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ABSTRACT

ADAPTIVE COMPENSATION OF SENSOR RUNOUT
AND MASS UNBALANCE
IN ACTIVE MAGNETIC BEARINGS

By

Joga Dharma Setiawan

Active magnetic bearings (AMBs) have increasingly become the choice for high-
speed, high-performance rotating machinery because they provide the scope for con-
tactless and frictionless operation. Since magnetic bearings are open-loop unstable,
they require careful control system design. Although general feedback control tech-
niques have been proposed for precise shaft levitation, the problem of sensor runout
(SRO) has been largely overlooked due to its similarities with unbalance in creating
periodic disturbances. Furthermore, the important problem of synchronous SRO and
unbalance compensation has not been adequately investigated.

To improve the accuracy of magnetically levitated rotors, we propose for the first
time an adaptive control framework that can compensate SRO and unbalance, both
individually and simultaneously, while providing shaft stabilization about the geo-
metric center. In our approach, bias currents in the magnetic coils are periodically
perturbed to create persistency of excitation that guarantees individual identification

of the harmonic components of the synchronous disturbances. Through feed-forward
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cancellation of the disturbances and careful control system design, the algorithm pro-
vides geometric center stabilization that is robust to uncertainty in plant parameters
values. While Lyapunov stability theory and its derived passivity formalism provide
a solid theoretical framework for the algorithm, corroborating experimental results
establish the simplicity of the design and implementation procedure. The algorithm
applies to both SISO and MIMO systems involving a rigid rotor and future studies

are expected to broaden its applicability to flexible rotor models.
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CHAPTER 1

Introduction

1.1 Motivation

Active magnetic bearings (AMBs) levitate rotors and enable contactless and friction-
less operation. They have a number of advantages over conventional bearing including
higher efficiency. longer life, and ability to operate at higher rpm. Other advantages
include the elimination of mechanical maintenance of the bearing and lubrication,
suitability for clean or vacuum room operation, and adjustable stiffness and damping
characteristics achieved through active control of bearing forces. Due to the attrac-
tive features, magnetic bearings have been implemented in a variety of applications
in rotating systems. These applications include flywheel energy storage, momentum
wheels, precision machinery, turbomachinery, vacuum pumps, and medical devices.
The design of magnetic bearing systems requires the knowledge of several disci-
plines including mechanical/rotor dynamics, electromagnetics, electronics and feed-
back controls. This is due to the fact that a rotor supported by magnetic bearings is
an open-loop unstable system, stabilized through feedback control. The integration
of the feedback control strategy must carefully consider the dynamics of the rotor.
Moreover, the feedback control in magnetic bearings necessitates the knowledge of
position sensors with signal conditioning, switching-power amplifier, either analog

circuits or digital signal processor (DSP), and magnetic coils as the actuators.
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Due to the rapid progress in electronics including DSPs technology, there are
abundant research problems in AMBs. Performance improvement, cost reduction,
and additional design objectives within specific applications are some of the examples.
In the recent years, researchers working on magnetic bearings have been focusing in
areas such as (1) rotor vibration minimization using modern control method such
as multi-variable controls, robust controls, non-linear controls, and adaptive controls
in order to minimize rotor vibration; (2) levitation of flexible rotors;(3) robust self-
sensing schemes; (4) integration of magnetic bearings with electric motor; and (5)
zero-power magnetic bearings using superconductor materials.

This thesis focuses on utilizing modern control methods to improve the perfor-
mance of magnetic bearings without demanding additional precision in the manufac-
turing process. In particular, this thesis explores a new adaptive control framework

to reject the effect of the most common periodic disturbances in AMBs.

1.2 Literature Review

Periodic disturbances are common in rotating machinery. Such disturbances are crit-
ical to the performance of systems using AMBs. The dominant sources of periodic
disturbance in magnetic bearings are mass unbalance and sensor runout (SRO). Mass
unbalance results from lack of alignment between the geometric axis and the principal
axis of inertia, which results in an unbalance force synchronous with rotor angular
speed. Mass unbalance can be significantly reduced in industrial applications, if
not completely eliminated by rotor balancing. In comparison, sensor runout is un-
avoidable since it results from manufacturing imperfections in the magnetic bearing
assembly. Specifically, SRO disturbance originates from a lack of concentricity of the
sensing surface and non-uniform electrical or magnetic properties around the sens-

ing surface. Unlike mass unbalance, SRO also generates a disturbance at multiple
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harmonics of angular speed. Despite differences between mass unbalance and sensor
runout disturbances, the control objective for their compensation is often similar.
Stabilization of the rotor about the geometric center, which is the objective for SRO
compensation, is often the objective for unbalance compensation.

