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ABSTRACT

TAILORING MATERIALS WITH PRESCRIBED CONSTITUTIVE
PARAMETERS USING POLYGONAL CELLS

By

Weian Ou

The topic of this thesis is to use the topology optimization method to solve an inverse
homogenization problem in which the micro-geometry of a composite (characterized by a
polygonal cell) made of two constituents is designed to match a set of prescribed elastic
properties. In this thesis, we also investigate whether using polygonal cells in the

homogenization procedure can result in materials that reach extremal properties.

The effect of different starting points is investigated. The results show that different
starting points will lead to different answers with the same target tensor, which points at
the non-unique of the solution. The question whether different shape parallelograms can
lead to different answers matching the same target tensor is examined. The results show
that one can achieve different microstructure that match the desired target tensor by
changing the geometry of the base cell. We study the effect of changing of the amount of
available material. The results show clearly that different volumes of strong material can
generate different answers that match the same elastic tensor. The results obtained are

close to the lower right corner of the Hashin-Shtrikman bounds.
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Chapter 1

INTRODUCTION

Composite materials are becoming increasingly important in industry. The weight and
strength ratio of these materials makes them suitable for a large variety of applications.
The application of the composite material determines what kind of property it should
have. The purpose of this thesis is to use the topology optimization method to solve an
inverse homogenization problem in which the micro-geometry of a composite made of
two constituents is designed to match a set of prescribed elastic properties. In this thesis,
we also investigate whether using polygonal cells in the homogenization procedure can

result in materials that reach extremal properties.

1.1 Inverse Homogenization

The goal of an inverse homogenization problem is to find a (periodic) microstructure in
which the infinitly small-scale mixture of two constituents forms a composite material
whose effective elastic tensor matches some arbitrarily prescribed values. The inverse
homogenization problem here deals with linear elastic materials and small deformation
kinematics in both macroscopic and the microscopic scales. It can be shown that after
using the homogenization procedure, the constitutive parameters can be expressed as
explicit functions of a finite number of parameters. The inverse homogenization problem

can thus be formed as an optimization problem to possibly minimize the deviation from



the target tensor with a prescribed amount of material. We can then use the topology

optimization method to solve it.

Sigmund (1994) solved the inverse homogenization by using square or rectangular base
cells only. Although this is not a fundamental constraint, this restriction can be released
by using polygonal cells without significant additional numerical complexity. It will
increase the design space remarkably by using polygonal cells to solve the inverse
homogenization problem. In Sigmund (1999), the inverse homogenization problem is
solved to find a new class of extremal composites. Also in this work only the square cells
are used and the bound of lower shear modulus is reached. The idea of using the
polygonal cell is inspired by Benard and Diaz (2001). In that paper, features related to the
discretization of problems characterized by simple periodic tiling using cells of various
shapes are discussed. The paper shows that various cell geometries capable of tiling the
plane can be replaced by an equivalent problem where the plane is tiled by polygonal
base cells. The base cell will be discretized with finite elements. The result of the inverse
homogenization will be presented as an optimized geometric distribution of the two

constituents in the base cell.

1.2 Topology Optimization
Topology optimization of plane structures involves the determination of features such as
the number and location of holes and the connectivity of the domain. In the inverse

homogenization problem, the goal is to allocate the prescribed volume fraction in the



design domain to make its elastic tensor meet the arbitrarily prescribed elastic tensor, or

target tensor.

Composites can be designed to have many physical properties, such as Young’s modulus,
Poison’s ratio, shear modulus, bulk modulus, conductivity, etc. Composite materials with
extreme properties (€.g., the “stiffest” composite) are very important in material science
and structural optimization. They can be used to establish bounds for structural
performance and are widely used in the field of topology optimization. Bendsoe, Guedes,
Haber, Pedersen, and Taylor (1994) answered in analytical form the question “what is the
optimal configuration of material throughout a structure that is consistent with the
objective for globally optimal design”. In that paper, they show that the measure of
compliance predicted in their formulation bounds from below the compliance of similar
structure, which presented in the paper, relative to all possible material configurations.
Bendose, and Kikuchi (1988) use composite mixtures to produce a methodology for
optimal shape design that avoids drawbacks that affect “traditional” shape optimizations.
One such drawback is that the optimal shape design of structural elements based on
boundary variations results in final designs that are topologically equivalent to the initial
choice of design. Thus, the region of the design space explored by such method is
limited. Another drawback is that general stable computational schemes for standard
shape optimization often require some kind of remeshing of the finite element

approximation of the analysis problem.



1.3 Extreme Properties

The elastic tensor of an isotropic material, which is composed by mixing two isotropic

constituents can be described by its effective bulk modulus k" and its shear modulus p° .

Considering two isotropic constituents with bulk and shear moduli denoted by k!, k? ,

ul and ,uz , respectively, if the constituent with larger bulk modulus also has the larger

shear modulus (@2 — k! sz - pl )Z 0), the two constituents are called “well-ordered” .

Otherwise they are called non-well-ordered ((k k! X;t’ —-u' )< 0). There exist bounds

of the effective bulk modulus and effective shear modulus that this kind of composite
material can reach. The first bound was given by Hill(1952). Later, these bounds were
improved by Hashin and Shtrikman (1963) for three-dimensional composites and well-
ordered constituents. Hashin and Shtrikman (1963) applied variation principles, involving
the elastic polarization tensor, to derive the upper and lower bounds for the effective
elastic moduli of the materials described as mechanical mixtures of a number of different

isotropic and homogeneous elastic phases.

