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ABSTRACT

ARBITRARY LAGRANGIAN EULERIAN (ALE) DESCRIPTION FOR LARGE-

DEFORMATION, METAL-FORMING PROBLEMS

By

Muhammad Mukarrum Raheel

Arbitrary Lagrangian Eulerian (ALE) description has been used to simulate large-

deformation, metal-forming problems. Certain mesh governing algorithms are

implemented in ALE formulations to control mesh convection. A punch problem is

simulated and advantages of ALE simulations over pure Lagrangian simulations are

shown.

Traditionally, Lagrangian and Eulerian kinematic descriptions are used for finite-element

analysis of large-deformation problems. In the Lagrangian description, the grid points

adhere to the material points throughout the course of deformation. Lagrangian

description has certain limitations in large-deformation problems. In the Eulerian

description the reference system is kept fixed in space, and every spatial point is

identified by an invariable set of three independent co—ordinates. Because of excessive

movement of interfaces and boundaries, it is arduous to take material associated

boundary conditions into account. This research pursues Arbitrary Lagrangian Eulerian

(ALE) description which combines the advantages of both Lagrangian and Eulerian

descriptions. ALE introduces an additional (reference) mapping, which brings additional

flexibility in the formulation so that mesh neither adheres to the material nor the space;

rather the mesh is in relative motion with the material and it rearranges itself during the

deformation process.
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Chapter 1

INTRODUCTION

The finite element method is a widely used technique to simulate large deformation metal

forming processes like forging, extrusion, drawing, rolling, upsetting etc. In this

technique, the domain defining the continuum is discretized into a number of geometric

elements on which the solution is approximated by simple basic functions. The material

properties and constitutive relationships are expressed over these finite elements in terms

of unknown values at element nodes. A set of equation results after assembling all the

elements of the domain. The equations are then solved to obtain the approximate

behavior of the continuum. The ability of the finite element method to solve problems

with complex geometries makes it popular.

The domain over which the finite element problem is formulated can vary and this leads

to a variety of kinematic descriptions. Initially, Lagrangian kinematic description for

finite element meshes dominated the field of large deformation analysis. In a Lagrangian

description, a set of material points are identified with the same set of grid points

throughout the course of deformation, thus allowing no material motion relative to the

convected mesh [1]. Another popular description which has been extensively used over

the years to simulate various manufacturing processes is the Eulerian description. In the

Eulerian description, there is a material motion relative to the stationary mesh. We keep

the reference system fixed in space and each point in space is unambiguously identified

by an invariable set of three independent co-ordinates. In other words, in this description

the material associated with a given reference volume changes during a deformation,



which implies a material motion relative to the stationary mesh. The particles can

translate across element boundaries and the particle associated with a node can change at

each stage of deformation [2]. A more recently developed kinematic description is the

Arbitrary Lagrangian Eulerian (ALE) description, which combines the above mentioned

descriptions. As opposed to Lagrangian and Eulerian description, the ALE description

introduces an additional (reference) mapping, which brings flexibility in the formulation.

In particular, the ALE finite element mesh neither adheres to the material nor the space;

rather the mesh is in relative motion with the material and it rearranges itself during the

deformation process [3]. This brings more flexibility than the pure Lagrangian and

Eulerian formulations. One of the far reaching results obtained by ALE is that it has

effectively reduced mesh distortion in the interior of the deforming body. Thus, we can

monitor the grid motion at sharp edges and comers of the work piece using ALE,

resulting in computationally efficient and accurate results.

1.1 Numerical simulations

The significant development in computational capacity has made it possible for us to

analyze any physical process through the use of numerical simulations. Traditionally,

engineers tend to use experimental techniques more than any other analysis tool; but they

are time consuming and expensive. The acceptance of computational methods in industry

is now increasing due to improved awareness, availability of appropriate software and

reduced computational cost. The simulations in contrast to traditional analysis tools are

more extensive and fast, they give more insight within a relatively short computer time.

They allow much more inexpensive parameter studies than experimental procedures used



previously. A numerical simulation usually consists of three steps: the first being the

description of the effects that occur during the process (for example material behavior

and frictional behavior etc) in a mathematical model. One must know the effects that

occur in the process in order to construct a mathematical model that describes the real

process accurately. The second step is to solve the mathematical model with a numerical

method, which requires a good understanding of numerical mathematics. One should

know the limitations of the numerical method, too. The last step is the interpretation of

the results, and here it is important to have a good understanding of both numerical

mathematics and the mechanics of the process. For example, effects that are due to

numerical algorithm should not be interpreted as physical effects of the process and vice

versa. Although research in computational methods has had numerous successes,

considerable work still needs to be done. For example, there is a need to develop models

which better represent material behavior and friction phenomenon. Work also needs to be

done to improve existing computational tools. For instance, in the finite element method

new computational procedures for reducing computational expense have to be developed.

As such, issues regarding implicit versus explicit time integration schemes, mesh

distortion and adaptivity must be researched. In this thesis, emphasis is on reducing the

mesh distortion so that we get computational efficiency.

1.2 Scope of the thesis

In this thesis the Arbitrary Lagrangian Eulerian description is investigated with the

intention of making improvements. The merits and demerits of Lagrangian and Eulerian

descriptions are discussed. Based on various shortcomings of these descriptions, ALE is



implemented to solve large deformation metal forming processes. A comparison of pure

Lagrangian based simulation and ALE based simulation is shown in a punching problem,

with the results showing the fact that certain limitations of Lagrangian formulations can

be overcome by using the ALE formulations. Two mesh governing algorithms are

suggested, which can control the convection of mesh during the large deformation

process. The focus is to improve the geometry of distorted mesh. When we use the

Lagrangian description, the elements start losing their symmetry and thus affect the

precision of the results. After formulating the punch problem using ALE description, the

element formulation was coded in an existing FEM code written in FORTRAN 77 and

the boundary value problem was solved. Appropriate material properties and integration

schemes based on Newton Raphson method are used to get computational accuracies.

1.3 Outline of thesis

The outline of thesis is as follows. In Chapter 2, various advantages and disadvantages of

Lagrangian and Eulerian description are analyzed. It is emphasized, how ALE

circumvents the limitations of the two descriptions and results in an improved

formulation. Chapter 3 discusses the co-ordinate systems used in Lagrangian, Eulerian

and ALE descriptions. The transformation equations are developed, and it is shown how

the conservation of mass and momentum equations are expressed in reference frame. In

Chapter 4, two different ALE mesh governing algorithms are presented along with

iterative equations and finite element discretization. In Chapter 5, the two proposed ALE

mesh governing algorithms are used to simulate a punch problem. The extent to which

each mesh governing algorithm is successful in controlling convection of mesh is



qualitatively analyzed and discussed. A comparison of the Lagrangian and ALE

formulations is shown in the punch problem. The Lagrangian mesh suffers from

excessive mesh distortion while ALE mesh rearranges itself during the course of

deformation and results in a better geometry of final mesh. In Chapter 6, various

conclusions are drawn about ALE formulations and future research directions are

suggested. Appendices that are pertinent to the thesis are provided at the end. Appendix

A discusses the matrix definitions and Appendix B gives some of the mathematical

results that were used in finite element formulations.



Chapter 2

KINEMATIC DESCRIPTIONS

2.1 Lagrangian and Eulerian descriptions

In the last two decades, tremendous progress has been made in the area of numerical

methods like the finite element and boundary element methods to analyze complicated

large deformation problems involving a wide variety of non-linear materials. Significant

contributions in this area are made by Hibbit, Marcal, and Rice [4]; McMeeking and Rice

[5]; and Kikuchi and Cheng [6]. One of the most challenging aspects of finite element

methods for non-linear problems is the determination of the proper kinematic description

for the specific problem at hand. Most of these computational methods use a pure

Lagrangian (total or updated) kinematic description for the finite element mesh. The

Lagrangian description has enjoyed popularity because of the following advantages [7]

1. Pure Lagrangian approach has the advantage of having to satisfy less complex

governing equations because of the absence of convection terms in the

formulation.

