

5'1 i1 331 :31

ii i :1: 2':

m 2 = x, 2 +5, 2 +_<3_ 2 +5, (6.5)

5133 i3 $3 It3

3'34 34 $4 $4

where

K 0 KC 1 + -'—"—L—’ —K, 1— m2
K. A —“ , and a ( ’* 2) ( “2‘ ) (6.6)

0 K... — .(1—";’,:) K.(1+fl,£-)
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are the open loop stifl'ness matrices,

 

 

  

K e K,1+'"L2 —K,1—m£’-

1.2% —" . and 3.2 ( ”3 ( 'I) (6.7)
o 1:, —K,(1 — '3; ) K,(1+ 1%)

are the actuator gain matrices,

. M 19.91 .

0 0 _21T 211~

0 0 be -52
Q g 211‘ 217‘ (68)

be 1.9.
21T _211 0 0

LL63 I w

.. —2IT 217‘ O 0 .

is the gyroscopic matrix, and

cos(wt + 4)“)

cos wt -l- d)“

fu = mw2e ( ) (6.9)

sin(wt + (bu)

sin(wt + (bu)

is the unbalance force vector.

In practice, the gyroscopic effect is likely to be very small. It becomes important

only when the rotor spins at extremely high speed, which is not the interest of our

study. As the results, the coupled 4-DOF AMB system model can be decoupled as two

2-DOF system models. Let x = [x1 2:2]T 2 [ml $3]T, 1 = [i1 i2]T = [iA iB]T,

then the equation of motion on one plane can be represented by

mi Li + _ng + 13¢. (6-10)
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where

Xfémwz sin(wt) cos(wt) (6.11)

sin(wt) cos(wt)

It should be noticed that the unbalance disturbance, (bu, affects both axis at equal

magnitude. Furthermore, the SRO disturbance vector is now represented by

d 2 (d, dB)T (6.12)

d,- 9—- a0,- + 2a,,- sin(iwt) + b,-,- cos(iwt) j = A, B (6.13)

i=1

Using YT, defined in Eqs.(2.13), we can also write

d = 1%, d e 822 (6.14)

where

YT 0
1T é YT , X’I‘ E 322x(4n+2), yT E R2n+l (6.15)

0

A ¢A 4n+2 2n+1
<I>= ¢ , <I>e§R , 42,6368? (6.16)

B

and d), is defined by Eq.(2.14) for j = A and B.

The following vectored equations used in the 2-DOF system model are generalized

from the definitions in the single-DOF system model provided in section 2.5.

Position sensor signal:
 

x, = x + d, x, E 3? (6.17)

Estimate of geometric position:
 

x 3 x, — d, equivalently x = x + d, i E 322 (6.18)
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Estimate of SRO disturbance:

a é (cl, 2,.)7", (i 6 ER"

where

n

d,- Q 6sz + 2:6,,- sin(iwt) + bi,- cos(iwt) j = A, B

i=1

SRO disturbance parameter error:
 

 

Regressor matrix:
 

I; g KsXT _ "2:7", X; E 32(4n+2)x2

Adaptation gain matrix for the SRO components:
 

|
"
‘
J

“
D P E a(4n+2)x(4n+2) 1-1 E m(2n+1)x(2n+l)

1

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

where I‘ is defined in Eq.(2.24). The components of I‘ are chosen such that 0 < A < I

where
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2
" L

AAA = A33 = Z ’7,- [K,(1 + -"—;;-) + m(iw)2] (6.26)

i=0

mL2

4.... = - 27.100 — 7;) (6.27)

i=0

6.3 ASRC for 2-DOF systems

6.3.1 Controller Design

For AMB systems with negligible unbalance _chfu = 0, Eq.(6.10) becomes

mii = 1ch + K x (6.28)
-—8

The following feedback control action and the adaptation law can be directly extended

from the ASRC in the 3180 case shown by Eqs.(3.2) and (3.3).

I = —E_;‘ [Lac + mAx + 05] (6.29)

~

(P 2 £1", E (6.30)

The proof of stability for the 2-DOF system model is similar the proof of the ASRC

for single-DOF system model in section 3.3. Briefly, we can summarize the proof

below.

Substituting Eq.(6.29) to Eq.(6.28) we obtain

miiz—Kd—mAx—cé (6.31)
——8

Using the relation 1:: = it + d from Eq.(6.18), and 5 2 5‘2 + A)? from Eq.(6.22), the
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above equation can be rewritten as

mézmd—lgsd—cé (6.32)

The term 21 can be derived from Eq.(6.21).

YT<1> (6.33)

T:Y é + Trims (6.34)

In the above equation, the adaptation law in Eq.(6.30) is used to derive 5. Knowing

XTI‘X", = 0, XTI‘Xm = 0 and Eq.(6.25), we can write

~

(1 = $775 + _A_é (6.35)

Therefore using Eqs.(6.23) and(6.35) we can express Eq.(6.32) as

~

m (I —- éfi :2 —XT<I> — cé (6.36)
m

Using the Lyapunov function candidate

V = éméTU — A) e + $571495, 0 < _A_ < 1 (6.37)

we can find its derivative along the trajectory of Eq.(6.36) as

0

~

V=méT(1—A_)é+<iTL-1<1>

= -méT (:55 + cé) + €137“:ch (6.38)
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The use of the adaptation law in Eq.(6.30) results to

V = —céTé _<_ 0 (639)

Using Barbalat’s lemma we can conclude that E: -—> 0, 5t —) 0 and 5 is bounded.

Furthermore, ones can find that the regressor vector 1; e 312x(4"+2) does not meet

the persistency of excitation condition. The analytical proof is a straightforward

extension to higher dimensions of its counterpart in Eq.(3.14), which is not provided

in this thesis since it is beyond the scope of this thesis. However, the convergence of

estimated parameters and the performance of the closed-loop system are investigated

by simulations in the next section.

Table 6.1. Simulation parameters for 2-DOF magnetic bearing systems

 

Angular speed: or = 217 x 25 rad/s

 

Total rotor mass: m = 4.86 kg

Distance from rotor center to sensor-actuator: L = 0.072 m

Transverse moment of inertia : IT = 0.064 kg/m2

 

Sensor runout in 2:, axis (bearing A):

a0 = 2.5 pm

a1 = 18.35 pm; bl = 4.92 pm;

a,=b,-=0 f01’222

 

Sensor runout in 1:2 axis (bearing B):

a0 = -1 pm

a1 = —12.07 pm; bl = 3.24 pm;

a,=b,-=0 fori22

 

Error gains:

A = 400 s“; c 21200 kg/s

 

Plant initial conditions:

x(t = 0) = — 0.1.x 10’3 m; 0(t = 0) = 3 x 10“ rad

:i:(t=0)=0; 0(t=0)=0   
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6.3.2 Simulation Results

For simulations we use the bearing parameters shown in Table A.3 with the total

mass of the rotor, m = 4.86 kg. The controller parameters and the assumed SRO

disturbance are shown in Table 6.1. The adaptation is performed up to the third

harmonic using the adaptation gain matrix I‘ = diag( 1, 2, 2, 1, 1) x 10‘7 m/N for both

axes as shown in Eq. (6.24). We can verify that

0.4385 —0.1467

A =

—0.1467 0.4385

which has eigenvalues of 0.585 and 0.292; thus the condition 0 < A < I is satisfied.

