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ABSTRACT

COMPUTATIONAL TECHNIQUES FOR MODELING PROTEIN-LIGAND

INTERACTIONS AND THEIR APPLICATION To SERINE PROTEASES AND

ASPARAGINYL-tRNA SYNTHETASE

By

Paul C. Sanschagrz'n

This thesis describes several techniques for modeling protein-ligand interactions, in-

cluding interactions between water molecules and proteins, as well as application of these

techniques to thrombin, trypsin, and asparaginyl-tRNA synthetase. A complete-linkage hi-

erarchical cluster analysis technique for determining the degree of conservation of water

sites in a series ofrelated protein structures is presented. This technique was applied to the

study of conserved water binding sites in the serine proteases thrombin and trypsin, with

analysis of the implications for conserved water sites in the active site and nearby sodium

ion site in thrombin. Cluster analysis was also used to identify conserved water binding

sites in bovine pancreatic trypsin inhibitor (BPTI) and in the trypsin-BPTI complex. The

conserved sites in the trypsin-BPTI complex were compared to those in trypsin and BPTI,

showing that only about half of the interfacial water sites in the complex exist in the free

form ofeither protein, while the remaining halfare recruited or shuffled Upon complex for-

mation. The results of cluster analysis also allow inclusion ofhighly conserved water sites

in protein and drug design.



In addition to examination of water molecules as protein ligands, modeling sites of

favorable potential interactions with proteins in the SLIDE technique for computational lig-

and screening was improved. SLIDE is a multi-step algorithm which eliminates potential

ligand molecules from a screening database via increasingly more stringent and compu-

tationally expensive steps to yield a ranked list of potential ligands for the protein target.

Improvements made to the modeling of Sites of favorable hydrophobic interaction for both

the protein template and the potential ligand molecules are described and evaluated. Addi-

tional improvements made by my colleague Maria Zavodszky to the description of hydro-

gen bonding points in the protein template are also briefly described and evaluated. These

improvements were tested using 42 thrombin and 16 glutathione S-transferase complexes.

Both the protein template and database molecule representation improvements yield ligand

dockings that are closer to those seen in the crystallographic complex. An enrichment of

known ligands selected from a set of molecules from the Cambridge Structural Database

(CSD) is also shown.

Application of SLIDE to asparaginyl-tRNA synthetase from Brugia malayi, a human

pathogenic nematode, was performed. Screening against the CSD identified three potential

ligands of particular interest: variolin B, with possible antitumor and antiviral properties;

cercosporamide, which has known phytotoxic and fungitoxic properties; and phlorizin, a

sodium/glucose transport inhibitor. Suggested binding modes for two of 16 in vitro high-

throughput screening hits are also described.
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Chapter 1

Computational Docking and Screening Methods

- A Review of Algorithms, Scoring Functions,

and Applications

1.1 Protein-Ligand Binding Sites

Proteins perform many of the processes that are responsible for giving life to the cell.

While proteins play important structural roles, much ofthe interest in proteins involves the

study oftheir roles in catalytic and signaling events, both ofwhich involve binding to other

molecules. The molecular partners of proteins range in size from single water molecules

and metal ions to large, multimeric protein complexes. Understanding the mechanisms of

protein binding is a key to understanding the function of proteins and the particular niche

each protein inhabits in the large, extraordinarily complex system of a living organism.

The classic view of protein-ligand binding is the “lock-and-key” concept (Fischer,

1



1894), in which the ligand “key” acts as the complement to the binding site “lock”. Part

of the interaction between protein and ligand is simply the steric fit of the two pieces, i.e.,

similar to a key fitting a lock. Of course, chemistry also plays an important in establishing

complementarity between the proteins and their ligands. Examination of protein surfaces

showed that, on average, 57% of the surface involves non-polar residues (Miller et a1.,

1987). Interaction between proteins in regions of non-polar character are predominantly

steric in nature. Given that the remaining 43% of the surface of a protein consists of polar

and charged residues, it is not surprising that interactions between these types of residues

also play a significant role in ligand binding. Since the non-polar interactions are generally

non-specific in nature, the polar and charged residue interactions provide the specificity of

interaction. A study of 15 protease-inhibitor complexes and 4 antigen-antibody complexes

determined these complexes generally form a large number of protein-ligand hydrogen

bonds (Janin and Chothia, 1990).

Since various residue types can contribute similar chemical properties to a ligand

binding site, it is interesting to examine if there is a preference for any specific residue

types in ligand-binding sites. In a study of 46 monomeric proteins, Miller and colleagues

(1987) showed that some residue types are significantly overrepresented (lysine, serine,

and glycine) compared to the overall amino acid composition of proteins, while others,

(methionine) are significantly underrepresented. A similar analysis focused on protein-

ligand binding sites in 50 crystallographic complexes was performed (Villar and Kauvar,

1994). They showed an overabundance oftryptophan, histidine, and tyrosine located close

to the ligand, indicating that these may play an important role in ligand binding. Proline

 



is found to be significantly underrepresented in the binding site relative to its abundance in

proteins overall, perhaps due to its general structural role, which may be important internal

to the protein and away from the binding site. Lysine is also significantly underrepresented

in ligand-binding sites, while it constitutes a higher than expected proportion ofthe protein

surface. In addition to examination of the relative abundance of each amino acid type in

ligand-binding Sites relative to the over-A1 protein surface, they studied the percentage of

the binding site, defined as those amino acids within 4.0 A of the ligand, made up of each

of the amino acids. This examination showed that glycine, serine, arginine, and tyrosine

predominate in the binding Site. The distributions for the binding sites are Significantly

different from those for the protein surface and for the protein overall.

The key may not be quite the perfect match to the lock as a simple lock-and-key model

would suggest, even with the inclusion of chemistry as part of the lock and the key. Many

proteins exist which bind a variety of ligands. The major histocompatibility complex class

I (MI-1C I) binds a large variety ofpeptides with high aflinities (\Vrlson and Fremont, 1993).

One way to extend the “lock-and-key” concept is that ofa flexible lock and/or a flexible key,

i.e., the protein and/or ligand changes conformation during ligand binding. A recent study

of39 complexes showed that proteins generally undergo some conformational change upon

ligand binding (Betts and Stemberg, 1999), including moderate backbone conformational

changes in addition to side-chain movements. Inclusion of protein and ligand flexibility

greatly increases the complexity of computational models for protein-ligand binding. Sev-

eral docking and screening methods, including their approaches to handling flexibility, are

discussed below.

 



1.2 Computational Docking Methods

Computational docking can be described as the process ofmodeling the binding orientation

ofa specific ligand to a specific protein ofinterest, i.e., a “receptor”. Docking and screening

methods (screening is described below in Section 1.3) provide for a further understanding

of the mechanisms involved in protein-ligand binding in general, as well as helping to

understand the details of the interactions in a specific protein or protein-ligand complex

of interest. In addition to gathering such knowledge for understanding the processes, this

knowledge can be used to improve the design of ligands with high specificity and high

afiinity toward a specific target.

1.2.1 Ligand Manipulation Docking Methods

The classical algorithm implemented for computational docking is that of DOCK (Kuntz

et a1., 1982; DesJarlais et a1., 1988; Shoichet et a1., 1992; Ewing and Kuntz, 1997). DOCK

operates by generating a set of spheres to describe the volume, or negative image, of the

binding site and uses the centers of these spheres as sites for matching to ligand atoms.

Sets of receptor spheres are matched to sets of ligand atoms to generate a ligand orienta-

tion, which can then be scored according to their complementarity with the protein. The

early internal DOCK scoring function, GRID (Meng et a1., 1992), is a grid-based scoring

function in the method of Goodford and colleagues (1985). Later implementations have

used more robust scoring functions which are also grid-based. It is possible to use the lig-

and docking method of DOCK with an externally supplied scoring function. The initial

 



implementation ofDOCK used only steric fit and electrostatics as a determinant for ligand

docking, but later versions implemented chemical type matching to better model chemical

complementarity between ligand and receptor groups, including hydrogen bonding inter-

actions. It should be noted that DOCK uses only rigid-body translations and rotations,

including no flexibility within the docking algorithm.

Several improvements have been made to the DOCK algorithm since its inception, in-

cluding extension to include information about known ligand docking orientations through

the development of similarity-penalized docking (SP-DOCK) and similarity-guided dock-

ing (SG-DOCK; Fradera et a1. 2000). During docking with the SG-DOCK algorithm, the

docking score is weighted according to the similarity, defined by MIMIC (Mestres et a1.,

1997) to a known ligand structure and/or pharrnacophore structure, the spatial arrangement

of key ligand functional groups identified by analysis of a set of known ligands, for each

scoring during the docking. This causes the dockings to be biased towards that of the

known ligand/pharmacophore. When using SP-DOCK, the final scores of dockings per-

formed without a pharmacophore bias are weighted by the similarity, which results in a

resorting of the final docking orientations. The similarity measure plays a much more im-

portant role in the SG-DOCK procedure as it can drive the orientational and conformational

search.

Another adaptation of DOCK involves the observation that protein-protein interfaces

generally contain more hydrophobic contacts than other surface regions. Vakser and Aflalo

(1994) implemented an algorithm which reduces the model of the ligand protein surface

to include only points attributed to hydrophobic atoms. This algorithm resulted in only a

 



small improvement in docking predictions for three of the four cases tested by the authors

compared to standard DOCK, but this method uses a reduced surface representation, an

important consideration for computationally intensive docking and screening methods, and

is more tolerant to conformational changes.

Another rigid body docking procedure, developed for protein-protein docking, is the

PUZZLE algorithm (Helmer-Citterich and Tramontano, 1994), which maps protein sur-

faces into two-dimensional matrices, consisting of distances between adjacent points on

the surface along the edge of a surface slice of fixed height, and then identifies matching

submatrices. The PUZZLE algorithm has been modified to include a more comprehen-

sive scoring function and improved mapping of small protein surfaces, dubbed ESCHER

(Ausiello et a1., 1997). This algorithm operates by slicing each of the proteins, describ-

ing a polygon for each slice, and then finding complementary shape matchings for these

polygons by way of translations and rotations ofone relative to the other. Alternate sets of

polygons are generated by three-dimensional translation and rotation in fixed increments.

Matching polygons are then scored based on steric and electrostatic parameters. A short-

coming of this procedure is the relatively coarse set of three-dimensional rotations em-

ployed, only taken at 10° increments. The ESCHER program is generally able to achieve

correct dockings for well-buried ligands, but fails to do so for ligands which are bound to a

shallow binding site.

Additional rigid-body docking algorithms have been developed. One is that devel-

oped by Fischer and colleagues (1995). This algorithm is a geometric-based approach,

in which the protein and the ligand are represented by “critical” points and sets of points

 



are matched using geometric hashing, whereby the geometry for the spatial arrangement

of points of potential interaction are precomputed and entered in a lookup table for later

reference. Once possible matchings are identified, they are scored based on the contact

area between molecules and their electrostatic interactions. This procedure was able to

dock test ligands to within 1.5 A root-mean-square deviation (RMSD) relative to the posi-

tion of the ligand in the crystallographic complex in 18 of 19 test cases, though often the

best docking in terms ofRMSD was not ranked near the top based on scoring. Scoring of

computational dockings, equivalent to predicting binding aflinity, is a key component of

identifying the “best” docking and remains a Significant challenge. A discussion of scoring

functions is presented below in Section 1.4. Another rigid-body docking algorithm is the

LIGIN program developed by Sobolev et a1. (1996). In LIGIN, a complementarity func-

tion including terms for favorable contacts, unfavorable contacts, and the contact surface is

defined. Minimal receptor flexibility is modeled by allowing the user to define one or more

residues whose side chains, from Cg to the side-chain termini, are ignored in calculation of

the complementarity function. LIGIN was tested on a set of 14 complexes and was able to

dock all ligands with reasonable RMSDS relative to the crystal structure.

More complex approaches to handle conformational flexibility in ligand docking have

been developed. In the latest version ofDOCK, limited ligand flexibility is modeled by the

use of rigid-body dockings of ligand conformers, with later versions of DOCK including

an internal Conformation generator using a genetic algorithm (GA; Oshiro et a1. 1995). An

alternative to stochastic sampling of the rotational degrees of freedom is to use previously

observed low energy states. The algorithm of Leach (1994) implements such a technique

 



to explore both protein side chain flexibility, via the use of rotarner libraries, and ligand

flexibility, via the use of conformational analysis. Instead of relying on rigid-body dock-

ings of ligand conformations, flexibility is addressed more directly in the latest version of

DOCK using an incremental construction algorithm based on that developed by Leach and

Kuntz (1992). Incremental construction docking begins by placing a fragment ofthe ligand

into the binding site and then adding functional groups to build up the ligand. Incremental

discussion methods are further discussed below in Section 1.2.3.

A further derivative of DOCK is FLOG (Miller et a1., 1994). FLOG uses the same

matching approach of DOCK, but expands the types of atoms assigned based on their

chemistries. It also includes some ligand flexibility by including generated ligand confor-

mations in the database, but the docking procedure remains a rigid-body one. The authors

ofFLOG developed an enhanced grid-based scoring frmction which includes electrostatic,

hydrogen bonding, hydrophobic, and van der Waals potentials. FLOG is able to select

known inhibitors from a large database of drug-like molecules.

In all docking algorithms, there is a tradeoff between how extensively and accurately

the orientation and conformational space is explored and the computational requirements to

perform the exploration. Several methods use stochastic approaches to the docking problem

to achieve a higher degree ofaccuracy at the expense ofexploration. A popular algorithm is

AutoDock (Morris et a1., 1996), which employs a Monte-Carlo simulated annealingmethod

to sample binding orientations and ligand conformations, by randomized rotation of rotat-

able torsions in the ligand. AutoDock is inexpensive, easy to use, achieves reasonable

dockings, and has been applied to several cases (Goodsell et a1., 1996). An extension to

 



AutoDock replaces the Monte-Carlo search with a Lamarckian genetic algorithm (LGA),

a hybrid GA and local search method (Morris et a1., 1998). The LGA differs from a tradi-

tional GA by its performing a finer local search on the orientation of the ligand relative to

the protein and ofthe ligand’3 conformation.

A second stochastic approach based on the use of a GA was developed by Jones and

colleagues (1995). Their approach uses a simple GA operating on rotational angles in the

protein, rotational angles in the ligand, and on hydrogen bonds from ligand to protein and

protein to ligand. The fitness or scoring function encompasses terms for the hydrogen bond

energy between protein and ligand, for the van der Waals energy between protein and lig-

and, and for the internal van der Waals energy ofcontacts within the ligand. Improvements

to this algorithm resulted in the development of the GOLD algorithm (Jones et a1., 1997),

with changes in the representation of angles and hydrogen bonds and inclusion of a more

robust scoring firnction. The GOLD algorithm achieved “acceptable” dockings for 71 of

100 test cases. Similar to GA approaches is the evolutionary programming approach AG-

DOCK(Gehlhaar et al., 1995b; Verkhivker et a1., 1999), which is able to generally correctly

dock, defined here as docking within 1.5 A of the complex crystal structure, methotrexate

into dihydrofolate reductase (DHFR) and a proprietary ligand, AG-1343, into HIV pro-

tease.

Another approach is the ICM algorithm (Abagyan et a1., 1994; Totrov and Abagyan,

1997), which uses a complex procedure to finely dock a ligand. In this approach the

molecules are represented by a set of internal variables (rotatable angles, e.g., rotatable

side-chain single bonds) for their relative positions and conformations, which are randomly

 



changed, energy minimized, and selected via the Metropolis algorithm for each step. This

approach successfully docked lysozyme to its antibody (Totrov and Abagyan, 1994) and

fl-lactamase and its inhibitor (Strynadka et a1., 1996), but the study presented here docked

only three ofeight ligands used in the Second Meeting on the Critical Assessment ofTech-

niques for Protein Structure Prediction (CASP2; Moult et a1. 1997) with an RMSD relative

to the crystal structure of less than 5.0 A. Generally, dockings with RMSDS lower than 2.0

to 2.5 A are considered as correct.

The SLIDE algorithm, which constitutes a major focus of this thesis work, belongs to

this first, ligand manipulation, class of docking algorithm types and is described in Chap-

ter 3.

1.2.2 Recombination Docking Methods

An alternative to the approaches described above, in which the docking is performed via

manipulation of a ligand molecule, is the approach of placing each piece of the ligand

independently and then linking the docked fragments to form a docking of the complete

ligand. One implementation of this approach is the empirically based GEMINI algorithm

(Singh et a1., 1991), which docks peptidyl ligands. In this method, a database of side-

chain packing arrangements generated from 52 protein structures (Singh and Thornton,

1990) is used to map potential orientations of each peptide ligand Side chain relative to

the protein binding-site side chains. The three-dimensional distribution for each ligand

residue/protein residue type pair is orientated based on the protein side chain’s positions.

These distributions can then be superimposed to identify potential orientations ofthe ligand
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side chains which simultaneously occur in regions of high frequency in the distributions.

Some simple constraints on covalent bond formation to other ligand side-chains, i.e., along

the peptidyl ligand chain, can be included to yield a small set of possible ligand binding

orientations and conformations. The technique has the limitation that it is applicable to

only peptidyl and, perhaps, a few other limited types of ligands as an empirical database of

side-chain or firnctional group orientations must be known. This requires that a statistically

significant number ofexample interactions exist in the structural database, which is the case

for peptidyl packings as one can use the proteins in the Protein Data Bank (PDB; Berman

et a1. 2000; Bernstein et a1. 1977). However, for many ligands of interest, there may be

only a few or no structures with similar groups bound.

The algorithm developed by Sandak and colleagues (1998b) is another recombination-

based approach. In this method, the ligand is represented by a set ofpredefined hinges and

set of interaction points, representing Sites of favorable interaction. Each triplet within a

part ofthe ligand, i.e., portions ofthe ligand on one side ofthe hinge, are matched by triplets

of interaction points in the protein. The best dockings of each piece and hinge orientation

are tabulated, recombined, and then scored using an interatomic contact scoring function.

This algorithm can be applied to hinges in either the ligand or the receptor, but not both,

during a docking run. Acceptable dockings were achieved for synthetic peptides binding to

calrnodulin and to HIV protease (Sandak et al., 19983), which undergo a clamping motion

upon ligand binding.
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1.2.3 Incremental Construction Docking Methods

A third docking approach is that of incremental construction, which initially docks only

a portion of the ligand and then builds up the remaining ligand groups based on this ini-

tial placement. The classical algorithms for this docking approach are GROW (Moon and

Howe, 1991), for peptidyl ligands, and FLEXX (Rarey et al., 1996a), for generalized lig-

ands. In FLEXX, the flexibility ofthe ligand is described by torsion angle rotations at dis-

crete steps as in the MIMUMBA algorithm (Klebe and Mietzner, 1994). In the first stage

of docking, the base, or anchor, fragment is chosen, which is then placed into the bind-

ing site. This placement in done based on local interaction surfaces as described in Rarey

et al. (1996b), involving a pose, or orientation, clustering step. Once the anchor fragment

is placed, in one or more orientations, a tree representing the possible conformations for

adding the remaining pieces ofthe ligand is constructed. Each node ofthe tree represents a

set of currently docked fragments and their orientations and conformations, with the base

node(s) representing the base fragment docking(s). Branches from a node represent the

next ligand fragment to add, with each branch including the identity of the fragment and

the rotation about the newly formed bond, set to one value in a set offixed increments ofthe

rotation angle. Ligand groups connected by a rigid, i.e., nonrotatable, bond are considered

a single fiagment, so the bond formed by all additions is rotatable. For example, branches

from a current node may include a methyl group and a rotation angle of 10°, a methyl group

and a rotation angle of 20°, etc. to 360° (36 branches), and a second set of branches from

the same node for a carboxyl group and rotation angles of 10—360° (36 branches), for a

total of 72 branches. Due to the computational complexity of exploring the complete tree,
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only the top It, with I: set to 500 in the work presented by the authors, scoring branches

from each node are explored. The solution set, consisting of all dockings, is then clustered

to reduce dockings that are very similar which arose from independent traversals of the

docking tree. Scoring is done with a energy fimction derived fi'om that ofBéhm (1992a,b).

This algorithm was tested on a set of 19 protein-ligand complexes which had between 1

and 8 x 1010 theoretical ligand conformations, i.e., combinations of incremental torsional

angle rotations in the ligand, including ligands which may contain internal steric collisions.

In 15 of 19 cases, a docking with RMSD from the crystallographic ligand ofless than 1.0 A

was achieved, but in some cases the lowest energy docking was significantly different from

the crystallographic complex, with RMSDS up to 4.5 A. Also, the energy scoring function

used in this work generally did not correlate well with the experimental binding energy.

A later study on the performance ofFLEXX using a test set of200 protein-ligand com-

plexes was done (Kramer et al., 1999). For this test set, the top ranked docking was within

2.0 A RMSD ofthe ligand in the crystallographic structure in 47% ofthe cases, and a dock-

ing within 2.0 A ofthe crystallographic ligand position was found in 70% ofthe cases if all

dockings are examined, not just those with the best score. In general, the FLEXX algorithm

achieves better dockings with simpler ligands. More complex ligands, those with more than

15 components, yielded a correct docking in only 25% ofthe cases. This study also showed

that, in general, the algorithm is able to cross dock most ligands, i.e., dock a ligand from

one crystallographic structure into the conformation of the protein extracted from another

crystallographic structure that contains the protein bound to a different ligand.

To address side-chain and main-chain flexibility ofthe receptor structure in docking, an
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extension to FLEXX, FLEXE (Claussen et al., 2001), was created. FLEXE docks ligands

into an ensemble of structures ofthe receptor instead of a single receptor binding site. The

binding site ensembles can be from different crystallographic structures, as in the study

described here, from a homology model with uncertain side-chain positions, fi'om a series

of molecular dynamics time steps, or from another source. The key component of this

algorithm is that multiple conformations of the protein can be used as a docking target si-

multaneously. In this algorithm, the receptor structures are merged, with regions of similar

conformations reduced to a single structure and regions with dissimilar conformation con-

stituting alternate positions. While this algorithm may handle some backbone movement

in addition to side-chain rotations, the authors claim it is not able to work with large do-

main movements and limit their test set to protein ensembles with similar backbone traces.

FLEXE was able to generate a docking ranked in the top ten potential dockings which was

within 2.0 A ofthe crystallographic structure in 67% ofthe 105 structure test set, compared

to 63% with the FLEXX algorithm. In addition, FLEXE was able to effectively cross dock

two potent inhibitors which FLEXX was not.

1.2.4 Water in Computational Docking

Water molecules are known to play a key role in many protein-ligand complexes, reviewed

by Ladbury (1996), but are often ignored in computational docking approaches as they

are difficult to model. Many ofthe scoring functions do consider the energy ofdesolvation,

generally as a function ofburied and exposed hydrophobic surface area ofthe ligand and/or

protein, but there are two problems with using this as the only water modeling technique:
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(1) it assumes that the best protein-ligand interface will be completely desolvated, while in

many instances water molecules are retained in the interface and contribute key hydrogen

bonding interactions, and (2) the shape of the binding pocket surface to which the ligand

binds in reality, which includes the water molecule(s), is different from the surface used in

the docking, which does not include the water molecule(s). The second point is especially

important as steric fit between the ligand and the protein is Often a key component of the

docking and scoring procedures.

Since there are no covalent constraints on their positions relative to the ligand or the

protein, treatment of water molecules in docking procedures must be different from the

procedures used to model either the protein receptor or the ligand molecule. One approach

is to retain bound water molecules fi'om the free protein structure as a fixed part of the

protein target in the docking process. However, this can lead to overrepresentation ofinter-

facial watcr as roughly two-thirds of the water molecules in the binding site of the protein

are lost upon ligand binding (Raymer et al., 1997). A method to model protein-bound wa-

ter sites conserved upon ligand binding is to predict which bound water molecules will be

conserved and which will be displaced. This approach is used with the lc-nearest-neighbor

genetic algorithm application Consolv (Raymer et al., 1997), allowing those water sites

predicted to be conserved to be included in docking, while removing those predicted to be

displaced. Because this prediction is not 100% correct and will depend, to some extent,

on the ligand shape and chemistry, water molecules wrongly predicted as conserved may

incorrectly bias the docking. A better method may be to allow the docking algorithm to

displace any water molecule, but penalize the displacement of water molecules according
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to their predicted likelihood of being conserved, as is done with SLIDE (Section 3.2.4).

FLEXX uses a different idea to address the problem; it places water molecules at favorable

sites during the docking process by placing “particle phantoms” at favorable positions in

the binding site prior to docking. These phantoms can be turned on during docking when

they can make favorable interactions to the protein and to the growing ligand and turned

off ifthey are involved in steric collisions or fail to meet angular hydrogen bond constraints

(Rarey et al., 1999). Another method is that developed by Jackson et al. (1998), which uses

a finely spaced grid ofpotential hydration sites around the ligand as it is being docked. The

energy of the docked ligand can be computed including hydration at subsets of the grid

points, yielding favorable hydration sites for the docking.

1.3 Computational Screening

Computational screening is the process of identifying molecules that bind to a protein of

interest from a database using computational methods, as reviewed in Walters et al. (1998).

It can be considered as a computational equivalent to traditional high-throughput screening.

In theory, any ofthe docking methods described above can be used in a screening mode by

attempting to dock all molecules in a database, such as the Cambridge Structural Database

(CSD; Allen and Kennard 1993). In practice, however, this method is not practical due to

the time needed to dock each molecule. Most of the docking algorithms described above

are reported to take several minutes to hours to dock a single ligand. Most ofthe molecular

databases of interest contain 100,000-plus molecules. Even if the fastest method is used,

at one minute per ligand, a screening of 100,000 molecules would take over two months
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of computational time. When factoring in the desirability of docking 10—20 different con-

formers of each ligand to better represent their flexibility, the computational time expands

to years for a single database screening. One approach is to develop a docking algorithm

designed for screening, such as the SLIDE algorithm originally presented by Dr. Volker

Schnecke and extended as described in this thesis (Chapter 3).

