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ABSTRACT

COMPARATIVE STATICS UNDER RISK AVERSION AND PRUDENCE
By

Suyeol Ryu

An economic decision model with randomness consists of the following four
components: a set of decision makers, an objective function, random exogenous
parameters and choice variables. An important comparative static question in the study of
decision under uncertainty is how to predict the direction of change for a choice variable
selected by the decision maker when a given random parameter changes. This general
comparative static analysis is carried out by restricting the following three components:
(i) the changes in probability distribution function (PDF) or cumulative distribution
function (CDF) of the random parameter, and/or (ii) the set of decision makers, and/or
(iii) the structure of the economic decision model.

Our study focuses on finding sufficient conditions (or a necessary condition) on the
change in distribution of the random parameter that cause risk averse decision makers
with %" 2 0 to adjust their choice variable in the same direction in a general decision
model. Therefore all the comparative statics results obtained in this dissertation are
associated with the set of risk averse individuals with a non-negative third derivative of
their utility function. This set includes utility functions representing quite plausible

preferences, such as the ones exhibiting decreasing absolute risk aversion (DARA)






generally accepted as a reasonable attitude toward risk. This class of utility functions also

includes the concept of ‘prudence’ (i = — u™/u") introduced by Kimball (1992), which
denotes a precautionary saving motive.

This study deals with two particular types of R-S increases in risk with single
crossing and three types of R-S increases in risk with multiple crossing in chapter 3, and
three types of K-L increases in risk in chapter 4. For each given type of change in the
random parameter, we developed conditions on the class of decision makers and the
structure of the decision model that are sufficient for making a general comparative static
statement. In these chapters, we use the traditional approach that restricts separately the
changes in PDF or CDF and the structure of the given decision model for comparative
static purposes. However Gollier (1995) restricts two components jointly with a single
restriction to obtain a general comparative static statement. In chapter 5, following his
technique, we deal with the problem of determining the conditions under which a change
in distribution of the random parameter increases the optimal value of a decision variable
for the set of risk averse individuals with " > 0, which was done before by Gollier

(1995) for all risk averse individuals.
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Chapter 1

INTRODUCTION

The effects of uncertainty on an individual’s choices are theoretical interesting
and have significant policy implications. In fact, the attention paid to this aspect of
economic decision-making has a long tradition in the history of economics. Since its
introduction by von Neumann and Morgenstern (1944), expected utility theory has been
the dominant framework for the economic analysis of uncertainty and there has been
much progress in the theoretical and applied analysis of choice under uncertainty. This
risk analysis is included in many economic fields of study such as insurance, futures
markets, stock markets, international trade and finance.

For the decision maker who is faced with a specific pair of risky prospects and
whose utility function is a member of a specified class U, the concept of stochastic
dominance (SD) or stochastic ordering of risky prospects is an important tool to identify
efficient or undominated prospects among a given choice set. The stochastic dominance
(SD) rules that have been developed to date include rules for decision makers who prefer
more wealth to less, those who are also risk averse, and those who also have a non-
negative third derivative of their utility function (" > 0). These rules are the “first degree

stochastic dominance’ (FSD) rule, the ‘second degree stochastic dominance’ (SSD) rule,






and the ‘third degree stochastic dominance’ (TSD) rule, respectively.

Since the | and simul us publications of Hadar and Russell (1969) and

Hanoch and Levy (1969) there has been a virtual explosion of papers investigating

' qeeidt g

ions of ic i rules for decisions under uncertainty. Dominance

principles have important applications to portfolio choice, capital budgeting and financial
intermediation decisions. Stochastic dominance can also be applied to investment and
production decision problems and others under uncertainty. In these areas, overall
impacts of uncertainty have received wide attention.

An important comparative static question in the study of decisions under
uncertainty is how to predict the direction of change for a choice variable selected by the
decision maker when a given random parameter changes. This general comparative static
analysis is usually carried out by restricting the following components; (i) the changes in
probability distribution function (PDF) or cumulative distribution function (CDF) of the
random parameter, and/or (ii) the set of decision makers, and/or (iii) the structure of the
given economic decision model. When the first and the third components are restricted
separately or jointly, many authors obtain the comparative statics results that are
associated with either the set of all individuals with non-decreasing utility functions or
the set of all risk averse agents. These examples are included in Meyer and Ormiston
(1985), Black and Bulkley (1989), Landsberger and Meilijson (1990), Dionne, Eeckhoudt
and Gollier (1993), Eeckhoudt and Gollier (1995), Gollier (1995) and others. Note that
relatively strong restrictions on one component are usually related to relatively weak
restrictions on the other two components. In this study we impose somewhat stronger

restrictions on the risk preference of decision makers.






All the comparative statics results obtained in this dissertation are associated with

the set of risk averse individuals with a non-negative third derivative of their utility
function. This set includes utility functions representing quite plausible preferences, such
as the ones exhibiting decreasing absolute risk aversion (DARA) generally accepted as a
reasonable attitude toward risk. This class of utility functions also includes the concept of

‘prudence’ (17 = —u"/u") introduced by Kimball (1990), which denotes a precautionary

saving motive. Note that the term ‘prudence’ is meant to suggest the propensity to
prepare and forearm oneself in the face of uncertainty. Therefore our study focuses on
finding sufficient conditions (or a necessary condition) on the change in distribution of
the random parameter that cause risk averse decision makers with #” > 0 to adjust their
choice variable in the same direction in a general decision model.

In order to generate interesting comparative statics results, the common
restrictions to impose on the changes in PDF or CDF are general stochastic dominance
orders. It implies that these SD rules play an important role in this comparative static
analysis. There are three approaches specifying these restrictions. First, the CDF
difference approach directly imposes restrictions on the difference between the initial and
the final CDFs or PDFs. This approach is used to define a ‘mean-preserving truncation’
in Eeckhoudt and Hansen (1981) and a ‘strong increase in risk’ (SIR) in Meyer and
Ormiston (1985). Second, the ratio approach imposes restrictions on the ratio of a pair of
PDFs or of a pair of CDFs. Examples using this approach are included in Black and
Bulkley (1989) who introduce the concept of a ‘relatively strong increase in risk’ (RSIR),
Landsberger and Meilijson (1990) who define a ‘montone likelihood ratio’ (MLR) and

Eeckhoudt and Gollier (1995) who consider a ‘monotone probability ratio’ (MPR) among






others. Finally, the deterministic transformation approach also restricts the change in the

distribution by placing conditions on the transformation, which transforms an initial
random variable into another random variable. This approach is popularized by Sandmo
(1971) and extended by Meyer and Ormiston (1989) who define a ‘simple increase in
risk” (sIR). These three approaches are used in this study to specify restrictions imposed
on the changes in PDF or CDF.

This dissertation is organized as follows. In the next chapter, we will give a short
review of the literature concerning the SD selection rules and the previous work
concerning comparative static analysis under uncertainty. We introduce a special
‘increase in risk’ defined by Kroll et. al (1995) and call it a ‘K-L increase in risk’, that is,
third degree stochastic dominance (TSD) change with equal means. Since SSD implies a
TSD, the set of K-L increases in risk includes the set of R-S increases in risk. This
implies that K-L increases in risk extend the R-S definition of risk to a larger set of CDFs
that could not be classified as ‘more risky’ before. We also provide terminology,
notation, definitions and the decision model used in this study. The terminology and
notation used here follows that in the established literature. When defining an increase in
the riskiness of a random variable in the R-S sense or the K-L sense, we use F (x) and
G(x) to denote the initial, less risky, and the final, more risky, CDFs. We use the general
decision model previously employed by Kraus (1979) and Katz (1981) in their work.

