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ABSTRACT

A COMPARISON OF ALTERNATIVE APPROXIMATIONS TO MAXIMUM

LIKELIHOOD ESTIMATION FOR HIERARCHICAL GENERALIZED LINEAR

MODELS: THE LOGISTIC-NORMAL MODEL CASE

By

Matheos Yosef

Educational data often have hierarchical structure (e. g., students are nested within

clusters such as schools). Also, outcome variables can sometimes be discrete (e. g.,

whether a student repeats a grade). In such cases, the outcome variable is usually related

to the covariates and cluster random effects using a hierarchical generalized linear model.

The (marginal) maximum likelihood (ML) estimation method is widely used to

estimate the parameters of such models. To obtain the marginal likelihood formula that

needs to be maximized, the random effects must be integrated out of the joint distribution

of the outcome and the random effects. In many cases, the integration cannot be carried

out in closed form. Several approaches have been used to approximate this integral. This

dissertation compared four methods of integral approximation -- two Laplace-based and

two based on Gaussian numerical integration.

Analytic and numerical comparisons Show that, for the univariate random effects

model case, the 2"" order Laplace method (Laplace2) and the adaptive Gauss-Hermite

method (AGH) with one quadrature point give the same result. The 6‘h order Laplace

approximation method (Laplace6) has the same order of error as the AGH with 4 (to 6)

quadrature points. It took much more (8 and 14) quadrature points for the ordinary Gauss-

Hermite (GH) to give results similar to Laplace2 and Laplace6. The error of Laplace6



approximation was better than that of Laplace2 by at least 0(n"), where n is the cluster

size.

Simulation studies using programs (HLM, MIXOR and SAS PROC NLMIXED)

that implement the four methods indicate that, for a univariate random effects case, all

methods perform well when the cluster size is quite large. However, Laplace2 usually

gives the most biased estimates and sometimes has the largest mean-squared errors

(MSE). For a small cluster size, AGH performed the best as far as speed, MSE and bias

are concerned, while the ordinary GH performed the worst. For a multivariate (bivariate)

random effects model case, Laplace6 performed the best (in terms of bias and MSE) with

the ordinary GH following closely. The estimates of Laplace2 had the largest biases while

the algorithm implementing AGH was computationally the slowest and needed

specification of good starting parameter values.

Overall, Laplace2 appears to be a simple and fast method to get estimates,

especially for a model with small random effects variance. Laplace6 is much more

accurate and quite fast but needs derivation of cumbersome formulas. GH is quite simple

but may need a fairly large number of quadrature points for an accurate estimation. This

makes it computationally inefficient for a multivariate random effects case. AGH

combines the advantages of GH (simplicity of formula) and high-order Laplace (accuracy

with quite few quadrature points) but it can also be computationally quite inefficient as

the dimension of random effects increases. The Laplace-based methods do not suffer

from dimensionality problem that much.
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Chapter 1

INTRODUCTION

Education is important to society. Many are concerned with the quality of education

that students are getting. With such problems as drop-out and juvenile delinquency, they

may also be interested in knowing what factors affect and facilitate student learning, and

what relationship educational factors have to social issues such as crime. Educational

studies are conducted to address such issues. Some studies involve large—scale

quantitative educational data with measurements on students as well as some aspects of

the educational system such as schools and teachers.

Study participants (e.g., students) are ofien observed within a certain context or

“cluster.” For example, students are nested within classes, classes within schools, and

schools within school districts. We are not only interested in student characteristics but

also such contextual effects as effects of teacher and school characteristics on student

outcomes.

In other cases, subjects are repeatedly observed over time to monitor or measure

growth. In such repeated measures data, occasions of observations are nested within

individuals. Data that have such nested structures, whether they are the cross—sectional

clustered data or longitudinal repeated measures data, are known as hierarchical (e.g.,

Bryk and Raudenbush, 1992) or multilevel (e.g., Goldstein, 1987) data.

In recent times, educational researchers have adopted hierarchical models to analyze

hierarchical educational data. Hierarchical models enable researchers to ascertain the

interactions between the different levels (students, teachers, schools, policies, etc) as well

 



as to discern the amount of variation explained at each level. Applications of hierarchical

linear models, variously known as linear mixed models (Goldstein, 1986) or random

coefficient models (Rosenberg, 1973; Longford, 1993) or covariance components models

(Dempster, Rubin and Tsutakawa, 1981), include relations of school effectiveness to

student achievement scores (Raudenbush and Bryk, 1986; Aitkin and Longford, 1986;

Young, 1996), effects of teacher interaction outside the classroom on student learning

(Louis et al., 1994), effects of the races of rater as well as ratee on evaluations of

performance (Waldman and Avolio, 1991). Detailed descriptions of the models, their

methodology as well as applications in education and/or social sciences are given by

Goldstein (1995), Bryk and Raudenbush (1992), Longford (1993), Bock (1989) and

Raudenbush and Willms (1991).

Hierarchical models take into account the dependence that usually exists between

observations in the same cluster such as the school. Owing to cluster effects, observations

in the same cluster cannot be expected to be independent. Regression models that assume

independence between observations are thus often misspecified. For instance, Aitkin et al.

(1981) found no difference between ‘formal’ and non-formal teaching when analyzing the

student data nested within classes, while Bennet (1976), who used ordinary multiple

regression on the same data without nesting (grouping students into classes), had found a

difference. A mixed-effects regression model, which includes both the cluster random

effects as well as the fixed effects of the covariates on the outcome, is generally used to

model such hierarchical data.



Also, outcome variables are sometimes discrete (rather than continuous). In

educational studies, the outcome can be grade retention or dropping out of school

(Rumberger, 1995). Horney, Osgood and Marshall (1995) analyzed the effects of local

life circumstances, including school, on the likelihood of committing felonies. In these

cases, the outcome is dichotomous and usually modeled using a binomial distribution.

We might also want to study what student, school or neighborhood factors affect the

number of days a student is absent, or what factors determine the number of felonies

committed by a student in a school in a given time. This kind of outcome, a count, is

usually modeled using a Poisson distribution. Using hierarchical linear model analysis,

Bryk and Thum (1989) found that “high levels of internal differentiation (i.e., among

students) within high schools and weak normative environments contribute to the

problems of absenteeism and dropping out” while “no single factor makes schools

effective in sustaining student interest and commitment.” Rumberger (1995) used

hierarchical linear modeling to study “dropouts from middle school and examine the issue

from both individual and institutional (school) perspectives.”

Just as hierarchical linear models are used to analyze hierarchical data with normal

outcome variables, hierarchical generalized linear models, which are generalized linear

models with random effects (McCullagh and Nelder, 1989), are used to model and

analyze hierarchical data with non-normal outcomes such as binary and count data.

Hierarchical generalized linear models (HGLMS) are also known as generalized linear

mixed models (GLMMS) (e.g., Breslow and Clayton, 1993). At the first level of the

hierarchy (“level 1”), a generalized linear model is substituted for the linear regression



model of the normal data. The coefficients of this model then vary over clusters at a

second level (“level 2”). At this second level, linear models predict these level 1

coefficients using cluster characteristics as explanatory variables. Random effects at level

2 model the unexplained variation in the level 1 coefficients. The resulting combined

model is a generalized linear model with random effects. Breslow and Clayton (1993)

describe such models and provide an approach to estimating them, giving examples of

dichotomous and count outcomes. Stiratelli, Laird and Ware (1984) had already described

a random-effects model with binary (dichotomous) response and provided an estimation

procedure.

In order to estimate the parameters (i.e., the fixed effects and the variance components

of the random effects) of such a model, recourse is usually made to (marginal) maximum

likelihood (ML) estimation method because ML estimates have such well-known, large

sample properties as consistency, asymptotic normality and efficiency (minimum

variance). This method maximizes the likelihood of the observed outcome data. In

hierarchical models, we may specify the conditional distribution of the outcome variable

y, given the random effect b asf(y|b). In order to find the marginal likelihood of the

outcome, the conditional likelihood is mixed with the density of the random effect, p(b).

That is to say, the conditional distribution of the outcome variable is multiplied by the

density of the random effect, and the random effect is integrated out leaving the marginal

likelihood of the outcome, viz, h(y)=ff(y|b)p(b)db. Unless the density of the random

effect is the conjugate prior for the conditional distribution of the outcome, a closed form

formula cannot generally be found for the marginal likelihood of the outcome.



The multivariate normal prior, along with the multivariate t, are well-suited to

modeling correlated random effects per cluster (Raudenbush, 1999). Thus, the density of

the random cluster effect, p(b), is often assumed to be normal. However, since this

density of the random effect is not the conjugate prior for the conditional distributions of

such non-normal outcomes as binary and count data (their conditional distributions are

usually taken to be binomial and Poisson, respectively) , the integration cannot usually be

carried out analytically to obtain the marginal likelihood. So, in the cases of non-normal

data at level 1 along with normal random effects, we may not have the marginal

likelihood of the outcome in a closed form (see Zeger et al., 1988, in the case of the

hierarchical logistic model).

In this dissertation, several approaches to approximate (marginal) maximum

likelihood for the hierarchical generalized linear model will be compared as to

performance. Specifically, I will compare approaches to estimating the hierarchical

logistic model. To this end, first, formulas for the various approaches to approximate the

integral are derived. The approaches used (and compared) in this dissertation are the

standard Laplace, a 6th order Laplace, and non-adaptive and adaptive Gauss-Hermite

quadratures. The formulas are compared analytically in simple cases to see which

approaches fare better. Graphs are used for illustration.

Next, datasets with different models and parameter values are simulated and analyzed

using the different approaches and the results compared for performance (accuracy and

efficiency) of the approaches. For Laplace, the HLM program implementing

Raudenbush’s posterior modal algorithm (1992) is used, while its Higher-order Laplace

 



option (Raudenbush, Yang and Yosef, 2000) is used for the 6th order Laplace. Hedeker

and Gibbons’ (1994) MIXOR program is used for the non-adaptive Gaussian quadratures

estimation while the adaptive Gaussian estimation is carried out using the SAS procedure

PROC NLMIXED (Wolfinger, 1999) for the estimation of non-linear mixed models

which has adaptive Gaussian quadratures as the default option.

Finally, the various methods are used to analyze the large scale educational dataset of

the 1988 National Survey of Primary Education in Thailand (Thailand data). The results

from the different methods are compared, mostly for similarity to each other or

divergence from each other, in light of the results from the analytic and simulation-based

comparisons.



Chapter 2

BACKGROUND AND SIGNIFICANCE

One popular method used to estimate the parameters of generalized linear mixed-

model (GLMM) is the maximum likelihood (ML) method. This method finds parameter

estimates that maximize the likelihood of the observed data. In order to do this, the

likelihood of the data must first be obtained. In a GLMM case, we obtain the likelihood

of the data by integrating out the random effects from the joint distribution (likelihood) of

the data and random effects. Oftentimes, the integration cannot be carried out in closed

form. One such model that is fairly common in various fields including education is the

logit-normal mixed model. In this case, conditional on the random effects, the data have a

binomial distribution with a Conditional mean that is related to the linear predictor (the

sum of the fixed and random effects) via a canonical link fimction (McCullagh and

Nelder, 1989), while the random effects are assumed to have a multivariate normal

distribution. Researchers have used various approaches to approximate the likelihood that

must be maximized. A brief and general review of the approaches follow under two broad

headings.

Quasi-likelihood and Approximate Likelihood Approaches

Longford (1993, 1994) approximated the marginal likelihood by taking a second order

Taylor series expansion of the joint likelihood around zero (i.e., b=0) and then making

use of normal theory to integrate the approximation. This result turned out to be the same

as Goldstein’s (1991) iterative generalized least squares (IGLS) approach which used the

linearized dependent variable (McCullagh and Nelder, 1989) transforming the (discrete)



outcome into a continuous one. Goldstein didn’t assume normality but the existence of

the first two moments. This method was labeled marginal quasi-likelihood (MQL) by

Breslow and Clayton (1993) because it involves expanding the conditional expectation

around zero for the random effects. Rodriguez and Goldman (1995) evaluated two

packages based on MQL and found out that MQL estimates of both the fixed effects and

the variance components exhibit downward biases (biases toward zero), and the biases

are more pronounced when the random effects have large variances.

Breslow and Clayton (1993) applied Laplace’s method for integral approximation to

approximate the quasi-likelihood function, which is equivalent to the true likelihood if

conditionally on the random effects the observations are drawn from a linear exponential

family (as in the logit-normal mixed model case). The Laplace method expands the

exponent of the integrand, Green’s (1987) penalized quasi-likelihood (PQL), expressed as

a function of the random effects, in a second-order Taylor series around the maximizer

(known as the conditional mode) of the exponent function and uses normal theory to find

the integral. For the canonical link functions, the log of the approximate integral (quasi-

likelihood) turns out to be Green’s (1987) PQL evaluated at the conditional mode plus a

function of the covariance matrix of the random effects and the GLM iterated weights

(McCullagh and Nelder, 1989). Assuming the GLM iterative weights vary slowly as a

firnction of the mean, they maximized only Green’s PQL for the fixed effects and random

effects using Fisher scoring and normal theory, and used pseudo-likelihood for the

variance components estimation. The score equations they used to maximize for the fixed

and random effects were also derived by Stiratelli, Laird and Ware (1984) for logistic



regression of binary data by maximizing the posterior distribution for the fixed and

random effects under a diffuse prior for the fixed effects.

Raudenbush (1992) extended Stiratelli et al.’s (1984) joint posterior modal approach

for binary outcomes -- where inferences were based on the joint posterior modes of the

regression coefficients given approximate REML covariance estimates -- to a broad class

of hierarchical generalized linear models and used Schall’s (1991) framework to improve

the efficiency of his approach. Although this PQL approach improves upon the MQL

approach as far as parameter estimation in the hierarchical model is concerned, PQL

estimators of the variance components were still subject to serious bias when applied to

correlated binary data with large variances (Yang, 1994; Breslow and Lin, 1995). The

latter provided a correction to the bias via fourth-order expansion of the joint distribution

of the data and the random effects around the current estimates, followed by Laplace’s

method to approximate the marginal likelihood.

Yang (1998) extended the expansion of the exponent of the integrand (the joint

likelihood of the data and random effects) to the sixth order Taylor’s series and then used

normal theory to do the integration obtaining approximate likelihood function. She did

this for the multiple random effects case with a general variance-covariance matrix. She

used the output from Raudenbush’s posterior modal algorithm (1992) as starting values

for the parameters in order to ensure convergence and more efficient estimation. She then

used Fisher scoring to simultaneously estimate the fixed effects and the variance-

covariance components of the random effects. Her method was a big improvement over

PQL in terms of results as well as being computationally quite efficient. She even went



on to eighth order Laplace approximation but the results didn’t improve so she settled for

the Sixth order. Nevertheless, she provided an infinite multivariate Taylor series

expansion that would virtually make the approximate marginal likelihood equivalent to

an actual likelihood.

Full Likelihood Approach

Anderson and Aitkin (1985) used Gaussian quadrature formulas with the logistic

model with a single random effect to integrate (approximately) the joint likelihood of the

data and the random effect, with respect to the random effect, in order to find the

(approximate) marginal likelihood of the data. Hedeker and Gibbons (1994, 1996)

extended this to the probit and logistic models with multiple random effects and used

Fisher scoring to maximize the resulting (approximate) marginal likelihood.

With this numerical Gaussian quadrature integration formula, the approximation to

the marginal likelihood gets better as the number of quadrature points increases.

