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ABSTRACT

MODELING THE RADIATION FROM CAVITY-BACKED

ANTENNAS ON PROLATE SPHEROIDS USING A HYBRID FINITE

ELEMENT-BOUNDARY INTEGRAL METHOD

By

Charles Alphonso Macon

Conformal antennas are increasingly being deployed on the surfaces of air and land

vehicles. Quite Often, the mounting surfaces are doubly curved. A characteristic property

of these antennas is the curvature dependence of their input impedance, resonant

fiequency, and radiation pattern. In light of this, it is vital that conformal antenna models

include surface curvature so that the effects of local surface geometry on their resonant

behavior and radiation pattern can be predicted more precisely. This is especially

important for a highly resonant antenna, such as the micostrip patch, due to its narrow

bandwidth. In addition, advanced material antenna loadings are increasingly being used

in practice. These factors motivate the development of a new approach to modeling the

radiation from conformal antennas on convex, doubly curved platforms utilizing the

hybrid finite element-boundary integral (FE-BI) method. The hybrid FE-BI method,

which combines the finite element method with the method of moments, is extended to

model convex, doubly curved platforms by means of a specially formulated asymptotic

dyadic Green’s function. This asymptotic Green’s function, formulated within the context

of the uniform theory of diffraction (UTD), incorporates the physics of interactions on the

surface of an electrically large, perfect electrically conducting prolate spheroid and is

highly amenable to numerical applications. The prolate spheroid is a canonical shape that



is sufficiently general to model the curvature of a convex, doubly curved mounting

platform. The FE-BI method is used to investigate the effect of curvature variation on the

resonant input impedance of a cavity-backed slot and a cavity-backed patch antenna

recessed in the surfaces of prolate spheroids of varying dimensions. The effect of

curvature variation on the far field radiation pattern of a cavity-backed patch antenna

recessed in the surfaces of prolate spheroids of varying dimensions is also investigated

using this method. Measured input impedance data for a patch antenna mounted on a

planar and a doubly curved surface also is presented.
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CHAPTER 1

INTRODUCTION

Conformal antennas have become popular for mounting on the surfaces of air and land

vehicles due to their low cost, aesthetic appeal, and light weight. In addition, conformal

antennas improve the aerodynamic efficiency of vehicles by minimizing drag. Quite

Often, the surfaces of these vehicles are curved. In View Of these applications, there is a

need for an understanding of how the radiating characteristics Of these antennas are

affected by the local geometry Of the mounting platform. A cost-effective means of

accomplishing this is through the use of computational electromagnetics software to

model the behavior of these antennas. The finite element-boundary integral (FE-BI)

method has proven to be a versatile and accurate computational technique for modeling

the electromagnetic radiation by conformal aperture antennas on curved platforms. The

FE-BI method is versatile in that it is capable Of modeling the radiation by arbitrarily

shaped apertures composed of anisotropic materials. In the past, the FE-BI method has

been used successfully to model the radiation by cavity-backed apertures possessing

complex shapes recessed in planar and singly curved structures such as the circular

cylinder [l]-[3]. A canonical shape, such as a circular cylinder, is used to model a singly

curved surface in the cylindrical FE-BI formulation. From a practical standpoint,

however, mounting platforms quite often are doubly curved; therefore, it would be

advantageous to model a doubly curved platform using a suitable canonical shape such as

a prolate spheroid. Due to its unique geometrical properties, to be discussed in greater

detail later in this dissertation, the prolate spheroid serves as a mathematically convenient

canonical shape for modeling convex doubly curved structures. Hence, an FE-Bl





formulation compatible with a prolate spheroidal geometry would be useful to a designer

since an additional degree of freedom over a cylindrical formulation would be provided

in order to more generally model the effects of platform curvature. In light of this, the

Objective of this research is to extend the FE-BI approach to model aperture antennas

conformal to doubly curved platforms. TO accomplish this, a new FE-BI formulation

appropriate for modeling the radiation by a cavity-backed aperture recessed in a perfect

electrically conducting (PEC) prolate spheroid is presented in this dissertation.

The vector Helmholtz equation is inseparable in the prolate spheroid coordinate

system [4]. Therefore, a solution to this equation must be determined from the

corresponding scalar Helmholtz equation. Applying the method of separation of variables

to solve the scalar Helmholtz equation yields a solution of the form

W8 - S... (6, 70135.33 (C‘.¢.‘){c.0SW} (1.1)
m" — srn mg)

where Smu (0,77) is the angular spheroidal wave function, R;:)(c,§) is the radial

spheroidal wave function of the h kind, and e or 0 denotes even or Odd symmetry. The

parameter c is given by c = kd where k is the wave number and d is the interfocal

distance. The parameters 77 and .f are prolate spheroidal coordinate variables; prolate

spheroid geometry will be discussed in detail in Chapter 3. The lack of simple recurrence

relationships among the spheroidal wave functions [4] leads to analytically complicated

expressions which makes the numerical implementation of such functions a formidable

task and not very practical for high frequency applications. The poor convergence of the

radial functions for finite values of cl; has been acknowledged in the literature [5,6] and

various schemes for improving their convergence rate have been proposed [4,6].
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Once the scalar solution has been obtained, the M and N vector spheroidal wave

functions are constructed by applying vector differential operators to the scalar wave

function in conjunction with an appropriately chosen pilot vector in the following manner

[7]

M = V I]! x p

1.2

N=%VXM ( )

where w is the scalar wave function, defined previously, and the pilot vector,

representing either a constant or a position vector, is denoted by p. In the cylindrical and

spherical coordinate systems, the unit vectors 2 and R , respectively, are chosen to be

the pilot vector. By analogy with the spherical coordinate system, one may surmise that

the radially directed unit vector E could be used as pilot vector. However, a nuance of the

prolate spheroidal coordinate system is that the M and N functions formulated using E as

the pilot vector do not satisfy the vector Hehnholtz equation [8]. Furthermore, the M and

N functions formulated with the position vector, expressed in spheroidal coordinates,

chosen as the pilot vector are neither orthogonal among themselves or with each other

[4]. Moreover, the boundary conditions requiring the tangential field components to

vanish on a PEC prolate spheroid surface can only be satisfied by the M and N functions

for the case of azimuthally symmetric fields or for the limiting case of if = O [9]. The

implications of this are far-reaching in that the formulation of an exact closed-form

expression for a dyadic Green’s function, constructed from M and N using the method of

Tai [10], applicable to the problem of radiation from azimuthally asymmetric arbitrarily

shaped apertures may not be possible.
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Published literature treating the case of radiation by sources on a prolate

spheroid is scarce. Most work has dealt with the reciprocal problem of scattering by a

conducting prolate spheroid. Exact solutions to this problem have been found using the

modal expansion technique. Schultz obtained an exact eigenfunction solution for the

scattering of an axially incident plane electromagnetic wave by a prolate spheroid in

terms of a series of spheroidal wave functions [8]. A major drawback to this solution is

that a pair Of infinite matrix equations must be truncated and solved simultaneously to

obtain the unknown expansion coefficients. Due to the complexity of the spheroidal wave

functions, such an approach would consume a significant portion of computer memory. A

solution for the fields radiated by an electric dipole located on the tip of a conducting

prolate spheroid was found by Hatcher and Leitner [11]. This solution was obtained by

directly solving Maxwell’s equations for the azimuthal component of the magnetic field

in a prolate spheroidal coordinate system. Such an approach is not feasible for an

arbitrarily shaped radiating aperture Since the current distribution in the aperture may not

be available in a closed form. Taylor obtained an exact solution for the scattering of a TM

polarized electromagnetic wave by a prolate spheroid for broadside incidence [12].

However, the radiated field patterns were not included in his publication. Sinha presented

a further refinement to the modal expansion technique [6]. Sinha augmented the exact

modal expansion technique by introducing a special matrix transformation to obtain an

exact solution for the scattering of an electromagnetic wave of arbitrary polarization and

angle of incidence by a prolate spheroid. The transformation matrix is a function of the

geometry of the scatterer and is independent of the direction of the observation angle.

This approach was shown to be quite accurate in the resonance region. However, beyond
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the resonance region, the utility of this approach would be constrained by the poor

convergence rate of the spheroidal wave functions at high frequencies. A dyadic Green’s

function for a spheroidal layered medium was developed by Giarola [13]; however, it was

found to be in error due to an incorrectly assumed orthogonality between the M and N

functions, as pointed out by Li et al [14]. Li formulated expressions for the exact electric

and magnetic dyadic Green’s functions of sources in a layered spheroidal medium [14].

Although rigorous, this formulation would not be feasible for application in the FE-BI

approach developed in this work due to the aforementioned complexity and poor

convergence of the M and N functions at high frequencies and to the computational

expense involved in numerically computing the unknown expansion coefficients.

Specifically, the unknown expansion coefficients in the exact Green’s firnctions must be

numerically determined by simultaneously solving a system of coupled equations

involving infinite series that must be truncated. However, the truncation number is

proportional to the largest electrical dimension of a prolate spheroid [6,14]. Hence, for an

electrically large prolate Spheroid, a large number of series terms would be needed to

accurately determine the expansion coefficients. In summary, an exact vector solution

does not appear to be practical for problems that involve the computation of the radiation

by an arbitrarily shaped cavity-backed inhomogeneously filled aperture antenna recessed

in an electrically large prolate spheroid.

In Chapter 2 of this work, an overview of the uniform geometrical theory of

diffraction (UTD) is presented. The UTD solution for a singly curved surface of arbitrary

curvature is developed from the canonical problem of determining the Green’s function

for the field excited by a magnetic dipole radiating on the surface of a canonical PEC
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infinite circular cylinder. Next, the UTD solution for the canonical problem of a magnetic

dipole radiating on the surface of a PEC sphere is presented. The development of a

solution to the problem of a magnetic dipole radiating on the surface of an arbitrary

convex, doubly curved PEC surface within the context of UTD is presented next. This

solution is developed by means of a generalization of the canonical circular cylinder and

sphere solutions.

In Chapter 3, the generalized dyadic Green’s function, developed in Chapter 2, is

utilized in the development of an FE-BI formulation appropriate for modeling cavity-

backed aperture antennas conformal to doubly curved surfaces. Moreover, the following

topics are discussed at length in Chapter 3: the specialization of the generalized dyadic

Green’s function by means of differential geometry to treat prolate spheroid surfaces and

the development of an FE-BI formulation for modeling cavity-backed aperture antennas

conformal to prolate spheroid surfaces. Analytical and numerical results to support the

validity of the Green’s function also are presented. In Chapter 4, the FE-BI numerical

simulation results for the input impedance and radiation patterns exhibited by slot and

patch antennas on prolate spheroids of varying curvature are presented. Chapter 5

presents the experimental results for the measurement of the input impedance of a square

and a rectangular patch antenna for various orientations on a prolate spheroid model,

circular cylinder, and ground plane. It will be shown that the experimental results

corroborate the numerical results presented in Chapter 4. Conclusions and

recommendations for future work are given in Chapter 6.



utility

series

teas-or

ph3sit

mechz

mathe

come-

Comp}

10 a D

mOdes

COm'e:

field 0

the po

Tequin

apP103



CHAPTER 2

UNIFORM THEORY OF DIFFRACTION

2.1 Introduction

The applicability Of exact techniques for calculating the high-frequency electromagnetic

field radiated or scattered by objects, such as the eigenfunction expansion method, is

restricted to certain canonical shapes. These shapes have surfaces that are tangential to

the constant surfaces of orthogonal curvilinear coordinate systems. Once derived, the

utility of an exact eigenfirnction series solution is restricted in that these eigenfunction

series are poorly convergent at high frequencies and require on the order of 2ka (where

a is the largest dimension of the source body and k is the wavenumber) terms for

reasonable accuracy [15]. Moreover, eigenfunction series representations often mask the

physics of the high-frequency behavior, thereby making it difficult to isolate the

mechanisms of reflection and diffraction. In order to gain additional insight, special

mathematical techniques, such as the Watson transformation, must be employed to

convert the poorly convergent infinite eigenfunction series into a contour integral in the

complex plane. Cauchy’s residue theorem is then invoked to equate the contour integral

to a pole residue series. Physically, the pole residues are associated with creeping wave

modes that exponentially attenuate as they propagate into the shadow region Of the

convex body. This is the mechanism by which the diffracted field is generated. Since the

field of a creeping wave attenuates with the distance traversed along the curved surface,

the pole residue series is asymptotic to the electrical radius of curvature Of the body,

requiring only the first few terms to achieve suitable accuracy for large ka. Although this

approach is rigorous, it is rather laborious and impractical for arbitrarily shaped bodies,
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being restricted once again to orthogonal coordinate systems for which eigenfunctions

exist that are resolvable in terms of the known special functions of mathematical physics

such as Bessel, Hankel, or Legendre functions.

The geometrical theory of diffraction (GTD) is an asymptotic technique for

analyzing the diffraction from electrically large radiating Objects. Although GTD is in the

strictest sense a high-frequency technique, it has been found tO yield reasonably accurate

results at lower frequencies [15,16]. GTD was conceived by Keller [17] as a heuristic

extension of geometrical optics to accommodate the phenomenon Of diffraction. Hence,

within a formalism that is analogous to geometrical Optics, the high-frequency diffraction

from surfaces is treated as a localized phenomenon that is dependent only on the local

geometry and material properties at the point of diffraction. The diffraction mechanism,

to be discussed in greater detail in the next section, is ascribed to the propagation of

diffracted rays whose trajectories Obey Fermat’s principle of least propagation time

analogous to the reflected and transmitted rays of geometrical Optics. Fermat’s principle

of least propagation time asserts that out of all possible paths, a ray follows the path

between two points for which the optical length, defined as the product of the index of

refraction in the medium and the distance along a ray, is stationary with respect to

infinitesimal variations in the path. The formulation of GTD is based on four postulates

[18,19]:

(1) The trajectory of a diffracted ray is determined by a form of Fermat’s least

time principle that has been generalized to include points on the diffracting

surface in the ray trajectory.

(2) Energy in a diffracted ray tube or strip is conserved.
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(3) The variation in phase along a diffracted ray equals the product of the

wavenumber of the medium and the distance traversed.

(4) The phenomenon of diffraction is local in nature.

Consider a magnetic dipole situated at a point Q' on a convex curved surface. As

illustrated in Figure 2.1, the field region exterior to the dipole is divided into a shadow

and an illuminated region by a tangent plane to the surface at Q'. The tangent plane

defines the shadow boundary. Referring to Figure 2.1, the portion of the shaded regions

in the vicinity of the shadow boundary is known as the transition region. The angle

subtended by the shadow transition region is Of the order of l/m radians, where

m {£8522} (2.1)

and pg (Q') is the radius of curvature of the surface at Q' [20]. A primary advantage of

GTD over exact techniques is that it can be applied to generally shaped objects for which

exact solutions do not exist. However, a well-known limitation of the GTD solution is

that it fails at the caustics of diffracted rays, where it predicts infinite fields, and in the

shadow transition region [21]. The failure of GTD in the Shadow transition region is

attributable to the poor convergence of the creeping wave modal series representation

employed in the formulation of expressions for diffracted rays [22].

In order to overcome this limitation, the uniform theory of diffraction (UTD) was

developed by Kouyoumjian and Pathak [20,22] to extend the range of validity for the

traditional GTD to include the shadow transition region of general convex surfaces.

Essentially, the UTD formulation is a generalization of uniform asymptotic solutions to
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Figure 2.1 The field regions adjacent to a magnetic dipole

situated on a perfectly conducting, convex surface.
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canonical problems, such as the diffracted field excited by electric and magnetic dipole

sources on cylinders or spheres, to treat the problem of diffraction from arbitrarily Shaped

structures. Since the radiation by conformal apertures is the focus Of this dissertation,

only the canonical problems involving magnetic dipole sources will be considered. The

ansatz Of the UTD formulation is Fock’s principle Of the locality of electromagnetic

fields at high frequencies. Fock’s theory is based on his now classic solution to the

problem of the current induced on the surface of a paraboloid of revolution in the vicinity

of the shadow boundary by an impinging magnetic field. According to Fock’s theory, the

current distribution in the shadow transition region depends only on the local curvature of

the body in the plane of incidence and on the impinging wave. The width of the

transition region 6 is given by

 

71'

fi=[’°€] (2.2)

where re is the radius of curvature Of the body at the shadow boundary [23]. The induced

current in the vicinity of the shadow boundary was expressed by Fock in terms of new

special functions, now known as Fock functions, which are resolvable as canonical

contour integrals involving the Airy function w,(r) or its derivative w1'(r) (see

Appendix D) [23]. However, Fock’s classic result suffered a flaw in that the distance

parameter 6 , defined in (2.2), measures the distance along the direction of propagation

of the incident field rather than along the curved surface of the body [24]. Goodrich [25],

provides an exposition that brings Fock’s theory in alignment with the creeping wave

interpretation of the surface diffracted field that is intrinsic to GTD by redefining the

11
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distance parameter ,8 as the distance measured along a surface geodesic. The newly

defined distance parameter is given by [52]

 

Q kp J!” 1

= g —d 2.3fl (fl 2 pg s ( >

where ,08 is the radius of curvature along a geodesic, ds is the incremental distance

along the geodesic, Q is the position of an observation point on the surface, and Q' is

the position of the source point. Fock surmised that since the current distribution in the

transition region depends only on the local geometry of the surface at the point of

incidence and the magnitude Of the incident field at this point, Fock functions could

represent the current distribution in the shadow transition region Of any convex surface

with the same principle radii of curvature at the point of incidence. This assertion, known

as the principle Of locality of the diffracted field in the penumbra region [23], forms the

basis of UTD. By means of reciprocity, the same principle also can be applied to the field

excited by an aperture on a convex surface.

In the next section, expressions for the diffracted field excited by a magnetic dipole

source on a perfectly conducting circular cylinder are derived via an asymptotic

evaluation of the exact dyadic Green’s function for the circular cylinder. The canonical

asymptotic solutions are expressed in terms of Fock functions that are convergent in the

transition region and uniform across the illuminated and deep shadow regions. Next, the

asymptotic solution for a magnetic dipole source on a perfectly conducting sphere is

given. The procedure for generalizing these canonical solutions, within the context of

UTD, to treat the problem of a magnetic dipole source on a perfectly conducting general

convex surface will then be discussed. The expression for the dyadic Green’s function of

12



 

the surfs

generali;

LZCun

An expl

directly

path. th:

geodesic

points 0

intinites

surface

giyen b

Where

The 5}

53316111

Come:

rat’s t

rEgior

U3] 5C

mCrei



the surface field excited by a magnetic dipole on a general convex surface based on the

generalization procedure is given at the end of this chapter.

2.2 Curved Surface Diffraction

An explanation of the phenomenon of diffraction by convex curved surfaces follows

directly from postulate one of the previous section. In propagating along the least-time

path, the portion of the diffracted ray path lying along the convex surface must follow a

geodesic path. A geodesic is by definition the path Of minimal arc length joining two

points on a surface or more precisely, the curve whose length is stationary with respect to

infinitesimal pertubations in the path. Consider an aperture M situated in a convex curved

surface S. The source in the aperture is represented by an equivalent magnetic dipole

given by

dM(r') = E(r') x fidA (2.4)

where E is the electric field in the aperture and dA is an element of area in the aperture.

The symbols r' and r are position vectors directed from the origin of the coordinate

system to source and Observation points on S , respectively. A magnetic dipole on a

convex curved surface excites creeping waves that propagate along as surface diffracted

rays that are directed away from the source in all directions to points in the shadow

region. The surface diffracted rays shed energy along forward tangents to their

trajectories. This phenomenon is depicted in Figure 2.2. The general form of the

incremental surface field dF(r|r') excited by a magnetic dipole is given by [26]

-16
e!

 dF(r|r') = ngQ') -T(r|r')D (2.5)
S

where s is the geodesic distance between source and observation points on the surface

13
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and D is the surface ray divergence factor which quantifies the change in width of a

surface diffracted ray tube due to energy conservation and is given by

liadw

In (2.6) dV/o is the angle between adjacent surface rays at the source point, dry is the

angle between the backward tangents to a pair of adjacent surface rays at the observation

point, and pc is the radius of curvature of the geodesic circle centered at r. The spread

of a surface diffracted ray as it propagates along a curved surface is depicted in Figure

2.3. The parameter T(r|r') is a dyadic transfer function for the surface field excited by a

magnetic dipole on a convex surface. It is proportional to the second-kind electric dyadic

Green’s function through the relationship T(r|r')=—jkYEe2(r|r'). The parameter

T(r|r') describes the launching of the surface ray field at r', the variation of the surface

ray field between rand r', and the attachment of the ray field at r. This dyadic

parameter is given by

T(rlr? = Tit» T,ifi'+ T,bi'+$8 (2.7)

A

where f is a ray-fixed unit vector tangent to the direction of propagation, b is the

binorrnal unit vector defined as b = fxfi , with ii being the outward unit normal vector

to the surface, and T are coefficients that are deduced from the uniform asymptotic

solutions to canonical problems to be described in the next section. An illustration of the

fixed ray-based coordinate system is provided in Figure 2.4. In order to satisfy the

14



Surface

Diffracted Ray

é .. Shed Ray

 

Figure 2.2 The mechanism of diffraction from a convex curved surface.

 

Surface

Diffracted Ray

Figure 2.3 Spread of a surface diffi'acted ray

strip due to energy conservation.
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Figure 2.4 Fixed ray-based vector coordinate system.
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requirement for rapidly convergent solutions that are continuous across the transition

region, the elements are expressed uniformly in terms of Fock functions with the distance

parameter ,3 as their argument. In the deep shadow region where ,6 >> 0 , with the

shadow boundary ,6 = 0 taken as reference, the Fock functions revert to creeping wave

series by means of Cauchy’s residue theorem [22]. Appendix D presents details on the

asymptotic behavior of Fock functions. The creeping wave series is rapidly convergent in

the deep shadow region. Moreover, in the deep lit region where ,6 <<O the Fock

functions may be approximated asymptotically with respect to ,B and are equivalent to

the geometrical optics current distribution [22]. Therefore, UTD provides a rapidly

convergent representation for the diffracted field that also is continuous across the

shadow transition region. Furthermore, ,6 can be viewed as a measurement of the

deviation of a geodesic from a straight line. As the surface curvature decreases (e.g.

surface becomes planar), ,B —) 0 and the magnitudes of the Fock functions approach one.

Thus, the curved solution approximates the planar solution.