2. When the Lagrangian description is used, the material points coincide with finite

element mesh and quadrature points throughout the deformation; thus it enables to

accurately define the material properties, boundary conditions, and stress and

strain rates.

Although, these merits of Lagrangian description seem attractive initially, however

serious limitations are encountered when metal forming operations are simulated with



Lagrangian approach. A few of these limitations are discussed by Liu [7], and Ghosh

and Kikuchi [3]:

1. Lagrangian description neglects to take care of the convection effects, which is a

serious limitation in using it with large deformation problems. Lack of control

over mesh movement results in distorted and entangled mesh with large changes

in element dimensions. Sometimes the entanglement and element distortion

becomes so bad that even negative volumes are observed. Because of elements

moving with deforming body, excessively distorted elements occur, which causes

numerical problems and adversely affects the accuracies of solution.

2. Another drawback of using Lagrangian description comes when the boundary

condition has to be specified on a material point, which might move itself.

Situations in which we have contact boundaries, sharp edges or corners, complex

shapes or abrupt surface discontinuities; the pure Lagrangian description is

incapable of accurately representing the contact boundary condition. Moreover,

using the Lagrangian description effectively alters the dimension and shape of the

work piece, which is highly undesirable.

3. Moreover, Balagangadhar [8] pointed out that Lagrangian methods are

computationally inefficient since they require large meshes, transient analyses,

complicated contact algorithms and transient adaptive meshing strategies.

Despite the popularity of the Lagrangian description, there are certain problems in

solid mechanics that are described most naturally by an Eulerian description. For

example, in modeling an extrusion process, it may be more convenient to monitor the



flow of material through a fixed region of space in the vicinity of a forming die,

rather than to describe the motion of a fixed set of material particles as they pass the

die. In effect, the current configuration is discretized and the initial configuration is

treated as unknown [2]. Because of the idea of relative motion of material to

convected mesh in Eulerian description, we get some advantages which make it

preferable in some situations, e.g.,

The Eulerian description is preferred when it is convenient to model a fixed

region in space for situations that may involve large flows, large distortions, and

mixing of materials. It has enjoyed great popularity to solve fluid flow problems

[7].

The Eulerian description is preferred when we have to obtain the internal

deformation accurately, a common situation in most fluid flow problems.

Moreover, Eulerian methods have been widely used for free surface flow

simulations.

The pure Eulerian approach with its characteristic of keeping the mesh stationary has

some difficulties as well, few of them are indicated in [7] and [9], e. g.:

1. Numerical difficulties due to convective effects arise because of the relative

motion between the flow of material and fixed mesh.

In the Eulerian description, the boundary of the deforming body does not coincide

everywhere and always with an element side, thus making it arduous to take

material associated boundary conditions into account. Therefore, special



accommodation is needed in Eulerian description because material interfaces and

boundaries may move through the mesh. Thus, in such situations where

boundaries or interfaces move substantially, the Eulerian description is not really

suited.

3. Another issue in Eulerian formulations comes in the treatment of free surfaces.

The governing equations are expressed on the deformed configuration; however

the free surface locations are not known a priori. To determine their location, time

consuming iterative updating or successive recalculation are used [10].

2.2 Arbitrary Lagrangian Eulerian descriptions

In view of the above discussion of Lagrangian and Eulerian descriptions, the

shortcomings of each one of these call for a kinematic description that should combine

the advantages of both the above approaches into a single description. Thus, in recent

years an alternative description called Arbitrary Lagrangian Eulerian (ALE) has been

suggested to overcome these shortcomings. In ALE, the finite element mesh is neither

constrained to move with the associated material nor is required to remain stationary in

space. Thus in ALE, the finite element mesh need not adhere to the material but may be

in general motion relative to the material. We get a totally flexible mesh, which can

move with pointwise arbitrary velocity while reserving the potential to represent a

Lagrangian or Eulerian description as limiting cases at points where such descriptions are

desired [1]. ALB formulations can thus be effectively used on contact problems in solid

mechanics (e.g. punching) to achieve computationally efficient and accurate results. This

description has been employed by Haber [2], Liu [7] and by Ghosh and Kikuchi [3] to



execute large deformation analysis of elastic-plastic solids. One of the far reaching results

obtained by ALE is that it circumvents major difficulties associated with Lagrangian and

Eulerian descriptions and it reduces the mesh distortion in the interior of the deforming

body. Therefore, we can monitor the grid motion at sharp edges and corners of the work

piece in an effective manner using ALE. The potential of the ALE description remains to

be explored and is the aim of this thesis. A large volume of literature exists for the finite

element solution of large deformation problems involving contact. Among the various

methods for incorporating the constraint conditions are the introduction of contact forces

through equilibrium conditions by Chan and Tuba [11], through the use of Lagrange

multiplier techniques by Hughes [12], through mixed elements by Tseng and Olsen [13],

and through penalty functions by Kikuchi and Oden [14]. In this thesis, two new

approaches are introduced to govern the convection of mesh. One of the approaches is to

introduce a constraint in the formulation that refers to the minimization of distortion

energy. The other approach puts a constraint on the geometry of the deforming element

so that elements preserve their geometry. The two approaches for ALE formulations are

qualitatively compared to each other by implementing the proposed formulations in a

punch problem. Moreover, another comparison is shown to highlight the considerable

improvements brought by ALE formulations compared to the pure Lagrangian approach.

10



Chapter 3

CONTINUUM MECHANICS FOR ALE KINEMATIC

DESCRIPTION

In this chapter, continuum mechanics for the ALE description in general has been

developed. Large displacements and deformations can occur in the simulations of

forming processes. In simulating any solid mechanics problem with FEM, we have to

formulate a mathematical model, using a set of independent variables and co-ordinates

within a reference frame in order to identify material points of the body or points in

space.

3.1 Co-ordinate systems

In the analysis of processes with large deformations, the motion and deformation can be

specified with respect to several co-ordinate systems. Depending on the choice of the co-

ordinate system used in the formulation we can have three descriptions.

1. Lagrangian description where state variables are functions of material co-

ordinates.

2. Eulerian description where state variables are function of spatial co-ordinates.

3. Referential or ALE description where state variables are a function of reference

co-ordinates.

In Figure 3.1 the relations between the three domains in the referential description are

sketched. Since it represents the referential description, the referential co-ordinate x is the

independent variable. As a result the mappings onto the spatial domain and the material

11



domain are functions of time, which means that a referential point corresponds at each

time to a different spatial point and a different material point. The mappings (I) and ‘I‘

are one-to-one mappings between three domains [15]. This means that every point in one

of the domains corresponds to one point in the other two domains. Note that the

Lagrangian and Eulerian descriptions can be seen as special cases of the referential

description. The Lagrangian and Eulerian descriptions are obtained when 2! equals X

and x respectively. Thus, in the Lagrangian description the mapping ‘I’is the identity

function and in the Eulerian description the mapping (1) equals the identity function.