However, as the dimension of the random effects increases, an increase in the number of

quadrature points in one dimension increases exponentially the total number of

quadrature points (and hence computations) required for all the random effects. This

exponential computational complexity in the case of random effects is the major

drawback of the Gaussian quadrature procedure. Bock, Gibbons and Muraki (1988),

however, noted that the number of quadrature points for each dimension (random effect)

can be reduced, without appreciably harming the approximation, as the number of

dimensions increases.

10



Yosef (1997) conducted a simulation study of a two-level mixed-effects logit model

with a single random effect using Gauss-Hermite formulas as implemented in Hedeker

and Gibbons’ MIXOR program and found out that, in general, it gives better estimates

than PQL in terms of biases as well as comparable ones in terms ofmean square errors.

However, the simulation study also revealed that in some instances, especially when the

random effects variance and the average probability of success are small, MIXOR either

gave unreasonable estimates or no estimates at all while PQL almost always gave

reasonable estimates.

For the nonlinear mixed-effects model, where a continuous outcome is a nonlinear

function of the fixed and random effects, Pinheiro and Bates (1995) argued that Gaussian

quadrature centered at the expected value of the random effects is quite inaccurate for a

smaller number of abscissas (quadrature points) and computationally inefficient for a

larger number of abscissas. So, they first expanded the exponent of the integrand (the

joint likelihood of the data and random effects expressed as a function of the random

effects) in a second order Taylor series expansion around the conditional mode of the

random effects just as was done in PQL. This has the effect of centering the joint

likelihood around the conditional mode rather than the random effects mean of 0. Then,

they applied Gaussian quadrature on the resulting integrand to approximate the (marginal)

likelihood which they maximized to find the parameter estimates. They labeled their

procedure adaptive Gaussian quadrature and found it to be quite accurate and

computationally efficient which is achieved by a reduction in the number of quadrature

points needed. Liu (1993) and Liu and Pierce (1994) also gave the formula for the

11

 



adaptive (though they didn’t call it so) Gauss-Hermite and used it in examples to obtain

likelihoods. They also worked out the asymptotic behavior of the adaptive Gauss-

Herrnite. Wolfinger (1999) implemented the adaptive Gaussian procedure for a broad

class of mixed models including GLMMS in SAS.

McCulloch (1997) developed three algorithms for maximtun likelihood (ML) in

GLMMS. He constructed a Monte Carlo version of the EM (MCEM) algorithm for

GLMMS by incorporating a Metropolis-Hastings step. He also proposed a Monte Carlo i

Newton-Raphson (MCNR) procedure and evaluated and improved on the simulated ML

 

 (SML) method which uses importance sampling. Whereas the first two, MCEM and

MCNR, work on the log of the likelihood, the third one estimates the likelihood directly

using importance sampling. He also suggested a hybrid algorithm with a preliminary

stage ofMCEM or MCNR followed by SML. He found his methods to perform better

than joint maximization methods such as PQL. However, as is well known, Monte Carlo

methods are computationally intensive (time consuming) and convergence is stochastic.

He noted that for sufficiently large simulation sample sizes, the Monte Carlo versions

would inherit the properties of the exact versions: MCEM would, under suitable

regularity conditions, converge to a local maximum whereas NR algorithms are not

guaranteed convergence when the surfaces to be maximized are not concave. In view of

the stochastic convergence (getting “close” to the correct answer and then varying in that

neighborhood), he commented that “this is one reason for suggesting a follow-up round

of SML, to avoid the complications of deciding whether the stochastic versions ofEM or

NR have converged.”

12



Chapter 3

APPROXIMATING THE LIKELIHOOD : AN ILLUSTRATIVE EXAMPLE

Introduction

In this chapter, I will Show through a simple example how the methods under study

approximate the likelihoods of interest. Let us assume we have a binary outcome variable

Y. Consider the simple mixed logistic model:

n,—Iog[1—”—] =p+b, b~N(O,t) , (3.1)

i

 

where the intercept B is the fixed effect and b the random effect for a specific cluster and

u, = P(Y, = llb) is the conditional probability of success for the binary outcome variable Y

given the random effect b. We are interested in finding the maximum likelihood estimates

of the parameters in the model (3.1), namely [3 and t. From (3.1), we have

It = 1 = l = Bind—um 32

’ 1+epr—n,I 1+epr-(B+b)] an. " " (')

 

The likelihood function of the observed data y is given by

L(B,r;y)=f,.o>= ff,,btylb)g(b)db

_ °° " , I

=(2m) ”fII u,- <1 —u,.)' "exp(—3b2/r)db (3.3)
i=1

=(21tt)"]/2 fexp(h(b))db ,

—(D
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where

ham: ly,10g(u,-)+(1-y,)log(1 191%!) 2r“

=2I’D/10%]H']+log(l—Ir)]——b2‘C ' .

“’1'

(3.4)

 

Now, there is no closed-form solution to the integral (3.3). So, we resort to integral

approximations (in this dissertation, Laplace and Gaussian based approximations). The

goal is to approximate the integrand (as well as the integral) as closely as possible. Since

both the Laplace approaches as well as the adaptive Gauss-Hermite require the first and

second derivatives of h with respect to b, I will give them here before proceeding. Thus,

 

 

wehave

h <b>=gag+—_1“—i(-—')]-—1:

_” m, 1 Ethan.- __b_

E [y,— Hill an ab” 1: ‘ (3'5)

_b = " 1 __b_

:0’1') I giy' 1+6XFl-(B+b)]) F

and

n a , n

h”<b>=£ (iirlrrz i1,(1’Il,-)+ll- (3.6)
(:1 T i=1 1:

The Laplace approaches and the adaptive Gauss-Hermite involve expanding h around its

maximizer I; (also known as the conditional mode). To find the I; that maximizes h(b),

14



we set

I; n

h’(b)=0 ... —+ " = y,. (3.7)

I 1+expl-(I3+5)] i=1

 

Illustrative Example

Let nj=n=10 and J=l (i.e., one cluster). Also, let t=1, [3=-l, and the observed data

vector y=(l,0,0,0,l,l,0,1,0,0)’. Then, equation (3.7) becomes

15+ 10 =4 => 5:.41717. (33)

1+exp[-(-l +b)]

 

The integral in (3.3) was computed to be .001473319 using the Trapezoidal Rule

(Mathews, 1987) with error less than 10‘8 and limits of integration (-5,5). This was taken

to be the actual (true) value of the integral. I now proceed to Show how well the various

approaches I am considering here approximate the integrand as well as the integral. I will

use graphs to further illustrate the integrand approximations.

Laplace Approximations

Using the Taylor-series expansion of [1 around its maximizer b , the integral in (3.3)

can be written as

(X)

_ . °° 1 (b-5)2

fexp[h(b)ldb—explh(b)l feXpl-E—V—ICXPISldb

~00

.. (3.9)

=<2nV)“2expth(5)IE(eprSI>

where

15



V=-[h ”(5)1“.

°° . - ‘ k

5:: Tk , and Tr=h"‘)(b) (b b) . (3-10)

k=3 k!

The Taylor-series expansion of the exponential function about 0 implies

E(e S):E(1+S+%Sz+...).
(311)

Note that E(Tk)=0 for odd k Since the expectation is taken over N(0, V). The first few

Laplace approximations (to the integral (3.9)) are defined by approximating E(e") as

 

follows:

Laplace2: E(e S)z1

Laplace4: E(e 5):] +E(T4)

Laplace6: E(e S)z1 +E(T4)+E(T6)+%E(T32) (3.12)

Laplace8: E(e 5)21 +E(T4)+E(T6)+E(T8)+%{E(T32)+E(T42)+2E(T3T5)}

where (see Raudenbush, Yang and Yosef, 2000)

  

". .b—b‘3. .b—b‘3. 1
T3=—2 w.(1—2u,>£—-T)—=—nw,(1—2u.)( ,) ; It: . ; w,=u,.(1—u.> .

i=1 3. 3. 1+exp[[3 +b]

n _‘4 _‘4

T4: {3 w.(1-6w).(i_)_: —nw,(1-6w)£l’)_ ,
H ' ' 4! ' 4!

_A5

T5=—nivl(1-2r1,)(l-l2wl)fls'i , (3.13)

_A6

T6: -n{w,(1—6w,)(1—12w1)—12w,’(1—2n,)2}£b?.f’)_ ,

i

_ ‘ 8

T3 = -m€’,(1 ' 126wi+1680w12 —5040w 3)QEIQ— ’



whence

E(b-b-)4__ 3VV2
E(T4)=-nw(1 -6w) w.(l -6w.)——=-nw(l -6w)—-, 

E(T6)= —n{w,(1—6w,)(1-12w,)—12wf(1—2a,)2}zg_ ,

E(T32)=—5—-V’[niv,-(1"Zia-)12 .

12 314V, (. )
E(T)= -mi/.(1 ~126w,+1680w,’—5040w,3)— ,

384

E(T)=——V4[nw(1—6w)]2,

E(TT)=—V4n2w2(l-—2a)2(1- 12w).

Similarly, the integrand in (3.3) (or the left-hand integral in (3.9)) is approximated

using the Laplace technique as

1 (b——b)2
 

Laplace2(b)=exp[h(b)-- ] ,

Laplace4(b)—Laplace2(b)[l+ 4] ,

Laplace6(b)=Laplace2(b)[1 ”CTN-$10
2] , (3.15)

Laplace8(b)=Laplace2(b)[1 +T4+T6+T8+-;—(T32+T42+2T3T5)] .

These functions are graphed along with the original integrand in Figure 1.

Using (3.12), the Laplace approximations to the integral (3.3) are given as

17

 



Laplace2 =(2‘It V)"2exp[h(b)] ,

2

Laplace4 =Laplace2[l +E(T4)] =LaplaceZ[l ng-mfll -6w,)] ,

Laplace6 =Laplace2[l +E( T4) +E( To) +%E(T32)] , (3-16)

Laplaceb’ =Laplace2[l +E( T4) +E(T6) +E(T3) +% {E(T32) +E(T42) +2E(T3 T5)}] .

Figure 1: Actual integrand exp(h(b)) & Laplace Approximations
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These formulas were used to compute the Laplace approximations to the integral (3.3)

which are displayed in Table 3.1 along with the error from the “true” integral.

l8



Table 3.1 - Laplace Integral Approximations

 

 

 

 

 

    

Order Integral Error

2 0.00145567 -0.00001765

4 0.00147026 -0.00000306

6 000147298 000000034

8 0.00147252 -0.00000080
 

Gaussian Approximations

Gaussian integrand approximations. The general Gaussian integration approximation

has the form

b G

fw(x)/(x)dx = gw/(x) (3.17)

where w(x) is a weighting function, x, are unequally spaced abscissas (also known as

quadrature points) and w, are weights. In the Gauss-Hermite case, w(x)=exp(-x2) and

(a, b)=(-oo, 00). In this case, the abscissas x, are obtained as the zeros of the G-th order

Hermite polynomial (See Scheid, 1968; Davis and Rabinowitz, 1984). Thus

G xsz -x2 G G
HG(X)=(‘1) e Zx—Ele ):2 x + (3-18)

and the weights (coefficients) w, are obtained using

/ 3.19

[HG(x,')]2 ( )

l9



The numbers x, and w, are tabulated and widely available for various values of G (see e.g.,

Stroud and Sechrest, 1966). A G-order Gaussian formula requires perfect accuracy when

fix) is one of the power (polynomial) functions 1, x, x2, x26". This provides ZG

conditions for determining ZG numbers x, and WI. In fact,

mb

wI. =fw(x)LI(x)dx : fexp[ -x 2]LI.(x)dx, (3.20)

—00

where L,(x) is the Lagrange multiplier function (Lagrange coefficient polynomial)

G

H (x-xI)

(x-xy)(xx; ])(xx, 1)-"(x x0) _j=1j¢i

L .((1:2) (x-.xI). .(xI -xI._ |)(xI. -xI. l).. (.xI. —xG) 191 (x .—x)

 

(3.21)

j=ljri

The Lagrange formula is used as one way to find a polynomial approximation to a

functionfix) that collocates (i.e., coincides) with the functional values at given unequally

spaced arguments. The Lagrange polynomial pG_,(x) of degree G-l (or less) that passes

through the G points (x1 , f(x1 )),...,(xG,f(xG )) has the form

C

pG_)(x) {1: L.(x)/(x,-) (3.22)

where L,(x) is the Lagrange multiplier function defined in (3.21) having the properties

LI(x,I)=O for k¢i, LI.(xI)=1. (3.23)

20



Lagrange’s formula represents the collocation polynomial for the unequally-spaced

arguments x,,...,x( ; , that is,

p(xk) =f(xk) for k=l,...,G. (3.24)

When p(;_,(x) is used to approximate a continuous functionfix) that has G continuous

derivatives, then

flx)=pG-.(x)+ 0-,(x) (3.25)

and there exists a value c=c(x) such that

G)

E0.(x):(x—xl)...(x-xG)flG$c). (3.26)

Thus, the Gauss-Hermite integral approximation given G abscissas and weights can

be expressed, using Lagrange multiplier functions, as

.. G G ..

fexp[—x2]f(x)dx .. ZIWI/(x) = XI: [fexp[-x2]LI(x)dx]/(xI)

"°° " ,l— '°° 0 (3.27)

= fexp[—x2][; LI.(x)f(xI)]dx .

-W

Essentially, this approximates the functionfix) by a Lagrange polynomial. Note that the

last integral is solved exactly by the Gauss-Hermite formula because L,(x) is a GI or less

degree polynomial and Gaussian formulas (with G abscissas) give exact integrals for a

21

 



polynomialfix) up to degree 2G-1. The integrand in (3.3), which is proportional to the

likelihood L66, 2' Ly), can then be written as

 

°° " , . exp[-(I3+b)] _b_2
£exp(h(b))db fang mp b) log[ 1+exp[-(B+b)])] 21:}db

_ , epr-(b-m _gj
fexp{4(b 1) 10104 l+exp[-(b-l)]) 2 }db

(3.28)

 

—oo

Letting x = b / J2- , the last integral can be written as s/E If(x)e_x2dx where

 flx)—exp{4(/2x-l)+10 log[ ex?“ “5") ]}. (3.29)

1+exp<1 fzx)

Given G quadrature points, we can use (3.27) to approximate the last integrand as

oo

°° G

fexpl-le/(xwx =fepr-x21I; L.<x)f(x.>]dx- (3.30)
"00 —00

The integrand on the right (the Lagrange polynomial times the weight exp(-x2)) can be

considered as the Gauss-Hermite integrand approximation to the integrand on the left.

The Gauss-Hermite formula gives an exact value to the integral on the right. The

integrand on the right was computed for number of quadrature points G ranging from 2 to

30 and plotted against the argument. The plots, along with the one for the actual integrand

(the integrand on the left), are displayed in Figures 2--5. Note that as the number of

22



quadrature points increases, the graph becomes practically indistinguishable from the one

for the actual integrand.