The bounds for the non-well-ordered case were then improved by Walpole (1966).
Walpole presented general bounds for both well-ordered and non-well-ordered cases, as
Hashin and Shtrikman (1963) only considered the well-order case. Subsequently, Milton
and Phan-Thien (1982) and Berryman and Milton (1988) set up new bounds on the
effective moduli of a two-constituent-composite material. Milton and Phan-Thien (1982)

showed in detail how Hashin and Shtrikman’s (1963) bounds can be extended and how



Walpole’s (1966) bounds can be improved using two inequalities on the two geometrical
parameters that appear in the third-order bounds on the effective shear modulus. In
Berryman and Milton (1988), examples of bounds on one effective material property
from measurements of another are derived. These examples are somewhat more
restrictive than the Hashin-Shtrikman bounds. Cherkaev and Gibiansky (1993) improved
these bounds by the translation method. The set of the bulk modulus and the shear
modulus pairs turns out to be bounded in the plane of the values of these moduli by
straight lines and also by two fractional linear curves. Sketches of the Hashin-Shtrikman

and Cherkaev-Gibiansky bounds for well-ordered case are shown in Figure 1.1.

pas A

e lashin-Shtrikhman bounds

wsssmss Chevkaev- Gibiansky bounds

Huwp Hiwp

HHS 1

=i

1HS K uHs

Figure 1.1. Plot of the theoretical bounds on effective bulk modulus and
shear modulus for isotropic two-phase linear elastic well-ordered materials
(Sigmund (1999)).



If there exist composites that attain the bounds, the effective properties of such
composites are said to be optimal. An interesting question is whether one can identify the
micro-geometry of composite materials that can attain the bounds. The first
microstructure attaining the maximum bulk modulus bound was the spheres model
composite presented by Hashin (1962). Francfort and Murat (1986) focused their
attention on the mixture of two isotropic materials in prescribed volume fractions and
strived to characterize all possible macroscopically isotropic composites. They produced
a multi-layered composite with a finite number of element of layering directions. The
results they gave proved that Hashin-Shtrikam bounds on the bulk and shear moduli can
be achieved and suggested that the bounds can even be simultaneously achieved by
multiple layering. Two-dimensional square symmetric rank-2 laminations attain the upper
and lower bounds of the bulk modulus. Isotropic rank-3 laminations can attain the
maximum bulk and shear modulus simultaneously (upper right comner of the Figure 1.1)
and attain the lower-left comer of Figurel.1 by inversing the two constituents. Lutie and
Cherkaev (1984) developed a method for the calculation of the extreme conductivity. The
method is based on the principle of the consecutive assembling of binary mixtures
through the addition of infinitely small amounts of one of the initial compounds to the
already-assembled isotropic composite. The process is assumed to produce an optimal
isotropic binary mixture at each step, which is performed by the Hashin-Shtrikman
procedure. They suggested that the same method can be used in the optimal design of
elastic constructions. In other words, there exist finite rank laminates that can attain the
bulk-shear muduli bounds. Milton (1992) produced examples of composites that can be

rigorously proved to have low-bulk and high-shear moduli. He found a family of two-



dimensional, two-phase, composite materials with hexagonal symmetry with Poison’s
ratios close to —1. He also showed that elastically isotropic two-dimensional composites
with Poisson’s ratio approaching —1 can be generated simply by layering the component
materials together in different directions on widely separated length scales. In Milton and
Cherkaev (1995), for a two-phase composite comprised of a sufficiently compliant,
isotropic phase and a sufficiently rigid, isotropic phase, the effective elasticity tensor can
realize any given definite tensor satisfying the usual symmetries of elastic tensors. This
means that the optimal bulk and shear moduli bounds can be attained by this kind of

composite material.

Composite with extremal properties such as rank-2 laminations are multi-scale mixtures.
Instead of using the multi-length scale microstructures, Grabovsky and Kohn (1995) used
the “Vigdergauz microstructure” to obtain the two-dimensional square symmetric
composites with optimal shape of single inclusions. The composite is spatially periodic,
consisting of properly shaped elastic inclusions embedded in an elastic matrix.
Vigdergauz (1999) provided an alternative discussion of *“Vigdergauz microstructure”
and its properties. He also presented an analysis of various limits of the inclusion and
extended the results of Grabovsky and Kohn to isotropic material. Sigmund (1993, 1994)
used a numerical topology optimization approach to solve the material designing problem
with extremal elastic properties. In his paper, examples of two-dimensional, two-phase
microstructures with extemal bulk modulus are obtained by the inverse homogenization
procedure. Ole Sigmund, (1999) tried to produce the isotropic material microstructure

with maximum bulk modulus and minimum shear modulus. The results get very close to



the lower bound but have not attained it. In this thesis we will try to find out whether a
two-dimensional microstructure with a periodicity characterized by arbitrary polygonal

cells can attain the lower shear bound.

1.4 Periodic homogenization

In the 1970’s, much research focused on defining the equivalent mechanical properties of
composite materials and on determining their dependence on the difference components.
Some of the methods used in that research were based on engineering. They often show a
good agreement with each other’s experimental data or with empirical methods. In
Hashin’s (1970) paper, a survey in this approach is provided. At the same time, the
counterpart of such engineering methods in mathematics appears under the name of
homogenization theory. This theory has been the object of large amounts of research in
the area of applied mathematics. A few examples are Lions (1981) and Oleinik (1984). A
homogenization method as proposed by Guedes et al.(1990) can be used to calculate the

effective constitutive parameters of complex materials.

