
..
3
6
.
.
.
,
»

»
.
Y
.
.
s
z

u
s
}
.
Ha

.
A
.
a

3
:
3
.
k
a

33......
.

5
5
$
.
.
.

t
i
t
:

(
3
)
:
:

‘
-
l
9
.
l
3

5
.

1
:
3
.
.
.

u
.
.
t
.
’
b

t
!

f
a
x
-
5
.
x
.

{
3
|

(
1
.
.
.

.
8
:
.
.
.

z
:

a
-

V
5
.

3
.
.
:
3
9
.

.
m

a
.
u
n
e
v
e
n
.

fl
u
?
3
:
“

t
:

i
f
.

5
.

.
E
x
t
o
a
e
‘
.

.
J
.

.
u
fl
d
b
v
h
$
3
.
5
1
.
:
3
.

.
{
i
d

.
l
"
.
.
.
.
.
.
0
.
)

I
"

'
9
‘
1
‘
:
’
-

.
3
.

A
:
.
:
:
:
r
c
x

.
.
2
:
7
5
:
3
7

.
5
.

.
:

E
;
:
.
.
.
.
.
.
.
.
:
.

.
4
.

E
.
:
r
x
x
:

.
1
.

"
3
.
.
.
.
t

1
a
.

.
.

5
3
'
.
.
.

.
1

:
2

.
.
a
.
{
.
5
1

.
.

.
.
1
:
1
:
3
.

,
\

.
v
.

a
.
.
u
:
.
s
:
f
l
.
.
v
\
)

4
‘

s
:

i
,

THESIS

.7,

mo-

lIBRARY

I Michigan State

University

This is to certify that the

dissertation entitled

NEW DIRECTIONS IN MACHINE SCHEDULING

presented by

Patchrawat Uthaisombut

has been accepted towards fulfillment

ofthe requirements for

Ph - D . degree in Qompgtge: $9 ience

Major professor

Date Y/Zl /ZOOQ

MSU is an Affirmative Action/Equal Opportunity Institution
0- 1 2771

PLACE IN RETURN Box to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 cJCIRC/DateDuepGS-pJS

NEW DIRECTIONS IN MACHINE SCHEDULING

By

Patchrawat Uthaisombut

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2000

ABSTRACT

NEW DIRECTIONS IN MACHINE SCHEDULING

By

Patchrawat Uthaisombut

We explored several new directions in machine scheduling including bicriteria

scheduling, extra-resource analysis, a new model of preemption, the k-client problem,

and AND/OR linear programming.

First, we considered the problem of nonpreemptively scheduling jobs that ar-

rive over time on one machine to simultaneously minimize both the makespan and

the average completion time. Previous research focused on proving the existence of

schedules that simultaneously approximate both criteria. We showed that optimal

bicriteria schedules can be constructed in polynomial-time. By optimal, we mean

that bicriteria schedules with a better bound for both criteria do not exist for some

input instances.

Second, we applied extra-resource analysis to the load-balancing problem.

Extra-resource analysis is a generalization of competitive analysis. Extra-resource

analysis has been used to distinguish good and bad on-line algorithms whereas com-

petitive analysis cannot. We used extra-resource analysis to derive a new type of

result, namely a qualitative divergence between on-line and off-line load-balancing

algorithms.

Third, we introduced a new model of preemption, the “preempt-decay” model.

In this model, when a job is preempted, the work done on that job gradually decays

and has to be processed again. This model is a generalization of both the preempt-

repeat and the preempt-resume models. We compared the optimal solution among

the three models in the one machine environment.

Fourth, we studied the k-client problem which combines the ideas of multi-

threaded environment and location-dependent processing time. In a multi-threaded

environment, there are multiple chains of jobs. Jobs in each chain must be processed

in order. In the environment where the processing time is location-dependent, the

time required to process a job depends on the distance between the job and the

server. When the underlying metric space in the k-client problem is a line, the

problem becomes the multi-threaded disk scheduling problem. We analyzed two on-

line greedy algorithms for the k-client problem, derived lower bounds in the line and

the clique metric spaces, and considered the special case when k = 2.

Finally, we introduced AND/OR linear programming which is a generalization

of ordinary linear programming. We devised an optimization scheme for AND/OR

linear programs that has a small running time in practice. We outlined the application

of AND/OR linear programs to the problem of finding a lower bound instance for

an approximation algorithm. We demonstrated the technique on the problem of

nonpreemptively scheduling jobs that arrive over time on one machine to minimize

the total completion time.

To my parents

iv

ACKNOWLEDGEMENTS

Many people contributed in many ways to make my dissertation possible. I

take this opportunity to express my gratitude to them. First, I wish to express my

deepest appreciation to Dr. Eric Torng, my advisor. Dr. Torng showed me the

essence and the glory of theoretical computer science when I took his class. During

my Ph.D. program, he always gave me ideas and new interesting problems to work

on. I thank him for his encouragement, guidance, and support. I would like to thank

Dr. Abdul Esfahanian, Dr. Matt Mutka, and Dr. Edgar Palmer, my committee

members and also my teachers. I learned many things in and outside their classes. I

also thank them for their encouragement.

I would like to thank my parents, Adun and Walaitip Uthaisombut, for their

love, their support throughout my life, and their encouragement to persue higer ed-

ucation. I wish to thank my wife, Rujida (Leepipattanawit) Uthaisombut, for her

love, support, and believe in me. Her presence gave me the courage to go forward. I

would like to thank Dr. Robert Rasche and Mrs. Dorothy Rasche for their kindness

throughout my stay at Michigan State University.

I would like to thank Mrs. Linda Moore for her help on all kinds of administra-

tive work. Finally, I would like to thank all my friends for their help, their company,

and the many interesting discussions.

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Introduction 1

1.2 Traditional Scheduling Problems 2

1.2.1 Job Data 2

1.2.2 Machine Environment 3

1.2.3 Job Characteristics 4

1.2.4 Optimality Criteria 5

1.2.5 Examples of Scheduling Problems 6

1.3 Approximation Algorithms and On-Line Algorithms 6

1.3.1 Approximation Algorithms 6

1.3.2 On—Line Algorithms 7

1.3.3 Comparison Between Approximation Algorithms and On-Line Algorithms 8

1.4 New Directions for Scheduling Problems 9

1.4.1 Multiple Objectives 9

1.4.2 Extra-Resource Analysis 12

1.4.3 New Models of Preemption 13

1.4.4 Multi-Thread Environment 16

1.4.5 Location-Dependent Processing Time 21

1.4.6 AND/OR Linear Programming 21

1.5 Organization of the Dissertation 21

2 Bicriteria Scheduling 23

2.1 Introduction 23

2.2 Lower Bound of the Quality of Bicriteria Schedules 24

2.3 Constructing Bicriteria Schedules in Polynomial Time 26

2.4 Open Problems in Bicriteria Scheduling 28

3 Applying Extra-Resource Analysis to Load Balancing 29

3.1 Introduction 29

3.1.1 Problem Definitions 30

3.1.2 Related Results 31

3.1.3 Summary of Results 34

3.2 On-Line Results 36

3.3 Off-Line Upper Bounds 39

3.4 Lower Bounds on L’P’T 50

3.5 Open Problems 55

vi

4 Preempt-Decay Scheduling 56

4.1 Introduction 56

4.2 NP-Hardness Result 57

4.3 Comparison of the Optimal Flow Time Among the Three Models 61

4.3.1 Preempt-Repeat and Preempt-Resume models 62

4.3.2 Preempt-Repeat and Preempt-Decay models 64

4.3.3 Preempt-Decay and Preempt-Resume models 66

4.4 Approximability and Inapproximability in the Three Models 70

4.5 Open Problems in Preempt-Decay Scheduling 75

5 The k-Client Problem 77

5.1 Introduction 77

5.2 Upper Bounds 80

5.2.1 Upper bounds for the Total Distance Cost Function 82

5.2.2 Upper bounds for the Average Completion Time Cost Function 82

5.3 General Lower Bounds 86

5.3.1 Definition of Adversary Strategy A(N, k) 86

5.3.2 Properties of the Adversary Strategy 90

5.3.3 General Lower Bound for the Total Distance Cost Function 96

5.3.4 General Lower Bound for the Average Completion Time Cost Function . 97

5.3.5 General Lower Bound on the Line 101

5.4 General Lower bounds when k = 2 102

5.4.1 General Lower Bound on the Clique when k = 2 102

5.4.2 General Lower Bound on the Line when k = 2 107

5.5 Open Problems on the k-Client Problem 109

6 Minimizing Total Completion Time on One Machine 111

6.1 Introduction 111

6.2 SR’PT-Subsequence Algorithms 112

6.2.1 Definition of a-Schedules and the BEST-a Algorithm 112

6.2.2 Definition of SRPT-Subsequence Algorithms 113

6.3 Lower Bound of Non-Preemptive SR’PT—Subsequence Algorithms 114

6.4 Summary 119

7 AND/OR Linear Programs and Scheduling Problems 120

7.1 Introduction 120

7.2 Lower Bound Problems 121

7.3 Linear and Integer Programming 122

7.3.1 Previous Use of Linear and Integer Programs in Scheduling Problems . 123

7.4 AND/OR Linear Programming 124

7.4.1 Expressions of the Underlying Objective Functions 124

7.4.2 Modeling Lower Bound Problems as AND/OR LPs 126

7.4.3 Solving an AND/OR Linear Program 130

7.5 Applying AND/OR LP to a Scheduling Problem 134

7.5.1 Program Formulation 134

vii

7.5.2 Expressions of the Objective Functions 136

7.5.3 Optimizing AND/OR Linear Programs 143

7.6 Discussion 148

A Bit Summation Inequalities 150

viii

LIST OF TABLES

3.1 The lower bounds computed by the linear program. 54

4.1 Summary of results on preempt-decay scheduling. 58

5.1 Summary of results for the k-client problem................. 81

ix

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

6.1

6.2

7.1

7.2

7.3

7.4

7.5

LIST OF FIGURES

Example of a schedule in the preempt-decay model.

Job classification schemes.

Case 2.1 of Theorem 3.3.2...........................

Case 2.2 of Theorem 3.3.2...........................

An instance with m = 8 and m = 2 showing tightness of Theorem 3.3.2. .

The lower bound instance with m = 8 and k = 2 obtained from the linear

program.

The plot of the lower bounds computed by the linear program.

Summary of upper and lower bounds for LPT with extra resources.

Summary of results on preempt-decay scheduling.

A reduction from 3-PARTITION to a preempt-decay scheduling problem.

Lower bound instance between the preempt-repeat and preempt-resume

models.

Lower bound instance between the preempt-repeat and preempt-decay

models.

Lower bound instance between the preempt-decay and preempt-resume

models.

Examples of domination between decay functions.

Lower bound instance for S’R’PT in the preempt-decay model.

Lower bound instance for SD]: and SEQ with the total distance cost

function.

Lower bound instance for SD]: and 889 with the average completion

time cost function.

An example A(1, 8) lower bound instance and its cover graph.

Lower bound instance for the average completion time cost function and

k =

Examples of non-preemptive SR’PT-subsequence schedule.........

Lower bound instance for non-preemptive SR’PT—subsequence algorithm.

Construction of the interval inclusion graph and the linear subprogram .

Non-preemptive SR’PT-subsequence schedules.

The first example of optimizing an AND/OR linear program.

The second example of optimizing an AND/OR linear program.

The third example of Optimizing an AND/OR linear program.

47

49

53

53

55

59

61

63

65

67

69

72

82

85

96

109

113

116

141

Chapter 1

Introduction

1.1 Introduction

Scheduling is the problem of allocating resources over time to perform a collection of

tasks. Practical scheduling problems arise in a variety of Situations. A problem could

involve: jobs in a manufacturing plant, programs to be run in a computer system,

bank customers waiting for services in front of tellers’ windows, or airplanes waiting

clearances to land or take off at an airport. Regardless of the application, there

is a fundamental similarity among these problems. The vital elements in scheduling

problems are resources, tasks, and objectives. Resources are typically characterized in

terms of their qualitative and quantitative capacities, so that in a scheduling problem,

each resource is described by its type and amount. Each task is typically described

in terms of such information as its resource requirement, its duration, the time at

which it may be started, and the time at which it is due. In addition, sometimes a

collection of tasks is described in terms of precedence constraints that exist among

the tasks. The objectives are some measure of goodness of solutions to a scheduling

problem. Common goals in scheduling are high resources utilization, quick response

to demands, close conformance to deadlines, and fairness.

1.2 Traditional Scheduling Problems

In this section, we describe a classification scheme of scheduling problems developed

by Graham, Lawler, Lenstra, and Rinnooy Kan [38]. Suppose that m machines M,

(i = 1,...,m) have to process n jobs Jj (j = 1,...,n). A schedule is an allocation

of one or more time intervals on one or more machines to each job. A schedule is

feasible if at any time, there is at most one job on each machine, each job is run

on at most one machine, and in addition, it meets a number of Specific requirements

concerning the machine environment and the job characteristics. A schedule is optimal

if it minimizes (or maximizes) a given optimality criterion. A scheduling problem

type can be specified using a three-field classification alfily composed of the machine

environment, the job characteristics, and the optimality criterion.

1.2.1 Job Data

First of all, the following data is specified for each job J,-:

o a processing requirement p, in the case of single-operation models, or a collection

of processing requirements pi,- in the case of multi-operation models;

0 a release date r,-, on which JJ- becomes available for processing;

0 a non-decreasing real cost function f,- measuring the cost fj(t) incurred if Jj is

completed at time t;

o a due date d,-, after which Jj is considered late, and which may be used in

defining f];

o a weight 21),, which represents the importance of Jj relative to other jobs, and

may be used in defining fj.

1.2.2 Machine Environment

The first field a = 01012 specifies the machine environment. Let 0 denote the empty

symbol. If a1 6 {0, P, Q, R}, each job Jj consists of a single operation which can be

processed on any machine Mi. Let p,,- denote the time to process J,- on M,.

0 a1 = 0: single machine; there is only one machine. plj = pj for all Jj.

0 a1 = P: identical parallel machine; there are multiple identical machine. pij =

p,- for all [V1,- and Jj.

0 a1 = Q: uniform machines; there are multiple machines with different speeds.

Each machine M,- has a speed s,-. p,,- = pj/s, for all M,- and Jj.

o (11 = R: unrelated machines; there are multiple machines with different job-

dependent speeds. Machine M,- runs job Jj with job-dependent speed Sij. pij =

pj/s,j for all M,- and Jj.

Ifal E {J, F, 0}, each job Jj consists ofa set of operations {01,}, 02,], ..., Omjj}

0 a1 = J: job shop; the operations of each job Jj forms a chain (01.150253 ..., 0mm)

which must be processed in that order, and 0,,- must be processed on a given

machine ,uij requiring pij time units.

3

o (11 = F: flow shop; flow shop is a special case of job shop where m, = m and

u”- : Ad, for all jobs Jj.

0 a1 = 0: open shop; open shop is similar to flow shop except that the operations

of any job Jj can be processed in any order.

If a2 is a positive integer, then m is a constant, equal to 02; it is specified as

part of the problem type. If 02 = 0, then m is a variable; the value of m is Specified

as part of the problem instance. Note that a, = o if and only if a2 = 1.

1.2.3 Job Characteristics

The second field D g {pmtn, rj, fimec} indicates certain job characteristics.

0 If pmtn is present, then preemptions are allowed; the processing of any job

may be interrupted at no cost and resumed at a later time. Otherwise, no

preemptions are allowed; once a jobs is started on a machine M,, the job occupies

the machine until it is completed.

0 If rj is present, then each job may have different release dates. Otherwise, all

jobs arrive at time 0.

o If a precedence constraint 5pm, is present, then there is a precedence relation <

among the jobs, i.e., if Jj < Jk, then Jj must be completed before Jk can be

started. If 5pm 2 chain, then < forms chains. If flprec 2 tree, then 4 forms a

tree. If fipm, = prec, then -< is an arbitrary partial order. If 5pm, is not present,

then jobs can be processed in any order.

The field B may contain some other job characteristics. They should be self-explana-

tory. It should be noted that there are many more types of precedence relations than

those shown above.

1.2.4 Optimality Criteria

The third field 7 specifies the optimality criterion or the objective, the value we wish

to optimize. Given a feasible schedule, we can compute for each J]-

o the completion time 03-, the time at which the processing ofjob J, is completed;

0 the flow time Fj = Cj — rj, the amount of time job JJ- spends in the system;

0 the lateness LJ- = Cj — d,-, the amount of time by which the completion time

of job Jj exceed its due date; lateness can be negative if job Jj finishes earlier

than its due date;

0 the tardiness T,- = max{LJ-, 0}, the lateness of job JJ- if it fails to meet its due

date, or zero otherwise;

0 the unit penalty Uj = 0 if Cj S dj, U,- = 1 otherwise, a unit penalty of job JJ- if

it fails to meet its due date.

The cost f, for each job Jj usually takes on one of the variables described

above or the product of the weight m,- with one of the variables. The optimality

criterion can be any function of the costs fj, j = 1, ..., n. Common optimality criteria

are usually in the form E]. f,- and fmax = maxj fj. Example of common optimality

criteria are the total weighted completion time Erin-C], the maximum completion

time or the makespan Cmax, and the maximum lateness Lmax.

5

1.2.5 Examples of Scheduling Problems

We give a few examples on the three-field classification of scheduling problems. The

problem 1|rj| Z wJ-Cj is the problem of minimizing weighted completion time on one

machine subject to non-trivial release dates. The problem P3|pmtn, preclLmax is the

problem of minimizing maximum lateness on three identical parallel machines subject

to general precedence constraint, allowing preemption.

1.3 Approximation Algorithms and On—Line Algo-

rithms

In this section, we describe approximation algorithms, on-line algorithms, common

methods for evaluating their performance, and we compare and contrast approxima-

tion and on-line algorithms. First, we define some notations. The supremum of a

non-empty set A of real numbers, denoted sup A, is the smallest real number u such

that u 2 a: for each :1: E A. The infimum of A, denoted inf A, is the greatest real

number I such that l g z for each a: E A. If A is finite, then both supA and inf A

belong to A. In this case, they are often called the minimum and maximum of A and

are denoted by min A and max A, respectively.

1.3.1 Approximation Algorithms

Many problems are NP-hard. It is unlikely that there exist efficient algorithms for

solving NP-hard problems optimally. In this case, we should focus our effort to find

efficient approximation algorithms. An approximation algorithm for a problem II

is an algorithm that, for any input instance I in II, always give a feasible solution

for I . We usually measure the performance of an approximation algorithm by its

approximation ratio. Suppose we are considering a minimization problem. Let A(I)

be the cost of the solution to input instance I produced by an algorithm A. The

performance guarantee or the approximation ratio of an approximation algorithm A,

denoted RA, is defined as

_ A(I)

where OPT is the optimal algorithm and the supremum is taken over all possible

input instances of the problem. An algorithm A for a minimization problem is an a-

approximation algorithm if a _>_ RA. For a maximization problem, the approximation

ratio of an approximation algorithm A is defined as

__ - A(I)

RA — ”if 0197(1)‘
(1.2)

An algorithm A for a maximization problem is an a-approximation algorithm if a _<_

RA. Note that the performance guarantee of algorithms is always greater than or

equal to 1 for minimization problems and always smaller than or equal to 1 for

maximization problems. In both cases, the performance guarantee is 1 for optimal

algorithms.

1.3.2 On—Line Algorithms

In many real-life situations, we do not know all information about the input instance

in advance. Yet we have to produce a partial solution to the partial input we have.

For example, in an operating system, jobs arrive over time, and we only know of their

existence when they arrive. Yet we have to construct a schedule over time without

7

knowledge of the future.

To model this, on-line algorithms were introduced. An algorithm is ofl-line if

it has all the knowledge about the input instance before it makes any decision. An

algorithm is on-line if it must construct a partial solution to the currently known

partial input without the knowledge of the future. In general, on-line algorithms

cannot produce an optimal solution.

The performance of an on-line algorithm is usually evaluated by the competitive

analysis technique introduced by Sleator and Tarjan [77]. The competitiveness or the

competitive ratio of an on-line algorithm A for a minimization problem, denoted CA,

is defined as

cAzsupfl

, 0PT(I) (1'3)

where (9737' is the optimal off-line algorithm and the supremum is taken over all

possible input instances of the problem. An algorithm A for a minimization problem

is c-competitive if c 2 CA. The competitive ratio of an on-line algorithm A for a

maximization problem is defined as

. A(I)
-: ———- .4cA IIIIIOPT(1) (1)

An algorithm A for a maximization problem is c-competitive if c 3 CA.

1.3.3 Comparison Between Approximation Algorithms and

On-Line Algorithms

Both approximation algorithms and on-line algorithms typically give suboptimal so-

lutions because they have some forms of handicap. Approximation algorithms have

a limited computational power They are allowed only polynomial time to produce a

solution. In contrast, on-line algorithms have a limited knowledge of the future. At

any time, they must produce a partial solution knowing only the information up to

the current time.

Both approximation analysis and competitive analysis compare the perfor-

mance of the algorithm of interest with that of the best off-line algorithm. Therefore,

we can interpret the approximation ratio (competitive ratio) of an algorithm as its

absolute performance measure. Alternatively, we can interpret the approximation

ratio (competitive ratio) of an algorithm as a relative performance measure. By com-

paring the approximation ratios (competitive ratios) of different algorithms, we can

differentiate the good ones from the bad ones.

1.4 New Directions for Scheduling Problems

In this section, we describe some recent research directions in the field of scheduling.

We will discuss their motivations and some general results in the literature.

1.4.1 Multiple Objectives

In a long history of the scheduling theory, numerous algorithms have been designed

to optimize many kinds of optimality criteria in many scheduling models. Typically,

each criterion has been studied separately. Few studies considered multiple criteria

together. Understanding interaction among multiple criteria is important because in

real life, decision makers of scheduling problems usually have to consider multiple

criteria before arriving at a decision [67]. Decision makers can gain useful insights

from the trade-offs involving multiple criteria.

There were some bicriteria results in the literature which were byproducts of

work on single criterion problems. For the problem of scheduling jobs on parallel

identical machines, Graham showed that any list scheduling algorithm will produce a

schedule with makespan at most twice the optimal makespan [36]. For the weighted

completion time objective of the same model, Kawaguchi and Kyan showed that

a list scheduling algorithm which orders jobs by non-increasing ratio of weight to

processing time is an (J2 + 1)/2-approximation algorithm [51]. If all weights are

equal, this algorithm is optimal for the average completion time [23]. Therefore, this

algorithm performs well for both the makespan and the weighted completion time

objectives.

An approach set out to explicitly study bicriteria scheduling is characterizing

the set of “pareto—optimal” schedules. A set of schedules is pareto-optimal if there

does not exist a schedule which is simultaneously better, in both criteria, than any

of the schedules in the set. Many results on finding pareto—optimal sets are due to

Van Wassenhove and Gelders [85], Nelson, Sarin, and Daniels [65], Garey, Tarjan,

and Wilfond [32], McCormick and Pinedo [61], Hoogeveen [43, 42], Hoogeveen and

Van de Velde [44].

A second approach to study a bicriteria scheduling problem is setting a con-

straint of the value of one criterion and optimizing the other criterion subject to

the constraint. Smith studied the minimization of the average completion time on

one machine subject to minimal maximum lateness [78]. Shmoys and Tardos studied

the minimization of the average completion time on unrelated machines subject to

10

the constraint that the makespan must be at most twice the optimal [76]. Hurkens

and Coster showed that there exist instances for the problem of scheduling jobs on

unrelated machines such that all Optimal average completion time schedules have a

makespan of 9(log n) times optimal [45].

A third approach to study a bicriteria scheduling problem is constructing a

schedule that tries to optimize both criteria simultaneously. Chakrabarti et al. intro-

duced a general technique for constructing algorithms that Simultaneously optimize

both the makespan and the average weighted completion time [18]. Wang studied the

single machine schedule problem with release dates minimizing the makespan and the

average weighted completion time [84]. Stein and Wein showed that for a very general

class of scheduling problems, there exist schedules which are simultaneously at most

1.88-approximation for both the makespan and the average weighted completion time

[80]. Recently Rasala extended this work and proved the existence of bicriteria sched-

ules for several pairs of common scheduling criteria [70]. Her results apply to a very

general class of scheduling problems. More literature in multiple criteria scheduling

can be found in a survey paper by Nagar, Haddock, and Heragu [64].

Stein and Wein [80] introduced the following notation for bicriteria optimiza-

tion problems. Suppose we have criteria (A, B), then a schedule S for an instance

I is an (a, B)-approximation schedule or an (a, B)-schedule if the objective value of

S for the criterion A is at most (1 times the optimal value for the criterion A and

simultaneously the objective value of S for the criterion B is at most B times the

optimal value for the criterion B. Similarly an (o, B)-approximation algorithm is an

algorithm that always return a (a, B)-schedu1e.

11

In general, a schedule which is optimal in one criterion is not optimal in another

criterion. Thus, the first step in studying bicriteria scheduling problems is to establish

the values of a and B for which bicriteria (a, B)-schedules exist. The second step is

to design algorithms to find such schedules.

1.4.2 Extra-Resource Analysis

The goal of competitive analysis is to evaluate the performance of on-line algorithms.

The competitive ratio of an on-line algorithm can be interpreted as an absolute per-

formance or a relative performance when compared to the competitive ratio of other

on—line algorithms. However, in some scheduling problems, competitive analysis fails

to offer useful information. The competitive ratios of good algorithms is extremely

large, or the competitive ratios of good and bad algorithms are the same. For ex-

ample, for the problem of on-line non-clairvoyant scheduling on single machine to

minimize the average response time, Motwani, Phillips, and Torng showed that the

deterministic competitive ratio is Q(n1/3), and the randomized competitive ratio is

9(Iog n) [63].

Kalyanasundaram and Pruhs were the first to explicitly use extra-resource

analysis of on-line algorithms [48] with the goal of identifying good on-line algorithms

in settings where traditional competitive analysis fails to offer useful information.

Extra-resource analysis is a relaxed notion of competitive analysis in which the on-

line algorithm has more resources than the optimal off-line algorithm to which it

is compared. Extra-resource analysis has been used to argue that certain on-line

algorithms are good choices for solving specific problems as they perform well with

12

respect to the optimal off-line algorithm when given extra resources [47, 69, 12, 49,

54, 57, 3, 27]. In scheduling problems, extra resources provided to on-line algorithms

could be faster machines, extra machines, or a combination of both.