Figure 2: Plot of actual integrand & GH approximations

(2 to 5 quadrature points)
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Figure 3: Actual integrand & GH approximations

(6 to 10 quadrature points)
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Figure 4: Actual integrand & GH approximations

(16 to 20 quadrature points)
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Figure 5: Actual integrand & GH approximations

(26 to 30 quadrature points)
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For the adaptive Gauss-Hermite, we first expand h(b) in a second-order Taylor

expansion around its maximizer I; , i.e.,

. 1 . . .

h(b)=h(b) +30) -b)’h ”(b)(b -b). (3.31)

By substituting this in (3.3), we note that, up to a multiplicative constant, b can be

considered as N(b,-[h"(b)]’1)= N(.41717,—[h"(.41717)]‘1) .Let

b=p5+052=b+[-h ”(5)1102 = db=[-h”(5)]“"2dz. (3.32)

25



The integral in (3.3) can then be rewritten as

m // “ —I/2 ‘ // “ -I/2 22 22

fI—h (13)) exp{h(b+I-h(b)1 z)+—2—}exp<——2—>dz

m (3.33)

=)/§[-h ”(5)1 “flew/103m —h ”(5)1"”x)+x2}exp[-x2]dx

which is approximated, using the G-point Gauss-Hermite formula, by

A G A A 2

fiI—h ”(b)l "’22 wkexp{h(b+(/2[—h ”(b)1"’2x.)+x. }- (3.34)
k=l

This is the adaptive Gauss-Hermite approximation to the integral (3.3). Note that for

G=l, (3.18) and (3.19) give x=0 as the only abscissa and W1 = «[7? as the corresponding

weight. Thus, for G=l, (3.34) reduces to V 211 I- 11" (OH—"2 exp {h(b)} which is

identical to Laplace2 given in (3.16).

The integrand in (3.33), which I call the AGH integrand, is plotted along with the true

integrand (the integrand in (3.3)) in Figure 6. The AGH integrand is the transformed

(standardized) version of the true integrand in the sense of standardizing a normal random

variable. Note that, unlike the true integrand, the AGH integrand is centered around zero.

Like the non-adaptive Gauss-Hermite case, (3.27) can be used to obtain approximations

26



to the integrand in (3.33) using the Lagrange multiplier function where, now,fix) is the

integrand in (3.33) without the weight function exp(-x2). This integrand approximation to

the AGH integrand using the Lagrange multiplier function has been computed for

Figure 6: Graphs of true integrand exp(h(b)) & AGH integrand
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numbers of quadrature points varying from 2 to 30 but plotted for up to 10 quadrature

points. Figures 7 and 8 display the plots. As can be seen from the plots, the graphs

converge fast (faster than the non-adaptive OH) to that of the AGH integrand.
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Figure 7: AGH integrand & AGH2-AGH5 approximations
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Gaussian integral approximations. The Gauss-Hermite integral approximations to the

integral in (3.3), both non-adaptive and adaptive, were computed for numbers of

quadrature points varying from 1 to 30 and tabulated for 1 to 27 quadrature points.

Equation (3.17), withfdefined as in (3.29), was used to compute the (non-adaptive)

Gauss-Hermite integral approximations and formula (3.34) was used to compute the

adaptive counterparts. The results, including the error from the “true” integral value, are

given in Table 3.2. Note that the adaptive Gauss-Hermite integral approximation with one

quadrature point is the same as the Laplace2 integral approximation. The Gaussian

integral approximation values are also plotted in Figure 9, this time against the

Figure 9 : Gaussian integral approximations vs no. of quadrature points
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number of quadrature points, in order to compare the convergence behaviors of the two

approaches. The figure displays that the adaptive GH converges to the true value faster

(and without zigzagging).

Table 3.2 - Gaussian Integral Approximations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

G GH Integral Error AGH Integral Error

1 0.00200186 0.00052854 0.00145567 000001765

2 0.00134210 0.00013122 0.00 146071 000001261

3 0.00144044 0.00003288 0.00147185 000000147

4 0.00154149 0.00006817 0.00147303 000000029

5 0.00141 145 000006187 0.00147323 000000009

6 0.00151908 0.00004577 0.00147331 000000001

7 0.00144266 000003066 0.00147331 000000001

8 0.00149265 0.00001933 0.00147332 000000000

9 0.00146166 000001 166 0.00147332 000000000

10 0.00148010 0.00000678 0.00147332 000000000

1 l 0.00146952 000000380 0.00147332 000000000

12 0.00147537 0.00000205 0.00147332 0.00000000

13 0.00147226 000000106 0.00 147332 0.00000000

14 0.00 1 47383 0.00000051 0.00147332 0.00000000

15 0.00147310 000000022 0.00147332 0.00000000

l6 0.00147339 0.00000008 0.00 147332 0.00000000

17 0.0014733] 000000001 0.00147332 0.00000000

18 0.00147330 000000002 0.00147332 0.00000000

l9 0.00147335 0.00000003 0.00147332 0.00000000

2O 0.00147329 000000003 0.00147332 0.00000000

21 0.00147334 0.00000002 0.00147332 0.00000000

22 0.00147330 000000002 0.00147332 0.00000000

23 0.00147333 0.00000001 0.00 147332 0.00000000

24 0.0014733 1 000000001 0.00147332 0.00000000

25 0.00147332 0.00000001 0.00147332 0.00000000

26 0.0014733 1 000000000 0.00147332 000000000

27 0.00147332 0.00000000 0.00147332 0.00000000   
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Chapter 4

METHOD

Introduction

In this chapter, several methods for approximating the marginal likelihood are

discussed and compared to each other analytically. The methods compared here are those

that involve centering around the conditional mode, namely standard Laplace (Laplace2

or PQL), Laplace6, and the adaptive Gaussian quadrature methods. Since the non-

adaptive Gauss-Hermite is centered around zero (rather than the conditional mode) and

was shown to be inferior to the adaptive in terms of its efficiency (see Pinheiro and Bates,

1995), it will not be compared here. However, the formula used by it, as well as the other

methods, to approximate the integral will be given. First, the model being estimated will

be formulated. Next, formulas will be given for all the methods considered here to Show

how they approximate the integral to obtain approximate likelihood.

The Model

Let Ya be the response variable representing the outcome of a level-1 unit (e.g.,

subject) i in level-2 unit (cluster)j, i=1,...,nj;j=l ,...,J. Let bI be a random cluster effect,

and let pU=E(Y,I|bI). Assume that the distribution of YII|bI is a member ofthe exponential

family, i.e.,

.t;.I,,,I(y,,-lb,-)=eXp{IV,~TI,,--5(n,,)1/a(<l>)+10,,<l>)} (4.1)
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for some functions or, 6 and y, where '11) is the canonical parameter and (p is called the

dispersion parameter (see McCullagh and Nelder, 1989, p.28). The outcome Y” is related

to the fixed and random effects through its conditional mean via the canonical link

function I)” of ,uII. Thus,

11”.:in +szI. , (4.2)

where x” is the p><1 covariate vector and 2” is the r><1 design vector for the r random

effects, [3 is the p><1 vector of unknown fixed regression coefficients, bI is the r><1 vector

of random effects assumed to be distributed N,(0, D). In matrix form,

nI. :XID +ZIb1 . (4.3)

Let yj = (Y1j aij ,..., y” _j)' be the vector of responses for the "1 level-1 units

nested within level-2 unitj. Given the conditional distribution ofyI given b]. (and B), the

marginal likelihood is given by

J

Law; y)=IIf,,I(v,-) (4.4)
,.

where

130% ff,.I.,.I(y,lb,-)g(b,)db,

.. ..
(4.5)

TQMMWYWffl-,Ib,(V,-Ib,)exr>l~5be 419,1de
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For a binary outcome and logit link, the conditional distribution of yI given bI is given by

y,, l—'II

f)-,Ib,(V)lbj)=II:lI11.10110) } 1
(4.6)

where the conditional mean [1 II. = E(yII. lb1' ) is related to the fixed and random effects

”a

1-#

 

via the logit link 771] = log( ), whence

ij

1 l
 

“a

d“), : CXp( -1111)

dntj [1 +WIN "Tlg-Nz

 

:“ij(1—“U) '

The integrand in (4.5) can be written as exp[h(bI)] where

l / _

h(bI.):log f3)lb,(V/'bj)'§b10 'bI

" 1 _

=2: [ya-10g(u,,-)+(1 -yII)Iog(1 —pI.I.)]-—2—bI./D lbI .

" 1 _
=21: [yyny+log(1 -uI.I)] -3bI./D lbI.

1+exp(-'q,-I) 1+exp[-(xI.I/.I3 +Zglbj)] ,

(4.7)

(4.8)

Let bI. = bI. (,3 ,0,yI.) be the value obe. that maximizes h(bj) . The integral in (4.5)

can then be written as
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a0

[exp[h(bInde=exp[h(I3I.)] fexp[—%(bI—bj)’VI7 ‘(bI,—15I)]exp[.S]de

 

,..., -... , (4.9)

=(21r)”2|V,l”zexplh(5,)lE(exr>[S])

where ”(1%) vanishes because [3; is the maximizer and

l

. 62h(b.)
_ _ // ~1- _ . .

VJ" [h (171)] - j,|bj=bj a

1 J . (4.10)

no 1 k—l . . ..

5:; TkI. , TkI=7CT[®(bI—bj)’]h(k)(bI.)(bI.-bI.)

It

Here, ® x = x ® x0 ° ° 0 x is used to mean the Kronecker product of k x’s (see

Raudenbush, Yang and Yosef, 2000).

The approaches used by the various methods compared here to approximate the

above integral are given subsequently. Prior to that, let’s derive the first two derivatives

 
 

 

  

ofh.

317(1).) " ' an. 1 f 30.3
h’(bI)= 1::yI 1+ - '1 —D“bI.

abI. ,.l abI. I-IIIII abI

" d -3 ..
:2 WV 1 “v "*1 -D-IbI (4.11)

1:1

:1}; b/UzU—HUZU’)-D be; (yr—“U‘Izu-D 4b!
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and

(3211(1) .) " _

h ”(bI)=——j—I= —: uII(l —pII.)zIIzI.I/.-D I

abIabI. 1:) (4.12)

=-<Z,.’W,Z.+D">

where W} is an nI. x nI. diagonal matrix with WII. 2 try. (1 - #1)) on the diagonal.

Laplace Approximations

Standard Laplace (Laplace2)

Laplace2 essentially expands h(bI.) in a second order Taylor series around b;

and then uses Normal theory to complete the integration, i.e., in the formula (4.9) it

approximates E(es) z 1 . Hence, the L approximation for the integral (4.5) is

(272' )r/2 | Vj Il/2 exp[h(bj )] and the marginal likelihood is approximated as

J

. ~ -.//2 1/2 ‘
Laplace2 . L ~ |D| III IVII exp[h(bI.)] (4.13)

and the log-likelihood as

J 1 J J .

log<L> = 710300—22 logit/IE h(b). (4.14)
j:l j=l
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Sixth—order Laplace (Laplace6)

The sixth-order Laplace approximation (Yang, 1998; Raudenbush et al., 2000) is

based on the approximation

E(e 3:150 +8+§Sh=1 +E(T.)+E(T6)+%E(Tf) (4.15)

noting that, based on Normal theory, E( 7;) = 0 for odd k. Thus, the sixth-order Laplace

approximation to the likelihood becomes (see Raudenbush et al., 2000)

J

- ~ 1
Laplace6 : L = |D| “II lell/zexp[h(bj)][1+E(T4j)+E(T6j)+EE(T3i)] (4.16)

whence the log-likelihood becomes

_J 1 J J . J l

log(L) 2: 710ngI+EZlogIVI|+Z h(bI.)+2log[1+E(T4I)+E(T6I)+-2—E(T3i)] . (4.17)

H H j=I

Gaussian Quadrature Approximations

Non-adaptive Gauss-Hermite Quadratures

The Gauss-Hermite integration approximation formula numerically approximates

an integral whose integrand is a product of a function f(x) and exp(— x'x) and whose

limits of integration are -oo and co. In the univariate case, the G-point Gauss-Hermite

integral approximation formula is given by
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°° G

ffix)exp(-x2)dx . Z; w, 1(ng (4.18)

_o, 8:

where xg , wg , g = 1, . . . , G are, respectively, the G Gaussian quadrature points

(abscissas) and the corresponding weights. The abscissas and the weights are determined

in such a way that the formula (4.18) is exact for polynomials up to degree 2G-1. The

abscissas are the zeros of the Gth degree Hermite polynomial and the weights are

 functions of the Gth degree Hermite polynomial at xg , HG (xg ) (See Chapter 3). Both

the abscissas xg and the weights wg are tabulated for varying values ofG and tables are

widely available (e.g., Stroud and Sechrest, 1966). The extension to the multivariate x

case follows naturally.

To make the integral in (4.5) amenable to the Gauss-Hermite approximation, we

need a transformation. Let uj = T— 1bj / J2- , where TT' 2 D is the Cholesky

decomposition of D. This implies bj = x/E Tuj , and

db1‘

du 4,
J

: 2r/2ln : 2r/2lDll/2° (4.19)

 

The integral in (4.5) can then be written as
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n

1=l

—r on 1; l - 'I

fy/(yj)=1r ”fl-I It; (I -uII) ) ’exp(-uI./uI)duI

-r/2 m n.
/

:1: feprE: [yIj'qu+log(l -I.1I.I.)]Iexp( _“j uj)duj

-... 1:1

where, now,

1 _
l

1+eXP(Til,-,~) 1+exp[T(x,~,/~l’ + 1/5 21in!”

 

It,

The Gauss-Hermite approximation to the integral is given by

G G G n
1—

z: Z ...Z (W81w82"°w8,)l‘11 [“V(u18)’"°’ujg,)]yyll—l’1y‘(ujgli°
"’ujgr)l y”

31:1 82:1 8,:1

where

 “U‘(ng."”’u18,) =

u.

181

I+exp[-(x,.I’.p+ 2 ng )]

”1g.
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(4.20)

(4.21)

(4.22)

(4.23)

 



Adaptive Gauss-Hermite Quadratures

A second-order Taylor expansion of h(bI.) around its maximizer [2; gives

~ " 1 “ / // ‘ _ “

h(bI.)~h(bI)+E(bI—bj) h (bI)(bI. bI.) . (4,24)

By substituting the second-order Taylor expansion for h(bj) in the integral on the left

hand side of (4.9), we note that up to a multiplicative constant, b} can be thought of as

distributed N, (1%. ,— [11" (I3; )]_I ). Let 2 ~ N, (0, I) and

bI. = 11% + ijz = 13I. + [-h"(bj)]"’2z. Then,

a
(32/

Following Pinheiro and Bates (1995), the left-hand side integral of (4.9) can be written as

 

=I-h ”(b,.)]‘“2 . (4.25)

m // " — “ // “ — 2’2 2’

[IT/7 (0')] “ZCXPIT(b,+[-h (17)] “22)+—2-I6Xp[-—251dz

’°° .. (4.26)

=15[ —h ”(5)1 ‘ "2 fexp{h(5,+)/§I —h ”(13,)1 ‘ ”up +u,’u,}expl -u,-’u,1du,

where uj = z / s/E . The last integral is approximated, using the G-point Gauss-Hermite

formula, by
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c c; o
(GEM/([5040: Z ...: (wgiwgzmwg) x

f

81:1 32:1 gr:I

. . um “13. (4.27)

exp [TV/Elm ”(b)” -“2 +(ngI,...,ngr

1’18, ngr

The Single Random Effect Case

When r=l , i.e., the random effects term is univariate, the formulas for the four

methods simplify as follows. The Laplace2 approximation to the integral reduces to

(21tV,)”Zexp[h(l5,)l = [Zn /-h”<5,)1“2exp1h(l3,)1 (4.28)

and the corresponding sixth order Laplace approximation becomes

(21: VI.)“2exp[h(5,)] xII +E(T.,) +E(T,,) +£40.31]

// ‘ 1/2 ‘ 1 2 (4°29)
T [27‘ /'h (13)] eXPlth-HXII+E(T4j)+E(T6j)+§E(T3j-)l

where

1 , .. .