An alternative screening approach to database docking is closely related to the incre-

mental construction docking algorithms. In such an approach, the ligand backbone is ini-

tially docked, followed by the addition of various functional groups, akin to combinatorial

chemistry methods. This approach is used in LUDI (BOhm, l992a,b), Grow (Moon and

Howe, 1991), SPROUT (Gillet et al., 1993, 1994), GroupBuild (Rotstein and Murcko,

1993b), BUILDER (Roe and Kuntz, 1995), HOOK (Eisen et al., 1994), and SMOG (De-

Witte and Schaknovich, 1996). A technique in which the ligand is built up atom by atom

instead offragment by fragment is employed in the Genstar (Rotstein and Murcko, 1993a),

Legend (Nishibata and Itai, 1993), MCDNLG (Gehlhaar et al., 1995a), and CONCEPTS

(Pearlman and Murcko, 1995) programs.

Closely related to these incremental construction methods for screening is the FLEXS

algorithm (Lemmen et al., 1998). This method requires knowledge of the binding orien-

tation for at least one ligand, which is used as the rigid component in flexible alignment.

The structures in the screening database are broken into fi'agments, as in the previous incre-

mental construction screening methods; however, the base fiagments, and later the flexible

groups, are placed based on matching chemical properties, such as hydrophobicity, hydro-

gen bonding character, and partial charge, with the known ligand instead of the protein
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binding site. FLEXS was able to extract and highly rank ligands with known function

against the fibrinogen receptor from a database of 984 drug-like compounds. In terms of

docking ability, FLEXS was able to reasonably reproduce dockings resulting fi'om super-

position of crystal structures for test set consisting of 14 protein targets and a total of 284

superimposed ligands.

1.4 Docking and Screening Scoring Functions

One of the difliculties in computational docking and scoring methods is that of accurate

scoring, measuring the affinity between protein and ligand. The scoring function is key

to being able to identify the most realistic ligand dockings, in docking experiments, or

the most promising potential ligands for further study, in screening experiments (Greer

et al., 1994). Scoring functions can be classified into two general categories: molecular

mechanics-based and empirical.

Molecular mechanics-based scoring functions are those that describe the energy of

ligand binding in terms of a physical chemistry function summing the component bind-

ing energies, such as van der Waals contacts, electrostatic interactions, and covalent bond

stretching, bending, and torsional energies. Such scoring functions includes the forcefield-

based measures such as AMBER (Weiner et a1., 1984, 1986), which is not commonly used

in docking and screening methods as it has been tuned to reproduce protein and nucleic

acid energies, rather than arbitrary small organic ligands. A commonly used molecu-

lar mechanics-based scoring function for docking and screening is the Merck Molecular
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Forcefield (MMFF; Halgren 1996), which was developed as a combined “organic/protein”

forcefield for molecular dynamics ofsuch systems. One problem with this scoring function

is that it is highly detailed. While this feature enables it to be relatively accurate, it also

makes the function computationally expensive, which causes significant problems when

scoring a large number of docking orientations for many potential ligands. One method

to reduce the computational cost is to precompute the atomic potential for the protein on

a grid, so that only the ligand potential changes with each new cycle. This is done with

GRID (Meng et al., 1992), implemented in DOCK, and FLOG (Miller et al., 1994) scoring

functions. Other grid-based scoring algorithms developed by Blom and Sygusch (1997)

and Mandell et al. (2001) in DOT uses a discrete Fourier transform (DFT) correlation ap-

proach to solve a moderately complex molecular mechanics-based scoring function with

reasonable computational cost. Docking experiments done with this scoring function on

four complexes were able to dock the ligand molecule close to the observed orientations in

the crystal structure. The docking time of the DFT correlation approach is generally low,

but much too slow, on the order of 2 to 30 hours per ligand depending on grid resolution

and ligand size, to be ofuse in screening experiments.

Given their extensive use in docking and screening algorithms, a brief note about the

general methodology behind grid-based scoring procedures is warranted. In general, a

three-dimensional grid is established in the binding site to calculate energies. The initial

step is to precompute the energy of interaction between the target and each type of atom

residing at each grid point. After this step, the scoring function constitutes a lookup table of

the energy for each type ofatom at each grid point. When a ligand is placed into the binding
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site in an arbitrary orientation during the docking procedure, each atom of the ligand is

assigned to the nearest grid point. The energy for the docking orientation is then calculated

as the sum of the energies for those grid points to which ligand atoms have been assigned,

using the assigned ligand atom type energy calculated for the grid point. Since grid-based

scoring functions are precomputed prior to docking and screening and simply looked up

during the run, they are very fast to compute during the actual docking or screening run.

The drawback of grid-based scoring methods is that they use only an approximate ligand

atom position. Problems resulting fi'om this approximation can be limited through the

use of a finely-spaced grid; however, this can greatly increase the precomputation time,

especially with complex scoring functions, and somewhat increase the run time, due to the

ligand atom to grid point assignment step.

Most of the commonly used docking and screening tools implemented use empirically

tuned scoring functions. One ofthe earliest such scoring functions is SCOREl , developed

by BOhm for the LUDI program (Béhm, l992a, 1994). SCORE] seeks to calculate the

binding aflinity, AGbinding’ as the sum of the energy from polar interactions, including

hydrogen bonding and ionic contact; nonpolar interactions, constructed from the surface

area buried in the complex; and flexibility, defined as an “energy” for loss of the ability

to rotate a rotatable bond in the ligand. This scoring function was generally able to pre-

dict binding energies close to those experimentally observed. Examination of complexes

with large deviations between the predicted and observed binding energies led to the de-

velopment ofSCORE2 (BOhm, 1998), which includes additional parameters for penalizing

cavities in the binding site, an improved electrostatics model, an term for aromatic group
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interactions, and a term for desolvation effects. This improved scoring function improved

the correlation between predicted and observed K,- values and reduced the standard devia-

tion in predicted K.— from 1.7 orders ofmagnitude to 1.3 orders ofmagnitude.

Other similar energy-based scoring functions have been developed. One example is the

VALIDATE scoring function developed by Head et al. (1996), which combines molecular

mechanics approaches with empirical descriptors. The enthalpy of binding in the protein-

ligand complex is computed from a molecular mechanics forcefield, while additional prop-

erties, including fixing of rotatable side chains, buried surface area complementarity, and

steric compatibility, are used to estimate the entropy of binding. Overall the VALIDATE

scoring functions consists of 12 terms, and while accuracy is quite good, the estimated

cross-validation error for a set of 51 complexes in predicted K.- was 1.1 order ofmagnitude,

the time to compute the score is over 1000 times slower than the original BOhm SCOREl

function. Another similar scoring function is that developed by Jain (1996), which includes

terms for hydrophobic complementarity, for hydrophilic complementarity (hydrogen bond-

ing and salt bridges), for electrostatic repulsion, for desolvation, and an entropic term. This

function was tested on a set of 34 protein-ligand complexes and resulted in a mean pre-

dicted K4 error of 0.7 orders of magnitude. Yet a third is the piecewise linear potential

(PLP; Gehlhaar et al. l995b,Verkhivker et al. 2000), which simplifies the energy firnction

to only four terms to yield a piece-wise linear approximation of the hydrogen-bond and

lipophilic interaction wells. A fourth approach is the ChemScore algorithm developed by

Murray and colleagues (Eldridge et al., 1997; Murray et al., 1998), which includes terms

for hydrogen bonding interactions, metal interactions, hydrophobic interactions, and a term
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for loss of entropy, i.e., rotational freedom. This function predicts the observed affinities

with a cross-validated error of 1.3 orders ofmagnitude.

Several additional methods have been developed which take advantage of the structural

information available in the PDB. In all ofthese methods, the key is the creation ofa statis-

tical distribution for various contacts between atom types in the ligand and in the protein.

One such example is that developed by Miigge and Martin (1999), which uses the statistical

information to derive a set of fi'ee energies of protein-ligand atom pair interactions, or po-

tentials ofmean force (PMFS), which are summed to provide the final score. The method of

deriving the PMFs implicitly includes entropic and desolvation effects. Tests performed on

a database of eight protein-ligand complex sets, which each contained between 11 and 77

complex structures, showed reasonable correlation between the score and observed binding

aflinities. The authors note that one set gave poor correlation, likely due to the large and

variate Size ofthe inhibitors.

Other methods which use statistical information derived from structures reduce the rep-

resentation further away from one of energetics to include only the distribution informa-

tion. An early implementation of such a method is that developed by Klebe (1994), which

extracts information on interaction angles from structures in the Cambridge Structural

Database. This method was able to reasonably predict the key binding sites for methotrex-

ate in dihydrofolate reductase (DHFR), for a peptidic inhibitor in endothiapepsin, and for

tyrosinyladenylate in tyrosyl-tRNA synthetase. This method has been extended by Nissink

et al. (2000) through the use of Isostar (Bruno et a1., 1997), which tabulates the orientations

of specific chemical groups with respect to another specific chemical group of interest
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from PDB and CSD structural data. In this method, the orientation data are used to derive

propensity plots, or smoothed spatial distribution firnctions, which can be used as a basis

for scoring the spatial relationships in computationally docked ligands. A second extension

of Klebe’s work is the development of DrugScore (Gohlke et al., 2000a,b). In DrugScore,

the model of Spatial relationships is further reduced to a set of one-dimensional radial dis-

tribution functions for each set of atom-type interactions. DrugScore was shown to be an

improvement when examining the RMSD between the top-ranked ligands and the ligands

in the crystallographic structures during docking experiments with FLEXX (Kramer et al.,

1999). The top-ranked docking was within 2.0 A RMSD from the crystallographic struc-

ture in 73% of 91 test protein-ligand complexes using DrugScore, versus only 54% for the

FLEXX scoring function. DrugScore resulted in standard deviations in predicted pK; val-

ues of 0.7 to 2.2 on a test group of 9 test sets, consisting of between 16 and 71 complexes,

though linear correlations with observed binding aflinities were poor for some of the test

cases.

Stahl and Rarey (2001) compared several scoring functions in terms of the docking

algorithm of FLEXX for a computational screening procedure. The test database consisted

of seven proteins, with 36 to 128 known inhibitory compounds per protein. The FLExX,

PLP, DrugScore, and PMF scoring functions were tested. In general, the FLEXX scoring

function performs best with compounds for which the binding is dominated by hydrogen

bonds, such as for thrombin and neuramirridase, but poorly with compounds whose binding

is predominated by hydrophobic interactions, such as for cyclooxygenase-2 (COX-2). In

contrast, the DrugScore algorithm performed well with the COX-2 screening, but poorly
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for neuraminidase. The PLP algorithm tended to perform well with shallow sites that still

had significant hydrogen bonding interactions, while the PMF algorithm performed poorly

with very narrow and/or restricted binding sites.

Given the preponderance of scoring firnctions available, one may consider a method

of combining a set of functions to overcome shortcomings in any one particular scoring

function. This approach was implemented by Charifson et al. (1999) and by Stahl and

Rarey (2001), who both showed improvements in screening efficiency, in terms of rank-

ing active compounds highly compared to inactive compounds. Both tested against a set

of diverse targets, with consensus scoring providing an overall increase in performance

across the set. In some cases, the consensus method performed worse for a specific target,

but without a priori knowledge of which scoring function may be best suited for the tar-

get of interest, it is not possible to improve on the overall performance. When examining

combinations of only two scoring functions, as is done in the thesis work presented here

(Section 4.3.3), there is a very limited number ofways to combine the scoring function re-

sults. Ifmore scoring functions are included, the possible ways to combine them increases.

Wang and Wang (2001) present a computational experiment to explore the effects ofdifl‘er-

ent combination methods ofthe resulting overall selection of ligands fiom a computational

screening run. They constructed a set of virtual ligands by assigning a “true energy”, i.e.,

equivalent to the experimentally observed energy, based on a Gaussian distribution. This

experimental dataset was then used to create ten predicted datasets by adding an random

error to each experimental score, representing the error introduced by each often indepen-

dent scoring functions. They showed that use of increasing numbers of scoring functions
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results in an increase in the ability to include an “active” ligand in the top 100 ligands from

the screening database using two combination methods, but the increase in performance

becomes significantly less when including more than four to five scoring functions. The

use of additional scoring functions is undesirable for docking and screening applications

since each additional scoring function evaluated will require additional computational time,

which is at a premium during docking and screening runs. Another concern arises out of

statistical pattern recognition and that is the fact that, with a finite amount of data, overall

scoring accuracy is likely reach a peak and then decline as additional scoring functions,

i.e., dimensions, are added to the system. This phenomenon is often termed the curse of

dimensionality (Jain and Chandrasekaran, 1982). A classic construction to illustrate such a

case was presented by Trunk (1979).

One concern with all empirically tuned scoring functions is that of the measurement

of the binding affinities. Generally, the observed aflinity values are taken from literature

sources; however, it is very uncommon to have affinity values measured at standardized

conditions, even for a set of ligands to a single protein. By tuning the scoring function to

these observed values, one makes the assumption that differences in the observed values

due only to differences in affinity for the ligands. One must question the validity oftuning

the scoring functions to data which may not be self-consistent, and one can ask how much

ofthe deviation seen between predicted values and observed values is likely due to inaccu-

racies in the scoring function and how much is due to differences in experimental methods

and conditions used to measure the binding affinity.

One interesting idea related to scoring is the use of a post-processing filtering step
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(Stahl and BOhm, 1998). A limitation of most scoring firnctions is the absence of strong

penalties for unfavorable interactions, especially in terms of leaving cavities in between the

buried surfaces of the protein, which are not generally seen in protein-ligand complexes.

The filtering algorithm presented in this study includes four terms: the size of cavities in

the internal protein-1igand interface, the portion of solvent accessible surface (SAS) ofthe

ligand which is hydrophobic, the fraction of ligand volume buried in the binding cavity,

and the presence of pairs ofpolar atoms in close contact which do not participate in hydro-

gen bonds. Testing against a set of 32 complexes docked with FLEXX showed a general

decrease in the RMSD of the best ranked ligand and a dramatic increase in the number

of complexes for which the the docking closest to the crystal structure was ranked within

the top 20 ligand dockings. The authors also note than the docking with the best RMSD

relative to the crystal structure was not lost after filtering for any ofthe 32 complexes. For

ligand manipulation docking and screening methods, e.g., SLIDE, a filtering step could be

directly incorporated into the scoring function.

1.5 Evaluation of Docking and Screening Methods

As there are several docking and scoring methods available, it is interesting to examine

their performance on identical problems. Performance of various scoring functions im-

plemented in FLEXX is discussed above. One of the key studies examining each of the

docking algorithms independently is the docking section of CASP2, the results of which

were summarized by Dixon (1997). In this study, seven small molecule-protein complexes

and one protein-protein complex were used as targets. Target protein structures were pro-
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vided to several docking algorithm research groups along with the two-dimensional ligand

structures, but no ligand conformational, i.e., three-dimensional, information was given.

Of the approaches discussed above, the ICM method of Abagyan et al. (1994), FLEXX

(Rarey et al., 1996b), the DFT method of Blom and Sygusch (1997), and LIGIN (Sobolev

et al., 1996) were examined. The mean RMSD-based score between the docked and crys-

tallographic ligand orientation for all docking methods ranged from 2.5 to 7.2, indicating

that while some targets are easier to dock overall, none regularly dock correctly for every

method. The DFT docking method performed poorly, having RMSDS between 15 and 28 A

for the three targets for which predictions were performed. Of the other three approaches,

the overall performance were roughly equivalent. Some ofthe targets were clearly easier to

dock, with most of the presented methods docking ligands within 3 A, while other targets

had no dockings within 4 A. For the protein-protein trial, none of the algorithms achieved

a close docking when examining detailed geometry. However, some methods were able to

correctly predict some of the interactions which occur in the binding site.

Bissantz et al. (2000) also examined a series of docking algorithms and scoring func-

tions for screening against thymidine kinase and the estrogen receptor. They found that

most algorithms were able to extract roughly 70% of known ligands from a database of

990 random molecules and that consensus scoring generally enhanced hit rates. However,

they saw no relationship between the accuracy ofproducing the correct docking orientation

and correctly ranking the orientations. It was also not possible to accurately predict bind-

ing energies. Of note is the authors’ suggestion to use a limited size database and several

screening methods to determine the best tool for the protein in question and then to screen
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a large database.

Other studies have examined the performance of docking and screening algorithms in

more limited ways. Knegtel and Wagener (1999) used the DOCK algorithm to explore the

efficacy of screening methods for thrombin inhibitors and for selectivity for progesterone

receptor ligands versus estrogen receptor ligands. This study applied two scoring fimc-

tions: an energy scoring function consisting ofthe AMBER forcefield (Weiner et al., 1984,

1986) and a chemical scoring function consisting ofthe AMBER forcefield with the attrac-

tive van der Waals interaction energy applied only to interaction between complementary

atom types. For thrombin, a set of 32 active inhibitors and a set of ten chemically similar,

but inactive, compounds was compared. Rigid-body docking yielded a slight bias towards

active compounds in the ligands ranked in the top 100 ligands, but allowing flexibility ef-

fectively eliminated this bias, allowed more highly ranked inactive compounds. Neither

scoring function had a strong ability to differentiate between active inhibitors and inactive

compounds, though the chemical scoring methods had a slight advantage over the AMBER

scoring function. Docking against the progesterone receptor was performed on a set of 28

known agonists and 20 chemically similar estrogen receptor ligands. A similar analysis to

the thrombin case Showed that the both scoring functions had a somewhat more pronounced

discriminant ability, but that the energy scoring function performed somewhat better. This

is likely due to the highly hydrophobic nature ofthe progesterone receptor site whose inter-

actions are predominantly based on van der Waals forces. The AMBER forcefield is likely

to more accurately model such forces.

A second such study was performed on stromelysin-l (matrix metalloproteinase 3;
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MMP3) by Ha et al. (2000). The authors of this study co-crystallized MMP3 with 6

biphenyl-based inhibitors, all ofwhich dock in highly conserved orientations and are used

to construct “correct” dockings for a set of 61 biphenyl ligands with IC50 values in the low

micromolar to low nanomolar range. DOCK with the PMF scoring function performed

best, with a mean RMSD of 1.8 A between the docked and crystallographic binding modes

and oriented nearly all ligands with the biphenyl moiety in the correct binding pocket.

FLEXX and DOCK with the AMBER forcefield performed worse and generally produced

ligand orientations with the biphenyl group in other, unoccupied pockets around the bind-

ing site. However, orientations calculated by FLEXX which did place the biphenyl into the

correct pocket generally had a lower RMSD relative to the crystal structure, indicating that

FLEXX may be better able to fine tune the ligand orientation.

1.6 Creation of Targeted Computational Screening

Databases

Computational screening’s requirement for very fast handling of individual ligands puts

severe limits on the detail one can use in the algorithm. A possible method to reduce the

effective time per molecule and add complexity is to limit the screening to ligands that

are ofparticular interest, for example by removing molecules from the database that do not

resemble drug molecules. Bemis and Murcko (1996) showed that 50% oforally deliverable

human drug molecules in the Comprehensive Medicinal Chemistry (CMC) database are

characterized by only 31 of l 179 graph frameworks, Le, a connectivity graph ignoring atom
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types and bond orders, and 24% are characterizedby only 41 of2506 atom frameworks, i.e.,

graph fi’ameworks which consider atom types and bond orders. In fact, 8.5% of these drug

molecules have a benzene fiamework. Databases could also be pruned to include only those

molecules which chemically resemble known drugs. The well-known Lipinski rule offives

(Lipinski et al., 2001), based on examination of a 2245 orally active subset of the World

Drug Index (WDI; Derwent Information, London, UK), gives the following guidelines for

molecules that are unlikely to be adequately soluble and permeable to function as oral

pharmaceuticals:

0 contains more than five hydrogen bond donors,

0 contains more than ten hydrogen bond acceptors,

c has a molecular weight greater than 500 Da, or

c has a calculated Log P (CLogP; the calculated octanol/water partition coeflicient)

greater than 5 (or has a Morigucchi Log P, MLog P >4.15).

Limiting the database to only those molecules which contain a common framework and

which meet the Lipinski rule would greatly decrease the number of molecules in most

chemical databases, allowing a greater exploration of each of the molecules. Other re-

strictions on the screening database contents, such as limiting it to molecules which con-

tain a specific functional group, could also be implemented. One disadvantage to these

approaches is that any new ligands identified will resemble drug-like molecules and any

unusual novel compounds will be overlooked.
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1.7 Molecular Clustering

Another method to reduce the effective size ofthe database is to eliminate molecules which

bear close resemblance to other molecules in the database, e.g., by clustering. However,

when clustering is used, one must ensure the molecules contained in the clustered database

represent a sufliciently broad scope of chemical space. The breadth of this scope is not

necessarily in relation to the whole of chemical space, but may be restricted to regions

of space with particular interest. Matter (1997) examined the diversity in a set of 1283

biologically active compounds using various similarity measures. Compounds were clas-

sified with simple 2D fingerprints or with 2D fingerprints combined with more complex

descriptors. Clustering was then performed, taking the structure closest to the center ofthe

cluster as the representative. Chemical space coverage was measured by the percentage

of biological classes which were included in the final set of database molecules. The best

coverage was achieved using only 2D fingerprints. While using this approach to prune the

database achieves a reduction in the number of molecules which must be screened, there

is a potential that the representative molecule in a cluster may not be selected during a

screening run or may be inactive upon experimental investigation while another molecule

contained in the cluster would be a very good ligand. Other clustering methods include the

Jarvis-Patrick nonhierarchical and Ward hierarchical methods, their application to chemi-

cal structures discussed in Brown and Martin (1996), the clustering of Markush structures

using a lc-means clustering algorithm (Barnard et al., 2000), and clustering using molecular

field matching algorithms (Mestres et al., 1997).

A related approach is to restrict the number ofmolecules which must be analyzed after
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a screening run is performed as effective analysis can often be difficult given the large

numbers of selected potential ligands. This is an especially serious problem when the

screening database contains many compounds which closely resemble known ligands for

the targets as any novel potential ligands will be difficult to extract from these known ligand

hits. Su et al. (2001) propose a method by which the database is initially grouped into

families based on common frameworks. Each family consists of a base fragment along

with an ensemble of attached functional groups, each transformed into the same reference

flame based on the base fi'agment. The base fragment is then rigidly docked into the binding

site, the ensemble functional groups transformed into the binding site based on this original

docking, and then each family molecule is scored independently. The transfonnation ofthe

ensemble as an entity means that only a single transformation needs to be done instead

of a transformation for each database molecule, greatly reducing the amount of necessary

calculation. In the final score list, only the best scoring member ofeach family is identified,

meaning that potential ligands previously ranked below a large molecular family are pulled

to a higher ranking. The authors show that families which contain known ligands are pulled

into ranks which could be considered to be reasonably examined fi'om ranks below what

would normally be analyzed. One concern with this approach are that if the best scoring

member of a family shows no experimental inhibitory activity, any inhibitors in this family

could be missed. These concerns can be reduced, though not eliminated, by analyzing the

top it potential ligands in the family. Another concern is that molecules which contain a

common base fragment but which are otherwise unrelated are placed in the same family.

The use ofother modes of clustering could be explored to alleviate this concern.
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1.8 Database Comparisons

Aside fi'om the notion of the best method to group the molecular structures in a Single

database is the question of which database to use. Several studies have compared some of

the available databases (Shemetulskis et a1., 1995; Cummins et al., 1996; Bernard et al.,

1998). The most recent and exhaustive comparison is that done by Voigt et al. (2001).

They compared the open NCI database (Milne and Miller, 1986), the publicly available

portion of the National Cancer Institute anti-cancer and anti-AIDS screening database;

the Available Chemicals Database (ACD; MDL Information Systems, Inc., San Leandro,

CA), a database ofcommercially available compounds; the ChemACX database (CamSoft,

Cambridge, MA), a second database of commercially available chemicals; the Maybridge

Catalog (Maybridge, Plc, Cornwall, England), a third database of commercially available

chemicals; the Ansinex database (Asinex, Ltd., Moscow, Russia), a database of commer-

cially available chemicals with emphasis on compounds fi'om combinatorial chemistry; the

Sigrna-Aldrich Catalog (Sigma-Aldrich, St. Louis, M0); the World Drug Index (WDI);

and the Cambridge Structural Database (CSD). These databases contain between 55,000

and 249,000 available threedimensional structures. All of the databases have some dupli-

cation of entries, ranging fi'om 0.02% for the Asinex database to 13% for the ChemACX

database. Diversity analysis showed that the CSD is significantly more diverse than the

remainder of the databases, which is not surprising given its origin as a repository for in-

formation about all types of organic compounds and not only those commercially available

or likely or known pharmaceutical compounds. Combination of all eight databases yields

a database of 681,000 unique structures. Given the large number of compounds in these
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publicly available databases combined with what may be proprietary databases of several

hundred thousand molecules makes it clear the efficiency needed to computational screen-

ing techniques.

1.9 Conformer Generation

The final issue to arise in computational docking and screening is that of molecular con-

formers. Confonner generation is of in importance for two reasons. For many molecular

databases, many of the structures do not have three-dimensional coordinates attached to

them and would therefore be inappropriate for most docking and screening algorithms.