Though few researchers [11, 33] have addressed the problem of compensation of
combined unbalance and SRO disturbances, there exists a large volume of research on
compensation of individual disturbances. Some of the early work on unbalance com-
pensation has been based on the insertion of a notch filter in the control loop [2]. The
drawback of this approach stems from negative phase of the notch transfer function,
which can reduce stability margin of the closed-loop system and lead to instability
[15, 3, 24]. Another approach for periodic disturbance cancellation is adaptive feed-
forward control [34, 9], where Fourier coefficients of the disturbance are continually
estimated and used for cancellation. These adaptive controllers, operationally bear
resemblance to the notch filters [24] and can result in instability if designed without a
consideration for the underlying structure of the system. To preserve stability of the
closed-loop system, Herzog et al. [7] developed the generalized notch filter and Na and
Park [24] proposed a variation of the least mean square algorithm. Other approaches
that compensate unbalance while ensuring stability include adaptive auto-centering
[19] and output regulation with internal stability [21]. Both these approaches achieve
rotor stabilization about the center-of-mass.

Though unbalance compensation has been widely studied with the objective of
stabilization about the mass center, most users and vendors push for geometric cen-
tering, accepting that the real objective is to avoid seal or aero tip collisions. While
geometric center stabilization has been addressed by a few researchers [8, 37] both
problems were investigated in references [28, 22]. These results indicate that stabiliza-
tion about mass center or geometric center can be achieved through cancellation of

disturbance in the current signal or the displacement signal, respectively. In a general



]
and experin.

form of rote
of the pre=c:
the algoritk:
Testlts were
0o two inc-
eessfully. th
Some of thy
COmtro] des ;
Unfortuy,
slves to ru
km, Widely 4
o Ubﬁ“f\’abl'i
iinguish o
Plant or
oy

or angy],

Dt applic

13 SC(

O,JI appfﬂa('}

T applics,
h&r;n:;,_ Ty,

Jor .
ey e e




and experimental approach for disturbance attenuation by Knospe et al. [16, 17}, any
form of rotor vibration that can be measured can be attenuated using pseudo-inverse
of the pre-computed influence coefficient matrix. The stability and performance of
the algorithm in the presence of uncertainties were investigated, and experimental
results were used to demonstrate effectiveness. The method decouples the problem
into two independent control tasks; and while it has been demonstrated to work suc-
cessfully, there is no theoretical basis for stability of the two interacting processes.
Some of the other approaches employed for unbalance compensation include robust
control designs [6, 30], Q-parameterization control [23], and neural networks [27].
Unfortunately, most of the approaches found in the literature do not lend them-
selves to runout estimation in the presence of significant mass unbalance. This prob-
lem, widely acknowledged in the literature but essentially unsolved, stems from a lack
of observability of disturbances with the same frequency content. A credible way to
distinguish between these disturbances is to perturb the operating conditions of the
plant or its parameters. However, recent studies [11, 33] that propose variation in
rotor angular speed as a means to enhance observability may not be acceptable for

most applications.

1.3 Scope and Content of the Thesis

Our approach to the problem is based on traditional adaptive control designs that has
seen applications with a variety of electromechanical systems [4, 31] but not magnetic
bearings. The objective of rotor stabilization is to precisely spin the rotor about the
geometric center in the presence of SRO and unbalance. In our approach, we individ-
ually identify synchronous mass unbalance and SRO at constant rotor speed through
persistence of excitation. Our adaptive control framework enable us to uniquely excite

the regressor vector, if necessary, to provide the persistently exciting (PE) condition.
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It is widely known in adaptive control field that PE conditions can contribute to an
asymptotic convergence of estimated parameters to the true values and provide some
level of robustness [25].