TII22I—h“’(bI)(bI—bj)k (4.30)

is the kth Taylor expansion term and expectations are taken over N(0, -[h "(13> )]1 ) .
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The Gauss-Hermite approximation to the integral reduces to

G n G n-

=1 WEI: I11”.(ujg)])'u[1 —“y(ujg)]l Ty.) : I; wgeXPIIzz: [VIII'|I.I.(ng)+log(1 —uy(ujg))]} (4.31)

g

where

u,<u,,>=[1 amt-11,114,311” =[1 +epr-(x,’0 + 20 4,)1“ (4.32)

and the adaptive Gaussian approximation is given by

G

fit -h ”(b/>14”; wgexp{h(bj) +,/'2'[ -h ”(b1.)] ‘ “’u,.g+u,-:}. (4.33)

Asymptotic Behavior ofthe Methods

For simplicity, let nI=n for all j. For all practical purposes, the four methods can

be considered as approximations to the integral on the left hand side of (4.9), which can

be written as

fexp[h(bj)]dbj= [exp[n [(bI.)]de.= fg(bj)dbj (4.34)

where

1 b.2

1(1),): Zy,n,,+2 16g(1 43—2—3 . (4.35)
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That means the approximation to the integral is done for each clusterj. So, the errors are

derived for a single cluster.

Tierney and Kadane (1986) have shown that the error of the standard Laplace

approximation method (called Laplace2 or PQL here) is of order 0(n"). This can also be

easily shown using the definitions of chapter 3 and formulas given on p.147 of

Raudenbush et a1. (2000).

To derive the order for the error for Laplace6, we note that since the terms in S of

(4.10) diminish as a function of the cluster size n (Raudenbush et al., 2000), the error is of

the same order as of the terms not included in Laplace6 but included in the next higher-

order Laplace approximation. In other words, the error of Laplace6 is of the same order as

the error of the terms that result from the difference of Laplace8 and Laplace6 (see (3.12)

in Chapter 3 for these terms and definition of Laplace8). From chapter 3, we see that for a

given clusterj, the difference between Laplace8 and Laplace6 is

1
Laplace8 -Laplace6 =E(T8I.) +—2-E( T43.) +E(T3IT51') (4.36)

where TI) is as defined in (4.30). From Raudenbush et al (2000, p.147), for the univariate

case, we have

 

A n n ak—lph

(k) __ ~(k)__ U "
h (b)— (:1 my. — (2:1 511’” (b), for k23. (4.37)

I]

The derivatives are given in (4.2) of Raudenbush et a1. (2000) for k=3 to 6. Thus,
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Likewise,

E(Tgv

and

 

2 hm1(1))! 49(4) 12 8

5(1),): 4, aim/4115043,)

4%; ""1,“ -6wII.)/n)2u8

=0(n2)7'5'308 = 0(112)105[-h”(153)1—4

(4.38)

:00 awn-no": WED ”>411 T4=01n 0001 '4) =0(n ")
i=1

12:10) 12:10)
T,)= (b;5,) 

 

(b;-b,)

1053 3 (5,
3151“)“)h (b)0(n4) (4.39)

105 . . " . . . _
:315_I[ 1121 wII(1—2pII)/n][-n§ wII.(1 -2(1II)(1 -12wI.I.)/n]0(n 4)

=0(n 2)0(n '4)=0(n ‘2)
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 E(T2)=ZIh4I(4)“)'Ib‘)(b-I4=)I—-[5: "154l/4112E(6 —6)8
4]

i=1

afig; wII.(1—6)I»II.)/n)2118

:0(n2)7.5.308 = 0(n2)105[-h ”(6})1‘4

(4.38)

=0<n awn-mi 19110 ")/n1"‘=0(n2)0(n ‘4>=0(n ‘2)
(=1

Likewise,

h(31b hb(5)_ —-(-)(b,‘6;.)3 (b>

1053 (3) (5):3_!_5!h (b)h (5)0014)
(439)

ifs—STI-"§w.~,(1 -2u.,)/n][-«Z w)(1-2Fli><1-12%>/"10(" ‘4)

=0(n2)0(n '4)=0(n)

 E(TT) ’,(b-b)5

and
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”(4) n

E(T4§)=z{h 4Ebj16)(b-j)4:r[nsz n‘1II(.4)/4!]2E(bI—5I.)8

z 1 . _ ~ 2

my“ Wily") “8 (4.38)

=O(n2)7-5'308 = 0(n2)105[-h ”(5))1'4

=0(n 2)1os[—n()"; wI+D -')/n]-4=0(n2)0(n ‘4)=0(n '2)
i=1

  

Likewise,

ET<,T5,)= Mb)(,——b‘,) 17:“)I’,)(b 43,5)

=31—I9—55I3h <3>(13I)h <5>(bI)0(n '4) (4.39)

11% "If: wII.(1-2pII)/n][-nZWII(1 2p.)(112w)/n]0(n)

=0(n2)0(n H4)=0(n)

and
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11:12)
E(T3,): ’E(b-5,8)

=]_0:5i0(n 4)[-'2’”:“(3)]

"1(7)

33001-4) —2:m”n(b)}
nil

 

 

 

 

 

aaIamj6’/a .. .
1920016-: ( n”)(bI.)}

105 (91211723311-1-2w,) 12m‘3’21/an) (4'40)
———I-0(n 4) -Z " b)

any.

105 am -2|.1I.)w(1—60wI.I.+360wI)]

=—IO(n) -2 ’ b1 -
i=1 any

105 4
___8I_0(n ) —n::wII—(1 126wII+1680wII2. -504OwII.)/n

105

=--I-0(n ’4)0(n)=0(n ‘3)

Therefore, the Laplace6 approximation has an error of order 0(n'2) since

1 2

La lace8—La lace6=E T +—E T +E T T
p p (3) 2 (4) (35) (4.41)

=0(n ’3)+0(n "2)+0(n '2)=0(n ‘2).

The error of the G-point adaptive Gauss-Hermite quadrature approximation to the

integral (4.35) was proved by Liu and Pierce (1994) to be of order OUT-[Gm 11) where [x]

is the largest integer not exceeding x. I used their approach to derive the asymptotic

behavior of the adaptive Gaussian method and found a slightly different result. Since the
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proof is instructive and slightly different from theirs (and hence shows slightly different

results), detailed steps of the proof are given here.

In order to apply Liu and Pierce’s (1994) approach, [(b) in (4.36) must first be

shown to be a unimodal function. To show this, since it is constant with respect to b,

let’s assume XII/3 = O for simplicity. Then,

2

_ l bI.

2%”! nlog(l +exp[bI]) b."- (4.42)
1 1

n n 2nD

2

J

2nD

 

 =)7I.bI -log(1 +exp[bI.]) -

whence

_ — bf _fllfiL—ol’b. = —— — .(I) y, nD 1+exp[bI.] (4.43)

Since the two terms involving bI are strictly monotonic in the same direction, this can

only have one solution (root). Hence, [(bI) is unimodal.

For adaptive Gauss-Hermite, (4.35) can be written as

ffib)¢(b;fi,b)db (4.44)

where ¢(.; u,o) is the normal density with mean u and standard deviation 0, and
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Then,

flb) ‘

Thus,

11:1; (conditional mode), 6:\J 1 =\J 1

g(b)

—¢(b;l‘1,6)‘ 1 41(b-fl)2

ex ‘— —.'
I/thf, 2 o

 

  

-h ”(13) -n 1”(b‘) °

exp[nl(b)] , z 21:

. exp[nl<b)-fl@<b—6>21 .
-n1”(b) 2

 

 

 flfi>=flb)=\/2—1E <2 exp1n1(5)1= 23f. exp1n1<6>1 .
-nI (

A Taylor-series expansion offlb) gives

whence

Thus,

flb) =flb)1r(b) =45) [1 «g 4.02 —b‘)"1

1t(b) =exp[nl(b) -nl(b) -n—l:2/(—b)-(b -b)2].
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(4.46)

(4.47)

(4.48)

(4.49)



fexp[nl(b)]db= ffib)¢(b;b‘,a)db

'“2

= 1(6)f [1 I; c,I(b—1§)*]¢(b;13,6)db

‘°° .. ' ,, (4.50)

= f(l§)[1 +2 ckft "¢(t;0,o)dt]

k=l -...

ZG-l °°

: 1(5)[1+ Z ckftk¢(t;0,6)dt+ i cIftk¢(t;0,a)dz] .

k=l -... -...k=ZG

The first 2G-1 terms in the expansion (4.49) forf(b) are picked up exactly by the G—order

(adaptive) Gauss-Hermite quadrature (see Chapter 3) and so the error is of the same order

as the integral of the term involving c2“. Now, (by Taylor’s theorem)

 

_ 1 J 6120

620120)! Id b 20 “(bflbbi (4'51)

Liu (1993) showed that

dZG

b 20

 

n(b)|,.,;=0(n”G/3’) (4.52)

where [x] is the largest integer not exceeding x. So, we have

an co

620ft 2Gcb(t;0,(3)dt=c20620fx 20¢(x;0,l)dx

—°° '°° (4.53)

_ ‘ - (20)!
—CzG[-n l//(b)] 036a
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the latter fraction being the standard ZG-th normal moment (see Evans et al., 1993). Thus,

(4.54) becomes

1 [20/31 _ // ‘ (:90)! : [‘1I/(bA)]-G [20/31-0 : [-0/3]
(2G)10(" )[ n! (b)] —2GG1 ___—206!0(n ) 0(n ) (4.54)

i.e., the error of the adaptive Gauss-Hermite quadrature is of order 0(n‘"""3l). Note that for

G=1, which makes the adaptive Gauss Hermite the same as standard Laplace (PQL), the

error is 0(n") as shown by Tierney and Kadane (1986). Also, for the adaptive Gauss to

have an error of the same order as Laplace6 as obtained in (4.42), the smallest G has to be

is 4. This seems to corroborate the corresponding errors obtained in chapter 3 for

Laplace6 and adaptive Gauss with 4 quadrature points.
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Chapter 5

EVALUATION OF METHODS USING SIMULATED DATA

Introduction

This chapter compares four methods: PQL (Raudenbush, 1993), 6th order Laplace

(Laplace6) (Yang, 1998), Gauss-Hermite Quadrature (using MIXOR, Hedeker and

Gibbons, 1994), Adaptive Gauss-Hermite (using SAS PROC NLMIXED, 1999) using

groups of datasets simulated under the same models but varying parameter values and

cluster sizes. The simulations are based on two models, both simple hierarchical logistic

models, one with a univariate random effect and the other with bivariate ones. The

methods are compared in terms of 1) bias of their estimates; 2) mean squared error of the

estimates; 3) standard deviation of estimates across replications (datasets); 4) average of

standard errors of estimates from method; and 5) computational efficiency (speed).

Univariate Random Effect Model

Simulation Design

Eight groups of datasets were simulated using the following univariate random

effect model and specifications. The structure of the datasets follows Rodriguez and

Goldman’s (1995) rectangular structure. The level-1 and level-2 models are given by

Level-1 :

 

11,-- .
nII=log[ 1111.] =BOI+fiII*(chzld cov)II. (5.1)

U
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Level-2:

BOI,=YOO+YOI*(school cov)I.+u0I, uOI.~N(O,‘L')

5.2

pl1:710 ( )

resulting in the combined model

nII=y00 +Y01 *(school cov)I.+ylo *(child cov)II.+u0I., u0I~N(0,1:) (5.3)

The model can be thought of as a nested model where the dichotomous

outcome yII. is predicted, via the logit link, by a child—level covariate (“child cov”) and a

school-level covariate (“school cov”), where intercepts but not slopes vary across schools.

The level-1 predictor, child cov, was sampled from a normal distribution with mean

.0955621 and variance .0676, while school cov, the level-2 covariate, was sampled from a

normal distribution with mean -.6857591 and variance .2304. The values of the two fixed

effect parameters yo, and ylo are preset to l. The parameter values set for 7 00 correspond

to small and large values for the conditional expectation

 
0 1

(“15' ) = E(yijluj = 0) = (0) where

1+ exp[-1)I-I- ]

n§I°’=yIIO+1*(—.6857591)+1*(0955621). (5.4)
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To be exact, the two values used in the simulation for 700, -1.62 and 0.6653, correspond

to conditional expectation values ofI11 15-0) = 0.0988 and pig-O) = 0.5188 , respectively.

That is, the expectation that child i in school j obtains a 1 for yII is either .1 or .5 (10 or

50%). For the cluster variance parameter r , two values, 0.25 representing a small cluster

variance (i.e., variation among schools) and 1.0 representing a large one, were used in the

simulations.

For each of the 4 (yoox r) parameter combinations, two groups of 100 datasets

were simulated. This results in 8 sets of 100 simulated datasets. In the first group, the

datasets consist of 200 clusters (i.e., schools) with a cluster size of 20 children nested in

each school and in the second there are 2 children nested within each of 200 schools. The

following table summarizes the specifications used in the simulation.

Table 5.1 - Parameter Specifications

 

 

 

 

 

     

1: u 7 00 Cluster size

1.00 0.52 0.6653 20 2

0.1 -1.62 20 2

0.25 0.52 0.6653 20 2

0.1 -1.62 20 2 
 

Choice ofNumber ofReplications

The number of replications N of simulated datasets was chosen in such a way that

a medium effect size (d=0.5) representing the bias of an estimate for a single parameter

would be detected with at least 90% power and at 0.05 level of significance a. Table 2.3.5
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(p.37) of Statistical Power Analysis for the Behavioral Sciences (Cohen, 1988) gives

sample size=100 associated with 94% power for a two sample I test. So I chose the

number of replications N of simulated datasets to be 100.

For estimate 0 of parameter 6 , consider the hypotheses

H0: bias(0)=0 vs HA: bias(é)¢0. (5.5)

Since effect size d = bias(19A) / o = (E(6’) - 0 ) / o , this translates to tolerating bias

of up to 0.50' . Note that to compute the sample bias, I took the mean of 03‘ - 0 , where

the true value of the parameter 0 is known by (simulation) design. Thus, I can compute

the estimate of 0' as the standard deviation of 6k - 0 . Since PQL underestimates z'for

large 1', I am most interested in the bias of the estimation of 6 = tfor large 2'. I already

had 100 datasets generated using a bivariate random effects model with (intercept)

random effects variance F1625 (and 700 = — 1.2) and I have already found the

Laplace6 (L6) and Adaptive Gaussian quadrature (AGQ) estimates of the parameters for

these datasets. I also computed the sample standard deviations of the error of estimation.

As the standard deviations from the two methods are close to each other, I chose the L6

standard deviations (which are consistently smaller) to compute how large a bias I am

willing to tolerate. The results are summarized in the following table. Once two biases

(i.e., biases of two methods) are found to be significant in the same direction (i.e., both
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Table 5.2 - Percent Tolerated Bias of Estimates for Parameters

 

 

 

 

 

Parameter 0A tolerated bias=1/2( 6 ) % tolerated bias

700 = — 1.2 0.111 0.056 4.67%

701 = 1 0.104 0.052 5.2%

710 = 1 0.068 0.034
3_4%

r = 1.625 0.291 0.146 8.98%     
 

positive or negative), then they can be compared to see whether one is significantly more

biased than the other.

