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ABSTRACT

AN OPTIMIZATION FRAMEWORK TO TUNE A LATTICE MODEL FOR
IMPROVING CRASHWORTHINESS USING SURROGATES

By

Rakesh Kumar

The goal of this work is to develop a framework for optimization problems involving
complex expensive functions for which traditional optimization techniques are not
practical. Important concerns in such problems are high simulation cost and unreliable or
unavailable derivative information. It’s a common practice to work on a surrogate model
(also called metamodel) of the original problem. We have used a ‘kriging metamodel’ to
build the surrogate of the original problem and pattern search methods to solve the
surrogate optimization problem. In turn the surrogate model is used to predict the
optimum of original problem. We investigate the use of a lattice structure as a possible
surrogate model for a more complex structure. We are concerned with design for
crashworthiness of structures and an attempt has been made to ‘tune’ the lattice such that
the response of lattice can be used to predict the response of the structure. The advantage
of using such lattice model is low computational cost and less modeling time which, can

help reduce the design cycle time and improved accuracy.
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Chapter 1

Introduction

1.1 Motivation

There are many optimization problems in industry where the cost of arriving at an
optimum solution is very high because of very ‘expensive’ objective functions or their
derivatives. Computational optimization can guide us to better results and shorter design
cycle times. In engineering, better designs can lead us to better performance of the
product or process being designed. In many engineering disciplines better designs have
many advantages such as reduced cost and better performance. Also, there are other areas
where current design practice has reached heights; small improvements can be valuable
addition. Faster turn-around time and shorter design cycle can improve the quality of
product early in design cycle. When time is a critical factor and many design features
cannot be changed later in the product development, computational design simulations

can allow more flexible design to experiment.

Long solution time in the early stages of design cycle can negate many good features of
design. We must look for methods which can give us competitive designs at reduced cost
and time. In the present scenario we have simple and less accurate simulations but now
the simulation of complex and accurate system is the subject of research in many
industries. For such sophisticated simulations we need to have a framework of

computational design which can satisfy such high requirements.



1.2 Background

The basic idea of replacing a complex function or constraints by using Taylor series is a
very common practice. The more general work that has been the subject of research is the
field of nonlinear programming. This has focused on Taylor series methods and
gradients-based approach. Much less work has been done for derivative free methods
([6], (7], [8], [9]). The models used in engineering application can be classified mainly
into two areas: numerical solution of governing equations of physical systems and
functional approximation of the solution of equations constructed without actually
knowing the physical systems, that is, by using the values of the function only. The
former model characterizes the function at all points in the domain whereas later method
approximates the function in the domain except at some points where it has the actual
value of the function.

1.3 Statement of the problem

It is not uncommon to use computer simulation to arrive at decision before actually
manufacturing the product. The industry offers gamut of choice ranging from a bicycle to
a spacecraft. It takes considerable effort to model and simulate tests on computer. It is
even more expensive sometime to test the actual product. Imagine a crash test performed
on a car model. There are hundreds of design parameter and millions of degree of
freedom associated with each test. The cost of such test can hinder to actually arrive at

‘optimized’ design. Replacing such expensive test by computer simulation may reduce



the cost of experiments by a considerable amount but it may take long time. It is a normal
practice in industry to perform such simulation with the help of powerful computers. In
the present work an attempt is being made to develop simulation methods, which allow
maximum use of existing information to build a model, which has optimized design

features. We have our problem definition as:

Minimize f (x) (1.1)
Subjectto a <x<b
Where f: R” - RU{®},a;be R”

A typical multi-modal function can be shown in Figure 1
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e Physical problems can be very ‘expensive’ to model and may require many
intermediate and state variable determinations to actually evaluate the function.
Cost of evaluating f (x) could be very expensive in terms of computational time
and resources. Some evaluation of f (x) could be available from other sources. If x
is infeasible, f (x) may not be available.

e It is not necessary that f (x) be evaluated at all the possible design sites. There
could be cases when f (x) need not be evaluated accurately at some design sites
and it incurs the same computational cost. The function may fail to evaluate at
some design points.

e The problem can be more acute if the optimization algorithm requires derivative
information of the function. The derivative information may not be reliable and
this certainly hinders derivative based optimization algorithms. Traditional non-
linear optimization methods can be either inaccurate or very costly to use. Quasi-

Newton method may not be a good choice in the light of foregoing discussion [1].

It is assumed that for application of interest in this work, the derivative information of
function is not available or is very expensive to compute. A common approach for such
problem is to replace the original expensive model by an approximate and cheaper model
and then perform the optimization on it; we refer to this as the surrogate model. Clearly,
the surrogate model will have cost advantage for evaluation and thus making the
optimization problem easier. Another approach could be to use such optimization

techniques which require function values and does not require derivative information.



The major disadvantage of replacing the original model by a surrogate model is that
solution of surrogate model optimization problem may not be solution of original
problem (We are actually solving a different problem). A significant disadvantage of
using derivative free optimization methods is that they require many function evaluations
as compared to gradient-based techniques. A framework which can solve most (if not all)

of the problems addressed above will be chosen.

1.4 Selection of Framework

The computational cost of highly expensive simulations of the characteristics of physical
process or systems makes it impractical to rely exclusively on such expensive simulations
for the purposes of design and design optimization. Instead one needs to make as much
use as possible of surrogates of lower physical or mathematical fidelity but lower
computational cost, with only occasional recourse to expensive, high fidelity simulations.
This is employed in many engineering disciplines especially in preliminary design where
design cycle is very fast and one need to widely explore the design space. This approach
is also in keeping with a tenet of nonlinear programming that suggests that one should try

to avoid doing “too much work” when far from an optimum.

In the view of the foregoing discussion about function (1), there are many optimization
methods proposed in the literature, which do not require any derivative information. The
most widely used algorithm is direct search algorithm [2, 3, 4, 5]. These methods are

affected very little by inaccuracies in function evaluation, as compared to other methods.



The properties of direct search method certainly qualify to use in our problem. However,
the use of direct search method could be very expensive which does not satisfy our
foremost important criterion of choosing a framework. The direct search method will be

modified consequently to suit our need.

In the literature, the basic strategy used to tackle such problems is to work on a surrogate
model problem (S), which is an approximate representation of the true function. The

surrogate problem can be built in the following three ways:

e A physical approximate model (S ,), which closely represent the behavior of the

true function.
e An approximate modeling of the characteristic behavior obtained by some data

fitting technique based on sample design sites chosen by some mean (S, ).

e A combination of two method outlined above S ,+ S, .

After the surrogate is built we try to find the optimum X, of this surrogate S. The true
function is tested for f (X,) and verified with respect to some reference f (X,,,) to

determine if some improvement has been made. A very common method is to build the
surrogate S before the optimization process and is not modified until the optimum of the
original model is found. A basic premise of the method is to modify the surrogate S
during the optimization process and the strategy of modification is guided by the value of

original model evaluated during the optimization.



1.5 Example

For a better understanding of the problem at hand, an example (our test problem) is
described next. In developing a crashworthiness model for a complex structure it is usual
practice in industry to work on a structure already complete in its entirety. Computational
modeling using this approach becomes a very high-fidelity simulation, with all design
details incorporated into the model. If simulations of crash tests suggest changes in
design parameters (as it often occurs), redesign can be even more expensive and time
consuming. Our surrogate model build for high-fidelity simulations is an attempt to
perform such crashworthiness analysis (or any other analysis) early in conceptual design

stage of the product design.

