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ABSTRACT

COUPLING BETWEEN CAVITY-BACKED ANTENNAS ON AN

ELLIPTIC CYLINDER

By

Chi-Wei Wu

Radiation by conformal antennas, flush-mounted to surfaces with varying

curvature, is of considerable importance to design engineers. Applications of such

antennas are found in the aerospace, automobile, and watercraft industries. Conformal

antennas are important in these areas due to their relatively low cost, low profile, and

consumer appeal. However, accurate and flexible design methods for such antennas have

not been offered in the literature to date.

In this research, the highly versatile finite element method is combined in a hybrid

formulation with a boundary integral mesh closure scheme to accurately model the fields

within, and in the aperture of, a cavity-backed antenna flush-mounted in a perfectly

conducting infinite elliptic cylinder. For the sake of efficiency, an asymptotically valid

dyadic Green’s function based on the Uniform Theory of Diffraction (UTD) for surface

fields due to a source on a smooth perfectly conducting surface with arbitrary curvature is

used in the boundary integral. This development represents a significant advancement

over prior techniques since surface curvature variation, either across a single element or

across an array of elements, is now accurately included into the antenna model. An

advantage of this approach is the ability to model cavities with curvature varying from



planar to the constant curvature of a circular cylinder. Eigenmodes will be given for

planar-rectangular, circular-rectangular, and elliptic-rectangular cavities recessed in the

cylinder. Furthermore, the input impedance of a conformal cavity-backed patch antenna

will be given. Also, The mutual coupling between microstrip antennas mounted in a

ground plane, a circular and an elliptic cylinder is investigated in this research.
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CHAPTER 1

INTRODUCTION

Conformal antennas are increasingly being mounted on the surfaces of air vehicles

primarily due to their low volume consumption, low drag, and low cost array properties.

An antenna that has received considerable attention in the literature is the microstrip

patch. This antenna consists of a radiating metallic patch printed on a grounded dielectric

substrate. Typically these antennas are designed using analysis methods developed for

planar apertures. Often such an approach is sufficient for design purposes; however, there

are significant applications where explicit inclusion of surface curvature is necessary. For

example, a characteristic phenomenon of patch antennas conformal to curved platforms is

the dependence of resonant input impedance on surface curvature [1]. During the

previous development of these antennas, due to a lack of rigorous analysis techniques,

antenna designers have had to resort to expensive measurements in order to develop a

conformal array design. This process is very time-consuming since any change in the

antenna geometry will necessitate re-measurement, especially at the resonant frequency,

of the input impedance and mutual coupling properties of the antenna. Due to the narrow

bandwidth of patch antennas, it is important to include variations in the input impedance

attributed to curvature so that the number of prototypes required during the design cycle

can be minimized.

Various theoretical techniques have been employed in the past for the analysis and

design of conformal antennas such as the cavity model [2], integral equation based

methods [3-5], and mode-matching techniques [6]. Many of these techniques were

originally developed for planar surfaces; however, they have also been extended to
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incorporate surface curvature [2]. Each of these methods has advantages and

disadvantages.

The cavity model is computationally inexpensive and offers considerable insight into

the behavior of the antenna. However, it is not amenable to large array simulation since it

ignores mutual interactions amongst array elements. The integral equation-based methods

offer high accuracy through the rigorous inclusion of mutual coupling effects. However,

these are not particularly efficient due to the fully-populated matrix associated with the
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formulation. Highly efficient methods can be developed, particularly for cavity-backed

antennas; however, in doing so the antenna element shape and cavity shape are typically

limited [7].

The finite element-boundary integral (FE-BI) method is successfully employed for

the analysis of large planar arrays of arbitrary composition [8], and this approach has

been extended for aperture antennas conformal to a circular cylinder metallic surface [9].

Both the radiation and scattering problems have been developed in the context of the FE-

BI method. In contrast to the planar aperture array, the implementation of the

cylindrically conformal array requires cylindrical shell elements rather than bricks, and

the required external Green’s function is that of the circular perfectly conducting

cylinder. In its exact form, this Green’s function is an infinite series that imposes

unacceptable computational burden on the method. However, for large radius cylinders,

suitable asymptotic formulas developed from Uniform Theory of Diffraction (UTD) are

available and used for an efficient evaluation of the Green’s function. The finite element-

boundary integral (FE-BI) method provides an alternative approach to modeling

conformal antennas for both planar [8] and curved platforms [9-10].
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The FE-BI approach is a hybrid method combining the finite element method with a

boundary integral. The finite element method is used to model the volumetric total

electric fields in the cavity as well as the tangential electric fields in the aperture. With

the FE-BI method, the constitutive material parameters are assumed to be constant within

a finite element but are allowed to vary across elements; consequently, this method is

capable of modeling cavity-backed antennas with inhomogeneous loading. Hence, a finite '

element based model is capable of being used to design both geometrically complex L

apertures and apertures with complex material loading. However, as with all second-

order partial differential equation based representations of the wave equation, the finite

element method requires specification of both the tangential electric and magnetic fields

on the boundary of the computational volume. This is accomplished via the introduction

of a boundary integral that includes a dyadic Green’s function to describe the coupling

amongst various portions of the aperture.

In this research, the FE-BI method is extended to model cavity-backed antennas

conformal to a perfectly conducting elliptic cylinder that has a surface with varying

curvature along one principal plane. This hybrid FE-BI method will be used to model the

resonant behavior of cavities recessed in an elliptic cylinder and its validity will be

established by reduction to known results for planar-rectangular and cylindrical-

rectangular cavities. In addition, new results will be presented for the resonance

associated with an elliptic-rectangular cavity and for the input impedance associated with

a cavity-backed patch antenna flush-mounted on an elliptic cylinder.

Vector wave equations in an elliptic cylinder coordinate system are generated when

the elliptic cylinder scalar wave functions are used. Once the orthogonal properties of
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these functions are known, we can find the eigenfunction expansion of the free-space

dyadic Green function [1 1].

In Chapter 2, the FE-BI formulation will be introduced first using the vector wave

equation in elliptic cylinder coordinates and be extended to cavities that are embedded on

the surface of a metallic elliptic cylinder of infinite extent. Since the elliptic shell element

possess both geometrical fidelity and simplicity for the elliptic-rectangular cavity, it is

used to mesh the elliptic cavity-backed conformal antenna volume. New vector weight

functions for the each edge of the elliptic shell element are presented in this dissertation.

With these vector weight functions, the FE-BI can be written as a matrix equation and the

formulations for each matrix entry are shown in Chapter 2. For validation of the finite

element formulation, a comparison between computed eigenvalues using the finite

element method and analytical values for a closed rectangular cavity and a closed circular

shell cavity is made.

In Chapter 3, the free space dyadic Green function in terms of eigenfunction

expansion is developed. The angular functions, or Mathieu functions, are represented by

a cosine series in the case of even functions and a sine series in the case of odd functions

while the radial functions, or modified Mathieu functions, are expressed in the form of a

series of Bessel functions. Each dyadic component of the dyadic Green function has been

successfully developed in terms of Mathieu functions or modified Mathieu functions in

this chapter; however, the convergence performance of the modified Mathieu functions is

very slow. Hence an asymptotic dyadic Green function that has a good convergence

performance is developed and used.
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Base on the development of an approximate asymptotic solution using the Uniform

Theory of Diffraction (UTD) for surface fields by Pathak and Wang [12], the dyadic

Green function is derived for both a source point and an observation point located on the

same surface of the elliptic cylinder, and thus an approximate asymptotic solution for the

electromagnetic fields that are induced by an infinitesimal magnetic current moment on

the same elliptic surface is generated. In this approach the contributions to the dyadic

Green function for the short path and long path are developed. The reduction of this

I
“
.

.
‘

F
"
‘
1
'

formulation for the special case of a circular cylinder will be shown to have the same

form as previous results [9]. The numerical results for the magnitude of the dyadic Green

function with respect to the geodesic path will be discussed in Chapter 3. The numerical

comparison will be demonstrated there for a wave traveling on an elliptic cylinder and a

pseudo-circular cylinder.

In Chapter 4, the calculation model for the input impedance of a cavity-backed,

printed antenna is introduced. The input impedance and resonant frequency for an empty

cavity, a slot antenna and a conformal patch antenna embedded on a ground plane are

presented as well as antennas recessed in an elliptic cylinder and a circular cylinder.

From those numerical results, the relationship between the input impedance of different

antennas and the local surface curvature in the vicinity of the antenna mount is found and

discussed. Also, the probe feed for the patch antennas will be located in different

locations to observe effects of the surface curvature with different excited modes.

In Chapter 4, the computation results using FE-BI for antennas mounted in a ground

plane is verified with planar FE-BI results [10] by setting the radius of curvature to be



large. Also, for the empty cavity mounted in a ground plane, the calculated resonant

frequency will be compared with the theoretical value.

In Chapter 5, the mutual coupling between microstrip antennas mounted in a ground

plane, and in a circular and an elliptic cylinder is investigated. A moment method

solution to the microstrip antenna problem was proposed [13] in 1981 and the mutual

coupling between patch antennas embedded on an infinite coated ground plane was

“
T
”

i
f
“

'1
“
'

calculated and measured in [14] and [15], respectively. The numerical results using the

FE-BI method are compared to these moment method results.

The mutual coupling between patch antennas embedded in different circular cylinders

with different radii are calculated. The mutual resistance, reactance and coupling

coefficient, $12 , are graphed with respect to frequency to assess the effects of curvature

on coupling. Also the same antenna is mounted in the different portions of the elliptic

cylinder and the computed results are discussed. The field structure with the cavity is

mainly dependent on the position of the probe feed this affects the mutual coupling.

Therefore, the probe feed is relocated and numerical results for coupling are inspected to

determine the influences of the location of the probe feed.

In addition to curvature, the position of the probe feed, the size of the patches and the

separation between the two rectangular patches play an important role in mutual

coupling. In Chapter 5, the different patch sizes are used to analyze mutual coupling.

Also, numerical results are computed for the antenna mounted in circular cylinders with

different radii. For convenience, symmetric patches are used for computation.
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In Chapter 5, a two-port network model is used to determine mutual coupling. Also,

the coupling parameter, S12, is determined from the input impedance and mutual

impedance using conversion between two-port network parameters.
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CHAPTER 2

FINITE ELEMENT—BOUNDARY INTEGRAL METHOD

2.1 Introduction

The Finite Element (FE) Method is a computational technique that has been used in

mathematical physics since the 1940’s. It was first coupled with an exact Boundary

Integral (BI) termination condition in an electromagnetics application by Silvester and

Hsieh [l6] and McDonal and Wexler [17] in 1971 and 1972, respectively. In the 1990’s,

there has been renewed interest in the Finite Element-Boundary Integral (FE-BI) method

of electromagnetics principally due to the work of Jin and Volakis [18-20]. Their major

contribution was coupling the FE-BI approach with the Biconjugate Gradient-Fast

Fourier Transform (BiCG-FFT) technique, thus allowing high fidelity simulations with

low 0(N) memory and computational demand. In 1994, the FE-BI method was extended

to cavities that are recessed in a metallic circular cylinder of infinite extent [1] and [9], In

that work, the boundary integral utilized uniform zoning and hence the Bi-CG-FFT solver

may be employed to retain low memory and computational burden.

In this chapter the FE-BI method will be extended to cavities that are embedded on

the surface of a metallic elliptic cylinder of infinite extent. The derivation of the FE

method starting with the vector wave equation will be presented first, followed by the

introduction of the boundary integral in the next Chapter.

2.2. FE-BI formulation

Before the scalar wave equation in elliptic cylinder coordinates is discussed, the

parameters of elliptic cylinder coordinate system are described. As shown in Figure 2.1,
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the relations between the rectangular coordinate and elliptic cylinder coordinate systems

are given by

x=ccoshucosv

y=csinhusinv for OSvS2fl', OSu<oo (21)

z = z .

I

where 2c is the distance between the foci of the ellipse. 'F
1:.

Consider a cavity recessed in an infinite metallic elliptic cylinder, shown in Figure i

ii

ii.

2.2. The cavity walls are assumed to coincide with constant u-, v-, and z-surfaces and

the cavity is filled with an inhomogeneous, isotropic material.

The FE-BI formulation is developed by considering the coupled first-order partial

differential equations, the time harmonic Maxwell’s Equations, and performing some

manipulations, to give the vector wave equation,

VXVXE—k2E=-jw/lJ—VXM (2.2)

VxVxH—kZH = -ja)£M +VxJ

where J and M represent, respectively, the electric and magnetic source current.

A unique solution of the wave equation requires the specification of sufficient

boundary conditions. To generate a system of equations from (2.2), the method of

weighted residuals is applied, which results in the symmetric inner product of a vector-

valued weight function and the vector wave equation. The integro-differential equation is

given by
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VxE(u,v, z)
 

J‘V.[Wi(u,v,z).Vx( )—kgwi(u,v,z).grE] dV =

r

M"(u,v.z>
-IV. w,(u,v, z) -Vx[ ]dV (2.3)

r

_jk°Z°.lvi Wi(u,v, z) -Ji(u,v, 2) (N

where W,- (u, v, z) is a subdomain vector-valued weight function to be defined later and

V,- is the ith volume element resulting from a discretization of the cavity. The impressed

sources (Ji , Mi) enclosed by the volume V, give rise to the right-hand side of (2.3) and

this interior excitation function is defined by

- Mi(u v 2)
Int __ _ . r 9

f,- _ IV.- w,(u,v,z) Vx[————#r]dV — jkonIVi W,(u,v, z) -J" (u, v, z)dV (2.4)

Upon application of the first vector Green’s theorem [11],

[V w -Vx(VxE)dV =[V (VxE)-(VxW)dV -[S Wx(VxE) ~ndS (2.5)

the time Harmonic Faraday’s Law for a source free region and the vector identity,

VxE = -ja)uH (2.6)

A'BXC=C-AXB (2.7)

(2.3) can be recognized as the weak form of the wave equation

 

J VxE(u,v, z) -Vx Wi(u,v, z)

V' flr

-—jkoZoI_,. n(u,v, z)xH<u,v.z) . W.(u,v. z)ds = f?”
l

dV 43]“ £,E - w,(u,v, z)dV —

' (2.8)

where n(u,v, 2) indicates the outward pointing normal of the element surface associated

with the ith unknown, Si is the surface area of that element, and H(u,v, z) is the total

magnetic field, evaluated at the test point denoted by the triplet (u,v,z). It can be shown
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that the surface integral of (2.8) vanishes for all elements that do not border the cavity

aperture due to the fact that the test function, W,- (u, v, z) , is in fact a tangential electric

field. For this formulation, all metal is assumed to be a perfect electrical conductor and

the only portion of the cavity boundary that is not metal is the aperture. Hence, the non-

zero contribution is limited to the portion of the surface that coincides with the aperture.

The weak form of the wave equation, (2.8), contains unknown electric and magnetic

fields on the surface of the elliptic cylinder. To determine H in (2.8), the surface

equivalence theorem will be introduced with a dyadic Green’s function of the second

kind (e.g. a dyadic Green’s function that satisfies the Neumann boundary condition) such

that the radiated fields due to the equivalent currents can be reduced from [21].

H(r) = [Lam-mamas + jkY ILandS (2.9)

to

H(r) = jkY [Luis-32mm (2.10)

where G, Gez represent the dyadic Green’s function and its second kind, R=| r -—r'|, r

denotes the observation point and r' is the integration point, while the surface on which

the equivalence theorem is applied is denoted by S. Also, Y is the wave admittance in the

medium.

By expanding the unknown electric field in terms of subdomain basis functions as

Nv

is: EjWJ-(u,v,z) (2.11)

j:

u

and substituting (2.11) and (2.10) into (2.8), the resulting system of equations is obtained

11

‘

r
u
m
-
1
-

a
:

'



In ('1

exp;

func

equa

1*her

The r



 

Nv VXW-(u,V,Z)‘wai(u9V,Z)

2 E; { LI 1
j=1 1

fl,

—k§e,wj(u.v.z)-W.-(u.v.z) IdV (2.12)

+k§5,(i)5a( j) I [ w,(u,v.z)-u(u.v.z)><
31' 5i

[n(u9V, Z)ij
(u,v, z) 'Ee2(V, Z;V', Zr)]deS

I }: flint

In (2.11), the subscript indicates the j'h unknown and WJ- (u,v, z) is the same edge-based

expansion function as that used for testing in (2.3); e.g. Galerkin’s procedure is used. The

function 6,, (1)50 (j) is a product of two Kronecker functions and simply indicates that

the boundary integral only contributes when both the test and source unknowns are on the

aperture. The symbol N, in (2.11) denotes the total number of unknowns or the free-

edges space in the mesh.

