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ABSTRACT

TAILORING MATERIALS WITH PRESCRIBED CONSTITUTIVE

PARAMETERS USING POLYGONAL CELLS

By

Weian Ou

The topic of this thesis is to use the topology optimization method to solve an inverse

homogenization problem in which the micro-geometry of a composite (characterized by a

polygonal cell) made of two constituents is designed to match a set of prescribed elastic

properties. In this thesis, we also investigate whether using polygonal cells in the

homogenization procedure can result in materials that reach extremal properties.

The effect of different starting points is investigated. The results show that different

starting points will lead to different answers with the same target tensor, which points at

the non-unique of the solution. The question whether different shape parallelograms can

lead to different answers matching the same target tensor is examined. The results show

that one can achieve different microstructure that match the desired target tensor by

changing the geometry of the base cell. We study the effect of changing of the amount of

available material. The results show clearly that different volumes of strong material can

generate different answers that match the same elastic tensor. The results obtained are

close to the lower right comer of the Hashin-Shtrikman bounds.
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Chapter 1

INTRODUCTION

Composite materials are becoming increasingly important in industry. The weight and

strength ratio of these materials makes them suitable for a large variety of applications.

The application of the composite material determines what kind of property it should

have. The purpose of this thesis is to use the topology optimization method to solve an

inverse homogenization problem in which the micro-geometry of a composite made of

two constituents is designed to match a set of prescribed elastic properties. In this thesis,

we also investigate whether using polygonal cells in the homogenization procedure can

result in materials that reach extremal properties.

1.1 Inverse Homogenization

The goal of an inverse homogenization problem is to find a (periodic) microstructure in

which the infinitly small-scale mixture of two constituents forms a composite material

whose effective elastic tensor matches some arbitrarily prescribed values. The inverse

homogenization problem here deals with linear elastic materials and small deformation

kinematics in both macroscopic and the microscopic scales. It can be shown that after

using the homogenization procedure, the constitutive parameters can be expressed as

explicit functions of a finite number of parameters. The inverse homogenization problem

can thus be formed as an optimization problem to possibly minimize the deviation from



the target tensor with a prescribed amount of material. We can then use the topology

optimization method to solve it.

Sigmund (1994) solved the inverse homogenization by using square or rectangular base

cells only. Although this is not a fundamental constraint, this restriction can be released

by using polygonal cells without significant additional numerical complexity. It will

increase the design space remarkably by using polygonal cells to solve the inverse

homogenization problem. In Sigmund (1999), the inverse homogenization problem is

solved to find a new class of extremal composites. Also in this work only the square cells

are used and the bound of lower shear modulus is reached. The idea of using the

polygonal cell is inspired by Benard and Diaz (2001). In that paper, features related to the

discretization of problems characterized by simple periodic tiling using cells of various

shapes are discussed. The paper shows that various cell geometries capable of tiling the

plane can be replaced by an equivalent problem where the plane is tiled by polygonal

base cells. The base cell will be discretized with finite elements. The result of the inverse

homogenization will be presented as an optimized geometric distribution of the two

constituents in the base cell.

1.2 Topology Optimization

Topology optimization of plane structures involves the determination of features such as

the number and location of holes and the connectivity of the domain. In the inverse

homogenization problem, the goal is to allocate the prescribed volume fraction in the



design domain to make its elastic tensor meet the arbitrarily prescribed elastic tensor, or

target tensor.

Composites can be designed to have many physical properties, such as Young’s modulus,

Poison’s ratio, shear modulus, bulk modulus, conductivity, etc. Composite materials with

extreme properties (e.g., the “stiffest” composite) are very important in material science

and structural optimization. They can be used to establish bounds for structural

performance and are widely used in the field of topology optimization. Bendsoe, Guedes,

Haber, Pedersen, and Taylor (1994) answered in analytical form the question “what is the

optimal configuration of material throughout a structure that is consistent with the

objective for globally optimal design”. In that paper, they show that the measure of

compliance predicted in their formulation bounds from below the compliance of similar

structure, which presented in the paper, relative to all possible material configurations.

Bendose, and Kikuchi (1988) use composite mixtures to produce a methodology for

optimal shape design that avoids drawbacks that affect “traditional” shape optimizations.

One such drawback is that the optimal shape design of structural elements based on

boundary variations results in final designs that are topologically equivalent to the initial

choice of design. Thus, the region of the design space explored by such method is

limited. Another drawback is that general stable computational schemes for standard

shape optimization often require some kind of remeshing of the finite element

approximation of the analysis problem.



1.3 Extreme Properties

The elastic tensor of an isotropic material, which is composed by mixing two isotropic

constituents can be described by its effective bulk modulus k. and its shear modulus pi.

Considering two isotropic constituents with bulk and shear moduli denoted by k1, k2 ,

[11 and #2 , respectively, if the constituent with larger bulk modulus also has the larger

shear modulus ((k2 — kl Xuz — ”1).? 0) , the two constituents are called “well—ordered” .

Otherwise they are called non-well-ordered ((k 2 — kl Xp 2 — M1 )< 0 ). There exist bounds

of the effective bulk modulus and effective shear modulus that this kind of composite

material can reach. The first bound was given by Hill(l952). Later, these bounds were

improved by Hashin and Shtrikman (1963) for three-dimensional composites and well-

ordered constituents. Hashin and Shtrikman (1963) applied variation principles, involving

the elastic polarization tensor, to derive the upper and lower bounds for the effective

elastic moduli of the materials described as mechanical mixtures of a number of different

isotropic and homogeneous elastic phases.

The bounds for the non-well-ordered case were then improved by Walpole (1966).