The thesis is organized as follows. In Chapter 2 we introduce the problem of SRO
and unbalance using a simplified single-degree of freedom magnetic bearing model.
An off-line SRO identification that is useful for verification of the results given by
adaptive algorithms is also presented. In Chapter 2 we include the most commonly
used variables to avoid repeating their definition in the next chapters. In Chapter
3 an adaptive sensor runout compensation (ASRC) is presented including proof of
stability, parameter convergence, robustness to plant parameters uncertainty, and
averaging analysis to approximate the convergence rate of adaptation. Simulation
and experimental results are also provided in Chapter 3. In Chapter 4 we discuss
the challenge posed by the combined SRO and unbalance problem and the limitation
of adaptive control implementation via multiple angular speeds. Chapter 5 present
a solution to the combined SRO and unbalance problem by excitation of the bias
currents. The robustness of the algorithm is studied using a passivity analysis. The
convergence rate of adaptation is investigated using the averaging method. Both
simulation and experimental results are provided in Chapter 5. Chapter 6 extends
the adaptive algorithms in Chapters 3 and 5 for implementation in MIMO magnetic
bearing systems. Chapter 7 provides concluding remarks and provides suggestions

for future research problems.
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1.4 Nomenclature

Arabic Symbols

a;, bi

c

fu
fe

p.q

Harmonic Fourier coefficients of sensor runout
Constant

Sensor runout disturbance

Weighted sum of position error and velocity error
Magnetic force

Disturbance force due to mass unbalance
Force due to controlled current

Gravity

Controlled current

Identity matrix

Axial moment of inertia of rotor

Transverse moment of inertia of rotor
Harmonic number

Top bias current

Bottom bias current

Electromagnetic constant

Actuator gain or current stiffness

Bearing stiffness or position stiffness

Nominal air gap

Highest harmonic number considered

Mass

Harmonic Fourier coefficients of mass unbalance

Time



Greek Symbols

Yi
Ypr Vq

Pu
0.

Superscripts

()
)
)

Geometric center position
Position sensor signal
Regressor Vector

Lyapunov’s function

Bias current excitation

Dimensionless parameter

Eccentricity

Adaptation gain matrix for SRO part

Adaptation gain matrix for unbalance part
Adaptation gain constants for SRO part

Adaptation gain constants for unbalance part

Error gain

Rotor angular speed

Vector containing Fourier coefficients of sensor runout
Vector containing Fourier coefficients of mass unbalanced

Phase of mass unbalance

Nominal value
Estimated parameter
Difference between the actual parameter and

the estimated parameter



Acronyn
AMB
ASRC )
BCE
DSP
MIMO




Acronyms
AMB Active magnetic bearing

ASRC Adaptive sensor runout compensation
BCE Bias current excitation
DSP Digital signal processor
MIMO Multi-input multi-output
PE Persistently exciting
RPM Revolutions per minute
SISO Single-input single-output

SPR Strictly positive real

SRO Sensor runout
SRUC Sensor runout and unbalance compensation
Operators

Re(:) Real part
)T Matrix or vector transpose

() Matrix inverse
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CHAPTER 2

Magnetic Bearing Modeling

2.1 Introduction

In this chapter, we present the dynamics of a rigid rotor magnetic bearing used in
our research. We start our study by considering a single degree of freedom magnetic
bearing model. The effects of unbalance and sensor runout (SRO) are then introduced.
We outline the procedure to manually identify SRO and present the most commonly

used terms in the development of our adaptive algorithms.

2.2 Single Degree-of-Freedom Model

AMB systems have, in general, five degrees-of-freedom (DOF): two radial DOF at
each of the shaft ends and perhaps one axial DOF. However, this chapter considers
a one DOF system only by assuming that the dynamics in all four radial directions
are similar and can be controlled independently and that the rotor is axially fixed.
In our study we assume that the effect of non-collocation between the gap sensor and
the magnetic coil actuator is negligible. The typical diagram of a magnetic bearing
System with a decentralized feedback control is shown in Figure 2.1. The feedback
control stabilizes the rotor position in the following manner. The differential gap

Sensors measure the location of the center of geometry relative to the stator. After
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comparing the position measurement to the reference position, the resulting error is
sent to the compensator. The compensator, which can be an analog circuit or a DSP,
provides the necessary command to the power amplifiers that drive currents in the
magnetic coils. The signs of the signal sent to the top and the bottom amplifiers are

arranged to be opposite to each other.