Expressed in elliptic cylinder coordinates, (2.12) becomes the system of linear

equations given by

 

N VxW.(u,v,z)-V><W,-(U.V.z)

S: Ejl LI 1
=1 ' ”I

—k§£,Wj(u,v.z)-W.-(u,v.2) 1.5szde (2.13)

+k§60(i)6’a(j)j Iw,(u',v',z')-u(v,z;v',z')x
Sj S,‘

J'

[n(u’v’Z)ij(“vV,Z
)“31:201.z;V',z')

],8',de'dz'dvdz }=fiint

where

fl(u,v, z) = c(cosh2 u -cos2 v)”2 (2 l4)

fl'(u ',v', z ') = C(cosh2 u '— cos2 v ')”2 .

The FE-BI formulation can be written as a matrix equation

[A]{E}-k§[B]{E}+k§[C]{E}={f}. (2.15)
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where

(1):" _
1,,1 _[Vi[wa,. -waj]dv (216)

(2).. — .

1,, '1 _[Ve[w,. .wj]dv

Also

CIj = ISA‘. [WI '“XISAj UXWJ' 'GeZdS '] d5 (2.17)

where i and j represent the global test and source unknown numbers, respectively.

Also, V,- denotes the element volume associated with the test function 1', while

SAt ,SAJ. represent the surface that coincides with the aperture, of the i'h , j'h element,

respectively. The FEM matrix was formed by the matrix sum of [A] and [B], while the

boundary integral matrix was formed by the sub-matrix [C]. The entries in the FEM

matrix are identically zero unless both the test and source edges are within the same

element and hence the FEM matrix is sparely populated. However, the boundary integral

matrix has entries that are nonzero even if the source and test edges are located in

different elements. Hence, the boundary integral sub-matrix, [C], is fully populated.

2.3. Vector Weight Functions

An important factor in choosing the finite elements for gridding the cavity is the

elements’ suitability for satisfying both the mathematical requirements of the formulation

and the physical features of the antenna system. Traditional node-based finite elements

associate the degrees of freedom with the nodal fields. However, these functions have

13
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proven unsatisfactory for three-dimensional electromagnetics applications since they do

not correctly represent the null space of the curl operator and hence spurious modes are

generated [22-23]. Edge-based finite elements, whose degrees of freedom are associated

with the edges of the finite element mesh, have been shown to be free of the above

shortcomings. In the source-free solution region, edge-based finite elements can be

designed to satisfy the divergence-free condition such that the spurious mode can be

removed from the solutions. In addition, edge-based elements avoid explicit specification

of the fields at comers where edge conditions may require a singularity. Jin and Volakis

[20] presented edge-based brick elements that are convenient for rectangular-type

structures and cavities. Later, Kempel and Volakis [9] designed the cylinder shell element

for cavities embedded in a circular cylinder. For cavities recessed in an elliptic cylinder,

elliptical shell elements are the natural choice.

Elliptical shell finite elements possess both geometrical fidelity and simplicity for

elliptical-rectangular cavities. Figure 2.3 illustrates a typical shell element, which has

eight nodes connected by twelve edges: four edges aligned along each of the three

orthogonal directions of the elliptic cylinder coordinate system. Each element is

associated with twelve vector shape functions given by

14



where

_ Av] (pa - pub )(Z — Zr)
 

 

 

 

 

 

 

 

 

 

 

 

W14 —v Am =Wv(pu,vez:pubnzu+1)

W23 =—v Av,(Pu *Zsz-zfl : Wv(Pu,V’Z§Puaa3 21,4)

W53 =—v Av[(pu ’21:)(2-210 : W.(p..,v,z:pu,,n zt,_1)

W67 : v Av[(pu _:7u;*)(z_2b)=Wv(PuaV,Z§Pua,',Zbe+1)

W12 =“Aub(v-A:irir(z—ZI) =Wu(Pu,V’Z§',VI,Zn+1)

W43 :_"Aub(v-A:i(z—Z1)= .(p...v.z;-,vnze-1)

W56 ‘1‘“ Aub(v_A:)}iz—Zb) = wu(Pu,VeZth,Zb’-1)

“'78 =“ Aub(V"AV;::Z'Zb) = wu(pu’vrz;°’vr’zb’+l)

W15 :1 (Pu ‘P::r)(v-v1) = WJPmV’ZWubWIV’H)

w26 =—z (Pu ‘P::&’-vz) : Wz(pu,V,Z§Pua’Vl"’—1) (2.18)

W48 : _z (Pu ‘Pr;::(v—vr) = Wz(Puev,Z§Pub,Vrn—1)

W37 _ 100.. *PgtgaXv—vr) : WJPWV’ZmuarvrnH)

p. =%e“

azw—w

h=z, -zb

t = 1)., -p.., =-:-(e“b —e“a) (2.19)

0

A = (cosh2 it —cos2 v)1/‘

Av, = (cosh2 u —cos2 v1)”2

Aub = (cosh2 ub - cos2 v)”2
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Also, Wij is associated with the edge defined by local nodes i and j as shown in Figure

2.3. As seen from (2.18), three fundamental vector weight functions, one associated with

each coordinate axis, are required for the complete representation of the elliptical shell

finite element. They are

§Aub (V- P)(Z — Z)

 

Wu(pu.v,z;-,\7.Z,§)=u

 

 

Aah

5A 00 -P-)(z—Z)
° . ~ " = V] u u

wv(Pu,V,2,pg,,z,s) v Ath (2.20)

Wz(pu.v,z;p,;,i7,-,§)=zs(&¢‘ngV-V)

where the element parameters (ua ,ub, v,,v, , 2,, z, ) are shown Figure 2.3. Each local edge

is distinguished by the parameters 5,1217 and 2 as given in (2.20). The circular cylinder is

a special case of the elliptic cylinder, thus the elliptic cylinder can be reduced to the

circular cylinder and then

¢=v

pie“
2

N
l
—
e

~

~

1‘

A = (cosh2 u — 0052 v) % (2-21)

t=pub —pua zpb—pa

a=vr—vl z¢r—¢l

Rewriting (2.20) with (2.21), the vector weight function for the circular cylinder [10] can

be written as
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w12(p9¢9 Z) = wp(p9¢9 zi'9¢r9z19+1)9 w43(p9¢9 Z) = wp(p9¢9 zi'9¢[9z(9-1)

w56(p9¢9 Z) = wp(p9¢9 zi9¢r9zb9-1)9 w87(p9¢9z) = wp(p9¢9 Zi9¢l9zb9+l)

wl4(p9¢9 Z) = w¢(p9¢9Z;pr Zt9+l)9 W23(p9¢9 Z) = w¢(p9¢9 Zipa9'9 219-1)

 

 

 

(2.22)

w58(p9¢9z)=w¢(p9¢9z9pb99Zb9-1)9 W67(p9¢9z)=w¢(p9¢9z9pa992b9+1)

w15(p9¢9z)=wz(p9¢szipb9¢r9'9+l)9 W26(p9¢9Z)=Wz(p9¢,Z;par¢,-r‘9’l)

w48(p9¢9z)=wz(p9¢9zipb9¢l9'9—l)9 w37(p9¢9z)=wz(p9¢9zipa9¢l9'9+1)

The three fundamental vector weight functions are

- ~ - - 5p (¢-é>')(z-2)
Wp(p,¢,z;,0, ,z,s)=p b

ahp

- ~ .. - E —" z—"

WZ(p9¢9Z;fi2 ~9295):ZS(p—f;(¢—¢)

Where the element parameters (pa, pb,¢,,¢1 , 2),, 2,) are shown in Figure 2.4. It is noted

that as the radius of the cylinder becomes larger, the curvature of these elements

decreases, resulting in weight functions that are functionally similar to the bricks

presented by Jin and Volakis [20].

2.4. Finite Element Matrix

The volumetric mesh of the cavity is formed using the elliptic shell element

shown in Figure 2.3 by meshing the cavity such that all the radius-dividing layers have

the same foci as the surface ellipse, while the meshing along the z and v direction is

subdivided uniformly by the fixed length of the geodesic path, which can be obtained

from the perimeter divided by the total number of nodes in that direction. These elements

are shell elements conformal to the surface of the elliptic cylinder. The exterior functions

used to expand the aperture fields are similar to the volume elements. Applying the

17
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vector weight function defined by (2.18)-(2.20) in (2.13), the FE-BI formulation can be

written as a matrix equation as shown in (2.15). The FEM matrix is composed by adding

the matrices [A] and [B] while the boundary integral matrix is formed by the sub-matrix

[C]. Carrying out the required vector operations and organizing each integral in separable

form, as shown in (2.16), six combinations for 13".]. and three combinations

for I3"? remain. The two auxiliary functions are defined in (2.16). These elliptic auxiliary

functions are

  1(1)=E—E:£1Agczs'sb(v-v)(v—vi)dudv+:2lifzf:lub dudv f”(z—zj)(z-z,-)dz

 

 

 

r A2

(1) b azAhVI
[W =—%-fal [(VA1_2— v )sinv cosv pu A

r “b

u- 17-)

+(v—i7j)sinvcosvcoshusinhu-(—p——€‘—

u AV
[2 I

(p -p-.)A
+AubAwpu + u u' u” coshusinvsinhu]dvdu

VI

czasijfs'

1515 —h—’I::’Awe. -p..,.)(p.. -p..,.)du

b l 1 .
{$721.05 f—[Awpu +pu(pu—pgi)coshusmhu

(p, -p,;. )(pu -p,; . )cosh2 usinh2 u

+pu(pu—pa.)coshusinhu+ ' 2’
J Av]

“.JZ’Rz—zsz—zgdz

bA

Iél’--— if“;.,(p.— p. ><p.— p. Ma
1’2

"--§

I$’= 35-; f:filpftv—fijxv—fiwpf-p..(p.-.-,.+prj)+pr,prjldudv

(2.24)
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1(2)_ 62331WEFAZb(v— v)—(v v)dvdu Eb (z— z)(z— z,)dz

1(2)_c:621:2:§_-,-23 EMA (p,- ,0.)(.0e p“. )du Eb (z- z- )(z_ Z)dz (2.25)

2]”,

C 115).)" b I .. ..

1:22) $76221; A20,“ -Pr,-)(Pu _p,j)du. l: (v—v,)(v—vj)dv

It should be noted that 1;? = 15:) , and therefore the FEM matrix is symmetric,

and only the upper or lower triangle of the FEM matrix needs to be stored. The

cylindrical auxiliary function, which was developed from the FEM method for the

circular cylinder [24], also can be obtained by reducing the elliptical auxiliary function in

circular cylinder coordinates with the relations in (2.21). The auxiliary functions for the

circular cylinder system are given by

”I”. _, ~ 2

IS} =3f—’,[pih1n(p—:)g (¢—¢.)t¢—¢. )d¢+%<p—’;-1)J:(z—z.)<z-z,-)dz]

I$;=-S;'———2’—h§[2pbln(p:)+p,(l- p:)]fb(z— 2,)(2- 2,)dz

1;}; =-—"%’1’- J: (¢-i>'.)(¢—4)d¢

11% “5’1(—(pZ-p.)+—(p.+p.)(p3- p3)+—;p.p.(p§-p.))

+(2(p§--p3)— 2t<p.+p.)+p.p.1n(::——))j:b (z- 2,)(2— z.)dz]

I“; = —-’—§—’- 1”” (P-firXP-fifldp

12571—5’[a(-§(pE-p3)-rtp.+p.)+p.p.1n(/’:—:))

_ 2.. 2 ...~ ..~ 2.26
+200. 10.)]: «4 ¢.)(¢ ¢.)d¢] ( >

19



“her

t
o

(
'
1
9

Idem

OWL

cam

tom,

[Etta-

IOI a



 12% g’p”n(—:f)(¢-¢)(¢—rude]; (z- zxz— 2,)dz

15);):5;—’:—'2a[—(pb__pa)+-;(ps+pr)(pa_ pb)+_zpspt(pb2--pa)]

XE) (z-Z,)(z-Z,)dz

(2)_55-h1

Izz— tzh———-I— (.053- p2)+—;(p.+i5.)(pf;’— pB)+—:p.p.(pb--p..)] (2.27)

x134 —¢.)(¢ —¢.)d¢

where each of the unevaluated integrals is of the form

if“; —E,)(§-£,)d§ =%(L2 -U2)(5. +5.)+-;-(U’ —L’)+£,E,(U—L) (2.28)

2.5. Validation of Finite Element Formulation: The Closed Cavity

Finite elements for closed domains can be used for analyzing cavity resonances.

Identification of these resonances is important for understanding and controlling the

operation of many devices including microwave ovens. The eigenvalues for each empty

cavity are computed by solving the generalized eigenvalue problem. The eigenvalues

computed by the finite element method, as well as analytical results for the cylindrical-

rectangular and planar-rectangular cavities, will be discussed in this section. A new result

for an elliptical—rectangle cavity will be presented.

The rectangular cavity is a geometrically simple structure, but is widely used in

complex microwave devices. A comparison between computed eigenvalues using the

finite element method and analytical values is shown in Table 2.1. For a 2cm x 1cm x

1cm rectangular cavity, the average error percentage is less than 1.0% with 520
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unknowns. Particularly, for the first two most important modes, the numerical results are

very accurate.

In Table 2.2, the total unknowns for a 3cm x 3cm x 3cm quasi-circular shell

cavity mounted on a cylinder of p = 20 cm are 450 and the average error percentage is

2.2%. To have more accurate results, the cavity was subdivided into finer finite elements

such that the variation of electrical field inside the cavity can be represented by more

unknown edges (e.g. degrees of freedom.) In Table 2.3, the error was improved to 1.3%

with 1176 unknowns. It can be concluded that the eigenvalues can be computed with

good accuracy and the accuracy is expected to increase with higher mesh density.

However, the computational cost will rise and several negative trivial eigenvalues may

result. Significantly, these results illustrate the fact that the FE method can be used to

determine the resonance frequency of arbitrary shaped cavities.

The eigenvalues of an elliptic shell cavity mounted in three different locations of

an elliptic cylinder with a major axis of a=50cm and a minor axis of b=20cm were

computed and tabulated in Table 2.4. The eigenvalue for the lowest mode, TE01 1, has less

variation compared to other modes in those cases as one would expect. For the conformal

antenna mounted in the elliptic cylinder starting from the elliptic angle of v=0.02 by

setting the value of the initial angular parameter v0 to 0.02 in computation, it also can be

easily observed that the eigenvalues have larger deviation from the other two cases.

Physically, the cavity embedded in a region of rapidly changing curvature results in

greater variation of field distribution inside the cavity while the field exhibits less change

when the cavity is mounted in a region of surface with little curvature change.
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The comparison of eigenvalues for a cavity mounted in different portions of an

elliptic cylinder and the approximately equivalent circular cylinder is of course a major

concern for the design of conformal antenna embedded on a curvature-varying surface.

For a cavity (3cm x 3cm x 3cm) mounted in different positions, v0: 0.02, and M2, of an

elliptic cylinder with a=50cm, b=20cm and the equivalent circular cylinder with radius of

p=200m and p=50cm, the computational results are tabulated in Table 2.5 and 2.6,

respectively. The average deviation of eigenvalues between the elliptic cavity and its

equivalent circular shell cavity is 10.8% in Table 2.5 while it is 1.3% in Table 2.6.

Therefore, the eigenvalues for the elliptic shell cavity mounted in the less curved elliptic

surface can be approximately determined using its equivalent circular shell cavity.

However, it is necessary to accurately model the elliptic shell cavity when it is embedded

on the highly curved area.

From the discussion above it has been verified that the FE method using the new

elliptic shell elements and its vector weight functions successfully compute the

eigenvalues of the rectangular and shell cavities. It remains to develop the boundary

integral and the dyadic Green’s functions so that open problems may be examined.
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Table 2.1 The eigenvalues for a rectangular cavity (2cm x 1cm x 1cm) represented in

elliptic cylinder coordinates as u=2, v=l, z=l(cm), utilizing 520 unknowns.

 

 

 

 

 

 

:Eigenmod Analytical FEM Error (%)

TE011 3.561 3.561 <0.01

TE101 3.561 3.561 <0.01

TM110 4.488 4.521 0.8

TE012 4.487 4.522 0.8

TM112 5.520 5.555 0.6     
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Table 2.2 The eigenvalues for a circular shell cavity (3cm x 3cm x 3cm) represented in

elliptic cylinder coordinates as u= v=z=3(cm), utilizing 520 unknowns.

 

 

 

 

 

 

Eigenmode Analytical FEM Error (%)

TE011 2.195 2.244 2.2

TE111 2.369 2.424 2.3

TM110 2.377 2.433 2.3

TM111 3.474 3.553 2.2

TE121 3.520 3.585 2.3
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Table 2.3 The eigenvalues for a circular shell cavity (3cm x 3cm x 3cm) represented in

elliptic cylinder coordinates as u= vq=3(cm), utilizing 1176 unknowns.

