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ABSTRACT

AN OPTIMIZATION FRAMEWORK TO TUNE A LATTICE MODEL FOR

IMPROVING CRASHWORTHINESS USING SURROGATES

By

Rakesh Kumar

The goal of this work is to develop a framework for optimization problems involving

complex expensive functions for which traditional optimization techniques are not

practical. Important concerns in such problems are high simulation cost and unreliable or

unavailable derivative information. It’s a common practice to work on a surrogate model

(also called metamodel) of the original problem. We have used a ‘kriging metamodel’ to

build the surrogate of the original problem and pattern search methods to solve the

surrogate optimization problem. In turn the surrogate model is used to predict the

optimum of original problem. We investigate the use of a lattice structure as a possible

surrogate model for a more complex structure. We are concerned with design for

crashworthiness of structures and an attempt has been made to ‘tune’ the lattice such that

the response of lattice can be used to predict the response ofthe structure. The advantage

of using such lattice model is low computational cost and less modeling time which, can

help reduce the design cycle time and improved accuracy.



To my parents

iii



ACKNOWLEDGEMENTS

This dissertation and the research would not have been possible without guidance of my

advisor Dr. Alejandro Diaz. I really appreciate his valuable advice and patience. I want to

acknowledge my thanks to Dr. Ronald Averill and Dr. Andre Benard for their support

and valuable suggestions. I also want to thank my mentor Dr. Dinesh Balagangadhar for

his invaluable help in developing skills which I consider a transparent part of this

research. I wish he was here to stare the achievement ofthis particular goal.

Ms. Cori Ignatovich has made many valuable contributions to this work. I appreciate her

efforts. She is a wonderfiil person with great patience.

My parents, Mr. Jugal Kishore and Mrs. Indira Devi, always supported me with their

infinite love and patience without any reservation. My family and fiiends have always

inspired me for constructive research and I treasure them for the successful completion of

this work.

iv



TABLE OF CONTENTS

LIST OF FIGURES...............................................................................vii

LIST OF TABLES............................................................................... viii

Chapter 1

Introduction]

1.1 Motivation .............................................................................. 1

1.2 Background ..............................................................................2

1.3 Statement ofthe problem ............................................................. 2

1.4 Selection ofFramework ...............................................................4

1.5 Example ................................................................................. 7

1.6 Outline of dissertation...................................................................9

Chapter 2

Framework Design ................................................................................ 10

2.1 Selection of Initial Design Sites...................................................... 10

2.2 Space Filling Designs.................................................................. 11

2.2.1 Latine Hypercube Design................................................. 11

2.2.2 Full Factorial Design...................................................... 13

2.2.3 Random Latin Hypercube ............................................... 15

2.2.4 IMSE Optimal Latin Hypercube......................................... 16

2.2.5 Maximin Latin Hypercube................................................ 17

2.2.6 Orthogonal Latin Hypercube ........................................... 17

2.3 Metamodel Selection ................................................................ 19

2.3.1 Least Square Polynomials ............................................... 21

2.3.2 Interpolating Splines ...................................................... 23

2.3.3 Wavelets and Radial Basis ............................................... 24

2.3.4 Neural Network Metamodels.......................................... 25

2.3.5 Response Surface Methodology..........................................26

2.3.6 Kriging Metamodel........................................................ 27

2.4 Building and Validating a Kriging Model......................................... 32

2.5 Metamodel Comparisons............................................................ 33

2.6 Optimization........................................................................... 34

2.6.1 Background................................................................. 34

2.6.2 Pattern Search Methods................................................... 36

2.7 Surrogate Management Framework.................................................40

2.8 An example............................................................................ 44

Chapter 3 '

Tuning Problem....................................................................................48

3.1 Background............................................................................ 48

3.2 Lattice Model.......................................................................... 49



3.2.1 Characteristics ofLattice Model......................................... 50

3.2.2 Proposed Lattice Model................................................... 52

3 .3 An Optimization Problem............................................................ 55

3.3.1 Response function formulation.......................................... 60

3.3.2 Tuning Problem............................................................ 61

3.3.3 Results....................................................................... 66

Chapter 4

Conclusion.......................................................................................... 69

4.1 Conclusion..............................................................................69

4.2 Future work............................................................................ 70

BIBLIOGRAPHY................................................................................. 72



LIST OF FIGURES

Figure 1: A two-dimensional multi-modal function............................................ 3

Figure 2: An example ofa lattice model [22] ................................................... 8

Figure 3: A Latin hypercube design with level 10 andfactor 5 .............................. 12

Figure 4: 32 Full Factorial Design and 32‘1 Fractional Factorial Design.................... 14

Figtu'e 5: Random Latin hypercube design with afactor 3 .................................... 15

Figure 6: IMSE optimal Latin hypercube design with afactor 2 ............................. 16

Figure 7: Maximin Latin hypercube design for afactor of2 ................................. 17

Figure 8: Orthogonal Latin hypercube design for afactor of2 .............................. 18

Figure 9: An illustration oferror function Z(x) as a function ofx........................... 28

Figure 10: Generalized Pattern Search Method................................................ 39

Figure 11: Surrogate Management Framework.................................................41

Figure 12(a): Iteration 1 Kriging with 2 base points .......................................... 45

Figure 12(b): Iteration 2 Kriging with 2 base points+ 1 opt points........................... 45

Figure 12(c): Iteration 3 Kriging with 2 base points+ 2 opt points.......................... 46

Figure 12(d): Iteration 4 Kriging with 2 base points+ 3 opt points.......................... 46

Figure 12(c): Iteration 5 Kriging with 2 base points+ 4 opt points.......................... 47

Figure 12(t): Iteration 6 Kriging with 2 base points+ 5 opt points.......................... 47

Figure 13: Typical acceleration signal ([22]) ................................................... 50

Figure 14: Basic cell in lattice model ([20]) .................................................... 51

Figure 15: Material model for each bar in a lattice cell ([20]) ............................... 51

Figure 16: Real structure (A square cross section tube) .......................................52

Figure 17: Deformed tube structure in an impact event....................................... 53

Figure 18: Lattice model ofthe real structure................................................... 54

Figure 19: Deformed lattice model after an impact event..................................... 55

Figure 20(a): Comparison ofacceleration responses ofthe tube and the lattice... 57

Figure 20(a): Comparison ofdisplacement responses ofthe tube and the lattice. . 58

Figure 20(a): Comparison ofvelocity responses ofthe tube and the lattice................ 59

Figure 21: Response oftube ( fMe) plotted against 25 points in Sy domain............... 62

Figure 22: The lattice has twenty areas as design variables................................... 63

Figure 23(a): Response oflattice for some arbitrary set ofareas............................. 63

Figure 23(b): Response of lattice for some arbitrary set ofareas............................. 64

Figure 24: Block-diagram describing the procedure oftuning problem..................... 66

Figure 25: Response fimction ofthe tube and the lattice at 25 Sy points.................. 67

Figure 26: Response function ofthe tube and the lattice at 25 Sy points.................. 68



LIST OF TABLES

Table 1: fMe at 25 set ofyield stress points................................................... 61



Chapter 1

Introduction

1.1 Motivation

There are many optimization problems in industry where the cost of arriving at an

optimum solution is very high because of very ‘expensive’ objective fimctions or their

derivatives. Computational optimization can guide us to better results and shorter design

cycle times. In engineering, better designs can lead us to better performance of the

product or process being designed. In many engineering disciplines better designs have

many advantages such as reduced cost and better performance. Also, there are other areas

where current design practice has reached heights; small improvements can be valuable

addition. Faster tum-around time and shorter design cycle can improve the quality of

product early in design cycle. When time is a critical factor and many design features

cannot be changed later in the product development, computational design simulations

can allow more flexible design to experiment.

Long solution time in the early stages of design cycle can negate many good features of

design. We must look for methods which can give us competitive designs at reduced cost

and time. In the present scenario we have simple and less accurate simulations but now

the simulation of complex and accurate system is the subject of research in many

industries. For such sophisticated simulations we need to have a fi'amework of

computational design which can satisfy such high requirements.