For the problem of on—line non-clairvoyant scheduling on single machine to

minimize the average response time discussed above, Kalyanasundaram and Pruhs

Showed that there exists an on-line algorithm with the performance ratio of 1 + 1/6 if

it has a machine with speed 1 + 6 while the optimal off-line algorithm has a machine

with speed 1 where 0 s e g 1. Also, the same bound still holds if the on-line

algorithm is equipped with a unit speed machine and an 6 speed machine, instead

of a (1 + 6) speed machine. This provides a practical way to improve the loss of

system performance due to the on-line nature of the problem. By providing the on-

line algorithm with either a faster machine or an extra machine the on-line algorithm

can be constant competitive against the optimal off-line algorithm.

Extra-resource analysis is related to bicriteria competitive analysis. By think-

ing of the amount of resources used by algorithms as a parameter to be optimized,

extra-resource analysis of a single-criterion problem can be thought of as a special

case of bicriteria competitive analysis of a bicriteria problem.

1.4.3 New Models of Preemption

Traditional scheduling problems can be categorized into two models with respect to

preemptions. In the no-preemption model, no preemptions are allowed; after a job

is started, it must be executed to completion. An example of a scheduling problem

in this model is the car rental problem. After a customer takes off with a car, the

13

car cannot be recalled and rented to a second customer. The car can be rented to

the second customer only when the first customer returns it. In the preempt-resume

model, the execution of any job may be interrupted any number of times at no cost;

preempted jobs resume execution from the point at which they were last preempted.

An example for this model, is the scheduling of processes in a time-sharing operating

system

Now let us consider a relaxation of the no—preemption model. In the preempt-

repeat model, the execution of any job may be interrupted any number of times, but

the work done on that job is completely lost. When the preempted jobs restart, they

restart from the beginning. Any no—preemption schedule is itself a preempt-repeat

schedule. Any preempt-repeat schedule can be converted into a no-preemption sched-

ule by eliminating all preempted executions in the preempt-repeat schedule. Clearly,

the elimination does not affect the completion of any job. For off-line problems, the

no—preemption and the preempt-repeat models are equivalent because off-line algo-

rithms have all the information about the input instance up front and can perform

any conversion before producing the output.

However, in the on-line setting, the no-preemption and the preempt—repeat

models are different. An on-line algorithm has more flexibility in the preempt-repeat

model than it has in the no—preemption model. An on-line algorithm in the preempt-

repeat model can decide to schedule a job and later decide to preempt that job to

run another newly arrived job. In the no—preemption model, this type of action is

prohibited. Scheduling a sound recording studio is an example for the preempt-repeat

model. A recording of a song could be interrupted. However, the entire song must

14

be recorded again.

Each of the preemption models described above realistically captures many

real-life situations. However, there are still many practical situations for which none

of these models accurately apply.

Consider a scenario in a metal casting factory where a piece of metal needs

to be heated in a furnace for 60 minutes before it can be used. However, after the

metal is heated for 40 minutes, there is another more urgent job; another piece of

metal needs to be heated for 10 minutes. Since the furnace cannot accommodate

both pieces of metal, the first piece has to be taken out before it is finished heating.

After the second piece of metal is finished heating, the first piece of metal is inserted

back into the furnace. The crucial point here is that during the time the metal is put

outside of the furnace, it cools down. Suppose the rate that it cools down is one-half

the rate that the furnace can heat up the metal. Then it takes 10/2=5 minutes to

reheat the metal to the temperature just before it was taken out of the furnace. After

that, it needs another 20 minutes to heat up to the desired temperature.

To capture time-dependent losses after preemptions, we propose a new model

of preemption called the preempt-decay model. To facilitate the discussion, we define

the following. The effective remaining processing time of job j at time t, denoted

pj(t), is defined as follows. If job j starts or resumes its execution at time t, and there

is no preemption while it is running, it will take exactly pj(t) time units to complete,

i.e., it will complete at time t+ pj(t). The effective completed processing time cJ-(t) of

job j at time t is defined as Cj(t) = pj —pj(t). For example, pj(0) = p, and cJ-(O) = 0.

If job j runs continuously from time t1 to time t2, then cj(t2) = cj(t1) + (t2 —— t1).

15

In the preempt-decay model, there is a decay function d : Z+ ——> Z+. Pre-

emptions are allowed with the following penalty. When a job Jj is idle for t time

units as a result of a preemption, d(t) units of work done on Jj are lost and have

to be reprocessed. If job j is preempted at time t’ and is idle for t time units, then

cj(t’ + t) : max{cj(t’) — d(t), 0}. It is natural to assume that d(t) is a nondecreas-

ing function because the longer a job is idle, the more the work done on that job

should be lost. See Figure 1.1 for an example. This figures Show a schedule S in the

preempt-decay model for an instance I with a decay function d(t) = t/2. The graphs

on the bottom half of the figure show cj(t).

The preempt-resume and the preempt-repeat models are special cases of the

preempt-decay model. If d(t) = 0, the preempt-decay model specializes to the

preempt-resume model. If d(t) = 00, the preempt-decay model specializes to the

preempt-repeat model. A preempt-decay problem with d(t) = c where c is a posi-

tive finite constant models the operating system scheduling problem with a context

switching cost of c.

1.4.4 Multi-Thread Environment

In traditional scheduling problems, there are 2 choices with respect to the arrival

of jobs. In the first model, all jobs arrive at the same time, typically at time 0.

Many scheduling problems are easy to solve when all jobs arrive at the same time.

For example, 1]] Z wJ-Cj can solved by the Weighted Shortest Processing Time

(WSPT) algorithm [78], 1]]Lmax can be solved by the Earliest Due Date (EDD)

algorithm [9], and 1]] EU,- can be solved by Moore’s algorithm [62].

16

I 2

3 4 5
l l L 4 —l 1M1 L] l 144 l l l >

S 1 2 3 2 41 5 1
l l l I M1 LI 1 L1 1 l l >

jobl

/

/

job 2 /

jobs 3,4,

and 5

Figure 1.1: Example of a schedule in the preempt-decay model.

17

In the second model, jobs could arrive at different times. Each job has a fixed

release time. Many scheduling problems become difficult when jobs arrive at] different

times especially those where preemptions are not allowed. Examples of NP-complete

scheduling problems are 1|rj| EC], llrlemax, and llrj] E U,- [59]. Some preemptive

scheduling problems remain easy to solve when jobs arrive at different times. Exam-

ples of polynomially solvable problems are 1]pmtn,r,~| Z Cj [9], 1|pmtn,rj]fmam [10],

and 1|pmtn,rj| 2U, [58].

Single-Thread Scheduling Problems

In the past few years, another model emerged. In this model, there is an arrival

dependency among jobs. One common model is a chain where jobs have a linear

arrival dependency among them. In a chain, initially, only the first job is available

to be scheduled. The next job will become available only after the current job is

scheduled.

A representative problem for this model is the load balancing problem. In this

model, there are m machines, and a list of jobs. Jobs become available one at a time

and the next job will become available only after the current job is scheduled. The

load of a machine is the sum of the processing time of the jobs on that machine. The

objective is to schedule all jobs and minimize the makespan, the maximum load on

all machine.

A note on availability of a job. In the schedule itself, time has no meaning.

When a job becomes available for the algorithm to schedule, the job can be scheduled

anywhere in the schedule.

18

Multi-Threaded Scheduling Problems

Significant work has been done in on-line scheduling problems. However, most of

this work abstracts away the existence of multiple threads. In most previous studies

of on-line algorithms, researchers have assumed that the system or algorithm must

c0pe with a single request sequence; in particular, at any given time, there is at most

one outstanding request in the system and future requests will not arrive until the

current request is serviced (in some problems, the system is allowed to choose to

not service the current request). Because of this assumption, the underlying problem

addressed by most previous work in on—line algorithms has been deciding which system

resource(s), if any, should be allocated to service the current request. Two of the many

examples of interesting problems which fall into this single request sequence model

are the paging problem [77, 60, 30] and its generalizations, the k-server and generic

task system problems [60, 56, 14].

While the single request sequence model captures many important problems,

there are many others which do not fall into this category, such as some operat-

ing system scheduling problems [48, 28, 29, 63] and some real-time scheduling prob-

lems [53, 11, 26]. In a typical problem, there is a single system resource such as a

processor and, at any given time, there are multiple requests in the system waiting

to be serviced. As a result, the underlying problem is deciding which current request

should the system service rather than which system resource to use. Note that in

many cases, there are multiple resources and multiple requests so the system needs

to decide which requests to service as well as which system resources to use.

19

While this multiple request model captures the scheduling aspect of many sys-

tems, it loses the thread-based or transaction-based nature of the single request model

where the arrival of requests is dependent on whether or not the system processed

previous requests. For example, in practice, for relatively long stretches of time, there

is a fixed number of users on an operating system making requests to the disk. Fur-

thermore, each user or client generates a sequence of requests for service where each

request is only generated after the previous request of the client has been serviced.

This thread-based client model also describes database systems where users perform

transactions which constitute a series of atomic operations in the database.

In a scheduling problem in a thread-based environment, each job is composed

of a chain of operations Each operation has a processing time, the amount of time the

operation requires to run on the machine. The first request from each job is released

when the job is released. Other requests are released when the previous request

from the same job runs to completion. Traditional scheduling problems assume that

requests are independent and that each of them has a fixed release time. Examples of

threads are the operating system scheduling problem and the disk scheduling problem.

In those problems, for relatively long stretches of time, there is a fixed number of

clients utilizing the system. Each client generates a sequence of requests for service

where each request is only generated after the previous request of that client has been

serviced.

In order to capture (i) the multiple client nature and (ii) the thread-based

client nature of problems such as operating system scheduling and disk scheduling,

we study the k-client problem.

20

1.4.5 Location-Dependent Processing Time

In a most general form of traditional scheduling, the processing time of a job depends

on both the job and the machine. This model is not rich enough to model many

practical problems. For example, in a disk scheduling problem, there is a disk, a

server, and requests. The requests appear at different locations on the disk. The

server can move around on the disk. To service a request, the server must move from

its current position to the location of the request. The cost of servicing a request is

largely dependent on the distance the server has to move. The distance the server

has to move to service a request depends on how the server has serviced previous

requests and thus varies from algorithm to algorithm. There is a large body of work

analyzing disk scheduling algorithms [22, 81, 66, 21, 33, 75, 86, 5].

1.4.6 AND/OR Linear Programming

Previously, linear programming and integer programming have been used in the design

and analysis of scheduling problems. We introduce AND/OR linear programs which

are a generalization of ordinary linear programs. AND/OR linear programs can be

used to find hard instances of scheduling problems against a fixed approximation

algorithm.

1.5 Organization of the Dissertation

The rest of the proposal is organized as follows. In Chapter 2, our preliminary re-

sults on bicriteria single machine scheduling minimizing the makespan and the total

completion time are presented. In Chapter 3, we present a new application of extra-

21

resource analysis for the load-balancing problem. In Chapter 4, we present our prelim-

inary results on single machine preempt-decay scheduling. We studied a relationship

between the optimal total flow time among the preempt-resume, preempt-repeat,

and the preempt-decay models. In Chapter 5, we present our on-line results on the

k-client problem. The ideas of multi-threaded environment and location-dependent

processing time are used to model this problem. In Chapter 6, we study the problem

of nonpreemptively scheduling jobs that arrive over time on one machine minimizing

the total completion time. We show that a class of approximation algorithms cannot

guarantee an approximation ratio better than e/(e — 1) z 1.58. In Chapter 7, we

introduce AND/OR linear programs, a generalization of ordinary linear programs.

We use AND/OR linear programs to find hard instance of the problem studied in

Chapter 6. Each of the chapters above contains an introduction to the specific set-

tings of the problems studied, some more specific related previous works, the details

of the results, and related interesting open problems.

22

Chapter 2

Bicriteria Scheduling

2. 1 Introduction

We study a bicriteria scheduling problem in a single machine environment with re-

lease times. The two criteria we want to minimize are the makespan, the maximum

completion time of any job, and the average completion time. We denote this problem

by llrjUCmaxvCanl-

Stein and Wein proved that for any instance and 0 < a < 1, there exists a

(1 +0, fi)—approximation schedule which is a schedule with the makespan at most 1+a

times the Optimal makespan and the average completion time at most % times the

optimal average completion time [80]. In fact, their results apply to a very large class

of scheduling problems. They also showed that there exist instances for which there

is no (x,y)-schedule with both x and y simultaneously smaller than _[52_+1_ z 1.618.

Later, Aslam, Rasala, Stein, and Young [6] improved the upper bound to (1 +01, 203:7)-

approximation for 0 < a < 1. Their results also apply to a large class of scheduling

problems.

A natural Open problem is to close the gap between the upper bound and

23

the lower bound Of the quality of bicriteria approximation schedules. Another nat—

ural question is the time complexity of constructing such schedules. We answer

these two questions for the single machine environment where jobs arrive over time

(1]rj](Cmax, Cavg)). Our main results are the following. First, we show that the upper

bound found by Aslam et al. [6] is best possible by constructing a family of match-

ing lower bound instances. This is shown in Section 2.2. Secondly, we show that

this bound can be achieved by a deterministic polynomial-time algorithm. This is

shown in Section 2.3. Our algorithm, called BEST-B, is simply a slightly general-

ized version of the BEST-a algorithm by Chekuri, Motwani, Natarajan, and Stein

[19]. Interestingly, BEST-a is an Ef—f-approximation algorithm intended for the uni-

criteria problem of minimizing the average completion time on one machine with

release times (llrjICavg). Based on our preliminary results, Rasala [70] analyzed the

bicriteria performance guarantee of [3887-5 for several combinations of criteria in

the single machine environment with release time. She also analyzed our lower bound

instances in these settings.

2.2 Lower Bound of the Quality Of Bicriteria Sched-

ules

In the proof of the following theorem, we use Dirac’s delta function 6() which is

defined as follows.

9A“) {l/A 0<t<A

0 elsewhere

6(-) = .112}. gm

24

Note that

‘U 'f

f6(t)dt : 0 i0<u<v

u 1 If u g 0 < v.

Theorem 2.2.1. For 0 < B < 1, there exists an (infinite-size) instance such that

there does not exist a (x, y)-schedule where x < 1 + S and simultaneously y < Eff—1.

Proof. Fix {3 where 0 < B < 1. The lower bound instance has the following structure.

The number of jobs, n, approaches infinity. There is one job of size 1 released at time

0. All other jobs have size 0. Among all 0-size jobs, 8‘5 fraction of them are released

at time 1. The rest of the 0-size jobs are released independently in the interval (0, B)

with the density e“ at time t. The release time of all 0-size jobs can be described as

the following probability density function f:

e“ for 0 < t < B

0 elsewhere.

f(t) = 6“} 503-0 +{

Any reasonable schedule for this instance can be described by a single param-

eter s which represents the starting time of the unit-size job in that schedule. All

0-size jobs which are released before time s are run as soon as they arrive. All 0-size

jobs which are released after time s are run as soon as the unit-size job is finished,

i.e., they are run at time s + 1. Since all 0—size jobs are released no later than time

B, then we only need to consider the case 0 S s S B. Let 03m and 05,8 denote the

makespan and the average completion time of the schedule which starts the unit-size

job at time s respectively. Since all jobs finish before or at the same time as the

unit-size job, then

Cfnax=1+s.

25

Since the number of jobs approaches infinity, the completion time of the unit-

size job is negligible. The average completion time can be computed as follows:

3 B

Cavg = [0 tf(t)dt+/ (s+1)f(t)dt

= [st (6“ + (3603 — t)) dt + (s +1)/fi(€—t+ {film — t)) dt

3

_ f; te“dt + (8 +1) (ff e“dt + e43) 0 S s < H

I: te“dt + 56"” s = fl

_ {1 0Ss<fl

9275—1 s = B.

The two objectives are conflicting. When 3 = B, the optimal average com-

pletion time of 9:73—1- is achieved, and the makespan is 1 + B. When 0 S s < B, the

average completion time is 1 which is exactly Eff—1 times the Optimal average com-

pletion time. When 5 = 0, the optimal makespan of 1 is achieved. Thus, there does

not exist a value for s such that the average completion time is strictly less than 8755—1

times the Optimal average completion time unless the makespan is exactly 1+ fl times

the optimal makespan. Therefore, the result follows. E]

2.3 Constructing Bicriteria Schedules in Polyno-

mial Time

We begin this section by stating some definitions from [19]. The Shortest Remain-

ing Processing Time (SR’PT) algorithm is a preemptive algorithm which always

runs a job with the shortest remaining processing time. Note that S’R’P’T is optimal

for the problem of preemptively scheduling jobs that arrive over time on one machine

to minimize the average completion time [9]. Let P be the preemptive schedule pro-

duced by SR’P’T. For 0 S a S 1, let Cf(a) be the time at which an a-fraction of

26

J,- is completed in schedule P. An a-schedule is a nonpreemptive schedule obtained

by list scheduling jobs in order of increasing Of(a). Randomized algorithm RAND,

chooses an a-schedule randomly according to the probability density function f over

[0,1]. RAND-B is RAJV’Df with the probability density function

t

e f < <f(t) : 87;: 01' 0 _ t _ ,8

0 everywhere else.

Theorem 2.3.1. For 0 < ,6 S 1, algorithm RAND-fl is a randomized (1 + B, 353—1)-

approximation algorithm.

The theorem follows from the following two results by Chekuri et al.. [19].

Lemma 2.3.1. [19] The makespan of any a-schedule is at most 1 + or times the

optimal preemptive makespan.

Lemma 2.3.2. [19] For any probability density function f over [0,1], the expected

average completion time of RAND; is at most 1 + 7 times the optimal preemptive

average completion time where

t _

'7 = max/ Lia—iflawa.

o
0<tS1

Observe that in the preemptive SR’P’T schedule, there are at most n —- 1

preemptions. Thus, given an instance, there are at most n — 1 critical values of a,

and it different a-schedules. We can try all a-schedules and choose the best one in

polynomial time. Deterministic algorithm BEST-fl considers all a-schedules where

0 S a S [3 and chooses the one with the minimum average completion time. Thus, the

performance guarantee of BEST-B is at least as good as the performance guarantee

of RAND-fl. Therefore, the following corollary follows from Theorem 2.3.1.

27

Corollary 2.3.1. For 0 S I? S 1, algorithm BEST-fl is a deterministic polynomial-

time (1 + S, jéffapproximation algorithm and runs in O(n2 log n) time.

2.4 Open Problems in Bicriteria Scheduling

Bicriteria scheduling is a relatively new direction in machine scheduling. There

are still many open problems. Examples of open problems are 1|rj|(Fmax, ZwJ-Cj),

1|Tj|(Fmax,Z(1- U1», and P2|Tj|(Cmax, 202‘)-

28

Chapter 3

Applying Extra-Resource Analysis

to Load Balancing

3. 1 Introduction

In the past few years, the extra-resource analysis technique popularized by Kalyana-

sundaram and Pruhs [48] has been used for analyzing the performance of on-line

algorithms for problems where traditional competitive analysis yields non—constant

competitive ratios. In many cases, the traditional competitive analysis does not

differentiate between good and bad algorithms. For these problems, extra-resource

analysis has been used to argue that certain on-line algorithms are good choices for

solving specific problems because they perform well with respect to the Optimal off-

line algorithm when given extra resources [47, 69, 13, 49, 54, 57, 3, 27].

In this chapter, we use extra-resource analysis to provide us with more insight

into the behavior of specific load balancing algorithms. This leads us to a qualitative

divergence between on-line and off-line algorithms for the load balancing problem.

This result also reemphasizes the value of sorting by job size before performing list

scheduling.

29

3. 1 . 1 Problem Definitions

In the load balancing problem, we are given m identical machines and a job list I of

n jobs. All jobs arrive at time 0. Forj = 1, ..., n, jobj has a processing time pj. Let

pm,“ 2 minls15,, p,-. An assignment algorithm chooses a machine i for each job j, and

that job runs on that machine until completion. Let sf(m, I) and Cf(m, I) denote the

starting time and the completion time, respectively, of job j in the schedule produced

by algorithm A for job list I on m machines. Note that Cf(m, I) = 334(m, I) + p,-.

Let Cgfax(m, I) denote the makespan, the maximum load on any machine, of the

schedule produced by algorithm A for job list I on m machines, which is defined as

Cgax(m, I) = max,- Cf‘(m, I). We will drop the arguments m and/or I if there is no

ambiguity. The goal of the load balancing problem is to minimize the makespan.

An algorithm is on-line if it must permanently assign the current job to a

machine before it is aware of the next job in the list. An algorithm is ofi-line if it

is aware Of the entire job list in advance. We say that an algorithm A is an (m, k)-

machine p-approximation algorithm if

Cfiafim + k, I)

03mm. I) _

sup

where OPT denotes the optimal off-line algorithm. We say that an algorithm A

is p-approximation if A is an (m, 0)-machine p-approximation for all m _>_ 1. We

say that an algorithm A is (m, k)-optimal if A is an (m, k)-machine l-approximation

algorithm.

We study two algorithms in particular. The List-Scheduling algorithm (£8)

runs the next job in the list on the machine with the smallest load. The Longest-

30

Processing-Time algorithm (LPT) runs the longest unscheduled job on the machine

with the smallest load. LPT is an Off-line algorithm while £8 is an on-line algorithm.

3.1.2 Related Results

The load balancing problem is NP-hard [31]. Graham showed that [.8 is a (2 — i)-

_1_3m)-approximation algorithm [37]approximation algorithm [36] and LPT is a (g —

for any m 2 1. Hochbaum and Shmoys devised a polynomial time approximation

scheme (PTAS) for this problem [41]. For the on-line setting, Albers introduced a

deterministic on-line 1.923-approximation algorithm, and she proved a deterministic

on-line lower bound of 1.852 [2]. Recently, the lower bound was improved to 1.85358

by Gormley, Reingold, Torng, and Westbrook [35].

Kalyanasundaram and Pruhs were the first to explicitly use extra-resource

analysis Of on-line algorithms [48] with the goal of identifying good on-line algo-

rithms in settings where traditional competitive analysis fails to do so. The extra-

resource analysis technique is a relaxed notion of competitive analysis in which the

on-line algorithm has more resources than the optimal Off-line algorithm to which it

is compared. Following this paper, several more studies have used the extra-resource

analysis technique in a wide variety of settings [47 , 69, 13, 49, 54, 57, 27, 3].

Azar, Epstein, and van Stee have independently and in parallel considered the

problem Of load balancing with extra resources [8]. In contrast to our work, they only

consider on-line algorithms. Their main result is an on-line load balancing algorithm

with an approximation ratio which decays exponentially in (m + k)/m as well as a

nearly matching lower bound. They also considered other problem features such as

31

allowing a job to be scheduled on multiple machines, temporary tasks, and related

and unrelated processors. We only consider identical machines and permanent tasks

which must be scheduled on only a single machine.

Another approach for identifying good on-line algorithms when competitive

analysis fails to yield useful results is to restrict the set of legal input instances in

some form. This has been proposed and used in a variety of settings [15, 55, 16,

17]. In contrast, extra-resource analysis compares the performance of on-line/off-line

approximation algorithms to that of the Optimal Off-line algorithm on all possible

input instances; however, the approximation algorithms are given more resources

than the Optimal off-line algorithm.

Our problem is also related to the well studied and NP-hard bin packing

problem [20, 31]. In the bin packing problem, we have to pack items into a minimum

number of bins of known size. An item can be placed into a bin only if it fits

in the available space. Johnson et al. prove that two simple on-line bin packing

algorithms, First-Fit and Best-Fit, are (%%m + 2)-approximation algorithms [46].

Richey introduced an on—line algorithm Harmonic+1 which has an asymptotic worst

case ratio smaller than 1.5888 [71]. Karp and Karmarkar devised an asymptotic fully

polynomial-time approximation scheme (asymptotic FPTAS) for Off-line bin packing

[50].

Dell’Olmo et al. studied Off-line bin packing with extendable bins [25]. In this

problem, we have to pack items into a fixed number of bins of known size. However,

the size of each bin can be extended if needed. The “final” size of a bin is the

maximum between the original bin size and the total size of items in that bin. The

32

goal is to minimize the sum of the final size of all bins. In contrast, the goal of load

balancing is to minimize the maximum load on any machine. Speranza and Tuza

studied the on-line version Of the bin-packing problem with extendable bins [79].

Azar and Regev studied the on-line bin-stretching problem [7]. In this problem,

the number of bins is fixed, and we wish to pack all the items into the bins while we

stretch the size Of the bins as little as possible. The on-line algorithm is presented

with one item at a time, and it has to pack the item before the next item is presented

to it. This problem is equivalent to the load balancing problem except that the

optimal makespan (maximum load) is known in advance. In contrast, we study the

load balancing problem where approximation algorithms do not know the optimal

makespan. Furthermore, in our study, approximation algorithms have more machines

(bins) than the Optimal Off-line algorithm. In a way similar to the work by Azar

and Regev, we compare the makespan (bin stretch) of the schedules produced by

approximation algorithms and the optimal off-line algorithm.

The property of an algorithm being (m, k)-optimal for the load balancing prob-

m+k

m
lem with extra machines is similar to being an -approximation algorithm for the

bin packing problem. Both types of algorithms can pack items into m + k bins when

the optimal off-line algorithm needs m bins. Load balancing algorithms know the

number of bins used, but they do not know the optimal makespan. In contrast, bin

packing algorithms know the bin size but do not know the number of bins used by the

optimal algorithm. Thus, an (m, k)-Optimal load balancing algorithm can be thought

of as an algorithm for solving a bin packing problem with unknown bin size but with

a specified number of bins.

33

3.1.3 Summary of Results

The extra-resource analysis technique has been used to derive insight into the behavior

of on—line and Off-line algorithms. Previously, these insights have been used to identify

good on-line algorithms in settings where traditional competitive analysis fails to do

so. In this work, we show that these insights can also be used to derive a qualitative

divergence between off-line and on-line load balancing algorithms.

In Section 3.2, we give on-line results. We begin by extending Graham’s results

[36] on the performance of £8 for the load balancing problem to the case when £8 has

m + 1: machines while OPT has m machines. We show that £8 is a (m, k)-machine

(1 + 2H1)-approximation algorithm. We give a lower bound instance to show that

this result is tight. The lower bound for [.8 can be generalized to apply to all on-line

algorithms. In particular, we prove that no on-line algorithm is (m, k)-optimal for

any k. It should be noted that although no on-line algorithm is (m, k)-Optimal for any

It, the makespan of the on-line schedule could be asymptotically close to the optimal

makespan as can be seen from the performance guarantee of £8.

In Section 3.3, we give Off-line upper bound results. By extending Graham’s

result [37] on £PT, we show that [.PT is an (m, k)-machine (max{ 4$n++311,1})-

approximation algorithm. This implies that £PT is (m, k)-optimal when k _>_ mg—l

that is, if .CPT has at least $21 machines and OPT has m machines, then [.PT

will produce a schedule with a makespan no larger than that of OPT.