 

 

 

 

 

 

Eigenmode Analytical FEM Error (%)

TE011 2.195 2.224 1.3

TE 11 2.369 2.399 1.2

TM1 10 2.377 2.409 1.3

TM111 3.474 3.520 1.3

TE121 3.520 3.546 1.2
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Table 2.4 The eigenvalues for an elliptic shell cavity (3cm x 3cm x 3cm) mounted in an

elliptic cylinder with a=50cm, b=20cm, starting from three different angles of v0 =0.02,

v0 =1r/4 and v0 = #2 and utilizing 450 unknowns.

 

 

 

 

 

 

Eigenmode v0 =0.02, v0 =1d4 v0: 1d2

TE011 2.224 2.223 2.244

TE111 2.725 2.280 2.270

TM110 2.817 2.299 2.271

TM111 3.942 3.400 3.393

TE121 4.409 3.409 3.393
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Table 2.5 Comparison of eigenvalues between a cavity (3cm x 3cm x 3cm) mounted in

an elliptic cylinder with a=50cm, b=20cm, starting from the angle of v0 =0.02, and its

approximate equivalent circular cylinder with radius of p=20 cm, utilizing 450

 

 

 

 

 

 

unknowns.

Eigenmode Elliptic shell cavity, Circular shell cavity, Deviation (%)

v0 =0.02, p=20 cm

TE011 2.224 2.244 0.90

TE111 2.725 2.424 11.0

TM110 2.817 2.433 13.6

TM111 3.942 3.553 9.9

TE121 4.409 3.585 18.7

      

27



Table 2.6 Comparison of eigenvalues between a cavity (3cm x 3cm x 3cm) mounted in

an elliptic cylinder with a=50cm, b=20cm, starting from the angle of v0 =1r/2, and its

approximate equivalent circular cylinder with radius of p=50 cm, utilizing 450

unknowns.

 

 

 

 

 

 

Eigenmode Elliptic shell Circular shell cavity, Deviation (%)

cavity, v0 = M2 p=50 cm

TE011 2.244 2.245 <0.05

TE111 2.270 2.312 1.85

TM110 2.271 2.313 1.85

TM111 3.393 3.437 1.30

TE121 3.393 3.438 1.32
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Figure 2.1 A cross-sectional view of the elliptic coordinate system
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Figure 2.2 The geometry of the cavity-backed antenna embedded in a metallic elliptic

cylinder.
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Figure 2.3 Geometry of an elliptic shell element. The numbers denote the local node

numbering scheme for these elements.
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Figure 2.4 Geometry of a cylindrical shell element. The numbers denote the local node

numbers for this element.
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CHAPTER 3

DYADIC GREEN’S FUNCTION FOR ELLIPTIC CYLINDER

3.1 Introduction

In this chapter the surface dyadic Green’s function for an infinitely long, perfectly

conducting elliptic cylinder is derived [11]. In this approach, vector wave functions

approximate for representing electromagnetic fields in the elliptic cylinder coordinate

system are generated based on the elliptic cylinder scalar wave functions.

Eigenfunction expansion of the required field quantities is the first approach applied

to find the dyadic Green’s function necessary to describe on-surface interactions. In this

chapter, the scalar wave equation is used and its eigenfunctions can be written in terms of

separated angular and radial functions. The radial functions, which are the solution of the

modified Mathieu’s equation and finite at the origin, can be written as a series of Bessel

functions. The angular functions, which are solutions of Mathieu’s equation, are required

to be periodic with respect to the angle of the elliptic cylinder so that the field represented

by these functions is a single-valued function of position.

Since the dyadic Green’s function developed by eigenfunction expansion is very

difficult to evaluate numerically, an approximate asymptotic solution based on the

Uniform Theory of Diffraction (UTD) has also been developed. In this, the surface fields

attributed to a source on a smooth, perfectly conducting surface with arbitrary curvature

are computed using a representation developed by Pathak and Wang [25]. Base on this

development, an approximate asymptotic solution for the electromagnetic fields is found.

These fields are induced by an infinitesimal magnetic current moment on the same

surface. Hence, this solution of the surface magnetic field attributed to the aperture field
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located on the same surface represents the dyadic Green’s function. The superposition of

such aperture field elements represents the total electric field in the aperture of a

conformal antenna. This solution can be employed to calculate mutual coupling between

two or more antenna elements. The volumetric cavity region behind the aperture is

modeled using the finite element method. This hybrid approach allows the simulation of

complex antennas with minimal computational effort. Such information is essential for

f
.
"

designing conformal antenna arrays and for studying the electromagnetic compatibility of

multiple antennas. In this UTD solution, the surface fields that propagate along each ray’s

geodesic path remain uniformly valid within the shadow boundary transition region

including the immediate vicinity of the source. Again, it is noted that time convention

19”" is used through the whole dissertation.

3.2 Eigenfunction expansion method

3.2.1 Mathieu’s Equation

Before the scalar wave equation in elliptic cylinder coordinates is introduced, the

solutions for both Mathieu’s and the modified Mathieu’s equation must be developed. In

the elliptic cylinder coordinate system, the set of coordinates used in this dissertation is

designated by (u, v,z). A cross-sectional view of a plane perpendicular to the z-axis is

shown in Figure 2.1. The relations between rectangular coordinates and elliptic cylinder

coordinates are given in (2.1).

Mathieu’s equation can be written in the form

2

i{igl’l+(a—2qc052v)f(v)=0 (3.1)

dv
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where a and q are parameters that are usually real number. Also, a is the eigenvalue of

the system and it forms a denumerable set such that the corresponding angular functions

is periodic functions of v

Since the angular solution for Mathieu’s equation should be periodic over the elliptic

cylinder, viz. a = q = 0 , then the periodic solution of Mathieu’s equation is constant, i.e.,

f (v) =c, where c is constant. This is the Mathieu function of order zero, associated with

the eigenvalue a = 0. If a at 0 and q=0, then

2

___—ddfvg") + af(v) = o (3.2)

The solution of (3.2) can be represented as

fl (v) = cos mv or f2 (v) = sin mv (3.3)

where m=1,2,3.

For the general solution of (3.1), where a at 0 and q :1: 0 , the eigenfunction can be

represented in series form as

f(v) = i AJ- cos(jv) + 31- sin(jv) (3.4)

j=0

where Aj and Bj are the expansion coefficients to be determined. Substituting (3.4) into

(3.1), four different types of corresponding eigenfunctions are obtained:
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f2kmMA F2143],“008(2kv). m = 0,1,2,3...

fzi'if‘m(v)=;o 2;";31 c03(2kV), m=0,l,2,3...

(3.5)

fzimodd (v) = 2 822,2" sin<2kv). m = o, 1, 2,3...

k=0

fzzk'iilodd (V)—Z1922131 sin(2kv). m = 0,1,2,3...

Here the subscripts even and odd represent the associated eigenfunction expanded in the

base of cosine and sine functions, respectively. The equations above are four different

types of Mathieu function, which are the solutions of Mathieu’s equation associated with

four different eigenvalues: a = a2", (q) , a = a2m+l (q) , a = b2m (q) and a = meH (q) .

These four types of solutions are isolated by odd and even functions and by their cyclic

period of 11: or 211:.

For simplicity, the four solutions in (3.5) are combined as even and odd Mathieu

functions. They are

Sem(v) = 2 D,'," c05(nV), m = 0,1,2,3... (3.6)

n=0

5mm = 2 F,“ sin(nV), m = 0,1,2,3... (3.7)

n=0

where the summation is to be extended over even values of n if m is even and odd values

of n if m is odd. Sem(v) and S0m(v) are also called the even and odd solutions of

Mathieu’s equation, respectively. The coefficients D,'," and Fn'" are normalized, i.e.,

i 0;," =1, i E,“ =1 (3.8)

n=0 n=0
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such that the following relationship between the even and odd solutions of Mathieu’s

equation is established

£2353," (v)dv=- ZISom (v)dv=l (3.9)

Using (3.9), it can be shown that Sem(v) and S0m(v) form a complete orthogonal set. The

orthogonality relationships are

27:

[3,,(v)s,j(v)dv=er(D:;)2-(1+6), for i: j

0 n

27:

ISei(v)Sej (v)dv = 0 for i¢ j

0

2” . (3.10)

I So.(v)S.,-<v)dv=zr2(F,:>2. for i= 1'
o n

27:

[Sm-(v)SOJ-(v)dv=0 for i¢ j

0

where 8:1 if n=0 and 8:0 if n¢0.

3.2.2 Modified Mathieu’s Equation

For convenience, Mathieu’s equation can be rewritten as follows

d—v—wa——)+(a— 2qcost)f(v)= O (3.11)

The modified Mathieu’s Equation can be obtained by replacing the variable be the

complex formjv [26]. Then (3.1 1) becomes

d2__f____(J'V)
-(—a 2g cosh 2v)f(1v) 0 (3.12)

dv2
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which is the modified Mathieu’s equation. The solutions of the modified Mathieu’s

equation are found by replacing the variable v with jv in the eigenfunction expressions

(3.5). The resulting expressions for the modified Mathieu functions are

fzk”new”- 2422;."’.cosh<2kv> m = 0,1, 2,3...

fzi’iilevenuv): 2AA223? cosh(2k +1)v, m = 0,1, 2,3...

(3.13)

fzi'ii"dd (jv>-— :03221'333‘ sinh(2k +1)v. m = o, 1, 2, 3...

fzi’iézodd (jv1-—2322,1132 sinh(2k + 2)v, m = o, 1, 2, 3...

2 2

c

Replacing the parameter q and v in (3.12) with L41 and u, respectively, then the

2 2

quantity 2q cosh 2v becomes by (cokp cosh u)2 ——%i , giving

 ‘12f(“)+(c§k2coh2u——b)f(u)= o (3.14)

2 2

c k

0 p . The solutions of (3.14), which are equivalent to (3.13), now can be where b = a+

written and expanded in terms of a series of Bessel functions as [27]

Rem/(pol): %Z(1)"In—"AnmJ (COkp coshu)

Rem/(p (u): %Z(J.)m_nA,',nYn (COkp 0081] u)

Rlomkpu‘): g::th-:(j)n—manJ
np(C0k COShu)

R3m1p1u1=f tanth<j)"""nB,'."1/,(cok,, coshu)

n=0

(3.15)
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where superscript 1 represent function 1,,(2) , which is the n'h order Bessel function of

first type, while 2 denotes function Yn, which is the n'h order Bessel function of second

type. Also, the summation is to be extended over even values of n if m is even and odd

values of n if m is odd. It is noted that for these four eigenfunctions, each is associated

with its own eigenvalue in the modified Mathieu’s equation. For simplicity these four

radial eigenfunctions are combined as follows

Mm) g2“)“‘”D,’,"J,,(c0kp cosh u)

(3.16)

R=omkp(u)£11112(1)""'anl”(cok coshu)

3.2.3 Vector Wave Functions In An Elliptic Cylinder Coordinate System

The scalar wave equation in an elliptic cylinder coordinate system can be written in

the form

2V,

321”+ 82WM:'él+(k/2,+k22)11/=0 (3.17)

Z2

 i<
,6 Buz +3112

1

where ,6 = c(cosh2 u — cos2 v)2

The variables u, v and z are the radial, angular and axial coordinates in the elliptic

cylinder coordinate system, respectively. The parameter c is again the distance between

the foci of the ellipse. Assuming that f = fl(cosh u)f2(cos v) is the solution of (3.17) and

using it in (3. 17), then the following two equations result

d:—f1——(“) +(c2kf, cosh2 u— b)f1(u) o (3.18)

it
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d2f2(V)

dv2

————+ (b— c2k2 cos2 v)f2(v)= o (3.19)

Here (3.18) is the modified Mathieu’s equation, while (3.19) is Mathieu’s equation. The

eigenvalues b form a denumerable set such that the corresponding angular functions is

periodic functions of v, and thus a single-valued function of position for the

electromagnetic fields can be described. Because the wave functions of the elliptic

cylinder can be written as

1v=f(u,v1«f’"zz =f1(u)f2(v)e'j"zz (3.20)

Thus, by applying the solutions of Mathieu’s and the modified Mathieu’s equation, which

have been derived in sections 3.2.1 and 3.2.2, into (3.20), the resulting wave function is

given by

1II=.mkp(v1Romkp(u1e‘fl‘zz (3.211

where

Remkp(u)Semkp(v)= %Z(1)n—m0m cos(nv)J,, (ckp cosh u)

2"" (3.22)

01.1,, <u>Somkp(v) $201"‘"'F"' sm<nv11,.(ck coshu)

Equation (3.22) is given by Stratton [28] and can be used to represent the standing wave

function inside the elliptic cylinder, while the outgoing wave which is traveling outward

from the cylinder can be represented in the form of Hankel functions of the second kind

as follows
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R(2m)l((u)Semkp (v) 2(1)"me cosan§2)(ckp cosh u)

2“" (3.23)

2
R("3kp(u)Somkp (v): 325-2300)""7;" sinan(2)(ckp coshu)

2n

Since I); is the solution of the scalar wave equation in elliptic cylindrical coordinates, the

corresponding vector wave functions are defined by

M (-kz)=Vx1//

 

  

Smkp

(3.24)

(——kz)=—VxVx1,(/

Nam/(p

where K2 2 k3, + k3. Then these two vector wave functions are

1 asemk 3R,”

M —k =— R 0 p u— —°—P—v e‘szz 3.25
3mkp( 2) fl[ 5’"kp av ngp au ] ( )

BR 8S

1 . g p . g’fl‘p

N —k =—— — k S u— k R
gmkp( Z) kfi[ J Z gntkp Bu 1 z ngp 3v (3.26)

2 —-jk z
+flk R S z]e 2

p gmkp gmkp

The orthogonal properties of these functions are stated by the following equation [11]

fistmkp (—Ic,).N(,)m,k-p (k',)dv =0 (3,27)

mMgmkp(-kz)-Mgm,
kb(k',)dv

0 m¢m' (3.28)

= . . ,+
l nzkplgmkpme—k,)6(kp—kp) m=m
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N. <-k.)'N. .-(k;)dv
omkp omkp

0 m ¢ m

(3.29)

 

2 . __ .
7: kplgmkp5(kz‘kz)5(kp‘kp') m—m

 

where

1...), = n2<1+6o><Drr> , 10..., = 2 (51")
"=0 n=0

3.2.4. The Free-Space Dyadic Green’s function

The free-space magnetic dyadic Green’s function satisfies the dyadic differential

equation [11]

VxVxEmo(R,R)—k25mo(R,R) =Vx[75(R,R)] (3.30)

and the radiation condition at infinity. Here 7 is called an idem factor, and its explicit

expression is

7:2“, (3.31)

i

By using the eigenfunction expansion, the right hand side of (3.30) can be written as

Vx 76 R—R = dk dk 0° A —k N —k +13 —k M -k[ ( )1 g p! zgl gmkp( z) gmkp‘ Z> 5mkp( z) gmkp( z)1

—oo

(3.32)

By taking the anterior scalar product of (3.32) with Nemk (kz) and integrating the

0 9

equation over all space, as a result of the orthogonal relationships given in (3.27),(3.28)

and (3.29), the following relationships are obtained
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=——— (k )
emk 2 emk Z
0 I) It kPIgmk o p

p

(3.33)

(3.34)

2 _ 2 2 - - ' '
where K —kp +kz and the superscnpt 1n Mgmkp(kz) and Ngmk (k2) represents the

p

source field point. Hence the continuous eigenfunction expansion of Vx[75(R, R ')] is

given by

VIé‘RR=dkp dk ————N><[( no] I 71:12“ {5MP
—oo

+Memkp (-kz)Ngmkp (kz)}

Now, EMMR, R) in the left hand side of (3.30) may be expanded in terms of

eigenfunction as

—-oo

Emo(R,R)= J'dkp IdeZ[a(kZ)Ne mp1. (k)M k (k,)

0 m=1 0'" gmp

+b(kz )Me (—kz )Nc (kZ )]
omkp omkp

Substituting (3.35) and (3.36) into (3.30), the coefficients are determined as

K“

2k
fl'k (K2 —2k)

plemkp

a(kz)=b(kz)= 

Thus the expression for EmO(R,R') can be written in the form
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(3.35)

(3.36)

(3.37)

h
-
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Gmo(RR): ojdkp [.11.f; —kM' k

m_17r2kWI:—(K2—2[k)N" (1)” (Z)onlkp omk

 

-oo
9

+M5""‘19 (—kZ )Ngmkp (kz )]

To simplify the expression in (3.38), Let

K
. .