Chapter 3 treats several subsets of R-S increases in risk. In addition to the existing
subsets of R-S increases in risk, we define three subsets of R-S increases in risk called a
‘left-side relatively weak increase in risk” (L-RWIR), a ‘left-side strong increase in risk”

(L-SIR) and a ‘monotone strong increase in risk’ (MSIR). Each subset generalizes a






definition in the published literature. This implies that a ‘strong increase in risk’ (SIR) in
Meyer and Ormiston (1985), a ‘relatively weak increase in risk’ (RWIR) in Dionne,
Eeckhoudt and Gollier (1993) and an ‘extended strong increase in risk’ (ESIR) in Kim
(1998) are extended to a L-SIR, a L-RWIR and a MSIR, respectively. The restrictions

used to define these subsets are discussed and graphical examples are given to illustrate

the basic relations among the subsets. For basic relations, it is shown that the set of L-SIR

shifts is included in the set of ‘left-side relatively strong increases in risk’ (L-RSIR) shifts
in Kim (1998), which is, in turn, included in the set of L-RWIR shifts. We propose two
more subsets of R-S increases in risk with multiple crossing called an ‘outside strong
increase in risk’ (OSIR) and an ‘outside relatively strong increase in risk’ (ORSIR). The
conditions in these two shifts imply that there exists a R-S decrease in risk in the given
interval and a R-S increase in risk outside this interval. We also provide other
characterizations of the MSIR ranking in order to provide an interpretation and compare
the MSIR order with the ESIR one. We show that the MSIR order implies that the
conditional expectation of a random variable under F is greater than and equal to that
under G, and the converse is also true. Restricting the payoff function to be linear in the
random variable, we show that the effects of these shifts can be determined for all risk
averse decision makers with non-negative third derivative of utility functions. We also
show that the MSIR condition is less restrictive than the Gollier (1995) condition
presented in chapter 2 when the payoff function is linear in the random variable.
Chapter 4 provides general comparative static statements regarding several
subsets of K-L increases in risk. In order to obtain comparative statics results, many

researchers have specified particular types of CDF changes which are subsets of FSD
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shifts, SSD shifts, or R-S increases in risk. So far, no one has examined subsets of TSD

shifts for comparative static purposes. We introduce three subsets of K-L increases in
risk. A ‘strong increase in risk in the K-L sense’ (SIRk) is defined by imposing
restrictions on the difference between two cumulative of CDFs (C-CDFs). These
restrictions replace the restrictions on the difference between two CDFs used by Meyer
and Ormiston (1985) who define the SIR order. A ‘simple increase in risk across 7 in the

K-L sense’ (sIRk(r)) is formally defined in this chapter. This concept also can be

ized by using a deterministic transformation of a random variable. A ‘relatively
strong increase in risk in the K-L sense’ (RSIRk) consists of three parts that are a ‘left-
side monotone probability ratio” (L-MPR), a ‘right-side monotone probability ratio’ (R-
MPR) and FSD shifts, or two parts which are ‘left-side extended strong increases in risk”
(L-ESIR) and ‘right-side extended strong decreases in risk’ (R-ESDR). A L-ESIR (R-
ESDR) requires the monotonicity of the probability ratio only on the left-side (right-side)
of the given pair of CDFs. These restrictions on the ratio for CDFs replace the restrictions
on the ratio for PDFs imposed by Black and Bulkley (1989) who introduce the RSIR
order. We have the basic relationship between the SIRk and the RSIRk orders as: the
RSIRk ranking includes the SIRk one. All the comparative statics results obtained in this
chapter are concerned with the set of risk averse individuals with " > 0.

In chapter 5, we deal with the problem of determining the conditions under which
a change in distribution of the random parameter increases the optimal value of a decision
variable for the set of risk-averse individuals with a positive third derivative of their
utility function (4" > 0), which was done before by Gollier (1995) for all risk averse

individuals. Given the set of decision makers, the traditional approach restricts separately






the changes in PDF or CDF and the structure of the given decision model. However he

restricts two components jointly with a single restriction to obtain a general comparative
static statement. His condition is quite simple and generalizes all previous restrictions on
changes in risk such as a SIR and a RSIR imposed for all concave utility functions.
Following the technique used in Gollier (1995), we obtain a necessary condition under
which all risk-averse individuals with %" > 0 react in the same direction when facing a
given shift in distribution. Our condition is less restrictive than the Gollier one, but is
difficult to interpret. We also obtain a sufficient condition for the same economic
problem. We define a different subset of SSD that satisfies our sufficient condition and

includes a R-S increase in risk as a special case.






Chapter 2

LITERATURE REVIEW

For many years the expected utility approach to decision making under
uncertainty has gained increasing attention among economic researchers. An important
question in the study of economic decision models involving randomness is how a
particular type of a change in the random variable affects the level of the choice variable
selected by a decision maker. General stochastic dominance (SD) orders play an
important role in this comparative static analysis. Section 2.1 provides a brief review of
general stochastic dominance rules in the literature. Section 2.2 gives a general decision
model formulation used in this study. Section 2.3 presents a review of the literature
concerning comparative static analysis under uncertainty. For notational convenience, the
random variable x is assumed to have the initial and the final distribution characterized by
CDFs F(x) and G(x), respectively and if not stated otherwise, the supports of these
CDFs are assumed to be in the finite interval [a,5] where F(a)=G(a)=0 and

F(b)=G(p)=1.

2.1 Stochastic Dominance Criteria






When decision makers compare uncertain prospects, it is assumed here they

follow the rules of expected utility maximization. This section provides various
formulations of SD rules and various ways of defining preference categories. Each
formulation has advantage in solving certain issues. These rules apply to pairs of random
variables, and indicate when one is to be ordered higher than the other by specifying a
condition which the difference between their CDFs must satisfy. Given two risky
prospects with CDFs F and G, the establishment of an order of preference between F and
G is determined.

There are the following three main SD rules for ordering a pair of uncertain
prospects F and G: first, second and third-degree stochastic dominance, denoted
respectively by FSD, SSD, and TSD which are introduced by Quirk and Saposnik (1962),
Schneeweiss (1969), Hanoch and Levy (1969), Hadar and Russell (1969) and Whitmore

(1970). Each SD rule is formally defined as follows:

Definition 2.1. The following three main rules are introduced:
(a) F(x) is said to stochastically dominate G(x) in the first-degree (denoted by F FSD
G) if and only if
G(x)-F(x)>0, forall xe [a,b],
(b) F(x) is said to stochastically dominate G(x) in the second-degree (denoted by F

SSD G) if and only if
J" [6(x)- F(x))dx >0, for all 7€ [a,b],

(c) F(x) is said to stochastically dominate G(x) in the third-degree (denoted by F TSD

G) if and only if






J: J:[G(x)‘ F(x)]dxdr > 0 forall se [a,] and

[16()- F()de 20.

Each rule defines a partial ranking on the set of all probability distributions such
that the set of CDFs can be ordered by FSD is included in the set that can be ordered by
SSD, and the latter set is included in the set that can be ordered by TSD. Each stochastic
dominance ranking has the property of transitivity such that considering CDFs F;, F,
and F;, if F; FSD (SSD or TSD) F, and F, FSD (SSD or TSD) F;, then F, FSD (SSD
or TSD) F,.

Rothschild and Stiglitz (R-S) (1970) propose several definitions of “more risky”

or “more variable” random variables and show that they are equivalent to one another:

1. A random variable y is riskier than a random variable x if y is equal to x plus a

noise term ¢ :

y=x+e
where “ = ” means “has the same as distribution as” and ¢ is a random variable
with the property that E| (e‘ x) =0 forall x.
2. A random variable y is riskier than a random variable x if and only if all risk averse
individuals prefer x over y, namely
EU(x)> EU(y) for all concave utility functions.

3. A random variable y is riskier if it has more weight in the tails than a random






variable x.

Rothschild and Stiglitz analyze these three definitions and conclude that the
three definitions are equivalent and lead to a single definition of ‘increased risk’. An
important aspect of R-S risk analysis is included in their third definition which leads to
the definition of a mean preserving spread (MPS). This definition is well known as
‘integral conditions’ being the restrictions imposed on the difference between two CDFs.
Assuming x and y are random variables with CDFs F and G, respectively, R-S give a

general definition of an ‘increase in risk’ in the following:

Definition 2.2. G(x) is said to be riskier than F(x) in the Rothschild-Stiglitz

sense (denoted by G MPS F) if and only if
@ [6()- F()lde =0

(b) J“ [6(x)- F(x)]dx 2 0, forall ¢ [a,b].