In homogenization theory, the composite material is assumed to be locally formed by the
spatial repetition of microstructures infinitely small, when compared with the overall
‘macroscopic’ dimensions of the structure of interest. The microstructure is called
‘microscopic’ cells, or base cells. In other words, it is assumed that the material
properties are periodic functions of the microscopic variable, where the period is

infinitely small compared with the macroscopic variable. The assumption enables the



computation of equivalent material properties by computation of the material property of

the base cell.

The homogenization procedure has been discussed several times in literature. One way to
solve the homogenization problem is analytical calculation. For example, Aboudi and
Jacob (1991) present the way to provide the overall behavior of composite materials by
the micro-mechanical analysis from the known properties of the individual constituents
(e.g. fibers and matrix). When more complicated microstructure need to be considered,
analytical homogenization becomes too complex to be calculated. In this condition,
numerical method based on the finite-element must be used. Guedes and Kikuchi (1990)
presented an effective numerical homogenization procedure with adaptive finite elements
methods. In this thesis, a modified version of this algorithm associated with element

mutual energy will be used.

This thesis is divided into 6 chapters. Chapter 2 will describe the homogenization
method. Chapter 3 will discuss relevant features and concepts related to tiling two-
dimensional domains using different polygonal base tiles. Chapter 4 will describe the
inverse homogenization method. Chapter 5 will present examples of inverse
homogenization problem solved and discuss whether it is possible to attain the lower
shear modulus bound. Chapter 6 will present conclusions and summarize the work that

has been done.



Chapter 2

HOMOGENIZATION

In this chapter, basic concepts in homogenization theory rel in this work will be
briefly reviewed. Consider a composite material formed by the spatial repetition of a base
cell made of two constituents, as shown in Figure 2.1.The figure presents a two-

dimensional case. We assume that the mixture is represented by a base cell that is very

Constituent] (strong)

Constituent2 (weak)

([ —pp
Base cell
Figure 2.1. Composite structure
small (of order € ) compared with the di ions of the body. As a result of the rapid

variation of material properties, when the body is subject to some load, the resulting
deformation and stresses vary rapidly from point to point. These quantities have two
explicit spatial dependences: on the macroscopic scale variable x and on the small scale
y = x/ € . Because of the periodic nature of the microstructure, the dependence of these
functions on the microscopic variable y = x/¢€ is also periodic. However, discretization
of the finite scale would be impossible, e.g. using finite element methods. It is therefore

necessary to develop a method that averages the microscopic structure whenever the



mechanical behavior of the macroscopic body is in question. The homogenization method

is such a method.

Let Q be an open subset of R? with a smooth convex boundary I". Let Y be an open

rectangle in R? (Figure 2.2), defined as

Y =10,y 1XI0, y5 (2.01)

Later in this thesis this will be generalized so that Y can be any polygonal shape that tiles
the plane. Let @ be an open sub set of Y with boundary

09=S (2.02)
and let

w=Y\0 (2.03)

Figure 2.2. Model of the base cell

In our problemw is the area occupied by the strong material. The closure of ¥, denoted

by 8, is the area occupied by weak material, and Y represents the base cell of the

11



composite microstructure. The material properties vary inside Y and are defined using the

following indicator function.

1 if yew,
ey =1, . (2.04)
0 if yeo,
We can then define
Qf ={xeQ|O(x/e)=1} (2.05)

as the subset of the domain Q occupied by the strong material and

Number of cells
§¢ = US« (2.06)
a=1

as the “boundaries” between strong and weak materials.

The following assumptions are made:

1.Q% is a connected domain.
2. In all cells the weak material part ¢ has sufficient smooth boundary S.

3. None of the boundary S intersects with the boundary I' of Q.

Ve ={ve(H‘(gf))2|v|rd=o} (2.07)
wherev | 418 the value of v on the boundary I'; . The problem of the deformation of a

structure body Q° subjected to body force f and tractions ¢ on the boundary I, with the

tractions p inside the boundary S¢, and prescribed displacement on T’ 4 » can be stated

as

12




Find u‘e€eV®, such that
@ ox, ox;

£ € . (2.08)
dQ = IQ, fivdQ +~[l‘, t,»V,.dl"+J.Se p/vds YveV

Here strain-stress relation is
e l=lec e (2.09)

where the elastic tensor matrix is given in the standard engineering form, i.e., E€ is

written as

Einnn Enz Enn
[El=|E1122 Exzn Enna (2.10)
Ejj12 Exa Epgpn

The conditions for existence of a unique solution u° to problem (2.08) is given in Necas

and Hlavacek (1981), and require that the functions f, ¢, and p be sufficiently smooth,

and that the boundaries I';,T,, and S¢ be regular.

The solution u‘ should depend on both xand y, i.e.,

ut =u(x,y), y=x/€ (2.11)
In the neighborhood of a fixed macroscopic point x it is assumed that there is a very large
number of micro-scale cells, which are obtained as copies of a base cell. Dependence on
y can be considered periodic or Y-periodic, at a fixed point x in the microscopic level.
Furthermore, it is assumed that the form of the base cell varies in a smooth way as the
macroscopic variable x changes. This means that at different points x the composite
structure may vary, but a periodic pattern can always be found in a microscopic

neighborhood of point x.