All estimated parameters in both axes were initialized zero.

The simulation result in Figure 6.2 shows that at the steady state the geometric

centers of both axes, am and 2:3, become constant; thus the controller is able to remove

the periodic disturbance due to the SRO. However, :1:A and 2:3 converge to positions

other than the origin. As seen in Figure 6.2 the DC parameters do not converge to

the true values while the parameters of higher harmonics seen in Figure 6.3 converge

to the true values. Therefore, generalizing the ASRC scheme from SISO to the MIMO

system model can not guarantee the convergence of all estimated parameters to the

true values. In section 6.5, we will present the eflect of bias current excitation on

ASRC in 2-DOF systems to solve this problem.

6.4 SRUC-BCE for 2-DOF Systems

6.4.1 Controller Design

In the presence of SRO and unbalance, the system dynamics are given by Eq.(6.10).

The following feedback and adaptation laws, generalized from Eqs.(5.24) through

103



x1 axis. bearing A

  

 

 

X2 axis, bearingB

100 - f . . 100

... 5° A 50

S 0 V31 0 1

X x

-50 -50

 
 

 
 

  

 
 

 
 

  

  
 

«13 L «11° F
r- .......................

    
 

 
 

time (s)

Dashed lines = true values
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(5.26), are considered.

I = —-£;1 [Lac + mAfc + é-mA + cé + 13:6,] (6.40)

~

<1> = EXmé 33,, = 4,1,6 (6.41)

In each axis, we may excite the bias currents using the procedure outlined in Eqs.(5.3)

through (5.20). We may also assume that the amplitude, frequency, and phase of the

excitation are the same on both axes.

The following is the proof of stability that closely follows its counterpart in the

1-DOF case described in section 5.3.

mi = —§,1T<i> — m A)? — (c + %m_A_)6 — 13:55,, (6.42)

Using the relations 5": = 52 + d from Eq.(6.18), and 6 = STE + A)? from Eq.(6.22), the

above equation can be rewritten as

. 2 ~ 1 - ~

m 6 = md — _I_{_,_T<I> — (c + Eméfi’e - 1:45,, (6.43)

From Eqs.(6.21) and (6.41), we can write

T33 (6.44)

is + YTLjfim E + TLYmé (6.45)

6=Y<I>+'é+6_é (6.46)
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Utilizing Eqs.(6.23) and (6.46), we can expressed Eq.(6.43) as

m(I — a): = 4&5 + éméé — cé — 156', (6.47)

Using the Lyapunov function candidate

V = % [6T0 — A)mé + EFL-15> + Ewan] (6.48)

we can write

T ° é + EVE—14> + 65mg, (6.49)

7‘6 g 0 (6.50)

Again, using Barbalat’s lemma we conclude that i —> 0, E —> 0, and (T) and an are

bounded. Moreover, ones can find that the regressor vector [1; — XI] 6 R2x(4"+4)

satisfies the persistency of excitation condition. The analytical proof is a straight-

forward extension to higher dimensions of its counterpart in Eq.(5.40), which is not

provided in this thesis since it is beyond the scope of this thesis. The effectiveness of

SRUC-BCE for 2-DOF systems is further investigated by simulations.

6.4.2 Simulation Results

Simulations of the SRUC-BCE for 2-DOF model were performed using the parame-

ters shown in Tables A.3 and 6.1. The adaptive controller considers up the second

harmonic of the SRO and uses F = diag(1, 2, 2) x 10‘7 m/N for both axes. We can
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verify that the condition 0 < A < I is satisfied knowing

0.2869 —0.11

A. =

-0.11 0.1869

and the eigenvalues of A are 0.397 and 0.179. For the unbalance identification, the

adaptation gain [‘0 = diag(3, 3) x 10‘5 m/N was used. We assume that the true

values of the unbalance: p = 86.6 p m, and q = 50.0 p m. We initialized all estimated

parameters to zero and excite the bias currents in both axes after t = 53. The

amplitude of bias current excitation for both axes were set to 0.22 A with the frequency

of 10 Hz.

The simulation result in Figure 6.4 shows that the controller is able to remove

the periodic disturbance due to the SRO. However, the geometric centers of both

axes converge to positions other than the origin when t < 5. After the bias current

excitation, as seen in Figures (6.4) and (6.5), all estimated parameters converge to

the true values within 250 s.

6.5 ASRC-BCE for 2-DOF systems

By removing all variables related to the unbalance, the controller proposed in section

6.4 may be reduced to obtain an ASRC with BCE. Therefore, assuming that the

unbalance force is negligible we may use following controller together with bias current

excitation.

1 .

I = ——_I_{_;1 flax + mAx + -2-mA + cé] (6.51)

5 = ILL. 6 (6.52)

The proof of stability for this system is trivial. It can be easily established from section

6.4 by removing all variables related to unbalance. Therefore, we can also conclude
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that 6 -> 0, i —-> 0 and <I> is bounded using the Barbalat’s lemma. Similarly, ones can

find that the regressor vector 1; 6 R2x<4n+2) satisfies the persistency of excitation

condition. The analytical proof is a straightforward extension to higher dimensions

of its counterpart in Eq.(3.14), which is not provided in this thesis since it is beyond

the scope of this thesis.Figures 6.6 and 6.7 show that a relatively small amplitude of

bias current excitation, 0.05.4 with frequency of 10 Hz can effectively stabilize the

rotor geometric center in both axes to the origin. The excitation is started at t = 2

second. It can be seen that the DC components converge to their true values in 2

seconds after the bias current excitation commences.

6.6 Summary and Remarks

The effectiveness of the adaptive algorithms in MIMO systems has been investigated.

The stability proofs of the adaptive algorithms for the MIMO model are very simi-

lar to their counterparts in the SISO model. The proof of convergence of estimated

parameters was however not pursued analytically. Instead we used numerical sim-

ulations to observe that ASRC in MIMO systems, unlike in SISO systems, requires

bias current excitation for proper estimation of all parameters and geometric center

stabilization. In the absence of bias current excitation the DC components of SRO

are not estimated correctly. A relatively small amplitude of bias current excitation,

however, results is very fast convergence of the DC components to their true values.

The extension of our SRUC-BCE algorithm to MIMO systems from $180 system was

straightforward and results in geometric center stabilization with proper identification

of SRO in both bearings as well as mass unbalance.
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for 2-DOF system model
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CHAPTER 7

Conclusions

7.1 Research Summary

The results presented in this thesis establish a new adaptive control framework for

identification and compensation of periodic disturbances in active magnetic bearing

systems with a rigid rotor. The advantages of the algorithms include robustness to

uncertain plant parameters, simplicity of design, and ease of implementation. The

algorithms are shown to apply to magnetic bearing systems modeled both as 8180

and MIMO systems.