2.2.1 Uniform Asymptotic Evaluation of the Dyadic Green’s Function for an

Electrically Large Infinite Circular Cylinder

2.2.1.1 On—Surface

The exact eigenfunction series representation for the electric dyadic Green’s function of

the second kind for an axially infinite, PEC circular cylinder evaluated on the surface

,0 = a is given by (see Appendix C for the complete derivation and note that only sources

tangential to the surface are considered)

17
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where $=¢—¢’, 2:2-2', y=kpa, k0 is the free-space wave number, and

k = t/k: — k: . The cylinder radius is denoted by a. As the cylinder radius increases, the
p

argument of the Hankel function grows. However, the numerical evaluation of the Hankel

function becomes increasingly difficult for large arguments (kpa >> 1) . In order to Obtain

a rapidly convergent expression for the dyadic Green’s function Of a large radius cylinder

that is amenable to numerical evaluation, the Watson transformation [18] is employed. As

explained previously, the Watson transformation effectively transforms a poorly

convergent infinite eigenfunction series into a rapidly convergent series Of pole residues,

also known as the creeping wave series. The value of the pole residue series

asymptotically approaches that of the original eigenfunction series as the argument kpa

increases. The poles residues are physically interpreted as creeping waves launched at the

geometrical Optics shadow boundary and propagating along the cylinder surface into the

Shadow zone. Hence, the number of terms in the series that are needed for a reasonably

accurate representation of the diffracted field decreases with increasing radius. The

Watson transform is given by [27]

 

Sin wr
n—co

i e""lfoo =3%[flu—WWW (2.9)

and from (2.8) the 2 component Of the surface field attributed to a i directed magnetic

dipole is given by

18



In light of

where v

integrand

maybe 5;

6:: =

with sepe

2.6. Note

The subs

contour i

iherefor

The new

in Figure



 

,, -1 .. — °° kHf,”(y)

G; =—— e"t "1" ’ dk, (2.10)
2 2 Z Ie akgH’EZ) '(7)

In light of (2.9), (2.10) may be rewritten as

 

Gzz (k[3).]. 0° e‘jk,dzdkzgee-jV(x-;)H(2)(7) (2 11)

G—eZ fi’rkz (2) r .

(217:) 0a 2 sin vrrH (y)

where v is the complex order and C is the closed contour enclosing the poles of the

integrand in (2.11), as depicted in Figure 2.5. The integral around the closed contour C

may be split into two integrals

  

w - wot-3) (2) ervor-Z) (2)

65,: 1,91. [e'fl‘z’dh [9, H; (7)dv+_[e H; mdv (2.12)
(27r)2 k0 a 2 ‘ C. srn wer ”(7) sin er‘”(7)

with seperate integration paths denoted by C1 and C2 , respectively, as shown in Figure

2.6. Note that the integration path is perturbed from the real axis by a tiny amount 0'.

The substitution v :> -—v is made to reverse the direction of integration path C2. The two

contour integrals are subsequently merged via analytic continuation [27]

H5230) = e"’”H§2’(7)

 

. (2.13)

H53’ '(7) = e"”'H§2’ '(7)

Therefore, (2.12) becomes

k , a, _ (e-J'V(II-3) +eJ’V(fi-;))H(2)(},)

05;: ;—i Ie-jk’zdkz [ , 2 " dv (2.14)

(2—71r—)2 k0 a 2 _Q C! srnvrer, ”(7)

The new integration path enclosing the complex zeros of the Hankel function is depicted

jtrv

in Figure 2.7. Factoring out e

19



Im(v)

 

 

..,..-- 1 1 ‘ a...

WWWR60)

...... t y; .o"

C

 

 

 

1m(V)

jO' C2

/ 4 F /

WWW»Re(v)

/ P . r ,1

”10' Cl

 
Figure 2.6 The integration contour for the Watson

transform Split into two segments.
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z: p] °° -jkE

e ’ dk dv 2.15

92: (27)kga 21 1! sin mm?) '(7) ( )

and noting that Im v < 0 from Figure 2.7, the expansion

em —2 'ie'm’" (216)

Sin wr 11:0 '

is utilized through a technique known as the Poisson sum formulation [18] where 1

represents the number of complete encirclements made by a creeping wave in either

clockwise or counterclockwise directions. Since the magnitude of a creeping wave

exponentially decays as it propagates along the surface, the contribution from the higher

order (e.g. multiple encirclements for which I > 0) terms is negligible. Substituting (2.16)

into (2.15) and retaining only the lowest order short and long path terms (refer to Figure

2.8) results in

z, —1 kp °° .- (e""(2”';’+e”‘)H§2)(7)

G, =—— e’jk’ dk, dv (2.17)

2 (27:)2 k561i. Ci H5”'(7)

 

The leading terms in the uniform asymptotic expansion of the Hankel function and its

derivative, for large 7 , in terms of Fock-type Airy functions are given by [28]

H(2) ~jW2(T)

. (7) 7‘5

H52) 1(7) ~ —jW2 '(T)

mZJZ

where w2(r) is the Fock-type Airy function (see Appendix D), m is as defined in (2.1),

(2.18)

and r is defined in [27]
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Figure 2.8 Lowest order short and long creeping

wave paths on a circular cylinder.
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r—;(v—y) (2.19)

Without a loss of generality, only the short path term e"; is considering from this point

onward. Substituting (2.18) into (2.17) and employing the change of variable dv = mdr

results in

 

co , _ 2k _ _

G: ~ ——1—-2- I e”"" m2 " IWZFT) e’Mdr kz (2.20)

(277) —<n koa r1 W2 (7)

where the complex v-plane integration contour has been deformed into the complex

2' -plane integration contour denoted by I] in Figure 2.9 [29]. Substituting complex v,

which from (2.19) is given by

 

v=mr+kpa (2.21)

into (2.20), yields

no t _ 2k co , _ _ p

:3 ~ ——12 j 6”“ m2 ” [ W257) e'lmre"*v"‘dr k. (2.22)
(27!) .00 koa 2.192(7)

This integral may be asymptotically approximated for kpa >>1 via saddle-point

integration. To employ this method, (2.22) is recast into an appropriate standard form by

means ofthe following polar coordinate transformation [29]

k2 = ko sina

kp = k() cosa

a3=scos6

z=ssin6

,B = m5 (2.23)

where s is the geodesic distance between the source and Observation points on the

cylinder surface and 6 is the angle subtended by the geodesic curve from the azimuthal

24
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function w2(r) and its derivative w2 '(r) in the complex 2' -plane.
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plane of the cylinder. The mapping of the steepest descent path (SDP) from the complex

kz-plane onto the complex a-plane is accomplished by substituting (2.23) into (2.22).

  

Hence (2.22) becomes

2 2

65;: 1 2 [ WWW—6"" “’8 0‘ [W251)e“’fl'dr a (2.24)
(27;) C... 27m rlw2 (r)

In order to determine the SDP contour, complex a is decomposed into real and

—jcos(a—6)

imaginary parts (a = a'+ ja") and the phase term e is re-evaluated for complex

a resulting in

e—jCOS(Cl -6)cosha +srn(a -5)Slflha
(2.25)

In order for (2.24) to converge, the constraint sin(a'— 6) Sinha" < 0 must be satisfied.

Furthermore, in order to eliminate the oscillations Of the integrand along the SDP

contour, the imaginary part of (2.25) must remain constant and equal to its value at the

saddle point. Thus, the constraint cos(a '— 6) cosha " =1 determines the shape of the SDP

contour in the complex a-plane. Expressing (2.24) in terms Of the hard surface Fock

function given by (see Appendix C for details on the Fock functions)

v(fl) =([2[Me‘jfl’dr (2.26)

47: 1.! W2 '(7)

yields

.. 1 mzcosza 47: _- _
c}; =___ __ _v e 1‘05“)“ 5) a 227)

2 (midi 2w \/ 1'13 m i” ‘

where ,8, defined in (2.3) Specializes to ,8 =£ for a circular cylinder, and pg is the

Pg

radius Of curvature along a geodesic given by
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a
= 2.28

cos2 6 ( )

 

Pg

Deforrning the Ca integration contour in (2.27) into the SDP contour, as depicted in

Figure 2.10, and asymptotically evaluating (2.27) for large kos via the method of saddle-

point integration, yields the asymptotic expression for the 22 component of the electric

dyadic Green’s function for a magnetic dipole radiating on a circular cylinder

—'ks
e10

 GS ~ v(,B) (2.29)

27:3

Note that (2.29) is identical to the dyadic Green’s firnction of a magnetic dipole radiating

in the presence of a PEC ground plane, derived via image theory, modulated by the hard

surface Fock function v(,B). The physical interpretation of this result is that as the

curvature vanishes, (2.29) reverts to the dyadic Green’s function for a magnetic dipole

radiating in the presence of a PEC infinite ground-plane. This result, however, is not

expressed within the framework of UTD. In order to recast this result in terms of the

invariant ray-based unit vectors (t ,b) of UTD, which can readily be compared with the

result derived by Pathak [29], further manipulation is required. From physical reasoning,

the expression for the cylindrical dyadic Green’s function should recover the planar

dyadic Green’s ftmction in the limit Of zero curvature. Based on this assumption, an

expression for the cylindrical dyadic Green’s fimction in terms of the ray-based unit

vectors may be heuristically developed by substituting (2.29) into the following

expression for the planar dyadic Green’s function

 

G = I —1 VV 8.),“ B 230e +
'

2 kg 27rs v( ) ( )

Employing the identity from [30] which is given below
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Figure 2.10 Deformation of the Ca contour into the steepest
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VVV[(fl) 8:]: {RR[%+(jko+%)2]—(I-RR)(R Vii—ez}v(/3)S9% (2.31)

to evaluate (2.30) yields

___ ___ . . A A . A A . e_jk°s

0.2: I t—J— ——l- +RR 2 +—ZL— +RRJ— 1—— 129(5)
kos kos (kos)2 kos kos kos 27:3

 
 

 

 

___ A A = A . A A e-jkos

={(I-RR)—-(I—RR)q(1—q)+RR(2q—2q2)}v(,6);r

= A A 2 7‘05

={1.[1_q(1_q)]+RR(2q-2q )}v(:r)-2—fl; (2.32)

where qzk—j—, R=(r-r')/|r—r', and Iszf—RR. Referring to Figure 2.11, it is

03

apparent that R is tangential to the direction of propagation for a creeping wave between

a source and Observation point on the cylinder surface. Therefore, setting R =f and

I. = [313' allows (2.32) to be expressed in terms of the ray-based unit vectors of UTD.

Therefore, (2.32) can be rewritten as

e-jkos

 G.2={bb[1— q(1— q)]+ii'(2q— 2.12e2)}1:(,3)7r (2.33)

To facilitate the numerical computation of 5.2 , the explicit expressions for the ray-based

unit vectors in terms of the geodesic angle 6 that are given below

i: zsin6+tjrcos6

(2.34)

I) =1iicos6—zsin6

are substituted into (2.33). The subsequent evaluation of (2.33) yields the following

expressions for all four of the components of the asymptotic dyadic Green’s function for

a circular cylinder:
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Figure 2.11 Position of source and observation points on the surface of

a cylinder with respect to the origin.
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e-jkos

 

 

 

0:;(a,?¢i,2)~ [sin 6+q(1— q)(2--3sin 6)]v(,6)ezfl (2.35)

Gf’2=Gf§(a,¢,z)~—sin6cos6[l— 3q(l— q)]v(fl)e2”e-Jkos (2.36)

Gfg(a, as, z)~ [cos 6+q(1-— q)(2— 3cos 6)]v(,6)e2(W (2.37)

Note that the (M) -component in [29] contains a mixed term comprising both the hard,

v(,B), and soft, u()6), surface Fock functions. The soft Fock function u()8) arises from

the asymptotic evaluation of the first term enclosed within the brackets of the (M) -

component Of the exact dyadic Green’s function (2.8) by the procedure outlined above.

With the inclusion of the mixed term (2.37) may be rewritten as [29]

0301,03,?)~2[CO
S 5+q(l ‘1)(2— 3cos2 6)]V

(fl)ezfleflkos

+q [sec2 ,B(u(fl,6)—v(,6))]

2.2.1.2 Far Zone

 

(2.38)

In this case, we begin with the expression for the exact electric dyadic Green’s function

Of the second kind for an infinite, PEC circular cylinder given by

= r r jn -_/kz —jnH(2)(x) In Hri2)'(x) “‘1

G..(,.,.,...,.,.)- ,,,.Ze ‘idk ii———W21.) +zit-3) 11ml”
 

 

   

 
 

n-.. 7

k k H0" (2)' (2) . . k k HO) .
"'j z p n2 (x) [32’4"2Hn2(x) _ nkz2 Hnafx) (Pq)r+ n 2 P (722 (x) (Pit

7k.Hf. "(7) 7H}. "(7) 16.7 xH. '(7) 7xxkoH. "(7)

kk H") k ’ (Z)

+ "2,2,, (3).“) 26—1 (4) Hint“) 22' (2-39)

7 koH. (7) 7 k0 H. (7)

where x = kpp. This time, however, we asymptotically evaluate the exact Green’s

firnction for the case of a source point lying on the cylinder surface p = a , while an off-
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surface observation point is allowed to recede to infinity. Since the Hankel function

requires n >> kpp for convergence, the exact Green’s function becomes poorly

convergent for large kpp. In order to alleviate this problem, the method of steepest

descent must be applied to derive an asymptotic approximation of the exact Green’s

function that is valid in the far zone. Substituting the following approximations, valid in

the far field, into (2.39)

lim Hf,” '(x)~ —jH,(,2)(x) (2.40)

(2)

lim iii) ~ lim . = 2.41
p—aao x p—Doa elpp‘l—E

( )

 

and evaluating, results in

  

= 1 r jn ~jk,z k: 2 HO) *1

G.2(p,¢,z|a,¢,z)= (2111.-....)22e * [dice {[7417] H:,,,((:))]p¢

_kzkariZ) '(X) A A 1__ jHrSZ) '(X) " " 1+ nkszH’EZ) (x) " " '
z— —— 2

7k.2H(2) '(7) 7Hi”(7) 72165115” '(7)

_1 k. H.570)

.ltz)152>..——..liz}

Before proceeding with the application of the method of steepest descent to (2.42), it is

 

clearly evident that kp goes through 0 along the interval of integration Of kz. As a result,

special consideration must be given to the asymptotic evaluation of this integral because

the arguments x and 7 also pass through 0, thereby, challenging any asymptotic

approximations that may be used. Since it is evident that (2.42) can be written in the form

of a steepest descent integral via the substitution of an asymptotic expression for H[”(x)

into (2.42), it is known a priori that the major contribution to this integral comes from the
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region near the saddle-point where kp at 0. Therefore, the use of the asymptotic form of

the Hankel function for a large argument x=kpp >>1 is justified provided that the

observation point is not in the vicinity of the axis of the cylinder where 6 = 0 or it

radians. (Note: The near axis behavior will be discussed in the next section.)

In light of this, the second-kind Hankel function is factored out of the numerator

and replacing by its large argument form for x >>1

H:2)(X) ~ lie-jxejmr/Zejtr/‘i (243)

under the constraint that 6 at O or 7r radians. Grouping all is and 2 terms together with

the same unit source vectors, (2.42) becomes

= ~ 2 143%)” m,- nk, k . __,.k_p .
0.2 (2”)22e Joe {mzkaf’mL—Zp- k i']¢

k - fir/4 -J(k,,p+k.2)

+—1——[k= fi—ii]i'———J—¢¢'}e e dk, (2.44)

k J27rkpp

  

 

k

Making the substitution [71:213- ” z]=0 and decomposing (2.42) into dyadic

components yields

 

 

 

5.. ~ (2722......Z XV”3m,étp +G,,ézmm“ (2.45)

where

no jk,'z jx/4 k e-JUcpp+kz)d

G“: e e " 2.46

‘32 J_M(ka)2,,kH;2>'(ka) e—_\/2nk_dk’ ( )

0° ejkz'ejzr/4e‘1(kpp+kzz)d

(2.47)
Gee;—— Ie 2

_mkaaH}, “(ka) .——/2nkp

33



’ ' 5 . -'k 1,co e119: eMM(—j)e J( pp+ 2)

of; = I k <2) k k z_, ,aH, ( pay/27: pp

 (2.48)

Each of the integrals in (2.46)-(2.48) is amenable to evaluation by the method of steepest

descent under the constraint that 6 1: 0 or 7: radians. The canonical steepest descent

integral given by

G = I F(kz)e"g"‘"dkz (2.49)

SDP

has first order solutions of the form

 (2.50)

 

where, K denotes the large parameter, w is the angle at which the SDP contour intersects

the saddle-point, and k: denotes the saddle-point. Comparing (2.49) and (2.46)

g(k,)=—j((/k02—kz2 sin6+kzcos6) (2.51)

= 0. Consequently, the

 

is obtained and the saddle-point can be found from (1% g(k,)

z k, =k’
1

saddle-point is given by k: = kcos6 , where 6 is the angle subtended from the z axis to

an observation point in the far-zone. It follows that

S - fl 5 j

k, =—k d k, = 2.52g(.) Joan g(.) [(08ng ( )
 

where the double prime denotes second-order differentiation with respect to the argument

k2. Making the following substitutions, to express the parameters in (2.46) in terms of

spherical coordinates in the far-zone:

kp=ksin6, p=Rsin6,and z=Rcos6 (2.53)
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and evaluating (2.46) at the saddle-point, the expression for 179.1(5) becomes

ne’msoz'k cos6
F k: = (2.54)

9’ ( ) (ka sin 6)’ 1:11;” '(ka sin 0) sin (an/2m

Setting the parameters K = R and 1;! =3; and substituting (2.52) and (2.54) into (2.50) to

obtain the asymptotic form of 63 which is valid in the far-zone of the cylinder

. - 7r

jkcos6z’ w nejn(¢+—2_)-JkoR -
a, e 12k0 cos6e (2.55)

6432 ~ 2 ° 2 (2)1 '

koR (27:) (ka sm6) "H, H" (ka sm 6)

The other components of the asymptotic dyadic Green’s function are obtained through

the same procedure and are given by the following:

  

 

6: e-jkoR jzejkcos6z’ no ejn[;+%)

Ge2 ~ 2 (2). , (2.56)

koR (27:) a ,,,__,, H" (ka sm 6)

—ij -jk cos6z' a. ”($125)
¢¢ e 2k0e e (2.57)

 GeZ " 2 - (2). -
koR (27:) kasm6 ",4, H" (ka sm 6)

To facilitate numerical computation, the eigenfunction representations in (2.55)-(2.57)

can be further simplified. Decomposing the infinite summation into two separate sums,

(2.55) can be rewritten as

a, e""°R j2k0 cos6e
jkcos6z' 0 on jn; on on jn;

.2 ~ 2 "1 e +2 "1 e (2.58)

M (27r)z(kasin6) ) ..o"M, Hf,” '(ka sin6 H52) '(ka sin 6)

Changing the interval of the first summation via the substitution n :> —n yields

 

6¢

-jkoR - jkcos6z' co _ --n -jn; co m 1n;

e2 ~ e 12kO cos6e 2 (2)”! e . +2 (2)11] e . (2.59)

koR (27:)2(kasin6) "=0 H_,, '(kasm6) "=0 H" '(kasm6)
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Analytic continuation of the Hankel functions, Hf? '(7) = e"’"’H,(,2’ '(y), is subsequently

applied to merge the two summations

-- . 4 . m J";_ "I"; ,

9, e "‘“R 12k0 cos6e1k°°’9’ °° "1 (e e )2}.. ~ . _. 2.60
2 koR (27:)2(kasin6)2 "=0 H§Z)'(kasm6) 2] ( )

 

Euler’s identity is invoked to simplify (2.60) which leads to the final form

66¢ ~ _e’fkoR 4k0 COS Oejkcos6z' co njn Sin(n3) (2 61)

"’2 koR (27;)2 (kasin 6)2 .=o Hf,” '(kasinB) '

  

Applying the same procedure to (2.56) leads to

’JkoR ~2ejkcos6z' co j" (e121; + e-j";)

  

  

G$~e J 2 n . 3 a6»
koR (27:) a "H, H,2 '(ka sm 6) 2

which upon simplification, results in

6: e-jkoR jzejkcosoz' co gnj" cos(n¢) (2.63)

G ..

‘2 koR (27:)2a ..... H32) '(kasin 6)

where an is Neumann’s constant (8,, =1, n = 0 and an = 2 , n 1: O ). Following the same

procedure, (2.57) becomes

M e—JkoR ejkcost' co gnj" cos(n¢)

G ~ 2.64

’2 koR (27:)2kasin6,,=0 H§2)(kasin6) ( )

 

In summary, the asymptotic expressions for the far-zone dyadic Green’s function for an

axially infinite, PEC circular cylinder in the shadow region are given by

06¢ .. -e"”‘°” 4koc089e”‘°°”" °° "fsmlngl (2 65)
"’2 koR (2n)2(kasin6)2 .6 Hi”'(kasin6) '

  

GO: ~e-jkoR jzejkcos6z' co gnj" cos(n3)

‘2 koR (27:)2a M H,‘,Z"(kasin6)

  (2.66)
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¢¢ e-jkok ejkcosaz' «o aj"cos(n¢)

G,~ 2.67

‘2 koR (2n)2kasm6§H;2>((kasin6) ( )

 

The asymptotic approximations to the dyadic Green’s function given in (2.65)-(2.67) are

useful only for an electrically small cylinder on the order of a few wavelengths in

diameter. For a cylinder with a large radius of curvature with respect to the operating

wavelength, these expressions are slowly convergent. As discussed previously, this is a

consequence of the poor convergence property of the Hankel function with a large

argument. Consequently, the Watson transformation will be used to develop asymptotic

approximations to the expressions in (2.65)-(2.67) that are valid in the shadow region of

the far-zone for an electrically large circular cylinder. Just as in the previous section,

these asymptotic expressions are physically intepretated as components of the diffracted

field radiated by creeping waves propagating along the cylinder surface.