Walpole presented general bounds for both well-ordered and non-well-ordered cases, as

Hashin and Shtrikman (1963) only considered the well-order case. Subsequently, Milton

and Phan-Thien (1982) and Berryman and Milton (1988) set up new bounds on the

effective moduli of a two-constituent-composite material. Milton and Phan-Thien (1982)

showed in detail how Hashin and Shtrikman’s (1963) bounds can be extended and how



Walpole’s (1966) bounds can be improved using two inequalities on the two geometrical

parameters that appear in the third-order bounds on the effective shear modulus. In

Berryman and Milton (1988), examples of bounds on one effective material property

from measurements of another are derived. These examples are somewhat more

restrictive than the Hashin-Shtrikman bounds. Cherkaev and Gibiansky (1993) improved

these bounds by the translation method. The set of the bulk modulus and the shear

modulus pairs turns out to be bounded in the plane of the values of these moduli by

straight lines and also by two fractional linear curves. Sketches of the Hashin-Shtrikman

and Cherkaev-Gibiansky bounds for well-ordered case are shown in Figure 1.1.

PuHS ii 
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Figure 1.1. Plot of the theoretical bounds on effective bulk modulus and

shear modulus for isotropic two-phase linear elastic well-ordered materials

(Sigmund (1999)).



If there exist composites that attain the bounds, the effective properties of such

composites are said to be optimal. An interesting question is whether one can identify the

micro-geometry of composite materials that can attain the bounds. The first

microstructure attaining the maximum bulk modulus bound was the spheres model

composite presented by Hashin (1962). Francfort and Murat (1986) focused their

attention on the mixture of two isotropic materials in prescribed volume fractions and

strived to characterize all possible macroscopically isotropic composites. They produced

a multi-layered composite with a finite number of element of layering directions. The

results they gave proved that Hashin-Shtrikam bounds on the bulk and shear moduli can

be achieved and suggested that the bounds can even be simultaneously achieved by

multiple layering. Two-dimensional square symmetric rank-2 laminations attain the upper

and lower bounds of the bulk modulus. Isotropic rank-3 laminations can attain the

maximum bulk and shear modulus simultaneously (upper right comer of the Figure 1.1)

and attain the lower-left comer of Figurel.l by inversing the two constituents. Lutie and

Cherkaev (1984) developed a method for the calculation of the extreme conductivity. The

method is based on the principle of the consecutive assembling of binary mixtures

through the addition of infinitely small amounts of one of the initial compounds to the

already-assembled isotropic composite. The process is assumed to produce an optimal

isotropic binary mixture at each step, which is performed by the Hashin-Shtrikman

procedure. They suggested that the same method can be used in the optimal design of

elastic constructions. In other words, there exist finite rank laminates that can attain the

bulk-shear muduli bounds. Milton (1992) produced examples of composites that can be

rigorously proved to have low-bulk and high-shear moduli. He found a family of two-



dimensional, two-phase, composite materials with hexagonal symmetry with Poison’s

ratios close to -—1. He also showed that elastically isotropic two-dimensional composites

with Poisson’s ratio approaching —1 can be generated simply by layering the component

materials together in different directions on widely separated length scales. In Milton and

Cherkaev (1995), for a two-phase composite comprised of a sufficiently compliant,

isotropic phase and a sufficiently rigid, isotropic phase, the effective elasticity tensor can

realize any given definite tensor satisfying the usual symmetries of elastic tensors. This

means that the optimal bulk and shear moduli bounds can be attained by this kind of

composite material.

Composite with extremal properties such as rank-2 laminations are multi-scale mixtures.

Instead of using the multi-length scale microstructures, Grabovsky and Kohn (1995) used

the “Vigdergauz microstructure” to obtain the two-dimensional square symmetric

composites with optimal shape of single inclusions. The composite is spatially periodic,

consisting of properly shaped elastic inclusions embedded in an elastic matrix.

Vigdergauz (1999) provided an alternative discussion of “Vigdergauz microstructure”

and its properties. He also presented an analysis of various limits of the inclusion and

extended the results of Grabovsky and Kohn to isotropic material. Sigrnund (1993, 1994)

used a numerical topology optimization approach to solve the material designing problem

with extremal elastic properties. In his paper, examples of two-dimensional, two-phase

microstructures with external bulk modulus are obtained by the inverse homogenization

procedure. Ole Sigmund, (1999) tried to produce the isotropic material microstructure

with maximum bulk modulus and minimum shear modulus. The results get very close to



the lower bound but have not attained it. In this thesis we will try to find out whether a

two-dimensional microstructure with a periodicity characterized by arbitrary polygonal

cells can attain the lower shear bound.

1.4 Periodic homogenization

In the 1970’s, much research focused on defining the equivalent mechanical properties of

composite materials and on determining their dependence on the difference components.

Some of the methods used in that research were based on engineering. They often show a

good agreement with each other’s experimental data or with empirical methods. In

Hashin’s (1970) paper, a survey in this approach is provided. At the same time, the

counterpart of such engineering methods in mathematics appears under the name of

homogenization theory. This theory has been the object of large amounts of research in

the area of applied mathematics. A few examples are Lions (1981) and Oleinik (1984). A

homogenization method as proposed by Guedes et al.(l990) can be used to calculate the

effective constitutive parameters of complex materials.

In homogenization theory, the composite material is assumed to be locally formed by the

spatial repetition of microstructures infinitely small, when compared with the overall

‘macroscopic’ dimensions of the structure of interest. The microstructure is called

‘microscopic’ cells, or base cells. In other words, it is assumed that the material

properties are periodic functions of the microscopic variable, where the period is

infinitely small compared with the macroscopic variable. The assumption enables the



computation of equivalent material properties by computation of the material property of

the base cell.

The homogenization procedure has been discussed several times in literature. One way to

solve the homogenization problem is analytical calculation. For example, Aboudi and

Jacob (1991) present the way to provide the overall behavior of composite materials by

the micro-mechanical analysis from the known properties of the individual constituents

(e.g. fibers and matrix).When more complicated microstructure need to be considered,

analytical homogenization becomes too complex to be calculated. In this condition,

numerical method based on the finite-element must be used. Guedes and Kikuchi (1990)

presented an effective numerical homogenization procedure with adaptive finite elements

methods. In this thesis, a modified version of this algorithm associated with element

mutual energy will be used.

This thesis is divided into 6 chapters. Chapter 2 will describe the homogenization

method. Chapter 3 will discuss relevant features and concepts related to tiling two—

dimensional domains using different polygonal base tiles. Chapter 4 will describe the

inverse homogenization method. Chapter 5 will present examples of inverse

homogenization problem solved and discuss whether it is possible to attain the lower

shear modulus bound. Chapter 6 will present conclusions and summarize the work that

has been done.