Within this framework, we first design an algorithm for adaptive compensation of

sensor runout in $180 model, assuming that the mass unbalance is negligible. The

algorithm is developed using powerful tools such as Lyapunov stability theory and

persistency of excitation concept. We prove that the algorithm guarantees stability of

the rotor geometric center about the origin and correct identification of the harmonics

of sensor runout disturbance. Using passivity analysis we show that the algorithm is

robust to plant parameter uncertainties. The averaging method successfully predicts

the convergence rate of the adaptation; thus, the averaging method can be useful in

the selection of controller gains in our algorithm. Simulation and experimental results

validate the effectiveness of the algorithm.

We next address the problem of rotor stabilization about the geometric center in
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the presence of combined sensor runout and mass unbalance. Our first approach to

this problem is based on multiple speeds. This approach lacks robustness and has

a number of drawbacks including the need for speed alteration, which will not be

permissible in many applications. To overcome the limitations, we develop a new

method for simultaneous on-line identification of both disturbances at constant rotor

speed. This is achieved through persistency of excitation generated by methodical

bias current excitation that does not alter the equilibrium condition of the rotor. After

successful demonstration of the approach through simulations and experiments, we

study the effects of excitation frequency, excitation amplitude, and harmonic content

of excitation on the convergence of parameters. The robustness of the algorithm to

parametric uncertainties and convergence rate of the parameters was also investigated.

We further develop an adaptive algorithm that allows identification of both sen—

sor runout and unbalance simultaneously without changing the angular speed. Using

bounded external excitation such as bias current excitation we show that the regressor

vector can be made persistently exciting to guarantee the convergence of estimated

parameters to the true values. We verify that the excitation with one harmonic at the

frequency about a half of the rotor frequency can be used. With the help of the pas-

sivity analysis, the effect of uncertain plant parameters to the convergence of estimate

parameters are studied. It reveals that the algorithm is robust to the uncertainties

in mass and magnetic stiffness. However, the rotor center of geometric may slightly

fluctuate due to the uncertainty in the actuator gain. In order to predict the effect

of the control and plant parameters to the convergence rate of the adaptation, the

averaging method is again utilized. However, it was found that the averaging system

could not capture the important dynamics of the system; thus simulations are still

preferred to investigate the convergence rate of the adaptation. Both simulation and

experimental results validate the effectiveness of the algorithm.

Finally, we investigate the extension of the algorithms for MIMO system model.
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The stability proofs for using the adaptive algorithms are presented. However, due to

the complexity of the MIMO system, we evaluate the convergence of the estimated

parameters by simulations only to illustrate the possibility of extension.

7.2 Future Work

The present work has revealed a number of areas that warrant additional investi-

gation and research. In the S180 system model, one may modify the algorithm to

include a robust control term such that the stability is still guaranteed in the presence

of unmodeled dynamics. The robust control term may also be designed to improve

the algorithm in the presence of time varying uncertainty in the actuator gain. In

the MIMO system model, modification of the adaptive controller will be required

if gyroscopic forces are taken into account. Within saturation limits, the optimum

bias current excitation for rapid parameter estimation is a subject that needs further

investigation. Since the stability proof of the proposed algorithms assume that the

operation is at a constant angular speed, one may also investigate the stability of the

closed-loop system when the angular speed varies. The effectiveness of the adaptive

algorithms using MIMO system model still needs to be verified experimentally. Ex-

tending the MIMO system model to include the effect of rotor flexibility may also be

pursued.
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APPENDIX A

Experimental Set-up

A.1 Magnetic Bearing Set-Up

 

 

  
 

 
   

  
 
 

  
 

Bearing Bearing

A 8 rubber
actuator ', _____ 1 sensor E _____ } / coupling

-

absrgctlite ' ' I] EF—JE motor

enc er :[ : , ; 4,

I Ell!- vi [I .. (If—i]:

I i \ \ i l

torscilonallyl. l 0051—». ..—

rig] coup mg other position

0 103’ 0'0" of balanced disk

. 0.216 : balanced disk. at rotor midspan

0.432

Note: unit length is in meter

Figure A.1. Magnetic bearing rig schematic

A.2 Structural-Dynamic Analysis of Two-Bearing Rotor

Structural-dynamic analysis was performed to determine the mode shapes and the

resonant frequencies of the two-bearing rotor. The rotor dimensions are shown in

Figure A.3 and Table A.1. A program ”MODAL” is used to generate a modally

reduced state space model of a single free—free rotor. This program is provided by

ROMAC Laboratory, University of Virginia. The detail instruction for the program

is available in reference [20]. To utilize the MODAL program, we discretize the

rotor as shown in Figure A.3. The input to the program is provided by file name

msu4.dat. The results of the analysis are summarized in Table A.1 and Figure A.4.

To evaluate the effect of bearing stiffness to the rotor resonant frequency, the use

of rotor critical speed map is useful as described in reference [5]. We generated the

rotor critical speed map using a ROMAC’s program ”CRTSP.2” with the input file

msu4a.dat. In this program gyroscopic effect is suppressed [20]. The result is shown

in Figure A.5.
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Figure A.2. Picture of magnetic bearing set-up

Left Right

Balanced disk   

  

 

Flight

Figure A.3. Dimension of two-bearing rotor with balanced disk

Table A.1. Two-bearing rotor data

 

Total weight of the two-bearing rotor with balanced disk : 10.7 lb,n

Rotor shaft: length = 17 in, diameter = 1 in

Journal bearing: length = 3 in , diameter = 2.4 in

Left-tip: length = 1 in , diameter = 0.25 in

Right-tip: length = 1 in , diameter = 0.3 in

Balanced disk: length :2 0.75in , diameter = 4 in   
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Table A2 Free-free undamped natural frequencies of rotor

 

 

 

Mode Frequency

1 0

2

3 438 Hz

4 1.24 kHz

5 1.94 kHz   

Input for ROMAC’S software version 1.5, program MODAL.

ROMAC is copyright of University of Virginia.

File name: msu4.dat

HSU’: 17in rotor model

jde. a June 2000

derived from
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Input for ROMAC’S software version 1.5, program CTRSP-2.

ROMAC is copyright of University of Virginia.

File name: msu4a.dat

HSU’e 171a rotor model

jde. 8 June 2000

derived from

23 2 1 23 1 2

2 0 2 -10 0 5

-1 -3 2 0 1 -3 0 0

5 10000. 0.

19 10000. 0.

1 1.8+10 0

1.5+10 0.

5 1.055 0.

19 1.055 0.

1 1.1B+10 0.

2 1.1E+10 0.