I: —k M k +M —k N

ka”m:1rr2kpl. (K,_k,)[NO"m1;) 2.1.2} 1’ amt} z) 2
amp

 

 

 

and

Ne (—kz)M'2 (k2)=T(1)[Jn(ckpcoshu)Jn(ckpcoshu')]

omkp omkp

M2, (—kZ )N'e (k2) = Tmun (ckp cosh u)!" (ckp coshu ')]

omkp omkp

Then (3.39) becomes

I: fdkpi 2 "' 2 2 (Tania);

m_17r kplgmkpw —k )

= [(1) +10)

where

10>-- de " rm
f 32.1%]: I (xi—k2)

p

,(2)__ dkz K Ta)

17 pm:17t2kI (xi—k2)

0 p

(3.38)

22/) (1.2)]

(3.39)

(3.40)

(3.41)

(3.42)

T





For field solutions satisfying the vector wave equation in the elliptic cylinder coordinate

system and for observation within the elliptic cylinder, i.e., u < u ' , the first part of (3.39)

can be rewritten as

 

K‘ .-

,(1)=fkpz 2 2 {T“)[J,,(ckpcoshu)H,‘,"(ckpcoshu)]}

,,, 71' 1.21222 (rz-k )
o p

(3.43)

 

K“ ~(1) (2)4.5/('02 2 K2- 2 {T [Jn(ckpcoshu)H,, (CkpCOShu')]}

m It kplemkp( k )

0

Here the Bessel function in (3.40) for the source point has been replaced by the

combination of a Hankel function of first kind and second kind, while the Bessel function

for the field point was retained to represent the standing wave inside the elliptic cylinder.

Replacing the variable kp with —kp in the first term of (3.43) and using the

following relationships

H,9) (cklac—j” cosh u ') = -e—jMH,(,2) (ckp cosh u ')

 

. . (3.44)

1,,(ckpe'1’r cosh u) = e’”!,, (ckp cosh u)

then (3.43) becomes a principal-value integral as follows

1 rialun (ck cosh u)H,(,2’(ck cosh u ')]

I( ) : Endkp 2 P 2 2 1/2 P 2 2 1/2 (3'45)

P gmkp

where 1,,(ckp cosh u) represents standing wave inside the elliptic cylinder.

The principal-value integral in (3.45) now can be converted to a contour integral along

the contour shown in Figure 3.1. Here e_jkpr is used to represent outward propagating

plane wave in the elm time convention. Initially the medium is assumed to have a small

loss so that the pole at k2, = —(k2 — k3 )” 2 = x0 — jyo, yo > 0 , lies above the contour and
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the pole at kp = (k2 — k3)“ 2 = —x0 + jyO lies below the contour as shown in Figure. 3.1.

When kpr is very large the Bessel functions have the following asymptotic behavior

 

1

2 ."+—-jkr

szrz 2e p"(p)“ I,

p (3.46)

2 72' m:

J k r = cos k r————

"( p ) \ln'kpr ( p 4 2 )

Consequently, in the lower half of the complex kp plane the product inside the integral

 

of (3.45) becomes exponentially small for large kpr . The contour can be closed by a

semicircle in the lower half plane, and, when the radius of this circle approaches infinity,

the contribution from this part of the contour is negligible. By applying residue theory to

evaluate the contribution from pole at kp = —(k2 - k22 )1’ 2 , (3.45) becomes

 

1(1) _ dc K‘imUnkkp coshu)H,(,2)(ckpcoshu')]

_I: pZEZk k k2_k21/2 k _ k2_k21/2

Plgmkp( P+( z) Xp ( z) )

=—27rj-Residue|kp=(,22_1,222)1/2222:0222)+,22221/2=k

=‘jkfijn(cfl005hu)fl,(.2)(cflooshu')]
(3.47)

27177212”,

=—1’£—N(-k2)M(2)'(k2)

Wle

0

 

1

where n=(k2 —k,2)2.

Using the same procedure as above for [(2) in (3.41), gives

_ 'k .

1(2) =—+—M(—k2)N(2) (k2) (3.48)

27"] 15m!)

Combining (3.47) and (3.48), then I is expressed as
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°° K . ,

l= dk N-k M”) k +M -k N”) k

P (3.49)

=._’211‘._[N(—k2)M‘2)'(k2)+ M(-—k2)N‘2)'(k2 )] for u < u'

27:77 I
e

0

For simplicity, the subscripts attached to M and N are omitted here. Consequently,

(3.36) becomes

= 0° ._ k 0 '

Gmo(R,R') = I dkz fi[N(-kz)M(2) (k2)+M(-kz )N‘Z’ (kz )] for u < u'

e

0

(3.50)

For u > u ' , a Hankel function of the first and second kind are used to represent the

traveling waves. Then the first part of (3.39) can be written as

 

°° ~ 1
[(1): k K {T(1)[—H1(ck coshu)J,,(ck coshu')]}

f pm2=17tzk I Mk (Kl—[(2) 2 n P p

o p
(3.51)

I" ~ 1

{T(l)[-2-H3(ckp cosh u)J,,(ckp coshu')]}
 

",4sz 1 m (xi—1(2)

0

Likewise, (3.51) can be transferred to a principal integral by a change of variables, and

then assuming the medium the wave is traveling has a small loss. The evaluation of the

principal integral can proceed as before using the residue theorem to give a closed form

for that integral with respect to kp. The same procedure is applied to [(2) in (3.41) and

then combined. Hence (3.39) for u > 14' becomes

 

°° K’ .

I: k N”) —k M k +M‘2’ —k Nmk

. ”m p (3.52)

=——?,-’1‘—[N‘2’(—kz>M'<k,)+M<2>(—k,)N'(k2)]
27m 12m”
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Thus,

Gmo(R,R): aid}: Z-——[N(2)(—k)M(k )+M(2)(—k)N(k )1 for u>u'

m=l2

o

(3.53)

Consequently, the free-space magnetic dyadic Green’s function, which satisfies the

vector wave equation in an elliptic cylinder coordinate system, can be expressed as

- _ <2>' _ (2)' ,

Gm0(R,R')= Idkzz_;1_:__ [M2 kz)M '(kz)+M( kz)N 2062)] for u<u

‘°° ""121", m[N( )(‘kz)M (kz)+M(2)(-kz)N (19)] for u>u'

(3.54)

where the superscript (2) attached to N(2’ and Mm means that these functions are now

defined with respect to the Hankel function of the second kind. The function :mO is

discontinuous at u = u '. The expression for Geo can be obtained from Gmo as

3.0013) =le—[—uu§(R —R ')+(Vx:;o)U(u —u ')+ (anowm '—u)] (3.55)

where U is the unit step function and the superscript + and — attached to Gmo denote the

field outside and inside the elliptic cylinder, respectively. Inserting (3.54) into (3.55), the

following expression for :30 is obtained

5.0(RR)=—1,-[:n5(R—R)1

527I;zzz.{[M-k>1\4‘2"(I<)+1\I(—k>N‘2"(k)1 for u<u' (356)
__J

”[1609; [MW—k)M'(k)+N(-kmam.)1 for u>u'
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3.2.5 The Electric Dyadic Green’s function Of The First Kind

For a perfectly conducting elliptic cylinder as shown in Figure.3.2, the electric

dyadic Green’s function of the first kind must satisfies both the vector wave equation and

Dirichlet boundary condition at the cylinder surface, u = uo.

The dyadic Green’s function of the first kind for a perfectly conducting elliptic

cylinder can be written in terms of the free space dyadic Green’s function that represents

the incident field from source, and a scattering dyadic Green’s function that represents

the scattered field produced by the induced current on the surface of the elliptic cylinder.

To satisfy the Dirichlet boundary condition on the surface of the elliptic cylinder, the

following scattered field dyadic is assumed

= ' °° °° 1 , ,

0.101.139: —§ 1 dk, Z Tfl—tanM‘W—kzm‘” (k,)+fl,,N‘2’<-kz)N‘2’ (kz )1

_oo m=l e

0

(3.57)

and then the total dyadic Green’s function can be represented as the superposition of

(3.56) and (3.57)

5.102.113 =Emma')+5.1(R.R '>

1 , j°° °° 1
=-k—2-[—uu5(R—R ”—5-”- IdeZ—E—

_oo m=l e

0""?

[M(-kZ ) +a,,M§f’(—kz)]M§,2)'(kz)+[N(—kz) + flnN‘2’(—kz)]N‘2"(k,) for u < u'

[M'(kz ) + o:,,M§,2"(kZ )]M§,2) (-kZ ) + [,6,,N(2"(kz ) + N'(kz )]N(2)(—kz) for u > u'

(3.58)

By the Dirichlet boundary condition,

ux5e1(R,R')=0 for u=u0 (3.59)
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The two unknown variables, a” and E, in (3.58), are determined by enforcing the

Dirichlet boundary condition. From (3.27) to (3.29), it is observed that N(2) ' and Ma).

are orthogonal. By this orthogonal property, the following relationships are obtained

u><[M(—k,)+cz,,M‘2)(--kz )]u=uo = o

 

 

(3.60)

ux[N(—kz) + ,6,,N(2)(-kz )jmo = 0

From (3.25) and (3.26), the vector wave functions are found to be

3__Rn - k
N(—kz)= k-l—fl-(—jkZS,,—Bu u—jsz,,-——--v+,6k2R,,S,,z)e ’ zz

1517 3R1; — 'k
M(—kz)=Z(R’7—5v-u-S”-87v)e ’ 12

(2) 8,,S (3.61)

N‘”(-k)=7(—jk5,, 1;” u-jkZ2) Elwfikpkfknz)e”‘22

1 35,, if)” .
Ma) -k =__ (2) S e-szz

( z) ,6 (R77 8vLu 7] Bu

Inserting (3.61) into (3.60), the unknown coefficients are given by

8R,,(uy

_ a _ R1704)
a,, _-—,2)—-‘—‘— ,6" _— (2) (3.62)

8R, (u/ R,, (u)

Bu — “zuo
we

and (3.58) becomes

for u>u'
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Ge1(R,R)=——[uu5(R—R)]——jdk 2—21—{[M(k)

m=l e

0""7

M§,’"(—kz)]M§,2’(—kz)

  Bu u=u0

+[ (2)“) N‘2)'(k,)+N'(k,)]N(2)(—k,)}

R7, (“)qu

for u<u'

Ge1(R, R')=-——[uu6(R— R)]—2i jdkZ—2

2”...» m=lflllgmfl

Mg”(-kz)]M§,2"(kz)

+[N(—kz)— 1:12;") N"’<—k,)]N""(k,> }
R,7 (mm)

3.2.6 The Electric Dyadic Green’s function Of The Second Kind

 

The electric dyadic Green’s function of the second kind can be determined by

(3.63)

(3.64)

applying the same procedures used for the derivation of the first kind dyadic Green’s

function except that the Neumann condition is enforced on the surface instead of the

Dirichlet condition. The final expression for the electric Dyadic Green’s function is given

by

for u>u'
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33201.11): —-k1—2[uu5(R - R ')]

‘EjfldkzZ .1 {[M'<k.)-%{ Miz’lkalM‘nZV-kz)
—oo m=1’713m”

R” (u)u=uo

(3.65)

3R1,(u)

+[ N'(kz) N""(kz) ]N")<-k,) }
8R5,”my

Bu azuo

 

for u<u'

222(R9R') =-;13[uu6(R-R)]

j 0° 0° 1
R1701)

(2)
(2)1

_— d" M-k -—' M —k M k

Zfl—i 2,;17121 m{[
( z) R1(72)(u)u=u0 7) ( 3)] q ( z)

 

a 3 (3.66)

R,(u)

——,——/i“— N‘2’(-k,)]N‘2"(kz>}
dRéNuV

Bu
u=u0 

For u — u ' = uo , each component of the dyadic Green’s function of second kind can be

simplified as

. °° °° ,R(’(uno)
GW (uO,V',z'|u0,v,z)=% R" o),,S (v)S (v‘)

k2 R(2)l(::0)g’,'no I _ 3 _ l

__3__:_:—_S (v)S (v') e sz(z Z)

(3.67)

G200,1», 2 1u0,v,z)=—-jdkzzl S' (v)S (v)e'j"z(""”

m—llWWW)”; ” ”

00 k2

' -1 w

G422 (u ,v’,z'|u ,v,z =— alkz E

e2 0 0 ) 212.”! m=-llem:kz R(2)(

Ra) .
77(2)): 550050“) .)e-jkz(z-z')
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where

2 Di," cosnv, m=1,2,3....

n=0

S,,(v) = 5mm ={ (3.68)

2 F5" sinnv, m=1,2,3....

n=0

and the prime attached to S and R denotes the first derivate with respect with v and u,

respectively, while it represents the source point for the others. Since (3.67) is

computationally prohibitive for m>12 or for a large argument in the Hankel functions, an

asymptotic dyadic Green’s function is developed for practical implementation.

3.3 The Asymptotic Dyadic Green’s Function

The general expression for the magnetic field due to the magnetic source on a

convex surface, shown in Figure 3.3, has been developed by Pathak and Wang [25]. For

convenience, this general expression is given as follows,

_kGoYo . ___J_°____]____~2_J_'_~ ~2_j_~
de(Q|Q)—-—-2fljde(Q){ bbta kt 1.212 To k,)V(§)+To MUG»

. . , (3.69)

m1(—,f,-+;—,2-t-,-)V(cf>+-,{;17(:)1+(t'b+ b't)1kit(t7(6)—V(§)>Tol 1

where the Z7 (2,“) and W6) are related to the soft and hard Fock functions, respectively.

They are characteristic of on-surface creeping wave interactions and have been

extensively investigated by Logan [29]. The unit vectors in (3.69) associated with surface

coordinates are shown in Figure 3.3. The quantities GO and Y0 are the free-space Green’s

function and admittance, respectively. The quantities k and t refer to the free-space

wavenumber and the surface ray geodesic path from source point Q' to test point Q. The
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factor To is identified as a ratio of the surface ray torsion and the surface curvature along

the ray direction. It is expressed as

1 1T2 : [sin2(2§) 1 l _

0 132(2) R. (Q)4 (Ram—Rue)

  

)pg (Q 3] [( )pg(Q)] (3.70)

where R1 and R2 are the principal surface radii of curvature in the b and t direction,

respectively. Also pg denotes the surface radius of curvature and 6 is the angle between

the axial axis and the direction of the geodesic trajectory. For the elliptic cylinder, since

the principal surface radius of curvature in the axial direction, R1, approaches infinity,

(3.70) can be reduced to

7:02 = sin2(26)

4R2(Q)R2(Q3

 

10, (mpg (Q) (3.71)

The asymptotic dyadic Green’s function for the surface interactions on an elliptic

cylinder, as shown in Figure 3.5, can be developed based on the general expression in

(3.69) by using the following relationship between surface and elliptic coordinate systems

u=n, u'=n’

v=tsin6+bcos6, v'=t'sin§+b'cos§ (3.72)

z=tcos§-bsin6, z'=t'cos6—b'sin5

Hence, the components of the asymptotic dyadic Green’s function of the second kind for

the surface of the elliptic cylinder can be expressed as
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G(IQ Q')=—2—OG{V(6)[cos2 6+——(—(1+T02 )cos2 6+sin2 6——7bsin26)

+2k—217 —cos225+25in 6)]+(7(6)[7:—(T02 cos225+sin 5+Tosin25)]}

GZ,(Q1Q) = %{V(6)[—%sin 25+%(sin26+§T02 sin 26—(eos2 a—sin2 info)

 

 

+ 2:21, sin 26]+U(6)[—li-(—%T02 sin 26+%sin 26+ (eos2 6—sin2 631191} (3'73)

G,,'(QIQ)= —°G{V(6)[sin2 6+—:(—(1+7~52)sin2 5+eos2 6+Tosin25)

+-I%2-(-sin2 6+2eos2 5)]+r7(;)[;(r'02 sin2 5+eos2 a-r’osinzafl}

where

a“):[2m(Q)an)]3/ZU©’ “5):[2mm)m(Q)§]l/2V© (3 74)

_ In(t)kpg()1/3
and 6- fi—pg(,)dr. mm:[—1

Here 6 is the Fock parameter and pg (t) denotes the surface radius of curvature. Also in

 

(3.74), tis the geodesic path length I: J( $2 pdv)2 + z2 . From (3.73) and (3.74), it is
Q.

observed that the variation of surface field between the source and test points is primarily

governed by the Fock-type functions, U (6) and V(6). Since reciprocity applies, the

expression for G" is exactly the same as Gvz . For the special case of the circular

cylinder, the various parameters simplify to To=cot 5 , pg (Q) = 108(0) 22 , and__a__

sin2 5

thereforeU (6) = U(6), W6) = V(6). Accordingly, (3.73) reduces to the dyadic Green’s

function for the circular cylinder as follows,
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_je-J'k'

 

 

Gw(Q|Q')= 2” kq{V(§)[Sin29+CI(1—q)(2-3Sin29)+q[(U(§)—V(§))Secz9]}

je‘j’“
Gn(Q|Q)= 2” kqsinfiws9{[l-3q(l-q)]V(§)} (3.75)

_ -jk1

Gu(Q|Q)= ’2 kq{[cos26+q(1—qx2—3cos2a)iwé>}
 

where 6=£—6 and q=i.