Next, we refine this result to show that .CPT is (m, k)-optimal when k 2 mall‘

The proof is based on a seemingly trivial but important fact that the sum of the

34

processing times of jobs on each machine in the Optimal schedule is no larger than

the Optimal makespan. To exploit this fact, new ideas are required which we now

briefly summarize. The main idea is to not classify jobs by their absolute sizes, but

to classify each job in a schedule by (1) the number of jobs on the same machine and

(2) the order of its size among jobs on the same machine. The classification allows

us to establish some crucial relationships between the optimal schedule and the EPT

schedule. These relationships enable us to identify a most heavily loaded machine y

in the [.PT schedule and some machine z in the optimal schedule such that the ith

largest job on machine y is no larger than the ith largest job on machine 2. Therefore,

the makespan of the £PT schedule is no larger than the makespan of the optimal

schedule.

Results in Sections 3.2 and 3.3 imply a divergence between off-line and on-

line algorithms because simple off-line algorithms such as LPT guarantees (m,k)-

Optimality with only a few extra machines whereas no on-line algorithm can guarantee

(m, k)-optimality with any number of extra machines. This result also underscores

the value of sorting before performing list scheduling. Namely, if the list is sorted in

non-increasing order (LPT), then we can achieve (m, k)-optimality with k = -'"—;—1.

If, however, the list is not sorted in non-increasing order, (m, k)-optimality through

list scheduling cannot be guaranteed for any value of 1:.

Results in Section 3.2 also imply a difference between load balancing and

m+k_

m

bin packing. Consider an (m, k)-optimal load balancing algorithm and an

approximation bin packing algorithm. Both algorithms can pack all items into m + k

bins without overpacking any bin whereas the optimal algorithm needs m bins. How-

35

ever, each of them knows different pieces of information. A load balancing algorithm

knows how many bins is needed by the optimal algorithm, but it does not know the

Optimal makespan (bin size). A bin packing algorithm knows the bin size but it

does not know how many bins is needed by the optimal algorithm. The performance

achievable by on-line algorithms in each Of the problems are quite different. NO on-line

load balancing algorithm can guarantee not to overpack the bins. In contrast, simple

on-line bin packing algorithms such as First-Fit and Best-Fit need only %m + 2

bins to pack all items [46]. This result indicates that the optimal makespan (bin size)

is a more important piece Of information than the Optimal number of bins.

In Section 3.4, we describe a procedure to compute a good, though not neces-

sarily optimal, lower bound of the performance of £PT for any m and k.

3.2 On—Line Results

We begin this section by proving the following lemma which is an extension of Gra-

ham’s analysis for £8 [36] and £PT [37] to the case when list scheduling algorithms

have It extra machines. Note that the lemma applies to any list scheduling algorithm.

Lemma 3.2.1. For any instance I and any It _>_ 0, ifjob l is the last job to finish in

the £8 schedule,

k — 1£5 < 711 01,7- m + .

Proof. All machines must be busy up to time 3,55 when job l is scheduled, otherwise

job l could have been started earlier. The starting time s,“ of job l is upper bounded

by the average load on m + k machines just before job l is scheduled. Thus,

36

sf5(m + k) S air—kflzyzlpi) — p1) = m—L—k zyzlp, — 571-ka The optimal makespan

on m machines is lower bounded by the average load on m machines after all jobs are

scheduled. Therefore, 0337(m) Z #(Z'lzl pi).

cam + k, I) = 8.“ +121

1 " 1
_____. i—— +

m+k§p m+k]?l p:

s (—m)08£T(m.1)+(———m+k_l)pt
m+k

Theorem 3.2.1. For m 2 1, k 2 0, and any job list I,

cs < m‘1 or?" I

c...(m+k.I) _ (1+m+k)0....(m,).

and this is tight.

Proof. Suppose job I is the last job to finish in the £8 schedule. By Lemma 3.2.1

OO’P’T
and the fact that no job has a processing time larger than max ,

C£i(m+k.l) < (—’—”—) 03;T(m,l>+(31’1°—‘—1) Canon
_ m+k m+k

_ m-l O’PT
— (1+ m+k) Cmam (m,I).

The tightness of this result can be seen by considering an instance that begins

with (m — 1)(m + k) jobs of size 1 and ends with a job of size m + k. £8 would

schedule m — 1 jobs of size 1 on each of the m + k machines and schedule the job

of size m + k on one of the machines. Thus, its makespan would be 2m + k — 1.

The optimal schedule would schedule m + k jobs of size 1 on m — 1 machines and

37

schedule the job of size m + k on the remaining machine. Thus, its makespan would

be m + k. E]

The lower bound for £8 can be generalized to apply to all on-line algorithms.

Theorem 3.2.2. No on-line algorithm is (m, k)—optimal for m 2 2 and k 2 0.

Proof. The idea of the proof is that the adversary will keep generating new jobs until

the on-line algorithm schedules a new job on a non-empty machine. Fix m 2 2, k 2 0,

and an on-line algorithm A. The size of jobs generated by the adversary can be

described as follows. The first job has size 4. The size of each subsequent job is

equal to the size of all the previous jobs combined. Therefore, p1 = 4 and p,- = 2i

for j Z 2. If the adversary has generated l jobs, then the optimal schedule for these

I jobs is to schedule job 1 by itself and to schedule the other jobs arbitrarily on the

other machines. In fact, the adversary can schedule jobs 1 through I —— 1 on the same

machine. The optimal makespan for these 1 jobs is 21 which is the size of the latest job

generated by the adversary and is also equal to the sum of the size of jobs 1 through

l — 1.

Suppose job I is the first job that the on-line algorithm schedules on a non-

empty machine. Since the on-line algorithm has only m + k machines, then I S

m+k+ 1. The adversary would generate no more jobs after job Z. From the argument

above, the optimal makespan is 2’, the size of job I. Since the on-line algorithm

schedules job 1 on a non-empty machine, then the on-line makespan is strictly greater

than 2’. Thus, the result follows. E]

38

3.3 Off-Line Upper Bounds

We begin this section by extending Graham’s analysis for £PT [37] to the case when

£PT has It extra machines.

Theorem 3.3.1. For m 2 1, k 2 0, and any job list I,

C§;T(m+k,1) < art—meg}, 03193131

Cg£T(m11) 1, k _>. _2—l_.

Proof. The proof is very similar to the case where both £PT and OPT have m

machines [37]. Suppose job I is the last job to finish in the £PT schedule. Thus,

C5,?! = spr + p,. We can assume that job I is the last job to start in the £PT

schedule. If this is false, we can remove all jobs i such that 3,4737 2 315737. This

does not change the makespan of the £PT schedule because these jobs must have

run on machines other than the one job I does. Moreover, this cannot increase the

optimal makespan. Since £PT schedules job l last, then job I is the smallest job, i.e.,

p1 = pm". There are two cases.

. 1 OP
Case 1. pmin S §CmaxT'

Since l is the last job to finish in the £PT schedule, then by Lemma 3.2.1,

crr< 7" OPT m+k—1 l OPT: 4m+k—1 OPT

Case 2: pmin > éCgafiT.

Thus, p,- > §C§f§r for all i. Therefore, in the optimal schedule, there are at

most 2 jobs on each machine. If n S m, then the optimal algorithm schedules one job

per machine. Ifm+1 S n S 2m, we claim that forj = 1, ..., m, the Optimal algorithm

39

schedules job j on the same machine as job 2m+1 — j if 2m+1—j S n, and schedules

job j by itself otherwise. The Optimality can be proven by an interchange argument.

Furthermore, £PT would produce a similar schedule on m+k machines. If n S m+k,

then £PT schedules one job per machine. If m + k + 1 S n S 2(m + k), then for

j = 1, ..., m + k, £PT schedules jobj on the same machine as job 2(m + k) + 1 —j if

2(m + k) + 1 -— j S n, and schedules job j by itself otherwise. Thus, 0&5: S C353

4m+k—-1

From Cases 1 and 2, Cir! S max{ 3m + 3k , 1 }C££T

and —————4T:m+:§cl>l 4:» k<m2_1

El

Corollary 3.3.]. £PT is (m, k)-optimal if k 2 -’—"—2‘—1.

Proof. Immediate from Theorem 3.3.1. C]

We can refine the above result and get the following theorem.

Theorem 3.3.2. £PT is (m, k)-optimal if k 2 -’"—;—1-.

Proof. Assume that the theorem is not true. Then there must be some values of k

and m for which the theorem statement does not hold. Let us fix a value of k for

which the theorem statement does not hold, and let us fix m to be the minimum

possible m such that the theorem does not hold for m and k. Note that m S 31: + 1

because otherwise the theorem is true. Finally, given It and m, define I to be a smallest

counterexample; that is, an input instance with the minimum possible number of jobs

such that C£;T(m+k, I) > C££T(m, I). We will now show that this counterexample

cannot exist, and thus the theorem follows.

40

Suppose that jobs in I are labeled according to the order that they are sched-

uled by £PT. Thus, pl 2 pg 2 Z pn. We first observe that job 11 is the only job

in £PT’s schedule that finishes later than the last job in OPT’S schedule; that is,

Ugly-(m + k, I) = Cfpnm + k, I) > ngnm, I) and Cfpnm + k, I) S ngTm, I)

for i = 1,...,n — 1. Otherwise, there exists a job i such that Cfpnm + k,I) >

0357(m, I) and 1 S i S n -— 1. Create an instance I' from I by removing jobs 2' + 1

through it from I. This does not affect the completion time of job i in the £PT

schedule because jobs i + 1 through it are scheduled after job i is. Moreover, this

cannot increase the optimal makespan. Thus, Cfifxnm + k, I’) Z Cfp7(m + k, I’) =

Cfpnm + k,I) > C££T(m, I) _>_ Cg;T(m,I’), and I’ has fewer jobs than I. This

contradicts our assumption that I is a smallest counterexample.

We next Observe that OPT cannot produce a schedule where some machine has

only one job i. Suppose this is not the case. Create an instance I’ from I by setting p,-

to 035nm, I) This only possibly increases pi. Clearly, ngTm, I’) = ng’rm, I).

Furthermore, C£;T(m + k,I’) Z Céfxnm + k,I) > ngTm, I) = Cg;T(m,I’).

Thus, I’ is also a smallest counterexample. We can assume that, in the schedule

created by £PT for instance I’ , job i is on a machine by itself. Create an instance I”

from I’ by removing job i. Clearly, C£;T(m — 1,1”) S 0357(mJ’). Furthermore,

053nm — 1+ k, I”) = Cfifxl-(m + k, I’) > C£;T(m, I’) _>_ 033nm — 1,1”). Thus, I"

is a counterexample to the theorem statement where there are m — 1 base machines

and k extra machines. This contradicts the minimality of m.

We now observe that the schedule produced by £PT just before job n arrives

also cannot have any machines with only one job i. Suppose this is not the case.

41

Assign job n to the machine with only job i. Since OPT has no machines with only

one job, job i must be scheduled with some other job j in the schedule produced by

OPT. Since job n is the smallest job in the input instance, pn S pj. This implies

that CrfifxT(m + (“11) = Cprm + 19,1)3 Pi +Pn S 191+ Pg“ S 035nm, 1)-

We now proceed with the remainder of the proof. There are 2 cases based on

the size of pn. In both cases, we show that C£;T(m + k, I) S 033m, I) which is a

contradiction to the assumption that I is a counterexample.

Case 1: pn S ngZT.

Job 71 is the last to finish in the £PT schedule, and pa = pm,“ S fingr.

Thus, from Lemma 3.2.1,

05197 < m COPT+ m+k—1 lCO’PT

max - m+k max m+k 4 max

4m+4k "‘3‘"

S ngr because m S 3k + 1.

. 1 01>
Case 2. pn > szaxT-

Before we continue, we provide some definitions.

Let (b be an Optimal schedule on m machines for instance I.

Let a be the schedule produced by £PT on m + 1: machines for instance I.

Let it be the partial schedule produced by £PT on m + k machines for instance

I when exactly the first 11. — 1 jobs are scheduled.

Let H and K be the set of machines in schedule (b with exactly 2 and 3 jobs,

respectively.

42

0 Let E and F be the set of machines in schedule 7r with exactly 2 and 3 jobs,

respectively.

Since for i = 1,...,n, p,- 2 pm“ > lC‘f and C? S Cf then there are at
4 max’ max?

most 3 jobs per machine in schedule (b. Similarly, there are at most 3 jobs per machine

in schedule it because C,-7r S C33,” for i = 1, ..., n — 1. From earlier observations, there

are at least two jobs per machine in both schedule (15 and schedule it.

For the remainder of this proof, we introduce the following notation. When

describing a machine, we will use a distinct letter such as u or v. When describing

jobs, we will use two different notations. First, we will still call the last job scheduled

by £PT job n, and we will still refer to its length as pn. However, we will also refer

to jobs by how they are scheduled by the Optimal algorithm. Specifically, if u is one

of the m machines for the Optimal schedule, u,- is the i’th largest job scheduled on

machine u with ties broken arbitrarily. Also, we will use p(u,-) to denote the processing

time Of job u,-. We now classify jobs according to

1. the number of jobs on the machine on which they are scheduled in (b and

2. the order of their size among jobs on the same machine in (b.

oLetH,={u,-]uEH}fori=1,2.

0 LEI, H12=H1UH2.

0 Definitions of K with subscripts are analogous to the two definitions above.

43

We also classify jobs in a second manner with respect to the schedule it pro-

duced by £PT.

0 Let E,- = { uj |job u]- is the ith job on some machine v in schedule 7r and v E E}

for i = 1,2.

0 LEI. E12 2 E1 U E2.

0 Definitions of F with subscripts are analogous to the two definitions above.

Figure 3.1 illustrates the two job classification schemes just described. Note

that jobs in the same class may have different sizes. To further clarify these definitions,

consider the following statements which are implied by u,- 6 K23.

1. Either u,- = U2 or u,- = u3.

2. Job u,- is on machine u in schedule (15.

3. u E K.

4. There are 3 jobs on machine u in schedule d, namely u1,u2, and u;;.

5. ul 6 K1, u2 6 K2, u3 6 K3.

6- Pfull 2 MW) 2 Mus)-

7. p(u1) +p(212) + p(u3) S C35,”.

From earlier arguments, there are either 2 or 3 jobs per machine in schedule

44

m

machines

H{

K

optimal schedule g3

H1

K1

K2 K3

machines

M

7

time

m+k

E

F{

 F1 F2 F3

unscheduled job

time

partial £PT schedule 7r

Figure 3.1: Job classification schemes.

(1) and in schedule 7r. Therefore, we have the following equalities.

2|E| + 3|F| +1

4(IHI + W)

m+k

2|E| + 3|F| +1

2|H|+3|K|

|H|+|K|

|E|+IF|

2|Hl+3|K|

3(IEI + IFI) +1

from (3.1) and (3.2)

from (3.3),(3.4), and m S 3k + 1

(3.5)

(3.6)

We show that there exists a machine y in it and a machine z in 45 such that if

job n is scheduled on y, there is a pairing of jobs from the two machines such that

the jobs from y are no larger than the jobs from 2. We consider two cases.

Case 2.12 E10 K23 # 0.

This case is shown pictorially in Figure 3.2. Relation E1 0 K23 79 0 means

that there exists a job v, such that v,- E E1 and v,- 6 K23. Let job Uj be the job in

E2 on the same machine as v,- in schedule 7r. By definition of E1 and E2, we have

45

that p(uj) S p(v,-). In the optimal schedule, job v,- is scheduled on the same machine

with exactly two other jobs, and job v,- is not the largest job on the machine. Thus,

p(uj) S p(v,—) S p(v2) S p(v1). Finally, since job n is the smallest job, then pn S p(v3).

Combining these facts, it follows that job n can be scheduled on the same machine

as v,- and u,- in the £PT schedule so that the total load on the machine is no larger

than the Optimal makespan.

Algebraicany. pm.) 3 1)(m) 3 MW) 5 pd.) and p. _<. pas). then

03.... = 03 S 1)(m) + We) + an S p(v1) + p('v2) + p(v3) S 03:37-

E1 E2

H1 H2

K1 K2 K3

vi v2 ’03 F1 F2 F3

4) 7r

Figure 3.2: Case 2.1 of Theorem 3.3.2: E1 0 K23 75 0.

Case 2.2: E1 (1 K23 = 0.

First, we establish some relations between schedule (15 and schedule it.

E1 Q K§3 = H12 LJ K1 because E1 0 K23 = (ll (3.7)

2|H| + [K] 2 IE] from (3.7) (3.8)

2|H] + [K] S |E| from (3.5)+(3.6) (3.9)

46

E1 2 H12 U K1 from (3.7), (3.8) and (3.9) (3.10)

E2UF123U{n} = Ef = (H12UK1)C = K23 from (3.10) (3.11)

Equalities (3.10) and (3.11) are the critical equalities we need and are shown graphi—

cally in Figure 3.3.

¢ 1r

Figure 3.3: Case 2.2 of Theorem 3.3.2: K23 2 E2 U F123 U {n} and H12 U K1 2 E1.

Set E2 is not empty because from equalities (3.10) and (3.3), IE2] = [E] =

2|H| + |K| 2 m 2 1. Let uj be the first job in E2 to be scheduled by £PT. Suppose

v,- is the job in E1 which is on the same machine as uj in schedule 1r. From relation

(3.11), a, 6 K23. Thus, there are 3 jobs on machine u in (b. If we can show that

10.. S 1)(m), p(uj) S 1)(m), and 1)(m) S 1)(m), then 03,... = 0,? S 1)(m) +p(uj) H». S

p(u1) + p(u2) + p(u3) S 0337'. Obviously, pn S p(u3) because job 71 is the smallest

job. Since uj 6 K23, then job uj is either W or u3. In any case, p(uj) S p(u2).

We now prove p(v,~) S p(u1). By definition, job ul is in K1 and ul is on the

same machine as uj in schedule (b. From relation (3.10), ul 6 E1. Since uj is the

first job to be scheduled in E2, and £PT always schedules the next job on the least

loaded machine, then the fact that uj is scheduled on the same machine as v, implies

47

that v, is a smallest job in E1. In particular, p(v,—) S p(u1), and this completes case

2.2.

Since this is the last possibility to consider, we have proven that there are no

counterexamples to the theorem and thus the theorem is true. C]

The result of the previous theorem is tight in 2 aspects. First, with _m_3—-1 extra

machines, £PT does not always produce a schedule with makespan strictly smaller

than that of the optimal algorithm. In fact, no algorithm can guarantee this due to

the fact that an input instance can contain a job whose length is equal to the optimal

m—l

makespan. Second, as will be shown in the next theorem, if £PT has fewer than 3

extra machines, there exist instances such that £PT will produce a schedule with

the makespan strictly larger than that of the Optimal algorithm.

Theorem 3.3.3. For any pair of non-negative integers m and k such that k = m_;_2,

there exist instances such that Céfxnm + k) 2 gfl—gngl—(m) > ngm).

Proof. For k 2 0, the instance 1,, with 8k + 5 jobs is defined as follows:

2k + 2 jobs of size 4k + 3

2 jobs of Size 2k + 2 +i for i = 2k, ...,1 (a total of 4k jobs)

2k + 3 jobs of size 2k + 2

Figure 3.4 illustrates an instance with k = 2 and m = 3k+2 = 8, its optimal

schedule on m machines, and its £PT schedule on m + k machines. Each job in the

figure is labeled with its size. The optimal schedule on m = 3k + 2 machines can be

described as follows:

48

k + 1 machines with jobs Of sizes 4k + 3 4k + 3

2 machines with jobs Of sizes 4k + 2 2k + 2 2k + 2

2 machines with jobs of sizes 4k + 2 — i 2k + 2 + i 2k + 2 for i=1,...,k-1

1 machine with jobs of sizes 3k + 2 3k + 2 2k + 2

All machines in the Optimal schedule have load 8k + 6. The schedule produced

by £PT on m + k = 4k + 2 machines can be described as follows:

1 machine with jobs of sizes 4k + 3 2k + 2 2k + 2

2k + 1 machines with jobs Of sizes 4k + 3 2k + 2

2 machines with jobs of sizes 4k + 3 — i 2k + 2 + i for i=1,...,k

The machine with 3 jobs in the £PT schedule have load 8k + 7. All other

machines have load 6k + 5. Note that £PT could schedule the last job (of size 2k + 2)

on any machine. D

”I 1116l6l

[11

l11]11]]11]6]

[11111] [11]6]

[11] 11J m+k | 11]6J

m_ [10]6]6] ““1““ | 11 [a]
machtneiL10I616] [10'7]

l9l7l6l [1017]

[9I7I6J [HQ

[[818161 ,L9I8l

optimal schedule £PT schedule

Figure 3.4: An instance with m = 8 and m = 2 showing tightness of Theorem 3.3.2.

49

3.4 Lower Bounds on £PT

In this section, we describe a procedure to compute a good, though not necessarily

Optimal, lower bound of the performance of £PT for any m and k. Given m and

k, we use a linear program that assumes that the optimal schedule and the £PT

schedule have the specific structures shown in Figure 3.5 where jobs are ordered by

non-increasing size. Note that each job in the figure is labeled with its job id. The

variables of the linear program are the job sizes and the starting time of the last job

in the £PT schedule. This procedure considers only a very restricted set of possible

instances. The best lower bound instance from this restricted set can be obtained by

Optimizing the linear program.

We describe our assumptions in detail next. We assume that in the £PT

schedule, there are 2 jobs on all machines except for one machine on which there are

3 jobs. Suppose p1 S p2 S S pn. We assume that in the £PT schedule, job i is

paired with job it — i, and job n is the last job to finish. We assume that the optimal

makespan is no larger than 1. Finally, we assume that there are either 2 or 3 jobs on

each machine in the Optimal schedule, and the optimal schedule has a structure as

illustrated in Figure 3.5.

The linear program can be described algebraically as follows. Let m2 and m3

be the number of machines in the optimal schedule with 2 and 3 jobs respectively.

50

From the above assumptions,

it =2 2(m+k)+1,

n = 2m2+3m3, and

m = 1712+m3.

Thus, m2 = m—2k—1 and

m3 "—" 21174-1.

We denote the starting time of job n in the £PT schedule by 3. Given m 2 1

and 0 S k S (m — 1) /2, we construct the linear program LB(m, k) as follows.

maximize s + 1),, subject to

Pr 2 Pi+1, i=1,...,n — 1

s S pit-191.4, i: 1,...,(n—1)/2

Pi+Pj S 1, V013.) EH

P1+Pj +131 S 1, ‘v’(i,j, l) E K

where

H = {(1, 2m2+1—i)|i=1,...,m2}

K = {(27712-l-l, 2m2+2m3+2-i, 2m2+2m3+1+i)[i=1,...,m3—1}U

{(2m2+m3,2m2+m3+1,2m2+m3+2)}

Notice the difference between the layout of jobs in the optimal schedules in

Figures 3.4 and 3.5. In Theorem 3.3.3, we chose to use the layout in Figure 3.4 rather

than the layout in Figure 3.5 because it is easier to describe. Table 3.1 shows the

51

computed lower bounds for m 2 1, ..., 45 and k 2 0, ..., 10. Figure 3.6 shows the plot

of this table for m = 1, ...,60 and k = 0, ...,20.

Figure 3.7 shows the plot of the lower bound when m = 100. Points in Figure

3.7 are the lower bounds obtained from our linear program when m = 100. The

upper curve is the performance guarantee of £PT from Theorem 3.3.1. The upper

17.7511
3m+31: ,1} where y is the performance guarantee. Itcurve is described by y = max{

is important to note that the lower bounds found when m _>_ 1 and k = 0 or k 2

m—g—l match the upper bounds given by Graham [37] and Theorem 3.3.2, respectively.

The lower curve is the performance guarantee of £PT when it is given m machines

with speed mini“ instead of m + k machines with unit speed. When an algorithm

is given machines with speed s, it can guarantee a makespan which is i— times the

guaranteed makespan using machines with unit speed. The lower curve is described

4m—1 m _ 4m-1

by y = 3m m —— 3m+3k where y is the performance guarantee.

Intuitively, faster machines should be utilized more efficiently than extra ma-

chines. In Figure 3.7, the lower bounds Obtained from the linear program mostly lie

well above the lower curve. However, there is one point which lies below the lower

curve. It is possible that this point is a counterexample to our result, but more

likely we have not found an Optimal extra machine lower bound for this particular

combination of m and k.

52

21

6

m-2k-1

machines 5

43

2k,

mm“

maclhine{ (“-

optimal schedule £PT schedule

m+k

Figure 3.5: The lower bound instance with m = 8 and k = 2 Obtained from the linear

program.

lower bound of 1 ' 2

makespan ratio

Figure 3.6: The plot of the lower bounds computed by the linear program.