0.0 1.00 0 9843 0 0. 0. 29.5 0.28

0.0 1.00 0.9843 0 0. 0. 29.5 0.28

1.033 0.50 0.9843 0 0. 0. 29.5 0.28

0.0 0.50 0.9843 0 0. 0. 29.5 0.28

1.033 0.50 0 9843 0 0. 0. 29.5 0.28 1 1 0 0 “Left actuator”

0.0 0.50 0.9843 0 0. 0. 29.5 0.28

1.033 1.00 0.9843 0 0. 0. 29.5 0.28 0 1 0 0 ”Left eeneer“

0.0 1.00 0 9843 0 0. 0. 29.5 0.28

0.0 1.00 0 9843 0 0. 0. 29.5 0.28

0.0 1.00 0.9843 0 0. 0. 29.5 0.28

0.0 0.50 0 9843 0 0. 0. 29.5 0.28

0.9 0.50 0 9843 0 0. 0. 29.5 0.28

0.0 1.00 0 9843 0 0. 0. 29.5 0.28

0.0 1.00 0 9843 0 0. 0. 29.5 0.28

0.0 1.00 0.9843 0 0. 0. 29.5 0.28

0.0 1.00 0.9843 0 0. 0. 29.5 0.28

1.033 0.50 0.9843 0 0. 0. 29.5 0.28 0 1 0 0 “Right eeneor“

0.0 0.50 0 9843 0 0. 0. 29.5 0.28

1.033 0.50 0 9843 0 0. 0. 29.5 0.28 1 1 0 0 ”Right actuator”

0.0 0.50 0.9843 0 0. 0. 29.5 0.28

1.033 1.00 0.9843 0 0. 0. 29.5 0.28

0.0 1.00 0.9843 0 0. 0. 29.5 0.28

0.0 0.00 0.9843 0 0. 0. 29.5 0.28

0.0 1.00 0.9843 0 0. 0. 29.5 0.00028

0.0 1.00 0.9843 0 0. 0. 29.5 0.00028

100 20000. 50
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A.3 Plant Parameters

Table A.3. Magnetic bearing parameters for single-DOF Model

 

 

Parameter Value

Half-rotor mass, m 2.43 kg

Electromagnetic force constant, k 2.82 x 10’6 Nm2/A2

Nominal air gap, 1 0.508 x 10‘3 m

Top bias current, 2'10 2.41 A

Bottom bias current, 2'50 2.06 A

Actuator gain, Kg 97.71 N/A

Sensor gain, G, '2 x 104 V/m

Open-loop stiffness, Kf; 4.33 x 105 N/m    
 

Note that for constant bias currents cases as in Chapters 3 and 4, and section 6.3:

. _ .‘ e - a. _ * __ ‘

110 — 110, 220 — 220, Kc — Kc, and K, — K,.
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Figure A.6. Bode plot of single-DOF magnetic bearing model

 

 
Figure A.7. 3—D Plot of magnetic force surface
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A.4 Power Amplifier Data

The power amplifiers are manufactured by Advanced Motion Controls Inc. Each

power amplifier unit consists of a power supply that converts 120 VAC to 80 VDC

with a maximum current of 15 A. This power supply hosts four 25A-Series PWM servo

amplifiers with model number 12A8. The specifications of the PWM servo amplifiers

are given in Table A.4. The servo amplifier is set to the current-mode. Each servo

amplifier requires that the resistor labeled R30 on the board be replaced with 900

K-Ohm in order to achieve 1.6 kHz bandwidth for the corresponding magnetic coil

inductance of 13 mH. The bode plot of the servo amplifier is shown in Figure A.10.

Transfer function of the servo amplifier can be approximated by

10,.(3) 0.5(27r x 1600)2
 

 

 

  

 

 

 

 

G s =——= A.1

amp() Vin(s) 31’+2(0.5)(21rx1600)s+(27r><l600)2 ( )
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Figure A.10. Bode plot of servo amplifier
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Table A.4. Servo amplifier specifications

 

Voltage input range :1: 15 V

Voltage output range :l: 80 V

Peak current (2 sec maximum) :1: 12 A

Max. continuous current :1: 6 A

Minimum load inductance 200 pH

Switching frequency 36 kHz    

A.5 Analog PD Control Circuit

 

 

 
 

 
 

 
Figure A.1]. Analog PD control circuit

R1 = 100 K-Ohm

R2 = 4.7 K—Ohm

R3 = 470 Ohm

R4 = l K-Ohm

R“ = 50 K-Ohm, to adjust bias voltage

R02 = 20 K-Ohm, to adjust proportional gain

K,;; = 20 K-Ohm, to adjust derivative gain

The operational amplifier is either 741 or 1458 type. A power supply with the po-

larity of i15V was used. The frequency response of the PD control circuit was

experimentally obtained. The result is shown in Figure A.12

127



r
e
o 1

 

 

 
 

% 10 -
O

'O

.3

(259» 0

-10.. .J

102 103

Frequency(Hz)

0 - - . . m A A
 

 

1
5
V O

l

 '360 - . 1 . 1 . . . A- . . . 13

1o 10

Frequency (Hz)

 
 

Figure A.12. Bode plot of analog PD controller Vou¢(S)/V§n(s)
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A.6 Radial Position Sensor

The magnetic bearing assembly used in the experiment is supplied by Revolve Tech-

nologies Inc. It includes radial position sensors and the magnetic coil actuators. User

manual describing the sensor-actuator of the Revolve’s magnetic bearing system is

provided in reference [29]. The important characteristics of the sensors can be sum-

marized as follows. The sensors are inductive bridge type. They are mounted on a

ring that allows concentric mounting in the magnetic bearing assembly. A pair of

inductive sensors connected in series, looking at opposing sides of shaft. The induc-

tance of each sensor varies inversely as the gap between the sensor and the journal.

The sensor together with the signal conditioning system has the bandwidth of about

10 kHz.

A.7 Digital Signal Processors

The Digital Signal Processor package for the implementation of the primary control

algorithm is manufactured by dSPACE. The package includes

1. DSlOO3 DSP Board : This DSP is based on TMS320C40 floating-point codes

and has the on-board memory of 768 KWords.

2. DS2001 A/D Board: The board has 5 A/D channels capable of simultaneous

sample and hold with 16 bit resolution.

3. DS2101 D/A Board: The board has 5 D/A boards capable of simultaneous

sample and hold with 16 bit resolution.

4. dSPACE Tools Software : The software is version 2.1 that requires the TI

C-Compiler version 4.7 and Matlab/Simulink-R11. The software is capable of

implementing the control algorithms constructed on Simulink to the DSP Board.

The software can display and record both the variables and time histories. It

also permits changing of parameters on-line.

The above dSPACE boards are slotted into the ISA buses of a standard PC with

Windows NT 4.0 as the operating system.

Another DSP package, product of Integrated Motions, model MX31 was utilized to

generate the geometric center based on manual identification. The MX31 communi-

cates with a PC through serial port. It requires Windows 95, Matlab version 4.20.1

and Simulink version 1.3c.
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A.8 Absolute Encoder

An optical-rotary encoder, model CP-550-08AN, manufactured by Computer Optical

Products Inc., is used to track the angular position of the rotor. As shown in Figure

A.1, the encoder is attached to left-tip of the rotor using a torsionally rigid coupling.