Using the mean square error (MSE), we have the hypotheses

H0: E(0I—0)2=E(02—0)2 vs HII: E(0I—0)2¢E(02—0)2 (5.6)

where 61 refers to L6 estimator and 02 refers to AGQ estimator. To test this, a (matched)

paired t test is used. Define

XI=(0II—0)2, Yk=(02,I-0)2, d,=X,—Y, , k=1.....N. (5.7)

By the central limit theorem (CLT), asymptotically (i.e., as N goes to infinity), it is

assumed that

J~N(5,oZ/N) where 5=E(0I—0)2—E(02—0)2. (5.8)
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Alternatively, we can take (1k = log(0’i k — 6)2 — log(0A2 k - 6)2 . (The bar chart of

this a'k , for 6 = Z' , looks more bell-shaped than that of the original dk which is clearly

skewed to the left.) To test the above hypothesis, t = (T / 3d- = «l N (_l- / s is used.

A medium effect size (d=0.5) using this paired t test leads to

d: ilJ|—l12i:|MSE1_MSE2i

O O

 :05 =. |MSEl -MSE2| =0.50 =0.5(.0215) =.0108 (5.9)

where GA 2 .0215 is the (sample) standard deviation ofXk — Yk obtained from the

(bivariate random effects model) simulation study mentioned above. Taking the

difference of the logs and using the delta method with Xm = (0;, — 6 )2 , we have

E(dII) =E[log(XIII) —log(X2II)] =E[log(éII -0)2 —log(02II-0)2]

MSEI (5.10)

1145152 '

 zlog[E(0 II-0)2] —log[E(02,I -e)2] =log[

Thus

05 |1( '=. =2 o

gMSE
2

d: Ipl 1121 : |log MSEI -log MSE2|

O O

  )|=0.So=0.5(.3866)=.1933(5I11)

where cf = .3866 is the (sample) standard deviation of logX1k — 10gX2k computed

from the simulation study mentioned above. This implies relative efficiency ofmethod 2
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to method] = MSE] / MSE2 = 6'1933 = 1.213. The relative efficiencies for the

MSE’s of fixed effects estimates are similarly computed. Table 5.3 summarizes the

results where o? for each parameter is the standard deviation of

logX1 k - 10gX2k computed for each parameter from the simulation study mentioned

above. I will take these relative efficiencies as the largest ones I am willing to tolerate

before I must declare one MSE is larger than another with adequate power.

Table 5.3 - Relative Efficiencies for MSE’s of Estimates

 

 

 

 

 

    
 

Parameter 0f rel. efl.= exp(oi‘ / 2)

700 0.495 1.281

7 01 1.308 1.923

710 0.857 1.535

2' 0.387 1.213

Running the Algorithms

PQL (which is similar to the standard Laplace) and Laplace6 were implemented in

Raudenbush, Bryk and Congdon’s HLM program. So the HLM program Version 5.20

was used to run these two methods with the specification that Laplace6 is going to be run

following PQL. The non-adaptive Gauss-Hermite method was run using Hedeker and

Gibbons’ Mixed Ordinal Regression Model (MIXOR) Version 2.0 program. For the

numerical integration that is required in this method, the default number of quadrature

points set by MIXOR for a single random effect, namely 10, was chosen. The adaptive
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Gauss-Hermite method was run on SAS Version 7 using PROC NLMIXED by

Wolfinger. This procedure (algorithm) selects the number of quadrature points adaptively.

The number selected is the one that gives a likelihood value of a negligible difference if

the next higher number of quadrature points was used. In this simulation study, it turns

out that the number of quadrature points selected by the procedure for all the runs was

either 3 or 5. Also, no initial values were specified for the parameters so that the

procedure itself assigns the default initial value of l to each parameter. All programs were

run on a 450 MHz PC with Pentium II processor.

In some of the runs, especially when the cluster size is small (cluster size=2),

' MIXOR had problems giving results. These problems include terminating but not giving

estimates at all, estimating only fixed effects parameters (i.e., estimating a different

model), not converging in 10000 iterations (after which I manually stopped it using

CTRL-C) and giving unreasonable estimate values (especially for 1:). All these cases,

where MIXOR didn’t run properly, were not considered and comparison with the other

methods should be based on those cases (datasets) where MIXOR ran properly.

Results

Bias: large cluster size. A cursory look at Table 4 (% Bias of Estimates) reveals

that when the cluster size is large (20 in this case), the biases of all the estimates from the

three methods except PQL are within reasonable limits. The only exception is for

710 when both the conditional expectation (corresponding to 700 = - 1.62 ) and r

(t = 0.25) are small, in which case none of the biases of the estimates are within

reasonable limits. For PQL, only the bias of small I (2' = 0.25) when the conditional
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Table 5.4 - Percent Bias of Estimates

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Cluster size Parameter PQL Laplace6 Gauss AGQ

20 yoo= .6653 -3.13% 2.49% 2.06% 2.74%

yo, = 1 -3.91°/o 1.48% 1.01% 1.72%

ym= 1 -2.73% 1.57% 1.66% 1.65%

t= 1.0 -12.70% -1.13% -l.10% -0.81%

700 = .6653 -2.03% 0.95% 0.95% 0.92%

yo 1 = -2.44% 0.49% 0.50% 0.47%

ym= 1 -l.25% 1.52% 1.53% 1.52%

t = 0.25 -7.44% 0.96% 1.00% 0.72%

700 = -1.62 -5.80% 0.27% 0.28% 0.23%

yo, = 1 -10.06% -2.38% -2.08% -2.05%

ym= 1 -6.01% -2.01% --2.03% -2.06%

r = 1.0 -24.60% -6.65% -6.63% -6.82%

yoo= -1.62 -4.57% -1.72% -1.73% -1.73%

70. = 1 -0.21% 2.79% 2.80% 2.80%

ym= 1 -6.29% -4.50% -4.51% -4.51%

r = 0.25 -16.04% -4.60% -4.88% -4.88%

2 yoo= .6653 -9.79% 8.37% 6.55%

40.09% (N=98) 8.45% (N=98) 6.82% (N=98) 6.57% (N=98)

yo. 1 -15.31% 1.57% -0.04%

-15.22% (N=98) 2.00% (N=98) 0.61% (N=98) 0.36% (N=98)

ym= 1 -18.49% -2.32% -3.71%

-17.71% (N=98) -1.21% (N=98) -2.39% (N=98) -2.62% (N=98)

r = 1.0 -62.66% 19.23% -0.22%

-61.91% (N=98) 21.66% (N=98) 3.54% (N=98) 1.82% (N=98)

yoo= .6653 -8.40% -2.27% -2_74%

-8.09% (N=79) -0.30% (N=79) -0.56% 01:79) -0.60% (N=79)

yo, 1 -5.68% 0.52% 0.71%

-5.47% (N=79) 2.38% (N=79) 2.18% (N=79) 2.14% (N=79)

y“, 1 1.95% 8.05% 8.87%

2.48% (N=79) 10.21% (N=79) 10.21% (N=79) 10.19% (N=79)

r = 0.25 -47.84% 33.52% 25.24%

-34.36% (N=79) 68.60% (N=79) 59.04% (N=79) 58.52% (N=79)

yoo= -1.62 -13.93% 1.33% -1.96%

-13.87% (N=88) 3.27% (N=88) 3.96% (N=88) -0.47% (N=88)

yo, 1 -4.65% 7.60% 5.66%

-5.09% (N=88) 8.64% (N=88) 9.60% m=88) 6.48% (N=88)

y“, 1 -11.14% 0.94% -1.46%

-12.09% (N=88) 1.47% (N=88) 0.78% =88) -1.83% (N=88)

'r = 1.0 -60.85% 4.99% -17.91%

-56.05% (N=88) 17.99% (N=88) 25.76% Q‘l=88) -7.74% (N=88)

yoo= -1.62 -2.85% 4.07% 2.78%

-2.24% (N=49) 1 1.42% (N=49) 1 1.92% (N=49) 8.55% (N=49)

701 1 '3-46% 0.47%
0.40%

-3.31% (N=49) 4.36% (N=49) 6.44% (N=49) 4.35% (N=49)

y”, 1 -9.41% -4.82% -3.72%

-3.61% (N=49) 5.53% (N=49) 5.17% (N=49) 3.44% (N=49)

1' = 0.25 -36. 16% 61.92% 29.04%

24.24% (N=49) 216.76% QV=49) 242.24% (N=49) 154.72% (N=49)
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expectation is large (corresponding to 7 00 = .6653) is within limits. All other PQL

estimates of 2' are significantly underestimated (negatively biased). The negative bias of

PQL estimate for a large 2' , along with a small conditional expectation, resulted in the

negative bias (underestimation) of all the other parameters (i.e., the fixed effects). For a

small conditional expectation, y 10 was still underestimated by PQL even for a small I .

Bias: small cluster size. When the cluster size is small (2 in this case), GQ (using

MIXOR) had difficulty estimating the parameters from some of the data, especially when

the dataset was generated with small 1' (Z' = 0.25 ). When both 1' and conditional

expectation are large, GQ worked (MIXOR ran) well on all but two of the datasets; in

one case, it terminated but didn’t give estimates, in the other, it fitted a model without the

random effect. In this case (of large T and conditional expectation), the methods based

on Gaussian quadratures worked the best, only the bias of the estimate of 7 00 being

significant, and PQL did the worst, the estimates of all parameters being significantly

negatively biased; for Laplace6, only the biases of 700 and z' are significant, both being

positively biased.

When both T and conditional expectation are small, GQ (MIXOR) performed the

worst; first of all, giving reasonable results in only 49 of the 100 cases (datasets), and

secondly, even in those cases giving a significant positive bias for all estimates

(especially for T , where the per cent bias is 242%). In this case, PQL gave the least bias

for Twith 24% (though it still was significantly biased). The fixed effects were all well

estimated, with only 710 being estimated with a larger than tolerable bias. For AGQ and
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Laplace6, the comparable estimates of7 00 were biased, as well (i.e., besides 710). It

should be pointed out that when all 100 replications (datasets) were considered (instead

ofjust the 49 for which MIXOR ran properly), the per cent biases of both Laplace6 and

AGQ for 7 00 were no longer larger than the percent tolerated bias. This is important

because the ‘bad’ cases for MIXOR are actually better for others.

When I is small but conditional expectation is large, PQL’s estimate has

tolerable bias only for 7 10 , while the biases from all the other methods (for the 79 cases

for which MIXOR gave reasonable estimates) were significant for 7 10 and r . When I is

large but conditional expectation is small, PQL’s estimate has tolerable bias only for 7 01 ,

while the biases from all the other methods were significant for 7 01 and t . (For the 88

cases where MIXOR gave reasonable results, the percent bias of the AGQ estimate for t

was less than the tolerated.)

Mean Squared Error: large cluster size. From the Mean Squared Errors table

(Table 5.5), we notice that when the cluster size is large, the MSE of the PQL estimate for

large 1: is larger than the other MSEs, while for small I , only the MSE of the PQL

estimate of yoo corresponding to a small conditional expectation is larger than the others.

MSEs for GQ, AGQ and Laplace6 are remarkably similar.

Mean Squared Error: small cluster size. When the cluster size is small, the MSEs

of the PQL estimates of small 1: are much smaller than the corresponding MSEs of all the

other estimates while the MSEs of the AGQ estimates of a large I are the smallest in their
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Table 5.5 - Mean Squared Errors

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Cluster size Parameter PQL Laplace6 Gauss AGQ

20 1100:9653 0.0191 0.0212 0.0214 0.0214

Yo1= 1 0.0337 0.0363 0.0381 0.0367

110- 1 0.0209 0.0223 0.0223 0.0223

T ___ 111 0.0296 0.0187 0.0185 0.0190

100 .6653 0.0075 0.0078 0.0078 0.0078

701- 1 0.0134 0.0137 0.0137 0.0137

11.6- 1 0.0127 0.0134 0.0134 0.0134

1 = 025 0.0017 0.0017 0.0017 0.0016

Yoo _ -1 _52 0.0301 0.0252 0.0256 0.0252

161: 1 0.0420 0.0376 0.0375 0.0376

710‘ 1 0.0383 0.0382 0.0382 0.0382

I = 10 0.0773 0.0341 0.0349 0.0348

100.462 0.0141 0.0101 0.0101 0.0101

1’01 2 1 0.0173 0.0195 0.0195 0.0195

on— ] 0.0439 0.0435 0.0435 0.0436

1 = 025 0.0058 0.0061 0.0060 0.0060

2 too __. .6653 0.0428 0.0608 0.0573

0.0434 (N=98) 0.0618 (N=98) 0.0582 (N=98) 0.0582 (N=98)

701 1 0.0746 0.0771 0.0740

0.0753 (N=98) 0.0778 01:98) 0.0747 (N=98) 0.0747 (N=98)

716 1 0.2158 0.2861 0.2725

0.2130 (N=98) 0.2848 (N=98) 0.2718 (N=98) 0.2707 (N=98)

I - 10 0.4147 0.7228 0.2175

0.4029 (N=98) 0.7173 (N=98) 0.2202 (N=98) 0.2016 (N=98)

too = .6653 0.0447 0.0522 0.0522

0.0474 (N=79) 0.0569 (N=79) 0.0556 (N=79) 0.0555 (N=79)

161: 1 0.0596 0.0721 0.0695

0.0617 (N=79) 0.0776 (N=79) 0.0752 (N=79) 0.0750 (N=79)

7.6: 1 0.1670 0.1984 0.1983

0.1822 (N=79) 0.2218 (N=79) 0.2218 (N=79) 0.2215 (N=79)

I = 025 0.0307 0.2152 0.1255

0.0228 (N=79) 0.2563 (N=79) 0.1455 (N=79) 0.1422 (N=79)

“0:162 0.1200 0.1312 0.1100

0.1269 (N=88) 0.1404 (N=88) 0.1501 (N=88) 0.1164 (N=88)

101 1 0.1134 0.1504 0.1388

0.1252 (N=88) 0.1666 (N=88) 0.1679 (N=88) 0.1538 (N=88)

716 — 1 0.4074 0.5641 0.5142

0.4475 (N=88) 0.6248 (N=88) 0.6160 (N=88) 0.5663 (N=88)

t = 1.0 0.4362 0.5060 0.3543

0.3689 (N=88) 0.4596 (N=88) 0.7498 (N=88) 0.2831 (N=88)

700 _ -1 .62 0.0684 0.1030 0.0914

0.0557 (N=49) 0.1273 (N=49) 0.1436 (N=49) 0.1028 (N=49)

16. 1 0.1242 0.1350 0.1353

0.1171 (N=49) 0.1370 (N=49) 0.1480 04:49) 0.1386 (N=49)

1'10 1 0.3351 0.3718 0.3757

0.3299 (N=49) 0.4056 (N=49) 0.4131 (N=49) 0.3921 (N=49)

t _—. 0.25 0.0537 0.3057 0.1904

0.0511 (N=49) 0.5679 (N=49) 0.7948 (N=49) 0.3285 (N=49)
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groups. As far as the estimation of 1: is concerned, the PQL and AGQ estimates seem to

have the lowest MSES of the four methods.

For small 1: and small conditional expectation, the order of the MSEs for 1:

estimates from smallest to largest was PQL, AGQ, Laplace6, GQ, each being

significantly larger than its predecessor in terms of relative efficiency (according to my

criteria in Table 5.3). For this case, the MSE of the PQL estimate of yoo was the smallest

followed by that ofAGQ which is significantly smaller than that of the largest, GQ. The 1.