The MPS (or R-S increases in risk) is a shift of probability mass when probability
is moved from the center of the distribution to the tails without affecting the mean. This
implies that probability mass is taken from a certain set of points and redistributed to
points to the left and the right in such a way that the mean value of the random variable is
kept unchanged. Note that a R-S increase in risk is an SSD change with equal means and
also gives a partial ranking with the property of transitivity on a set of probability

distributions like the three previous rules.






By analogy to the R-S definition of MPS, Kroll et al. (1995) introduce a new

concept of probability mass shifts and call it a ‘mean preserving spread-anitspread’
(MPSA). It is assumed that Y and Z are two random variables with a cumulative
distribution function of F(x) and G(x), respectively. S(x) and A(x) denote the mean
preserving spread (MPS) function and the mean preserving antispread (MPA) function,
respectively. The antispread shifts in probability mass function are the exact opposite to
those imposed by the well-known MPS suggested by R-S.

The ‘mean preserving spread-antispread” (MPSA) function S4 is defined as
follows:

SA(x) = S(x) + A(x).
Similar to R-S’s MPS, if F(x) = G(x)+ SA(x), F(x) differs from G(x) by a single

MPSA step.

Definition 2.3. A MPSA function SA =S + A4 is said to satisfy the TSD criterion

[[s@duav > =["[ ale)drav

forall x in [a,b] and with a strict strong inequality for at least one x.

Note that the MPA improves a distribution while the MPS does the opposite.
Observe that the MPA is smaller but located to the right of the MPS in Definition 2.3.

According to Kroll et al., they specify the conditions on the MPSA functions that
enable the classification of one random variable as ‘more risky’ than another random

variable for different sets of utility functions. In their first theorem, ‘more risky’ random

12



variables are defined by employing MPS in the same way as R-S. For all risk averters’

utility functions Theorem 2.1 is established.

Theorem 2.1 (SSD). Let Y and Z be two random variables with equal means with
support bounded by [a,b]. Let F(x) and G(x) be the CDFs of Y and Z, respectively.
Then F(x) dominates G(x) by the SSD criterion if and only if there exists a sequence of
{4,}7, of MPSA such that

F+Y" 84 =G,

where foreach i=1,2,..., A4, =0 (in S4,) and the convergence is in the weak sense.

Note that this is the original theorem of R-S (1970).

For the TSD rule, R-S’s original MPS is not sufficient and the antispread function
is needed as well (that is, 4 # 0 in SA4). In their second theorem, they specify the
conditions that ensure that G can only be constructed from F using MPSA when F
dominates G by the TSD criterion. For all risk averse individuals with DARA utility

functions Theorem 2.2 is established.

Theorem 2.2 (TSD). Let F and G be the CDFs of two equal mean random

variables, ¥ and Z respectively, with support bounded by [a,]. Then F(x) dominates
G(x) by TSD if and only if there exists a sequence of {S4,}”, of MPSA satisfying the

TSD criterion such that

F+Y" 84=G.






The MPSA that satisfies the third degree stochastic dominance (TSD) criterion

generates a riskier distribution for all DARA utilities but not all risk averters. This new
definition extends R-S’s definition of risk to a larger set of CDFs that could not be
classified as ‘more risky’ before. We call it an ‘increase in risk in the K-L sense’ and give

its formal definition as:

Definition 2.4. G(x) is said to be riskier than F(x) in the K-L sense if and only if
b,
@ [I66:)- Flax =0

(b) _[: ‘[: [6(x)- F(x)]dxdt > 0 forall s [a,b].

Condition (a) implies that two distributions have equal means. Condition (b)
implies that a MPSA function SA = S + A satisfies the TSD criterion. These conditions
imply that an increase in risk in the K-L sense is a TSD change with equal means. Since
SSD implies TSD, the set of K-L increases in risk includes the set of R-S increases in
risk. Observe that, for random variables with equal means, Definition 2.4 is equivalent to
the TSD rule.

Assume that all risk averse individuals have DARA utility functions. As analyzed
in Vickson (1975) and Bawa (1975), in the case of E(Y)= £(Z), a necessary and
sufficient condition for all such individuals to prefer Y to Z is for ¥ to dominate Z

according to the TSD rule. That is, if £(Y)= E(Z), Z s riskier than Y for all DARA
utility functions if and only if [ ['[G(1)- F(1)]didv 20 forall x in [a,b] and with a

strict strong inequality for at least one x.






Each of the above stochastic domi rules for i choice is iated

with a well-defined set of utility functions. These utility function classes are defined as

follows:

Definition2.5. Assuming that a utility function u(") is continuous, bounded and
three times differentiable for the support [a, ], five utility function classes are defined in
the following ways:

@ U, ={u()|u 20}

(b) U, = {u()|u' > 0and u” < 0}
©) U, ={u(')|u'50}
@u, = {u(-)\u'kO,u'SOandu'ZO}

() Uy = {u()|u()displays decreasing absolute risk aversion (DARA)}.

Note that generally a utility function that satisfies the DARA condition
(A’(x) =(- u'(x)/u'(x))’ <0,Vxe R) implies that «' >0, 4" <0 and «" > 0; however
vice versa this is not always valid. We assume that, for a utility function , EU, and

EU,; represent the expected utilities when the CDFs are given by F and G, respectively.

The SD rules and the relevant class of preferences are related in the following way:

Theorem 2.3. Let " and G be the cumulative distribution of two distinct uncertain

prospects. The followings are established:






Each of the above stochastic domi rules for i choice is associated

with a well-defined set of utility functions. These utility function classes are defined as

follows:

Definition2.5. Assuming that a utility function (') is continuous, bounded and
three times differentiable for the support [a, b], five utility function classes are defined in

the following ways:

@ U, ={u()|u' >0}

(b) U, = {u()|w > 0and u" < 0}

(© U, = {u()|u" < 0}

(d) U, = {u()|u' 2 0,u" < 0and u" > 0}

@ Us= { u(’) ‘ u(-) displays decreasing absolute risk aversion (DARA)}.

Note that generally a utility function that satisfies the DARA condition
(A'(x): & u'(x)/u’(x))’ <0,Vxe R) implies that «' >0, 4" <0 and «" > 0; however
vice versa this is not always valid. We assume that, for a utility function , EU,. and

EU,; represent the expected utilities when the CDFs are given by F and G, respectively.

The SD rules and the relevant class of preferences are related in the following way:

Theorem 2.3. Let F and G be the cumulative distribution of two distinct uncertain

prospects. The followings are established:






(@) EU,. 2 EU,, for every uin U, if and only if FFSD G

(b) EU,. 2 EU,; for every u in U, if and only if FSSD G
(c) EU, 2 EU, forevery u in U, if and only if G is riskier in the R-S sense than F
(d) EU, 2 EU; forevery uin U, if and only if F TSD G

(e) EU, 2 EU,; for every uin U if and only if G is riskier in the K-L sense than F.

The proofs of Theorem 2.3 are found in the literature: Quirk and Saposnik (1962)
and Schneeweiss (1969) for the FSD rule, Hanoch and Levy (1969) and Hadar and
Russell (1969) for the SSD rule, Rothschild and Stiglitz (1970) for the MPS rule,
Whitmore (1970) for the TSD rule and Vickson (1975), Bawa (1975) and Kroll et al.

(1995) for the condition (e) in Theorem 2.3.

22 Decision Model

An economic decision model with randomness consists of the following four
components: a set of decision makers, an objective function, random exogenous
parameters and choice variables. Many economic decision models including randomness
can be usually divided into two types; specific decision models and general decision
models. While the former are constructed to represent specific economic situations where
the model structure and variables have specific interpretations, the latter are formulated to
include many specific models as special cases.

We use the general decision model in this study introduced by Kraus (1979) and






Katz (1981) in their work. The decision maker is assumed to choose the optimal value for

a choice variable @ taking the random variable x as given. He chooses a so as to
maximize expected utility, where utility # depends on a scalar valued function of the
choice variable and the random variable, z(x, a). Formally, the economic agent’s
decision problem is to select & to maximize E[u(z(x,a))l That is,

max Elu(z(x,))]. .1)
In this decision framework, utility depends only on the outcome variable z, that is, the

objective function is single dimensional. Thus, problems involving multidimensionality

are avoided.