1.2 Background

The basic idea of replacing a complex function or constraints by using Taylor series is a

very common practice. The more general work that has been the subject of research is the

field of nonlinear programming. This has focused on Taylor series methods and

gradients-based approach. Much less work has been done for derivative fi'ee methods

([6], [7], [8], [9]). The models used in engineering application can be classified mainly

into two areas: numerical solution of governing equations of physical systems and

functional approximation of the solution of equations constructed without actually

knowing the physical systems, that is, by using the values of the function only. The

former model characterizes the fimction at all points in the domain whereas later method

approximates the firnction in the domain except at some points where it has the actual

value ofthe ftmction.

1.3 Statement of the problem

It is not uncommon to use computer simulation to arrive at decision before actually

manufacturing the product. The industry ofiers gamut of choice ranging from a bicycle to

a spacecraft. It takes considerable effort to model and simulate tests on computer. It is

even more expensive sometime to test the actual product. Imagine a crash test performed

on a car model. There are hundreds of design parameter and millions of degree of

freedom associated with each test. The cost of such test can hinder to actually arrive at

‘optirnized’ design. Replacing such expensive test by computer simulation may reduce



the cost of experiments by a considerable amount but it may take long time. It is a normal

practice in industry to perform such simulation with the help of powerful computers. In

the present work an attempt is being made to develop simulation methods, which allow

maximum use of existing information to build a model, which has optimized design

features. We have our problem definition as:

Minimizef(x) (1.1)

Subject to a S x S b

Where f: R’I —) Ru{oo},a;b e R"

A typical multi-modal function can be shown in Figure 1

 

     
Figure l: A two-dimensional multi-modal fimction.

(Images in this dissertation are presented in color)



0 Physical problems can be very ‘expensive’ to model and may require many

intermediate and state variable determinations to actually evaluate the function.

Cost of evaluating f (x) could be very expensive in terms of computational time

and resources. Some evaluation of f (x) could be available from other sources. If x

is infeasible, f (x) may not be available.

a It is not necessary that f (x) be evaluated at all the possible design sites. There

could be cases when f (x) need not be evaluated accurately at some design sites

and it incurs the same computational cost. The firnction may fail to evaluate at

some design points.

0 The problem can be more acute if the optimization algorithm requires derivative

information of the function. The derivative information may not be reliable and

this certainly hinders derivative based optimization algorithms. Traditional non-

linear optimization methods can be either inaccurate or very costly to use. Quasi-

Newton method may not be a good choice in the light offoregoing discussion [1].

It is assumed that for application of interest in this work, the derivative information of

function is not available or is very expensive to compute. A common approach for such

problem is to replace the original expensive model by an approximate and cheaper model

and then perform the optimization on it; we refer to this as the surrogate model. Clearly,

the surrogate model will have cost advantage for evaluation and thus making the

optimization problem easier. Another approach could be to use such optimization

techniques which require function values and does not require derivative information.



The major disadvantage of replacing the original model by a surrogate model is that

solution of surrogate model optimization problem may not be solution of original

problem (We are actually solving a different problem). A significant disadvantage of

using derivative fiee optimization methods is that they require many function evaluations

as compared to gradient-based techniques. A framework which can solve most (if not all)

ofthe problems addressed above will be chosen.

1.4 Selection ofFramework

The computational cost of highly expensive simulations of the characteristics of physical

process or systems makes it impractical to rely exclusively on such expensive simulations

for the purposes of design and design optimization. Instead one needs to make as much

use as possible of surrogates of lower physical or mathematical fidelity but lower

computational cost, with only occasional recourse to expensive, high fidelity simulations.

This is employed in many engineering disciplines especially in preliminary design where

design cycle is very fast and one need to widely explore the design space. This approach

is also in keeping with a tenet of nonlinear programming that suggests that one should try

to avoid doing “too much work” when far from an optimum.

In the view of the foregoing discussion about function (1), there are many optimization

methods proposed in the literature, which do not require any derivative information. The

most widely used algorithm is direct search algorithm [2, 3, 4, 5]. These methods are

affected very little by inaccuracies in function evaluation, as compared to other methods.



The properties of direct search method certainly qualify to use in our problem. However,

the use of direct search method could be very expensive which does not satisfy our

foremost important criterion of choosing a fiamework. The direct search method will be

modified consequently to suit our need.

In the literature, the basic strategy used to tackle such problems is to work on a surrogate

model problem (8), which is an approximate representation of the true ftmction. The

surrogate problem can be built in the following three ways:

0 A physical approxirmte model (S p ), which closely represent the behavior of the

true function.

0 An approximate modeling of the characteristic behavior obtained by some data

fitting technique based on sample design sites chosen by some mean (S k ).

o A combination oftwo method outlined above S p + S k .

After the surrogate is built we try to find the optimum X, of this surrogate S. The true

function is tested for f (X,) and verified with respect to some reference f (X N!) to

determine if some improvement lms been made. A very common method is to build the

surrogate S before the optimization process and is not modified until the optimum of the

original model is found. A basic premise of the method is to modify the surrogate S

during the optimization process and the strategy of modification is guided by the value of

original model evaluated during the optimization.



1.5 Example

For a better understanding of the problem at hand, an example (our test problem) is

described next. In developing a crashworthiness model for a complex structure it is usual

practice in industry to work on a structure already complete in its entirety. Computational

modeling using this approach becomes a very high-fidelity simulation, with all design

details incorporated into the model. If simulations of crash tests suggest changes in

design parameters (as it often occurs), redesign can be even more expensive and time

consuming. Our surrogate model build for high-fidelity simulations is an attempt to

perform such crashworthiness analysis (or any other analysis) early in conceptual design

stage ofthe product design.

Recent work in [20] has looked into optimization problems in the conceptual design

stage. For layout optimization, one can use a lattice model that replicates major structural

components. As described in [22, 29] lattice models are used to represent the behavior of

a complex structure in an impact event. A lattice model developed for such analysis can

be completely described with dimensional details including the material properties of its

components. It becomes important to optimize these parameters in order to replicate the

relevant behavior of the complex structure. In the present work an optimization problem

has been formulated to investigate whether or not relevant measures of performance in

optimization for enhanced crashworthiness are replicated with suficient accuracy by the

simplified, lattice model.



As described above, an attempt has been made on improving the accuracy of lattice

models in crashworthiness analysis. An optimization problem is formulated to “tune” the

lattice model to capture the relevant behavior of the complex structure. Kriging

(introduced next) is used to develop a surrogate which can identify the systematic

component ofa signal characterizing the structural behavior fi'om its random component.

In this work kriging was used to develop a surrogate model. Named after Krige, a South

Afi'ican geologist who first developed the method, kriging is a type of surrogate model

based on Spatial Correlation Functions (SCFs). Researchers were aware ofthis technique

but it was not very widely acceptable until four statisticians wrote a paper on the kriging

and this became a powerfirl mathematical technique ([14], [15]). Details about this

method are included in chapter two ofthis dissertation.
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Figure 2: An example ofa lattice model [22]



1.6 Outline of dissertation

The rest of this dissertation is arranged as follows. In chapter two, some theoretical

background about the possible approach or a combination of them is outlined. The

approach used in the present work is described in detail with emphasis on a l-dimension

problem. Chapter three describes one test example of tuning a lattice model for enhanced

crashworthiness analysis followed by conclusion and future work in chapter four.



Chapter 2

Framework Design

2.1 Selection of Initial Design Sites

We will re-visit the original problem introduced in chapter one, before we consider some

design issues in this chapter. A general Optimization problem is described as follows:

Minimize f(x) (1.1)

Subject to a s x Sb

Where f: R" —) Ru{oo},a;be R"

It is worth emphasizing that cost of evaluating f (x) could be very expensive in terms of

computational time and resources and the derivative information for f (x) may be

unreliable or unavailable. Though computer simulations are cheaper and readily available

than actual experiments, still they are time consuming and expensive. The goal here is to

create an approximation of function f (x) by sampling it at some judiciously chosen x, the

design variable. If f (x) is nonlinear and is of very high fidelity, this poses a difiiculty of

having a limited number of combinations of x. A feasible approach could be to develop a

statistical fi'amework fi'om the results of ‘as many’ available firnction evaluations for

some combinations of x and then use it to predict f (x) at any design point x in the

10



feasible design domain. The question is: How to sample x? Design of Experiments

(DOE) provides several techniques to sample appropriate x or combimtions ofx.

2.2 Space Filling Designs

In this work the focus is on 'expensive' functions with high dimension and there is a

possibility that we do not have a reliable evaluation of the fimction at all the design sites.