Chapter 2

HOMOGENIZATION

In this chapter, basic concepts in homogenization theory relevant in this work will be

briefly reviewed. Consider a composite material formed by the spatial repetition of a base

cell made of two constituents, as shown in Figure 2.1.The figure presents a two-

dimensional case. We assume that the mixture is represented by a base cell that is very

Constituentl (strong)

Constituent2 (weak)

   
=. Base cell

Figure 2.1. Composite structure

small (of order 8 ) compared with the dimensions of the body. As a result of the rapid

variation of material properties, when the body is subject to some load, the resulting

deformation and stresses vary rapidly from point to point. These quantities have two

explicit spatial dependences: on the macroscopic scale variable x and on the small scale

y = x/ E . Because of the periodic nature of the microstructure, the dependence of these

functions on the microscopic variable y = x/ 8 is also periodic. However, discretization

of the finite scale would be impossible, e. g. using finite element methods. It is therefore

necessary to develop a method that averages the microscopic structure whenever the



mechanical behavior of the macroscopic body is in question. The homogenization method

is such a method.

Let Q be an open subset of R2 with a smooth convex boundary F . Let Y be an open

rectangle in R2 (Figure 2.2), defined as

Y =10. y?rx10. ygr (2.01)

Later in this thesis this will be generalized so that Y can be any polygonal shape that tiles  
the plane. Let :9 be an open sub set of Y with boundary

319 = S (2.02)

and let

w = Y \19 (2-03)

 

   
 
Figure 2.2. Model of the base cell

In our problemw is the area occupied by the strong material. The closure of 19 , denoted

by 19 , is the area occupied by weak material, and Y represents the base cell of the

11



composite microstructure. The material properties vary inside Y and are defined using the

following indicator function.

1 if y e w,

90’) = . (2-04)
0 If ye m,

We can then define

$28 = {ms 52 | 0(x/e) = 1} (2.05)

as the subset of the domain 82 occupied by the strong material and

Number of cells

SE = USO, (2.06)

a=1

as the “boundaries” between strong and weak materials.

The following assumptions are made:

1. $28 is a connected domain.

2. In all cells the weak material part 19 has sufficient smooth boundary S.

3. None of the boundary S intersects with the boundary T‘ of 52.

v8 ={IE(H1(QE))2|v|rd=0} (2.07)

where v I111 is the value of v on the boundary I‘d . The problem of the deformation of a

structure body S25 subjected to body force f and tractions t on the boundary 1", with the

tractions p inside the boundary S E , and prescribed displacement on I‘d , can be stated

as

12

 



Find u‘eV‘, such that

a“: 8‘)"
6

E
6

ax, 871.10- [9, fl. vidQ+IrltividF+Jst pivids We v
(2.08)

 

E

EW
91'

Here strain-stress relation is

Psi=iEsiifgi (2.09)

where the elastic tensor matrix is given in the standard engineering form, i.e., E8 is

written as

E1111 E1122 E1112

[E]: E1122 E2222 E2212 (2-10)

E1112 E2212 51212 E

 

The conditions for existence of a unique solution u‘ to problem (2.08) is given in Necas

and Hlavacek (1981), and require that the functions f , t, and p be sufficiently smooth,

and that the boundaries 1"d , I“, , and S E be regular.

The solution u‘ should depend on both x and y , i.e.,

u‘E =u(x,y), yzx/E (2.11)

In the neighborhood of a fixed macroscopic point x it is assumed that there is a very large

number of micro-scale cells, which are obtained as copies of a base cell. Dependence on

y can be considered periodic or Y—periodic, at a fixed point x in the microscopic level.

Furthermore, it is assumed that the form of the base cell varies in a smooth way as the

macroscopic variable x changes. This means that at different points x the composite

structure may vary, but a periodic pattern can always be found in a microscopic

neighborhood of point x.

13



Since the solution uE depends on both macroscopic and microscopic variables, it is

reasonable to assume that u‘S can be expressed as an asymptotic expansion with respect to

the parameters (the “scale”, or the ratio of microscopic/macroscopic dimensions), i.e.,

 

us =u0(x,y)+£ul(x,y)+82u2(x,y)+..., y=xl8 (2.12)

where

u1'(x, y) is defined on (x, y)e wa (2.13)

u1'(x,y) is Y-periodic t

In order to find the homogenized elastic constants such that the macroscopic equilibrium

can be described by the same equation as (2.08), let 1““) E V be the solution of

L2,} av, av
jEiqu—ayq 3y——-=dY [Y 5W 5;de VveV (2.14)

v = {we (191(9))2 :v is Y — periodic}

and let 1;! k e V be the solution of

3W a

IYl‘:"1""_ay,—_keel—(”USP")(My Vvev (2.15)

If only the first order terms of the us asymptotic expansion are considered, it can be

shown (Sigmund 1994) that the global elastic constants of the material are given by

akl

x
{Y EW— p dY (2.16)

H l

E Eiqu dyqijk1:Y

l4



Thrs equation represents the macroscopic equrlrbrrum, whrle Eijkl represents the

homogenized elastic constants, i.e.,

0

H 3“]. 3"i

Q U“ 3x, ax]-

1 1 8111,, av,-
“(V—IL f,dY)v,-dr2 + In i,v,-dr + LEI-{IL 15W 51—”)?de (2.17)

VVE VQ

As shown above, the homogenized elastic constants can be computed within the basic

cell by solving the problem 2.14, and do not depend on the macroscopic deformation uo.

If a composite material has a uniform cell structure in the whole domain £2 , the

microscopic problem 2.14 needs to be solved only once.