In this study, we assume that utility function (z) is thrice differentiable with
respect to its argument with #(z)> 0, u"(z) < 0 and u"(z)> 0; thus, the decision maker
is a risk averter with 4"(z)> 0. The function z(x,a)is assumed three times differentiable
with z,(x,@) < 0. This condition insures that the second order condition for the
maximization problem is satisfied. To simplify the discussion, we follow the literature
and focus on the case where z, (x,b)> 0. This assumption, combined with #'(z)> 0,
indicates that higher values of the random variable are preferred to lower values. The
case where z (x,a)< 0 can be handled with appropriate modifications. To focus on
interior solutions to the maximization problem, it is assumed that z, (x,)= 0 is satisfied
for some finite @ for all relevant values of x.

Many researchers have used this general decision model in the study of choice
under uncertainty and it includes a variety of economic decision problems. When we

assume that the outcome variable is linear in the random variable, the simple form of






z(x,a) may be expressed as z(x,@) = a(x - )+ z, where z, and c are exogenous

constants. As analyzed by Sandmo (1971), Rothschild and Stiglitz (1971), Fishburn and
Porter (1976), Dionne, Eeckhoudt and Gollier (1993) and Eeckhoudt and Gollier (1995),
the applications of this simple form of a decision model are numerous: the standard
portfolio problem, the problem of the competitive firm with constant marginal cost under
output price uncertainty, the coinsurance problem and others.
In the standard portfolio model, the payoff function can be written as

2(x,@) = z, + bW, (x — ¢) where b is the fraction of the initial wealth #, allocated to the
risky asset, x the random rate of return of the risky asset and z, = W, (1 + c) with ¢ being
the sure interest rate. This payoff function is equivalent to the simple form of z(x,c)
when @ = bW, . For the competitive firm, the linear function is z(x,@)= a(x - ¢)+ z,,
where x is the uncertain output price, ¢ marginal cost, — z, the fixed cost and a the output
level. In the standard coinsurance problem, the payoff function is given by the final
wealth z(x,a@) =W, — Au —(1-b)(x — Au) where x is the amount of random loss, z the
expected loss, b coinsurance rate, bAu the insurance premium, and W, the initial wealth.
This payoff function is equivalent to the simple form of z(x, a) when z, =W, - Au,

=—(1-b) and ¢ = Ay . If we limit the discussion to private insurance contracts, the
coinsurance rate b belongs to the interval [O, 1]. Then, by definition, a is non-positive and
belongs to the interval [-1,0]. Other examples of this simple form with appropriate
modifications are included in Fedar (1977) who examines the problem of hiring workers
and in Paroush and Kahana (1980) who investigate the cooperative firm model.

While most decision models include only one random and one choice variable,






some include more than one random and one choice variable. For decision models with

one random and more than one choice variable, it is more difficult to make determinate
comparative static statements than for the case with one random and one choice variable
because of the interactions among choice variables. There are some examples of specific
decision models with one random and two choice variables. Batra and Ullah (1974)
investigate a competitive firm’s input decisions with two inputs under output price

uncertainty. Feder, Just and Schmitz (1977) ine an international trade model. Katz,

Paroush and Kahana (1982) deal with the optimal policy of a price discriminating firm
which operates under price uncertainty in one of two markets. Eeckhoudt, Meyer and
Ormiston (1997) investigate the decision to insure and the portfolio composition decision
and analyze the interaction between the demands for insurance and for the risky asset. All
of these cited papers deal with a specific form of a decision model. Considering a general
form of a decision model with one random and two choice variables, Choi (1992)
investigates a special case of a corner solution.

For a decision model with more than one source of randomness, it is generally
difficult to do the comparative static analysis for a change in any one random variable
without restricting the correlations among random variables. To solve this problem, some
papers assume that the random variables are independent of one another, allowing one to
change while the others are held fixed. Hadar and Seo (1990) investigate the optimal
proportions of the assets when the distribution of one of the assets undergoes some
general type of shift which uses the general SD orders as restrictions on the change in the
random variable. When random parameters are not independently distributed, we face the

difficulty of defining a shift in risk of one random parameter without altering the






riskiness of the other random parameters; that is, without altering the marginal

distribution of the other parameters. Meyer (1992) proposes the use of deterministic
transformations to solve this problem. Other examples with multiple sources of risk are
analyzed in the articles of Meyer and Ormiston (1994), Dionne and Gollier (1992, 1996)
and others. For independently distributed other risks, referred to as background risk,
Meyer and Meyer (1998) examine the effect of changes in the distribution function for
this background risk on the decision to insure. Other examples for a change in
background risk are included in Eeckhoudt, Gollier and Schlesinger (1996), Eeckhoudt

and Kimball (1992) and others.

2.3 Comparative Static Analysis

Faced with uncertainty concerning the economic environment, an interesting
question for comparative statics is to investigate necessary and/or sufficient conditions
for determining the direction of change in the decision variable when a given random
parameter changes. Our study focuses on a general decision model z(x, a) that includes
one random, one choice and one outcome variable. Therefore, we review the comparative
statics results in the literature concerning a general one-argument decision model in more

detail.

23.1  AnOverview

It is generally known that the standard SD rules such as FSD, SSD and R-S
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increases in risk are not sufficient to allow one to make general comparative static

statements concerning the effect of a change in random variable on the choice made by
an arbitrary decision maker with a non-decreasing and/or concave utility function. Using
a general decision model Meyer and Ormiston (1983) demonstrate that the class of SSD
shifts in distribution or R-S increases in risk causes all risk averse decision makers to
adjust their level of the choice variable in the same direction if and only if its optimal
level under certainty is independent of the value of the random exogenous variable,

clearly not an interesting ic problem. Therefore, general comparative static

analysis is carried out by imposing restrictions on the following components; the set of
decision makers, the structure of the decision model and the set of changes in the random
variable. Generally, when relative strong restrictions are imposed on one component, the
derived comparative static statements are usually related to relatively weak restrictions on
the other components. Many examples showing the above relationship are included in the
following literature; Rothschild and Stiglitz (1971), Hadar and Russell (1978), Hadar and
Seo (1990), Meyer and Ormiston (1983, 1985, 1989), Dionne, Eeckhoudt and Gollier
(1993), Black and Bulkley (1989), Ormiston and Schlee (1993) and others.

In order to generate interesting comparative statics results, the common
restrictions to impose on the changes in the random variable are general stochastic
dominance orders. It implies that these SD rules play an important role in this
compuarative static analysis. There are three approaches specifying these restrictions. The
CDF difference approach imposes restrictions on the initial and the final CDFs F and G,
that is, restrictions on the difference between two CDFs G — F . Some examples using

this approach are included in Sandmo (1971), Kraus (1979), Katz (1981), Eeckhoudt and
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Hansen (1981) and Meyer and Ormiston (1985). The ratio approach imposes restrictions

on the ratio for PDFs or the ratio for CDFs. Some examples using this approach are
included in Black and Bulkley (1989), Landsberger and Meilijson (1990), Dionne,
Eeckhoudt and Gollier (1993) and Kim (1998).

The deterministic transformation approach proposed by Meyer and Ormiston
(1989) imposes some specific restrictions on the transformation function, which
transforms an initial random variable into another random variable. The emphasis in this
approach is on pairs of random variables which are related one another by means of a
transformation, or on sets of random variables where each are related to a common
random variable by means of a transformation. Assuming that the initial random variable
x is characterized by CDF F(x), the transformed random variable y = f(x) is obtained
from x by means of a transformation. The transformation #(x) is assumed to be non-
decreasing, continuous and piecewise differentiable. Combined with the monotonic
preferences for outcomes, the non-decreasing assumption ensures that the transformation
does not reverse the preference ranking over the various possible outcomes of the original
random variable. This assumption is necessary to make interesting statements about the
effects of transformations of random variables on expected utility. Sandmo (1971),
Meyer (1989), Meyer and Ormiston (1989) and Ormiston (1992) give examples on this

approach.
2.3.2  Comparative Statics Results with Subsets of FSD Shifts
Before we give a short review for comparative statics results with subsets of FSD

shifts, we assume that the support of G(x) is a finite interval [x,, x,] and the support of
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F(x) is another finite interval [x,,x,] where x, < x, and x, <x,.