Laplace6 estimate was not significantly different in terms of relative efficiency from

  
either of the Gauss based estimates. %

For large 1." and large conditional expectation, the MSE of the Laplace6 estimate of

r was by far the largest followed by that of PQL which was still significantly larger than

the other two MSE’s that are based on Gaussian quadratures. For this case, the MSE of

the PQL estimate of yoo was significantly smaller than the other MSEs.

When I is large but the conditional expectation is small, the MSE of the GQ

estimate was by far the largest while that of the AGQ estimate was by far the smallest;

there was no significant difference in terms of relative efficiency between the MSEs of

PQL and Laplace6.

For small I and large conditional expectation, the MSE of the PQL estimate of 1:

was by far the smallest, followed by those of the AGQ and GQ estimates in that order,

both of which were significantly smaller than the MSE of Laplace6 but were not

significantly different from each other. The MSEs of the fixed effects estimates from the

four methods were not different from each other.
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Accuracy ofStandard Error Estimates. For each method, the averages over all

replications of the printed standard errors of the estimates were computed and were

evaluated as estimators of the true standard deviations of the estimates. The latter were

estimated by the standard deviations across replications of the estimates. (Note that the

squares of these are the unbiased estimates of the variances.) These two standard error

Table 5.6 - Standard Error Estimates for PQL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Cluster size Parameter Avg SE of Estimates SD of Estimates Root MSE

20 700 = .6653 0.1330 0.1371 0.1382

701: 1 0.1588 0.1802 0.1836

on= 1 0.1385 0.1426 0.1446

r= 1.0 0.1124 0.1166 0.1720

700 = .6653 0.0857 0.0858 0.0866

761:1 0.1023 0.1138 0.1174

710—1 0.1309 0.1124 0.1127

‘1 = 0.25 0.0451 0.0367 0.0412

700 - -l .62 0.1375 0.1466 0.1735

701: 1 0.1733 0.1794 0.2049

710— 1 0.1894 0.1873 0.1957

1 = 1.0 0.1267 0.1303 0.2780

700 = -1.62 0.0996 0.0935 0.1187

701:] 0.1308 0.1322 0.1315

710— 1 0.1953 0.2010 0.2095

1 = 0.25 0.0707 0.0648 0.0762

2 700 — .6653 0.2056 0.1972 0.2069

y01= 1 0.2429 0.2273 0.2731

710- 1 0.4213 0.4283 0.4645

1 = 1.0 0.2519 0.1491 0.6440

700 - .6653 0.1969 0.2049 0.21 14

yo, = 1 0.2348 0.2386 0.2441

710— 1 0.4138 0.4103 0.4087

1 = 0.25 0.2276 0.1287 0.1752

700 = -l .62 0.2543 0.2642 0.3464

701= 1 0.3372 0.3352 0.3367

710- 1 0.5943 0.6317 0.6383

'1 = 1.0 0.4626 0.2580 0.6605

700 = -1.62 0.2644 0.2587 0.2615

701= 1 0.3543 0.3525 0.3524

710— 1 0.6290 0.5740 0.5789

r = 0.25 0.4956 0.2144 0.2317
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estimates were computed and tabulated along with the root MSE and discussed for each

method.

For PQL (Table 5.6), the averages of standard errors of estimates appear to be

quite good estimates of the corresponding standard deviations of estimates when the

cluster size is large. But when cluster size is small, the averages of the standard errors of

the r estimates consistently overestimate (are larger than) the standard deviations of the

estimates. For all these cases, except for small 1: along with small conditional expectation, 1%.

there were large discrepancies between the standard deviations of estimates and root

MSEs, indicating significant biases which were confirmed by the Bias table (Table 5.4).

 
The discrepancies (and the biases) were also large for large 1, when cluster size was large.

As well, there appeared to be discrepancies between the standard deviations and root

MSEs for the intercept for small conditional expectation.

The averages of standard errors of estimates are also quite close for Laplace6

(Table 5.7) to their corresponding standard deviations of estimates, when the cluster size

is large. When cluster size is small, the average standard errors of estimates of 1: appear to

underestimate the standard deviations when the conditional expectation is large and

overestimate the standard deviations when the conditional expectation is small. For small

conditional expectation, the average standard error of the child slope ym and its

corresponding standard deviation of estimates appear to be somewhat discrepant. In

general, there doesn’t appear to be that much of a discrepancy between the standard

deviations of estimates and the root MSEs for Laplace6.
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Table 5.7 - Standard Error Estimates for Laplace6
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Cluster size Parameter Avg SE of Estimates SD of Estimates Root MSE

20 700: .6653 0.1414 0.1453 0.1456

701:1 0.1696 0.1910 0.1905

710— 1 0.1430 0.1491 0.1493

1 = 1.0 0.1405 0.1369 0.1367

700 ’ .6653 0.0896 0.0886 0.0883

701-1 0.1086 0.1173 0.1170

7.0— 1 0.1355 0.1155 0.1158

1 = 0.25 0.0520 0.0409 0.0412

700— -l .62 0.1535 0.1594 0.1587

701= 1 0.1930 0.1934 0.1939

7.0— 1 0.1984 0.1954 0.1954

r= 1.0 0.1729 0.1731 0.1847

700: -1.62 0.1079 0.0971 0.1005

161 = 0.1399 0.1375 0.1396

710= 1 0.2019 0.2048 0.2086

1 = 0.25 0.0823 0.0774 0.0781

2 700 = .6653 0.2597 0.2414 0.2466

701= 1 0.3107 0.2785 0.2777

710— 1 0.4967 0.5371 0.5349

1 = 1.0 0.6097 0.8323 0.8502

700 - .6653 0.2175 0.2291 0.2285

Ym = 0.2630 0.2698 0.2685

710 — 1 0.4426 0.4403 0.4454

T = 0.25 0.3751 0.4586 0.4639

700 — -1.62 0.3624 0.3633 0.3622

701= 1 0.4178 0.3823 0.3878

710— 1 0.6791 0.7548 0.7511

1 = 1.0 0.9309 0.7132 0.7113

700= -l .62 0.3299 0.3157 0.3209

701: 1 0.3907 0.3692 0.3674

710— 1 0.6699 0.6109 0.6098

1 = 0.25 0.7158 0.5334 0.5529
 

 

 
For Gaussian quadratures (Table 5.8), only the average of standard errors of t

estimates for small 1: and small conditional expectation appear to differ much from

(underestimate) the standard deviation of estimates, when the cluster size is large. When

the cluster size is small, the average standard errors of t estimates were always different
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Table 5.8 - Standard Error Estimates for Gauss

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cluster size Parameter Avggof Estimates SD of Estimates Root MSE

20 yoo= .6653 0.1387 0.1463 0.1463

701— 1 0.1664 0.1958 0.1952

7.0— 1 0.1431 0.1490 0.1493

‘t = 1.0 0.1372 0.1363 0.1360

700 7‘ .6653 0.0897 0.0886 0.0883

701=1 0.1086 0.1174 0.1170

710— 1 0.1355 0.1155 0.1158

T = 0.25 0.0263 0.0409 0.0412

700: -1.62 0.1527 0.1606 0.1600

161:1 0.1919 0.1935 0.1936

710- 1 0.1984 0.1955 0.1954

1 = 1.0 0.1660 0.1756 0.1868

700= -1.62 0.1078 0.0971 0.1005

701= 1 0.1398 0.1375 0.1396

716: 1 0.2019 0.2048 0.2086

1 = 0.25 0.0403 0.0770 0.0775

2 yoo= .6653 0.2535 (N=98) 0.2382 (N=98) 0.2412 (N=98)

yo, = 1 0.3036 (N=98) 0.2747 (N=98) 0.2733 (N=98)

710= 1 0.4934 (N=98) 0.5235 (N=98) 0.5213 (N=98)

r = 1.0 0.6160 (N=98) 0.4703 (N=98) 0.4693 (N=98)

700 .6653 0.2240 (N=79) 0.2374 (N=79) 0.2358 (N=79)

yo, = 0.2721 (N=79) 0.2751 (N=79) 0.2742 (N=79)

710: 1 0.4535 (N=79) 0.4627 (N=79) 0.4710 (N=79)

t = 0.25 0.2632 (N=79) 0.3540 (N=79) 0.3814 (N=79)

700= -1.62 0.3790 (N=88) 0.3842 (N=88) 0.3874 (N=88)

yo, = 1 0.4315 (N=88) 0.4007 (N=88) 0.4098 (N=88)

710 = 1 0.6926 (N=88) 0.7893 (N=88) 0.7849 (N=88)

1: = 1.0 1.1703 (N=88) 0.8315 (N=88) 0.8659 (N=88)

700 - -1.62 0.3967 (N=49) 0.3294 (N=49) 0.3789 (N=49)

yo, = 1 0.4314 (N=49) 0.3832 (N=49) 0.3847 (N=49)

on= 1 0.7101 (N=49) 0.6473 (N=49) 0.6427 (N=49)

r = 0.25 0.8847 (N=49) 0.6610 (N=49) 0.8915 (N=49)      
 

from the standard deviations of estimates (larger except for small ‘C when the conditional

expectation is large). When the conditional expectation was small, the average standard

errors of the 710 estimates were somewhat different as well from their standard deviation

counterparts. When both 1: and the conditional expectation were small, almost all the

averages of the standard errors of the estimates (except perhaps the school effect '70,)
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were different from their corresponding standard deviations. This was the case where

Gauss had difficulty giving estimates with only 49 out of the 100 datasets giving sensible

results. Only in this case was there a discrepancy between the standard deviation of the

(small) 1: estimates and their root MSEs. For no other estimate did Gauss appear to have a

Table 5.9 - Standard Error Estimates for AGQ

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Cluster size Parameter Avg SE of Estimates SD of Estimates Root MSE

20 700: .6653 0.1410 0.1457 0.1463

ym=l 0.1684 0.1917 0.1916

ym= 1 0.1420 0.1493 0.1493

1 = 1.0 0.1382 0.1382 0.1378

700 = .6653 0.0884 0.0886 0.0883

70:] 0.1056 0.1173 0.1170

710=1 0.1331 0.1155 0.1158

T = 0.25 0.0506 0.0408 0.0400

700—162 0.1514 0.1595 0.1587

701— 1 0.1892 0.1938 0.1939

710— 1 0.1939 0.1953 0.1954

1 = 1.0 0.1664 0.1745 0.1865

700: -l .62 0.1046 0.0971 0.1005

701= 1 0.1351 0.1375 0.1396

710- 1 0.1974 0.2048 0.2088

1 = 0.25 0.0786 0.0769 0.0775

2 700 — .6653 0.2496 0.2365 0.2394

761: 1 0.2977 0.2734 0.2720

710— 1 0.4792 0.5234 0.5220

‘1' = 1.0 0.4687 0.4664

0.5745 (N=98) 0.4509 (N=98) 0.4490 (N=98)

700 .6653 0.2028 (N=99) 0.2288 0.2285

701 = 0.2443 (N=99) 0.2649 0.2636

7,0- 1 0.4209 (N=99) 0.4386 0.4453

1 = 0.25 0.3503 0.3543

0.4123 (N=79) 0.3498 (N=79) 0.3771 (N=79)

700 - -1.62 0.3229 (N=99) 0.3317 0.3317

701 - 1 0.3745 0.3701 0.3726

710- 1 0.6216 0.7205 0.717]

r = 1.0 0.7308 (N=91) 0.5705 0.5952

700: -1.62 0.2971 (N=96) 0.3004 0.3023

Y01= 1 0.3450 (N=95) 0.3696 0.3678

710: 1 0.5368 (N=95) 0.6149 0.6129

1 = 0.25 0.7263 (N=55) 0.4325 0.4363   
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discrepancy between the standard deviation and root MSE. Incidentally, I used the delta

method to compute the standard error of the random effects variance for GQ, since

MIXOR gives the standard error of the random effects standard deviation instead of the

variance.

For AGQ (Table 5.9), the average standard errors of estimates and the

corresponding standard deviations were always quite close when the cluster size was

large. When the cluster size was small, the standard errors of the r estimates tend to

overestimate the corresponding standard deviations. For large 1.’ and small conditional

expectation, the standard error of the child effect (slope) y“, estimates also seemed to be

discrepant from (underestimate) the corresponding standard deviation. There appeared to

be no discrepancy between the standard deviations of estimates and the root MSEs for

any of the estimates.

The standard deviations of estimates across replications are consistently the

lowest for PQL, especially for the estimation of ‘1: when the cluster size is small. This may

be attributable to the larger biases that PQL suffers from compared to the other methods.

For the latter cases (estimation of I when the cluster size is small), AGQ has the next

lowest standard deviations of estimates. In view of the fact that AGQ suffers the least

biases among all the methods, this suggests that AGQ estimates uncertainty more

accurately than do the other methods.

Computational Efficiency (speed). Incredibly, for those runs that converge for GQ,

GQ was by far the fastest. But this is an unfair comparison because while the other

methods (actually programs) eventually converge for virtually all datasets, GQ went into
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an infinite loop for some of them that I had to manually stop (after 10000 iterations).

Incidentally, GQ always converged when the cluster size was large (cluster size=20). For

large cluster size (n=20), AGQ appeared to be by far the slowest. In this case, PQL is the

next fastest followed by Laplace6, which is understandable because, in HLM, PQL has to

finish before Laplace6 begins.

Table 5.10 - Average Speed in Seconds

 

  

 

 

 

 

 

 
 

 

       

Cluster size Parameter PQL' Laplace62 Gauss AGQ

T You

20 1.0 0.6653 8.58 18.61 2.71 39.72

0.25 0.6653 8.62 18.75 2.39 43.30

1.0 -1.62 8.73 21.73 3.11 50.93

0.25 -1.62 9.43 22.08 2.58 60.45

2 1.0 0.6653 9.73 (N=98) 12.59 (N=98) 0.47 (N=98) 5.34 (N=98)

0.25 0.6653 13.40 (N=79) 14.37 (N=79) 12.06 (N=79) 19.87 (N=79)

1.0 -1.62 12.81 (N=88) 17.78 (N=88) 0.69 (N=88) 7.33 (N=88)

0.25 -1.62 37.59 (N=49) 39.94 (N=49) 0.87 (N=49) 14.69 (N=49)
 

 
When the cluster size is small, AGQ performed quite well in terms of speed. It

was the next fastest (after GQ) on the average in all cases except when r was small and

the conditional expectation was large, where it was the slowest. Even in this case, it was

by far faster than the other two when run over all the datasets, including those that didn’t

produce sensible results under MIXOR (GQ), some runs of which went into infinite loops

for GQ.

Summary ofResults. In summary, when the cluster size is large, all the methods

appear to have performed quite well except that PQL was frequently the most biased and

sometimes had the largest MSEs. However, it (PQL) gave the smallest standard

 

' For PQL and Laplace6, time=creation of SSM file + running of actual model.

2 For Laplace6, PQL has to be run first so as to get initial estimates so its time is always greater than PQL.
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deviations of estimates and average standard errors of estimates (perhaps due to its large

bias), though not by that much, and had the next fastest time following GQ. In this case,

GQ had the best performance, being by far the fastest among all methods and having

comparable biases (non-significant), MSE, standard deviations of estimates and average

standard errors of estimates with the other two methods (Laplace6 and AGQ). Laplace6

was more than twice as fast on the average as AGQ and comparable to it in other

respects.