Following Sigmund (1994), equation (2.16) can be rewritten as

H _ l _ *(kl)

Eijkl ‘ YIY [Eiqu Eiqugpq LY (2'18)

where 62(qu = 81“} / Byq is still the solution to (2.14). Let now 825]“) represent one of

three homogeneous tests strain-fields applied on the base cell, namely, two tensile strains

and one shear strain (Figure 2.3), i.e.,

1 0 0

{£01}: 0 {:02}: 1 {503}: 1 (2.19)

0 0 0
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80‘ so' 80‘

Figure 2.3. Model of the three-test strain used in homogenization

The solutions to problem (2.14) correspond to the deformation of the base cell, when

subjected to the three independent cases of pre-strain {£0} and periodic boundary

conditions, and can be obtained numerically using a finite-element method. Homogenized

elastic constants can be obtained by substituting the result of the finite-element analysis

*(kl) -
8P9 mto (2.18).

In order to use a topology optimization method to find micro-geometries with prescribed

effective constants, it is important to express the elastic constants E5k! in (2. 18) in terms

of element strain energies. This will make it possible to use the existing algorithms for

the topology optimization. A homogenization method expressed in terms of element

strain energies is described in the following.

Rewriting equation (2.18) we obtain



0 H 0 _1 k0 =1 T 0 1. 11

EliEijk18k1‘71Y 517-517) Eijk1(8k,-8k1) Y (2.20)

where a]?! and 83 are the test strains field and 8,;- and 8;] are the induced strains field

coming from the in-homogeneities of the rrricrostructure . If the base cell is discretized by

N finite elements, the element mutual energy Q,e in each element e, associated with test

strain field {80 }, can then be written as

1 0 * T 0 *
Qle =—e Ikeea) -Ee(1)) Eijkl (86(1) —8e(l))]1ye 6:1,...,N (2.21)

Y Ye

e—-—1—k°—*TE-°—*]ie-1N 222
92 - e I 8e(2) 8cm) W154» gem) y 6- (- )

Y Ye

1 O * T O *

Q38 : —; J‘k88(3) —£e(3)) Eijkl (88(3) —Ee(3))Lye C:1,...,N (2.23)

Y Ye

1 0 * T 0 *

Q4e = '7 .11(8e(l)_89(1)) 50111542) ‘84:»)er e=l,...,N (224)
Y Ye

1 0 * T 0 *

Qse “7 118.3(2) ‘5e(2)) Eijk115e(3) “612(3)er e=l,...,N (2-25)
Y Ye

1 0 * T 0 *

Q66 :3}? .11(8e(1)_8€(1)) Err/c1154» ’84:»)er e=l,...,N (226)

Ye '

where test strain field {92 }= {£0 }; {15: } is the induced train field in element e .

l7

 



Since we assume that the base cell is discretized by N finite elements, we can sum the

element strain energies to obtain the expression of each entry in the homogenized elastic

tensor EH .

N

E,” = 2Q," e=1,...,N ml,2,3,4,5,6 (2.27)

e=l

where we have used the following abbreviation

llll—>l 2222—>2 1212—>3

1122—P4 1112—>5 2212—>6

Now we only need to calculate each element strain energy Q: from (2.21) to get the

homogenized elastic constants of the composite material.
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Chapter3

TILING OF 2-DIMENSIONAL DOMAINS USING POLYGON

In the previous derivation (Chapter 2), it is usually enough to use square cells only (i.e.,

Y is a square or a rectangle). However, base cells with more general shapes could lead to

other interesting results. In this thesis, we use the topology optimization method to solve

an inverse, homogenization problem with polygonal cells. For this purpose, Y needs to be

defined so that it can tile the plane periodically. If Y is defined as a simple square or

rectangle, this requirement can be easily met. When we allow the base cell to take a

polygonal shape, this restriction is more difficult to impose.

We should review basic tiling concepts and introduce some basic results from Benard and

Diaz (2001). We consider various shapes of cells capable of tiling the plane. Let T be a

set of tiles in plane, which cover the plane without gaps or overlaps. T is a collection of

tiles Ti. Here we only discuss periodic monohedral tilings which involve translations of a

single polygonal proto-tile. All tiles have the same shape and size in monoheral tilings. In

a periodic tiling, each set Tiis a tile. Every tile Tiin T has the form

Ti = P + Mdl + "1612

where P is the proto-tile, representative tile in monohedral tiling, m and n are integers

and d1 and (12 are two non-parallel vectors called the tiling vector. The dependency of

Ton P, (11 and d2 will be expressed as T(P,d1,d2).
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(a)

  
  

   

(b)

Figure 3.1. Examples of various prototiles:

(a) polyiamond (b)polyomino (c) polyhexe ( Benard and Diaz

(2001))

Figure 3.1 shows several interesting examples of different proto-tile. The proto-tiles used

to tile the plane are polyiamond, L-shape, and polyhexe. These proto-tiles are made by

simply connecting the triangles, squares, and hexagons respectively.

We now introduce three important definitions leading to the concept of Y-periodicity

when Y is a polygon.

Definition: Lattice.

20

 



A lattice is a collection of translates of a single point p e P associated with a periodic

tiling T along the tiling directions, i.e., the set of points

L(d1,d2) = {q : q = p +md1+ nd2,m and n are Integers}

Such lattice forms periodic parallelograms called fundamental domains, or fundamental

parallelograms.

 

  
  

    

     

   
 

Figure 3.2. Fundamental domains associates with the tiling with

polyiamond, polyhexe, and L-shape prototile ( Benard and Diaz (2001))

Definition: Fundamental Domain.

21



A fundamental domain is any parallelogram F with its comers on the lattice L(d1,d2) ,

which tiles the plane with tiling vectors v1 and v2 and generate a lattice L(v1,v2)equal

to L.

There can be several fundamental domains associated with the same lattice. Figure 3.2

shows several examples of fundamental domain. In the figure polyiamond, polyhexe, and

L-shape proto-tiles can be associated with different parallelogram individually.

  

      

         

        

   P“)
      

     
d2 v 13(2)
  

v2         

Figure 3.3. Fundamental domains associated with

tiling of L-shape proto-tiles

Figure 3.3 shows a periodic tiling of L-shape proto-tiles. In the figure, two fundamental

domains F (1) and F (2) associated with the same tiling, in which L(p,d1,d2)and

L(p, v1,v2) are identical( the four points of the parallelograms F (I) and F (2) are the

same points of the L-shape proto—tile).

Definition: T -periodic function.

22



A function <1)sz —> R is T(P) -periodic, if <r>( p) = <I>(p + mdl + mdz) for all pe P

and integers m and n.