Fishburn and Porter (1976) demonstrate that the FSD order does not allow a
determinate general comparative static statement for all risk averse agents, even in the
simplest case of portfolio problem. Landsberger and Meilijson (1990) introduce the
concept of a ‘monotone likelihood ratio’ (MLR) order that is defined by imposing a
monotonicity restriction on the ratio of a pair of PDFs. This restriction is widely used in

the statistical literature.

Definition 2.6. F(x) represents a monotone likelihood ratio FSD shift from G(x)
(denoted by F MLR G) if there exists a non-decreasing function /: [x,, x,] - [0,%0) such

that f(x)=1(x)g(x) forall x e[x,,x,].

Definition 2.6 implies that g(x)> f(x) when /<1, g(x)< f(x) when />1, and
the PDFs fand g cross only once. An MLR order is a FSD shift. Using the standard
portfolio choice problem, a MLR shift induces all individuals with non-decreasing utility
functions to increase their demand for the risky asset. Landsberger and Meilijson’s
analysis depends on a weak optimality condition of the economic decision problem where
the optimal level of the decision variable is determinable, including an unbounded or a
corner solution.

Eeckhoudt and Gollier (1995) introduce the concept of a ‘monotone probability
ratio> (MPR) order that is defined by imposing monotonicity restriction on the ratio of a

pair of CDFs. This restriction replaces the restriction on the ratio of a pair of PDFs used

by Landsberger and Meilijson who define a MLR order.
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Definition 2.7. F! (x) represents a monotone probability ratio FSD shift from

G(x) (denoted by F MPR G) if there exists a non-decreasing function 4 : [xz,xl ] - [0, 1]

such that F(x) = h(x)G(x) forall x e [xz, x).

A MPR order is a FSD shift from Definition 2.7. A MPR order is less restrictive
than a MLR order since the former does not restrict the number of times of crossing
between the PDFs fand g. Note that the MLR ranking implies the MPR one. All risk
-

averse decision makers are c¢ d in their paper.

Kim (1998) finds more subsets of FSD shifts by weakening the restrictions
imposed on changes in PDF or CDF. Among them, he considers the concept of a ‘left-
side monotone likelihood ratio’ (L-MLR) order that extends the MLR order. The L-MLR
shifts are obtained from the relaxing the monotonicity requirement for points to the right

of the crossing point.

Definition 2.8. F(x) represents a left-side monotone likelihood ratio FSD shift
from G(x) (denoted by F L-MLR G) if there exists a point m € [xz,x3] and a non-
decreasing function /: [x,,m]— [ 0,1] such that f(x)=/(x)g(x) for all x € [x,,m) and

glx)< f(x) forall xe[m,x,].
The L-MLR condition requires that two PDFs cross only once at the point m and

that g(x)> f(x) for all points to the left of m and g(x)< f(x) for all points to the right

of m. Compared with the result in MLR shifts, the comparative statics result in L-MLR
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shifts includes a larger set of FSD changes and a smaller set of decision makers.

That is, all risk averse decision makers are considered in his analysis. He also obtains the
property such that the L-MLR order lies between the MLR and the MPR one. This
implies that FMLR G = FL-MLR G = FMPR G.

Note that the above three papers use the ratio approach in the comparative static
analysis under uncertainty. Turning to the deterministic transformation approach,
Ormiston (1992) defines a simple FSD transformation as a class of FSD shifts and

provides a general comparative static statement.

Definition 2.9. The random variable described by a transformation (x)
represents a simple FSD shift from the initial random variable x given by F! (x) if

k(x)=1t(x)-x>0 and k'(x)<0, forall x e [a,b].

Theorem 2.4. The optimal value of the choice variable increases for any simple
FSD shift if
(a) u(z) displays decreasing absolute risk aversion (DARA)

(b) z,20,z,<0and z, 20.

Remember that generally a utility function satisfying the DARA condition implies
that 4'>0, 4" <0 and ™ > 0; however vice versa this is not always valid. Theorem 2.4
contains the Sandmo (1971) result concerning the effect of a linear risk-altering
transformation on the competitive firm’s choice of output level as a special case. The

transformation function used in his analysis is a linear form as:
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(x)=y(x-%)+0+%

where y is a multiplicative shift parameter, 6 an additive shift parameter and x the
mean of the random variable x. An increase in 6 (at y =1 and @ = 0) is equivalent to
moving the probability distribution to the right without changing its shape. That is, it

defines a type of FSD shift.

2.3.3 Comparative Statics Results with Subsets of R-S increases in risk

This subsection reviews some important subsets of R-S increases in risk which

provide general comparative static Examination of li shows that many
authors have investigated an increase in risk from an initial nonrandom situation to yield
interesting comparative static theorems for the set of risk averse decision makers. Some
call it an ‘introduction of risk’ and others a ‘global increase in risk’, which is a particular
type of R-S increases in risk. Examples of this concept are included in Sandmo (1971),
Leland (1972), Batra and Ullah (1974), Kraus (1979), Katz (1981) and others.

While a global increase in risk yields interesting comparative statics results for all
risk averse agents, its restriction is rather severe and limits significantly the situation to

which those results can be applied. Eeckhoudt and Hansen (1981) propose an alternative

q s

definition of marginal change in that is, a pi ving tr

which is less restrictive than a global increase in risk.

Definition 2.10. F(x) represents a mean-preserving truncation from G(x) if their

difference, G(x)- F(x), satisfies
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@ [6()-F)ldx =0

® [ [6()- F()]dx 2 0 forall y e[x,,x,]
(c) F(x)=0forall x €[x,,x,), F(x)=1 forall x € (x,,x,] and F(x)=G(x) forall

x€[x,x,].

Definition 2.10 is a R-S increase in risk and includes a global increase in risk as
a special case. Compared with the Sandmo result, their theorem is rather robust because
the same comparative statics result is obtained for a more general set of R-S increases in
risk without additional assumptions required. A mean-preserving truncation can be
applied to real economic phenomena such as the existence of guaranteed minimum and/or
imposed maximum prices.

Meyer and Ormiston (1985) introduce the concept of a ‘strong increase in risk’
(SIR) as a subset of R-S increases in risk, which is a direct generalization of probability

mass transfers involved in the introduction of risk. A SIR is formally defined as:

Definition 2.11. G(x) represents a strong increase in risk from F(x) (denoted by

G SIR F) if their difference, G(x)- F(x), satisfies
@ [*[6(x)-F(x)dc=0
® [ [6(x)- F(x)ldv 20 forall re[x,,x,]

() G(x)- F(x) is non-increasing on (x,,x,), where the support of F is contained in

[x,,x,], the support of G is contained in [x,,x, ].
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A SIR is carried out by transferring probability mass from the interval (x,,x,) to

the left tail interval [xz,xj] and the right tail interval [x,, x, ]. Compared with the result in

Eeckhoudt and Hansen (1981), the comparative statics result in SIR shifts includes a
larger set of R-S increases in risk and a general decision model. As a result, the SIR order
represents a net improvement over the mean-preserving truncation order without any cost
of additional assumptions. Note that the above subsets of R-S increases in risk are
defined by imposing restrictions on the difference between the initial and the final CDFs.
That is, the CDF difference approach is used as restrictions on changes in CDF.

A further generalization of a SIR is given by Black and Bulkley (1989) who
introduce the concept of a ‘relatively strong increase in risk’ (RSIR). They use a ratio
approach as restrictions on changes in PDF and their comparative static analysis is

carried out for the set of risk averse agents.