Recent work in [20] has looked into optimization problems in the conceptual design
stage. For layout optimization, one can use a lattice model that replicates major structural
components. As described in [22, 29] lattice models are used to represent the behavior of
a complex structure in an impact event. A lattice model developed for such analysis can
be completely described with dimensional details including the material properties of its
components. It becomes important to optimize these parameters in order to replicate the
relevant behavior of the complex structure. In the present work an optimization problem
has been formulated to investigate whether or not relevant measures of performance in
optimization for enhanced crashworthiness are replicated with sufficient accuracy by the

simplified, lattice model.



As described above, an attempt has been made on improving the accuracy of lattice

models in crashworthiness analysis. An optimization problem is formulated to “tune” the

lattice model to capture the rel behavior of the lex structure. Kriging

(introduced next) is used to develop a surrogate which can identify the systematic
component of a signal characterizing the structural behavior from its random component.

In this work kriging was used to develop a surrogate model. Named after Krige, a South
African geologist who first developed the method, kriging is a type of surrogate model
based on Spatial Correlation Functions (SCFs). Researchers were aware of this technique
but it was not very widely acceptable until four statisticians wrote a paper on the kriging
and this became a powerful mathematical technique ([14], [15]). Details about this

method are included in chapter two of this dissertation.

30

<]
Xl

NEISNZT
X

g
\\\\\\\\

J

12

=

PalVi
NN
NLZ
N

N
A
X
X

\\

Nis” N\ N

60 in

X

Figure 2: An example of a lattice model [22]



1.6 Outline of dissertation

The rest of this dissertation is arranged as follows. In chapter two, some theoretical
background about the possible approach or a combination of them is outlined. The
approach used in the present work is described in detail with emphasis on a 1-dimension
problem. Chapter three describes one test example of tuning a lattice model for enhanced

crashworthiness analysis followed by conclusion and future work in chapter four.



Chapter 2

Framework Design

2.1 Selection of Initial Design Sites

We will re-visit the original problem introduced in chapter one, before we consider some

design issues in this chapter. A general optimization problem is described as follows:

Minimize f (x) (1.1)
Subjectto a <x<b

Where f: R” = RU{»},a;be R"

It is worth emphasizing that cost of evaluating f (x) could be very expensive in terms of
computational time and resources and the derivative information for f (x) may be
unreliable or unavailable. Though computer simulations are cheaper and readily available
than actual experiments, still they are time consuming and expensive. The goal here is to
create an approximation of function f (x) by sampling it at some judiciously chosen x, the
design variable. If f (x) is nonlinear and is of very high fidelity, this poses a difficulty of
having a limited number of combinations of x. A feasible approach could be to develop a
statistical framework from the results of ‘as many’ available function evaluations for

some combinations of x and then use it to predict f (x) at any design point x in the

10



feasible design domain. The question is: How to sample x? Design of Experiments

(DOE) provides several techniques to sample appropriate x or combinations of x.

2.2 Space Filling Designs

In this work the focus is on 'expensive' functions with high dimension and there is a
possibility that we do not have a reliable evaluation of the function at all the design sites.
In view of large dimensionality of the problem, 'space filling’ experimental design could
give promising initial design sites. There are several ‘space filling’ designs available in
literature of which full factorial design, random Latin hypercubes, maximin Latin
hypercubes, random orthogonal arrays, uniform designs, orthogonal Latin hypercubes
and IMSE optimal Latin hypercubes are very commonly used methods. Few of these

methods are described and investigated in present work.

2.2.1 Latin Hypercube Design

A Latin hypercube design (LHD) is a class experimental design that is defined as an n x k
design matrix in which each column is a permutation of (1...n) which could be mapped
onto the actual dimension, n being the number of levels and  is factor (number of design
variable). The n x k design matrix can be explained as follows (particularly for Random
Latin hypercube design): The bounds of each design variable are divided into n levels,

and one level is chosen using random sampling with each level (or with certain criteria; to

11



be discussed later). Thus, there are n such chosen levels for each of the k design variables.

One of the levels on x, is randomly selected (each level is equally likely to be selected),
and matched with randomly selected /evels on x, , and so on through x ,. All these levels
together constitute a possible design site P,. For second design site P,, one of the
remaining levels on x, is then randomly selected and matched at random with one of the
remaining observations on x, and so onto get P,. A 10 x 5 Latin hypercube design, with

10 levels and S factors (design variables), is shown in figure 3.

A
1 6 6 5 9
2 2 3 2 4
31 9 7 5
4 3 4 0 3

5 7 1 8 Dy
6 4 0 3 1
7 8 7 1 8
8 0 2 4 6
9 9 8 9 7
D 5 5 6 2

< k S

Figure 3: A Latin hypercube design with level 10 and factor 5.

Latin hypercube designs are stratified sampling which means that each design variables
are sampled at n distinct /evels so that none of the design sites are replicated. If Latin

hypercube is projected into any single dimension, one can see exactly n levels.

12



This design was first proposed by (McKay et al 1979) and became very popular in
computer experiments. Usual approach to generate a LHD matrix is to use optimal design
criteria such as Integrated Mean Square (IMSE) (Sacks et al 1989), entropy (Wynn and
Shewry 1987) and minimum inter design site distance (Johnsan et al 1990). In later
sections of this chapter, some of these criteria are briefly introduced for generating LHD.
These design criteria have been shown to be efficient for certain models. The
construction of an optimal LHD can still be time consuming. Interested readers can refer

to review of design and analysis of computer experiments, Koehler and Owen (1996).

In the design of experiments (DOE), there has been an important concern for many
researchers to come up with an algorithm for automatically generating initial design
points. The goal in DOE is to select the combination of design variables to be sampled.
There are several criteria which can be used to measure experimental design's capability.
One can choose a criterion based on proposed surrogate to model the behavior of the
function. Other criteria could be symmetry of distribution of variance resulting from
selection of design sites, ease of generating designs sites and number of experimental

runs required to generate such combination of samples.

2.2.2 Full Factorial Design

Full factorial design (FFD) is one of the simplest experimental designs. FFD suggests

fixing each input variable (dimension of design space or factor) at certain number of

13



levels. A combination of all such factor's level is sampled as FFD. For example, in a

design domain of dimension two, if the number of levels are 2 for each factor, we will
have 2> design sites. The design sites thus generated are at the corners of a square.
Similarly, in design domain of dimension three, if the number of levels are 2 for each

factor, we will have 2° design sites. The design sites thus generated will be at the corners

of a cube. Figure 4 shows one such examples of 3 full factorial design.

0 *+———@  J
|

¢ o $| .

L — ° ¢

Figure 4: 3’ Full Factorial Design and 3°™" Fractional Factorial Design

It is easy to appreciate that as the number of factors and levels increase, the number of
function evaluations required to generate a full factorial design is increased
exponentially. Fractional factorial design can reduce the number of function evaluations
at the cost of reduced refinement of design space and reduced accuracy of surrogate
model. For example in a space of dimension two, if we have k factors (design variables)
and m as reducing factor, then 2™ fractional factorial design sites can be generated.
Number of designs is reduced by 2" as compared with full factorial design. Figure 4
shows one such example of 3™ fractional factorial design. This is computationally less

expensive as compared to full factorial design.

14



2.2.3 Random Latin Hypercubes

As explained in section 2.2.1, a Latin hypercube is a matrix of » x k dimension. In
random Latin hypercube, each column has n different levels from 1,2...n randomly
permuted and the k random columns are matched to form the Latin hypercube. Three
random Latin hypercubes of dimension 2 (k£ =2) with 10 levels (»=10) are shown in
Figure 5. It should be noted that the design sites in all the three cases are randomly
selected throughout the design space. No optimality criteria (e.g. IMSE, Maximin, etc)

has been used to generate such designs.