Secondly, most of the structures in the molecular databases are taken from crystal struc-

tures ofthe free ligand and/or fi‘om crystal structures ofthe ligand with other proteins. It is

quite likely that the conformation of the ligand as bound to the target of interest will differ

from the conformations in the database (Betts and Stemberg, 1999), especially in the case

for databases of small molecule crystal structures as the crystal packing forces are large

compared to the size of the molecule. Many of the docking and screening algorithms al-

low for minor conformational changes, but the bound conformation could be significantly

different and beyond the range for which the program can compensate for. Common con-

formation generators generally follow an empirical method, where rotations are based on

observed structures, such as protein Side-chain rotamer libraries (Maeyer et al., 1997; Dun-

brack and Cohen, 1997; Lovell et al., 2000) and the MIMUMBA program (Klebe and Mi-

etzner, 1994); a systematic method, where each rotatable bond is altered by a fixed angle,

generating a tree of conformers, as implemented by the systematic conformational search
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function in MOE (Chemical Computing Group, Montreal, Quebec); or follow a stochastic

method, as implemented in the stochastic conformational search function in MOE. In the

stochastic method, each rotatable bond in the molecule is rotated by a random amount,

the structure is then energy minimized, and then it is compared to previously generated

conformers. If it is close in energy and/or conformation, it is not saved. This process is

repeated until a set number of conformers is generated or a set number of failures, i.e.,

generation of a conformer which is similar to a previously generated conformer, occurs.

Instead ofrandom torsion rotations, some algorithms also employ random atom displace-

ments and subsequent energy minimization. Bostrt'im et al. (1998) compared energy rrrin-

imized uncomplexed ligand structures with those bound to the protein and found that, for

most, protein-ligand complexes, the energy difference between the bound and flee struc-

ture is small, 3 3.0 kcal/mol. This gives a guideline for effective conformer generation for

screening and docking methods. On the receptor side, rotations between flee and liganded

structures are generally small and lie within the range of the SLIDE screening algorithm

(Maria Zavodszky, unpublished results).

1.10 Successful Application of Docking and Screening

Methods

Structure-based drug design has become a common addition to drug discovery projects, re-

viewed by Klebe (2000). The first successful application dates back to 1973 (Beddelleta1.,

1976; Goodford, 1984) when a hemoglobin efiector mimic of diphosphoglycerate was de-
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veloped. Later, researchers at Dupont-Merck used a pharmacophore model to screen the

CSD and identified the DMP-323 cyclic urea inhibitor (Lam et al., 1994), which reached

phase I clinical trials. Other successes include identification of an inhibitor with a low

micromolar IC50 using LUDI (Klebe, 2000), identification of four inhibitors of farnesyl-

transferase with moderate to high micromolar IC50’s (Perola et al., 2000), identification

of isoforrn specific inhibitors of adenylyl cyclase through pharmacophore screening (Onda

et al., 2001), identification ofretinoic acid receptor antagonists using ICM docking methods

to screen the ACD (Schapira et al., 2000), and identification of ligands which bind specif-

ically to the RNA hairpin HIV-1 TAR RNA by screening a subset of the ACD using the

ICM docking method (Filikov et al., 2000). Many other successes of computational dock-

ing and screening are likely to reside within pharmaceutical companies. Given the array of

available techniques for computational docking and screening and the dramatic growth in

computational power and speed, it is likely that the use and importance of computational

docking and screening methods will continue to grow.

1.11 Motivation for this Thesis Work

The thesis work presented in this dissertation seeks to improve techniques for modeling

protein-water and protein-small molecule interactions and to apply these techniques to gain

knowledge about such interactions in systems of interest. Previous examinations of water

molecule binding have been limited to experimental studies, which are often arduous and

time consuming, or have relied on using a single crystallographic structure as a reference.

Chapter 2 describes a technique applying hierarchical clustering to computationally analyze
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water molecule conservation in a series of crystallographic structures without the necessity

for assigning a structure as a reference. Application ofthis technique to the serine proteases

thrombin and trypsin shows that it can be effective at assisting in explaining specificity

differences between related enzymes and in examining the water content ofprotein-protein

interfaces.

Extension flom examination of water molecules as ligands has led to the development

of a computational screening technique. Previous ligand docking and screening tools lim-

ited the modeling ofthe conformational changes which occur upon a ligand binding to pro-

tein to the ligand molecule or contained very limited protein receptor flexibility, through

rotamer libraries. Chapter 3 describes a screening algorithm, SLIDE, which allows for both

ligand flexibility and protein side-chain flexibility, without resorting to rotamer libraries.

This thesis work focuses on improvements made to the description of the hydrophobic

character of the interaction, including results flom testing on thrombin and glutathione S-

transferase (GST). Chapter 4 describes the application of SLIDE to analyze potential dock-

ing orientations ofmolecules selected by in vitro high-throughout screening and to identify

a limited set ofpotential new ligands for asparaginyl-tRNA synthetase.
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Chapter 2

Identification of Conserved Water Binding Sites

in Proteins

This research has been previously published as M. L. Raymer, P. C. Sanschagrin, W. F.

Punch, S. Venkataraman, E. D. Goodman, and L. A. Kuhn. Predicting conserved water-

mediated and polar ligand interactions in proteins using a k-nearest-neighbors genetic al-

gorithm. J. Mol. Biol., 265:445-464, 1997.

2.1 Introduction

2.1.] The Role of Water Molecules in Proteins

Water molecules play an important role in protein structure and function. In addition to

providing the driving force behind protein folding via the hydrophobic effect (Kuntz and

Kauzmann, 1974; Eisenberg and McLachlan, 1986), they play a significant role in medi-
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ating protein-ligand interactions. In some protein complexes, water molecules play key

roles in establishing the specificity ofligand binding, such as the interface water molecules

in the Trp repressor which allow the protein to make base specific interactions with the

repressor element DNA (Otwinowski et al., 1988; Joachimiak et al., 1994). In thymidy-

late synthase, a water molecule conserved in all crystal structures has been shown to allow

the protein to distinguish between substrate and product nucleotides (Fauman et al., 1994).

HIV-l protease shows a similar highly conserved water molecule (Wlodawer et al., 1989).

Inclusion of a carbonyl oxygen group to displace the water molecule and satisfy the water

molecule’s position in the protein’s hydrogen bonding network enabled the construction of

a high-affinity inhibitor (Lam et al., 1994).

In contrast to the above function, water molecules have also been found to contribute

to the plasticity of ligand binding in some protein complexes, such as in the class I ma-

jor histocompatibility complex (MHC I) where bound water molecules rearrange to allow

the protein to bind to several peptidyl ligands (VVrlson and Fremont, 1993). The different

peptides have varying side chains, with water molecules bridging the gaps which would

otherwise occur between the bound peptide and the protein. Water molecules can also be

directly involved in the protein’s catalytic function, as in the case ofthe hydrolytic mecha-

nism for peptide bond breakage by serine proteases (Blow et al., 1969; Perona et al., 1993;

Singer et al., 1993). In fact, proteins which are stripped oftheir primary hydration level are

observed to lose catalytic firnction (Rupley and Careri, 1991).

In addition to playing a such a direct role, water molecules have been shown to sta-

bilize protein structures via formation of extensive hydrogen bond networks (Baker and
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Hubbard, 1984) and by filling grooves on the protein surface (Kuhn et al., 1992a). It has

been shown crystallographically that bound water molecules remain an integral part of the

protein structures, even after repeated rinsing of protein crystals with anhydrous organic

solvent (Fitzpatrick et al., 1993; Travis, 1993).

In general, several techniques exist for the identification ofbound water molecule sites

in a single protein, reviewed by Levitt and Park (1993) and Karplus and Faerrnan (1994),

which measure somewhat different aspects of water binding. Protein structures solved by

X-ray and neutron crystallography ofien assign water molecules bound to very favorable

binding sites as the water molecules bound to minimally favored sites and water molecules

in the bulk solvent are too mobile to appear as electron or neutron density peaks. A con-

cern with using crystallographic structures for identifying favored water sites is the influ-

ence of crystal packing contacts, which can either exclude water, leading to undiscovered

sites, or trap water, leading to sites that are not biologically relevant. A second method

of identifying favored water binding sites is through NMR, which can measure the time

during which a water molecule occupies a given site, i.e., the residence time. Aside flom

limitation of NMR to small to moderate-sized proteins, water site identification remains

a significant challenge. Water sites that are too far flom a proton group, water sites that

are close to rapidly exchanging protons, and water sites that exchange extremely rapidly

cannot be identified. Several NMR studies of protein structure have identified long-lived

buried water sites that coincide with crystal structure sites (Otting and Wiithrich, 1989;

Clore et al., 1990; Forman-Kay et al., 1991; Xu et al., 1993). Otting et al. (1991) were able

to observe some rapidly exchanging surface water molecules with NMR and found that
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water molecules that corresponded to surface water sites in the crystal structure had similar

residence times to each other.

2.2 Conservation of Water Molecules among Several

Crystal Structures of a Protein

Given the multiple and important roles water molecules play in protein structure and func-

tion, the ability to quantitatively define conserved water sites flom crystallographic protein

structures has a number of practical applications, including drug design, allowing the de-

sign of ligands that displace conserved bound water molecules (Ladbury, 1996; Wang and

Ben-Naim, 1996), and analysis of protein ligand interfaces to identify such sites (Raymer

et al., 1997; Sanschagrin and Kuhn, 1998). A typical method for analysis of crystallo-

graphic bound water molecules is to use molecular graphics to visualize the water bound

in a single protein structure, or small number ofclosely related structures which have been

superimposed, and their proximity to catalytic or ligand-binding residues. As the num-

ber ofsuperimposed structures increases, the ability to effectively analyze the conservation

of water molecules decreases dramatically. In general, the water molecules located at the

same binding site will be somewhat shifted in position due to minor changes in neighboring

protein atom positions and due to minor variations in both the actual location of the water

molecule in the crystal and variations in its placement by the crystallographer. Visualiza-

tion ofmore than a few structures simultaneously will cause the waters to become nearly a

continuous shell of hydration, losing all definition of preferred sites.
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A second, quantitative approach is to use a single, chosen structure as a reference to

judge conservation in a series ofrelated protein structures. This approach has been used to

study the solvation of FKBP12 complexes with the irnmunosuppressant FK506 (Faerrnan

and Karplus, 1995) and the solvation of T4 lysozyme (Zhang and Matthews, 1994). Water

site conservation is defined based on sites which occur in the reference also occurring

in the remainder of analyzed structures, i.e., are the water sites located in the reference

structure also observed in the other structures? This causes the results to be dependent on

which structure of a homologous set is chosen as the reference. The AquariusZ algorithm

(Pitt et al., 1993) uses a knowledge base of protein-water molecule interactions, with each

interaction tabulated and referenced to a set ofcommon functional groups and side chains,

in a series ofunrelated protein structures to derive a three-dimensional probability map for

locating bound water sites in protein structures in general. Analyses of water molecule

binding sites remain subject to limitations in crystallographic fitting and refinement (Levitt

and Park, 1993; Karplus and Faerman, 1994), but limitations due to assignment in any

given single structure can be minimized through the use ofmultiple, independently solved

structures as a knowledge base for analysis and design.

This section presents work employing the statistical method ofcomplete linkage hierar-

chical clustering to define consensus water sites in thrombin, trypsin, and bovine pancreatic

trypsin inhibitor (BPTI), with the goal of determining the extent to which water sites are

conserved for each protein and between the two serine proteases and their relationship to

ligand binding. This technique circumvents the problem of using the bound water sites

flom a single structure as a reference set, because all sites flom each of the different pro-
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tein structures are equally weighted in cluster analysis. Thrombin was chosen as a protein

of focus for several reasons: there are a number of structures solved at good resolution

with different ligands bound, thrombin is an important pharmaceutical target for regulating

blood coagulation, and highly conserved water molecules are known to surround the bind-

ing site of its allosteric regulator, Na” (Di Cera et al., 1995; Zhang and Tulinsky, 1997).

Thrombin is a serine protease at the junction between blood coagulation and anticoagu-

lation pathways and can initiate both processes, reviewed by Furie and Furie (1988) and

Esmon (1992). In addition to binding its receptor, proteolytic substrates, and several phys-

iological inhibitors, thrombin also binds exogenous inhibitors such as hirudin (produced

as an anticoagulant agent by leeches) and D-Phe—Pro-Arg chloromethylketone (PPACK), a

substrate transition-state analog. Thrombin contains two major ligand binding sites: the

active site, which binds fibrinogen at the cleavage site, and an exosite, which provides ad-

ditional substrate binding surface, enhancing the aflinity for fibrinogen and hirudin and its

analogs (Vijayalakshmi et al., 1994). The variety of crystallographic proteinzligand com-

plexes available for thrombin provides the ability to study water sites that are conserved

regardless of ligand, as well as those water sites that are ligand specific.

Another goal was to identify water sites that are shared by thrombin and trypsin, a serine

protease not involved in blood coagulation, in order to identify water sites that are essential

in serine proteases and also point to water molecules that are specific to thrombin or trypsin

ligand-binding sites. Trypsin is a serine protease which proteolytically activates other di-

gestive proteases. The loop which binds Na+ in thrombin cannot bind Na+ in trypsin due

to a change in conformation and chemistry associated with the T‘yr 255 to Pro sequence
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change (Dang and Di Cera, 1996). This results in the absence of allosteric regulation

by Na+ in trypsin. Several high-resolution trypsin structures are available in the Protein

Data Bank (PDB), and its water structure has been studied via several techniques includ-

ing room-temperature and low-temperature X-ray crystallography (Earnest et al., 1991),

neutron-difflaction (Finer-Moore et al., 1992), and D2O-HgO difference neutron diffraction

(Kossiakofl‘ et al., 1992). BPTI is a natural inhibitor of trypsin and its water interactions

have been studied using NMR and molecular dynamics (van Gunsteren et al., 1983; Brunne

et al., 1993; Denisov et al., 1996) and simultaneous NMR and X-ray difflaction refinement

(Schiffer et al., 1994). Several high-resolution structures ofBPTI are available in the PDB,

along with X-ray diffraction structures of the trypsinzBPTl complex, providing the ability

to examine the fate ofwater molecules bound to free trypsin and flee BPTI upon formation

ofthe trypsin:BPTI complex. Given the wealth ofstructural information available for these

serine proteases, they provide an ideal system for testing the technique presented here for

determination and analysis of conserved water binding sites.

2.3 Water Site Clustering Methods

2.3.1 Structure Selection

Thrombin, trypsin, and BPTI structures were selected flom the Protein Data Bank based

upon the absence ofunusual crystallization conditions (e.g., low pH), sequence insertions,

deletions, or point mutations, and a resolution of 52.0 A for trypsin and BPTI and 32.4 A

for thrombin. Ligand-flee structures were selected; no ligand-flee structure thrombin struc-
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tures were available, but 6 of the 10 structures analyzed here have no ligand in one of the

two sites, the active site or the exosite. The availability of 10 thrombin structures for anal-

ysis helped compensate for their somewhat lower resolution as compared to the trypsin

structures. Visual inspection of the superimposed molecules for each protein eliminated

those with regions of large structural deviation likely to affect water site conservation.

Only structures with refined water molecule positions were included. The quality of water

refinement was assessed using a mobility measure designed to normalize and combine the

crystallographic temperature factor (Debye-Waller factor; B-value) and the occupancy as

defined below (Craig et al., 1998):

MObilitywater molecule =

B'Valuewater molecule/Average B-valuegn waters in structure (2.1)

OCCUPancywater molecule/Average Occupancyan waters in structure

This facilitates comparison of atomic mobility between protein structures refined with dif-

ferent protocols, in particular, those structures in which occupancy as well as B-value were

allowed to vary during refinement of the water molecules.

Using this normalization, a watermolecule (or other atom) with a high degree ofrigidity

has a mobility value near 0, a water molecule with average mobility relative to other atoms

in the protein has a mobility value of l, and a highly mobile water molecule has a mobility

value greater than 1. In general, if a water molecule’s mobility is 2:, then it is 2: times

as mobile as the average water molecule. In practice, the mobility of a water molecule

is determined by its oxygen atom, since hydrogen atom positions are not assigned in the

majority of structures. Histograms of the water mobility values for each structure showed
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whether there were a number of water sites with high mobility (>2); a preponderance

of such sites was found, by analysis of inter-water molecule distances, to indicate water

molecules placed too close to each other (<2.6 A). Such structures were excluded flom

this analysis. AS an example, Figure 2.1 compares the mobility distributions of water sites

in two BPTI structures. Structures selected using all the above criteria and selected for

this work are presented in Table 2.1.

2.3.2 Hierarchical Clustering

The following steps were‘performed independently for the thrombin, trypsin, and BPTI

structural sets (Table 2.1). The chosen structures were superimposed onto a reference struc-

ture using main-chain least-squares superposition in Insight” (Accelrys, San Diego, CA)

to transform the protein structure and water molecules into the same reference flame. The

:c, y, z coordinates for these transformed water molecules were then extracted and used

for clustering. Clustering is in an iterative process. The first step is to generate a ma-

trix of all inter-element distances. Here, the simple Euclidean distance between points is

used, though, in general, any distance metric can be used. The first cluster is then formed

flom the two closest elements and the distance between this initial cluster and the remain-

ing elements is calculated. Once again, the two closest elements, one of which could be

the previously formed cluster, are joined into a new cluster. The process repeats until all

elements are joined in a single cluster or, as is the case here, until a distance threshold,

representing the maximum distance between any of the elements assigned to a single clus-

ter, is reached. There are several methods of calculating the distance between a cluster of
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Figure 2.1: Mobility distributions of two BPTI structures, used as a quantitative tool to

screen for structures with uncertain water positions. The 4pti distribution is narrow and

shows that most water molecules have nearly average mobility and none are highly mobile.

The lbpi distribution is broad and has an extended right tail, indicating the presence of a

number of water molecules with high mobility (22; at least twice as mobile as average).

Further analysis showed one-half of these high-mobility sites could be explained by the

occupancies of overlapping sites summing to 51, suggesting that they represent alternate

locations of a single water molecule. However, including multiple copies of single wa-

ter molecules corresponding to their different, partially occupied sites would introduce a

statistical bias into the cluster analysis and has been avoided in this work.
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Table 2.1: Database ofthrombin, trypsin, BPTI, and trypsin:BPTI structures for analysis of

conserved water sites

 

 

 

 

Ligand Binding Site

PDB Active Fibrinogen Resolution Main-Chain Number of

Code Site Binding Site (A) RMSD Crystallographic

(Exosite) (A) Bound Waters

Thrombin StructuresI

lhai PPACK 2.4 0.000 194

labj PPACK 2.4 0.694 196

1ppb PPACK 1.9 0.802 409

ltrnb Cyclotheonamide A Hirugen 2.3 0.560 239

lhah Hirugen 2.3 0.345 205

ltmt ——CGP50,856—— 2.2 0.458 1 l l

labi ——Hirulog-3—— 2.3 0.409 246

lthr Hirullin 2.3 0.350 190

lths MDL-28050 2.2 0.439 140

lihs —-———— Hirutonin-Z—— 2.0 0.481 146

Trypsin Structures”

ltpo 1.7 1.395 84

2pm 1.6 0.103 82

3pm 1.7 0.266 82

BPTI structures3

4pti 1.5 0.000 60

5pti" l .0/ 1.8 0.403 63

6pti 1.7 0.436 73

9pti 1.2 0.418 67

Trypsin/BPTI complex structures5

2ptc 1.9 0343/0479 157

ltpa 1.9 0.336/0.638 159
 

 

lSuperpositions and RMSDS are relative to lhai.

’Superpositions and RMSDS are relative to ltpo, except for ltpo which is relative to lhai.

’Superpositions and RMSDS are relative residues 1—46 of4pti.

“Resolution is for X-ray difflaction/neutron diffraction data.

5RMSDS are reported for the trypsin chain ofthe complex superimposed onto ltpo and for

the BPTI chain ofthe complex superimposed onto 4pti.
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multiple elements and other clusters or remaining unclustered elements: (1) the shortest

distance between any pair of elements in each of the clusters (single linkage), (2) the dis-

tance between the cluster centroids, which are the mean 2:, y, z coordinates ofthe elements

of each cluster (average linkage), and (3) the maximum distance between any pair of ele-

ments in each of the clusters (complete linkage). Complete linkage clustering was chosen

for this work as it yields compact, globular clusters and allows the specification of a maxi-

mum diameter for any cluster by defining the maximum distance between cluster elements.

This ability is useful when defining water sites as it can ensure the water molecules flom

different structures which contribute to a cluster can form the same approximate hydrogen

bonds and are within hydrogen bond forming distance (2.4 A).

An example cluster analysis for a subset ofthe watermolecules flom the BPTI structure

set is shown in Figure 2.2. Complete linkage clustering begins by placing the two closest

elements together in a cluster; 6pti 108 and 4pti 108 are less than the maximal distance of

2.4 A apart, the basis for this threshold is given below, and are grouped into a cluster (ar-

bitrarily numbered 109). Next, the distance between this cluster and each ofthe remaining

data elements is computed; for complete linkage clustering, this is defined as the maximum

distance between that element and all the elements in the clusters. In Figure 2.2, the dis-

tance between 4pti 139, 9pti 103, and 6pti 238 (which are not yet clustered) and cluster

109 is calculated as the distance to 4pti 108, since it is the furthest element of cluster 109.

This process is repeated until no further elements can be clustered without exceeding the

selected maximum distance, 2.4 A in this work. Any elements not included in clusters

at this point are considered to define single-element clusters; for example, cluster 134 in
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Figure 2.2: Example of complete linkage clustering applied to water sites flom several

BPTI structures. A portion of the BPTI clustering tree is shown at left, based on the inter-

water distances flom the superimposed BPTI structures, shown at right. Note that 6pti

water 108 and 6pti water 238 are not clustered together even though they are closer than

the cutoff distance of 2.4 A, since 6pti 108 belongs to a cluster in which one water (4pti

108) is too far flom 6pti 238 to meet the 2.4 A threshold. This feature of complete linkage

clustering guarantees that no cluster contains water sites separated by more than 2.4 A.

At this distance, all water molecules in a microcluster are overlapping, and it is unlikely

that more than one water molecule will be included flom any given protein structure (they

would be too close). Cluster numbers are arbitrary sequential indices, whereas individual

water molecules are labeled by the residue number flom the corresponding PDB file.

 

50



.
5
7
”



Figure 2.2 consists only ofwater molecule 6pti 238.

A maximum diameter of 2.4 A was chosen, resulting in clusters with a maximum

inter-water distance of 2.4 A, as measured flom oxygen center to oxygen center. This

value was chosen because water molecules have an approximate effective radius of

1.6 A, which includes the radius of the oxygen and a correction for the contribution

of the hydrogen atoms, whose positions are typically unknown. Thus, if two water

molecules are placed with their oxygen atoms at a center-to-center distance of 2.4 A,

their radii will overlap by 50%. This almost always prevents water sites flom the same

structure flom being included in the same cluster, since at <2.4 A apart, they would

be positioned too closely. Complete linkage clustering results in the set of maximally

dense clusters (in terms of average number of water molecules per cluster). These will be

referred to as “microclusters” to emphasize that all water molecules within a single cluster

physically overlap. The WatCH (Waters Clustered Hierarchically) software package

developed in this work is implemented in C and has been made available via the intemet at

http: / /www. bch . msu . edu/ labs /kuhn/web/software/WatCH/doc . html.

2.3.3 Crystal Contact Calculation

To observe the possible effects of crystal contacts on water site conservation, crystal con-

tacts in the seven thrombin structures in space group C2 were calculated using Chain (Sack,

1988), where interactions were included for protein crystal lattice symmetry mate atoms

within 4.0 A. Crystal contact residue and atom lists were generated for each of the crys-

tallographic structures, with water sites represented by the microclusters observed in that
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protein. The number of times each microcluster appeared in a crystal contact was calcu-

lated for the seven thrombin structures, and software was developed to convert Chain’s

crystal contact lists and the microcluster lists into InsightII subsets for visualization of the

spatial relationship between crystal contacts and microcluster conservation.

2.3.4 Evaluation of Bound Water Environments

The degree of conservation of the water microclusters, each representing a favored site

for water binding, was calculated as the number of individual water molecules contained

in the microcluster divided by the number of structures used for clustering. To assess

the influence of the shape and chemistry of the water binding site on its conservation in

different structures, measures of eight environmental features were calculated:

0 atomic density (ADN), measured as the number of protein atoms within van der

Waals packing distance, 3.6 A, ofthe water molecule, which correlates with whether

the site is in a groove (high density ofprotein neighbors) or a protrusion (low density

of neighbors) (Kuhn et al., l992b);

0 local atomic hydrophilicity (AHP), measured by the sum ofthe atomic hydrophilicity

of all protein and water atoms within 3.6 A of the water site (Kuhn et al., 1995);

c crystallographic temperature factor (Debye-Waller factor”, B-value; BVAL), a mea-

sure of the atom’s thermal mobility and spread in the in the electron density, read

flom the protein’s PDB file;

the number ofhydrogen bonds to neighboring protein atoms (PrHBD);
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o the number of hydrogen bonds to neighboring water molecules (WatHBD), using a

distance of 33.5 A between donor and acceptor atoms;

0 the water site mobility (MOB), a normalized measure ofmobility (see Section 2.3.1);

o the summed B-values for all protein atoms within 3.6 A ofthe water site (TPrBVAL);

and

o the average B-value for these neighboring protein atoms (AngrBVAL).

Several ofthese features are related, and the goal here was to see determine which features

best correlate with degree ofwater site conservation.

For each microcluster, the value for each of the eight features was averaged over the

individual environments of its water molecules. To assess the correlation between conser-

vation of the nricroclusters and their environments, feature values were also averaged over

all microclusters with a given degree of conservation (e.g., those containing waters flom 6

of 10 structures).