53

m\k 0 1 2 3 4 5 6 7 8 9 10

1 1 - - - — - - - - - -

2 7/6 - - - - - - — - - -

3 11/9 1 - - - - - - - - -

4 5/4 1 - - - - - - - - -

5 19/15 15/14 1 - - - - - - - -

6 23/18 10/9 1 - - - - - - - .-

7 9/7 7/6 1 1 - - - - - - -

8 31/24 7/6 23/22 1 - - - - - - -

9 35/27 27/2315/14 1 1 - - - - - -

10 13/10 25/2111/10 1 1 — - - - - -

11 43/33 11/9 10/9 31/30 1 1 - - - - -

12 47/36 11/9 7/6 19/13 1 1 - - - — -

13 17/13 11/9 7/6 15/14 1 1 1 - — - -

14 55/42 70/57 7/6 11/10 39/33 1 1 - - - -

15 59/45 5/4 7/6 53/48 23/22 1 1 1 - - -

16 21/16 5/4 27/23 10/9 19/18 1 1 1 - - -

17 67/51 5/4 19/16 7/6 15/14 47/46 1 1 1 - -

18 71/54 5/4 25/21 7/6 11/10 31/30 1 1 1 — -

19 25/19 19/15 11/9 7/6 11/1019/18 1 1 1 1 -

20 79/60 19/15 11/9 7/6 10/9 19/18 55/54 1 1 1 -

21 83/63 19/15 11/9 7/6 10/9 15/14 31/30 1 1 1 1

22 29/22 19/15 11/9 7/6 7/6 11/10 23/22 1 1 1 1

23 91/69 23/18 11/9 27/23 7/6 11/1019/18 63/62 1 1 1

24 95/72 23/18 27/22 19/16 7/6 76/69 19/18 39/38 1 1 1

25 33/25 23/18 70/57 19/16 7/6 10/9 15/14 31/30 1 1 1

26 103/78 23/18 5/4 25/21 7/6 10/9 11/10 19/18 71/70 1 1

27 107/81 9/7 5/4 11/9 7/6 7/6 11/1019/18 43/42 1 1

28 37/28 9/7 5/4 11/9 7/6 7/6 11/1019/18 31/30 1 1

29 115/87 9/7 5/4 11/9 7/6 7/6 53/4815/14 23/22 79/78 1

30 119/90 9/7 5/4 11/9 27/23 7/6 10/9 11/1019/18 47/46 1

31 41/31 31/24 5/4 11/9 19/16 7/6 10/9 11/1019/18 31/30 1

32 127/96 31/24 5/4 11/9 19/16 7/6 7/6 11/10 19/18 31/30 87/86

33 131/99 31/24 19/15 11/9 25/21 7/6 7/6 11/1015/14 19/18 55/54

34 45/34 31/24 19/15 27/22 25/21 7/6 7/6 10/9 11/10 19/18 39/38

35 139/105 35/27 19/15 27/22 11/9 7/6 7/6 10/9 11/10 19/18 31/30

36 143/108 35/27 19/15 70/57 11/9 7/6 7/6 10/9 11/10 19/18 23/22

37 49/37 35/2719/15 5/4 11/9 27/23 7/6 7/6 11/1015/1419/18

38 151/114 35/27 19/15 5/4 11/9 19/16 7/6 7/6 53/48 11/10 19/18

39 155/11713/10 19/15 5/4 11/9 19/16 7/6 7/6 10/9 11/1019/18

40 53/40 13/10 23/18 5/4 11/9 19/16 7/6 7/6 10/9 11/1019/18

41 163/123 13/10 23/18 5/4 11/9 25/21 7/6 7/6 10/9 11/1015/14

42 167/126 13/10 23/18 5/4 11/9 25/21 7/6 7/6 7/6 11/1011/10

43 57/43 43/33 23/18 5/4 11/9 11/9 7/6 7/6 7/6 53/4811/10

44 175/132 43/33 23/18 5/4 27/22 11/9 27/23 7/6 7/6 10/9 11/10

45 179/135 43/33 23/18 5/4 27/22 11/9 19/16 7/6 7/6 10/9 11/10

Table 3.1: The lower bounds computed by the linear program.

54

1‘0 2‘0 3‘0 4'0 ‘ 50 60

Figure 3.7: Summary Of upper and lower bounds for £PT with extra resources.

3.5 Open Problems

Extra-resource analysis is a promising analysis technique which can be used to derive

greater insight into the behavior of both on-line and off-line algorithms. Previously,

these insights have been used to identify good on-line algorithms in settings where

traditional competitive analysis fails to do so. In this work, we show that these

insights can also be used to derive a divergence between off-line and on-line load

balancing algorithms. We believe that future work should, in part, search for even

more applications of the extra—resource analysis technique.

55

Chapter 4

Preempt-Decay Scheduling

4.1 Introduction

In this chapter, we study the single machine preempt-decay scheduling problem

with release dates minimizing the total flow time. We denote this problem by

1|rj, decay] ZFj- We study its relation to the preempt-resume and preempt-repeat

counterparts (1|r,,pmtn| 2F]- and Ila-[2173). A previous result along this line is

the work by Kellerer, Tautenhahn, and Woeginger [52]. They showed that the opti-

mal total flow time in the preempt-repeat model is at most O(\/77) times that of the

preempt-resume model, and there exist instances for which this is tight.

In Section 4.2, we show that the preempt-decay scheduling problem on one

machine minimizing total flow time is NP-hard. Since the preempt-decay model is a

middle ground between two extremes, the preempt-resume and the preempt-repeat

models, we need to determine if the preempt-decay model is significantly different

from the other two models. In Section 4.3, we show that the optimal total flow time

between the preempt-decay model and the existing preempt-resume and preempt-

repeat model could be a factor of e(\/7—l) apart. Thus, the total flow time of the

56

Optimal schedule in the preempt-repeat model could be a factor of {Mfr—1) from that

of the preempt-decay model. To distinguish Optimal algorithms in the three models,

we use POPT, ’DOPTf, and NOPTtO denote an optimal algorithm in the preempt-

resume model, the preempt-decay model where f is the decay function, and the

preempt-repeat model, respectively. The summary of results in Section 4.3 is shown

in in Table 4.1 and pictorially in Figure 4.1.

In Section 4.4, we analyze the performance of the Shortest Remaining Pro—

cessing Time (8’RPT) algorithm in the preempt-decay model. Note that the SRPT

algorithm always runs a job with smallest remaining processing time, and it is an op-

timal algorithm for the preempt-resume model [9]. Our analysis shows that 8’RPT

performs poorly in the preempt-decay model; there exist instances for which the total

flow time of the SRPT schedule is (ZR/ii) times the optimal total flow time in the

preempt-decay model. The result is shown in Table 4.1 and pictorially in Figure 4.1.

In section 4.5, we discuss some open problems in preempt-decay scheduling. Some

Open problems are shown in Table 4.1 and Figure 4.1.

4.2 NP-Hardness Result

First, we mention an NP-hardness result from the literature.

Theorem 4.2.1. [5.9] The one machine scheduling problem with release dates mini-

mizing the total flow time in the preempt-repeat model is NP—hard.

Using a similar reduction from the 3-PARTITION, we prove that a similar

problem in the preempt-decay model is NP-hard.

57

Lower Bound Upper Bound

NO’PT

POPT

Q(x/ii) [52] 06/77) [52]

NO’PT

DOPT,

POPT
DO’PTL

Lower Bound

ilk/ELM) = utu 2 1

sin

POPT, Open

Q(ax/77).f(t) = ut, u S 1

270311977 open open

58

Table 4.1: Summary of results on preempt-decay scheduling.

Upper Bound

total flow time

A

0(\/5) ONE) 0(x/5)

Optimal cost in 1 {IQ/17) n(x/T—I) 1 (“fl

1 , .

Preempt/Repeat model

Optimal cost in

Preempt/Decay model

-
-
-
u
-
-
-
-
-
-
-
-
-
-
#

1
h

1
*

Optimal cost in

Preempt/Resume model

#
p
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

_
-)

_ instance

total flow time

A

1
%

0
‘
)

S’R’PT cost in

Preempt/Decay model Q(x/r-I)

for f(t) =ut and u >1

(Mum

for f(t) =ut andu g 1

Approximation algorithm in

Preempt/Decay model

Optimal cost in

Preempt/Decay model

#
h
-
-
-
-
-
-
-
-
-
-
-
-

~
—

 >

instance

Figure 4.1: Summary of results on preempt-decay scheduling.

59

3—PARTITION :

Instance: A bound B E Z+, a set A = {a1,...,a3m} of 3m integers such that

B/4 < aj < B/2 for all aj E A and such that Z aj 2 m8.
016A

Question: Can A be partitioned into m disjoint sets A1, A2, ...,Am such that, for

1 S i _<_ m, Ewe/1.01 = B (note that each A, must therefore contain exactly three

elements from A)?

Theorem 4.2.2. The one machine scheduling problem with release dates minimizing

the total flow time in the preempt-decay model is NP-hard.

Proof sketch. The proof is very similar to the proof of Theorem 4.2.1. The reduction

is from the 3-PARTITION problem. The idea is to translate elements of set A into

jobs that released at time 0 and to release streams of small jobs so that there is a

slot of size B between consecutive streams. After a last stream of small jobs, release

a stream of large jobs. See Figure 4.2 for an illustration.

The Optimal solution is to schedule 3 jobs in each slot according to the solution

of the 3—PARTITION problem and to schedule all other jobs as soon as they arrive.

Solutions with this structure are the only optimal solutions.

If there is no solution for the 3-PARTITION problem, then we cannot schedule

3 jobs in all slots. If a stream of small jobs are delayed, this would cause a large

increase in the total flow time because there are so many of them. Similarly, if the

stream of large jobs are delayed, this would cause a large increase in the total flow

time. If a job is run after the stream of large jobs, its flow time would be very large.

60

Observe that preemption does not help either. This is because if a job is preempted

by either a stream Of small or large jobs, it completely decays before it resumes

execution. D

[EL—J

[EL—Jr

CED—

i

FF llllllllllllllllll l l llllllllllllllllll l 'l llllllllllllllllll l l 7 l l

L___.J l____l l J

Lstreams Of small jobs —J a stream of large jobs

Figure 4.2: A reduction from 3—PARTITION to a preempt-decay scheduling problem.

4.3 Comparison Of the Optimal Flow Time Among

the Three Models

In this section, we compare the Optimal flow time among the preempt-resume model,

the preempt-decay model, and the preempt-repeat model to determine if the differ-

ences in the three models are significant. To distinguish Optimal algorithms in the

three models, we use ’PO’P’T, DO’PTI, and NO’P'Tto denote an Optimal algorithm in

the preempt-resume model, the preempt-decay model where f is the decay function,

and the preempt-repeat model, respectively. Note that the Shortest Remaining

Processing Time (SR’PT) algorithm: always run a job with the smallest remaining

processing time, is an optimal algorithm for the preempt-resume model [9].

61

Fact 4.3.1. Suppose f and g are decay functions. If f(t) 3 g(t) for allt Z 0, then

for any instance I, DO’PTfU) g DOPTQU).

Fact 4.3.2. For any instance I and any decay function f, POPTU) g DOPTfU)

g NOPTU).

4.3.1 Preempt-Repeat and Preempt-Resume models

The result in this section is due to Kellerer, Tautenhahn, and Woeginger [52]. We

restate their result here for completeness.

Theorem 4.3.1. For the total flow time cost metric, NOPT(In)/P0'PT(I,,) =

O(\/TD where 1,, is any input instance with n jobs, and there exists an input instance

where this is tight. [52]

Proof. We omit the proof Of the upper bound. The following lower bound instance is

adapted from the one given in [52].

in fori=1,..,n—1 ad 1 fori=1,..,n—1

r-= n -=

l O fori=n p. nfi fori=n

See Figure 4.3 for illustrations of the lower bound instance, the Optimal sched-

ule in the preempt-resume model, and possible schedules in the preempt-repeat model.

The optimal schedule in the preempt-resume model can be described as follows. Jobs

J1, ..., Jn_1 are run as soon as they arrive, and they run to completion without inter-

ruption. Job J" is run as soon as it arrives, but it is always preempted by other jobs.

In particular, job Jn is preempted by jobs J1, ..., Jfi. The Optimal total flow time in

the preempt-resume model is 0(n\/7—i) which is primarily the flow time of job J".

62

\fri small jobs

—-.—1— Jfi Jn-fi Jn-l

,Illlllllllllll

!, z: I ’

51m:llllllllllllll>

2 «assess: ii i
; A- .. '

i :g: éé «ssss
' '1' 1' A

Ssllllgllllllg L.)

0 n m/fil n(\/1-i+l) n(n-\/r'i) n2+l

n\/7_i+\/—1;

Figure 4.3: Lower bound instance between the preempt-repeat and preempt-resume

models.

63

Consider a schedule in the preempt-repeat model. Without loss of generality,

we assume that jobs J1, ...,J,,-1 are run in that order. If job Jn is run before job

Jn_\/,-,, it would cause fl other jobs to have an average flow time of 9(nfl) giving a

total flow time of at least Q(n2). If job J" is run after job Jn_\/;;, its flow time, which

is a lower bound of the total flow time, would be at least Q(n2). Therefore, the ratio

of the Optimal total flow time in the preempt-repeat model and the preempt-resume

model is Q(\/7i) for this input instance. Cl

4.3.2 Preempt-Repeat and Preempt-Decay models

Corollary 4.3.1. For the total flow time cost metric, NOPT(In)/'D0’P7'f(1n) =

0(\/T—l) where 1,, is any input instance with n jobs, and f is any decay function, and

there exists an input instance where this is tight.

Proof. The upper bound follows from Theorem 4.3.1 and Fact 4.3.2.

Noam.) < NOPT(I,,)

Donna") - 1301970,.) = 0M5)

Next, we show that an instance similar to that of Kellerer et al. [52] achieves

a lower bound of SIR/77) between the Optimal costs in the preempt-repeat model and

the preempt-decay model. The lower bound instance is defined as follows.

Din fori=1,...,n—1 1 fori=1,...,n—1

0 fori=n Dnfi fori=n

where D = f (1) + 1 and f is a fixed decay function in the preempt-decay model.

See Figure 4.4 for illustrations of the lower bound instance, the Optimal sched-

ule in the preempt-decay model, and possible schedules in the preempt-repeat model.

The Optimal schedule in the preempt-decay model can be described as follows. Jobs

64

fr? small jobs D = f(1)+ 1

f—-h_

Dn.

tal— Jw? Jr“; J“

Illllllllllllll

:: i: i»

jlllllllllllll ..
§ «fifjolssé i? i

i iii? ii m.... .::. 1; A

spillsnllllgg l,

7 I l

0 Dn DnfiJ Duh/1.1 +1) Dn(n — J5) Dn2 + 1

Dn\/r—i + \/7—1 Dnfi + DJH

Figure 4.4: Lower bound instance between the preempt-repeat and preempt-decay

models.

65

J1,...,Jn_1 are run as soon as they arrive, and they run to completion without inter-

ruption. Job J" is run as soon as it arrives, but it is always preempted by other jobs.

In particular, job Jn is preempted by jobs J1, ..., Jfi.

Thus, DO'P'TUn) = O(Dn\/7_i) = O((f(1) +1)n\/r—i)

This is primarily the flow time Of job Jn. Note that even though job Jn has to make

up for the amount of processing decayed during the time it waited for jobs J1, ..., Jy;

to finish, job Jn can finish before job JfiH arrives.

Consider a schedule in the nO-preemption model. Without loss of generality,

we assume that jobs J1, ..., Jn_1 are run in that order. If job Jn is run before jOb

Jn_fi, it would cause fr? other jobs to have an average flow time of O(Dm/n) giving

a total flow time of at least O(Dnz). If job Jn is run after job Jn_fi, its flow time,

which is a lower bound Of the total flow time, would be at least Q(Dn2).

Thus, NO’PTUn) = 9(Dn2) = O((f(1) +1)n2)

Therefore, the ratio Of the Optimal total flow time in the preempt-repeat model

and the preempt-decay model for this input instance is

Norrun)

porrun)

{2(Dn2) _

3m—“W

Note that the result apply as long as f (t) Z 0. El

4.3.3 Preempt-Decay and Preempt-Resume models

Corollary 4.3.2. For the total flow time cost metric, any decay function f(t) = ut

where u is a constant, and any input instance 1,, with n jobs, NOPT(In)/D0’P7'f(1n)

= O(fi), and there exists an input instance where this is tight.

66

Proof. Since for any instance 1,, with n jobs and any decay function f, DOPT;(I,,) S

NO’P’TUn), and from Theorem 4.3.1, N0’PT(In)/’P0’PT(I,,) = O(Jn), then

’DO’PTf(In)/’P0’PT(I,,) = O(fi).

Next, we show that there exist input instances that achieve a lower bound Of

(IQ/H) when u 2 1 and O(u n when u S 1. Suppose n = a: + fl. Thus, when n is

large, n = :r + J51:— ~ 2:. A lower bound instance is defined as follows.

r- (i — 1)(u +1), i = 1, ...,:1:

‘ (i—x—1)(u+1)\/EE, i=x+1,...,x+\/E

. __ 1, i=1,...,a:

10’ ufi, i=x+1,...,x+\/E

See Figure 4.5 for illustration. Tick marks indicate the completion time of big jobs.

fl big jobs

r ‘

«5 small jobs J5 small jobs fl small jobs J5 small jobs

fi ‘fi ‘ ‘ r ‘

ail
I l

,,]|J[J[|[]fll]l][lflfl[l[lfll]l]

ll 1| II I A

41L;

POW II II ll lJl ll ll lllJlll lllllll

DOW; llll lllll ll ll ll [L ll II II _

Figure 4.5: Lower bound instance between the preempt—decay and preempt-resume

models.

Notice that the total gap time of fl gaps between J5 + 1 small jobs in

the input instance is exactly the length of a big job. Thus, in the preempt-resume

67

model, for every fl small jobs completed, one big job can be completed by running

it between the gaps. The total flow time of such schedule is (u + 1)x + a: = (u + 2):c.

Note that if u _<_ 1, this schedule is not optimal. An optimal schedule can be obtained

by using the S’R’PT algorithm.

Now consider the preempt-decay model. The length of the gap between two

consecutive small jobs in the input instance is exactly u times the length of a small

job. Suppose we try to run big jobs between the gaps as we do in the preempt-resume

model. When a big job is run in a gap, u units of work is completed. However, during

the time the big job is suspended for 1 time unit because of a preemption by a small

job, f (1) = u units of the big job have decayed. In other words, the work Of the

big job done in a gap entirely decays when the big job is preempted by a small job

following the gap. Thus, we can conclude that big jobs are never preempted in any

reasonable schedule for this instance in the preempt-decay model.

The Optimal solution in the preempt-decay model is in the following form. For

some integer i where 0 g i S (5:. the first i big jobs are run as soon as they arrive.

All the small jobs are run as soon as they arrive except when some of the first i big

jobs are running. All the remaining fl — i big jobs are run after the last small job.

We will show that regardless of the value of i, the total flow time of these schedules

can be bounded from below by (u/2 + 1)a:\/:E. Each of the first i big jobs causes \fi

small jobs to have an average flow time of at least (u/2 + 1)\/§ giving a total flow

time Of at least 2(u/2 + 1):r. The last J} —i big jobs finish after time (u + 1)x giving

a total flow time of at least (fl — i)(u + 1):r. The total flow time from both cases is

68

i(;+l)x+(\/1_:—i)(u+1);r = (u+1).7: x—z—l—g—

Z (u+1)x\/E—ux2\/§ for1_<_iS\/E

= é(u+2)z\/§

Thus, the ratio between the optimal cost in the preempt-decay and preempt-

resume models is at least fi/2 = ilk/77) for this input instance.

Cl

Corollary 4.3.2 can be generalized to a larger class of decay functions. We need

the following notation. A function f dominates another function f’ in the interval

[t1, t2] if f (t) 2 f’ (t) for t1 5 t 3 t2. See Figure 4.6 for examples. In both examples,

f dominates f’ in the interval [0, t’].

ll ll

f’ . f

 V l

t’ t t’ t

Figure 4.6: Examples Of domination between decay functions.

Corollary 4.3.3. For the total flow time cost metric, any decay function f which

dominates some linear function f’ (t) = ut,u > 0, in the interval [0,t’] for some

t’ > 0, and any input instance In with n jobs, NOPT(In)/DO’PT;(L,) = O(Jn),

and there exists an input instance where this is tight.

69

Proof. The upper bound proof is the same as those for Corollary 4.3.2. To proof

the lower bound, beginning with a lower bound instance given in Corollary 4.3.2, we

linearly scale the release time and the processing time Of all jobs so that the processing

time of no job is greater than f’ (t’) From the fact that jobs decay faster with f than

with f’, and the argument in Corollary 4.3.2, it can be concluded that there should be

no preemptions in any optimal schedule in the preempt-decay model. The rest of the

argument is the same as those in Corollary 4.3.2, and the lower bound follows. CI

4.4 Approximability and Inapproximability in the

Three Models

In this section, we restate some approximability and inapproximability results in the

preempt-repeat model from the literature. Next, we show that the SR’PT algorithm

which is Optimal in the preempt-resume model performs poorly in the preempt-decay

model.

The following results are due to Kellerer, Tautenhahn, and Woeginger [52].

Theorem 4.4.1. There exists an O(n3/2 log n)-time O(\/r—i)-approximation algorithm

for the minimum total flow time scheduling problem in the preempt-repeat model, and

there exist instances where this bound it tight. [52]

Theorem 4.4.2. Unless P = NP, no polynomial time approximation algorithm for

the minimum total flow time scheduling problem in the preempt-repeat model can have

an approximation ratio of O(ni’g) for any 5 > O. [52]

Next, we show that the SR’PT algorithm performs poorly in the preempt-

decay model. We need the following notation. For any real number x, let [x]1 =

70

[x] — 1, and let {x}1 :2 x — [x]1. For examples, [2.71]1 = 2, {2.71}, = 0.71, [3]1 = 2,

and {3}1 = 1. Note that 0 < {x}, g 1 and [x]1+{x}1 = x for any real number x.

Theorem 4.4.3. For the decay function f(t) = ut = t/v where u is a constant and

v = 1/u, there exist instances 1,, with n jobs such that

S'R'PTfUn) n __ 9(n) for u 2 1, and

’DOPTfUn) 3(1) + 4) _ {2(un) for u g 1.

Proof. We prove the theorem by constructing a class of instances that achieves the

stated lower bound. Let 5 > 0 be a small positive real number. Let u’ = v + e and

i7 = [v'] 1. Suppose n = c- (i) + 3) for some positive integer c. For convenience, jobs

will be labeled as Jig- where i = 1, ..., c and j = 1, ..., i7 + 3. We will also be refering

to clusters of jobs. Cluster i is composed Of jobs Ji,1, ..., Jig-H3, 1 S i S c. A lower

bound instance can be described as follows. Note that r,’s are just dummy variables.

Ti : (i—1)(u+1)(v'+1) fori=1,...,c+1

r.-+j(v+1)—u fori=1,...,candj:l,...,i7+1

rm- = r,+ [u’+1]1(v+ 1)+{v’+1}1 fori=1,...,candj = 6+2

r,- fori=1,...,candj=27+3

v fori=1,...,candj=1,...,i7+1

1).-J = v{v’+ 1}1 for i = 1,...,c andj = 6+2

u’+1 fori=1,...,candj=i7+3

See an illustration in Figure 4.7. Shaded blocks in the top figure are shown

in detail in the middle and the bottom figures. The middle and the bottom figures

show a cluster Of jobs when u 2 1 and u S 1 respectively. Shaded job pieces in the

middle and the bottom figures signify that these job pieces are not run to completion.

There are 0 clusters of i7 + 3 jobs. The total processing time Of jobs in each cluster

is u[v' +1]1 + u{u' +1}1+(v' +1) 2 (v' +1)(v +1). Each cluster is also released

71

I I-block I-block ° ° ' I-block

I I I I >

SRPT SR’PT-block SRPT-block - - - SRPT-block . . .‘ |

I I I I ' *

, I :

D0797; @WTf-block’DOPTJ-bloc ' ' ' DOPTf‘blOCkI L)

l

0 1(1) +1)(v’ +1) (c - 1)(u + 1)(v' +1) c(v +1)(v’ + 1) + c(v’ +1)

2(1) + 1)(v’ + 1) do +1)(v’ + 1)

’U’ + 1 :0

1 ' v u. v{v' + 1}1

I II . I I .

I-block st ' L 7 {U’ + Ill —"l #— l

J1 I: J2 I J3 Jo+2

' H ' I I I ’

' i: ' : ' :Jvia :

SRPT—block n+3 Jl [1.1m J2 |J.—,+3 .13 JM2

II ' I I I ’

POPT,-block J.-,+3 ? J1 J2 : J3 i J.+2

i I i >

0 1(v+l) 2(v+l) [v'+1]1(v+1)

(v’ + 1)(v + 1)

U, + 1 g: ‘U >I

1 I v I: v’ :‘U‘U’ I

I-block J.7+3 I ; :

J1 : Jo+2

I I >

SRPT-bIOCk Jo+3 l J] JiJg+3 . ”9+2

I I, , I >

DOPTf-block J“3 . . Jl [1,7,2
. . >

0 (2) +1) ('0' + 1)(u +1)

Figure 4.7: Lower bound instance for SR’PT in the preempt-decay model.

72

(v’ + 1)(u + 1) time units apart. Thus, there is enough room to run all jobs in a

cluster before jobs in the next cluster arrive. This can be done by running jobs in

each cluster nonpreemptively and contiguously by the order Of their release times.

In fact, the whole Optimal schedule for this instance is Obtained by runing all jobs

nonpreemptively and contiguously by the order of their release times. The completion

time and the flow time of jobs in the Optimal schedule are as follows.

ri+(v’+1)+jv fori=1,...,candj=1,...,i7+1

0,130pr = n+1 for i = 1,...,candj = fi+2

ri+(v’+1) fori=1,...,candj=i7+3

u’+1+u—j fori=1,...,candj=1,...,27+1

FDOPT, , f ._ .___
,J u{u +1}, ori—1,...,cand] -—u+2

v’+1 fori=1,...,candj=17+3

Thus, the Optimal total flow time is

[1),-+111

73079770) = c (v'+1)+v{v'+1}1+ Z(v’+1+v-J'>
i=1

C((v' +1) + v{v' +1}1+ v'[v' +1]1+[u' + 1]1+ 'v[u' +1]1

1 I I

—§[’U +1]1[U +211)

3 C(U' +1)(1+ u + %[u' +1]1)

In the SR’PT schedule, all jobs except the first job in each clusters (jobs Ji,g+3

for i = 1, ..., c) are run as soon as they arrive, and they are run to completion without

interruptions. In contrast, the first job in each cluster (jobs Jig-H3 for i = 1, ..., c) never

completes its execution before time re“. This can be explained below. Consider the

input instance with jobs Jig)”, 1 S i S c, removed. Notice that the length of the gap

in front of any job is exactly l/v times the length of the job. For example, job J“

has length 1), and the gap in front of it has length 1. For another example, job Jifl+2

73

has length v{u’ + 1}1, and the gap in front of it has length {21’ + 1}1.

Consider jobs J1,,-,+3 and .1”. Job J1,,—,+3 is run from time 0 to time 1. At time

1, job Jm arrives. Since Jm has a shorter remaining time than J1,,—,+3, then J1,,-,+3 is

preempted. At time 1+ 3, job Jm completes. By the argument above, the work done

on job J15,” has just entirely decayed. Job J1,,-,+3 has to start anew. By repeating

the argument, jobs Jig-H3 for i = 1, ..., c never complete their execution until all other

jobs have completed. After all other jobs have completed (at time re“), S’R’PT run

jobs J,,,-,+3, 1 g i g c, nonpreemptively in an arbitrary order. The flow time of jobs

in the SRPT schedule is as follows.

FSRPT = p--= v fort:1,...,candj=1,...
,z7+1

1:] 1,] ’U{’U’ + 1}] fori=1, ...,C and j = ,5 + 2

at? = Dav +1)(v’+1)+ s' + 1)

i=1 i=1

= (u + 2)(v' + 1)c(c +1)/2

c(c +1)

2

 SR’PTfU) c(u[v'+1]1+v{u'+1}1)+ (u+2)(v'+1)

c(c+ 1)

2

 = cu(u’+ 1) + (u+2)(v'+1)

 = c(u'+1) (22+ 6:1(v+2))

Thus, the ratio of the total flow time of the S’RPT schedule and the optimal

schedule of this input instance is the following.