PIsaL; - ¢ AL S It—*
o : @ @ i__
%_’ | ‘ ™ ’_, N @ 1; N
X - Xl X1

Figure 5: Random Latin hypercube design with a factor 3

The advantage of random Latin hypercube is that it requires only a random permutation

of n levels in each column of the design matrix and is very easy to generate. It is

computationally less expensive.

15



2.2.4 IMSE Optimal Latin Hypercube

Integrated mean square error (IMSE) design is generated with integrated mean square
error over the design space between design sites as the optimality criteria. Integrating
IMSE optimal designs and Latin hypercube designs (LHD) generate a hybrid set of a
design which is referred to as optimal Latin hypercube design (OLHD). The striking
features of this design methodology are that they are well spread in the design domain
(because of IMSE criterion) and none of them are replicated (because of LHD criteria).
They are often nearly symmetric and they are also stratified (because of LHD criteria).
Two such design samples are shown in Figure 6 for 7 points OLHD and 8 points OLHD
with a factor of two. It can be appreciated how well the design sites are spread in the
domain with symmetricity though entire space is not filled. Park (1994) has developed an
algorithm which can be used to generate such design; the reader is referred to (Park,

1994) for details about this algorithm.

£X2 £X2
o ° ¢ * r Y
| ® : L J "
° o 4
| . . i I .
(A) 7 point design (B) 8 point design

Figure 6: IMSE optimal Latin hypercube design with a facror 2
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2.2.5 Maximin Latin Hypercubes

Maximin Latin hypercube design (MMLHD) method was developed by Morris and
Mitchell (1995) for computer simulations. They used maximin distance as optimality
criterion which is used to maximize the minimum distance (Euclidean or rectangular)
between any two design sites. This ensures that design points will be spread as far as
possible in the design domain. Figure 7 shows a two factor MMHLD with 7 and 8 points
design sample. Morris and Mitchell used a simulated annealing search algorithm to

generate these designs.

[i‘-.x2 [4)(2

- _ - . ._A_,_._,___

° d Y l

° ® ® +
®
¢ ® ®
® X o &Py

(A) 7 point design (B) 8 point desig

Figure 7: Maximin Latin hypercube design for a factor of 2

2.2.6 Orthogonal Latin Hypercubes

Orthogonal Latin hypercube design (OLHD) is a special case of LHD. Orthogonal Latin
hypercube design (OLHD) was proposed by Ye (1997) which maintains orthogonality

among the columns. These designs are “space filling” and they also maintain the

17



orthogonality between design sites. The orthogonality ensures that the quadratic and
interaction effects are uncorrelated with estimates of linear effects. Interested readers are
referred to (Ye, 1997) for an algorithmic construction of OLHD. Ye has stressed that
orthogonality of these designs are independent of numerical values of levels. Figure 8
shows three different design matrix generated using this algorithm. These designs can be

optimized for certain criteria e.g. minimum entropy, maximin criteria.

4. X2 L X2 L X2
7@ \ LA ‘ T .
® L d
P J e
o L I o
T T e — | aEpEn| o > L [T I ™
X1 - X1 X

Figure 8: Orthogonal Latin hypercube design for a factor of 2

In the present work we are seeking design of “space filling” nature which will facilitate to
capture the behavior of functions in global sense throughout the feasible design domain.
We want to predict the response of the model in the entire feasible design space after we
sample some intelligent design sites. The selection of initial design should allow us to
explore a wide class of metamodels (e.g. least square polynomial metamodel, kriging
metamodel, response surface metamodel and spline metamodel). We have used OLHD as
the design criteria in the present work. The code for generating OLHD is freely available.

In this work, I used one such code available at STATLIB (http://lib.stat.cmu.edu). It is

worth mentioning at this point that we have tested our framework with some user

18



supplied design sites in combination with OLHD. This provides us some known design

sites (at which we have some information about the function) on top of OLHD designs.

2.3 Metamodel Selection

We want to predict the response of the model in the entire feasible design space after we
sample some intelligent design sites. Once the appropriate sample data has been obtained,
we need to build the metamodel. This is described next. A metamodel associated with a
model (or model’s response) is defined as an approximation to the model itself (or its
response). This section describes various techniques which can be used to construct a
metamodel for expensive functions. The term surrogate (or metamodel) is used to denote
any replacement for an expensive simulation. Few examples are least square
polynomials, wavelets, radial basis, neural network, fuzzy logic, response surface

methodology and kriging used to build a surrogate for function response.

The first class of surrogates will be called models, a terminology motivated by the use of
model in, say, the models of crashworthiness analysis of varying physical fidelity (linear,
full nonlinear model). These surrogates are based on modeling a response f at a single
design, x. This modeling can be based on varying physical fidelity, as in the models of
crashworthiness analysis just mentioned, or varying mathematical fidelity, as might be

determined by mesh spacing or the order of accuracy of numerical schemes.

19



The second class of approximation can be a surrogate constructed from samples f{x,),
_, fix,) of the original function f{x) at different design sites x, (and possibly values of
the derivatives of f). A Surrogate is constructed from regression against this data (as in

classical response surface methodology), interpolation of the data (as in spline fitting), or

by a combination of regression and interpolation (as in kriging).

As discussed in chapter one, we can construct approximation of the original problem in

two ways.

1) A physical approximate model (S ,), which closely represents the behavior of the
true function.
2) An approximate modeling of the characteristic behavior obtained by some data

fitting technique based on sample design sites chosen by some mean (S, ).

Questions that arise in the selection and use of surrogates in design includes the

following:

1) Construction methodology of appropriate surrogates;
2) Validation of surrogates and estimation of the surrogate error;
3) Utility of surrogates in the multidisciplinary setting; and

4) Use of surrogates in optimization.
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2.3.1 Least Square Polynomials

Polynomials are very popular methods known as data fitting and metamodeling
techniques. They are simple and easy to compute. For a given design set (x,, y, ), where,

i = 1...n, its easy to fit a polynomial e.g. a quadratic curve. A second order polynomial

can be represented by

fx) = By +Bx+pox’,

where, fs are regression coefficients, x is the design variable and f(x) is function
predicted value at x. S's are computed by solving an optimization problem by taking
the mean of the sum of squared errors (MSSE) as the objective function at predicted

values, X,

MSSE = £ (5, - £ (x,))’ @.1)

i=]

where, y, are known values, f(x,)are predicted values of function and » is total number

of points at which predicted values are compared with known values.

Once the optimal values of coefficients of polynomial are determined, it is easy to predict

output values corresponding to any input x. This technique of constructing the surrogate
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is very common and is termed as least square polynomial technique. It can be performed
on polynomial of arbitrary degree with little difficulty, simply by changing the number of
coefficients. Extension to design space of higher dimensions can also be done, however

with less reliability.

Analysis of variance can be performed on this functional relation to determine the
relative importance of each coefficient in the polynomial or the standard deviation of the
result from the known results. Usually the model is changed heuristically, by adding or
subtracting some terms so that the polynomial represents a satisfactory behavior in the

entire design domain.