By means of the Watson transformation, the axial component (2.56) can be

rewritten as

- I:

_k Sin Hejkcos6z' jv(‘——2-)

e d
471,2 ' (2) v V

7 C smver, (y)

of; ~ (2.68) 

Following the same procedure as in the previous section, (2.68) is decomposed into two

contour integrals

dv (2.69) 

6:

Ge2 ~

 
 

—k sin 6e!"”’9" e437) I 1.243%)

4 2 ° Hm' dv+ - Ha).
7:7 Clsmwr , (y) C2 s1nv7r , (7)

Where the integration paths of the two integrals in the complex v -plane are depicted in

Figure 2.6. Factoring out e’"r as before, merging the two integration paths, and making

the substitution given by (2.18), (2.69) can be rewritten as
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jlz cos62' co

. [:e-j'v(¢—zr/2+2zl) + e‘JV[(37‘/2‘;)+2’d]:l

-jk s1n6e ~dv (2.70)

0:” ~
2 2.21 2.1,. H5”'(r>
  

where, for a large radius cylinder, 1: O is sufficient. In order to develop a uniform

asymptotic representation for (2.70) in terms of a Fock function, the contour Cl must be

closed at infinity in the lower half-plane to enclose the complex poles of the integrand

arising from the zeros of the Hankel function. Since 7 is large for a cylinder of large

radius, then in light of (2.21) v ~ y. Hence, the uniform asymptotic expansion of the

derivative of the Hankel function in terms of the Fock-type Airy function in (2.18) will be

utilized. These functions are tabulated (see Appendix D) and are amenable for

computation. Making the necessary substitutions, as was done for the on-surface case,

and deforming the integration contour into 1‘] according to Figure 2.9, (2.70) may be

rewritten as

  

- jkcos6z' e-jvd), 4.3-j”?

of; ~ k 5‘“ 9e [ 141] (2.71)

471' [Wrl WI '(T)

where (I)l =izi—3 and (D2 =5—g. Upon the substitution of (2.21), (2.71) is rewritten

as

k sin 6ejk°°soz
-Jm°zr

92~ “1701 jmolt
Ge, 4” [e JLjwHeme 77.18.11.) d7] (2.72)

Making the substitution mCI)L2 = ,6 from (2.23), (2.72) is expressed in terms of the

   

Complex conjugate of the far-zone hard Fock function g‘“) (,6). which is given by [28]

 g“) "emrd (2 73111:. - >
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where u denotes the order. Noting that w1'(r)= w2 '(r)' allows (2.72) to be expressed in

terms of (2.73) as

kSingejkcosaz' 2 -'70P 0 o

4” 2e ’ g( )(mCDp) (2.74)

p=l

6:

6132 ~

 

Following the same procedure, the Watson transformation is applied to the azimuthal

component (2.57), which yields

. 2 ‘kcos6z' -jm0 r -jm<D r

1km e’ ‘ 1

2727 mfImeme-WIIwzmd

 (2.75)  

In this case, (2.75) can be expressed in terms of the complex conjugate of the far-zone

soft Fock function f(")(,6) which is given by [28]

 

Ilejflrd

M — 2.76f (.6)- j—I”W1()d < >

Noting that WI (1) = W2 (1'). , the asymptotic approximation of the azimuthal component of

the far-zone dyadic Green’s function is given by

-Ian2ejkcos6z' 2 - ' .

of; ~ 1 2727 2e ’*’°Pf<°>(m<1>p) (2.77)

p=l

 

The asymptotic evaluation of the cross-polarized dyadic component of the Green’s

function in (2.55) via the Watson transformation is analogous to the axial and azimuthal

Cases and leads to the following expression

, . . -jv0 -jv<D

—jkcos6e"‘°°’9’ [e 1—e ']V

275272 rl W2 '(7)

  of; ~ dv (2.78)

At this juncture, the remaining evaluation procedure differs from the previous cases due

to the presence of the parameter v in the numerator of the integrand. Substituting (2.21)

into (2.78) and applying the requisite change of variable dv = mdr , (2.78) becomes
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jk cos 62' e-jnnbzrd jk cos6z' 1 -jmd>2r

—jm cos 6e e—no. +kcos 6e {1,4,2
I8 —Ie (12'

447 77? w. 'dm 4n J21, w. '(r)

    

49¢

GeZ ~

+ jkm COS gejkcos6z' e-jfl), e-jmsblrd _k COS 0ejkcos6z' e—jflb, -jm0,r

47!? \f—ILW2 'd(T) 47! 7:Iwz '(T)

 dr (2.79)  

Employing the complex conjugate of the far-zone hard Fock function defined in (2.73),

(2.79) is rewritten as

  

- jkcos6z' jkcos6z'

GE; ~ jkm c045 6e e’Wig“) (m(D1). _ kcos :le e"°'g(°) (m(D1).

W 72'

jkcos6z'_ - jkcos6:' ‘ .

jkm cos 6e e“1mg“) (m(D2) + kcos 6e
{’0’ gm) (mCDZ) (2.80)

4717/
471’

  

Simplifying (2.80) in the same manner as before leads to

jkcos6z' 2

031°”: Ze”’°’(-I)”[g‘°’<m<1>)——7“’(mcb)] (2.81)
p=l

 

In Summary, (2.74), (2.77), and (2.81) are rapidly convergent asymptotic representations

of the electric dyadic Green’s function that are valid in the far-zone of the shadow region

for a canonical PEC circular cylinder. As discussed earlier, the analytical representation

in terms of Fock functions ensures the convergence of these expressions in the shadow

boundary transition region consistent with a UTD formulation. Moreover, since the hard

and soft far-zone Fock functions are tabulated, these expressions are amenable to

numerical computation.

2.2.1.3 Axial Singularities

The far-zone asymptotic dyadic Green’s function for a PEC circular cylinder becomes

infinite when evaluated at the vertical axis. This anomalous behavior is due to the

presence of a singularity in the dyadic Green’s function that is manifested only when the

40



observation angle 6 , subtended by an observation point in the far-zone from the z axis,

approaches 0 or 7: radians. In this section, the component of the dyadic Green’s function

that exhibits this singularity is isolated by means of a small argument approximation.

The argument 7 of the Hankel function, as defined previously, is y = kasin6. As the

observation angle 6 approaches the vertical cylinder axis at 6 = O radians, y —> 0’. In

light of this, the following small argument approximations of the second-kind Hankel

function given by [31]

. (2) , 2

11m H0 (y) ~ -_]—ll'l}’ (2.82)

7-20’ 71'

and

. (2) - 1 2 v
11m H, (7) ~ 1 —F(v) — , Re(v) > O (2.83)

7-20’ ft 7

where F(v) is the gamma function, in conjunction with the recurrence relationship [31]

2H5” '(7) = H5320) -H“”(7) (2.84)v+l

are applied to evaluate the small argument approximations of the dyadic Green’s function

components given by (2.65)-(2.67). Invoking the recurrence formula (2.84) to expand the

derivative of the Hankel function in (2.65)-(2.67), in the following manner

HEW)=§[Hé”0>-H§”0)]

H90) = %[H1‘2’(7)-H§2’(7)]

H§2"(7) = -:-[H2‘2’(7) - H900] (2.85)
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and evaluating each term of (2.85) via the small argument approximations in (2.82) and

(2.83), the small argument approximations of the Green’s dyadic components are

obtained. Hence, (2.65)-(2.67) now are given by

  

 

  

 

 

 

lim G“ ~ —e""°R 4nke’b'cos6j" —27:sin(3) +717 sin(23)+ ”7233163)

740+ .2 koR (27:)2 4j+72(21n7-7:) j(y2-8) 2j(72—24)

3sin 4—

+:—}f—(-2—(£g-+...]<oo 2 bounded (2.86)

J 7 -

1.... G92 ~ e-.. ,j...,.....,4(3-:) 1,,“ cos(a) + .0427)
—~)’ e2 2 . .

7 0 koR (27!) a 2 l__~L 324-1117 _J_ 1__8_2

_ 2 7r 7 n7 7 _

cos 3— cos 4—

+ ( ¢) + ( ¢) + . <oo :> bounded (2.87)

[gill-Ell Pill-fill(I72 72 77’ 72

. w e—jkoR ke—J‘koz'jn 7: 7rcos(3) 7:7cos(23) flyzcos(3$)

1113 6,, ~ k , , + . + . + .
7-> OR 27: 7(7r—121ny) 2] 4] 16]

3cos 4-

+E-Fd—¢—)+m]=oo :>unbounded (233)

J

The 623’ component of the dyadic Green’s function becomes infinite as the observation

point approaches the vertical axis giving rise to an infinite field at the vertical axis. The

existence of singularities at the vertical axis is intrinsic to this type of problem and cannot

be eliminated analytically.
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2.2.3 Generalization to Doubly Curved Surfaces

The asymptotic form of canonical solutions are generalized to treat the case of the general

convex curved surface by means of the principle of locality for the propagation of high

frequency radiation discussed in the previous section. The generalized solution should

revert to the canonical solutions for the circular cylinder, sphere, and plane when

specialized to those cases. Once the circular cylinder and sphere canonical solutions are

expressed in terms of the ray-based unit vectors t, b , and ii , the differences between

them become apparent. Expressing the canonical circular cylinder solution in terms of the

ray-based unit vectors following the methodology of [29] results in

de ~ M.[fiv5[(1-é)v(m+ DZ (21;) rm)”: -Ié{u(fl)-v(fl)}]

+t't[D2év(fl)+éu(fl)-2(é) mm]

+[t'b+fi'i]roé{u(fl)—v(fl)})DG(ks) (2.89)

where the parameter 2'0 which uniquely specifies a helical geodesic path has been

introduced. This parameter is defined as [29]

Z

K

r, = (2.90)

where T is the torsion of a surface diffracted ray and K‘ is the surface curvature along a

geodesic. The surface curvature is defined as K =1/pg . The expression for the surface

field excited by a magnetic dipole on a perfectly conducting sphere may be found in a

manner analogous to that of the circular cylinder. The ray-based expression for the
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surface magnetic field excited by a magnetic dipole on the surface of a PEC sphere is

given by [29]

mm ~M-[B'b[(l-%Jv(fl)+D2(ZJY-) u(fl)]+f'f[D27i—v(fl)

L -21;+4 kg)”(fl)lDG(k‘) (2.91)

 . For the sphericalwhere fl specializes to ,6 =E for a sphere, s = a6 , and D =

a sm6l

case, the geodesic path of a creeping wave is a great circle. From the definition of D , it is

readily apparent that the points 6 = O or 71' , are caustics of the surface diffracted rays.

Thus, all surface diffracted rays converge at the two poles of the sphere. By setting the

torsion factor To = 0 , the circular cylinder solution reverts to the spherical solution given

by (2.91) except for the presence of the terms q2v(,6)G(ks) for the cylinder and

q2u(fl)G(ks) for the sphere. Therefore, it is apparent that the differences between these

two solutions are due to the effects of torsion on the surface diffi'acted rays and the

presence of either a hard v(,B) or a soft u(,6) Fock function in the limiting expressions.

In view of this, the canonical cylinder and sphere solutions may be generalized by

employing differential geometry to develop an expression for 7}, that is appropriate for a

general convex surface and by introducing the dimensionless factors 75 and 7c to

interpolate between the canonical cylinder and sphere solutions. Specifically, the terms

q2v(,B)G(ks) and q2u(,6)G(ks) are properly weighted via 75 and ye such that the correct

term is present once the generalized solution has been specialized to either the circular
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cylinder or sphere case. The generalized torsion factor is given by (2.90) where

differential geometry is employed to generalize T as

_ sin26

2

 T (x, —x,) (2.92)

with K = K, cos2 6 + K2 sin2 6 . The parameters K, and K2 are the surface curvatures along

the principle surface directions (to be discussed in detail in Chapter 3). Furthermore, the

dimensionless factors must satisfy the following constraint in order to provide the proper

weighting

7. + 7. =1 (2.93)

where ( 7: =1 , 76 = 0) for a sphere, and ( ye =1, ys = 0) for a cylinder. In view of these

properties, the dimensionless interpolating factors are given by [29]

K1

7.=—- and 7.=1-7. (2.94)

“2

In addition, the generalized form of the distance parameter given by (2.3) is employed in

the arguments of the Fock functions to treat the general convex surface. Consequently,

from (2.90), (2.92), (2.94) via (2.89), and (2.91), the dyadic Green’s function for the

surface field excited by a magnetic dipole on a general convex surface is given by [29]

Ee2(rlr')~(l3'13{[1-61]V(;6)+D’qz[7.u(,6)+7.V(fl)]+‘r§q[u(fl)-v(/3)]}

+3'3{D’qV(fl) + quw) — 2q2 [mm + 7.v(fi)]} + (2'6 + 6'?) {r. qluw) (2.95)

-v(.6)]})DG(kos)

Note that this solution satisfies the criteria for an appropriate asymptotic solution for a

general convex surface in that it reduces to the canonical cylinder solution when ( 75 = O ,

7c =1) and to the canonical sphere solution when (75 =1, 7, =0) and To =0. The
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generalized Green’s function in (2.95) may be specialized to a prolate spheroidal

geometry. The prolate spheroidal dyadic Green’s function components are given by

0&5, :6,¢|6',¢) = {(cos2 6—q[(D2 + 2) cosz 5 —(D2 +l)])v(,B)

+q2 ([(192 + 2)]cos2 6 - 2)[7.u(/3) +mm]

Y

+(ro cosé‘ + sin 5)2 q[u(fl) — v(,B)]} D%’—qe"k°’

GE," = 637(60 :19,(o|t9',(p')={-sin5cos6(v(,B)—(D2 + 2)qv(fl)

+(D2 + 2)q2 [ysu(fl)+ 7cv(fl)])+[(2cosz 6—1)ro —

(T: —1)sin6cos 5]q[u
(fl) _v(fl)]}k20_:,qe_jkos

0:,"(50 :6,¢ (93¢) = {(st 6--q[(D2 +2)sin2 5 —(D2 +1)])v(,6)

+q2 ([032 + 2)]st 5-2)[7.u(fl) +mm]

. _ 2 _ fl “1’95+(ro srné’ c056) q[u(,3) V(fl)]}D 2” qe

 

This derivation of (2.96)-(2.98) will be discussed in detail in Chapter 3.
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CHAPTER 3

FINITE ELEMENT-BOUNDARY INTEGRAL METHOD

3.1 Introduction

The finite element-boundary integral (FE-BI) method is a hybrid computational technique

for solving general electromagnetic radiation and scattering problems. This technique

has been used with much success in the past for modeling cavity-backed aperture

antennas recessed in both flat and curved substrates. The FE—BI technique was first

successfully used to model the radiation by a cavity-backed, rectangular aperture recessed

in a planar ground plane by Jin and Volakis [1] at the University of Michigan. In this

implementation, the cavity region was tessellated into rectangular brick elements. The

use of rectangular brick elements results in a uniform mesh giving rise to a block Toeplitz

boundary integral matrix. Consequently, iterative solutions of the matrix can be

accelerated through the use of a Fast Fourier Transform (FFT) [1]. The utility of

rectangular bricks, however, is strictly limited to rectangular geometries. Gong, et al. [32]

at the University of Michigan further refined the technique by utilizing tetrahedral finite

elements to model arbitrarily shaped apertures. Tetrahedral elements are advantageous in

that they are the simplest shape capable of modeling arbitrarily shaped volumes and may

be generated automatically by commercial meshers. Kempel at the University of

Michigan first extended the FE-BI technique to accommodate cavity-backed apertures

and rnicrostrip patch antennas on curved substrates by utilizing specially formulated

circular cylinder shell elements [2,3]. These shell elements are singly curved and capable

of uniformly discretizing a volume bounded by a singly curved surface with a constant

radius of curvature (e.g. the surface of an infinite circular cylinders). As the radius of
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curvature approaches infinity (the flat case), a shell element becomes functionally

equivalent to a rectangular brick. Analogous to the rectangular case, the uniform

discretization of singly curved regions with shell elements results in a boundary integral

matrix that is block Toeplitz and, therefore, amenable to a fast iterative solution

employing FFT. The motivation for the use of bricks and shells was the need to minimize

the computational burden associated with the boundary integral due to limitations in

computer memory and processing speed at the time. The FFT-based iterative solver

efficiently utilizes memory (0(Ns)) while minimizing compute time (0(N, log2 Ns)),

where N3 is the number of surface unknowns. Traditional vector matrix multiply routines

require 0(Nf) of memory and 0(Ns3 ) of compute time. However, with the recent

advent of high performance computers and the availability of large blocks of random

access memory, the limitations on the complexity of conformal antennas that can be

modeled has been relaxed. A major limitation of the brick and shell element approach is

that they can only be used to accurately represent volumes delimited by canonical

surfaces and, therefore, they are not applicable to arbitrary geometries.

Consequently, in order to extend the range of applicability of the FE-BI technique

to the most generally shaped structures while preserving its computational efficiency,

right triangular prism elements were developed by Ozdemir et. al. at the University of

Michigan [33]. Prism elements are advantageous in that they are capable of modeling

arbitrary geometries while yielding fewer unknowns than tetrahedral elements [33], and

they are not as geometry constrained as bricks and shells. However, there is a drawback

in that distorted prisms are not functionally capable of accurately representing electric

fields because they lack tangential continuity across their faces. This defect is the result
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of their vertically oriented edges not being perpendicular to the planes of their triangular

faces [30] resulting in a nonuniform cross-sectional surface area. In modeling cavity-

backed apertures of arbitrary shape, the best features of prisms and tetrahedra are

combined by the following procedure. The aperture is discretized into a mesh of

triangular elements, which are then extruded by means of distorted prisms into the cavity.

Each prism is subsequently decomposed into three tetrahedral elements. In this manner,

extrusion can be used to form the volumetric mesh with elements that correctly represent

the unknown electric field. This method was recently used by Macon et al. [34] for

arbitrary apertures recessed in a circular cylinder.

In this chapter, the FE-BI method will be extended to model cavity-backed,

arbitrarily shaped apertures recessed in electrically large, doubly curved surfaces. A

domain decomposition approach is inherent in the FE-BI formulation for modeling

cavity-backed apertures in that the computational domain is broken into an interior and

an exterior region. The finite element method is used to model the volumetric fields in the

interior region. A boundary integral is employed to enforce the requisite conditions (e.g.

tangential magnetic field continuity across the aperture) for mesh truncation at the doubly

curved aperture surface via a specially formulated asymptotic electric dyadic Green’s

function. The doubly curved surface is modeled as an electrically large, perfect

electrically conducting (PEC) prolate spheroid. As illustrated in Figure 3.1, by allowing

the axial and azimuthal radii of curvature, in turn, to approach infinity, the circular

cylinder and plane may be recovered as limiting cases. The formulation of the asymptotic

dyadic Green’s function within the context of UTD and its analytical and numerical
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validation will be covered. Finally, the formulation of the far-zone fields in the exterior

region by means of the surface equivalence principle will be covered.

3.2 FE-BI Formulation

The FE-BI equation is derived from the weak form of the vector wave equation.

Beginning with the time-harmonic form of Maxwell’s equations

Vx 12"" = 4:02,; -H’“‘ (3.1)

Vx 11““ = 11:01:; -'E“‘ +J (3.2)

where Eim is the unknown interior electric field, Hint is the unknown interior magnetic

Pi

80

field, k0 = 27r/7l0 is the free-space wave number, Z, = is the free—space wave

impedance, 2" , and Z, are the relative anisotropic permittivity and permeability,

respectively, given by

= 8,“ a” 6x,

a, = a” a” 3),, (3.3)

at zy 22

= iuxx luxy #2

yr : ”y: ”W fly: (3.4)

#3 lazy #2:

Note that the e’“ time convention is assumed and suppressed throughout this

dissertation. Substituting (3.2) into the curl of (3.1) we get the vector wave equation

=—l . = . .

V x [pr -V x E"" ] — k: a, -E"“ = —jk0Z0J""” (3.5)

where J""P is the impressed current due to the excitation source. The method of weighted

residuals is employed whereby the inner product of (3.5) and an edge-based, vector
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testing function, W, , is taken over the computational volume V . This procedure yields

the weak form of the vector wave equation which is given by

=4 . = . .

[{W, -Vx[pr ~VxE""]-k:VV, -8r ~E’m}dV = f,"" (3.6)

V.

where the interior excitation function used to model probe feeds is given by

ff” = —jk0Zo [w, ~J’"’”dV (3.7)

V,

The weak form of the vector wave equation approximates the vector wave equation in a

weighted sense over the computational domain V. Note that (3.6) contains second-order

derivatives of the unknown electric field. Since constant tangential/linear normal

(CT/LN) vector basis functions are used, it is necessary that the order of (3.6) be reduced

through the application of the first vector Green’s theorem. The application of the

theorem transfers a curl operator from the unknown electric field and onto the testing

function, after which (3.6) becomes

=-l . = ‘ A _ ‘

[[vxw, .p, -VxE”” +k§w,. .5, -E””]dV—jkoZ0 [ w, -§xH""dS = f"” (3.8)
V. l

where a is the outward-directed unit normal vector in the prolate spheroidal coordinate

system. Equation (3.8) is underdetermined in that it contains unknown electric and

magnetic fields; however, the testing function represents the unknown electric field only.

The interior magnetic field H’“‘ cannot be found easily; however, an expression for the

total magnetic field, just exterior to the aperture, may be found from

HW=HW+HM+HW 09)
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where H” is the incident magnetic field, H”f is the reflected magnetic field, and H“” ,

determined via the surface equivalence theorem, is the magnetic field attributed to the

aperture fields which is given by

Hap = jkOYO [ 5.2 .é'x E’"‘dS' (3.10)

3
up

An electric dyadic Green’s function of the second kind [10] is used to convert the

tangential electric field in the aperture to an exterior magnetic field. The natural boundary

condition, ex H” = Ex He” , is enforced across the aperture surface by substituting the

expression for the total magnetic field just exterior to the aperture into (3.8). Upon

evaluating (3.8), we obtain the coupled FE-BI equation given by

=_] = _ A = A .

I]:wa -,ur -VxE"" -k:W ~49, oE'"’]dV+k: _H(§XW,.)-Ge2 -(§'xE"")dS'dS

y 35- (3-11)

=frnt+fext

where fa“ is the exterior source excitation function given by

ff“ = —jkOZO [w] .Ex (H’m + H')dS (3.12)

3:

Note that the surface integral in (3.11) has support only over the nonmetallic portions of

the aperture. The FE-BI equation in (3.11) is not yet in a form that is suitable for

numerical implementation. The unknown interior electric field must be expanded

throughout the computational volume in terms of subdomain, edge-based vector

expansion (e.g. basis) functions W].