2 kt

The electric dyadic Green’s function in the surface integral above is expressed in

terms of a rapidly convergent creeping wave series [24] expressed in terms of Fock

functions. As an example, consider an ellipse with major and minor axis of 4 cm and 2

cm, respectively, an angle between axial axis and the direction of creeping wave trace

5 = 80° , and a frequency of 30 GHz. The magnitude of each component of the electric

dyadic Green’s function versus the geodesic path length is shown in Figure 3.5. For

comparison, the dyadic Green’s function on the surface of the circular cylinder with a

radius of 4 cm is shown in Figure 3.6.

In figure 3.5 the creeping waves on the surface of the cylinder are found to have

greater attenuation in regions with larger curvature than those with less curvature. This

can be explained by the fact that the creeping wave energy will rapidly shed away from

the surface as it travels in regions with greater curvature. It also can be observed in

Figure 3.6 that the rate of energy loss for the creeping wave on the surface of a circular

cylinder almost remains constant after traveling three wavelengths along the geodesic

path. This is due to the fact that the curvature of the surface over which the wave travels

does not vary along the geodesic path.
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3.4 Boundary Integral Matrix

In the FE-BI formulation developed in Chapter 2, the entries of the boundary integral

sub-matrix are given by

6321.3 [j w:(u.v,z)-u(u,v,z>x

51's,

[u(u,v,z)><W,-(u,v,z)-Ee2(u,v,z)],6',6dv'dz'dvdz (3.76)

Substituting the vector weight functions given in Chapter 2 into (3.76), the following

components of (3.76) are obtained

 

ngl=— S'SiH(v— v,')(v— v,--G)gflfldv'dz'dvdz

Zia} 5,5,-

55,-cA

G§J=k§——”'15)! (v— v,)(z-Z,)GZ;,6,dvdzdvdz

gi:j:Av;

GE; _k2 ’H (z- 2,))(—v' v, )G2"fldvdzdvdz (3.77)

hiaj 5,5,-

5,5,CZA

0:33:16?”(z- z )(z- 2,)Gz22dv'dz'dvdz

where the components of the dyadic Green’s function of the second kind are given in

(3.73) and

,6, = c(cosh2 u, --cos2 v')”2

,6, = c(cosh2 u, —cos2 v)“ 2

i :/2 (3.78)
a

A ,- =(cosh2 u, -cos‘ v,)
V

1

A ,- =(cosh2u1—cos2v,j)”2
V

1
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When the elliptic cylinder is reduced to a circular cylinder by the transformation

v = ¢, p z ge“ , the boundary integral contributions for the circular cylinder are given by

55. ~ .. .
BI __ 2 l J _ . o_ . M v 7

Ga — ko‘aa, H (¢ ¢.x¢ ¢,)G,, d¢ dz d¢dz

‘ SjS,‘

023343-551- H (¢—£5,)(z-2-)G¢2d¢'dz'd¢dz
aihj 5.5. 1 Q (3.79)

1 1

5-5- 2 .

GE: =—kg-U—p‘— fl (z—2,)(z'—2,)G:,2d¢'dz'd¢dz

hihj SjS,‘

where the components of the dyadic Green’s functions of the second kind are given in

(3.75) and

‘13} = Pb ' Pa

¢i,j = ¢1i’j — V (3.80)

’27.; = Zf‘j — 21?"

The subscript i and j represent the test and source unknown numbers, respectively, and

the surface integrals have support over the area of test and source elements containing the

test and source edges.

For the non-self—cell contribution, mid-point integration may be used for

computation of (3.76) and the asymptotical dyadic Green’s functions in (3.73) are

applied. Since for the self-cell contribution the source element will coincide with the test

element in evaluating (3.76), the planar Green’s function is used to overcome the singular

integrals in (3.77). The contribution of the planar Green’s function is given by

0,5? = 2(koa)2 H w, ~[uxZo xu] - wsds 'ds (3.81)

sis,-

58



function is applied. Otherwise, the planar dyadic Green’s function is used in the

calculation.

3.5 Excitation: FE-BI

Conformal antenna patches are typically fed by a microstrip line printed along with

the radiator on the surface of the substrate or by a probe from below the patch. The

microstrip lines are in turn fed by a coaxial probe that originates behind the cavity as

shown in Figure 3.7. For convenience, the internal source is located on one of the

unknown edges. The source term ff” in the FE-BI formulation can be expressed for three

probe orientations as follows. For radial probe,

u 6(v—v5)6(z-zs)lo
 

 

 

 

 

J :

fl .. .. ,_ (3.86)

f'int =-jk Z I si(vs —vi)(zs-Zi)(ub —ua)flub,vs

l O 0 0 a h

For azimuthal probe,

J=v5(u—u3)5(z—zs)lo

fl"( )( " )5 (3.87)’ Si pu _pfi' Zs-Zi u Va-mt=-'kZI s , 5,,

f. J o o o t-h

For axial probe,

J:25(u—u3)5(v—v3)10

'6 (3.88)

§i(pus _pii,‘ )(vs -9} )flusysh

t-a

 

fiim = ‘jkoZolo

1/2

where flu”, = c(cosh2 us — cos2 v,) and the Diac delta functions serve to specify the

location of the infinitesimally thin probe.
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It should be remembered that even though the source edge is shared by four

elements, only one of them is used for computation [10]. Also, it is observed that the

number of non-zero entries in the right hand side of the linear system is equal to the

number of sources.
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Figure 3.1 Contour for converting the eigenfunction expansion into a mode expansion.
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Figure 3.2 The scattering wave and incident wave for an elliptic cylinder.
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Geodesic surface ray path
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Figure 3.3 Illustration of unit vectors for a convex surface.
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Figure 3.4 Geodesic path for the creeping wave on an elliptic cylinder.
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Dyadic Green Function vs. Geodesic Path Length
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Figure 3.5 Magnitude of the three components of asymptotic dyadic Green’s function

for an elliptic cylinder.
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Dyadic Green Function vs. Geodesic Path Length
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Figure 3.6 Magnitude of the three components of asymptotic dyadic Green’s function

for a circular cylinder.
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Patch or microstrip line

Cavity

Metallic elliptical cylinder

Coax eed

Figure 3.7 Cavity-backed probe-fed conformal patch antenna recessed in an infinite,

perfectly conducting elliptic cylinder.
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CHAPTER 4

DRIVING POINT IMPEDANCE RESULTS

4.1 Introduction

The increasing use of microstrip antenna technology requires analysis methods .

capable of accurately predicting the input impedance and mutual coupling between these

antennas. The information generated will provide a useful reference for practicing

engineers and scientists in the design of microstrip antennas and circuits for installation

on curved surfaces and for studying the electromagnetic compatibility of multiple

antennas. There are several methods that have been somewhat successful for calculating

the input impedance and radiation from microstrip antennas such as the transmission line

model, cavity model [2], and moment method. However, those analysis methods only

focus on simple planar or non-planar structures such as cylindrical, spherical and conical

coated surfaces.

The hybrid finite element — boundary integral (FE-BI) method allows the simulation

of complex, cavity-backed antennas with minimal computational effort. The effects of

resonant frequency and input impedance due to the variation of curvature for an elliptic

cylinder can be examined by this approach. In this solution, the surface fields that

propagate along each ray’s geodesic path remain unifonnly valid within the shadow

boundary transition region, including in the immediate vicinity of the source.

In this chapter the calculation model for the input impedance of a cavity-backed,

printed antenna is introduced. The input impedance for an empty cavity, a slot antenna

and a conformal patch antenna embedded on the surface of an elliptic cylinder are

discussed separately. Of course, the elliptic cylinder can be reduced to a circular cylinder.

Results from a previous method appropriate for a circular cylinder structure are compared
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with the results using this new method. When the radius of curvature of a cylinder

becomes large, the conformal antenna model reduces to a similar method for planar

antennas.

4.2. System Solution

Since the FE-BI method produces a large, sparse linear matrix system, the

biconjugate gradient (BiCG) solver has been chosen as it requires significantly less

memory than is required for a direct method. The BiCG method is also computationally

efficient, since it utilizes only one matrix-vector product per iteration. This operation

represents the bulk of the computational demand ofthe method and requires 0( N52 )

complex operations per iteration for the fully populated boundary integral matrix, where

N is the number of aperture unknowns. If the matrix is not fiJlly populated, i.e. it is a
s

sparse matrix, the Compressed Sparse Row (CSR) format may be used to reduce the

memory demand, since only non-zero entries are stored. The FE matrix [A] in (2.14) is

such a sparse matrix. The CSR retains only the non-zero entries of the matrix in one long

data vector with another data vector, the offset vector, which contains the number of non-

zero elements per row of the matrix. An additional long vector, the pointer vector, is

required to indicate the matrix column associated with each matrix entry. Thus the

position of each element in the sparse matrix is uniquely defined. The matrix-vector

product using CSR scheme is carried out by executing the sum

r n]

y[n] = [A]{x} = A[e(n,n')]x[n'] n = 1,2, 3,...N (4.1)

n'=l
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where r[n] is the number of non-zero entries per row of the matrix and e(n, 71') indicates

which entry of the long data vector is associated with the matrix entry A[e(n,n')]. The

boundary integral matrix-vector product involves the fully populated matrix.

4.3. Input Impedance

To accomplish feedline matching, designers are concerned with the input impedance

of the conformal antenna. The FE approach allows the calculation of the input impedance

of a radiating structure in a rather elegant manner. The input impedance is composed of

two contributions [24]

2,, = 2,, + 2,, (4.2)

where the first term is the self-impedance associated with a finite thickness probe in the

absence of the patch and the second term is the contribution of the patch current to the

total input impedance. In this dissertation, the second term will be the focus of the

computation, since for very thin substrates and thin probe wires, the contribution from the

self-impedance is negligible. To determine the input impedance of a probe feed cavity-

backed conformal antenna, the impressed model is applied to determine the formulation

of the input impedance. The geometry of the impressed model is given in Figure 4.1. In

Figure 4.1 the impressed field maintained by a magnetic surface current Km = (n :;)V 

is represented by Ei , which is a non-conservative field. The scattered “ coulomb field ”

is expressed as E3 , which also is called the secondary field. For the source generator to

drive current J against the action of E5 through the terminal source region, the following

condition should be satisfied,
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lE‘l > E2 (4.3)
  

Since the material is assumed to be a perfect conductor, then

lim J = lim a,(E" + E) = finite

0', —>oo 0’,-+oo (4.4)

:> E = —E"

Therefore, the total field inside the source generator is zero.

The total field at the conductor surface within the ring in Figure 4.1can be

determined using the integral form of Faraday’s Law,

E=E‘ +E" =—u—V— (4.5)

26

thus

.. 0+6 . __ 0+5 . ,- s- _ ,

fr, u qu— ITO—a“ (E +E )du _v (4.6)

with (4.6), gives

VI(u = u,,) = 2,3,1,2 = — j(u - E)I(u)du

P

z.» Z}, = ——12- u-E(u)I(u)du

1,, r

(4.7)

where E is also the field associated with the feed edge and I(u) is the current at any point

it while 10 is the current at uo on the probe. The integration contour F represents the

path that impressed current flows through.

For a radial post, the impressed current density Jint is represented as

5(v -vs)6(z -Z, )10

4.8fl ( )Jim(u,v,z) = u 
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where ,6 = c(cosh2 u — cos2 v)”2. Inserting (4.8) into (4.7), the input impedance for the

radial post can be determined by the formula

z:.=— 5"”
0

—c(cosh2 ub— cos2 v,)“ 2(ub—ua) (4.9)

where E(i) is the expansion coefficient of the electric field for the edge associated with

the radial post. This coefficient is numerically determined by the FE-BI program.

Likewise, the impressed current for azimuthal and axial posts can be represented as

5(u —us)6(z — zs)Io
 

 

Jint(u, v, z) = v ,3 for azimuthal posts

6 6 I (4.10)

Jim(u,v,z) = z (u —u‘) (V—v‘) O for axial posts

fl

The formulations of the input impedance are

2,9,, =— —(EIl—)c(cosh2 u,,—- cosv,)”2(vv) for azimuthal probes

1o

(4.11)

Z-" = — gydcoshz ub — cos2 v, )1/ 2h for axial probes

0

Utilizing the same technique that has been used in a previous chapter for reducing

elliptic cylinder coordinate to equivalent circular cylinder coordinate, the input

impedance for a conformal antenna mounted in circular cylinder are given by

2}": —E—(—i)—p,, ln(—p—b)p for radial probes

10

Z,',,-——-£(—i)- Pba for azimuthal probes (4. 12)

I0

2,5,, = —£39pbh for axial probes

0
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where a = ¢r —¢, and h = z, —zb , and ¢,,¢,,z,,zb are defined in Figure 2.4.

4.4. Numerical Results and Discussions

After the lengthy theoretical development in the previous chapter, the simulation

using this FE-BI model will be applied for the empty cavity, slot and patch conformal

antennas and the numerical results will be discussed later.

4.4.1. The Empty Cavity

For simplification, the empty cavity enclosed on all sides by conducting walls having

infinite conductivity will be discussed first. It involves the computation of finite elements

and the source matrix without the need for the boundary integral matrix. In this case the

empty cavity is embedded in a circular cylinder with a radius of 100 cm, shown in Figure

4.2. The size of the cavity is 6 cm x 3.75 cm x 1.5 cm and it was meshed into 576

elements with 1223 unknowns. Its unit cell is also shown in Figure 4.2. The radial probe

feed is 0.5 cm long and is located at the point 0.9375 cm above the center of the front

surface of cavity. The radial probe feed penetrates the back wall of the cavity and

protrudes into the cavity. The computed result of the input impedance vs. frequency is

shown in Figure 4.3. Since the radius of cylinder is large compared to the arc length of

cavity, the circular shell cavity can be considered a pseudo-rectangular cavity, and thus

the input impedance can be compared with the data computed using the program

LMBRICK(a.k.a. Low Memory Brick) [10]. That program utilizes the optimization for

brick element implementations of the FE-BI method. From the results shown, there is

very good agreement between the results calculated by the FE-BI program and
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LMBRICK. Since the walls of the cavity are assumed to be a perfect electrical conductor,

there is no loss mechanism associated with the cavity and hence its input impedance is

purely reactive. The computed resonant frequency is 4.725 GHz for the lowest excited

mode. This frequency can be theoretically calculated by the following formulation [30]

 (an’TE— 1 [(””’)2+(””)2+0332)“2
ya a c

mnp " 27r\/— —b_

(4.13)

where m =1,2,3,..., n =1,2,3,..., p = O,1,2,... for TM modes and

m = 0,1,2,3,..., n = 0,1,2,3,..., p =1,2,...m i n = 0 for TE modes.

The lowest excited mode for this cavity is TE101 and its theoretical resonant

frequency is 4.717 GHz. The deviation between theoretical and computed results is

approximately 0.17%. Agreement can be improved if the sampling frequency step is set

to 0.025 GHz or to a smaller value. If the same conformal antenna is embedded in a

cylinder with a radius of 5 cm, the computation result shown in Figure 4.4 is obtained.

Compared to the previous case it can be observed that the resonant frequency shifts to

4.975 GHz.

From this case the solution involving the computation of the finite element and source

matrices agrees with the theoretical solution when an empty cavity is used. It is noted that

the resonant frequency will be changed with the variation of the geometry of cavity, since

the field distribution inside the cavity is influenced by the boundaries of cavity.

4.4.2 The Slot Antenna

The geometry of a slot conformal antenna and its unit cell are shown in Figure 4.5.

The cavity-backed slot antenna was subdivided into 576 elliptic-shell elements with 1261
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unknowns. This cavity-backed antenna was embedded in the circular cylinder with very

large radius such that it can be considered to be a rectangular cavity-backed slot antenna.

Figure 4.6 shows the input impedance vs. frequency for the antenna mounted in a circular

cylinder with a radius of 100 cm. Ideally, both the resistance and reactance should exhibit

symmetry about the resonant frequency, and the reactance at resonance should equal zero

[31]. Thus the resonance associated with zero reactance can be determined from the

computed results. In Figure 4.6 it can be observed that the magnitude of the resistance

increases as resonance is approached and it reaches peak value at a frequency slightly

prior to resonance. Physically the energy radiating out of a slot antenna reaches its

maximum at resonance. The reactance is negative across the frequency band, which

implies that this cavity-backed slot antenna can be viewed as an energy-stored antenna,

like a capacitor. To observe the influence of curvature variance on the input impedance,

the slot antenna was mounted in different circular cylinders with radii of 5 cm, 10 cm and

30 cm. Figures 4.7 and 4.8 show that both the resonant frequency and the peak values of

input resistance and reactance increase as the radius of the cylinder is decreased.