The encoder has the resolution of 8 bits with a linear-analog output of 10 V per

revolution. We arrange the encoder such that 0° angle position generates 0V. In

order to generate smooth sin(wt) and cos(wt) functions on a DSP, the Simulink block

diagram below was used.

 

 

   

 
   

9 (u) _ ConstanD

F .m s... on +9

encoder ( 0m

1 m 1 SinSuiteh

(>——> -
1 Abs

Unit Delay

Constent‘l @

COM

(0) 0W“

Cosfon CosSeutoh'

Figure A.13. Simulink block diagram for the absolute encoder

130  



APPENDIX B

Analysis of Persistently Exciting Condition

Definition of Persistency of Excitation (PE) [25, 32]:

A vector valued u 6 if?" is said to be persistently exciting (PE), if there exists con-

stants To, 01, (12 > 0 such that

 

1 1+To

021 Z T] uTudT _>_ all, ‘v’t > 0 (8.1)

o 1

where I is the identity matrix, I E 32”“. Alternatively, the above definition of PE

means that the matrix Q 9- %; ftHT" uTu (17' is bounded and positive definite.

For the sake of brevity, without loss of generality, we consider up to the second har-

monic components to prove the PE conditions. There are several ways to determine

the positive definiteness of a matrix [26] such as:

1. Use the Sylvester’s Criterion for Positive Definiteness:

A necessary and suflicient condition for a real symmetric matrix A E 32”" to

be positive definite is that the determinant of A be positive and the successive

principal minors of the determinant of A be positive the all principal minors

are positive; that is, we must have

  

011 01

A1=011>01 A2; 2 20,

021 022

011 012 013

A A

A3 = 021 0.22 023 > 0, . . . , An = IAI > 0 (8.2)

031 032 033

2. Find the minimum eigenvalue Am... of the matrix:

If Re[Am,n(A)] > 0 then the matrix A is positive definite.

The Sylvester’s criterion is useful to find the analytical conditions that guarantee

positive definiteness of a matrix, in particular when the matrix has few nonzero off-

diagonal terms. For a large matrix with many non-zero off-diagonal terms, finding

the minimum eigenvalue numerically may become more practical.
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B.1 ASRC: Equation 3.14

From Eq.(2.23) we can write

( «E. )
J51 sin(wt)

Ym= J31 cos(wt) 4 (B3)

([52 sin(2wt)

K fizcos(2wt) )  

where 0,- é [K, + m(z'w)2]2 > 0 for 1' =0, 1 and 2. In this case 0,- is constant.

By taking To = 23" , the middle term of Eq.(3.14) becomes

  

( 200 0 0 0 0 )

,+2_. 0 01 0 0 0
(A) w T l A

‘2—1; YmYde = E O 0 0’1 0 0 = Q (8.4)

‘ 0 0 0 02 0

( 0 0 0 0 0’2 )

It is clear that Q is bounded. We can easily verify using the Sylvester’s criterion that

Q is positive definite. This concludes the proof that Y... is PE.

B.2 SRUC Using Multiple Speeds: Equation 4.25

From Eq.(4.22)

J36

YE = J52 sin(2wt) (35)

J52 cos(2wt)

where 0,- 3 [K,. -l- m(iw)2]2 > 0 for i =0 and 2. In this case K8 is constant.

By taking To = 3f , the middle term of Eq.(4.25) becomes

(+24: 200 0 0

w w T l A

— YEYEdT = — 0 02 0 = Q (86)
27r 1 2

0 0 02

Q is bounded and positive definite. This concludes the proof that YE is PE.
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B.3 SRUC-BCE: Equation 5.41

In this case K, varies according to K, = K; +5, sin(wet) > 0 where f, — £1395 > 0 is

the resulting amplitude of variation in bearing stiffness and we 3- 27rf,B is the frequency

of excitation. The Eq.(5.40) can be written as

f «a; + g, sin(wet) )

I [JO—f + £3 sin(wet)] sin(wt)

1 {Jr}? + £3 sin(wet)] cos(wt)

Ymu = [E + £3 sin(wet)] sin(2wt) (B.7)

[J33- + E, sin(wet)] cos(2wt)

—mw2 sin(wt)

K —mw2 cos(wt) )  

where a: 2 [K; + m(z'w)2]2 > 0 for 2' = 1 and 2. We can also write

( «0‘6 + 4:. sin(w.t) \

l fifsinwt) — g, cos(wh1t) + g, cos(wnt)

(fir—f sin(wt) + g, sin(wh1t) -l- %£, sin(wut)

  

Ymu = J17;— sin(2wt) — g, cos(w),2t) -l- £6, cos(w;2t) (88)

J3; sin(2wt) + g, sin(w,.2t) + g, sin(w,2t)

—mw2 sin(wt)

K —mw2 cos(wt) }

where 10),, = (1.2., + £02) and w); = (we — iw) for 2' = 1 and 2.

Let the middle term of Eq.(5.39)

t+To

é — YmuYZmd‘r (8.9)

To ,

The structure of Q depends on the value 0)., relative to the value of 1.0. We can

calculate Q by letting To as the period in which all signals of different frequencies

in the regressor vector Ymu complete their full cycle. In the following cases, we de-

fine 0, é a§+§€f = [IQ + m(iw)2]2+%€f > 0 fori =0, 1 and 2; and C 3 monk/1?1 > 0.
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Casel:0<we<2w,we¢%w,we¢w,we#gw
 

 

{ 200 0 0 0 0 0 0 \

, 0 01 0 0 0 —( 0

1 0 0 01 0 0 0 —C

Q=-2- 0 0 0 0’2 0 0 0 (3.10)

, 0 0 0 0 02 0 0

0 —C 0 0 0 m2w4 0

K 0 0 -( 0 0 0 111204) 
Let Q,-, i = 1, 2, ..., 7 denote the determinants of the upper left square submatrices of

Q. Using the Sylvester’s criterion shown in Eq.(B.2), we can find that

Q1: 00 > 0, Q2 = 0001> 0, Q3 = 0001> 0, Q4 = 000102 > 0,

1 1

Q5 = 000?ch > 0, Q6 = Zm2w4fifaoala§ > 0, Q7 = §m4wgffiaoa§ > 0

Thus, we can conclude that Q is a positive definite matrix and Y"... is PE. In this

case, ones may also recognize that in general Ymu is PE since for Q 6 9‘2““ we can

easily find that Q,- > 0 for 2' = 1,2, ..., n.

Case 2: we = %w
 

  

2 8

0 01 0 —-1— 3 0 —( 0

1 ~45? 0 01 0 -i3 0 -C

Q = 5 0 —§ 3 0 02 0 0 0 (3.11)

0 0 —§ 3 0 02 0 0

0 —c 0 0 0 m2w4 0

K 0 0 —( 0 0 0 m2w4 )

Using the Sylvester’s criterion, we can find that

Q1=00>0, C22:0001>0
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1 1

Q3 = $01 (200 [(K; + me?)2 + 553] -— 35:) > 0 since 00 > £5?