E=figwj (3.13)

52



In this formulation, Galerkin’s testing procedure is utilized whereby the vector basis

functions, W1. , are CT/LN functions and identical to the testing functions W. Note that

the expansion functions become identical to the testing functions on the aperture surface

(4‘ = .50 ), thereby, enforcing the essential boundary condition éx E’” = Ex E‘x’ across the

aperture surface. The unknown complex coefficient associated with each free edge of the

volumetric finite element mesh is given by Ej. A free edge is any edge that is not

tangential to a PEC surface since a total electric field formulation is being used in this

work. Hence, any edge that is tangential to a PEC surface has an expansion coefficient

equal to zero. Substituting (3.13) into (3.11) gives the final discretized FE-BI equation

that is amenable to computation

r =4 = T

N [{VXW‘flr -Vij—k02VV,»£r-WJ dV .

2E, " . = . =f.-'“‘+f."’ (3.14)
P: +kj II(§ij)G.2-(§'ij)dS'dS

5,8, _  

3.3 Finite Element Matrix Elements

In this formulation, the volumetric unknown electric field is expanded within a

tetrahedral element in terms of CT/LN vector basis functions. CT/LN basis functions

provide a constant tangential component along one edge, while the tangential component

along the other edges equals zero. In addition, these basis functions provide a linearly

varying normal component along each edge. Tetrahedral elements are formed from prism

elements by first generating a planar surface mesh of triangular elements, mapping the

surface mesh onto the prolate spheroid surface, and extruding each surface element into
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a—>00

b is fixed

   

circular cylinder

Figure 3.1 Topological transformation of a prolate spheroid

into a plane and a circular cylinder in the limits of zero

azimuthal and axial curvatures and zero axial and finite

azimuthal curvatures, respectively.
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the cavity volume by means of prism elements. The prisms are, subsequently, divided

into tetrahedra. The process of extrusion essentially amounts to growing the mesh along a

direction that has been defined as normal to the surface in a particular orthogonal

coordinate system (in this case, the a direction). This process entails generating finite

elements for each layer of the mesh by duplicating the aperture node distribution in all of

the lower layers. Thus, in order to form the layer, the aperture nodes are generated at the

interface of the first and second layer. Elements for the current layer are generated from

those nodes and the bottom nodes of the previous layer. Edges are subsequently formed

based on the chosen finite element. The scheme that is used in subdividing prism

elements into tetrahedral elements is illustrated in Figure 3.2 [35]. Two types of prism

elements are used in order to prevent the diagonal edges of adjacent prisms from

crossing, thereby, ensuring tangential field continuity across each face. Once the

tetrahedral elements have been generated, the unknown electric field is expanded in terms

of the vector basis function given by

W]. = (leVsz — LJZVLflflJ (3.15)

In (3.15), the subscripts denote the two local node numbers defining the edge directed

h

from jl to j2 , Ij is the length of the j' edge, and the nodal basis functions are given

by

L =

J 6V6

 (a: +bfx+cjy+djz) (3.16)

where the coefficients aj, bf, cj and d; are found fiom the coordinates of the four local

nodes that define the tetrahedral element and V" is the volume of the tetrahedral element

given by
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Prism Type 2

Figure 3.2 Subdivision of the two types ofprisms into tetrahedra.
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(x1 ’x4)[(}’2 ‘Y4)(23 '24)‘(y3 -y4)(22 '24)]+

a. 1

V = '6' (Y1‘Y4)[(zz —z4)(x3 'x4)—(Z3 -z4)(x2 —x4)]+ (3'17)

(21‘24)[(x2 —x4)(y3 ”Y4)"(x3 —x4)(y2 'Y4)]

The key benefit of using this type of element in the FE-BI formulation is that the vector

basis fimction and its curl are easily expressed in terms of Cartesian unit vectors. In light

of this, the curl of W1 is given by

21.

Vx W] = (6V: )2 [fie/Id].2 —cjzdfl )+j3(dj,bj2 —dj.2bjl )+ 2"(bflcj2 —b12cj.,)] (3.18) 

3.4 Boundary Integral Matrix Elements

3.4.1 Selfcell Evaluation of the Boundary Surface Integral

The selfcell evaluation is the local planar approximation due to the small cell dimensions

relative to a wavelength. This is in regards to the surface integral term in (3.14). As

discussed previously, the FE-BI method is a hybrid method combining the finite element

method with the method of moments. The boundary integral is formulated as an

integrodifferential equation that can be solved by the method of moments. The tangential

electric field in the aperture is expanded in terms of a set of divergence free, vector basis

functions having support over two triangular patch regions sharing an edge. These basis

functions were first introduced by Rao, Wilton, and Glisson [36] and will, henceforth, be

referred to as RWG basis functions. The expansion of the tangential electric field in the

aperture in terms of RWG basis functions begins with the formulation of the magnetic

field just exterior to the aperture in terms of an electric vector potential and a magnetic

scalar potential given by

Ira" = —ja)F—V<Dm (3.19)
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where the electric vector potential F is given by

e_ij

')-er$' (3.20)     

and the magnetic scalar potential (Dmagis given by

—ij

(3.21) 

 

       

 

mag: mag

27w,uso

In (3.19) and (3.20), the magnetic surface current density is given by Ks(r') and the

magnetic surface charge densityrs given bya (r'). The distance between source and
Umag

observation points on the surface is given by

R = Ir —r'| (3.22)

where r and r' are position vectors directed from the origin of the coordinate system to

observation and source points, respectively, on the prolate spheroid surface. Expressing

the surface charge density in terms of the magnetic surface current density via a purely

fictitious magnetic continuity equation

'K(r')=—ja)aamg(r') (3.23)

the scalar potential equation may be rewritten as

           (I) =-— 3.24

By enforcing tangential magnetic field continuity across the aperture, we obtain

11 x {—ijmom} = a x H’” (3.25)

which, upon the substitution of the electric (3.20) and magnetic (3.24) potentials in terms

of the magnetic surface current, (3.19) becomes an integrodifferential equation amenable

to solution by the method of moments.
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The RWG basis function f" (r) used to expand the magnetic surface current Ks(r')

across the aperture is given by [36]

I 1
A ’, reT+
214:"?! n

-l

f r =<——-”— ", reTn' 3.26.0 24.9., ( )

0, otherwise

I 
where r is a global position vector from the origin of the coordinate system to a point on

the surface, p: is a local position vector, which is given by

9? (r) = i(r-r.) (3.27)

in global coordinates, where r',. is the position vector to vertex opposite edge 1', In is the

length of the nth edge of a triangular patch, and A: is the area of triangle Tut. The RWG

basis function is associated with a free aperture edge of the tessellated surface, vanishing

everywhere on the surface except in the region bounded by two triangles bordering the

edge. Figure 3.3 illustrates the nth edge shared by two triangular patches 7:“ and 7;“. The

following properties of the RWG basis functions render them amenable to modeling

surface current within triangular regions [3 6].

(1) The vector basis function only has a component that is normal to an edge shared by

two triangles. There are no components that are normal to the remaining triangle

boundary edges. Consequently, there are no line charges at the boundary edges.
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(2) The normal component of the basis function to a common edge is equal to the height

of a triangle 7?. The edge n is the base of the triangle and the height is given by

. This normalizes the basis function to unity. 

2A?

1,,

Furthermore, the surface divergence of the basis function within a triangular region is

given by [36]

 lb, reT+

V5 -fn(r) =< , re T‘ (3.28) 

0, otherwise

 
Taking the inner product of (3.25) with the set of vector testing functions denoted by fm ,

we obtain

fi[jw(F,fm)—<Vsd>mg,fm>] = (fix warm)

I":

—

=, ijF.fmdS— [VscDmg-fmdS= [axnm' -r,,,ds (3.29)

S S S

where the inner product is denoted by (AB) = IA-BdS . Applying the surface vector

S

identity in [3 7] to the second term on the left-hand side of (3.29)

ja) [F-fmdS— [Vs .(cpmgrm )dS+ [0)”,ng -r,,,ds = fixH'm -fmdS (3.30)

S S S S

The second term on the left-hand side involves integration over the surface S of a closed

three-dimensional body. This surface integral may be evaluated by splitting the closed

surface S into two surfaces S1 and S2 bounded by the contours C1 and C2 , respectively,
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directed in opposite directions and applying a two-dimensional version of the divergence

theorem

mag m
jcoIF-fmdS-[[V3.(d3magfm)dS+IVs-(<D r )dS]+[q>magvs-rmd3= [fixH'mrmdS

s 3. s2 5 3

=> jij-rmdS-(qc 1341)“;deij fi-(D r d1)
S l 2

mag m

+ [omgvs rmds = [a x H’" .rmds (3.31)

S S

Hence, (3.31) now becomes

ja) [F -fmdS + [omagvs -fmdS = [fix H“ .rmds (3.32)

S S S

Employing the method of moments to solve this system, we expand the magnetic surface

current in the aperture in the set ofRWG basis functions

N

Ks(r') 5 21,1" (r') (3.33)

n=l

where 1,, is the unknown weighting coefficient and N is the number of non-boundary

edges. Note that K,(r') = E“ xfr and W” =r‘rxfn (r'). Employing Galerkin’s method

whereby the set of vector testing functions, denoted by fm (r) , is set equal to the RWG

basis functions f" (r) we obtain

a e‘ij l e'ij
ja) 0 [r',—{15' -f,,,dS- [Vs-f" dS' s-fmdS

S 27:5. R 3 27m, 5. R

= a x H... (3.34)

   

Substituting (3.26) and (3.28) into (3.34), we obtain the boundary integral impedance

matrix
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nm
Z J“)?!—{jAn——j’;,p.(r) 9405:],—

S'S

         

kOSS'AII

where

and

{+1, reT;

8 - .

reT‘
m

In light of (3.35), the electric vector potential given by (3.20) may be rewritten as

 

=AA. I ]0.0) pm)??— 'ds
m n Ti T01

and the magnetic scalar potential given by (3.21) may be rewritten as

e...ij

(D       

”’ =,:1AA:,.,.R

y+ds'ds}(335)

(3.36)

(3.37)

(3.38)

(3.39)

The potential integrals given by (3.3 8) and (3.39) may be evaluated over the source and

observation triangle regions T: and I: most efficiently by expressing them in terms of

normalized local area coordinates (g1,g2,g3) [38]. The local area coordinates are defined

within a triangular region in the following manner

A A2 A3

91: Aq-—=,g2 Aq—=,§3 7.,
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where A, A2 and A3 are the areas of the sub—triangles and A" is the area of the entire

triangular patch. The local area coordinate system within a triangle is depicted in Figure

3.4. The normalized area coordinates satisfy the following constraint

g+g+9=1 BAD

As a result, only two coordinates are independent. The local area coordinates may be

converted to Cartesian coordinates via the following vector transformation

r=gq+gq+gg 643

where r, is a position vector from the origin to the ith vertex of a triangle. Surface

integration over a triangular region Tq effectively transforms the kernels of the integrals

given in (3.3 8) and (3.39) from a function of position defined in Cartesian coordinates to

a function of position defined in local area coordinates as given by

l 1‘42

IK(r)dS =1 IKlglrl +9212 +(1-9'1 ‘92)r31d9'1d9'2 (3-43)

After the transformation, the potential integrals in (3.38) and (3.39) are re-expressed in

terms of local area coordinates. Hence, (3.3 8) and (3.39) may be rewritten as

 

 

F——1—[ *(r) —1—[ «me-M dS' S (344)
AP Tppm Aq Tan R '

and

.1“;

<1>,,,=-1- —1—[e dS' s. (3.45)
APfl1rfl R

Before the integrals in (3.44) and (3.45) can be numerically evaluated, the singularity in
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each of their kernels must first be isolated if the test and source points coalesce. This is

done inside of the bracketed expressions by adding and substracting out the singularity.

Evaluating (3.44) in this manner yields the expression

-ij-

 

. e“’"‘” . 1 e p'- p .
FrlpnO'deS =FTJP:(I'V)R 1dS+,414{TI-—R—ds

(3.46)

+(p- p.) [ldS '

T" R

The first term on the right-hand side of (3.46) has a bounded kernel, while the bracketed

term on the right-hand side contains the singularity. Having isolated the singularity,

(3.46) may now be expressed in terms of the local area coordinates, resulting in the

expression

1 1'91 1

=2] [p.(r)———ld§.'d§2'+ A,—-{ [€13,151
7w

     71/1! 7)..”(r

(3.47)

+(p-p.)T[11593}

The first term on the right-hand side of (3.47) is now bounded and expressed in terms of

local area coordinates. Therefore, it may be evaluated by numerical integration over each

triangular patch on the surface [39]. However, the second term on the right-hand side is

singular and must be evaluated analytically. Appendix A provides details on the

evaluation of surface integrals over triangular regions. Evaluating the bracketed

expression in (3.45) in a similar manner yields the following expression

1 11—g, ‘3-ij 1

F—dS'= 2OH—dgldg,+—j—ds' (3.48)
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Analogous to (3.47), the first term is bounded and well-suited for evaluation by

numerical integration over the triangular patch, while the second term containing the

singularity must be evaluated analytically [39].
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Figure 3.3 RWG basis functions supported within the

triangular regions 7;: and 7: sharing a common edge n.

 

  
Figure 3.4 Local area coordinate

system defined within a triangular

region.
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3.4.2 Asymptotic Dyadic Green’s Function Formulation

The exact condition for finite element mesh truncation is provided by the boundary

integral by means of a dyadic Green’s function. The electric dyadic Green’s function of

the second kind [10] couples the tangential electric and magnetic fields in the aperture

and enforces the boundary condition on the tangential electric field over the PEC prolate

spheroid surface. This dyadic Green’s function is used in the hybrid FE-BI formulation

(3.14) and is denoted by 5... Due to the poor convergence and high computational

expense of an exact form of the dyadic Green’s function for electrically large bodies, an

asymptotic form for an electrically large, lPEC prolate spheroid will be derived. The

asymptotic Green’s function physically represents surface diffracted rays (e.g. creeping

waves) that are excited by a magnetic dipole (e.g. aperture) on the PEC prolate spheroid

surface. The formulation begins with the UTD expression for the surface magnetic field

excited by a unit infinitesimal magnetic dipole on an arbitrary convex curved surface

developed by Pathak [29] which is given by

(32011-3 ~(13'l3{[1—q]V(fl)+D’q’[7.u(fl)+7.V(fl)]+r§q[u(fl)-V(fl)]}

+i'%{quv(fl)+quw)—2q2[7.u(/3)+r.v</3)]}+(i'fi+fi'f){r.qlum (3.49)

—v(/2’)]})DG(k.s)

where f'and f are the unit tangent vectors to the geodesic path, b'and b are the

binormal vectors to the geodesic path, v(,B) and u(fl) are the hard and soft surface Fock

functions, respectively, which physically represent the attenuation of a surface diffracted

ray for various orientations of its geodesic trajectory along a convex curved surface. In

this work, prime coordinates denote source points, while unprimed coordinates denote

testing or observation points. The Fock functions critically depend on the Fock distance
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parameter ,6 which provides the mathematical link between surface curvature and

attenuation. For a flat surface, ,6 =0, resulting in v(,B)=l and u(fl) =1. Hence, the

Green’s function for the curved surface reverts to the planar form. The parameters To ,

73 , ye , q , and D are geodesic path and curvature dependent parameters intrinsic to the

UTD formulation. In (3.49), G(kos) is given by

ken) e-jkos

27rj kos

 G(kos) = - (3.50)

where k0 and Y0 are the free-space wavenumber and admittance, respectively. The

parameter s is the length of the geodesic path on the spheroid surface. These parameters

will be discussed in greater detail in the following sections as explicit formulas will be

developed for each of them within the prolate spheroidal coordinate system. As an initial

step, the prolate spheroid coordinate system is defined; next, an orthogonal surface

geodesic coordinate system is defined via the formalism of differential geometry. The

geodesic coordinate system provides the framework for the calculation of the surface

curvatures, the derivation of explicit expressions for the geodesic path, UTD parameters,

and the ray-fixed unit vectors.

3.4.2.1 Prolate Spheroid Coordinate System

A prolate spheroid is generated by rotating an ellipse about its major semi-axis. Consider

an ellipse with major and minor semi-axes a and b , respectively, as depicted in Figure

3.5. In this figure, f and f ' denote the two foci, d is the interfocal distance, while

c = d / 2 . The eccentricity e of the spheroid is given by

(3.51) 
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Figure 3.5 Prolate spheroidal geometry.
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The following Pythagorean relationship exists among a, b and c

c2 = a2 —b2 (3.52)

The prolate spheroidal coordinates form a right-handed system when taken in the order

(77,549). The transformation between prolate spheroid coordinates and Cartesian

coordinates (x, y, z) is given by

x =c[(g2 --1)(1-272)]"2 cosgp (3.53)

y =c[(§2 —1)(1—2f)]"2 singo (3.54)

z =c5n (3.55)

where

oseszn, 457731, anus/gm. (3.56)

Let

g, = cosht/I Econstant (3.57)

define the prolate spheroid surface. Substituting (3.57) and 77 = c056, where 6 is the

elevational angle subtended by a point on the spheroid surface from the z axis, into

(3.53), (3.54) and (3.55), and applying the hyperbolic trigonometric identity

cosh2 1,7 —sinh2 w =1 (3.58)

leads to

x = csinh wsin6cos¢ (3.59)

y = csinhwsin6sinqo (3.60)

z=ccoshwcos€ (3.61)
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Since 57 is constant for a prolate spheroid of fixed size, the following substitutions can be

made for convenience

a=ccoshw,b =csinh1/I (3.62)

Substituting (3.62) into (3.59), (3.60) and (3.61) yields the parametric equations for the

surface of a prolate spheroid in terms of the spherical coordinates (6,(p)

x = bsinBcosgo (3.63)

y = bsinBsingo (3.64)

z = acosB (3.65)

The parametric equation for a position vector r from the origin of the prolate spheriodal

coordinate system to a point on the surface is now given by

r(6,(p) = b sin6 cos¢i + b sin6 sin (by + acos 62 (3.66)

By specifying the dimensions of a prolate spheroid in terms of it major and minor semi-

axes (e.g. axb) and the angular location of a point on the surface in terms of the

spherical coordinates (6,¢) , the position of point on a prolate spheroid surface may be

defined with respect to the Cartesian axes (x, y, z) . This parameterization facilitates the

projection of points of the spheroid surface onto Cartesian coordinate axes for the

evaluation of integrals in conjunction with the RWG basis functions. Differential

geometry may now be applied to determine the mutually orthogonal principal directions

on the surface and the surface curvature along those directions. Knowledge of the surface

curvature is essential for calculating the UTD surface ray parameters, which will be

discussed later in this chapter.
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3.4.2.2 Surface Geometry

As a preliminary step in deriving the asymptotic dyadic Green’s function, the surface

curvature must be determined. Expressions for the curvature along mutually orthogonal

surface directions will be derived within the context of differential geometry. In

differential geometry, a surface is uniquely defined by its first fundamental form (FFF)

and its second fundamental form (SPF) [40]. The coefficients E,F and G of the FFF for

a curved surface are given by

 

 

 

66 66

F = W040) , 6110.9) (3.68)

66 6e)

G = M940) , 6r(6',¢) (3.69)

6w . 60)

where r(9,(p) was defined previously in (3.66). Upon the substitution of (3.66) into

(3.67)-(3.69), expressions for the FFF coefficients are obtained

E = 8’ cos2 61+a2 sin2 19 (3.70)

F = 0 (3.71)

G = 82 sin2 6 (3.72)

The SFF coefficients are determined from the following expressions

 

2

M: a ' -fi (3.74)
auav

azr ..
N=5vT-n (3.75)
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where fr is the unit normal vector to the surface given by

6r 6r
__x—

auav

6r6r
__x._.

au 6v

_ asin6cos¢i+asin6sin¢y+bcos6i

, 1/2

(b2 cos2 6 + 02 srn2 6)

A

n_'——

  
(3.76)

 

Similarly, the substitution of (3.66) and (3.76) into (3.73)-(3.75) yields the following

expressions for the SFF coefficients

ab
 

L = 3.77

(b2 cos2 6 + a2 sin2 6)”2 ( )

M = 0 (3.78)

- 2
N = absrn 6 (3.79)
 

(b2 cos2 6 + a2 sin2 6)”2

Since F = M = 0 , it follows from differential geometry that curves lying along the curves

6 = constant and (o = constant are orthogonal and, therefore, define a surface geodesic

coordinate system aligned with the principle surface directions [40]. The unit vectors 1"]

and (j) are aligned with the principal surface directions 6 and (p , respectively.

Now that the FFF and SFF coefficients have been determined, the surface curvature

along each of the principle surface directions can be found. Expressions for the principle

surface curvatures K1 and K2 along the principle surface directions f1 and (j) ,

respectively, are found from [30]

ab
 

 

L

9 =—= 3.80

I“) E (bzcosz6+a2 sin26)3”2 ( )

N a

9 =__= . 3.81

K“ ) G b(b2 00829+az 611219)“2 ( )
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Observe that in the case of a prolate spheroid, the principle surface curvatures at a point

(6,;0) on the surface are functions of the elevational angle 6. This property determines

the firndamental nature of geodesic paths on a prolate spheroid surface, which will be

seen later.

3.4.2.3 Calculating the Geodesic Path

Having determined the principal surface curvatures, an important step in the

determination of the GTD ray parameters has been completed. However, before these

parameters can be computed an expression for the geodesic path between a source and an

observation point must be determined. This is due to the fact that each of the GTD

parameters depends not only on the surface curvature but also on the geodesic trajectory

angle. In this formulation, the geodesic trajectory angle is the angle subtended by a

tangent to the geodesic curve from the zaxis; hence, the geodesic angle provides a

measure of the torsion of a geodesic curve. For a space curve, torsion is defined as the

amount by which the curve twists in the normal direction to the osculating plane, which

in this case, is the azimuthal plane of the spheroid. Geodesics on a circular cylinder are

characterized by constant torsion, whereas geodesics on a prolate spheroid, by virture of

the angular dependence of their FFF coefficients, are characterized by a variable torsion.

This implies that the torsion at a point on a geodesic is a firnction of angular position

along the surface. Thus, in order to determine the geodesic angle, an explicit formula for

tracing geodesic paths on the surface of a prolate spheroid is required.