As we increase the dimension of the problem at hand or the size of the dataset, there are
some obvious disadvantages of using this metamodeling technique. Coefficient
evaluation takes longer time in higher dimensions as well as when size of the dataset is
increased. Usually, the behavior of the function is not captured by one polynomial in the
entire feasible domain. A quadratic polynomial can represent the global nature of
function, but it cannot represent non-linearities in local regions. A higher order
polynomial e.g. 19® order polynomial will require twenty coefficients to be determined
by least squares. Higher order polynomials tend to be highly oscillating between points
and there in not enough smoothness in the function. In the present application, we are
dealing with highly nonlinear and ‘expensive’ functions and for these reasons, we will

not select least square polynomials as our metamodel.
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2.3.2 Interpolating Splines

The drawbacks of polynomials can be avoided to a great extent by using interpolating
splines as a metamodel. Splines are polynomials defined in a piecewise manner. We can
benefit from the advantages of using polynomials while avoiding the drawbacks
associated with polynomials. This could be especially useful for highly nonlinear nature
of data. Whereas polynomials try to capture the behavior of the function in global sense
with one functional representation, splines can model the behavior in each separate range
of data (or piece defined by points or knots). The boundary conditions can be imposed on
piecewise polynomials to ensure that these pieces match exactly with a prescribed degree
of continuity. Usual practice is to model cubic splines as one piece with C? continuity
imposed between pieces. This means that the pieces will have same function value and
slope at boundary knots. This ensures the correct behavior of the function at knots (as
compared to least square polynomials), but it does not tell us much about the values in

between knots. They can be more oscillating or wavy.

A similar technique known as smoothing splines is an improvement over interpolating
splines. Many researchers have worked on this method ([13], [32], [11]) and have
proposed to adjust a weighting factor known as smoothing parameter. By using this
parameter, a trade-off is sought between smoothness of polynomials of least square
polynomials and the point-wise accuracy of piecewise polynomials in interpolating

splines. Interested readers can refer to ([27], [32]).
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2.3.3 Wavelets and Radial Basis

Radial basis and wavelets have earned popularity in recent years in several areas such
reconstruction and image filtering. The characteristics of these metamodel is a basis
Junction depending on the Euclidean distance between the sampled data points and the
point to be predicted. They are similar to Fourier transforms, but wavelet transforms are
capable of capturing a large amount of information with the help of small number of basis
functions. Wavelet transforms are fast and require less number of coefficients to represent
the metamodel. Diaz has used wavelet transforms to identify the systematic component of

a signal characterizing the structural behavior from its random component ([22]).

Radial basis functions (RBF) have been developed for largely scattered multivariate data
interpolation. A RBF method uses linear combinations of a radially symmetric function
based on Euclidean distance (or other such metric) to approximate response functions. A

radial basis function model can be expressed as:

f(x)= Zai "x —xi" (2.2)

where the sum is performed over the observed set of response {(x,,y,)} and [ef
represents the Euclidean norms. The coefficients a, are found simply by replacing the left

hand side of (2.2) with g(x,), i = 1, ..., n, and solving the resulting linear system. Radial
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basis function approximations have been shown to produce good fits to arbitrary contours

of both deterministic and stochastic response functions (Powell, 1987).

2.3.4 Neural Network Metamodels

Neural networks can be described as flexible parallel computing devices for producing
response that are complex functions of multivariate input design variables. They are
capable of approximating arbitrary smooth functions and can be fitted using noisy
response values. Neural networks are networks of numerical processors whose inputs and
outputs are linked according to specific topologies. Interested readers can refer to
Lippman (1987) or Masson and Wang (1990) for an introduction to neural networks.
Networks used for function approximation are typically multi-layer feedforward
networks. Feedforward layered networks have the flexibility to approximate arbitrary
smooth functions very well, provided sufficient nodes and layers. This follows from the
work of Kolmogorov (1961), whose results imply that any continuous function f: R" ->
R can be exactly reproduced over a compact subset by a three-layer feedforward network.
While there are some approximation schemes using three-layers, most approximations
use a two-layer network structure, with a single output node for models having a
univariate dependent variable. The overall metamodel is then a linear combination of
linear or nonlinear functions of the design vector x. Strictly speaking, neural networks are
assumed to use functions that are threshold functions. It is useful however, to allow more

general functions and to think of neural networks as a technique for computing
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metamodel coefficients and predicted values rather than as representing a particular class

of modeling techniques.

2.3.5 Response Surface Methodology

A Response surface methodology (RSM) is a sequential process for data fitting. Least
square polynomials, wavelets, radial basis and kriging are classified as global
metamodels and a single surrogate maps the entire design domain. A RSM works
sequentially, constructing a surrogate model in a local sense. This method is widely
known as a tool to develop, improve and optimize a product or process. It has found its
application in design, development and formulation of new products and improvement of

existing product designs. Interested readers can refer to ([31], [19], [21], [16]).

A RSM is a sequential process which starts with one initial design point. Design of
Experiments (DOE) is used to generate and sample a set of design sites in a small space
around the initial design point. A linear least square model is constructed to fit the design
points around initial design. The accuracy of the polynomial is verified using analysis of
variance. Now, at this point using basic calculus, a new area of interest is identified in
the design domain. The process is repeated until a linear fit of data no longer
approximates the function. Since a RSM works sequentially in order to approximate the
function and generate the metamodel, it is different from other methods. Our future work

will deal with this type of methodology.
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2.3.6 Kriging Metamodel

In all of the metamodeling techniques discussed, the fundamental assumption used to
build the approximation is as follows: given a vector of independent factors x and

response y, the relationship between y and x is:

y=f(x)+¢, (2.3)

where ¢ represents a random error which is assumed to be independent and normally
distributed with mean zero and standard deviation o. The key concept in kriging

metamodel constitutes that the error in the predicted values ¢ are not independent.

Instead, errors are a systematic function of x. Since the true response surface function is
usually unknown, a response surface f{x) is created to approximate it. The kriging
metamodel take the form y(x) = f{x) + Z(x), where f(x) represents a polynomial and Z(x)
represents a departure from the polynomial. Figure 9 illustrates how kriging error Z(x) is
distributed as a function of x (its not assumed to be constant). A quadratic equation is fit
via least squares to a given sample of design points. Figure 9 illustrates the underlying

assumption that the distribution of error is a function of x.
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Figure 9: An illustration of error function Z(x) as a function of x

From figure 9 it can be observed that if the predicted value f(x, ) is far from the true value
y(x,), then a point very close to x, will also have a predicted value f{x,+&) that is far

from the true value y(x,+&). The underlying reason for such a behavior can be

dtoa ic error iated with functional form of f{x) which is the least
squares fit.
Kriging metamodels assume that the deterministic response is a realization of a random

function y(x) that includes a regression model [15],

yx)=f(x)+Z(x) 24

28



where, Z(x) (the error) is realized as a Gaussian process which represents uncertainty

about the mean of y(x); Z(x) is assumed to have mean zero and covariance, V given by

V(w,x)=0’R(w,x), 2.5)

between Z(x) and Z(w) where o is the process variance and R(w,x) is the choice of the
spatial correlation function between point w and x which actually determines how the
metamodel fits the data. There are several choices of R(w, x) in the literature which can
determine how quickly and how smoothly the function moves from point x to point w.
One of the more common spatial correlation functions (SCFs) used in kriging models in a

one-dimensional problem is

.2
L -Ow _xt
RW —x')y=e ! , (2.6)

where >0 and the superscript refers to any design point, x. It can be noted from the
above equation that as |w-x| increases, function goes to zero irrespective of any SCF
used. As the distance between the points to be predicted and sampled point increases, the
effect of sample point gets weaker on the predicted point. Also, |@| dictates how fast this

effect will take place.
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The SCFs for multivariate case can be extended easily using “product correlation” which

is described as multiplication of the correlation functions in several dimensions [15].
k
Rw-x)=]]R(w,-x)) 2.7
j=1

where a subscript denote the dimension of the problem. A Kriging metamodel also allows

to choose different SCF in different directions (i.e. different R ;) by choosing a different

t9j in different direction.