In view of large dimensionality of the problem, 'space filling’ experimental design could

give promising initial design sites. There are several ‘space filling’ designs available in

literature of which firll factorial design, random Latin hypercubes, maxirnin Latin

hypercubes, random orthogonal arrays, uniform designs, orthogonal Latin hypercubes

and IMSE optimal Latin hypercubes are very commonly used methods. Few of these

methods are described and investigated in present work.

2.2.1 Latin Hypercube Design

A Latin hypercube design (LHD) is a class experimental design that is defined as an n x k

design matrix in which each column is a permutation of (1...n) which could be mapped

onto the actual dimension, n being the number of levels and k isfactor (number of design

variable). The n x I: design matrix can be explained as follows (particularly for Random

Latin hypercube design): The bounds of each design variable are divided into n levels,

and one level is chosen using random sampling with each level (or with certain criteria; to

11



be discussed later). Thus, there are n such chosen levels for each of the k design variables.

One of the levels on x1 is randomly selected (each level is equally likely to be selected),

and matched with randomly selected levels on x2 , and so on through x d. All these levels

together constitute a possible design site Pl. For second design site P 2 , one of the

remaining levels on xl is then randomly selected and matched at random with one of the

remaining observations on x 2 and so on to get P 2. A 10 x 5 Latin hypercube design, with

10 levels and 5 factors (design variables), is shown in figure 3.
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Figure 3: A Latin hypercube design with level 10 andfactor 5.

Latin hypercube designs are stratified sampling which means tint each design variables

are sampled at n distinct levels so that none of the design sites are replicated. If Latin

hypercube is projected into any single dimension, one can see exactly n levels.

12



This design was first proposed by (McKay et a1 1979) and became very popular in

computer experiments. Usual approach to generate a LHD matrix is to use optimal design

criteria such as Integrated Mean Square (IMSE) (Sacks et al 1989), entropy (Wynn and

Shewry 1987) and minimmn inter design site distance (Johnsan et al 1990). In later

sections of this chapter, some of these criteria are briefly introduced for generating LHD.

These design criteria lmve been shown to be efficient for certain models. The

construction of an optimal LHD can still be time consuming. Interested readers can refer

to review ofdesign and analysis ofcomputer experiments, Koehler and Owen (1996).

In the design of experiments (DOE), there has been an important concern for many

researchers to come up with an algorithm for automatically generating initial design

points. The goal in DOE is to select the combination of design variables to be sampled.

There are several criteria which can be used to measure experimental design's capability.

One can choose a criterion based on proposed surrogate to model the behavior of the

function. Other criteria could be symmetry of distribution of variance resulting from

selection of design sites, ease of generating designs sites and number of experimental

runs required to generate such combination ofsamples.

2.2.2 Full Factorial Design

Full factorial design (FFD) is one of the simplest experimental designs. FFD suggests

fixing each input variable (dimension of design space or factor) at certain number of

13



levels. A combination of all such factor's level is sampled as FFD. For example, in a

design domain of dimension two, if the number of levels are 2 for each factor, we will

have 2 2 design sites. The design sites thus generated are at the corners of a square.

Similarly, in design domain of dimension three, if the number of levels are 2 for each

factor, we will have 2 3 design sites. The design sites thus generated will be at the comers

ofa cube. Figure 4 shows one such examples of 32 full factorial design.

r—-———0—~——9 a

4.; ,

e O 6 a

Figure 4: 32 Full Factorial Design and 3‘2") Fractional Factorial Design

 

    

 

It is easy to appreciate that as the number offactors and levels increase, the number of

function evaluations required to generate a full factorial design is increased

exponentially. Fractional factorial design can reduce the number of function evaluations

at the cost of reduced refinement of design space and reduced accuracy of surrogate

model. For example in a space of dimension two, if we have It factors (design variables)

and m as reducing factor, then 2 “H" fractional factorial design sites can be generated.

Number of designs is reduced by 2 ’" as compared with full factorial design. Figure 4

shows one such example of 3‘2") fractional factorial design. This is computationally less

expensive as compared to firll factorial design.
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2.2.3 Random Latin Hypercubes

As explained in section 2.2.1, a Latin hypercube is a matrix of n x k dimension. In

random Latin hypercube, each column has n difl'erent levels fi'om 1,2...n randomly

permuted and the k random columns are matched to form the Latin hypercube. Three

random Latin hypercubes of dimension 2 (k =2) with 10 levels (n=10) are shown in

Figure 5. It should be noted that the design sites in all the three cases are randomly

selected throughout the design space. No optimality criteria (e.g. IMSE, Maximin, etc)

has been used to generate such designs.

X2

fl; X2 [ X2 A}

  
Figure 5: Random Latin hypercube design with afactor 3

The advantage of random Latin hypercube is that it requires only a random permutation

of n levels in each column of the design matrix and is very easy to generate. It is

computationally less expensive.
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2.2.4 IMSE Optimal Latin Hypercube

Integrated mean square error (IMSE) design is generated with integrated mean square

error over the design space between design sites as the optimality criteria. Integrating

IMSE optimal designs and Latin hypercube designs (LHD) generate a hybrid set of a

design which is referred to as optimal Latin hypercube design (OLHD). The striking

features of this design methodology are that they are well spread in the design domain

(because of IMSE criterion) and none of them are replicated (because of LHD criteria).

They are often nearly symmetric and they are also stratified (because of LHD criteria).

Two such design samples are shown in Figure 6 for 7 points OLHD and 8 points OLHD

with a factor of two. It can be appreciated how well the design sites are spread in the

domain with symmetricity though entire space is not filled. Park (1994) has developed an

algorithm which can be used to generate such design; the reader is referred to (Park,

1994) for details about this algorithm
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Figure 6: IMSE optimal Latin hypercube design with afactor 2

l6



2.2.5 Maximin Latin Hypercubes

Maximin Latin hypercube design (MMLHD) method was developed by Morris and

Mitchell (1995) for computer simulations. They used maximin distance as optimality

criterion which is used to maximize the minimum distance (Euclidean or rectangular)

between any two design sites. This ensures that design points will be spread as far as

possible in the design domain. Figure 7 shows a two factor MMHLD with 7 and 8 points

design sample. Morris and Mitchell used a simulated annealing search algorithm to

generate these designs.
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Figure 7: Maximin Latin hypercube design for afactor of2

2.2.6 Orthogonal Latin Hypercubes

Orthogonal Latin hypercube design (OLHD) is a special case of LHD. Orthogonal Latin

hypercube design (OLHD) was proposed by Ye (1997) which maintains orthogonality

among the columns. These designs are “space filling” and they also maintain the

17



orthogonality between design sites. The orthogonality ensures that the quadratic and

interaction effects are uncorrelated with estimates of linear effects. Interested readers are

referred to (Ye, 1997) for an algorithmic construction of OLHD. Ye has stressed that

orthogonality of these designs are independent of numerical values of levels. Figure 8

shows three different design matrix generated using this algorithm. These designs can be

optimized for certain criteria e.g. minimum entropy, maxirnin criteria.

X2

i

  «A,» 
x1 ' Xl 'xr

Figure 8: Orthogonal Latin hypercube design for afactor of2

In the present work we are seeking design of “space filling” nature which will facilitate to

capture the behavior of fimctions in global sense throughout the feasible design domain.

We want to predict the response of the model in the entire feasible design space alter we

sample some intelligent design sites. The selection of initial design should allow us to

explore a wide class of metamodels (e.g. least square polynomial metamodel, kriging

metamodel, response surface metamodel and spline metamodel). We have used OLHD as

the design criteria in the present work. The code for generating OLHD is freely available.

In this work, I used one such code available at STATLIB (http://lib.statcmuedu). It is 

worth mentioning at this point that we have tested our framework with some user

18



supplied design sites in combination with OLHD. This provides us some known design

sites (at which we have some information about the fimction) on top ofOLHD designs.

2.3 Metamodel Selection

We want to predict the response of the model in the entire feasrble design space alter we

sample some intelligent design sites. Once the appropriate sample data has been obtained,

we need to build the metamodel. This is described next. A metamodel associated with a

model (or model’s response) is defined as an approximation to the model itself (or its

response). This section describes various techniques which can be used to construct a

metamodel for expensive functions. The term surrogate (or metamodel) is used to denote

any replacement for an expensive simulation. Few examples are least square

polynomials, wavelets, radial basis, neural network, firzzy logic, response surface

methodology and kriging used to build a surrogate for fimction response.