X2

Xi

      

Eulerian Co-ordinate

(¢°‘P")

Reference Co-ordinate

 
Xi

Lagrangian Co-ordinate

Figure 3.1. Reference, Lagrangian and Eulerian configurations
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3.2 Displacement, velocity and acceleration fields

In this section, a general case is considered and displacement, velocity and acceleration

fields are expressed in three co-ordinate systems described above. In the Lagrangian

description the material particles X are marked with the initial position that will also be

referred to as X = x(X ,0). The current position is expressed as a function of the initial

position X and time t as x(X ,t) . The displacement field can be written as

x=<I>(,(,t) (3.1)

X =m1,0 (3.2)

The Lagrangian description is especially attractive for describing physical variables that

are associated to material points. The velocity field in three co-ordinate systems can be

 

given as

v(X,t) = E’gi)

a<r> ‘2’" X t t (33)mm = ( < . >. >>

a:

In the Eulerian configuration

O(x,t) = v(X ,t) (3.4)

v(x,t) = v(‘P(;{,tl),t) or (3.5)

00:, t) = v(‘I’(<I>' (x,t),t),t)

Similarly in the referential configuration

WIN) =v(x,t) (3.6)

W260 = 9((¢(2’,t),t) (3.7)

Defining the acceleration field in the three configurations in the same way

13



i)v(‘l"l (X ,t), t))
 

a(X,r) = at (3.8)

5(x,t) = a(X,t) (3.9)

a(x,t) = a(‘l’(<I>"(x,t),t),t) (3.10)

5016’) = 5(x,t) (3.11)

aunt) = fi((¢(z,t),t) (3.12)

3.3 Transformation equations

The deformation gradient is defined as the transformation of the initial differential

line element dX to the deformed differential line element dx.

dx = FdX (3.13)

where, F is given as

F = I + Vu (3,14)

The relative change in volume between the undeforrned and deformed state is equal to J.

J = det F (3.15)

For a scalar, vector and tensor fields ( a, a , and A) respectively, we have the

transformation equations

VXa= 17ng[a (3.16)

an=VlaFJ (3.17)

VXA=VZAFJ (3.18)

3.4 Conservation of mass and momentum in reference frame

The conservation of mass in referential form is of particular interest to solve any

continuum problem. A detailed derivation of conservation laws in referential form can be

14



The conservation of mass in referential form is of particular interest to solve any

continuum problem. A detailed derivation of conservation laws in referential form can be

found in [16]. Consider an arbitrary volume (21 fixed in the referential domain,

Rx bounded by a surface 1‘1 and a continuous medium with a density [)(zJ). We can

write the volume Q! with respect to S2,, and 9x representation of co-ordinates. The

total mass in (21 at time t is given as

M: [MD]: jde,= jp°dox (3.19)

91 (2x QX

where

p°(X .t.) = Jp(x.t) (3.20)

fi(2,t)=jp(x,t) (3.21)

7 = det[-§-{i-] (3.22)
81]-

3x,-

J _ «([524] (3.23)

1

Similarly, the principle of conservation of momentum can also be derived [16]. The total

rate of change of momentum of the medium occupying at time t in the referential domain

is given as

 

[ fi(;(,t)v(x,t)dQZ= jfdsfr j figdflz (3.24)

x r2,z 1",. oz

8

a:

where? is the force per unit area acting on the surface I"! and g is the body force per unit

mass acting in (21. The force on the deformed spatial surface per unit of referential area

15



f may be written as a function of the first Piola-Kirchoff stress tensor 7“ and the outward

unit normal ii to the referential surface as

It should be noted that the first Piola-Kirchoff stress tensor T is defined here in the

referential sense, i.e., it is defined with respect to the fixed referential domain. Moreover,

T is related to the Cauchy stress tensor 0 and to the first Piola-Kirchoff stress tensor in

its classical sense T° (i.e., defined with respect to the material surface at to) by the fact

that all of them give the same force on the deformed surface, de , but use different

exterior unit normals and unit surfaces [16], namely

(fi.T)dSz = (no)de = (n°.T°)de (3.26)

01‘

. ax,
7ij = Ja—x""0'kj (3.27)

x x 32’.

'1}!- = 101:0” (3.28)

where n and 71" are the exterior unit normals to the deformed surface de and to the

material surface de at time t, respectively. Substituting equation (3.25) into equation

(3.24) and using the divergence theorem to transform the surface integral to volume

integral, one obtains

A

i1| j man]: I flwg, d522, (3.29)
arm/1 a! 81,-
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The right hand side of above equation is transformed using Reynolds transport theorem

and the divergence theorem into

A

" , Btu/W. 8T.-
J 9.2/4. +__J_'€_'. (192:! _1_‘+figi dgz (330)

Q, at 2' an 9: 32';

where

819

(0-: 3.31

x

and a) is defined as the particle velocity with respect to the referential co-ordinates.

Equation (3.30) is reduced to

 

~ . aw.“ . 313..
ap_v,l + ’pv' = ”+fig, inRz (3.32)
at Z 311- 32’,-

After noticing that ins arbitrarily chosen, we can simplify the above equation by using

continuity, thus the final form of the equilibrium equation in the referential form may be

written in R2, as

“av. . av. 3T“). .
t ,_'=_ . 3.33pat +ijazj [alj+pg.] ( )

Z

If the Lagrangian description is used, the preceding equation is transtrmed using

1 = X (3.34)

w = 0
(3.35)

. ax.

] =J =d t -—' 3.36

e [an] ( )

l7



,5 =P° (3.37)

The corresponding momentum equation for equation (3.33) in Rx in the Lagrangian

description is given as

 

 

. av. 3T3- . .
p a“ = [$21—+ p gil 1n Rx (3.38)

X i

where we have used the fact

T“ = T° (3.39)

If the Eulerian description is taken

1 = x (3.40)

a) = v (3.41)

i =1 (3.42)

15 = .0 (3-43)

The corresponding momentum equation for equation (3.32) is given as

._|' ..__'_= _ . R 3.44

where we have used the fact

H
.

II o (3.45)

For more details the reader is referred to Appendix A of [16].

Based on the basic concepts developed in this chapter for ALE description, large

deformation formulations are developed in the next chapter.
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Chapter 4

KINEMATIC FORMULATION FOR LARGE DEFORMATION PROBLEMS

In this chapter, a rigorous development of pure Lagrangian and Arbitrary Lagrangian

Eulerian kinematic formulations for large deformation problems is presented. We seek to

formulate the constitutive relations and the finite element matrices for large deformation

problems. Figure 4.1 shows the reference configuration used in the ALE kinematic

formulations. It can be seen that the ALE formulation introduces a reference

configuration, which consists of a set of grid points in arbitrary motion in space.1

/u\ x=X+u

M

(a). Lagrangian kinematic formulations x = X + u

/g\ /,,\.

W

(b). ALE kinematic formulations

  

X=r+g

x=r+g+u

   

Figure 4.1. Mappings for Lagrangian and ALE formulations

 

IIt should be noted that a different notation is chosen in figure (4.1) compared to notation in figure (3.1).

All formulations in the subsequent chapters are based on figure (4.1).
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The relationship between current and initial co-ordinates for any central point in pure

Lagrangian description is given as

x = X + u (4.1)

The same relationship is given in the ALE description as

X=r+g (4.2)

x=X+u

x=r+g+u (4.3)

4.1 Constitutive relations for large deformation Hyperelasticity

In this section, various constitutive relations to be used in the formulations are presented.

A hyperelastic material model is used in all formulations. The strain energy density

function e for large deformation hyperelasticity is given as

e023) = 2(5) = gaze?) wt, (156+ gage?» (4.4)

where

it and p are the Lame’s constants.

1} (E) = Tr(E)

((152) = T4152)

g(i3(lf’)) is assumed to be zero in the formulation.1

The second Piola-Kirchoff stress tensor is symmetric and it can be computed using

3e
_—_ 4'

 

I g(i3 (F)) can be chosen based on problem at hand, e.g. g(i3(E)) = K(log(det E))2 with K been an

arbitrary constant.

20



or s = 2Tr(1§)1 + 2211; (4.6)

The first Piola-Kirchoff stress tensor is unsymmetrical, and it is given as

p = F—
(4.7)

E =g (4.8)

or

If = I + Vu (4.9)

The Cauchy stress tensor is given as

a =1 FT (4.10)- J -2 -

where J is the Jacobian given as

J = det(E) (4-11)

The Strain tensor can be given in terms of the deformation gradient as

E= (ETE-I) (4.12)

N
i
t
-

01'

g =%(Vu+VTu+VTuVu) (4.13)

4.2 Variational description for large deformation

In order to construct finite element approximations for the solution of large deformation

problems it is necessary to write the formulation in a variational form. The integral forms

can be written either in the initial configuration or in the current configuration. The
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simplest approach is to start from an initial configuration because integrals here are all

expressed over domains, which do not change during the deformation process. The

potential energy can be written in the initial configuration as

[I = Ie(§)dQ—W (4.14)

(2

where e(l§) is the strain energy density function for large deformation hyperelasticity

given in equation (4.4).

