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ABSTRACT

ELASTIC DEFORMATIONS IN
SHAPE MEMORY ALLOY FIBER REINFORCED COMPOSITES

By

Xinjian Fan

The elastic deformations of SMA fibers reinforced composite associated with
phase transformations in parts of the SMA fibers are investigated. A simple case
involving a single infinite fiber embedded in an infinite elastic matrix is studied. In
the study, parts of the fiber are allowed to undergo uniform phase transformation
along the axial direction, and there exist sharp boundaries between transformed
and untransformed phases. The interaction between the fiber and the matrix is
directly described by certain bonding conditions, while the sharp phase boundary
in the fiber is directly modeled by piecewise linear constitutive law. The elasto-
static problem is simplified as axisymmetrical ones. Twc kinds of bonding models
(“perfect bonding” and “spring bonding”) and two kinds of stiffness models (“rigid
fiber” and “elastic fiber”) are considered. The exact solutions to the distributions
of stress, strain, and displacement for each of these models are obtained in inte-
gral forms. A single finite segment transformation pattern is discussed in detail
to display the local properties at crucial location — the intersection of fiber-matrix
interface and phase boundary in the fiber. The asymptotic expansion technique
is employed to further analysis the behavior of stresses. In the “perfect bonding”
condition, the normal stresses have finite jumps across the phase boundary, whereas
the shear stress approaches infinity. The singularities are isolated. The jumps of the
normal stresses and the intensity of singularity of the shear stress are determined
by the material properties of the matrix and fiber and transformation strain, and
are independent of the geometry of the phase transformed region. In the “spring

bonding” condition, all stresses are finite and continuous in fiber and matrix. The



shear stress concentrates at the intersection of the fiber-matrix interface and the
phase boundary of the fiber. The softer fiber, matrix, and bonding condition will
reduce the shear stress concentration. The shear stress concentration increases as

the aspect ratio of phase transformed region increases.
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CHAPTER 1. INTRODUCTION

1.1 Literature Review

Recently, smart materials have attracted increasing attention for their exten-
sive application prospects in a variety of fields, such as aerospace, antomotives, and
biomechanics. These novel materials have intrinsic sensing, actuating, and corn-
trolling capabilities, so that thev are capable of responding to the external stimuli
according to a prescribed manner ana extent in an appropriate tiine (see, for ex-
ample, Wei et al. 1998a. 199%0: Bimuar 1997; Crawley, 1994, Roeors et al. 19200,
Since such properties are not found in wraznditional engineering materials (2rcopt
probably in conie biomat iiais), cr.e artempts to create thern artiticisily by mte-
grating ceveral arcicels aatk specicd funetions into hvbrid composites {Wej er i,
1998a. 19961, Nozaki «nd Tukabashi 1245

Shape seensocy allov [SALA b 1d coaposites 18 one Clase of the o poemis
ing smart materials due to tine nsid e chavacteristics of SMAs, such &< the shape
memory effects (SME), pseudcediastior. and high damping capacity. A vanety of
alloys, including Nitinoi, Cu-Zni-Al «nd Ca-Al-Ni, have been founa to extimt SMi
{Hodgson et al. 1990; Perkins 19%8t; Wei ot al. 1998a). For exampie. the moest pop-
ular SMA, Nitinol, has not only prominent shape memory performance, but also
excellent mechanical properties gcod processibility, good corrosion resistanis, and
good biocompatibility (Wer et al. 1998a). For Nitinol, a few percent of inelastic
strains can be completely recovered. All the unique characteristics of SMAs, 1
general, originate from the ability of the SMAs to undergo phase transformiation
(Wayman and Duerig 1990, Shaw and Kyriakides 1995).

Although many of the SMAs can be readily fabricated into a large variety of
shapes, such as particles, fibers, ribbons, and thin films, the SMA fiber reinforced

composites are more often emploved in practical applications and more intensively



studied. This might be partly because most experiments for characterizing the
behavior of SMA are one-dimensional in nature. On the other hand, with the dom-
inant dimension in the longitudinal direction of the fibers, one can more efficiently
take advantage of SME or control the SME in some specific directions. For the
design, analysis, and application of either SMA fiber itself or SMA fiber reinforced
composites, a sound mechanical model for SMA fiber is essential in addition to
extensive experimental studies.

Generally, a model of SMA associated with phase transformation consists of
two coupled parts: a constitutive relation governing the thermomechanical response
and an evoluticn relation describing the state of phase transfcrmation. Some mod-
els emphas on the local propérty, while the others aim at the global behavior. Ta
describe locai property of SMA associated with phase transformations, 4 non-convex
themiddynamica’i pctential energy is ofteni emploved. Tu cbLtain global bebavios.
different approxiination schemes trem the local property are used such as mixture
nile (volume average). stetistical mechanics, and self-consistent. method. To de-
sc’ribe the state of phase transformation, internal variables. such as the pesition
of phase boundary, the phase fraction, or fractions of variants. are w:troduced de-
pending on what scale and property of phase transformation are considered in the
model. The evolution of the internal variables is determined according to physical
law or macroscopic experimental phenomenology.

The following are some typical models of SMA. Based on purely mechanical
continuum nonlinear elasticity, Ericksen (1975) developed a one-dimensional theory
on elastic bar, which is capable of undergoing stress-induced phase transformation.
The material constitution of the bar is given by a non-convex strain energy that
leads to a non-monotonic relation between the longitudinal strain and the stress.
The stress-strain curve consists of three branches. The slopes of the strain-stress

curve of the first, second, and third branches go from positive to negative and back



to positive values. Each branch of the stress-strain curve is associated with a phase
of the material. It was shown that the branch with negative slope corresponds to
an unstable phase. Particles of the material can stay only on either branch with
positive slope, one corresponding to low strain phase and the other high strain
phase. The sudden change of the state of a material particle in the strain-stress
curve from the low strain phase to the high strain phase, or vice versa, is described as
phase transformation. The inelastic strain associated with the phase transformation
is called the transformation strain. From the potential energy point of view, the
phase transformation corresponds to the jump of material state from one potential
well to another. Fosdick and James (1981) investigated an analogous situation in
the bending of a homogeneous inextensible elastica with a non-convex moment-
curvature relation.

The theory given by Fricksen (1975) characterizes the phase transformation
from the point of view of stability of material state. Because the stress is no longer
a monotonic function of the strain in that model, a given boundary condition gen-
erally does not lead to a unique equilibrium solution. For example, a given tensile
force applied at the end of the bar (hard device problem) or a given displacement
at the end of the bar (soft device problem), may result in infinitely many equi-
librium states involving a mixture of phases. To obtain the unique solution, one
viewed the position of the phase boundary as an internal variable and presented a
supplementary constitutive relation to govern the evolution of the phase boundary
(Abeyaratne and Knowles 1988). This kinetic relation connects the driving traction
acting on a moving phase boundary with the velocity of the quasi-static motion of
the phase boundary. It was found that the kinetic relation, together with a nucle-
ation criterion that signals the initiation of phase boundary, is sufficient to single
out a unique solution. To take the thermal effect into account, a more general

model of a one-dimensional thermoelastic bar that is capable of undergoing phase
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transformation was developed (Abeyaratne and Knowles 1993). An explicit exam-
ple of the Helmholtz free energy density, the kinetic relation, and the nucleation
criterion were constructed. In that model, the stress-strain curve at each tempera-
ture is trilinear. The mechanical cycling at constant temperature, thermal cycling
at constant stress, and the SME involving a combination of mechanical and thermal
loading were studied and compared qualitatively with experimental results.

Instead of considering quasi-static processes, Pence (1986) investigated the fully
dynamical motion of phase boundary. A semi-infinite compressible elastic bar,
whose normal stress versus normal strain relation is non-monotonic, is subjected
to a monotonically increasing load at the end. The problem is formulated as an
initial-boundary value problem in one-dimension. The emergence and propagation
of phase boundary are discussed in detail. With the same mathematical structure,
an analogous problem with full dynamics effects was studied in a specific class of
incompressible homogeneous isotropic hyperelastic materials in which the stress-
strain relation in simple shear is not monotonic (Pence 1991a, 1991b). A single
internal pre-existing shear stress-induced stationary phase boundary can be set
in motion by external applied dynamical shear. Two-dimensional motion of twin
boundaries are studied by Rosakis and Tsai (1995) and Tsai and Rosakis (2001) in
the setting of anti-plane shear.

To describe the phenomena associated with phase transformation of SMA, Falk
(1980, 1983) developed a one-dimensional model of SMAs in a special shear direc-
tion of phase transformation. The state equation is given in terms of the Helmholtz
free energy density as a function of the shear strain and temperature. Accord-
ing to the crystallography of a single crystal undergoing phase transformation, the
simplest form of the Helmholtz free energy density is proposed to be a polyno-
mial of shear strain. In that model, the stress-induced phase transformation, the

temperature-induced phase transformation, and the shape memory effect of SMAs
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are qualitatively reflected.

Tanaka (1986b) presented a one-dimensional thermomechanical model of ma-
terial subject to phase transformation. To characterize the extent of phase trans-
formation, the martensitic volume fraction is introduced as an independent internal
state variable. The strain, temperature, and martensitic volume fraction together
form a complete set of state variables to describe the thermomechanical behavior of
materials involving phase transformation. The forms of the constitutive equations
are derived with the restriction of the Clausius-Duhem inequality on Helmholtz
free energy. The evolution of the martensitic volume fraction is determined by
the dissipation potential. An explicit form of the evolution of the martensitic vol-
ume fraction is suggested to be an exponential function of temperature and stress
based on the phase transformation phenomena (Tanaka, 1986a). Liang and Rogers
(1990) improved Tanaka’s model by describing the evolution of the martensitic vol-
ume fraction with a cosine function of temperature and stress. Then, Zhang et
al. (1992) extended the model to include the two-way shape memory effect. Brin-
son (1993) further distinguished the twinned martensite phase and detwinned one
by introducing separate fractions so more behavior of SMA can be captured. The
transformation kinetics is expressed by algebraic equations with a few material con-
stants. The transformation region is described with the aid of phase diagram. Based
on this model, a lot of behaviors of SMA have been discussed by Brinson and his
colleagues (Brinson et al. 1996, Brinson and Huang 1996, Bekker and Brinson 1997,
Bekker and Brinson 1998, Bekker et al. 1998).

Ivshin and Pence (1994a, 1994b) developed a one-dimensional constitutive
model for describing the thermomechanical behavior of mixture of two phases. Each
phase allows one variant. The fraction of austensite phase is used as an internal
variable. Based on a series arrangement of individual pure phase at microscale level,

the overall theromechanical behavior is calculated by mixture law from individual



behavior of each pure phase. A restriction condition on the phase fraction is de-
rived from Maxwell relation. An algorithm to determine the evolution of the phase
fraction is developed for given temperature history (Ivshin and Pence 1994a) or for
given both temperature and stress histories (Ivshin and Pence 1994b). Further, Wu
and Pence (1998) studied a model of SMA involving austenite and two variants of
martensite.

Following the statistic mechanics approach, Muller (1979) presented a snap-
spring model to simulate the thermomechanical behavior of SMAs. The basic ele-
ment of the model is a loaded snap-spring, which has one or two stable equilibrium
configurations according to the magnitude of the applying load. The model is built
up by the loaded snap-spring. Assume the snap-spring can exchange energy with
its surroundings and with other snap-springs. As a result the snap-spring can move
around irregularly in the neighborhood of the equilibrium position. Based on the
statistical mechanics, the global behavior of the SMA body is described according
to the energy of local snap-spring and the temperature.

Also based on the statistical mechanics, Achenbach and Muller (1985) devel-
oped a stacked lattice particle model. Differing from the snap-spring model, the
basic element is modeled as lattice particle, which represents a small part of the
metallic lattice to reflect the microscopic properties. The lattice particle is capa-
ble of assuming three equilibrium configurations to describe austenite phase and
martensite twins according to minima of the potential energy. The SMA body is
then built up by stacking up the layers and in each layer the lattice particles have
the same equilibrium configuration. The phase transformation depends on the load
and temperature and is governed by a rate law of the lattice particle fraction based
on transition possibility. The temperature follows a rate law according to the bal-
ance of energy in the heat transfer with the environment and the heat for the phase

transformation.
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Using micromechanical approach, Patoor et al. (Buisson et al. 1991, Berveiller
et al. 1991, Patoor et al. 1996) developed a thermomechanical model of SMA. The
local behavior of an elementary representative volume is described by the kinematics
of the martensitic phase transformation and thermodynamical potential. Volume
fractions of the different variants of martensite are used to describe the evolution
of phase transformation. Based on defect theory, the self-consistent approximation
is employed to obtain the global behavior. By taking into account in the internal
stress associated with the oriented defect produced in training sequences, the model
is also used to study two way memory effect (Patoor et al. 1991).

Another way to model the SMA associated with phase transformation is to take
each phase of SMA as an component of a composite (Boyd and Lagoudas 1994).
The extent of phase transformation in SMA is described by martensite volume
fraction, which is determined by a function of temperature and stress. Assuming the
martensite phase is distributed randomly in the SMA body, the effective properties
of SMA can be obtained from theories of composites.

On the setting of SMA fiber reinforced composites, the SMA fibers are sur-
rounded by the matrix. To accommodate the transformation strains in the SMA
fibers, the matrix is forced to deform in order to maintain certain bonding condi-
tions at the fiber-matrix interface. In turn, the deformation in the matrix induces
additional deformation in the SMA fibers with the possibility to impose constraints
on the phase transformation in the SMA fibers. Therefore, the interaction between
the SMA fibers and the matrix determines the overall mechanical properties of the
structure and hence plays a crucial role in the design and analysis of such compos-
ites.

To deal with the interactions between the SMA fibers and the matrix, one
approach is to employ averaging schemes or some kind of mixture rule used in

standard composite theory without phase transformation. This approach states
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that the composite properties are the sum of the corresponding properties of each
constituent weighted by some kinds of concentration factors, usually the volume
fraction. This approach can be used to study the overall effective properties of the
SMA fiber reinforced composites.

For example, Yamada, Taya, and Watanabe (1993) studied Nitinol particle
with metal matrix composite. Based on the Eshelby’s equivalent inclusion method
(Eshelby 1957, 1959) or self-consistent method (Hill 1965), the residual stress caused
by the shape memory effect is solved. The Young’s modulus, yield stress, and work-
hardening rate of the composite are predicted.

For the SMA fibers reinforced composites, Lagoudas, Boyd, and Bo (1994) and
Boyd and Lagoudas (1994) present a micromechanical model to predict the effective
thermomechanical properties. The SMA fiber is treated as an elastic composite con-
sisting of martensite and austenite. The phase transformation in fibers is described
by an exponential decay of martnesite volume fraction with temperature and a
von-Mises type effective stress. The transformation strain rate is proportional to
the rate of martensite volume fraction. The effective thermomechanical properties
of the SMA fibers are obtained by using Mori-Tanaka micromechanical averaging
schemes. Then, the Mori-Tanaka micromechanical averaging method is used again
to get the overall effective thermomechanical properties of the composites in terms of
the thermomechanical properties of the matrix and the effective thermomechanical
properties of the fibers. In order to model path dependent thermomechanical load-
ing, the incremental thermomechanical constitutive relations are used and within
each stress and temperature increment the martensite volume fraction is assumed
remaining constant in the fibers.

In order to analyze the stress of SMA fiber composite in detail, Berman and
White (1996) and Birman and Hopkins (1996) developed a three-phase concen-

tric cylinder model. This model consists of a SMA fiber, a cylinder matrix, and



an infinite composite cylinder. The extent of phase transformation in the SMA
fiber is described by martensite volume fraction and then the fiber is homogenized
as isotropic elastic material using mixture rule. The introduction of the infinite
composite cylinder is to consider the interactions of fiber and matrix with the sur-
rounding fiber and matrix (Birman and Hopkins, 1996), or to describe an internal
control system protected from the environment (Berman and White, 1996). The
surrounding composite is modeled as homogeneous transversely isotropic and elastic
material and the corresponding equivalent properties of the composite are obtained
by using micromechanical approach. By requiring continuities of the radial stress
and radial displacement, the properties are determined by a boundary value prob-
lem of axisymmetric plane strain deformation. The problem then can be solved
numerically.

Another way to deal with the interactions between the SMA fibers and the
matrix is to directly consider the interaction by explicitly describing the bonding
conditions. Compared with the previous approach, this way gives more details
about the behaviors of the composites, such as the distributions of stress, strain,
and displacement. Eshelby’s model (Eshelby 1957, 1959) is a typical one of this
kind. In this model, Eshelby considered a general solid problem in which an isolated
inclusion in an infinite homogeneous isotropic elastic medium undergoes a change
of shape and size. Provided the inclusion has an ellipsoidal shape and the entire
inclusion undergoes uniform deformation, a closed form solution to the elastic fields
was found by using a set of imaginary cutting, straining, and welding operations.
The Eshelby’s method can be used to derive many other models (Mura 1982) and
is found of great usefulness in the studies of regular composites and SMA hybrid
composites.

In the case of SMA fiber reinforced composite during phase transition, how-

ever, only part of the SMA fiber undergoes phase transformation. In this situation,






across the phase boundary between the transformed and the untransformed parts of
the SMA fiber, the strains suffer finite jumps, while the displacements remain con-
tinuous. These jumps of the strains across the phase boundary make the problem
more interesting and more complicated. A good understanding of the behavior of
material near the phase boundary, such as the stress distributions, is critical for the
design and application of SMA fiber reinforced composites. The homogenization
technique used by most researchers introduces martensite volume fraction and mix-
ture rule to describe phase transformation in SMA fibers (Boyd and Lagoudas 1994,
Birman and Hopkins 1996, Berman and White 1996). It only shows constituent av-
erage properties. In addition, the assumption of plane strain deformation can not
completely characterize the behavior of the deformation, especially in the axial di-
rection. Thus, in those models, the important shear deformation, which plays a
crucial role in the analysis such as debonding, is not considered. For this concern,
a new model is needed in which both the phase boundary in the SMA fiber and the

interaction between the SMA fiber and the matrix should be described explicitly.

1.2 Objectives

In this dissertation, I investigate the elastic deformations of SMA fibers rein-
forced composite associated with phase transformations in parts of the SMA fibers.
Generally, the deformations of the composite depend on the property of phase trans-
formation in the SMA fiber, the material properties of the SMA fibers and the ma-
trix, and the interaction between the SMA fibers and the matrix. As parts of the
SMA fibers undergo phase transformation, their shapes are changed inelastically
by the corresponding transformation strain (typically a few percent), with the ma-
trix being elastic and isotropic. Under certain bonding condition, the deformation
of the fibers forces the matrix to deform elastically in order to accommodate the
transformation strain. In turn, additional elastic deformation besides the deforma-

tion from the phase transformation is induced in the fibers in order to maintain
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the equilibrium at the fiber-matrix interface. Therefore, while the deformation in
the matrix is induced only by the interaction between fiber and matrix since the
phase transformation in the SMA fibers, the deformation in the fiber consists of
two parts: the inelastic deformation from the phase transformation and the elastic
deformation imposed by the constraint of the matrix. Generally, the transformation
strain is the dominant strain in the SMA fibers.

Since the interaction between the SMA fibers and the matrix plays a key role
in determining the mechanical properties of the composite, I will concentrate my
attention upon a simple case involving a single infinite fiber embedded in an in-
finite elastic matrix. Assume parts of the fiber are allowed to undergo uniform
phase transformation along the axial direction, and there exist sharp boundaries
between the transformed phases and the untransformed phases. The strain in the
fiber suffers finite jumps across these sharp phase boundaries. The lengthes of the
transformed parts of the fiber are changed by the corresponding transformation
strain. In this case, the phase transformation of the SMA fiber is described by
the magnitude of transformation strain and the transformation regions in the fiber,
so it can be described by a so-called phase transformation characteristic function.
Two kinds of phase transformation patterns are discussed: the general transforma-
tion and the single finite segment transformation. The case of single finite segment
transformation is important because it gives (1) a detailed description of the local
behavior, especially at some crucial locations, and (2) a description of the overall
behavior for general transformation pattern by superposition principle.

The interaction between fiber and matrix is modeled through certain bond-
ing conditions. Two kinds of bonding models are studied in this dissertation: the
“perfect bonding” model and the “spring bonding” model. For the “perfect bond-
ing” model, the displacement is assumed to be continuous across the fiber-matrix

interface. The corresponding bonding conditions are given by geometry constraints
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and equilibrium at the fiber-matrix interface. In the “spring bonding” model, on
the other hand, the radial displacement maintains continuous while the axial dis-
placement is allowed for discontinuity across the fiber-matrix interface. Such an
axial displacement jump results in a shear stress with magnitude proportional to
the magnitude of the jump. The corresponding bonding conditions are given by ge-
ometry constraints, equilibrium, and other interaction relations between fiber and
matrix. The “perfect bonding” is the simplest assumption to the interaction be-
tween fiber and matrix. The “spring bonding” model is an attempt to account for
more complex interactions.

The relative stiffness between fiber and matrix is an important factor for de-
termining the behavior of the composite. In this dissertation, both the fiber and
matrix are considered as elastic and isotropic. Thus, their material properties are
determined by the Young’s moduli and Poisson’s ratios. With different assumptions
about stiffness of the fiber relative to that of the matrix, we will study the “rigid
fiber” model and the “elastic fiber” model. In the “rigid fiber” model, the elasticity
of the fiber is ignored so that matrix exert no influence on the fiber. The only
deformation considered in the SMA fiber is the phase transformation, which gives
the boundary condition for the deformation of the matrix. The results of “rigid
fiber” model provide good approximations to the cases in which the fiber is much
stronger than the matrix. In the “elastic fiber” model, the elastic deformation of
the fiber will be taken into account.

All the assumptions made for the geometry, material properties, phase trans-
formation, and bonding conditions are axisymmetrical, so are the deformations.
Mathematically, the problems are two-dimensional. We follow the formulation used
by Muki and Sternberg (1969) on a problem with similar settings but without phase
transformations. We begin with the description of the problem and the governing

equations. Then, the Love’s stress function is introduced to reduce the problem to
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a boundary value problem of PDE with only one unknown function. After applying
(generalized) Fourier transform, the problem is further reduced to an ODE. The
general solution to the Love's stress function in the Fourier transformed space is
obtained in terms of the modified Bessel functions of the first and the second kinds.
Thus, the general solutions to stresses, strains, and displacements of the problem
can also be expressed in terms of the modified Bessel functions of the first and the
second kinds. For each model, by solving the linear algebraic equations for the
corresponding boundary conditions in the Fourier transformed domain, the exact
elasticity solutions (in integral form) are found.

According to the assumptions on the bonding condition, the models are classi-
fied into “perfect bonding” and “spring bonding” models. On the other hand, based
on the assumptions on the material properties, the models are classified into “rigid
fiber” and “elastic fiber” models. In this dissertation, the “perfect bonding rigid
fiber” model, the “perfect bonding elastic fiber” model, and the “spring bonding
(elastic fiber)”"model are studied in details in separate chapters, and the “spring
bonding rigid fiber” model is dealt with as the special case of the “spring bonding”
model. For each model, the results for both cases of general phase transformation
and single finite segment phase transformation are presented. The following outline
the dissertation.

In Chapter 2, we review the general approach for solving axisymmetrical elastic
problems. The purpose of this chapter is to include materials that are common to
our studies on each model so that it will not have to be repeated in the subsequent
chapters. Since the phase transformation in SMA fiber is described by a function
that is not absolutely integrable, we have to deal with the Fourier transform of
generalized functions. The fundamental formula and properties of both standard
and generalized Fourier transforms are reviewed. The general solution to the ax-

isymmetrical elastic deformation for a general cylindrical body is derived first. The
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results are then extended to composite with one SMA fiber embedded in elastic
matrix.

As the preliminary step of the research, we study the “perfect bonding rigid
fiber” model in Chapter 3. The exact solutions to the deformation of the matrix
are derived according to the boundary conditions that are given by the phase trans-
formation in the fiber. The numerical evaluation of the exact solutions is carried
out. The behavior near the phase boundary of the fiber is further analyzed by using
asymptotic expansion technique.

The study on the “perfect bonding elastic fiber” model is carried out in
Chapter 4. The exact solutions are developed based on the perfect bonding condi-
tions. The numerical evaluation of the solutions is carried out. The boundedness
and continuity of the solution inside the fiber and matrix are shown and the singu-
larities of the stresses on the fiber-matrix interface are isolated by using asymptotic
expansion. The influence of matrix on the deformation and phase transformation
in the fiber is discussed. The reduction of the results to those of “perfect bonding
rigid fiber” model are also shown.

Chapter 5 is devoted to the “spring bonding” model. The exact solutions are
obtained by applying spring bonding conditions. Then, the results are illustrated
by numerical evaluation. As a special case, the results for the “spring bonding rigid
fiber” model are presented. The reduction of the results to those of the “perfect
bonding elastic fiber” model is shown. The boundedness of the stress distributions
on the fiber-matrix interface, so on the whole domain, is proved for finite spring
stiffness. Based on the numerical calculation, the influence of material properties,
bonding stiffness, and geometry of phase transformed part of the fiber on the shear
stress concentration are discussed.

Chapter 6 provides a summary to the results for all those models. Some topics

for future work are suggested.
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CHAPTER 2. AXISYMMETRICAL DEFORMATIONS

In this Chapter, we review the general approach for solving axisymmetrical
elastostatic problems in linear elasticity. First, we consider a general cylindrical
body made of homogeneous, isotropic, and linearly elastic materials. Under ax-
isymmetrical deformations, the general solutions to stresses, strains, and displace-
ments are derived. Then, the results are extended to composite with one SMA
fiber embedded in elastic matrix. Particularly, the fiber is allowed to undergo phase
transformation along the axial direction of the fiber. Since the phase transformation
in SMA fiber, which is the main concern of this study, is described by a function
that is not absolutely integrable, we have to deal with the Fourier transform of
generalized functions. The fundamental formula and properties of both standard

and generalized Fourier transforms are also reviewed.