74

S’RPTfU) > c(v’ +1) (’0 + 93(1) + 2))

DO’PTfU) ‘ c(u’ + 1)(1+ u + %[u’ +1]1)

T327110) + 2)

(2 + 21) + [u’+1]1)

n(v + 2)

(311 + 4)(u + 4)

n

3(2) +4)

nu

3(4u+ 1)

O(n) for u 2 1, and

Q(un) for u S 1.

C]

4.5 Open Problems in Preempt-Decay Scheduling

The results in section 4.3 show that the Optimal flow time between the preempt-

resume model and the existing preempt-decay and preempt-repeat model could be a

factor of O(fl apart. Corollary 4.3.1 tells us that simply using an Optimal algorithm

in the preempt-repeat model to approximate a preempt-decay schedule could result

in a factor of O(\/r—i) from the optimal flow time. Also, Theorem 4.4.3 tells us that

simply using the SR’PT algorithm, an Optimal algorithm in the preempt-resume

model, to approximate a preempt-decay schedule could result in a factor of O(n)

from the Optimal flow time. These cost differences are significant. The preempt-decay

model cannot be approximated by either of the two existing models. Therefore, this

problem deserves a further study. A logical next step to pursue this problem is to

find a polynomial-time approximation algorithm with a performance guarantee better

than O(fi), or to prove that there isn’t one (unless P=NP).

75

TO the best of our knowledge, there are no previous studies in the preempt-

decay model. We study only one particular setting. The preempt-decay model can

be applied to many other settings such as problems with due dates or with multiple

machines. Examples are llrj, decayanm, llrj, decay|(1 — Uj), and Plrj, decayl ZFj.

76

Chapter 5

The k-Client Problem

5.1 Introduction

In the basic k-client problem, there is one server, 1: clients, and a metric space (e.g. a

plane or a line). Each client generates a sequence Of requests in the metric space, and

a request is serviced the moment the server, which moves at constant speed, moves to

the location Of the request; that is, we assume zero processing time for all requests.

We define a move of the server to be a non-zero distance movement that takes it from

one request to a second request with no intervening requests.

An input instance I Of the basic k-client problem has clients 1 through k

where client i for 1 g i _<_ k has n,- requests. We define nmax(l) = maxlsisk n,- and

n(I) = 219.3,: n,. We represent I by the set of requests {rigs} where TiJ is the jth

request of client i for 1 S i g k and 0 g j S n,- (for notational convenience, we

assume that each client has a dummy request 73,0 for 1 S i g k located at the initial

server position). At any time, each client has at most one request in the system; more

specifically, request rig-+1 arrives exactly when rm- has been serviced for 1 g i S k and

0 g j g n,- — 1. Thus, for 1 g i S k, rip, the dummy request of each client, is serviced

77

at time 0 and rm, the first real request of each client, arrives at time 0. Because Of

our zero processing time assumption, we can assume without loss Of generality that

consecutive requests Of a client are not located at the same point. An algorithm A

solves a specific input instance I by computing a schedule A(I) Of server movement.

We will evaluate the quality Of A(I) using two cost functions. We first consider

a server oriented cost“ function which measure the “length” of A(I): the total distance

cost function measures the total distance moved by the server. The total distance

cost function is used in the k-server problem. We next consider a client oriented cost

function which focus on the quality of service provided to each client: the average

completion time cost function measures the average completion time of any entire

client.

For any algorithm A and any input instance I, we use AD (I) to denote the

total distance moved in schedule AU) and AACT(I) to denote the average completion

time of all clients in schedule A(I). For any cost function CF, the competitive ratio

CSF of an on~line algorithm A is defined as

where OPT denotes the optimal offline algorithm. When the cost function is not

ambiguous, we will drop the CF superscript. That is, we will abuse notation by using

A(I) to represent both the schedule produced by A as well as its cost for the given

cost function, and we will use CA to represent its competitive ratio for the given cost

function.

To simplify later proofs, we define the following notation to represent some

78

commonly used features of input instance I . Let I,- Q I denote the input instance

consisting only of requests from client i of I . Let D,(I) = OPTD (1,); that is, the min-

imum distance the server must move to service only client i. Let DU) 2 2le D,(I)

and Dma,,(I) = maxlsisk D,(I). Let did-(I) = 6(ri‘j,r,-,j+1)(I) denote the distance

between the 3"" and j + 1’t requests of client i of I. Clearly D,(I) = 22;? d,,j(I).

Note we will typically omit I when the input instance I is not ambiguous.

One of the goals Of this work is to study the performance of several commonly

used disk scheduling algorithms in the context of multithreaded systems. In particu-

lar, we wish to determine how the performance of these algorithms is related to the

number of threads in the system. There are two main types of algorithms: greedy

algorithms which seek to optimize some short term Objective and “fair” algorithms

which seek to insure all threads receive service in a reasonably timely fashion.

We first define two commonly studied greedy algorithms. The Shortest Dis-

tance First (SD?) algorithm moves the server to the nearest request. In disk schedul-

ing, this algorithm is often referred to as Shortest Seek Time First. The Sequential

(55Q) algorithm services all the requests for one client, then services all the requests

Of a second client, and so on. Note SEQ will service requests from other clients if it

happens to pass over them while servicing the current client.

Our upper bound results apply to any metric space. For lower bound proofs,

we consider two primary metric spaces: line(oo) and K,. The first metric space,

line(oo), represents an unbounded continuous line. The K,- metric space is a clique

with i nodes where each node is distance 1 from any other node.

Surprisingly, nearly all Of our results are identical for these two different cost

79

functions. The summary is shown in Figure 5.1. In section 5.2, we prove an upper

bound of 2k — 1 for the average completion time cost function; we show that SD]:

and 88Q algorithms are (2]: — 1)-competitive on any metric space for the average

completion time cost function, and this bound is tight for any metric space containing

line(oo). In section 5.3, we prove lower bounds of 1325 + 1 for the total distance and

average completion time cost functions when the metric space is K00. In section 5.4.1,

we prove lower bounds of 553 for both the total distance and average completion time

cost functions when k = 2 and K00 is the metric space. In section 5.4.2, we show that

when k = 2, the lower bound for the average completion time cost function improves

to 3 for any metric space containing line(oo). In section 5.5, we discuss some open

questions regarding the k-client problem.

5.2 Upper Bounds

In this section, we prove that the greedy SD]: and 85Q algorithms are (2k — 1)-

competitive for the average completion time cost function in any metric space. We

also show that this bound is tight for any metric space containing line(oo). We begin

by proving some a basic fact about the Optimal Off-line algorithm.

Fact 5.2.1. For all input instances 1, 0PTACT(I) Z 2,9).

Proof. Consider any input instance I with k clients. For 1 S i S k, O’PT clearly

cannot complete client i before D,(I), the time it takes to complete client i if client

i is the only client. Therefore, UPTACTU), the average completion time incurred by

OPT, is lower bounded by fizz-C21 D,(I) 2 278’). Cl

80

ll

k clients

Cost Function Upper Bound Lower Bound Lower Bound

(Koo) (line(oo»

total distance 2k — 1 [4] 13,—k + 1 152,5 + 1 [4]

average completion time 2k — 1 1531‘- + 1 15215 + 1 [4]

2 clients

Cost Function Upper Bound Lower Bound

(Koo)

Lower Bound

(line(oo))

total distance 3[4] 9/5 25/9[4]

 average completion time
9/5

Table 5.1: Summary Of results for the k-client problem.

81

5.2.1 Upper bounds for the Total Distance Cost Function

For completeness, we include some upper bound results in [4].

Theorem 5.2.1. [4] For the total distance cost function, 651)}: = 2k —— 1.

Theorem 5.2.2. [4] For the total distance cost function, cng = 2k — 1.

The lower bound instance against both SD]: and SEQ is illustrated in Fig-

ure 5.1 [4]. The Optimal solution for this instance is to move the server to the far right

to point It — 1 and then to the far left to point —n1 resulting in a cost of n1 + (2k — 2).

Assuming ties are broken to SDI-”s detriment, SD37 will move left to service all Of

the requests of client 1, then return to the right and service all Of the requests of

client 2, etc., resulting in a total cost of (2]: — 1)n1 + O(kz). For any 6 > 0, there

exists an n1 such that the competitive ratio will exceed 2k — l - 6. Note, this input

instance can easily be adjusted to eliminate ties.

Ten. "' Tk.2 Tk,1

7‘3.n3 ° " 73,3 7‘3,2 7‘3.1

Tang '°' 72,3 7‘22 7‘2,1

7'1,n1 7'1,3 7‘1,2 7‘1,1

l l l l l m l l _____

I I I I I w I I +_‘l

—n1 —4 —3 —2 —1 0 1 2 k-2 k—l

Figure 5.1: Lower bound instance for SD]: and SEQ with the total distance cost

function.

5.2.2 Upper bounds for the Average Completion Time Cost

Function

Theorem 5.2.3. For the average completion time cost function, 051)}- = 2k — 1.

82

Proof. Without loss of generality, we assume the clients are labeled according to the

order that SD}- will service their last requests. That is, the completion time of client

i is no greater than the completion time Of client j in SDf(I) for 1 5 i g j g k.

We bound SDfACTU) by bounding the cost Of each move Of SDf. Every

move begins from a request rid for 1 S i S k and 0 S j S n,-.

If a move starts from request rm- where j < n,, i.e. rm- is not a terminal

request of client i, then this move adds a cost of at most did- to each unfinished

client’s completion time. This is true because either the server moves to request

rig-+1, or it moves to a closer request from another client. Clearly such a move adds a

cost of at most digs to the average completion time. The total cost of moves starting

from nonterminal requests of all clients is at most

I: ng-l k

ZstFZDz-w
i=1 j=0 i=1

If a move starts from request rm“ the terminal request Of client i, then the

cost of the move can be upper bounded by (L?) (D,- + minKJ-Sk Dj). This is true for

the following reasons. Clients 1 to i have finished. There are only (It — i) unfinished

clients. Consider the unfinished client j > i such that Dj is minimized. Consider the

distance between request rm, and the current request Of client j. This distance is no

more than D,- + DJ- because in the worst case, the server must move from rm, back

tO 77,0 = 73.0 and then to the current request of client j. Since SDF moves to the

closest request, the distance it moves in this case can be no larger than D,- +Dj. Thus

the completion time of the at most (k — i) unfinished clients is increased by at most

D,- + DJ- and the average completion time is increased by at most (I?) (D, + Dj).

83

The total cost Of moves starting from terminal requests Of all clients is at most

k-i k-i D-
. ' . <: . __1

2(16)(Dz‘l'igllenkDJ) _ Z ((k)DI'I'Z k)

199: l<i<k I<Jgk

k-i D,-

Z .(k)D‘+Z.Z'k_
15ng lgzgkzqgk

k-i D,-

= (Assn.
1£¢SI€ 151$]: lSI<J

k'-j j‘-1

= :mssufls
1315* ISjSk

k—l

= z <—.—>s
lsjsk

The cost of moves of SD? starting from nonterminal requests is at most D.

The cost of moves of SD? starting from terminal requests is at most (k?) D. The

combined cost is at most (&k‘—l) D. Thus, from Fact 5.2.1, SD?ACT(I) g (2k —

1)(9’PTACTU). Note this upper bound is true for any metric space.

This bound is tight in any metric space that includes line(oo). More specif-

ically, c313,: > 2k — 1 — c for all e > 0 on line(oo). The lower bound instance is

illustrated in Figure 5.2. Note that client 1 has several requests. All other clients

have exactly one request. Assuming that ties are broken to SD?’5 detriment, SD?

will first move to the left and service all requests of client 1. It will then service

the requests of the remaining clients. The completion time Of client 1 will be n1.

The completion time of client j will be 2m + j — 1. The average completion time is

%((2k — 1)n1 + 008)). The optimal solution is to move all the way to the right first.

The Optimal average completion time is %(n1 + O(k)). For any 6 > 0, there exists

an n1 such that the competitive ratio will exceed 2k - 1 — 6. Note that this input

84

instance can easily be adjusted to eliminate ties. El

7‘1,n1 '" 7‘1,2 7‘1,1 7‘2,1 73,1 Tic—1,1 Tim

I l l L m 1 1 l l

I I I I \U I I _____

—n1 -—3 -2 —1 0 l 2 k - 2 k — 1

Figure 5.2: Lower bound instance for SD? and SEQ with the average completion

time cost function.

Theorem 5.2.4. For the average completion time cost function, c559 = 2k — 1.

Proof. We bound SEQACTU) by bounding the completion time Of each client of I.

For 1 g i S k, the completion time Of client i is at most D,- + 2;:12Dj. This bound

assumes a worst-case scenario where the server must service client 1, return to its

initial position, then service client 2, return to its initial position, etc., before finally

servicing client i. Thus, we Obtain the following upper bound on SEQACTU)

. G.) (.;.I(.§:D)+Dl)

= (a ((2)2?)

= c) ((2):)

z (i) (1990. _ mg, + 20,.)

()<

<

From Fact 5.2.1 we can conclude

ssoACTu) 3 (2k —1)(’)’PTACT(I)

Again, this upper bound holds for any metric space [4], and this bound is tight in any

metric space that includes line(oo) as can be seen by the same lower bound input

instance for SD? (Figure 5.2). CI

5.3 General Lower Bounds

We now prove that no on-line algorithm has a competitive ratio better than 1525 + 1

for either the total distance cost function or for the average completion time cost

function when k is a power of 2. These lower bounds drop to 152,5 when k is not a

power Of 2. These results apply in clique metric spaces.

This section is organized as follows. In Section 5.3.1, we define a restricted

adversary strategy that will be used in the proof Of both lower bounds. We then

prove some basic properties about this adversary in Section 5.3.2. We then prove the

actual lower bound results in Sections 5.3.3 and 5.3.4. In Section 5.3.5, we state some

results from [4], which translate these lower bounds to line metric spaces.

5.3.1 Definition of Adversary Strategy A(N, k)

The k-client problem can be described as a game between the adversary and the

on-line algorithm as follows. The adversary begins the game by generating a single

request for each Of the 1: clients in the metric space. The on-line algorithm then

responds by moving the server to a location where at least one request resides and

servicing all requests at that position. Consider any client whose request has just

86

been serviced. The adversary must respond by either generating another request for

this client or informing the on-line algorithm that this client has no more requests.

The game continues in this fashion until the on-line algorithm has been informed that

all clients have no more requests.

We define an adversary strategy A(N, k) that is parameterized by two integers

N and 1:, both Of which must be at least 1. It will utilize a clique with Nk + 1 nodes

partitioned into N subcliques of size It plus an extra node which is the initial server

position. We number the subcliques from 1 to N. On a first reading, it is helpful to

focus on adversary strategy A(1, 1:) which uses only subclique 1. Before we can define

adversary A(N, k), we first define the following notation and concepts. Also, for the

remainder of this section, when we say “at any time during the game” or “at the end

Of the game”, it will be understood that the game is taking place between adversary

strategy A(N, k) and any on-line algorithm A.

Definition 5.3.1. At any time during the game, let a,- be the sequence of positions

occupied by the requests of client i in the clique of size Nlc. Define 0,-(h) to be the

sequence of positions occupied by the requests of client i in subclique h. Define I(h) to

be the restricted input instance where client i has only the sequence of requests o,(h)

forlgigk.

Definition 5.3.2. At any time during the game, for 1 g i S k and 1 S h S N,

client i has h-length n if 0,-(h) currently has length n. Note the h-length of a client

may increase over time as the adversary continues to generate requests for client i in

subclique h.

87

Definition 5.3.3. At any time during the game, clienti subsumes client j in subclique

h if oj(h) is a proper subsequence of 0,-(h).

Definition 5.3.4. Let 14> = Uie¢ I,- where qfi g {1, . . . , k}.

Thus, I (It), is the restricted input instance consisting only of the clients in Q5

and their requests that occur in subclique h.

Fact 5.3.1. At any time during the game, 0PTA0T(I(h)¢) :2 D,-(I(h)) ifi E qfi and

Vj E (b, i subsumes j in subclique h.

Proof. The cost of servicing all of the requests Of client i in subclique h is D,-(I(h)).

In order to service client i in subclique h, the server must visit all the locations in

{J,-(h) in order. It follows that the server will also visit all of locations of oj(h) in order

for any client j subsumed by i in subclique h. E]

Definition 5.3.5. At any time during the game, clienti covers client 3' in subclique h

if clienti subsumes client j in subclique h and there is no clientl that is simultaneously

subsumed by client i in subclique h and subsumes client j in subclique h. A client j

is uncovered in subclique h if there is no client i such that i covers j in subclique h.

We now define the notion Of a client i being dead/alive/critically alive in

subclique h.

Definition 5.3.6. At any time during the game, for 1 S i S k, and for 1 g h g N,

0 Let 1,- be the most recent request of client i that has appeared. Since the game

begins with the adversary generating one request for each client, I,- must be de-

fined.

88

0 Let c, be the subclique in which l,- appears.

0 Client i is dead if I,- has been serviced, and the adversary has made known to

the on-line algorithm that client i has no more requests.

0 Client i is alive if it is not dead. An alive client lives in subclique h ifc, = h.

Note that if c, = h, it is not always the case that client i lives in subclique h

because client i may be dead.

0 Client i is critically alive if it is alive, request I, has just been serviced, and the

adversary has not yet responded.

Definition 5.3.7. At any time during the game, client i is graftable in subclique h

if it has been planted in subclique h, it is uncovered in subclique h, and it no longer

lives in subclique h.

Definition 5.3.8. At any time during the game, if we focus on a single subclique h,

our adversary is restricted to making only the following three types of moves.

0 The adversary can plant client i in subclique h by placing the next request of

client i on a node in subclique h that has not yet been the location of any other

request.

0 The adversary can terminate a critically alive client i which lives in subclique h

by informing the on-line algorithm that client i has no more requests in subclique

h. Note, the adversary may or may not choose to plant the next request of client

iinsubcliqueh+1for1Sth—l.

89

o The adversary can concatenate a graftable client j in subclique h with h-length

n to a critically alive client in subclique h with the same h-length by making the

n + l“ request of client i in subclique h be on the same node as the l“ request

of clientj in subclique h forl 2: 1, ...,n. Note that j is no longer graftable in

subclique h.

Definition 5.3.9. Adversary strategy A(N, k) is defined as follows.

1. The adversary begins the game by planting clients 1 through It in subclique 1.

2. In each later turn, the adversary responds only if there is a critically alive client

i. If there is such a client i, let h be the subclique client i lives in, and let n be

the h-length of client i. The adversary responds as follows.

(a) If there is a graftable client j in subclique h with h-length n, the adversary

concatenates client 3' to client i.

(b) If there is no graftable client j in subclique h with h-length n, A(N, k)

responds as follows.

i. The adversary terminates client i in subclique h (making client i graftable

in subclique h).

ii. If A has serviced at most N — 1 requests, the adversary plants client

i into subclique h + 1. Otherwise, client i is dead.

5.3.2 Properties Of the Adversary Strategy

We now prove some properties about the adversary strategy A(N, k).

90

Lemma 5.3.1. For 1 S i g k, 1 S h S N, and at any time during the game, the

h-length of client i is 0 or is 2‘ for some integerl 2 0.

Proof. We first observe that the adversary can only increase the h-length Of a client

using the planting or concatenation Operations. After planting, client i has h—length

1 2 2°. Assuming the lemma holds before a concatenation occurs, it must also hold

after concatenation since concatenation can only occur between two clients of equal

length. Cl

Lemma 5.3.2. For 1 g i S k, 1 g h S N, and any time during the game, clienti is

covered by at most one other client in subclique h.

Proof. We first Observe that when a client is planted in subclique h, it is not covered

since its single request is placed on an otherwise unoccupied node v(i) Of subclique

h. Afterwards, no other client will contain request v(i) unless client i is concatenated

to the end of some other client j. Thus, the only client which can cover client i at

this time is client j , and client j may not exist. Assuming such a client j does exist,

client i is no longer graftable which means that the only clients which can contain

node v(i) are those which subsequently subsume client j. However, by the definition

of cover, these clients will not cover client i and the result follows. E]

To help understand the adversary strategy, it is useful to consider the graphical

representation of the covers relation in each of the subcliques.

Definition 5.3.10. For 1 S h g N and any time during the game, the cover graph

Hh of subclique h is a directed graph with k nodes labeled 1 through k. An arc exists

from node i to node j in H), if clienti covers client j in subclique h.

91

In a general case, the N cover graphs may not help convey the structure of

the adversary strategy and the input instance, but for A(N, k), the N cover graphs

do help. In particular, our adversary A(N, k) will construct an input instance such

that at any time during the game, each Hh will be a collection of directed binomial

trees; furthermore, at the end of the game, each H), will be a directed binomial heap

[83, 24].

Corollary 5.3.1. For 1 S h S N and any time during the game, the cover graph H),

generated by adversary A(N, k) will consist of a set of directed trees.

Proof. This follows immediately from Lemma 5.3.2. Cl

Definition 5.3.11. At any time during the game, let T be a tree in Hh. Define C(T)

to be the set of clients which have nodes in tree T, and define the root client r(T) to

be the client corresponding to the root node of T.

Lemma 5.3.3. For1 S h S N, 1 S i S k, and any time during the game, the

following statements are true.

1. H), consists of a collection of directed binomial trees [83, 24].

2. If client i has h-length 21 > 0 for some integer I, then the maximal subtree in

Hh rooted at node i is a directed binomial tree with heightl containing 2' nodes.

3. For any tree T E Hh, there is at most 1 client in C(T) which lives in subclique

h. Furthermore, if there is such a client, it is the root client r(T).

4. If client i is in C(T) and clientj is in C(T') where T yé T’ are both trees in

Hh, then {J,-(h) and 0,- (h) occupy disjoint sets of nodes in subclique h.

92

Proof. Most of these properties follow trivially from the definition of our adversary,

the three Operations our adversary can perform, the k-client game, and the definition

of binomial trees. The key Observation is that when client j is concatenated tO client

i in subclique h, the only change to H), is the addition of an are from node i to node

j. E]

Corollary 5.3.2. At any time during the game, the on-line algorithm A can service

at most one request per turn.

Proof. The proof follows from properties 3 and 4 Of Lemma 5.3.3. Cl

Lemma 5.3.4. For 1 S h S N, 1 S i S k, and any time during the game, there is

at most 1 graftable client with h-length 2j in subclique h for j Z 0.

Proof. Fix j and h. Initially, there are no graftable clients in subclique h so there

are no graftable clients with h-length 21 in subclique h. The termination step of

the adversary is the only place where the number of graftable clients in subclique

h can increase. However, for the termination step to be executed, the number of

graftable clients with h-length 2i must be 0. Otherwise, a concatenation would have

been performed instead. Furthermore, after the execution of this step, the number of

graftable clients with h-length 2i is exactly 1. Therefore, the result follows. E]

Definition 5.3.12. Let B(n) be the set of I-valued bits of the binary representation

of n where bit 0 is the least significant bit.

93

Forexample, B(15) = B(11112) = {3,2,1,0}

B(16) = 800000;) = {4}.

{0 ifb¢B(n)
Nt tht 2" d2

09 a W Jmo 1 ibeB(n).

For example, [10001002/22j mod 2 = 1 since 300001002) = {6,2} 9 2

[11011112/241 mod 2 = 0 since B(11011112) = {6, 5,3,2,1,0} 34.

Lemma 5.3.5. For any subclique h and any i Z 1, if there are exactly i clients with

h-length greater than 0 at the end of the game, then

1. there is exactly 1 uncovered client with h-length 2b in subclique h for each b E

B(i), and

2. there are no uncovered clients with h-length b in subclique h for b ¢ B(i); that is,

the underlying undirected graph of Hh is a binomial heap [83, 24] with i nodes.

Proof. Fix i and h. Let xb be the number Of alive clients with h-length 2” created by

the adversary during the course of its operation. Let yb be the number Of uncovered

clients with h-length 2" left when the adversary terminates its Operation. From the

Operation of the adversary, in particular steps (2.a) and (2.b), it follows that that for

any nonnegative integer b,

xb = [i/2bj and

0 steep)
: d2 :

y" I“ m [1 ifbeB(z‘).

Thus, the result follows. Cl

94

Lemma 5.3.6. For any subclique h and 1 S i S k, if there are exactly i clients

with h-length greater than 0 at the end of the game, then the number of requests in

subclique h generated by A(N, k) is

Z 2b—1(b+2)2{§lgl+i
ifiisapower of2

beB(i)
‘5 lg 1 otherwise.

Proof. From Lemma 5.3.3, for 1 S h S N, we can determine the number Of requests

generated in subclique h at the end of the game by summing the number of nodes

in the binomial subtree rooted at each node in the final cover graph Hh. From

Lemma 5.3.5, Hh will contain exactly [B(i)| disjoint binomial trees, one of size 2" for

each b E B(2)

Fix b in B(2) Applying well known properties of binomial trees, the binomial

subtree Of size 2” in Hh will contain 25‘1/2j nodes which are the roots of binomial

trees of size 2j for j =2 0, . . .,b — 1. Thus, there are a total of 2b‘1(b + 2) requests

represented by this binomial tree. Therefore, the number of requests represented by

all binomial trees in H, is Zbeea) 2""1(b + 2).

If i is a power Of 2, then i = 29 for some integer g 2 0. Thus, there are

29"l(g + 2) requests which is %lgi + i. If i is not a power of 2, then from Lemma A.2,

the number of requests is lower bounded by élgi. C]

We will be particularly interested in the input instances generated by ad-

versary A(1,k) where k is a power of 2. These input instances have the following

characteristics. The initial request of each of the k clients is on a different node, no

client has more than one request on any node, and there are no requests on node 0.

There is a single client with k requests, and for each i, 0 S i < (lg k) — 1, there are

95

k/2i+1 clients with 2i requests. Figure 5.3 shows a possible input instance and its

corresponding cover graph for k = 8. Note, all edges in the clique graph of size 9 have

been removed. Also, the nodes have been displayed in a linear fashion to emphasize

the structure Of the clients.

0 1 2 3 4 5 6 7 8

O O 0 3 9 O O 9 5

7.1—’7‘2 -—>r3—’r4 9r5+r6»r7—’r8

81—’82—*83—’84

tlatz 111—’1”

vi 171 WI 91

Figure 5.3: An example A(1, 8) lower bound instance and its cover graph.

5.3.3 General Lower Bound for the Total Distance Cost Func-

tion

Theorem 5.3.1. For the total distance cost function and any on-line algorithm A,

00> %lgk+1 ifkisapowerof2

A _ %lgk otherwise

on the Kk+1 metric space.

Proof. We use adversary A(1, k) to prove this theorem. In particular, we use Kk+1

which contains only one subclique. In this case, the adversary description can be

simplified by making clause (2.b) simply terminate the client with no Option to plant

the client in the next subclique.