Let V be the set of all kinematically admissible solutions

v ={ue H,(O):u=06n 1“,}

where 1““ is the position of the boundary where displacements are prescribed. If u is a

kinematically admissible equilibrium solution, then u is a stationary point of the potential

energy. This implies that at u

5H=0V5ueV (4.15)

The potential of the external work is given as

W: [14,680+ j11,6211“, (4.16)

O r,

where t,- denotes specified tractions in the initial configuration and F, is the traction

boundary surface in the initial configuration. Thus, we can write equation (4. 14) as

[1: je(§)dn— Iuibidfl— ju,t,.dr, (4.17)

n o r,

Taking the variation of equation (4.17), we obtain

an e [asysvdo- [5a,b,do— [6143,2111 :0 v (Sue v (4.18)

o o r,
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where 6a,- is a variation of the initial configuration displacement (i.e. a virtual

displacement), which is arbitrary except at the kinematic boundary condition locations

1‘“ where it vanishes. We note that by using equation (4.5) and constructing the variation

of (SE.U , the first term in the integrand of equation (4.18) can be expressed in alternate

forms as

5EUS,j = 6F,“.ij.5‘,-j (4.19)

where symmetry of Sij has been used. The variation of deformation gradient may be

expressed directly in terms of the current configuration displacement as

35u

6F“ E axk

 or, (4.20)

i

5F“ 5 Vé'u (4.21)

Using the above results, after integration by parts using Green’s theorem, the variational

equation (4.18) can be written as

'1
5n = — [511, [(ijsg), + 6,“.6, 1219+ I5uk[ijS--ni - 6,),1211‘, = o v 614 e V (4.22)

a r,

This gives the equations of equilibrium in initial configuration as

(ijSl-jh + (51.1)171 = 0 (4.23)

Pm +171. = 0 (4-24)

The initial configuration traction boundary condition is obtained as

SUijni -(6ki)t,- = 0 V u e V or, (4.25)
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4.3 Lagrangian formulation

The Lagrangian formulations are obtained by considering the equilibrium equations

derived above based on variational principles. The weak form and finite element

formulations for pure Lagrangian description are derived by considering

(5H = 0 V 5a 6 V

Equation (4.22) can be written as

jau-(Divg+b)d§2— Ida-(En—IMI“, =0 v 5ue v

o r,

From vector algebra we know the relation

Div(ETu) = 13 : Vu + u.DivE

Using the above relation in equation (4.28), we obtain

IDiv(ETJu)dQ— Isz6udQ+ jaude— [au-(gn—tmr, :0 v (Sue v

o a O r,

The divergence theorem

IDiv v (19 = Jundl“

Q 1‘

yields

ngau.ndr- jgzvaudm jaubdrz— jaufndr, + J‘ 611.1211“, :0 v 5ue v

r O a r, r,

01'

jau.13ndr— [13: V5udfl+ jaubdo— jau.13ndr,+ j 611.1211“, = 0 v 6116 v

F 9 Q rt 1‘,

Canceling out terms and using the fact that 611 = 0 on 1““ we obtain

IE:V6udQ-I§ubdfl+j§u1dl‘,=0 v aue v

Q n r,

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

Assuming there are no body forces and tractions, we get rid of second and third terms.
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Thus, the equilibrium equation in its weak form is written as

6H=IV6qudQ=OV6ueV or

n

  

 

8e (4.35)

an: [FTvauz—dO=0 v due v
{2 3E

4.3.1 Iterative equations for Lagrangian description

Let u be the equilibrium solution and u°be a neighboring solution then, defining

r 5 51-104, (5a)

then

r(u,5u) = O V 5u e V (4.36)

we can write

0 ar 0 0

r(u,5u) = r(u ,5u)+[—).(u —u )+0("u-u )= 0 V due V (4.37)

Bu

As r is a linear function of 5a , ignoring higher order terms, there is a linear

operator L and a bilinear operator a such that

L(§u)+a(5u,Au) =0 V due V (4.38)

where Au 5 (u —u°) , indeed

2 FTV Au +VT A F
a(§u,Au)= IVT(Au)V§u:—a-f-d§2+ IETV5u: a 82 (" ( ) ( u) ")dQ (4.39)

n 315 o 81;: 2

2

Invoking the symmetry ofgki, the major and minor symmetries of}??? , and rearranging

the terms in the above equation yields

8e aze
a (611,211.) = JVT(Au)V5u :5-ng+ JETvau :-a—E—2 ETV(Au)dO (4.40)
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2

where 83?: = 11(1 ® I ) + 22111 is a 4th order tensor.

Upon discretization by finite element method we can express

a(§u,Au) = (5u)T [K]Au

r (4.41)

L(6u) = (614) R

where 5u and Au are vectors containing finite element degrees of freedom and K is the

tangent stiffness matrix evaluated at u, and R is the residual vector at uo. The equation

(4.38) results in the (incremental) finite element equations

{R} +[K]{Au} = 0 (4.42)

4.4 Arbitrary Lagrangian Eulerian formulation

In addition to the equilibrium equation, ALE formulations require equations to govern the

convection of mesh. Various constraints can be imposed to achieve control over the mesh

distortion. ALE augments the equilibrium equation by a functional, which helps to

control the convection of mesh. This thesis presents two mesh governing algorithms to be

used with ALE formulations and discuss about the ability of each algorithm in controlling

mesh convection.

Therefore, for ALE formulations

1'[ = je(E)dQ ._W + HAW, (4.43)

n

anwnm = 0 v a. e v (4.44)

Thus, the difference in Lagrangian and Eulerian formulation comes from the augmented

mesh governing functional HMesh as indicated in equation (4.43). The choice of the mesh

governing algorithm depends on problem at hand.
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The deformation gradients and Jacobians for the ALE mappings shown in figure (4.1) are

given as

dx

F =— 4.45-1 dr ( )

dX

=— 4.46
~8 dl'

( )

J, = det(E,) (4.47)

18 = det(Eg) (4.48)

Moreover, the total deformation gradient can be expressed as

E = 553 (4.49)

The residual corresponding to equilibrium equation (4.35) can be expressed in ALE in the

following way. Starting from

an: IVdu:EdQ=OV 5ueV

0

Using, E = ES and If = E5; in above equation we get

an: [vauxggjswo (4.50)

O

Now from the transformation equations, we know that

V§u = 161.58"

d9 = J8d9,

we get the weak form of equilibrium equation in ALE description given as

611 = j (V,6u1§;) : (155848)]ng =0 v 514,55: 6 V (4.51)

a,
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In the following section we discuss the variational formulation and finite element

discretization for the two mesh governing algorithms.

4.4.1 Minimize distortion measure

In addition to the equilibrium equation, we introduce a functional developed by

minimizing the distortion energy measure given as

1

l-IMe.1'h = ISL/t —1)2er
(4.52)

9r

The variation of the above equation yields the weak form to be used in the finite element

formulations. The details of this can be found in Appendix B.

51—114.... = j (J, —1)J,(E,’T: 61512112, = 0 v 614,65; 6 v (4.53)

a.

By noting that in the ALE formulations

15, = I+V,g +V,u (4.54)

E8 = I +Vrg (4.55)

515, = V,6g + V,§u (4.56)

5E. = 17,58 - (4.57)

Equation (4.53) can be rewritten as

511M“, = j (J, —1)J,(E,‘T :V,5g)dfl, +

a.
(4.58)

I (J, -1)J,(If,'T :V,5u)dfl, = 0 v 514,6g e v

0.