2.1 Fundamental (Governing) Equations

Let R be a three-dimensional cylindrical region occupied by a body in its
undeformed configuration. The cylindrical region R could be either solid or hollow.
Choose cylindrical coordinates (r, 8, z) with z2-direction along the axis of symmetry
of the body. The region R can be given by the revolution about z-axis of a two-
dimensional domain 2 in the rz-plane, as shown in Figure 2.1. Thus, the three-
dimensional region R can be expressed as the direct sum of the two-dimensional

domain €2 and the one-dimensional interval [0, 27):
R = {(r.0,2)|(r,z) € Q,0 € [0,2m)}. (2.1)

For axisymmetric deformations with respect to the z-axis, all the quantities are
independent of € so that the problem is reduced to a two-dimensional one on domain
Q. The non-trivial displacement components are u, and u., with the non-trivial

elastic strain components 7,,, Ygg, v::, and ... All these components are
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Figure 2.1. The three-dimensional cylindrical region R and the corresponding two-
dimensional domain (2. (a) A solid cylindrical region, and (b) a hollow cylindrical
region.
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functions of r and z only. The strain-displacement relations are given by

Jdu, U, Ju. 1/0u, OJu.
= s = —, Yz = ——", g = - - + —~ on R 22
Yrr or Yoo o ! N Yrz 2 0= or ( )
Consider a body which is homogeneous, isotropic, and elastic. The mechani-
cal properties are determined by Young's modulus E and Poisson’s ratio v. The

constitutive equations are given by

E
orr = (1+v)(1-2v) (1 = v)yer + v(v00 + 722,
- L (1 =v)vee + v(Yrr +7:2)]
700 = (I1+v)(1-2v)" v)veo + V(vrr + z2)s
ez = 2 (1 = v)yzz + v(rr + 00)]
T A+ ) (1-2v) ez + V(e + 00)];
E
Orz = H_—V’Vrz on R, (2.3)

or alternatively,

1
Vrr = E[U" —v(oge + 022,

Yoo = %[099 - V(Urr + Uzz)]a
_ 2 (022 — V(0rr + 090)]
Yzz = E 9=z rr 00 )]s
1
Yrz = ;Uarz on R. (24)

Thus, the non-trivial stress components o,., ogg, 0., and o,, are also functions
of r and z only. In this setting, the equilibrium equations (in the absence of body

forces) reduce to
aarr + afolrz + Urr - 000 _
or 0z r

80',-: 80:: Or:
or + 9 + . 0 on R. (2.5)
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In terms of stress. the compatibility equations for axisymmetrical deformations

are in the following forms (Timoshenko and Goodier, 1951, p.346)

Vi, - %(0” — 0g9) + 141—1/?;7? =0,

V2009 + ;2.7(0" — opp) + I j—u%?)_(;) =0,

Vios: + 1 j—u% -

Vo, — r—120r; + 1-:-1/ g:(_i =0 on R, (2.6)

where V? is the axisymmetric Laplacian operator given by

02 10 02
2_ < 2 2 2.7
v Or? + ror + 022’ 27

and © is the trace of the stress tensor:
O =0, +009+0:,. (28)

Mathematically, the above governing equations (2.2), (2.3), (2.5), and (2.6)
together with certain boundary conditions and some necessary restriction conditions

form a two-dimensional boundary value problem.

2.2 Love’s Stress Function
A standard way to solve the above elastostatic problem is to introduce the
Love’s stress function ® = &(r, z), (Love, 1927; Timoshenko and Goodier, 1951),

such that the stresses are given by



fi



) 2P
— [(2 —v)V? 032]

2
9 (I)J on . (2.9)

— V2
V) 022
The stresses defined by (2.9) automatically satisfy the compatibility equations (2.6)
The equilibrium equations (2.5) are satisfied by (2.9) provided that the stress func-

(2.10)

tion ® are biharmonic:
on €.

V2V =0

By substituting (2.9) into the constitutive equation (2.4), the strain components

can be solved in terms of the stress function ® as

14w FoRL
= TTE ar20z

14w 0%
Y00 = Er 0roz’

v 9 . 9%

7.‘::: - E
1+v (2.11)

0 2 0%®
rz = — ® - — Q.
" =TE or [(1 VIV 6z2] on
By substituting (2.11) into the strain—-displacement relation (2.2), the displace-

ment components in terms of ® can be found as

_ 1 +v 0%*®
YwETTE Broz
2
St b yvee - 22 on 9. (2.12)
0z2

U, =
- E
The axisymmetrical elastostatic problem under present consideration thus re-

duces to the determination of a biharmonic function ® such that the displacements

given by (2.12) and the stresses given by (2.9) satisfy the corresponding boundary

conditions and the restriction conditions
19



2.3 Fourier Transform

To solve the biharmonic function ¢ from (2.10), and to further determine the
corresponding stresses, strains, and displacements from (2.9), (2.11), and (2.12),
respectively, it is convenient to introduce the Fourier transform. Later, we will
consider the phase transformation in SMA fiber, which is described by a function
that is not absolutely integrable. Therefore, we have to deal with the Fourier
transform of generalized functions. In this section, we review the fundamental
formula and properties of both standard and generalized Fourier transforms for

later use.

2.8.1 Fourier Transform in L'

First, we consider the standard Fourier transform in space L!(—oc, oc), which
consists of all absolutely integrable functions. For an absolutely integrable function
¢ € L'(—oc, oc), the Fourier transform of ¢ is defined by

>

o(n) = Flo] = / o(z)e"*dz, —00 < 1 < 00, (2.13)

—0oC

where 7 is the independent variable in the Fourier transformed space, and ¢ is the
imaginary unit (i = —1). The inverse Fourier transform of ¢ € L'(—o00,00) is
defined by
Flo) = L /OO o(n)e™"dn), -0 < z < 00. (2.14)
2n J_ o

If ¢ is also continuous and piecewise smooth, then one has
¢ = FF[4]], —00 < z < 0. (2.15)

If ¢ is n differentiable, the following formula for the Fourier transform of the

derivatives of ¢ is useful

f[ja} = (=m)"Flo],  —oo<n< o0 (2.16)
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2.3.2 Fourier Transform in S

In order to extend the Fourier transform to cover more general functions, we
consider the space S, which consists of all functions of rapid decay (See, for example,
Griffel, 1981). A function of rapid decay ¢ is a smooth function such that for all

m,n > 0, one has

1"o(z
2™ ;DEI ) -0 as |z| — oo. (2.17)
d:

Since functions of rapid decay are absolutely integrable, S is a subspace of L!, i.e.,
S C L!'. Thus, both the Fourier transform and the inverse Fourier transform are
well defined in S, and the properties (2.15) and (2.16) hold. Moreover, the space
S is closed under the Fourier transform and the inverse Fourier transform (Griffel,
1981). This property is stated as the following.

Property 2.1  If ¢ € S, then Flo] € S and F~![¢] € S.

2.3.8 Generalized Fourier Transform in S§*

Now, we consider the dual space S* of S. The generalized function space
S* consists of all slow growth functions, that is, function ¢* € S* if it is locally
integrable and there exists some n such that ¢*(z) = o(z") as |z| — oo.

For generalized function ¢* € S*, the generalized Fourier transform and gen-

eralized inverse Fourier transform are defined respectively as follows:
< Flo*], 0 >=< ¢*, Flo] > for any ¢ € S, (2.18)

and

< F Yo% o >=< 0", F o] > for any ¢ € S, (2.19)

where < f,¢ > denotes the action of the generalized function f € S* on the test
function ¢ € S. The properties (2.15) and (2.16) also hold for generalized Fourier

transform on S*. Similarly, the space S* is also closed under the generalized Fourier
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transform and the generalized inverse Fourier transform (Griffel, 1981), which is
stated as the following property.

Property 2.2 If ¢* € S*. then Fl¢*] € S* and F~1[¢*] € S*.

According to the Property 2.1 and Property 2.2. one has the following Theorem.

Theorem 2.3 If ¢},.05 € S* and ¢}, — ¢ as n — oo, then F¢r] — Flog)
and F~l[o;] — F oy as n — x.

Proof. Assume ¢] — ¢ as n — oc. By the definition of convergence of
generalized function, for any ¢ € S one has < ¢},,¢ >—< ¢, ¢ > as n — oo. Since
o = F[o] also belongs to S by Property 2.1, one has < ¢%,¢ >—< ¢5,6 > as

n — oco. So,
< Flot) o >=< 0%.0 >—< 04, ¢ >=< Floy], ¢ > as n — 0o.

This shows that F[¢r] — F[og] as n — oc. Similarly, one can show F~![¢1] —
F~!{o4] as n — oo. This finishes the proof of the theorem.

The theorem 2.3 is useful for studying the mechanical behavior on the bound-
ary. Particularly, we will use this theorem to discuss the distributions of stress,
strain, and displacement on the fiber-matrix interface associated with phase trans-
formation, which is the main topic of this dissertation.

For later use, let us look at some examples of generalized Fourier transform on
generalized functions.

Ezample I  For Dirac-delta function, 6(z), one has F[§] = 1. This is because

of that

o

< Flo),¢ >=< 5,6 >= 5(0) =/ o(z)dz=<1,0> VoeSs.

— 00

Example 2 F[6(z — a)] = €'*". This is because V¢ € S, one has

< Fl6(z —a)],0 >=< 6(z — a), ¢ >= o(a) = / H(2)e**dz =< €', 6 > .
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Ezample 3  For the square-impulse function defined by

7T 2| <L,
VT =4%(2) = (2.20)
0 |z| > L,
one has
2 T
' =43%(n) = LSiIl(LI}). (2.21)
n

Since function 4* can be expressed in terms of the step functions H as
*=4T[H(z+L)- H(z - L)]
v =9"[H(z+L)-H(z :

one has

(V) =4"[8(z+ L) = (2 - L)].

Applying Fourier transform and keep in mind (2.16) and example 2, one arrives at
_i”;yt — ,YT [e—an _ CILU].

So, one has
. e—iLr; _ ez‘Ln 2,.),7‘ ]
3 =q" . = sin(Ln).
—1in N

Ezample 4  For the piecewise-linear function defined by

~TL 2> 1L,
ut =u"(z) = '7Tz |z| < L, (2.22)
—~TL z< -L.
one has
T
ut=a"(n) = i-2—77—2—sin(L7)). (2.23)

This is because of the relation (u*)’ = v*. Using (2.16), one has
—inu* = 4".

Substituting (2.21) into above and dividing both sides of above by —i7), one arrives

at (2.23).

23



2.4 Basic Equations in the Transformed Domain
Now, applying the Fourier transform with respect to z to (2.9) and using (2.16),

one has the Fourier transformed stresses:

i .
Grr(rin) = —in| 9?0 - 22|,

i dr?

[ =p: 1d®
Gop(rin) = —in|vV3e — —(_},

L r dr
Gz2(rin) = =1y .(2 - V)V + 7)2@],

or:(rim) = % (1-v)V?® + 772&)] on Q. (2.24)

where ® = ®(r;7n) = F[®] is the Fourier transform of ® and Q = {(r;n)} is
the Fourier transformed domain of 2. The symbol V2 denotes the corresponding

axisymmetric Laplacian operator after the Fourier transform:
— + —— =70 (2.25)

Similarly, applying Fourier transform with respect to z to (2.11) and (2.12)

with the aid of (2.16), one finds the corresponding Fourier transformed strains in

terms of ®:
s (rin) 1+v 4%
rr\T3 =1 -5
8 n E ndr2
500 (72 1) i1+und<f>
99(T:m) = -—,
ToORT= E rdr
d1+v

g . — _ =2 7 25
Fealrsn) = —i— n[z(l VW2 41 @],

1+1/i
E dr

Yr:(rim) = {(1 -v)V3® + 7)2@} on €, (2.26)
and the corresponding Fourier transformed displacements in terms of :

i (r: )_,1+u dd
=T
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1+v

u.(rin) = [2(1 —v)V2® + %d on Q. (2.27)

Applying the Fourier transform with respect to z to (2.10), one arrives at the

biharmonic equation in the transformed domain:
ViVie =0 on €. (2.28)

It is worthy to notice that by applying Fourier transform with respect to z, the
PDE (2.10) transforms to ODE (2.28). By solving for & from the ODE (2.28), one
can obtain the Fourier transformed stresses, strains, and displacements from (2.24),

(2.26), and (2.27), respectively.

2.5 General Solutions in the Transformed Domain
Solving (2.28), one has the general solution to the Fourier transformed Love's

stress function

®(r;n) = A1(n)Ko(|nlr) + Bi(n)In|rK1(|nlr)

+A2 () Lo(|nlr) + Ba(m)nlrhi(Inlr)  on €, (2:29)

where A;(n), B1(n), A2(n), and Bz(n) are unknown functions. And K and K are
the modified Bessel’s functions of the second kind of zero and one order, while I,
and I, are the modified Bessel’s functions of the first kind of zero and one order,
respectively.

Among Bessel functions and their derivatives there exist the following recur-

rence relations (Bell, 1968, pp113-116)

Ko'(r) = —Ki(r), Ki'(r) = =Ko(r) - ;Kl(r),

IOI(T) = 11 (‘I‘), III(T) = 10(7‘) - ;Il(r) (230)
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Utilizing the above recurrence relations (2.30), one finds the following expressions

for the derivatives of ®:

& ={ = Rl A ) = Pl B )
s (i) Ax(0) + 77 Lol Bl
.
M 7)2{ [Ko(lnlr) + ,—,lll—rmlmr)] Av(n) + [Ko(lnlr) + Inlr Ky (nlr)] By (n)
- [Io(lnlr) - ﬁzl(wr)} Aa(n) + [To(Inlr) + lnlr Iy (1nfr)] Bgm)},
V2 = 207 = Ko(llr)Bi(n) + To(|nlr) Ba(n)|. (2:31)

Substituting (2.29) into (2.24) with the aid of (2.31), one finds the Fourier

transformed stresses:

Suntrin) = ir*{ | Kollulr) + 1=Kl 4100
+[ - (1= 20)Ko(Inlr) + Inlr K (nlr)] Bi ()

| (i) - ih(lnlr)} Aa(n)

Inlr

+ (0= 20)0a(blr) + ety 1) Ba()
Gao(rim) = in3{ - Kl A () = (1= 20)Kolalr) B ()

F (i) Aa(o) + (1= 20Tl Balo)

Gua(rin) = —i773{K0(|77|7”)A1(7I) + [~ 2@ = »Kollnlr) + InlrKi(nlr)] By ()

(i) A2(0) + [2(2 = )l + e (1) Bato) .

26



or:(rin) = 712I7/\{ — Ki(Inlr)Ai(n) + [— InlrKo(|n|r)
+2(1 = v)Ky(|n|r ]Bl (m + Li(In|r)A2(n)

+ ]l Tolnlr) + 201 = v)1 (i )]32(7))} on {1 (2.32)

Similarly, substituting (2.29) into (2.26) and (2.27) with the aid of (2.31), one

finds the Fourier transformed strains:

+[ = Kollnlr) + lnlr K (1nlr)| By ()

’S'rr(r; 7]) =1

+ | o(mlr) - #Il(mm] Aa(n)

+[To(lnlr) + Inlr Iy (i) Bz(m},

- d+v
Son(rin) = 0] = K () A () = Kol B ()

Ll As() + Io(lnl'r)Bz(n)},
n T

fostrin) = =i { Kolalr) A1)
+[ = 401 = v)Ko(lnlr) + nlr K (1nlr)| By () + To(lnlr) Az ()

#[401 = o(lalr) + b1 (i) Bt .

o (ri) = HTU772|71|{ = K1 (Inlr) A1 () + | = Inlr Ko(nlr) +2(1 = v)Ki (Inlr)| By (n)

(Il A2 () + [ fo(alr)+ 200 =) )| Ba( b on €, (239
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and the Fourier transformed displacements:

+ v

E

inl{ = K (i) Ay (n) = Inlr Ko(inlr) B (n)

ur(rin) =1 !
+ (i) As () + InlrTo(Inlr) Ba(n) }.

ie(rim) = —=Zn?{ Kolnlr) Ay () + [ = 401 = )Ko(lalr) + Inlr K (1nfr)] By ()

+lo(lnlr) A2(n) + [4(1 = ) Io(lnlr) + Wl Ly (i) | Ba(n)} - on €. (2:34)

The above equations (2.32), (2.33), and (2.34) give the general solutions to
stresses, strains, and displacements. To obtain exact solutions to special problems,
one can determine the unknown functions A,(7n), Bi(n), A2(n), and B2(n) from the

corresponding boundary conditions and restriction conditions.

2.6 General Solutions in the Original Domain

Now, one can perform the inverse Fourier transform on (2.29) to obtain the

Love’s stress function in the original coordinates:

/ {Al(I])Ko(IUIT‘) + Bi(n)Inlr K1 (Inlr)

+ A o(lnlr) + Ba(m)lalr L (i) fe™dn on @, (235)

Similarly, performing the inverse Fourier transform on (2.32), (2.33), and (2.34),
one obtains the stress, strain, and displacement fields in the original coordinates.
The stresses in terms of the original coordinates are

1 [~ 1
i) =iz [ ¥ { [Kalhle) + Kol | s

<
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+[ = (0= 20)Ko(nlr) + e K (1) | By ()

+|To(nir) - |—,—’1|—rh<m|r)] Ay(n)

+[(1 = 20)1o0nlr) + e )] Bz(n)}e‘“’:dn-,

oulrd) =g [t = oK) = (1= 20) Kool B )

+ D) A2 + (1 —2U)Io(|71|7”)32(77)}e“i"’dn,
(r.z) = -—z—/ {Ko In|r) Ay (n) + [— 2(2 — v)Ko(|n|r)
+lnlr K (1nlr)| By () + To(Inlr) A=)
+[202 = i) + ol o) Ban) b,

oretrd) = o= [ ainl{ = K lin s + [ = Kol

+2(1 = )Ki(Inlr)| By (n) + L (Inlr) Az ()

[l Tolalr) + 201 = )1 (alr)] B e 7dn on 9. (230

The strains in terms of the original coordinates are

or(ri2) =it [ ][ Kollnin) + K (iln) | n o

+[ — Ko([nlr) + |7;|7-K1(|77l7“)]31(71)

+[10<m|r> - |n1|r (Inlr }Az n)
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1ol + i ()] B e,

wnlrn) = i [ ] = oK i A = Kollalr) B o)

+|—|11(Inl ) As(r) + Io(lnlf')Bz(n)}6_"’:d"1,

d1+4+v [
vetrd) = =i [ Kolaln) A

+[ 4(1 = v)Ko(|nlr) + [n|r K1 (|n|r )]Bl(7l)+10(|77|7')A2(77)

400~ ol + i1y (nlr)] B2 e~ <,

relrd) = g [Pl = Kl ato) + [ = i Kool

+2(1 = V)K ([nlr)| By (n) + L (Inlr) Az ()

[l toalr) + 200 = )1y i) Bato) be~ " on 2
(2.37)

The displacements in terms of the original coordinates are

wri2) =i [ alal{ = Ka(lnlr) s o) = Il Kol Bs ()

+L(nlr) Az (1) + nlrTo(nlr) Ba(n) fe™=dn,

uslr ) = 5o [ P {KolnlnAim) + [ - 401 = ) Kollnlr)

+llr K (Inlr)] By () + To(Inlr) Az (n)
+[4(1—V)Io(mlr)+[7)|r11(|7)|r)]Bg(r))}e‘inzdzl on 2. (2.38)
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2.7 SMA Fiber Reinforced Composite

Let R and R(® be two three-dimensional regions occupied by the matrix and
the fiber of a continuous fiber reinforced composite in its undeformed configuration,
respectively. Throughout this paper, the superscript “(1)” indicates quantities asso-
ciated with matrix and superscript “(2)” with fiber, respectively. For convenience,
the general superscript is denoted by “(n)”, n = 1 or 2. Assume the fiber is straight
with a circular cross-section of radius a. Choose cylindrical coordinates (r, 8, z) with

z-direction along the longitudinal axis of the fiber. Then, one has

RY = {(r.0,z)]a<r<,0<6 <27, —00< z< o0},

R® = {(r,0,2)]0<r<a,0<0<2m,-00< 2z <oc). (2.39)

The interface between the fiber and the matrix is given by surface
P={(r.0,z)r=a,0<0<2m —00< 2< o0} (2.40)

By axisymmetry, it is convenient to take the regions R(™) as the revolution about

z-axis of the following two-dimensional domains Q™ on the half rz-plane:

QM) = {(r,z)]a < < 00, —00 < 2z < o<},

0@ = {(r,2)|0 <r <a,—00 <z < o0}, (2.41)

and the interface P as the revolution about z-axis of the following straight line II
on the half rz-plane:
IT={(a,2z)| —o0 < 2 < oc}. (2.42)

The regions R("*) and domains Q(™) are showed in Figure 2.2.
Now, assume the matrix is made of a homogeneous, isotropic, and linearly
elastic material with Young’s modulus E‘!) and Poisson’s ratio v!). The fiber is

capable of undergoing a displacive phase transformation along the axial direction.
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Figure 2.2. The SMA fiber reinforced composite. (a) A t
D). (b) The corresponding

of a straight SMA fiber (R(?)) embedded in matrix (R}
two-dimensional domains Q1) and Q(?).
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The transformation strain is denoted by 47. Within each phase, we assume the
fiber is linearly elastic and isotropic with Young’s modulus E(® and Poisson’s ratio
v(?. We model the deformations associated with a SMA fiber reinforced composite
with a partially transformed fiber as follows.

Assume that part of the fiber undergoes phase transformation with the con-
stant transformation strain 47 along z-direction. The sharp phase boundaries in
the fiber are assumed perpendicular to the longitudinal axis of the fiber. The phase
transformed region of the fiber is characterized by the subset A of z-axis such that
the 2z coordinate of the points of transformed region belong to it. The transforma-

tion strain in the fiber is given by the (strain) phase transformation characteristic

AT z€A,
Y =9"(z) = (2.43)
0 z ¢ A.

Since the fiber is embedded in the matrix, the fiber and the matrix interact with

function:

each other under certain bonding conditions. Elastic deformations in the matrix
arise as a result of the phase transformation in the fiber, which at the same time
induces additional elastic deformation in the fiber in order to maintain equilibrium
at the interface. Therefore, in general, the deformation of the fiber consists of two
parts: the deformation from the phase transformation and the elastic deformation
imposed by the constraint of the matrix. The elastic axial normal strain in the fiber
is 72) —~*, where 72) is the total normal strain in axial direction in the fiber.
For any axisymmetrical bonding conditions between the fiber and the matrix,
namely the bonding conditions are independent of the angle 6, the deformations in

both the fiber and the matrix are axisymmetrical. Thus, for the composite system

considered here, the strain-displacement relations are given by

’y(n) _ 61L£n) 7(’1) _ u(rn) W(H) _ 611?,")
r or 0 r % z
1/ oul
~{m = 5( ,L7 + ér on R™. (2.44)



The equilibrium equations are given by

dory 00 ol oy
ar 0z r

ooy 90l ol
o T ot r =0 onRM. (2.45)

And the constitutive equations are. in general, given by

1 7 (n) 7
1) = ol = v (o + o))

on R™, (2.46)

where §,; is the Kronecker delta.
In addition, in the absence of any loads at infinity and for regularity at the

center of the fiber, the stresses are required to satisfy the restriction conditions
o™ = 0(1), 0,(,'01) =0(1), o™ =0(1), o™ =0(1) asr?+z?—- o0, (2.47)
and
o? =0(1), o =0(1), @ =071), ¢?=0(1) asr—0. (248)

Thus, the elastostatic problems for both fiber and matrix are axisymmetric as
described in section 2.1, with restriction conditions (2.47) and (2.48). The general
solutions to the elastostatic problem at hand can be obtained by using previous
results in the Sections 2.2-2.6 and taking account for the restriction conditions

(2.47) and (2.48).
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By applying Fourier transform with respect to z and noticing Theorem 2.3, the

restriction conditions (2.47) in the Fourier transformed domain become

&M =0o(1), o) =o0(1). ™ =0(1), ™ =0(1) as|r|—o0. (2.49)

In addition, we requre that the Fourier transformed stresses are bounded at the

center of the fiber:
52 =0(1). ¢2=001), ¢@=001), 6P=0(1) asr—0. (250

The general solutions to stresses for both fiber and matrix in the Fourier trans-
formed domain are (2.32). Considering the restriction conditions (2.49) and (2.50)

and the behavior of the Bessel functions as r — oo and r — 0, one has
AP () =B () = AP () =BP(n) =0, -0 <n< 0. (2.51)

Using (2.29), the general solutions to the Fourier transformed Love's stress

functions for fiber and matrix are
™ (rin) = AR (Inlr) + B @)mlr R (Inlr)  on @™, (2.52)

where

QY = {(r;n)]a < r < 00, —00 < 7 < 0},
Q@ = {(r)0<r<a,—00<n< oo} (2.53)
The modified Bessel's functions of the second and the first kinds are redenoted as
R\" = K,, R\ =K, (2.54)

and

RP =1, R? =1, (2.55)
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respectively; while unknown functions are denoted as

AV = A" ). BYm) =BV () (2.56)
and

AP )= A7), BD ) = B (), (2.57)

respectively.

By using (2.32), the Fourier transformed stresses for fiber and matrix are

(-1)

&M (ryn) = irf‘{ [Rf)")(lnlr) BT Rﬁ")(lnlr)] A ()

(=070 = 2 RE o)+ e R )| B

~(n . n 1 n n n n n
& (rim) = i(-1) rﬁ{WR‘l ") A™ () + (1 = 20 RS (|n|r) B >(n)},

3 ri) =~ { R () A )
+[(=1)"2(2 = v )RS (i) + [l RS ()] B(")(n)},
5 (rim) = n2|n|{(—1)"3(1")(|77IT)A‘")(7)) + [(=1)" il RS (1mkr)

+2(1 - u("))R(ln)(|77|r)] B(")(n)} on Q. (2.58)
Using (2.33), the Fourier transformed strains for fiber and matrix are

~(n) .1 + l/(n)

e (i) = i 773{[1;{(()n>(|n|r)_ L

Ll

R (in)] 4 0)
+[=0" RSl + b B )| B .

Fom(rim) = i(~1)

21+ 3{ 1
|

For T R (nin AT ) + Ré"’umr)B‘")(n)},
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Hlr R ()] B )} + 6230

~(n 1+ V(”) n n n n n
() =~ 772Inl{(—1) R (nlr) A () + (=) Infr RS (1nlr)

+2(1 — ") R () )] )(,,)} on . (2.59)
Using (2.34), the Fourier transformed displacements for fiber and matrix are

1+ v

@ (rim) = i(=1)"

alnl{ RS (nlr) A7) @) + Infr RS (1nlr) B (1) },

n 1+U(") n n n n n
i) = P B (0 AT () + (=1 4(1 - ") RE (i)

n n . 1 ~* A (n
Hnlr R (i) B ()} 48,2257 () on 00, (2.60)

Performing the inverse Fourier transform on (2.52), or directly using (2.35) and
considering (2.51), one obtains the Love's stress functions for the fiber and matrix

in the original coordinates

n 1 > n n n n —inz n
o™(r,z) = — [ { AW R (lr) + B lnlr RS (nlr) pe"dn - on Q.