The first class of surrogates will be called models; a terminology motivated by the use of

model in, say, the models of crashworthiness analysis of varying physical fidelity (linear,

firll nonlinear model). These surrogates are based on modeling a response f at a single

design, x. This modeling can be based on varying physical fidelity, as in the models of

crashworthiness analysis just mentioned, or varying mathematical fidelity, as might be

determined by mesh spacing or the order ofaccuracy ofnumerical schemes.
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The second class of approximation can be a surrogate constructed fi'om samplesfix, ), _ _

_ , f(xn) of the original fimction fix) at different design sites x , (and possibly values of

the derivatives off). A Surrogate is constructed fiom regression against this data (as in

classical response surface methodology), interpolation of the data (as in spline fitting), or

by a combination ofregression and interpolation (as in kriging).

As discussed in chapter one, we can construct approximation of the original problem in

two ways.

1) A physical approximate model (S p ), which closely represents the behavior of the

true function.

2) An approximate modeling of the characteristic behavior obtained by some data

fitting technique based on sample design sites chosen by some mean (S k ).

Questions that arise in the selection and use of surrogates in design includes the

following:

1) Construction methodology ofappropriate sm'rogates;

2) Validation ofsurrogates and estimation ofthe surrogate error;

3) Utility of surrogates in the multidisciplinary setting; and

4) Use ofsurrogates in optimization.
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2.3.1 Least Square Polynomials

Polynomials are very popular methods known as data fitting and metamodeling

techniques. They are simple and easy to compute. For a given design set (x, , y ,. ), where,

i = l...n, its easy to fit a polynomial e.g. a quadratic curve. A second order polynomial

can be represented by

fix) = :60 +fl1x+fl2x2a

where, fls are regression coefficients, x is the design variable and f(x) is function

predicted value at x. ,6 's are computed by solving an optimization problem by taking

the mean of the sum of squared errors (MSSE) as the objective fimction at predicted

values, x,

MSSE = :20. -f(x.))’ (2.1)
i=1

where, y, are known values, f(x,) are predicted values of function and n is total number

ofpoints at which predicted values are compared with known values.

Once the optimal values of coefficients of polynomial are determined, it is easy to predict

output values corresponding to any input x. This technique of constructing the surrogate

21



is very common and is termed as least square polynomial technique. It can be performed

on polynomial of arbitrary degree with little difiiculty, simply by changing the number of

coefficients. Extension to design space of higher dimensions can also be done, however

with less reliability.

Analysis of variance can be performed on this ftmctional relation to determine the

relative importance of each coefficient in the polynomial or the standard deviation of the

result from the known results. Usually the model is changed heuristically, by adding or

subtracting some terms so that the polynomial represents a satisfactory behavior in the

entire design domain.

As we increase the dimension of the problem at hand or the size of the dataset, there are

some obvious disadvantages of using this metamodeling technique. Coeficient

evaluation takes longer time in higher dimensions as well as when size of the dataset is

increased. Usually, the behavior of the function is not captured by one polynomial in the

entire feasible domain. A quadratic polynomial can represent the global nature of

fimction, but it cannot represent non-linearities in local regions. A higher order

polynomial e.g. 19til order polynomial will require twenty coefficients to be determined

by least squares. Higher order polynomials tend to be highly oscillating between points

and there in not enough smoothness in the function. In the present application, we are

dealing with highly nonlinear and ‘expensive’ functions and for these reasons, we will

not select least square polynomials as our metamodel.
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2.3.2 Interpolating Splines

The drawbacks of polynomials can be avoided to a great extent by using interpolating

splines as a metamodel. Splines are polynomials defined in a piecewise manner. We can

benefit from the advantages of using polynomials while avoiding the drawbacks

associated with polynomials. This could be especially useful for highly nonlinear nature

of data. Whereas polynomials try to capture the behavior of the function in global sense

with one firnctional representation, splines can model the behavior in each separate range

of data (or piece defined by points or knots). The boundary conditions can be imposed on

piecewise polynomials to ensure that these pieces match exactly with a prescribed degree

of continuity. Usual practice is to model cubic splines as one piece with C 2 continuity

imposed between pieces. This means that the pieces will have same function value and

slope at boundary knots. This ensures the correct behavior of the function at knots (as

compared to least square polynomials), but it does not tell us much about the values in

between knots. They can be more oscillating or wavy.

A similar technique known as smoothing splines is an improvement over interpolating

splines. Many researchers have worked on this method ([13], [32], [11]) and have

proposed to adjust a weighting factor known as smoothing parameter. By using this

parameter, a trade-off is sought between smoothness of polynomials of least square

polynomials and the point-wise accuracy of piecewise polynomials in interpolating

splines. Interested readers can refer to ([27], [32]).
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2.3.3 Wavelets and Radial Basis

Radial basis and wavelets have earned popularity in recent years in several areas such

reconstruction and image filtering. The characteristics of these metamodel is a basis

function depending on the Euclidean distance between the sampled data points and the

point to be predicted. They are similar to Fourier transforms, but wavelet transforms are

capable of capturing a large amount of information with the help of small number of basis

ftmctions. Wavelet transforms are fast and require less number of coefficients to represent

the metamodel. Diaz has used wavelet transforms to identify the systematic component of

a signal characterizing the structural behavior fi'om its random component ([22]).

Radial basis functions (RBF) have been developed for largely scattered multivariate data

interpolation. A RBF method uses linear combinations of a radially symmetric function

based on Euclidean distance (or other such metric) to approximate response functions. A

radial basis function model can be expressed as:

f(X) = Eat "x —xi" (22)

where the sum is performed over the observed set of response {(x,,y,.)} and ”0”

represents the Euclidean norms. The coeflicients a .- are found simply by replacing the left

hand side of (2.2) with g(x,.), i = 1, ..., n, and solving the resulting linear system. Radial
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basis function approximations have been shown to produce good fits to arbitrary contours

ofboth deterministic and stochastic response fimctions (Powell, 1987).

2.3.4 Neural Network Metamodels

Neural networks can be described as flexible parallel computing devices for producing

response that are complex functions of multivariate input design variables. They are

capable of approximating arbitrary smooth fimctions and can be fitted using noisy

response values. Neural networks are networks of numerical processors whose inputs and

outputs are linked according to specific topologies. Interested readers can refer to

Lippman (1987) or Masson and Wang (1990) for an introduction to neural networks.

Networks used for function approximation are typically multi-layer feedforward

networks. Feedforward layered networks have the flexibility to approximate arbitrary

smooth functions very well, provided sufficient nodes and layers. This follows from the

work of Kolmogorov (1961), whose results imply that any continuous function f: R" ->

R can be exactly reproduced over a compact subset by a three-layer feedforward network.

While there are some approximation schemes using three-layers, most approximations

use a two-layer network structure, with a single output node for models having a

univariate dependent variable. The overall metamodel is then a linear combination of

linear or nonlinear functions of the design vector x. Strictly speaking, neural networks are

assumed to use functions tlmt are threshold functions. It is usefirl however, to allow more

general firnctions and to think of neural networks as a technique for computing
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metamodel coefficients and predicted values rather than as representing a particular class

ofmodeling techniques.

2.3.5 Response Surface Methodology

A Response surface methodology (RSM) is a sequential process for data fitting. Least

square polynomials, wavelets, radial basis and kriging are classified as global

metamodels and a single surrogate maps the entire design dormin. A RSM works

sequentially, constructing a surrogate model in a local sense. This method is widely

known as a tool to develop, improve and optimize a product or process. It has found its

application in design, development and formulation of new products and improvement of

existing product designs. Interested readers can refer to ([31], [19], [21], [16]).

A RSM is a sequential process which starts with one initial design point. Design of

Experiments (DOE) is used to generate and sample a set of design sites in a small space

around the initial design point. A linear least square model is constructed to fit the design

points around initial design. The accuracy of the polynomial is verified using analysis of

variance. Now, at this point using basic calculus, a new area of interest is identified in

the design domain. The process is repeated until a linear fit of data no longer

approximates the function. Since a RSM works sequentially in order to approximate the

function and generate the metamodel, it is different from other methods. Our future work

will deal with this type ofmethodology.