Therefore, the resonant input impedance and resonant frequency is curvature-dependent.

For the slot antenna mounted on an elliptic cylinder with major axis a=50 cm and

minor axis b=25 cm, computation results associated with different locations on the

elliptic cylinder are shown in Figures 4.9 and 4.10. From these results, when the antenna

is embedded in the elliptic cylinder starting from v0 z 0 , which is a highly curved region,

the resonant frequency is 4.875 GHz and its resonant input resistance is 584 Q. When the

antenna is moved to a region with little curvature change (i.e. v0 z % ,) f, shifts to 4.825
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. . . 7r .

GHz, and the resonant input resrstance remains almost unchanged. At v0 z —2— , the quasr-

planar portion of surface, the resonant frequency is 4.80 GHz and the resonant input

resistance decreased to 5050. From the analysis above, it can be observed that the

resonant frequency and input impedance vary in regions of highly changing curvature.

4.4.3. The Conformal Patch Antenna

Cavity model has been used to analyze field structure inside a rectangular patch

antenna with very thin substrate layer very well. Since the height of the substrate is very

small, the fields remain constant along the height. In addition, because of the very small

substrate height, the fringing of the fields along the edges of the patch are also very small

whereby the electric fields is nearly normal to the surface of the patch. Therefore, only

TM mode will be concerned within cavity. In this cavity model the t0p and bottom walls

of the cavity are perfectly electric conducting, the four-side walls will be modeled as

perfectly conducting magnetic walls. The two most important field modes are TMOIO

and TM00, associated with the azimuthal and axial polarization for the rectangular

microstrip patch antennas. The field structure for TM010 and TM001 is shown in Figure

4.1 1. For TMmo , the equivalent magnet current due to the electric fields will exist on all

four slot-like walls; however only two walls, referred as radiating slots, that are separated

by the length, L, will radiate power outward. The radiation from the other two side walls

separated by width, W, is small compared to the other two side walls. Therefore, these

two slots are usually referred to as non-radiating slots.
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Figure 4.12 to Figure 4.15 show the input impedance vs. frequency for the patch

antenna with the azimuthal polarization when the probe feed is removed from the center

of the patch to the edge. Figure 4.12, which corresponds to the probe feed located at the

center of the patch, shows that TM010 is not excited. The input impedance increases as

the probe feed moving along the azimuthal central line and away from the center of the

patch. Figure 4.15 shows the input impedance reaches maximum when the probe feed is

placed right on the edge of the patch.

Figure 4.16 shows the geometry of the patch antenna and its unit cell that are used

for computation using the elliptic cylinder FE—BI and LMBRICK codes. The cavity-

backed patch antenna was meshed into 192 elements with 411 unknowns. For the probe

feed located 0.5 cm left of center, referred as azimuthal polarization, a quasi-planar

surface is considered here. The input impedance vs. frequency is shown in Figure 4.17.

Figure 4.17 exhibits very good agreement between the computed results using the elliptic

cylinder FE-BI method and the planar LMBRICK codes.

For the same patch antenna with the different cavity size of 0.0795 cm x 6.5 cm x

5.5 cm, the cavity-backed patch antenna was mesh into 572 elements with the total

unknowns of 1209 and the unit length of about 1/40/1 in axial and azimuthal direction

for each cell. For the axial polarization, which probe feed is placed at 1.0 cm below the

center of the patch, the input resistance and reactance vs. frequency is plotted as Figure

4.18 and 4.19, respectively. Here the dielectric constant a, =(2.32, 0.0) was used. In

Figure 4.18 and 4.19, it is observed that the input impedance and resonant frequency are

almost independent of curvature while the magnitude of the input impedance very

slightly decreases as the radius of circular decreases. For the axial polarization the

78



TM00, is excited here, and because the field remains constant along length or the

azimuthal direction, shown in Figure 4.11, it can be observed that the field structure is not

disturbed due to the surface curvature along azimuthal direction. Therefore, for the axial

polarization the input impedance and resonant frequency are almost independent of

curvature. The threshold chosen for using curved dyadic Green’s function or planar

dyadic Green’s function in boundary integral computation is based on the geodesic path

that the wave travels. For a curved surface, the curved dyadic Green’s function is applied

to computation when the wave travels more than half wavelength, while the planar dyadic

Green’s function is used when the distance between the source and test point is less than

half wavelength.

The results for the azimuthal polarization, which the probe feed is placed 1.25 cm to

the left of the center of the patch are shown in Figure 4.20 and 4.21. In Figure 4.20 and

4.21, it can be observed that for the patch antenna with azimuthal polarization, the

resonant frequency is sensitive to the variation of curvature. The input impedance almost

remains unchanged while the resonant frequency shifts to right when the radius of the

cylinder decreased from 500.0 cm to 15.0 cm and 10.0 cm. Since the TMOIO is excited

here, and because the field is varying sinusoidaly along length or along the azimuthal

direction as shown in Figure 4.11, it can be observed that the field structure is easier

disturbed due to the surface curvature along azimuthal direction. Therefore, for the

azimuthal polarization, the resonant frequency is more dependent on curvature compared

to axial polarization. It is also noted that the bandwidth of the patch antenna remained

unchanged no matter axial or azimuthal polarization is applied. Also, the resonant input
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reactance is approximately zero for both cases, which implies that this cavity-backed

patch antenna is not an energy-stored antenna like the slot antenna.

To ensure that the curvature dependence of the resonant frequency for patch antenna

with azimuthal polarization is dependant of the field mode excited beneath the patch

rather than the geometry of the patch size, now a square patch of 3.0 cm X 3.0 cm with

azimuthal polarization is examined The input resistance and reactance vs. frequency are

shown in Figure 4.22 and 4.23. In Figure 4.22 and 4.23, the similar results of the input

impedance vs. frequency are observed. Therefore, it can be concluded that the field mode

that was excited inside the cavity decides whether the resonant frequency is curvature

dependent or not.

If the patch antenna is flush-mounted on different portions of an elliptic cylinder

with a=30.0 cm and b=15.0 cm and the probe feed is placed 1.0 cm to the lefi of the

center point of patch, similar results are obtained as the previous paragraph. The

numerical results are shown in Figure 4.24 and 4.25. Based on the variation of the surface

curvature for a conformal antenna embedded in an elliptic cylinder, an approximate

equivalent circular cylinder can be determined. It can be concluded that for the conformal

patch antenna mounted on a surface with a high curvature, the input impedance is much

more sensitive to the variation of curvature than in a region of low curvature. That can be

used to explain why the performance of the conformal antenna embedded in a region with

little curvature variation can be approximated by its equivalent circular cylinder, but such

an approximation fails for the case of an antenna embedded in a surface with significant

curvature variation.

80



4.5. Conclusion

In this chapter, from the numerical results and discussion above, it is demonstrated

that the exterior and interior portions of a hybrid finite element-boundary integral

computer program have been validated for an empty cavity, conformal slot antenna, and

conformal patch antenna. In the next chapter, multiple patch antennas embedded on an

elliptic cylinder will be studied to assess the effects of mutual coupling between patch

antennas mounted on surfaces with varying curvature.
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Figure 4.1 .The geometry ofmodel of source generator.
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Figure 4.2 An empty cavity: 1.5 cm x 6.0 cm x 3.75 cm and its unit cell.
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Figure 4.3 Input impedance for an empty cavity mounted in the ground.
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Figure 4.5 Slot antenna: 1.5 cm x 6.0 cm x 3.75 cm and its unit cell.
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Impedance vs. Frequency( cavity dimensions: 1.5 cm x 6 cm x 3.75 cm )
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Impedance vs. Frequency ( cavity dimensions: 1.5 cm x 6 cm x 3.75 cm with slot)
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Figure 4.8 Input reactance for slot antenna on cylinders; 5r =1- j0.01, “r =1-0 .
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Impedance vs. Frequency ( cavity dimensions: 1.5 an x 6 cmx 3.75 cm with slot)
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Figure 4.16 Patch antenna: 1.5 cm x 6.0 cm x 3.75 cm.
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Impedance vs. Frequency ( cavity dimensions: 0.1 cm x 6 cm x 8 cm)
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Impedance vs. Frequency for patch antenna
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Impedance vs. Frequency for patch antenna
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Impedance vs. Frequency for patch antenna
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Figure 4.20 Resistance for a patch antenna with probe feed located at (-1.25,0.0)
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Impedance vs. Frequency for patch antenna
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Impedance vs. Frequency for patch antenna
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Figure 4.22 Resistance for a patch antenna with probe feed located at (-1.0, 0.0)

and patch size of3.0 cm x 3.0 cm; 3r = 232—1000, "r =1-0.
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Impedance vs. Frequency for patch antenna
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Impedance vs. Frequency for patch antenna
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Figure 4.24 Resistance for a patch antenna with patch size of 3.0 cm x 3.0 cm

mounted in an elliptic cylinder; 5r = 2-32‘1'0-0, “r =1-0.
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Impedance vs. Frequency for patch antenna
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CHAPTER 5

MUTUAL COUPLING BETWEEN MICROSTRIP ANTENNA

5.1 Introduction

The mutual coupling between microstrip antennas mounted in a ground plane and in

circular and elliptic cylinders is investigated in this chapter. A moment method solution

to the microstrip antenna problem was proposed [13] in 1981 and the mutual coupling

between patch antennas embedded on the ground plane with infinite extended substrate

was calculated and measured by Pozar [14] and Carver [15], respectively. In this chapter,

the numerical results using FE-BI method are compared with these moment method

results.

The mutual coupling between patch antennas embedded in circular cylinders with

different radii is calculated in this chapter. The mutual resistance, reactance and coupling

coefficient, S12 , are plotted with respect to frequency to analyze the effects of curvature

on coupling. Also, the same antenna is mounted on different portions of the elliptic

cylinder, corresponding to different local curvature, and the computed results are

discussed. The field structure is primarily determined by the position of the probe feed,

and the feed location is found to impact the mutual coupling. Therefore, the probe feed is

relocated and numerical results for coupling for various feed configurations are inspected

to assess the influences of the location of the probe feed on mutual coupling.

In addition to curvature, the position of the probe feed, the size of patches and the

distance between the two rectangular patches play an important role in mutual coupling.

In this chapter, the various patch dimensions are used to analyze the effects of patch size

on mutual coupling. Also, the numerical results are computed for the antenna mounted in
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circular cylinders with different radii. For convenience, symmetric patches are used in the

examples.

In this chapter, a two-port network model is used to determine mutual coupling. The

coupling parameter S12 is determined from the input impedance and coupled impedance

using conversion between S-parameters and Z-parameters.

5.2. Mutual Coupling

To analyze coupling between the two probe fed microstrip antennas, a two-port

network representation is used. The relation between the port voltages and currents are

[V1]=[Zn 212] [11] (5.1)

V2 221222 I2

The self-input impedance Z” and Z22 can be determined using (4.7), giving

defined as

 

 

Zn '-

15
(5.2)

E”) -J§2)dV

222 = 2

I0

where E“) are the electric fields due to the source current JI” at port one when the

source at port two J$2) is turned off, and E0) is the electric field due to the source

current J$2) at port two when the source at port one is turned off. The coupling

impedance Z2, can be determined by the following relationship,
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_ ‘1 (2) (1) _ *1 r (1) (1)22,734,]; -J,. dV—ELm —E )-J, dV

_ ‘1 r (I) 1 (I) (1)
—I—2-LE -J,- dV—I—ZLE -J,. (W (5.3)

O 0

=A-A.

where E' is the total electric field due to both J9) and JEZ) . Also, Z, is the impedance

when both JE” and J52) are used. Generally, 2,2 = Z21. For simplicity, a unit current is

used for 10 here. It is noted that the self-input impedance of port one is equal to that of

port two (Z,, = Z22) when the two patches are symmetrically located. For microstrip

antennas mounted on an elliptic cylinder, if the two patches are placed in regions with

different surface curvature, then Z1, ¢ Z22 even if the two patches have the same area.

The coupling parameter 5,2 is determined from the following formulation [32]

S _ 221220

1 (Z11 + Zo)(Zzz + 20) — 212221

 (5.4)

where 20 is 50 (2 here.

5.3. Numerical Results and Discussions

The calculation results of the mutual impedance between two coax-fed microstrip

antennas are shown in this section. Several characteristics of the microstrip antenna are

observed from the presented calculations. The E-plane and H-plane are associated with

the arrangement of the patches and the location of the probe feed and are used here to

facilitate comparison with reference data. The distance between patches is varied to

observe the influence of separation on mutual coupling and resonant frequency. Also, the

effects on coupling due to the surface curvature are checked by applying several
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scenarios of antennas mounted on differing circular cylinders and on different portions of

the elliptic cylinder.

Since the patch size of the microstrip antenna plays an important role not only on the

strength of the surface wave being excited, but also on the resonant frequency of the

antenna, the computations presented also include several scenarios for observing the

influence due to the patch size.

5.3.1 Comparisons between FE-BI and Moment Method for H-Plane Coupling

For a microstrip antenna embedded on a plane ground coated with substrate, the

mutual coupling between patch antennas has been presented by Pozar [14] in 1982. In

that paper, a moment method solution using the rigorous dielectric slab Green’s function

is presented. Also, the measured results were published in 1981 by Carver [15]. The

geometry oftwo rectangular microstrip patches is shown in Figure 5.1 and the results for

. s . . . .

mutual couphng vs. — are shown 1n Figure 5.2, where s IS the distance between the

patches. Figure5.2 presents good agreement for mutual coupling (S12) data comparing

measurements and computed results using a moment method solution for two coax-fed

microstrip antennas.

To verify the FE-BI method presented in this dissertation, comparisons are made

with the results shown in Figure 5.2. The microstrip antenna was mounted on a circular

cylinder with a very large radius so that the antenna can be considered mounted on a

ground plane. For H-plane coupling, the geometry in Figure 5.3 is used. The size of

cavity is 0.1588 cm x 35 cm x 24 cm. The size of each rectangular patch is W=10.0 cm

and L=6.0 cm. The cavity—backed antenna was meshed into 420 elements with 1021
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unknowns using a unit cell with dimensions 0.1588 cm x 1 cm x 2 cm. The dielectric

constant of the cavity was 6, =2.55. The mutual coupling, 512 , vs. 1:: is shown in Figure

5.4. In Figure 5.4 the coupling computed using FE-BI is greater than that using a moment

method solution. Physically since the aperture in FE-BI is not electrically large, there are

interactions between the fields and the cavity walls that impact the mutual coupling. Such

boundary conditions are not present in the moment method model. The size ofthe cavity

is not sufficiently large so that the antenna fields damp out enough before hitting the

walls of the cavity. The other reason for this deviation may be coming from the position

of the probe feed. If the center point of each patch on the aperture is considered as origin,

then the position of the probe feed in Pozar’s computation is on the central axial line and

probably slightly above the lower edge of the patch. In comparison, the location ofthe

probe feed for the FE-BI method is on the central line but 1 cm above the lower edge of

the patch.

To improve the agreement illustrated in Figure 5.4, the dimensions of the cavity are

extended to 0.1588 cm x 53 cm x 30 cm while the patch size remains the same. The total

elements and unknowns are increased to 795 and 2104, respectively and each unit cell

remains the same size of 0.1588 cm x 1 cm x 2 cm. The comparison for mutual coupling

using FE-BI with a moment method solution and measured data is shown in Figure 5.5.

In this figure, it is observed that the agreement between the measured data and the FE-BI

computed results have improved.

For convenience, the FE-BI results in Figure 5.5 and 5.4 are presented together in

Figure 5.6. In Figure 5.6, it is observed that mutual coupling contributed from the

standing wave becomes important when the separated distance, 3, increases. This

111



indicates that the reflective fields become the dominant coupling mechanism for coupling

when the antenna separation increases. Meanwhile, the direct fields attributed to coupling

become weaker. On the other hand, when the separation becomes smaller, the deviation

between these two computed results reduces. At that time the direct fields are dominant

for the mutual coupling.

Next, the position of the probe feed is relocated to the central axial line on the lower

edge. An illustration of this geometry is shown in Figure 5 .7. The numerical results are

shown in Figure 5.8. Figure 5.8 illustrates the good agreement between the FE-BI

solution, moment method solution, and measured data.