2
(2.61)
Similarly, one has the stress, strain, and displacement fields in the original

coordinates for fiber and matrix. The stresses are

o) =ig [ [ air) - LRG| a0

+(=0n = 2R ) + lnerﬁ")(lnlr)]B(")(fz)}e_i":dn,
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ot o2y = [~ oL R i) A

(1= 2R (Inlr) B u)}e-"’“dn,
(n) (r,z) = —1—/ n { ") (In|r) A (n)

#0202 = RE i)+l R ) B ) b,

—0C

o2 = o [ l{ (-1 R (i) A% )+ (-1 e B (i)

+2(1 - V("))R(ln)(|1)|'r)]B(")(17)}e_i":d7) on QM. (2.62)

The strains are

4 e
(n) _ (n)
Yrr (r Z) I o E(") [oo {I: |7’| |I]|T‘

+ [0 B i) + i B (0] B ) b2,

1‘)] A (n)

(n) . n 1+ l/(n) /oo s 1 () (n)
5 T, =i-1)" —07—7M8— i —R n A n

+Ré")(I'Illr)B(")(n)}e’i"”dn,

1+ 0™

(n) _ < 3f (n) _1\n o (n) (n)
219r2) = 52 [ R i A )+ [(1ra )R i

Hlr B (110 B ) e + 677 (),

1+v™

%2 (12) = 5m / n|nl{< DR (i) A () + | (=1)"nlr RS ()
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+2(1 - u<">)R§"’([7,|r)] B(”)(n)}e*“’:dn on Q" (2.63)

where 7*(z) is the phase transformation characteristic function (2.43).

The displacements are

w1

W (p 2) = i(=1)" ——
ul(r.2) = i(-1)" s

[ an{R i )
+Hnlr RS (Inlr) B () be = d,

1+ v

u(z")(r,z) = m/ 772{R8")(|7)|r)A(")(l)) + [(—l)"4(1 - U("))R(()")(]1]|r)

+]71|rR(1")(|r;|r)] B(")(n)}e—'”zdl; + di2u”(2) on Q" (2.64)

where u*(z) is the displacement phase transformation characteristic function given

by

' (z) = / y*(s)ds. (2.65)

20

2.8 Single Finite Segment Transformation and Normalization

For composites, the interaction between their constituents plays a important
role in determining the mechanical properties. Therefore, the local behavior near
the interface between their constituents is of great interest. As for SMA fiber
reinforced composites associated with phase transformation, the local behavior near
the intersection between fiber-matrix interface and phase boundary in the fiber is
crucial. In order to study this local behavior, a model including only one single
finite segment undergoing phase transformation is fundamental, i.e., A = [-L, L],
(see figure 2.3). This model is not only simple but also practical. In the setting

of linear elastic deformation, it gives all the information for general transformation
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pattern of fiber by superposition principle. For this sake, attention is paid to the
case that only one single finite segment of length 2L of the fiber undergoes phase
transformation along z-direction. After the phase transformation, the length of
this segment becomes 2L(1 +47). The (strain) phase transformation characteristic

function in this case is

1t =y (e) = (2.66)
0 |z| > L.

(See Figure 2.4(a)). The displacement phase transformation characteristic function

u* given by piecewise linear function

ut=ut(z) =< 47Tz |z] < L, (2.67)
—TL z2<-L,
(See Figure 2.4 (b)).

The general solutions are given by (2.61), (2.62), (2.63), and (2.64), with ~*
given by (2.66) and u* given by (2.67).

The mechanical responses of the composite to the phase transformation of the
MSA fiber depend not only on the material properties and the geometry of the
matrix and the fiber, but also on the geometry of the transformed region of the
fiber. To investigate the effect of the geometry of the transformed region of the
fiber, we introduce the dimensionless normalized coordinates (7, Z) and normalized

variable of the Fourier transformed domain 7 as follow

%, = an. (2.68)

(8]

F= -,
a

To describe the geometry of the transformed region of the fiber, we introduce the

aspect ratio a, which is defined by the ratio of the length (2L) of phased transformed

portion of the fiber to the fiber diameter (2a)
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Figure 2.3. The SMA fiber reinforced composite with a fiber of which a single finite
segment of length 2L undergoes phase transformation. (a) A three-dimensional plot

of regions R(Y) and R(?. (b) The corresponding two-dimensional domains Q(!) and
Q.
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Figure 2.4. A fiber with a single finite segment of length 2L undergoing phase
transformation. (a) The phase transformation characteristic function. (b) The
displacement phase transformation characteristic function.

42



(2.69)

a=—.
a
). we use the notation f to express the change of variables

For a function f(
(2.70)

of f from (r.z) to (7, 2):

fir.5) =
By using this notation, the Love's stress functions (2.61) can be expressed in
the normalized variables as
(n)(= = 1 (n)( =\ p(n) (n) (n) == —iafz
8 (72) = o— [ {AW GRS (i) + B ()lalr R (1)) fe~ e dn (2.71)
2am J_ o
on Q| where A" and B(™) are given by
A = Ay, B m) = B, (2.72)
The domains are
R = {(7.6,2)]1 <7< 00,0 <0 <27, —00 <z < o<},
(2.73)

JO<F<1,0<80 <21 —00 < Z < oo},

R(2) = {(7,0,z
with 8 = 6, and
QM = {(7,2)]1 < 7 < 00, —00 < Z < oc}
Q® = {(7,2)|0 <7< 1,-00 < Z < 00} (2.74)
Similarly, the stress components can be expressed in the normalized variables
as
1 >a (="
——(n) = . 77 n) (n)(1=1= (n
o) =ig- [ Z{ A - SL R G | A
(=1)"(0 = 2R i) + e R i) | B a) e an,
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_(n) R ~(_1)n /x ,_’3 (n) (71 =
)= Ty A
()0 (rl ) 1 M . (1‘4 ‘,’IrR (I I ))
HL= 2R () B ) b
—(n = - 1 > 7} n n)s -
.2 = =i [~ L{ R 0 A

+[(=172(2 = )RS (al) + il R (1l )]B<"><ﬁ>}e-"“"'fdﬁ,

> 2 n ) )y
o (7 2) = = / 7 'J'{( 1" R (1alm) A 1)+[(—1)"|neré)(|nlr)

a

+2(1 - V(")) (n) (In|7 JB(") } iy on Q™. (2.75)
The strain components can be written in terms of the normalized variables as

(n) =3 _1\n B
3 =i [ T - SR Gan)| 47

(3]

-0 B i) + R )| B ) e,

_(n), - — . n1+l/(n) /oo 7_)3 1 (n) (rl _
(7 ) = (1) LI R
00 (7. = i1 g [ L R i) A )

R (1517 B <">(n>} ~ia1g

~(nN)/r=z = 1+V(n) OOT’ n n n n =|=
0.2 =~ [ TR i A @)+ [0 - )R i

+lRE (1717 B‘"’(ﬁ)}e"’“"’*‘dﬁ + 027" (2),

14+ 0™ > 52|y .
~(n)(= =\ _ 1717 _1\n (M) 1212\ A(n) [~ 1\ sl (n)1=1=
4002) = s [~ E iR A @) + |10 iR i)
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+2(1 - u(”))R(l")(\ﬁlf)J B“')(,-,)}e-“""fdﬁ on Q™ (2.76)

where

3 =5"(3) = (2.77)
0 [Z] > 1.

The displacement components, in terms of 7 and z, are

14+ v™ [ 77 _
(M) (= =y _ n (n) 1212\ 2(n) /=
a,"(7,2) = i(-1) 9 B /; = {Rl (Inl7)A'"™ (1)

+1alFRE" (1717 B (1) fe ",

|
o
3
~_~
=)
[N

1+V(”) oc =2 n () n n n i
) = 2_WE(_)_/ L{RE(1aln A () + [(=1)"4(1 = )RS (l7)

iR (1) B () e~ di + 820" () on @, (2.78)
where
~TL z2>1,
wt=u'(z)=¢ 7TLz |z <1, (2.79)
—~4TL z< -1
In the following chapters, we will further discuss the exact solutions for three
different models. In Chapter 3, we discuss the “perfect bonding rigid fiber” model,
in which the fiber and the matrix is perfectly bonded and the fiber is much stronger
than the matrix so that the elastic deformation in the fiber is ignored. In Chapter 4,
the “perfect bonding elastic fiber” model is studied. The fiber and the matrix is
still assumed perfectly bonded but the elastic deformation in the fiber is taken into
account. In Chapter 5, the “spring bonding” model is investigated, in which the
perfect bonding condition is relaxed to allow for displacement discontinuity across
the fiber-matrix interface. Such a displacement jump results in a shear stress with

magnitude proportional to the magnitude of the displacement jump.
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2.9 Asymptotic Expansions for the Modified Bessel Functions
For later use, here we present the asymptotic expansions for the modified Bessel
functions of the first kinds and the second kinds.

As 7 — oc. the modified Bessel functions have the following asymptotic expan-

sions (Olver, 1974):

R (1) = Ka(7) ~ \/—21;,6_77 :1 * 8%; - 121857';2 * 1012()45,73 A
R (1) = Io(}) ~ -2%;’@'7[1 + é’lﬁ + 122’_}2 + 10;51773 +]
R~ () = L) ~ 271:7877 [1 B sif; B 1218577'2 B 1012045773 +]
as 7] — 00. (2.80)

For r # 0, one has the following asymptotic expansions for the modified Bessel

functions as 7 — oc:

n_rf'l_1+ 9 B
207 | 8pF  128(7T)2  1024(7F)3 1’

T A P I S 105
Ryar) = Ka() M sgr T 1 T 1024(r)

+--- s

9 75
nr 1 N
27r77fe [ + 8nr + 128(77)?2 + 1024(77)3 + }’

g 128(p7)2  1024(57)? +J

. 3 15 105
€
- ;

as 11 — oc. (2.81)



As 77 — 0%, the asymptotic expansions for the modified Bessel functions of
the first kind and the second kind are the follows have the following asymptotic

expansions (Zayed, 1996):

as i — 0% (2.82)

For n = 0, the modified Bessel functions of the first kinds take the following

values:

R®(0) = 1,(0) = 0. (2.83)
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CHAPTER 3. “PERFECT BONDING RIGID FIBER” MODEL

The interaction over the interface between the different constituents associated
with phase transformation in the SMA fiber is one of the most important subjects
for the studies and applications of SMA fiber reinforced composites. The interaction
depends not only on the mechanical properties of the constituents, but also on the
bonding conditions. For analytic study, the assumption of perfect bonding between
fiber and matrix describes a fundamental and the simplest bonding condition. In
the case that the fiber is much stronger than the matrix, the phase transformation
in the fiber exerts significant influence on the deformation of the matrix through the
perfect bonding condition. However, the influence of matrix on the fiber is relative
small and can be ignored. In this chapter, we focus our attention on the situation
that the fiber is much stronger than the matrix and the fiber and the matrix are

perfectly bonded.

3.1 Boundary Conditions

Assume that the fiber and the matrix are perfectly bonded. Also assume that
after the phase transformation, the radial displacement in the fiber is negligible
compared to the axial one. Due to the interaction between the fiber and the matrix,
the deformation of the fiber consists of two parts: the deformation from the phase
transformation and the elastic deformation imposed by the constraint of the matrix.
Since the transformation strain is generally much larger than the elastic strains, the
former is the dominant strain in the SMA fiber. In what follows, we will model the
SMA fiber as a “rigid fiber” in the sense that after the phase transformation, the
matrix exerts no effect on the fiber and the radial displacement of the fiber is ignored.
The only deformation considered in the fiber is that of the phase transformation.

In this setting, we only need to study the deformation of the matrix. The problem
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turns out to be an axisymmetric one of a hollow cylindrical region as discussed in

Chapter 2. The boundary conditions on the inter surface are expressed as
ul(a,2) =0,  ull)(a,2) =u"(2), (3.1)

where u*(z) is the displacement phase transformation characteristic function given

by (2.65). The stresses satisfy the following restriction conditions at infinity:

o) =0o(1), ol =o(1), o) =0(1), o =0(1) asr?®+22—>o00. (3.2)

3.2 Exact Solutions

Because the deformation of the matrix is axisymmetric, the general solutions
can be obtained from Section 2.7 in Chapter 2. Bearing in mind of the restriction
conditions (3.2) and using results (2.60), one arrives at the general solutions to the

displacements in the Fourier transformed space

- 1401

i) (r; ) = —i=—g—ninl{ KO (imln) AD ) + Inlr K (Inlr) B ()},

- 1400

i (rim) =~ {KS2 (i) AD () + | - 41 = vO)K (Inlr)
+nlrK (i) BO@)} o GO, (3.3)

In order to get the exact solution of the problem considered, we transform
the boundary conditions (3.1) to the Fourier transformed domain. Generally, the
function u*(z) in the boundary conditions belongs to S* but is not absolutely inte-
grable. For such functions, we use the generalized Fourier transform. Consequently,

the boundary conditions (3.1) after generalized Fourier transform become

~ ~ ~% 1 ~%
i (a;n) =0, aM(a;m)=d"(n) = i (n), -co<n<oo.  (3.4)
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Setting r = a in (3.3) and substituting them into (3.4), one arrives at the

algebraic equations of the boundary conditions:
n|K1(Inla) AD (1) + n*aKo(Inla) B (1) = 0,
Ko(Inla) A (n) — [4(1 — vV)Ko(|nla) — |nlaK:(Inla)] B (n) = i——=x7"(n),

—00 < 7 < 0. (3.5)

Then, one can solve for the unknown functions A*)(n) and B(")(n) as

EW  |njaKo(|n]a)
M () = _ olinia) .
A (n) T30 Ap ) (n),
ED  Ki(|nla)
(1) o 1 77 ~ %
B (77) - 1’1 +l/(l) An3 Y (7’)7
—00 < 7 < 00, (3.6)

where A = A(n) is given by

A(n) = ~|nlaK3(Inla) — 4(1 = vV) Ko(|n|a) K1 (Inla) + [nlaKF (Ina),

—00 < 7 < 00. (3.7

Substituting (3.6) into (2.52) with n = 1, one obtains the Fourier transformed
Love’s stress function for the matrix :

om B 1
F* 1(1 +v(D) An3

{ - lako(inla)Ko(Inir)

+nlrK (Inla)Ka(Inir)}  on Q1. (38)

Likewise, substituting (3.6) into (2.58), (2.59), and (2.60) with n = 1, one
obtains the Fourier transformed stresses, strains, and displacements for the matrix.

The Fourier transformed stresses for the matrix are

AL EM 1
7  (1+vD)A

{ [alnIKo(alnI) +(1-2M)K, (aml)] Ko(lnlr)
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+| 2Kolall) = ks alab) (i) |

&y E® 1

e s x {0 - 2K Kt

-2 Ko(aln) K ()}

o

¥ T Q+vM)A

+In|rK1(alnI)K1(|nlr)},

~(1) M &
Orz . EM  sign(n) { — InlrK1(a|n))Ko(|n|r) + [a|n|Ko(a|n|)

7 A+ A

+2(1 - u“))m(aml)] Kl(lnlr)} on 4V,

The Fourier transformed strains for the matrix are

(1)
2 = 2| |etmotatny + K ala)] i

+ [gKo(a]nl) — |nlrK; (a|77|)] K1(|n|r)},

~(1) a
T — 3| Katamatnir) - Eotala i)

A

_(1)

L2 = 2{ - [ototai) + 40 - o) Katal] Kol
HalrKs alaD i)

(1) ;

T SO otk (alnl)Ko(lir) + |alnlKo(aln)

21 - D) K, (a|n|)] K} on 0.
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(1) (1)
i __E 1 { [— aln|Ko(aln]) — 2(2 - V(l))Kl(GIUDJ Ko(|n|r)

(3.9)

(3.10)



The Fourier transformed displacements for the matrix are

L = g { SR e Kol - KolalDKa(nln)
af) 1
= — i { [anlotalal) + 40 - V) el Kol

—InHKl(aInl)Kl(lnlr)} on Q). (3.11)

For fixed r, all these ratios given in (3.8), (3.9), (3.10), and (3.11) are functions
of the material properties of the matrix and independent of the phase transfor-
mation in the fiber. If we consider the phase transformation in the fiber as input
or excitation and the Love’s stress function, stresses, strains, and displacements
in the matrix as outputs or responses, these ratios give the corresponding trans-
fer functions, respectively. Theoretically, if we known the phase transformation
characteristic function of the fiber, we can find the Love’s stress function and the
distributions of stress, strain, displacement in the matrix through these ratios.

Multiplying these ration (3.8), (3.9), (3.10), and (3.11) by 4* and performing
inverse Fourier transform, one obtains the Love’s stress function, stresses, strains,
and displacements of the matrix in the original physical domain R(!). The Love’s

stress function is

(1) o
80(r,2) =iz [ { - nleKolnla)Kollnir)

2r(1 4+ M) J_ o And

+|n|rK1(Inla)Kx(Inlr)}:/‘(n)e“”‘dn on Q). (3.12)
The stresses have the following forms:

(1) oo
o) = g [ ] [alotalnl) + (1 - 26) ol Kl

+| 2Ko(all) = ol s alnD)] K (i) b5 (=720,
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EM

(1) —
Ogg (7' Z) - 271'(1 + V(l))

© 1 {(1 - 2U(l))K1(a|77|)KO([n|T)
_gKO(“h?[)KI(IUIT)}‘"r‘(n)e'i"’dn,

EM

(1)
O'zz (T', Z) 271'(1 + 1/(1))

{ [— aln|Kolaln]) - 202 — VDK, <a|n|)] Ko(lnlr)
+|n|rK1(aln|) K1 (|n|r) }7 (n)e™*"dn,

EM > sign(n)
(1) I e 26\ ) _
2(rz)= 12 T+ ) .~ A { In|rK1(a|n|)Ko(|nlr) + [G|TI|KO(GIU|)

+2(1—V“))Kl(alnl)]K1(|nlr)}‘"1'(n)e“”‘dn on QM. (3.13)

The strain components can be written as

W02 = o= [~ x{ [otmxotatn + Kot Kol
+[ 2ol Il (el K i) 7 (e 7,
W02 = o= [ 3 { KatalnKalalr)
—§Ko<a|n|)1<1<|n|r)}a*(n)e-*‘“dn,
102) = o [ 3{ - [alolKatatn) + 41 - 1)l ot
zz 21 J_oo A

+|TI|’”K1(a|nI)K1(Inlr)}‘r‘(n)e'i”’dn,

W02 =i [ SOtk alaKalnlr) + [l Kofala)
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+2(1 - v, <a|n|)] Kl(lnlr)}’r'(n)e“""dn on Q. (3.14)

The displacement components are

1

* 1 (r
(1) = — -
w2 = o [ ge{SKialnKo(lnl)

~ Ko(alnl) K1 (Inlr) }3* (n)e™*"dn,

() = iz [~ - [alalKotala + 41 - v K (al)] Kol
ks ala K (i)} (n)e™7*dn— on 0 (3.15)

Alternatively, the (3.12), (3.13), (3.14) and (3.15) can also be obtained by
directly substituting (3.6) and (3.7) into (2.61), (2.62), (2.63), and (2.64) with

n=1.

3.3 Single Finite Segement Transformation

Now, we focus our attention on the case that only a single finite segment of
length 2L of the fiber undergoes phase transformation. Assume the phase transfor-
mation is uniform with a constant normal transformation strain 47 along the axial
direction of the fiber. After the phase transformation, the length of this segment be-
comes 2L(1++T). Therefore, the displacement phase transformation characteristic

function is given by (2.67):

7TL z>L,
w(z)={Tz |d<L, (3.16)
—~TL z<-L.
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The (strain) phase transformation characteristic function is given by (2.66):
7l <L
7' (z) = (3.17)
0 |z| > L.
Applying Fourier transform on (3.17) and using the result in (2.21), one has

T
aewwn=%ﬁmmn (3.18)

Substituting (3.18) into (3.6), the unknown functions A(!)(n) and B (7)) are

2EM~T |n|aKo(|n]a)

M) = —4

sin(Ln),

2EU4T K (Inla)
1+ Apt

BW(n) = sin(Ln),

—00 < 7N < 00. (3.19)

For this case, it is convenient to use normalized variables defined by (2.68) and

(2.69). In the normalized coordinates (7, Z), one has

7 2a* EDAT 7| Ko(I7])
M(ay = AW — 2olin) _
A™(#) Mlpesja =~ 3w Rt Sinled),

_2a*EDAT K (|7))
n=i/a = "1y M Ag

BW () = BV (n)| sin(e),
—00 < fj < 00, (3.20)

where A = A(7) is given by

= — |7l K3 (I71) — 4(1 — v V) Ko(la) K (I7l) + Al K3 (171),

) = A,y =
—00 < 7 < 00. (3.21)

Substituting (3.20) and (3.21) into (2.71) with n = 1, one obtains the Love’s

stress function for the matrix. Note that the imaginary part of the integrand is odd
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function of 7. The Love’s stress function can be written as the following forms in

the normalized coordinates

aaE(l)‘YT 00 1

V(= 35y -~ = -
¥ = Ty | A

{ = Ko7 Ko(Il7)

+7lF K1 (7)) K1 (19]7) Jsin(ad)sin(anz)dn on QO (3.22)

Similarly, substituting (3.20) and (3.21) into (2.75), (2.76), and (2.78), Also
noticing that the imaginary parts of the integrands are odd functions of 7, one
obtains the fields of stress, strain, and displacement in the normalized coordinates.

The stresses can be written as the following forms in the normalized coordinates

1), T oo
o(r2) = ot [ g2 { el + (1 = 2) )| Kol

+ £ K - I (1) | K1) Jsntomeos(azniar,
(1) oo
5 = oz | 2] (1= 2K Kalaln)

Q+vW)r J_ o Af

- 2 Ko({) K (717 fsin(an)cos(azma

()T oo
oW5) = ot [ Ain{[ 171 Ko(|7]) - 2(2 - u“))m(wl)] Ko(|7l7)

AR () K (17l )} sin(a)cos(27)d7,

EMWAT
aD(F,2) = —T— f

ot [ gl = ot + [iikata)

Al
+2(1 - V) Ky () ] Inlr)}sm a)sin(aZq)dn

on Q). (3.23)
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The strain components can be written in terms of normalized coordinates as
~)(= 5 ‘7T > 1 _ _ _ =
W) =L [~ 2 [ikata + Kada] xolini
1 _ i _ I _ N
+| 1K) - I )| K1) sin(ameos(aznan
T oo

Y ol 1) (N
W0 =1 [ g={ Kkt

- KoK (117) sin(aneos(azn)ar

T oo
Wi =L [~ 2 { = atmoind + 40 = v 1) Kol
HlKs (7 K (117) sin(an)oos(azn)ar,

T [e <}
W) =L [~ g { - koo + k()

+2(1= )Ry ()| s (117) Jsin(amsinfaznar
on Q. (3.24)
The displacement components, in terms of 7 and z, are
> 1

T
(1) (7 3y = 3V =
4, (7, 2) ) Bn

{1 (7 Ko(l717)

—Ko(|) K1 (17]7) Jsin(adf)cos(az7)d7,

T oo
a9 == [~ o [ilkoli) + 40 - v 1) Kol
~lnirKs () K (1) fsin(emhsin(ozn)dn on V. (3.:25)
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These results can also be obtained by substituting (3.18) into (3.12), (3.13),
(3.14), and (3.15), and normalizing them with (2.68) and (2.69).
As shown in (3.23), (3.24), and (3.25), it is clear that all the components of

stress, strain, and displacement are proportional to the transformation strain v7.

3.4 Numerical Evaluation

In this section, we present the numerical evaluation of the exact solutions (3.23),
(3.24), and (3.25), which are for single finite segment of fiber undergoing phase
transformation. The calculation is performed using Mathematica with Poisson’s
ratio (1) = 0.25. Noticing that all the integrands are even functions of 7, one only
needs to calculate the integration over the interval (0, 00).

Figures 3.1 — 3.3 show the 3D plots of stress distributions, the strain distribu-
tions, and the displacements for the case of a = 10, respectively.

Figure 3.4 displays the distributions of the stresses on the interface with the
fiber for « = 10. It is shown that across the phase boundary (Z = 1), the nor-
mal stresses have finite jumps, whereas the shear stress seems to approach infinity.
Outside the transformed region, the normal stresses are very small in magnitude
compared to the shear stress G,.

Figure 3.5 shows the shear stress distributions on the interface with the fiber
for a =1, 5, 10, and 20, respectively. It shows that the shear stress increases with

the aspect ratio a.
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Figure 31 The 3D plots of stress distributions for v = 0.25 and a = 10.
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Figure 3.2.  The 3D plots of strain distributions for »(!) = 0.25 and a = 10.
~(1) ( ) 2 (1)
@ L () 2, ()1;# and (d) 2.
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Figure 3.3.
7(1)

and (b) ELT

ay

The 3D plots of displacements for vV = 0.25 and a = 10.
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Figure 3.4. The distributions of the stresses on the fiber-matrix interface for
v(1) =0.25 and a = 10.

5(1)
Figure 3.5. The shear stress distributions, Ba'ff_’r’ on the fiber-matrix interface
Y

for v(1) = 0.25 and a =1, 5, 10, and 20, respectively.
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3.5 Analysis of Singularities

For SMA fiber reinforced composites, the stresses are induced by the phase
transformation in the SMA fiber. The stress concentration in the matrix usually
occurs near the interface with the fiber, especially at the location near the phases
boundary in the fiber. In this section, we develop approximate expressions for the
stress distributions at the interface with emphasis on the possible singularities near
the phase boundary (|z| = 1).

By setting # = 1 in (3.23) and considering that the integrands are even func-

tions, the stress components at the interface with the fiber are given by

2EMAT oo A
r(1+0vM) Jy  Ajf sin(a)cos(azn)dd,

a(1,2) =

2E(1)’)’ A(l)
r(1+v() Jy Aj

= (1)(1 z) = 8 sin(af)cos(az7)d7,

(1) (1)
a1,z = w?1E+ :(1)) / AAn sin(a)cos(az7)d7,
2E(1)’7T A(l)

(1,2 =

T o) J, A Snlemsin(azn)dd,

—00 < Z < 00, (3.26)

where Af-lr), Z\g,), [\9), and AV denote, in this chapter, the following functions of

n:
Arr(7) = 7K3(7) +2(1 — v(D)Ko(7) K1 (7) — 1K2(7),

Ao (77) = =20V Ko(7) K1 (7),
A..(7) = —KE(@) — 2(2 — vV) Ko(7) K1 (7) + 7K E (@),
A,.(7) = 2(1 - vD)aKZ (%),

0< %< oo. (3.27)
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With the aid of the asymptotic expansions (2.80), one finds the following

asymptotic expansions:
A, 1-20M 1-M 1
A 3—4()  (3-4M)275’

Ao 2, () 1
A 3—4av()  (3-4vM)2 g’

A.. 3-20 v
A T340 3-4M)27

A, 21 —vM)  (1-vM)(11-40M)1

78 T 3- 4D 2(3 — 4vM)2

as 7 — oo.