We first bound the on-line cost incurred by A. From Corollary 5.3.2, the cost

incurred by A will be the number of requests in the input instance. From Lemma 5.3.6,

96

there are a total of glgk + k requests if k is a power of 2. If k is not a power Of 2,

the number of requests is lower bounded by glg k.

We now show the optimal Off-line cost is k. At the end of the game, H1

consists of a collection of disjoint binomial trees. Let T be a tree in H1 at the end Of

the game. The root client r(T) subsumes all clients in C(T) Thus, from Fact 5.3.1,

the optimal off-line algorithm can service all requests of all clients in C(T) by servicing

the requests of r(T) in order. If the optimal Off-line algorithm does this for each tree

in H1, it will service all requests by visiting each node of subclique 1 exactly once

for a total cost of k. NO algorithm can do better than this since there are k distinct

positions containing requests, so the Off-line cost follows.

Dividing the on-line cost by the off-line cost, we get the final result. El

5.3.4 General Lower Bound for the Average Completion Time

Cost Function

Theorem 5.3.2. For the average completion time cost function, any on-line algo-

rithm A, and any integer N 2 1,

CACT> (1555+1)(%_1—2) ifk is apower of2

A - (1525) ——§—2?VIE:'_12) otherwise

an the KNk+1 metric space.

Proof. Adversary A(1, k) used in Section 5.3.3 was concerned with forcing the on-

line algorithm A to traverse nodes as many times as possible while still allowing

the Optimal off-line algorithm to service all requests by traversing each node only

once. This adversary strategy is not appropriate for the average completion time cost

97

function because this strategy allows A to complete many clients in a short amount

of time. We need an adversary strategy which

0 forces the on-line algorithm A to traverse the nodes many times while the Off-line

algorithm can service all requests by traversing each node only once, and

o prevents the on-line algorithm A from completing any client too quickly.

Thus, we use A(N, k) which may terminate a client in a subclique but keeps the client

alive by planting it in the next subclique.

We first bound the on-Iine cost incurred by A. From Corollary 5.3.2, A services

at most one request when it visits a node. From step (2.b.ii), after the first N — 1

requests have been serviced, no client has been completed. Servicing the first N — 1

requests requires at least N — 1 time steps, and this contributes N — 1 to the average

completion time. After the first N —-1 requests are serviced, each client has at least one

more request. The cost Of servicing these requests contributes at least % 2le i = $5.1

to the average completion time. Thus, the cost incurred by A is lower bounded by

N — 1 + figs—1.

Next, we compute an upper bound of the Optimal cost. We will calculate

the average completion time incurred by the obvious algorithm which services the

subcliques in order. Clearly this is an upper bound on the cost Of the Optimal solution.

In an analogous fashion to the previous section, there exists a server path which

visits each occupied node Of a subclique exactly once and services all the requests on

that subclique. The server simply services the requests of the root of each tree in H),

in order. Thus, if Hh has i nodes, then the time required to service all requests in

98

subclique h is at most i. During this time, only these i clients can still have requests

waiting to be serviced, so the average completion time increases by at most 3,72. Thus,

we can upper bound the cost Of the Optimal algorithm as follows:

e
r
!

I:

0797(1) g 122%,- (5.1)

i=1

where p,- is the number of cover graphs with exactly i clients with h-length greater

thanOforlShSN.

We will upper bound inequality (5.1) by upper bounding p,- for i = 1, ...,k.

First, we give an upper bound Of the total number of requests. Consider the time

just after the last planting Operation. At most N — 1 requests have been serviced by

the on—line algorithm A at that time. Each client never changes subclique after that.

Hence, each client has at most It unserviced requests. Therefore, there are at most

k2 unserviced requests. Thus, there are at most N — 1 + k2 requests.

Let R, be the total number of requests in a subclique with i clients. The value

of R,- is given in Lemma 5.3.6. Since there are at most N — 1 + k2 requests in I , this

implies EL, R,p,s S N — 1 +k2. Thus O’PT(I) is upper bounded by the maximization

Of

k k

Zi2p, subject to Eli-p,- S N — 1 + k2.

i=1 i=1

P
H
I
—
I

Since i2 grows faster than %lgi + i, and from Lemma A.2, glgi +i grows at least as

fast as R,, then our upper bound on (9177(1) is maximized when

Pi = 0 fori=1,...,k—1 and

N—1+k2

Rk '

99

1 1 N - 1 + k2
Th I<—§:2,__k2 :1,us, 0PT() _ k ,=1 2 p k pk Rk

Ififli if k is a power of 2

< 5 3 +1,

_ N‘11” otherwise.
5 8"

Dividing the on-line cost by the off-line cost, we get the final result. CI

Corollary 5.3.3. For the average completion time cost function, any on-line algo-

rithm A, and any integer N Z 2, it is the case that on KN+k_1 metric space,

I _ . .
CACT (325 + 1)(—'t—-—2?vfi2’;2_12) ifk is a power of 2

.A — 1 k _ .

(%)(%%) otherwise.

Proof. Nodes are assigned to the subcliques on demand. A new node is needed when

the adversary plants a client. The adversary plants k clients in the initial step. The

only other place the adversary plants a client is in step (2.b.ii). The adversary can

plant at most 1 client after each request is serviced. The adversary plants no more

clients when A has serviced more than N — 1 requests. Therefore, the adversary does

at most k + N — 1 plantings. Hence, k + N — 1 nodes are needed for placing requests.

Since N 2 2, then k + N - 1 Z k + 1. Thus, other than the k nodes on which

the adversary makes k initial plantings, there is 1 other node that can be used as the

initial position Of the server. Cl

Corollary 5.3.4. For the average completion time cost function, any on-line algo—

rithm A, and any 8 > 0, there exists an integer M such that, on KM metric space,

ACT) 1525+1—5 ifkisapowerof2

C — u

A [535 — 6 otherwise.

Proof. From Corollary 5.3.3, by choosing N large enough and setting M = N + k — 1,

the result follows. C]

100

5.3.5 General Lower Bound on the Line

It was shown in [4] that lower bound results on cliques can be transformed into lower

bound results on lines. In particular, any lower bound result on K, using a “finite

adversary strategy” can be extended to hold on line(2l - 1) where a finite adversary

strategy is one in which the maximum number of requests ever generated by the

adversary is upper bounded by some known constant.

Theorem 5.3.3. [4] Suppose we have a lower bound of c for either the total distance

or average completion time cost functions on the K, metric space forl Z 1 as a result

of a finite adversary strategy. Then this implies there exists a c — 5 lower bound for

the same cost function on the line(2l — 1) metric space as the result of another finite

adversary strategy.

Corollary 5.3.5. [4] For the total distance cost function, any on-line algorithm A,

and any 5 > 0,

ACT> 1525+1—e ifkisapowerof2

c

A T 15215 — 5 otherwise

on the line(2k — 1) metric space.

Proof. This follows from Theorems 5.3.1 and 5.3.3. El

Corollary 5.3.6. [4] For the average completion time cost function, any on-line

algorithm A, any integer N 2 2, and any 5 > 0,

l k 2N k—l - .

cfiCT> (—&2—+1)(W+J§k2—_2-) —e ifk is apower of2

_ (13215) W) -— 5 otherwise

on the line(2N + 2k — 3) metric space.

101

Proof. This follows from Corollary 5.3.3 and Theorem 5.3.3. El

Corollary 5.3.7. [4] For the average completion time cost function, any on-line

algorithm A, and any 5’ > 0, there exists integer N’ such that,

ACT> 132—’°-I-1-—)3’ ifkisapowerof2

c — a

A '52—,“- — 5’ otherwise

on the line(N’) metric space.

Proof. From Corollary 5.3.6, by choosing a < e’, choosing N large enough, and setting

N’ = 2N + 2k — 3, the result follows. C]

5.4 General Lower bounds when k = 2

5.4.1 General Lower Bound on the Clique when k = 2

In this section, we improve our general lower bounds of [521°— +1 to ‘5’ for the case where

k = 2 on K00 for both the total distance and average completion time cost functions.

Theorem 5.4.1. For the total distance cost metric, no on-line algorithm is (g — e)-

competitive for the 2-client problem on the K00 metric space for all e > 0.

Proof. Label the vertices with positive integers. Let D be a large integer. The

adversary Operates in rounds. At the beginning of round 1, a client is called the

leader, and its initial request is on node D +1. The other client is called the follower,

and its initial request is on node 1. Subsequent requests are generated according to

the following rule. If the current request Of both clients are on different nodes, then

when the request, say on node x, of either of the clients is serviced, the next request

of that client is on node x + 1. If the current request of both clients are on the

102

same nodes, say on node x, then after these two requests are serviced, the new round

begins. In the new round, the leader becomes the follower, and its next request is on

node 1. The follower becomes the leader, and its next request is on node x + 1.

Suppose the adversary stops just after round n. The Optimal solution is to

service the client that is the follower in round n picking up requests of the other client

along the way.

We show that any on-line algorithm which hopes to be better than 2-competi-

tive on this form of input sequence can be described by an infinite monotonically

increasing sequence of finite numbers a, for i Z 1 where al 2 (x1 - D)/D, a,- = x,- /D

for i Z 2, and x,- is the last node on which the clients place their last requests in

round i. Suppose al is unbounded; that is, at any time, if the current request of the

follower and the leader are on node x and y respectively, then x < y. In this case,

the adversary will choose the input instance to be one where the final request Of both

clients is on node xD for a large integer x. The on-line cost will be xD + xD — D

while the off-line cost will be xD giving a competitive ratio of 2 — 5 Therefore, Oil

must be bounded tO have a ratio better than 2. Clearly, this argument generalized

which means that all a,- must be bounded for all i 2 1.

Definition 5.4.1. For n 2 1, let 0,, be the sum of a,- where i is an odd number

between 1 and n inclusively.

Definition 5.4.2. For n 2 1, let en be the sum of 01,- where i is an even number

between 1 and n inclusively.

Definition 5.4.3. Let A0 = 0. For n 2 1, let A" 2 an — /\,,_1.

103

Definition 5.4.4. For n 2 1, let

{on n is odd

7n :

en n is even

Fact 5.4.1. For n _>_ 0,/\,, 2 0.

This is true because an’s is a non-decreasing sequence.

Fact 5.4.2. For n 2 1,

A 0,, — e,, = 0,, — en__1 n is odd

TI — .

e,, — 0,, = e,, — o,,_1 n is even

Fact 5.4.3. For n 2 3, 7n = 771—2 + on.

This is true by Definition 5.4.4, 5.4.1, and 5.4.2.

Fact 5.4.4. For n _>_ 2, 7,, = 7,,_1 + /\,,.

This is true by Definition 5.4.4 and Fact 5.4.2.

The cost of the on-line algorithm is,

W Z 2 A(In) = (7n + 7n—1 + an)D - n

= (7,, + 7n_1+ /\,,_1+ A")D — n.

The optimal cost is,

W 2 2 0PT(In) = (in—1 + anlD

: (7n—1 + An-l + /\,,)D.

Therefore, if the adversary stops just after round n, then the ratio Of the cost

of the on-line algorithm and the adversary is

(Wu-1+ 7n + Ari—1 + An)D '- 7?.

(771—1 +)‘n—l + AnlD

I

104

If D is sufficiently large, the ratio is arbitrarily close to

n— n An—)‘n 2 n- + An— 2)‘n An—71+7+ 1+ = 71 1+ :2_ 1 ”122452)

711—1 + /\n—l +)‘n 711—1 +)‘n—l +)‘n 711—1 + Ail-1+ /\n

We can write the equation (5.2) as 2 — c,, where

An-

c,, = ‘ n 2 2. (5.3)

711—1 + An—l + An,

We now use the property that A,- is finite for all i 2 1 to define two important

quantities of any sequence of finite values (A,). First, we define X((A,)) = infnzgcn

where c,, is defined in equation (5.3). Note that 0 < X ((A,)) < 1. For the remainder

of this proof, we will use X to denote X((/\,-)). Next we define R((/\,-)) = Infnzg 75:11:.

For the remainder of this proof, we will use R to denote R(()\,-)).

To derive the best possible lower bound on the competitive ratio Of any on-line

algorithm against this adversary, we need to find the set of values (A,) that minimize

2 - X. We will show that the maximum possible value of X is 1 /5 which is achieved

when Tiff—l- = 1 for all n 2 2; that is, when R = 1.

We first observe that

X

V77. 2 2 An S An_1 — din—1° (5.4)

This follows from equation (5.3) and the definition of X.

We next Observe that

Vn 2 3 An 2 R(R + 1)7,,_2. (5.5)

This can be derived as follows given the definitions of R and Fact 5.4.4.

’\n 2 R7n—1 = R()‘n—1 + 7n—2) 2 B(Rfyn-Q + ”In—2) = B(R +1)7n-2-

105

From inequalities (5.4) and (5.5), we obtain

l-X

V71 2 3 B(R + ll’Yn—2 S /\n—1 — 772-]

which can be rewritten as

A1'!» 7 2

Vn22 (1—2X)7 ZA(R +R+1) (5.6)

n—l

Combining inequality (5.6) and the definition of R as the infimum Of 7:1: for n 2 2,

we obtain

(1 — 2X)R 2 x0e2 + 12+ 1)

which can be rewritten as

XR2 + (3X — 1)R + X g 0 (5.7)

Since R must be a real number, we apply the quadratic equation and the constraint

0 < X < 1 to find the maximum value of X that results in R being a real number.

(3X—1)2—4-X-X 20

The maximum value of X = 1/5 when R = 1. Therefore, we achieve the desired

lower bound Of 2 - 1/5 = 9/5 on the competitive ratio Of any on-line algorithm for

the 2-client problem on Koo. Cl

Theorem 5.4.2. For the average completion time cost metric, no on-line algorithm

is (g — e)-competitive for the 2-client problem on the K00 metric space for all e > 0.

Proof. The proof is the same as that of Theorem 5.4.1 and because both clients

complete at the same time in both the optimal Off-line schedule and the on—line

schedule. D

106

5.4.2 General Lower Bound on the Line when k = 2

In this section, we improve our general lower bound of £325- + 1 to 3 for average

completion time cost function for the case when k = 2 and the metric space is

line(oo). For completeness, we state a lower bound Of 3g? for total distance cost

function for the case when k : 2 and the metric space is line(oo) [4].

Theorem 5.4.3. For the total distance cost function, no on-line algorithm is (% —e)-

competitive for the 2-client problem on line(oo) for all e > 0 [4].

Theorem 5.4.4. For the average completion time cost function, no on-line algorithm

is (3 — e)-competitive for the 2-client problem on line(oo) for all e > 0.

Proof. We consider an adversary that constructs inputs of the following form. The

server is initially located at the origin. The first request from client A is located one

unit to the left Of the origin. All the remaining requests from A will each be 6 to

the left of the previous one where 6 tends to 0. The requests from client B will be

arranged to the right Of the origin in a similar fashion.

Without loss of generality, we assume that the on-line algorithm initially moves

the server to the left to service client A. Any on-line algorithm that hopes to be better

than 3—competitive against this adversary can be described by two finite positive

numbers a and S. The first parameter, o, is the maximum distance the server is

willing to move to the left before it changes direction for the first time. The second

parameter, S, is the maximum distance the server is willing to move to the right

before it changes direction for the second time.

107

Suppose a is unbounded; that is, the on-line algorithm will move the server

tO the left until there are no more requests to the left. In this case, the adversary

will choose the input instance to be one where the final request of client A is at

position -x for a large value of x and client B will have only 1 request at position

1. The on-line cost will be %((x) + (2x + 1)) = é—(Bx + 1) while the Off-line cost will

be %((1) + (2 + x)) = -;—(x + 3) giving a competitive ratio Of 3 — £5. Therefore, a

must be bounded to have a competitive ratio better than 3. We can show that S is

bounded with a similar argument.

Next, we show that the best an on-line algorithm can do is to make a = E in

which case the on-line algorithm will be 3—competitive at best. For any given a and

5, define the instance I as follows. Requests from client A appear progressively from

position -1 to position —a — 6. Requests from client B appear progressively from

position 1 to position 5 + 6. Figure 5.4 illustrates both input instance I as well as

how the on-line algorithm behaves on I. Clearly, the on-line algorithm will move left

to position —a, move right to position ,6, move left to position —a — 6 (completing

client A), and then move right to position 2 + 6 (completing client B). Thus, the

average completion time incurred by the on-line algorithm on input instance I is

%((3a + 2S + 6) + (40 + 3H + 36)) = %(7a + 52 + 46). Meanwhile, O’PT services the

shorter client first which means O’P’TACTU) = min(%((a + 6) + (2a + ,8 + 36)), %((,6 +

6) + (2fl+a+36))) = %min(3a+fl+46, a+3fl+46). Since we can make 6 arbitrarily

7a+55

min(30+fl,a+35)

 small, then this implies a lower bound of on the competitive ratio of

the on-line algorithm.

We now show that this lower bound is minimized to be 3 when a = 2. There

108

anoanrl . . . a2 0.1 b1 b2 . . . bub—lbw,

, , r , s4
—a /—1 0 1 B\

—a—6 —1-—e 1+6 fl+e

Figure 5.4: Lower bound instance for the average completion time cost function and

k = 2.

are 2 cases to consider.

Case 1: aSfl

In this case, O’PTACTU) = -;—(3a + H) which means that the lower bound on

7a+55

3a“, which is strictly largerthe competitive ratio of the on-line algorithm is

than 3 when a < B and which equals 3 when a = B.

Case2:flSa

In this case, O’PTACTU) = %(a + 3S) which means that the lower bound on

7a+SB

a+3fl

the competitive ratio of the on-line algorithm is which is strictly larger

than 3 when ,6 < a and which equals 3 when a = B.

Thus the result follows. CI

5.5 Open Problems on the k-Client Problem

Obvious Open problems are closing the gap between the lower bound of 1325 + 1 and

the upper bound Of 2k — 1 for the total distance and average completion time cost

functions. For the total distance cost function and when k = 2, there is still a gap

between the lower bound of as? and the upper bound of 3.

109

In [4], the k-client l-server problem is considered. In this problem, there are l

servers instead of only a single server. This model is a natural generalization Of both

the k-client problem and the classic l-server problem. Some preliminary results on

this problem can be found in [4]. The question Of how to schedule multiple servers

efficiently in this model remains open.

110

Chapter 6

Minimizing Total Completion Time

on One Machine

6. 1 Introduction

In this chapter, we consider the problem of non-preemptive scheduling with release

dates on one machine to minimize total completion time (llrjl Z]. Cj). Many approxi-

mation algorithms for this problem and similar problems use the idea of “er-schedules”

[40, 73, 39, 34, 74, 19]. Previously, the best approximation algorithm was based on

this idea. This algorithm is an 6fi-approximation algorithm called BEST-a proposed

by Chekuri, Motwani, Natarajan, and Stein [19] (e—f—l z 1.58). However, it was not

known whether the bound of e/ (e — 1) for BEST-oz was tight.

We generalize the idea of “ex-schedules” and characterize a class of approxi-

mation algorithms which includes BEST-a. We show that no algorithm in this class

has an approximation ratio better than e/ (e - 1). This implies that the performance

guarantee Of BEST-a proven by Chekuri et al.[19] is tight. TO find a better approx-

imation algorithm, new ideas are needed. Afrati et al. introduced some new ideas

beyond “er-schedule” and devised a polynomial time approximation scheme (PTAS)

111

for this problem [1].

6.2 S’RPT-Subsequence Algorithms

6.2.1 Definition Of a-Schedules and the BEST-a Algorithm

For any algorithm A and any instance I, let A(I) denote the schedule for I given by A.

When there is no ambiguity, we also use A(I) to denote CA(I), the total completion

time of the schedule produced by A. The Shortest Remaining Processing Time

algorithm (SR’PT) is an Optimal algorithm for the preemptive version of the problem

we consider in this chapter. 8727’? always schedules a job with the smallest remaining

processing time. For any instance I and a 6 [0,1], let CfRPT(I,a) be the time at

which a-fraction of J,- is completed in schedule S’R’PTU).

In the SR’PT schedule of an input instance, a preemption can occur only when

a job is running on the machine, and another job has just arrived. Therefore, there

are at most n — 1 preemptions in the SR’PT schedule. When a preemption occurs,

a-fraction of the preempted job is completed for some value of oz in the interval (0, 1).

Since there are at most n — 1 preemptions in the S’R’PT schedule, then there are at

most n — 1 distinct values of a at which the preemptions occur. These n — 1 critical

values of a can subdivides the interval [0,1] into at most n sub—intervals.

An a-schedule is a non-preemptive schedule obtained by list scheduling jobs

in order of increasing CfRPTU, a) for some a in the interval [0,1]. Different values

of a chosen in the same sub-interval lead to the same ordering of CfRPTU, a) which

implies the same a-schedule. Since there are at most n sub-intervals, then there

are at most n distinct a-schedules. For each instance I, BEST-oz chooses an a-

112

schedule which gives the smallest total completion time. BEST-a was shown to be

an e/(e — 1)-approximation algorithm for llrjl E]. Q [19].

6.2.2 Definition of SR’PT-Subsequence Algorithms

We define the A(I)-sequence to be the sequence Of job identities Of job pieces in

schedule A(I). A schedule S for I is called an A(I)-subsequence schedule if the S-

sequence is a subsequence of the A(I)-sequence. For any algorithms A1 and A2,

if for any instance I, the A1(I)-sequence is an A2(I)—subsequence, then we call A1

an Ag-subsequence algorithm. See Figure 6.1 for an example. The figure shows 3

schedules for instance I with corresponding sequences on the right. S1 is the S'R'PT-

schedule. Since 23451 is a subsequence of 123214151 while 13452 is not, then 32 is

a non-preemptive SR’PT—subsequence schedule while 53 is not. In this chapter, we

will focus on non—preemptive SR’P’T-subsequence algorithms. Note that BEST-Oz

belongs to this class.

I:

I III

”WWI—5]....”

s1 1l2l3l2. l1l4l1l5l1. | 123214151

52 [2. . [3] [Z] [5]1. . . . | . 23451

33 11 . . .l3l4l |5[2. . | . . . 13452

Figure 6.1: Examples of non-preemptive S’R’PT-subsequence schedule.

113

6.3 Lower Bound of Non-Preemptive SR’PT—Sub—

sequence Algorithms

Our main result is that no non-preemptive SR’PT-subsequence algorithm including

BEST-Oz has an approximation ratio better than e—f—l.

We need the following notations. For any positive integer 17., let ne denote

[n/e] , and let

3

I

Hn : E

lc=l

A " 1

Hn : Hn—Hn = _o. Z k
k=nc +1

Note that P1,, 2 Ha — Hm z lnn — Inf = lne = 1. Next, we describe lower

bound input instances.

Definition 6.3.1. For any integer n 2 3, and e > 0, we define the instance I,,(e)

with n jobs as follows:

0 fori=1

r,- = 1+(n+1—i)e fori=2,...,ne

Hn — H,_1 2 22:1; + (n — i)e fori = ne + 1, ...,n

' __ 1+5 fori=1

7“ T e fori=2,...,n

See Figure 6.2 for example Of instances from Definition 6.3.1. The figure

shows (1) the instance 19(8) where e ——) 0+, (2) the SR’PT schedule, (3) all possible

non-preemptive S’R’PT-subsequence schedules, and (4) the optimal non-preemptive

schedule for 19(5). Note that B9 < 1. We will only be interested in instances 1,,(5)

such that II" < 1 and 0 < e < 1/n. Among these instances, we will show that as n

tends to infinity and 5 tends to 0, the total completion time of any non-preemptive

114

SR'PT-subsequence schedule will tend to e/ (e — 1) times the Optimal total completion

time.

The intuitive idea behind instances from Definition 6.3.1 is the following. Con-

sider any non-preemptive S’R’PT—schedule. NO matter where the large job is sched-

uled in the non-preemptive SR’PT—subsequence schedule, the total completion time

remains constant. Note, the latest the large job can be scheduled is between jobs

J,,c and Jn,+1 which means it will delay at least about one-third of the small jobs no

matter where it is run. On the other hand, in the Optimal non-preemptive schedule,

the large job is run last. Each Of the small jobs is run at the earliest possible mo-

ment. Only the large job incurs a large delay which is negligible when there is a large

number Of jobs.

In [82], we proved the following theorem.

Theorem 6.3.1. For any non-preemptive S’R’PT-subsequence algorithm A and for

all 6 > 0, there exist an integer n and e > 0 such that

Aunts» > 40.45)) > e
SRPT(I,,(€)) 0PT(I,,(5)) " e — 1 — 6'

However, we will omit the proof of Theorem 6.3.1 because it is rather lengthy

and complicated. Instead, we borrow a technique used in the proof of Theorem 2.2.1

in Chapter 2 and prove a similar theorem. Again, we will need Dirac’s delta function

6() which is defined as follows.

9.4.(t) = {l/A 0<t</_\.

0 elsewhere

5(‘l = A1391, 9A(°)

115

19(5) 9]] 8]] 7]] 6]] 5]] 4IIIII32

1 l

SRPT II I] H I] [I IIIIL 191817161514132

59 MM] 198765432

58 _IL IIIIIIII 918765432

$7 I] I] IIIIIII 981765432

Se J] I] I] IIIII] 987165432

55 I]]] [I If IIIII 987615432

54 J] I] I] [I I] JIII 987651432

33 J I] I] [I I] I] [I] 987654132

OPT IL [I I] [I [I [III] I 987654321

Figure 6.2: Lower bound instance for non-preemptive SR’PT—subsequence algorithm.

116

Note that

U 'f

/6(t)dt = 0 I0<u<v

,, 1 If u S 0 < v.

Theorem 6.3.2. For any non—preemptive SRPT-subsequence algorithm A, there

exists an (infinite-size) instance I such that

A(I) __ e

OPTU) _ e— 1'

Proof. The lower bound instance has the following structure. The number of jobs,

12, approaches infinity. There is one job of size 1 released at time 0. All other jobs

have size 0. Among all 0-size jobs, e“1 fraction of them are released at time 1. Let’s

call them type-A jobs. The rest of the 0-size jobs are released independently in the

interval (0,1) with the density e‘t at time t. Let’s call them type-B jobs. The release

time of 0-size jobs can be described as the following probability density function f :

e‘t for 0 < t < 1

0 everywhere else

f(t) = e‘16(1 — t) +{

In the SR’PT schedule of this instance, the unit-size job starts at time 0.

However, it is always preempted by type-B jobs when they arrive. The pieces of the

unit-size job are processed between type-B jobs. The unit-size job completes at time

1. Type-A jobs arrive at time 1 and do not preempt the unit-size job. Note that, to

be precise, type-A jobs arrive in the interval (1 — lim,_,0+ t, 1), and we should have

defined the size of the unit-size job to be 1 —- limt_,0+ t so that, in the strict sense, the

unit-size job finishes before any Of type-A jobs arrives.