A function (I) that is T(P) -periodic uses the base cell P in its definition. It can be very

complicated to implement the numeric associated with the homogenization problem on

such a base cell P. Figure 3.4 shows an example of a node numbering of a polyhexe base

cell. In order to meet the periodic boundary conditions, the node numbers have to be

 
Figure 3.4. Periodic node numbering pattern of polyhexe

proto-tile

assigned in the pattern shown in figure 3.4. If the shape of the base cell changes, the

numbering of nodes will also need to be changed. This would be a very cumbersome

procedure.

23



We can use a parallelogram as fundamental domain to avoid these difficulties. From the

examples shown in Figure 3.2 and Figure 3.3, we can see that fundamental domains

preserve the periodicity of T(P) -periodic function. Because proto-tile P and

fundamental domain F are associated with the same lattice, a function that is T(P) -

periodic is also T(F) -periodic. The material design problem then can use F instead of

P as its base cell to solve the homogenization problem. So no mater how complex the

polygonal base cell is, we can always find a fundamental domain to describe the

periodicity of the problem. In others words, we can always use a parallelogram cell to

solve the T(P) -periodic function in which P is a polygonal cell. This result will expand

the design space of material design problems.

Figure 3.5 shows the geometry of a fundamental domain. A more complete

parameterization of design space of material tensors can be achieved by including in the

analysis the sides Lx/Ly and the internal angle a . One may also find interesting solutions

that cannot be reached when the base cell is restricted to be rectangular.

 

 

Figure 3.5. Definition of the parallelogram cell
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As in Figure 3.2, no mater which kind of polygonal proto-tile is used to tile the plane, we

can always find a fundamental domain associated with it. After we transfer all these tiling

problems into a basic parallelogram problem, solving the parallelogram cell-tiling

problem can use a general routine.
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Chapter 4

SOLVING THE INVERSE PROVLEM

In this chapter, the numerical approach for material design or inverse homogenization

method is briefly reviewed. The method is then applied to the design of two-phase E

composites with mixtures characterized by a polygonal cell.

 As stated in Chapter 3, the material microstructure is assumed to be periodic and fully L:

described by its smallest repetitive base cell. In order to use the finite element method,

the base cell is discretized by N finite elements. The effective properties are found by

using the numerical homogenization method, which is stated in Chapter 2, using the finite

element analysis to find the local fields and applying periodic boundary conditions.

In approaching the problem of getting the effective average elastic properties EH of the

base cell, the popular SIMP method, which is also used by Sigmund (1995), is used here.

This method uses a variable thickness sheet formulation and penalized intermediate

design values. The method assumes that the element elastic tensor Ee is isotropic and

expressed as

E3 = prO p, 6 (0,1] (4.1)
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Here p = {pl pN} are the design variables, and p is a real number, p >1, used to

penalize the intermediate design values (i.e., values of p between 0 and 1). E0 is an

isotropic reference tensor, which is expressed in the standard (matrix) engineering form,

 

 

E 1 v 0

[15°]: 2 v 1 0 (4.2)

1—1) 0 O (I ;‘U)

  

where E is the modulus of elasticity and v is Poison’s ratio. In terms of shear modulus

p and bulk modulus k , the Young’s modulus can be defined as

 

 

= 9"" (4.3)
3k + u

and Poison’s ratio can be defined as

v:1 3"'2‘“) (4.4)
2 3k + u

The isotropic reference tensor E0 can also be expressed in terms of shear modulus u

and bulk modulus k

 

 

 

  

l 3k—2,u

9k” 6k+2u

[E0]: 3k+u 3k—2,u l 0 (4.5)

1_(3k—2#)2 6k+2u

6k+2u 0 0 (3k+4u)

L 12k+4u_

The inverse homogenization method is applied here to solve the following problem:
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For a given amount of material, find the microstructure arrangement, which minimizes

the deviation from a target tensor Ei . In other words, in this material design problem, the

goal is to find a set of design variables p = { p1 pN} that make the material effective

tensor match the target tensor as close as possible. In addition to p , we also introduce an

additional design variable, t, to scale the material effective tensor as a scaling parameter.

The optimization problem is written as E

Find {,01 , p2..., pN} and t that will : (4.6a)

Min: ER (4.6b)

 
N

Subject to 2 Acpe = VOA

e=l

(4.6c)

O(pmin SpeSl

where p, represents the design variables, in this case, the proportion of strong

constituent in each element; N is the total number of elements that are used to discretize

the base cell; ER is the deviation from the target tensor, which will be defined below;

A, is the area of each element;v0 is a prescribed volume fraction, a number between 0

and 1; A is the area of base cell; and pmin is a prescribed lower bound for p: , a small

number (e.g., pm = 0.001 ).

The objective function used in (4.6) is the weighted mean square deviation between EH ,

the homogenized elastic tensor, and the target tensor E i . It is expressed as
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6

ER =%2w1(tEIH —E;‘)2 (4.7)

[=1

where compact notation E{I is used to denoted the six independent entries of the elastic

tensor using abbreviations

llll—bl l—Dl 2222—}22—52 1212—D33—D3

1122—>12—>4 1112—>l3—>5 2212—b23—D6

and wI is a prescribed, non-negative weight factor (1:1,. . .,6); E* is the target tensor.