)

7

(3.28)

The leading (zero order) terms play a major role in the behavior of the stresses near

the phase boundary which will be made clear as follows. Utilizing (3.28), one can

separate the stress components into two parts

W4T _ 9 (1) oo Gi( o __
(1+vM)r | 3-40M) Jy 7
s /oo A_" 1-2,M sin(t:n")(ios(o,zﬁ)d'7 ,
0 A 3 —40()
(1) T (l) o0 - _ __
Gee(1,2) = 2Ey 2v sm(an)cios(azn)dﬁ
(1+vM)r | 3 - 40D J,

+/'°° [Agg 201 ]sin(aﬁ)cos(aiﬁ)dﬁ}’
0

A 3-40
2E(1)’)‘T

7::(12) = 77 u(‘))w{3 ey 7

3 — 20 % sin(af)cos(azq) . _
/0 (arf)cos( n)dn

+/°° [AAu 3- 21/(1)] sin(af)cos(azn) dﬁ},
0

T 3—40) 7

Gr2(1,2) =

1+vD)r | 3-40 J

2EMWAT { 2(1 — vV) [* sin(af)sin(az7) d7

+/(;°° [Arz 2(1 - u(l))] sin(a)sin(az7) dﬁ},

Aq  3-4)
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—00 < Z < 00.

(3.29)
The second integrals can be further decomposed into two parts by dividing the

interval of integration into (0, s) and (s, 00), for some s > 0. Hence, we have

o, 2EM4T
Urr(l,z) = (1 +V(1))7l'{

1-20M) /°° sin(aﬁ)cos(aiﬁ)d_
3— 40 J, 7 "

+/’ A N 1-2,1 sm(an)cos(azn)
0 A 3 - 41/(1)

+/°° A, + 1- 21/(1)] sm(an)cos(azn)
s A " 3—-40)

di ¢,
—
(V5T (1) P .
Goo(1,2) = 2EY )y 2v sm(an)cios(azn)d_
14+ vD)r | 3-400) J,

/" [599 2v(1) }sin(ar‘))cos(a:?r‘))
+ A
L, | A

3—40()

% A 2v() 7 sin(adj)cos(azq

+/ [ X~ (1)] et n)dﬁ}’
. A 3—-4v n

3 —9y(1) oo sin(aﬁ)cos(a'z'ﬁ)d_

3-4 Jo d !

n
N /" A.. 3-21 sm(an)cos(azn)
0 A 3 40(1) n

-
A, 3-20
*fs [A

sm(an)cos(azn)
3— 41 ] dn

i, - 2EM,T
7::(1,2) = 73 u(l))n{

(VAT — M 7i)si 5N
5,.(1,2) = 2E()y _2(1-v7) sm(an)s-m(azn)d_
1+vM)n 3-4) [,
+/ A,. + 2(1 — () sm(an)sm(azn)
0 Aﬁ 3 - 4V(1) ]

+/ A_,-, +2(1—u(1)) sm(an)s:m(azn) a7l
s LA 3—-4() 7

(3.30)
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Note that for positive s, one has
oo _: - == oo

/ sm(cn7)_c;)s(ozzn)d77 < /‘

s ] s

Hence, for sufficiently large s, the third integrals in (3.30) are small and then we

sin(af})cos(azj)
7-72

N < —dn = -. .
dn_/’ T_’2d17 . (3.31)

have the approximations

2EWAT ( 1-200 /°° sin(aﬁ)cos(aiﬁ)d_
Q+vM)r | 3-40) J, !

*[A,r 1—20M]sin(afj)cos(azi) ,_
+ [A +3—4u<1>] ; d"}’

orr(1,2) >~

N

2EMAT 201 * sin(afj)cos(azi
Goo(1, 2) ¥ { / ( 77)_ ( n)dﬁ

= 1+vW)r |3 -4 J,

*[Ags 201 sin(ar'))cos(azﬁ)d_
Th 1A T3t 7 N

d7j

2EMAT (32,1 /°° sin(af)cos(az1)
(] n

o::(12) = T ), { 3=

+/’ A_zz _3-2(1) sin(aﬁ)c_os(azﬁ) a7
0 A 3 - 411(1) yi

(1)AT — 0 7)si 77
Gra(1,7) ~ 2E(Ny 21 -v) sm(an)s_m(azn)dﬁ
14+ vW)x 3-40) Jg

*[A,: 201 — vV)]sin(af)sin(azq) |, _
+/o [Af, T 3oL d

n
—00 < Z < 00. (3.32)

Now, notice that the integrands in the second integrals of (3.32) involve Ky
and Kj, which are possibly singular only at 0. To show the behaviors of these
integrands near 0, we consider the asymptotic expansions of Ky and K; as 7 — 0.
Using (2.82), one finds

. (7lnf)? =201 = vM)Inf - 1 1

o 1 _ +
A —(7ln7)2 + 4(1 — vD)Inf + 1 -y (7 —07),
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Ago 2vM]nj v(1)

~ N —— +
A —(@ng)2+41—-vMna+1 201 - MY’ (7 —0%),
Ai:  —(An7)?+22-vW)nf+1 240 .
A " TG +40—vD)ng+1 . 20-pm) T :
A 2(1 — v(1)
A - 01 N — 0+ . .
A " Z(7ln7)2 + 4(1 - vD)nj + 1 (7 ) (3.33)

Therefore, noticing (sin7j/7) — 1 as 7 — 0%, one concludes that all the second
integrands in (3.32) are finite at 0. It follows that all the second integrals of (3.32)
are finite and continuous in z. For the first parts of (3.32), they can be evaluated
explicitly by the Dirichlet’s discontinuous factor (Courant and Hilbert, 1989, p.81)

/2 |zZ| <1,
/ sm(an)c_os(azn)dﬁ =¢ /4 |z] =1, (3.34)
0 n
0 |z| > 1,
which has a finite jump at |z| = 1, and
% sin(af)sin(ezq) 1 |1+2
/0 7 di = 2ln 15| (3.35)

which is singular at |z| = 1.

In consequence, the singularities of all stress components near the phase bound-
ary are isolated in the first integrals of (3.32). It is found that the normal stresses
suffer finite jumps at |Z| = 1. On the other hand, the shear stress blows up at |z] =1
with the singularity characterized by the function In|(1+ 2)/(1 — 2)|. Specifically,

the jumps of the normal stresses across the phase boundary |z| = 1 are given by

(1 -200)EMW4T
1+ v0)(3 = Dy’

[I&rr(la Z)l]z:l = eh_l;[‘l) [&rr(l, 1+ 6) - 5'"(1, 1- e)] =

(W EM)AT
(1 +v()(3 - 4D)’

ﬂ&gg(l,z)]]z=1 = }1_1”% [5’99(1, 1+¢€)—aee(1,1 — 6)] = —
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(3 = 20MW)EM4T
1+ vM)E - 4D’

[6::(1,2)]:=1 = lim [6::(1,1+€) —5:2(1,1—¢)] =

(3.36)
Whereas, the shear stress approaches infinity with the intensity
_ _ 2(1 — v(D)EM4T 1+2 _

Urz(l,Z)N (1+u(1))(3—4y(1))7r1n 1-3 y (|Z| - 1) (337)

The above results indicate that, across the phase boundary of the fiber |z| = 1,
the jumps of the normal stresses and the intensity of singularity of the shear stress
are entirely determined by the Young’s modulus E(!), the Poisson’s ratio v(!) and
the transformation strain v7. They are independent of the aspect ratio a. In other
words, the jumps of the normal stresses and the intensity of singularity of the shear
stress are determined by the material properties of the matrix but are independent
of the geometry of the transformed region. In addition, the magnitude of the jumps
of the normal stresses are directly proportional to the Young’s modulus of the fiber
EM and the transformation strain v7. The numerical results obtained earlier are
consistent with (3.36) and (3.37). The singularity of ,, at |z| = 1 indicates severe

stress concentration.

3.6 Remarks

In the study on the “perfect bonding rigid fiber” model of a SMA fiber re-
inforced composite, the exact solutions to the distributions of stress, strain, and
displacement are obtained for general phase transformation pattern. Particularly,
the situation that only a single finite segment of the fiber undergoes phase transfor-
mation is further discussed. The normalized forms of the solutions are given for this
situation. The numerical evaluation is performed and it shows that across the phase

boundary, the normal stresses have finite jumps, whereas the shear stress approach
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infinity. Further, by using asymptotic expansion technique, the singularities of the
stresses are isolated. It is found that the jumps of the normal stresses and the in-
tensity of singularity for the shear stress are determined by the material properties
(EM, vM) and transformation strain 77, and are independent of the aspect ratio
a. The singularity in shear stress indicates a severe stress concentration near the

phase boundary.
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CHAPTER 4. “PERFECT BONDING ELASTIC FIBER” MODEL

In the “perfect bonding rigid fiber” model developed in the previous chapter,
the influence of matrix on fiber is ignored. The phase transformation in the fiber is
considered to be constraint free. Under perfectly bonding condition, the constraint
free phase transformation in the fiber directly gives rise to the boundary condition
for determining the deformation of the matrix. The solution provides a good ap-
proximation to the case that the fiber is much stronger than the matrix. In more
general cases, however, the matrix exerts a significant influence on the deformation
of the fiber, even constrains the phase transformation in the fiber. The deformation
of the fiber must be considered together with those of the matrix. The interaction
between fiber and matrix is determined by the bonding conditions. In this chapter,
we consider the general case that the fiber and the matrix are perfectly bonded.
Instead of considering the deformation of the matrix only as in the “rigid fiber”
model in the previous chapter, we will also investigate the deformation of the fiber

to see the influence of matrix on the phase transformation in the fiber.

4.1 Bonding Conditions

Assume the fiber and the matrix are bonded perfectly. Across the fiber-matrix
interface, the displacements are continuous. In addition, the equilibrium requires
that the traction is also continuous across the fiber-matrix interface. Thus, the
system, with perfect bond between fiber and matrix, obeys the following bonding

conditions across the fiber-matrix interface:

[orlp = [ovslp = [urlp = [usl» = 0, (4.1)
where P is the fiber-matrix interface given by (2.40) and the notation [o]p defines
the jump discontinuity by

[olp = [o(l) —o® ] (4.2)

|(r,0,z)€'P'
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Moreover, in the absence of any loads at infinity and for regularity in the center
of the fiber, the stresses are required to satisfy the restriction conditions (2.47) and
(2.48).

By applying Fourier transformation on (4.1), the bonding conditions in the

Fourier transformed domain become
[[&rr]]r=a. = [I&,.z]],.=a = [[ar]]rza = [[azI'r=a =0, —o00o<n<oo, (43)
where [6],=, defined by

[6)r=a = [ = 5@]| (4.4)

r=a’

4.2 Exact Solutions

In this section, we first consider the general situation that the phase transfor-
mation characteristic function y*(z) is given by (2.43). In the Fourier transformed
domain, the general solutions to tha system are given in Chapter 2 by (2.52), (2.58),
(2.59), and (2.60). Setting r = a in (2.58) and (2.60) and substituting them into

(4.3), one arrives at the linear algebraic equations for the bonding conditions:

424D 4 B0 24D — P 5D =0,

1 1 2 2
DAV 4 VB - (P A - DB o,
qél)A(l) + qt(;l)B(l) + wqéQ)Au) + wqé2)B(2) =0,

(1) 4(1) M ) _, (2 42 _ .. .(22n2) _ ;
a7 A +q8 B wqy A wqg B _1(1+V(1))n3 ’

—00 < 7 < 00, (4.5)

where we denote

n n -1)" n
i = o) = R (i) - TRl
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5" = g8 (n) = (=1)*(1 = 20)REV(Inla) + [nlaR{™ (Inla),
& =" () = (-1)"R{™ (Inla),
g5 = ¢ (n) = (=1)"nlaR{ (Inla) + 21 = v™)R{V(In]a),
¢ = ¢V () = R™ (Inla),
a6" = ¢§” () = InlaRS (1nla),
") = ¢t (n) = R§™ (Inla),
g§" = ¢§ (n) = (-1)"4(1 - v™)R{ (Inla) + InlaRS™ (Inla),

—00 < 7 < 00. (4.6)

The constant w denotes the ratio of the shear modulus of the matrix G(!) to the

shear modulus of the fiber G(?):

G 1+ v@)ED
G@® ~ 1+/ME®D"

(4.7)

w=

The function 4* = 4*(n) is the Fourier transform of phase transformation charac-

teristic function v* = v*(2).

Solving (4.5), one finds the unknown functions A() and B(™ as

EM A(")

A =AM () = 0 A Y ol

EM A(n)
(n) — gin) i
B B (n) = T+ @ 173A
—00 < 7 < 00, (4.8)
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where A = A(n) is given by the fourth order determinant

¢ ¢ —g? -
¢ qfV ¢ —gf?
Aln) = (1y (1) (2) (2)
as de wqs Wqg
" a” —wef? —wg?
—00 < N < 00, (4.9)
and Af:) = AE:)(U) and Ag) = Ag‘) (n) are given by the third order determinants
qél) _qiz) _qu)
AVm) =q" -4 4|,
£ e uf?
qil) _qu) _qu)
A =|a" -¢? -4,
L
qgl) qél) —qég)
AP = | ¢V o],
" ¢ we?
£ o
AR m =g ¢V -4,
" o we?
—00 < 1 < 00. (4.10)

Substituting (4.8) into (2.52), one obtains the Fourier transformed Love’s stress

functions for the matrix and the fiber:

&m g0 g

_ (n) ()
7 "(1+u<1))n3A[—AA Ro(Inir)
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+A5§)IUITR§")(ITIIT)] on Q™. (4.11)

Similarly, substituting (4.8) into (2.58), (2.59), and (2.60), one obtains the
Fourier transformed stresses, strains, and displacements for the matrix and the

fiber. The Fourier transformed stresses for the matrix and the fiber are

~(n) (1) _1\n
Orr’ . E l (n) _ ( 1) (n) (n)

- [(—1)“(1 — 2R (fnlr) + |n|rR£"><|n|r)] AS;‘)},

~(n) (1) _1\n
Ogg _ E (=1 1 o A
;7-,. - (1+U(1)) A |77|7‘R1 (|77|7') A

— - 2MRP (A

~(n) (1)
Ozz E 1 (n) (n)
,7. = (1 + V(l)) —A—{ - RO (lan)AA

+ [(—1)“2(2 — VOVRE (k) + |n|rR§"’(|n|r)} AE;”},

FAse) iy EM  sign(n)
3 A oM A

{(—1)"+‘R£"><|n|r)A£;"
" [(—1)"Inlr1?<()")(lnlr) ro(l - u“’)Ri")(lnlr)] A‘;’}

on Q™. (4.12)

The Fourier transformed strains for the matrix and the fiber are

~(n) n
Yrr n-1l {[ (n) (=1)" m ] (n)
—=w""T"—{ |R r)— ——R )| A
,),n- A 0 (|77| ) |77|7' 1 (lnl ) A

_ [(—1)"Rf,"’<|n|r) " IntrRs'”(lmr)] Aﬁ;"},

~(n)
Yoo n, n—1 1 { 1 (n) (n)
= =(-1)"w"""—<¢ —R A
A+ ( ) A |T]|1" 1 (l’7| ) A
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—RS")(Inlr)Ag')},

~(n)
Jzz | n-1 1 (n) A(")
e B X

" [(—1)"4(1 — S™)RS (nlr)

+|n|rR§"’<|n|r)] As;)} t b,

~(n) .
D _ et S0 [
L — it S 1y R (i) A

" [(—1)"ln|rR§;"(|n|r) ro1- u<"’>R§"’(|nlr>] A‘;’}

on Q™. (4.13)

The Fourier transformed stresses for the matrix and the fiber are

~(n)

u

T = (-1)"w""? R (Inlr)a%
Z =1 IIA{ (Inlr)

~nlr RS (inlr) A% },

+ [(—1)"4(1 — V™YRE(Inir)
n n . 1
RS ’(|n|r>] A‘B’} +idua
on Q™. (4.14)

For fixed r, all these ratios given in (4.11), (4.12), (4.13), and (4.14) are func-

tions of the material properties of the matrix and the fiber as well as the geometry
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parameter of the fiber through the radius a, but independent of the phase transfor-
mation in the fiber. If we consider the phase transformation in the fiber as input or
excitation and the Love’s stress function, stresses, strains, and displacements in the
matrix and the fiber as outputs or responses, these ratios give the corresponding
transfer functions, respectively. Theoretically, if we known the phase transformation
characteristic function in the fiber, we can find the distributions of stress, strain,
displacement in the matrix and the fiber through these ratios.

Multiplying these ratios (4.11), (4.12), (4.13), and (4.14) by 4* and performing
inverse Fourier transform, one obtains the Love’s stress functions, stresses, strains,
and displacements of the matrix and the fiber in the original physical domains R(™.

The Love’s stress functions are

EW © ]
¥ =iy [ AL~ AR R (i)
+AInlr B (inlr) | 3 (e *7dn on Q™. (4.15)

The stresses can be written as the following forms

(1) 0o
o05) = iz [ & [Bain - LR ain) AP

) [(—1)"(1 = 2N RE (i) + |n|rR§"’<|nlr)] Ag’}?‘(n)e-‘z"dn,

E(l) 0o (_l)n
i+ ) . A

) 1 (n) (n)
oy, (1,2 R T)A
L] ( ) {|7I|7' 1 (ITII ) A
-(1- 2u("))Rf(,n)(|n|r)Ag‘)}7y‘ (n)e™**"dn,

n EM > 1 n n
o{M(r,z) = _21r(l+—u(1))/_ { RS (Inlr) Ay

#1022 = VR k) + R )| 5 13+ e nan,
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EM > sign(n)
27r(1 +v) J_ A

oD(r,7) = {om R sy

+ [(—1)"|n|rRé"’(|n|r> + 20— R k)| 49 5+ e

on Q™).

The strain components can be written as

n—l > 1 n -1)" n n
WP (r,2) = R0 - SL RO in |4
2r J oA nlr

[0 R e + iR i) AG b e,

n—l oo
) = (0 [ L R ninag

|n|r
__p(n) A(ﬂ) ~* —izng
Ry”(Inlr)AB” ¢7*(n)e 7,

IR B G

+ [(—1)"4(1 — V™) RS ()

n—l

D(r,z) =

+|ner§”’(|n|r)] Ag)}ﬁ'(n)e"’"dn+ 527" (2),

n wtrl [ si n n n
2 =i [ B ay iR )

(4.16)

+ [(—1>"|n|rRé"’(|n|r) +2(1 - u<">)R§“’(|n|r)] Ag')}‘r‘(n)e‘”"dn

on QM.

The displacement components are

n—l 00
wrn2) = ()P [ AP inag
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where

direct
43 ¢
for g
(416
only
form

the 4

funet

In ¢,



~Inlr RSV (i) A5 b3 (me~**7dn,

n-1 oo
(n) _ v _ p(n) (n)
) =i [~ T = R (ninag

+ [(—1)"4(1 VYRS (1nir)
+|n|TR§")(ln|T)] Ag‘)}’v‘(n)e“"’dn+ bru”(2)

on Q™ (4.18)

where u*(z) is the displacement phase transformation function (2.65)

u*(2) = /2 ~v*(s)ds. (4.19)

Alternatively, the (4.15), (4.16), (4.17), and (4.18) can also be obtained by
directly substituting (4.8), (4.9), and (4.10) into (2.61), (2.62), (2.63), and (2.64).

4.3 Single Finite Segment Transformation

Under perfect bonding condition between fiber and matrix, the exact solutions
for general phase transformation characteristic function v* are given by (4.15),
(4.16), (4.17), and (4.18). In this section, we will look at the situation in which
only a single finite segment of the fiber undergoes phase transformation.

Assuming only a single finite segment of length 2L of the fiber undergoes uni-
form phase transformation with a constant normal transformation strain v7 along
the axial direction of the fiber, i.e., A = [—L, L}, the transformation characteristic

function is give by
Tl <L,

Y =7"(2) = (4.20)
0 |z|>L.

In the Fourier transformed domain, one has from (2.21) that
A 297
3 =5"(n) = = —sin(Ln). (4.21)

80



Substituting (4.21) into (4.8), one has

2E(l),YT A(n)
(n)
AP () =~y iy sin(Ln),
(n) 2E(1),YT A(")
B™(n) = m Sm(Lfl)
—00 < 7 < 00. (4.22)

Using the normalized coordinates (7,Z) and aspect ratio a defined by (2.68) and
(2.69), one has

2EW4T A (7)

An)(5) — A(n) _ . _
A (77) =A (U)I,F,—,/a =1 1+ V(l) 7—)4&(7-’) Sln(an)a

=y n 2E(1)7T A("
BW@) = B ()],pa = ¢ 1+ 00 A (( ))Sm(an)
—00 < 7 < 00, (4.23)

where A = A(7) = A(n)|n=ﬁ /a IS given by the determinant

| _ (2 (2
g @) - -
_| _ (2 (2

A gV @v - -

() = ) ) (2 @ |’
gs de wqs wqg
_(1 (1 (2 (2
B i —urf?
—00 < ] < 00, (4.24)

and AD = AQ (@) = AL ()], and BF = A (7) = A5 (n)],_,, ave given
(1 —(2 (2
&) g -g”

A1), - _ | |

AV@) =" -a? -&?|,

(1 (2 (2
& i el
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(1 (2 (2
&

A= (1 (2 _(2
AP@) =g -a? -3

b}

(1 (2 (2
& wif? vl

(1 (1 (2
& & -
A=\ _ | =1 _(1 (2
AD@m =g & -3

_(1) (1 _(2
%) e wi”

~(1 —(1 (2
£ 8

A2) = _(1 (1 (2
AP =g" & -g

& e wa?
—00 < 7] < 00. (4.25)
And ¢V = ¢ (7) = qg.n)(n)|n='_’/a7 j=1,2,...,8, are

J

&™) = RS (al) - (—‘%Rﬁ"’um),

& (@) = (-1)"(1 - 2R (7)) + 1| R (7)),
&V (@) = (-1)"R{™ (1)),

& @) = (-1 RS (1) + 201 — v R (1),
@™ @) = R (1)),

@ @) = [ R§V (1),

& @) = Ry (Ial),
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" (1) = (=1)"4(1 = v™) RSV (I7l) + 7| R (171),

—00 < 7j < 00. (4.26)

Substituting (4.21) into (4.15), and then normalizing by (2.68) and (2.69), or
directly substituting (4.22) into (2.71), one obtains the Love’s stress functions in
the normalized coordinates. Noticing that the imaginary parts of the integrands are
odd functions of 7, the Love’s stress functions, in the normalized coordinate, have
the following forms

EMATg3 = 1
m(14+vW) J_o 7*A

(7, 2) = [- AP R (1)

+Ag‘)|r-,|m§")(|r,|f)] sin(ad)sin(azf)dj on Q. (4.27)

Similarly, substituting (4.22) into (2.75), (2.76), and (2.78), and considering
that the imaginary parts of the integrands are odd functions of 7, one has distribu-
tions of stress, strain, and displacement in the normalized coordinates. The stresses,

in the normalized coordinates, are

EM4T > 1
=M (= 5\ — _— T - (n)/1=1=
6.0 = o [ 5 [0

. ]Aﬁr’ - [(—n"u — 2RV (Jl7)

+lner‘"’<1n|r>] (")}Sin(aﬁ)COS(afﬁ)dﬁ,

~(n E(l)'y ( ) n n
o5.5) = s | SR A=A nAY

~(1 = 2R (71r)AG Jsinar)cos(azn)dn,
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EMAT *® 1
=(n) (= 5\ — (n) (n)
R e o - i KL

+|-0r2t2 = R (i
+|ﬁlfR§")(Iﬁ|f)]A%"}sin(aﬁ)cos(azﬁ)dﬁ,
00 = ot [ el o R gamag
+|¢-vrialrrg o)
+2(1 = VR (710)] A5 Jsin(ansintazn)ar
on Q™). (4.28)

The strain components, in terms of normalized coordinates, are

T, n-1 oo
S (r ) = YW L [pm
w9 = T2 [~ 2[R an

LR aln) | &9 - [ -2 R e

+|ﬁ|fR§"’<|ﬁ|f)]A‘,;')}sin(aﬁ)cos(azﬁ)dﬁ,

-1 (e <]
n) - - nyTw” 1 {1 R™ (n)
#00) = (o [~ L R ainAl

—R{(|717) A Ysin(adj)cos(azq)d,
B

Toym—1 © 1 n n
#69 = 25— [~ S - R (anap

T

" [(—1)"4(1 V)RS (al7)

+ln|rR<">(|n|r)] AP }Sin(aﬁ)COS(afﬁ)dﬁ T b,
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T, n—1 oo
()= zy__ LW / 1 { n+1 p(n) ==\ A (n)
Y2 (7, 2) = —q (-1 R 7)A
(0= 10— [ o (GO R A
+[<-1)"|ﬁ|mé")(|ﬁlf>

+201 = v )R ()| A Jsin(amsin(azn)ar

on O™, (4.29)
where
7T lz<t,
¥ =7%(2) = (4.30)
0 |z] > 1.

The displacement components, in terms of ¥ and Zz, are

) e = naTwn—l oo 1 W) x(n
w(72) = (T [ e (RO DAY
—o0

~ 7l R (17I7) A }sin(an)cos(az)dn,

T, n—1 0o
(n)m oy QYW 1 () 112y A (7)
a(r) = 2 [ L R ainAY
+ [(—1)"4(1 — ™) R (1)

HiIPR (717) | A Jsn(amsin(azn)an + 6rza

on (™, (4.31)
where
~TL z>1,
@t =u"(2)=¢ yTLz |z <1, (4.32)
—~TL z< -1
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4.4 Numerical Evaluation

In order to illustrate the results obtained, we present the numerical evaluation
for the case that a single finite segment of the fiber undergoes phase transformation.
The calculations are performed using Mathematica. In the calculation, we take the
ratio as w = 0.000096, the Poisson’s rations () = 0.35 and v(? = 0.29.

Figures 4.1 — 4.3 show the 3D plots of the stress distributions, the strain dis-
tributions, and the displacement fields for the case that the aspect ratio a = 10.

Figure 4.4 displays the distributions of the stresses of the matrix on the fiber-
matrix interface for o = 10. It is shown that across the phase boundary (z = 1), as
in the “rigid fiber” model, the normal stresses have finite jumps, whereas the shear
stress seems to approach infinity. Outside of the transformed region, the normal
stresses are very small compared with the shear stress.

Figure 4.5 displays the distributions of the stresses of the fiber on the fiber-
matrix interface for & = 10. The same as the matrix, across the phase boundary
(2 = 1), the normal stresses of the fiber have finite jumps, whereas the shear stress
seems approach to infinity. Unlike the matrix, on the other hand, the longitudinal
normal stress af‘;) is the dominant component of stress in whole fiber, except near
phase boundary (Z = 1) where the shear stress o2 has an infinity singularity.