When cluster size is small, GQ appeared to be the worst offender, not giving

results many times, especially when the random effects variance is small (and also the

conditional expectation is small), and when it gave results they were sometimes biased,

especially when the random effects variance and/or the conditional expectation are small

(when both are small, its estimates were always biased). AGQ appears to be the best in

this instance being faster (overall) than the remaining methods, and having the least

MSEs. Besides, whenever it was biased, Laplace6 was biased, too, with one case (when

both variance 1 and conditional expectation are large) where Laplace6 was biased and

AGQ was not, and its standard deviations of estimates are almost always smaller than

Laplace6. Laplace6 is biased in fewer instances than PQL, especially when the random

effects variance is large, but sometimes had more MSE than PQL. PQL had the smallest

standard deviations of estimates as well as smallest average standard errors of all methods

which is likely due to its having the most bias.
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Bivariate Random Effects Model

A group of 100 datasets was simulated using a bivariate random effects model

which has the same level-l equation as the univariate case, but differs in level-2

equations which are now replaced by

130]- :YOO +Y01 * (SC/7001 c0v)I +u
Oj’

5.12

pljZY10+ulj ( )

so that the combined model becomes

11,-,- =Yoo +1’01 *(SChOOl COV)I. +Y 10 *(child cov)II. +uOI +uII. *(child cov)II.,

[110+ [(1] too 1701 (5.13) 1‘3

u'J O ’1701 111

where 2'00 = 1.625, 2'”: 0.25, and To, =0 .l.

 

As in the univariate case, this model can be thought of as a nested model where

the dichotomous outcome yII. is predicted by a child-level covariate (“child cov”) and a

school-level covariate (“school cov”). In this case, slopes as well as intercepts vary across

schools. The level-1 predictor, child cov, was sampled from a normal distribution with

mean .0955621 (and variance 1), while school cov, the level-2 covariate, was sampled

from a normal distribution with mean -.685759l (variance 1). The values of the two fixed

effect parameters yo, and Y10 are preset to l. The parameter values for 7 00 was set at -1.2

which corresponds to an conditional expectation E( yII | u, = 0) of 0.14.

Again the rectangular structure of Rodriguez and Goldman (1995) is followed in

the datasets with 20 hypothetical children nested within each of 200 hypothetical schools
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for a total of4000 children in each dataset. The number of replications was determined in

a similar manner as in the univariate cases. In fact, it was this group of 100 datasets that

was previously generated that was used to obtain estimates for the standard deviations in

the formula for effect size.

The four methods were run on the 100 datasets generated with the above

hierarchical logistic model with bivariate random effects the same way (i.e., with the same

program specifications) as they were for the groups of datasets with univariate random

effects and on the same machine. The only difference was that I specified an initial value

of -1.0 for the intercept parameter 700 for AGQ (i.e., PROC NLMIXED in SAS). I did this

after SAS gave a ‘No valid parameter points were found’ message and terminated without

producing results when I ran the model with no initial (starting) values for the parameters.

By default, SAS assigns an initial value of l to each parameter. Incidentally, SAS

adaptively selected 7 to be the number of quadrature points used for each of the runs.

Again, 10 quadrature points were specified for MIXOR.

The results are summarized in Tables 5.11 and 5.12. From Table 5.11 we can see

that PQL’s estimates of all parameters are (negatively) biased while the percent biases

from the other estimates are within reasonable limits. Incidentally, the same percent

tolerated biases as for the univariate case are used here for the common parameters while

the percent tolerated biases for 1'” and r01 are computed to be 18.4% and 49% respectively.

Using the same tolerated relative efficiencies of the MSEs as before for the

common parameters and taking the computed tolerated relative efficiencies of 1.689 for To,

and 1.650 for r“, the MSE of the PQL estimates were found to be larger than the others
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Table 5.11 - Percent Bias, MSE and Speed for Bivariate Random Effects Model

 

 

 

 

 

 

 

 

 

 

 

 

 

  parentheses)      

Title Parameter Pmi Laplace6 Gauss AGQ

%Bias 100=-1.2 -9.33% 4.33% 0.04%

-9.26% (N=97) -0.38% (N=97) 0.03% (N=97) -0.l8% (N=97)

1,,=1 -1 1.26% 4.34% -0.51%

-1 1.46% (N=97) -1.56% (N=97) -0.77% (N=97) -0.51% =97)

y,,=1 2.01% -0.71% -0.63%

-9.1 1% (N=97) -0.82% (N=97) -0.74% (N=97) -0.80% (N=97)

6151.625 -23.38% 2.06% 2.17%

-23.80% (N=97) 2.61% (N=97) 2.63% (N=97) -1 48% (N=97)

1:01=0.1 48.20% -8.39% -8.11%

49.00% (N=97) 9.70% (N=97) -9.20% (N=97) -7.85% =97)

111=0.25 41.16% -1.60% 4.74%

40.920/gN=9A -1.28% (N=97) 4.48% (N=97) -5.05°/gN=97)

MSE 100:-12 0.0223 0.0122 0.0145

0.0224 (N=97) 0.0125 (N=97) 0.0149 (N=97) 0.0126 (N=97)

'70,=l 0.0212 0.0108 0.0123

0.0218 (N=97) 0.0110 (N=97) 0.0125 (N=97) 0.0112 (N=97)

y,,,=1 0.0116 0.0047 0.0048

0.01 18 (N=97) 0.0047 (N=97) 0.0049 (N=97) 0.0048 (N=97)

100:1 .625 0.1896 0.0847 0.0970

0.1945 (N=97) 0.0848 (N=97) 0.0983 (N=97) 0.0925 (N=97)

101=0.l 0.0074 0.0094 0.0102

0.0074 (N=97) 0.0094 (N=97) 0.0103 (N=97) 0.0103 (N=97)

r11=0.25 0.0147 0.0083 0.0084

0.01461N=97) 0.0084 (N=97) 0.0085 (N=97) 0.0086 (N=97)

Average speed N=100 10.80 (2.29) 31.71 (13.17) 41.21 (29.12) 457.75 (147.66)

"‘ 5°“ (SD "' N=97 10.82 (2.32) 31.85 (13.35) 40.82 (28.89) 457.44 (149.91)

 

for all parameters except 701, and 701 with respect to the GO estimators. The relative

efficiencies of the MSEs of all the other estimators are within reasonable limits of each

other.

As in the univariate random effects case, the standard deviations ofPQL estimates

were the smallest (Table 5.12) of all the standard deviations of estimates across replicates

for all parameters and methods though not by that much and the standard deviations of

estimates of all the other methods didn’t seem to differ from each other. This is not

surprising considering the fact that PQL’s estimates of all parameters displayed significant

72

 

 



Table 5.12 - Standard Error Estimates for the Bivariate Model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Title Parameter Avg SE of Estimates SD of Estimates Root MSE

PQL yOO=-1.2 0.1097 0.0995 0.1493

7,, =1 0.0984 0.0926 0.1456

Y10=l 0.0592 0.0594 0.1077

100=1.625 0.1793 0.2138 0.4354

1050.1 0.0764 0.0713 0.0860

1,3025 0.0641 0.0642 0.1212

Laplace6 yoo=-l .2 0.1282 0.1 1 11 0.1105

701=1 0.1163 0.1035 0.1039

710:1 0.0740 0.0682 0.0686

1051.625 0.2610 0.2906 0.2910

1050.1 0.1 1 13 0.0971 0.0970

111=0.25 0.0919 0.0912 0.0911

Gauss 700:4 .2 0.1197 0.1210 0.1204

701:1 0.1098 0.1114 0.1109

710:1 0.0733 0.0697 0.0693

1051.625 0.2467 0.3110 0.3114

1050.1 0.1101 0.1012 0.1010

115025 0.0908 0.0912 0.0917

AGQ 700:4 .2 0.1260 0.1 129 0.1122

(N=97) 701:] 0.1124 0.1063 0.1058

ym=l 0.0724 0.0695 0.0693

100:1.625 0.2550 0.3047 0.3041

tOI=0.l 0.1068 0.1018 0.1015

111:0.25 0.0859 0.0924 0.0927    
 

 
biases which is borne out by the fairly large discrepancies between the stande deviations

and corresponding root MSEs for PQL.

The average standard errors of PQL estimates were again the smallest while the

average standard errors of estimates from other methods didn’t differ that much from each

other. This again is due to the bias that PQL suffers in contrast to the other methods as

there were no tangible discrepancies between the average standard errors and the standard

deviations of estimates for all methods. The standard errors of the variance-covariance

components for GQ were computed using the multivariate delta method as MIXOR gives
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the standard errors of the elements of the Cholesky matrix of the variance-covariance

estimates matrix.

Finally, PQL was by far the fastest method (Table 5.11)— about three times as fast

as Laplace6, about four times as fast as GQ (Gauss), and a whopping 42 times as fast as

AGQ — for this group of datasets, followed by Laplace6, GQ and AGQ, in that order. AGQ

was by far the slowest. Besides, it failed to converge for 3 of the 100 datasets with the

error message “No valid parameter points were found.” It might have converged if I

specified more accurate (i.e., closer to the true parameters’ values) initial values for the

parameters.

In summary, for this group of datasets simulated with a hierarchical logistic model

with bivariate random effects, Laplace6 (as implemented in HLM) seems to perform the

best overall. PQL, though by far the fastest, suffers from significant (negative) biases, and

AGQ (as implemented by SAS) suffers from slowness and the need to specify accurate

initial values for the parameters which can be problematic if we don’t have a good bunch

ofwhat they might be. The non-adaptive Gauss is quite comparable to Laplace6 but, as

implemented in MIXOR, it has the inconvenience of not directly giving the standard errors

of the random effects variance-covariance components; it gives the standard error of their

Cholesky (“square root”) components instead. Once this is taken care of, it appears to be a

good candidate to compete with Laplace6 for the case of these bivariate random effects

data.
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Chapter 6

AN APPLICATION IN EDUCATION

Introduction

In this chapter, real-life educational data is analyzed using the four methods --

namely, PQL, Laplace6, non-adaptive and adaptive Gauss-Hermite quadratures -- to see  
how they perform. The data set used is the 1988 Thailand National Survey of Primary

Education (henceforth called the Thailand data). A dichotomous outcome is selected to 1

illustrate the use of hierarchical logistic model that is the focus of this thesis.

 
Description of the Thailand Data h 1

The Thailand data (USAID contract DPE-5824-A00-5076-00) is a national survey

of more than 400 primary schools in Thailand conducted in 1988 by a research team from

the College of Education at Michigan State University and Office of the National

Educational System of the Royal Thai Government. It was “a multipurpose survey of

 conditions, practices, outcomes, and costs of primary schooling.” (Raudenbush et al.,

1993).

The survey used a multistage cluster sampling scheme. Thailand has 12 multi-

province educational regions plus the Bangkok metropolitan area as the 13th region. While

the latter is a single province, a typical educational region includes about seven or eight

provinces. Altogether, there are 72 provinces in Thailand, each one within one and only

one educational region. There are a number of districts within each province, and a

number of schools within each district.
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The first stage of sampling involved a stratified random sample of 25% (i.e., n=18)

of the provinces within strata comprising of educational regions. Twenty percent of the

districts within provinces, and 30% of the schools within districts were sampled randomly.

One sixth-grade class was selected at random from each sampled school (though many

schools contain only one sixth-grade class) and all students within each selected class were

administered a student survey questionnaire. (At the person level, samples were also

drawn from three other populations: principals, teachers, and parents. Here, we are only

interested in the student data.) School level data (for the schools from which the classes

were drawn) was also collected. Altogether, more than 400 schools were randomly F

 
selected and data collected on almost 10,000 (sixth-grade) students within the schools

(Raudenbush et al., 1993; Raudenbush and Bhumirat, 1992). Unfortunately, due to

insufficient data at both school and student levels, there remained 392 schools with 8194

students for this analysis.

Since 1980 Thailand had launched programs to improve the quality of education.

This included a pre-primary education program to improve student readiness for school,

staff development programs for teachers, and national testing programs to hold educators

accountable for student learning by requiring students to demonstrate basic skills before

advancing to the next grade.

The medium of instruction in class is the central Thai dialect. Students who don’t

speak central Thai at home maybe disadvantaged in their schooling, an argument not

unlike the advocacy for the use of ebonics to teach underprivileged African-American

students. So, my research question here is whether students who don’t speak central Thai
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at home are more likely to repeat a grade in primary school after accounting for other

relevant student and contextual (school) factors.

Formulation of Hypothesized Model

As mentioned above, it may well be that the pre-primary education program the

government launched was effective. Hence, taking pre-primary education may result in

less probability of repeating a grade for a student. Another relevant variable, which almost

always has a positive effect on student achievement and thus might negatively affect the

probability of repeating a grade, is the student’s (family’s, to be precise) socioeconomic

status (SES). Student nutrition, as represented by whether the student has breakfast

everyday, might have an effect on the student’s attention in class and hence on his

performance. Traveling time from home to school is another interesting variable to

consider since students whose homes are far away from school, especially the ones living

in rural areas, are more likely to come to school late or be absent from school. Finally, it

would be interesting to see if there are gender differences in the probability of repeating a

grade.

In summary, I will use the following the student-level variables in my model:

outcome variable — whether student repeated grade(s) in primary school (REP, l=yes,

0=nox

research variable — whether the student speaks central Thai at home or not as reported by

student(DIALECT, l=central Thai, 0=other);

covariates —— pre-primary experience (PPED, 1= 1 or more years of pre-primary education,

0=none) based on student report; SES (SESC, derived from measures of parents’
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education and occupation as well as the natural logarithm of the amount of pocket money

the student typically brings to school as reported by student, grand mean centered);

nutrition (BRF, 1=student eats breakfast daily, 0=not daily); time needed to travel from

home to school (in hours) (L_HSTC, log and centered); and gender (DSSEX, l=ma1e,

0=female). Thus, my hypothesized model at level-l (student level) would be

 10g[ 11-1it ]=13III,+13II(SESC)II+132I.(L_HSTC)I+pII(DSSEX)II

U

+13III(DIALECT)II+115I.(BRT)II+136I(ppED)I

(6.1)

Student learning is not only influenced by student factors but also by relevant

environmental factors. Some school factors that would contribute to student learning

include availability of facilities in school, availability of textbooks and mean school SES.

The availability of facilities in school (ZFACTOTC) is an aggregated variable derived

from l8-item scale (and grand-mean centered) including primarily equipment used for

instruction (“hard technologies”) but also some equipment that could be used for

administration. The items included the presence or absence of a Thai typewriter, English

typewriter, copying machine, slide projector, overhead projector, amplifier, radio cassette,

radio, tape module, television, etc. The availability of textbooks and workbooks

(MTXTBKC) is the sum of the texts and workbooks available for student use (as reported

by student) across the five areas of the curriculum (and averaged for school) and then

grand mean centered. Student SES was aggregated to the school level and then grand mean

centered to create mean school SES (MSESC).
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Note that the school level variables are for grade 6, i.e., they were taken (measured)

when the student was in grade 6. However, the outcome variable pertains for the whole

duration of the student’s primary education. Therefore, the assumption is made here that

there isn’t much mobility of students across schools during the students’ primary school

years.