2.3.5 Calculation of Overlapping Microclusters between Thrombin

and Trypsin

Distances were calculated between the centroids of microclusters in the superimposed

structures of thrombin and trypsin, and overlapping clusters were defined as those with

a centroid-to-centroid distance of 31.8 A. “fith a maximum diameter of2.4 A for each mi-

crocluster, the microclusters’ radii overlap by 50% when their centroids are within 1.8 A.
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To analyze the effect of using different overlap criteria and provide a list of nricrocluster

overlaps between thrombin and trypsin using less stringent criteria, overlapping micro-

clusters were also tabulated using thresholds up to 2.4 A (where two microclusters would

just touch). To determine the significance of the observed number of overlapping sites

between thrombin and trypsin, in a separate experiment, microcluster centroids were ran-

domly placed in the thrombin structure at the density of rrricroclusters experimentally ob-

served for thrombin, and the same was done for trypsin. Then, the number of overlaps

between thrombin and trypsin was calculated using these random distributions. Because

many ofthe water sites in thrombin and trypsin are buried in the proteins, the microcluster

density was calculated based on the number of microclusters per A3 of protein volume,

which was calculated for each protein using the PQMS routine of the Molecular Surface

Package, version 2.6 (Connolly, 1983). Random placement of microcluster centroids and

subsequent counting of overlaps was repeated 100 times to obtain statistical means and

standard deviations for the number of overlaps as a function of overlap criterion (1.8 to

2.4 A). For analyzing conserved water site proximity to functionally important sites (e.g.,

residues in the catalytic triad), a distance threshold of 3.6 A flom the microcluster to the

functionally important atom(s) was used. Interaction with an active-site or exosite ligand

was determined by measuring the distance to all ligands bound in the structure.

Images in this dissertation are presented in color.
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2.4 Results

2.4.1 Clustering Statistics

To identify shared versus unique conserved water sites for thrombin and trypsin, complete

linkage clustering was performed on their respective water sites (Table 2.2). Clustering of

2,075 water sites flom the ten thrombin structures yielded 708 microclusters with an aver-

age of2.93 waters each, indicating that the average water site was observed in 29.3% ofthe

structures. Ofthe 708 microclusters, 18.5% were found in at least half ofthe 10 structures.

Clustering of 248 water sites flom the three trypsin structures yielded 106 microclusters,

conserved on average in 78.0% of the structures. Of these microclusters, 56.6% were ob-

served in all three structures. This high degree of conservation was surprising, but two of

the structures (PDB codes ltpo and 2pm) were solved by the same crystallographers and

have very similar water sites; however, mobility plots (data not shown) indicated that the

water assignments in both structures were reasonable. (Consideration was given to ana-

lyzing additional trypsin structures, but there were only three ligand-flee, wild-type bovine

structures solved under typical crystallization conditions.) Given the similarity in water

assignments for ltpo and 2ptn, trypsin water sites were considered to be highly conserved

only ifthey appeared in all three structures. A similar analysis ofBPTI clustered 263 water

sites flom four structures into 134 microclusters, with an average conservation of 49.0%.

Ofthese microclusters, 54.5% were found in at least halfof the BPTI structures.
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Table 2.2: Clustering statistics

 

 

Thrombin (10 superimposed structure)

Number ofwater molecules

Number ofwater clusters

Average conservation (waters/cluster)

Number of clusters with 250% conservation

Number of clusters with 100% conservation

Mean protein volume (A3)

Cluster density (clusters/A3)

Conserved cluster1 density (clusters/A3)

Trypsin (3 superimposed structure)

Number ofwater molecules

Number ofwater clusters

Average conservation (waters/cluster)

Number of clusters with 250% conservation

Number of clusters with 100% conservation

Mean protein volume (A’)

Cluster density (clusters/A3)

Conserved cluster1 density (clusters/A3)

BPTI (4 superimposed structure)

Number ofwater molecules

Number ofwater clusters

Average conservation (waters/cluster)

Number of clusters with 250% conservation

Number of clusters with 100% conservation

Mean protein volume (A’)

Cluster density (clusters/A3)

Conserved cluster1 density (clusters/A3)
 

2075

708

2.93 (29.3%)

131 (18.5%)

28 (4.0%)

38.27

0.0185

0.0034

248

106

2.34 (78.0%)

82 (77.3%)

60 (56.6%)

27.21

0.0039

0.0030

263

134

1.96 (49.0%)

73 (54.5%)

18 (13.4%)

7.31

0.0180

0.0100
 

lConserved clusters are those with conservation 250%.
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Table 2.3: Linear correlation coefficients between degree of conservation and environmen-

tal features

 

 

 

Environmental Correlation Coeffrcients

Feature Thrombin Trypsin BPTI Combined

ADN 0.412 0.451 0.418 0.408

AHP 0.483 0.467 0.304 0.475

BVAL -0.377 0.443 -0.355 -0.474

PrHBD 0.457 0.463 0.439 0.485

WatHBD 0.218 0.075 -0.040 0.177

MOB -0.525 0.450 -0.458 -0.478

TPrBVAL 0.068 0.371 0.146 -0.061

AngrBVAL -0.387 0.028 -0.328 -0.514
 

 

 

2.4.2 Environmental Analysis

Analysis of water site environments provided insights into the determinants of conserved

water binding. All protein-bound microclusters, i.e., those containing at least one water

molecule making direct contacts (33.6 A) with the protein, were analyzed. There were

521 protein-bound microclusters for thrombin, 98 for trypsin, and 117 for BPTI. Highly

conserved water molecules occupied somewhat different environments than less conserved

environments (Figure 2.3). Linear correlation coeflicients for each feature are given in

Table 2.3. Conserved microclusters had more neighboring protein atoms (atomic density;

ADN), made more hydrogen bonds to the protein (PrHBD), and were in a more polar envi-

ronment, indicated by more hydrophilic neighboring atoms (atomic hydrophilicity; AHP).

Most mobility measures, the water site’s B-value (BVAL), its mobility (MOB), and the av-

erage B-value of the neighboring protein atoms (AngrBVAL), were negatively correlated

with conservation, indicating that water sites with high conservation tend to reside in less
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Figure 2.3: Correlation between water site conservation and environmental features for (A)

thrombin, (B) trypsin, and (C) BPTI. Shown are the average values of eight environmental

features for the water microclusters as a function of their degree of conservation. Features

are those described in Section 2.3.4. The feature values have been averaged within mi-

croclusters as described in Section 2.3.4, averaged over the microclusters with the given

degree of conservation, and normalized to range between 1 and 10 to allow visualization

on the same plot. The curve of AHP for trypsin superimposes with that of PrHBD, and is

therefore not apparent on the plot. Approximately linear correlation with conservation is

seen for many of the features, as described in Results.
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mobile portions of the protein. The number of hydrogen bonds to other water molecules

(WatHBD) did not correlate strongly with the conservation, suggesting that consensus wa-

ter sites are not strongly stabilized by hydrogen-bonded water networks.

2.4.3 Effects of Crystal Contacts on Bound Water Conservation

The effects of crystal contacts upon water binding were examined by spatially correlating

water site conservation with contacts in the protein lattice. To address whether water sites

were preferentially excluded flom or trapped in these contacts, the location of conserved

water sites along with the crystal contact residues for the seven thrombin structures in the

C2 space group were visualized. Crystal contacts had fewer conserved water sites than

surrounding areas, consistent with the observed expulsion of interfacial bound water upon

dirnerization of chyrnotrypsin (Blevins and Tulinsky, 1985).

2.4.4 Spatial Analysis of the Conserved Microclusters

To explore how microclusters of different conservation levels are distributed spatially

around the protein, molecular graphics visualization was used. For thrombin, a concen-

tration of highly conserved microclusters (in 250% of the structures; yellow spheres in

Figure 2.4) was found near the sodium site but not observed in the active site, perhaps

due to water displacement by the presence of active-site ligands in 7 of the 10 structures.

Other conserved microclusters were observed in deep grooves or cavities within the pro-

tein, as expected flom the known correlation between water site conservation and groove
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Figure 2.4: Conserved water sites in thrombin. Thrombin microclusters containing water

sites from three of the ten structures are colored blue, sites found in four are green, and

sites found in at least five are yellow. The backbone ribbon of lhai is shown colored by

B-value (dark blue equals a B-value of 0, white ~30, red ~50, and yellow >50 A“). The

catalytic triad Asp, Ser, and His side chains are rendered as pink tubes at center. PPACK,

an active-site ligand lhai. is shown in blue tubes, and hirugen, an exosite ligand from lhah,

is shown in green (structurally conserved region) and orange (structurally divergent region)

at right. The sodium ion (labeled as water 410 in lhai) is rendered as a large blue sphere

at lower left. A concentration of conserved water sites exist near the sodium site and its

channel, at lower left; many other sites are buried.
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topography (Kuhn et al., l992a) and previous studies on the conservation of buried water

molecules in serine proteases (Finer-Moore et al., 1992; Rashin et al., 1986; Meyer, 1992;

Sreenivasan and Axelsen, 1992). When the exosite ligands were superimposed, a struc-

turally conserved region, comprising the six N-terminal ligand residues (green tubes at the

bottom right of Figure 2.4, and a structural variable region, extending flom the seventh

residue to the C-terminus of the ligand (orange tubes are rightmost edge of Figure 2.4),

were found; water sites associated with the structurally conserved region in the exosite lig-

ands were also generally conserved. Similar patterns of buried water site conserved were

observed for trypsin.

Given the functional importance ofthe Na+ binding site for switching between the co-

agulant (Na+ bound) and anticoagulant (water bound) forms of thrombin (Di Cera et al.,

1995), this region of the structure was analyzed in detail. The Na”r sites in structures lhai

and lhah assigned by Zhang and Tulinsky (1997), which were originally labeled as water

molecules in the PDB structures and later confirmed by rubidium replacement to represent

a Na+ site (Di Cera et al., 1995), occur in two overlapping microclusters (centroids 1.2 A

apart) containing the Na+/water molecules flom all 10 structures. The 38 water micro-

clusters in the channel coupling the Na+ site with the active site are >50% conserved on

average, consistent with the recent discovery of this conserved solvent channel (Zhang and

Tulinsky, 1997).
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2.4.5 Overlapping Water Sites between Thrombin and Trypsin

To define water sites shared between these serine proteases involved in distinct biochem-

ical pathways, overlaps between conserved (250%) Sites in thrombin and trypsin were

evaluated (Table 2.4 and Figure 2.5). The number of overlapping water microclusters in

thrombin and trypsin, 37, is statistically significant, since only 7.9 overlaps would be ex-

pected if the conserved water sites in thrombin and trypsin were distributed randomly (see

2.3.5). Seven of the conserved microclusters were in the active-site region, four being

near at least one of the catalytic triad residues. Three overlapping clusters were near the

Na” binding site ofthrombin, with two additional ones in the surrounding solvent channel.

Conservation of solvent in this region (Figure 2.5, lower left), which regulates the coag-

ulant/anticoagulant function of thrombin via Na+ binding displacement, suggests it may

also be important in trypsin. To assess whether water Site conservation between thrombin

and trypsin is associated with conservation of nearby side chains and their conformations,

the 37 shared waters sites were evaluated in the context ofPDB structures lhai (thrombin)

and ltpo (trypsin). Ninety-two percent of the shared water sites had chemically and con-

formationally similar environments, based on no more than one side-chain substitution and

no more than one residue with a significant (1 .5—2 A) shift. Larger shifts were considered

structurally dissimilar, yet even substituted side chains tended to be similar through the

7-carbon. Of the 37 shared sites, 38% were structurally very similar, with no side-chain

substitutions and no positional shifts exceeding 1.5 A. Thus, conserved protein structure

between thrombin and trypsin largely accounted for their water site conservation, which

can be considered a shared feature of their structure and function as serine proteases.
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Table 2.4: Overlapping conserved water sites between thrombin and trypsin

 

 

 

 

 

 

 

Thrombin Trypsin Distance

Cluster Percent Representative Cluster Percent Representative between

Number Conserved1 Water Number Conserved1 Water Thrombin

Residue Residue and

Numberz Numbera Trypsin

Centroids"

(A)

1021 70 570 25 100 470 0.16

899 LSC5 100 417 45 100 415 0.30

996 100 423 22 100 717 0.41

954 100 461 5 100 430 0.43

1 197 70 515 54 67 806 0.48

1017 LC 100 407 33 L5 100 416 0.52

935 A5 100 430 6 A5 100 703 0.54

857 A 100 445 20 100 701 0.56

951 A 100 468 19 100 408 0.56

874 100 401 28 100 708 0.56

970 50 5516 72 100 752 0.57

885 100 404 18 100 721 0.62

888 LC 100 403 31 100 704 0.65

926 100 414 30 100 429 0.67

1214 80 480 21 67 751 0.72

1075 80 489 59 100 736 0.75

948 50 5547 62 67 754 0.75

852 90 441 13 100 473 0.76

1016A 100 436 10L 100 410 0.77

963 100 439 17 100 722 0.78

1051 70 455 66 100 728 0.80

878 100 405 9 100 406 0.82

972 SC 90 448 35 100 705 0.86

1032 80 469 55 67 803 0.94

981 100 467 38 100 709 0.96

955 100 412 29 100 716 0.99

1139 70 537 42 100 530 1.01

1150 E5 90 507 8 67 738 1.06

832 50 458 65 67 801 1.10

Continued on next page.
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Table 2.4 (cont’d)

 

 

 
 

 

 

Thrombin Trypsin Distance

Cluster Percent Representative Cluster Percent Representative between

Number Conserved1 Water Number Conservedl Water Thrombin

Residue Residue and

Number2 Number3 Trypsin

Centroids"

(A)

1111 90 546 60 100 744 1.11

1086 SC 70 4096 44 100 562 1.14

890 90 406 24 100 5 l 6 l .29

870 90 443 4 100 726 1.32

916 80 452 34 100 604 1.40

921 100 413 l 100 746 1.58

1038 90 451 2 100 741 1.61

1 108 80 539 16 100 725 1.66

l 150 90 507 71 100 733 1.86

1259 70 426 52 67 750 1.93

1053 80 457 56 67 735 2.10

981 100 467 24 100 516 2.13

1170 60 494 66 100 728 2.15

964 SC 90 450 35 100 705 2.15

948 50 5547 65 67 801 2.19

1032 80 469 37 100 720 2.25

827 100 446 18 100 721 2.29

995 90 43 1 27 67 743 2.30

1119 50 505 2 100 741 2.34

857 100 445 10 100 410 2.36
 

 

1Only clusters with at least 50% conservation are tabulated.

2Representative thrombin waters are flom lhai unless there is no member water flom lhai,

in which case the source structure is noted.

aRepresentatrve trypsrn waters are flom ltpo.

‘A line divides the table into highly overlapping water microclusters with centroids g 1.8 A

apart (cluster radii overlap by 250%), shown in the top section of the table, flom some-

what overlapping microclusters with centroids 1.8-2.4 A apart.

5Labels indicate overlapping clusters that interact with (are 33.6 A flom) active site lig-

ands (L), active-site catalytic triad residues (A), Na+ channel waters (C), exosite ligands

(E), or Na+ site (S).

°Representative thrombin water is flom lhah.

7Representative thrombin water is flom labj.
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Several water sites were highly conserved in firnctionally important regions of throm-

bin or trypsin, but were not shared between them (Table 2.5). These may contribute

to their specificity differences. Four more microclusters were specifically associated with

active-site ligands in trypsin than were seen in thrombin, in reflecting the larger inhibitor

in trypsin; 13 residues of BPTI interact with trypsin, whereas the thrombin active-site lig-

ands are only three to seven residues long. Five Na" binding site and channel clusters were

shared between thrombin and trypsin (Table 2.4); however, 15 conserved sites in this region

were found only in thrombin (Table 2.5). Combined with the five conserved exosite water

positions found uniquely in thrombin and eight active-site water positions found uniquely

in trypsin (Table 2.5), it is apparent that bound water can make a significant contribution to

ligand specificity.

2.4.6 Contribution of Conserved Water Molecules to the

TrypsinzBPTI Complex

Trypsin provides an ideal system to test the applicability of a lock-and-key mechanism for

the contributions of protein-bound and ligand-bound water molecules to serine protease

complex formation because several high-resolution ligand-flee structures are available for

trypsin, BPTI, and the trypsin:BPTI complex. Using water nricroclusters identified for

trypsin and BPTI, the conserved water sites flom each protein were compared with water

sites conserved in the complex structures (2ptc and lpta). The flee trypsin structures were

superimposed onto the trypsin chain of the 2ptc complex, and the flee BPTI structures

were superimposed onto the BPTI chain of 2ptc. Three conserved microclusters flom the
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Figure 2.5: Overlapping conserved water sites between thrombin and trypsin. Water sites

conserved in at least half of the structures of thrombin (water sites shown as blue spheres)

or trypsin (red spheres) are shown. It is important to note that each cluster shown cor-

responds to one cluster in an overlapping pair; nonoverlapping clusters are omitted from

the figure. The backbone of thrombin (represented by lhai) is shown as a magenta rib-

bon and the backbone of trypsin (represented by ltpo) is shown as a red ribbon. Catalytic

triad residues are shown as white tubes (center of figure), PPACK (a thrombin active-site

inhibitor) is shown in blue, and hirugen (a thrombin exosite inhibitor) is shown in green

and orange (structurally conserved and divergent regions, respectively). The region of the

trypsin inhibitor BPTI which contacts trypsin is shown in yellow and superimposed from

2ptc; note the conformational similarity between PPACK and BPTI, extending downward

from the Pro residue of PPACK. The Na+ from lhai is rendered as a large blue sphere at

lower left. A concentration of overlaps between conserved thrombin and trypsin water sites

is observed near the Na+ site, despite trypsin having no known functional similarity here;

these conserved water molecules form a network which extends towards the active site.

There is also a number of overlapping sites located in the exosite, though these are more

spatially spread.
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Table 2.5: Functionally relevant conserved water Sites unique to thrombin or trypsin

 

 

Representative

Cluster Percent Water Residue

Number Conservation‘ Number2
 

Thrombin

Active Site Catalytic Triad Residues

No Nonoverlapping Conserved Water Sites

Active Site Ligands

1153 100 408

1196 90 428

Exosite Ligands

821 60 560

949 50 576

1179 70 415

1241 50 490 (lhah)

1278 70 496 (lhah)

Na+ Binding Site

1195 80 418

976 100 424

1121 90 482

838 100 514

Na+ Channel Waters

1001 100 409

1195 80 418

976 100 424

1196 90 428

788 70 463

914 100 464

944 50 474

1121 90 482

915 90 497

838 100 514

1229 60 457 (lhah)
 

 

Continued on next page.
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Table 2.5 (cont’d)

 

 

 

Representative

Cluster Percent Water Residue

Number Conservation‘ Number2

Trypsin

Active Site Catalytic Triad Residues

48 100 747

80 100 702

Active Site Ligands

80 100 702

61 100 710

48 100 747

64 67 807

23 67 808

77 100 805
 

 

lOnly waters with 250% conservation are tabulated

1"Representative thrombin waters are flom lhai unless noted. Representative trypsin waters

are flom ltpo.

 

flee structures overlapped with the conserved water sites in the complex (large spheres

in Figure 2.6), two being contributed by trypsin and one by BPTI. Thus, three of the

seven trypsin:BPTI interfacial water molecules were donated by the flee proteins, while

four were newly recruited or shuffled upon complex formation. This contrasts with the

contributions of water molecules bound to the flee structures of lysozyme and the D1 .3

antibody, which contribute 20 ofthe 25 water molecules observed in the antibody-lysozyme

interface (Braden et al., 1995). Thus, the hydration structure ofthe flee protein and ligand

and the creation of new environments favorable for water binding upon docking of the

protein and ligand should both be considered in inhibitor design. One approach to doing so

in the pattern recognition application Consolv (Raymer et al., 1997).
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Figure 2.6: Conservation of water sites in the uypsinzBPTI interface. This close-up of the

interface between trypsin (red ribbon, from PDB ltpo) and BPTI (blue ribbon, PDB 4pti),

superimposed into the analogous chain of the trypsin:BPTI complex (PDB 2ptc), shows the

conservation of water sites between the free structures and their complex. The orientation

is approximately a 90° rotation about the horizontal axis relative to Figure 2.5. Conserved

(250%) water sites from the free trypsin structure are shown as red spheres, those from

BPTI shown in blue, and interfacial waters found in both structures of the trypsinzBPTI

complex (PDB 2ptc and ltpo) are shown in green. Water sites overlapping between the

complexes and free structures are rendered as large spheres, while non-overlapping sites

are rendered as small spheres. The catalytic triad of trypsin is shown in white, and the side

chain of the inhibitory Lys 15 from BPTI is shown in cyan. Of the seven trypsinzBPTI

interfacial water sites, three are contributed by either trypsin or BPTI.
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2.5 Discussion

2.5.1 Conservation of Water Sites in Thrombin and Trypsin

A number of water sites were conserved in at least half of the thrombin and trypsin struc-

tures, and several sites were found in all of the structures examined (Table 2.2). An earlier

detailed study of the solvent structure of trypsin (Finer-Moore et al., 1992) defined 211

consensus water sites via high-resolution X-ray difflaction data for the waters’ oxygen

atoms, verified by D2O-H20 difference neutron scattering density for the waters’ hydrogen

atoms. In this work, significantly fewer consensus water sites were identified, 60, perhaps

due to comparing three structures. A key goal was to distinguish conserved water sites

characteristic of serine proteases in general flom those contributing to ligand specificity.

Thirty-seven overlapping conserved water sites were found between thrombin and trypsin,

four and a half times the number expected for a random distribution of water sites. Finer-

Moore et al. (1992) evaluated similarity in solvent structures between pairs ofeight trypsin

and trypsinogen structures and also found significant similarity between them. Ten of the

37 shared sites observed here were in contact with ligands or associated with the solvent

channel proximal to the Na” site (Table 2.4). This is consistent with the observation of

Krem and Di Cera (1998) that one-third ofthe conserved internal water sites in serine pro-

teases (Sreenivasan and Axelsen, 1992) are located near the Na+ site; they proposed that

the water structure stabilizes this pocket associated with the substrate specificity (Krem and

Di Cera, 1998). Two water sites conserved between thrombin and trypsin in a channel lead-

ing from non-catalytic triad Ser 214, which interacts with Asp 102 of the catalytic triad,
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were also found. This solvent channel has been proposed as an exit path for the protons

produced during catalysis (Meyer, 1992).

2.5.2 Conserved Water Sites and Ligand Specificity

To identify water sites that can contribute to substrate specificity, water sites which were

conserved in functionally important regions of thrombin and trypsin but not conserved

between the two enzymes were analyzed. The 22 water sites conserved in the active site,

Na+ binding region, and exosite of thrombin but not in trypsin, and the eight active-

site water molecules conserved in trypsin but not in thrombin (Table 2.5) are likely to

contribute to their different substrate specificities. Design of thrombin inhibitors may be

optimized by mimicking these water interaction, as has been achieved for HIV protease

(Lam et al., 1994) and cyclophilin-A (Mikol et al., 1995). Results presented in Raymer

et al. (1997) on a study of 20 nonhomologous proteins bound to diverse ligands showed

that water molecules in ligand-binding sites can be displaced by similarly polar ligand

atoms, but also that water-mediated bridges between protein and ligand are ubiquitous,

with an average of 19 water-mediated hydrogen-bond interaction between proteins and

small ligands. Thus, the positions of conserved interfacial water molecules can used to

specify a template of favorable hydrogen bonds for ligands to satisfy, providing another

strategy for optimizing ligand design.
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2.6 Conclusions

The work presented here demonstrates hierarchical clustering as a useful tool for unbiased

definition and analysis of consensus water sites when several independent structures of a

protein are available. This approach is particularly useful for resolving the continuum of

water site overlaps that occurs when a number of structures are superimposed. Analysis

of colocalization between thrombin and trypsin water sites showed a small, but significant

number of overlaps, predominantly surrounding the sodium ion site in thrombin and the

corresponding region in trypsin. Cluster analysis ofwater sites and their environments also

identified the features associated with highly conserved water sites:

1. a high density of protein atom neighbors, indicating the water site is in a protein

groove or cavity instead ofbeing associated with a surface protrusion,

2. several hydrogen bonds being formed to the protein,

3. a hydrophilic environment, and

4. low thermal mobility of the site.

Since cluster analysis is a general statistical method, it is also expected to be useful for

analyzing side-chain and ligand atom positions and their chemistries.
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Chapter 3

Computational Ligand Screening - An Improved

Model of Protein-Ligand Interactions

3.1 Introduction

In addition to examining water molecules as a set ofspecial ligands, it is desirable to expand

analysis to small, organic molecules which act as ligands. One approach to this is the devel-

opment ofcomputational screening techniques which can be used to screen large databases

ofmolecules efficiently using computers versus experimental approaches. One method of

computational screening is to approach the problem as an extension to computational dock-

ing, which seeks to find the position ofa known protein ligand in the protein’s binding site.

Using such a method for screening would involve docking each of the molecules in the

database into a defined binding site and ranking them based on the quality of the docking.

While such an approach would work in theory, using the best docking algorithms available,

which include firll ligand flexibility (Welch et al., 1996; Rarey et al., 1996b,a), would cause
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the problem to be computationally intractable as these take at least on the order of a few

minutes to dock a single molecule. Such a screen of several hundred thousand molecules

would take an infeasible amount of time. Even allowing for just one minute per ligand,

screening a database of 100,000 molecules would take 10 weeks. However, one could

consider using a simplified docking algorithm which reduces the docking time to a second

or less per ligand and enables the screening to completed in a day. Such a technique is

presented here.