26



2.3.6 Kriging Metamodel

In all of the metamodeling techniques discussed, the fimdamental assumption used to

build the approximation is as follows: given a vector of independent factors x and

response y, the relationship between y and x is:

y=f(X)+6, (23)

where 8 represents a random error which is assumed to be independent and normally

distributed with mean zero and standard deviation 0'. The key concept in kriging

metamodel constitutes that the error in the predicted values a, are not independent.

Instead, errors are a systematic function of x. Since the true response surface function is

usually unknown, a response surface fix) is created to approximate it. The kriging

metamodel take the form y(x) = fix) + Z(x), where fix) represents a polynomial and Z(x)

represents a departure fi'om the polynomial. Figure 9 illustrates how kriging error Z(x) is

distributed as a function of 1 (its not assumed to be constant). A quadratic equation is fit

via least squares to a given sample of design points. Figure 9 illustrates the underlying

assumption that the distribution oferror is a firnction of x.
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Figure 9: An illustration oferror function Z(x) as a function ofx

From figure 9 it can be observed that if the predicted value fix ,) is far fi'om the true value

y(x,), then a point very close to x, will also have a predicted value fix,+6) that is far

fiom the true value y(x,.+6 ). The underlying reason for such a behavior can be

accounted to a systematic error associated with fimctional form of fix) which is the least

squares fit.

Kriging metamodels assume that the deterministic response is a realization of a random

fimction y(x) that includes a regression model [15],

y(X) = f(I) + Z(X) (2-4)
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where, Z(x) (the error) is realized as a Gaussian process which represents uncertainty

about the mean ofy(x); Z(x) is assumed to have mean zero and covariance, V given by

V(w, x) = 02R(w, x) , (2.5)

between Z(x) and Z(w) where 02 is the process variance and R(w,x) is the choice of the

spatial correlation function between point w and x which actually determines how the

metamodel fits the data. There are several choices of R(w, x) in the literature which can

determine how quickly and how smoothly the function moves fi'om point x to point w.

One of the more common spatial correlation ftmctions (SCFs) used in kriging models in a

one-dimensional problem is

. . —6llwi-xi 2

R(w' — x’) = e ' , (2.6)

where 6 >0 and the superscript refers to any design point, x. It can be noted fiom the

above equation that as lw-xl increases, function goes to zero irrespective of any SCF .

used. As the distance between the points to be predicted and sampled point increases, the

effect of sample point gets weaker on the predicted point. Also, |6| dictates how fast this

effect will take place.
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The SCFs for multivariate case can be extended easily using “product correlation” which

is described as multiplication ofthe correlation functions in several dimensions [15].

k

R(w-x) = I] Rj(wj —x,) (2.7)

1:1

where a subscript denote the dimension of the problem. A Kriging metamodel also allows

to choose different SCF in different directions (i.e. different R 1) by choosing a different

6]. in different direction.

If a constant polynomial denoted by ,6 is used for fix), then the predicted values y (x)

can be written as follows ([17]).

}<x)=t+r’(x)R"(y—pJ). (2.8)

where y is the n x 1 column vector ofobserved response, where, J is a n x 1 column unity

vector, R is the n x n syrrnnetric matrix of correlations among the design points with the

ones along the diagonal, and r ={R(x-x ,. )} is the n x 1 vector of correlations between the

point of interest x and the sarrrpled design points [1 7].
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Mitchell and Morris and Sacks et al., reported that in the kriging metamode,l the only

parameters dictating the polynomial fix) are ,6, , and 6].. They are associated with the

stochastic process Z(x). They suggested that the regression model f(x) does not greatly

influence the metamodel fit ([17] , [15]). The distinct advantage of using kriging

metamodel is fi'om the fact that there is no longer any need to determine a specific

fimctional form for kriging. Usually a constant ,6 is used for fix) even though a linear or

quadratic functional form can be used. We can only use the correlation function

parameter 0,. to describe a metamodel which can fit a given set ofdata points.

The estimate for ,6 in the evaluation function (Eqn 2.8) is given by ([17])

b = (JTR"J)"J’R"y (2.9)

The estimated variance from the underlying global model (as opposed to the variance in

sampled data) is given by [33].

A

0,2 =[(y—Jb)’R"(y—Jb)1/n (2.10)

Since variance (0'2) and covariance matrix R are functions of 91. , usually 9]. is found by

maximizing a Maximum Likelihood Estimate (MLE) [17, 33].
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MLE s(—[m1n(c})+ ln|R|])/2 (2.11)

MLE is computationally expensive and requires some knowledge of the distribution of

noise in the data. There are hence other methods used for this purpose. Ordinary Cross

Validation (OCV) and Generalized Cross Validation (GCV) are common examples.

Interested readers can refer to ([17, 33, 15]).

2.4 Building and Validating a Kriging Model

Usually residual plots and square of residual (R2) can be used to validate a metamodel

but these methods are not suitable for kriging because there are no residuals in this case.

Validating a kriging model using additional data points can be done, if possible. If

additional points can be afforded then rmximum absolute error, average absolute error

and root Mean Square Error (MSE) can be used to validate the error with predicted

values at additional points. These measures can be summarized as follows.

(2.12)
'nerror

Maximum abs error E maxly, —y,’;i = l,..

1 "

 Average abs error E | y, — y, | (2.13)

l
n
error l=
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However, sometimes taking additional validation points is not possible due to constraints

on expenditure of experiments. Thus an alterrmtive approach proposed by Mitchell and

Morris (1992) is leave-one—out cross validation approach. In this approach, each sample

point used to fit the model is removed one at a time and, the model is rebuilt without that

sample point (with same MLE) and the difference between the model without the sample

and with the sample is computed at all the sample points. The formula for Cross

Validation Square Error (CVRMSE) is

 

"2 (yr - yrAlz

CVRMSE 5 £'_.__ (2.15)

n
J

2.5 Metamodel Comparisons

Some choices have to be made as to which type ofmetamodel is best suited for the

simulation to be analyzed. Simpson provides some guidelines for appropriate choices for

particular cases [6]. Another particularly usefirl guidance by Barton provides a list of

seven very general criteria that aide in assessing any particular metamodel’s merit [6].
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0 Ability to gain insight fiom the form ofthe metamodel.

- Ability to capture the shape of arbitrary smooth functions based on observed

values which may be perturbed by stochastic components with general

distribution.

0 Ability to characterize the accuracy ofthe fit through confidence intervals, etc.

o Robustness ofthe prediction away fiom observed (x,y) pairs.

0 Ease ofcomputation ofthe approximate fimction f.

0 Numerical stability ofthe computations, and consequent robustness ofpredictions

to small changes in the parameters depending on firnction f.

0 Does software exist for computing the metamodel, characterizing its fit, and using

it for prediction?

2.6 Optimization

2.6.1 Background

Before we start our discussion of optimization techniques used in this work, we will

revisit our selection criteria of our fi'amework and nature of firnction we are trying to

optimize (1.1)

Minimizef(x) (1.1)

Subject to a s x Sb

where, f: R" —> Ru{oo},a;b e R";
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Our criteria for selection ofa fi'amework stemmed from these concerns.

0 Cost of evaluating f (x) could be very expensive in terms of computational time

and resources. Some evaluation of f (x) could be available fi'om other sources. If x

is infeasible f (x) may not be available.

0 It is not necessary that f (x) will be evaluated at all the possrble design sites. There

could be cases when f (x) may not be evaluated accurately at some design sites

and it incurs the same computational cost.

0 Derivative information of f (x) is either not available or is not reliable to use.

We are concerned with evaluation of fix) which is expensive and we do not have

derivative information. It has been a long engineering practice to deal with such

numerical optimization problem by replacing fix) by a surrogate f (x). As described by

Barthelemy and Haftka (1993) we can replace fix) with an inexpensive surrogate f (x)

and minimize f (x) instead. One such approach in the literature of DACE is to evaluate

fix) at V-l (V is the total “budget” for function evaluation) carefully selected design

sites and construct f (x) from the resulting evaluation. From here perform the numerical

optimization to obtain minimum of f (x) and evaluate fix) at the candidate minirnizer

thus obtained. In 1995 Frank suggested that "minimalist approach" of minimizing a
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single f (x) is not likely to yield satisfactory results, and proposed several sequential

modeling techniques as alternatives.