Replacing the values from equations (4.51) and (4.58) in equation (4.44) we get
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an: I (V,6u5;‘):(151§g"‘s)Jng,+ I(J,-1)J,(1§‘,‘T;V,5g)d£2,

Q, Q,-

(4.59)

+ I (J, —1)J,(I;‘,’T :V,6u)d£2, = 0 v 5u,5g e V

4.4.1.1 Iterative equations for ALE formulation

Let u , g be the equilibrium solution and 11° , g° be a neighboring solution then, defining

r = 5H(u, Eu, g, 6g) (4.60)

with 6g = O on 1"“ (4.61)

we can write,

0 o a o a ,

r(u,§u,g,6g)=r(u ,6u,g ,5g)+(5£].(u—u )+[3;_}(g_g )

+0(||u-u°|l)+0(llg-g°

(4.62)

 

)=0V 51¢,5geV

As r is a linear function of 6a and 5g, there is a linear operator L and a bilinear

operator a such that

L(5u)+L(5g)+a(§u,Au,5g)+a(5g,Ag,§u) =0 V 5u,6g e V (4.63)

Indeed

(61., Au, 6g): (I (V,aqu‘) (95—1:1.{A}Fg'‘5)1do

 

 
 

 

-r

+QI(V,6uF’l): (FFg’l-a—Sm{Au})Jd!) + QI(V6a): (8311:”A})(J —1)JdQ

(4.64)

+ I(V,6u:E-T)a((1‘aul)1’){Au}dQ +nI(V6g): (31;:t{Au})(J —1)JdQ

o

. -r a(LL-111,)
+ nIWflg-F. ) a“ {Au}do,

and
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F-l

a; {Ag}):(1~",Fg"S)Jng, 

a

a(5u,6g,Ag) = I(V,5u

a

-1

31"gg{A}F g“                           + I (V,5qu"): (—

a.

+(I (V,§qu“) : (15F;l a—{Ag} 178—1918;,

 

 
 

 

(4.65)

-r

+DIN,5uFP—l) (FFg-IS)-5§-{Ag}d§2
+ QI(V6a): (a81“,g{Ag})(J _1)JdQ

-r

+I(V,u6:E‘T)a((1’a_l)1'){Ag}dQ,+QI(V5g):(8:: {Ag})(J _1)JdQ

a 8

_ 3((1 —1)J)

+ (V.5 IF,T) ‘ ' A do,

Oi g 38 { 8}

Upon discretization by finite element method we can express

a(§u,Au,§g) =(6u)T[Kl]{Au}+(6g)T[K2]{Au}

a(5u,Ag,6g)=(5u)T[K3]{48}+(58)T[K4]{A8} (4.66)

L<6u> = «WR.

Lrag) = (631’ R2

where 611 ,6g ,Au and Ag are vectors containing finite element degrees of freedom and

K1 , K2 , K3 and K4 are the tangent stiffness matrices evaluated at uo and go , and R1 and

R2 are the residual vectors at uo and go. The equation (4.66) results in the (incremental)

finite element equations

{R1} +[K1]{A"} +[K2]{A“} +{R2}+[K3]{A8} +[K4]{A8} =0

4.4.1.2 Finite element discretization

In order to get the element stiffness matrix we need to manipulate the above equations in

such a way so that they can be easily implemented in a FORTRAN code. The

transformed equations are given below. For more details refer to Appendix B.
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4.4.1.2.] Residual terms

a.

I (J, —1)J,(F," :V,6g)dQ, = {6g‘1’ I [B]T{F," }(J, —1)J,d12,

Q,
Qr

I (J, —1)J,(F," :V,§u)d£2, = {611‘ 1’ I [B]T{F,'T }(J, —1)J,dQ,

a.

4.4.1.2.2 Stiffness terms

QI(V,61.F,“): (——u‘{Au}(F,'15111,d0:

16a 1’ I 131’11OF,"1’1Io1Fg“s1’1131J,dn.14u1

0r

‘3—5-{Au})J,an:I (V,§uF,“) : (F,F,'

12.

16u‘1’I 131’1IOF,”11F,F;' OIHCHFTOlllQllBnger{/lu}

8F,"
 I1V6:11:31

9r

{Au})(J-1)de9r :

—16u1’:I181’18"oF 11T11811J—111412 {Au}

QI(V,6g :F,") 
3((11—010”“er =

Bu

16a 1’ I181’18—’118"1’1Br12J,—11J,d12.14u1

98F,"
 I1V611:1a

12.

14u111J 411.419. =

—16g 1’[131’18"OF“11111311J—1—1J41214141

3((11—‘1)11)

Bu

16g 1’ I 131’18"118"1’1B1121,411.412.1411}

0r

QI(V,6g :F,") {Au}dO, =

31

I(V,§uF,“) : (F,F,“S)J,do, = {6131’ I [B]T[I O F," ]’[F, O .1]{F,‘l }J,do,

12.

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)



 I(V,§u

Q1'

3178-] . -l

,8 1Ag11.1F.Fg S1Jgdfl.=

—16u‘1’ I 1B1’1F.F,“S 011mm: 0 F,"’11B1J,d9.1Ag1

0r

I (V,5uF,") : (£{Ag}F,"s1)J,d12, =

a, 8g

16::‘1’ I 181’11oF,"1’1I01F,“S1’11B1J,d£2.1Ag1
Q

—1

                   
I
r

~16u‘1’ I 1B1’1I o F;’1’1F, 1951111,;1 0 F,"11B1J,dn,1Ag1
a,

F_1_BS
I (V,5uF,"):(F,, —{Ag})J,dQ,=

1614‘ 1’ I131’1I eaFg’1’1F1Fg“ 0111611F’ 0 l][P][B]J,dQ,{Ag}

I (VauF,"). (F,F,%—“S)8(A,g}dn=

9r

16::‘1’ I1B1’110Fga"1’1F: os11F,“11F,"1’1B1J,d12,1Ag1

-T

I (V6a): (LEg1Ag111J. —11J.d9. =

—16u 1’ I1B1’1F." oF."11T11811J. —11J.d9.1Ag1

9.

 I(V,5u : FfT)

9r

3((Jt-1)J,)
Q =

3, WM r

16u‘1’ I1B1’1F."11F"1’1B1121.—11J.dn.1Ag1

6F,"
 

I1V,6g:1Ag111J 1—1Ldfl. =
9r

—16g 1’8 I 1B1’1F." oF.“11T11B112J. —11J.dn.1Ag1
nr

 

I1V.6g , F,-r) a11J. —11J,1

38

{Ag}d9. =

16g‘1’ I181’1F."1 1F."1’181121. 411.119.111.11
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(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)



4.4.2 Constraint on element geometry

The second approach used to control the convection of mesh during large deformation

problems was to preserve the element geometry during the course of deformation. For

this constraint

611M“, = I {6g}.{VJ,}d12, = 0 vag e V or (4.85)

a.

an”, = I 6g,J,,d12, = o vag e V

0.

HM... = I (6g,J,),d12, — I 6g,,,-J,dQ = o V53 6 V

a, a,

611m, = I 5g,J,n,-dl", - I (V.5g)J,d12, = 0 mg; 6 V

r. r

The first term on left hand side of above equation is 0, so we get

611m, = I (V.5g)J,dQ, = o vag e V (4.86)

9r

Combining the equilibrium and mesh governing equations, we get

61] = I (V,5uF,“) : (13F,"8)J,d12, + I (V,.6g)J,d12, =0 vau,6g e V (4.87)

n, 12,

Indeed

a(§u,Au,6g) = I (V,6uF,“) : (%{Au}F,'IS)J,dQ, +

a, u

4.
,as ( 88)
_ %

Bu

AudQau{ } ,I (V,6uF,“1):(F,F,‘ {Au})J,dQ, + I (V,(5g.l)

Q, 9r
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Fg-1{A 'FF'ISJdQag g}).(.g ), ,+
 

8

a(§g,Ag,5u) = I (Vré‘u

I (V,§qu") :(——'{6g}FH"TS)J(10, + QI (V5:.F:“) }S)Jng,+

9. ag (4.89)

I (V5aF,,:“) (33—F'{Ag}FH‘TS)JdQ,+I(V6qu‘1:F,Fg-ai—“1S)—{Ag}dfl,+

88

      

I <V.6g.I>%J—'{Ag}
a, 8

The above equations are transformed in the following way for easy implementation

in FORTRAN code. For more details refer to Appendix B.