If a constant polynomial denoted by S is used for f{x), then the predicted values y (x)

can be written as follows ([17]).

Yx)= B+ r (R (=), @.8)

where y is the n x 1 column vector of observed response, where, J is a n x 1 column unity
vector, R is the n x n symmetric matrix of correlations among the design points with the

ones along the diagonal, and r ={R(x-x,)} is the n x 1 vector of correlations between the

point of interest x and the sampled design points [17].
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Mitchell and Morris and Sacks et al., reported that in the kriging metamode,l the only
parameters dictating the polynomial f{x) are f,, and &,. They are associated with the

stochastic process Z(x). They suggested that the regression model f{x) does not greatly
influence the metamodel fit ([17] , [15]). The distinct advantage of using kriging

metamodel is from the fact that there is no longer any need to determine a specific

functional form for kriging. Usually a constant £ is used for f{x) even though a linear or
quadratic functional form can be used. We can only use the correlation function

parameter 6, to describe a metamodel which can fit a given set of data points.

The estimate for £ in the evaluation function (Eqn 2.8) is given by ([17])

/} =(JR')JIR Yy 2.9)

The estimated variance from the underlying global model (as opposed to the variance in

sampled data) is given by [33].

~

o =[(y-J BY R (y—J B/ n (2.10)

Since variance (o) and covariance matrix R are functions of 6,, usually 6, is found by

maximizing a Maximum Likelihood Estimate (MLE) [17, 33].
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MLE = (—{nx]n(c;)+ln|R|])/2 (2.11)

MLE is computationally expensive and requires some knowledge of the distribution of
noise in the data. There are hence other methods used for this purpose. Ordinary Cross
Validation (OCV) and Generalized Cross Validation (GCV) are common examples.

Interested readers can refer to ([17, 33, 15]).

2.4 Building and Validating a Kriging Model

Usually residual plots and square of residual (R?) can be used to validate a metamodel
but these methods are not suitable for kriging because there are no residuals in this case.
Validating a kriging model using additional data points can be done, if possible. If
additional points can be afforded then maximum absolute error, average absolute error
and root Mean Square Error (MSE) can be used to validate the error with predicted

values at additional points. These measures can be summarized as follows.

Maximum abs error = maxly, -—y,’;i =1,..n

error

(2.12)

Average abs error = !

[yi—y| (2.13)
n 1

error i=

32



MSE = (2.14)

However, sometimes taking additional validation points is not possible due to constraints
on expenditure of experiments. Thus an alternative approach proposed by Mitchell and
Morris (1992) is leave-one-out cross validation approach. In this approach, each sample
point used to fit the model is removed one at a time and, the model is rebuilt without that
sample point (with same MLE) and the difference between the model without the sample
and with the sample is computed at all the sample points. The formula for Cross

Validation Square Error (CVRMSE) is

(2.15)

2.5 Metamodel Comparisons

Some choices have to be made as to which type of metamodel is best suited for the
simulation to be analyzed. Simpson provides some guidelines for appropriate choices for
particular cases [6]. Another particularly useful guidance by Barton provides a list of

seven very general criteria that aide in assessing any particular metamodel’s merit [6].
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e Ability to gain insight from the form of the metamodel.

e Ability to capture the shape of arbitrary smooth functions based on observed
values which may be perturbed by stochastic components with general
distribution.

e Ability to characterize the accuracy of the fit through confidence intervals, etc.

e Robustness of the prediction away from observed (x,y) pairs.

e Ease of computation of the approximate function f.

e Numerical stability of the computations, and consequent robustness of predictions
to small changes in the parameters depending on function f.

e Does software exist for computing the metamodel, characterizing its fit, and using

it for prediction?

2.6 Optimization

2.6.1 Background

Before we start our discussion of optimization techniques used in this work, we will
revisit our selection criteria of our framework and nature of function we are trying to

optimize (1.1)

Minimize f (x) (1.1)
Subjectto a <x<b

where, f: R” - RU{x},a;b€ R”;
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Our criteria for selection of a framework stemmed from these concerns.

e Cost of evaluating f (x) could be very expensive in terms of computational time
and resources. Some evaluation of f (x) could be available from other sources. If x
is infeasible f (x) may not be available.

e It is not necessary that f (x) will be evaluated at all the possible design sites. There
could be cases when f (x) may not be evaluated accurately at some design sites
and it incurs the same computational cost.

e Derivative information of f (x) is either not available or is not reliable to use.

We are concerned with evaluation of f{x) which is expensive and we do not have

derivative information. It has been a long engineering practice to deal with such
numerical optimization problem by replacing f{x) by a surrogate f (x). As described by
Barthelemy and Haftka (1993) we can replace f{x) with an inexpensive surrogate f (x)

and minimize f (x) instead. One such approach in the literature of DACE is to evaluate

f(x) at V-1 (V is the total “budget” for function evaluation) carefully selected design
sites and construct f (x) from the resulting evaluation. From here perform the numerical

optimization to obtain minimum of f (x) and evaluate f{x) at the candidate minimizer

thus obtained. In 1995 Frank suggested that "minimalist approach” of minimizing a
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single f (x) is not likely to yield satisfactory results, and proposed several sequential

modeling techniques as alternatives.

While discussing initial design issues, we have seen how to select design sites for design
of experiments. We have also discussed various techniques on building the surrogate
models from a set of evaluated f{x). In this section, we will explore some numerical
optimization techniques used for such class of problems. It will be worth mentioning
again at this point that the surrogate may not have very reliable derivative information in
which case we are looking at direct search optimization techniques. In future, plan is to
work with derivative based optimization techniques once we have useful information

about the gradients of surrogates.
2.6.2 Pattern Search Methods
Consider a constrained optimization problem of type

Minimize f(x)
xeQ

where, R is a set of real numbers, f: R” — R is the objective function. Q is the feasible

domain of x.

Pattern search algorithms are a subclass of direct search methods for numerical

optimization. We are looking for optimization techniques which do not require derivative
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information and direct search methods fall in this category. They do not use any explicit
derivative information. Interested readers can refer to [18], [3], [4], [36] for an

explanation of these methods.

Let x, be a point and f(x,) be the function value in k”iteration. A pattern search
technique should take three steps to get new point x,,,. Firstly, at each iteration the next

iterate is selected from a set of points which is determined by a pattern (described next).

No explicit restriction is placed on |

X1 —%;||. Secondly, only the function values f{x) are

used, not the derivatives, to get the next iterate. Thirdly, each iterate must satisfy a simple

decrease condition. There is no sufficient decrease condition.

If x,, #x, thenflx,, ) <fx,).

A pattern is a collection of steps and each step can be added to current iterate to get next
trial iterate. The orientation and scaling of the pattern can be changed as the algorithm
proceeds. In another way a pattern can be thought of as a vector with a direction and

magnitude from the current iterate. A pattern can be represented in several ways ([24],

[35D).

We will use generalized pattern search method in our approach. Two features, a sequence
of meshes and a list of polling conditions characterize this method. Mesh is a pattern
(also called lattice) to which search is confined in a particular iteration. As optimization

proceeds, the polling conditions (also called search conditions) dictate the change in the
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current pattern thus qualifying the algorithm for convergence. The pattern keeps

changing in each iteration.