A non-preemptive SR’PT-subsequence schedule for this instance can be de-

scribed by a single parameter s which represents the starting time of the unit-size

117

job in that schedule. All 0-size jobs which are released before time s are run as soon

as they arrive. All 0-size jobs which are released after time s are run as soon as the

unit-size job is finished, i.e., they are run at time s + 1. In the S’R’PT schedule,

the first piece Of the unit-size job is run at time 0, and its last piece is run before

time 1. Thus, the value of 3 corresponding to a non-preemptive S’R’PT—subsequence

schedule must satisfy the relation 0 S s < 1. The optimal non-preemptive schedule

is to schedule the unit-size job after all O-size jobs are completed (at time 1). Thus,

the optimal schedule corresponds to setting 3 to 1.

We will consider the average completion time of jobs rather than their total

completion time. Let 0,3,8 denote the average completion time of non-preemptive

schedule which starts the unit-size job at time 3. Since the number ofjobs approaches

infinity, the completion time Of the unit-size job is negligible. The average completion

time can be computed as follows.

03,, _ ftf(t)dt + /1(s + 1)f(t)dt

= /st (e“t + e‘16(1—t))dt+(s + 1) [I (6“ + e‘lci(1—t))dt

_ {[08 te“dt + (3 +1) (fsle‘tdt+ e‘l) 0 _<_ 3 <1

[Ilolte‘tdt+e"1 3 =1

_ 1 0Ss<1

_ 9:— 321

Since 0 S s < 1 for any non-preemptive SR’PT-subsequence schedule, then

the average completion time of such a schedule is 1. The Optimal non-preemptive

schedule starts the unit-size job at time 1, and has the average completion time of

(e — 1)/e. Thus, the result follows. El

118

Since BEST-a is an e—f—l-approximation algorithm [19] and a non-preemptive

SR’PT-Subsequence algorithm, we have the following corollary.

Corollary 6.3.1. BEST-a has an approximation ratio of e—f; z 1.58.

6.4 Summary

We generalized the idea of a-schedule and described the class Of non-preemptive

S’R’PT-subsequence algorithms. We proved that no algorithm in this class includ-

ing BEST-a, has an approximation ratio better than 3:. This implies that the

performance guarantee Of BEST-a proven by Chekuri et al.[19] is tight.

119

Chapter 7

AND/OR Linear Programs and

Scheduling Problems

7. 1 Introduction

In the literature, mathematical programming has been used to design approximation

algorithms for scheduling problems [40, 73, 39, 34, 74, 69, 68]. In this chapter, we do

the Opposite; we use mathematical programming to identify hard input instances Of

a scheduling problem.

This chapter is organized as follows. In Section 7.2, we define the “lower bound

problems”. In Section 7.3, we give an introduction to linear and integer programming,

the two simplest types Of mathematical programming. In Section 7.3.1, we briefly

mention previous applications of linear and integer programming for scheduling prob—

lems. In Section 7.4, we introduce AND/OR linear programming, a generalization Of

linear programming. In Section 7.4.1, we discuss the expressions Of the underlying

objective functions Of algorithms for optimization problems. In Section 7.4.2, we de-

scribe how lower bound problems can be modeled as AND/OR linear programs. In

Section 7.4.3, we describe some methods for solving AND/OR linear programs. In

120

Section 7.5, we describe an application of AND/OR linear programming for finding

hard instances of a scheduling problem.

7.2 Lower Bound Problems

In this section we define “lower bound problems”. Suppose we want to analyze the

approximation ratio of an approximation algorithm A for an NP-hard minimization

problem 11. Suppose OPT is an optimal algorithm for I1. Let OPT(I) and A(I)

be the Objective values of OPT and A for instance I in problem 11. We define

the lower bound problem LB(II,A) as the problem of finding a lower bound Of the

approximation ratio RA of A for problem 11. The Optimal value of the lower bound

problem LB(II, A) is the approximation ratio RA ofA itself. We overload the notation

by using LB(II, A) to denote the Optimal value of the lower bound. Thus,

_ _ A(I)
LB(II,A) — RA — IEIIIOPTU).

We call II the underlying problem of LB(II,A). We call A the underlying

approximation algorithm of LB(H, A). We call OPT an underlying optimal algorithm

Of LB(II, A). We call A(I) and OPT(I) the underlying approximation objective value

and the underlying optimal objective value Of LB(II, A) for I .

We will be interested in underlying problems II whose instances consist of only

real-valued parameters and nothing else (no graphs, no precedence constraints, etc).

121

7.3 Linear and Integer Programming

A linear programming problem or a linear program is an algebraic formulation Of an

Optimization problem which has the general form

max or min f(x1,...,x,,) (7.1)

subject to g,(x1, ...,x,,) b,- i = 1, ...,m (7.2)

I
V

II
|
/
\

where x,- are scalar variables, I), are scalar constants, and f and g,- are linear functions.

When a linear program is used to model a decision problem, the variables x1, ...,x,,

represent possible decision choices, the relations (7.2) represent the constraints, and

the function f is the measure Of effectiveness.

An assignment of values to the variables x1, ...,x,, is called a solution to the

problem. The n-dimensional Euclidean space R" is called the solution space. A

solution is feasible if it satisfies all of the constraints. Otherwise, it is infeasible. The

collection of all feasible solutions is called the feasible region.

The function f is called the objective or objective function. For a minimization

(maximization) problem, a feasible solution is an optimal solution or an optimum if

it yields a value of the objective function which is smaller (larger) than or equal to

that of any other feasible solution. An optimal solution need not be unique, but the

optimal value of the Objective function must be.

An integer programming problem or an integer program is an algebraic formu-

lation which has the same form as a linear program except that the values Of the

variables must be integers. Note that linear programs can be solved in polynomial

time [72]. In contrast, the integer programming problem is NP-hard [72].

122

7.3.1 Previous Use Of Linear and Integer Programs in Sched-

uling Problems

Linear and integer programming have been used in the design and analysis of poly-

nomial-time scheduling algorithms [40, 73, 39, 34, 74, 69, 68]. Most Of these works

use the technique called “LP relaxation”. The first step of this technique is to model

a scheduling problem with an integer program. The integer program is then solved

as if it were a linear program; that is, the integrality of the solution is being “re-

laxed”. Note that a linear program can be solved in polynomial time. Then some

polynomial time rounding scheme is applied to the solution to get an approximate

integral solution. The approximate integral solution is then translated back to a fea-

sible solution of the original scheduling problem. Since all computations involved are

polynomial-time, this computational procedure is a polynomial-time approximation

algorithm.

LP relaxation schemes use an algorithm for solving linear programs as a sub-

routine in an approximation algorithm for a scheduling problem. In contrast, we use

mathematical programming as a tool to identify hard instances against an approxima-

tion algorithm for a scheduling problem. The mathematical program is constructed

from the description of the scheduling problem, the Optimal off-line algorithm, and

the approximation algorithm being considered. However, ordinary linear programs

are not powerful enough to represent all possible cases in a single program. Therefore,

we introduce AND/OR linear programs which are a generalization of linear programs.

123

7.4 AND/OR Linear Programming

A solution Of an ordinary linear program is feasible if the solution satisfies all the

equalities and inequalities in (7.2). In other words, the constraints of an ordinary

linear program is a conjunction Of linear equalities and inequalities. To generalize the

constraints of an ordinary linear program, we define the “AND/OR linear program-

ming problem”. In an AND/0R linear programming problem or an AND/0R linear

program, the constraints can be any arbitrary boolean expression Of linear equalities

and inequalities. An AND/OR linear program has the general form

max or min f(x1,...,x,,) (7.3)

subject to C(e1,...,e,,,) where (7.4)

C is a boolean expression of ei’s,

e,- is the relation g,(x1, ...,xn)

I
V

II
|
/
\

.9
.- ||

I
—
l

,
3

x,- are scalar variables, b,- are scalar constants, and f and g,- are linear functions in

variables x,. The feasibility Of a solution is generalized naturally from the case of

ordinary linear programs; that is, a solution is feasible if it satisfies C.

7.4.1 Expressions of the Underlying Objective Functions

Suppose we are considering an algorithm A for a minimization problem 11. In this

section, we will take a closer look at A(I), the Objective value of A on input I.

The expression Of A(I) derived in this section will be used in the construction of an

AND/OR linear program from a lower bound problem in Section 7.4.2. Note that

the algorithm A considered could be any algorithm for 11 that is, it could be an

124

approximation algorithm for II or an Optimal algorithm for II.

Without loss of generality, we assume that the only type of conditional branches

in A are if-then-else statements. The if-clauses of the if-then-else statements are

boolean expressions of relations Of input parameters and/or temporary variables

(which are derived from input parameters). An example of an if-clause is ((a > c

and b > c) or a + b < c) where a, b, and c are input parameters. Each if—then-else

statement executed will lead to a branch result. The underlying combinatorial compu-

tation of A for I is the sequence of branch results made during the execution Of A on

input I. Upon termination, A outputs its solution for I. We assume that A also out-

puts the Objective value of the solution along with the solution itself. The Objective

value is a function Of input parameters. We will call this function the underlying com-

binatorial objective function Of A for I. In general, different underlying combinatorial

computations will have different underlying combinatorial Objective functions.

Note that two distinct input instances may have the same underlying combina-

torial computation; that is the sequence Of branch results made by A are the same for

both instances. In this case, we say that the two input instance are combinatorially

equivalent with respect to A. They will also have the same underlying combinatorial

objective function from which the objective values of their solutions are calculated.

For any positive integer n, let 11,, be the problem 11 with an additional con-

straint that all input instances have size n. Let c1,c2, ..., cN be all possible underlying

combinatorial computations Of A for II,,. Note that if A runs in polynomial time,

N could be exponential in n. For 1 S i S N, let b,,1,b,-,2, ”.,b”, be the sequence

Of boolean expressions that must hold so that when A executes, c,- is the resulting

125

computation. These boolean expressions are either the if-clauses or the negation of

the if-clauses Of the if—then—else statements encountered during the execution of A.

Note that if A has time complexity O(f(n)), then k,- = O(f(n)). For 1 S i S N, let

0,- be the underlying combinatorial objective function corresponding to c,. Note that

o,- is a function of input parameters. For any input instance I in 11, we can represent

A(I) as follows:

If bu and b1,2 and and b1),l holds, then A(I) = 01

else if b2,1 and b2; and and bu, holds, then A(I) = 02

else if bN,1 and bmg and and bN’kN holds, then A(I) = 0N.

Given an instance I of II,,, I will fall into exactly one of the N cases. Some

Of the expressions big-,8 may contain inequalities “<” and “>”. We will relax them

by replacing all inequalities “<” and “>” by the corresponding inequalities “S” and

“2”. The replacement will cause some input instances of II,, to fall into more than 1

case (underlying combinatorial computation). In Section 7.4.3, these input instances

will be used as “bridges” to shift our attention from one underlying combinatorial

computation to another.

7.4.2 Modeling Lower Bound Problems as AND/OR LPs

In this section, we explain how a lower bound problem LB(II, A) can be modeled as

AND/OR linear programs. We make the following assumptions.

0 An input instance Of the underlying problem consists only Of real-valued pa-

rameters.

126

o All underlying combinatorial objective functions of A and OPT are linear func-

tions of the parameters of the input instance.

0 All boolean expressions b,J’s supporting any underlying combinatorial compu-

tation c,- of A and OPT are composed of linear inequalities of the parameters

of the input instance.

The second assumption implies that A(cI) = cA(I) where c is a positive real

constant and C] denotes the instance created from I by multiplying all parameters of

I by c.

Next we show how to transform a lower bound problem LB(II,A) into an

AND/OR linear programming problem. By definition, the value Of LB(II, A) is

defined as the following mathematical program MP1.

A(I)

m1” orrm‘

The solution space of MP1 is the set of all input instances I of II. A feasible

solution of MP1 is a lower bound instance for A. The Optimal solution Of MP1 is

the best lower bound instance against A. The Optimal value of the Objective of MP1

is also the approximation ratio Of A.

We will show that MP1 can be transformed into a series of AND/OR lin-

ear programs. Since A(cI) = cA(I) and OPT(cI) = cOPT(I) for any instance I

and positive number c, then it is sufficient to consider those instances I such that

OPT(I) = 1. Furthermore, if OPT(I) = 1, then A(I)/OPT(I) = A(I). Thus,

127

MP1 is equivalent to the following program IIIP2.

mIax A(I) subject to

OPT(I) = 1.

Since I can have any number Of jobs, the number of variables of this math-

ematical program is unbounded. We can divide this mathematical program into

subprograms according to the number Of jobs in I. Thus, MP2 is equivalent to the

following program MP3.

max MP3(n) where MP3(n) is defined as

n21

Irrlilax A(I) subject to

OPT(I) = 1.

Until now we have been omitting the clauses “OPT(I) is the Optimal Objective

value for I” and “A(I) is the objective value of the solution produced by A for I”. The

values of OPT(I) and A(I) as functions of I can be derived as explained in Section

7.4.1. Let bu- and o,- be subexpressions of A(I) as explained in Section 7.4.1. Let

5;, and o; be corresponding subexpressions Of OPT(I). By plugging the expressions

of OPT(I) and A(I) into MP3(n), we obtain the following mathematical program

MP4(n).

128

max A subject to

I: |II=n

O = 1

and

((0:0'1 and b'l,1 and b'l,2 and and b'LkII) or

0:0' and b' and b' and” and b’ I) or2 2,1 2,2 2,1c,

(Ozo’N, and b'NI,1 and b’N,,2 and and b’NI’kgw))

and

((A201 and bm and b1; and and bu“) or

(A=02 and bu and b2; and and by”) or

(AzoN and bN’l and bmg and and bN’kN))

For n 2 1, MP4(n) is an AND/OR linear program. The Optimal solution Of

MP4(n) is the best lower bound instance with size n against A. The approximation

ratio of A is the maximum of MP4(n) for all n 2 1.

max MP4(n)

1121

129

7.4.3 Solving an AND/OR Linear Program

Consider an AND/OR linear program with C as its constraint. We can assume that

C is in disjunctive normal form (OR’s of AND’s), i.e.,

C = C, V C2 V V C), where

C, = (1,31 /\ dig /\ /\ d”, for 2 = 1, ..., h, and

d,,,- E {61, ...,em} for i = 1, ...,h andj = 1, ...,l,.

Then each clause C, together with the Objective function Of the AND/OR linear

program defines an ordinary linear program. In theory, we can optimize an AND/OR

linear program by simply optimizing the ordinary linear subprogram corresponding

to each C,- and choosing the best solution.

However, this method potentially has exponential running time. This problem

stems from two reasons. Firstly, there could be exponentially many linear subpro-

grams tO Optimize. As shown in Section 7.4.1, there could be exponentially many

clauses in the expressions of A(I) and OPT(I) in disjunctive normal form. Secondly,

each clause C, corresponding to a linear program could have exponential size. That is

because the underlying problem II is NP-hard. There is no known Optimal algorithm

for II which runs in polynomial time (if it does indeed exist). Since the known Optimal

algorithm runs in exponential time, as shown in Section 7.4.1, each clause could have

exponential size.

To evade the second problem, we could use a super-Optimal algorithm SOPT

which runs in polynomial time instead of OPT. A super—Optimal algorithm is an

algorithm that always produces a solution whose Objective value is better than or

130

equal to the Optimal solution with a relaxation that the solution produced may or

may not be feasible. Since our goal is to find a lower bound for A, the value Of the

lower bound found using SOPT is a valid lower bound for A. However, the value of

the lower bound found using SOPT may not be as tight as OPT. For example, the

problem of nonpreemptively scheduling jobs on one machine tO minimize the total

completion time (1|r,-| 2C1) is NP-hard. There is no known Optimal algorithm for

this problem which runs in polynomial time. A solution with preemptions will not be

a feasible solution for this problem. However, preemptive solutions are super-optimal

and can be constructed in polynomial-time.

To evade the first problem of exponential running time, we will use a local

search scheme instead of the global one. This scheme does not guarantee to find

a global Optimum, but it guarantees to find a local Optimum. Before we describe

the scheme, we point out some Observations. Suppose an AND/OR linear program

MP4(n) derived in Section 7.4.1 is given. Then the following tasks can be performed.

0 Given an instance I of the underlying problem, we can determine all under-

lying computations Of OPT (or SOPT) and A for I. Note that multiple

computations are the results of relaxing inequalities “<” and “>” to “S” and

“2”. Equivalently, in term of AND/OR linear program, given a solution of the

AND/OR linear program, we can find all ordinary linear subprograms whose

feasible regions contain the given solution.

0 We can easily find some initial ordinary linear subprogram of the AND/OR

linear program. This can be done by choosing a random input instance of the

131

underlying problem and applying the previous observation.

The general procedure for finding a local optimum of an AND/OR linear

program can be described as follows:

1. Choose an initial linear subprogram.

2. Compute an Optimal solution Of the linear subprogram.

3. Choose a new linear subprogram whose feasible region contains the solution

from in step 2.

4. Repeat steps 2 and 3 until all linear subprograms whose feasible regions contain

the current solution have been considered and the solution cannot be improved.

This procedure does not need a complete boolean expression for the constraints

of the AND/OR linear program up front. We only need to construct the required

linear subprograms as we proceed.

The procedure will eventually terminate because for a fixed AND/OR linear

program, there are only finitely many linear subprograms to consider. We do not

know the theoretical upper bound of the number Of iterations of this procedure other

than the obvious one, the number of all linear subprograms. However, in our examples

in the next section, we need only a few iterations before the procedure terminates.

Next, we talk about the optimality of the solution found when the procedure

terminates. After we Obtain a solution in step 2, we find a new linear subprogram in

step 3. The key Observation is that the feasible region Of the new linear subprogram

not only contains the solution in step 2, it also potentially contains a better solution.

132

Thus, by solving the new linear subprogram, we guarantee to find a solution that

is as good as or better than the previous solution. By repeating steps 2 and 3, we

will increasingly find better and better solutions for the AND/OR linear program.

The procedure will eventually find a local optimum because otherwise it would not

terminate. However, the procedure cannot guarantee to find a global optimum. The

final solution found by the procedure depends on the initial solution chosen in step 1

and the selection of new linear subprogram in each iteration in step 3. Note that if

the solution space has only one local Optimum, it is also the global Optimum.

Although this procedure can be fully automated, a partially manual execu-

tion is more productive. It is too time-consuming to implement some of the steps in

the procedure. Moreover, they are probably executed only a few times. Specifically,

choosing an initial linear subprogram in step 1 and choosing a new linear subprogram

in step 3 should be done manually. From our example in the next section, we only

need to execute the procedure for a few iterations. The task Of constructing linear

subprograms from the sequence Of execution of the Optimal algorithm and the approx-

imation algorithm could be automated or manually done depending on the problem.

In our example, this task is automated. Computing an Optimal solution Of a linear

subprogram should be automated because there are software libraries for this task

and they are easily obtained. In addition, viewing the solutions of linear subprograms

in some appropriate graphical form together with their numerical values can help us

gains intuition about the problem faster and better than reading the numerical val-

ues alone. Thus, deveIOping a program for showing a graphical representation of the

solution should be considered.

133

7.5 Applying AND/OR LP to a Scheduling Prob-

lem

In this section, we illustrate our technique using the problem Of nonpreemptively

scheduling jobs which arrive over time on one machine tO minimize the total comple-

tion time (1|rj|ZCJ-). This problem has been considered in Chapter 6. A class Of

algorithms called the non-preemptive SRPT—subsequence algorithms was considered.

In Chapter 6, we proved that no algorithm in this class has an approximation ratio

better than e/ (e — 1) z 1.58 against a class Of lower bound instances. In this sec-

tion, we will show how we came up with these input instances using the technique of

transforming a lower bound problem into an AND/OR linear programming problem.

7.5.1 Program Formulation

Let SS be the class of all non-preemptive S’RPT—subsequence algorithms defined in

Chapter 6 with an additional prOperty that they do not insert unnecessary idle time

in their schedules. Let SS(I) be the set of all non-preemptive S’RPT-subsequence

schedules with no unnecessary idle time. We want to find an instance I such that

A(I)/OPT(I) is as large as possible for all A in SS. This can be represented as the

following mathematical program:

max min AQ—

1 A688 OPT(I).

Given an instance I, any non-preemptive SRPT—subsequence algorithm will

produce an S’RPT-subsequence schedule for I. Thus, given an instance I , to consider

all non-preemptive SRPT-subsequence “algorithms”, we only need to consider all

134

non-preemptive SRPT-subsequence “schedules”. Therefore, our AND/OR linear

program becomes

S

max min ——

1 365.9(1) OPT(I)

We can eliminate the “min” by replacing S with a new variable R, and adding

a new constraint asserting that R is no larger than the minimum S in SS(I) In

other words, R is no larger than any S in SS(I) Thus, our AND/OR linear program

becomes

R .

max —— subject to

I OPT(I)

Rs 5 VSeSSU).

By using S’RPT as a super-Optimal algorithm and by following the transfor-

mation in Section 7.4.2, we obtain the following mathematical program.

mglx MP(n) where MP(n) is defined as

max R subject to

I: |II=n

S’RPT(I) = '1 (7.5)

R S S VS 6 88(1). (7.6)

In the next section, we will derive the expression of SRPT(I) and all schedules

S in SS(1) Note that an input instance I with n jobs of the underlying problem

1|rj| 2C,- consists of the release time r,- and the processing time p,- of each job j

135

where j = 1, ...,n. Thus, instances of the underlying problem consist only of real-

valued parameters.

7.5.2 Expressions of the Objective Functions

In this section, we will derive the expression of SRPTU) and all schedule S in SS(1)

For SRPT(I), we need to derive the condition when an underlying combinatorial

computation of S’RPT prevails over other computations, and the expression of the

corresponding underlying combinatorial objective function. For each S in SS(I),

we only need to derive its expression. A schedule prevails when it has a minimum

total completion time among all schedules in SS(I) This condition has already been

enforced in MP(n)

First, we give some intuition about the structure of the SRPT schedule. Given

SRPT
an instance I, we can assume that r,- = sfm’T for all i where s,- is the starting

time of job i in the S’RPT schedule. This is because SRPT cannot take advantage

of having 7', smaller than sfm’T; that is, S’RPT cannot produce a schedule with a

smaller total completion time even though r,- is smaller than szPT. In contrast, hav-

ing smaller r,- might allow non-preemptive SRPT-subsequence algorithms to produce

a schedule with smaller total completion time.

We next consider how jobs overlap in the S’RPT schedule. Let v,- be the

SR‘PT’ Cfrzrr]
interval Is,- For any pair of jobs i and j, it is the case that either v,-

and v,- are disjoint or one of them includes the other. To show this, suppose there

snrr < th?7 < Cgsrzr‘r < 03512191.
exist two intervals v,- and v,- that overlap, i.e., 8,-

Since 3‘5ka < 85in < CSRPT, then job j is run while 'ob i is ready; that is, job
1 j I .l

136

j has a higher priority than job i. However, job j completes after job i because

CfRPT < Cfm’T. This is a contradiction.

The decisions SRPT has to make during its computation are (1) whether to

preempt the running job when a new job arrives and (2) which job to run when a job

is completed. The underlying combinatorial computation of S’RPT is the sequence

of starts and stops Of jobs on the machine. The sequence of these events can be

determined from, and, in fact, is equivalent tO the sequence Of job pieces in the

SRPT schedule. They are also equivalent to the “order of inclusion and succession”

among v,- in the S’RPT schedule.

To help visualize the order of inclusion and succession, we introduce the “in-

terval inclusion graph”. Roughly, the interval inclusion graph G(I) of an instance I

can be constructed from the SRPT schedule of I as follows. First, replace each job

piece in the SRPT schedule by a node. Make sure that the nodes still line up on a

straight line. Second, for each pair Of successive nodes Of the same jobs, add an edge

connecting them. The edge drawn should look like the upper half of a circle. Note

that G(I) is not exactly a graph because it retains information about the ordering Of

job pieces in the S’RPT schedule.

In what follows, given an S’RPT schedule Of a fixed instance I with n jobs,

we inductively construct (1) the interval inclusion graph G(I) and (2) the constraints

Of the linear subprogram LP(I, n) Of the AND/OR linear program MP(n)

During the construction of C(I), we will maintain an ordered list of “clusters”

which are non-empty sets of jobs. Their definitions will be given later. One of the

jobs in each cluster will be referred to as the dominating job. Suppose U,- is a cluster

137

with job i as its dominating job. The interval v, will include the interval of all jobs

in U,. Each cluster U, will have the following parameters:

0 r(Uj) is the release time of cluster U,- and is defined as r(Uj) '2 r,.

o p(U,-) is the processing time of the dominatingjob in cluster Uj, i.e., p(U,—) = p,.

o q(U,-) is the processing time of all jobs in cluster Uj, i.e., q(U,-) = 2,er p).

o C(Uj) is the completion time of cluster U,- and is defined as C(U,) = (7,.

Relabel jobs so that 0;?an S 02,9in S S CSRPT. For the convenience

of the discussion, we assume that there is a dummy job 0 with r0 = O and p0 = 0.

Initially, cluster U0 is the only cluster in G(I), and job 0 is its only member. Thus,

T(Uo) = To = 0

(KW = P(U0) = P0 = 0 and

C(Uo) = 7‘(Uol + (I(Uo) = 0-

Suppose jobs 1, ...,l are already added into C(I) where 0 S l S n— 1. Suppose

further that there are k clusters in C(I) at this time. We add job l + 1 to CU) as

follows. Relabel clusters in C(I) so that C(U,) S r(U,+1) for i = 1, ..., k — 1. Let i, be

the maximum index such that C(U,,) S n+1. Note that C(Uk) S 0153177 since jobs

are ordered by non-decreasing Cfm’T. Job I + 1 has k — i1 + 1 pieces in the SRPT

schedule, one piece just after cluster j for j = i1, ..., k. Let p8,), denote the length

of each piece, j = i1, ..., k. Some of the pieces possibly have zero length. The total

length of job I + 1 is p,+1 which is defined as the sum of the length of all of its pieces.

138

In C(I), add a node pg), to the right of cluster U,- for j = i1, ..., k. These nodes

represent the pieces Of job l + 1 in the SRPT schedule. Add an edge between node

pa), and p331) for j = i1, ..., k — 1. Replace clusters U,,, ..., U,c in the list of clusters

by cluster U,+1 where the members of UH, consist of job I + 1 and jobs in clusters

U,,, ..., Uk. Let job l + 1 be the dominating job of U1“.

The following constraints are added into LP(I, n).