The dominant compress stress in the fiber comes from the resistance of the
matrix to the relative move of the fiber induced by the phase transformation. As the
result of the compress stress, the phase transformation in the fiber is constrained.
The constrained (elastic) strain of the fiber in the phase transformed segment is

~(2)
zz

¥:2 — T, which reaches the maximum value at the middle of the fiber-matrix

interface of phase transformed region in the fiber, i.e., at (7, z) = (1,0). Figure 4.6
plots the relation between the maximum constrained strain in the fiber and the
logarithm ratio w for a =1, 10, and 100, with v()) = v(?) = 0.3. It is shown that

the maximum constrained strain in the fiber increases with the increase of either w
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Figure 4.1.  The 3D plots of stress distributions for w = 0.000096, »() = 0.35,
(2) = 0.29, and a = 10. Trr _ (b) =200 (c) =%z~ and (d) —Zra .
v , and « (a) W ( )E(l),yl' (c) EOAT and ( )Eﬁgfﬁ
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Figure 4.2.  The 3D plots of strain distributions for w = 0.000096, v = 0.35,
v =0.29, and o = 10. (a) {5,: (b) %e,ﬁ (c) %-, and (d) 23,1
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Figure 4.3.  The 3D plots of displacements for w = 0.000096, v{) = 0.35,
v? =0.29, and a = 10. (a) %5, and (b) 3.
ay ay
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Figure 4.4. The stress distributions of the matrix on the fiber-matrix interface for
w = 0.000096, vV = 0.35, v(? =0.29, and a = 10.

Figure 4.5. The stress distributions of the fiber on the fiber-matrix interface for
w = 0.000096, vV = 0.35, v(?) = 0.29, and a = 10.
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log,ow

~(2) _ AT
Figure 4.6. The maximum constrained strain in the fiber, l“;-r‘y—, against the

logarithm of w for a =1, 10, and 100, with (V) = (2} = 0.3. Here, w is the ratio
of the shear modulus of the fiber G(!) to the shear modulus of the matrix G(?:
GV (1+v)EW
G(2) - 1+ V(l))E(2) :

w =
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or a. The fact that the maximum constrained strain in the fiber increases with
w means that stiffer matrix exerts greater constraint on the phase transformation
of the fiber. On the other hand, the fact that the maximum constrained strain
in the fiber increases with a could conclude that, in the setting of composite, the
phase transformation in the fiber prefers a configuration with multi-piece small
transformed segments to keep small « instead of a large transformed segment to

avoid greater constraint from the matrix.

4.5 Reduction to the Perfect Bonding Rigid Fiber Model

For the situation that the SMA fiber is much stronger than the matrix, one has
w — 0 from (4.7). For the fiber (n = 2), this is equivalent to that E(? is finite and
E(M — 0. From (4.17), (4.18), and (4.16), one has the constraint free deformation

in the fiber:
2 *
1D =g =12 =0, 7@ =+ on0Q®, (4.33)
u? =0, u® =u" on Q?), (4.34)
and
o = 04(93) =0 =03 =0, on Q3. (4.35)

For the matrix (n = 1), the condition that w — 0 is equivalent to that E(1) is

finite and E(® — co. Notice that as w = 0, (4.9) and (4.10) lead to the relations

A(n) = AN (n) - AP (),

AD () = InlaKo(Inla) - AP (n),

AD () = Ky (Inla) - AP (n), (4.36)
where @ @
9 ')
AP(n) = :
2
¢? P
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AN (n) = —|nlaKF(Inla) - 4(1 — v)Ko(Inla) K1 (Inla) + InlaKi(Inla).  (4.37)

Substituting the above (4.36) and (4.37) into (4.15), (4.16), (4.17), and (4.18),
and canceling A(?, the results are consistent with (3.12), (3.13), (3.14), and (3.15),
respectively, for the “perfect bonding rigid fiber” model discussed in the previous
chapter.

Similarly, for the case of single finite segment transform with the normalized
transformation characteristic function 4* given by (4.30), it shows that as w — 0,
the results (4.27), (4.28), (4.29), and (4.31) reduce to (3.22), (3.23), (3.24), and

(3.25), respectively.

4.6 Approximations of the Stress Distributions

In order to further observe the behavior of the exact solution for stresses, we
develop the approximate expressions. Our attention is focused on (4.28) for the case
that a single finite segment of fiber undergose phase transformation. For simple, we

introduce the following notations in this chapter:

A in) = | R ie) - LR i) |

= [0 = 20" RS (1) + iR (1) | A,
B (i) = (1" RO (INAS - (1 - 2)RP (AR,
AR (F7) = —RO(7NAY + [ (-1)"2(2 - v RS (1)
+alr R (1) | A,

A (r;m) = —(-1)" RO (ARNAL + [(-) AR (a17)

dl
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+2(1 - u<">)12‘1">(|77|f)]5g') on (™. (4.38)

Noting that the integrands in (4.28) are even functions about 7 and using

notations (4.38), the stress components can be written as

2EWDAT 1 AR (7, 7)

_(n) (= = . _ ——y g
Orr (T‘, Z) Tf(l +U(l)) o ﬁA(ﬁ) Sm(an)cos( zn)dna
A(n), - —
(n), - - 2EMWAT ® Apg (7, 7)
090 (7, 2) = A1) Jo NG sin(afj)cos(azn)d7,
g oy 2EWAT AR o o cos(an)d
aM(F,z) = Z(LF o) / (( > )sm(an)cos(azn)dn,

2EMAT 1= AD(7,7)

5 (7 3) = -
o NA =Ty, TaA@)

sin(af)sin(az7)dj on Q™. (4.39)
Decomposing the integrals into two parts by dividing the interval of integration
into (0, s) and (s, o0) for some s > 0, one has

2EWAT 2 ALY (7,7)
m(1+vD) Jo A7)

(M (7,2) = sin(afj)cos(azi)d

+;r%§)_:—(% /soo A;r_;rg—((r—r_’_’)ﬁ)sin(aﬁ)cos(afﬁ)dﬁ,
o7, 2) = ,rfff,}f)) ’ Af;%‘(f.’)ﬁ) sin(ac)cos(az7)d7

+;Z2f_(-}-’);_y(% i %ﬁ—)sm(an)cos(azn)dn,
3005 = s [ A:ig‘(?)’_’) sin(a7)cos(az7)d

+% j A%;—((Ff)sm(an)cos(azn)dn,
™ (7, z) = WZE:);’(I) A:Z((’" )” sin()sin(az7)d7
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2EMWAT 1 AL (7, 7)

+m i —Wsm(an)sm(azn)dn

on Q™. (4.40)

First, we consider the second integrals in (4.40). To develop approximate ex-
pressions, we use the asymptotic expansions (2.81) for the modified Bessel functions
as 77 — oo. Substituting (2.81) into (4.26), one has the asymptotic expansions for
dM @), k=1,2,...,8,

M () L _oray _qn L 5T e 195
a () 2D [1 (1) 8ﬁ+128ﬁ2+( ) w024 ]’

5 — 160 N 1- 320
8 1287

qgn)(,,-’) ~ e _e(—l)"ﬁ [T_] + (_l)n

7

—-33 — 1440(™
(o) 38 1 }

102472

(™) (= [_1_ (="l qywm_ 3 4yn_ 15 3 105
™ (7) L (—1)"7 4+ 17 - 160 (- 1),,87-96u<">
a1 2 (-0 K 8 1287
_ 165 — 2400
102472 ’

(M () DM oS 18 gy 105
(n) /= ~ ; (-1)"7 ’— _ nl _g_ _1\n 75
QIS N St | PURPNITSE S SN Y S R
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- (n) _ (n)
Sy N A _n29 - 32 49 — 64v
gs (7) 271,(__1)';17’6 [7’+( ) 8 + 1287_)

183 — 288,(™)

as ] — 0. (4.41)

Substituting (4.41) into (4.25), the asymptotic expansions for Af:)(ﬁ) and
Al (7) as j — oo are

A /1 15
Af‘\l)(ﬁ) ~ 871'1736’7{ [l + (3 - 4u(2))w]7‘) + [_ T + 202

(485 6u() — 125 @ 4 g,y <2)) ] is_ (2

7

4
155 17 9 1
m_Z,3 (1,2 1

(i3 - -+ a5 e

X 1
Ag)(ﬁ) ~ 81rf]3eﬁ{ [1 +(3- 4u(2))w] + [— — 4+ 2,3 _

3l
129 3
+___ (2) 189 39 (2) -1+”‘ ’
128 4 28 32" )7
A 7 4 1
Af)(ﬁ) ~ \/8_71;36—"{ [3 — 4 4 w]r‘; + [?5 _ 75 (1) _ 6@ 4 8,(1,@

(BT m)y| Ly
128 17 )¥|7 ;
A 1 1 11
Ag)(ﬁ) ~ ‘/;?e”"{B 4V 4w+ [8 + Eu(l) + (? - QV(I))w}

=189 3 0 (129 3, m),|2 ;..
128 ' 32 128 4 72 ’
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as 7] — 0o.

The asymptotic expansion for A is

A= (1) a1 (1) & —(2) A (2 —(2) A (2
A) = -q;" 8% + a5 A +wg? AP - wgg? AR

(4.42)

~ -l-{ [ -3+ 40 2(5 -6V -6, 4 81/(1)1/(2))11) - (3 - 4u(2))w2]

472

(-390 ) 1)

v

S|

as 7] — 0o,

or, simply denoted as
A(7) I{A +A1+ } as fj — 00
~— 0 1= T - — 00,
47’ 1

where

(4.43)

(4.44)

Ao = -3+ 4D - 2(5 —6v(M) — 6D 4 81/(1)1/(2))111 - (3 - 4u(2))w2,

A = 2(2 =3~ 3, 4 41/(1)1/(2)) (1 - wz).

(4.45)

For matrix, i.e., n = 1 and 1 < 7 < o0, replacing 77 with 7 in (2.80), one has

the asymptotic expansions (2.81) for the modified Bessel functions of the second

kinds as 7} — oo:

1 9 75

RV (77) = Ko(ii7) ~ [ s==e™ ™" 1

277 | 8qr + 128(77)2  1024(77)3

15 105

R{(77) = K1 (ii7) ~ [ eze™ 7 |1 +

99

3
o77¢ | T8 128(77)2 T 1024(77)° T

+ .- ,




as 7] — 00. (4.46)

Substituting (4.42) and (4.46) into (4.38), one finds the asymptotic expressions for
A (79), AL (77), AL (7 7), and ALY (7;7) for 1 < 7 < o0 as 7 — co:

— 1 o
AL (79) ~ 4ﬁ2ﬁe(l"r)”{(1 — 7)1 + 3w — 4P w)j

5 7 117
2o L2t 9,00 (2) _ 95,,(2)
+[ ] + 87 + 3 200 + 2v 27y

+[— %(1 —20M)(11 — 160?)

1 1 3 1
bl 1y _g - _ © _ = —_9(1) (2)
+4(7+V 8v )77 52 8<(1 20)(1 + 40'Y)

-14(1 - /M3 - 41/(2))% +(9- 121/(2));2)11)] % +-- }

— 1 N
AD (7 7) ~ e(l"‘)"{ - (1= 7)1 + 3w — 4Pw)j
(75 7) yro- (1 —7)( )
+[— ; + 20 - @) 4 glg + (— 1—81 +2u(2))1"

21 -3+4 1
Y il ¢ B R i R (CIAFS
(4 w4+ = + 8(1 + 4v )r)wJ + },

_ 1 N
AL (7;7) ~ 4172\/;6(1"')"{(1 —7)(1 + 3w — 4Pw)j
1 3 1
- - (1) _ ) P g — 4(N\F
+[4 2(v v )+8F+8(11 W'\9)r
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-% ( —6+8/3 —(9- 121/(2))% -1+ 41/(2))7")11)] + - }

as 7 — oo. (4.47)

Therefore, from (4.47) and (4.44), one has the following asymptotic expressions

as 11 — oo:

“l

(1), -
A (1) _1_6(1 =ML ph) 4 )2 }
EXOR

(1)(1' 7 Le { 1)1 4y 1 }
nA(n) VF ’
AL 7) (1- r)n{ b 4+ 1 }
~ —e + c;

nA(n)
(7‘ 7 1 { B 4+ 2 }
~ —e + ¢,
nA(n) VT

as 7] — 00, (4.48)

In the above expressions, each is decomposed as product of an exponential function

of 77 and a fractional function of 7. The coefficients in (4.48) are independent of the

integration variable :

bﬁ‘,) =1-7)(1+3w- 4u(2)w)/Ao,

C$‘r’={[—§+l+%-2 M 4 203 — 27,

4 87
15 21 7 T
= 2= 5,2 4 (2 _ _p(2)
(4 87 8 o +2U 2" )wJAO

-(1-7)(14+3w- 4u(2)w)}/A§
((92) = (1 - % - 21/(1)) (1 + 3w — 4V(2)w)/Ao,

d(l)

e = { [- %(1 —2M)(11 - 1602) + -}(7+ v — 81/(2))%
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31
872 8

((1 —20M)(1 + 4?)

-14(1 - W) (3 - 41/(2))% +(9- 12u<2));15)w] Ao

— (1 — _1_. - 21/(1)) (1 + 3w — 4V(2)’LU)A1}/A(2),
7

b = —(1 - 7)(1 + 3w - 4Pw) /Ao,

1
) = {[— ; +2(vM — @) 4 % + (—gl +20®)F
21 -3+4/3@ 1
B (R Y ) B @7
(4 w4+ 5 +8(1+4l/ )7 Jw|Ao

+(1=7)(1 43w - 4u(2)w)}/Ag,
b = (1-7)(1 + 3w — 4u(2)w)/Ao,
1 3 1
W@y 3 L C @y
Cry {[4 2(v ) + P + 8(11 W)

_% ( —6+8,3 — (9- 121/(2))% -1+ 4u(2))F)w] Ao

—(1=7)(1+ 3w - 4u‘2’w)}/A3,

where Ag and A, are constants given by (4.45).

The similar asymptotic expansions for the fiber (n = 2) can be found by fol-
lowing the same procedure. Since a = 0 at the center of the fiber, we will deal with
it in two separate cases: 0 < ¥ < 1 and ¥ = 0. For 0 < 7 < 1, replacing 77 with

f7(# 0) in (2.80), one has the asymptotic expansions (2.81) for the modified Bessel

functions of the first kinds as 77 — oo:

@) (77) = I (77) ~ « | e |1 + - 9 s
Ro™ (%) = Io(i7) ~ 1 [ 57z¢ [l t 85 T 128772 T 1024(77)° T
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@ (537) = [ (77) ~ || e |1 = o = —>__ ___105
Ri7(@r) = L(1m) ~ [ 5 [ gir 12872 1024(77)°
as 77 — co. (4.50)

Substituting (4.50) and (4.42) into (4.38) and then together with (4.44), one arrives

at the asymptotic expressions for 0 < 7 < 1:

2) /= =
AR () Jee 0" r)n{ (2)+c(2)1}
71A(7)

1 1
S0 1 o)1)
- 2 - -
Agzj(r;n) 1 e—(1- r)n{ (2)+c(2) }
<(2),_ _
A&z)(r;fl) —(1 —7F) {b(2)+c(2) }

as 7 — oo. (4.51)

Similar to (4.48), each expression above is a product of an exponential function of
7 and a fractional function of 7. The coefficients in (4.51) are independent of the

integration variable 7:

b = —b? = b = (1-7)(3 - 4D + w)/Ao’

1
9 = (= 1+2®)3 - 0 +w) /Ao,
@ = 1_5 _ gl _r_ 500 4+ l_u(l) _ f,,(l)
27 2

-+-(§ T -1—;— - 200 4 27,M 4 21/(2)) ]Ao

-(1-7)(3 -4 + w)}/A2
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@_ff_1_9 2 1oy, 3 o_7Tun, 1o
d""_{[ § &= g 20 Taml TF Oty

21 7 11 3 7
2y, ,mey oy (1,3 7
o TR (8 T

w2 Lo 1 @, 41,(1)1,(2))1”} Ao
T 4 4r
1
—(z-1+ 202)(3 - 4V — w)Al}/Aﬁ,
. 1 7
@_[(R_3. 7T ol om0
(opiet {[4 8F+8 Tv +2FV +2u
1 117
+<Z -=+ LA, IO VY O 2u(2))w] JAY)

+(1-7)(3 - 4P + w)}/AS,

3 9 7 3 T
24+ T4, _2,04 2,0
Crz {[4+8F+8 v 27 +2u

117
(23 8BT 0m Jomm 250w A,
4" & ' 8

+(1 -7)(3 - 4® + w)}/Ag, (4.52)

where Ag and A, are constants given by (4.45).
At the center of the fiber, # = 0, we notice that the modified Bessel functions

of the first kinds take the following values at 0:

R§?(0) = Io(0) = 1,

R (0) = [,(0) = 0. (4.53)

As n — 07, one has asymptotic expansion

R®m) nL(n 1
= — =, asn—0t. 4.54
. . 5 n (4.54)
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Substituting (4.53), (4.54) and (4.42) into (4.38) and then together with (4.44), one

arrives at the asymptotic expressions for 7 = 0:

; = 1
= ) ~y 271’7_)6—’7{1)"- + Crrﬁ },

1A (7)
A2 (0; 1) _ 1
— .7 ~ 27”76—”{172; +czzf}a
nA(7) i
1A(7) ’

as 7] — oo. (4.55)

by, = [—3+4u<1> —w]/Ao,

Czz = { [% - 1211/(1) + (% + 2V(1) - 2U(2))W] AQ

[~a+aw - w]Al} / A2, (4.56)

where A and A, are constants given by (4.45).
Now, let M(n) be a bonded function in [1,00) with My = max,¢(1,00) |[M(n)|.

Then, for A > 0 and s > 1, one has

/ M(n)e™*dn < f |M(n)|e~*"dn
8 8
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< My [ e dn

= Afoie"“
—0 ass— . (4.57)

Substituting (4.48), (4.51), and (4.55) into the second terms of (4.40), the

second integrals in (4.40) can be written in the forms as (4.57) with M(n) given by
1 1Y).
ao + al; + a2-7’—2 sin(an)cos(azn)

or
1 1
(ao + a1; + ag;ﬁ)sin(an)sin(azn) (4.58)

for certain constants ag, a;, and a;. These functions of 7j are bonded in [1,00).
For the matrix (n = 1), let A = 7 — 1, while for the fiber (n = 2), let A =1 - 7.
Inside both the matrix and the fiber (7 # 1), one has A > 0. Therefore, the second
integrals in (4.40) are small for sufficiently large s. Thus, away from the fiber-matrix
interface, one has the approximations of stresses of the matrix and fiber, which are
true for certain sufficiently large s:

2EMAT 2 A (7 7)
(1 +vW) Jo  7A(7)

(M (7, 2) ~ sin(af)cos(az7)d,
2EW4T 12 ALY (7, 7)

m(1+vM) Jo  7A(7)
2EM4T  r* ALY (7, 7)

m(1+vM) Jo A7)

sin(af)cos(az7)d7,

sin(a)cos(azq)daq,

2EM4T  * AD(F, )

in(ai)sin(azi)dn  on O
1+0D) J, “7A®) sin(af)sin(azf)dq on Q™.  (4.59)

Now, notice that the integrands in the above integrals involve R} = Kp and

R} = K, which are possibly singular only at 0. To show the behaviors of these
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integrands for 7 near 0, we consider the asymptotic expansions of RO") and R{™

7 — 0% (Zayed, 1996):
RV (7) = Ko(7) ~ —Ina,

as 7j — 0. (4.60)
Substituting (4.60) into (4.26) one has the asymptotic expansions for q (n),

k=1,2,..,8,
'(1) ~ i — In7n
(m) 7 B

g (@) ~ 1+ (1 - 20V)Ing,

1

61(31)(77’) ~ _5’

), 201 =M

g5 (@) ~ —(—n_) + 7lnj,
_ 1
g (i) ~ =

@ (@) ~ —7jlng,
@ (7) ~ —lnn,

'(1)(1')) ~1+4(1- V(l))lm'),
8s 7j — 07, (4.61)
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and the asymptotic expansions for q',(c2)(17), k=1,2,..,8,

—(2),—
a2 (7) ~

N —

72
@) ~1-2wP + T

IS ]

—(2),_
a2 (@) ~

32 @) ~ (2 - v,

(2), n
2@ ~ 5,

™o

—(2), - _
a2 (@) ~ ,
(2) /-

&2 @) ~ 1,

&) ~ 41— )+ T

as 7 — 07. (4.62)

The asymptotic expansions for A(:) and 554") are
- 1
qul)(ﬁ) ~2(1 — M@y 4 3 [ —1-v@ 4 (1 - 200 4,
+2V(1)u(2))w] 7°In7 + -;-(V(l) — vV )wi?,
- 1
Ag)(ﬁ) ~ 3 [1 +vP 4w — 3u(2)w]
1 @y, =21.= , 1 _9
+§(—1 + v\ wi*lnij + Z(_l + w)7®,

A?un~2u—uﬂna—2dﬂ+wk%—2a-vmx2—¢”mm
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10 4@ 4y,
5(2) . (1) 1 (D \)ns 1
g (M)~ (1 =)l +w)oz = (1 —v)ing - 5(1 - w),
as 7 — 0%. (4.63)
The asymptotic expansions for A is
B = a8 + AP + AP - uiP AP
—2(1 — ¥Mw(1 92 gy) L
~=21-vVNw(l+w-2v w)ﬁ
+2(1 = vD)(1 4 v + w — 3vPw)In7
1
+§(1 —w) [1 +0@ 4 (3-0D - 4u(2))w],

as 7 — 0%, (4.64)

For the matrix, one has the asymptotic expansions for AL, A,(,l),i A and
AY:
1 1

[1 +0@ (1 =20
+v® + 2V(1)u(2))w] Infj — % [(1 - 20M)(1 4+ @)

+(1-20M 4@ 4 2V(l)u(2))w] In(777)

11
- — [1 +v® (120

A1) /= =
Age)(r; 77) ~ _2(1 - V(l))u(z)w(Fr-’)Z 21'-2

+v@ 4 21/(1)1/(2))11)] In7 — % [1 -2/ 4+,

-20Mp@ 4 (1 - 20Wy(1 - 3u(2))w] In(77)
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AW (7;77) ~ [2 — v 42, _ (W, 4 (2 - (D _ 4D

+u(l)u(2))w] In(77) + %(l +v® 4w - 3v@w)

- 1
AV ~ 1 -—vNA+@ 4w - V(Z)w)%r_’ - ﬁ(l +v@ 4w

—3vDw)ilnig + = (1 4+ v? + w — 3v@w)ijln(77)

NS

as ij — 0%, (4.65)

Therefore, from the asymptotic expansions (4.65) and (4.64), one arrives the

limitations:
AR (7)) —v®
A 1+ w - 20@w)7r2’
A(1) /= =
Af,o)gr; ) . (@
A (14w —2v@w)r2
(1) .
X i) g

—Ag)gf; ), -0
A )

as i — 0%, (4.66)

Similarly, for the fiber, one has the limitations:

2),_ _
Al )Er 77) -2
A 1 +w -2y’
- 2 - -
Af,o)fr; ) . _ye)
A 14+w- 202w’

(2)( n) 1 + y(2) +w - y(2)w
A w(l+w—20v@w) ’
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as 7 — 0%, (4.67)

According to (4.66) and (4.67), the integrands of (4.59) are finite as § — 07.
Since the interval of integration in (4.59) is [0, s], which is finite, after integration,

all the stresses are finite and continuous inside the matrix and the fiber (7 # 1).

4.7 Analysis of Singularities
Now, we further investigate the stress distributions at the fiber-matrix interface
with emphasis on the possible singularities near the phase boundary (|z| = 1).

Setting 7 = 1 in (4.39), the stress components at the interface are given by

(1,2 = 220 [ B0 o oyces(asman
&((,Z)(l, z) = % %ti((l—)z—)-sm(an)cos(azn)dn,
aM(1,z) = % A A—::A)(Tl)——)sm(on])cos(a.zn)dn,
(1,5 = 2B (7 AR D opinasnyan
—00 < Z < 00. (4.68)

where AP (1,2), Al (1,2), AP (1, 2), and A% (1, 2) is obtained from (4.38):

s = [ - SLRP@|aPm
-1 - 2 RP @) + 7R ()| A (),

A (L7) = (- 1)“[ FRP@ADY @) - (1- 2R AR (7 )],
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AR (1;7) = -R” (@AY ()

+[(=0m2@ - )R @) + 7R ()] AF (),
AR (137) = (1" R @AL (7)

+[(-0"aRE @) + 201 - )R ()| AS (),

—00 < 7] < 00, (4.69)

Setting ¥ = 1 in (4.48) and (4.51) and including the terms of (1/72), one has

the asymptotic expressions of the ratios for the matrix and the fiber

ARWA) | oml, poml
Tr 7—]

ﬁA rr T_}2’
ARGyl | w1
___’ ~C -+ D v X
7]A 00 7 06 ,,’2
ARWD) ool po
ﬁA zz 7l zz ﬁ2’
AR (1;9) 1 1
\ ~ C(n)_ D(")_.’
ﬁA Tz 1—7 + rz f)2

as 7j — 00, (4.70)

where

c™ = [1 -2 —(1- 2u(2))w] /Ao,
DM = { [ ~ 1430 £ 200 _4W,@ _ (1 - 2,1 _ 3,2
+4u(1)u<2))w] Ao — [1 —M (1 2u<2>)w]A1}/A§,

cfh) = —2,™ [1 +(3- 4@ )w] /0,
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C? = 2,3 - 40 4 w) / Ao,

Dgz) = { [31/(1) —4vM@ 4 (4 -5, — 6,2 4 81/(1)1/(2))10] Ay
+2,1) [1 +(3- 4u<2>)w] A } / A2,

Dég) = { [4 — 60 — 50 4 8@ 4 (3,02 4u(l)u(2))w] Ao
2023 -4 4 w)AI}/A%,

ch) = [ —34200 _(5- 6u(2))w] /8,

c = [5 -6v) 4+ (3 - 2V(2))w] /Ao,

D) = { [4 -3 — 6@ 4 40Wp@ _ (2 — 4D — 32
+4u(1)u(2))w] Ao + [3 -2 4 (5 - 6u<2>)w]A1}/A3,

D? = { [ -2+ 30 4+ 40@ _ 4,V 4 (4 - 6V — 3,2
+4u(1>u<2))w] Ao — [5 —6vM + (3 2u<'-’>)w] A }/Ag,

cm = 2[1 M4 (1- u(2))w] /Ao,

D = { - 2[(1 — WY1 - 2®) - (1 - 2M)1 - u(2))w] Ao

—2[1 —® (1= u<2>)w]A1}/A3, (4.71)

Ao = 3+ 4 —2(5 - 60D — 60D + 8D ) — (3 - 2@ )u?,
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A = 2(2 — 30— 3, 4 4u<1>u<2>) (1 - w2). (4.72)

It is worthy to notice the difference between the asymptotic expansions: Insider
the matrix (1 < ¥ < o0o) and the fiber (0 < 7 < 1), the asymptotic expansions in
(4.48), (4.51), and (4.55) have exponentially convergence factor e~*7 as 7 — oo,
while on the fiber-matrix interface, the expresions in (4.48) and (4.51) have not. We
will show, in the following, that this difference leads to totally different behavior of
stress distributions on the fiber-matrix interface from those inside the matrix and
the fiber.