The derivation of a geodesic path formula begins with the specification of the arc

length between two arbitrary points R and P2 on a curved convex surface given by
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P2

8 = [(158qu2 +2qudv+de2)l/2 (3.82)

where E,F and G are the FFF coefficients derived in the previous section. Substituting

(3.70), (3.71) and (3.72) into (3.82) and rearranging terms yields

112

5 =3 (b2 cos2 6 + a2 sin2 6) +b2 sin2 6(ggjz] d6 (3.83)

Since a geodesic is defined as the are joining two points on a surface such that the arc

length is minimal, the equation for the geodesic may be found by determining the

extremum of this integral. Inspection of the kernel of (3.83) reveals it to be in the form of

a functional f(0,09'; 6) , where (0' denotes the derivative of ¢7 with respect to 6. We

would like to find the condition under which this functional is an extremum. From the

calculus of variations, it is well known that a necessary (but not sufficient) condition for

f(0,636) to be an extremum is for it to satisfy the Euler-Lagrange equation [41] given

by

_6_

671W';6)-——f(go,(o,6)=0 (3.84)

d66¢'

which, owing to the fact that q) = 0 , reduces to

cal—66¢a'f(0,(p',6)=0 (3.85)

The evaluation of (3.85) leads to the ordinary differential equation (ODE)

d (b2 sin2 6)(o'

m :0 (3.86)

d0 (62 cosz 6 + a2 sin2 6 + 62 sin2 6[¢'])

 

The condition
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(b2 sinz 6)¢'

(b2 cos2 6 + a2 sin2 6 + b2 sin2 6[go'])“2

 = cl (3.87)

where c1 is a constant, must hold in order for the ODE in (3.86) to be satisfied. Solving

for (0' in (3.87) leads to

drp cl (b2 cos2 6 + a2 sin2 6)“2
 

 

(0 (3.88)

d9 bsin6(b2 sin2 6 —c12)“2

which upon integration yields the equation of a geodesic given by

c (a2 sin2 6 + b2 cos2 6)”2

(0(6) = j ‘ d6+c2 (3.89)
, , 1/2

bsrn6(b2 srn2 6—clz)

where c1 and c2 are integration constants that must be determined by specifying the

starting and ending points of the geodesic.

The algorithm for determining the constants c1 and c2 involves first specifying

the starting point ((05,65) and end point (go/,6” of a geodesic path on the prolate

spheroid surface in spherical coordinates. The constant c2 is equated with the initial

azimuthal angle (p, and Cl is set to an initial geodesic angle in radians. A trial geodesic

path is traced for each C1 by numerically integrating (3.89) from (as to (of. The value of

the azimuthal angle obtained by adding the result of the numerical integration to c2 is

 

denoted b . Next, » is com ared to via . —- <toI , where to] is a
y (atrial wit-ta! p ¢f $1770! ¢f

prescribed tolerance value. If (Pm: falls within this tolerance, the routine terminates and

the curved that has been traced is the geodesic path. Furthermore, the value of cl

obtained from this routine is saved and utilized in the computation of the remaining UTD
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parameters that require this constant. However, if this condition is not met, then the

algorithm repeats until this condition is met. Figure 3.6 shows a typical geodesic traced

along a prolate spheroid surface by this algorithm.

Having developed an explicit formula for tracing the geodesic path, the geodesic

path length 8 and geodesic angle 6 may now be calculated. As mentioned previously,

the geodesic angle is the angle subtended by a tangent to the geodesic curve from the

z axis, as depicted in Figure 3.7. From differential geometry, the relationship between

the geodesic angle and the FFF coefficients is given by [40]

sin6 453 (3.90)

ds

du d6 G(G—c,)

du _ d6 _ G—cl2

and

 

 

_ = ._ _ (3.92)

ds ds EG

Taking the reciprocal of (3.92), the geodesic path length 3 is given by

9/ bsin6(a2 sin2 6 + b2 cos2 6)“2

s = I (3.93)

a, (bzsin26—cf)“2

where the angular position of the source 65 (or starting point) and diffraction 6] (or

ending point) of a surface diffracted ray are taken as integration limits. Note that for the

range of locations of geodesic endpoints considered in this work, the value of cl never

exceeds G. Furthermore, from (3.70) and (3.72) E > 0 and G >0 for all elevation

angles. Hence, the expressions inside the radicals of (3.91) and (3.92) are always positive

in this work. Substituting (3.70), (3.72), (3.91) and (3.92) into (3.90) and solving for
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6 yields the geodesic angle 6(6,c,) in terms of the elevation angle 6 and integration

constant cl

6(6,c,) = sin" [fig-5) (3.94)

The equation for the geodesic angle corroborates physical intuition in that the geodesic

angle of a point on a geodesic curve would depend not only on the location of a point on

the surface but also on the particular geodesic upon which it lies. Closely associated with

the geodesic path length is the generalized Fock parameter ,6. As discussed in Chapter 2,

this dimensionless parameter expresses the ratio of the distance of a point from the

geometrical optics shadow boundary to the width of the transition region. The expression

for ,6 given in Chapter 2 is repeated here for convenience

 

P. p8

where as before m is given by

[C 1/3

m =[ is) (3.96)

Substituting (3.80) and (3.81) into Euler’s equation from differential geometry which is

given by

K(6) = K1 cos2 6(6) + K2 sin2 6(6) (3.97)

we obtain the expression for the geodesic curvature, which is given by

ab4 + (a3 - ab2 )c,2

b3 (a2 sin2 6 + b2 cos2 6)”2

 K(6) = (3.98)

Note that the geodesic curvature is angularly dependent as will be the case for most of the

surface ray parameters. As mentioned previously, this is a consequence of the fact that
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the geodesic path exhibits variable torsion. The geodesic radius of curvature pg (6) is just

the reciprocal of (3.98) and is given by

b3 (a2 sin2 6 +b2 cos2 6)”2

ab4 + (a3 - ab2)c,2

 [08(9) = (3.99)

Substituting (3.96), (3.99) and the reciprocal of (3.92) into (3.95) and evaluating leads to

the expression for ,6 given by

 

7: )1/3 6‘, asin6(b" +[02 _b2]c12 )2/3 d6 (3 100)

fl(6)=[ 1/

46 a, b[(a2 sin2 6 +1;2 cosz 6)(b2 sin2 6 — c3 )] 2

The numerical integrations involved in tracing the geodesic path and in the

calculation of the associated geodesic parameters can be quite time consuming. In order

to expedite the calculation of these parameters, the following limiting cases depicted in

Figure 3.8 may be handled seperately:

(1) The geodesic endpoints lie close together and are situated on a quasi-cylindrical

midsection of the spheroid ( Figure 3.8a).

(2) The geodesic endpoints share the same azimuthal angle, lying on a circular arc

(Figure 3.8b).

(3) The geodesic endpoints share the same elevation angle and, thus, lie on an elliptical

arc (Figure 3.8c).

For the first case, the following heuristic approximation to the geodesic path length has

been found to be reasonably accurate:

 

-— 2

supp eflpmgw) +E(6,e)2 (3.101)
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where pm is the average of the azimuthal radii of curvature of the two endpoints,

(6 = (o — (6' , and E (6,6) is Legendre’s elliptic integral of the second kind [42] given by

9:

E(6,e) = 0 [J1 —e2 cos2 6d6 (3.102)

91

where e is the eccentricity, defined previously, 6l , and 62 are the elevation angles

subtended by the endpoints of the geodesic from the z-axis. From Table 3.1, it is apparent

that the geodesic path length computed from (3.93) compares quite favorably with the

approximation to the geodesic path length given by (3.98) over the quasi-cylindrical

region.

The approximation to the Fock distance parameter for the first case is given by

2/3

cos2 6
z ksa —— (3.103)

fl PP [fikpavg

and the geodesic angle is approximated by

E 6,

(seem ii) (3.104)

Pavgfo

For cases (2) and (3), (3.96) reverts to the circular arc length and the elliptic arc length

formulas, respectively. For the second case, ,6 is given by

92

fl=j Jl— 22eos 6d6 (3.105)

91

31

Pg

While for the third case, ,6 is given by

ms

pg

(3.106)

E

|| |
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Note that 6 = 0 and 6 =% radians for the second and third cases, respectively.
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Figure 3.6 A geodesic on a prolate spheroid surface traced

via numerical integration.

  
Figure 3.7 The geodesic angle.
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(a) (b) (c)

Figure 3.8 Limiting cases for the the geodesic path length:

(a) quasi-cylindrical, (b) circular arc, and (c) elliptical arc.
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Table 3.1 Comparison of approximate and exact geodesic path

lengths between two points located on the midsections oftwo prolate

spheroids. The approximate geodesic path length is denoted by Sc

and the exact geodesic path length is denoted by s
geo '

PP

 

 

 

 

 

 

 

Angular Position Major and Minor Major and Minor

of Geodesic Axes of Prolate Axes of Prolate

Endpoints Spheroid Spheroid

6:, 0 ’ $5” (0

( f) ( f) a=400cm a=50cm

b = 40 cm b = 40 cm

(90°, 33°),(0°, 10°) sgeo= 15.6017 cm SW = 7.1870 cm

so”, = 15.6072 cm SW = 7.1941 cm

%error = 0.03535 %error = 0.09870

(90°, 33°),(0°,15°) SW = 17.5099 cm Sgeo = 10.7394 cm

supp = 17.4491 cm SW = 10.6133 cm

%error = 0.3473 %error = 1.1744

(90°, 33°), (0°, 20°) Sgeo = 19.9119 cm SW = 14.3168 cm

SW = 19.7411 cm SW = 14.0671 cm

%error = 0.8574 %error = 1.7441

(90°, 33°),(00, 25°) Sgeo = 22.6185 cm s8“ = 17.8799 cm

SW = 22.3452 cm so”, = 17.5350 cm

%error = 1.2082 %error = 1.9289

(90°, 33°), (0°, 30°) sgw = 25.5564 cm sgeo = 21.5222 cm SW = 25.1646 cm

%error = 1.5331  supp =21.0102 cm

%error = 2.3788
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3.4.2.4 UTD Surface Ray Parameters

Now that the geodesic parameters have been determined, the UTD surface ray parameters

may now be calculated. The torsion 1(6) is obtained by substituting (3.80) and (3.81) into

the following expression:

 

 

sin 26

1(9) = 2 (K2 ”6)

3.107

_ c,(b2 sin2 6—c12)”2a(b2 - a2) ( )

b3(a2 sin2 6 +b2 cos2 6)”2

The torsion factor To may now be calculated via

70(9) = Lg)
76(6)

1,2 (3.108)

c,a(b2 -az)[(b2 sin2 6 —c,2 )(a2 sin2 6 +b2 cos2 6)]

ab4 +cz3c,2 —ab2c,2

The ray divergence factor D , which quantifies the amount by which a surface diffracted

ray spreads within a tube, is analytically determined by evaluating the angle between

tangent vectors to adjacent geodesic paths. The adjacent geodesic paths, traced from the

same source point, are angularly seperated by approximately 1.00. However, for this

application, the attenuation in the magnitude of the Green’s function attributable to the

surface divergence factor was found to be negligible. Hence, in order to expedite the

numerical determination of this factor without imposing an unnecessary computational

burden associated with the numerical computation of two geodesics for every source and

observation point, a heuristic expression for D was derived based on the known values

of D for a circular cylinder and a sphere

D=[1.0—K‘(6)]+K‘(6) ‘9

“2(6) K2(9) Sin6
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6
= 1— —— 3.109( 7.)+7. Sing ( )

For the case of a sphere where K, = K, , D = 45 , which is the well-known result for a

srn

sphere; for the case of circular cylinder where K, = 0, D =1 , which is the well-known

result for a circular cylinder. The interpolating factors 75 and yc are given by

 

 

_ “1(6)

7.(6') — —K2(6)

(3.110)

_ azsin26+b2cosz6

and

(9)-K (9)
7.(6>= "2 ‘

“2(9) (3.111)

_ (a2 —b2)sin2 6

a2 sin2 6 + b2 cos2 6

 

Now that explicit formulas for the UTD surface ray parameters have been derived,

expressions for the ray-fixed unit vectors fand b with respect to the principle surface

directions f1 and (i) must be derived. Note that f]: —8. See Appendix B for the

derivation of this result.

The unit tangent vector f is given by

f=ficos6+¢sin6 (3.112)

and the unit binormal vector 6 is given by

xr’i13:3

=(ficos6—fisin6 (3.113)

86



where 6 is the geodesic angle, defined previously, and the unit normal vector to the

surface is fr =8 Substituting (3.112) and (3.113) along with the UTD parameters into

(3.49) and after considerable algebraic manipulation, the components of the asymptotic

dyadic Green’s function for the PEC, electrically large prolate spheroid are obtained and

are given by

0mg, :6,¢|63¢') = {(COSZ 6-q[(D2 +2)eos2 6-(1)2 +l)])v(,6)

+q2 ([(D2 + 2)] cos2 6—2)[7su(,6)+ ycv(6)] (3.114)

+(ro cos6 + sin 6)2 q [u(,6) — v(,6)]) D%qe"k°’

6:; = 0;,"(43:6,go|63(p')={—siwcos6(v(6)-(1)2 +2)qv(6)

+(D2 + 2)q2 [75u(,6)+ ycv(,6)])+[(20082 6 —1)r, — (3.115)

(I: ‘1)Sin6C056]
q[u(fl)—v(fl)]}%§

_qe-jkos

6:,"(50 :6,¢|63¢) = {($1112 a —q[(1)2 + 2) sin2 6 — (D2 +1)])v(,6)

+1,2 ([(1)2 + 2)]sm2 6—2)[ysu(,6)+ycv(,6)] (3.116)

2

+(ro srn6—cos6) q[u(§)—v(§)]}D-k£—fl°qe J ..

3.4.3 Validation of the Prolate Spheroid Dyadic Green’s Function

In this section, the validity of the asymptotic dyadic Green’s function for the prolate

spheroid given in (3.114)-(3.116) is established analytically and numerically.

3.4.3.1 Analytical

Beginning with the expressions for the Green’s function given in (3.114)-(3.116), we

proceed by allowing the radius of curvature along the axial direction to approach infinity,

while maintaining a fixed azimuthal radius of curvature. In this case, the prolate spheroid

topologically approximates an infinite circular cylinder. Consequently, the magnitude of
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the asymptotic prolate spheroidal dyadic Green’s function should approach the magnitude

of the asymptotic dyadic Green’s function for a PEC, infinite circular cylinder. The

values of surface curvatures along the axial and azimuthal directions become

1:, =lim ab =0 (3.117)
, 3/2

“"°° (a2 srn2 6 +b2 cos2 6)

 

and

x, =lim a =1 (3.118)

“7‘” b(a2 sin2 6 + b2 cos2 6)“2 b

 

From (3.117) and (3.118), the geodesic curvature 1c now becomes

K = K, cos2 6+K2 sin2 6

sin2 6

b

 (3.119)Il
l

The torsion factor To becomes

sin6cos6

.=-—K——( 2-K1)

~ “’55 =cot6 , (3.120) 

srn 6

. . K K — K
The mterpolatrng factors now become 75 = -—‘- = 0 and 7c = 2 I

K2 K2

=1 

For a circular cylinderD=1. Substituting (3.117), (3.118), (3.119), (3.120), and the

interpolating factors into the dyadic components given in (3.1 14)-(3.116) we have for the

G3” component
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gig; 62816.6
 
6362') = {(cos2 6 —q[(D2 + 2) cos2 6 —(D2 + l)])v(§)

+q2 ([(1)2 + 2)] cos2 6 - 2)[ysu(§) + ycv(§)]

. 2 kao —1k.s
+(ro cos6 +srn 6) q[u(f)—v(§)])D—2—fl—qe

= {(cos2 6 -q[3 cos2 6 - 2])V(§)

+q2 (3cos2 6-2)V(5)

 

cos6 2 sz .
+ - 6+ ' 6 - —°0 "1"”(Sims cos sm ) q[u(6) v(6]) 2” 96

= {cos2 6v(:) + q(1— q)(2 — 3 cos2 6)v(2:)

2

+qcsc’6[u(6)—v(6)l}52‘31qe’”‘°’ (3.121)
7:

similarly, for the G3" = G22“ components

gig G$”(6,¢  
63¢) = {—sin6eos6(v(;) —(02 + 2)qv(4=)

+(D2 + 2)q2 [y,u(g) + ycv(§)]) + [(2eos2 6 —1)ro

_(rg —1)Sin5C086]q[u(é)—V(§)]}£2(%qe—Jkos

= {—sin 6 cos6(v(;) — 3qv(§)

6

+3 2 + 2 26—1"°S —
q 12(5) l:( COS )sin6

(9”: f: —1)sin6eos6)q[u(g) —v(¢)])-’fleqev"e
fl'srn 2

 

 

. kozyo -jk.s
- {srn6cos6[l—3q(1—q)]v(2,‘))gqe (3.122)

and finally for the G22" component

£13203me 1 63¢) = {(sin2 6—q[3sin2 6 —2])v(§)

+q2 (3 sin2 6 — 2)v(§)

 

6 . ’ kZY _.,.,
+(Cosa .sma—cos6) q[u(§)—v(§)])—§fliqe Jo

srn
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2

= {sin2 61(5) + q(1— q)(2 — 3 sin2 6)v(.f)) 52—: (lg-12...: (3.123)

As seen from the limits of the components in (3.121)-(3.123), the asymptotic prolate

spheroid Green’s firnction reverts to the asymptotic circular cylinder Green’s fimction in

the limit of an infinite radius of curvature along the axial direction 17 [2].

3.4.3.2 Numerical

To further validate the prolate spheroid asymptotic dyadic Green’s function, the relative

magnitudes of its components are compared with those of the circular cylinder

asymptotic dyadic Green’s function as a function of the electrical geodesic path length

8/ 21,. The electrical geodesic path length is expressed in terms of wavelengths. Based

upon the analysis of the previous section, it is expected that the prolate spheroid

asymptotic dyadic Green’s function will reduce to the circular cylinder asymptotic dyadic

Green’s function in the limit of an infinite axial radius of curvature. A comparison can be

made by first tracing the geodesic path between a set of source and observation points

that are confined to the quasi-cylindrical midsection of a 40.02 x 4.0}. prolate spheroid

with an initial geodesic angle 6, =15.8° as shown in Figure 3.9. A comparison between

the relative magnitudes of the asymptotic prolate spheroid Green’s function components

along this geodesic with those of the asymptotic cylindrical Green’s function along a

helical geodesic for which 6 =15.80 is given in Figure 3.10. There is a rapid increase in

the magnitude of the Green’s function near the origin due to the singularity of the

Green’s function at the source point. As the creeping wave propagates a few wavelengths

away from the source, the magnitude exhibits a constant rate of attenuation which is

indicative of the characteristic exponential decay of a creeping wave. Along the spheroid
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surface there is greater curvature along the (0 direction than along the 7) direction, hence,

the attenuation of the Gf’f’ component is greatest, while the attenuation of the G22”

component is least. As expected, the relative magnitude and attenuation of the G23"

component lies in between values of G2," and Off over the extent of the geodesic. Figure

3.11 depicts a geodesic path between a set of source and observation points that are

oriented such that the initial geodesic angle 63 = 26.20 is larger than in the previous case.

From Figure 3.12, it is evident that the prolate spheroid asymptotic Green’s function

magnitudes along this geodesic are almost identical to the magnitudes of the cylindrical

asymptotic Green’s function along a helical geodesic for which 6 = 26.20. The

attenuation of each component is less because the geodesic path spans the portion of the

spheroid surface which exhibits less curvature than in the previous case. In Figure 3.13, a

geodesic path on a 40.02 x 4.02 prolate spheriod with an initial geodesic angle given by

65 = 30.10 is depicted. As seen in Figure 3.14, the relative magnitudes of the prolate

spheroid Green’s function begins to deviate from the cylindrical Green’s function along

the helical geodesic for which 6 = 30.10. This is due to the fact that the prolate spheroid

surface exhibits curvature along both the axial and azimuthal directions along the

geodesic trajectory depicted in Figure 3.13, while the circular cylinder exhibits curvature

only in the azimuthal direction along the helical geodesic.

The effect of moving the source and observation points closer to the tip of a prolate

spheroid is examined next. For the geodesic trajectory depicted in Figure 3.15 and its

associated dyadic component magnitudes shown in Figure 3.16, the attenuation of G2,” is

greatest within four wavelengths of the source, tapering off to a steady decay rate
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afterwards. This is most likely due to the fact that the geodesic does not follow a straight

path along the 7] direction. Instead, it follows the variably curved surface contour. On the

other hand, the G32“ and G2,” components exhibit a constant rate of attenuation after

approximately two wavelengths from the source. This is due to the constant rate of

curvature along the (0 direction. As expected, the magnitude of the G32” component lies

in between the magnitudes of the other two components. Placing the source and

observation points even closer to the tip, as shown in Figure 3.17, primarily effects the

magnitude of G2," , as gleaned from an examination of Figure 3.18. In this figure, G22"

exhibits a rapid decay rate, followed by a slight plateau and culminating in a steady decay

rate. This phenomenon is a consequence of the twisting of the geodesic curve, along the

variably curved 77 direction. The behavior of the dyadic Green’s function components for

the geodesic trajectory orientations considered in the previous cases appears to be

consistent with the physical behavior that one would expect for creeping wave

propagation along a variably curved surface [43, 44]. With the derivation and validation

of an appropriate electric dyadic Green’s function for the electrically large, PEC prolate

spheroid, the boundary integral is completely specified.

3.5 Solving the FE-BI System

The coupled finite element and boundary integral equation given in (3.14) generates a

large sparse matrix and a fully populately matrix, respectively. This type of system is

amenable to solution by an iterative technique. An iterative approach for large sparse

matrices is preferable to a direct approach due to the phenomenon of fill-in associated

with direct methods, that utilize matrix factorization schemes such as LU decomposition.

Specifically, the upper or lower triangular matrices, into which a large sparse matrix
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would be factored, may not represent the sparsity pattern of the original sparse matrix.

However, iterative solutions methods do not employ fill-in, which allows them to

maintain the sparsity of the system.