The classical view of protein-ligand binding, introduced by Fischer (Fischer, 1894), is

that of the “lock-and-key”, where the ligand fits as a key into the protein lock. However, a

more recent study of 39 complexes showed that the “lock” and the “key” are often flexible

(Betts and Stemberg, 1999), meaning that a simple steric fit docking is not sufficient to

function as a screening method. In an ideal case, both the protein and the ligand would

be fully flexible, but this retums to the problem of computational tractability. Instead, a

method where sufficient, but not additional, flexibility is included in the model would be

optimal. An additional step to further increase the efliciency of the docking is to represent

the binding site of the protein by a series of points which reflect the possible interactions

which can be made to a potential ligand. In the docking tool DOCK (Shoichet et al., 1992;

Shoichet and Kuntz, 1993), this is generally a set ofaround 100 spheres which constitute a

negative image of the binding site. When a docking search is performed, the set of points

representing the protein binding site is matched with the set of points representing the

possible interactions a potential ligand could make.
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3.2 Methods

3.2.1 A General Overview of the SLIDE Method

The overall method of the SLIDE (Screening for Ligands with Induced-fit Docking Efli-

ciently) algorithm involves three stages, all of which will be discussed in detail:

1. assignment of a set of points which represent the types of interactions a molecule

could make when bound to a protein (performed once per database ofmolecules),

2. identification ofthe sites of favorable interaction in the protein and reduction to a set

of favorable template points (performed once per protein of interest), and

3. matching the database molecules, via their interaction points, to the protein, via its

template points, i.e., the actual screening process.

Both molecule interaction point and protein template points can be one of four types: (1) a

hydrogen bond acceptor, (2) a hydrogen bond donor, (3) a hydrogen bond doneptor (donor

and acceptor), or (4) a hydrophobic or non-polar point.

3.2.2 Assignment of Interaction Points to Molecules in the Screening

Database

Assignment of interaction points to database molecules is based upon an atom by atom

examination of the molecule in question. Hydrogen bonding points are placed at atom
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positions which can make a hydrogen bond. A hydrogen bond donor point is assigned to

each nitrogen which is bonded to a hydrogen or which is positively charged. A hydrogen

bond acceptor point is assigned to each ofthe following atoms:

0 carboxylate oxygen atoms,

0 SP2 oxygen atoms,

0 .pra oxygen atoms which are not in hydroxyl groups and which are not bound to a

nitrogen atom,

o fluorine atoms in a C—F bond, and

o chlorine atoms in a C—Cl bond.

A hydrogen bond doneptor point is assigned to hydroxyl groups as the lone-pair electrons

on the oxygen can act as hydrogen bond acceptors while the oxygen can donate the hydro-

gen to another hydrogen bond acceptor.

Assignment of hydrophobic interaction points is done using a set of rules summarized

in Figure 3.1. These rules strive to place a hydrophobic interaction point every 1.5 to 2

carbon atoms along hydrophobic chains and around the edges of hydrophobic rings. The

method originally implemented in SLIDE assigned a hydrophobic interaction point to every

hydrophobic carbon, i.e., those bonded only to other carbons, hydrogens, or sulfurs, and to

the center ofhydrophobic rings. This caused a significant overassigrrment in long aliphatic

carbon chains, such as those contained in fatty acid molecules, due to the assignment of

points at every carbon position. The previous method also resulted in underassignment
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Methyl Group Isopropyl Group Tetrahedral Group

  
Hydrophobic Ring with Hydrophiiic Hydrophobic Ring with Single Hydrophobic Ring with Multiple

Substituent Hydrophobic Substituent Hydrophobic Substihrents

 

Internal Hydrophobic Atom Triplet

 
Figure 3.1: Summary of rules used to assign hydrophobic interaction points to molecules

in the screening database. The overall goal is to assign a point every 1.5 to 2 carbon atoms.

 

77



for hydrophobic rings due to the assignment of a single point in the center of the ring.

The new method presented in this work sought to eliminate both the overassignment and

underassigrrment to better represent the hydrophobic character of the molecules.

3.2.3 Identification and Assignment of Protein Template Points

Once the chemistry of molecules in the screening database has been described by the as-

signment of interaction points, the chemistry ofthe protein binding site, the template, must

be described. This is done by the assignment of a set of template points in the binding

site. These points represent favorable interaction positions of potential ligands and rep-

resent the negative image, in terms of both shape and chemistry, of the binding site. AS

for the database molecules’ interaction points, the template points are assigned one of four

types: hydrogen bond acceptor, hydrogen bond donor, hydrogen bond doneptor (donor and

acceptor), or hydrophobic point. There are two methods ofplacing template points: based

on known ligands or in an unbiased approach.

Creation of a Protein Template Based on Known Ligand Binding Modes

If the structure of at least one protein-ligand complex is known, a template can be created

which is based on the binding orientation ofthis known ligand or ligands. This technique is

useful when it is desirable to identify potential ligands which represent the chemistry ofthe

known ligand(s) and can be usefirl to screen a subset of a larger molecular database and/or

when a particular set of protein-ligand interactions want to be exploited. The first step of

template creation is to assign interaction points to each of the docked ligands, as above in
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Section 3.2.2, with each ligand in the reference flame of the protein binding site. These

points are then clustered using complete linkage clustering (see Section 2.3.2 for a detailed

explanation of complete-linkage clustering) to reduce the set to a representative sample of

the ligands’ chemistries. In the case where a single ligand is used as a basis for the creation

of the template, the resulting template is simply the set of interaction points of the single

ligand.

Creation of an Unbiased Template

The unbiased approach to template creation is the preferred method when searching a

molecular database for novel potential ligands, i.e., potential ligands which do not resemble

ligands in the available protein-ligand complex structures. It is also the only method avail-

able when the only available protein structures do not contain a ligand. Hydrogen bond

forming points are placed based on geometry of residues residing in the binding site in a

technique developed by my colleague Maria Zavodszky.

To identify potential hydrophobic interaction centers, a set ofpoints are initially placed

at the vertices of a three-dimensional grid, generally with spacing of 0.5 A, in the binding

site, defined by a box surrounding it. This generally results 10,000-40,000 points, depend-

ing on the size of the binding site. An earlier method placed points randomly in this box,

but this resulted in uneven sampling which often caused areas of possible interaction to

be unrepresented in the resulting set of template points. The set of points is then reduced

to include only those within a shell between 3.0 and 5.2 A flom the protein surface. This

step generally reduces the set of potential template points to 2,000-10,000. Each of these
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remaining points are then checked for hydrophobic character by calculating a hydrophobic

enhancement score as follows:

Enhancement Score = (3.1)

Number of Hydrophobic Atoms in Protein Environment —

Number of Hydrophilic Atoms in Protein Environment

The protein environment is defined as a sphere of radius 5.2 A centered on the potential

hydrophobic interaction point. This measure encompasses the idea of having a more hy-

drophobic environment when the point neighborhood contains more hydrophobic atoms.

This is in contrast to a measure which involves the average hydrophobic character of the

point’s protein environment, giving equal weight to an environment with a single hydropho-

bic atom and one with many hydrophobic atoms. By adjusting the enhancement score used

as a cutoff to assign a potential template point as being a hydrophobic template point, the

number of hydrophilic atoms allowed within this environment can be adjusted. By exam-

ination of the predominantly hydrophobic diethylsilbestrol (DES) ligand of the estrogen

receptor (PDB code 3erd; Tanenbaum et al. 1998), a cutoff of 3 was chosen. After deter-

mining which points reside in hydrophobic environments, they are clustered using com-

plete linkage clustering, generally with a clustering threshold of 3.0 A, which provides for

an approximate inter-cluster nearest-neighbor distance of 1.5 A. It is important to note at

this point that while the hydrophobic template points are initially placed at grid vertices,

the clustering results in them being assigned to arbitrary, non-grid positions. Hydrophobic

interaction points which overlap with hydrogen bond interaction points, defined as having
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a center-to-center distance of less then 1.5 A, are eliminated in favor of the geometrically

placed hydrogen bond points. The remaining hydrophobic points and the hydrogen bond

points constitute the final template.

Earlier Method of Unbiased Template Design

As a major focus of this work is the change in the model of the protein binding site, a

brief note on the original method by which the the binding site is modeled is warranted.

The original method described the protein binding site as a set of template points which

reflect the favored sites ofpotential interactions with ligands, as the new method does. The

original method also assigned points as hydrogen bond acceptor, hydrogen bond donor,

hydrogen bond doneptor, or hydrophobic, as does the new method, but these were assigned

differently. Instead of being placed at geometrically preferred positions, hydrogen bond

points were selected flom the shell of all points as those which can form hydrogen bonds

to protein atoms. Each type of hydrogen bond point, i.e., acceptor, donor, or doneptor,

was then clustered and rechecked for the ability to still participate in a hydrogen bond.

The same set ofpoints constituting the shell around the protein was then probed for points

which reside in a hydrophobic environment based on the average hydrophobicity of the

atoms in the potential point’s protein environment. The hydrophobicity for a protein atom

in the template point’s environment is defined as the average number of instances when

a water was bound to the atom per 1000 occurrences of the atom in a study of 53 non-

homologous protein structures (Kuhn et al., 1995). As in the new method, points classified

as hydrophobic were then clustered and combined with the hydrogen bond points to form
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the final template set.

3.2.4 Matching Molecular Interactions to the Template: The Screen-

ing Step

Once the protein binding site has been described as a set oftemplate points and each ofthe

database molecules have been described as a set ofpotential interaction centers, identifica-

tion of compatible matches can be achieved. As stated in the introduction, the use of a fill]

scale docking approach for each ligand would prove computationally intractable. The ap-

proach described here implements several techniques to reduce the overall screening time

to enable the screening ofdatabases on the order of a 100,000 molecules in approximately

one day.

Use of flashing Techniques to Rapidly Eliminate Infeasible Dockings

The first step in the screening process is to define a set of four hash tables to describe

the triangles present in the set of template triangles. These four hash tables include the

following parameters ofthe template point triangles:

1. the chemical type, i.e., hydrogen bond acceptor, hydrogen bond donor, hydrogen

bond doneptor, or hydrophobic, ofthe three template points which define the triangle

(20 hash entries),

2. the perimeter ofthe template point triangle, generally over a range of 3—25 A in bins

of 0.25 A (88 hash entries),
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3. the length of longest side of the triangle, generally over a range of 1—10 A in bins of

0.125 A (72 hash entries), and

4. the length ofthe shortest Side ofthe triangle, generally over a range of 1—5 A in bins

of 0.125 A (32 hash entries).

The lengths described above are used in most screening cases, but can be altered for spe-

cialized runs. This tabulation, while somewhat computationally costly, is performed only a

single time for a screening run.

Identification and Docking of the Anchor Fragment

Each set of three interaction points in a molecule in the database describes an anchor flag-

ment for that ligand (Figure 3.2). An anchor flagment is the substructure of the molecule

which is rigid when allowing only torsion angle rotations, i.e., if any of the bonds in the

anchor flagment were to be rotated, the triangle defined by the interaction centers would

be distorted. The screening process examines all of the triangle mappings in each of the

database molecules, leading to an exhaustive approach. Each anchor flagment ofa database

molecule is used as a potential basis for docking the molecule into the protein binding site.

The previously calculated hash tables are used to very quickly eliminate template point

triangles which cannot feasibly match the anchor flagment currently being explored, as

shown in Figure 3.3. In order to eliminate edge effects that may occur when the measure

ofa particular geometric property for an anchor flagment triangle lies near the boundary of

bins, the template triangles in bins on either side of the matched on are also included.
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Side Chain Anchor Fragment   

 

 

 

Anchor Fragment

Figure 3.2: Two example anchor flagrnents for an example molecule. An anchor flagment

is defined for each set of interaction point triplets for each molecule in the database. Rota-

tion ofany rotatable bond within the anchor flagment would cause a distortion in the anchor

flagment triangle, disturbing the initial triangle matching. Portions ofthe molecule outside

ofthe anchor fiagrnent are ligand side chains and can be rotated to alleviate collisions with

the protein.

 

Once a set of feasible template triangle matches to the anchor flagment is identified,

the remaining screening process, summarized in Figure 3.4, is performed. The overall

idea is to perform the least computationally expensive steps early on, discarding molecules

which fail to meet particular thresholds at each step. In this way, the most costly steps are

only performed on molecules most likely to dock. After the set of feasible matching tem-

plate triangles have been extracted flom the hash tables, each template triangle is examined

individually. The six possible triangle one-to-one triangle mappings are investigated. Ini-

tially, the chemical complementarity of the mappings is checked, e.g., to ensure acceptor

database molecule interaction points are mapped onto only template acceptor or doneptor

points. Database molecule interaction points are mapped onto the same type of template

points since the template represents the negative image of the protein binding site. For all

complementary triangle mappings, the distance matrix error (DME) for the side lengths of
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Figure 3.3: Hashing scheme implemented in SLIDE. The template hash tables are calcu-

lated a single time at the beginning of the screening run and are used to quickly eliminate

template triangles which cannot feasibly match to the ligand anchor flagrnent triangle un-

der current examination. This initial step reduces the number of template triangles which

have to undergo more computationally expensive triangle fitting steps. To eliminate efl‘ects

which may occur when the measured property is near the boundary between bins, the tem-

plate triangles in bins adjacent to the matched one are also included as potential further

matches.
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For All Poeelble Anchor Fragments Defined by All Triplets of

Interaction Centers In Each of the Screened Molecules

Identity Chemically and

Flexible Side Chain Feaelble

Superposition of Ligand Triangle

A onto Template Triangle

  

  

——>

Identify Mawhing Template

Triangles by Mufti-Level Chemistry 1

ms“. Chain and Geometry Based Hashing     

 

Figure 3.4: Screening algorithm implemented in SLIDE. SLIDE’s docking of potential

ligands into the binding site is based on mapping triplets of ligand interaction centers (H-

bond donors, acceptors doneptors, or hydrophobic) onto triangles oftemplate points located

above the protein surface. Feasible template triangles for each possible triplet in a screened

molecule are directly accessed via a multi-level hash table, and the corresponding mapping

is used to dock the rigid anchor flagment ofthe potential ligand. Single bonds in the flexible

parts of both molecules are rotated to generate a shape-complementary interface, before

the complex is scored by the number of intermolecular hydrogen bonds and hydrophobic

complementarity of the contact surfaces. In all steps the ligand triplets or dockings that do

not meet a particular threshold are discarded.
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each molecule side, m;, and the corresponding template site, t,- is computed as follows:

 

3

DME = \l; 2 (m, — 1,)2 (3.2)

i=1

The DME’provides an approximation of the root-mean-square deviation, (RMSD) of the

superimposed triangles and is simpler to calculate. Therefore, it can be use as a first ap-

proximation to eliminate infeasible matchings and to find the best superposition between

the molecule and template triangles. Both the DME and RMSD must be below a defined

threshold for the anchor triangle to pass. In both cases, a looser fit is required for the hy-

drophobic template/molecule interaction point match to allow for the fact that hydrophobic

interactions are less specific.

Modeling of Induced Complementarity

Until this point in the algorithm, SLIDE has been working with the database molecule

anchor flagment and protein template in a reduced form as a simple triangle of interaction

points, but now the algorithm introduces a more realistic model by introducing the atoms

included in the database molecule’s anchor fragment and the atoms in the protein’s main

chain and C3 atoms. A check for intermolecular collisions between the anchor flagrnent

atoms and the protein main-chain atoms is performed. If atoms are found to overlap, the

anchor flagrnent is translated away flom the protein in the direction which alleviates the

collision(s) the minimum distance necessary to remove the overlap(s). This direction and

distances can be calculated as the sum of the vectors which lie along the collision axes.

This translation is limited, generally to 0.2 A, to maintain the original triangle matching
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and is repeated, up to 100 times, effectively shaking the molecule in the binding site, but in

a directed method.

If a docking with no overlaps between the protein main-chain atoms and molecule an-

chor flagment atoms is found, induced flexibility is modeled by rotation of protein and

molecule side chains. In this context, a database molecule’s side chains are those flag-

ment connected to the anchor flagment by rotatable bonds (Figure 3.2). If intermolecular

overlaps are found between the database molecule and the protein, using a full atom rep-

resentation, they may be resolved by rotation of a bond that will move either the database

molecule atom or the protein side-chain atom involved in the collision. Often times, there

are multiple bonds which can be rotated to resolve the collision, each displacing a different

set of atoms a different amount.

The approach presented here for modeling induced complementarity and deciding the

best bonds to rotate to resolve a set of database molecule/protein collisions is based on

mean-field theory (Jackson et al., 1998; Koehl and Delarue, 1994, 1996). This method al-

lows the rotation of the best of any rotatable bond to resolve one or more ofthe collisions.

A key part of this method is the creation of a probability matrix, P(i, j), which describes

the probability that a collision i will be resolved by rotation of bond j. Initially, all in-

termolecular collisions are identified. These form one dimension of the matrix. If more

than 20 collisions are identified, the docking is discarded as it is unlikely that this many

collisions will be resolvable. All rotatable bonds which can be used to resolve at least one

collision and do not cause a new intramolecular collision in the current configuration form

the other matrix dimension. It is important to note that there is no differentiation between
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database molecule and protein side chains. All rotations which can resolve a particular

collision, i.e., all entries P(i, j) such that rotation j resolves collision i, are assigned equal

initial probabilities. For each probability entry, P(i, j), a force, F(i, j), is computed that

reflects the cost ofrotating bond j to resolve collision 1' . The force assigned in this work is

simply the product ofthe absolute value ofthe angle ofrotation ofthe bond and the number

of atoms which will be displaced by rotating the bond. Such a force penalizes rotating a

larger number ofatoms a larger number ofdegrees, as this is more likely to cause additional

collisions elsewhere.

After initialization, several iterations of mean-field optimization are performed by up-

dating the probability matrix P to converge to high probabilities for those rotations which

provide the lowest cost conformational change for both the database molecule and the pro-

tein and which resolve the largest number of collisions. In each iteration, a mean force,

E(i, j), is computed for each rotation, as follows:

3033') = F011) + h a; kdeplfiii), (1%)] 'PUb k) ' F(h, 15) (3-3)

The value of dep[(i, j), (11, 11)] is a measure of the dependency between probability entries

P(i, j) and P(h, Ir). It is set to — 1.0 ifboth entries refer to the same bond and both rotations

are in the same direction, i.e., j = 1:. If this is the case, two collisions can be resolved at

once by a rotation of this single bond. Assignment of a dependency of —1.0 results in a

lower mean force, E(i, j), thereby favoring this rotation. If probability entries P(i, j) and

P(h, 1:) refer to the same bond (j = 1:), but the rotations are in opposite directions, the

dependency is set to +1.0, penalizing this rotation. If bond 3' lies on the path to bond 1:,
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e.g., bond j is between C)9 and C, and bond I: is between C, and C5 of the same side chain,

the dependency is also set to +1.0. This is penalized, since if rotation (1', j) were applied,

bond I: would be displaced, invalidating the assumptions about the current conformation of

the both the database molecule and the protein in the current optimization iteration.

At the end of each iteration, the entries of the probability matrix are updated based on

the mean force using the Boltzmann principle:

e_E(ir j)/"

2“. e_E(ir k)/I‘

 

Pour) = (3.4)

p is the average value of all computed mean forces. Convergence of the values in the

probability matrix is generally seen in fewer than ten iterations, and those rotations with the

highest probability are chosen to resolve the collisions. It is necessary to check for negative

correlations between bonds again at this time. Although checked for during the mean field

optimization, two correlated bonds can receive high probabilities ifthey are the only bonds

which will resolve a particular set of collisions or if alternative rotations are much more

expensive. Also, it is not possible to anticipate complex dependencies, e.g., which ligand

rotations influence protein bonds related to other collisions, during mean field optimization.

Since it is unlikely that all intermolecular collisions can be resolved by a single application

of optimization, up to 10 cycles are executed. Database molecule dockings are discarded

if they have more than 20 collisions at any time during the optimization or have remaining

collisions after 10 cycles ofmean field optimization.
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Scoring

Once a collision flee complex is identified, the final step in determining if the current

complex is a valid potential ligand is to calculate the chemical complementarity between

the database molecule and the protein. As a first pass, all complexes with poor shape

complementarity are eliminated. In the 89 complexes (Eldridge et al., 1997) used to tune

SLIDE’S scoring function, an average of 88% of the ligand carbon atoms where located

within 4.0 A of a protein atom, and all ligands buried at least 55% of their carbon atoms

against the protein surface (Figure 3.5). Based on this observation, all dockings in SLIDE

with fewer than 50% of carbon atoms buried, i.e., within 4.0 A of a protein atom, are

discarded.

The complexes are then assessed for chemical complementarity by a scoring function,

SCORE(P, M), which consists ofa term for the number ofintermolecular hydrogen bonds

formed between the protein, P, and the database molecule, M, HBOND(P, M), and a

term for hydrophobic complementarity between the protein and the database molecule,

HPHOB(P, M). For calculation of the number of intermolecular hydrogen bonds, hydro-

gen bonding is considered for cases where the distance between donor and acceptor is less

than 3.5 A. For proteins and database molecules with no hydrogen atoms provided in the

crystallographic structure, the positions of the hydrogens are computed based on known

bond angle and length constraints and optimal placement for hydrogen bonding when sev-

eral positions are possible (l-looft et al., 1996), such as for the hydrogen in a hydroxyl

group. For cases when the hydrogen atoms are given in the structure, their positions are

taken as given. Rotatable hydrogens are rotated to optimize hydrogen bonding when appli-
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Figure 3.5: Percentage of buried carbon ligand atoms in the 89 complexes used to tune

the SLIDE scoring function. Complexes were derived flom Eldridge et al. (1997). All

complexes had at least 55% of their carbons buried against the protein surface, defined

as being within 4.0 A of any protein atom. Based on this observation, SLIDE rejects any

ligand docking in which less than 50% of the carbon atoms are buried as an initial screen

before scoring.
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cable. Donation to multiple acceptors is allowed ifthe angular constraints are fulfilled. The

following constraints are used to qualify a hydrogen bond: (1) a donor- - acceptor distance

of 3.5 A, (2) a donor—hydrogen distance of 1.0 A, and (3) a donor—hydrogen- - acceptor

angle of 120° to 180° (Haberrnann and Murphy, 1996).

Hydrophobic complementarity is calculated based on the residue and atoms type in the

protein and the atom type ofthe databasemolecule. The values are calculated as the average

number of hydrations per 1000 occurrences of the atom and are taken flom a statistical

study of 56 protein structures (Kuhn et al., 1995). (The values for protein atoms are flom

Table II and the values for ligand atoms are flom Table III). The hydrophilicity values

range florn 0, maximally hydrophobic, Co, to 635, maximally hydrophilic, the tyrosyl

hydroxyl oxygen atom. The hydrophobic complementarity between database molecule M

and protein P is calculated as follows:

avg{h’(Me), I3(0)}
 

HPHOB(P, M) = "4.26314 max{abs(h’(M1) — 5(8)), 32} (3'5)

#R>0

where

h'(M,') = max{317 — h(M,'), 0} (3.6)

considers only the hydrophobic contribution of the database molecule atoms, M5, since

values larger than 317 refer hydrophilic atoms. If the atom is hydrophilic, i.e., the atom’s

hydrophilicity value is > 317, 317 - h(M,-) is < 0 and the hydrophobic character of the

database molecule atom becomes zero. The hydrophobicity, Ir(P,-), of the protein neigh-

borhood P,- for a single database molecule atom, M,-, is the average hydrophobic character
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of all protein atoms, pj, within 4.0 A of the database molecule atom:

 I.“ 2 ....),.}
PjEPI

The denominator in each element of the hydrophobic score, HPHOB(P, M) is set to be

greater than or equal to 32, which is 10% of the maximum score for a single database

molecule atom. This prevents a very few contacts with a large difference flom dominating

the hydrophobic score. The overall score for a complex is simply a linear combination of

the hydrophobic complementarity term and the number of intermolecular hydrogen bonds:

SCORE(P, M) = A - HPHOB(P, M) + B - HBONDS(P, M) (3.8)

The weights A and B have been chosen to optimize the fit between the scoring firnction

and the aflinities of 89 high—resolution complexes (Eldridge et al., 1997). These com-

plexes had an average hydrophobic complementary term of 28.7 and made an average of

7.8 hydrogen bonds. Values of 0.59 and 2.76 for A and B, respectively, give a reasonable

approximation to the series of measured afl‘inity values (linear correlation coeflicient of

0.615), which yields a relative contribution of 13210 of the hydrogen bond term over the

hydrophobicity term. The overall goal of SLIDE’S scoring function is to provide a relative

rank for the potential ligands. At this point, a minimum score cutoff can be used to include

only favorable complexes, resulting in a set of 100-500 potential ligands. Optimization of

the binding mode and prediction of the binding aflinity can be done using a more detailed

conformational search and/or docking algorithm on the top-ranked potential ligands.
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Another aspect of the scoring function is the modeling of solvation in SLIDE, though

not used in the work presented here. In other screening and docking algorithms, water

molecules are generally either considered to be a fixed part of the binding site or are ig-

nored. Some approaches seek to identify favorable water molecule positions in the protein

binding site prior to docking (Rarey et al., 1999) or seek to solvate the ligand (Shoichet

et al., 1999), but the water molecules in question are still fixed in position during the screen-

ing. It is well known that while some water molecules are key to providing high aflinity

binding (Ladbury, 1996), but it has also been shown that generally there are many water

molecules which are displaced flom the binding site upon binding of the ligand (Raymer

et al., 1997). SLIDE uses the approach developedby Raymer et al. (1997) in Consolv, which

is a Ir-nearest-neighbor/genetic algorithm application to predict which water molecules are

conserved and which are displaced prior to the screening run. Consolv uses only informa-

tion about the protein binding site and uses no information about the bound ligand. The

information about Consolv’s predictions is used in SLIDE via inclusion of the prediction

confidence, the proportion ofvotes for conservation in the Ir-nearest-neighbor classifier, for

the water molecules predicted to be conserved. SLIDE can displace water molecules which

are predicted to be conserved, but a penalty proportional to the confidence ofthe conserved

prediction is assessed in the score. Water molecules which are predicted to be displaced

are removed flom the binding site before screening.