To ensure convergence of pattern search algorithm, the primary condition enforced in
search/polling technique is as follows. The set of vectors formed by taking the differences

between the set of trial points at which objective function is to be evaluated (The pattern)
and the current iteration x, (||x,,, —x, |) must contain a positive basis for R”. A positive
basis is a set of vectors whose positive linear combination spans R”, but for which no

proper subset has that property. This is the basis of convergence for pattern search

algorithm. Pattern search method can be outlined as follows [18]:

1. Construct or update the pattern of points around the current iterate x , .

2. Evaluate certain points in the pattern and search the pattern to find a point that
reduces the objective function.

3. Change the pattern if required, depending on whether the search point produces a
decrease in the objective function.

4. Iterate until convergence criterion is met.

The following flowchart in Figure 10 describes the Generalized Pattern Search (GPS)

algorithm, which is the basis of our Surrogate Management Framework (described next).
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Generalized Pattern Search
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Figure 10: Generalized Pattern Search Method

In literature it is allowed to choose any set of trial points in M, at which the function is to

be evaluated but the choice of initial design site will affect the result and efficiency of the

simulation
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2.7 Surrogate Management Framework

The basic idea behind Surrogate Management Framework (SMF) is built on GPS
algorithm. There is one intermediate Evaluate/Calibrate step which allows a sequence of
surrogate approximation as the algorithm proceeds (proposed by Frank 1995). We have a
family of approximation algorithms, which can be used for surrogate metamodel creation
(e.g. kriging, response surface, splines, polynomials) and update. Convergence of SMF
comes directly from the convergence of GPS. The steps for our Surrogate Management

Framework are outlined in the Figure 11.

The key to success of SMF is to define the search strategy that efficiently exploits the

current surrogate, S, . Also, notice that f is not evaluated at all the points in T, before
declaring a successful search. Any point identified with objective less than f (x, ), it is a

success. Except for evaluate/calibrate step in SMF, this is identical to GPS.
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Figure 11: Surrogate Management Framework
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The basic strategy for our framework now can be outlined in three steps

1) Choose an initial mesh over the feasible region [a, b] that signifies the desired
degree of resolution. The resolution can be refined if needed and an initial
baseline design x, € [a, b] at which fis known

2) Perform an initial computer experiment to select N initial design sites, evaluate
the true objective function f at the initial design sites, and construct an initial
surrogate S of f from samples fx,), _ _, fix,) of the original function f{x) at
different design sites x , .

3) DO until a minimizer f is found (for the current resolution of the grid) or until the
“budget”™ (V) is exhausted

e Find a candidate x, that minimizes S on the grid and treats x, as a site at which S
predicts a minimizer for f on the grid.

e Evaluate f(x,).

e Update the approximation S to include the value of objective function f(x,).

e If f(x)<f(x,),then x, =x, else leave x, unchanged.

o Repeat step 3

An alternate strategy with some modification to basic SMF strategy is also proposed in

literature ([34]). We notice that two important aspects affect the global optimization. The

effectiveness with which we find the minimizer of S and how accurately we construct the
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surrogate, S. In view of these two competing objectives, an alternate strategy which
actually modifies the surrogate S and the next design point proposed by S. We hope that
we will have better idea of the objective function in global sense in initial stages of

iteration. In literature ([34,18]) a merit function (m, ) is formed as follows.

m,(x) = 5,(x) - p,d.(x), (2.16)

where, p. >0 and

d.(x)=min "x -x, ”

where, d, is computed over all points x, at which we know the value of the true
objective function and p, is a constant ( we tried with p, =2 and it worked very well in
our case). Thus d, (x) is the distance from x to the nearest previous design site. The merit
function m_(x) comprises two components, S, and d.. The approximation function S,
plays the same role as before: we want to minimize (or at least decrease) the value of
S at x, as a way of predicting decrease on f (x). The second function d_is an
experimental design criterion to ensure that the trial point is placed where information
obtained from evaluating f will be useful in updating S, . Many such criteria are possible
in literature. We are using the criterion of maximum distance design which is an example

of space filling design criteria.
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2.8 An Example

We will use our framework for finding the minimum of the following problem.

Minimize f(x) = e > sin(107x), (2.17)

Subject to x €[0,0.5] and number of function calls allowed (V) <10.

We assume that this function meets all the constraints (e.g. expensive function, no
gradients available, may fail to evaluate at certain x). The program started with sampling

2 points ( x,,x,) in the feasible design domain. The true function was evaluated at these
two points and S, was built with the help of f(x,) and f(x,). Surrogate (S,) built in
the first iteration is a straight line (see figure 12). The program found a minimum of S, at
x, (= 0.0). The original function was again evaluated at x, to get f(x,). At this point it
is observed that f{x) has failed to evaluate. S, was updated to get a new surrogate S, and

so on. Figures for all the iterations are shown in Figure 12(a) to Figure 12(c). The
algorithm gives the minimum at x* = 0.1475 which turns out to be true minimum. It can

be appreciated that the surrogate S keeps changing as the algorithm proceeds.



Figure 12(a): Iteration 1 Kriging with 2 base points

Figure 12(b) :Iteration 2 Kriging with 2 base points+ 1 opt points
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Figure 12(c): Iteration 3 Kriging with 2 base points+ 2 opt points
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Figure 12(d) :Iteration 4 Kriging with 2 base points+ 3 opt points
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Figure 12(e): Iteration 5 Kriging with 2 base points+ 4 opt points

Figure 12(f): Iteration 6: Kriging with 2 base points+ 5 opt points
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Chapter 3

Tuning Problem

3.1 Background

In chapter two, the framework developed for optimization of a non-linear and expensive

function was described. Three main areas were investigated.

(1) Selection of initial design, e.g. space filling Latin hypercube designs for function
evaluations to be used in construction of surrogate model.

(2) Metamodeling techniques e.g. kriging metamodel, to build the surrogate of
expensive functions.

(3) Optimization techniques e.g. pattern search methods, to optimize the surrogate

and hence to predict the optima of expensive functions.

In chapter one of this report, a lattice model was described that replicates major structural
components of a complex structure (a vehicle or a component of a vehicle). In this
chapter, a lattice model is used to represent the behavior of a complex structure (a square
tube) in an impact event. The lattice model is described with dimensional details
including the material properties of its components. The goal in the present work is to
formulate an optimization problem, which can be used to optimize these parameters, in
order to replicate the relevant response of the real structure (the square tube). The

relevant response of the real structure could be a measure of crashworthiness analysis.
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An optimization problem is formulated to tune the lattice model to capture the relevant

response of the structure.

3.2 Lattice Model

Figure 1 (chapter one) shows a vehicle or a component in a vehicle (a complex structure)
and a lattice model (a simple structure). The optimization problem can be formulated
using material and/or geometric properties of each cell in the lattice as design variable. It
is expected that the lattice mode will capture the response of the vehicle (complex
structure). The objective in the optimization problem is to enhance the protection of the
passenger. This can be realized, at least in part, by controlling the acceleration
experienced by the passenger and controlling the deformation of the structure in the
immediate vicinity of the passenger. Thus, for the lattice model to be useful, it should
reproduce with sufficient accuracy, acceleration and deflections at points of interest in the

real structure.

Performance measures such as acceleration in a crash event are notoriously poorly
behaved functions. They are highly non-linear, non-smooth, and very sensitive to
uncertainties in parameters. A typical acceleration pulse in a crash event has the form
illustrated in Figure 13 ([22]). Along with relevant information, this signal also contains
a significant, random component that is not of relevance to the design problem, and can

even hide relevant behavior.
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Figure 13: Typical acceleration signal ([22])

The lattice is used to model only some relevant aspect of the behavior of a real structure
during an impact. It is unrealistic to expect that such simplified model can accurately
reproduce all the complexities of the behavior of the complex structure. We make the
claim that for the purposes of design, only a small number of signals are needed to
evaluate some performance, e.g., accelerations or deformation of the structure at a given
location or locations. The goal of optimization problem is then to “tune” the lattice to
reproduce only these relevant features. This is done by setting up an optimization
problem to minimize the difference in relevant behavior between the lattice and the real

Structure.