As the function ER is an unconstrained, convex function oft for fixed p , we can get the

optimal value of t ,t* , by solving the equation 95:15 = 0 to minimize ER. Using

6

955: E,”w,(rE,” -E}") (4.8)
a: [:1

the minimizer is

1* = C—1 (4.9)

C2

where

6 * 6

c1: ZE,w,E,” and c2 = zEfiwm,” (4.10)

[:1 [=1

Using the t‘ in (4.5) and (4.6), the optimization problem is reduced to:

Find {p1,p2...,pN} that will : (4.11a)

1 6 1 H . 2
Min: ERz—Z-ZWIU E, —E,) (4.11b)

[=1
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N

Subject to 2 Acpe = VOA

=1 (4.11c)

0<pmin SpeSI

We also need to provide the gradient of the objective function ER. The gradient VpER

can be calculated from equation (4.11b)

6 BER dE,” +8ER ai” acl dE,” +ai" ac2 dEf’ )) (4.12)
V ER: ( *

p EBB,” dp a: Bolas,” dp aczagy dp

 

 

 

where

6 H 6 H
z( 6E1): (1E1 )= 2w] (1*E1H —E;)t* dEI (4.13)

[:1 El dp 1:1 dp

6

8E5 = Zwi(t*E,” -E’,")E,” (4.14)

3’ I=l

* H H
i6” acl dE, FLEWIE’; .115, (4.15)

[=1 acl 35;! dp CZ I 1 d

261(81’“ ac2 dE,” =_2c_126:wIEIH d5,” (4.16)

[=1 3C2 351” dp C2 1—1 d

Define nowW as a 6x6 diagonal matrix with weights w, in the diagonal entries. If EH

and E* are written in column vector form equation (4.10) can be rewritten as

T T

c1=E* WE” and c2=EH WE” (4.17)
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and (4.12) can be expressed as

  

  

VpER=(:"‘E” —E*)TW(t*I6x6 +E”E}"W)-‘-%H— (4.18)

where

E, zzlg-(EKEc—Cz-l—E”) (4.19)

The vector of the differential d5; can be easily computed as pH (for fixed strains)

from (2.20) and (2.21),

8:3: = :p‘i-l I(eioe — s‘.)TE°(sJ'o. - eje)dAe i,j = 1,2,3 (4.20)

Ye

Figure 4.1 shows the flowchart of the procedure to solve the inverse homogenization

problem.
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Calculate the element strain energy and the constitutive

parameters, using equations (2.21) and (2.22)

    
  

Update the design variables pt 8 using the method of

moving asymptotes (Svanverg (1987))

   

  
No Is the objective function
   

 

ER not changing?  

 

1‘ Plot out the figure for the result microstructure

  

  

  
Stor)
 

Figure 4.1 Flowchart of the procedure to solve the inverse homogenization

problem (Sigmund 1995)
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Chapter 5

EXAMPLES

In this chapter, several examples are presented. The routine used to generate the result is

developed on the base of last three chapters. Here we set the penalty parameter p in the

SIMP model as 1. In all these examples, the reference material EO has the bulk modulus

1.333 and shear modulus 1. In example 1, 2 the volume Va is 0.45 and the lower limit of

the strong material percentage of each element pmin = 0.01. Example 1 illustrates the

existence of multiple solutions as the optimization starts from different starting point.

Example 2 shows the effect of the shape of the fundamental domain on the solution. In

Example 3, we study the effect of changing of the amounts of available material on the

result obtained while keeping other parameters fixed. In Example 1, 2, and 3, the target

tensor is defined as

1 0.333 0

{15*}: 0.333 1 0 (5.1)

0 0 0.333

In Example 4, we will change the value of shear modulus u and test the procedure to see

whether we can approach the lower right comer of the Hashin—Shtrikman bounds (Figure

1.1) using a parallelogram base cell.
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The inverse homogenization problem is solved by the method of moving asymptotes

(Svanverg (1987)) and the filter is used as in Sigmund (1995). As discussed in Chapter 3,

the homogenization problem in these examples is solved on the fundamental domain

associated with the given proto-tile.

5.1 Example l-effect of different starting point

In this example we will show that different starting points will lead to different answer

with the same target tensor. The fundamental domain used here is a parallelogram with

ratio Lx IL), = 1/3 and the internal angle a = 45°.

The result shows that the solution to the problem is not unique, and that convergence to a

particular solution depends on the starting layout.

Figures 5.2, 5.4, and 5.6 show three solutions using the same target tensor (5.1). Figure

5.2 and 5.4 were obtained from a randomly chosen starting point (material distribution

matrix). Figure 5.6 was obtained by setting the upper one fifth of material distribution

matrix as p = p0 and setting p = 2pc for the rest of the domain. As the figures show,

the different starting points result in qualitatively different layouts, all of which produce

the same effective tensor E*.
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Figure 5.1. Examplela base cell

Figure 5.2. Example la solution

35



36

Figure 5.4. Example lb solution

 

Figure 5.3. Example lb base cell

 



 



5.2 ExampleZ-effect of different base cell geometry

In this example we will investigate whether different shape parallelograms can lead to

different answers matching the same target tensor. So the shape of the fundamental

domain will be changed in this example.

The results will be shown in two series. The first series will change the length ratio Lx/Ly,

when the internal angle a remaining constant at 45° . The second series will keep a

constant length ratio Lx/L,=1 and change internal angle a . As the results shown in

Example 1, the starting guess has effect on the result. So we keep the starting guess same

by setting the upper one fifth of material distribution matrix as p = p0 and p = 2p0 for

other part in first series. In second series, we set starting guess as the upper one eighth of

material distribution matrix as p = p0 and p = 2pa for other part (shown in

L- 7.: .r _

3.. ‘_ ‘w

 

;- “" ‘.’.‘ ".' j" ".'."

". ‘ ' ‘ ' > ' ~ .

I.“

Figure 5.7. Initial design of the parallelogram cell

Figure5.7). The results for fundamental domain with different length ratios and different

internal angles are shown in Figure 5.8 to Figure 5.15. First four figures show the results

of different length ratio, the length ratios are Lx/Ly =1, 1/2, 2/3, 2/5 respectively. The

second four figure show the results of different angles, 45° , 60° , 75° and 90°
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individually. The results show that one can achieve different microstructures that match

the desired target tensor by change the geometry of the base cell.

 
Figure 5.8. Example 2a Lx/Ly=l cell and solution
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Figure 5.9. Example 2b Lx/Ly=l/2 cell and solution
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Figure 5.10. Example 2c Lx/Ly=2/3 cell and solution
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Figure 5.11. Example 2d Lx/Ly=2/5 cell and solution
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Figure 5.12. Example 26 01:45 cell and solution

 



Figure 5.13. Example 2f 01:60 cell and solution
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Figure 5.14. Example 2g a=75 cell and solution
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5.3 Example3- effect of different strong material volume

In this example we will investigate that different volume v0 can lead to different answer

with same target tensor. All the parameters are fixed, except the percentage of strong

material. First, we set the shape of parallelogram as Lx/Ly=l and a = 75° . The volumes

are 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. Since the figure for volume 0.45 has been

shown in Figure 5.14, only the others will be shown here. Second, we set the shape of

parallelogram as Lx/Ly=l and a = 90° . The volumes are 0.2, 0.3 and 0.45. For the same

reason, the figure for volume 0.45 has been shown in Figure 5.15.