One post-screening method that can be used is to apply a more costly, but more so-

phisticated, scoring function to firrther refine the ranking ofpotential ligands. The empiri-

cally based scoring function DrugScore (Gohlke et al., 2000a,b) is such a scoring function.
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DrugScore was created by examination ofcrystallographic structures for a series ofprotein-

ligand complexes to generate a database of radial distribution firnctions for each type of

possible ligand atom-protein atom pair. The favorability/unfavorability of a SLIDE gen-

erated protein-ligand complex can be computed by comparing the distance between each

ligand atom-protein atom pair in the docking to the functions derived flom the empirical

study. Distances which match common distances are considered favorable, while distances

which match those only rarely seen are unfavorable.

3.2.5 Testing Databases

To examine the effects of changes to SLIDE, human a-thrombin and glutathione S-

transferase (GST) were selected. Thrombin and GST are good cases to test for several

reasons: there is a high resolution crystal structure of the ligand-flee protein available in

the Protein Data Bank (PDB), there are several high resolution protein-ligand complex

structures available, and there is a moderate diversity of ligands in the complex structure

of each protein. For thrombin, no truly ligand-flee structure is available, but this work fo-

cuses on active-site ligands so structures with only non-active site ligands can be used as

a ligand-flee structure. The protein structures, shown in Tables 3.1 and 3.2, were chosen

to provide a set of unique ligands so as to prevent biasing the results towards one type of

ligand. In cases when more than one PDB entry contained the same ligand, the structure

with the best resolution was used.

Images in this dissertation are presented in color.
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Table 3.1: 42 Thrombin protein-ligand complexes used for testing SLIDE modifications

 

 

 

PDB Code Ligand Resolution (A)

la2c Aeruginosin298-A 2.1

1a3b Borologl 1.8

1a3e Borolog2 1.9

la46 fl-strand mimetic inhibitor 2.1

la4w Ans-Arg-2ep-Kth l .8

1 a5g Bic-Arg-Boa 2. 1

1a61 Mol-Arg-Lom 2.2

1ad8 MDL103752 2.0

lae8 Eoc-D-Phe-Pro-azaLys-Onp 2.0

1 afe Cbz-pro-azaLys-Onp 2.0

laht p-Amidino-phenyl-pyruvate l .6

1ai8 PhCHgOCO-D-Dpa-Pro-boroMpg 1.9

laix PhCH20CO-D-Dpa-Pro-boroVal 2.1

lawf GR133487 2.2

lawh GR133686 3.0

lay6 Hmf-Pro-Arg-Hho l .8

leg Bcc-Arg-Thz 2.1

1ba8 Pms-Ron-Gly-Arg 1 .8

lbe Pms-Ron-Gly-3ga 2. 1

lbcu Proflavin 2.0

lbhx SDZ 229-357 2.3

lbmm BMS-186282 2.6

lbmn EMS-189090 2.8

ldwb Benzarnidine 3.2

ldwc MD-805 (Argatroban) 3.0

ldwd NAPAP 3.0

lfpc Ans-Arg-Epi (DAPA) 2.3

lhdt Alg-Phe-Alo-Phe-CH, (BMS-l 83507) 2.6

llhc Ac-D-Phe-Pro-boroArg-OH 2.0

llhd Ac-D-Phe-Pro-boroLys-OH 2.3

llhe Ac-D—Phe-Pro-boro-N-butyl-amidino-glycine-OH 2.2

llhg Ac-D-Phe-Pro-borohomoomithine-OH 2.2

lnrs Leu-Asp-Pro-Arg 2.4

lppb PPACK 1.9

ltbz Dpn-Pro-Prg-Bot 2.3
 

 

Continued on next page.
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Table 3.1 (cont’d)

 

 

 

PDB Code Ligand Resolution (A)

ltrnb Cyclotheonamide A 2.3

ltmt Phe-Pro-Arg 2.2

ltom Methyl-Phe-Pro-amino-cyclohexylglycine l .8

luma N,N-dimethylcarbamoyl-a-azalysine 2.0

3hat Fibrinopeptide A mimic 2.5

7kme SEL271 1. 2.1

8kme SEL2770. 2.1
 

 

 

3.3 Results

Presented below are the results of a series of tests on the changes made to SLIDE during

the course of this research work. Previously published reports have shown that SLIDE can

identify known ligands flom a large database, can rank known ligands as better potential

ligands, and can correctly dock known ligands (Schnecke et al., 1998; Schnecke and Kuhn,

1999, 2000a,b).

3.3.1 Visual Examination of the New Template and Interaction Point

Methods

A first step was a visual examination ofthe template changes and the hydrophobic interac-

tion point assignment changes. Example unbiased templates for the estrogen receptor (ER)

in comparison to the diethylstilbestrol (DES) ligand using the original and the modified

methods are shown in Figure 3.6 (original method) and Figure 3.7 (new method). The

figures show a much better representation in the hydrophobic space occupied by the two
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Table 3.2: 16 GST protein-ligand complexes used for testing SLIDE modifications

 

 

 

PDB Code Ligand Resolution (A)

10gs Benzylcysteine phenylglycine 2.2

12gs S-nonyl-cysteine 2.1

13gs Sulfasalazine (SAS) 1.9

l 8gs l-(S-glutathionyl)-2,4-dinitrobenzene 1 .9

l9gs Phenol-l ,2,3,4-tetrabromophthalein-3’,3”-

disulfonic acid ion 1.9

laqv p-Bromobenzylglutathione 1.9

laqw Glutathione 1.8

laqx S-(2,3,6-trinitrophenyl)cysteine 2.0

lgss S-hexylcystine 2.8

lpgt S-hexylglutathione l .8

20gs Cibacron blue 2.5

2 l gs Chlorambucil l .9

2gss Ethacrynic acid (EAA) 1.9

2pgt (9R,10R)-9-(S-glutathionyl)-10-hydroxy-9,10 1.9

dihydrophenanthrene

3gss Ethacrynic acid-Glutathione conjugate 1.9

3pgt (+)-Anti-BPDE 2.1
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Figure 3.6: Unbiased template for the estrogen receptor generated using the original

method. The template points are represented by spheres colored according to type: green,

hydrophobic; red, hydrogen bond acceptor; blue, hydrogen bond donor; and white, hydro-

gen bond doneptor (donor/acceptor). The solvent-accessible ER surface and the diethyl-

stilbestrol (DES) ligand are colored by atom (green, carbon; blue, nitrogen; red, oxygen;

yellow, sulfur). The DES ligand is shown for comparison only and is not used in the tem-

plate generation. Compared to new method in Figure 3.7, one can see the the very poor

representation of the hydrophobic area corresponding to the left benzyl ring of DES and

the moderately poor representation of the right DES benzyl ring. (planar in the figure).

 



 

 
Figure 3.7: Unbiased template for the estrogen receptor generated using the new method.

The template points are represented by spheres colored according to type: green, hydropho-

bic; red, hydrogen bond acceptor; blue, hydrogen bond donor; and white, hydrogen bond

doneptor (donor/acceptor). The solvent-accessible ER surface and the diethylstilbestrol

(DES) ligand are colored by atom (green, carbon; blue, nitrogen; red, oxygen; yellow,

sulfur). The DES ligand is shown for comparison only and is not used in the template gen-

eration. Comparison to the original method in Figure 3.6 shows a better representation of

the hydrophobic DES rings, especially in the area corresponding to the DES benzyl ring at

left.
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benzyl rings of the DES ligand.

Additional visual analysis was done for the changed hydrophobic interaction point as-

signment method. A comparison between assignments using both the original and new

methods is shown in Figure 3.8. The new method shows a more balanced hydropho-

bic representation, especially between the hydrophobic rings and the aliphatic tails. The

overrepresentation seen in such tails and the underrepresentation seen in rings has been

eliminated.

3.3.2 SLIDE Docking of Known Ligands

While visual examination shows that the new methods for template point assignment and

hydrophobic interaction point assignment are likely to be an improvement, further work

needed to be done with screening and docking runs to confirm this result. A series of ex-

periments were performed with the original and new template methods and with the original

and new hydrophobic interaction point assignment methods. In one set, the template model

was held constant while the hydrOphobic interaction point method was changed, isolating

the effects of using the new interaction point method. In another set, the interaction point

model was held constant while the template method was changed flom the original one to

the new one, isolating the effects of changing the template. In a third set, both the template

and interaction point models were changed to judge the combined effects. A graphical

summary ofthese experiments is shown in Figure 3.9.

Initial tests examined dockings ofthe known ligands with SLIDE compared to the crys-

tallographic structure dockings. Dockings of the known ligands flom the complex struc-
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Figure 3.8: A comparison of hydrophobic interaction point assignment methods for

(A) estradiol from CSD code BEQJIQ (Parrish and Pinkerton, 1999) and (B) S-nonyl-

glutathione from PDB code 12gs (Oakley et al., 1997). Interaction points are represented

as spheres, colored by type: hydrogen bond acceptor, red; hydrogen bond donor, blue;

hydrogen bond doneptor, white; and hydrophobic, green. The new assignment method

provides a more balanced hydrophobic representation of the molecules, especially in the

hydrophobic tail of the S—nonyl-glutathione.
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Figure 3.9: Overview of experiments to test interaction modeling modifications made to

SLIDE. (A) represents experiments in which the template was maintained as a control and

the method for interaction point assignment was altered (results in Tables 3.3 and 3.4). (B)

represents experiments in which the interaction points were maintained as a control and the

template generation method was altered (results in Tables 3.5 and 3 .6). (C) represents tables

in which both the template generation method and interaction point assignment method

were changed (results in Tables 3.7 and 3.8).

 

tures were docked into the ligand-flee structure via superposition of the protein’s active-

site residues. Table 3.3 shows the number of known ligands which were docked for the

experiments in which the template was held constant but the hydrophobic interaction point

assignment method was changed flom the original one to the new one. The table is in-

terpreted such that changing the interaction point method to assign interaction points to

the known thrombin ligands flom the original method to the new method while using the

template derived by the original method for the thrombin binding site enables SLIDE to

dock two known ligands not docked using the original interaction point method, but one

known ligand is no longer docked, yielding a net of +1 (without using an RMSD cutoff).

There were 34 known ligands that were docked using both the original and new interac-

tion point methods along with the original template point method. The key lines to note
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Table 3.3: Known ligand dockings for constant template point method experiments

 

 

Template RMSD Dockings Dockings Dockings Net

Used Cutoff(Ar Gained Maintained Lost Docked
 

Thrombin

Original None 2 34 1 +1

2.5 2 26 3 -1

1 .0 6 4 5 +1

New None 1 33 0 +1

2.5 1 31 0 +1

1 .0 l 19 2 -1

GST

Original None 0 15 O 0

2.5 2 6 1 +1

1.0 1 1 1 0

New None 0 16 0 O

2.5 0 12 0 0

1 .0 0 12 0 O
 

 

‘The RMSD cutoff is the maximum RMSD relative to the crystallographic docking that a

SLIDE docking must have to be considered successfirl. None indicates that all dockings

were allowed. An RMSD of 2.5 A means the SLIDE docking must be moderately close

to the crystallographic docking, while an RMSD limit of 1.0 A means only very close

dockings are considered successful.
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are the RMSD cutoff 2.5 A lines (shown in boldface). These show data for the dockings

which were reasonably close to the crystallographic complex, and that while a docking

is sometimes lost, generally additional dockings are successfully achieved using the new

interaction point method. One can now ask if there is a quantitative improvement in the

dockings of ligands that were docked using both interaction point methods. The data,

shown in Table 3.4, clearly indicate that these dockings are better. More dockings had

a lower RMSD using the modified interaction point assignment method and the average

change was generally near or below zero. Dockings ofknown ligands using the new inter-

action point method also generally had improved scores, using either the scoring function

implemented in SLIDE or DrugScore, compared to dockings using the original interaction

point method.

A set ofexperiments similar to the above was performed by maintaining the interaction

point method constant and altering the template creation method used. Table 3.5 shows

the number of known ligands docked in these experiments. This table is interpreted

the same as Table 3.3. In these experiments, there are a few cases where changing the

template causes a loss of a few ligands, but when examining only the ligands docked at

least reasonably well, RMSD cutoff of 2.5 A, an average of 3.3 additional ligands are

docked that were not docked using the original method. It is especially key in the GST

experiments where only a few (7 to 8) known ligands are reasonably well docked using

the original interaction point method, but 11 to 12 of the 16 (the number maintained +

the number gained) are reasonably docked using the new template method. The ability to

correctly dock known ligands is an important feature of the SLIDE algorithm and has an
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Table 3.4: RMSDS for known ligands docked with both the original and modified interac-

tion point methods for constant template point method experiments

 

 

 

Template RMSD Dockings with Mean Standard

Used Cutoff (A)1 Better Equal Worse RMSD Deviation

RMSD RMSD RMSD Change (A)2

Thrombin

Original None 17 2 15 -0.02 0.05

2.5 14 0 12 +0.05 0.05

1.0 3 0 1 -0.16 0.02

New None 13 10 10 +0.01 0.05

2.5 13 10 8 +0.002 0.05

1.0 9 5 5 -0.04 0.06

GST

Original None 5 0 10 -l .36 0.79

2.5 2 0 4 +0.02 0.75

1.0 0 0 l 0.14 —

New None 6 6 4 -2.01 0.06

2.5 3 6 3 +0.03 0.01

1.0 3 6 3 +0.03 0.01
 

 

For an overview of these experiments, refer to Figure 3.9. Please also note that it is not

possible to directly compare values within a column as they relate to varying numbers of

docked ligands. The changes reported in each line of this table are equivalent to traversing

left to right in Figure 3.9 (A).

1The RMSD cutoff is the maximum RMSD relative to the crystallographic docking that a

SLIDE docking must have to be considered successful. None indicates that all dockings

were allowed. An RMSD of 2.5 A means the SLIDE docking must be moderately close

to the crystallographic docking, while an RMSD limit of 1.0 A means only very close

dockings are considered successful.

1'RMSD change is scaled such that values < 0.0 are better while values > 0.0 are worse.
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Table 3.5: Known ligand dockings for constant interaction point assignment method exper-

iments

 

 

Interaction RMSD Dockings Dockings Dockings Net

Point Method Cutoff (A) Gained Maintained Lost Docked

 

Used

Thrombin

Original None 1 32 3 -2

2.5 4 27 2 +2

1 .0 14 7 2 +12

New None 1 33 3 -2

2.5 6 26 2 +4

1.0 12 8 2 +10

GST

Original None 1 15 0 +1

2.5 4 7 0 +4

1 .0 10 2 0 +10

New None 1 15 1 0

2.5 4 8 0 +4

1 .0 10 2 0 +10
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Table 3.6: RMSDS for known ligands docked with both the original and modified template

method for constant interaction point method experiments

 

 

 

Interaction RMSD Dockings with Mean Standard

Point Method Cutoff (A) Better Equal Worse RMSD Deviation

Used RMSD RMSD RMSD Change (A)*

Thrombin

Original None 27 0 5 -0.67 0.07

2.5 23 0 4 -0.38 0.02

1.0 5 0 2 -0.20 0.19

New None 25 0 8 -0.77 0.03

2.5 20 0 6 -0.37 0.12

1.0 6 0 1 -0.17 0.001

GST

Original None 13 0 2 -1.36 0.31

2.5 7 0 0 -0.84 0.03

1.0 2 0 0 -0.22 0.14

New None 15 0 0 -2.01 1.04

2.5 8 0 0 -0.80 0.11

1.0 2 0 0 -0.44 0.06
 

 

For an overview of these experiments, refer to Figure 3.9. Please also note that it is not

possible to directly compare values within a column as they relate to varying numbers of

docked ligands. The changes reported in each line of this table are equivalent to traversing

top to bottom in Figure 3.9 (B).

’RMSD change is scaled such that values < 0.0 are better while values > 0.0 are worse.

 

important role in ensuring that ligands are not missed during screening runs. Once again,

one can question if these dockings are better, and the answer is yes. Table 3.6 shows that

in all cases, there are significantly more ligands are docked with better RMSDS using the

new template method compared to the original method. Also, in all of the experiments

performed, the mean RMSD decreased, in some cases by a large amount, the most dramatic

change being for the GST using the new template method for all docked ligands. Given the

relatively small size of these ligands, a drop ofmean RMSD of 2.01 A is very significant.
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Table 3.7: Known ligand dockings for combined new template and interaction point meth-

ods compared to the original methods

 

 

RMSD Dockings Dockings Dockings Net

Cutoff (A) Gained Maintained Lost Docked
 

Thrombin

None 1 33 2 -l

2.5 4 28 1 +3

1.0 14 6 3 +1 1

GST

None 1 15 0 +1

2.5 5 7 0 +5

1.0 10 2 0 +8
 

 

 

Changes in scores also show a similar improvement in known ligand docking.

Now that it has been shown that the new interaction point assignment method and the

new template point method are improvements independently, the next experiment com-

pared dockings done with both new methods to dockings done with both original methods.

The combination of new methods also shows a significant increase in the ability to dock

known ligands, as seen in Table 3.7. Once again, there is generally an increase in the

number of known ligands docked, especially when focusing on only those ligands which

were reasonably well docked in comparison to the crystallographic docking. This indi-

cates that the combination of new template method and new interaction point method is

an improvement over using the original methods for both template generation and interac-

tion point assignment. Also, the combination of new methods generally does better than

the introduction of either the new template method or the new interaction point method

by itself. Table 3.8 shows the improvements in scores for each of the scoring functions,

SLIDE’s built-in scoring function, DrugScore, and RMSD, for the combined new methods
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versus the combined original methods for the thrombin and GST known ligands. From

this, it can be seen that the dockings using the combination ofnew template and interaction

point methods are quantitatively better in all measures with all successful docking RMSD

cutoffs. The improvement is more pronounced for the GST ligands, but is still significant

for the thrombin ligands. In fact, for GST, 13 ofthe 16 docked ligands using the combined

new methods have RMSDS relative to the crystallographic dockings lower than 1.0 A, while

only two of the dockings using the original methods have RMSDS lower than 1.0 A. The

scores and RMSDS are as good or better than seen using either single change, indicating

that using both the new method for template creation and for interaction point identification

is better than using either change on its own.

The question may arise as to the nature of the known ligands which cannot dock to

the protein. Most ofthe known thrombin ligand docking failures, 63% of the new method

docking attempts and 86% ofthe original method docking attempts, occur at the side-chain

collision resolution stage. This result is consistent with many dockings runs seen during

the course of SLIDE development, indicating that this stage is the most critical for dock-

ing, which is not surprising given the complexity needed to effectively model induced fit.

Other failures commonly occur at the ligand anchor fiagment/protein main chain collision

resolution stage, which is likely related to the lack ofmodeling of protein main-chain con-

formational changes in the available docking and screening tools, including SLIDE.

In addition to quantitative measure of the quality of dockings of known ligands, one

can examine the dockings visually. Figures 3.10 and 3.11 show two such comparisons.

In both these cases, the docking determined using the new template and interaction point
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Table 3.8: Scores for the known ligands docked using the new template and new interaction

point methods compared to using the original methods

 

 

 

RMSD Scoring Dockings with Mean Standard

Cutofl‘ (A) Function Better Equal Worse Score Deviation

Used Score Score Score Change1

Thrombin

None SLIDE 2 27 O 6 +6.8 2.8

None DrugScorea 27 0 6 -59300 6200

None RMSD 26 0 7 -0.63 0.01

2.5 SLIDE 22 0 6 +6.1 3.2

2.5 DrugScore 23 0 5 -51800 8200

2.5 RMSD 22 0 6 -0.37 0.04

1.0 SLIDE 5 0 l +6.0 1.1

1 .0 DrugScore 6 0 0 -61400 12400

1.0 RMSD 4 0 2 -0.233 0.18

GST

None SLIDE 4 15 O 0 +135 2.45

None DrugScore5 l4 0 1 -127700 5100

None RMSD l4 0 1 -l .59 0.25

2.5 SLIDE 7 0 0 +9.4 1.53

2.5 DrugScore 6 0 1 -92200 30000

2.5 RMSD 6 0 1 -0.79 0.03

1.0 SLIDE 2 0 0 +13.l 0.17

1.0 DrugScore l 0 l -810 47000

1.0 RMSD l 0 1 -0. 15 0.21
 

 

 

For an overview of these experiments, refer to Figure 3.9. Flease also note thafit is not

possible to directly compare values within a column as they relate to varying numbers of

docked ligands. The changes reported in each line of this table are equivalent to traversing

diagonally upper-left to lower-right in Figure 3.9 (C).

1SLIDE scores are scaled such that values > 0.0 are better while values < 0.0 are worse.

DrugScore and RMSD changes are scaled such that values < 0.0 are better while values

> 0.0 are worse. _ . . . _

2SLIDE score rs umtless. For companson, the mean score for known thrombrn lrgands 1n

the crystallographic dockings is 36.3.

aDrugScore score is unitless. The mean score for known thrombin ligands in the crystallo-

graphic dockings is -468000.

4The mean known GST ligand SLIDE score for the crystallographic dockings is 40.2.

5The mean known GST ligand DrugScore score for the crystallographic dockings is

-378000.
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Figure 3.10: Dockings of estradiol to the estrogen receptor. Shown are the dockings of

the estradiol ligand computed using the original template and interaction point methods,

shown in grey, and computed using the new template and interaction point methods, shown

in blue, compared to the position on the crystal structure, colored by atom (taken from PDB

1a52; Tanenbaum et a1. 1998). The solvent-accessible surface of the estrogen receptor (ER)

binding site is shown colored by atom. The new method docking is significantly improved

compared to the original method docking, which is rotated roughly 90° about the long axis

of the ligand and can no longer form a hydrogen bond with the protein at the left of the

binding site. The new method docking is in a similar position to the known ligand and can

make both hydrogen bonds (left and right of the binding site) as seen in the crystal structure

complex.
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Figure 3.11: Dockings of ligand EMS-182282 to thrombin. Shown are the dockings of a

thrombin ligand to the ligand-free thrombin structure using the new template and interac-

tion point methods, shown in blue, and using the original template and interaction point

methods, shown in grey, compared to the crystallographically docked ligand, shown col-

ored by atom. The solvent-accessible surface of the thrombin active site is shown colored

by atom. The docking computed using the new methods is similar to the crystallographic

docking while the docking computed using the old methods is much less similar, especially

in the middle region of the ligand where the new method docking and the crystallographic

docking track quite closely, but the original method docking follows a significantly differ-

ent path.
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methods is much more similar to the known ligand, from the crystallographic complex

for the estrogen receptor or docked into the ligand-flee crystal structure via active site

superposition for the thrombin, than the docking determined using the original template

and interaction point methods.

3.3.3 Improved Enrichment

Now that it has been shown that the new methods to identify points offavorable interaction

in the template and in the database molecules improves the docking of known ligands,

it remains to show that the new methods result in improved screening results, i.e., better

selection of potential ligands from a database of molecules. The way to measure this is to

examine if known ligands are generally docked with higher scores than non-ligands, and,

therefore, would reside at the top of the screening hit list. To explore this, the first 14691

molecules of the 87326 molecule Cambridge Structural Database (CSD) screening subset

were selected. The vast majority of these molecules are unlikely to be true ligands, so

comparing the makings of any hits resulting from screening against these molecules to the

rankings ofknown ligands can yield a measure ofhow likely one is to select true ligands as

the top ranking screening hits. Shown in Figure 3.12 is a plot ofenrichment for selection of

known ligands over random molecules for thrombin. Ifno enrichment was seen, the curves

would have a slope of l, which is clearly not the case; therefore significant enrichment

was seen for both the original and new template point and interaction point identification

methods. The plots do not reach 100% on the vertical axis as they are scaled to set 100% to

the full dataset ofknown thrombin ligands, 42 molecules, but only 35 (original method) and

115



 

 

  

 

 

  
 

 
 

 

 

 

 

  
 

 
 

A B

100% / 100% /

/ /

90% r / 90% + , /

» _-__/_/____ . /__._.

30% ,,,,,‘ , 80% ~ ....... v ‘'7

‘8 . ————————— / i , , ’ /

‘§ 70% --- Original Method 70% ~ ---- Original Method

3 —— New Method ~ — New Method

2 60% x 60% » x
a / /

5" ’ / ” / /g 50% / 50% l," / /

5 40% 40% 1’ / /

.— . /

37 30% 30% l /

0 ‘ /

a. ,' /

20% - 20% ,- / /

l

10% 10% _

’ /

00/° A l l A l A 1 A m/o A 1 4 l 1 L 1 4

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 30% 100%

Percent Molecules Docked

Figure 3.12: Enrichment of known thrombin ligands in a set of random CSD molecules

using (A) the SLIDE scoring function and (B) the DrugScore scoring function. The plots are

scaled such that ifthe known ligands were randomly mixed in with CSD molecules in terms

of score, i.e., no enrichment was achieved, the plots would have a slope of 1 (demarcated

by the thin dashed line). This is clearly not the case for either the original method or the

new method for template point and interaction point identification, indicating significant

enrichment was achieved. The new method curve is shifted to the lefi, indicating the new

method yields an increase in the enrichment over the original method, especially when the

dockings of scored using the DrugScore scoring function (B). The y-axes are scaled such

that docking of all 42 thrombin ligands in the database would yield 100%.
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34 (new method) ligands are docked. It can also be seen that the enrichment was greater for

the new method compared to the original method as the enrichment curve is shifted to the

left, i.e., a higher percentage of known thrombin ligands rank above the same number of

random molecules for the new method, indicating that the new method is an improvement

when measured using the enrichment. It can also be said that the scoring functions are

able to distinguish reasonable dockings from questionable ones based on these plots. A

sirrrilar analysis done for glutathione S-transferase showed a similar increase in enrichment.