In order to employ an iterative technique, the FE-BI equation in (3.14) may be

rewritten in matrix form as [2]

Aaa+G A0,. Ea” AM A0,. Ear G 0 E“? 0
1 = . + . = 1... (3.124)

Ara An- Em! Am An EW 0 0 E"u f

where [A] is the finite element matrix, [G] is the boundary integral matrix, E"" is the

unknown electric field in the cavity, E” is the unknown electric field in the aperture,

f'"‘ denotes the interior excitation due to a probe feed. Note that ff" = O in (3.14) for

the case of interior excitation while fl” = 0 for the case of exterior excitation. The

decomposition of the FE-BI matrix in this manner allows the matrix-vector product,

which is the most computationally expensive task in the iterative approach, in each

partition to be optimized for solution by an iterative solver. As an example, since the

finite element matrix is sparse, the matrix can be stored in an efficient compressed sparse

row (CSR) fashion [45] and the matrix multiply scheme can be optimized for a sparse

matrix. Furthermore, although the boundary integral matrix is fully populated, it is

symmetric. Hence, only the upper (or lower) triangle needs to be stored. Thus, the

boundary integral matrix-vector product can be Optimized for a symmetric matrix.

For this problem, the biconjugate gradient (BiCG) iterative scheme is chosen rather

than the conjugate gradient scheme (CG). The BiCG scheme is a variation of the CG

method and is applicable to asymmetric as well as symmetric systems of linear equations.

The main advantage of using BiCG is that for symmetric matrices, Jacob’s algorithm
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employs only one matrix-vector product, as opposed to the CG scheme which employs

two matrix-vector products [46]. Moreover, the BiCG scheme converges faster than the

CG scheme. The trade-off, however, is that the convergence of BiCG is more erratic than

that ofCG [30] (See Appendix E for a listing ofBiCG pseudocode).

3.6 Radiation

3.61 Input Impedance

Once the electric fields in the cavity E’"‘ and aperture Ea” have been determined by

solving (3.124) with a suitable iterative solver such as the BiCG scheme, the input

impedance can be found. The input impedance is calculated from the ratio of the voltage

at the input port to the current flowing into the port. The simplest type of feed is a

Hertzian dipole feed where the source is a filament of current. For a normally directed

probe feed (e.g. directed along the é-direction) that is positioned at (775,9’5) on the

surface of a prolate spheroid, (3.7) is evaluated as

f."' = —jk.Z.IIW. (22.6.)

=_jkOZOII (3.125)

For this case, the input impedance can be computed using Gauss’ Law

10')

_1 6

Zm=TZEijloW d] (3.126)

in me]

where n is the number of edges, i denotes the orientation of the probe-feed, E100 are

the coefficients of the electric field determined by solving the FE-BI system, and as

defined previously WJ are the vector basis functions. The total electric field at the feed
(4)

location is determined by summing over all the edges of the element, which would be the

six edges of the tetrahedral containing the probe-feed in this case, and integrating over
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the length of the probe. Since this approach relies upon an accurate field calculation in

the vicinity of the feed, it is important to finely sample the computational volume in the

vicinity of the probe-feed.

3.6.2 Near-to-Far Field Transformation

Once the tangential electric field in the aperture has been determined, the field radiated

by the aperture can be determined from the surface equivalence principle. In applying this

principle, a suitable dyadic Green’s function which effectively transforms the tangential

surface electric field to an exterior radiated magnetic field in the geometric optics region

must be derived. The surface topology in the immediate vicinity of an aperture situated

on an electrically large prolate spheroid may be regarded as locally planar. Hence, a

planar approximation may be used to determine the exterior magnetic field radiated by a

magnetic current distribution over the aperture in the geometrical optics region of an

electrically large prolate spheroid. The geometrical optics region is of primary interest

since the antennas under investigation in this dissertation radiate primarily in the

geometrical optics region. From image theory, the transformation of a magnetic surface

current source on a PEC plane to an exterior magnetic field is given by twice the free-

space dyadic Green’s function

 

=far = = VV e-ij

Ge rr' =2G = 1+— 3.127

2( I ) o i k: JZIZ'R ( )

where r and r' are position vectors to the observation and source points, respectively, I

is the dyadic unit vector (or idem factor) given by

7=fi'+56'+22', (3.128)
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and the distance between the source and observation points is given by R = Ir — r '|. In the

far zone, (3.119) may be expressed as

M M e-Jko' . . .

(xx'+ ”4 22')——e"‘°"' (3.129)

27rr

Since the far field is evaluated in spherical coordinates, a near field to far field

transformation for a magnetic surface current distribution over a quasiplanar patch may

be found be expressing the source vector in (3.121) in prolate spheroidal coordinates,

while expressing the observation vector in spherical coordinates. Hence, the dyadic

Green’s function which effectively transforms a surface magnetic current to an exterior

geometrical optics far-zone magnetic field may be written as

=far

6.. WW 6'.n'.¢'>=66'Gf§' +6663" +6608 +6665? +6666

  

  

(3.130)

+6393 '02”?

where each of the components are given by

G94.. = (a cos6sin 6'cos((6 - 6) ') —b sin 6 'cos 6 ') e""°' ejko[bsin6'sin6cos(¢—¢')+acos6cos6']

‘2 x/asin26'+bcosz6' 27” (3'131)

652,7. = _ (b COS 0 C05 6 ' COS(§0 - (0') + a Sin 6'sin 9 ') e-jkor ejk0[bsin6'sin6cos(¢—¢')+acos6cos6'] (3.132)

Jasin26'+bcosz6' 27"

94" . , e-jkor )k0[bsin6'sin 6cos(¢—¢')+acos6cos6']

Gez =COS€Sln(¢—¢ )Ee (3.133)

_ a Sin 6 'Sin(¢ '— ¢) e-jkor ejk0[bsin6'sin 6cos(¢-¢’)+acos6cos6‘]

G“.—

62 ' 2 v 2 1

x/asrn 6+bcos 6 27"

(3.134)

a — k

G8". _ bCOSg'Sln((0 —(0') e I or ejk,,[bsin6'sin6cos(¢-¢')+acos6cos6']

e2
_ (3.135)

\lasin2 6'+bcos2 6' 27"
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W e-jkor

G... =cos<<o-¢)—e
27rr

jko[b sin 6'sin 6cos(¢-¢')+a°°59°°56']
(3 .136)

Employing surface equivalence, the exterior magnetic field may be determined by

evaluating the radiation integral over the aperture surface

=far ,.

Hf“'(0,¢) = jkoYob [(1.2 (r,6,(p|§',n',¢') .[ng(go,n',¢')]d¢'dn' (3.137)

Sap

whose components are given by

a, . bcos6'sin’

H; =—]k0Y0 I{[ w ]E¢

8"?

 

 

J02 sin26'+b2 c0526' (3.138)

+COS aEfl} ejko[bsin6'sin6cos¢+acos6'cos6]d¢.dn.

Hf” = 'jkox) J- [boos6cos6 cos¢+asm6sm6 ]E¢

5,, ./a2 sin2 9 '+ 1;2 cos2 (9' (3.139)

+ COS 6 sin {—61%} ejko[bsin6'sin6cos¢7+acos6'cos6]d¢ .6177.

In the far-zone, the electric field components may be derived from the magnetic field

components via the following relationships

E, = 20H,
(3.140)

E, = —Z,H,
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Figure 3.9 The geodesic trajectory between two points located

at (9, = 79.0°,<o, = o.0°) and (a, = 80.o°,¢, =160.0°) on a

40.0}. x 4.0/1 prolate spheroid for which 6, =15.8°.
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Figure 3.10 Comparison of the relative magnitudes of the prolate spheroidal

asymptotic dyadic Green’s function components along the geodesic trajectory

depicted in Figure 3.9 and the components of the cylindrical asymptotic

dyadic Green’s function along the helical geodesic for which 6 =15.8° on a

circular cylinder with an equivalent azimuthal radius.
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Figure 3.11 The geodesic trajectory between two points located

at (a, = 90.0040, = 3o.o°) and ((9, = 87.o°,¢, = 92.0°) on a

40.0/1 x 4.0}. prolate spheroid for which 6, = 26.20 .
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Figure 3.12 Comparison of the relative magnitudes of the prolate spheroidal

asymptotic dyadic Green’s function components along the geodesic trajectory

depicted in Figure 3.11 and the components ofthe cylindrical asymptotic

dyadic Green’s function along the helical geodesic for which 6 = 26.20 on a

circular cylinder with an equivalent azimuthal radius.
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Figure 3.13 The geodesic trajectory between two points located

at (a, = 90.0%), = 3o.o°) and (0, = 87.o°,¢, = 82.5°) on a

40.021 x 4.01 prolate spheroid for which 63 = 30.10.
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Figure 3.14 Comparison of the relative magnitudes of the prolate spheroidal

asymptotic dyadic Green’s function components along the geodesic trajectory

depicted in Figure 3.13 and the components of the cylindrical asymptotic

dyadic Green’s function along the helical geodesic for which 6 = 30.10 on a

circular cylinder with an equivalent azimuthal radius.
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Figure 3.15 Geodesic trajectory between the points

(a, = 50.0%,», = o.0°) and (a, = 7o.o°,¢, = 70.00) on

a 40.01 x 4.02. prolate spheroid.
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Figure 3.16 Relative magnitudes of the prolate spheroidal dyadic Green’s

function components along the geodesic trajectory depicted in Figure 3.15.
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Figure 3.17 The geodesic trajectory between two points at

(19, = 30-0°.¢. = o.0°) and (19, = 6o.o°,¢, =1oo.o°) on a

40.01 x 4.01 prolate spheroid.
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Figure 3.18 Relative magnitudes of the prolate spheroidal dyadic Green’s

function components along the geodesic trajectory depicted in Figure 3.17.
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CHAPTER 4

NUMERICAL RESULTS

4.1 Introduction

In this chapter, FE-BI simulation results for the resonant input impedance of a cavity-

backed slot antenna and a cavity-backed patch antenna that are conformal to the surface

of a prolate spheroid are presented. In addition, numerical results for the radiation pattern

of the conformal patch antenna in the geometrical optics region of a prolate spheroid are

presented. Although published results for waveguide antennas flush-mounted on doubly

curved surfaces is becoming available [47], published data on the input impedance of

cavity-backed patch antennas conformal to prolate spheroid surfaces is nonexistent. In

light of this, this work will be validated by comparing the doubly curved results with

those of the limiting planar and cylindrical-rectangular geometries for which reference

data exists.

4.2 Input Impedance Studies

4.2.1 Cavity-Backed Slot Antenna

In this section, FE-BI numerical results for the input impedance of a cavity-backed, slot

antenna recessed in a PEC prolate spheroid are presented. Since the resonant frequency of

a planar-rectangular cavity is well known, it is modeled first. The antenna consists of a

slot that is cut into a cavity with doubly curved walls that conform to the prolate

spheroidal geometry. In the limit of zero curvature, the cavity geometry reverts to a

planar-rectangular geometry with the following dimensions: 6.0 cm in length, 3.875 cm

in width, and 1.2 cm in thickness. The slot is 2.5 cm in length, parallel to the

if) - direction, and 0.125 cm in width, parallel to the fi- direction. The cavity is assumed to

103



be air-filled with a permittivity a = 1.0— j0.01. Note that a small loss is introduced to

speedup convergence. FE-BI simulation results for a normally directed (e.g. along the

E-direction) probe feed positioned along the bottom of the cavity so as to excite the

fundamental TEon mode of the limiting planar-rectangular cavity are presented. In order

to assess the sensitivity of the cavity’s resonant frequency to curvature variation along the

elevational and azimuthal directions, the following orientations of the slot antenna with

respect to the vertical axis of the prolate spheroid are modeled: horizontal, vertical, and

tilted at 450 with respect to the vertical axis.

Following the procedure for generating the FE mesh outlined in Chapter 3, the

antenna surface is first discretized into a triangular mesh, as shown in Figure 4.1. Next,

the surface mesh is extruded into the cavity volume via triangular distorted prism

elements, which subsequently are decomposed into tetrahedral elements. The position of

the probe feed is depicted in Figure 4.2. The resulting six-layer FE mesh for the slot

antenna is depicted in Figure 4.3. The electrical length of each side of a tetrahedral

element is A, / 40 at the resonant frequency of the cavity. This yields an FE mesh

comprised of 53,568 elements, 56,742 total unknowns, and 47 aperture unknowns. The

creation of the FE mesh required 16 minutes and the simulation over the frequency range

4.0 to 5.5 GHz at a frequency step of 0.025 required two hours to run on a XEON 450

MHz machine.

In Figures 4.4 and 4.5, the resonant input resistance and reactance of the

horizontally oriented slot antenna on a prolate spheroid are plotted for varying curvatures

and compared with the limiting planar and cylindrical values. From these plots, it is quite

apparent that for large axial and azimuthal radii of curvatures, the resonant frequency of
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Figure 4.1 Surface mesh for the slot antenna.
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Figure 4.2 Probe feed position for the

slot antenna.

105



  

  

  

"a

v’rav'A ’1
'y‘:’AVEA

‘r

   

"A

:1X5.:5.
"3"?"

,

  

   

 

i‘t

 

  
'9‘"-
,, 101‘
I :;'44‘:EAIE‘

 

   

    

         

Y 7A

'A

> E

E

ii":2: E

5.10102: . - m
1‘4carat" 'A'

X .3 £014 ' ‘ E7

5:0354:50".4 i 74.:-
v - < - ‘ -

l>:<>.'<h:4>I<DA1 '4':

5'."

’4

I

{
A
m
m
a
n

 

(b) Side View

 
(c) Oblique View

Figure 4.3 Different views of the six-layer doubly curved

finite element mesh for the slot antenna.
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the doubly curved cavity approaches the theoretical resonant frequency of the

fundamental TED” mode for the limiting 6.0 x 3.875 x 1.2 cm planar-rectangular cavity

which is 4.6lGHz. This is to be expected because the surface appears planar in the

vicinity of the slot antenna. As the curvature of the spheroid increases, the magnitude of

the input resistance also increases for this slot orientation. A similar phenomenon occurs

for the case of a vertically oriented slot whereby the magnitude of the input resistance

increases with decreasing curvature. By allowing the axial radius of curvature a to

become very large (e.g. a = 400 cm) and the azimuthal radius of curvature b to remain

fixed at 8 cm, the prolate spheroid shape approaches that of the circular cylinder. Hence,

one would expect the input impedance of the patch on the prolate spheroid to approach

the value of input impedance for a patch on a circular cylinder with the same radius. This

idea is supported by Figures 4.6 and 4.7. For the 45° tilted slot, there is good agreement

between the planar input impedance and prolate spheroid input impedance with large

axial and circumferential curvatures, as seen in Figures 4.8 and 4.9. Moreover, for a

large axial radius of curvature and a relatively small fixed azimuthal radius of curvature,

the prolate spheroid results agree with those of the circular cylinder with the same

azimuthal radius. This result is consistent with those of the vertically and horizontally

orientated slot. Note that the magnitude of the input resistance decreases slightly for the

prolate spheroid surface curvature that is intermediate between the limiting planar and

cylindrical values. These results support the assertion of the planar-rectangular cavity

being the limiting case for the doubly curved cavity as the radii of curvature of the cavity

walls approach infinity and the cylindrical-rectangular cavity being the limiting case for

the doubly curved cavity as the axial radius of curvature approaches infinity.
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4.2.2 Cavity-Backed Conformal Patch Antenna

The resonant behavior of cylindrical-rectangular conformal patches has been investigated

using the FE-BI method [2]. For this type of conformal patch antenna, the input

impedance and resonant frequency exhibits a dependence on surface curvature. The

degree of depends on the orientation of the antenna and the location of the probe feed.

The purpose of this section is to simulate the behavior of the input impedance and

resonant frequency of cavity-backed patch antennas that are recessed in doubly curved

prolate spheroid surfaces as the surface curvature and antenna orientation are varied.

4.2.2.1 2.5 cm x 2.5 cm Patch

The first antenna to be modeled consists of a 2.5 x 2.5 cm metallic patch printed on a

substrate of thickness 0.0762 cm residing in a 5.0 x 5.0 cm aperture. The substrate is

composed of a dielectric material with permittivity s = 3.2— j0.045. The surface mesh

for the antenna is shown in Figure 4.10. The behavior of the input impedance and

resonant frequency for two different probe feed locations, as illustrated in Figure 4.11,

are modeled in this study. The FE mesh for the patch antenna, generated by the procedure

described in Chapter 3, is shown in Figure 4.12. Following the FE-BI procedure, the

normal electric field beneath the patch is calculated and then used to calculate the input

impedance. For the probe feed location in Figure 4.11a, a normal electric field beneath

the patch exhibiting a polarization along the spheroid’s axial direction is excited. From

the input impedance spectrum of the axially polarized patch, shown in Figure 4.13, it is

apparent that the resonant frequency is practically independent of surface curvature

variation. A plot of the strength of the normal electric field under the patch for this

polarization is shown in Figure 4.14. For the probe feed location in Figure 4.11b, a
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normal electric field exhibiting a polarization along the spheroid’s azimuthal direction is

excited. The input impedance spectrum for this polarization is shown in Figure 4.15.

From this plot, it is evident that the resonant frequency exhibits a strong dependence on

the surface curvature variation along the azimuthal direction. As the azimuthal curvature

increases, the resonant frequency also increases. The magnitude of the normal electric

field beneath the patch for this polarization is provided in Figure 4.16. Both of these

results are quite reasonable since the degree of curvature along the azimuthal direction is

large in comparison to the axial direction. Finally, we consider the case of a conformal

patch that is rotated by 45° with respect to the azimuthal plane of the spheroid. Based on

the previous results, it is expected that the input impedance for this case would display a

curvature dependence that lies in between that of the axially and circumferentially

polarized cases. The input impedance spectrum and normal electric field strength for this

case are given in Figures 4.17 and Figure 4.18, respectively. From Figure 4.17, one can

see that the resonant behavior for this case agrees with the expected result in that as the

surface curvature increases, the resonant frequency also increases.
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Figure 4.10 Surface mesh for a 2.5 x 2.5 cm
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Figure 4.11 Position of the probe feed for the 2.5 x 2.5 cm

patch antenna.
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curved prolate spheroid surface.

Figure 4.12 Different views of the finite element mesh

for a 2.5 x 2.5 cm patch antenna conformal to a doubly
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Figure 4.14 Magnitude of the axially polarized

normal electric field beneath the 2.5 x 2.5 cm patch.
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Figure 4.17 Input impedance of the 45° rotated 2.5 x 2.5 cm

patch antenna.
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Figure 4.18 Magnitude of the normal electric field

beneath the 45° rotated 2.5 x 2.5 cm patch.
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4.2.2.2 3.0 cm x 3.0 cm Patch

In order to assess the effect of patch size on the curvature sensitivity of the input

impedance, the input impedance of a larger patch antenna is investigated. For this case, a

3.0 x 3.0 cm metallic within a 6.0 x 6.0 cm aperture is modeled. The same permittivity

and substrate thickness from the previous is used. Once again, the patch is excited by a

normally directed probe-feed positioned so as to excite the same field polarizations as for

the 2.5 x 2.5 cm patch. The probe feed is located 1.0 cm from the bottom of the patch

along its centerline as depicted in Figure 4.19.
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Figure 4.19 Probe feed positions on the

3.0 x 3.0 cm patch.

Analogous to the previous case, for a probe-feed positioned along the axial centerline, an

axially polarized field is excited. For this polarization, the resonant frequency of the input

impedance is practically independent of curvature, although there is a slight shift as the

surface curvature increases (a = 10 cm and b = 5 cm). However, the main difference

between this and the previous case is the decrease in the magnitude of the input
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impedance for large surface curvature, as seen in Figure 4.21. The circumferentially

polarized case, shown in Figure 4.22, exhibits a high degree of curvature dependence

which is consistent with the circumferential polarization of the previous case. The

increase in patch size does not appear to effect the amount by which the resonant

frequency shifts. Finally, for the 45° rotated patch, the curvature dependence of the

resonant frequency appears to lie in between that of the axial and circumferential case, as

seen in Figure 4.23. This is consistent with the result obtained in the previous section for

the 45° rotated patch.

Finally, the input impedance of the 3.0 x 3.0 cm patch as a function of elevational

position on 17.0 x 15.0 cm spheroid is considered in this study. The different elevational

positions are depicted in Figure 4.20.

 

 
Figure 4.20 Elevational positions along the surface

of a prolate spheroid.

Since the axial curvature of a prolate spheroid is relatively low at the midsection and

progressively increases towards the pole, it is worthwhile to assess the effect that such

curvature variation would have on the input impedance. Comparing Figure 4.24 with
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Figure 4.25, it is apparent that the resonant frequency of the circumferentially polarized

patch exhibits a greater sensitivity to curvature variation than that of the axially polarized

patch as it is moved progressively closer to the pole of the spheroid. This result is

consistent with the previous cases.

The effect of surface curvature variation on the placement of the 450 rotated

patch is examined next in Figures 4.26 a, b, and c. For this case, an unexpected

phenomenon occurs. For the patch located at an elevation angle 6 = 800 , the single mode

splits into two modes which resonate at 2.51 GHz and 2.56 GHz. Raising the patch to the

position 6 = 700 the two modes resonate at 2.48 GHz and 2.60 GHz. At position 6 = 600 ,

the two modes resonate at 2.41 GHz and 2.69 GHz are excited. Hence, as the patch is

located closer to the pole of the spheroid, the difference in the resonant frequencies of the

two modes increases. The normal electric field excited in this configuration, is shown

Figure 4.27.
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Figure 4.26(a) Input impedance ofthe 45° rotated

3.0 x 3.0 cm patch antenna mounted at the elevation

angle 0 = 800 .
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Figure 4.26(c) Input impedance of the 45° rotated

3.0 x 3.0 cm patch antenna mounted at the elevation

angle 0 = 60°.
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4.3 Far-field Radiation Pattern

The far-zone radiated field of a 3.0 x 3.0 cm patch in the geometrical optics region of a

prolate spheroid is calculated in this section. Due to the scarcity of published data on this

topic, the validity of the FE-BI simulation results is assessed by comparisons with the

results of the planar and cylindrical tetrahedral element based FE-BI programs [2,3]. The

planar tetrahedra based code has been experimentally verified [48], while the cylindrical

tetrahedra based code has been shown to agree quite well with the experimentally

verified cylindrical shell based FE-BI code [3]. In Figure 4.28, the azimuthal plane far-

zone field radiated by a 2.5 x 2.5 cm patch in the geometrical optics region of a 200 x 100

cm prolate spheroid at 3.09 GHz is compared with the far-zone field radiated by a patch

antenna on a planar surface. As seen in this plot, the radiated field pattern of a patch on

an electrically large prolate spheroid matches the radiated field pattern of a patch

radiating on a plane. This result agrees with expectations. Comparisons between the

radiated field pattern in the azimuthal plane of a patch residing on an infinite circular

cylinder of radius 8 cm and the field pattern of a patch located at different elevation

angles on different sized prolate spheroids are given in Figures 4.29 through 4.31. As

expected, there is good agreement between the field pattern of the patch on the cylinder

and the field pattern of the patch positioned at the equator of a 200 x 8 cm prolate

spheroid. As the elevational position of the patch along the prolate spheroid is raised, the

ED component begins to deviate from the cylindrical result. The distortion is due to the

deviation of the surface profile along the 77 ( or 6) direction of the spheroid from the flat

profile along the axial direction of a circular cylinder. There is practically no deviation in

the E9 component, however. This is due to the fact that the deviation in the azimuthal
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radius of curvature from the cylindrical limit as the patch is moved along the spheroid in

the elevational direction is neglible. The same effect is seen as the patch is moved along

the surfaces of a 20 x 8 cm spheroid and 10 x 8 cm spheroid. There is just a slight

difference between the 20 x 8 cm and 200 x 8 cm cases in the vicinity of the null of the

E," component. The E6 component, however, exhibits negligible change. For the 10 x 8

cm prolate spheroid case, both field components deviate from the cylindrical results. For

this case, the deviation exhibiting by the E9 component arises from the change in

azimuthal radius of curvature as the patch is moved towards the pole of the spheroid.