4.4.2.1 Residual terms

I (V,5g)1,dn, = (age? I [B]T{I}J,d£2, (4.90)

a.r

I (V,6qu"):(F,F8“S)Jng,={6u‘}T I [B]T[IoFg‘T]T[F, OS]{F8"1}Jng, (4.91)

0, ar

4.4.2.2 Stiffness terms

nI(V,5aF,,:“) (9:)—:{Au}(F,;‘8)1dQ=

 

(4.92)

W}T I [B]:[Ing‘TJTu@{F;‘S}T][B]Jgdn,{Au}

9.

I (V,5uF,,") : (F,F‘35—ug{Au})Jan:

r (4.93)

{Ju‘fI [BJTIIoFgT](F,F; OIHCHFTOlllQHBJJngJAu}

-T

I (V5a): (3:; {Au })(J, —1)J8152,:

(4.94)

—{6u )T [[81[TFrT OE‘THTHBKJ, —1>J.d9,{4u}

0,
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 I (Vr58 :FFT)

9.

3((J'—1)J'){Au}d§2, =
Bu

W? I[BJT{8'T}{F:T}T[BJ<2J. —1)J.dn.{Au}

9r

—T

I ($59131;
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4.5 Numerical implementation

A wide variety of numerical details have to be considered in the construction of a global

solution strategy for solving large deformation problems using the formulations discussed

above. The physical grid point domain is discretized into isoparametric nine-node

elements with variables interpolated by the Lagrangian shape functions. It is to be

remembered that the elements are essentially made up of grid points rather than of

material points. A schematic of the nine node element is shown in figure (4.2). The node

numbering scheme is also shown in the figure. Each node has four degree of freedom,

namely uI , u2 , g1 and g2 . The degrees of freedom for node 1 are shown for illustration.

 

  
Mi 1 l1’ '5’ 2>

“1 8 gr

Figure 4.2. Nine node finite element

A FORTRAN 77 computer code named FEADSA has been developed for the

implementation of the aforementioned algorithm. The mesh generation, shape functions,

derivatives of shape functions, deformation gradients, residuals and stiffness terms are

coded up as an element in FEADSA and then a frontal solver is used to do the

computations. A flow chart describing the overall structure of the code is shown in figure

(4.3).
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Yes

Figure 4.3. Flow chart of FEADSA

The above figure depicts how the code can be used for a transient, nonlinear problem to

perform both the analysis and the design sensitivity analysis. For steady problems, the

transient part of the code (the outer loop on the left hand side of figure (4.3)) will not be

active. For linear problems, Newton Raphson iterations (the inner loop .on the left hand

side of figure (4.3)) will not be invoked during the solution procedure. If the design

sensitivity analysis is not required, the evaluation of the pseudo-loads and the solution of

sensitivities (the loop on the right hand side of figure (4.3)) will be eliminated.
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An element “LRGDEFZD” was written in this code based on the ALE formulations

discussed in previous section. An input file is generated and boundary conditions are

specified to solve the Boundary value problem. The element is capable of doing the

calculations based on Lagrangian description and ALE description at the same time. If a

boundary condition is specified at all nodes imposing g1 and g2 to be zero, the

formulation becomes a pure Lagrangian description without any control over mesh

convection. This facilitates the comparison between the Lagrangian and ALE

simulations. The element “LRGDEFZD” is capable of solving any large deformation

metal forming problem using ALE description. In the next chapter a simple academic test

case is performed. A comparison of Lagrangian based simulation and ALE simulation is

shown in a simple 2D unsteady punching problem.
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Chapter 5

PUNCH INDENTATION PROBLEM-A NUMERICAL EXAMPLE

In the previous chapter the Lagrangian and ALE methods were described in detail. The

numerical simulation of large deformation problems can be performed using the

relatively simpler Lagrangian method. However, generally in the case of large

deformation, distortion of mesh occurs. As a result the calculation becomes inaccurate or

it may even crash. The ALE method can be used to reduce mesh distortion. Several large

deformation problems including upsetting, punching, extrusion, ring rolling, etc, can be

simulated using ALE based formulation discussed in chapter 4. In this chapter the

applicability of ALE method in simulation of a punch indentation problem is shown. The

punch problem has been widely used by many authors to validate their results of ALE

formulations before. Some of the noteworthy contributions in this area are Haber [2], and

Brekelmans, Veldpaus, Schreurs [9]. The simulation of punching problem is carried out

using both the Lagrangian and ALE descriptions and results are compared to validate the

concept of ALE formulations. The figure (5.1) shows the work piece represented by a

discretized domain. The nine node finite elements with node numbers can be seen in

figure (5.1).
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Figure 5.1. Discretized finite element domain

The Table (5.1) below shows different nodes of the dicretized domain comprising the

various nodesets. This facilitates the enforcement of boundary conditions on the work

piece.

Table 5.1. Nodesets of the work piece

 

 

 

NODESET NODES

LEFI‘ 1,12,23,34,45,56,67

RIGHT l l,22,33,44,55,66,77

 

TOP 67,68,69,70,7 l ,72,73,74,75,76,77

 

BOTTOM 1,2,3,4,5,6,7,8,9,10,1 1

 

PUNCH 67,68,69    
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5.1 Boundary conditions

The boundary conditions that were enforced on the domain while performing the

Lagrangian simulation are shown in Table (5.2). It must be noted that in Table (5.2), all

nodes have 3rd and 4th degrees of freedom equal to 0. In other words, the effect of ALE

mesh governing equations is cancelled out. Thus, there is no reference frame to be used

in the simulation; making it pure Lagrangian based simulation. The displacement

boundary condition enforced on the punch nodes make the domain move in the same way

as the work piece moves during the forging process. The punch displacement is carried

out in 20 time steps. A displacement of —2.0 means a 33% reduction in height of the

original work piece.

Table 5.2. Boundary conditions for Lagrangian based simulation

 

 

 

 

 

 

NODESET DOF 1 DOF 2 DOF 3 DOF 4

LEFT 0.0 FREE 0.0 0.0

RIGHT FREE FREE 0.0 0.0

TOP FREE FREE 0.0 0.0

BOTTOM FREE 0.0 0.0 0.0

PUNCH 0.0 -2.0 0.0 0.0
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The Table (5.3) gives the boundary conditions to be associated with the ALE based

simulation. It must be noted that the 3rd and 4‘h degrees of freedom are able to move in

this case and this enables mesh rearrangement during the course of deformation.

Table 5.3. Boundary conditions for ALE based simulation

 

 

 

 

 

 

NODESET DOF l DOF 2 DOF 3 DOF4

LEFT 0.0 FREE 0.0 FREE

RIGHT FREE FREE 0.0 FREE

TOP FREE FREE FREE 0.0

BOTTOM FREE 0.0 FREE 0.0

PUNCH 0.0 -2.0 0.0 0.0      
 

5.2 Results and discussion

The punch indentation problem is solved using Lagrangian and ALE based formulations.

When ALE formulation is used, both mesh governing algorithms discussed in chapter 4

are implemented to see which one behaves better in controlling convection of mesh. In

the next section, first a comparison of the two mesh governing algorithms used in ALE

formulations is presented and then a comparison of Largrangian and ALE simulation is

shown to see mesh distortion in both kinematic descriptions.