While discussing initial design issues, we have seen how to select design sites for design

of experiments. We have also discussed various techniques on building the surrogate

models from a set of evaluated fix). In this section, we will explore some numerical

optimization techniques used for such class of problems. It will be worth mentioning

again at this point that the surrogate my not have very reliable derivative information in

which case we are looking at direct search optimization techniques. In future, plan is to

work with derivative based optimization techniques once we have useful information

about the gradients of surrogates.

2.6.2 Pattern Search Methods

Consider a constrained optimization problem oftype

II" . fix)

x60

where, R is a set of real numbers, f: R" —->R is the objective firnction. Q is the feasible

domain ofx.

Pattern search algorithms are a subclass of direct search methods for numerical

optimization. We are looking for optimization techniques which do not require derivative
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information and direct search methods fall in this category. They do not use any explicit

derivative information. Interested readers can refer to [18], [3], [4], [36] for an

explanation ofthese methods.

Let x, be a point and f(x,) be the function value in k"I iteration. A pattern search

technique should take three steps to get new point x”. Firstly, at each iteration the next

iterate is selected from a set of points which is determined by a pattern (described next).

No explicit restriction is placed on I
 

xk+1 —x, H. Secondly, only the fimction values fix) are

used, not the derivatives, to get the next iterate. Thirdly, each iterate must satisfy a simple

decrease condition. There is no sufficient decrease condition.

If x,”I at x, then fix”) < fixk ).

A pattern is a collection of steps and each step can be added to current iterate to get next

trial iterate. The orientation and scaling of the pattern can be changed as the algorithm

proceeds. In another way a pattern can be thought of as a vector with a direction and

magnitude fiom the current iterate. A pattern can be represented in several ways ([24],

[35])-

We will use generalized pattern search method in our approach. Two features, a sequence

of meshes and a list of polling conditions characterize this method. Mesh is a pattern

(also called lattice) to which search is confined in a particular iteration. As optimization

proceeds, the polling conditions (also called search conditions) dictate the change in the
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current pattern thus qualifying the algorithm for convergence. The pattern keeps

changing in each iteration.

To ensure convergence of pattern search algorithm, the primary condition enforced in

search/polling technique is as follows. The set of vectors formed by taking the differences

between the set of trial points at which objective function is to be evaluated (The pattern)

 

and the current iteration x k (I x,+1 -x,, II) must contain a positive basis for R". A positive

basis is a set of vectors whose positive linear combination spans R" , but for which no

proper subset has that property. This is the basis of convergence for pattern search

algorithm. Pattern search method can be outlined as follows [1 8]:

1. Construct or update the pattern ofpoints around the current iterate x k .

2. Evaluate certain points in the pattern and search the pattern to find a point that

reduces the objective function.

3. Change the pattern if required, depending on whether the search point produces a

decrease in the objective function.

4. Iterate until convergence criterion is met.

The following flowchart in Figure 10 describes the Generalized Pattern Search (GPS)

algorithm, which is the basis ofour Surrogate Management Framework (described next).
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Figure 10: Generalized Pattern Search Method

In literature it is allowed to choose any set of trial points in M 0 at which the fimction is to

be evaluated but the choice of initial design site will affect the result and efliciency of the

simulation
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2.7 Surrogate Management Framework

The basic idea behind Surrogate Management Framework (SMF) is built on GPS

algorithm. There is one intermediate Evaluate/Calibrate step which allows a sequence of

surrogate approximation as the algorithm proceeds (proposed by Frank 1995). We have a

family of approximation algorithms, which can be used for surrogate metamodel creation

(e.g. kriging, response surface, splines, polynomials) and update. Convergence of SMF

comes directly fi'om the convergence of GPS. The steps for our Surrogate Management

Framework are outlined in the Figure l 1.

The key to success of SMF is to define the search strategy that efficiently exploits the

current surrogate, S k. Also, notice that f is not evaluated at all the points in T k before

declaring a successful search. Any point identified with objective less than f (x, )9 it is a

success. Except for evaluate/calibrate step in SMF, this is identical to GPS.
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The basic strategy for our framework now can be outlined in three steps

1) Choose an initial mesh over the feasible region [a, b] that signifies the desired

degree of resolution. The resolution can be refined if needed and an initial

baseline design xc e [a, b] at whichfis known

2) Perform an initial computer experiment to select N initial design sites, evaluate

the true objective function f at the initial design sites, and construct an initial

surrogate S off fi'om samples flxl), _ _ _ , fix") of the original functionfix) at

different design sites x, .

3) DO until a minimizer f is found (for the current resolution ofthe grid) or until the

“budget” (V) is exhausted

0 Find a candidate x, that minimizes Son the grid and treats x,as a site at whichS

predicts a minimizer forfon the grid.

0 Evaluate f(x,).

0 Update the approximation S to include the value ofobjective fimction f(x,) .

o If f(x,) <f(x) , then xc = x, else leave xc unchanged.

0 Repeat step 3

An alternate strategy with some modification to basic SMF strategy is also proposed in

literature ([34]). We notice that two important aspects affect the global optimization. The

effectiveness with which we find the minimizer of S and how accurately we construct the
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surrogate, S. In view of these two competing objectives, an alternate strategy which

actually modifies the surrogate S and the next design point proposed by S. We hope that

we will have better idea of the objective function in global sense in initial stages of

iteration. In literature ([34,18]) a merit fimction (me ) is formed as follows.

m.(x)=s.(x)—p.d.(x), (2.16)

where, pc 2 O and

dc (x) = min IIx — x, II

where, dc is computed over all points x,. at which we know the value of the true

objective function and pc is a constant ( we tried with pc =2 and it worked very well in

our case). Thus dc (x) is the distance from x to the nearest previous design site. The merit

fimction me (x) comprises two components, Sc and dc . The approximation function Sc

plays the same role as before: we want to minimize (or at least decrease) the value of

SC at xc as a way of predicting decrease on f (x). The second function dc is an

experimental design criterion to ensure that the trial point is placed where information

obtained fiom evaluating f will be useful in updating Sc. Many such criteria are possible

in literature. We are using the criterion ofmaximum distance design which is an example

of space filling design criteria.
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2.8 An Example

We will use our framework for finding the minimum ofthe following problem.

Minimize f(x) = e’zjr sin(107tx) , (2.17)

Subject to x 6 [0,05] and number of function calls allowed (V) <10.

We assume that this function meets all the constraints (e.g. expensive function, no

gradients available, may fail to evaluate at certain x). The program started with sampling

2 points (x1 ,x,) in the feasible design domain. The true function was evaluated at these

two points and S0 was built with the help of f(x,) and f(x2). Surrogate (So) built in

the first iteration is a straight line (see figure 12). The program found a minimum of S0 at

x3 (= 0.0). The original fimction was again evaluated at x3 to get f(x3). At this point it

is observed thatf(x) hasfailed to evaluate. S0 was updated to get a new surrogate SI and

so on. Figures for all the iterations are shown in Figure 12(a) to Figure 12(c). The

algorithm gives the minimum at x" = 0.1475 which turns out to be true minimum. It can

be appreciated tint the surrogate S keeps changing as the algorithm proceeds.
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Chapter 3

Tuning Problem

3.] Background

In chapter two, the fi'amework developed for optimization of a non-linear and expensive

fimction was described. Three main areas were investigated.

(1) Selection of initial design, e.g. space filling Latin hypercube designs for fimction

evaluations to be used in construction ofsurrogate model.

(2) Metamodeling techniques e.g. kriging metamodel, to build the surrogate of

expensive functions.

(3) Optimization techniques e.g. pattern search methods, to optimize the surrogate

and hence to predict the optima ofexpensive fimctions.

In chapter one of this report, a lattice model was described that replicates major structural

components of a complex structure (a vehicle or a component of a vehicle). In this

chapter, a lattice model is used to represent the behavior of a complex structure (a square

tube) in an impact event. The lattice model is described with dimensional details

including the material properties of its components. The goal in the present work is to

formulate an optimization problem, which can be used to optimize these parameters, in

order to replicate the relevant response of the real structure (the square tube). The

relevant response of the real structure could be a measure of crashworthiness analysis.
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An optimization problem is formulated to tune the lattice model to capture the relevant

response ofthe structure.