From these cases, it is evident that the E6 component of the far field radiated by a

conformal patch located in a region near the equator (3 $200) of a quasi-cylindrical (e.g.

highly elongated) prolate spheroid may be approximated with reasonable accuracy by the

cylindrical 13,, value. However, the cylindrical approximation to the prolate spheroidal

E“, component is valid only at the equator of the prolate spheroid. For a patch located

above or below the equator, the 15¢ deviates significantly from the cylindrical value.
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Figure 4.28 Comparison of the azimuthal plane radiated

field of a 2.5 x 2.5 cm patch antenna in the geometrical
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radiated field of a patch residing on a planar surface.

138



G
a
i
n

[
d
B
]

 

50  

25

   

I

N 0
1

 

I

U
'
I

o

I 1

   
40-090 -60 —3o 0 30 so 90

e [Deg.]

Figure 4.29 Comparison of the azimuthal radiated field of a 2.5 x 2.5 cm

patch antenna mounted on a 200 x 8 cm prolate spheroid at specified

elevational angles with the azimuthal field of an identical patch antenna

mounted on a circular cylinder with an 8 cm radius.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

In order to verify the FE-BI simulation results presented in the preceding chapter, the

measured input impedance of a patch antenna mounted on a ground plane and on a

prolate spheroid are presented in this chapter. For the case of a patch antenna radiating on

a ground plane, the purpose of the experiment is to assess the accuracy of the resonant

frequency and magnitude of the input impedance as predicted by the prolate spheroidal

FE-BI routine in the planar limit (e.g. large axial and azimuthal radii of curvature). For

the case of the patch antenna radiating on a prolate spheroid, the purpose of the

experiment is to assess the effect of surface curvature variation on the input impedance of

the patch at various elevational positions on the spheroid surface. The lack of published

experimental data on the input impedance of patch antennas conformal to prolate

spheroidal surfaces may be due to the considerable difficulty involved in constructing this

type of configuration. The presentation of the experimental results is preceded by a

discussion of the antenna fabrication and experimental setup.

5.2 Antenna Fabrication

The fabrication of the patch antennas to be used in these experiments is discussed in this

section. The dimensions of the first antenna to be considered are as follows: 3.0 x 3.0 cm

patch within a 6.0 x 6.0 cm aperture. The face of the antenna is milled from GML 1100

copper clad laminated board with a thickness of 0.0236 cm. The laminated board consists

of a layer of dielectric material with a permittivity 8:3.29— j0.0132 at 2.5 GHz

sandwiched between two copper layers. The feed configuration consists of a female SMA
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connector soldered to 3.2 cm of semi-rigid coaxial cable. The coax center conductor

provides the probe feed for the antenna. As shown in Figure 5.1b, a 0.914 mm (0.0360 in)

hole through which the center conductor of the coaxial cable connects to the patch is

drilled 0.98 cm from the bottom edge and 1.48 cm from the lefi edge of the patch. To

prevent a short circuit between the patch and back antenna surfaces, the center conductor

is encased by a teflon tube to insulate it from the walls of the top and bottom copper

layers of the laminated board before it is fed through the probe feed hole. The center

conductor is soldered to the patch while the outer conductor is soldered to the metallic

back surface of the antenna. The 4.0 x 3.0 cm patch is fabricated from the same material

using the same procedure, except that the feed-through hole for the center conductor is

located 0.52 cm from the bottom edge and 1.99 cm from the left edge of the patch as

shown in Figure 5.1.

The fabrication of the patch antenna to be mounted on a metal foil covered bowl,

which simulates a PEC prolate spheroid, is described next. The maximum radius of the

bowl is 14.74 cm and its height is 17.0 cm. The dimensions of the conformal patch

antenna are as follows: 3.0 x 3.0 cm patch within a 6.0 x 6.0 cm aperture. Since the

antenna must conform to the doubly curved surface of the bowl, it is fabricated from

GML 1100 copper clad laminated board with a thickness of 0.014 cm in order to

minimize buckling along the surface of the bowl. The thinness of the board necessitates a

different fabrication technique than was used for the thicker patch antenna. In view of the

thinness of the metallic layer, the face of the antenna is chemically etched from the GML

1100 board using a full-strength ferric chloride solution. In Figure 5.2 cross-sectional and

top views detailing the construction of the patch antenna are provided. The probe feed
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consists of an SMA connector soldered to 4.55 cm of semi-rigid coaxial cable. A 0.914

mm hole through which the center conductor is fed is drilled 1.01 cm from the bottom

and 1.54 cm from the left edge of the patch. A caveat of constructing a patch antenna out

of such thin board is that it is quite difficult to ensure electrical isolation across the

dielectric when solder is applied near the probe feed hole to electrically bond the center

and outer conductors to the patch and back surfaces, respectively, of the antenna. Hence,

in order to ensure electrical isolation between the back and patch surfaces, the following

technique is used. First, nonconductive epoxy (Stycast 2850FT) is used to structurally

bond the coaxial outer and center conductors to the bottom and patch surfaces,

respectively, and also to prevent metallic debris from entering the hole and shorting

across the top and bottom surfaces. Next, to prevent a short circuit between the patch and

back antenna surfaces, the center conductor is encased by a teflon tube to insulate it from

the walls of the top and bottom copper layers of the laminated board before it is fed

through the probe feed hole. Finally, instead of solder, a silver coating obtained from the

evaporation of a colloidal silver solution is applied to furnish a low impedance electrical

connection between the coax outer conductor and the bottom surface and between the

center conductor and patch surface as shown in Figure 5.2.
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5.3 Experimental Setup and Measurements

5.3.1 Ground Plane

The Sll of a patch antenna mounted on a PEC ground plane was measured using the

Hewlett-Packard 8753D network analyzer over the range 1.0-6.0 GHz. A PEC ground

plane was simulated by a large flat aluminum covered sheet as depicted in Figure 5.3.
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Figure 5.3 Experimental setup for the

patch antenna on a ground plane.

The Sll of the antenna alone cannot be measured directly. In order to determine the

antenna Sll , the electrical length of the feed from the tip of the SMA connector along the

micro-coax cable to the point where the outer conductor is bonded to the back surface of

the antenna must be calibrated out. In order to accomplish this, the coaxial cable feed first

is cut to the length to be used in the antenna fabrication. Next, the cable is shorted at the

end and the S11 of the shorted cable is measured over the frequency range 1.0-6.0 GHz

and saved. The following calibration formula is used to remove the S11 of the probe feed:
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5,,(ant) = {AIM-L] (5.1)
511(coax)

where S”(sys) is the measured S“ for the antenna which includes the probe feed,

S”(coax) applies to the shorted probe feed, and Sn(ant) is the desired Sll for the

antenna alone. Now that the length of coaxial cable from the tip of the SMA connector to

the point where it is bonded to the back surface of the antenna has been calibrated out,

S“(ant) is converted to the input impedance Zll of the antenna via the following

formula:

Zn = 20 (1_+_Sl_l) (5-2)

(1 - Sl , )

where Z0 = 500 , the characteristic impedance of the coaxial feed.

In Figure 5.4, the input impedance of the 3.0 x 3.0 cm patch radiating on the

ground plane measured over the frequency range 1.0 to 6.0 GHz is given. The FE—BI

simulation results are provided for comparison. As seen in the plot, the FE-BI routine

predicts the lowest order and two higher order resonant modes. Focusing on the

frequency range in the vicinity of the dominant mode, the measured input impedance data

is compared with the FE-BI simulation results for (a = 800 cm and b=700 cm) in Figure

5.5. For comparison against measured data over this narrow frequency range, fairly

stringent criteria are used in the FE-BI simulation. The sampling factor used in the

generation of the finite element mesh is 11,, / 92 at the resonant frequency, resulting in

13,824 elements and 5,040 aperture unknowns. The FE-BI simulation required

approximately eleven hours to run on a XEON 450 MHz machine. As seen in the plot,

the measured resonant frequency is 2.71 GHz and the numerical result is 2.63 GHz. This
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represents an error of 2.95%. In Figure 5.6, the input impedance of a 4.0 x 3.0 cm patch

radiating on a ground plane measured over the same frequency range as in the previous

case is compared against the FE-BI simulation results. As seen in the plot, the FE-BI

routine predicts the lowest order and two higher order resonant modes. As in the previous

case, the measured input impedance data is compared with the FE-BI simulation results

in the vicinity of the dominant mode resonant frequency, as shown in Figure 5.7. The

same sampling factor is used over this frequency range as in the previous case, yielding a

finite element mesh with 18,432 elements and 6,744 aperture unknowns. As seen in the

plot, the measured resonant frequency is 2.70 GHz and the numerical result is 2.64 GHz.

This represents an error of 2.22%.

One possible source of experimental error is the discrepancy between the modeled

and actual location of the feed point on the patch. As the feed point is positioned closer to

the center, the magnitude of the electric field at the feed point for the excited mode

decreases, resulting in a reduction in the magnitude of the input impedance. The method

of antenna construction could be another source of error. In applying solder to electrically

bond the inner and outer conductors of the coaxial feed to the patch and back surfaces,

respectively, the metallic surface in the vicinity of these points is heated to approximately

6500 F, which is the temperature of the soldering iron. It is quite possible that the

temperature of the dielectric layer in the vicinity of the feed which is in immediate

contact with the heated metallic surface would exceed the range of stability of the

dielectric constant. From the data sheet for the GML 1100 substrate (manufacured by

GIL Technologies), the dielectric constant of the material is stable only in the
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temperature range —131°F to 2570 F. Published data on the value of the dielectric

constant outside of this temperature range is not available.
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5.3.2 Prolate Spheroid

This experiment is designed to measure the effect of surface curvature variation on the

input impedance of a patch antenna. In order to simulate an electrically large, perfectly

conducting prolate spheroid, the outer surface of a plastic bowl is covered in several

layers of aluminum foil. Holes with a diameter of 0.94 cm, large enough for the SMA

connector on the antenna feed to pass through, are drilled at consecutive elevational

positions along the bowl surface. In order to minimize the possibility of electromagnetic

coupling with nearby metallic objects, the measurements are taken with the antenna

configuration placed inside an anechoic chamber. The network analyzer is calibrated

using an 85032B Type N calibration kit. However, the SMA type connector on the probe

feed to the antenna necessitates the use of an Type N-to-SMA adaptor to transition from

the male N type cable to the female SMA probe feed on the antenna. The weight of this

configuration places considerable strain on the joint at the interface between the semi-

rigid coax of the probe feed and the bottom surface of the antenna. As a result,

considerable bracing is required at the attachment point of the Type N-to-SMA adaptor

on the antenna probe feed. Note that there is considerable buckling of the antenna as it is

mounted on the surface of the bowl, despite efforts to minimize its occurrence. The SU of

the antenna system, which includes the feed configuration, is measured over the

frequency range 1.0 to 6.0 GHz, sampled at 1,600 points. The experimental setup is

shown in Figure 5.8.
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Figure 5.8 Experimental setup for modeling the 3.0 x 3.0 cm

patch antenna mounted on a doubly curved platform.

In Figures 5.9, 5.10, and 5.11, the measured input impedance as a function of

elevational position for various antenna orientations is presented. In Figure 5.9, the

measured input impedance of a 3.0 x 3.0 cm patch excited for axial polarization is given

for various elevation angles along a 17.0 x 14.75 cm prolate spheroid. From this plot, the

resonant frequency exhibits negligible shifts between the 700 and 50° positions. Between

the 500 and 400 positions, however, there is a significant shift in the resonant frequency.
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In addition, it is observed that the magnitude of the input impedance decreases between

the 700 and 50° positions. However, it increases between the 500 and 40° positions. In

Figure 5.10, the measured input impedance of a 3.0 x 3.0 cm patch excited for azimuthal

polarization is given. In this figure, the resonant frequency appears to shift as the surface

curvature decreases. Moreover, the magnitude appears to decreases as the surface

curvature increases. The measured results for a 45° rotated patch at different elevational

positions along the bowl are given in Figure 10.11. Between 70° and 50° the resonant

frequency appears to decrease, but between 50° and 400 it appears to increase, although

not by a large amount.

Due to the sensitive nature of these experiments, crudeness of the antenna

fabrication techniques, and experimental setup, which give rise to experimental error as

discussed previously, it is not possible to draw any concrete conclusions from these

measurements. In order to improve upon the reliability and accuracy of any future

experiments, improvements in the following areas are needed: fabrication techniques

used in the construction of the planar and doubly curved patch antennas, fabrication of

the mounting platform used to simulate a doubly curved surface, and the method by

which the antenna is mounted on the surface in order to eliminate buckling.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this dissertation, a new approach to modeling the behavior of conformal antennas on

doubly curved convex surfaces utilizing the finite element-boundary integral method has

been presented. This method provides a practical alternative to previous methods such as

the cavity model and the rigorous integral equation based approaches for analyzing these

types of antennas. In this approach, a doubly curved, closed, convex surface is modeled

by a canonical prolate spheroid. The advantage of using a prolate spheroid is that it is

sufficiently general to represent the curvature of an arbitrary doubly curved surface

through the careful selection the azimuthal and elevational radii of curvatures. The PEC

surface boundary condition is enforced within a boundary integral whose formulation

relies upon an asymptotic prolate spheroidal dyadic Green’s function. This approach,

which essentially is a hybridization of traditional FE-BI and UTD, is well suited for

modeling conformal antennas on electrically large doubly curved surfaces that enforces

the Neumann boundary condition. In Chapter 1, a historical overview of the problem of

determining the radiation by sources on prolate spheroids was given. It was concluded

that exact formulations based upon the eigenfunction expansion method in a prolate

spheroidal coordinate system leads to extremely complex eigenfunctions expressed in

terms of spheroidal wave functions. Due to their complexity, they are not practical for

numerical implementation and are limited by the well-known convergence problems

associated with electrically large bodies.
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In Chapter 2, an overview of the uniform theory of diffraction was given. In this

chapter, the solutions for the canonical problems associated with a magnetic dipole

radiating on the surface of an PEC cylinder and on the surface of a PEC sphere were

generalized to accommodate a magnetic dipole radiating in the presence of an arbitrary

closed convex doubly curved PEC surface. The generalized solution was expressed in

terms of surface Fock functions that provide a smooth transition from the shadow

boundary to the deep shadow region. Since these functions are well tabulated, they are

highly amenable to numerical computation.

In Chapter 3, the generalized dyadic Green’s function was specialized to a prolate

spheroidal geometry by means of differential geometry. The prolate spheroidal dyadic

Green’s function physically represents creeping waves that are excited by a magnetic

current on the spheroid surface. Since creeping waves traverse the surface along geodesic

paths, the mathematical property of torsion that is exhibited by a geodesic curve was

discussed. It was shown that, unlike that canonical circular cylinder and sphere, an

intrinsic property of the prolate spheroid is that a geodesic lying along a non-meridianal

line is characterized by variable torsion. This important property precludes the existence

of closed-form analytical expressions for such geodesics. Differential geometry was

applied to develop an expression for the geodesic path that can be evaluated by numerical

integration. The validation of the Green’s function was based on the premise that the

magnitude of the prolate spheroid Green’s function should approach the magnitude of the

circular cylinder Green’s function within the quasi-cylindrical midsection of the spheroid.

It was found that there was good agreement between the prolate spheroid and circular

cylinder Green’s function within this region. The magnitudes of the prolate spheroid
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Green’s function along arbitrary geodesics were presented in order to provide reference

data for possible future work and to gain additional insight into the nature of coupling

along the spheroid surface. The prolate spheroidal dyadic Green’s function was

incorporated into the boundary integral. The magnetic current in the aperture was

expanded in terms of RWG vector basis functions over triangular regions. With the

specification of appropriate volumetric basis functions defined over tetrahedral elements

for the cavity region, the finite element-boundary integral equation was formulated.

In Chapter 4, the FE—BI method was used to model the resonant frequency and

input impedance of a cavity-backed slot antenna and patch antenna conformal to a prolate

spheroid as its surface curvature was varied. The curvature of the spheroid was controlled

via the specification of the azimuthal and elevational radii of curvature. Due to the lack of

published reference data, the numerical results were verified through comparisons with

planar and cylindrical FE-BI results, which have been experimentally confirmed

elsewhere. The resonant frequency of the cavity-backed slot antenna for various

orientations was modeled. It was found that the resonant frequency of a horizontally

oriented slot exhibits a stronger curvature dependence than the resonant frequency of a

vertically oriented slot. A slot oriented at 450 with respect to the vertical axis exhibits a

curvature dependence that lies in between that of the horizontal or vertical orientations.

From an examination of the electric structure beneath a patch antenna, it was found that

by varying the location of the probe feed, an electric field exhibiting either an azimuthal

or axial polarization was excited. The azimuthally polarized electric field was found to

exhibit a greater curvature dependence than the axially polarized electric field. A similar

result was obtained for a 45° rotated patch that was moved along the prolate spheroid

163



from a region of low to a region of high curvature near the tip. For this patch orientation,

however, the excited resonant mode split into two resonant modes. The difference in the

resonant frequency between the two modes was found to increase with increasing

curvature. Finally the far field pattern of a patch radiating in the geometrical optics region

of the spheroid was calculated. It was found that the E? component exhibits a strong

curvature dependence. Specifically, the null of this component shifted and became

shallower as the curvature increased. Moreover, the gain of this component was found to

increase with the increasing curvature. Conversely, the E0 component is practically

invariant with respect to curvature, except when radiating on the 10 x 8 cm prolate

spheroid. On this highly curved surface, the shape of the pattern grew slightly narrower

as the curvature increased. The gain of this component, however, remained constant.

In Chapter 5, experimental results for the patch antenna radiating on a planar

surface and on a doubly curved surface were given. The FE-BI simulation for a patch

radiating on a prolate spheroid was specialized to the planar limit and compared with

measured data results. The agreement between the simulated resonant frequency and

measured resonant frequency was good. Next, the input impedance of a patch antenna

mounted at various points on a bowl, was measured. The bowl provided a crude model of

a prolate spheroid surface. Due to the crude nature of this experimental setup, no

conclusions could be drawn from these experiments beyond general behavior consistent

with a patch radiator.

6.2 Future Studies

Several areas of future study arise from this research. An improvement in the efficiency

and speed at which geodesic paths on prolate spheroids are calculated is needed. Such an
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improvement would provide a significant increase in the ability to analyze complex

apertures. Another avenue of possible research is the investigation of the effects of

doubly curved surface curvature variation on the coupling between multiple apertures. In

this work, a near-to-far field transformation for calculating the radiated field in the

geometrical optics region was developed. As an extension of this work, a near-to-far field

transformation for the transition and deep shadow region that is amenable to computation

could be developed. This would provide a means to study the effects of doubly curved

surface curvature variation on the radiation pattern in these regions. Another possible

extension of this work is the development of a suitable surface dyadic Green’s function to

model cavity-backed apertures on coated doubly curved surfaces.
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APPENDIX A

EVALUATION OF POTENTIAL SURFACE INTEGRALS

OVER TRIANGULAR REGIONS

A.1 1-, 4-, and 7-Point Approximation Weights

A table listing the approximation weights that are used for numerical integration over

triangular regions in this work is provided for the convenience of the reader. The values

listed in this table are taken from [7]. The triangle integration points are depicted in

Figure A.l.l.

Table A.1.l Approximation weights for numerical integration over

triangular regions. Note that 621 = 0.0597158717, ,1?l = 0.4701420641,

a2 = 0.7974269853, and ,6, = 0.1012865073.

 

 

 

 

     

Points Triangular Coordinates (9, g2, g3) Weights

a 1/3,1/3,1/3 1.0

a 1/3, 1/3, 1/3 — 27/48

b 0.6, 0.2, 0.2

c 0.2, 0.6, 0.2 25/48

d 0.2.0.2, 0.6

a 1/3, 1/3, 1/3 02250000000

b at a fit , fir ‘

c fiver], ,6, } 0.1323941527

d ’61, fit a a] ,

e “2’ ,62, :62 ‘

f ,62,a2, ,6, T 01259391805

g .62, :62, a2 ,
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Figure A.l.1 The integration points on a triangular patch for

l-, 4-, and 7-point numerical integration.

A.2 Analytical Formulas

The expressions for integration over triangular regions encountered in the evaluation of

boundary integral by the method of moments in this work include singular integrals that

must be evaluated analytically. The technique for deriving analytical solutions to these

types of integrals is discussed in detail in [39] and, therefore, will not be repeated here.

The form of the integral of a uniform source distribution over a triangular patch is given

by

1
—dS' A.1TR ( )

where T is the triangular patch region. The analytical solution for integrals of the type

(Al) is given by [39]

  

 

 

1 . R.+ +1+ P01.+
—dS'= P,°-fi,. P,°ln[ '_ ’_]-d tan" ' '

JR :1: R,- +lr' I I [R19]2+|d R,’

o _

—tan” 1,0" 1" (A.2)

[Rf] +|d|Rf

The form of the integral of a linearly varying source distribution over a triangular patch is

given by
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I? ‘9 [5' (A3)

T R

The analytical solution for integrals of the type (A3) is given by [39]

Jp;p S. = ézu’ [(R‘o )2 m[fi{ :jl: J+II+R1+ —I:_Rr-] (A-4)

T i r r

The definitions of the various parameters used in (A.2) and (A4) are listed here for

convenience [39].