13



Since the solution u® depends on both macroscopic and microscopic variables, it is

reasonable to assume that u° can be expressed as an asymptotic expansion with respect to

the parameter € (the “scale”, or the ratio of microscopic/macroscopic dimensions), i.e.,
ut = uo(x, y)+a41(x, y)+ ezuz(x, V+.., y=x/€ (2.12)
where
ul (x,y) is defined on (x,y)€ Qx@ (2.13)
ul (x,y) is Y-periodic
In order to find the homogenized elastic constants such that the macroscopic equilibrium

can be described by the same equation as (2.08), let x(kl )€V be the solution of

¥ av, dv;
[, Eiipq ay” ay' dy = [ Eyy ay—dY eV 2.14)

v=be@w'@)?:v is Y- periodic)

and let y; € V be the solution of

v, 9
[, Ei ayk a; dy = [ pivi(yay vveV (2.15)

If only the first order terms of the u® asymptotic expansion are considered, it can be

shown (Sigmund 1994) that the global elastic constants of the material are given by

kl
H l ax

14



This equation represents the macroscopic equilibrium, while E 15'21 represents the

homogenized elastic constants, i.e.,

E” uy O i 4oy -
ikl 8x, ax
! 1 oW, v
Q(MIY fidVywid@+ [ il + jg(m [ Eu A 3 s 2.17)
Vve VQ

As shown above, the homogenized elastic constants can be computed within the basic

cell by solving the problem 2.14, and do not depend on the macroscopic deformation ul.

If a composite material has a uniform cell structure in the whole domain £, the

microscopic problem 2.14 needs to be solved only once.

Following Sigmund (1994), equation (2.16) can be rewritten as

ykl I [Eupq Eijpq€ pslkl)l“’ (2.18)

where E:,(qkl) = 8}(;‘,1 / ayq is still the solution to (2.14). Let now 822"’) represent one of

three homogeneous tests strain-fields applied on the base cell, namely, two tensile strains

and one shear strain (Figure 2.3), i.e.,

| 0 0
ool - o)
0 0 0

15



EOI E0! Eo]

Figure 2.3. Model of the three-test strain used in homogenization

The solutions to problem (2.14) correspond to the deformation of the base cell, when

bjected to the three ind: dent cases of pre-strain {60} and periodic boundary

conditions, and can be obtained numerically using a finite-el method. Homogenized

elastic constants can be obtained by substituting the result of the finite-element analysis

£,% into (2.18).

In order to use a topology optimization method to find micro-geometries with prescribed

effective constants, it is important to express the elastic constants E, 7

ikl in (2.18) in terms

of element strain energies. This will make it possible to use the existing algorithms for
the topology optimization. A homogenization method expressed in terms of element

strain energies is described in the following.

Rewriting equation (2.18) we obtain



0pH 0 _1 k 0_ T 0 _* ]d
efEjut =5 jY e —€;) Ey (€ —ex) Y (2.20)
where e,?, and e,-(} are the test strains field and 8,;- and 8;1 are the induced strains field

coming from the in-homogeneities of the microstructure . If the base cell is discretized by

N finite elements, the element mutual energy Q,° in each element e, associated with test

strain field {80 }, can then be written as

1 0 * T 0 *
0 =—| kee(l) —€e1)" Eijia (€5, el e=1...N 2:21)
Y .
1 0 * T *
0 =—| [(se(Z) ~£e)) Eyjut (€32) ~ €22) hye e=1....N (2.22)
Y,
1 0 * T 0 *
0 =— | kfe(s) —€¢3))" Ejia (€5, 'ee(3))}iye e=1,...N (2.23)
Y,
1 * T 0 *
Y€ e
1 0 * T 0 *
0s*=—| [(ee(z) ~€e2) Ejjua (845 ~esal® el N (2.25)
Y
1 0 * T 0 *
Q6° = ye J [(fe(l) ~Ee(1) Eijui (€3, ‘8e(3))}i>’e e=l,...N (2.26)
Ye

where test strain field {53 }: {eo }; {ez } is the induced train field in element e .

17




Since we assume that the base cell is discretized by N finite elements, we can sum the

element strain energies to obtain the expression of each entry in the homogenized elastic

tensor E H .
EM=Y0° e=1,....N r=1,2,3,4,5,6 2.27)

where we have used the following abbreviation

111191 2222—»2 1212—»3
1122—»4 1112—»5 2212—»6

Now we only need to calculate each element strain energy Qf from (2.21) to get the

homogenized elastic constants of the composite material.

18



Chapter3

TILING OF 2-DIMENSIONAL DOMAINS USING POLYGON

In the previous derivation (Chapter 2), it is usually enough to use square cells only (i.e.,
Y is a square or a rectangle). However, base cells with more general shapes could lead to
other interesting results. In this thesis, we use the topology optimization method to solve
an inverse, homogenization problem with polygonal cells. For this purpose, Y needs to be
defined so that it can tile the plane periodically. If Y is defined as a simple square or
rectangle, this requirement can be easily met. When we allow the base cell to take a

polygonal shape, this restriction is more difficult to impose.