5.2.1 Comparison of mesh governing algorithms

Figure (5.2) is the result obtained by using the distortion energy algorithm in ALE

formulation. It shows the initial configuration, reference configuration, and deformed
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configuration of the work piece at 20th time step. The mesh governing algorithm based on

minimization of distortion energy is successful in controlling the mesh movement to

some extent, however it can be seen from the deformed configuration of figure (5.2) that

there can be certain improvement made in the quality of mesh beneath the punch. The

reference frame moves during the course of deformation and helps the mesh to adjust and

avoid excessive distortion. However, the rearrangement process is still not enough. There

is certainly more room for rearrangement. This approach may have serious limitations

because when plasticity is added to the problem, the constraint will struggle to maintain

the mesh quality. Instead we might end up in getting shear distortion and entanglement.

This motivated the use of another algorithm based on putting a constraint on the

geometry of the element.
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Figure 5.2. Initial, reference and deformed configuration for distortion energy constraint

The problem was also solved using the element geometry constraint discussed in chapter

4. Figure (5.3) is the result of the implementation of this constraint in ALE formulation. It

only shows the deformed configuration at 20th time step. A detailed discussion of mesh

rearrangement and reference frame motion is discussed in the next section. However, it

can be easily seen that the mesh distortion is much less than what we had with the

distortion energy constraint. The elements preserve their geometry even after significant

33 % reduction in height of the work piece.
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Figure 5.3. Deformed configuration for element geometry constraint

The reference frame shows lot more rearrangement in this case, so the final mesh quality

is improved. This constraint gives us much better results as compared to the minimization

of distortion energy constraint, so ALE formulation based on this constraint will be used

while making comparison with Lagrangian description.

5.2.2 Comparison of ALE and Lagrangian simulations

The next important comparison is between the two kinematic descriptions discussed in

the thesis. In this section, ALE simulation of the punch problem. based on element

geometry constraint is compared to the results of simulation of exactly same problem

simulated with Lagrangian description. Figure (5.4) shows a comparison of the two

simulations at 15', 6th, 11th, 16th, and 20th time step.
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ALE Lagrangian Time Step = 1

Lagrangian Time Step = 6

Lagrangian Time Step = 11
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Lagrangian Time Step = 16

Lagrangian Time Step = 20

 
Figure 5.4. Comparison of Lagrangian and ALE based simulation at various time steps

Clearly, the results of the Lagrangian description differ strongly from the results of the

ALE calculations in the above simulation. It can be easily seen that the Lagrangian

description captures the displacement for first 10 time steps almost comparable to ALE

description. However, when the punch really gets deep, it starts losing precision and

severe mesh distortion can be seen at 16'h time step. When it gets to 17th time step, which

is about 25% reduction in height, we can see that the Lagrangian mesh crashes. Severe

entanglement can be seen in the final time step.
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In the Lagrangian method the elements become severely distorted in the region with large

strains. This is a general characteristic of the Lagrangian method, i.e., the elements

become distorted or stretched in regions with large strains. Especially in these regions,

one would like to describe the solution more accurately. In the ALE calculations the

elements are made to preserve their geometry in the high strain region. The effect of

geometry can be clearly seen when the Lagrangian based simulation crashes in 17th time

step, whereas the constraint of element geometry helps the mesh to convect smoothly

during the course of motion. Even at the end of 20th time step, the elements are still in

good shape in the case of the ALE formulation; whereas they can be seen totally

collapsed for the Lagrangian simulation. This mesh quality improvement in ALE

formulations is attributed to the introduction of the reference frame. The mesh

rearrangement during the course of deformation is shown in figure (5.5). The reference

configuration is shown at corresponding time steps. It can be seen that the rearrangement

in case of element geometry constraint is lot more effective than the one seen for

distortion energy constraint. The comparison of reference configuration for the element

geometry constraint and distortion energy constraint at 20th time step reveals that there is

more rearrangement in case of element geometry constraint. This helps to reduce mesh

distortion in large deformation analysis.
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Figure 5.5. Reference frame configuration at various time steps

Energy modes

The above formulation is successful in terms of controlling mesh movement. However,

before doing actual forming problems; it is useful to do the modal analysis of the

problem. The eigenvalues and eigenvectors of the global stiffness matrix were plotted to
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study the zero and non-zero energy modes. Figure (5.6) gives the zero energy modes and

figure (5.7) gives non-zero energy modes of the system.
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Figure 5.6. Zero energy modes
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Figure 5.7. Non-zero energy modes

53



The study of zero and non-zero energy modes gives an insight into the study of element

deformation. It is essential to make a few changes in the element formulation to remove

zero energy modes. The reason being that when those modes come into play, they can

cause undesired behavior, which affects the convection of the mesh. It remains one of the

future explorations to come up with a even better constraint condition that would remove

zero energy modes and give a better mesh quality.

5.4 Applications

In the above section, we simulated an example of academic interest. It was a simple case

illustrating the use of Arbitrary Lagrangian Eulerian description in numerical simulations

and its advantages over pure Lagrangian based simulations. There are various industrial

manufacturing processes that can be modeled and simulated using ALE methodology.

The analysis and optimization of various forming processes like extrusion, forging, and

rolling are facilitated by the use of ALE based numerical simulations. For instance, the

simulation of the extrusion process with a sharp angle at the die exit can be simulated

with ALE simulations. The elements at the die exit are locally distorted, so it becomes

necessary to use ALE to capture the behavior close to the sharp edge. This situation is

shown in figure (5.8) taken from Stoker [15], where an extrusion process is simulated

based on Lagrangian formulations. The elements at the die exit are locally distorted

because of the sharp angle at the die exit. Such a situation can be effectively handled by

ALE formulations.
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Fig 5.8.Lagrangian based simulation of extrusion process

Another problem is that it is difficult to obtain an accurate description of the free surface

during various manufacturing processes. The ALE method is found very useful to capture

free surface motion during processes like injection molding of a polymer. The free

surface motion in the Eulerian simulation of mould-filling process is shown in figure

(5.9) taken from Stoker [15], where the shaded portion is the material.

  

 

       

(a) (b) (r)

Fig 5.9.Eulerian simulation of mould filling process

Significant improvement is made in this area of research by Stoker [15]. The proposed

algorithms in this thesis can be used to model the extrusion and mould filling process

described above.
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The ring rolling process has been investigated using ALE by Liu and Hu [17], there is

certainly a lot of work to be done in simulations of plane strain ring rolling process based

on ALE formulations. Typically, complex contact conditions, and variation in frictional

conditions on an interface for ring rolling process can be analyzed using ALE description.
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Chapter 6

CONCLUSIONS AND RECOMIVIENDATIONS

This thesis elucidates the power of the Arbitrary Lagrangian Eulerian finite element

method to solve large deformation problems. The algorithms described in this thesis may

find direct application in metal forming analysis and fracture mechanics problems where

many compromises are often made in accordance with the limitations of the conventional

method. The overall algorithm proved to be numerically stable and reasonable in the

sense that the results obtained are in very good accordance with physical experience.

The ALE approach is implemented for the analysis of nonlinear solid mechanics

problems, and it has been shown that this approach is useful for problems where severe

mesh distortion is anticipated. The limitations of the Lagrangian description, when it

comes to large deformation solid mechanics problems are presented. The Lagrangian

description lacks control over the mesh movement resulting in distorted (sometimes

entangled) meshes with large changes in element dimensions, adversely affecting the

accuracy of solutions. Moreover, problems involving certain contact boundaries,

especially those with sharp edges or comers, may not be represented precisely in this

description. This is due to the fact that the boundary condition has to be specified on a

material point that might itself move. Situations of this kind are frequently encountered in

the numerical simulation of metal forming processes, e. g., extrusion, drawing, etc., where

the punch or die faces may have acute edges or abrupt surface discontinuities. The

suggested algorithms based on ALE formulations are successful in circumventing these

problems. A punch problem is simulated based on Lagrangian and ALE formulations
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with the result suggesting that an ALE based simulation is computationally more stable

and gives better results. The Lagrangian description is unable to sustain large

deformation and ends up in severe entanglement.