3.2 Lattice Model

Figure 1 (chapter one) shows a vehicle or a component in a vehicle (a complex structure)

and a lattice model (a simple structure). The optimization problem can be formulated

using material and/or geometric properties of each cell in the lattice as design variable. It

is expected that the lattice mode will capture the response of the vehicle (complex

structure). The objective in the optimization problem is to enhance the protection of the

passenger. This can be realized, at least in part, by controlling the acceleration

experienced by the passenger and controlling the deformation of the structure in the

immediate vicinity of the passenger. Thus, for the lattice model to be useful, it should

reproduce with suflicient accuracy, acceleration and deflections at points of interest in the

real structure.

Performance measures such as acceleration in a crash event are notoriously poorly

behaved functions. They are highly non-linear, non-smooth, and very sensitive to

uncertainties in parameters. A typical acceleration pulse in a crash event has the form

illustrated in Figure 13 ([22]). Along with relevant information, this signal also contains

a significant, random component that is not of relevance to the design problem, and can

even hide relevant behavior.
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Figure 13: Typical acceleration signal ([22])

The lattice is used to model only some relevant aspect of the behavior of a real structure

during an impact. It is unrealistic to expect that such simplified model can accurately

reproduce all the complexities of the behavior of the complex structure. We make the

claim that for the purposes of design, only a small number of signals are needed to

evaluate some performance, e.g., accelerations or deformation of the structure at a given

location or locations. The goal of optimization problem is then to “tune” the lattice to

reproduce only these relevant features. This is done by setting up an optimization

problem to minimize the diflerence in relevant behavior between the lattice and the real

structure.

3.2.1 Characteristics of Lattice Model

The truss-lattice model considered here is an assembly of basic cell units formed by six

bar finite elements (eight degrees of freedom per cell), in an arrangement shown in
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Figure 14. Details of the construction of this model can be found in [20]. Characteristics

ofthe model are outlined as:

1. The pins in the cell are fi'ictionless and hence each bar in the cell is capable of

transmitting loads only along its axis. The firll geometric non-linear behavior is

modeled.

2. The stiflhess matrix associated with a bar finite element of (initial) area A and

length L in a cell, includes geometric and material nonlinearities.

3. The material of each bar element can include a number of non-linear features and

is shown in Figure 15.

4. The dynamic behavior of the complex structure is captured by adding (lumped)

masses to each degree of freedom. The cell itself has no structural mass.

 

Figure 14: Basic cell in lattice model ([20]) Figure 15: Material model for each bar

in a lattice cell ([20])
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3.2.2 Proposed Lattice Model

For simplicity, we consider the impact of a hollow tube with a square cross section

against a rigid wall. The tube has dimension 100 x 50 x 50 mm (Figure 16). The structure

impacts a rigid wall at a velocity V0 and deforms plastically. It is assumed that the

performance function of the structure can be measured by investigating the motion of a

selected number ofpoints Pl, P2,..,P,. One such point ofinterest (PI) is shown in Figure

16.

WWWWIELELW

 

Figure 16: Real structure (A square cross section tube)

52



The tube is modeled in Unigraphics and meshed with shell elements in Hmrmesh. The

structure is grouped in to five different sections (can be distinguished by difl‘erent colors

in Figure 16 and Figure 17) and each section can have different properties e.g. different

yield stress (Sy ), different shell thickness. The tube is analyzed in an impact event using

LS-DYNA3D. The performance of the structure is assumed to be characterized by the

acceleration of point PI on the hollow tube. The performance fiinction is computed for

point P1 as a weighted sum of RMS of acceleration and maximum absolute displacement

at this point. Figure 17 shows the deformation oftube in an impact event.

 

Figure 17: Deformed tube structure in an impact event

Rather than analyzing the structure itself, we represent it by a lattice model. The actual

shape and density ofthe lattice is “somewhat” close to the real structure, as the goal is not
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to reproduce the real structure but only the set of relevant signals measured at point P, .

One such possible lattice is shown in Figure 18.

8
8
8
8

 
I] 23 40 60 3] 1:!)

Figure 18: Lattice model ofthe real structure.

Proposed lattice model has same dimension as of tube. Point P1 is reproduced on the

lattice at the location shown in Figure 17. The lattice model has 20 columns and 10 rows

resulting in total 200 cells. Each cell has six bar finite elements. All six elements in a cell

have same (initial) area and they are kept same for a particular FE analysis. To rmtch the

lattice model as closely with the tube model, some possible grouping of cells has been

done. Five consecutive columns are grouped together and they will have the same yield

stress ( Sy ). This will divide the lattice in five different groups as in the case of tube. This

also reduces the computational size of the problem. To reduce the size of the problem

further, we assume that all cells at the same distance from the wall have the same area.

This reduces the problem size to 20 design variables in area domain and five design

variable problem in yield stress domain.
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Cori ([22]) has implemented the lattice model (Code written in FORTRAN) and it was

provided for the present work. This program can evaluate the lattice model for desired

and relevant response for twenty given areas and five yield stresses for the lattice. This

program does the grouping of cells as desired. Figure 19 shows the deformd lattice

model after an impact event. Node 21 shown in the Figure 19 corresponds to point P, in

square tube. The lattice model does not implement the contact algorithm

 

Figure 19: Deformed lattice model after an impact event.

3.3 An Optimization Problem

In section 3.2.2, we described the real structure (the tube) and the lattice model hoping

that the lattice model will reproduce some relevant complexities of the response of the

real structure. Before we formulate our optimization problem, the lattice model and the

tube are compared for some responses (e.g. acceleration signals, displacement signals and
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velocity signals) at point P, of the tube and corresponding point P, of the lattice to get

some idea about the feasible design domain for lattice model. It is worth mentioning at

this point that the tube has only yield stresses (Sy) as the design parameters (other

parameters are constant) and lattice lms S, and 20 grouped areas (A) as the design

parameters. We will compare the responses for some ‘reasonable’ set of yield stresses

(we need 5 yield stresses for tube and for the lattice, Syo) and some reasonable sets of

areas (we need 20 areas for lattice, A0 ). This will ensure that the lattice model is capable

of reproducing response of the tube in the feasible design domain formed about Syo , A0

(to be decided by this comparison) of lattice. Diaz ([22]) suggested to experiment with

this comparison, which was really usefirl to arrive at A0 , around which the feasible

domain was extended. Figure 20(a) to Figure 20(c) shows acceleration response,

displacement response and velocity response of the tube and the lattice for some yield

stress values (Syo= {0.097, 0.097, 0.097, 0.097, 0.097}) and Area ( A0 ={ 15.0, 15.0, 15.0,

15.0, 10.0, 10.0, 10.0, 10.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 12.0, 12.0, 12.0}).
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Figure 20(a): Comparison of acceleration response ofthe tube and the lattice.
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SQUARE TUBE MODEL WITH SI-ELL ELEMENTS
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Figure 20(b): Comparison ofdisplacement response ofthe tube and the lattice
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3.3.1 Response function formulation

The performance function (f) is computed for point P, as a weighted sum of RMS of

acceleration and maximum absolute displacement at this point.

 

(3.1)

where n is the total number of design points in the yield stress domain (Sy ), u,” is the

P

displacement signal of point P, at 5, point in 3, domain and ll,- is the acceleration

signal of point P, at 5,, point in S,, domain. w, and w2 are weights for RMS of

acceleration and maximum displacement of point P, respectively and f is the response

function. We used equal weight for RMS of acceleration and maximum displacement

subject to w, +w2 =1.

There is an important distinction between the performance function of the tube ( fmx)

and the lattice model ( fume, ). The response function of the tube is obtained in the yield

stress domain (S) for afixed set of shell thickness. The response flmction of the lattice

is obtained in the yield stress dormin (Sy) for afixed set of areas. The goal is to find an
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optimum set of twenty areas (A

tube in the yield stress domain.

3.3.2 Tuning Problem

The response function formulated in section 3.3.1 for the tube ( fmx) was evaluated with

the help of LS-DYNABD at 25 yield stress points and it is shown in Table 1. fMe is

optimum

plotted against 25 yield stress points in Figure 21 in MATLAB.