We should review basic tiling concepts and introduce some basic results from Benard and
Diaz (2001). We consider various shapes of cells capable of tiling the plane. Let T be a
set of tiles in plane, which cover the plane without gaps or overlaps. T is a collection of
tiles T;. Here we only discuss periodic monohedral tilings which involve translations of a
single polygonal proto-tile. All tiles have the same shape and size in monoheral tilings. In

a periodic tiling, each set T;is a tile. Every tile T;in T has the form

T; =P+md| + md,
where P is the proto-tile, representative tile in monohedral tiling, m and n are integers
and d; and d, are two non-parallel vectors called the tiling vector. The dependency of

Ton P, d and d, will be expressed as T(P,d;,d,).
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(a)

©

(b)
Figure 3.1. Examples of various prototiles:

(a) polyiamond (b)polyomino (c) polyhexe ( Benard and Diaz
(2001))

Figure 3.1 shows several interesting examples of different proto-tile. The proto-tiles used
to tile the plane are polyiamond, L-shape, and polyhexe. These proto-tiles are made by

simply connecting the triangles, squares, and hexagons respectively.

We now introduce three important definitions leading to the concept of Y-periodicity

when Y is a polygon.

Definition: Lattice.
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A lattice is a collection of translates of a single point pe P associated with a periodic
tiling T along the tiling directions, i.e., the set of points
L(dy,dy)={q:q=p+md,+ndy,m and n are Integers}

Qradslis fiind

or

Such lattice forms periodic parallelograms called fund:

parallelograms.

o

Figure 3.2. Fundamental domains associates with the tiling with
polyiamond, polyhexe, and L-shape prototile ( Benard and Diaz (2001))

Definition: Fundamental Domain.
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A fundamental domain is any parallelogram F with its corners on the lattice L(d;,d3),
which tiles the plane with tiling vectors v; and v, and generate a lattice L(v;,v,)equal

to L.

There can be several fundamental domains associated with the same lattice. Figure 3.2
shows several examples of fundamental domain. In the figure polyiamond, polyhexe, and

L-shape proto-tiles can be associated with different parallelogram individually.

P

d|v F?

v2

Figure 3.3. Fundamental domains associated with
tiling of L-shape proto-tiles

Figure 3.3 shows a periodic tiling of L-shape proto-tiles. In the figure, two fundamental

domains FV and F® associated with the same tiling, in which L(p,d},d,)and

L(p,v;,v;) are identical( the four points of the parallelograms F Dand F@ are the

same points of the L-shape proto-tile).

Definition: T -periodic function.
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A function ®:RZ > R is T(P) -periodic, if ®(p) = P(p+md, + md,) forall pe P

and integers m and n.

A function @ that is T(P) -periodic uses the base cell P in its definition. It can be very
complicated to implement the numeric associated with the homogenization problem on
such a base cell P . Figure 3.4 shows an example of a node numbering of a polyhexe base

cell. In order to meet the periodic boundary conditions, the node numbers have to be

Figure 3.4. Periodic node numbering pattern of polyhexe
proto-tile

assigned in the pattern shown in figure 3.4. If the shape of the base cell changes, the
numbering of nodes will also need to be changed. This would be a very cumbersome

procedure.
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We can use a parallelogram as fundamental domain to avoid these difficulties. From the
examples shown in Figure 3.2 and Figure 3.3, we can see that fundamental domains
preserve the periodicity of T(P) -periodic function. Because proto-tile P and
fundamental domain F are associated with the same lattice, a function that is T(P) -
periodic is also T(F) -periodic. The material design problem then can use F instead of
P as its base cell to solve the homogenization problem. So no mater how complex the
polygonal base cell is, we can always find a fundamental domain to describe the
periodicity of the problem. In others words, we can always use a parallelogram cell to

solve the T'(P) -periodic function in which P is a polygonal cell. This result will expand

the design space of material design problems.

Figure 3.5 shows the geometry of a fundamental domain. A more complete
parameterization of design space of material tensors can be achieved by including in the
analysis the sides L,/Ly and the internal angle & . One may also find interesting solutions

that cannot be reached when the base cell is restricted to be rectangular.

Figure 3.5. Definition of the parallelogram cell
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As in Figure 3.2, no mater which kind of polygonal proto-tile is used to tile the plane, we
can always find a fundamental domain associated with it. After we transfer all these tiling
problems into a basic parallelogram problem, solving the parallelogram cell-tiling

problem can use a general routine.
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Chapter 4

SOLVING THE INVERSE PROVLEM

In this chapter, the numerical approach for material design or inverse homogenization
method is briefly reviewed. The method is then applied to the design of two-phase

composites with mixtures characterized by a polygonal cell.

As stated in Chapter 3, the material microstructure is assumed to be periodic and fully
described by its smallest repetitive base cell. In order to use the finite element method,
the base cell is discretized by N finite elements. The effective properties are found by
using the numerical homogenization method, which is stated in Chapter 2, using the finite

element analysis to find the local fields and applying periodic boundary conditions.

In approaching the problem of getting the effective average elastic properties E” of the
base cell, the popular SIMP method, which is also used by Sigmund (1995), is used here.