The leading terms as 77 — oo in (4.70) have coefficients C’S:), C;Z), Cy;) , and
C,(-?), respectively. These leading terms play a major rule in the behavior of the

stresses near the phase boundary as illustrated as follows. Utilizing these leading

terms, one can separate the stress components into two parts

(DA o B
a{M(1,2) = 2By (n) / Sln(an)c_os(azn) p
(1 '+' l/(l))7r 0

©[A,, sin(afj)cos(azq) |, _
+ - - c$:>] — di ¢,
/o [ A U] 7

()T 00 2 — __
() oy 2EUV)y (n) sin(adj)cos(af) | _
g (1,2) = __(1+V(1))1r{ 00 / dn

Ui

+/-oo [é_ﬂﬂ _ ng)] sin(aﬁ)(ios(afﬁ)dﬁ}’
0 A n

()T % sin(af)cos(a
5™ (1, 2) 2E(M~ { (n) / sm(an);os(arn) a7
0

©TA,, sin(adj)cos(arn) |, _
+ A = C.S.:):I po d )
/o [ A i "

(1)AT 00 e s e
5{(1,2) = ﬂv_{cm / sin(asin(a7)

rz
0

+ / [& 3 C,(;')} sm(aﬁ):—’ln(afﬁ) dr‘;},
0
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—00 < Z < 0. (4.73)

The second integrals can be further decomposed into two parts by dividing the

integral interval (0, 00) into (0, s) and (s, 00) for some s > 0. Hence, we have

AT c -
501 3) = 2E(M~ () /°° sm(an)cos(azn)dﬁ
(1+vMW)x 0

A

+/ [ Cﬁ;‘)] sin(af) cos(azr;) n},

(1) o
_(n) 2EW n) sin an)cos(azn)
Tgo (1 Z) (1 + l/(l))ﬂ{ L 77

+/ [é__,: B CS:)] sm(aﬁ);:_)os(aiﬁ)dr_’}
0

+

[Aea (n)| sin(a) cos(azn) 77}

d
N / [Aoo (n)] sin(ar) COS(azn) n},

2EM,T % sin(aifj)cos(az])
(n) e r (n) gl
0,9 = o2 v

*TA,. sm(an)cos(azn)
=z _cm
+/o [ A C"J U] 9

*TA,. sin(aij)cos(az) _}
+ == - Cﬁ';)] - di ¢,
/, [ A 7 7

(1) 0o _- IR —
5 (1, 7) = 2E(M4T { () / sm(an);m(azn) a7
0

TE 1+ W)
*TA,. sin(af)sin(az7) . _
+ / [ Cﬁ';’] - d
o L A Ui 7
. 00 e _ CSZ)J sin(aﬁ)s_in(afﬁ)d_}’
/s [ A U] 7
—00 < Z < 00. (4.74)
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Noting that for positive s, one has

/ sm(aﬁ);os(afﬁ)dﬁsf
8 s

*° sin(af)sin(azn >
[ sntesntezn) o
L] L}

For sufficiently large s, in view of (4.70) and (4.75), the third integrals in (4.74)

sm(an);zos(azn) ‘dr‘) < / id

sin(af)sin(az7])
17’2

dﬁg/ 1d7‘)=%. (4.75)

are very small and can be ignored. Hence, we have the approximations

(1)4T % sin(ai)cos(azi
(n)(l ) 2E Y { (n)/ Sm(an):los(azﬂ)dﬁ
0

A+ |

*TA,, sin(af)cos(azq) ,_
+ | [==- Cﬁ;‘)] ~ dij b,
/o [ A U] 7

2EMWAT { (n )/°° sin(aﬁ)COS(afﬁ)dﬁ
U]

T+
*[Aes (n)] sin(adj)cos(az) }
+ ~ d )
/; [ A% 7 7

n
+/‘ [ﬁ_z_z_ B CS)J sm(aﬁ);’os(aZﬁ) dﬁ},
0

WAT .
(ﬂ-)(l z) 2E'—7 (n) Sln(a’r’)cos(azn)dﬁ
(1+U(1))7r 0

A

()AT 0o - - ——
5™ (1, 2) ~ 2EW)y {C(")/ sm(an)sm(azn)dﬁ
0

(1+vD)r ]
*TA,. sin(af)sin(az7) ,_
+ [ |52 - Cﬁ;‘)] = di 3,
/o [ A 7 7
—00 < Z < 00. (4.76)

Now, notice that the second integrals of (4.76) involve Ky, K3, Ip, and I;. Only
Ko and K, have singularity at 0. Hence, the possible singularities of the integrands

are only at 0. To show the behaviors of these integrands near 0, we consider the
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asymptotic expansions of the second integrands as 7 — 0%. Let # =1 in (4.66) and

(4.67), one has

AR (1;7) —v®

A T ltw-200y’
ALY (1;7) v

— —_ y

A 1+w-20@yw
Bﬁl)gl;ﬁ) 0

A b
AL (1;7) 0
———

A b

~ +
as 7j — 07, (4.77)
and

AR (1;7) ~v®

A T iltw-200u
Ag (1;7) -v®

A 1+w-— 2020y’
AR(n) 140D 4w sDu

= —_ —

A w(l+w-—2v@yw) "’
ARLD)

A b

as i — 0. (4.78)

Therefore, noticing (sin#j/7) — 1 as 7 — 0%, one conclude that all the second
integrands in (4.76) are finite at 0. It follows that all the second integrals of (4.76)
are finite and continuous in z. For the first parts of (4.76), they can be evaluated

explicitly by the identities

/2 |z| <1,
o
/ sin(af)cos(a2) yo _ { pja |z =1, (4.79)
0 n
0 lz| > 1,
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which has jumps at |Z| = 1, and

1+2
1-2

dij = =In , (4.80)

/°° sin(af})sin(az7) 1
0 n 2

which includes singularities at |Z| = 1.

In consequence, the singularities of all stress components near the phase bound-
ary are isolated in the first integrals of (4.76). It is found that the normal stresses
suffer finite jumps at |z] = 1. On the other hand, the shear stress blows up at
|Z| = 1 with the singularity characterized by function 3In|(1+2)/(1—Z)|. Specially,

the jumps of the normal stresses across the phase boundary |Z| = 1 are

(n E(l)’yT
o) = T5m s
+v

(1)AT
~(n) EVyT )
[966 la.y = T35 Coe >
_ E(l)'yT
[7%T0n = T5m O (4.81)
whereas the shear stress approaches infinity with the intensity
E(My 1+2z
7)1 5 (n) -

The results show that, across the phase boundary of the fiber |zZ| = 1, the
jumps of the normal stresses and the intensity of singularity of the shear stress
are determined by the Young’s modulus E(™), the Poisson’s ratio v(™, and the
transformation strain 47, but are independent of the aspect ratio a. In other
word, the jumps of the normal stresses and the intensity of singularity of the shear
stress are determined by the material properties of the matrix and fiber but are
independent of the geometry property of the transformed region. The numerical
results are consistent with (4.81) and (4.82). The singularity of &\%) at |z| = 1

indicates severe stress concentration.
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4.8 Remarks

In this chapter, we further investigated the mechanical behavior of SMA fiber
reinforced composite associate with phase transformation in the fiber. To take the
influence of the matrix on the deformation of the fiber into account, we studied
the “perfect bonding elastic fiber” model, which considers the deformation of the
fiber also. In this model, the fiber and the matrix are assumed perfectly bonded.
The elastostatic problem turns out to be axisymmetric with two separate cylindrical
regions, which are connected by perfect bonding conditions. The exact solutions for
stresses, strains, and displacements in both the fiber and the matrix are obtained
for general phase transformation characteristic function.

Particularly, the case that only one single finite segment of the fiber undergoing
phase transformation is further investigated in detail. The results are presented in
normalized variables corresponding to the geometry of phase transformed region.
By principle of superposition, the properties to this case describe the fundamental
behaviors of general linear deformation. By asymptotic analysis, the approximations
of the solutions are derived. It is shown that inside the matrix and the fiber all stress
components are finite and continuous. However, on the fiber-matrix interface, all
stress components have singularities across the phase boundary. The singularities
are isolated. The numerical evaluation are also performed. All the results in the
“perfect bonding elastic fiber” model are similar to the “perfect bonding rigid fiber”
model. As w approaches oo, i.e., the fiber is very strong compared with matrix, the
results reduce to those of the “perfect bonding rigid fiber” model.

As for the influence of the matrix on the deformation and the phase trans-
formation in the fiber, it is shown that the constraint on the fiber increases with
the increase of either w or a. The stiffer matrix exerts greater constraint on the
phase transformation of the fiber. On the other hand, in the setting of composite,

the phase transformation in the fiber prefers a configuration with multi-piece small
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transformed segments to keep small a instead of a large transformed segment to
avoid greater constraint from the matrix.

It should notice that both “perfect bonding rigid fiber” and “perfect bonding
elastic fiber” models have singularities in stresses at the intersection of the fiber-
matrix interface and the phase boundary of the fiber. We suspect that it is a result
of the perfect bonding assumption so that some features associated with phase
transformation in the SMA fiber, especially near the fiber-matrix interface, are not
properly modeled. In the next chapter, we will study another model without perfect

bonding assumption.
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CHAPTER 5. “SPRING BONDING” MODEL

Previous studies in the Chapter 3 and Chapter 4 indicate that, under the
assumption of perfect bonding condition between the fiber and the matrix, the shear
stress is singular at the intersection between the fiber-matrix interface and the phase
boundary in the fiber. To achieve more reasonable results, we propose a model that
relaxes the perfect bonding condition to allow for displacement discontinuity across
the fiber-matrix interface. Such a displacement jump results in a shear stress with
magnitude proportional to the magnitude of the jump. We will call it a “spring
bonding” model. We envision a transition region near the interface within which
the morphology of the phase mixture is complicated and 3-dimensional in nature.

The collect effect of this transition region is modeled as a linear “shear spring”.

5.1 Bonding Conditions

Assume that the matrix and the fiber are bonded with an elastic “glue”, which
maintains perfect bonding in radial direction while resists the relative slip with a
linear “shear spring” in axial direction. The relative slip results in a shear stress
on the fiber-matrix interface with magnitude proportional to the magnitude of the
jump of axial displacement across the interface. The equilibrium still requires that
the stress components o, and o, are continuous accros the fiber-matrix interface.

Thus, the system obeys the bonding conditions:

[orlp = lurlp =0, oP|p = klu.]p, (5.1)

or

[ordp = [or:lp = [wlp =0, oDlp = k[u.]», (5.2)

where k is the stiffness of the “shear spring”, P is the fiber-matrix interface given
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by (2.40), and the notation [o]p defines the jump discontinuity by

[o]p = [ — o] |(r,o,z)e1>' (5.3)

After Fourier transform, the bonding conditions (5.2) become

n&rrﬂrza = H&rzl]rza. = [Iﬁrﬂr=a = 0, 0',(.12) = k[[izzIIr=a’ —o0 < n <00, (54)
where [6],=, defined by

[6]r=a = [ - @] (5.5)

r=a’

5.2 Exact Solutions

Now, we consider the general situation that the phase transformation charac-
teristic function v*(z) is given by (2.43). In the Fourier transformed domain, the
general solutions to tha system are given in Chapter 2 by (2.52), (2.58), (2.59), and
(2.60). Setting r = a in (2.58) and (2.60) and substituting them into (5.4), one

arrives at the algebraic equations for the bonding conditions:

1 1 2) 4(2 2) (2
qg JAM +q§ ) ) —qi JA® —qg )B(@ = 0,
1 4 Hp 2) g2 2p 0

qgl)A(l) + qél)B(l) + wqéz)A(2) + wqéz)B(z) =0,

a __EMD |n| (1)]A(1)+ [q(l) EM || ] 50

T T0k T+00 g °
GV |
@@ ., @Dpe) 1.,
wg, A wqy B ey 7737
—00 < 11 < 00, (5.6)
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where, for simple, we denote

n n n -1)" n
o =4 ) = B (nlo) - LRl

g = g5" (m) = (=1)"(1 = 2R (Inla) + InlaR{™ (Inla),
5" = ¢§™ (n) = (-1)"R{(Inla),

g5 = ¢” () = (-1)"nlaRS” (Inla) + 2(1 — v™)R{™ (|nla),
g™ = ¢t (n) = R{” (Inla),

& = ¢§™ (n) = InlaR§™ (Ina),

@™ = oi (n) = Ry (|nla),

o = a8” () = (=1)"4(1 — v )R$(Inla) + InlaR{™ (Inla),

—00 < 7 < 0. (5.7)
The constant w denotes the ratio of the shear modulus of the matrix G(!) to the
shear modulus of the fiber G(2):

G (14,@)ED)
T G@ T 1+v/ME®@"

w (5.8)

The function 4* = 4*(n) is the Fourier transform of phase transformation charac-
teristic function v* = v*(z). Here, qJ(-"), j=12,..,8,in (5.7) and w in (5.8) are
the same as those in (4.6) and (4.7) for the “perfect bonding elastic fiber” model,
respectively.

Solving (5.6), one finds the unknown functions A(™)(n) and B(")(7) as

E(l) A(")
(n)—_- (n) =—'_——-_A..."
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E(l) A(")
(n) — g(n) —4_— B =
B _B (77)—11+U(1)173A’7,

—00 < 1 < 00,

where A = A(n) is given by the forth order determinant

g g —q7  -g
g5" g§" —¢?  —qf?
An) = s o wg®  wg®
) - it o - Bt —we? —wg?
—00 <1 <00,

(5.9)

(5.10)

and A(:) = AE:) (n) and Ag‘) = Ag') (n) are given by the third order determinants

qél) _qu) _qu)

1 1 2 2

AQPm) =|g" - —¢?
2

eV wgl?  wgd®

1 2 2

A o g

(1 2 2

AR = ¢f” ¢ -
1 2 2

& we? gt

2

gV ¢ —¢f?

(2) _ 1 1 2

AY () =|g” ¢P —¢?
1 1 2

@V ¢’ wel

1 1 2

gV ¢V g

(2) 1 1 2

AP = | o
2

& o wof?
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—00 < 7 < 00. (5.11)

Notice that AS‘) and Ag') in (5.11) are the same as those in the “perfect
bonding elastic fiber” model (4.10), while A in (5.10) is different from that in (4.9).
Here, the A in (5.10) has extra terms including k. Although A™ and B(") in (5.9)
have the same forms as those in (4.8) for the “perfect bonding elastic fiber” model,
they are different in nature because A in (5.10) is different from that in (4.9). For

the determinant A in (5.10) , only two terms involve k. Using the linearity of

determinant, one can seperate the determinant A into two determinants:

2
¢V ¢ B P
1 1 2 2
A @V ¢V P ¢
(n) = a 2) @)
qs de wqs wqg
1 2 2
& ) —wgl?  —wgl®
2 2
gV g3V I
1 1 2 2
gV gV P —¢{?
+ (1) (1) () @ |’
qs de wqs WQg
EM 1 EM 1
—1+u1’%1‘1§) —m%ﬂqfi) 0 0
—00 < 7 < 00. (5.12)

Expanding the second determinant according to the 4th row, one has

2 2
qgl) qgl) —q§ ) —qg )
(1) (1) (2) (2)
q3 q4 —q3 —q4 E(l) Inl . . . .
) (1) ) (2 (2) 1+0vM) k 93 84 — 49 5B
5" 96 wqs wqg
Q'(rl) Qél) —wq-(,g) —wqéz)

125



—00 < 1 < 00. (5.13)

Here, the first term of A is the same as that in the “perfect bonding elastic fiber”
model (4.9) and the effect of the spring k comes only from the second term.
Substituting (5.9) into (2.52), one obtains the Fourier transformed Love’s stress

functions for the matrix and the fiber:

¢™ . E® 1 (n) )
=iy A L AR (i)

+Ag"|n|rR§">(m|r)] on (™. (5.14)

Similarly, substituting (5.9) into (2.58), (2.59), and (2.60), one obtains the
Fourier transformed stresses, strains, and displacements for the matrix and the
fiber, respectively. The Fourier transformed stresses for the matrix and the fiber
are

&) E® (-1

. 1 ([ (n) )" n(n) (n)
ey x| [ - SR i)

- [(—1)"(1 — 20)R{ (|Inlr) + |n|rR§"’<|n|r)} Ag"},

~(n) (1) _1\n
o E 1 1 n
o =D { Rg )(Inlr)AS')

oo 1+ A Unir
- 2u<">)Ré"’(|n1r)A‘,;"},

~(n) (1)
o E 1 n
,-:: = 1+ l/(l))Z{ - R(() )(IU!T)AE:)

#1720z - SR i) + iR )| A5,

~(n) (1) :
Orz . E Slgn(ﬂ) n+1 p(n) (n)
7 = 1(1 n u(l)) A (-1) R; (|77|7')AA

+ [(—1)"|n|rRé"’(|n|r) +2(1- v“))Rﬁ"’(mlr)] AS;"}
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on Q™). (5.15)

The Fourier transformed strains for the matrix and the fiber are

~(n)

2 = w2 [0 - L RO i)

,7‘

- [(—1)"Ré"’(in|r) 4 |n|rR§")<|n|r)] A%”},

~(n)
B e 3 { AR (A

—R (o)A ‘")},

)
’72 n— 1 n
Lo — w2 - R alnaf)

+ [(—1)"4(1 —v™)RM (In|r)
+|ner§"’(|n|r)} AS;"} + 6,
2 _isign(n) ntl1 p(n) (n)
?=zw —A (=)™ Ry (Inr) A
+ [(—1)"|n|rRé"’<|n|r> rol - u<">)R§"’<|n|r)] Aﬁ;"}
on Q™. (5.16)

The Fourier transformed stresses for the matrix and the fiber are

~(n)

u

e LT MBYN'S

= (e (ROl
~lnlr RS (Inlr) A},

~(n)

Uz . n—1 1 { (n) (n)

— =" —< - r)A

= X1~ R (ninag
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+ [(—1)“4(1 — V)RS (k)
n n . 1
iR ’(|n|r)] Ag’} +idua

on Q™. (5.17)

For fixed r, all these ratios given in (5.14), (5.15), (5.16), and (5.17) are func-
tions of the material properties of the matrix and the fiber as well as the geometry
parameter of the fiber through the radius a of the fiber, but independent of the
phase transformation in the fiber. If consider the phase transformation in the fiber
as input or excitation and the Love’s stress function, stresses, strains, and displace-
ments in the matrix as outputs or responses, these ratios give the corresponding
transfer functions, respectively. Theoretically, these ratios characterize all the be-
havior of the composite associate with the phase transformation in the fiber. For
given materials of fiber and matrix, these ratios are completely determined by the
corresponding material properties and the radius of the fiber. Then, for a given
phase transformation pattern, the distributions of stress, strain, displacement in
the matrix and the fiber can be found through the phase transformation character-
istic function of the fiber together with these ratios.

Multiplying these ratios in (5.14), (5.15), (5.16), and (5.17) by the phase trans-
formation characteristic function of the fiber 4* and performing inverse Fourier
transform, one obtains the Love’s stress functions, stresses, strains, and displace-
ments of the matrix and the fiber in the original physical domains R(™), respectively.
The Love’s stress functions are

EM S |

(") =i
(r,2) AT ) A

[- A% RS (1nir)

+AP iR (i) |7 (e~*dn on Q. (5.18)
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The stresses can be written as the following forms

EM 1 (-1
(n) — = (n) _ (n) (n)
Orr (Ta Z) z2ﬂ__(1 +l/(1)) /—oo A{[RO (|T]|T) |77|7' Rl (|77|7')] AA

-0 = 20 RE ) + i B )| 55 e,

EM ® (=1)" n n
% (12) = Gy / A {| R (nin) g

(- 2V‘"’)R§")(IUIT)A§?)}'”7‘(n)e“‘"dn,

EM © 1
(n) - = (n) (n)
Oz (T,Z) - 27((]. + l/(l)) [ A{ RO (I'I]'T A

+ [(—1)”2(2 = V)R (nlr) + lnerﬁ'”(lmr)] A‘é"}a'(n)e-“"dn,

EW > sign(n) '
(n) -~ SIBINT) ] ¢ _1yn+1 p(n) (n)
o2, 2) = i [ BB 1y R i)

* [“”""feré"’unlr) +201- um)Rﬁ"’umr)] AY }’7'(n)e“‘"dn

on Q™). (5.19)

The strain components can be written as

2 =5 [~ 2[R - LR i [

—00

~ [(—1>"Ré"’<|n|r> + |n|rR§"’(|nlr)] A%"}xx*(me-""dn,

nl oo
(n) n 1)1 R (n)
8502 = (0r = [ LRl

—oo A LInlr

—Rf)")(lnlr)Ag’)}’r‘(n)e“”’dn,
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n—1

") =4 [ ” i{ — B (jnlr) AL
2r o A

s [(—1)"4(1 — V)RS ()

+|n|rR§"’(|n|r>] Ag')}‘r‘(n)e"””dn +br(2),

n ,w""l e si n n n
WD (r,2) = i / gz("){(-l) FRM (Inlr) A

— o0

+ [(-1)"|n|rRé"><|n|r> +2(1- u<">>R§"’(|n|r>] AS‘)}‘T(n)e"”’dn

on Q™). (5.20)

The displacement components are

n 2wl n n
ul™(r,z) = (-1) o / |77|A{R§ )(|'7|7')A£1)
—o0

~nlr RS (Inlr)AS’ }3* (n)e*="dn,

-1 fo'e)
(M) () = s 2 1 [ oo ()
) =i [~ S - R anay

s [(—1)"4(1 SR (fnlr)
+|n|rR§"’(|n|r>] A%')}’r‘(n)e—’""dn + 6agu*(2)

on Q™ (5.21)

where u*(z) is the displacement phase transformation function as in (2.64)

u*(z) = /z ~v*(s)ds. (5.22)

20
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Alternatively, the (5.18), (5.19), (5.20), and (5.21) can also be obtained by
directly substituting (5.9), (5.10), and (5.11) into (2.61), (2.62), (2.63), and (2.64),
respectively.

Here, although the forms of (5.18), (5.19), (5.20), and (5.21) are the same as
those of (4.15), (4.16), (4.17), and (4.18) for the “perfect bonding elastic fiber”
model, they are different since the A is different in these two cases in which A are

given by (4.9) and (5.13), respectively.

5.3 Single Finite Segment Transformation

Now, we look at the situation that only a single finite segment of the fiber
undergoes phase transformation. Assuming only a single finite segment of length
2L of the fiber undergoes a uniform phase transformation with a constant normal
transformation strain 47 along the axial direction of the fiber, i.e., A = [-L, L], the

transformation characteristic function is give by
7T lz| < L,
7' =7(2) = (5.23)
0 |z| > L.

In the Fourier transformed domain, one has from (2.21) that

T
¥ (n) = —Sln(Ln) (5.24)

Substituting (5.24) into (5.9), one has

2E(1),7T A(")
T+ 7

A (n) = —i 5 sin(Ln),

2E(1) T A(")

B™ ook
(n) =117 n4Asm(Ln)

—00 < 7N < 00. (5.25)

For this special case, it is convenient to introduce the normalized coordinates

(7, Z) and aspect ratio « defined by (2.68) and (2.69), respectively. As for the spring,
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we define the normalized stiffness k by

- ak
k= Ok
In terms of these normalized or dimensionless variables, one has
- 2EMAT A
(n)(5) = A(n) — 3 A o _
A (77) - A (77)|,,=,—,/a - i 1 + l/(l) 7—]45 Sln(an)?
_ 2E(1)7T A(")
(n)(zy — R(®) . B . _
B™ (1) =B (77)|,,=,.,/a =TT, o0 _—ﬁ“A sin(a7),

—00 < 7] < 00,

where A = A(7) = A(")(n)l,,:f-,/

and AP = AP (7) = AP (n))

by

—(1
"

(1
)
(1
#

(1
"

—(1
A

(1
(1

_(1)
8

(2)
1

. is given by determinant

_(2)

—q —q2
gD _g®
+
wgs?  wg
—wg”?  —wgg)
n=fj/a
g
AP @) ="
g
g
AR (@) = | "
@Y
g
AQ () = | P
g

w

—(2
qg)
—(2

(2
il

—(2
4
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and AF = AR (7) = A5 (n)|

(2
e

—(2
e

—(2
il

(2
e

—(2
_g|,

(2
wgl?

—(2
e

—(2
_a®|,

—(2
g

(5.26)

(5.27)

|ﬁ| (D) xQ (1) x (1
1+00 T(qg '8 -4 ’AE;’), (5.28)

are given




(1) (1 (2
a’ @ -

~(2) /- (1) -(1 _(2
Am=1g" & -¢2|,

(1 (1 (2
% @ we”

—00 < 7] < 00. (5.29)
Here, q;") = qﬁ.")(ﬁ) = j")(n)|n=ﬁ/a, j=12,...,8, are

& @) = B () - ‘—%ﬁ—"R&"’(lﬁl),

a” (1) = (=1)™(1 - 2RV (7)) + 171 R (|7l),

& @) = (-1)"alRS (7l) + 2(1 — v ™) R (17)),
@™ @) = R{M(I7l),

& @) = 1R (7)),

& @) = R§V(17l),

" @) = (-1)m4(1 - v™)RE (1) + 17l R (7)),

—00 < 7] < 00. (5.30)

Notice that ¢\ (7), j = 1,2,...,8, in (5.30) and A (7) and AY (7)) in (5.29) are
the same as those in (4.26) and (4.25) for the “elastic fiber” model, respectively.
However, A(7) in (5.28), which has an extra term including k, is differ from that
in (4.24) for the “elastic fiber” model. Therefore, even though A (7) and B ()
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have the same form in (5.27) and (4.22), they are different because A(7) is not the
same.