Besides these three school level variables directly (i.e., through the level-1

intercept) having an effect on the log-odds of repetition for a student, I am hypothesizing

that some of the level-1 effects may be in some way affected by one or more of these level-

2 predictors. The student’s SES effect on the log-odds of grade repetition may be mediated

by the student’s school mean SES, in the sense that the effect of SES on the log-odds of

repetition for a low-SES student attending a high mean SES school may be offset by the

advantage of attending the high mean SES school. The availability of facilities and

textbooks might likewise affect the effect of the student’s SES on the student’s log-odds

of repeating a grade. The latter two school-level variables are also hypothesized to mediate

the effect of dialect, the research variable, on the log-odds of repetition. Furthermore, only

the level-1 intercept term is hypothesized to have a random effect at level 2. This decision

was made after a preliminary run where random effects terms that were added at level 2

for the coefficients of the only two non-dichotomous covariates at level-l, namely, SESC

and L_HSTC, turned out to be non-significant. So, my hypothesized model at level-2

(school level) would be
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80} =Y00 +‘YOI(MSESC)I. +‘Y02(ZFACTOTQI. +Y03(MTXTBKC)I +uOI., u0I~N(0,‘L')

13”.:on +y 1 I(MSESC)I. +1 12(ZFA CTOTC)I.+1 I,(MTXTBKC)I.

132) :Yzo

1331:1130 (6.2)

134I=140+14I(ZFA CTOTC)I+y,,(MTXTBKC)I

1351450

136):Y60

Results

The descriptive statistics of the variables used in this analysis are summarized in

Table 6.1. My hypothesized model was estimated using the four methods and the estimates

Table 6.1 - Descriptive Statistics for the Thailand Data

 

 

 

 

 

 

 

 

       
 

 

 

 

 

Student Level

VARIABLE N MEAN SD MINIMUM MAXIMUM

SESC 8194 -0.00 0.69 -l.76 3.48

L_HSTC 8194 -0.00 0.71 -2.74 1.97

DSSEX 8194 0.51 0.50 0.00 1.00

DIALECT 8194 0.47 0.50 0.00 1.00

BRF 8194 0.84 0.37 0.00 1.00

PPED 8194 0.49 0.50 0.00 1.00

REP 8194 0.14 0.35 0.00 1.00

School Level

VARIABLE N MEAN so MINIMUM MAXIMUM

ZFACTOTC 392 0.00 0.39 -0.88 1.50

MSESC 392 -0.00 0.45 -0.93 2.01

MTXTBKC 392 -0.01 1.82 -5.91 2.63         
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of the parameters (fixed effects as well as random effects variance) and their standard

errors from the four methods are summarized in Table 6.2.

Table 6.2 - Estimates for the Hypothesized Model

 

Parameter PQL Laplace6 Gauss-10 AGH

 

Intercept 2036* (0.137) 2223* (0.138) 2256* (0.141) -2.2l8* (0.147)
 

MSESC -0.989* (0.214) -l.176* (0.249) -1.155* (0.260) 4094* (0.231)
 

ZFACTOTC 0.295 (0.243) 0.333 (0.251) 0.286 (0.253) 0.303 (0.263)
 

MTXTBKC 0.073 (0.051) 0.086 (0.055) 0.076 (0.055) 0.079 (0.055)
 

SESC -0.566* (0.100) 0544* (0.107) 0602* (0.107) 0592* (0.103)
 

MSESC 0388* (0.161) 0406* (0.186) 0438* (0.188) 0413* (0.168)
 

ZFACTOTC 0546* (0.208) 0772* (0.277) 0540* (0.274) 0572* (0.214)
 

MTXTBKC 0021 (0.054) 0018 (0.046) -0.010 (0.047) 0023 (0.056)
 

L_HSTC 0.083 (0.054) 0.103 (0.063) 0.083 (0.063) 0.089 (0.056)

 

DSSEX 0588* (0.071) 0597* (0.070) 0619* (0.071) 0616* (0.073)

 

DIALECT 0.206 (0.122) 0.239 (0.129) 0270* (0.125) 0.234 (0.130)

 

ZFACTOTC 0082 (0.305) 0.005 (0.326) 0.033 (0.327) 0085 (0.325)

 

MTXTBKC 0161* (0.071) 0191* (0.086) 0214* (0.082) 0172* (0.075)
 

BRF 0387* (0.099) 0394* (0.099) 0392* (0.101) 0403* (0.102)
 

PPED 0383* (0.092) 0418* (0.096) 0423* (0.096) 0411* (0.096)
 

ran.eff.variance  1038* (0.113)  1351* (0.167)  1425* (0.162)  1290* (0.159)   
* Significant at the 5% level. Standard errors are shown in parentheses.

My research hypothesis of whether using the Thai dialect at home or not has an

effect, adjusting for other covariates, on the log-odds of repeating a grade has ambiguous

results. While it is significant, at the 5% level, using Gauss with 10 quadrature points (p-
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value = .032), it didn’t turn out to be significant for the other methods, though the p-values

were close to 0.05 (0.09 for PQL, 0.063 for Laplace6, and 0.072 for AGQ). So, maybe the

 effect of dialect on the log-odds of repeating a grade may be considered marginally

significant, i.e., there is an inconclusive evidence that speaking central Thai at home

increases the log-odds of repeating a grade for a student. I suspect this might have been a

fluke for when I reran Gauss with 20 quadrature points, the effect of dialect on the log-

odds of repetition turned out to be non-significant (p-value=0.069). Even so, textbooks has I 1

a significant negative effect on the log-odds of repetition indicating that not speaking

central Thai at home can be offset by the availability of textbooks. Note that the

 
availability of facilities in school didn’t have a significant effect on the log-odds of é

repetition.

Higher mean school SES reduces the log-odds of repeating a grade while neither

the availability of facilities nor textbooks has an effect on it. The student’s SES also

reduces the student’s log-odds of repetition and its effect (the coefficient) is positively

affected by both mean school SES and the availability of facilities in school but not by

textbooks.

The time it takes the student to go from home to school (given in log-hours) didn’t

seem to have an effect on the odds of the student’s repetition. On the other hand, the

gender of the student had a positive effect on the log-odds of repetition. That is, male

students are more likely to repeat a grade (perhaps due to the fact they are more likely to

play truant and less serious about school.) As expected eating breakfast regularly reduces
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the log-odds of repeating a grade for a student. And, so does pre-primary educational

experience by the student.

Finally, the random effects variance was found to be significant by all the methods

indicating unaccounted random variation among the schools in the level-l intercept for the

log-odds of student repetition.

In regards to the comparison of methods as far as estimation is concerned, there

didn’t appear to be that much difference among the methods in the fixed effects

estimation. However, the random effects variance was severely underestimated by PQL as

compared to the other methods. Incidentally, the SAS algorithm that implemented the

adaptive Gauss adaptively selected one quadrature point to run the adaptive Gauss-

Hermite. The results didn’t change appreciably when I forced AGH to run with five

quadrature points.
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Chapter 7

DISCUSSION AND CONCLUSION

This dissertation compared four methods, two Laplace-based and two Gaussian-

based, for approximating the likelihood for multilevel logistic models (mixed logistic

models). The comparison was done graphically, analytically (i.e., in terms of asymptotic

properties), as well as via simulation studies. The methods were also applied on real

 educational data to see what kinds of results they gave and how close to each other they

are.

First, an illustrative example of a very simple mixed logistic model was given and

 

the likelihood derived but not in closed form. Since the integral involved in the likelihood

cannot be done in closed form -- this is what the dissertation attempted to address -- how

each method approximates this likelihood was treated in a fairly detailed manner. In fact,

this was also done for two more Laplace-based methods. The various integrand

approximations to the integrand in the likelihood were derived for the various methods and

plotted against the actual integrand in the likelihood. The numerical integral

approximations to the “true” integral (obtained by Trapezoidal Rule with error < 10-3) were

also computed for the various methods.

For the Laplace-based methods, the integrand approximation functions (of the

random effect) of order 2, 4, 6 and 8 were derived and plotted along with the actual

integrand to show how each progression closely approximates the integrand. The plot

showed that even the graph of the second-order Laplace was already close enough to the

actual integrand. The numerical integral approximation got better by the order of 10 as the
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order of the Laplace increased up to 6 and then stabilized. In fact, the error of Laplace6

was smaller than that of Laplace8. Of course, this is just one example. Besides, the

approximations were stopped at order 8 and higher orders were not investigated.

For the Gaussian-based methods, the general integrand approximation functions

were first derived for both the non-adaptive and adaptive Gauss-Hermite methods. The

non-adaptive Gauss-Hermite integrand approximation formula was plotted for numbers of

quadrature points starting from 2 along with the actual integrand function. The successive

graphs showed it takes quite a number of quadrature points (more than 10) for the non-

adaptive Gaussian integrand to get really close to the actual integrand. This was borne out

by the numerical integral computation which took about 8 quadrature points to have an

(absolute) error similar to that of Laplace2 and about 14 quadrature points to get an error

close to that of Laplace6. The adaptive Gaussian approach first transforms (standardizes)

the integrand itself to one centered around zero. This transformed integrand, which I

labeled the AGH integrand, is the one that the adaptive Gauss integrand approximations

try to get close to as the number of quadrature points increases. The graphs of the AGH

integrand along with the integrand approximations display that the integrand

approximations are already quite close to the AGH integrand for 2 quadrature points. The

numerical integral computation shows that 4 quadrature points were enough to get an error

of the same order as Laplace6. (Of course, adaptive Gauss with one quadrature point gives

an identical value as Laplace2.)

Next, the general mixed logistic model was formulated and how each of the four

methods approximate the likelihood described. Then, for the single random effect case, the
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asymptotic behaviors of the three methods that are based on centering the random effect

around its conditional mode, namely Laplace2, Laplace6 and adaptive Gauss-Hermite,

were worked out. It turned out that the errors of the three methods for each cluster (since

the integration is approximated for each cluster by the methods) were 0(n"), 0(n'2) and

001W”) respectively where n is the cluster size, G is the number of quadrature points and

[] is the greatest integer function. This implies that the errors of Laplace2 and adaptive

Gauss are of the same order when G=1 and those of Laplace6 and adaptive Gauss when

G=4 which seems to confirm the example in the previous chapter. In fact, the adaptive

Gauss-Hermite with one quadrature point and Laplace2 are identical, i.e., have the same

formula.

A simulation study was done for both a univariate random effect hierarchical

logistic model and a bivariate random effects one. First, eight groups of 100 datasets, each

group representing one oftwo values (small and large) ofrandom effects variance,

conditional probability and cluster size were simulated using a univariate random effect

model. Algorithms implementing the four methods were then run on each dataset and their

performance was investigated. All methods performed quite well when the cluster size was

large except that PQL (the way Laplace2 was implemented in HLM) was usually the most

biased and sometimes had the largest mean-squared error. In this case, the non-adaptive

Gauss was the fastest, followed by Laplace2, Laplace6 and adaptive Gauss, in that order. I

think this was due to an implementation fluke. After all, SAS (which was used for the

adaptive Gauss) is a general purpose statistical software while MIXOR (implementing the

non-adaptive Gauss) is a specialized program. Had I used the SAS non-linear mixed

86

 



program with the non-adaptive option, it would most likely have taken more time than the

default adaptive option since it would need more quadrature points. (I had chosen the non-

adaptive option on one dataset before and then resorted to the default adaptive because it

took more time.) The speeds of Laplace2 and Laplace6 make sense since the initial values

of Laplace6 are those of the Laplace2 estimates (i.e., end results.)

When the cluster size was small, the adaptive Gauss gave the best results overall

being the fastest among all the methods, having the least mean-squared errors and being no

more biased than the other methods. In this case, the non-adaptive Gauss was the worst,

not even giving results on many occasions (especially when the random effects variance

was small). When it gave results in these instances, the estimates were sometimes biased,

and when both random effects variance and the conditional probability of success were

small, the estimates were always biased.

Another group of 100 datasets was simulated using a bivariate random effects

hierarchical logistic model and programs implementing the four methods were run on this

group. In this case, Laplace6 appeared to perform the best overall, especially in terms of

bias and MSE. The non-adaptive Gauss was quite close to it, too. Predictably, PQL was by

far the fastest for this group; however, it had the most biases (negative and significant).

Adaptive Gaussian was the slowest and suffers from the need to specify good initial values

for the parameters (at least as implemented in SAS).

Finally, the algorithms that implemented the four methods were run on real-life

data, the 1988 Thai National Survey of Primary education to estimate a hypothesized

hierarchical logistic model with a single random effect. The results indicate that the four

87

 



methods gave similar results in terms of significance, i.e., whatever was significant in

under one method was also significant under the others. The Laplace2 random effects

variance estimate was pretty much smaller than its counterparts from the other methods

which were quite close to each other.

As far as speed of methods is concerned, it is worth noting that, unlike the

graphical and analytic comparisons, the programs that were used in the simulation study

and data analysis involved maximization of the likelihood as well. The maximization

procedures used by the programs differ from each other and, as these procedures are

usually iterative, they might have an effect on the speed of the “method” being compared.

In other words, while dealing with the programs, I am not just comparing the speeds of the

integration approximation methods but also those of the procedures used to maximize the

resultant approximate integrals.

Suggestions for Future Study

The simulation study done in this dissertation suffers from at least one problem -

the use of different programs for different methods. What I actually compared in the

simulation study may not just be the methods but also the programs, i.e., implementation

may matter. For instance, it would be more interesting and fair to compare the two

Gaussian methods using the same program (e.g., SAS PROC NLMIXED with adaptive as

well as non-adaptive options). One may also be interested in comparing different programs

implementing the same method. For example, Pinheiro et a1. (1993) had implemented their

adaptive Gaussian and other procedures in S-Plus which they contributed to statlib. One

might want to compare their implementation with the SAS implementation. One might
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also want to compare the SAS procedure NLMIXED with the non-adaptive option with

MIXOR, specifying in both cases the same numbers of quadrature points.

Of course, one might want to extend the comparisons to other methods such as

Monte Carlo methods. For instance, Pinheiro et a]. (1993) had included importance

sampling in their implementation.

The more interesting and useful undertakings to take would be to improve some of

the methods suggested in this dissertation. For instance, one might increase the terms in

the Laplace-based approaches (i.e., increase the order of Laplace) and see where these

approaches stabilize, if at all. Since the additional terms are difficult to derive, it would be

 

m
y

l
w
fl
W
D
u
‘
i
'

useful to see if adding terms would be worth the effort in terms of improving accuracy.

In this connection, Liu and Pierce (1994) conjectured that the m-order (adaptive)

Gauss—Hermite quadrature can be thought of alternatively as the form of ‘m-order Laplace

approximation’. It would be worthwhile to investigate this assertion because, if true, the

m-order adaptive Gauss-Hermite can be substituted for the m-order Laplace which the

authors suggest is more preferable in applied work. This would be desirable because the

latter involves the derivation of additional cumbersome and fairly difficult terms as the

order increases. This assumes that the m-order Laplace is done the same way as that of

Yang (1998). It would also be interesting to see if one can come up with another way to

directly define and estimate the ‘m-order’ Laplace.

This dissertation dealt only with two-level hierarchical logistic models. None of the

methods (to be precise, the algorithms implementing them) except PQL (Laplace2) has

implemented the three-level counterpart. It would be a good research topic to derive the
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formulas (and algorithms) needed for any of the other three methods to estimate the three-

level hierarchical logistic model.

Finally, one can expand the methods (and the programs) to handle generalized

linear mixed models (GLMMS) rather than just hierarchical logistic models. I am aware

that Laplace2 and adaptive Gauss-Hermite (really, HLM and SAS) can handle GLMMS.

By default, since SAS has a non-adaptive option for its Gaussian procedure, the non-

adaptive Gauss can also be implemented for GLMMS. So, one is left with Laplace6 (and E ..

higher-order Laplaces) to work on to handle GLMMS. Raudenbush et al. (2000) indicate

this might not be difficult for count data.
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