The resonant frequency found using the FE-BI method is 1.34 GHz, which is less

than the 1.410 GHz computed by a moment method solution. Theoretically, for H-plane

coupling, since the patch length L=6 cm used for FE-BI computation is shorter than

L=6.55 used in a moment method solution, the resonant frequency should be higher than

1.410 GHz. Therefore, there is some accuracy problem arising from cavity meshing for

the FE-BI model. To improve accuracy, a new cavity of 0.1588 cm x 51 cm x 16 cm is

created and meshed finer into 832 elements with 2101 unknowns and with unit cell

dimensions of 0.1588 cm x 1 cm x 1 cm. The computed results are shown in Figure 5.9

and the resonant frequency is 1.430 GHz, which is slightly higher than 1.410 GHz

computed by a moment method solution. For convenience, the results for both cases, in

which the probe feed is placed in the axial central line of the patch and 1 cm above the

lower edge and right on the lower edge, are shown in Figure 5.9. Figure 5.9 shows a good

agreement between the computation results and measured data.
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5.3.2 Comparisons between FE-BI and Moment Method for E-Plane Coupling

For E-plane coupling, the cavity-backed antenna with a 0.1588 cm x 35 cm x 30 cm

cavity was used as shown in Figure 5.10.It was meshed into 1050 elements with 2749

unknowns with unit cell dimensions of 0.1588 cm x 1 cm x 1 cm. The position of the

probe feed was placed in two different locations. One was on the horizontal central line

ofthe patch and along the right edge of the patch (i.e. FE-BI case (1) in Figure 5.11)

while the other was on the horizontal central line of the patch and 1 cm left of the right

edge (i.e. FE-BI case (2) in Figure 5.11). The computed results are shown in Figure 5.11.

Good agreement between computed results using the FE-BI model, a moment method

solution, and measured data is achieved except for the case with a very small separation

. s .
between the two rectangular patches, i.e. -— <0.2. Here the resonant frequency Is the

same as H-plane coupling, i.e. f, =1.430 GHz. Also, the resonant frequency is

independent ofthe position of the probe feed as long as the probe feed is located on the

central line of the patch, since such a feed location excites a single mode. For the case

with i <0.2, the patch antennas is so close to each other such that the fields

dramatically vary with respect to position in the cavity. Hence the finer meshing of the

antenna geometry is required for the FE-BI method to accurately compute the fields

inside the cavity and upon the aperture. A cavity-backed antenna with a 0.1588 cm x 20

cm x 14 cm cavity was meshed into 1120 elements with 2201 unknowns with unit cell

dimensions of 0.1588 cm x 0.5 cm x 0.5 cm. A probe feed was placed on the horizontal

central line of the patch and along the right edge of the patch (i.e. FE-BI case (1) in

113



Figure 5.12) while the other was on the horizontal central line of the patch and 1 cm left

of the right edge (i.e. FE—BI case (2) in Figure 5.12). The computed results are shown in

Figure 5.12. Good agreement between computed results using the FE-BI model, a

moment method solution, and measured data is achieved even for the case with a very

small separation between antennas.

In Figure 5.9 for the H-plane coupling and Figure 5.12 for the E-plane coupling, it is

concluded that the mutual coupling level decreases monotonically with increasing

separation between patches. The difference in the mutual coupling between the E-plane

and H-plane coupling increases as separation increases. This difference in mutual

coupling increases from 3 dB for ji- =0.125 to 11 dB for 7:— =0.75. For E-plane coupling

the mutual coupling is higher than that for the H-plane coupling. Physically, this is

because the surface waves and creeping waves are stronger in the E-plane case.

From the numerical results and discussions above, it is concluded that the cavity size

should be made large enough to ensure that there is no interaction between fields and

wall boundary to contribute to increase mutual coupling. Then the case of a patch on the

top of the infinite extended substrate could be approximated. However, in practice

Operational concerns dictate the smallest cavity possible and hence the need for an FE-BI

model to assess the design trade-offs inherent in such designs. Also, the cavity should be

subdivided into finer elements with an edge length of 3% to achieve greater accuracy.

For E-plane coupling case with ISO— <0.2, the length of unit cell should be less than 410 to

have a reliable computed results.
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The numerical results from the FE-BI method have shown a very good agreement

with a moment method solution and measured data for E-plane and H-plane coupling

between the microstrip antennas mounted on the ground plane. In the next section a

microstrip antenna will be embedded in a surface with curvature to see the effects on

mutual coupling by the surface curvature.

5.3.3 Numerical Results and Discussions for H-Planc Coupling on a Curved Surface

In section 5.3.2 and 5.3.3 the computed results of E-plane and H-plane coupling for

two microstrip antennas mounted in a ground plane were presented. In this section,

microstrip antennas mounted on surfaces with different curvatures are used to analyze the

variation of the mutual coupling with respect to the surface curvature.

The geometry of a microstrip antenna mounted in a curved surface with two

identical 3 cm x 3 cm patches is shown in Figure 5.13. For this case the two probe feeds

are placed in the locations corresponding to 0.5 cm below the center point of each patch

and along the central line. This cavity-backed patch antenna was meshed with 200

elements consisting of 373 unknowns and with unit cell dimensions of 0.1 cm x 0.5 cm x

0.5 cm. The mutual resistance and reactance versus frequency for an antenna mounted in

different circular cylinders with radii of 25 cm, 50 cm and 100 cm are shown in Figure

5.14 and 5.15, respectively. The mutual coupling (S12) vs. frequency is shown in Figure

5.16. From Figure 5.14 and 5.15, the mutual resistance and reactance have greater

Variation around the resonance when the antenna is mounted on the cylinder with less

Curvature. This is because the surface wave being excited on a surface with less curvature

has little energy shedding away from the surface and more energy can reach the other
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patch, resulting in greater mutual coupling. In Figure 5.16 it can be observed that the

peak value of mutual coupling occurs at resonance since at this frequency the maximum

energy is radiated from the patch antenna. Also, the difference in the magnitude of

mutual coupling for the antenna mounted in the cylinder with p = 100 cm and p = 25 cm

is about 10 dB. For an antenna mounted in a region with high curvature, the surface wave

has greater energy loss due to the fields shedding away from the surface, thus H-plane

coupling demonstrates lower mutual coupling for the case with p = 25 cm.

For the same microstrip antenna mounted in an elliptic cylinder with major axis

a=50 cm and minor axis b=25 cm, computed results for mutual resistance, reactance and

coupling associated with different locations on the elliptic cylinder are shown in Figure

5.17, 5.18 and 5.19. From these results, when the antenna is embedded in the elliptic

cylinder starting from v0 = 0.02 , which is a highly curved region, the magnitude of the

mutual resistance and reactance are much smaller compared to values for the antenna

mounted in the elliptic cylinder starting from v0 =% or % (e.g., regions with less

curvature). There is little difference in the mutual coupling for the antenna mounted in

the elliptic starting from v0 = :6:- compared to v0 = g- . Therefore, the main variation for

the coupling happens when the antenna is in a region with high curvature. For antennas

mounted on both a circular cylinder and an elliptic cylinder, it can be concluded that

coupling decreases with decreasing radius of curvature for H-plane coupling.

For the H—plane coupling the field in the space between the patches is primarily a TB

mode and there is not as strong a dominant mode surface wave excitation; therefore there

is less coupling between the patches.
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5.3.4 Numerical Results and Discussions for E-Plane Coupling on a Curved Surface

The geometry of a patch antenna mounted on a curved surface with E-plane coupling

between patches is shown in Figure 5.20. Here two coaxial probe feeds are located 0.5

cm to the lefi of the center point of each patch and along the central line of the patch. The

cavity-backed patch antenna was subdivided into 200 elements with 373 unknowns and

m
m

with unit cell dimensions of 0.1 cm x 0.5 cm x 0.5 cm. The mutual resistance and

m
-

reactance as a function of frequency for an antenna mounted on different circular

cylinders with radii of 25 cm, 50 cm and 100 cm are shown in Figure 5.21 and 5.22. The

mutual coupling vs. frequency for these cases is shown in Figure 5.23.

From Figure 5.21 and 5.22, the absolute value of the mutual resistance and reactance

at resonance have increased with increasing radius from p = 25 cm to 50 cm, then

decreased with increasing radius fiom p = 50 cm to 100 cm. In Figure 5.23, it is observed

that the difference ofthe magnitude of mutual coupling for the antenna mounted in a

cylinder is 7.42 dB from p =25 cm to p = 50 cm and 4.52 dB from p =50 cm to

p = 100 cm. The total difference is 11.94 dB from p =25 cm to p = 100.0 cm. This is

compared with H-plane coupling in Figure 5.16 that only has a 9.72 dB difference from

p =25 cm to p = 100 cm. Hence E-plane coupling exhibits greater curvature-

dependency. Since for the E-plane arrangement the fields in the space between the

patches are primarily TM, there is a stronger surface wave excitation between the

patches, and the coupling is larger and demonstrates greater curvature-dependency. Also,

the theoretical explanation for the effects of mutual coupling as simply due to the surface

curvature for H-plane coupling is no longer completely satisfied for E-plane coupling.
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This is because the field structure between the edges of the patches for E-plane coupling

is different from the H-plane coupling and that fields have the least energy loss traveling

at a specific curvature. It can be observed that for the E—plane coupling when the surface

is curved to a specific curvature, the creeping wave travels to the other patch along the

interface has lower loss, resulting in higher coupling.

For the same microstrip antenna mounted in an elliptic cylinder with major axis

a=50 cm and minor axis b=25 cm, computed results for mutual resistance, reactance and

coupling associated with different locations on the elliptic cylinder are shown in Figure

5.24, 5.25 and 5.26, respectively. From these results, when the antenna is embedded in

the elliptic cylinder starting from v0 = 0.02 , which is a surface with significant curvature

variation, the magnitude of mutual resistance and reactance are much smaller compared

. . . . . 7t 7t .

to values for the antenna mounted 1n the elliptic cylmder starting from v0 = g or —2-. It 18

also observed that the mutual coupling has little difference between v0 =-:— and gin an

elliptic cylinder. So the main variation for the coupling is observed when the antenna is

located in the region with high curvature. For a patch antenna mounted in a circular

cylinder, the maximum mutual coupling was observed when the radius of the surface

curvature is around 50 cm, and not for the planar case. Comparing the E-plane coupling

with H-plane coupling at the resonant frequency for the patch antenna mounted in the

elliptic cylinder, it can be observed in Figure 5.19 and 5.26 that the coupling increased

1 1.1 dB for the patch antenna moving from v0 = 0.02 to g in H-plane coupling case

while the coupling increased 8.9 dB for the same antenna moving from v0 = 0.02 to g
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and decreased 1.52 dB from v0 =% to g in E-plane coupling. The total change of

coupling is 10.45 dB for the patch antenna located at v0 = 0.02 as compared to the case

. 7r . . . . .

when the antenna 1S located at v0 = 2 . It Is not obv10us which type of coupling 1S more

dependent on curvature for this antenna mounted on an elliptic cylinder with a=50 cm,

b=25 cm. However, it is expected that if an elliptic cylinder with a=100 cm, b=25 cm, is

used, the E-plane coupling will have a still greater dependence.

Next consider the case where the second probe feed is located 0.5 cm to the right of

the center point of the patch while the first probe feed remains as before. This case is

shown in Figure 5.27. The mutual resistance and reactance versus frequency for the

antenna mounted on circular cylinders with radii of 25 cm, 50 cm and 100 cm is shown in

Figure 5.28 and 5.29, and mutual coupling (S12) vs. frequency is shown in Figure 5.30.

In Figure 5.28, 5.29 and 5.30, the results are generally similar to the previous E-plane

coupling case except that the reactance and resistance now is Opposite to the associated

value in the previous E-plane coupling case. Here the mutual coupling has reached its

maximum value at p = 50 cm and decreases as the radius of curvature increases or

decreases. Comparing the mutual coupling with the value for the E-plane case shown in

Figure 5.23, here the magnitude of the mutual coupling is much higher when the

frequency is less than the resonant frequency, but is of the same order for frequency

greater than the resonant frequency.
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5.3.5 Numerical Results for Various Sizes of Patch Antennas

In this section the microstrip antenna with patch size of 2 cm x 2 cm, 3 cm x 3 cm

and 4 cm x 4 cm are mounted in cylinders with radii of 25 cm, 50 cm and 100 cm, and

the H-plane mutual coupling is calculated to assess the performance of this antenna with

respect to the surface curvature. The geometry of these microstrip antennas is shown in

Figure 5.31. For these cases, the two probe feeds are placed in the locations

corresponding to 0.5 cm below the center point of each patch. These cavity-backed patch

antennas were meshed into 200 elements with 373 unknowns and with unit cell

dimensions of 0.1 cm x 0.5 cm x 0.5 cm.

For the microstrip antenna with the patch size of 4 cm x 4 cm and a separation of

only 1 cm, the mutual coupling vs. frequency is shown in Figure 5.32. In Figure 5.32,

compared with others, the antenna mounted in the cylinder with radius of 25 cm has the

highest coupling at the resonant frequency and the coupling decreases from 13.08 dB for

p =25 cm to 16.48 dB for p r: 100 cm. In this case, since the separation between two

patch antennas is so small compared to the surface wavelength (i- = 0.1 1), the creeping

wave traveling the region between the patches behaves similar to the case of a ground

plane even though the antenna is mounted in the cylinder with the smallest radius of

,0 =25 cm. Therefore, the loss of energy of the creeping wave due to the curvature of

cylinder can be neglected here, and the only factor that causes the decreasing of the

mutual coupling is the wavelength at resonance. For p = 25 cm the resonant frequency is

3 .32 GHz with a resonant wavelength of 9.06 cm while the resonant fiequency is 3.38

GP12 with a resonant wavelength of 8.87 cm for p = 100 cm. Thus the creeping wave
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with the higher frequency and shorter wavelength has larger energy loss during traveling.

That is the reason for the slightly decreased coupling when the radius of the cylinder is

increased from p =25 cm to 100 cm.

For the microstrip antenna with the patch size of 3 cm x 3 cm and the edge space of

2.0 cm, the mutual coupling vs. frequency is shown in Figure 5.33. In Figure 5.33,

compared with others, the antenna mounted on a cylinder with radius of 100 cm has the

highest coupling value at the resonant frequency and the coupling value decreases from

16.98 dB for p = 100 cm to 26.70 dB for p =25 cm. In this case, since the separation

between the patch antennas has increased, the wave traveling in this region cannot be

treated as if traveling on a ground plane. Therefore, the energy loss of the creeping wave

due to the curvature plays an important role for the mutual coupling of the microstrip

antennas. For an antenna mounted in the cylinder with p = 25 cm, the two patches on the

cylinder body are subtended by a larger angle, which results in attenuation of the space

wave and thus weakens the coupling. The difference of coupling value between p = 25

cm and p = 100 cm is 9.75 dB in this case while it is just 3.55 dB for previous case. In

this case the primary change of the coupling happens when the patch antennas are moved

from a curved area to a less curved region.

For the microstrip antenna with the patch size of 2 cm x 2 cm and a separation of 3

cm, the mutual coupling vs. frequency is shown in Figure 5.34. In Figure 5.34, compared

with others, the antenna mounted in the cylinder with radius of 100 cm has the highest

coupling value at the resonant frequency and the coupling value decreases from 19.3 dB

for p = 100 cm to 29.90 dB for p = 25 cm. In this case, the separation between the patch

antennas is large enough so that the energy loss of the creeping wave due to the curvature
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plays an important role for the mutual coupling of the microstrip antennas. The difference

of coupling value between p = 25 cm and p = 100 cm is 10.6 dB in this case, which is

slightly higher than the case with the patch size of 3 cm x 3 cm. Also, in this case the

primary variation of the mutual coupling appeared when the patch antennas are removed

to a pseudo-ground plane from the circular cylinder with p = 50 cm.

 In Figure 5.32, 5.33 and 5.34, among all patch antennas with different patch sizes

mounted in a cylinder, the coupling value is the highest for the patch with size of 4 cm x

 

4 cm at resonance. This is not only because the size of patch is the largest but also the

edge space between the patches is the smallest. Also, the shape of the mutual coupling vs.

frequency curve for the antenna with patch size of 4 cm x 4 cm is the sharpest while it is

the broadest for the antenna with patch size of 2 cm x 2 cm.

5.4 Conclusion

In this chapter, the mutual coupling between patch antennas was investigated. For

 the microstrip antenna mounted in the infinite ground plane, the numerical results agree

with the data provided by measurements and the numerical results using moment method

for both E-plane and H-plane coupling. It should be noted that interactions with the side

walls ofthe cavity can alter the coupling. Also, the cavity should be meshed into

elements with length less than 510 to have accurate results. For E-plane coupling case

With —S— <0.2, the length of unit cell should be less than 2% to have a reliable computed

results. Physically, for the H-plane coupling, the surface fields in the space between the

patches are primarily TE and there is not as strong a dominant mode surface wave
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excitation; therefore there is less coupling observed between the patches. For the E-plane

coupling the fields in the space between the patches are primarily TM, therefore, the

surface wave excitation is stronger between the patches and hence the coupling is greater.