3.2.1 Characteristics of Lattice Model

The truss-lattice model considered here is an assembly of basic cell units formed by six

bar finite elements (eight degrees of freedom per cell), in an arrangement shown in
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Figure 14. Details of the construction of this model can be found in [20]. Characteristics

of the model are outlined as:

1. The pins in the cell are frictionless and hence each bar in the cell is capable of
transmitting loads only along its axis. The full geometric non-linear behavior is

modeled.

2. The stiffness matrix associated with a bar finite element of (initial) area A and

length L in a cell, includes geometric and material nonlinearities.

3. The material of each bar element can include a number of non-linear features and

is shown in Figure 15.

4. The dynamic behavior of the complex structure is captured by adding (lumped)

masses to each degree of freedom. The cell itself has no structural mass.

Figure 14: Basic cell in lattice model ([20]) Figure 15: Material model for each bar
in a lattice cell ([20])
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3.2.2 Proposed Lattice Model

For simplicity, we consider the impact of a hollow tube with a square cross section
against a rigid wall. The tube has dimension 100 x 50 x 50 mm (Figure 16). The structure
impacts a rigid wall at a velocity Vo and deforms plastically. It is assumed that the
performance function of the structure can be measured by investigating the motion of a
selected number of points B, P,,.., P,. One such point of interest (£, is shown in Figure

16.

Ews.n-eunmmlmm

Figure 16: Real structure (A square cross section tube)
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The tube is modeled in Unigraphics and meshed with shell elements in Hypermesh. The
structure is grouped in to five different sections (can be distinguished by different colors
in Figure 16 and Figure 17) and each section can have different properties e.g. different
yield stress (S, ), different shell thickness. The tube is analyzed in an impact event using
LS-DYNA3D. The performance of the structure is assumed to be characterized by the

acceleration of point 7, on the hollow tube. The performance function is computed for

1ot Jicnl.

point P, as a weighted sum of RMS of leration and

at this point. Figure 17 shows the deformation of tube in an impact event.

Figure 17: Deformed tube structure in an impact event

Rather than analyzing the structure itself, we represent it by a lattice model. The actual

shape and density of the lattice is “somewhat” close to the real structure, as the goal is not
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to reproduce the real structure but only the set of relevant signals measured at point F,.

One such possible lattice is shown in Figure 18.

50 P]
o ) XX
200X Y0 % ;(7
20 KK
X X XX
> % %
10
o DDA XX
0 2 0 60 80 100

Figure 18: Lattice model of the real structure.

Proposed lattice model has same dimension as of tube. Point P, is reproduced on the
lattice at the location shown in Figure 17. The lattice model has 20 columns and 10 rows
resulting in total 200 cells. Each cell has six bar finite elements. All six elements in a cell
have same (initial) area and they are kept same for a particular FE analysis. To match the
lattice model as closely with the tube model, some possible grouping of cells has been
done. Five consecutive columns are grouped together and they will have the same yield
stress (S, ). This will divide the lattice in five different groups as in the case of tube. This
also reduces the computational size of the problem. To reduce the size of the problem
further, we assume that all cells at the same distance from the wall have the same area.
This reduces the problem size to 20 design variables in area domain and five design

variable problem in yield stress domain.
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Cori ([22]) has implemented the lattice model (Code written in FORTRAN) and it was
provided for the present work. This program can evaluate the lattice model for desired
and relevant response for twenty given areas and five yield stresses for the lattice. This
program does the grouping of cells as desired. Figure 19 shows the deformed lattice
model after an impact event. Node 21 shown in the Figure 19 corresponds to point A, in

square tube. The lattice model does not implement the contact algorithm.

1
40
2
0 2
Figure 19: Deformed lattice model after an impact event.
3.3 An Optimization Problem

In section 3.2.2, we described the real structure (the tube) and the lattice model hoping
that the lattice model will reproduce some relevant complexities of the response of the
real structure. Before we formulate our optimization problem, the lattice model and the

tube are d for some

p (e.g. leration signals, displ. signals and

p
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velocity signals) at point 7, of the tube and corresponding point F, of the lattice to get
some idea about the feasible design domain for lattice model. It is worth mentioning at

this point that the tube has only yield stresses (S,) as the design parameters (other
parameters are constant) and lattice has S, and 20 grouped areas (4) as the design

parameters. We will compare the responses for some ‘reasonable’ set of yield stresses

(we need 5 yield stresses for tube and for the lattice, S,,) and some reasonable sets of
areas (we need 20 areas for lattice, 4, ). This will ensure that the lattice model is capable
of reproducing response of the tube in the feasible design domain formed about S ,, 4,
(to be decided by this comparison) of lattice. Diaz ([22]) suggested to experiment with
this comparison, which was really useful to arrive at 4,, around which the feasible

domain was extended. Figure 20(a) to Figure 20(c) shows acceleration response,
displacement response and velocity response of the tube and the lattice for some yield

stress values (S = {0.097, 0.097, 0.097, 0.097, 0.097}) and Area ( 4,={15.0, 15.0, 15.0,

15.0, 10.0, 10.0, 10.0, 10.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 12.0, 12.0, 12.0}).
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Figure 20(a): Comparison of acceleration response of the tube and the lattice.
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Z-displacement
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Figure 20(b): Comparison of displacement response of the tube and the lattice
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Z-velochy
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Figure 20(c): Comparison of velocity response of the tube and the lattice.
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3.3.1 Response function formulation

The performance function (f) is computed for point 7, as a weighted sum of RMS of

acceleration and maximum absolute displacement at this point.

2

f=m* %il.u}" )+w, * max([u”) G.D
, |

where n is the total number of design points in the yield stress domain (S, ), u,” is the

14

displacement signal of point P, at S, point in S,domain and , is the acceleration
signal of point A at S, point in S ,domain. w;, and w, are weights for RMS of
acceleration and maximum displacement of point P, respectively and f is the response
function. We used equal weight for RMS of acceleration and maximum displacement

subject to w, +w, =1.

There is an important distinction between the performance function of the tube ( f;,,. )
and the lattice model ( f,_,.. )- The response function of the tube is obtained in the yield

stress domain (S, ) for a fixed set of shell thickness. The response function of the lattice

is obtained in the yield stress domain (S ) for a fixed set of areas. The goal is to find an
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optimum set of twenty areas (A

optimum

tube in the yield stress domain.

3.3.2 Tuning Problem

The response function formulated in section 3.3.1 for the tube ( f;,,.) was evaluated with

the help of LS-DYNA3D at 25 yield stress points and it is shown in Table 1. f,,, is

plotted against 25 yield stress points in Figure 21 in MATLAB.