The results show it clearly that different volume of strong material can generate different

answers that match the same prescribed elastic tensor. When comparing these results; we

can observe that small changes in volume induce small changes in the solution.

Figure 5.24 shows the convergence curve of example 33, 3c and 3e. From the figure we

can see that the volume has no effect on the pattern of convergence. Also we can see that

the objective function value converges rapidly after an initial “flat” period.
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Figure 5.17. Example 3b Lx/Ly=l a = 75° volume 0.25

cell and snlntinn
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volume 0.3= 75°Figure 5.18. Example 3c Lx/Ly=l a

cell and solution
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Figure 5.19. Example 3d Lx/Ly=l a = 75° volume 0.35

cell and solution
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Figure 5.20. Example 3e Lx/Lyzl a = 75° volume 0.4

cell and solution
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Figure 5.21. Example 3f Lx/Ly=l a = 75° volume 0.5

cell and solution

53



 
Figure 5.22. Example 3g Lx/Ly=l a = 90° volume 0.2

cell and solution
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Figure 5.24. Convergence of the objective function with different strong

material volume

5.4 Example 4- material with extreme property

In this example, we will present several solutions which approach the lower right corner

of Hashin-Shtrikman bounds for two-phase isotropic composites in well order case.

In well order case, the upper Hashin-Shtrikman bound of bulk modulus is defined as
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 kuHS=k2+ 1 1"” p (5.2)

+

kl—kz k2+flz

 

and the lower Hashin-Shtrikman bound of shear modulus is defined as

 ”(HS =u1+ p 1 1 (5.3)

l +(l-lOXk +2M)

#2 -u1 2u1(k‘+u‘)

  

where k1, k 2, [11 and #2 denote the bulk moduli and shear moduli of two isotropic

constituents , p is the given volume fraction of strong material.

The improved lower Walpole bound of shear modulus is defined as

u,“’”=u‘+ ’0 2 I (5.4)
1 +(l-p)(k +2u>

#2 -M‘ 2u‘(k2 +u‘)

 

  

Here our goal is set as upper Hashin-Shtrikman bound of bulk modulus and lower

Walpole bound of shear modulus, which is the lower right corner of Figure 1.1. The

solutions here are generated by fixing the bulk modulus at the upper bound and

decreasing the shear modulus to approach the lower Walpole bound.

We set p =0.45 and k2 =1.333,k1=0.01k2, #2 =1 and ul=0.01u2.From

equations (5.2) and (5.4), the values of the target bulk modulus and shear modulus are

k* = 0.3593 and if“ = 0.0257.
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We first start with k' = 0.3461 and u. = 0.0516 . The geometry of the base cell is

Lx/Lyzl a = 90° . The target tensor generated is

0.1807 0.0775 0

[15‘]: 0.0775 0.1807 0 (5.5)

0 0 0.0516

Figure 5.25 shows the result.

Figure 5.26 shows the result for k‘ = 0.3593 and u. = 0.0357 . The geometry of the base

cell also is Lx/Ly=l a = 90° . The target tensor generated is

0.1303 0.0589 0

[12‘]: 0.0589 0.1303 0 (5.6)

0 0 0.0357

Next step we set k‘ = 0.3593 and u' = 0.0307 . This shear modulus is middle point

between it. = 0.0357 and 11* = 0.0257 (the lower Walpole shear modulus). The target

tensor is

0.1133 0.0519 0

[5"]: 0.0519 0.1133 0 (5.7)

0 0 0.0307

The geometry of the base cell also is Ia/Ly=(3)"(3/2)/4 and a = 79° . The result is shown

in Figure 5.27.

Next step we set k‘ = 0.3593 and pi = 0.0287 . The geometry of the base cell also is

Lx/L,=(3)"(3/2)/4 and a = 79° . The target tensor is
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0.1064 0.0491 0

[5‘]: 0.0491 0.1064 0 (5.8)

0 0 0.0287

The result is shown in Figure 5.28.

We then have tried k' = 0.3593 and ,u' = 0.0277. But the result can not converge to the

target tensor. So we set the [f = 0.0282 , which is the middle point between it. = 0.0287

and u' = 0.0277 . The geometry of the base cell also is [alLy=(3)"(3/2)/4 and a = 79°.

The target tensor is

0.1047 0.0483 0

[15"]: 0.0483 0.1047 0 (5.9)

0 0 0.0282

The result is shown in Figure 5.29.

Comparison of these figures indicates that when the material properties approach the

goal, the structure of the material is much more close to a hexagon. In Sigmund (1999),

he uses a hexagon shape for the cell as a starting point to get a new class of extremal

composites.

Our routine generates the same trend in optimization. But still under the condition of the

parameters we set, the optimization result cannot attain the theoretical value.

The crosses in Figure 5.30 denote the effective properties of the topology-optimized

microstructure we get in this example.
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Figure 5.25. Example 4a Lx/Ly=l a = 90° cell and

solution (k‘ = 0.3461and 11‘ = 0.0516 .)
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solution (k‘ :

Figure 5.26. Example 4b Lx/Ly=l a

0.3593 and 11* 0.0357 .)
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Figure 5.27. Example 40 Lx/Ly=(3)"(3/2)/4 a = 79° cell

and solution (k. = 0.3593 and [1. = 0.0307)
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and solution (k‘ = 0.3593 and u. = 0.0287)

Figure 5.28. Example 4c Lx/Ly=(3)"(3/2)/4 a 79° cell
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Figure 5.29. Example 4d Lx/Ly=(3)"(3/2)/4 a = 79° cell

and solution (k. = 0.3593 and ,u' = 0.0282)
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Figure 5.30. Bounds of effective bulk and shear moduli for two-phase isotropic

composites. The crosses denote effective properties of the topology-optimized

microstructures in Example 4.
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Chapter 6

SUMMARY AND CONCLUSIONS

The inverse homogenization problem with polygonal cells has been successfully solved

by topology optimization method by matching a target tensor. The effects of the initial

material distribution, the shape of polygon cell and percentage of strong material on the

solutions that match the same target tensor are studied. Besides these, material

distributions approaching the lower right comer of Hashin-Shtrikman bound for well-

order case have been found.