 

 

 

de-él (A3

a, =i,xfi (A.6)

Rf = lr—rfl (A.7)

If = (pf —p)-i. (A8)

of =rf -(fi-r.*)fi (A9)

P." =|(p;‘ -p)-fi.| (A10)

13,9 _(p' 122—1' i’ (All)

R,° = (10,")2 +d2 (A.12)

d=fr(r—rf) (A.l3)

Referencing Figure A.2.1, r' is the position vector from the origin to a source point on

the triangular patch, 1' is a position vector from the origin to an observation point in

space, p' and p are the projections of r' and r onto the plane of the patch, rf denotes
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the position vectors from the origin to the endpoints If , pf is the projection of the

position vectors rf onto the patch plane, and dis the height of the observation point

above the patch surface. The parameter R0 is the perpendicular distance of the projected

observation point in the plane of the patch to the 1"” edge of the patch. The unit vector 1,

is tangent to the 1"” edge and points in the direction of increasing length. The unit vector

fr, is the outward normal vector to the 1"” edge.

  

‘ O

1':-

r' r

+

r, _

h Q P.
I

r edge u, p'

* +

1" pi
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I f

- ’ P
~~~~~~ o
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Figure A.2.l The geometrical parameters associated with the evaluation

of potential integrals over the triangular patch T .
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APPENDIX B

PARAMETERIZATION OF THE PROLATE SPHEROID UNIT

VECTORS IN TERMS OF SPHERICAL COORDINATES

To facilitate the numerical implementation of the prolate spheroidal unit vectors in this

work, it is desirable to eliminate their dependence on the hyperbolic terms involving the

prolate spheroidal parameters 4‘ and 77 and instead express the prolate spheroidal unit

vectors in terms of the major and minor semiaxes a and b , respectively, via the usual

spherical coordinates 6 and no. The parameters .5 and r] are defined as follows [6], [4],

[491

5 = coshQ (B.1)

I] = cos 6? (B2)

where 0 is the usual elevation angle in spherical coordinates and Q is a constant that

defines the surface of a prolate spheroid. The major a and minor b semiaxes are defined

in the prolate spheroidal coordinate system by means of (B.1) and (8.2) as follows [31]

a = ccoshQ (B.3)

b = c sinh S2 (B4)

where c = \/a2 — b2 and is equivalent to one-half ofthe interfocal distance.

The expression of the prolate spheroidal unit vectors (fi,&,(j>) in terms of the Cartesian

unit vectors (x ,y,z )is given by [5]

H'/—”7——nz-§cosgoi+/§L;%———4fsin(py+ ’52:] 772 (13.5)

Substituting (B. 1) and (B2) into (8.5)
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coshQ . .. cosh Q

srn 6 cos q) x +

\lcosh2 Q — cos2 6 \lcosh2 Q — cos2 6

J cosh2 Q —1 .

+ 2 2 cos 6 z

cosh Q - cos 6

é= sin6singoy 

 

 

Expressing coshQ in terms of a and c via (3.3) and substituting into (B6)

8 = a/c sin6cosgoi+ a/c

\l(a/c)2—cosz6\/(a/c)2 —cos2 6

2

+\/ (a/c) —l cos6i

(a/c)2 — cos2 6

sin6sin¢y  

 

 

 

 

_ asin6cosq) i+ asin6sin¢2 .+J a2-—c2 c0362

‘ 2
a

2 2

Jaz——c2 cos26 J02 —c2 cos26 -6 cos 6

 

c0362
 

asin6cosq) i+ asin6sinq) .+\/ 02—02

2
a

=
y

\/a2——02 cos26 \[a2 —02 cos26 -czcosz6

1

z. a:
\la2 sin26+b2 c0826

(asin6cosrpi+ asin6singoy +bcos6i)

Following the same procedure for i] , beginning with [6]

2 I 2
—1 o A 1'.” A

rysrngoy+ éz
2_”2 62‘772

substitute (B. 1) and (8.2) into (8.8) and simplifying

2 2

fi=\/ (a/c) -1 cos6cos¢i—J( (ale) _1 cos6sin¢y

(a/ 6)2 -cos2 6 a/ c)2 —cos2 6

  2rycosgofr— 

  

  

a/c . .

+ srn6z

\[(a/c)2 -cos2 6

- J 02—62 cos6cos¢i\/ 02—02 cos6singoy

a2 -c2 cos6 a2 —c2 cos2 6
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(8.6)

(13.7)

(B.8)



asin6 .

2 2 2 2
Ja —c cos 6

1

:> f] =

\/(12 sin2 6 +b2 cos2 6

(—bcos6cosgoi—bcos6sin(py +asin6z) (B.9) 

Finally, the azimuthally directed unit vector ([1 is the same in prolate spheroidal and

spherical coordinates and is given by

(p=—sinq)i+cosrpy (B.10)

Conversely, the Cartesian unit vectors may be expressed in terms of prolate spheroidal

unit vectors. Beginning with [5]

1-772 . 52—1 . . .
ézwzécowé- Wncown-smw (13.11) g:

Following the same procedure as before, substitute (B.1) and (3.2) into (B.11) and

simplify which results in

  

  

. l—cos2 6 .. cosh2 Q—l . , ..

X = cosh0 cos — cos 6 cos — srn . 12

\lcosh2 Q — cos2 6 (05 cosh2 Q - cos2 0 $11 (P (P (B )

Expressing cosh!) in terms of a and cas before leads to

 

asin6cos¢

\[a2 —c2 cos2 6

 i:
 

A 02—62 A A

§+ 2 2 cos6cosgon—singoq) (3.13)

a —c cos6

After further simplification by means of the Pythagorean relationship between a , b , and

c the final expression for i is obtained

i= 1 (asin6cosgoé—bcos6cosg0fi—singo(f)) (B.14)

\/a2 sin2 6 +b2 cos2 6

In the same manner, 9 initially is given by [6]
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_ 2 A 2—

1 :7” .fsin¢§— fiqsinwfi-t-coswé (B.15) 

which, upon the substitution of (B.1) and (B2), and simplification becomes

1

(asin6singoé—bcos6sin(pfi+cosgo(j)) (B.16)

Jazsin26+b2cosz6

$1:

The unit vector i is written initially as [6]

. 2-1 . — 2 .
za/finén/fién (3.17)

which, by the same procedure, becomes

2: l (bcos6&+asin6fi) (B.18)

J02 sin2 6 + b2 cos2 6

Summarizing, the prolate spheroidal unit vectors parameterized in terms of the spherical

coordinates 6 and (p and expressed in terms of the Cartesion unit vectors are given by

 

 

a: 1 (asin6cos¢i+asin6singpy+bcos62) (B.19)

x/a2 sin2 6 +b2 cos2 6

f] = l (-—b cos6cos¢i—bcos6sin¢y + asin6i) (B20)

J02 sin2 6 + b2 cos2 6

¢=—sin¢i+cos¢y (B21)

The Cartesian unit vectors, parameterized in terms of the spherical coordinates 6 and g0

and expressed in terms of the prolate spheroidal unit vectors, are given by

i= 1 (asin6cosgoé—bcos6cos¢fi—sin(o(j)) (B22)

J02 sin2 6 + b2 cos2 6

1
$1:

\/a2 sin2 6 + b2 cos2 6

(asin6singoE—bcos6singofi+cosgo<j>) (B23)
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. 1 ~ . .

z = \la2 sin2 0 +b2 cosz 6 (bcos6§ + asrn6 1]) (B24)

For the case of a sphere where a = b

l
 

 

12,: (asin6cosgoi+asin6singoy+bcos6i)

\/a2 sin2 6 + b2 cos2 6

=sin6cosgoi+sin6sinq2y+cos6i=R (B25)

{1 = 1 (-bcos6cos¢i—bcos6sin¢y+asin6i)

x/a2 sin2 6 + b2 cos2 6

= —cos6cosrpi—cos6sin¢y+sin6i=—0 (3.26)

«i = «i» (B27)

The Cartesian unit vectors expressed in terms of the prolate spheroidal unit vectors now

become

1% = 1 (asin6cosgoé—bcos6cosgpr’]—sin¢(j))

\laz sin2 6 +b2 cos2 6

=sin6cos¢R+cos6cos¢0—sin¢rjr (B28)

1

Ja2 sin2 6 + b2 cos2 6

=sin6sin¢R+cos6sinrp0+cosgoqi (B29)

9: (asin6singoa—bcos6sin¢fi+cos¢(jr)

i: 1 (bcos6&+asin6f])

J02 sin2 6+b2 cos2 6

= cos6R—sin60 (B30)

which express the Cartesian unit vectors in terms of the spherical coordinate unit vectors.
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APPENDIX C

DERIVATION OF THE EXACT EIGENFUNCTION SERIES FOR THE

CIRCULAR CYLINDER DYADIC GREEN’S FUNCTION

The second-kind electric dyadic Green’s function for the infinite perfectly conducting

circular cylinder is derived most expediently from the free-space magnetic dyadic

Green’s function (=lmo. Beginning with the dyadic form of the vector wave equation,

expressed in terms of the free-space electric dyadic Green’s function, a relationship

between the free-space electric dyadic Eeo and the free-space magnetic dyadic Green’s

function Emo may be derived [10]. Beginning with

VxVero(R|R')—kZEeo(R|R')=I5(R—R') ((3.1)

where R and R' are three-dimensional position vectors to the field and source points,

respectively. Employing the relationship

Vero(R|R')=Emo(R|R') (02)

results in

VxEmo(R|R')=I6(R—R')+k23eo(RIR') (03)

Since (=}m0 is piecewise continuous with a discontinuity at p = O , it may be decomposed

into two components

Ema =E‘LOU(p- p')+E=;.oU(p'- p) (C.4)

where the unit step functions are defined by

1, p > p'

U — ' =(p p ) {0’ p < p.
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U(p'—p)={1’ ’0”, (CS)

Taking the curl of (C4) and invoking an appropriate dyadic identity from [10] yields

VXEmo = (ano)U(p—p')+VU(p—p')xao

+(VXE;0)U(p'-p)+VU(p'—p)xE;o (C.6)

From the theory of distributions, the following relationships can be derived [10,49]

VU(p-p')=136(p-p')

VU(p'-p)=-135(p-p') (07)

Substituting (C.7) into (C.6) gives

VxEmo =(VxE;ojU(p—p')+(VxE;o)U(p'—p)

+f)5(p-p')x(E;o-E;zo) (C.8)

The boundary condition on tangential magnetic fields across an interface may be

expressed in dyadic form as

1343,20 -E—;o) = i.6(r-r') (09)

where I. = I—fifi is the two-dimensional idem factor, I is the three-dimensional idem

factor, r , and r' are position vectors from the origin to the field point and source point

on the surface, respectively, and 11 is the outward unit normal vector to the interface.

Evaluating (C9) in cylindrical coordinates yields

fix(=(—;=;.o—E,—no)=(I—fifi)5(¢—¢')5(z—z') (C10)

and rewriting (C8) in terms of (010) yields
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Vx(=}mo =(VxE;o)U(p—p')+(VxE;o)U(p'—p)

+(I—pfi)§(go—(o')6(z-z')6(p-p') (C.11)

Rewriting (C3) in terms of (Cl 1) and solving for Geo

(VXE;0)U(,0—p')+(VxE;o)U(p'—p)+(I—fifi)6((p—¢')5(z—z')§(p—p')

= I6(R-R')+k2(=}eo

:>[vxET...)u(p—p')+[vxE‘;o)z/(pv—p)+(i—aa)a(¢—¢')a(z—z')5(p—p')

=I6(¢2-(o')6(z—z')6(p-p')+k28eo

:> Eco(RIR')=%[(VxGLoJU(p—p')+(VxE;0)U(p'—p)

_ mummy] (012)

Thus, (C.12) expresses the free-space electric dyadic Green’s function Ego in terms of

the free-space magnetic dyadic Green’s function (=}mo which satisfies the dyadic form of

the wave equation

vxvxao (RlR')—k25mo (R|R') = Vx[I§(R—R')] (C.13)

At this point, the method of Ohm-Rayleigh is employed whereby the source term in

(C.13) is expanded in the orthogonal basis of solenoidal vector wave functions M and N

and manipulated according to the procedure in [10] resulting in

1Nm(k)M'—k(2,)+M(2)(k )N'(—k), p> p'

GMRR) jk °° °°
c.14

()l -;_M_£211;]ch {N(kz )M(2)r(
_kzz)+M(k )N(2).(_wk) p<p ( )

where the vector wave functions are given by

Max/9) ={1'_"H;2> (x) 5.21;“ (x)(jr}kpe’""’e"‘=’ (C.15)
x
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M'(—kz) = {.2111 (x')fr'—J '(x')¢'}kpe-M'e-M (C.16)

k

N‘2’(k‘)= {ijm (x)1)—::—'—H(2)(x)q)+H(2)(x)kpz}—f—e"“’e"‘zz (C.17)

N'(kz)= {—jka 'x()p-——J (x) +J,,(xv)k,2'}%e-We-M (C.18)

where x = kpp , x' = kpp’, and Hf,” (x) is the second-kind Hankel function representing

outgoing cylindrical waves.

=+

Taking the curl of each component (i.e. Gmo or Gmo) and exploiting the symmetrical

property of the vector eigenfunctions

V xM = kN

V x N = kM (C. 19)

the following expressions are obtained

map—13.11. Z k—,i,)[M<2>(kM(—k,2)+N‘2)(k )N(—k)], p>p (C20)

w

ngr-w:     
k—2[M(kz—)M”"(km)+N‘2’(k)N‘2"(k)], p<p' (C21)

,)=—m

Substituting (C20) and (C21) into (C.12) to obtain the free-space electric dyadic Green’s

function Geo in terms of the vector wave functions

Ee0(RlR’)=;—211‘n36(R-R
')

+8—-[dk :1':Z{M(2)(k)M(k)+N(2)(k)N(k2,) p>p'

k’ M"’(kz)M“>'(—k.)+N<k.)N">'(
-k.), p<p'n=-oo

(C22)

The second-kind electric dyadic Green’s function may now be obtained by exploiting the

principle of scattering superposition
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(=1.: (R|R')=Geo (R|R')+(=:2. (RIR') (C23)

where G25 is proposed such that when it is added to (=;e0 , the composite function Gez

will satisfy the Neumann boundary condition fixVxGez =0 on the cylinder surface

p = a and the Sommerfeld radiation condition at infinity. Hence, the following

expression for G2, is proposed

02.((R:|Rat?” k1[a,,,M(2>(k )M<2>(—k,)+b,,N<2>(k,)N(2"(—k,)] (C24)

fl—w "=2” kp

After enforcing the Neumann boundary condition on the cylindrical surface

fix vx[M +a,,M(2) +N +bnN] : 0 (C25)
p=a

and defining y = x' = kpa the expansion coefficients are given by

’J" andb —'J" (7)= ___—___ _.—— C260

Substituting (C26) into (C24) and evaluating (C23), the electric dyadic Green’s

function of the second kind for the perfectly conducting infinite circular cylinder is

obtained

= n — '21: z -jnHr(r”(1') j" H512) '(X) c *1

G92: 2 2e] 3 :[dke 1 —("T—+— (2). mp

(2”)n nyn (7) 72 k—O Hn (7)

kzka§2"(x) H;2>'(x) nk, 2 H§2>(x) . ., nkzkai’Kx)
—j 2 (2). 92+ (2) _ — T ("9+ 2 (2). (p2

kaHn (7) 7Hn (Y) k0}, an (7) yxkOHn (7)

kkHf,”(x) .. 1 k 2 H”) x ..

+ 2 (3.1—‘1"— —p (bf) 21' (C27)

70"H. (7) 7 k0 H" (7)

where a=(p-(o', E=z-z',and x=kpp.
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APPENDIX D

FOCK FUNCTIONS

In his investigations into the phenomenon of diffraction by convex bodies, Fock

encountered certain recurring canonical integrals. These canonical integrals take the form

of a contour integral whose integration path encloses the complex poles of Airy functions

or their derivatives and are known as Fock functions [23]. Two varieties of Fock

functions are encountered in this work: the on-surface and far—zone. Furthermore, these

types of Fock functions occur in two forms: hard and soft. The hard Fock ftmctions arise

from canonical problems where the Neumann boundary condition has been enforced,

while the soft Fock functions arise in cases where the Dirichlet boundary condition has

been enforced.

The on-surface Fock fiinctions are given by

— I'M/4 5.3/_2 00 W2 '(7) ~14r
u (5) _ 8 7;? 1m ——ew2(T) dr (D.1)

_ l jfl/4 g °° W2 (T) —j§r

V(§) _ 2 e x —[2x/3W dz. (D.2)

where u(§) is the soft type and v(§) is the hard type. The Fock-type Airy function of

the second kind, denoted by, W2 (1) , and its derivative, W2 '(2') , are defined as

w2(z') = 71; 1emf/3612 (0.3)

F:

1ze’z'z3/3dz (13.4)

r2

. _L
W2 (7)—J;
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where the integration contour F2 in the complex 1 plane is depicted in Figure DJ. The

relationship between the Fock-type Airy function and Miller-type Airy function, Ai(-) , is

expressed as

w2 (2') = 25e'1”/6Ai(—re’”/3) (D5)

The asymptotic expansions of (DI) and (D2) for small arguments (if < 0.6) are given by

[2]

J—

- ,, .5 5 -7:
11(5) ~ 1.0—351: I “53” +1553 JET/E‘s 1 “59/2 +... (D.6)

Jr? , 7 7 .
~1.0—— /2+ '— 3+—— "’7‘ 9/2+... D.7V03) 4 6 1606 512‘Ee 6 ( )

The asymptotic expansions of (DI) and (D2) for large arguments (6 >06) take the

form of rapidly converging pole residue series and are given by [2]

11(5) ~ 2e’”/’J7;§3/2§;(rn)-le""" (D.8)

v(§) ~ e-er/4 J7EE<Tn u)"e-J¢r.' (D9)

n=l

where the complex zeroes of w2(r) and W2 (7) are denoted by r" and T" ', respectively.

The values of In and rn' are listed in Table D].

The far-zone Fock functions are given by

 

f‘"’(6) = j— 1 dr (13.10)

71' r, “1(7)

 

gm (5) = j; 1 dr (13.11)
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where f0" (5) is the soft type, g‘") (5) is the hard type, and w1(z') is the Fock-type Airy

function of the first kind. Note that w1(r) is the complex conjugate of w2(r). The

integration contour 1"] in the complex 1 plane for the far-zone Fock functions is depicted

in Figure D2. The formulas given below are valid within the specified domains of 5 and

are used for the numerical computation of these functions [2].

for gm) (5):

.5 < —1.3:g<°>(2,=) : 2.061473

_1.3 g g s 0,5 : g(°)(5) =1.39937+Z6:E£mT)(K§)m

m=l m°

10 e[m'(m)§l

0.5 < 5 s 4.0 : gm) (9”) = 2:; a'(m)Ai(m)

 

—(0.8823—10.5094)5-)53/3]

5 > 4.0:g(°) (5) =1.8325e[

for g(”(5):

g < -2.8: g‘” (5) = -120(52 +j%_%§)e-M%

—2.8 s 5 s 0.5: g(1)(5)= Z6:—

m=l m!

 0.5 < 5 s 4.0: g“) (g) : x: Aim)

—(0.8823—10.5094)¢-1.53 /3 )1

.5 > 4.0: g“) (.5) : —1.8325(O.8823 — j0.5094 + 15214

for f‘o) (5):
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(D.12)

(D.13)

(D.l4)

(D.15)

(D.16)

(D17)

(D.l8)

(D19)



 

 

5 < —1 .1 : f‘°> (5) : 125(1— 0135 +g)?” (D20)

-113 5 s 0.5: f<°> (5) : 0.77582 + e’11/3;3%)-(x5)”’ (D21)

(0) 1 / 10 e[m(m)€] 22
< . = -M 3

0.5 <5 _ 4.0 .f (5) e :4“: Ai'(m) (D. )

5 > 4.0: f”) (5) : 0.0 (D23)

In (D.12)-(D23), K = 2’1””6 , the coefficients used in (D.12)-(D.19) are listed in Table

D2, and the coefficients used in (D20)-(D23) are listed in Table D.3.

1m(1’)

 

 
Figure D.1 Integration contour for w2(r).

Im‘(r)

 
 

 

Figure D2 Integration contour for the far-zone Fock functions.
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Table D.1 Zeros of the Fock-type Airy function of the second kind

192(2) and of its derivative W2 (7). Note that 7,, = 1,, e””/3 and
  

2":
I1

1 -j7r/3

  

T

n
e

 

Table D2 Constants for gm) (5) and g(')(5).

Aim
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Table D.3 Constants for f(0) (5).
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APPENDIX E

BiCONJUGATE GRADIENT PSEUDOCODE

An iterative solver approach is employed to solve the FE-BI system of equations.

Iterative solvers are more efficient than direct solvers at solving the large sparse matrices

that arise from PDE based techniques in that direct solvers employ matrix fill-in, whereas

iterative solvers do not. Consequently, iterative solvers preserve the sparseness of the

system. The Biconjugate Gradient (BiCG) iterative solver employing Jacob’s algorithm

has proven to be readily applicable to the solution of sparse linear systems [46].

Initialize

r0=b—Axo

P0 = 1'0

Do until (res. S tol.)

(r1341)

ak = (P; 2 Apr)

1‘1+1 = x1: +akpk

r1+1 = r1 —akApk

.

_ (rk+19rk+1>

:61 — (17:33,)

Pk+1 = r1+1 + flkpk

End Do

where x is the unknown solution vector for which an accurate estimate is to be

determined, p is the search vector which points in the direction in the n-dimensional

space that the algorithm must move in order to improve upon the solution estimate, and r

is the residual vector. The subscript 0 denotes an initial guess which for x0 can be set
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equal to {0} , subscripts k and k +1 denote the previous and current estimates,

respectively.

The complex scalar coefficient ak , which dictates how far the algorithm moves along the

search vector, is chosen to enforce the biorthogonality condition

(r;+l, rk) = (rhvr; ,) = 0

While the complex scalar coefficient ,Bk is chosen to enforce the biconjugacy condition

(pimApk) = (91.618716) = 0

The solution is said to converge when a prescribed tolerance condition

(rkH’rkH) _ 6'

<40

is satisfied, where 8 is a tolerance threshold value.
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