Q4 = $- (02 [(K: + W)? + $43] -1—1663) x

(200 [(K; + m2)2 + $632] — if?) > 0 since 02 > £5: and 00 > $632

1
Q5 = g (02 [(K; + W2)2 + 563] — $5,?) x Q... > 0

since

Q5. = 20(K;)5mw2 + 66(K;)4m2w4 + 80(K;)3m3w6 +

32(K;)2m4w8 + 16637714028 + géfimzw" +

l

2(K:)6 + E53 + 20(K;)3mw2£f + §(K;)2§: +

50(K;)2m2w4§3 + 40 xi2m3w6K; + 3{:K;mw2 + 3(K;)4§3 > 0

and 02 > 163

8

1

Q6 = §Q60Q5a > 0

1

where Q60 = §(K:)2m2w4£f + 4€§m3w6K; + 8£Em4w8 + 126537712004 > 0

1

Q7 = §Q60Q7a > 0

l

where Q70 = 4m4wsf;1 + 16m4018(K:)2£,2 + ‘l'gm2w452 + (K;)4m2w4{3 +

8(K;)3m3w6€f + —:-m21.04(1{:)2£;1 + 2m3w6K:§: > 0

Therefore, we can conclude that Q is a positive definite matrix and Ymu is PE.
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Case 3: we = %w
 

  

( 260 0 0 0 0 0 0 \

0 61 0 g 3 0 —( o

1 0 0 6l 0 —§3 0 —4

0:5, 0 is} 0 0’2 0 0 0 (B.12)

0 0 fig: 0 0’2 0 0

0 —§ 0 0 0 612614 0

K 0 0 —( 0 0 0 61264 )

Using the Sylvester’s criterion, we can find that

Q1=00>01 Q2=0001>01 Q3=0003>0

0001

Q4: 2

where Q40 = (02 [(K; + m2)2 + $63] - %E:) > 0 since 02 > ":43

 

Q41) >0

0

Q5 = 30Q46 >0

Q6 = 00Q40Q6a > O

l 3

—(K;)2m2w4€3 + 453m3w6K: + 8€Em4w8 -l- fifimzw“ > 0where Q50 = 2

Q7 : UOQGa > 0

Therefore, we can conclude that Q is a positive definite matrix and Y"rm is PE.
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Case 4: for w, = 210,
 

 

( 20o 0 Q02

0 01 {,0} 0

1 0 {,0} 01 0

Q = 5 Q02 0 05 + %EE

0 0 0 0‘;

0 —C _Qlu 0

K 0 -Q... ——< 0

Where Q02 = {sh/32+ V00): Qlu = %€smw2

Using the Sylvester’s criterion, we can also find that Q is positive definite.

“Q11:

—Qlu

-C

 

(13.13)

The analytical proof here is omitted. The use of computer program with symbolic

manipulation capability will show that Q satisfies the Sylvester’s criterion for

positive definiteness. However, finding the eigenvalues numerically is more practi-

cal. We can easily find that the minimum eigenvalue Am," > 0. Therefore, Yum is PE.

Case 5: for w, = w,
 

 

( 200 Q01

Q01 01 + 125,2

0 O

1

Q = 5 0 0

”5'5? “Q12

—Q1u —C

K 0 0

where Q01 = (AK; + V01): Qiu = 5567714021 and Q12 = 258(\/Ef+ v02)-

0

-<

0

_Qlu

-%£;A’ ~01.

-Q12 -C

0 0

0 0

02 Q11.

Qlu "12604

0 0

0 )
0

-C

—Qlu

0

0

 mzw" )

(13.14)

In this case, numerical evaluation shows that Q has two eigenvalues at the origin.

Therefore Ymu is not PE.
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APPENDIX C

Parameter Convergence Using Averaging Method

The following two-times scale averaging method is adopted from Sastry and Bodson

[32] for a system having a regressor vector.

C.l Convergence Rate of ASRC

Consider the system in Chapter 3 of the form

$=rvma (on

M§+Czic+Ki = -Y,f,~ (C.2)

E = :i': + A5: (03)

where 3,?771, Ym E 322"“, 6, i E 32, and M, C, K, A > 0. The above three expressions

are obtained from Eqs.(3.19), (3.26) and (2.22) respectively.

In short, we can denote Eqs.(C.l) and (C.2) as

s + A
—_ _ T~__ T~A_" T~
 

where C(.) is a signal vector and G(s) is an SPR transfer function

 

s + A

0(8) = M32 + Cs + K (05)

and Eq.(C.1) becomes .

£5 = 41?... [G(Y,i¢)] (C.6)

~

When I‘ —+ 0, d>(t) varies slowly compared to e, the time scales of their variation
~

become separated. ¢(t) is called the slow state, é(t) the fast state and the system in

Equations (C.1) to (Q3) a two-time scale system. In the limit as I‘ —> 0, ¢(t) may

be considered frozen in Equations (C.2) and (C.3), so that

603,135) = GM.) J (0.7)

The result of averaging theory, Eq.(C.6) therefore can be approximated by

55,, = —r AVG{Y,,, 6( Y5.» $0., (0.8)
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where

l to+T

AVG{?,,. swig} é T Yméwg) dt (0.9)

where T = £1. The function AVG{Y,,. C( Y5,» is commonly written as R(0) and

called as the correlation matrix.

For simplicity, we will consider 22 up to the second harmonic; thus, we use Ym

defined in Eq.(B.3). Furthermore, from the definition in Eq.(3.20), we can write

( «a. \
J51 sin(wt)

Ym = J51 cos(wt) (C.10)

J52 sin(2wt)

\ V52 cos(2wt) )  

where 6: % [IQ + 272(2w)2]2. We then obtain

( $5.60 \

_ IG(jw)I\/518in(wt + 1G(J'w))

GM) = |G(jw)|\/51008(wt+4G(jw)) 1 (0“)

|G(j2w)I\/52 sin(2wt + [6'02 02)) .

l |G(j2112)|\/Z“§2 cos(2wt + 40(3'2 12)) )  

The product of 17'". C'( Y5) may be expanded as the sum of products of sinusoids.

Further, for 2' = l and 2

sin(2'wt + [C(j 201)) = sin(2'wt) cos(£G(j 202)) + cos(2'wt) sin(AG(j 201)) (C.12)

cos(2'wt + AGU 21.0)) = cos(2’wt) cos(£G(j 220)) — sin(2'wt) sin(£G(j 2112)) (C.13)

Since the products of sinusoids at different frequencies have zero average, as do prod-

ucts of sin’s with cos’s of any frequency, we obtain

(R0 0 0 0 0 \

0 R1 0 0 0

  
0001220

0000122)\
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where

R0 = "1%fi0fi0 ((7-15)

12. = gfilfillaumi cos<zc20w>> = gx/Elfilnemw} (0.16)

122 = §fi2fi21002w)1cos(4002w» = §fi2fi2Re16<j2w)} (0.17)

Using the familiar SPR condition, we know G(s) is real for real 3 and Re{G(jw)} >

0, Va: 6 (—oo, 00). Therefore R0, R1,R2 > 0, V02 6 (—oo,oo) . The final results are

tabulated in Table 3.1.