This method uses a variable thickness sheet formulation and penalized intermediate

design values. The method assumes that the element elastic tensor E° is isotropic and

expressed as

E®=pPE° p. € (01] @.1)
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Here p ={p,.....py} are the design variables, and p is a real number, p >1, used to

penalize the intermediate design values (i.e., values of p between 0 and 1). E° is an

isotropic reference tensor, which is expressed in the standard (matrix) engineering form,

1 v 0
[E°]= E2 v 1 0 4.2)
1-v% |, o (-v)

where E is the modulus of elasticity and v is Poison’s ratio. In terms of shear modulus

M and bulk modulus & , the Young’s modulus can be defined as

= ki 4.3)
3k+u
and Poison’s ratio can be defined as
v=t 24, 4.4)
2 3k+u

The isotropic reference tensor E° can also be expressed in terms of shear modulus u

and bulk modulus &

: 3k -2u
9ku 6k +2u
[E0]= Sktp  3k-2p 0 @.5)
- k=282 | 6k +2p
6k +2u 0 Bk +4u)
L 12k +4pu |

The inverse homogenization method is applied here to solve the following problem:
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For a given amount of material, find the microstructure arrangement, which minimizes
the deviation from a target tensor E . In other words, in this material design problem, the
goal is to find a set of design variables p ={p,,...,p, } that make the material effective
tensor match the target tensor as close as possible. In addition to p, we also introduce an

additional design variable, t, to scale the material effective tensor as a scaling parameter.

The optimization problem is written as

Find  {p,py...pN} and t that  will: (4.6a)

Min: ER (4.6b)

N
Subject to 2 A.p, =VoA
e=1
0< Pmin <P <1

(4.6¢)

where p, represents the design variables, in this case, the proportion of strong

constituent in each element; N is the total number of elements that are used to discretize
the base cell; ER is the deviation from the target tensor, which will be defined below;

A, is the area of each element; v, is a prescribed volume fraction, a number between 0
and 1; A is the area of base cell; and p,,, is a prescribed lower bound for p,, a small

number (e.g., 0., =0.001).

The objective function used in (4.6) is the weighted mean square deviation between E*,

the homogenized elastic tensor, and the target tensor E". It is expressed as
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ER =-;—zw1 GEF _E})? @.7)
I=1

where compact notation E ,H is used to denoted the six independent entries of the elastic

tensor using abbreviations

1H11—pi1—>1 2222—p22—2 1212—P33—3
1122—pi2—»4 1112—p13—»5 2212—»23—»6

and w; is a prescribed, non-negative weight factor (I=1,...,6); E * is the target tensor.

As the function ER is an unconstrained, convex function of t for fixed p , we can get the

optimal value of ¢ A by solving the equation a—gtﬁ =0 to minimize ER. Using

OER &
==Y Eflw,Efl -E]) 4.8)
ot =1
the minimizer is
=l 4.9)
(%]
where
6 N 6
¢, =Y EjwEf and ¢, = ZE,”W,E,” (4.10)
I1=1 I=1

Using the t* in (4.5) and (4.6), the optimization problem is reduced to:

Find  {p.py...pN} that  will: (4.11a)

6
Min : ERz-lz-Zwl " EH —E})? (4.11b)
I1=1
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N
Subject to 2 AP, =VoA
e=1
0< Pmin <P <1

4.11c)

We also need to provide the gradient of the objective function ER. The gradient V_ER

can be calculated from equation (4.11b)

H * H *
JdER dE; +8ER ot dc; dE; +a dcy dEI ) (4.12)

V,ER=Y( :
Izl aE[ dp 3 Oc aE,” dp dcy aE dp
where
aER dEfl & . +deH
2( =Ly=Yw,"Ef -E}y" =L 4.13)
im %Ef dp i) dp
0ER &
w= 2w (CEfl ~EDEf! (4.14)
o a
5 " oc, dEH dEH
G L =—2w,E* 4.15)
;o1 9€1 0E;" dp ¢ ) dp
6 * H 6 H
ot dc, dE 2 dE
Y=L 2l TN Eff S0 (4.16)

Define now W as a 6x6 diagonal matrix with weights w; in the diagonal entries. If E H
and E" are written in column vector form equation (4.10) can be rewritten as

T T
=" Wef  anda ¢, =E" wEH 4.17)
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and (4.12) can be expressed as

VoER=("E" —ENYTW (" Igy +E“’E,TW)£1-dEpi (4.18)
where
E, =21;-(E*—27021—E”) (4.19)
The vector of the differential dj: can be easily computed as apH (for fixed strains)
from (2.20) and (2.21),
aggj = Zl p‘i ~ f(eoe - gi0) EQ(edo, —£1,)dA® i, j=12,3(4.20)

Ye
Figure 4.1 shows the flowchart of the procedure to solve the inverse homogenization

problem.
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Start

Initialize

Discretize the domain. Assign degrees of freedom consistent
with periodicity.

>

Finite element analysis for calculating the (3) induced strain
field associated with the (3) test train e

—~

Calculate the element strain energy and the constitutive
parameters, using equations (2.21) and (2.22)

wopqoad uoneziuaSowoy 3y} Juiajos

Update the design variables p,s using the method of
moving asymptotes (Svanverg (1987))

Is the objective function
ER not changing?