To magnetic coll

|

Stator

Power

Reference amplifier Y
g—:g?—‘ Compensator (—
; %

Powe
_’E_" amplif'ler

Y

From gap sensor

Differential
sensing

Figure 2.1. Diagram of a typical active magnetic bearing system

Now consider the magnetically levitated rigid rotor in Figure 2.2. The rotor has
two degrees-of-freedom along the z and y axes; the displacements along these axes are
measured by non-contact gap sensors. The dynamics of the rotor along these axes,
which are both inclined at 45° with the horizontal, are decoupled but similar. Along

the z axis, one may write

mi=F-mg+f, g2g/V2 (2.1)

where m is the mass of the rotor, z is the position of rotor geometric center, F' is the

magnetic force, f, is the unbalance force, and g is the acceleration due to gravity.

10
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Figure 2.2. Single-DOF model of magnetic bearing with rotor schematic

The magnetic force can be expressed as

F=k [(i;°_+x1 )2 - (’§° +_$I)2] 2.2)

where k is the magnetic force constant, ! is the nominal air gap, 4,9, i3 are the bias

currents in the top and bottom electromagnets, and I is the control current. By

linearizing Eq.(2.2) about £ = 0, I = 0, Eq.(2.1) can be written as

mi=Kazx+ f.+ fu (2.3)

.2 K.I (2.4)
K, £ 2k (3, + %) /1 (2.5)
K. 2 2k (430 + i) /1® (2.6)

where f. is the control force, K; and K, are the magnetic stiffness and actuator gain

of the magnetic bearing respectively. The unbalance force due to mass eccentricity

11
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can be modeled as

fu = mw?e cos(wt + 0,) = mw? [psin(wt) + q cos(wt)] (2.7)

where p = —¢sin(8,) , ¢ = £cos(f,) , 0y is the phase of unbalance, w is the rotor

angular speed, and ¢ is the eccentricity of the rotor.

2.3 Standard PD Controller

Ignoring the external disturbances in Eq.(2.3), the transfer function of the plant can

be written as
X(s) K,
I(s) ms?—-K,

(2.8)

It can be seen that without a closed-loop controller the linearized system is unstable.
K
The plant has eigenvalues at +4 / Tni
To stabilize the rotor, a proportional-derivative (PD) controller G.(s) is commonly

used as the compensator shown in Figure 2.1.

G(s)=K,(1+ %— s (2.9)

where K, > 0 is the proportional gain and K4 > 0 is the derivative gain. The stable

closed-loop system can be described by

(Kp + Kas)K. K,
ms? + KiK. s + (K, K. — K) where K, > (2.10)

Gd(s) = K

In the presence of the unbalance, the rotor geometric center will fluctuate around
the origin if this standard PD controller is used. The rotor performance is further

degraded as the sensor signal contains periodic disturbance due to sensor runout.

12
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2.4 Sensor Runout (SRO) Disturbance

The true location of the rotor’s geometric center is not available for a magnetic bearing

with sensor runout. Instead, the gap sensors provide the signal z,.
xy=r+d (2.11)

where, d, the sensor runout disturbance, can be expressed by the Fourier series

d=ap+ i [a; sin(iwt) + b; cos(iwt)] = YT¢ (2.12)

=1
Y 2 (1 sin(wt) cos(wt) ... sin(nwt) cos(nwt)]” (2.13)
¢ £ [0,0 a) b1 ... Qp bn ]T (214)

In the above expression, n is the number of harmonics, ag is the DC component, and

a;, b;,1=1,2,...,n, are the harmonic Fourier coefficients.

2.5 Off-line SRO Identification

In this section we present a method for manual off-line identification of sensor runout.
This method will be used to verify the accuracy of the on-line adaptive sensor runout
compensation scheme (ASRC) in Chapter 3 and the combined sensor runout and un-
balance compensation scheme (SRUC) in Chapter 5.  Off-line SRO identification,
which has to be performed separately for each axis of the bearing, requires the rotor
to be spun at low speed to avoid the effects of unbalance. We will first levitate the
rotor using a PD controller, as shown in Figure 2.3. Using a DSP to generate function
Ey = Ay, we close the feedback loop using the signal (z, — Ey). We then adjust the

magnitude of Ay such that (z, — Ey) has a zero mean. Once this is accomplished, we

13
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will have identified the DC component of SRO.

Next, we generate the signal E, = A,sin(6, + 6;), where 6, £ wt is the rotor
angular position obtained from the shaft encoder. We select #; such that E, is in
phase with the first harmonic of (z, — E;). We then change the feedback signal to
z, — Ey — E, and adjust A, by trial and error such that (z, — Ey — E)) has no first
order harmonics.

Having identified the first harmonic of SRO, we then sequentially identify the
second harmonic E, = A;sin(20, + 6;) and higher order terms in the same manner.