0.2 Convergence Rate of SRUC-BCE

Consider the system from Chapter 5 of the form

J, = 1‘. Yu (E (0.19)

m(1 — me + (c — émAw = «3,6+ 12325., (0.20)

where $,Ym E 523; ngu E 322; é,:E E R; A,c,/\ > O; and (c— §mA) > 0. The

above expressions are obtained from Eqs.(5.25), (5.26), and (5.36). We may write

these equations as

—Y7’Iy‘zu$mu

-_
—- s T~ é-" T~ .

e—m(1-A)3+(c-%mA)_ G()[Y..,¢...1 comm...) (C21) 

where Y,"u is given in Appendix B3, 5:", = ((ET 3,7“) and 0(3) is a time varying

SPR transfer function

1

: m(1—A)3+(c—%mA)

 G(3) (C22)

For relative small variation of A about its nominal value A0, we may approximate

the above transfer function to

 ((3.23)
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thus we can approximate (‘2 in Eq.(C.21) by

E 2 —G‘0(Y3,‘m$mu) (C24)

and Eqs.(C.18) and (C.19) become

amt: 2 -Pmu Ymu [GO( Yguamu)] (0.25)

where

F 0

I‘m 2 0.26(0 -r.) < >

By assuming F and Fu are relatively small, 45"," varies slowly compared to 'é. Thus

(bmu can be considered frozen in Eq.(C.21), so that

00(Y26) = GONE.) <3 (0.27)

The result of averaging theory, Eq.(C.25) therefore can be approximated by

35... = —rm.. AVG{Ym.Go(Y£.,)} 5.. (0.23)

where

_ 1 to+T _

AVG{Y,,.., Go( vi,» é T YmuGo(Y,7,;u) dt = 11(0) ((3.29)

to

In the following we consider several cases of we relative to w.

Casel:0<we<w,,we¢%w,we7€w,we#gw
 

(R00 000 0 0)

0R1 ODD-R1120

  

 

O 0 R1 0 O 0 ~R1u

R(0) = 0 0 0 122 0 0 0 (0.30)

O 0 0 0 R2 0 0

0 —R1u 0 O 0 R, 0

\ 0 0 —R1,, 0 0 0 R4, )

where

_ as 2 2 C 3,
R0_-c—+m(1—Ao)we+c (' )
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' = + (3.32

R' m(1 — Ao)(2'w) + c m(1— Ao)(wh.-) + c + m(1 — Ao)(wz.-) + c ( )

for2=land2. 124

_ 5’" w

Ru — m(1 — A0)w + C (C33)

l\/(7‘-mw2
_ 2 1

R1" — m(1 — Ao)w + c (034)

Case 2: we = %w

{ I?0 0 —R01 0 0 0 0 \

0 R1 0 —R12 0 ”R112 0

*301 0 R1 0 *R12 0 “R111

R(0) = 0 4212 0 R2 0 0 0 ((3.35)

0 0 —R12 0 R2 0 0

0 —R1u 0 0 0 Ru 0

K 0 0 —R1,, 0 0 0 R, j

where R0, R1, R2, R... and R1,, are defined in Eqs.(C.31) to (C34) and

:62
R0‘ = m(1 — ADM + c (0'36)

:62
R12 : m(1 — Ao)w¢ + c (037)

Case 3: (1),. = g0)

( R0 0 0 0 0 0 0 \

0 R1 0 R12 0 _‘Rlu 0

O 0 R1 0 —R12 0 —Rlu

R(0) = 0 R12 0 R2 0 0 0 ((3.38)

0 0 -R12 0 R2 0 0

0 -R1u 0 0 0 R“ 0

l 0 0 —R1,, 0 0 0 R, j
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where R0, R1, R2, Ru and R1,, are defined in Eqs.(C.31) to (C34) and

1 2

563
R =

‘2 m(1 — Ao)“§’ +c
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APPENDIX D

Passivity

We adopt the passivity definitions from references [12, l3, 18] in order to evaluate

the robustness of our adaptive control systems in the present of uncertain plant

parameters.

Consider the systems of the form

x = f(x, t) + g(x, t)u

y=Mnfl (DD

with x E 3?", y 6 ER”, 22 E 32'", and f, g, h continuous in t and smooth in x. Suppose

f(O, t) = 0 and h(O, t) = O for all t Z 0.

Definition DJ The system (DJ) is said to be passive if there exists a continuous

non-negative (”storage”) function W which satisfies W(O, t) = O,Vto Z 0 such that

forallx,u€§R"x8‘tm andtZtoZO

j; yT(T)’u(T)dT Z W(x(t),t)) - W(x(t0),to) (D.2)

0

Definition D.2 The system (D. 1) is said to be strictly passive if there exist a contin-
 

uous non-negative (storage) function W and a positive definite function (dissipation

rate) 2b 6 32" such that for all x,u 6 R” x 32" andt 2 to 2 O,

/ yT(r)u(r)dr 2 W(0,t)) —W(z(to).to) + f 2040217 (0.3)
to

Lemma D.1 Suppose the system (D. 1) is strictly passive. If W is positive definite,

radially unbounded, and decresent, that is, if there exist class Koo functions 01 and

02 such that such that aa(|x|) _<_ W(x, t) _<_ 02(lxl),‘v’(x, t) E 3?" x 92+, then, for

u E O, the equilibrium x = 0 of (DJ) is globally uniformly asymptotically stable.

The proof can be obtained in reference [18].
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Using the block diagram in Figure DI and the definitions

2': = f1(x, t) + 92(x, t)u

H :

1 :91 = h1(x!t)

(13.4)

{1.7 = f2(.’12,t) + 92(3), t)u

312 = lid—Tat)

we can state the following theorem.

H2 3 (D5)

Theorem D.1 If the system H1 is strictly passive with storage function W1 and

dissipation rate 1121 independent of x2 and the system H2 is passive with storage

function W2 independent of 2:1. Then the equilibrium point x = 0 is globally uniformly

stable and limHo‘3 = 0. The proof can be obtained in references [13, 18].

Strictly passive system

-_- UV 0+ 1 “1 Y1 >

 

 

   

Passive system

Y2 u
H2 |.__?-_

Figure D.1. Feedback configuration for passivity analysis

 

  

 

The following result is due to Kalman-Yakubovich lemma that shows the closeness

of the Lyapunov stability and passivity concepts.

Definition D.3 A linear time varying system

Hl : :1:12%;: 13(2):“ (D.6)

is called strictly passive if it satisfies the following relations:

P(t) + P(t)A(t) + AT(t)P(t) = —Q(t) < 0 (13.7)

P(t)lB(t) = (‘5’ (t) (D.8)
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for some uniformly bounded positive definite matrices P(t) and Q(t).

For linear time-invariant systems, the following definition is commonly used to rep-

resent the strictly passive condition.

Definition D.4 A rational transfer function G(s) is said to be positive real if G(s)

is real for all real 3, and Re{G(s)} Z 0 for all Re{s} Z O.