Definition 2.12. G(x) represents a relatively strong increase in risk from F(x)
(denoted by G RSIR F) if
@ [16()-F()ldr =0
(b) For all points in the interval [xJ.xé], f(x)> g(x) and for all points outside this
interval f(x)< g(x) where x, < x, < x, <x, <x, <x,, [x,,x] being the supports of
x under G(x) and [x,, x,] being the supports under F(x)
() f(x)/g(x) is non-decreasing in the interval [xl,xj)

(d) f(x)/g(x) is non-increasing in the interval (x,,x,].
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Conditions (a) and (b) are sufficient for G(x) to represent a R-S increase in risk

from F(x). That is, these conditions impose the restrictions that the two distributions
have the equal mean, two PDFs cross only twice and probability mass is transferred from
points within the interval (x,, x,) to points lying outside this interval. Conditions (c) and
(d) restrict the extent to which probability mass can be transferred to any one value in the
tails of F(x) relative to any other.

According to Black and Bulkley, the RSIR conditions are satisfied in many
decision models if f(x) and g(x) are both normal distributions with f(x)= N (/z, a'f)
and g(x)=N (u, 022) where &} > o} . Conditions (a) and (b) are obviously satisfied.

Since

IS I MR

ax o o7 )l

=<

f (x)/ g(x) is increasing for x < u and decreasing for x > 4. Hence (c) and (d) are also
satisfied. Note also that the conditions for a RSIR order are met if /' (x) and g(x) are
both gamma distributions with the same mean.

By relaxing the restrictions imposed to the right of the point m, Kim (1998)
defines a ‘left-side relatively strong increases in risk” (L-RSIR) that is a less stringent
type of R-S increases in risk than a RSIR order. We assume that the support of G(x) is a

finite interval [x,, x,] and the support of F(x) is another finite interval [xz,x,] where

X SX SX;S s

Definition 2.13. G(x) represents a left-side relatively strong increase in risk from
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F(x) (denoted by G L-RSIR F) if

@ [16()- Fle)lee =0

(b) J:y [G(x)- F(x)]dx > 0 forall ye [x,, %]

(c) There exists a point m € [x,,x, ] such that F(x)< G(x) forall x € [x,,m) and
F(x)2 G(x) forall x & [m,x,]

(d) There exists a point x, € [x2 ,m] such that f(x)/g(x) is non-decreasing for all

x€[x,,x,) and f(x)> g(x) forall xe [xl,m].

Conditions (a) and (b) define R-S increases in risk. Condition (c) imposes the
restriction that the two CDFs cross only once at the point m. Condition (d) implies that, to
the left of the point m, a L-RSIR order requires the same restriction used by Black and
Bulkley who define a RSIR one. When we assume that the payoff function is linear in the
random variable, the following result shows a trade-off between the restrictions on the set
of decision makers and the set of changes in distribution. Compared with the result in
RSIR shifts, the comparative statics result in L-RSIR shifts contains a larger set of
changes in distribution and a smaller set of decision maker with an additional assumption
suchas " 20.

Let us turn to a deterministic transformation approach. Meyer and Ormiston
(1989) provide a fourth characterization of a R-S increase in risk and introduce the

concept of a “simple increase in risk” which is obtained by further restricting the k(x)

functions to be monotonic.






Definition 2.14. The transformation t(x) represents a simple increase in risk for a

random variable given by F(x) if the function k(x)=1r(x)- x satisfies
@ [k(x)dF(x)=0
®) [ k(x)dF(x)<0, forall 1 & [a,5]

(c) k'(x)>0.

Condition (a) guarantees that the mean of the random variable is preserved.
Condition (b) guarantees that for an increase in risk, the initial random variable
dominates the transformed random variable in the second-degree. These conditions
provide a fourth characterization of a R-S increase in risk. Condition (c) is the added
condition which identifies this particular type of an increase in risk and allows general

comparative static statements to be made.

Theorem 2.5. Facing a simple R-S increase in risk, a decision maker will
decrease the optimal value of o if
(a) u(z) displays DARA

(b)z,20,2,<0,z,20and z,, <0.

Theorem 2.5 generalizes the Sandmo-Ishii result in some aspects: while the latter
uses a linear transformation of the random variable and a specific form of a decision
model such as the competitive firm model, the former adopts a more general class of

transformation and the general decision model which includes a specific form as a special






case.

2.3.4 Gollier’s Work

Examining the restrictions used to do comparative static analysis gives a general
notion that given the set of decision makers, many authors restrict separately the changes
in distribution of the random variable (PDFs or CDFs) and the structure of the given
decision model to obtain the intuitively appealing comparative statics results. Gollier
(1995), however, restricts them jointly with a single restriction to obtain the necessary
and sufficient condition under which all risk averse individuals adjust the decision
variable in the same direction when faced with a given shift in a random parameter. This
implies that he obtains the least constraining condition on changes in risk that yields the
general comparative static statements for a given economic model and for the class of
risk averse agents. He presents the condition using the location-weighted probability
mass functions as follows:

T(x,0;G,z) < yT(x, 0 F,2), Vx € [a,b]
where y >0, T(x,a; F,z)= szudF(s) and T(x,a;G,z)s J:zadG(s).

He restates the necessary and sufficient condition as requiring that

o, T(x,a:G.z) T(x,a;G,z)
in et > u B
Wr(air oo} T(x,a5F,z)  {rieaapo} T(x,a F, z)

The above condition shows the importance of the ratios for two 7 functions. This implies
that the infimum of the left-side ratio (when T(x,a; E, z) < 0) is greater than or equal to
the supremum of the right-side ratio (when T(x.a; F, z) > 0). The reverse case of his

condition yields ambiguous comparative statics.






He also introduces the concept of the greater central riskiness order when the

payoff function is linear in the random variable, z(x,a)=a x + z,, where z, is an
exogenous parameter. His condition is quite simple and generalizes all previous
restrictions on changes in risk such as a SIR and a RSIR imposed for all concave utility
functions. His another result shows that the SSD order is neither sufficient nor necessary
to get the result. By using the same technique in Gollier, we deal with this economic
problem for the class of risk averse individuals with a positive third derivative of their

utility functions that will be presented in chapter 5.
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Chapter 3

COMPARATIVE STATIC ANALYSIS

FOR SUBSETS OF R-S INCREASES RISK

This chapter provides definitions and general comparative static statements
regarding several subsets of R-S increases in risk. We define two subsets of R-S increases
in risk called a ‘left-side strong increase in risk’ (L-SIR) and a ‘left-side relatively weak
increase in risk’ (L-RWIR). Each subset generalizes a definition in the established
literature. Specifically, a ‘strong increase in risk’ (SIR) in Meyer and Ormiston (1985)
and a ‘relatively weak increase in risk’ (RWIR) in Dionne, Eeckhoudt and Gollier (1993)
are extended to a L-SIR and a L-RWIR, respectively. For basic relations among these
subsets, the set of L-SIR shifts is included in the set of ‘left-side relatively strong
increases in risk” (L-RSIR) shifts in Kim (1998), and the latter set is included in the set of
L-RWIR shifts. Whereas the L-SIR and the L-RSIR orders impose monotonicity
restrictions on the difference between two CDFs and on the ratio of a pair of PDFs,
respectively, the L-RWIR condition imposes a bound on the likelihood ratio in a specific
interval of the support under the initial distribution. These shifts allow only single
crossing between two CDFs for comparative static purposes.

When multiple crossing between two CDFs is allowed, we define a ‘monotone






strong increase in risk’ (MSIR) that imposes monotonicity restrictions on the ratio of the

two cumulative of cumulative distribution functions (C-CDFs). This shift also generalizes
a definition in the literature. That is, an ‘extended strong increase in risk’ (ESIR) in Kim
(1998) is extended to a MSIR. The MSIR order implies that the conditional expectation
of a random variable under F is greater than or equal to that under G in the interval under
the initial distribution.

We also define two more subsets of R-S increases in risk with multiple crossing
called an ‘outside strong increase in risk’ (OSIR) and an ‘outside relatively strong
increase in risk’ (ORSIR). The conditions in these two shifts imply that there exists a R-S
decrease in risk in the given interval and a R-S increase in risk outside this interval. Note
that the OSIR ranking can be decomposed into two L-SIR shifts, and the ORSIR ranking
can be decomposed into a L-SIR shift and a ‘left-side extended strong increase in risk’
(L-ESIR) shift. The basic relationship between these two shifts shows that the set of
OSIR shifts is included in the set of ORSIR shifts.