A summary of the results is presented below:

0 Different starting points will lead to different answer with the same target tensor

in the optimization procedure. Convergence to a particular solution depends on

the initial material layout.

0 One can achieve different microstructures that match the desired target tensor by

changing the geometry of the base cell (parallelogram). This will expand the

design space when compared to using only a rectangular cell.

0 Different percentage of strong material can lead to different answer with same

target tensor. Small changes in volume induce small changes in the solution. The

volume has no effect on the pattern of convergence of the optimization problem.

0 The results, which are generated for approaching the lower right comer of

Hashin-Shtrikman bound for well-ordered case, show that more and more layers
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in the bars of the hexagonal cell result in lower and lower shear modulus

(Sigmund 1999).

67

 



BIBLIOGRAPHY

Aboudi , J. "Mechanics of Composite Material". Amsterdam: Elsevier Science Publishers

B.V 1991.

Benard, A., and A. R. Diaz. ”On the discretization of problems involving periodic planar

tilings”. Commun.Numer.Meth.Engng (2001).

Ashby, M.F., and D.R.H. Jones, Engineering Materials 2, Oxford: Pergamon (1986).

Bendsoe, M.P., J.M. Guedes , R.B. Haber, P. Pedersen , and J.E. Taylor. “An Analytical

Model to Predict Optimal Material Properties in the Contest of Optimal Structure

Design”. J.Appl.Mech. 61(3), (1994),930-937

Bendose, M.P., N. Kikuchi. "Generating optimal topologies in optimal design using a

homogenization method". Computational Methods in Applied Mechanics and

Engineering. 71 (1988), 197-224

Berryman, J.G., and G.W. Milton. “Microgeometry of random composites and porous

media “. Journal of Physics D: Applied Physics. 21 (1988), 87-94.

Cherkaev, A.V., and LN. Gibiansky. "Coupled estimates for the bulk and shear moduli

of a two dimentional isotropic elastic composite". Journal of the Mechanics and Physics

of Solid. 41(5), (1993), 937-980. -

Crolet, J.M., B. Aoubiza, and A. Meunier. “Compact bone: Numerical simulation of

mechanical characteristics”. Journal of Biomechanics, v 26, n 6, Jun, 1993, p 677-687.

Francfort, G., and F. Murat. ”Homogenization and optimal bounds in linear elasticity”.

Archives of Rational Mechanics Analysis 94 (1986),307-334.

68



Grabovsky, Y., and RV. Kohn. ”Microstructures minimizing the energy of a two phase

elastic composite in two space dimensions. 11: The Vigdergauz microstructure”. Journal

of the Mechanics and Physics of solids 43(6), (1995), 949-972.

Guedes, J.M., and N. Kikuchi. "Preprocessing and Postprocessing for Materials Based on

the Homogenization Method with Adaptive Finite Element Method". Comp. Meth. Appl.

Mech. Eng.Vol.83 (1990), 143-198.

Hashin, Z. ”The elastic moduli of the heterogeneous materials”. ASME Journal of

Applied Mechanics 29 (1962), 143-150.

Hashin, Z. “ Theory of composite materials”. Mechanical of Composite Materials,

F.W.Wend, H.Liebowitz and N.Perrone, eds. Oxford, Pergamon. (1970)

Hashin, Z., and S. Shtrikman. "A variational approach to the theory of the elastic

behaviour of multiphase materials". Journal of the Mechanics and Physics of Solids

(1963), 127-140

Hill, R. ” The elastic behavior of the crystalline aggregate”. Proceedings of the Royal

Society of London A65 (1952), 349-354

Lions, J.L. ”Some Methods in the Mathematical Analyses of System and their Control”.

New York: Gordon and Breach 1981

Lutie, K.A. , and A.V. Cherkaev . ”The problem of formation of an optimal isotropic

multi-component composite”. Technical report 895.A.F.Ioffe Physical Technical

Institute, Acad. Sci. of the USSR, Leningrad (1984). Shorter version in J.opt.Th. Appl 46

(1985), 571-589.

Milton, G.W. ”Composite materials with Poisson’s ratios close to -1”. Journal of the

Mechanics and Physics of Solids 40(5) (1992),1105-1137.

69



Milton, G.W., and A.V. Cherkaev. ”Which elasticity tensors are realizable?”. Journal of

Engineering Materials and Technology, Transactions of theASME 117(4)(1995), 483-

493.

Milton, G.W., and N. Phan-Thien. "New bounds on the effective elastic moduli of two-

component materials ". Proceedings of the Royal Society of London A380 (1982), 305-

33 1.

Oleinik, O.A. “On homogenization problems”. Trends and Applications of Pure

Mathematics to Mechanics, P.G. Ciarlet and M. Rouseau,eds., Berlin: Springer 1984.

Sigmund, 0. ”Materials with Prescribed Constitutive Parameters; An Inverse

Homogenization Problem”. DCAM Report 470, Technical University of Denmark 1993.

Sigmund, O. ”Tailoring Materials with Prescribed elastic Properties”. DCAM Report

480, Technical University of Denmark 1994.

Sigmund, O. “ A new class of extremal composites”. Journal of the Mechanics and

Physics of Solids 48 (1999), 397-428.

Svanverg, K. ”The method of moving asymptotes”. Int. J. Num. Meth. Eng. 24 (1987),

359-373

Vigdergauz, S.B. ”Energy-minimizing inclusions in a planar elastic structure with macro-

isotropy”. Structure Optimization 17(203), (1999), 104-112.

Walpole, L.J. “On bounds for the overall elastic moduli of inhomogeneous systems-I”. J.

Mech. Phys. Solids. Vol.14 (1966), 151-162.

70



 