For a microstrip antenna mounted on a circular cylinder and an elliptic cylinder, the

mutual coupling for patch antennas is curvature-dependant. For the H-plane coupling, the

coupling decreases as the radius of curvature increases. Therefore, coupling effects

between patch antennas generally reaches its maximum when it is placed in the ground

plane. Physically, more energy of the surface wave sheds away from the surface in a

region with high curvature, which weakens the antenna coupling. However, for the E-

plane coupling case, the highest coupling occurs at some specific curvature. Generally the

E-plane coupling is more curvature-dependant since there is a stronger surface excitation

between the patches.

However, for the numerical results and discussions for E-plane coupling on a curved

surface, the mutual resistance and reactance as a function of frequency for an antenna

mounted on different circular cylinders shows that the absolute value of the mutual

resistance and reactance at resonance have increased with increasing radius from the

radius of 25 cm to 50 cm, then decreased with increasing radius from the radius of 50 cm

to 100 cm. The numerical results should be further analyzed in future work.

For microstrip antennas with different patch sizes and H-plane coupling, an antenna

with larger patches and smaller separation between patches has greater coupling. The

Variation of the mutual coupling due to the surface curvature is more obvious when

\S > 0.11. The primarily change in the mutual coupling due to the variation of the

,1“
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surface curvature occurs either for a region with a high curvature or for a region with a

less curvature, depending on the patch size and the separation.
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Figure 5.2 Measured and calculated mutual coupling between two coax-fed

microstrip antennas, for both E-plane and H-plane coupling.

W=10.57 cm, L=6.55 cm, d=0.1588 cm, dielectric constant

=2.55 (David M. 1982).
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Figure 5.5 Comparison of mutual coupling calculated by FE-BI with a moment

method solution and data by measurements; the size of cavity-backed

antenna in FE-BI calculation is 0.1588 cm x 53 cm x 30 cm.
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Figure 5.7 .Geometry for patch antennas with H-plane coupling in pseudo-

ground plane.
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Figure 5.8 Comparison of mutual coupling calculated by FE-BI with a moment

method solution and data by measurements; the size of cavity-backed

antenna in FE-BI calculation is 0.1588 cm x 53 cm x 30 cm, shown in

Figure 5.7.
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Figure 5.13 Geometry for patch antennas mounted in curved surface with H-plane
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142

 



 
Mutual coupling between two microstrip antennas   

 

 

   _55 1 1 1 1 1 1 1

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Frequency[GHz]

Figure 5.19 Mutual coupling for patch antennas mounted in an elliptic cylinder with

H-plane coupling.

143  



 

Fl



Patch antenna

Patch size and location of probe feed

 
 

 

 

 

  

3
c
m

  

 

3cm

 

Figure 5.20 Geometry for patch antennas mounted in curved surface with E-plane

couphng

 



Mutual coupling between two microstrip antennas

 

 

 

 
 

  
 

  
 

5 I I I I I I r

'1

° ”i

'_' I

10

E ‘1 1‘

5 1 : _.

15' -5 in. 1' .
o 12 1

C l "._ 0 g

g ‘, l — p- 25 cm
10 1._ , 1 --- p- 50 cm

é 1: : ........ p_1oo cm

‘3 -10 - I! 1 ~

3 1 i

g 1 :
I I

I I

I l

l 1'

-15 — 1 1' -
I l

l l

\J

_20 l 1 l 1 1 1 L

4 4.1 4.2 4.3 4 4 4.5 4.6 4.7 4.8

FrequencylGHz]
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Figure 5.22 Mutual reactance for patch antennas mounted in circular cylinders

with E-plane coupling.
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Figure 5.23 Mutual coupling for patch antennas mounted in circular cylinders
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Figure 5.24 Mutual resistance for patch antennas mounted in an elliptic cylinder
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Figure 5.26 Mutual coupling between patch antennas mounted in an elliptic

cylinder with E-plane coupling.
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Figure 5.28 Mutual resistance for patch antennas mounted in circular cylinders with

special E-plane coupling.
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Mutual coupling between two microstrip antennas with patch size: 2 cm x 2 cm
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Figure 5.34 Mutual coupling between patch antennas with patch size of 2 cm x
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this dissertation, a hybrid finite element-boundary integral method has been

presented that is appropriate for simulation of conformal antennas and cavities recessed

in an infinite, perfectly conducting, elliptic cylinder. New elliptic-shell elements were

developed that are suitable for discretizing elliptic-rectangular cavities. These shape

functions are surface conforming and divergence-free. These also reduce, for cylinders

whose major and minor axes are identical, to the cylindrical shell elements previously

reported in [33]. The accuracy of the finite element formulation, and in particular the new

elliptic shell shape functions, was demonstrated by comparison with known results for

circular-rectangular and planar-rectangular cavities. Resonances for an elliptic-

rectangular cavity were also presented.

In Chapter 3, the surface dyadic Green’s function for an infinitely long, perfectly

conducting elliptic cylinder was derived. In this approach, vector wave functions

representing electromagnetic fields in the elliptic cylinder coordinate system are

generated based on the elliptic cylinder scalar wave functions. Since the dyadic Green’s

function, developed by eigenfunction expansion, is very difficult to evaluate numerically,

an efficient asymptotic dyadic Green’s function was derived based on a UTD formulation

[25] and this was specialized for elliptic cylinders. The behavior of this Green’s function

as a function of geodesic path length and curvature was demonstrated.

For solution of the linear system, several techniques have been used to reduce the

large memory requirement and improve the efficiency of the solution computation. In the

computer program used to demonstrate the capabilities of this new formulation, the
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biconjugate gradient (BiCG) solver has been chosen since it requires significantly less

memory than is required for a direct matrix solution method. The BiCG method is also

computationally efficient, since it utilizes only one matrix-vector product per iteration for

symmetric matrices. The Compressed Sparse Row (CSR) [34] storage format is used to

reduce the memory demand for the spare matrix. To increase the computation speed,

several complicated fiinctions like the hard and soft type Fock function have been saved

in a data file to provide available data instead of requiring re-computing each time. Also,

the matrix for the FEM is calculated one time only and the result is saved for later use.

The exterior and interior portions of the hybrid finite element-boundary integral

computer program have been validated for the empty cavity, conformal slot antenna and

conformal patch antenna. The input resistance for a typical conformal patch antenna was

presented. The resonance frequency was seen to shift due to location on the elliptic

cylinder and this behavior is attributed to curvature variation. The input impedance and

resonant frequency are sensitive to the variation of the surface curvature for the patch

antennas mounted in a region of high curvature. Therefore, the performance of the

conformal antennas embedded in a region with little curvature variation can be

approximated by using an equivalent circular cylinder. Such an approximation fails for

the case of antennas embedded in a surface with significant curvature variation. Also, the

dependence of the performance of patch antennas on curvature is relative to the excited

mode associated with the location of the probe feed.

In this research the mutual coupling between two patch antennas was investigated.

For the microstrip antenna mounted in an infinite ground plane, the numerical results

have been shown to agree with the data provided by measurements and numerical results
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using the moment method for both of E-plane coupling and H-plane coupling. It should

be noted that interactions with the side walls ofthe cavity can alter the coupling. Also,

the cavity should be meshed into elements with edge length less than % to obtain

accurate results. For patch antennas mounted in a ground plane, the H-plane coupling and

E-plane coupling have been discussed with their associated surface wave mode.

Generally, for H-plane coupling the surface wave mode between the patches is primarily

TE and coupling is less significant between the patches. For the E-plane coupling case,

the surface wave mode is primarily TM; therefore, the surface wave excitation is stronger

between the patches resulting in greater coupling.

For a microstrip antenna mounted on a circular cylinder or an elliptic cylinder, the

mutual coupling for patch antennas is curvature—dependant. For the H-plane

configuration, the coupling decreases as the radius of curvature increases. Therefore,

coupling effects between patch antennas generally reach a maximum when the antennas

are placed in a ground plane. Physically, more energy in the creeping wave is shed away

from the surface in regions with high curvature, and this weakens the antenna coupling.

However, for the E-plane configuration, the greatest coupling occurs at some specific

curvature instead of for the ground plane case. Generally the E-plane coupling is more

curvature-dependant since there is a stronger surface excitation between the patches.

For microstrip antennas with different patch size and with H-plane coupling, the

antenna with larger patches and smaller separation between patches has greater coupling.

The primarily change in the mutual coupling due to the variation of the surface curvature

occurs for a region with either higher curvature or lower curvature, depending on the

patch size and the separation.

161

 



The numerical results presented in this dissertation will serve two purposes. First,

they are used to analyze the performance of antennas with respect to surface curvature.

Second, they can be used as a reference for future developments in this area.

In future work, since the computation of fields near the probe feed or of fields with

higher variation in space requires a fine mesh near the antenna geometry, the total

number of unknowns will dramatically increase, especially when the length of the unit

cell is as small as 1/507t. Therefore, the FE-BI program should be upgraded to compute

the cavity field with higher efficiency and be capable of computing a model case with

more than ten thousand unknowns.

A non-uniform mesh should be developed for the FE-BI program to save

computation time and computer resources. Finer elliptic shell elements should be used to

mesh the regions when the fields have higher variation while coarse elliptic shell

elements are applied to mesh the region where fields have less variation. Distorted elliptic

shell elements should be developed to transition from small to larger elements and they

should retain the property of being divergence free.

For the E-plane coupling case the mutual coupling between antennas mounted on a

cylinder with a specific surface curvature is maximum compared to when they are

mounted on a ground plane, unlike the case for the H-plane coupling. Therefore, the

relation between mutual coupling and the surface curvature should be investigated

further. To achieve more accurate results, the antenna cavity should be meshed into finer

unit cells to better represent variation of the fields inside the cavity and upon the aperture

of the antennas.
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The radiation pattern should be analyzed for the patch antennas recessed in different

portions of an elliptic cylinder to realize the influence on the radiation pattern by the

surface curvature. The formulation of asymptotic far-zone dyadic Green’s functions in

the spherical coordinate system transformed from near-zone dyadic Green’s fimction in

the elliptic coordinates system for both the lit and shadow regions should be developed

and applied to the calculation of the fields.

Also, an experiment should be set up to measure the data for mutual coupling

between patch antennas and for the radiation pattern of patch antennas mounted in

different portions of the elliptic cylinder to verify the numerical results.

163

 

 

 



[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

BIBLIOGRAPHY

L.C. Kempel, J.L. Volakis, and R.J. Sliva, “Radiation by cavity-backed antennas

on a circular cylinder,” IEE Proc.-Microw. Antennas Propag., vol. 142, no. 3,

June 1995.

K-L Wong, Design ofnonplanar microstrip antennas and transmission lines, New

York: Wiley, 1999.

J.T. Aberle and F. Zavosh, “Analysis of probe-fed circular microstrip patches

backed by circular cavities,” Electromagnetics, vol. 14, no. 2, pp. 239-258, April-

June 1994.

D.M. Pozar and SM. Voda, “A rigorous analysis of a microstripline fed patch

antenna,” IEEE Antennas Propagat. Mag, vol. 35, pp.l343-l 350, 1987.

J. Ashkenazy, S. Shtrikman, and D Treeves, “Electric surface current model for

the analysis of microstrip antennas on cylindrical bodies,” IEEE Trans. Antennas

Propagat., vol. AP-33, no. 3, pp. 295-300, March 1985.

L. Josefsson and P. Persson, “An Analysis of Mutual Coupling on Doubly Curved

Convex Surfaces, ” 2001 IEEE APS Int. Symp., Dig, vol. 2, Boston, MA, 2001,

pp. 342-345.

J.T. Aberle, D.M. Pozar, and CR. Birtcher, “Evaluation of input impedance and

radar cross section of probe-fed microstrip patch elements using an accurate feed

model,” IEEE Trans. Antennas Propagat., 32, pp. 1691-1696, Dec. 1991.

J-M Jin, The Finite Element Method in Electromagnetics, New York: Wiley-

Interscience, 1993.

LC. Kempel and J.L. Volakis, “Scattering by cavity-backed antennas on a

circular cylinder,” IEEE Trans. Antennas Propagat., 51;, pp. 1268-1279, Sept.

1994.

J.L. Volakis, A. Chatteijee, and LC. Kempel, Finite Element Methodfor

Engineering, New York: IEEE Press, 1998.

C-T Tai, Dyadic Green Functions in Electromagnetic Theory, 2"d ed., Piscataway,

NJ: IEEE Press, 1994.

164

 
 

 



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

PH. Pathak and N.N. Wang, “An analysis of the mutual coupling between

antennas on a smooth convex surface,” Final Report 784583-7, Ohio State

University ElectroScience Laboratory, Dept. Elec. Eng, Oct. 1978.

E. H. Newman and P. Tulyathan, “Analysis of microstrip antennas using moment

methods, ” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 47-53, Jan. 1981.

David M. Pozar, “Input impedance and mutual coupling of rectangular microstrip

antennas,” IEEE Trans. Antennas Propagat., vol. AP-30, No.6, Nov. 1982.

R. P. Jedlicka, M. T. Poe, and K. R. Carver, “Measured mutual coupling between R

microstrip antennas,” IEEE Trans. Antennas Propagat., vol. AP-29, pp. 147-149, ‘5-

Jan. 1981.

l

P. Silvester and MS. Hsieh, “ Finite-element solution of 2-dimensional exterior 1

field problem,” Proc. Inst. Elec. Eng, vol. 118, pp. 1743-1747, Dec. 1971. 7

 

B.H. McDonald and A. Wexler, “Finite-element solution of unbounded field

problems,” IEEE Trans. Microwave Theory Tech, vol. 20, pp. 841-847, Dec.

1972.

J-M Jin and J.L. Volakis, “A finite element boundary integral formulation fOr

scattering by three-dimensional cavity-backed apertures,” IEEE Trans. Antennas

Propagat., vol. 39, No. 1, pp. 97-104, Jan. 1991.

J-M Jin and J.L. Volakis, “A hybrid finite element method for scattering and

radiation by microstrip patch antennas and arrays residing in a cavity,” IEEE

Trans. Antennas Propagat., vol. 39, No. 11, pp. 1598-1604, Nov. 1991.

J-M Jin and J.L. Volakis, “Electromagnetic scattering by and transmission

through a three-dimensional slot in a thick conducting plane,” IEEE Trans.

Antennas Propagat., vol. 39, No. 4, pp. 543-550, Apr. 1991.

Robert E. Collin, Field Theory ofGuided Waves, Oxford: IEEE Press, 1991.

Z.J. Cendes, “Vector finite elements for electromagnetic field computation,”

IEEE Trans. Magnetics,, vol. 27, N0. 5, pp. 3958-3966, Sept. 1991.

A. Chatterjee, J-M. Jin, and J.L. Volakis, “Computation of cavity resonances

using edge-based finite elements,” IEEE Trans. Microwave Theory Tech., vol. 40,

No. 11, pp. 2106-2108, Nov. 1992.

LC. Kempel and J.L. Volakis, “Radiation and scattering by cavity-backed

antennas on a circular cylinder,” Technical Report for NASA Grant NAG-1-1478,

O30601-1-T, July 1993.

165



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[331

[34]

PH. Pathak and N.N. Wang, “A uniform GTD solution for the Radiation fgrom

Sources on a Convex Surface,” IEEE Trans. Antennas Propagat., vol. AP-29, No.

4, July 1981.

Shanjie Zhang, and Jianming Jin, “Computation of Special Functions,” New

York: Wiley-Interscience, l 996.

M. Abramowitz and LA. Stegun, “Hankbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables,” US. Department of Commerce

National Bureau of Standards Applied Mathematics Series 55.

Julius Adams Stratton, “Electromagnetic Theory,” McGraw-Hill, 1941.

N.A. Logan, “General research in diffraction theory,” Lockheed Aircraft Corp.,

Missiles and Space Div., vol. 1 and 2, Report LMSD-28808, Dec. 1959.

Constantine A. Balanis, “Advanced Engineering Electromagnetics,” John Wiley

& Sons, 1989.

Constantine A. Balanis, “Antenna theory Analysis and Design,” John Wiley &

Sons, 1997.

David M. Pozar “Microwave Engineering,” John Wiley & Sons, 1998.

LC. Kempel and J.L. Volakis, “A finite element-boundary integral method for

conformal antenna arrays on a circular cylinder,” Technical Report for NASA

Grant NCA2-543, 027723-6-T, July 1992.

R. Mittra, A.W. Peterson, and S.L. Ray, "Computational_Methods_for

Electromagnetics,” New York: IEEE Press, 1998.

166

 

 

 

 