) that will give same response of the lattice as of

Table l: fme at 25 set ofyield stress points
 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

       

N Syl Sy2 Sy3 Sy4 ISyS fTube

1 0.015 0.034 0.292 0.203 0.03 9.10422

2 0.053 0.207 0.017 0.247 0.019 l8.98|62

3 0.223 0.167 0.131 0.097 0.258 9.09545

4 0.124 0.255 0.175 0.136 0.111 0.98922

5 0.265 0.285 0.185 0.014 0.056 9.41589

6 0.091 0.267 0.277 0.237 0.14 7.95098

7 0.028 0.1 12 0.077 0.108 0.071 8.224

8 0.079 0.114 0.221 0.171 0.136 .03872

9 0.295 0.242 0.039 0.196 0.094 9.4277

10 0.01 0.018 0.204 0.059 0.268 0.34061

11 0.138 0.226 0.002 0.295 0.295 9.80016

12 0.154 0.181 0.198 0.066 0.004 9.56331

13 0.235 0.084 0.032 0.28 .217 9.20342

14 0.131 0.002 0.162 0.225 0.192 8.86714

15 0.253 0126 0.06 0.006 0.277 .39228

16 0.179 0.222 0.122 0.15 0.174 8.36045

17 0.045 0.057 0.076 0.084 0.077 9.00829

18 .064 0.163 0.243 0.251 .125 8.04092

19 .277 0.194 0.103 0.16 0.201 [8.84209

20 0.244 0.092 0.274 0.182 0.233 l8.81943

21 0.201 0.068 0.23 0.265 0.153 8.63996

22 0.198 0.143 0.262 0.039 0.047 9.48524

23 0.1 1 1 0.05 0.098 0.121 .245 8.8231

24 0.169 0.291 0.144 0.033 0.181 9.47534

25 0.092 0.267 0.277 0.237 0.14 7.95086  
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Figure 21: Response oftube ( fMe) plotted against 25 points in S, domain.

The lattice has twenty areas of the cells as the design variables as shown in Figure 22.

Response firnction for lattice in Sy domain is plotted for somefixed values ofareas ofthe

lattice (20 areas). Two such responses are plotted corresponding to two different sets of

areas in Figure 23(a) and Figure 23(b). The timing problem will be formulated to find a

set ofareas ({4,A,,...,A,,,}) which will make the lattice response same as the response of

the tube.
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Figure 22: The lattice has twenty areas as design variables
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Figure 23: Response oflattice for 2 different sets ofareas.

Lattice model will be evaluated for different set of areas ({A,,A,,...,A,,}; a design point A'

is a set oftwenty areas{A,, A,,..., Am}. The optimization problem is then:

Find {A,,A,,...,A,0} ofthe lattice that

minimize ”flan... - fm, II, (3.2)

subject to Am < A, 3 Am

V <25.



  
where, 0" denotes the Euclidean norm and V is Total Budget for objective function

evaluation. Note that for one evaluation of objective function, lattice model will be called

25 times (we have a set of25 yield stress points).

The optimization problem thus formulated is solved using the framework developed in

chapter two. Optimization parameters chosen to solve the particular problem are listed

below:

Total Budget [V]: 25

Initial design budget [N] (less than V): 10

Initial Mesh size [Mo] = 0.01; (denotes the resolution ofthe domain.)

Am“: {5, 5, 5, 5', 4, 4, 4, 4,], 1,1,1, 1,1,1, 1, 6, 6, 6, 6}.

Am = {60, 60, 60, 60, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 40, 40, 40, 40}.

A block-diagram in Figure 24 describes the procedure for solving tuning problem.
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generate N (=10) initial design sites

{A1,A’..A‘°}

Construct the surrogate by

evaluating the objective function at

N mints

 

   

 

 

 

 

 

 

 

    
 

 

 

 

 

    

 

For k=10,ll...25 or until

convergence

p Fmd a mmirnizer of Sk usmg pattern I Pattern Search Method

search method: A
k+ l

* Evaluate objective fimction

Add Ak + l to the set of design l fLattice — fTubeI

points and evaluate objective *

function f(AM) . "—_" f

* 25 calls to lattice model to

et . in a sin le

Update the surrogate Ak lby g fLattice g

‘ + iteration

adding new design point Ak + l    
Figure 24: Block-diagram describing the procedure oftuning problem

3.3.3 Results

The lattice (simple structure) response fimction was tuned to match with the response

function of the tube (complex structure). Figure 25 shows the plots of response of tube
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and lattice structure. The tuning procedure proposed the optimum areas of cells of the

lattice as A = {8.8009, 8.8581, 8.9932, 8.9468, 8.8588, 8.8739, 8.8047, 8.9180,
optimum

8.8259, 9.0288, 8.8476, 9.1696, 8.8776, 9.0579, 8.8805, 9.0138, 8.9347, 8.9248, 8.8103,

8.9723, 8.8083, 8.8320, 8.8466, 8.9180, 8.9090}.

Response 0! Tube and lattice alter tuning
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Figure 25: Response function ofthe tube and the lattice at 25 S, points.

The response of the lattice closely follows the response of the tube. The maximum error

in the response of the lattice is 0.307 and minimum error is 0.0. The average error is

0.124 over 25 points. The goal of the lattice design is to predict the response in initial

design stages of the product and it would be diflicult to expect that the lattice will

replicate the behavior with zero error.
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To demonstrate the robustness of the optimization fi'amework for tuning procedure,

several test cases with different initial design sites (Both in yield stress domain and area

domain) and different mesh sizes were performed. Twenty-five difl'erent yield stress

points were samples for the tube and response was plotted along with the response of the

lattice for A
optimum

ofthe lattice. Figure 26 shows the comparison between response ofthe

tube and the lattice at 25 different points. The maximum error in the response of the

lattice is 0.319 and minimum error is 0.0. The average error is 0.132 over 25 points
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Figure 26: Response function ofthe tube and the lattice at 25 S, points
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Chapter 4

Conclusion

4.1 Conclusion

The goal of this work was to facilitate faster turn-around time and shorter design cycle in

the initial stages of product and process design. The lattice model is proposed for

improved crashworthiness analysis of complex structures. Complex structures are

computationally expensive and not many changes in the design features can be done in

the later stages of design cycle. Lattice model can predict some relevant responses of a

complex structure with less computational cost. In chapter three we formulated an

optimization problem to determine the material and dimensional parameters ofthe lattice,

hoping to replicate the response of the complex structure. This work focused on three

main areas as follows:

(1) Selection of initial design, e.g. space filling Latin hypercube designs for function

evaluations to be used in construction ofsurrogate model.

(2) Metamodeling techniques e.g. kriging metamodeL to build the surrogate of

expensive functions.

(3) Optimization techniques e.g. pattern search methods, to optimize the surrogate

and hence to predict the optimum ofexpensive functions.

The surrogate management fiamework unified three areas together to achieve the goal of

this work.
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4.2 Future work

There are some concerns left at the time of writing this dissertation which must be

addresses in order to explore full capabilities of the framework. The fiamework allows a

great flexibility in selection of design sites, construction of surrogates and

implementation ofdifferent optimization algorithms.

Inthiswork ‘space filling’ natureofinitial design satisfymost ofthe criteria, ifnotall,

but there should be some method to generate initial design which uses some information

from the nature ofthe objective function (if available).

There are many techniques used for construction of surrogates (few ofthem are described

in chapter two). In the fiamework developed, kriging metamodel is used to construct the

surrogate of the objective function. Kriging is a very powerful interpohtion method and it

worked out pretty well in this project. Other metamodeling techniques e.g. Response

sm'face method and Wavelet transform can be a good basis for the construction of

surrogate in different applications. We plan to explore Response surface method in near

future.

Pattern search algorithm is implemented in the framework primarily because we do not

have derivative information of objective function. The fi'amework allowed using

sequential updates of surrogate which probably improved the robustness of the
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fi'amework. We will have to wait until, sophisticated techniques are easily available to

compute the sensitivities of nonlinear and expensive functions, before we can use

derivative based optimization techniques.

The optimization problem formulated to “tune” the lattice has several features that make

it very difficult to solve: it is highly non linear and non smooth. This is a weakness that

must be addressed as we focus our attention on larger-scale problems. Diaz ([22]) has

raised some issues in his work ([22]) which is quoted here as some of the potential to be

explored. There is no proof of existence that guarantees that all relevant structural

behavior can be reproduced by a given lattice.
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