Yes

f
Plot out the figure for the result microstructure

Stop

Figure 4.1 Flowchart of the procedure to solve the inverse homogenization
problem (Sigmund 1995)

32




Chapter 5

EXAMPLES

In this chapter, several examples are presented. The routine used to generate the result is

developed on the base of last three chapters. Here we set the penalty parameter p in the

SIMP model as 1. In all these examples, the reference material E 0 has the bulk modulus

1.333 and shear modulus 1. In example 1, 2 the volume v is 0.45 and the lower limit of

the strong material percentage of each element p.;, =0.01. Example 1 illustrates the
existence of multiple solutions as the optimization starts from different starting point.
Example 2 shows the effect of the shape of the fundamental domain on the solution. In
Example 3, we study the effect of changing of the amounts of available material on the
result obtained while keeping other parameters fixed. In Example 1, 2, and 3, the target

tensor is defined as

1 0333 0
[E*]: 0333 1 0 (5.1)
0 0 0333

In Example 4, we will change the value of shear modulus i and test the procedure to see

whether we can approach the lower right corner of the Hashin-Shtrikman bounds (Figure

1.1) using a parallelogram base cell.
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The inverse homogenization problem is solved by the method of moving asymptotes
(Svanverg (1987)) and the filter is used as in Sigmund (1995). As discussed in Chapter 3,
the homogenization problem in these examples is solved on the fundamental domain

associated with the given proto-tile.

5.1 Example 1-effect of different starting point
In this example we will show that different starting points will lead to different answer

with the same target tensor. The fundamental domain used here is a parallelogram with
ratio L, /L, =1/3 and the internal angle & =45°.

The result shows that the solution to the problem is not unique, and that convergence to a

particular solution depends on the starting layout.

Figures 5.2, 5.4, and 5.6 show three solutions using the same target tensor (5.1). Figure
5.2 and 5.4 were obtained from a randomly chosen starting point (material distribution
matrix). Figure 5.6 was obtained by setting the upper one fifth of material distribution

matrix as p = P and setting p = 2p for the rest of the domain. As the figures show,

the different starting points result in qualitatively different layouts, all of which produce

the same effective tensor E *
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Figure 5.3. Example 1b base cell

Figure 5.4. Example 1b solution
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5.2 Example2-effect of different base cell geometry
In this example we will investigate whether different shape parallelograms can lead to
different answers matching the same target tensor. So the shape of the fundamental

domain will be changed in this example.

The results will be shown in two series. The first series will change the length ratio L,/L,,

when the internal angle @ remaining constant at 45°. The second series will keep a
constant length ratio L,/L,=1 and change internal angle & . As the results shown in
Example 1, the starting guess has effect on the result. So we keep the starting guess same

by setting the upper one fifth of material distribution matrix as p = pg and p =2pq for

other part in first series. In second series, we set starting guess as the upper one eighth of

material distribution matrix as p = pg and p =2p for other part (shown in

RO 4

Figure 5.7. Initial design of the parallelogram cell

Figure5.7). The results for fundamental domain with different length ratios and different
internal angles are shown in Figure 5.8 to Figure 5.15. First four figures show the results

of different length ratio, the length ratios are L,/L, =1, 1/2, 2/3, 2/5 respectively. The

second four figure show the results of different angles, 45°,60°,75° and 90°

38



individually. The results show that one can achieve different microstructures that match

the desired target tensor by change the geometry of the base cell.

y &

Figure 5.8. Example 2a L/L,=1 cell and solution
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Figure 5.9. Example 2b L,/L,=1/2 cell and solution
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Figure 5.10. Example 2c L,/Ly=2/3 cell and solution
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Figure 5.11. Example 2d L,/Ly=2/5 cell and solution
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45 cell and solution

Figure 5.12. Example 2e a
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Figure 5.13. Example 2f o
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Figure 5.14. Example 2g 0=75 cell and solution
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5.3 Example3- effect of different strong material volume

In this example we will investigate that different volume v can lead to different answer
with same target tensor. All the parameters are fixed, except the percentage of strong
material. First, we set the shape of parallelogram as L,/Ly=1 and & = 75°. The volumes

are 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. Since the figure for volume 0.45 has been

shown in Figure 5.14, only the others will be shown here. Second, we set the shape of

parallelogram as L,/Ly=1 and o =90°. The volumes are 0.2, 0.3 and 0.45. For the same

reason, the figure for volume 0.45 has been shown in Figure 5.15.

The results show it clearly that different volume of strong material can generate different
answers that match the same prescribed elastic tensor. When comparing these results; we

can observe that small changes in volume induce small changes in the solution.

Figure 5.24 shows the convergence curve of example 3a, 3c and 3e. From the figure we

can see that the volume has no effect on the pattern of convergence. Also we can see that

the objective function value converges rapidly after an initial “flat” period.
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Figure 5.17. Example 3b L/Ly=1 a = 75° volume 0.25

cell and solution
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Figure 5.18. Example 3c Ly/Ly=1 a =75 volume 0.3

cell and solution
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Figure 5.19. Example 3d Ly/Ly=1 & =75 volume 0.35
cell and solution
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Figure 5.20. Example 3e L/L,=1 a =75" volume 0.4
cell and solution
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Figure 5.21. Example 3f Ly/L,=1 a =75" volume 0.5
cell and solution
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Figure 5.22. Example 3g Ly/L,=1 a =90° volume 0.2
cell and solution

54






14 T T T T T T T T I
— Volume 0.2
-~ Volume 0.3
- Volume 0.4
1'2F -
1 - -
[ ']
2
g
508 -
k3]
c
=
Lol -
0.4} E
0.2} E
0 1 1 1 1 1
0 10 20 30 80 90 100

Figure 5.24. Convergence of the objective function with different strong
material volume

5.4 Example 4- material with extreme property
In this example, we will present several solutions which approach the lower right corner

of Hashin-Shtrikman bounds for two-phase isotropic composites in well order case.