Substituting (5.23) into (5.18), and then normalize them by using (2.68), (2.69),
and (5.26), or directly substituting (5.27) into (2.71), one obtains the Love’s stress
function in the normalized coordinates. Noticing that the imaginary parts of the
integrands are odd functions of 7, the Love’s stress functions, in the normalized

coordinate, have the following forms

EMATgd e 1

B0 = Sy [, i |~ AR R 1)

+5g’)|ﬁ|FR§")(|ﬁlF)]sin(aﬁ)sin(afﬁ)dr‘) on Q™. (5.31)

Similarly, substituting (5.27) into (2.75), (2.76), and (2.78), and considering
that the imaginary parts of the integrands are odd functions of 7, one has distribu-
tions of stress, strain, and displacement in the normalized coordinates. The stresses,

in the normalized coordinates, are
EMW4T > 1
=(n)= 5 _ = T (n)
o9(r,2) = ot | =5 [0

(=) R™ A® _ [(—1y%(1 — 2™\ R™ (1717
LR ol )] [( ™1 - 2R (1)
+|ﬁ|fR§"’(|ﬁ|f)]Aﬁ;"}sin(aﬁ)cos(azmdﬁ,

(1)AT
_(n) - - EMy (=1)" (n) (n)
000 (T Z) (1+V(1))ﬂ/°° nA | | R (l I )A

(- 2v<“>)R§,"’(zmr~)AS;"}sin(amcos(azrz)dﬁ,

) /e = E(l),.yT (>} 1 n n
M (7, 2) = m/_ { E{V (|17 ASY

; [(—1)“2(2 V)R (1717)
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Halr R (717)] A5 fsin(an)cos(azma,
57, 2) = ———(1"'1(2[’5)” [ ax{eorarinay
+|-0rlairRS i)
+2(1 = V)R (i) A5 fsin(ansin(azn)ar
on ™, (5.32)

The strain components, in terms of normalized coordinates, are

T n—1 (o ]
e =T [ wn—lﬂ{[ R (17/7)

_E=n

alF

R(")(Inlr)]A(") [(—1) R (717)
+|ﬁ|fR§">(|ﬁ|r~>]A%’}sin(aﬁ)cosmzmdﬁ,

-1 {o o]
n)i= = n'7 w 1 1 (n) Q(ﬂ)
Yoo (Ty 2 1 / _—{
00( ) ( ) T . T[ﬁ |7]|7' (ll)

—R(()") (|ﬁ|f)5g') }sin(aﬁ)cos(afﬁ)dﬁ,

T,,n—-1 oo
n) rw 1 (n) (n)
7 = T [~ e - R (anAY

n [(—1)"4(1 — /)RS (717)

HirR a17)| 85 fsin(an)costazn)an + 6,27

T

n—1 0o
Y w 1 nt+1 p(n) (n)
= [ |nm{( 1)1 R (7(7)AY

¥(F,2) =

; [(—1>"|ﬁlmé"’(|ﬁ|f)
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+2(1 - u("))Rgn)(Iﬁlf)] Ag‘) }sin(aﬁ)sin(aiﬁ)dﬁ

on Q™ (5.33)
where
AT Jzl <1,
¥ =7%(2) = (5.34)
0 |z] > 1.

The displacement components, in terms of ¥ and Z, are

n = = na Twn_l * 1 n —1=\ AT
w55 = (T [ e R nAY

m oo 71|

~ 717 RS (1717 AG) Ysin(an)cos(azi)d7,

T, n—1 oo
g = 22— [ fﬁla{ ki
+ [(—1)"4(1 - v™) R (I7l7)

+|7|7R{™ (lﬁl?")] AP }sin(aﬁ)sin(azﬁ)dﬁ + bpp”

on Q™. (5.35)
where
’yTL z>1,
w*=a'(z)={ 1TLz |z <1, (5.36)
—~TL z<-1.

All the results (5.31), (5.32), (5.33), and (5.35) possess the same forms as those
in (4.27), (4.28), (4.29), and (4.31) for the “perfect bonding elastic fiber” model,

respectively, except that A is given by (5.28), which includes an extra term involving

k, instead of by (4.24).
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5.4 Numerical Evaluation

In this section, we present the numerical evaluation of the exact solutions for
the case that a single finite segment of the fiber undergoes phase transformation.
The calculation is performed using Mathematica. In the calculation, the matrix is
assumed with Young’s modulus E(!) = 1GPa and Poisson’s ratio v(!) = 0.3, and
the fiber with Young’s modulus E? = 100GPa and Poisson’s ratio v(?) = 0.3,
respectively. The normalized stiffness of the “spring” is taken to be k = 103, and
the aspect ratio be @ = 10. Noticing that all the integrands are even functions of
ij, one only needs to calculate the integration over the interval (0, 0o).

Figure 5.1-5.3 show the 3D plots of the stress distributions, the strain distri-
butions, and the displacements, respectively, for the case of a = 10.

The distributions of the stresses on the fiber-matrix interface for a = 10 are
shown in Figure 5.4 for matrix and in Figure 5.5 for fiber. It is shown that all the
stress components are finite and continuous in Z on the interface. It also shows that
the shear stress component &,, has maximum magnitude near the phase boundary
(|z2] = 1), while the normal stresses, ., 69, and 7., reach maximum magnitudes

at the middle of the phase transformed region in the fiber (|z| = 0).
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Figure 5.1. The 3D plots of stress distributions for E(!) = 1GPa, E® = 100GPa,
1) =@ =03,k =10"% and a = 10. (a) =Zt=, (b) =Z2~, Cza and
By anc.a (a) ED,T (b) Eﬁ%% (c) E{ﬁ? an

() F5er-

y
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() %T

Figure 5.2. The 3D plots of strain distributions for E(!) = 1GPa, E®) = 100GPa,
v =@ =03,k =10"° and a = 10. (a) 1'.,: (b) 1*2,% (c) l-f. and (d) lT
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(b} o

Figure 5.3.  The 3D plots of displacements for EM = 1GPa, E® = 100GPa,
v =@ =03, k=10"% and a = 10. (a) -, and (b) L.
ay ay
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Figure 5.4. The stress distributions of matrix on the fiber-matrix interface for
EM = 1GPa, E® = 100GPa, v) = p(2) = 0.3, k = 10~5, and a = 10.
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Figure 5.5. The stress distributions of fiber on the fiber-matrix interface for
EM) = 1GPa, E? = 100GPa, v(!) = v(? = 0.3, k = 10~5, and a = 10.
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5.5 Reduction to the Spring Bonding Rigid Fiber Model

For the situation that the SMA fiber is much stronger than the matrix, one has
w — 0 by (5.8). For the fiber (n = 2), this is equivalent to that E(? is finite and
EM — 0. From (5.19), (5.20), and (5.21), one has the constraint free deformation

in the fiber:
@D =yD=92=0, ¥?=9"  onQ®?, (5.37)
u? =0, u?=u on ), (5.38)
and
o? = aé(,f,) =0? =0 =0, on Q2. (5.39)

For the matrix (n = 1), however, the condition that w — 0 is equivalent to
that E() is finite and E?) — oco. Notice that as w = 0, (5.13) and (5.11) lead to
the relations

A(n) = AW (n) - AP (p),

AD () = InlaKo(|nla) - A® (n),

AR (n) = K (Inla) - A (n), (5.40)
where @ @
q D)
AP () = :
2
¢? ¢
1 1 1
AD () gV g EW |y gV ¢!
n) = — O
14+ k
¢ gg! gV g

= —nlaK3(Inla) - 4(1 — vD) Ko(Inla) K1 (|nla)

144



2(1 — vM)EM)

1-—
+ a(l+v(@)k

]lnlaxfuma),

—o00 < 7 < 00. (5.41)

For the general phase transformation characteristic function v*(z), substituting
the above (5.40) and (5.41) into (5.18), (5.19), (5.20), and (5.21) with n = 1,
and canceling A(®), one obtains the Love’s stress function, stresses, strains, and
displacements for the “rigid fiber” with “spring bonding” model. The Love’s stress

function for the matrix is

EM oo

(1) =3
o' (r, 2) 1271_(1_}_”(1)) .

1
—am | ~ mlaKo(lnla)Ko(lnir)

+HnlrKy(Inla)Ka(nlr) }3* (me™dn on Q. (5.42)
The stresses in the matrix reduce to the following forms:

oD(r,2) = ED = aln|Ko(alnl) + (1 — 2v() K1 (alnl) | Ko(nlr)
rr \'» 27T(I+U(l)) o A(l) nifLo n 1 n o\m

+|2KolalnD - by (alnb)| Kl Y Crde=an,

(1) EW > 1 M
Ogg (11 2) = 2r(1+ M) J_ o, AD (1 -2v")K1(aln])Ko(|nlr)

=2 Kofal)Ka(nlr) 7" (r)e~ ",

EM ©° 1

(1) -~ -
(02 = g my | A

{[- alniFataln) 202~ s o) Kol

tinlrK; (alnl)Kl(Inlr)}‘r‘(n)e“"’dn,

ol (rz) =i

(1) 00 2
27r(1E+ y) /_ Sli:g’){ = |nlrK1(aln|) Ko(|nlr) + [alano(aInI)
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+2(1 - v)K, (alnl)] Kl(lnlr)}’r‘(n)e“"‘dn on Q). (5.43)

The strain components in the matrix can be written as

W =5 [ gt [abiEotala + K| Kool

+ [gKo(alnl) — Inlr K, (a|n|)] Kl(lnlr)}ﬁ‘(n)e“"”dn,
’715:;)(7",2):%/—“ B%_I){KI(alnl)Ko(lnlr)

-2 Kofal)Kaalr) }3° (e an

1

W02 = o= [ ] - [alEotalnl) + 4 - s0) K ol | Ko(iin

+InHK1(a|nl)K1(Inlr)}‘r‘(n)e""""dn,

W) =g [ S ksl Kollle) + [alnlo(ala)

+2(1—U“))Kl(alnl)]Kl(lnlr)}‘r‘(n)e‘i"‘dn on Q). (5.44)

The displacement components in the matrix are

1

* 1 T
(1) = — L J
w(r2) = 3= [ { SRl Kolinir)

~Ko(aln) K (Inlr) }7" (m)e™"dn,

1 [~ 1
u(zl)(ri Z) =—i7=

o | m{[a|n|Ko(a|n|)+4(l—u(l))Kl(al’?D]KO('TﬂT)
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—|n|rK1(alnnmnlr)}ﬁ'(me-*"‘dn on Q. (5.45)

Similarly, one can obtain the results of strong fiber ( as w — 0) for the case
of single finite segment of the fiber transform with the normalized transformation
characteristic function 4* given by (5.23). In the fiber, the deformation is constraint

free. In the matrix, the Love’s stress function, in terms of normalized variables, is

N SBEWT oo 1 B B L
0(75) = Zms | g~ DKol
+7lFK () K (1717) Jsin(an)sin(anz)dn on QM,  (5.46)

where O )
w |7 |8 %

(1 (1
&

(1 (1
] % %

AN (7) =

17,0 %

@ g
= — |71 K3(|7]) — 4(1 — vD) Ko(|7)) K1 (17])

2(1 - y(l))w _ _
+[1 - 71—+—<—2>)—k] ialEE (1)),

—00 < 7] < 00. (5.47)

The stresses of the matrix, in terms of normalized variables, are

E(l),yT
1+ vMW)r

L w3t [lﬁIKo(mn +(1- 2V(1))K1(Iﬁl)] Ko(|717)

3P (7, 2) =

+| £l = (7)) K 117 Jsin(amcostazniar,

E(l),yT {o <] 1 _ o
T A+ /_oo Z(l_),—,{(l — 20W) Ky (17l Ko(1717)
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=Kol 117) sin(amcos(azn)an,

(1)7
(1+vW)n

G (7, 2) =

[ x| - ia - 2z - ks | oo

+IT7IFK1(Iﬁl)Kl(Iﬁlf)}Sin(aﬁ)COS(afﬁ)dﬁ,

()= = EM4T * 1 . o _ _
o02) = ot [ g~ KD Kaliln) + 1K)

+2(1- u“))m(lm)] K1(lﬁlf)}sin(aﬁ)sin(afﬁ)dﬁ

on Q). (5.48)

The strain components of the matrix can be written in terms of normalized

coordinates as

T oo
1002 = [ = { oo + Kaab] otini

+[ 2 Kalla = 7K (7D | s 117 sim(ameostaznian,

T oo
w02 =L [~ = Kt Kadaln)

Dl

-;Kouﬁl)xl(iﬁlf)}sin(aﬁ)cos(afﬁ)dﬁ,

T 0o
3002 =L [~ x={ - [ioiah + 4 - ks ) (o)

+|ﬁl7‘K1(|ﬁ|)K1(Iﬁlf)}sin(aﬁ)COS(afﬁ)dﬁ,

T oo
Wea) =L [~ g { - Wik dm(an + [
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121 u<1>)Kl(|ﬁ|)] Kl(|ﬁlf)}sin(aﬁ)5in(afﬁ)dﬁ

on Q). (5.49)

The displacement components of the matrix, in terms of normalized coordi-

nates, are

PO - L A U G L
05 = " [~ = {rRm ko)

~ Ko(|1) K1 (1717 Jsin(adf)cos(azm)d7,

T oo
a2) = -2 [~ ] [ioia + 4 - vk (7 Kol

—IﬁIFKl(IﬁI)Kl(IﬁIF)}Sin(aﬁ)sin(afﬁ)dﬁ on Q). (5.50)

Comparing the results for the spring bonded rigid fiber model (5.42) — (5.46)
and (5.48) — (5.50) with those for the perfectly bonded rigid fiber model (3.12) -
(3.15) and (3.22) - (3.25), one found that the only difference is that in the spring
bonding model there exists a extra term involving k or k in A() or A,

Figure 5.6 displays the distributions of shear stress a{» over EM™AT on the
fiber-matrix interface for the case of single finite segment undergoing phase trans-
formation. The distributions are plotted for various values for the ratio of shear
modulus of fiber to that of matrix: w = 1075,1074,10~3,10~2, and 10!, respec-
tively. Figure 5.6(a) is for matrix and Figure 5.6(b) for fiber. The distributions
reach their maximum at phase boundary for both matrix and fiber. It shows that
for fixed E(1), the shear stress of the matrix on the fiber-matrix interface increases
as w decreases. In fiber for fixed E®), on the other hand, the shear stress de-
creases with w decreases. This means stiffer fiber generates larger shear stress in
the matrix while softer matrix generates less in the fiber when fiber undergoes phase

transformation.
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Figure 5.6. The shear streiss distributions Ha-rff,? on the fiber-matrix interface for
v() =12 = 0.3, a = 10, k = 1073, and various ratios of shear modulus of fiber to
that of matrix: w = 1075,1074,1073,10~2, and 10~!. (a) For matrix, and (b) for
fiber.
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5.6 Reduction to the Perfect Bonding (Elastic Fiber) Model
As the stiffness k increase, the relative axial displacement between fiber and

matrix decrease. Let k — 00, one has

1 1 2 2
&
1 1 2 2
gV ¢V P -
Al = W ) @) @ |
qs ds wqs WQg
1 1 2 2
& o g ug?
—00 < N < 0. (5.51)

It reduce to the results for the case of elastic fiber with perfect bonding.
Figure 5.7 and Figure 5.8 display the distributions of displacement components

a$™ over ayT and of shear stress &7

over E(W4T on the fiber-matrix interface for
the case of single finite segment undergoing phase transformation, respectively. To
show the effect of stiffness, distributions are plotted for various stiffness values,
k=0,10"%,10"4,10-3,10"2, and 10!, respectively. In Figure 5.7, the solid curves
are for the distributions of fiber while the dash ones for those of matrix. For
the case that k = 0, the fiber and matrix are completely debonded. The fiber
undergoes free phase transformation and there is no deformation in the matrix
(Figure 5.7). Although the difference between longitudinal displacement of the
fiber and the matrix reaches its maximum, there is no shear stress generated on
the fiber-matrix interface because k = 0 (Figure 5.8). As k increase, the relative
longitudinal displacement between fiber and matrix decreases, while the shear stress
increases. Finally, for k — oo, the longitudinal displacement of the matrix coincides

with that of the fiber, but the shear stress blows up across the phase boundary. This

reduces to the perfect bonding situation.
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fiber

7(n)
Figure 5.7. The displacement distributions %‘T on the fiber-matrix interface for

Y
EM = 1GPa, E? = 100GPa, v(V) = »(? = 0.3, and a = 10, and various stiffnesses
(k=0,10"%,10"%,1073,1072, and 10~!). The solid curves are for fiber and dashed
ones for matrix.
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Figure 5.8. The shear stress distributions E(&ﬂfyT on the fiber-matrix interface for
EM = 1GPa, E? = 100GPa, v(V) = (2 = 0.3, and a = 10, and various stiffnesses
(k=0,10"5,10"4,10"3,102, and 107}).
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5.7 Boundedness of the Stress Distributions on the Interface

Setting 7 = 1 in (5.32) and considering that the integrands are even functions,

the stress components at the interface are given by

o1, = s [ ;Z((;) sin(a)cos(az)ds,

5 (1, 2) = Wff:)](f)) ;2((1”) Jsin(an)cos(azn)dn,

&M,z = 211‘:_(:)3(1)) / AnA((ln ) sin(af)cos(azf)d,

(n)(l z) = n?f-(:):(l)) /oo A::((l) )sm(aﬁ)sin(aiﬁ)dﬁ,
—00 < 7 < 00, (5.52)

where AP (1;7), Ay (1;7), AL (1;7), and ALY (1;7) are functions of :
) = [8m - EL RO @] aPm)
- [0 - 2 RP @) + 1R7 @) AF (),
AW = (1" AR DAP @) - (1 - NP @AP ()|,

AR (1;7) = —RP @AY ()

+[(-D22 - v )ED @) + 787 @) AP (),

B (1) = (-1

Tz

R @A (7)
+ (-1 AR (7) + 21 - )R ()| AF (),

—00 < 7] < 00, (5.53)
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To develop approximate expressions, we use the following asymptotic expan-

sions for the modified Bessel functions (Olver, 1974)

R 0) = Koln) ~ [ e 1= g+ 1o = s |
RV (1) = K1(7) ~ -;—T_’e‘ﬁ [1 + §37:7 - 12185772 + 101;457_’3 + ;
R$? (7)) = Io() ~ %e"” [1 + él—r_’ + 1227_’2 + 10;173 +]
S YL T ] U RO SO S |
as 1] — oo. (5.54)

The asymptotic expansions of A(:) and A(:), n = 1,2, are

- 1 _
AY (7) ~ ,/87"_’3 e"{ [1 +(3- 4u(2))w]ﬁ

—% [15 - 160 + (15 — 1601)(3 - 4u<2>)w] TR }

Ag)(ﬁ) ~ ‘/8—:1_—_’3617{ [1 +(3- 4u(2))w]

1 1
-3 [11 — 160 + 1+ 41/(2))10]: R },

n
Z\Ef)(ﬁ) ~ /%ie_'-’{ [3 -4 4 w]ﬁ

[(3 - 4V(1))(l5 - 161,(2)) + (15 — 161/(1))10] +oe }’

+

Ag) (7) ~ \ /#e‘ﬁ{ [3 -4 4 w]

1 1
(1) — (1) 4.
+8[1+4V + (11 — 16v )w] - + },

ool =
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(7 — 00).

The asymptotic expansion of A is

— Y1 — 25®) — (1 — 2501 — @Yol L
+2[(1=O)1 - 2) = (1= 20)(1 =1 Pu] 2,

(5.55)

(5.56)

Bo(7) = [ 34+ 4 —2(5 — 6N — 6@ + 8@y — (3 - 4V(2))w2]

+2 [2 -3 -3, 4 4u(1)u(2)] (1- w2)%

(5.57)

The asymptotic expansions of A% (1;7), Ag’;)(l; 7), ALY (1; %), and AP (1;7),

as 71 — 0o, are

AM(1;7) ~ 4%72{ [1 -2 —(1- 2u(2))w]
- [1 -3 -2 4 4,1,
+(1 =200 - 3,3 4 4u(1)u(2>)w] %}
AV (1;7) ~ #{ e [1 +(3- 4u(2))w] + [u(”(s — 4@
+(4 - 50M — 6D 4 8u(1)u(2))w] %},

AR (1;7) ~ #{21/(2) [3- 4D +w] + [1- 60 -5

+80Wp@ (3 - 4V(1))v(2)w] l},
7
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AW (1;9) ~ :1%{ - [3 20 4 (5 - 61/(2))11)]

+[4- 30D - 62 4 4y,
—(2 -4V -3, 4 4u(1)u(2))w] %},
n
AD(1;7) ~ Z:T{ [5 60D + (3 — 20w ]
+ [ -2+ 301 4+ 40@ 4,12

+(4 -6 -3, 4 41/(1)1/(2))111] %},

A (1;7) ~ %{2[1 — M 4 (1- <2))w] - 2[(1 —vM)(1 - 2,?)

—(1—200)(1 - U(z))w] % }

(7 — 00). (5.58)
Therefore, if k is finite and non-zero constant, one has

A(n)( 177) Hr(-:) _ 1+ V(z))}} 1-201 — (1- 2V(2))w l
A 7 w 2[—1+V(1)—(1—V(2))w] 7

A 7 2
Ag?fl;ﬁ) H) _ (14 vk V(l)[1+(3—4y( ))w]
A n w

1
[— 1400 — (1-v@)u] 7

(2)(1 ) H,Sg) _ QA4+vMNk 2033 - 4D 4 w) 1
A 1 w 2[-1+u<1>-(1-u<2))w]ﬁ

ARwa) HEY  1+v®k 3-200+(5-6bP)w 1
A U] w 2[—1+y(1)—(1—y(2))w] U]
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AP 1;7) Hg)_(l-ku("’))l_c 5—6v1) 4+ (3-20@)w
3 L

1
n w 2[—1+u(1)—(1—u(2))w n

ARWa)  HT _ (1+v®)k
3 a

7 w

1
n

The integrals in (5.52) can be decomposed into two parts by dividing the in-
terval of integration into (0, s) and (s,o0), for some s > 0. Utilizing (5.59), the

integrals on the interval (s,00) can be approximated for sufficiently large s > 0
Hence, we have

2E(1)’)’T A(l)
5(7) (1 3) ~ rr . _ 57)dm
o121, = s | [ S sin(anjoos(aznian

.,—’2

+H® /°° sin(afj)cos(az) dr')],

(1)AT (1)
—(n) 1 =\ o 2E )y Aoo
Goo (1,2) ~ TA o) [ | An sin(afj)cos(azj)d7

2 [ sin(af)cos(azn) |, _
+H50)/ ( f))f72 ( n)dn],
8

2E(WAT s A(D
_(n) ~ zz . — —_ -
(1,2) ~ =0+ 2D) [/0 An sin(af)cos(az7)dn

o g __
+H / Sm(an);;)s(azn) dﬁ],
8

n 2EMT [ r* AF
(M1, z) ~ m[ | A7 ——sin(a)sin(az7)d7

00 i\t
+H / sin(af)sin(az7) dﬁ],

ﬁ2

-0 < Z< o0

(5.60)
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Note that for positive s, one has
/oo sin(aﬁ)cos(azr';)d77 < /°° sin(aﬁ)ﬁc;)s(afﬁ) g7 < /oo _l_dﬁ _
S S 8

7'72
/ sm(an)sm(azn)dﬁS/ sm(an);;n(azﬂ) dﬁS/ ﬁ_lzdﬁ= 5 (5.61)

7—’2
Therefore, for sufficiently large s, the second integrals in (5.60) are small and

then we have the approximations
_ o 2EW4T e AW s
(M, z) ~ 0T o) A'f; sin(af})cos(az)di,

()T s A(n)
_(n) = 2E" "y Ago . _ N
1,z) ~ = d7,
o 1,2) = s [ T sin(amcos(azn)a
oE(MAT s Ag':)
7 sin(afj)cos(az)d7,

(n) >) ~
(1,2) = (14 v) A7
ey oy 2EWAT AR
(M (1,z) ~ A+ o) A7 sin(a7)sin(az7)d7,
—00 < Z < 00. (5.62)

Only Ky and K; have

The integrals of (5.62) involve Ko, Ki, Io, and I,
singularity at 0. Hence, the possible singularities of the integrands are only at

7 = 0. To show the behaviors of these integrands near 77 = 0, we consider the

asymptotic expansions of the modified Bessel functions (Zayed, 1996, p.66)

RV (7)) = Ko(7) ~ —Ind,
)~ 1
Ry (1) = K1(7) ~ 7

R (7) = Io(7) ~ 1,

MIQA

RP(7) = L(7) ~
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as ij — 0. (5.63)

The asymptotic expansions of [&f“") and AE:), n=1,2, are

_ 1

AD (@) ~2(1 = V)P 4 5 [ 1= (1 — 9,1 4 @
+2u(l)u(2))w] 2Inj + %(V(l) - V(z))wﬁ2,

- 1

A(Bl)(ﬁ) ~3 [1 +vD 4+ (1- 3u(2))w]

1 a1 _
—5 (1= v wi’lng — 2 (1 - w)i?,

2 1 _

AP @) ~ 21 - D)1 - 2P 4+ w)ﬁ —2(1 = vM)(2 = v®)Ing
1M 4@ 4oy,

_ 1 1

AR@) ~ (1= vD)(A+w)= = (1= v D)ing = 5(1 - w),

as 7 — 07. (5.64)

The asymptotic expansion of A is

2Bk () + Bo(), 57— 0%, (5.65)

where

Ar(d) = —(1 = vD) [1 + 4 (1- u(z))w]

[

-l--;— [1 - _(1- u(2))w]f),

Ao(7)) = -2 [1 D1 -vM -2, 4 2V(1)u(2))w]w;7_}5
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+2(1 — M) [1 +v@ 4 (1- 3u(2))w] In7
1
+3 [1 + 02 20V -5,y — (3 -V - 4u(2))w2] . (5.66)
The asymptotic expansions of A (1;7), Ag';)(l; 7), A (1;7), and AP (1;7)
~(n _ 1 _
AN (1;7) ~2(1 - 1/(1))1/(2)1117_’—2 - (1 =vM)1 4+ vD)ng
1 (2) (1) _ 9,2
—§[l+u +(1-vY —2v )w],
Af,i,)(l;ﬁ) ~=2(1- 1/(1))1/(2)w_l2
+[u(1)(1 +) -1 -2 - 4 4u(1)u(2))] Indj
lom oy,
2 ’

A (1;7) ~ 201 = v D) Pw— 7 -1 -vD)(1+v®)ng

_% [u(l) + 0@ 9,y

AL ) ~ [(2 -1 +v®) - 2D - 4@ 1Dy (2))10] In7

+% [1 +v@ 4+ (1- 3u(2>)w],
1
AP 1;7) ~2(1 - u(l))[1 +0® 4+ (1- U(z))w] =
1
211 =@ (3,1 _ 9,02
31—~ 3= v® — 2P,

AR (1;7) ~ (1 - ™) [1 +v@ 41— ,,(2))w]

S| -
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—% [1 - - (1= 1v@)y|,

as 7 — 0%. (5.67)
Therefore, if k is a finite and non-zero constant, one has

A (1:7) (1= v )@

A T 1-00 1 (10— 2@ + 220,@)y’

A5 (1;7) (1 - 1)@
A 100+ (1= =2, 1+ 2,0,@)y’

AR @;7)

2 -0,

A
Ag‘?(l;ﬁ) (1 =01 [1 +v@ 4+ (1- V(Z))w]

= — — ,

A (1= v+ (1= v = 202 + 20D w
AR L)

= —

A

as 7 — 0%, (5.68)

Noticing (sin7j/7) — 1 as 7 — 0%, all the integrands in (5.62) are finite at
71 = 0. One concludes that all the integrals in (5.62) are finite and continuous in Zz.