Restricting the payoff function to be linear in the random variable (z,, = 0), we
show that the effect of these shifts can be determined for all risk averse decision makers
with non-negative third derivative of utility functions »” > 0. This implies that we extend
the subsets of R-S increases in risk, but use somewhat stronger restrictions on the
structure of the decision model and the set of decision makers.

Section 3.1 provides definitions and comparative statics results for two subsets of
R-S increases in risk with single crossing. Section 3.2 gives definitions and comparative

statics results for several subsets of R-S increases in risk with multiple crossing. We also

provide other characterizations of the MSIR ranking in order to provide an interpretation
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and to compare the MSIR ranking with the ESIR ranking. Section 3.3 contains some

remarks specific to this chapter.

3.1 Subsets of R-S Increases in Risk with Single Crossing

In this section, we begin by identifying a special category of risk increases that is
a subset of R-S increases in risk, called a ‘left-side strong increase in risk’ (L-SIR). The
L-SIR order is a less stringent type of R-S increases in risk than the SIR order proposed
by Meyer and Ormiston (1985), who imposes the restriction on the difference between
the two CDFs. We assume that the supports of x under G(x) are [x, ,x,] and under F(x)

are [xz,x]] where x, <x, <x, <x,.

Definition 3.1. G(x) represents a left-side strong increase in risk from F(x)

F(x) (denoted by G L-SIR F) if
@ ['[6()-F(x)]ds 20 forall ye[x,x,]
® [*[6()- F(x)lax=0

(c) There exists a point m € [x,,x,] such that G(x)— F(x) is non-increasing on

e (x,,m) and F(x)>G(x) forall x € [m,x,].

Conditions (a) and (b) imply that the L-SIR order is a R-S increase in risk. That is,

F dominates G in the second degree and the mean of the random variable is kept



0



constant. Condition (c) imposes the restriction that the two CDFs cross only once at a

point m. This condition implies that, to the left of the point m, the L-SIR order requires
the same restriction used by Meyer and Ormiston to define the SIR order. Note that, to
the right of the point m, restrictions (F > G) imposed on L-SIR shifts and L-RWIR shifts
are same, and they are less restrictive than those on SIR shifts. Therefore the set of SIR

shifts is a subset of the set of L-SIR shifts.

0 x, X, m %3 %4

Figure 3.1. G L-SIR F.

Figure 3.1 illustrates an example of a left-side strong increase in risk and a case
where restrictions on the difference between the two CDFs in the interval x € [m,xg) to
obtain a strong increase in risk are not met. Note that the L-SIR order can be obtained
from the SIR one by relaxing the restrictions imposed to the right of the point m.

Dionne, Eeckhoudt and Gollier (1993) introduce the concept of a ‘relatively weak
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increases in risk’ (RWIR). In the second definition, we propose the ‘left-side relatively

weak increase in risk” (L-RWIR) order that extends the RWIR order.

Definition 3.2. G(x) represents a left-side relatively weak increase in risk from

F(x) (denoted by G L-RWIR F) if

(a) .LT[G(X)*F(X)]‘Z”?O for all y & [xx]

® [T6()-F)ldr=0

(c) There exists a point m € [x,, x,] such that F(x)< G(x) forall x € [x,,m) and
F(x)2 G(x) forall x €[m,x,]

(d) There exists a point x, € [x,,m] such that f(x)< g(x) forall xe [x,,x]) and
f(x)2 g(x) forall xe [x!,m]

(e) When x" €[x,,x,), the following condition is satisfied:

x .
fx) ix. 5 X, Sx<x,
%S}gﬁz, 4 x'SxSx,,

where x” is the value of x satisfying z, (x,@, )= 0 in the interval [xz.x‘].

Conditions (a) and (b) define R-S increases in risk. Condition (c) imposes the
restriction that the two CDFs cross only once at a point m. Conditions (d) and (e) imply
that, to the left of the point m, the L-RWIR order requires the same restriction used by

Dionne, Eeckhoudt and Gollier to define the RWIR order. Note that, to the right of the
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point m, there is no restriction on the number of times of crossing between the two PDFs,

nor is there any restriction on the ratio of a pair of PDFs. The restriction on the right of
the point m is that F' < G . Therefore the set of L-RWIR shifts includes the set of RWIR
shifts. Note also that the above condition (e) is less restrictive than that proposed by Kim
(1998), who imposes a restriction on the sign of the derivative of the likelihood ratio

when defining the L-RSIR order.

fx)g(x)

X, X, X X m X, X

Figure 3.2. G L-RWIR F.

Figure 3.2 illustrates an example of a left-side relatively weak increase in risk and

a case where a monotonicity restriction on the interval x € [x,,x,) to obtain a left-side

relatively strong increase in risk is not met. Compared with the RWIR order, the L-RWIR

order is obtained by relaxing the restrictions imposed to the right of the point m.
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Observe finally that the set of L-SIR shifts is included in the set of L-RSIR shifts

that, in turn, is included in the set of L-RWIR shifts. That is, G L-SIR F = G L-RSIR F

= GL-RWIR F.

3.1.1 Comparative Static Analysis

In this subsection, we provide general comparative static statements concerning
the L-SIR and the L-RWIR orders. In what follows, the payoff function is restricted to be
linear in the random variable. Using the simple form of the general decision model such

2(x,@) =z, + @ x, the necessary and sufficient condition for @, is written as
ru'(zo+a,_x)xdF(x)=0. @3.1)
It is well known that @, has the same sign as E, (b) = fxdF (x) (see Dionne, Eeckhoudt

and Gollier (1993)). Therefore, we assume that E, (b) is positive, as it is the case in the
applications presented in chapter 2. In order to prove @, > a,; for a specified change in

PDF (or CDF ) from f'(or ') to g (or G ), it is sufficient to show that for all x € [a,b],

Oa,)= I:u'(zn + a,,x)xd[F(x)—G(x)]Z 0. 3.2)
The following comparative statics results indicate that, when z, =0, one can

further extend the subset of R-S increases in risk with the cost of adding additional
restriction on the risk preferences of decision makers. Since the set of L-SIR shifts is

included in the set of L-RWIR shifts, we only consider the L-RWIR shifts.

Theorem 3.1. If G L-RWIR Fand z, =0, then a, >a, for all risk averse

40






decision makers with »” > 0.

Proof: Using the general decision model z(x, a) in (3.1), let x°* be the value of x
satisfying z, (x,@, )= 0, and then x" exists in the interval [xz,x,]. We consider the

following three cases:

Case (i): x, <x" <x,.
We consider the sign of the expression | z (f - g)dx . First, assume that
I .(f — g)dx . Rewriting O(e, ) in (3.2) as
Olay)= [w()2,(f - R)de v [ ()2, (f - )de+ o)z, (f - ).
Using the given assumptions and the L-RWIR condition, we have
ar)>u[x ,a; ]_[ (f -g)ax +uz(m,, ]r (f-g)ax
+ [u(e)z, (f - g)ax. (3.3)
Adding and subtracting u'[z(m,a, )]I:za (f - g)dx in the RHS of (3.3) gives
0(a, )= {ul:(x" e, - uleloma N}, (7 - g)e
+ulelma [z, (- g)ds + ["w(e)z, (7 ~g)dr.  (34)
Since u'(z) is non-increasing and j:zn (f - g)dx, the first term in the RHS of (3.4) is

non-negative. Integrating the second term in (3.4) by parts and using the assumption
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z,. =0, we obtain

wlelma, )|f] zalGx)- F)ld = ulelm.a, )]z, [ [6()- F()las. (3.5)
Also using integration by parts, the third term in (3.4) is equal to

qle, )= j u"(z)z,2, [G(x)- F(x)]dx + L w(2) 2, [G(x) - F(x)]dx . (3.6)
Since z, is positive and [G(x)- F(x)] is non-positive for all x & [m, x,], the first term in

(3.6) is non-negative. Thus, we have
a(@,)2 [[w()2,[G0) - F()]ax . G.7)
Because u'(z)z,, is non-increasing and [G(x)~- F(x)] is non-positive for all x & [m,x;],

we have

qla)z ulzm.a, )]z, [ [Gx) - F(x)]ds. (X))

Hence, from (3.5) and (3.8), the second and third term in (3.4) can be written as
wlelma, I 2,7 - g)de s ["ue)z, (/- )
> u'lz(ma, )z, J‘:[G(x)— F(x)]dx =0. (3.9)
Therefore, Q(a, ) is non-negative.