(Figure 3.13).

A quantitative measure ofenrichment, or enrichment factor, can also be calculated. One

such measure is derived from that developed by Knegtel and Wagener (1999):

F : Nact(p)/p
3.9

Nact/N ( )

where Na ) is the number of active compounds/known ligands in the top p ranked lig-

ct(p

ands and Nact is the number of active compounds/known ligands in the complete docking

set, i.e., all molecules that were chosen as potential ligands, of size N. This factor is a

measure ofthe proportion ofknown ligands in the top p selected molecules ofthe database

relative to the proportion ofknown ligands in the set of all docked molecules. In general, p

is selected as a fixed proportion of the database, e.g., the top 1% of the docked ligands. A

second metric was developed for this work which calculates the proportion of total ligands

docked with higher scores than the top I: percent ofknown ligands:

12%
Eh = 27% (3.10)
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Figure 3.13: Enrichment of known glutathione S-transferase ligands in a set of random

CSD molecules using (A) the SLIDE scoring function and (B) the DrugScore scoring func-

tion. The plots are scaled such that ifthe known ligands were randomly rrrixed in with CSD

molecules in terms of score, i.e., no enrichment was achieved, the plots would have a slope

of l (demarcated by the thin, dashed line). As can be seen, this is clearly not the case for

either the original or the new methods for template point and interaction point identifica-

tion, indicating significant enrichment was achieved. The new method curve (solid line) is

shifted to the left, indicating the new method yields an increase in the enrichment over the

original method (dotted line).
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Table 3.9: Enrichment factors for thrombin and GST test screening runs

 

 

Protein Scoring

Function

Original

Method Method Increase

New Fold

 

Knegtel and Wagener Measure

Thrombin SLIDE score

DrugScore

GST SLIDE score

DrugScore

New Measure

Thrombin SLIDE score

DrugScore

GST SLIDE score

DrugScore

28.6

25.7

46.7

20.0

12.1

7.7

6.5

3.0

44.1

76.5

62.9

71.9

26.0

74.4

93.6

18.3

1.5

3.0

1.3

3.6

2.1

9.6

14.3

6.0
 

 

 

where E]: is the enrichment factor for docking of 1: percent ofthe known ligands, generally

70%, and T% is the percent oftotal ligand dockings which were ranked higher than the top

I: percent of docked known ligands. Enrichment factors calculated using this measure are

shown in Table 3.9 Both measures of enrichment show quantitatively that the new method

yields improved enrichment, sometimes dramatically. It is not informative to compare the

enrichment factors calculated here to those determined by Knegtel and Wagener using their

method as their database was significantly smaller, only 1000 molecules compared to the

roughly 15,000 used here, resulting in their enrichment factors being significantly lower,

generally five to ten.

3.3.4 Results Summary

The method used to model the interactions a ligand molecule can make with a protein,

i.e., modeling of the ligand’s interaction points, has been modified as described in Sec-
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tion 3.2.2. This was shown to be an improvement using both visual analysis of example

database molecules (Figure 3.8) and quantitative comparison between dockings achieved

with SLIDE and dockings achieved via superposition of the binding sites ofthe ligand-free

and complex crystallographic structures. There was generally an increase in the number

ofknown ligands docked (Table 3.3) and the quality of those dockings (Table 3.4). Addi-

tional changes were made to the model of the interactions made by the protein with a 1ig-

and molecule, i.e., the protein template, as described in Section 3.2.3. These changes were

shown to be improvements via both visual analysis of generated templates (Figures 3.6

and 3.7) and by quantitative measures comparing the dockings achieved by SLIDE to those

achieved by superposition of the binding sites. As with the new interaction point method,

the RMSD between the SLIDE dockings and the crystallographic dockings generally im-

proved using the new method compared to the original method (Tables 3.5 and 3.6). Com-

bination of the new methods also showed an improvement, generally greater than either

new method individually, as seen by comparing known ligand dockings (Tables 3.7 and

3.8) and by visual analysis of the dockings (Figures 3.10 and 3.11). Combination of the

new methods also improved enrichment of the screening results (Figures 3.12 and 3.13;

Table 3.9).

3.4 Discussion

SLIDE is an efficient tool for virtual ligand screening which includes ligand and protein

side chain flexibility. Databases on the order of 100,000 molecules can be screened in a few

hours to a day, depending on template size and screening parameters. Full ligand docking
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is computationally too expensive to be performed on such a large database of molecules,

so initial matchings are calculated based on point representations of the protein binding

site and of the database molecules’ potential interaction centers. This approach enables

the elimination of infeasible matchings very quickly, thereby reducing the need to perform

the expensive computational operations on these infeasible matchings. The work presented

here describes changes made to the model used to identify both the sites of interaction in

the protein binding site and on the database molecules.

The method used to identify sites of potential interaction in the protein binding site

identifies sites where ligands could make favorable interactions to the protein and mirror

the binding site in both shape and chemistry. Each site is represented by a point with an

associated chemistry type, hydrogen bond acceptor, hydrogen bond donor, hydrogen bond

doneptor, or hydrophobic, and reflects the favorable ligand atom type to place at that site.

Altering the definition of a hydrophobic interaction site fi'om one that is in an environment

which is hydrophobic on average to one which is in an environment which contains several

hydrophobic atoms proved to produce an improved model ofthe protein template site as ev-

idenced by the improved docking ofknown thrombin and glutathione S-transferase ligands.

While it may seem more logical to base an assignment ofhydrophobic character on the av-

erage environment ofthe point in question, there is no sense ofthe size ofthe hydrophobic

area in question since having an environment consisting of only a single carbon atom is

treated as equally hydrophobic as an environment consisting ofmany carbon atoms. How-

ever, it is clear these environments are not equal in terms of their hydrophobic character.

Instead, it may be more important to have several hydrophobic atoms in the environment,
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allowing the presence some hydrophilic atoms while necessitating an overabundance of

hydrophobic atoms. This is partially reflected in the fact that bound water molecules are

more often located in depressions in the protein surface than adjacent to protrusions, even

when neglecting the hydrophobic character of the water molecules’ environments (Kuhn

et al., l992b). One could reasonably expect this observation to be stronger for hydrophobic

ligand atoms as there will be a stronger push for isolation fiom the surrounding solvent.

Use of the concept of the number of hydrophobic atoms in the environment could easily

be included in docking and screening scoring functions to further differentiate the more

favorable potential ligands and/or docking orientations selected. Often, scoring potential

ligands can be a key factor in extracting the best ofthe potential ligands selected, so an im-

provement such as this in the scoring function could prove to be an important enhancement

ofthe overall screening process.

A change in the model used for sites ofpotential hydrophobic interaction in the database

molecules was also implemented. This change yields a much better balanced representation

of the molecule’s hydrophobic character than was seen previously. One key feature of

the new model is the assignment of hydrophobic points to the edges of ring structures in

the molecules. Previously, a single point was placed at the center of each hydrophobic

ring. This leads to difficulties with determining the proper orientation in which to dock

the ring, i.e., stacked against the protein surface or edge-on relative to the protein surface,

and with limited placement of the ring. Since only a single point was assigned to the

ring, there was a severe limitation on the way that ring could match a site of favorable

hydrophobic interaction in the protein binding site, but it has been shown that while there
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are some preferences observed for ring-ring packing interactions, there is also a fair amount

of variability (Burley and Petsko, 1985; Mitchell et al., 1997). Given that a 6-membered

aromatic ring is approximately 3 A wide and hydrophobic template points are generally

placed at an approximate nearest-neighbor distance of 1.5 A, there would be only one to

two matching sites for a ligand ring structure. By placing points around the edge of the

ring, more possibilities are allowed for ring placement as there are more ring points to

match to template points. The initial docking of the ring can also shift substantially more

by mapping points from different sides of the ring onto the same template point, firrther

increasing the docking space explored. The exploration of this additional docking space is

important when searching for potential ligands so as to decrease the probability that a true

ligand is missed due to a misalignment of a key feature.

In addition, to change the model for hydrophobic ligand rings, a new model of hy-

drophobic ligand atoms outside of rings was introduced. This model averages the hy-

drophobic character of the molecule throughout carbon chains compared to the previous

model, which assigned a hydrophobic interaction point to every hydrophobic atom bonded

only to other hydrophobic atoms. While one can argue that the reduction in the number of

points in this case reduces the docking space sampled, which would be unfavorable, reduc-

ing the number ofpoints without significantly reducing the sampled space can be achieved,

as happens here. The new model of points, while reduced, still allows for a significant

amount of sampling as the points are placed approximately every 1.5 carbon atoms along

a chain. This is an approximate spacing to match the approximate 1.5 A template point

spacing, and adequate sampling ofthe space is still achieved.

123



The idea of docking space sampling is always a concern when performing computa-

tional screening. As the sampling becomes finer, such as with a finer template, the screen-

ing time can increase dramatically. In fact, docking tools, such as DOCK (Shoichet et al.,

1992; Shoichet and Kuntz, 1993), AutoDock (Morris et al., 1996), and GOLD (Jones et al.,

1995), which seek to find the optimal binding orientation of a single ligand, can be thought

of as finely sampling the docking space of a particular protein-ligand complex. The key

to effective screening methods will be to reduce the time needed to explore an adequate

amount ofthis docking space to provide accurate enough docking orientations to be able to

effectively analyze the resulting selected ligands. The ultimate goal of all virtual screening

techniques is to provide a set of potential ligands which show binding to the protein of

interest and can be used for further ligand optimization or as a set of probes for functional

studies, e.g., via differential inhibition. The work presented here comes closer to this goal.
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Chapter 4

Computational Screening of Asparaginyl tRNA

Synthetase

4.1 Introduction

In addition to development of improvements to the computational screening algorithm

SLIDE, work was undertaken to identify potential novel inhibitors of asparaginyl-tRNA

synthetase (AsnRS) using SLIDE. Aminoacyl-tRNA synthetases are responsible for cat-

alyzing the addition ofan amino acid onto the 3’ ribose of its cognate tRNA via a two-step

ATP dependent reaction. Initially, the amino acid is activated by the addition ofATP to form

an enzyme-bound arninoacyl adenylate intermediate. The aminoacylation reaction and its

specificity are vital to protein synthesis. The 20 aminoacyl-tRNA synthetases can be di-

vided into two general classes, I and 11, based on sequence motifs and putative structural

domains, as reviewed by Cusack (1995) and Amez and Moras (1997). In general, class I

synthetases contain a Rossmann Fold in their active sites and are active as monomers,
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whereas the class II synthetases contain an anti-parallel fl-fold and are active as (12 homod-

imers or 01262 heterotetramers. Class II aminoacyl-tRNA synthetases (AARS) are defined

by the presence ofthree class specific motifs of 10 (motif 1), 18-26 (motif2), and 16 (motif

3) residues in their catalytic domains. It is possible to further divide class 11 into subclasses

IIa, Ilb, and lIc based on the presence of specific domains, which generally play a role in

anticodon recognition. In addition to these subclass specific domains, a variable insertion

of 60 to 280 residues occurs between motifs 2 and 3 in the catalytic domains of class II

AARSs. AsnRS is a member of subclass IIb, which also includes aspartyl- and lysyl-tRNA

synthetases.

Lymphatic filariasis caused by Brugia malayi infection affects an estimated 100 mil-

lion people worldwide, and more than 1 billion people live in areas where the disease is

actively transmitted (Awadzi, 1997). There are currently no effective preventive medicines

against filariasis, as none are effective against the larvae, which are transmitted to humans

by mosquitos. Brugia AsnRS is an excellent target for filarial drug development as it is

highly expressed in the worms, has been well characterized biochemically and structurally

in several species, and can be recombinantly expressed to facilitate in vitro studies. Also,

the sequence and structure of the Brugia enzyme is difl‘erent fi'om the human AsnRS, pro-

viding for the possibility of identification of inhibitors specific for the Brugia synthetase.

Pieces of the protein translation apparatus have long been targets for antibacterial

agents, reviewed by Schimmel et al. (1998), including streptomycin and tetracycline, which

target the 30 S ribosomal subunit, and erythromycin and chloramphenicol, which target the

50 S ribosomal subunit. Aminoacyl-tRNA synthetases are currently a promising target for
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anti-infective agents as an increased number of pathogens become resistant to traditional

antibiotics. Targeting new anti-infectives to aminoacyl-tRNA synthetases is promising as

the enzymes are specific for the transacylation of tRNAs and are somewhat species spe-

cific, reducing the possibility of cross-reactivity with host enzymes and the resulting side-

effects. Pseudomonic acid (mupirocin) is a natural product synthesized by Pseudomonic

fluorescens (Fuller et a1., 1971) that has been shown to be an inhibitor of isoleucyl-tRNA

(IleRS) synthetase from Gram-positive infectious bacteria, including antibacterial-resistant

S. aureus (Casewell and Hill, 1985). It has been shown to have an approximately 8000-fold

selectivity for pathogen IleRS over mammalian IleRS (Hughes and Mellows, 1980). Sev-

eral other natural products have been shown to inhibit aminoacyl-tRNA synthetases (Nass

et al., 1969; Paetz and Nass, 1973; Tanaka et al., 1969; Ogilvie et al., 1975; Werner et a1.,

1976; Konrad and Roschenthaler, 1977; Konishi et al., 1989), indicating the potential for

use ofnatural and synthetic products to be effective against aminoacyl-tRNA synthetases.

4.2 Methods

4.2.1 Available Asparaginyl-tRNA Synthetase Structures and Ligands

for Virtual Screening Studies

A 1.9 A structure of Brugia malayi asparaginyl-tRNA synthetase complexed with an S-

adenosyl-asparagine (S-AMP-Asn) substrate analog was provided by Dr. Stephen Cusack

(EMBL, Grenoble, France), shown in Figure 4.1. The active-site pocket ofAsnRS, shown

in Figure 4.2, is relatively deep and consists oftwo lobes, one ofwhich binds the adenosyl
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Figure 4.1: Structure of Brugia malayi asparaginyl-tRNA synthetase complexed with S-

adenosyl-asparagine. Shown is the backbone structure of AsnRS, with one chain of the

dimer colored green and the other chain colored blue. The S-adenosyl-asparagine ligand is

rendered as ball-and-stick and colored by atom type and the associated Mg ion is rendered

as a large white sphere. While there is a substantial amount of contact between the chains

of the dimer in the interface, the active site is isolated within each chain and, therefore,

only a single chain need be considered during the computational screening procedure.
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moiety (right side of Figure 4.2) with the asparaginyl group extending into the other lobe

(left side of Figure 4.2). This crystal structure with the ligands removed was used to

construct two templates for SLIDE screening. The ligand positions fi'om this structure,

along with the positions of the asparagine ligand from E. coli AsnRS (PDB code llas;

Nakatsu et al. 1998) and the AMP and asparagine ligands fiom a second E. coli AsnRS

crystal structure (PDB code 12as; Nakatsu et a1. 1998) were used to generate a ligand-

based template. The ligands from the E. coli structures were transformed into the same

reference frame as the Brugia structure via superposition of their active site atoms onto

the Brugia active site. A second, unbiased SLIDE template (i.e., a template based only

on the chemistry of the binding site, incorporating no information about the structures or

positions of known ligands bound in the site) was generated using the Brugia structure.

This template was modified to eliminate points outside of the pocket and to label points in

the deep lobes as key points. By labeling points as key points, SLIDE requires any ligand

docking to match at least one of these points, ensuring that the ligands are well situated in

these deep portions of the pocket. These ligand-based and unbiased templates were used to

screen a set of three databases:

1. a database of six known ligands consisting of three asparagine molecules (two taken

from PDB files llas and 12as (E. coli AsnRS structures) and a third generated

from the asparaginyl portion of the Brugia S-adenosyl-asparagine ligand), two AMP

molecules (one fi'om 12as and one generated from the AMP portion of the Brugia

complex ligand), and the S-adenosyl-asparagine ligand fiom the Brugia structure;

2. a database of the 481 conformers generated for a set 16 high-throughput screening
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Figure 4.2: Asparaginyl-tRNA synthetase active-site pocket. The pocket’s solvent-

accessible surface is colored by the type of atom which contributes to it: carbon surface,

green; oxygen, red; and nitrogen, blue. The S-adenosyl-asparaginyl ligand is also colored

by atom type, with sulfur in magenta. The two lobes of the pocket which hold the adeno-

syl and asparaginyl moieties are oriented in the upper-left and lower right, respectively.

Though difficult to visualize in this two-dimensional figure, these lobes extend deeper than

the central portion of the pocket, which forms a ridge between the two deeper parts of the

binding site.
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ligands (described below); and

3. an 85,000 molecule subset of the CSD of crystal structures of small organic

molecules, consisting ofthose molecules with three-dimensional structures, nonpoly-

meric nature, and the absence heavy metal atoms, e.g., Fe, Mg, Zn, U.

In order for ligand candidates identified by screening to be guaranteed to have the ability

to span the entire binding site, encompassing both lobes of the AsnRS pocket (Figure 4.2),

SLIDE was set to require that at least two of the three ligand interaction points matching

the template be a minimum of 9.0 A apart.

4.2.2 High-throughput Screening for Asparaginyl-tRNA Inhibitors

and Conformer Generation of Selected Ligands

High throughput screening (HTS) for asparaginyl-tRNA synthetase inhibitors was

performed by Discovery Technologies (Allschwil, Switzerland) for our collaborator,

Dr. Michael Kron (Department of Medicine, College ofHuman Medicine, Michigan State

University). Screening was performed using a library of 11,700 compounds selected fiom

Bionet, MayBridge, SPECS, Aldrich, Analyticon, and several university compound li-

braries. Activity assays were performed using unfractionated yeast RNA as a tRNA sub-

strate along with l“C-asparagine under the protocol developed by Dr. Michael Hartlein

(EMBL, Grenoble, France). For each potential inhibitor, (“HTS hit”) the 1C50 and relative

specificity for the Brugia versus human enzyme were determined. Since the HTS ligands

were provided as two-dimensional structures, three-dimensional structures must be gener-
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ated to perform structural analysis of their mode of interaction with AsnRS. A search of

the Cambridge Structural Database (CSD) based on the structure of the HTS identified in-

hibitors yielded no entries, indicating that the crystal structures are not available for any of

these compounds. Initial three-dimensional structures were generated fiom SMILES codes

(a one-dimensional representation of the molecule’s chemical structure) and energy min-

imized using the Molecular Operating Environment (MOE; Chemical Computing Group,

Inc, Montreal, Quebec). Each of these minimized structures was used as input for the

stochastic conformer generation function in MOE to generate a set of three-dimensional

conformers for each of the HTS ligands. This conformer generation was run using a fixed

set ofparameters that yielded a fine sampling of conformational space.

Images in this section ofthis dissertation are presented in color.

4.3 Results

4.3.1 High-Throughput Screening

High-throughput screening for asparaginyl-tRNA synthetase inhibitors by Discovery Tech-

nologies resulted in a set of 16 potential inhibitors, shown in Figure 4.3. The compounds

exhibited a range ofstructures, though they are generally small, with molecular weights be-

tween 178 and 542 Da, and contain some aromatic structure. Inhibitory activity, measured

as the concentration of ligand which reduces enzyme activity to 50% of native activity

(1C50), ranged fiom 6.7 to 171 pM. Specificities for the Brugia enzyme relative to the hu-

man enzyme, measured as the ratio of IC50 for human over the Brugia 1C5 0, ranging from
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Figure 4.3: Potential asparaginyl-tRNA synthetase inhibitors identified by high-throughput

screening. These HTS ligands contain at least some aromatic character while also con-

taining hydrogen bond forming groups. Of particular interest are ligands numbered 2, 7,

l3, and 15 which are suggested by Basilea scientists working on AARS inhibitor develop-

ment as promising compounds (Malcolm Page and Frank Daniels, private communication).

Compounds 2, 7, and 15 have been shown to have some toxicity towards either adult worms

or larvae.
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1.7 to 63. Compounds 2 and 15 were shown to be toxic to adult Brugia worms, while com-

pound 7 has been shown to have only moderate toxicity against adult worms and strong

toxicity to worm larvae via in vivo assays (Michael Kron, unpublished results).

Conformer generation for these 16 HTS ligands resulted in an average of30 conformers

(standard deviation 35.6) per ligand. This large standard deviation reflects the fact that

the flexibility of the HTS ligands varies considerably. Ligand 8 is completely rigid with

respect to its non-hydrogen atoms and yields only a single conformer, while ligand 7 is

quite flexible and yields 100 conformers under the same conformer generation parameters.

Generated conformers for two example HTS ligands are presented in Figure 4.4.

4.3.2 Computational Screening using a Ligand Based Template

To identify ligand candidates which are related to the known ligands, a ligand-based

screening template was generated from the six available AsnRS ligands: three asparagine

molecules, two AMP molecules, and one S-adenosyl-asparagine (S-AMP-Asn) molecule.

This template consisted of 13 points and was able to successfully dock the two AMP

molecules and the S-AMP-Asn ligand, but was not able to dock any ofthe three Asn ligands

from the crystallographic structures. This is quite likely due to the increased variability of

placement of the asparagine moieties, such that when the template is generated by aver-

aging the atom positions, the template points are placed outside of the favorable binding

positions. Screening with this template against the database of conformers generated from

the 16 HTS ligands yielded no dockings for any of the HTS ligands. One possible expla-

nation for this result is that none of the HTS ligands bind in the active site, which was
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Figure 4.4: Conformers generated for HTS ligand 9 (A and B) and HTS ligand 15 (C and

D). Shown in A and C are the 2-dimensional structures of the the HTS ligands; shown

in B and D are the 3-dimensional structures of the generated conformers, each of which is

superimposed onto the first conformer using the phenyl ring in the upper left as a reference.

Ligand 15 is much less flexible and yields a small number of conformations (6) that are

somewhat similar while ligand 9 yields a broader range of conformations (20) due to its

increased flexibility.
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screened against, which could be tested with additional activity assays to determine the

nature of the inhibition. Another explanation based on the screening algorithm is that the

HTS ligands do not strongly resemble the ligands from the crystallographic structure. One

would not expect a template generated from these crystallographic ligands to be able to

select for these different HTS ligands as they do not resemble the known ligands and are

likely to take advantage of different sets of interaction sites within the binding site.

In addition to the screening against the databases of known ligands, either fi'om the

crystallographic structures or from the high-throughput screening tests, the ligand-based

template was used to screen against the CSD for new ligands. A adenosyl compound,

adenosine-5’-methylphosphonate (CSD code ADMPOI‘10; Barnes and Hawkinson 1979),

a substrate analog, was the top scoring ligand using either the internal SLIDE scoring func-

tion or the DrugScore scoring function (Gohlke et al. 2000a; discussed briefly in Sec-

tion 3.2.4). The docking ofthis CSD ligand closely resembles the docking orientation ofthe

AMP portion ofthe S-AMP-Asn ligand fiom the Brugia AsnRS crystallographic structure.

This confirms that the ligand-based template is able to select ligands that mimic the nat-

ural ligands’ binding modes. Other adenosine analogs were also docked with high scores

during the screening. Another ligand that was highly ranked by both the internal SLIDE

scoring firnction and the DrugScore scoring function was variolin B (CSD code LEPWIM;

Perry et al. 1994). Variolin B is a natural product derived from an Antarctic sponge and has

been shown to have possible antiviral and antitumor activity. Other marine sponge products

have been shown to have antihelrninthic and antibiotic effects (Alvi et a1., 1991). The two-

dimensional structure of variolin B is presented in Figure 4.5 and the docking orientation
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Figure 4.5: Two-dimensional structure of variolin B, CSD code LEPWIM. Circled is the

ring structure mapped onto the purine ring of the AMP portion of the S-AMP-Asn ligand

in the crystal structure ofBrugia AsnRS to achieve a second docking ofthe variolin ligand.

 

as calculated by SLIDE is presented in Figure 4.6. An additional, manual docking was

generated by mapping the variolin B ring circled in Figure 4.5 onto the purine ring of the

adenosyl group, with subsequent rotation of rotatable side-chain and ligand bonds to alle-

viate intermolecular and intramolecular collisions in Insight]! (Accelrys, San Diego, CA).

This docking assessed whether is was possible for variolin B to bind such that it matched

the binding ofthe adenosyl moiety in S-AMP-Asn. This docking, found to be feasible, also

places a hydroxyl group ofvariolin B onto the adenosyl N6 group, the hydroxyl oxygen can

act as either a hydrogen bond acceptor, the “normal” hydrogen bond forming role for oxy-

gen atoms, or a donor, thereby mimicking the adenosyl nitrogen’s firnction. This docking,

shown in Figure 4.7, scored higher than the docking in Figure 4.6 when using the internal

SLIDE scoring function, but somewhat lower when using the DrugScore scoring function.
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Figure 4.6: Variolin B docking as determined by SLIDE. The S-AMP-Asn ligand from the

Brugia AsnRS crystallographic structure is shown in yellow (AMP portion) and magenta

(Asn portion). Variolin B is colored by atom type: carbon, grey; oxygen, red; and nitrogen,

blue. There is a clear match between the 6-membered ring of the purine group and the

isolated ring of the variolin (upper right). The amine nitrogen of this ring coincides with

N5 of the adenosine, making the same hydrogen bond to the AsnRS protein.
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Figure 4.7: Variolin B docking assessed manually by superimposing the ring structure high-

lighted in Figure 4.5 onto the purine ring of the AMP moiety of the S-AMP-Asn ligand.