I(Um) = Tz+1 (7-7)

P(UI+1) = PI+1 = Fifi + + Pill (7-8)

(I(Um) = (GU/n+1) + + (I(Ukl) +PI+1 (7-9)

C(UI+1) = ii?” = III/1+1) + (Ia/1+1) (7-10)

1"(Hull 2 C(Uz'l) (7-11)

r(U,+1) g r(U,,+1) if 2', +1 g k (7.12)

pg), 2 0 for j = i1, ...,k (7.13)

p(U,-) g pfi’, + will), for j =i1+ 1, k (7.14)

Equalities (7.7) to (7.10) simply equate the parameters of cluster U,+1 with

their values according to their definitions. Equalities (7.11) and (7.12) enforce the

fact that i, is the maximum index such that C(U,,) S n+1. Equalities (7.13) enforces

that all pieces Of job l + 1 must have non-negative size. For j = i1 + 1, ..., k, the first

job of cluster U, preempts job I + 1. Inequality (7.14) ensures that the S’RPT rule

139

is being followed; that is, when the first job of cluster U,- arrives and preempts job

l + 1, the remaining processing time of job 1 + 1 is larger than or equal to that of the

first job of cluster Uj.

Figure 7.1 illustrates the construction of the interval inclusion graph and the

constraints of the corresponding linear subprogram. The figure includes (1) an input

instance, (2) the S’RPT schedule Of the instance, (3) the total completion time of

the SRPT schedule, (4) the interval v, of each job i in the S’RPT schedule, (5)

each step of the construction of the interval inclusion graph, and (6) constraints of

the corresponding linear subprogram created in each step. There are 5 jobs, a, b, c, d,

and e. In the SRPT schedule, C, S C, S Cc S C, S Ce. Interval vb succeeds

interval va. Interval vC includes intervals v, and vb. Interval vd succeeds interval vc.

Interval ve includes intervals vc and v,. In this figure, the length of the i’th piece Of

job a is represented as a,. Furthermore, the clusters’ parameters in the constraints

are replaced by their values (as functions Of jobs parameters). The total completion

time of the S’RPT schedule is C, + C, + CC + C, + 0,.

Next, we will determine the expression Of all S in SS(I) Let’s continue with

the same example in Figure 7.1. To construct a non-preemptive SRPT—subsequence

schedule, there are 3 choices to place job e and 3 choices to place job b. Thus, there

are 3 x 3 = 9 non-preemptive S’RPT—subsequence schedules for I. They are listed

in Figure 7.2. The formula for the total completion time of each schedule is given to

the left of each schedule.

We have described the construction Of the interval inclusion graph and the

linear subprogram from the order of inclusion and succession of job intervals. Note

140

input instance

 ITII'FI IT]

’

S’RPT schedule] e1 blalllell C3T er, I (1, I 63 I ’

3rd+3pa+3rb+3pb+2rc+2pc+2rd+2pd+re+pe

Pa = 01 0 S r,,

O a, 2 0 Ca : ra ‘1' pa

01

pb : bl Ca S Tb

o 0 b1 2 0 05 = 7‘), + 1%

0.1 ()1

Pc=CI+C2+03 OSTcSTa

o20 Q=n+m+m+m

m c2 2 0 1),, S (:3

Cl 01 62 ()1 C3

03 Z 0 Pa S 02 + 03

m pa = d1 Cc S 7‘3

o O 0

C1 0162 b1 C3 d1 d1 2 0 Cd = rd +pd

Ik=er+e+e3 OSraSn

61 Cl 01 C2 b1 03 62 d1 63

€120

€220

€320

Q=n+m+m+m+m+m

P3363

PcS€2+€3

Figure 7.1: Construction of the interval inclusion graph and the linear subprogram

141

input instance

SRPT schedule

fire+510.: +4Pc+3pc+2195+Pd

5r.+5p.+4pa+3pc+2po+103

5re +5pe+4pa+3pb+2pc+pd

5rc+5pc+4pa+3P5 +2128+292

5r. +5195+4pc+3pb+2108 +103

ra +pa+4rb+4pb+3pc+2pe+194

3re+3pe+2pa+pb+2rd+2pd+pe

3n,+3pa+2pc+pb+2rd+2pd+pe

1'. +pa+4rb+4pb+3pc+2pd+pe

Figure 7.2: Non-preemptive SRPT—subsequence schedules.

Fl W [TI—l 9

eITQIallczlthCz l ‘32 1‘11 1 e3 1 >

e I c IaIbId I e

e lal 6 1”] dl -

e [albl 6 1d 1 »

l c IaIbI 6 l d l i.

[a] c |b| 6' ldl ,

[31 Ib| c I e I d l :

I c Mb) I d1 6 I -

lal c lbl l d I e I»

m [b] c [4| 6 1:

142

that all three things are equivalent. So, for the rest of this section, we will treat the

interval inclusion graph as the specification of the linear subprogram.

7.5.3 Optimizing AND/OR Linear Programs

Now, let us apply the procedure described in the previous section to identify good

lower bound input instances for the scheduling problem we are considering. We will

especially focus on step 3 of the procedure.

Example 1

Figure 7.3 illustrates the execution of the procedure. There are 6 graphs in the

figure. The first graph is the initial interval inclusion graph which is the same example

used in Figures 7.1 and 7.2 After Optimizing the linear subprogram corresponding to

the first graph, the solution is shown in the second graph. In the second graph, a job

piece with size 0 is represented as a thick “dot”, and a job piece with non—zero size is

represented as a thick “line”. The length of each thick line is proportional to the size

of the corresponding job piece.

Observe that piece al, the first piece of job a, has zero length. Removing al

from the schedule essentially does not change the total completion time of the 872777

schedule. The third graph is the new interval inclusion graph obtained. In the third

graph, the release time ofjob a is between the completion time ofjob piece b3 and job

c. Furthermore, there are now only 6 possible non-preemptive SR'PT-subsequence

schedules. Note that other job pieces with zero length cannot be removed from the

second graph because removing them will change the total completion time of the

SR’PT schedule as well as those of non-preemptive S’R’PT—subsequence schedules.

143

The optimal solution of the linear subprogram corresponding to the third graph

is shown in the fourth graph. Similarly to the previous step, piece 0.2 has zero length

and can be removed. The fifth graph is the new interval inclusion graph obtained.

The optimal solution of the linear subprogram corresponding to the fifth graph is

shown in the sixth graph. At this point, we cannot modify the interval inclusion

graph anymore. Thus, we have found a local optimum. This instance give us a lower

bound of 1.370.

Example 2

Let us look at another example in Figure 7.4. The first graph in the figure

is the initial interval inclusion graph. The second graph is the solution obtained

from optimizing the linear subprogram corresponding to the first graph. Observe

that all job pieces in front of piece b1 have zero size. Therefore, all of them can be

removed without affecting the total completion time of the SRPT schedule. Job

pieces c1, 02, c3, and c4 can also be removed. Other job pieces with zero size cannot be

removed because otherwise the total completion time of the 872777 schedule and the

non-preemptive SWIFT-subsequence schedules will be affected. The third graph is

the new interval inclusion graph obtained. The optimal solution of the corresponding

linear subprogram of the third graph is shown in the fourth graph. We cannot modify

the interval inclusion graph anymore. Thus, a local optimum is reached. This instance

gives us a lower bound of 1.403.

Example 3

Figure 7.5 is our third and final example. The first graph is the initial inter-

144

Figure 7.3: The first example of optimizing an AND/OR linear program.

C C C C C C C C C C C

01 a2 03 04 05 b1 52 b3 b4 b5 C1 C2 63 C4 Cs

:1: z

mflx.x+m
0.1 02 a3 a4 05 Cl 62 63 C4 C5

w a: y z

m
bl 5? b3 b4 b5 w x y 2 c5

0 o 0 0+0...-

bl 52 53 b4 b5 wrryz05

Figure 7.4: The second example of optimizing an AND/OR linear program.

145

val inclusion graph. We progress similarly. The second graph is the solution from

optimizing the first graph. However, there is something different from before. The

third graph is obtained by removing job pieces al, (12,01, and 02. In this graph, among

others, job b includes jobs u, v, and c. However, there are no pieces ofjob b between u

and v, and v and c. This does not follow our construction of interval inclusion graph.

The fourth graph is obtained by adding 2 pieces of job b between jobs u, v, and

c. There is a side effect of adding these pieces; there will be more non-preemptive

SR’PT-subsequence schedules which are potentially better than the existing ones.

However, since our goal is to gain intuition, not to prove anything, then this modi-

fication is acceptable. Moreover, for this particular instance, it turns out that new

non-preemptive S’R’PT—subsequence schedules associated with adding two new pieces

for job b do not have a better total completion time than the existing ones. Then we

proceed as before until a local optimum is reached.

Structure of the Lower Bound Instance Obtained

By inspecting the final solutions in all 3 examples, the structure of (local)

optimal lower bound instances is now evident. There is one long job released at time

0. There are a number of zero length jobs. Some are released so that they preempt

the long job. Some are released when the long job has just finished. With a closer

look at the optimal solution obtained and with some more analysis, we found the

lower bound instances as defined in Chapter 6, and that concludes this section.

146

. {TYT\ {TYTX
aibl (>201 C2 63b302d1 d2 61303

u v a: y

0151 52 Ci 62 63 b3 02 d1 d2 d3 03

u v a: y

(.Y...\ {TYT\.
bl b2 b d1 d2 d3

u v C3 1: y 03

C C C C C C C

191 b2 b4 b5 53 d1 d2 d3

u 1) C3 :1: y a3

M;£0+m.

£11612 d3

C3 ~73 31 03

C C C C C C C C

()1 b2 b4 b5 b3 3 y 51303

u ’0 C3

+10L;£;+-+000.

933101303

CB

Figure 7.5: The third example of optimizing an AND/OR linear program.

147

7.6 Discussion

In the literature, linear programming algorithm has been used as subroutines in

polynomial-time approximation algorithms. In contrast we use AND/OR linear pro-

grams to find hard instances of a scheduling problem. An interesting question is how

well our technique can be applied to other problems. Another interesting question is

whether we can apply this idea to help design and analyze approximation algorithms.

148

APPENDIX

149

Appendix A

Bit Summation Inequalities

Definition A.1. For n 2 1, let B(n) be the set of non-negative integers such that

b __

ZbEB(n)2 —’ 72.

Lemma A.1. For n 2 1, Shem") 2b(b' — b) < n where b’ = maxB(n).

Proof. Let 8,, = |B(n)|, and let b1 < ()2 < < b3" be the elements of B(n).

Z 2.(,,_,) -—— Z 2b‘(an—bz’)
bEB(n) 133'an

:— 2 2bi(an—b.)

lgian-l

= Z 2’” Z (b,-b,-_1)

igian—l i+lgngn

= Z: Z 2"‘(bj—bj_1)

: Z 2b’(bj — bj_1)

l§i<j_<_Bn

: Z Z 2b*(bj—bj_1)

233-53,. 1529-1

3 Z Z 2b‘2(bi‘bi‘1_1) because :5 g 2“”—1 for all integers a:

25158,. 199-1

= E: Z 2bj+b,-—bj_1—1

233-33,. ISiSj-l

: Z (2b1.2'(b1—1+1). Z 25:)

2958,. 199-1

150

2 : 21)]- . 2—(bj—l+l) . 2bj_l+l

25258..

= 2252'

2SJ'SBn

:
131$th

:2?

bEB(n)

=71

Lemma A.2. For n 2 1, nlgn < ZbEBm) 2”(b+ 2) S nlgn + 2n.

Proof.

nlgn

Z 2”(b+2)

b€B(n)

:2“ ngZ"

bEB(n) b€B(n)

Z 2" (lg2b'+1) where b’ = max B(n)

b€B(n)

Z 2”(b’+ 1)

b€B(n)

Z 2”(b+1+b’—b)

b€B(n)

Z 2”(b+ 1) + Z 2"(b’ — b)

b€B(n) b€B(n)

Z 2”(b+ 1) + Z 2" by Lemma A.1

b€B(n) b€B(n)

Z 2"(b + 2)

b€B(n)

Z 2b(b' + 2) where b’ = max B(n)

b€B(n)

(b’ + 2) Z 2”

b€B(n)

(b' + 2)n

(lgn + 2)n because 2", _<_ Z 2" = n

b€B(n)

n lgn + 2n

151

BIBLIOGRAPHY

152

Bibliography

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,

M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes

for minimizing average weighted completion time with release dates. In Proceed-

ings of the 40th Symposium on the Foundations of Computer Science (FOCS),

pages 32—44, 1999.

[2] S. Albers. Better bounds for online scheduling. In Proceedings of the 29th ACM

Symposium on Theory of Computing, pages 130-139, 1997.

[3] S. Albers, S. Arora, and S. Khanna. Page replacement for generalized caching

problems. In Proceedings of the 10th annual ACM—SIAM Symposium on Discrete

Algorithms, pages 31—40, 1999.

[4] Houman Alborzi, Eric Torng, Patchrawat Uthaisombut, and Stephen Wagner.

The k-client problem. In Proceedings of the 8th ACM—SIAM Symposium on

Discrete Algorithms, pages 73-82, 1997.

[5] M. Andrews, M. Bender, and L. Zhang. New algorithms for the disk scheduling

problem. In Proceedings of IEEE F00S, 1996.

[6] Javed Aslam, April Rasala, Cliff Stein, and Neal Young. Improved bicriteria

existence theorems for scheduling. In Proceedings of the 10th annual ACM-SIAM

Symposium on Discrete Algorithms, pages 8846-8847, 1999.

[7] Y. Azar and O. Regev. On-line bin-stretching. In Proceedings of the 2nd RAN-

DOM, pages 71—81, 1998.

[8] Yossi Azar, Leah Epstein, and Rob van Stee. Resource augmentation in load

balancing, 1999. manuscript, 14 pages.

[9] KR. Baker. Introduction to Sequencing and Scheduling, chapter 2. Wiley, New

York, 1974.

[10] K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan. Preemptive

scheduling of a single machine to minimize maximum cost subject to release

dates and precedence constraints. Operations Research, pages 381—386, 1982.

153

[11] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha.

On-line scheduling in the presence of overload. In Proceedings of the 32nd IEEE

Symposium on the Foundations of Computer Science, pages 101—110, 1991.

[12] Piotr Berman and Chris Coulston. Speed is more powerful than clairvoyance.

In Proceedings of the 6th Scandinavian Workshop on Algorithm Theory, pages

255—263, 1998.

[13] Piotr Berman and Chris Coulston. Speed is more powerful than clairvoyance.

Nordic Journal of Computing, pages 181—193, 1999.

[14] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical

task system. Journal of the ACM, 39:745—763, 1992.

[15] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Com-

petitive paging with locality of reference. Journal of Computer and System Sci-

ences, 50(2):244-258, 1995.

[16] Joan Boyar and Kim S. Larsen. The seat reservation problem. Technical report,

University of Southrn Denmark, 1996. PP-1996-24, September 1996, 12 pages.

[17] Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The accommodating func-

tion — a generalization of the competitive ratio. Technical report, University of

Southrn Denmark, 1998. PP-1998-24, December 22, 1998, 30 pages.

[18] S. Chakrabarti, C.A. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, and J..Wein.

Improved scheduling algorithms for minsum criteria. In F. Meyer auf der Heide

and B. Monien, editors, Automata, Languages and Programming, Lecture Notes

in Computer Science 1099, pages 646—657, Berlin, 1996. Springer. Proceedings

of the 23rd International Colloquium (ICALP’96).

[19] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques

for average completion time scheduling. In Proceedings of the 8th ACM-SIAM

Symposium on Discrete Algorithms, pages 609—618, 1997.

[20] E. Coffman, M. Carey, and D. Johnson. Approximation algorithms for bin pack-

ing: A survey. In D. Hochbaum, editor, Approximation Algorithms for NP-Hard

Problems, chapter 2, pages 46-93. PWS Publishing Company, 1997.

[21] E. Coffman and M. Hofri. On the expected performance of scanning disks. SIAM

Journal on Computing, 11:60—70, 1982.

[22] E. Coffman, L. Klimko, and B. Ryan. Analysis of scanning policies for reducing

disk seek times. SIAM Journal on Computing, 1(3):269—279, 1972.

[23] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Scheduling. Addison-

Wesley, 1967.

154

[24] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,

Cambridge, MA, 1990.

[25] Paolo Dell’Olmo, Hans Kellerer, Maria Grazia Speranza, and Zsolt Tuza. A

13/12 approximation algorithm for bin packing with extendable bins. Infamo-

tion Processing Letters, 65:229—233, 1998.

[26] M. Dertouzos and A. Mok. Multiprocessor on-line scheduling of hard-real-time

tasks. IEEE Transactions on Software Engineering, 15:1497—1506, 1989.

[27] Jeff Edmonds. Scheduling in the dark. In Proceedings of the 3Ist ACM Sympo—

sium on Theory of Computing, pages 179—188, 1999.

[28] A. Feldmann, M.-Y. Kao, J. Sgall, and SH. Teng. Optimal online scheduling of

parallel jobs with dependencies. In Proceedings of the 25th ACM Symposium on

Theory of Computing, pages 642—651, 1993.

[29] A. Feldmann, J. Sgall, and S-H. Teng. Dynamic scheduling on parallel machines.

In Proc. of 32nd IEEE Symp. on Foundations of Computer Science, pages 111—

120, 1991.

[30] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive

paging algorithms. Journal of Algorithms, 12:685-699, 1991.

[31] MR. Garey and D.S. Johnson. Strong NP-completeness results: motivation,

examples and implications. Journal of the ACM, 25:499-508, 1978.

[32] MR. Garey, R.E. Tarjan, and G.T. Wilfong. One-processor scheduling with sym-

metric earliness and tardiness penalties. Mathematics of Operations Research,

13:330—348, 1988.

[33] R. Geist and S. Daniel. A continuum of disk scheduling algorithms. ACM

Transactions on Computer Scheduling, 5(1):77—92, 1987.

[34] M.X. Goemans. Improved approximation algorithms for scheduling with release

dates. In Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms,

1997.

[35] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries

for request-answer games. In Proceedings of the 11th ACM-SIAM Symposium on

Discrete Algorithms, pages 564—565, 2000.

[36] R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-

nical Journal, 45:1563—1581, 1966.

[37] R.L. Graham. Bounds on multiprocessing anomalies. SIAM Journal on Applied

Mathematics, 17:263—269, 1969.

155

[38] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. Ann.

Discrete Math, 5:287—326, 1979.

[39] L.A. Hall, A. Schulz, D.B. Shmoys, and J. Wein. Scheduling to minimize average

completion time: off-line and on—line approximation algorithms. Mathematics of

Operations Research, 22:513—549, 1997.

[40] L.A. Hall, D.B. Shmoys, and J. Wein. Scheduling to minimize weighted comple-

tion time: off-line and on-line algorithms. In Proceedings of the 7th ACM—SIAM

Symposium on Discrete Algorithms, pages 142—151, 1996.

[41] D.S. Hochbaum and DB. Shmoys. Using dual approximation algorithms for

scheduling problems: practical and theoretical results. Journal of the ACM,

34(1):144—162, 1987.

[42] J.A. Hoogeveen. Minimizing maximum promptness and maximum lateness on a

single machine. Mathematics of Operations Research, 21:100—114, 1996.

[43] J .A. Hoogeveen. Single-machine scheduling to minimize a function of two or

three maximum cost criteria. Journal of Algorithms, 21(2):415—433, 1996.

[44] J .A. Hoogeveen and S.L. van de Velde. Minimizing total completion-time and

maximum cost simultaneously is solvable in polynomial-time. Operations Re-

search Letters, 17(5):205—208, 1995.

[45] C.A.J. Hurkens and M.J. Coster. On the makespan of a schedule minimizing total

completion time for unrelated parallel machines, 1996. Unpublished manuscript.

[46] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst

case performance bounds for simple one-dimensional packing algorithms. SIAM

Journal on Computing, 3:299—325, 1974.

[47] B. Kalyanasundaram and K. Pruhs. The online transportation problem. In Lec-

ture Notes in Computer Science 979, pages 484—493, 1995. European Symposium

on Algorithms (ESA). Also to appear in SIAM Journal on Discrete Mathematics.

[48] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In

Proceedings of the 36th Annual IEEE Foundations of Computer Science, pages

214—221, 1995. Also to appear in Journal of the ACM.

[49] Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online.

In Lecture Notes in Computer Science 1461, pages 235—246, 1998. European

Symposium on Algorithms (BSA).

[50] RM. Karp and N. Karmarkar. An efficient approximation scheme for the one-

dimensional bin-packing problem. In Proc. of the 23th IEEE Symp. Foundations

of Computer Science, pages 312—320, 1982.

156

[51] Tsuyoshi Kawaguchi and Seiki Kyan. Worst case bound of an LRF schedule for

the mean weighted flow-time problem. SIAM Journal on Computing, 15(4):1119—

1129, 1986.

[52] H. Kellerer, T. Tautenhahn, and OJ. Woeginger. Approximability and non-

approximability results for minimizing total flow time on a single machine. In

ST00’96, pages 418—426, 1996.

[53] G. Koren, D. Shasha, and S.-C. Huang. MOCA: A multiprocessor on—line com-

petitive algorithm for real-time system scheduling. In Proc. 14th Real-Time

Systems Symposium, pages 172—181, 1993.

[54] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis

of a local search heuristic for facility location problems. In Proceedings of the 9th

ACM-SIAM Symposium on Discrete Algorithms, pages 1—10, 1998.

[55] E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis. In Proceed-

ings of the 35th Annual IEEE Foundations of Computer Science, pages 394—400,

1994.

[56] E. Koutsoupias and C. Papadimitriou. On the k—server conjecture. In Proceedings

of the 26th ACM Symposium on Theory of Computing, pages 507—511, 1994.

[57] Tak Wah Lam and Kar Keung To. Trade-offs between speed and processor in

hard-deadline scheduling. In Proceedings of the 10th ACM-SIAM Symposium on

Discrete Algorithms, pages 623—632, 1999.

[58] BL. Lawler. A dynamic programming algorithm for preemptive scheduling of

a single machine to minimize the number of late jobs. Annals of Operations

Research, 26:125—133, 1990.

[59] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343—362, 1977.

[60] MS. Manasse, L.A. McGeoch, and DD. Sleator. Competitive algorithms for

server problems. Journal of Algorithms, 11(2):208—230, 1988.

[61] ST. McCormick and ML. Pinedo. Scheduling n independent jobs on m uniform

machines with both flow time and makespan objectives: A parametric approach.

ORSA Journal on Computing, 7:63—77, 1992.

[62] J .M. Moore. Sequencing n jobs on one machine to minimize the number of tardy

jobs. Management Science, 17(1), 1968.

[63] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical

Computer Science, 130(1):17—47, 1994.

[64] A. Nagar, J. Haddock, and S. Heragu. Multiple and bicriteria scheduling: A

literature survey. European Journal of Operational Research, 81(1):88—104, 1995.

157

[65] Rosser T. Nelson, Rakesh K. Sarin, and Richard L. Daniels. Scheduling with

multiple performance measures: the one-machine case. Management Science,

32(4):464-479, 1986.

[66] W. Oney. Queuing analysis of the scan policy for moving—head disks. Journal of

the ACM, 22(3):397—412, 1975.

[67] SS. Panwalkar, R.A. Dudek, and ML. Smith. Sequencing research and the

industrial scheduling problem. In S.E. Elmaghraby, editor, Symposium on the

Theory of Scheduling and its Applications, New York, 1973. Springer.

[68] Cynthia Phillips, Andreas Schulz, David Shmoys, Clifford Stein, and Joel Wein.

Improved bounds on relaxations of a parallel machine scheduling problem. Jour-

nal of Combinatorial Optimization, 1(4):413—426, 1998.

[69] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-

critical scheduling via resource augmentation. In Proceedings of the 29th ACM

Symposium on Theory of Computing, pages 140—149, 1997.

[70] April Rasala. Existence theorems for scheduling to meet two objectives. Technical

report, Dartmouth College, 1999. Computer Science Technical Report PCS-

TR99-347.

[71] MB. Richey. Improved bounds for harmonic-based bin packing algorithms. Dis-

crete Applied Mathematics, 34:203—227, 1991.

[72] Alexander Schrijver. Theory of Linear and Integer Programming. John-Wiley &

sons,1986.

[73] AS. Schulz. Scheduling to Minimize Total Weighted Completion Time: Perfor-

mance Guarantees of LP-Based Heuristics and Lower Bounds, pages 301-315.

Springer, Berlin, 1996. Proceedings of the 5th International Conference on Inte-

ger Programming and Combinarotial Optimization.

[74] AS. Schulz and M. Skutella. Scheduling-LPS bear probabilities: Randomized

approximations for min-sum criteria. Technical report, Technical University of

Berlin, Germany, 1996. Technical Report 533/1996.

[75] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. In USENIX,

pages 313—324, 1990.

[76] DB. Shmoys and E. Tardos. An approximation algorithm for the generalized

assignment problem. Mathematical Programming, 62:461—474, 1993.

[77] DD. Sleator and RE. Tarjan. Amortized efficiency of list update and paging

rules. Communications of the ACM, 28:202-208, 1985.

[78] WE. Smith. Various optimizers for single-state production. Naval Research

Logistics Quarterly, 3:59—66, 1956.

158

[79] MG. Speranza and Z. Tuza. On-line approximation algorithms for scheduling

tasks on identical machines with extendable working time. Annals of Operations

Research, 86:491—506, 1999.

[80] Cliff Stein and Joel Wein. On the existence of schedules that are near-optimal

for both makespan and total weighted completion time. Operations Research

Letters, 21(3):115—122, 1997.

[81] T.J. Teorey and TB. Pinkerton. A comparative analysis of disk scheduling

policies. Comm. ACM, 15:177—194, 1972.

[82] Eric Torng and Patchrawat Uthaisombut. A tight lower bound for the BEST-

alpha algorithm. Information Processing Letters (IPL), 71(1):17—22, 1999.

[83] Jean Vuillemin. A data structure for manipulating priority queues. Communi-

cations of the ACM, 24:309-315, 1978.

[84] Yaoguang Wang. Bicriteria job sequencing with job release dates. Technical

report, Max Plank Institute, Germany, 1997. MPI-I-97—1-005.

[85] Luc N. Van Wassenhove and Ludo F. Gelders. Solving a bicriterion scheduling

problem. European Journal of Operational Research, 4:42—48, 1980.

[86] B. Worthington, G. Ganger, and Y. Patt. Scheduling algorithms for modern disk

drives. In SICMETRICS, pages 146—156, 1995.

159

‘ ‘MICHIGAN STWTE [LIFHARlES I

[ll [HI] [I] [I [H] I] [I] [ll] I] [la [llllllll
3 1293 02208 6791