Eventually, we will have the complete SRO signal

E = (Ey+ E, + E;) = Ag + A; sin(6, + 6,) + Az sin(26, + 6,) (2.15)

This signal can be subtracted from the sensor signal z,, preferably using an analog
circuit, to recover the position of the geometric center, £, = z. In our experiments,
we plot E, to verify rotor stabilization about the geometric center in the presence of

significant unbalance.

Unbalance Sensor Manual SRO
f=0 . Runout Identification
u Geometric d l E= A°+A' sin(eo...e 1)
Center

If E4=0 for all 8,

0 .*O »| PD I |Magnetic Bearing
d Controller System '
T thenE=d

Figure 2.3. Off-line SRO identification
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2.6 Unbalance Verification Using a Trial Mass

In this section we outline the procedure for verification of rotor unbalance estimated
by our adaptive algorithm. Let ¢y, 6y be the estimated magnitude and phase of
the initial unbalance. We will add a trial mass my to the rotor and re-estimate the
unbalance using our algorithm. If €7, 6r are the magnitude and phase of the trial
mass, we can verify the efficacy of our algorithm if the new unbalance vector eg, 0 is
a vector sum of the initial unbalance and the unbalance due to the trial mass. This

is explained with the help of Figure 2.4.

, = initial unbalance vector
-
m = initial unbalance €7 = unbalance due to trial mass

my = trial weight mass _e,: = resultant vector

Figure 2.4. Unbalance verification using a trial mass

2.7 Definition of Most Commonly Used Terms

In the development of our adaptive algorithms, there are several variables that will

be used repeatedly. We introduce the variables here to avoid repeating the same

15
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definition in next chapters.

We define the estimated geometric position or position error as

i2r,—d (2.16)
where
d2ay+ Z [a, sin(iwt) + b; cos(zwt)] =YT¢ (2.17)
=1
is the estimated SRO disturbance,
d2a0 a by ... ap by)" (2.18)

is the estimated parameter vector of the SRO, ao is the estimated value of ag, and a;,
b; are estimated values of a;, b;, respectively, for i = 1,2,...,n. Using Egs.(2.11) and

(2.16), Z can also be expressed as

81
Il
s
+
O

(2.19)

where, J, the error in the estimate of sensor runout disturbance, is given by the

relation

d2d-d)=Y"¢ (2.20)

The parameter error vector a is defined as

Qg
62¢-96=1 4, (2.21)
b5
Where ‘;a e [51 31 ]T, aﬁ = [62 52 En Zn]T, 60 = (ao - &0), and 5,' =

(a,-—&,-),&-é (b,‘-—B,'),i= 1,2,.. ,n

16
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Other most commonly used terms include the weighted sum of the estimated

position error and the estimated velocity error
ES T+ AT (2.22)
where ) is a positive constant, the regressor vector
Y2 KY-mY, Y,eR@»® (2.23)
and the adaptation gain for SRO components

T 2 diag(70, 71, Vs -« -, Ymr Tn), [ € REHDX @041 (2.24)

where v;, 1 = 0,1,2,...,n are positive constants. These constants are chosen such

that 0 < A < 1 where A is a dimensionless parameter defined by

AL2YTTY, = Z i (K, + m(iw)?) (2.25)
1=0

17
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CHAPTER 3

Adaptive Sensor Runout Compensation

(ASRC)

3.1 Introduction

In this section we present an adaptive algorithm to reject the effect of sensor runout
in the single degree of freedom magnetic bearing model presented in Chapter 2. In the
absence of mass unbalance, the adaptive sensor runout compensation (ASRC) scheme
is designed to stabilize the geometric center of the rotor to the origin. The proof of
stability and parameter convergence is provided. The robustness of the algorithm to
the uncertainties in plant parameters is evaluated and the convergence rate of the
estimated parameters is approximated through averaging analysis. The algorithm is

then verified through simulations and experiments.