In well order case, the upper Hashin-Shtrikman bound of bulk modulus is defined as
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k'S =k? +— 1-p > (5.2)

+
KL ok2 k242

and the lower Hashin-Shtrikman bound of shear modulus is defined as

HIHS _ ”1 + p 1 1 (5.3)
1 +(l—p)(k +2u°)

pr-pt o 2pt@t+pty

where k! , k2, pl and ”2 denote the bulk moduli and shear moduli of two isotropic

constituents , p is the given volume fraction of strong material.

The improved lower Walpole bound of shear modulus is defined as

W’ =p £ (5:4)
1, a-p)k?+2u")

pr-pt o 2?4 b

Here our goal is set as upper Hashin-Shtrikman bound of bulk modulus and lower
Walpole bound of shear modulus, which is the lower right corner of Figure 1.1. The
solutions here are generated by fixing the bulk modulus at the upper bound and

decreasing the shear modulus to approach the lower Walpole bound.

We set p=0.45 and k2 =1.333 k! =0.0142, u? =1 and u! =0.0142. From

equations (5.2) and (5.4), the values of the target bulk modulus and shear modulus are

k* =0.3593 andu™ =0.0257.
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We first start with k" =0.3461and u” = 0.0516. The geometry of the base cell is
L./Ly=1 a =90°. The target tensor generated is

0.1807 00775 0
[E']=]00775 0.1807 o (5.5)
0 0 00516

Figure 5.25 shows the result.

Figure 5.26 shows the result for k" =0.3593and u" = 0.0357 . The geometry of the base
cell also is Ly/Ly=1 a =90°. The target tensor generated is

0.1303 0.0589 0
[£°]=|0.0580 0.1303 o (5.6)
0 0 00357

Next step we set k* =0.3593 and u” =0.0307 . This shear modulus is middle point

between u° =0.0357 and u” =0.0257 (the lower Walpole shear modulus). The target

tensor is

0.1133 00519 0
[E']=|00519 01133 o G.7)
0 0 00307

The geometry of the base cell also is Ly/Ly=(3)*(3/2)/4 and o =79°. The result is shown

in Figure 5.27.

Next step we set k&~ =0.3593 and u” = 0.0287. The geometry of the base cell also is

Lx/Ly=(3)"(3/2)/4 and « =79°. The target tensor is
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0.1064 0.0491 0
[E']=|0.0491 0.1064 0 (5.8)
0 0 00287

The result is shown in Figure 5.28.

We then have tried k* = 0.3593 and u” =0.0277. But the result can not converge to the
target tensor. So we set the u” = 0.0282, which is the middle point between u” = 0.0287

and u” =0.0277. The geometry of the base cell also is L,/Ly=(3)*(3/2)/4 and a =79°.
The target tensor is

0.1047 00483 0
[E']=|0.0483 0.1047 0 (5.9)
0 0 00282

The result is shown in Figure 5.29.

Comparison of these figures indicates that when the material properties approach the
goal, the structure of the material is much more close to a hexagon. In Sigmund (1999),
he uses a hexagon shape for the cell as a starting point to get a new class of extremal
composites.

Our routine generates the same trend in optimization. But still under the condition of the

parameters we set, the optimization result cannot attain the theoretical value.

The crosses in Figure 5.30 denote the effective properties of the topology-optimized

microstructure we get in this example.
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Figure 5.25. Example 4a L/L,=1 o = 90° cell and
solution (k* =0.3461and u =0.0516.)
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Figure 5.27. Example 4c L,/L,=(3)\(3/2)/4 a =79" cell
and solution (k" =0.3593 and u’ =0.0307)
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Figure 5.28. Example 4c L,/L,=(3)\(3/2)/4 «
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=0.0287)
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Figure 5.29. Example 4d L,/L,=(3)(3/2)/4 & =79" cell
and solution (k" =0.3593 and u" =0.0282)
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Figure 5.30. Bounds of effective bulk and shear moduli for two-phase isotropic
composites. The crosses denote effective properties of the topology-optimized
microstructures in Example 4.

65



Chapter 6

SUMMARY AND CONCLUSIONS

The inverse homogenization problem with polygonal cells has been successfully solved
by topology optimization method by matching a target tensor. The effects of the initial
material distribution, the shape of polygon cell and percentage of strong material on the
solutions that match the same target tensor are studied. Besides these, material
distributions approaching the lower right corner of Hashin-Shtrikman bound for well-
order case have been found.

A summary of the results is presented below:

e Different starting points will lead to different answer with the same target tensor
in the optimization procedure. Convergence to a particular solution depends on
the initial material layout.

e One can achieve different microstructures that match the desired target tensor by
changing the geometry of the base cell (parallelogram). This will expand the
design space when compared to using only a rectangular cell.

¢ Different percentage of strong material can lead to different answer with same
target tensor. Small changes in volume induce small changes in the solution. The
volume has no effect on the pattern of convergence of the optimization problem.

e The results, which are generated for approaching the lower right corner of

Hashin-Shtrikman bound for well-ordered case, show that more and more layers
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in the bars of the hexagonal cell result in lower and lower shear modulus

(Sigmund 1999).
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