Second, assuming that I (f - g)dx <0, let’s rewrite O(e, ) in (3.2) as
0la,)> [u(2)2, (7 - g)a +uleom |2, 7 - g)e

+ J:u'(z)za(/—g)dx. (3.10)

Adding and subtracting u'[z(m, a, )]I z,(f - g)dx in the RHS of (3.10) gives
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0a)2 [[we)zf - g)ds - ulelma N2, (/- )

wuleln., [, (7 - g)ee + [ w(e)z, (7 - g)ee.
From (3.9) and the assumption f'za([ - g)d.x <0,

0a,)> [[wC)z,(f g =~ [ ule)z,g e+ [z, (F ~g)ke. 311)

The first term with minus sign in the RHS of (3.11) is non-negative, and by applying the

condition (d) in Definition 3.2, the second term can be written as

[z (r - g)de= [z, [ __]fdp[l—?%;ﬂﬂ'u’(ﬁzf,fdx.

Since g(x")/f(x')>1 and J‘X'u’(z)zafdx <0 by the first-order condition, Q(e, ) is

non-negative.

Case (ii): x, <x" <m.

Let’s rewrite Q(a,.) in (3.2) as
0(a,)= I w(2)z, (f - g)dx+ [1u(2)z, (f - @)dc + [ ()2, (1 - g)ds.
Using the given assumptions and the L-RWIR condition, we have
()2 ey, I 2, (f - @) +ailelma, [, - )
+[u()z, (7 - g)ax. (3.12)

Adding and subtracting u'[z(m,, )]j: 2,(f - g)dx in the RHS of (3.12) gives
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00> {uleeat - wlelom., )} 2,/ - )

+u'fz(m,a, )H:zﬂ(f—g)dx + I: u(z)z,(f -g)dx. (3.13)

From (3.9), the second and third term in the RHS of (3.13) is non-negative. Thus, we

have
0l )2 {ule(ws.a - wlelom.a 2, (f - g)e.
Integrating by parts,
[ 20 - 8)a = [ 2,[66)- Fae = 2, [ [66) - F@)ae >0
because z,, is non-negative and does not depend on x, and -E. [G(x)- F(x)]dx >0 forall

t€[x,,x,]. Thus, by the assumption #"(z)< 0, Q(a, ) is non-negative.

Case (iii): m<x" <x,.
Integrating by parts, Q(a, ) can be written as
0a,)= [z, + )z ]G (x) - Fx)lds.

Note that u"(z)z,z, +u'(z)z,, is positive and non-increasing in x in the interval lx“x']‘

and it has its maximum at x = x in the interval [x',x,] because u"(z)z,z, is always

non-positive and #'(z)z,, is non-increasing in x. Since m < x", this implies that
W@z, +u()all.., 2 W CEz +0()],, 2 W C) 2, + 0 E)..,.-

By the L-RWIR condition which implies G(x)—- F(x)> 0 for all x & [x,,m] and

G(x)- F(x)<0 forall x € [m,x], we have the following inequality,
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0la)2 [w()e.z, +u()e]

. [ 6()- F(x)]as =o0. QED.

Remember that the L-SIR order implies the L-RWIR order. Therefore we obtain

the following result.

Corollary 3.1. If G L-SIR Fand z,, =0, then a, >a, forall risk averse

decision makers with 4" > 0.

While z,, = 0 restricts the set of decision problems, linear payoffs prevail in

q

many ic envirc as indicated in chapter 2, these include the standard

portfolio model, the optimal behavior of a competitive firm with constant marginal costs,
and the coinsurance problem. Compared with the comparative statics results in L-SIR
shifts and L-RSIR shifts in Kim (1998), the result in Theorem 3.1 includes a larger set of
R-S increases in risk. As a result, the L-RWIR order represents a net improvement over
the L-SIR and the L-RSIR orders without any cost of additional assumptions. That is,
Theorem 3.1 improves the robustness of the results in Corollary 3.1 and Theorem in Kim
(1998). Compared with the comparative statics results in SIR shifts and RWIR shifts in
the published literature, the results in Corollary 3.1 and Theorem 3.1 contain a larger set
of changes in distribution, a smaller set of decision makers and a smaller set of decision

problem.

3.2 Subsets of R-S Increases in Risk with Multiple Crossing
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s have

Many

d intuitively appealing parative statics results

by restricting the changes in distribution of the random parameter when two CDFs cross
only once. When multiple crossing between the initial and the final CDF F and G is
allowed, this section provides definitions and general comparative static statements
regarding several subsets of R-S increases in risk with multiple crossing.

Kim (1998) defines an ‘extended strong increase in risk” (ESIR) that imposes
monotonicity restrictions on the ratio of a pair of CDFs. We introduce the less stringent
type of R-S increases in risk and name it a ‘monotone strong increase in risk’ (MSIR).
Instead of using monotonicity restrictions on the ratio for CDFs, the MSIR order is
defined by imposing monotonicity restrictions on the ratio of the two cumulative of CDFs

(C-CDFs).

Definition 3.3. G(x) rep a monotone strong increase in risk from F(x)

(denoted by G MSIR F) if

(a) J" [6(x)- F(x)]dx 2 0 forall ye[a,b]

® [ [66)- Flax -0

(c) There exists a non-negative and non-increasing function H(x): (c,b]— [1,) such
that F(x)= F(x)=0 forall xe [a,c] and G(x)/F(x)= H(x) forall xe (c,b] where

Fx)= [F@)dr= [F@)dr, G(x)= [Gl)dr and a<c <.

The first two conditions guarantee that G represents a R-S increase in risk from F.

Condition (c) does not restrict the number of times of crossing between the two CDFs.
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This comes from replacing a monotonicity restriction on the ratio of a pair of CDFs with

a monotonicity restriction on the ratio of a pair of cumulative of CDFs (C-CDFs). Note
that the ESIR order defined in Kim (1998) requires that two CDFs cross only once.
Therefore the MSIR ranking is less demanding than the ESIR ranking. In next subsection,
we will provide an equivalent definition of the MSIR order with a nice interpretation, and
show that an ESIR order implies a MSIR one. Figure 3.3 shows an example of a

monotone strong increase in risk that is not an ESIR.

F(x).G(x)

a c b

Figure 3.3. G MSIR F.
We also propose two more subsets of R-S increases in risk called an ‘outside

strong increase in risk’ (OSIR) and an ‘outside relatively strong increase in risk’

(ORSIR), where the two CDF's have multiple crossing. We assume that the support of
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F(x) is contained in some finite interval [x,,x,,] and the support of G(x) is contained in

another finite interval [x,, x,] where x, <x, <x, <x, <x; <x, <x,. First, we introduce

an OSIR shift that is defined as:

Definition 3.4. G(x) represents an outside strong increase in risk from F(x)

(denoted by G OSIR F) if
@ [ 166)- F(e)lax =0
(b) J‘Xy [G(x)— F(x)]dx >0 forall ye [x,,x,) and I:’ [G(x)— F(x)]dx <0 forall

ye(xl,x,]

(c) G(x)- F(x) is non-increasing on x € (x,,x,), F(x)> G(x) forall x e [x3,x,],
F(x)<G(x) forall xe [x“xs], I:[F(x)— G(x)])dx =0 and F(x)> G(x) forall

x € (x5, %]

Conditions (a) and (b) define a R-S increase in risk. Condition (c) implies that the
two CDFs have multiple crossing and to the left of the point x,, the OSIR ranking
requires the same restriction used by Meyer and Ormiston to define the SIR order. These
conditions imply that there exists a R-S decrease in risk in the inte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>