Consequently, all the stresses are finite in the fiber and the matrix.

5.8 Maximum shear stress
The shear stress distribution on the fiber-matrix interface plays a crucial role
in the load transfer between components of the composite. An intensive shear

stress on the interface will lead to debonding between fiber and matrix and degrade
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the behavior of material, even result in the failure of material. Because phase
transformation in the fiber, the shear stress concentrates at the intersection of fiber-
matrix interface and phase boundary. Generally, the maximum shear stress depends
on the properties of materials, bonding, and phase transformation. For fixed E!
and ignoring Poisson’s effect, the material properties could be described by the
ratio of shear moduli, w = G(!) /G, In the “spring bonding” model, the bonding
property is solely determined by the stiffness of “shear spring” k. In the case
that a single finite segment of the fiber undergoes uniform phase transformation,
the phase transformation property is characterized by the phase transformation
geometry parameter a. In this section, we discuss the relations of maximum shear
stress with these parameters according to the numerical calculation for the case that
a single finite segment of the fiber undergoes uniform phase transformation. The
shear stress reaches its maximum at the intersection of fiber-matrix interface and
phase boundary, i.e., 2%* = |&$';)(1, 1)|. Do not loss our purpose, some parameters
in the plots are in the logarithmic scale. We will observe first the relations of the
maximum shear stress on single parameter w, k, or a. And then, we will consider
the dependence of the maximum shear stress on two of the parameters to further
study the correlation of those parameters.

Figure 5.9 shows the variation of the maximum shear stress 5]2** with the
ratio of shear moduli w = G()/G@ for fixed EV), a = 10, and k = 1073, It
shows that the maximum shear stress decreases as w increases. Thus, for fixed
matrix, the softer the fiber, the smaller the maximum shear stress. When w = 1,
ie., EW = E® the maximum shear stress is not zero.

Figure 5.10 shows the variation of the maximum shear stress /2** with stiffness
of “shear spring”k for fixed the ratio of shear moduli w = 10~2 and a = 10. It shows
that the maximum shear stress increases as k increases. Thus, for fixed matrix and

fiber, the softer the stiffness of the bonding spring, the smaller the maximum shear
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stress.

Figure 5.11 shows the variation of the maximum shear stress 7]2** with the
aspect ratio a for fixed k = 1073 and w = 10~2. It shows that the maximum shear
stress increases as a increases. It also shows that the increase of the maximum
shear stress is much quicker when « is small than when it large. It predicts that the
system prefers a configuration with very small aspect ratio « as the fiber undergoing
phase transformation to avoid shear stress concentration.

The depandence of maximum shear stress 372 on parameters w and k for fixed
EM and a = 10 is shown in Figure 5.12. It seems to suggest that the maximum
shear stress 37%* is likely related to the difference between k and w. Figure 5.13
plots the variation of maximum shear stress 57%% with the ratio (k/w) for fixed
E(M and a = 10. It shows that the maximum shear stress decreases as the ratio
(k/w) decreases. The change of the maximum shear stress with the change of the
ratio (k/w) on is significant when k smaller than w, while the change is very small
when k smaller than w.

Figure 5.14 and 5.15 show the relations of maximum shear stress )2** with
parameters o and w for fixed E(Y) and k = 1075 and with a and k for fixed
w = 1072, respectively. The parallel lines with the a-axis in these figures indicate

less correlation between a and w and between a and k.
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Figure 5.9. The variation of maximum shear stress 6;7;** with the ratio of shear
moduli w = GM/GP for a = 10 and k = 1073,
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Figure 5.10. The variation of maximum shear stress ™% with k for fixed o = 10,
and w = 1072,
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Figure 5.11. The variation of maximum shear stress 6;,** with parameters o for
fixed w = 1072 and k = 1075.
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Figure 5.12. The maximum shear stress 573" as a function of parameters w and
k for fixed a = 10. (a) The 3D plot, (b) the contour plot.
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Figure 5.13. The variation of maximum shear stress "% with the ratio (k/w) for
a = 10.
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Figure 5.14. The maximum shear stress 572°% as a function of parameters w and
a for fixed k = 1075. (a) The 3D plot, (b) the contour plot.
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Figure 5.15. The maximum shear stress 5™°® as a function of parameters k and
a for fixed w = 1072, (a) The 3D plot, (b) the contour plot.
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5.9 Remarks

The mechanical behavior of SMA fiber reinforced composite associate with
phase transformation depends not only on the mechanical properties of the matrix
and the fiber, including phase transformation, but also on the interaction between
the fiber and matrix. In theoretical analysis, the interaction is modeled as certain
bonding conditions. In the perfect bonding models as studied in chapter 3 and
chapter 4, the displacement is assumed to be continuous across the fiber-matrix
interface. However, the perfect bonding condition leads to singularities in stresses
at the intersection of the fiber-matrix interface and the phase boundary of the fiber.
To further study more general interaction between fiber and matrix, a “spring bond-
ing” model is developed in this chapter. In this model, the radial displacement is
still assumed continuous across the fiber-matrix interface while the axial displace-
ment is allowed for discontinuous across the fiber-matrix interface. Such an axial
displacement jump results in a shear stress with magnitude proportional to the
magnitude of the jump. The elastostatic problem is still axisymmetric. The ex-
act solutions for stresses, strains, and displacements are obtained for both general
phase transformation and only one single finite segment of the fiber undergoing
phase transformation. By using asymptotic analysis, moreover, it is approved that
all the stresses are finite and continuous in both fiber and matrix. As w — 0, the
results to the rigid fiber with spring bonding model are obtained. As k — oo, the
results reduce to those for the perfect bonding (elastic fiber) model.

Because the existence of phase boundary in the fiber, the shear stress concen-
trates at the intersection of the fiber-matrix interface and the phase boundary in the
fiber. The magnitude of shear stress concentration depends on the material prop-
erties, bonding property, and phase transformation property. Based on numerical
calculation of the results to the model, the influence of the ratio of shear moduli w,

the stiffness of “shear spring” k, and aspect ratio o on the maximum shear stress
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is discussed. The softer fiber, matrix, and bonding condition will reduce the shear
stress concentration. The shear stress concentration increases as aspect ratio a in-
creases. On influencing the shear stress concentration, there is a close correlation

between parameters w and k, but « is less correlated with w and k.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We have investigated the elastic deformations of SMA fibers reinforced com-
posite associated with phase transformations in parts of the SMA fibers. To focus
our attention on the interaction between the SMA fibers and the matrix, especially
near the intersection of fiber-matrix interface and phase boundaries in the fiber, we
have studied a simple model involving a single infinite fiber embedded in an infinite
elastic matrix. Assume the sharp phase boundaries in the fiber are perpendicular
to the axial direction of the fiber. The elastostatic problem is axisymmetrical, in
which a solid cylinder (fiber) and a hallow cylinder (matrix) are bonded together.

A systematical method for studying this axisymmetrical elastostatic problem is
developed. First, by introducing the Love’s stress function, the elastostatic problem
is reduced to a boundary value problem of PDE with only one unknown function.
Next, by applying (generalized) Fourier transform, the problem is further reduced
to an ODE. Then, the general solution to the Love’s stress function in the Fourier
transformed space can be obtained in terms of the modified Bessel functions of
the first and the second kinds. Thus, the general solutions to stresses, strains,
and displacements of the problem can also be expressed in terms of those modified
Bessel functions. Finally, the exact solutions are found by applying corresponding
bonding conditions. In the Fourier transformed space, those bonding or boundary
conditions are linear algebraic equations with respect to unknown functions. This
method may also be used to solve other axisymmetrical elastic problems.

Generally, the deformations of SMA fibers reinforced composite associated with
phase transformations depend on the property of phase transformation in the SMA
fiber, the material properties of the SMA fibers and the matrix, and the bond-
ing conditions between the SMA fibers and the matrix. In this dissertation, we

have studied the “perfect bonding rigid fiber” model, the “perfect bonding elastic
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fiber” model, and the “spring bonding (elastic fiber)” model in details. The “spring
bonding rigid fiber” model is dealt with as a special case of the “spring bonding
(elastic fiber)” model. For each of those models, we have considered both cases
of phase transformation pattern: general phase transformation and single finite
segment phase transformation, with the emphasis on the latter.

In the study on the “perfect bonding rigid fiber” model, the influence of matrix
on fiber is ignored. The phase transformation in the fiber is considered as constraint
free. Under perfect bonding conditions, the constraint free phase transformation
in the fiber directly gives rise to the boundary conditions for determining the de-
formation of the matrix. The exact solutions to the distributions of stress, strain,
and displacement are obtained. For the case that a single finite segment of the fiber
undergoes phase transformation, the normalized forms of the exact solution are pre-
sented. The numerical evaluation is performed. It is shown that across the phase
boundary, the normal stresses have finite jumps whereas the shear stress approaches
infinity. Further, by using asymptotic expansion technique, the singularities of the
stresses are isolated. The jumps of the normal stresses and the intensity of sin-
gularity for the shear stress are determined by the material properties of matrix
(EMW, v(M) and transformation strain 47, and are independent of the aspect ratio
a. The singularity in shear stress indicates a severe stress concentration near the
phase boundary. The solution provides a good approximation to the case that the
fiber is much stronger than the matrix.

In more general cases, the matrix exerts a significant influence on deformations
of the fiber, even constrains the phase transformation in the fiber. To take this effect
into account, we have studied the “perfect bonding elastic fiber” model, in which
the deformation of the fiber is also considered. The elastostatic problem maintains
axisymmetrical with two separate cylindrical regions, which are connected by per-

fect bonding conditions. The exact solutions to stresses, strains, and displacements
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in both the fiber and the matrix are obtained. The results for the case that only
one single finite segment of the fiber undergoing phase transformation are presented
in normalized variables. Particularly, when the fiber and the matrix have the same
material properties, one obtains the solution for the problem that a cylindrical in-
clusion undergoes phase transformation. By asymptotic analysis, the solutions can
be approximated by integrating to a sufficiently large value instead of to infinity.
It is shown that inside the matrix and the fiber all stress components are continu-
ous. However, on the fiber-matrix interface, all stress components have singularities
across the phase boundary. The singularities of stresses are isolated. The numerical
evaluation are also performed. All the results in the “perfect bonding elastic fiber”
model are similar to the “perfect bonding rigid fiber” model. As w approaches oo,
i.e., the fiber is very strong compared with matrix, the results reduce to those of
“perfect bonding rigid fiber” model. As for the influence of the matrix on the de-
formation and the phase transformation in the fiber, it is shown that the constraint
on the fiber increases with the increase of either w or a. The stiffer matrix exerts
greater constraint on the phase transformation in the fiber. On the other hand, in
the setting of composite, the phase transformation in the fiber may prefer a config-
uration with multi-piece small transformed segments to keep small a instead of a
large transformed segment to avoid greater constraint from the matrix.

The studies on “perfect bonding rigid fiber” and “perfect bonding elastic fiber”
models indicate that, under the assumption of perfect bonding conditions between
the fiber and the matrix, the shear stress is singular at the intersection between the
fiber-matrix interface and the phase boundary in the fiber. To further study more
general interaction between fiber and matrix, a “spring bonding” model is devel-
oped. In this model, the radial displacement is still assumed continuous across the
fiber-matrix interface while the axial displacement is allowed for discontinuity across

the fiber-matrix interface. Such an axial displacement jump results in a shear stress

174



with magnitude proportional to the magnitude of the jump. The elastostatic prob-
lem is still axisymmetric. The exact solutions to stresses, strains, and displacements
are obtained for both phase transformation patterns: general phase transformation
and single finite segment phase transformation. By using asymptotic expansion,
moreover, it is proved that all the stresses have no singularity in both fiber and
matrix. As w — 0, the results for the rigid fiber with spring bonding model are
obtained. As k — oo, the results reduce to those for the perfect bonding (elastic
fiber) model.

Even though there exists no stress singularity in the “spring bonding” model,
the shear stress still concentrates at the intersection of the fiber-matrix interface
and the phase boundary in the fiber. The magnitude of shear stress concentration
depends on the properties of materials, bonding, and phase transformation. Based
on numerical calculation of the results, the influence of the ratio of shear moduli w,
the stiffness of “shear spring” k, and aspect ratio a on the maximum shear stress
is discussed. The softer fiber, matrix, and bonding condition will reduce the shear
stress concentration. The shear stress concentration increases as aspect ratio o
increases. On influencing the shear stress concentration, there is a close correlation
between parameters w and k, but « is less correlated with w and k. It is shown
that the shear stress concentration is related to ratio (5) and «a instead of to k, w,
and a.

Through the studies on the “perfect bonding” model and the “spring bonding”
model, we could also conclude that the stress singularities in a SMA fiber reinforced
composite are the combined effect of phase boundary and perfect bonding interac-
tion between fiber and matrix. The material properties of the fiber and the matrix
as well as the transformation strain affect the intensity of stress singularities.

The following are some suggested directions for further studies.

Since the phase transformation in the SMA fiber is generally a large deforma-
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tion, the induced elastic deformations in both the matrix and the fiber should also
be large. Further studies on the nonlinear deformations of the composite associated
with phase transformation in the SMA fiber are suggested. The studies could begin
with development of the governing equations for general axisymmetric nonlinear
deformations. Then, attention could be focused on certain specific hyperelastic
material for some specific bonding condition to solve the problem.

In all the models studied in this dissertation, we assume there are sharp phase
boundaries, so the strains in the SMA fiber suffer finite jumps across the phase
boundaries. In terms of continuity of strain in the fiber, these are “discontinuous
strain” models. On the other hand, it could be assumed that there exits an interme-
diate region in the fiber between each completely transformed and untransformed
region. In this special region, there is a mixture of two phases. Assume that the
volume fraction of the transformed phase changes continuously over this region. By
taking the average of each cross section of the fiber, it is then modeled that the
strain in the fiber changes continuously from transformed region to untransformed
one. It could be called as “continuous strain” model. The method adopted in
this dissertation could also be used to investigate the mechanical behavior of the
material for this model.

In order to investigate local behavior, especially near the sharp phase bound-
ary in SMA fiber during phase transformation, we have considered the dilute case
involving a single SMA fiber embedded in an infinite elastic matrix. Further, we
could study the non-dilute SMA fibers reinforced composites. To take the inter-
action between SMA fibers into account, we could model the composite as three
concentric cylinders: a single infinite fiber is embedded in cylindrical elastic ma-
trix, which is surrounded by infinite composite. A portion of the fiber is allowed to
undergo phase transformation along the axial direction. A sharp phase boundary

could be explicitly considered to study local behavior near the intersection between
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the fiber-matrix interface and the phase boundary in the fiber. Assume the ma-
trix is linearly elastic and isotropic. The infinite composite cylinder is assumed to
be homogeneous, linear elastic, and tranversely isotropic. The effective mechanical
properties of the infinite composite cylinder could be analyzed using self-consistent
method. The matrix and the infinite composite cylinder could be assumed perfectly
bonded, while different bonding conditions between the fiber and the matrix could
be investigated. By assuming both the fiber and the matrix undergoing general
axiymmetrical deformations and the infinite composite cylinder doing axisymmet-
rical plane strain deformation, the problem could be modeled as a boundary value
problem. The exact solutions to the problem could be then derived. According to
the solutions, numerical calculations could be performed to illustrate the results.
The asymptotic analysis will be carried out to further investigate stress concen-
tration or possible singularities near the phase boundary of the SMA fiber. The
comparisons could be made with the previous one single fiber model to study the

interaction between SMA fibers.

177



REFERENCES

Abeyaratne R and Knowles JK (1988), On the dissipative response due to
discontinuous strains in bars of unstable elastic material, International Journal of
Solids and Structures, 24:10,1021-1044.

Abeyaratne R and Knowles JK (1993), A continuum model of a thermoelastic

solid capable of undergoing phase transitions, Journal of the Mechanics and Physics
of Solids, 41:3, 541-571.

Achenbach M and Miiller I (1985), Simulation of material behaviour of alloys
with shape memory, Archives of Mechanics, 37:6, 573-585.

Bekker A and Brinson LC (1997), Temperaturen-induced phase transformation
in a shape memory alloy: Phase diagram based kinetics approach, Journal of the
Mechanics and Physics of Solids, 45:6, 949-988.

Bekker A and Brinson LC (1998), Phase diagram based description of the
hysteresis behavior of shape memory alloys, Acta Materialia, 46:10, 3649-3665.

Bekker A, Brinson LC, and Issen K (1998), Localized and diffuse thermoin-
duced phase transformation in 1-D shape memory alloys, Journal of Intelligent
Material Systems and Structures, 9:5, 355-365.

Bell WW (1968), Special Functions for Scientists and Engineers, D. Van Nos-
trand Company Ltd, Lomdon.

Berman JB and White SR (1996), Theoretical modelling of residual and trans-
formational stresses in SMA composites, Smart Materials and Structures, 5:6, 731-
743.

Berveiller M, Patoor E, and Buisson M (1991), Thermomechanical
Constitutive-Equations For Shape Memory Alloys, Journal de Physique IV, 1:C4,
387-396.

Birman V (1997) Review of mechanics of shape memory alloy structures, Ap-
plied Mechanics Reviews, 50:11, 629-645.

178



Birman V and Hopkins DA(1996) Micromechanics of composites with shape
memory alloy fibers in uniform thermal fields, ATAA Journal, 34:9, 1905-1912.

Boyd JG and Lagoudas DC (1994), Thermomechanical response of shape mem-
ory composites Journal of Intelligent Material Systems and Structures, 5, 333-346.

Bracewell RN (1978), The Fourier transform and its applications, McGraw-Hill
Book Company, Inc., New York, NY.

Brinson LC (1993), One dimensional constitutive behavior of shape memory
alloys: thermomechanical derivation with non-constant material functions, Journal
of Intelligent Material Systems and Structures, 4:2, 229-242.

Brinson LC, Bekker A, and Hwang S (1996), Deformation of shape memory al-
loys due to thermo-induced transformation, Journal of Intelligent Material Systems
and Structures, 7:1, 97-107.

Brinson LC and Huang MS (1996), Simplifications and comparisons of shape
memory alloy constitutive models, Joumnal of Intelligent Material Systems and
Structures, 7:1, 108-114.

Buisson M, Patoor E, and Berveiller M (1991), Interfacial Motion In Shape
Memory Alloys Journal de Physique IV, 1:C4, 463—466.

Courant R and Hilbert D (1989) Methods of Mathematical Physics, Volume I,
John Wiley & Sons, Inc., New York.

Crawley EF (1994) Intelligent structures for aerospace: a technology overview
and assessment, AIAA Journal, 32:8, 1689-1699.

Ericksen JL (1975), Equilibrium of bars, Journal of Elasticity, 5:3-4, 191-201,

Eshelby JD (1957), The determination of the elastic field of an ellipsoidal inclu-
sion, and related problems, Proceedings of the Royal Society, Series A Mathematical
and Physical Sciences, 241, 376-396.

Eshelby JD (1959), The elastic field outside an ellipsoidal inclusion, Proceedings
of the Royal Society, Series A Mathematical and Physical Sciences, 252, 561-569.

179




Falk F (1980), Model free energy, mechanics, and thermodynamics of shape
memory alloys, Acta Metallurgica, 28, 1773-1780.

Falk F (1983), One-dimensional model of shape memory alloys, Archives of
Mechanics, 35:1, 63-84.

Fosdick RL and James RD (1981), The elastica and the problem of the pure
bending for a non-convex stored energy function, Journal of Elasticity, 11, 165-186.

Griffel DH (1981), Applied Functional Analysis, Ellis Horwood Ltd., Chich-
ester, England.

Hill R (1965), A self-consistent mechanics of composite materials, Journal of
the Mechanics and Physics of Solids, 13, 213-222.

Hodgson DE, Wu MH, and Biermann RJ (1990), Shape memory alloys, Metals
Handbook, tenth edition, Vol 2, ASM International, 897-902

Huang MS, Gao XJ, Brinson LC (2000), A multivariant micromechanical
model for SMAs Part 2. Polycrystal model, International Journal of Plasticity,
16:10-11, 1371-1390.

Huang M and Brinson LC (1998), Multivariant model for single crystal shape
memory alloy behavior, Journal of the Mechanics and Physics of Solids, 46:8, 1379-
1409.

Gao XJ, Huang MS, and Brinson LC (2000), A multivariant micromechanical
model for SMAs Part 1. Crystallographic issues for single crystal model, Interna-
tional Journal of Plasticity, 16:10-11, 1345-1369.

Ivshin Y and Pence TJ (1994), A constitutive model for hysteretic phase-
transition behavior, International Journal of Engineering Science, 32:4, 681-704.

Ivshin Y and Pence TJ (1994), A thermomechanical model for a one variant
shape-memory material, Journal of Intelligent Material Systems and Structures,
5:4, 455—473.

Lagoudas DC, Boyd JG, and Bo Z (1994), Micromechanics of active composites

180



with SMA fibers, Journal of Engineering Materials and Technology ASME, 116:3,
337-347.

Lewis G (1990), Selection of Engineering Materials, Printice-Hall, Inc., Engle-
wood Cliffs, NJ.

Liang C and Rogers CA (1990), One-dimensional thermomechanical constitu-
tive relations for shape memory materials, Journal of Intelligent Material Systems
and Structures, 1, 207-234.

Love AEH (1944), A Treatise on the Mathematical Theory of Elasticity, Dover
Publications, Inc., New York, NY.

Muki R and Sternberg E (1969), On the diffusion of an axial load from an
infinite cylindrical bar embedded in an elastic medium, International Journal of
Solids and Structures, 5, 587-605.

Miiller I (1979), A model for a body with shape-memory, Archive for Rational
Mechanics and Analysis, 70, 61-77.

Mura T (1982), Micromechanics of defects in solids, Martinus Nijhoff Publish-
ers, The Hague, The Netherlands.

Nozaki S and Takahashi K (1994), Research activities on intelligent materials in
Japan, Proceedings of the Second International Conference on Intelligent Materials,
Edited by Rogers CA and Wallace GG, Technomic Publishing Co., Inc., Lancaster,
PA, 1230-1241.

Olver FWJ (1974), Asymptotics and special functions, Academic Press, Inc.,
San Diego, CA.

Patoor E, Barbe P, Eberhardt A, and Berveiller M (1991), Internal-Stress
Effect In The Shape Memory Behavior Journal de Physique IV, 1:C4, 95-100.

Patoor E, Eberhardt A, and Berveiller M (1996), Micromechanical modelling
of superelasticity in shape memory alloys, Journal de Physique IV, 6:C1, 277-292.

Pence TJ (1986), On the emergence and propagation of a phase-boundary in

181




an elastic bar with a suddenly applied end load, Journal of Elasticity, 16:1, 3-42.

Pence TJ (1991), On the encounter of an acoustic shear pulse with a phase-
boundary in an elastic-material - reflection and transmission behavior, Journal of
Elasticity, 25:1, 31-74.

Pence TJ (1991), On the encounter of an acoustic shear pulse with a phase-
boundary in an elastic-material - energy and dissipation, Journal of Elasticity, 26:2,
95-146.

Perkins J (1986), Shape-memory-effect alloys: basic principles, Encyclopedia of
Materials Science and Engineering, Vol. 6, Edited by Bever MB, Pergamon Press
and The MIT Press, 4365-4368.

Rogers CA, Barker DK, and Jaeger CA (1989), Introduction to smart materials
and structures, Smart Materials, Structures, and Mathematical Issues, Technomic
Publishing Co., Inc., Lancaster, PA.

Rosakis P and Tsai H (1995), Dynamic twinning processes in crystals, Inter-
national Journal of Solids and Structures, 32:17-18, 2711-2723.

Shaw JA and Kyriakides S (1995), Thermomechanical aspects of NiTi, Journal
of the Mechanics and Physics of Solids, 43:8, 1243-1281.

Tanaka K (1986a), Analysis of superplastic deformation during isothermal
martensitic transformation, Res Mechanica, 17:3, 241-252.

Tanaka K (1986b), A thermomechanical sketch of shape memory effect: one-
dimensional tensile behavior, Res Mechanica, 18:3, 251-263.

Timoshenko S and Goodier JN (1951), Theory of Elasticity, McGraw-Hill Book
Company, Inc., New York, NY.

Tsai H and Rosakis P (2001), Quasi-steady growth of twins under stress, Jour-
nal of the Mechanics and Physics of Solids, 49, 289-312.

Wayman CM and Duerig TW (1990), An introduction to martensite and shape
memory, Engineering Aspects of Shape Memory Alloys, Edited by Duering TW,

182




Melton KN, Stockel D, and Wayman CW, Butterworth-Heinemann Ltd., London,
3-20.

Wei ZG, Sandstrom R, and Miyazaki S (1998a), Shape-memory materials and
hybrid composites for smart systems - Part I Shape-memory materials, Journal of
Materials Science, 33, 3749-3762.

Wei ZG, Sandstrom R, and Miyazaki S (1998b), Shape-memory materials and
hybrid composites for smart systems - Part II Shape-memory hybrid composites,
Journal of Materials Science, 33, 3763-3783.

Wu XC and Pence TJ (1998), Two variant modeling of shape memory materi-
als: Unfolding a phase diagram triple point, Journal of Intelligent Material Systems
and Structures, 9:5, 335-354.

Yamada Y, Taya M, and Watanabe R (1993), Strengthening of metal matrix
composite by shape memory effect, Materials transactions, JIM, 34:3, 254-260.

Zayed Al (1996), Handbook of function and generalized function transforma-
tions, CRC press, Inc., Boca Raton, FL.

Zhang XD, Rogers CA, and Liang C (1992), Modelling of the two-way shape
memory effect, Philosophical Magazine A, 65:5, 1199-1215.

Zhong Z, Sun QP, and Tong P (2000), On the elastic axisymmetric deformation
of a rod containing a single cylindrical inclusion, International Journal of Solids and
Structures, 37, 5943-5955.

183




——
IR
L 31293 02314 5901 |