The S-AMP-Asn ligand from the crystallographic structure is shown in yellow (AMP por-

tion) and magenta (Asn portion). Variolin B is colored by atom type: carbon, grey; oxygen,

red; and nitrogen, blue. The S-AMP-Asn ligand is in the same orientation as in Figure 4.6.

This docking orientation yields a more filled AMP lobe of the binding pocket compared to

the SLIDE orientation and scored somewhat higher with the internal SLIDE scoring func-

tion. Thus, the binding modes predicted in this figure and Figure 4.6 are both feasible and

have favorable complementarity with AsnRS.
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Given these two favorable binding modes and the known biological activities ofvariolin B,

it was suggested as a potential ligand for further testing.

4.3.3 Computational Screening using an Unbiased Template

To identify ligand candidates that do not necessarily resemble the known ligands, an unbi-

ased template of 140 points was generated fiom the Brugia AsnRS crystallographic struc-

ture. This template had 50 points which reside at the extreme ends of the S-AMP-Asn

ligand marked as key points, meaning that all matches in SLIDE must include at least one

of these points. Screening with this template against the database of six ligands derived

from the crystallographic structures resulted in dockings of all six of these ligands, indi-

cating the unbiased template can also correctly dock known ligands into the binding site.

SLIDE was also able to dock all 16 of the HTS ligands in at least one, and generally more

than one, orientation. The best scoring dockings, according to the DrugScore scoring func-

tion, for two of the HTS compounds are shown in Figures 4.8 and 4.9. This results in

prediction of the mode of binding of the HTS inhibitors to AsnRS, which is not known

experimentally.

In addition to predicting docking orientations of potential AsnRS inhibitors identified

by high-throughput screening, SLIDE was used to identify additional novel potential in-

hibitors, without bias towards known ligands. This was done by screening with the un-

biased template against the CSD as described above. Three of the CSD compounds were

docked and ranked in the top 10 ligands using both the internal SLIDE scoring function and

the DrugScore scoring function (Figure 4.10), indicating these potential ligands form very
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Figure 4.8: Best scoring SLIDE docking for high—throughput screening ligand number

seven. The S-AMP-Asn ligand from the Brugia crystallographic structure is shown in

yellow (AMP portion) and magenta (Asn portion) and the ligand is shown colored by atom

(C, grey; 0, red; N, blue). Side chains in the Brugia AsnRS that were rotated by SLIDE

during the screening process are shown in green, with the crystallographic conformations

shown in grey.
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Figure 4.9: Best scoring SLIDE docking for high-throughput screening ligand number 13.

The S-AMP-Asn ligand from the Brugia crystallographic structure is shown in yellow

(AMP portion) and magenta (Asn portion) and the ligand is shown colored by atom (C,

grey; 0, red; N, blue). Side chains in the Brugia AsnRS that were rotated by SLIDE during

the screening process are shown in green, with the crystallographic conformations shown

In grey.
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favorable interactions with AsnRS. One ofthese candidates, MSFURY, has a second crys-

tal form entered in the CSD as entry code MSFURYOI. This second form was also selected

in the screening with rankings of 15 and 2 (SLIDE score and DrugScore respectively).

Cercosporamide, CSD code SIVXIE (Sugawara et al., 1991), was the top scoring can-

didate based on the SLIDE scoring function and was the 10th ranked ligand based on the

DrugScore scoring fimction; it is shown in its docked orientation in Figure 4.11. This

potential ligand fills the AMP lobe ofthe AsnRS binding pocket quite well, which is likely

to be important for both binding affinity and specificity. Cercosporamide, a phytotoxin

produced by a cassava pathogen, has been shown to have biological activity as a toxin to

plant protoplasts as well as to a variety of fungi (Sugawara et al., 1991). Given the high

scores and the known activities, this would be a good candidate to test for activity against

both Brugia AsnRS and against the Brugia nematodes. It will also be important to test this

and other potential ligands for inhibition of human AsnRS, which would be undesirable

in therapeutical applications. The ultimate goal is to obtain compounds that specifically

inhibit Brugia AsnRS, but not human AsnRS.

A second potential ligand ofinterest selected during computational screening was phlo-

rizin, CSD code CEWWAC20 (Auf’mkolk et al., 1986). Phlorizin, a dihydrochalcone gly-

coside produced by apple trees, has been shown to inhibit Na+ and glucose transport with

high nanomolar concentration via direct interaction with the Na+/glucose cotransporter

(Hirayama et a1., 2001). It has also been suggested that it may interact with the NADPH

binding site in some mammalian catalases (Kitlar et al., 1994) and has been shown to be

toxic to malarial pathogens (Loyevsky and Cabantchik, 1994). The docking orientation
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Figure 4.10: Molecules from the CSD selected as potential ligands by SLIDE screening

with an unbiased template. These molecules (SIVXIE, cercosporamide; CEWWAC20,

phlorizin; and MSFURY, (E)-4,4’-dimesityl-but-3-enolidylidene-but-3’-enolide) were

ranked in the top 10 potential ligands using both the SLIDE scoring function and the

DrugScore scoring function, indicating that they are highly favorable ligands to pursue

further through in vitro and in vivo experimental testing.
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Figure 4.11: Docking of cercosporarnide, CSD code SIVXIE, with Brugia asparaginyl—

tRNA synthetase. The S-AMP-Asn ligand from the Brugia crystallographic structure is

shown in yellow (AMP portion) and magenta (Asn portion) for comparison, and the ligand

is shown colored by atom (C, grey; 0, red; N, blue). Rotated side chains are shown in green

with the native positions shown in grey. The docking orientation shown was achieved by

screening with the AsnRS unbiased template against the CSD and was ranked as the best

potential ligand using the internal SLIDE scoring function and the 10th best potential ligand

using the DrugScore scoring function. The AMP pocket of AsnRS is well filled by the

potential ligand, lower center of the figure.
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determined by SLIDE is shown in Figure 4.12. These results suggest the compound is

bioavailable, but also, particularly in the case of binding to mammalian catalases, suggest

the possibility of toxicity or other side effects due to non-specific interactions of this po-

tential inhibitor. Phlorizin was ranked as the 10th best potential ligand using the internal

SLIDE scoring function and the ninth best potential ligand based on the DrugScore scor-

ing function, indicating that this docking to B. malayi AsnRS is still favorable, but not as

favorable as the interactions of the cercosporamide previously analyzed. The docking de-

termined by SLIDE also fills the AMP lobe of the AsnRS binding pocket, but to a lesser

extent. Also, more of the ligand extends away from the deepest portion ofthe binding site

(the portion extending down on the right side of Figure 4.12). There are several side chain

rotations in this docking, though most are still quite small, except for the movement of

tyrosine 223, behind the ligands on the left side of the figure. This degree of movement

is still not large and is comparable to what is seen between ligand-flee and ligand-bound

crystal complexes (Maria Zavodszky, unpublished results). In addition to the known activ-

ities, phlorizin is commercially available (Sigma-Aldrich) and would be a good candidate

for in vitro testing against AsnRS and in vivo testing against Brugia larvae and nematodes.

The third molecule that was ranked as the 10th or better ligand with both the internal

SLIDE scoring function and the DrugScore scoring function (ranked eighth with both scor-

ing functions) was (E)-4,4’-dimesityl-but-3-enolidylidene-but-3'-enolide, CSD code MS-

FURY (Begley et al., 1981). Figure 4.13 shows the docking orientation determined by

SLIDE for this potential ligand. Unfortunately, little biological work has been done with

this molecule, so no information about potential biological activity exists. It is interesting to
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Figure 4.12: Docking of phlorizin, CSD code CEWWACZO, with Brugia asparaginyl-tRNA

synthetase. The S-AMP-Asn ligand from the Brugia crystallographic structure is shown

in yellow (AMP portion) and magenta (Asn portion) for comparison, and the ligand is

shown colored by atom (C, grey; 0, red; N, blue). Rotated side chains are shown in green,

with the native positions shown in grey. The docking orientation shown was achieved by

screening with the AsnRS unbiased template against the CSD and was ranked as the 10th

best potential ligand using the internal SLIDE scoring function and the ninth best potential

ligand using the DrugScore scoring function. Phlorizin fills a fair amount of the AMP

binding lobe, lower left. This potential ligand extends further away from the Asn binding

lobe compared to cercosporamide.
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Figure 4.13: Docking of (E)—4,4’-dimesityl-but-S-enolidyliderre-but-3’—enolide, CSD code

MSFURY, with Brugia asparaginyl-tRNA synthetase. The S-AMP—Asn ligand from the

Brugia crystallographic structure is shown in yellow (AMP portion) and magenta (Asn

portion) for comparison, and the ligand is shown colored by atom (C, grey; 0, red; N,

blue). Rotated side chains are shown in green with the native positions shown in grey. The

docking orientation shown was achieved by screening with the AsnRS unbiased template

against the CSD database and was ranked as the 8th best potential ligand using both the

internal SLIDE scoring function and the DrugScore scoring function. MSFURY also binds

mostly in the AMP lobe of the binding pocket, but extends away from the binding site of

AsnRS (towards the upper right of the figure).
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note that a second crystal form ofMSFURY exists in the CSD, code MSFURYOl, in which

the distal substituated phenyl rings are rotated approximately 90° from planar with respect

to the central rings. (In the MSFURY entry, all four ofthe rings are roughly coplanar.) This

conformation was also selected by SLIDE as a potential ligand, with SLIDE making con-

formational changes to the ligand to rotate the distal phenyl rings closer to being coplanar

with the central rings. The resulting dockings are very similar, indicating the SLIDE has

the ability to select different conformations of the same molecule as potential ligands. This

potential ligand is a possibility for testing given its high scores and multiply docked con-

formations, however given its significant hydrophobic character, suggesting low solubility,

and the absence of commercial availability, it could prove diflicult to test.

4.4 Discussion — Analysis of Potential Ligands selected by

SLIDE

As a summary of the above results, a computation screening study was performed using

asparaginyl-tRNA synthetase (AsnRS) fi'om Brugia malayi as a target. A template gener-

ated from six ligands taken fiom the crystallographic structures was generated and used to

screen against a subset ofthe Cambridge Structural Database (CSD) and identified variolin

B as a potential ligand. An unbiased template was generated and used to suggest binding

orientations of the 16 inhibitors selected fiom in vitro high-throughput screening against

AsnRS. This unbiased template was also used to screen the CSD subset and identified three

potential ligands: cercosporamide, phlorizin, and (E)-4,4’-dimesityl-but-3-enolidylidene-
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but-3’-enolide.

One of the difl‘iculties encountered in virtual screening experiments is the selection of

the best potential ligands. Generally, a large number ofmolecules pass through to the scor-

ing step. The number of molecules reaching this step can be controlled by changing the

stringency of the screening parameters, such the allowed interatomic overlap parameters

in SLIDE. However, increasing the stringency of these steric aspects of, which decreases

the number of potential ligands, also increases the chance ofmissing worthwhile potential

ligands. The ideal case would be to use loose parameters, allowing many molecules to

pass, and then have a good scoring fimction for protein:ligand complementarity with which

to choose the most promising candidates for further work, such as in vitro inhibition as-

says followed by drug lead optimization for successful inhibitors. While there are several

scoring firnctions and docking forcefields available (Bdhm 1994; Jain 1996; Eldridge et al.

1997; Béhm 1998; Murray et al. 1998; Miigge and Martin 1999; reviewed in Section 1.4),

all have shortcomings. One problem with many of the currently available forcefields is

their sensitivity to minor changes in relative protein-1igand orientation. During the screen-

ing process, it is not possible to finely tune each orientation due to computational time

costs, but the untuned orientation may have a significantly lower score, thereby seeming

like a poor potential ligand when minor changes could make it rise much higher in the score

rankings. Such problems could potentially be handled by doing subsequent refinement of

the orientation, using such a forcefield coupled with a molecular dynamics algorithm, for

the best scoring candidates.

The approach ofconsensus scoring, suggested by Charifson et al. (1999) and applied in
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several cases (Bissantz et al., 2000; Stahl and Rarey, 2001; Tripos Associates, 2001), is to

score each docking with several scoring functions and then choose the dockings that score

well with several scoring firnctions. The work presented here used a simple consensus

firnction in which potential ligands which score well with both the SLIDE scoring function

and the DrugScore scoring function are examined in detail. Various methods have been

suggested and evaluated with respect to weighting and combination ofthe scoring functions

(Wang and Wang, 2001).

One advantage of the internal SLIDE scoring function over DrugScore is the clear sep-

aration of the score into the hydrophobic contribution and the hydrogen bonding contribu-

tion. This separation of score into components can be a very useful to increase the aflinity

of a particular ligand as it can point towards deficiencies in the current ligand, e.g., that

it is too hydrophobic or has too high a positive charge. Several other scoring functions

employ this separation, but many of the empirically based scoring functions do not make

such distinctions. Unfortunately, since DrugScore does not include a separation ofscores in

component parts, it is not possible to examine the reasons why some potential ligands score

quite highly with one scoring function, but quite poorly with another. In fact, in general,

the scoring functions do not correlate well with each other; over seven various screening

runs, the mean correlation was only -0.59 (standard deviation of0. l 7), indicating why con-

sensus scoring is important. The ability to disentangle the score into its component parts

is an advantage to forcefield based approaches, but often empirical approaches yield better

correlation with binding affinities. The advantages and disadvantages with each scoring

firnction point directly to the problem that none of the currently available scoring func-
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tions are extremely accurate and that additional research must be done to improve both the

accuracy and computational complexity of current functions to yield functions which can

accurately compute the binding affinity of a docked protein-ligand complex in a reasonable

amount of time. However, development of an improved scoring function is beyond the

scope ofthis work.

Another currently difficulty of analysis of potential ligands selected by computational

screening techniques is that of multiplicity, i.e., the identification of multiple binding ori-

entations of a single ligand. In cases where the desire is to simply obtain a list of potential

ligands, this may not be a concern, but in cases when one wants to use the docking results

to obtain insight into how a protein may function, it becomes a significant problem. This

situation arises in SLIDE since each database molecule interaction point triplet is matched

to each template point template. Two sets of pairings may orient the database molecule

in virtually the same orientation with respect to the target protein. The simplest approach

to resolve this would be to employ a clustering algorithm on the ligand positions, giving

a set of most similar orientations. This issue becomes more prevalent when dealing with

multiple conformers of a ligand. Each of the multiple conformers may dock in multiple

orientations, leading to a large increase in the number of dockings to be analyzed. While

the docking orientations of very different conformations cannot be the same, molecular

conformers which start in reasonably close conformations can merge into a very similar

docking when SLIDE rotates ligand bonds. However, even with varying final, docked con-

formations, it may be instructional to identify groups in the ligands which tend to bind in

similar locations in the target binding site. Direct visual analysis for a few dockings is pos-
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sible, but when many favorable orientations are identified, as in this study, where 3 to 5300

orientations were identified for each HTS ligand, visual analysis becomes impossible. In

this case, one could generate distribution maps for functional groups of particular interest,

such as those generated in Isostar (Bruno et al., 1997) for molecules in the CSD and Protein

Databank (PDB) databases.

Yet a third question arises from analysis of a set of potential ligands: are there

trends in the types of molecules selected? Techniques for clustering molecules using

a one-dimensional chemical representation of the molecules (Barnard et al., 2000), i.e.,

the SMILES string (Weininger, 1988), using one-dimensional bitstring representations

of the molecules (Matter, 1997), and using a compatibility based Tanimoto coefficient

(Verkhivker et al., 2000), have been previously implemented and could be applied in SLIDE

as a post-screening step. The identification of groupings of potential ligands is useful to

determine general chemical characteristics ofpotential ligands (i.e., are there specific func-

tional groups which all selected molecules share?) and to reduce the ligands to a set which

is analyzable. Also, having such clusters would yield information about the diversity of

molecules which can bind to the target by analysis of the molecule clusters produced, i.e,

are there many clusters containing only a small number ofligands produced, indicating di-

verse binding, or are there only a few, well occupied clusters produced, indicating binding

over only a narrow range ofmolecules. A practical result ofclustering would be to provide

information about chemically similar neighbors of potential ligands that are commercially

available for unavailable selected molecules or may be easier to work with experimentally

than selected molecules. A second application of such a technique would be to estimate
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the promiscuity of a protein, i.e., the ability of a protein to bind to diverse types of ligands,

and may help identify diflicult targets for drug design work.

The use of computational screening tools is to provide a set of molecules with likely

binding to a protein of interest for further testing. The ability to dock known ligands

strongly suggests that ligands which reside in the database used for screening will be se-

lected in the list of potential ligands. The scoring function can rank these potential ligands

to give a set of more probable actual ligands, but knowledge of the researcher can play

a significant role in what potential ligands are most likely to dock, or, in pharmaceutical

companies, are promising candidates for drug development. One approach would be to

limit the database to molecules that are “drug-like” molecules, such as those that follow

Lipinski’s “rule of fives” (Lipinski et a1., 2001). Other options would be simply limit the

molecular weight of the molecules or exclude molecules which have a certain functional

group. Another problem that sometimes arises is the availability of selected compounds

for ftuther work. While this may be less of a concern to a large, pharmaceutical company

with the ability to readily synthesize many compounds, small research entities may wish to

limit the screening database to only available compounds, such as those on the Available

Chemicals Database (ACD). All of this gets down to limiting the screening database to the

most promising candidates, which is the main goal of computational screening techniques.

The use of computational screening is only likely to increase. One idea not yet widely

considered is the idea of reverse screening, i.e., beginning with a ligand molecule and

identifying which proteins in a database, e.g., the PDB, it could dock to. This would

require a automated technique to identify potential binding sites on proteins. Such a method
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could provide leads as to what targets compounds of unknown function may bind too,

leading to elucidation of their role in the cell, as well as provide an estimate of cross-

reactivity potential for a drug candidate. While impossible to do now due to inadequate

algorithmic techniques and computational resources, perhaps a distant future screening

application would be to do computational hybrid screening, i.e., screening a protein of

interest for binding to a set ofdatabase proteins, which could prove especially applicable as

the proteomics movement comes into its own. One can be assured that new and innovative

screening techniques and applications will continue to arrive on the scene.
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Appendix A

Summary of Publications Outside of the Scope of

the Work Presented in this Dissertation

o M. L. Raymer, P. C. Sanschagrin, W. F. Punch, S. Venkataraman, E. D. Goodman,

and L. A. Kuhn. Predicting conserved water-mediated and polar ligand interactions

in proteins using a k-nearest-neighbors genetic algorithm. J. Mol. Biol., 265:445—

464, 1997.

Water-mediated ligand interactions are essential to biological processes,

from product displacement in tlrymidylate synthase to DNA recognition

by Trp repressor, yet the structural chemistry influencing whether bound

water is displaced or participates in ligand binding is not well character-

ized. Consolv, employing a hybrid k-nearest-neighbors classifier/genetic

algorithm, predicts bound water molecules conserved between free and

ligand-bound protein structures by examining the environment ofeach wa-

ter molecule in the free structure. Four environmental features are used:
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the water molecule’s crystallographic temperature factor, the number of

hydrogen bonds between the water molecule and protein, and the den-

sity and hydrophilicity ofneighboring protein atoms. After training on 13

non-homologous proteins, Consolv predicted the conservation of active-

site water molecules upon ligand binding with 75% accuracy (Matthews

coefficient Cm = 0.41) for seven new proteins. Mispredictions typically

involved water molecules predicted to be conserved that were displaced

by a polar ligand atom, indicating that Consolv correctly assesses polar

binding sites; 90% accuracy (Cm = 0.78) was achieved for predicting con-

served active-site water or polar ligand atom binding. Consolv thus pro-

vides an accurate means for optimizing ligand design by identifying sites

favored to be occupied by either a mediating water molecule or a polar lig-

and atom, as well as water molecules likely to be displaced by the ligand.

Accuracy for predicting first-shell water conservation between indepen-

dently determined structures was 61% (Cm=0.23). The ability to predict

water-mediated and polar interactions from the fi'ee protein structure in-

dicates the surprising extent to which the conservation or displacement of

active-site bound water is independent of the ligand, and shows that the

protein micro-environment of each water molecule is the dominant influ-

ence.

e M. L. Raymer, W. F. Punch, E. D. Goodman, P. C. Sanschagrin, and L. A. Kuhn.

Simultaneous feature scaling and selection using a genetic algorithm. In T. Back,
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editor, Proceedings ofthe Seventh International Conference on Genetic Algorithms,

pages 561—567. Morgan Kaufrnann Publishers, 1997.

Statistical pattern recognition techniques classify objects in terms of a

representative set of features. The selection of features to measure and

include can have a significant effect on the cost and accuracy of an auto-

mated classifier. Our previous research has shown that a hybrid between

a k-nearest-neighbors (knn) classifier and a genetic algorithm (GA) can

achieve greater classification accuracy than a knn alone by weighting fea-

tures during knn classification. Here we describe an extension to this ap-

proach which further enhances feature selection through the simultaneous

optimization of feature weights and selection of key features by includ-

ing a masking vector on the GA chromosome. We present the results of

our GA/knn feature selection method on two important problems from

biochemistry and medicine: identification of conserved water molecules

bound to protein surfaces, and diagnosis of thyroid deficiency. By allow-

ing the GA to explore the effect of eliminating a feature from the classi-

fication ‘without losing the weight knowledge already learned, the feature

masking technique allows the GA/knn to efliciently examine noisy, com-

plex, and high-dimensionality datasets to find combinations of features

which classify the data more accurately. In both biomedical applications,

use of the feature masking technique resulted in equivalent or better ac-

curacy than feature weighting alone, while using fewer features for the

158



classification.

0 L. Craig, P. C. Sanschagrin, A. Rozek, S. Lackie, L. A. Kuhn, and J. K. Scott. The

role of structure in antibody cross-reactivity between peptides and folded proteins. J.

Mol. Biol., 281:183—201, 1998.

Peptides have the potential for targeting vaccines against pre-specified

epitopes on folded proteins. When polyclonal antibodies against native

proteins are used to screen peptide libraries, most of the peptides isolated

align to linear epitopes on the proteins. The mechanism ofcross-reactivity

is unclear; both structural mimicry by the peptide and induced fit of the

epitope may occur. The most effective peptide mimics ofprotein epitopes

are likely to be those that best mimic both the chemistry and the structure

of epitopes. Our goal in this work has been to establish a strategy for char-

acterizing epitopes on a folded protein that are candidates for structural

mimicry by peptides. We investigated the chemical and structural bases of

peptide-protein cross-reactivity using phage-displayed peptide libraries in

combination with computational structural analysis. Polyclonal antibodies

against the well-characterized antigens, hen eggwhite lysozyme and worm

myohemerythrin, were used to screen a panel of phage-displayed peptide

libraries. Most of the selected peptide sequences aligned to linear epi-

topes on the corresponding protein; the critical binding sequence of each

epitope was revealed fi'om these alignments. The structures of the critical

sequences as they occur in other non-homologous proteins were analyzed

159

 



using the Sequery and Superpositional Structural Assignment computer

programs. These allowed us to evaluate the extent ofconformational pref-

erence inherent in each sequence independent of its protein context, and

thus to predict the peptides most likely to have structural preferences that

match their protein epitopes. Evidence for sequences having a clear struc-

tural bias emerged for several epitopes, and synthetic peptides represent-

ing three ofthese epitopes bound antibody with sub-nricromolar aflinities.

The strong preference for a type II beta-tum predicted for one peptide

was confirmed by NMR and circular dichroism analyses. Our strategy

for identifying conforrnationally biased epitope sequences provides a new

approach to the design ofepitope-targeted, peptide-based vaccines.

o L. Fan, P. C. Sanschagrin, L. S. Kaguni, and L. A. Kuhn. The accessory subunit of

mtDNA polymerase shares structural homology with arninoacyl-tRNA synthetases:

Implications for a dual role as a primer recognition factor and processivity clamp.

Proc. Natl. Acad. Sci. USA, 96(17):9527—32, 1999.

The accessory subunit of the heterodirneric mtDNA polymerase (p017)

from Drosophila embryos is required to maintain the structural integrity

or catalytic efficiency of the holoenzyrne. cDNAs for the accessory sub-

unit from Drosophila, man, mouse, and rat have been identified, and com-

parative sequence alignment reveals that the C-terrninal region of about

120 aa is the most conserved. Furthermore, we demonstrate that the ac-

cessory subunit ofanimal p017 has both sequence and structural similarity
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with class Ila aminoacyl-tRNA synthetases. Based on sequence similar-

ity and fold recognition followed by homology modeling, we have devel-

oped a model of the three-dimensional structure of the C-terminal region

of the accessory subunit of p017. The model reveals a rare five-stranded

beta-sheet surrounded by four alpha-helices with structural homology to

the anticodon-binding domain of class Ila aminoacyl-tRNA synthetases.

We postulate that the accessory subunit plays a role in the recognition

of RNA primers in mtDNA replication, to recruit p017 to the template-

primer junction. A similar role is served by the 7-complex in Escherichia

coli DNA polymerase III, and indeed our accessory subunit model shows

structural similarity with the N-terrrrinal domain ofthe 6’ subunit ofthe 7—

complex. Structural similarity is also found with E. coli tlrioredoxin, the

accessory subunit and processivity factor in bacteriophage T7 DNA poly-

merase. Thus, we propose that the accessory subunit of p017 is involved

both in primer recognition and in processive DNA strand elongation.
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