3.2 Choice of Adaptive Controller

Assuming the unbalance force, f, is negligible, the equation of motion in Eq.(2.3)

becomes

mi=K,z+ K] (3.1)

18
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For estimation and cancellation of sensor runout, and stabilization of the rotor geo-
metric center, we propose the control action

1

1= 7d

(KsZ + mAZ + ce) (3.2)

along with the adaptation law
$ =I'Yne (3.3)

where K, and K, are defined in Eqs.(2.5) and (2.6), Z is defined in Eq.(2.16), € and
A are defined in Eq.(2.22), T is defined in Eq.(2.24), Y,, is defined in Eq.(2.23), and
c is a positive constant. The derivative term Z is assumed available by taking the
derivative of the measured signal Z. The block diagram of the closed-loop system is
shown in Figure 3.1. The controller can stabilize the rotor geometric center to the
origin in the presence of sensor runout. The stability proofs and convergence analysis

are provided in the next section.

Unbalance Sensor
.1 Runout
Geometric d
e T e Rt T O ¢ ¢
] X +
Feedback } —
Law |
|
Adaptation .

Figure 3.1. Block diagram of magnetic bearing system with ASRC

19



33 Pr

From the det

Sulstituting

scibed by

Using the re]

above eqatj,

The term 4

ar;d Substityyy

[
: Fing the !

-
T ddmlCS Car,



3.3 Proof of Stability and Parameter Convergence

From the definition of Y and Y,, in Eqgs.(2.13) and (2.23), we can establish
Y'IY,=0, Y'TY,=0 (3.4)

Substituting Eq.(3.2) into Eq.(3.1), the dynamics of the controlled rotor can be de-
scribed by
mi = —K,d— mAi — ce (3.5)

Using the relation £ = i + d from Eq.(2.19), and é = % + A% from Eq.(2.22), the

above equation can be rewritten as
mé=md— K,d— cé (3.6)
The term d can be derived from Eq.(2.20)

d=YT6+2YT6+YT4

=YTé+ Aé (3.7)
and substituted in Eq.(3.6) to obtain
m(l—A)é=-YT¢—ce (3.8)

knowing the relations in Egs.(2.25), (3.3) and (3.4). Thus, the closed loop system

dynamics can now be described by

—AT + € (3.9a)

1
“m(1-A)

z

(Y,",’,$ + cé) (3.9b)

Qe
Il
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$=TYne (3.9¢)

The following observations can now be made with respect to the closed-loop system.

Theorem 3.1 Consider the sub-system described by Eqs.(3.9b) and (3.9c). For this
system, (€, a) = (0,0) is an asymptotically stable equilibrium.

Proof: From Eqs.(3.9b) and (3.9¢) first notice that (€, 5) = (0, 0) implies (¢, ;) =
(0,0). Therefore, (€, ¢) = (0, 0) is an equilibrium point. To show that this equilibrium
is asymptotically stable, we define the continuously differentiable, positive definite

function

V(e ) = %m (1-A)e*+ %JTP-‘&T, 0<A<1 (3.10)
The derivative of V' can be computed as

V=m(l-A)ee+'T ¢ (3.11)
Using Eqs.(3.9b) and (3.9¢), we obtain
V=-c?<0 (3.12)

Since V is positive definite and V is negative semi-definite, we conclude that
(¢, 4) = (0,0) is stable. In addition, since V is uniformly continuous, we use Barbalat’s
lemma [13] to deduce V — 0 as t — oco. This implies &€ — 0 as ¢ — oco. By
differentiating Eq.(3.9b), we can show that & = &(t, ,€) is bounded. This implies
that € is uniformly continuous. Since & — 0 as ¢ — 0o, we once again use Barbalat’s
lemma [13] to deduce € — 0 as t — co. Knowing €,& — 0 as t — oo, we can conclude
from Eq.(3.9b)

YZ4—0 (3.13)

21
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Furthermore, we can show that there exist positive constants a,, a3, and T,, such

that

t+T,
a,l > Y. YTdr > a1 (3.14)
t

where I is the identity matrix, I € R(?#+Vn+1)  Therefore Y,, is a persistently
exciting (PE) signal [13]. The proof of the PE condition is provided in Appendix B.1.
This implies from Eq.(3.13) that $ — 0, as t = o0o. Knowing é,a —0,ast — oo,

we can now assert that (€, 5) = (0,0) is an asymptotically stable equilibrium. This

concludes our proof.

~

Lemma 3.1 The origin of the closed-loop system in Eq.(3.9), (Z,€,¢) = (0,0,0), is
an asymptotically stable equilibrium point.
Proof: The closed loop system in Eq.(3.9) is an interconnected system of the

form

21 = fi(t, 21, 22) (3.15a)

i2 = fz(t, Zz) (315b)

where 2; £ Z, and 2, £ (& q;T )T are the state variables of the two<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>