) that will give same response of the lattice as of

Table 1: f;,,. at 25 set of yield stress points

N Syl Sy2 Sy3 Syd Sys Sruse

1 0015 0.034 0292 0203 0.03 _ [9.10422
2 0.053 10207 0017 (0247 0.019  [8.98162
3 0223 0.167 _[0.131 __[0.097 0.258  9.09545
4 0.124 0255 0.175 _[0.136 _jo.111 __ [7.98922
5 0265 0285 [0.185  0.014  0.056  [9.41589
6 0.091 0267 0277 0237 [0.14 _ [7.95098
7 0.028 j0.112 0077 [0.108  j0.071  [8.224

B 0079  0.114 0221 [0.171 __0.136 __ [8.03872
9 0295 0242 [0.039 0196 [0.094  [9.4277
10 0.01 0018 (0204 (0059 0.268 _ [9.34061
11 0.138 0226 0.002 0295 0295  19.80016
12 0.154 _ J0.181 _[0.198  [0.066 _ [0.004 _ [9.56331
13 0235 0084 0032 028 0217 920342
14 0.131 _0.002 _[0.162 0225 0.192 _ [8.86714
15 0253 0.126  [0.06 0006 0277  9.39228
16 0.179 0222 0122 J0.15 _ [0.174 __ [8.36045
17 0.045 0057 0076 0.084  0.077 _ [9.00829
18 0.064  0.163 0243|0251  0.125 _ [8.04092
19 0277  0.194  [0.103 __[0.16  |0.201  [8.84209
20 0244 0092 0274 [0.182 0233 [8.81943
21 0201 0068 023 (0265 [0.153 _ [8.63996
22 0.198  [0.143 0262 [0.039  0.047  9.48524
23 o.111 005 [0.098  [0.121 245 [8.8231
24 0.160 0291 [0.144 _ [0.033 _ 0.181 _ |9.47534
D5 0.092 0267 0277 [0237 .14 [7.95086
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Response of Tube at 25 points
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Figure 21: Response of tube ( f;,,.) plotted against 25 points in S, domain.
The lattice has twenty areas of the cells as the design variables as shown in Figure 22.
Response function for lattice in S, domain is plotted for some fixed values of areas of the
lattice (20 areas). Two such responses are plotted corresponding to two different sets of
areas in Figure 23(a) and Figure 23(b). The tuning problem will be formulated to find a

set of areas ({4, 4,,....4,}) which will make the lattice response same as the response of

the tube.
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Typical response of Lattice at 25 points
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Figure 23: Response of lattice for 2 different sets of areas.

Lattice model will be evaluated for different set of areas ({4, 4,,...,4,,}; a design point A'

is a set of twenty areas {4, 4,,..., 4,,}. The optimization problem is then:

Find {4,4,,..,4,} of the lattice that

minimize "f Lattice f Tube " , 3.2)

subject to A, <A<A,

V <25.



where, |o| denotes the Euclidean norm and V is Total Budget for objective function

evaluation. Note that for one evaluation of objective function, lattice model will be called

25 times (we have a set of 25 yield stress points).

The optimization problem thus formulated is solved using the framework developed in

chapter two. Optimization parameters chosen to solve the particular problem are listed

below:

Total Budget [V]: 25

Initial design budget [N] (less than V): 10

Initial Mesh size [ M, ] = 0.01; (denotes the resolution of the domain.)

A.= {555,54,4,44,1,1,1,1,1,1,1,1,6,6, 6, 6}.

4., = {60, 60, 60, 60, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 40, 40, 40, 40}.

A block-diagram in Figure 24 describes the procedure for solving tuning problem.
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Relevant Data for the problem:
25 yield stress point ({ S, }), ,Tu be

=25,N=10,{4 .
V=25N=10, { “in} {4 ..}
M,=0.01

v

Latine hypercube design to
generate N (=10) initial design sites
{A, A%.. A}

Construct the surrogate by ‘
evaluating the objective function at
N nnints
For k=10,11...25 or until
convergence
R Find a minimizer of Sk using pattern Pattern Search Method
search method: 4

k+1

¥ Evaluate objective function i
Add4,  to the set of design IfLam'ce - jTubeI
points and evaluate objective
function f(4,,,). """‘J 1 -

% 25 calls to lattice model to

et . in a single
Update the surrogate 4, lby 8t 1L attice 8
+ iteration

adding new design point A

k+1

Figure 24: Block-diagram describing the procedure of tuning problem.

3.3.3 Results

The lattice (simple structure) response function was tuned to match with the response

function of the tube (complex structure). Figure 25 shows the plots of response of tube
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and lattice structure. The tuning procedure proposed the optimum areas of cells of the

lattice as A = {8.8009, 8.8581, 8.9932, 8.9468, 8.8588, 8.8739, 8.8047, 8.9180,

optimum

8.8259, 9.0288, 8.8476, 9.1696, 8.8776, 9.0579, 8.8805, 9.0138, 8.9347, 8.9248, 8.8103,

8.9723, 8.8083, 8.8320, 8.8466, 8.9180, 8.9090}.

Response of Tube and lattice after tuning
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Figure 25: Response function of the tube and the lattice at 25 S, points.

The response of the lattice closely follows the response of the tube. The maximum error
in the response of the lattice is 0.307 and minimum error is 0.0. The average error is
0.124 over 25 points. The goal of the lattice design is to predict the response in initial
design stages of the product and it would be difficult to expect that the lattice will

replicate the behavior with zero error.
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To demonstrate the robustness of the optimization framework for tuning procedure,
several test cases with different initial design sites (Both in yield stress domain and area
domain) and different mesh sizes were performed. Twenty-five different yield stress
points were samples for the tube and response was plotted along with the response of the

lattice for A

optimum

of the lattice. Figure 26 shows the comparison between response of the

tube and the lattice at 25 different points. The maximum error in the response of the

lattice is 0.319 and minimum error is 0.0. The average error is 0.132 over 25 points

Response of Tube and lattice after tuning
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Figure 26: Response function of the tube and the lattice at 25 S, points
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Chapter 4

Conclusion

4.1 Conclusion

The goal of this work was to facilitate faster turn-around time and shorter design cycle in
the initial stages of product and process design. The lattice model is proposed for
improved crashworthiness analysis of complex structures. Complex structures are
computationally expensive and not many changes in the design features can be done in
the later stages of design cycle. Lattice model can predict some relevant responses of a
complex structure with less computational cost. In chapter three we formulated an
optimization problem to determine the material and dimensional parameters of the lattice,
hoping to replicate the response of the complex structure. This work focused on three
main areas as follows:
(1) Selection of initial design, e.g. space filling Latin hypercube designs for function
evaluations to be used in construction of surrogate model.
(2) Metamodeling techniques e.g. kriging metamodel, to build the surrogate of
expensive functions.
(3) Optimization techniques e.g. pattern search methods, to optimize the surrogate
and hence to predict the optimum of expensive functions.
The surrogate management framework unified three areas together to achieve the goal of

this work.
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4.2 Future work

There are some concerns left at the time of writing this dissertation which must be
addresses in order to explore full capabilities of the framework. The framework allows a
great flexibility in selection of design sites, construction of surrogates and

implementation of different optimization algorithms.

In this work ‘space filling’ nature of initial design satisfy most of the criteria, if not all,
but there should be some method to generate initial design which uses some information

from the nature of the objective function (if available).

There are many techniques used for construction of surrogates (few of them are described
in chapter two). In the framework developed, kriging metamodel is used to construct the
surrogate of the objective function. Kriging is a very powerful interpolation method and it
worked out pretty well in this project. Other metamodeling techniques e.g. Response
surface method and Wavelet transform can be a good basis for the construction of
surrogate in different applications. We plan to explore Response surface method in near

future.

Pattern search algorithm is implemented in the framework primarily because we do not

have derivative information of objective function. The framework allowed using

sequential updates of surrogate which probably improved the robustness of the
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framework. We will have to wait until, sophisticated techniques are easily available to
compute the sensitivities of nonlinear and expensive functions, before we can use

derivative based optimization techniques.

The optimization problem formulated to “tune” the lattice has several features that make
it very difficult to solve: it is highly non linear and non smooth. This is a weakness that
must be addressed as we focus our attention on larger-scale problems. Diaz ([22]) has
raised some issues in his work ([22]) which is quoted here as some of the potential to be
explored. There is no proof of existence that guarantees that all relevant structural

behavior can be reproduced by a given lattice.
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