The following lemmas are used in the study of the effect of plant parameter un-

certainties to the SRUC-BCE algorithm in Chapter 5.

Lemma D.2 The system H2 that has u2 = 6 as the input and y; 2

Y3}; — Yfau + flfldegu as the output, obtained from Eq.(5.53) when m is

uncertain, is passivrepfor sufficiently small lpml and relatively small amplitude of bias

current excitation.

Proof: To simplify the problem, we define new variables

gap é ( {p ) = (bu _ (1+ %)$u (D-g)

qr

Therefore the output equation can be written as y2 = Y3} — Yfaup and the adap-

tation law in Eq.(5.47) become

(10 = 70K: 6

d,- = 7,- [K, + 77229202] sin(iwt) 6

b,- = '7,- [K, + mizwz] cos(iwt) e, i = l, 2,. . ., n

0

~

pp -(1 + $3”? 172012 sin(wt) 6

~ Pm

9p : ”(1 + “fil'l'q mu)?! cos(wt) (2‘

It should be noted that K, is time varying as shown in Eq.(5.22) and pm is constant.

For a sufficiently small Ipml, we may assume (1 + $723) > 0 and m > 0. We further

define new variables

 

  

K5+mi2w2 .

-t = >0 f =0,1,2,...,

‘0'“ 7,-(K,+mi2w2) or 7’ n

7pm E" "qu '7'”—
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For a relatively small bias current excitation we may assume that there exist a con-

stant c1 such that p,(t) > C; for all t. Therefore, recalling the definition DJ for a

passive system we can obtain

t t ~ ~

/ ygugdtz / [Yqu—YT¢,,] édt

0

=1) K,aoé dt + 2 {f(K + mi2w2) [a,~sin(iwt)é' + b cos((iwt))e] cit}—

i=1

mw2/p'sin(wt)édt — ma)2 / ZIcos(wt)e'dt

0 0

t . n t . ...,;

= / Wing” (amt) it}.
0 i=1 0

t o t 0

pp]; fipfipdt'i'pq/O‘ apapdt

> W150). 2.0), «13.0)1 — W050), 2.0)). 23.0))

where

W00) 2.0) 20)) = 9,—‘650)+ :91, [650) + 330)]+
i=1

pm I)

2

WW00) 42.0)) 25.0): 33(0) + 2302—1 [63(0) +3?(0)] +

315’,—p,,(0) + -—q,,(0)

Since W[$(t),$u(t),qiu(t)] is a positive definite storage function, by definition DI

the system H; is passive.

Lemma D.3 The system H2 that has 11.2 = E as the input and y2 = Y3“; - Y3;$11 as

the output, obtained from Eq.(5.65) when K, is uncertain, is passive for sufi‘iciently

small |p,| and relatively small amplitude of bias current excitation.

Proof: The adaptation law in Eqs.(5.57) and (5.26) can be written as

WI?

2,- 7,-,[K + mizwz] sin(iwt) e
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b,- = 7,- [K, + mi2w2] cos(iwt) e, i = 1, 2, . . . ,n

p' = —7,, ma)2 sin(wt) e

if = —'y, mi.)2 cos(wt) (E

It should be noted that K, is time varying as shown in Eq.(5.22). We define new

variables

 

K,+mi"’w2

it = — . >0 f '=0,1,2,...,

p() 7,-(K,+r?222w2) or 2 n

l 1

p =—>O p =—>0

p 7P q 711

For a relatively small bias current excitation we may assume that there exist a con-

stant c1 such that p,(t) > CI for all t. Therefore, recalling the definition D.1 for a

passive system we can obtain

t t ~ ~

/ ygug dt = / [YZM — Y3¢uJ édt

0 0
t ’3 t

~

= / K,Zioé dt + E {f (K, + mizwz) [5, sin(iwt)é + b,cos(iwt)é] dt} -

0 0
i=1

t t

1721.122 / fisin(wt)édt—- m0)2 / Eicos(wt)édt

0 0

t n t M;

0 i=1 0

1 . 1 _

lop/0 55dt+quo iidt

> W130). 2.0), 2.0)] — W1610).¢.(0).a3.(0)1

where

W150).$.0).$.0)1 = 923-630) + 20,4 6’50) $30)] +

1Pq~2

—q (t)
pp~2 ‘z
— t2100+2

W130), 5.10). 2.0)) = “3530) + Z 9;- [a?(0) + 330)] +

p _ )0
{239(0) + 3072(0)
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Since W[5(t),$u(t),4iu(t)] is a positive definite storage function, by definition D]

the system H2 is passive.

Lemma DA The system H; that has U2 = e as the input and y; :-

~ ~ c t " . .

Yggb — Yz¢u -— p1; )Yzm as the output, obtained from Eq.(5.69) when K, is

uncertain, is passive for a sufl‘iciently small chI and relatively small amplitude of

bias current excitation.

 

Proof: We first define new variables

qr

gup é (1:12 ) : ¢u - (1 " 'I—I-éikgu (13.14)

 

Therefore the output equation can be written as y2 = Y3}; — Yfgbup. For sufficiently

small pc we may assume that (1 -- 721) > 0.

C

From the adaptation law in Eqs.(5.57) and (5.26) we obtain

 

  

21:0 = 70K: 6

ii,- = '7,- [K, + mi2w2] sin(iwt) e

b,- = 7,- [K, + mi2w2] cos(iwt) e, i = l, 2,. . .,n

5 = —'y,, m(1 — Lie—)0)" sin(wt) e'

Kc

if: —'y,, m(1 — QM)2 cos(wt) é

Kc

We further define

K, + mi2w2

it = , >0 f .=0,1,2,...,

p ( ) 7,-(K, + m22w2) or 2 n

l 1

Pp“) = p > 0 [M(t) = p > 0

712(1 " -—c '7 (1 - Tc

Kc q Kc

For a relatively small bias current excitation we may assume that there exist constants

c1, c2, and c3 such that p,(t) > c1, pp(t) > c2, and pq(t) > c3 for all t. Recall the
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definition D.1 for a passive system

t t ~ ~

f y2U2 dt =/ [Yid—YZfiJ édt

0 0

t n 1 ~

= / K,50é dt + Z {I (K, + mi2w2) [5,- sin(iwt)é' + b,- cos(iwt)é] dt} -

0 i=1 0
t 1

271.022] psin(wt)‘édt—mw2/ ficos(wt)e'dt

‘ 0 n t . 0 ...z

1: p055 dt+ {/ p, 5,5,+b,~b, dt}+f0 . . z 0 [ ]

f“ppfipfp dt + j; anp 6p dt

> W120)2 02.0)] — W12<0) 22(0).2.(0)1

where

W120) 2201-32206: [’4.)+1.22)]+

6,2220)+ —q,.0)

W120) 2..(0) 2..(0)1=—&’3(0+2?- [2’310)+b?(0)]+

:22?.0) + 6,3220)

Since W[$(t), 5,0), 43,(t)] is a positive definite storage function, by definition D.1 the

system H2 is passive.
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