A major objective in metal forming is the determination of the initial shape of the work

piece (preform) and of the process parameters (e.g. the die shape) that lead to a final

product with desired geometry and material properties. The solutions to these inverse

problems are usually obtained by trial and error methods, using the results of analysis for

each set of preforrns and process parameters. The ALE based finite element formulation

presented in the thesis can be very useful for preform design problems in metal forming.

For example, an ALE formulation is better suited to be used in design of preform in open

die forging of a work piece, where we want to achieve a final product without barreling.

Such preform design problems have been solved by Zabaras and Badrinarayanan [18],

Grandhi and Gao [19], Zabaras and Srikanth [20]. The preform design and the die design

problems can be formulated under a rigorous mathematical basis by posing them as

optimization problems. The objective function for these optimization problems can be

defined as an appropriate measure of the error between the desired final state and the

numerically calculated state for a given set of design variables. A sensitivity analysis can

be performed to evaluate the gradients of the objective function.

The present work can be extended to develop a finite element method for large

deformation analysis of elastic-viscoplastic (time dependent plastic) material behavior.

The ALE finite element model for large deformation analysis of rate sensitive materials

can be very useful for industrial applications. The response of materials subjected to

loading at elevated temperatures (~0.5 melting point) is best represented by rate
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dependent plastic models exhibiting the characteristic of combined creep and plasticity.

ALE based simulations can be made to model various sheet metal forming operations,

where grain orientation due to pre-rolling gives rise to structure anisotropy. The

presented models can be modified in future to include temperature dependence, rate

dependent yield strength and plastic anisotropy. Moreover, it will be interesting to

develop the conservation laws, constitutive equations, and the equation of state for path-

dependent materials using ALE finite element method.
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APPENDIX A

MATRIX DEFINITIONS

Any tensor is represented in a vector form with

‘

rAll

A12
A:A=<vec() {} An)

I422.  

For any two tensors, A and B, with components

A=[All AIZ:I8=|:BII BIZ]

A21 A22 BZI 322

The tensor multiplication AB

AB = [41311 + A12321 ”111312 'I' 1412322 I

A21311+A22321 AziBn +A221322

can be expressed as

  

-All 0 A12 0 -

o A o A,
AB = “ T B{ } 4,, A22 0 { I

_ 0 A21 0 A22_

FBI] B21 0 O 7

B B 0 0
{AB}: I2 22 {A}

0 0 BH 321

_ 0 0 B,2 322-  

01'

{AB}=[AoI]{B}=[IOBT]{A}
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(A2)

(A3)

(A.4)

(A5)

(A.6)



where the Kronecker product 0 is defined as

[AoB]=[
4.8 428

42.8 42.8

The Kronecker product 0 has the property

{32a} = {BoAT} {X}

Similarly we can also define

and

[A®B]C=(B.C)A

[A83], =43,

Two matrices [BI and [B]T are defined such that

(Va) 48114}

{VTu} = [BIT {ue}

Moreover the double dot product oftwo tensors A and B is defined as

We can write the double dot product oftwo tensors A and B in terms of two

vectors A and B. Let

A:B=A,.,.B,.,.

IandB=<
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(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)



  

IBu‘

A'B-{A A A A }<B‘TI (A15
' _ ll 2] l2 22 B ' )

21

I322.

01'

which is the same result as in equation (A. 1 3). Thus the 2““ order tensors

in the formulations are considered as vectors and the double dot product

is taken in the same way as shown above.

Thus,

I (A):(B)dQ, = I ATBdQ, (A.17)

9. a.

The Transpose matrix [T] is defined to obtain the transpose of any vector.

    

      

IFu‘ IF”

F T F

If F=I ”I and F =<T‘I{ } F21 I } F12

IFzz. IFzz

then

IF,,‘ ’1 o o o‘IF,,‘

F 0 0 1 O F
, 21I= , 12I (A.18)

E2 0 l O 0 F2|

IF22. -0 0 0 1- IF22.

'1 o o 0‘

0 0 l 0 , .

where [T] = 18 called the Transpose matrix.

0 l 0 O

_0 0 0 1‘  
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APPENDIX B

IMPORTANT RESULTS USED IN FINITE ELEMENT DISCRETIZATION

In Appendix B, few of the terms used in finite element formulations are derived. These

equations are based on matrix definitions given in Appendix A.

 

 

 

E=%[FTF—I] (3.1)

S=[C][E] (13.2)

F=I+V,u (3.3)

F,, =I+Vrg (B.4)

F} = I+V,g+V,u (B.5)

E{Au}=[B](Au) (3.6)
Bu

8F,
a—g'IASI-IBIIASI

(3’7)

immune} (13.8)
38

317—1 -1 —T
fi—z—[F OF I (3.9)

aF-T =—[F‘T oF“][T] (3.10)
BF

8F.“ -1 -T
{Au}=—[F, OF, ][T][3]{Au} (3.11)

Bu

81:84 -1 —T
ag {Ag}=-[Fg 0F, ][T][B]{Ag} (3.12)
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8F"

 

 

 

3:14g1=—[E“GE‘TIITIIBIIAgI (13-13)

317:4 —T —1

a“ IMP-[Ft 0F. IITHBIIAu} (3.14)

an-T -T —1
ag {Ag)=—[F, OF, IIT][B]{Ag} (3.15)

BPS-T —T -1
ag {Ag}=—[Fg 0F, IIT][3]{Ag} (B.16)

g—Z—{Au} = [I o Fg’T][B]{Au} (3.17)

where Q =[1 O F,,-T] (B.18)

g—g-{Ag}=[I:lOFgTTI-[FGFg'TIIIBH/Ag} (3.19)

where P=[[I®F8"TI—[FGF8'T:I] (3.20)

331M=1c1[floz]121131{4u} (3.21)

BS 1

$14g1=[C][F GIIIPIIBIIAgI (13-22)

aJ8 -T

a]: -T.

${Ag}=1,(F, IBIIASI) (1324)

Based on above relationships, the finite element discretization of the residual and

stiffness terms can be obtained. To illustrate the general procedure, one residual term is

transformed into finite element form below.



Consider

L(5u) = I (V,5uF,") : (F,F,"S)J,do, or

n.
(3.25)

L(§u) = I (V,5uF,")T(F,F,"S)J,dQ, see (A.l7)

9.

Since

V,,é'uF’l =I(V,au)F,“=-[1@F,'TI[B]{6u} see (A.8) and (A. 12) (3.26)

F,F,“S = [17, os]{F,"} see (A.8) (3.27)

Combining the above two equations and substituting in equation (B.25), we get the finite

element discretization for the given residual.

L(6u)= {5n‘T} I [3] [IoF,T‘T] [F os]{,"}1,an, (3.28)

where we have used the identity

(1411191161)T =tciT181T141T

Similarly, an example of discretization of a stiffness term is given below.

Consider one of the stiffness terms of the above residual

(5a, Au): I (V5aF,-I)~(98—5 {Au}(F,-him,do or

(3.29)

a(6u, Au): QI(V,5aF,,T“) (63—u‘{Au}(F,‘S))J,d52

Since

V,,=6uF‘l-,[I®F‘T][B]{6u} (3.30)

3F _1 -l T
—u—'a{Au}F, s: [Io{F, S} ][3]{Au} see (A8) and (3.6) (3.31)
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Combining the above two equations and substituting in equation (B29), we get the finite

element discretization for the given residual.

a(5u,Au) = (511'? I [B]T [IOF,'T]T [I o1F,"S}T][B] 1,2112, {Au} (13.32)

Qr
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