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ABSTRACT

MODELING THE RADIATION FROM CAVITY-BACKED
ANTENNAS ON PROLATE SPHEROIDS USING A HYBRID FINITE
ELEMENT-BOUNDARY INTEGRAL METHOD
By

Charles Alphonso Macon

Conformal antennas are increasingly being deployed on the surfaces of air and land
vehicles. Quite often, the mounting surfaces are doubly curved. A characteristic property
of these antennas is the curvature dependence of their input impedance, resonant
frequency, and radiation pattern. In light of this, it is vital that conformal antenna models
include surface curvature so that the effects of local surface geometry on their resonant
behavior and radiation pattern can be predicted more precisely. This is especially
important for a highly resonant antenna, such as the micostrip patch, due to its narrow
bandwidth. In addition, advanced material antenna loadings are increasingly being used
in practice. These factors motivate the development of a new approach to modeling the
radiation from conformal antennas on convex, doubly curved platforms utilizing the
hybrid finite element-boundary integral (FE-BI) method. The hybrid FE-BI method,
which combines the finite element method with the method of moments, is extended to
model convex, doubly curved platforms by means of a specially formulated asymptotic
dyadic Green’s function. This asymptotic Green’s function, formulated within the context
of the uniform theory of diffraction (UTD), incorporates the physics of interactions on the
surface of an electrically large, perfect electrically conducting prolate spheroid and is

highly amenable to numerical applications. The prolate spheroid is a canonical shape that



is sufficiently general to model the curvature of a convex, doubly curved mounting
platform. The FE-BI method is used to investigate the effect of curvature variation on the
resonant input impedance of a cavity-backed slot and a cavity-backed patch antenna
recessed in the surfaces of prolate spheroids of varying dimensions. The effect of
curvature variation on the far field radiation pattern of a cavity-backed patch antenna
recessed in the surfaces of prolate spheroids of varying dimensions is also investigated
using this method. Measured input impedance data for a patch antenna mounted on a

planar and a doubly curved surface also is presented.
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CHAPTER 1

INTRODUCTION

Conformal antennas have become popular for mounting on the surfaces of air and land
vehicles due to their low cost, aesthetic appeal, and light weight. In addition, conformal
antennas improve the aerodynamic efficiency of vehicles by minimizing drag. Quite
often, the surfaces of these vehicles are curved. In view of these applications, there is a
need for an understanding of how the radiating characteristics of these antennas are
affected by the local geometry of the mounting platform. A cost-effective means of
accomplishing this is through the use of computational electromagnetics software to
model the behavior of these antennas. The finite element-boundary integral (FE-BI)
method has proven to be a versatile and accurate computational technique for modeling
the electromagnetic radiation by conformal aperture antennas on curved platforms. The
FE-BI method is versatile in that it is capable of modeling the radiation by arbitrarily
shaped apertures composed of anisotropic materials. In the past, the FE-BI method has
been used successfully to model the radiation by cavity-backed apertures possessing
complex shapes recessed in planar and singly curved structures such as the circular
cylinder [1]-[3]. A canonical shape, such as a circular cylinder, is used to model a singly
curved surface in the cylindrical FE-BI formulation. From a practical standpoint,
however, mounting platforms quite often are doubly curved; therefore, it would be
advantageous to model a doubly curved platform using a suitable canonical shape such as
a prolate spheroid. Due to its unique geometrical properties, to be discussed in greater
detail later in this dissertation, the prolate spheroid serves as a mathematically convenient

canonical shape for modeling convex doubly curved structures. Hence, an FE-BI
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formulation compatible with a prolate spheroidal geometry would be useful to a designer
since an additional degree of freedom over a cylindrical formulation would be provided
in order to more generally model the effects of platform curvature. In light of this, the
objective of this research is to extend the FE-BI approach to model aperture antennas
conformal to doubly curved platforms. To accomplish this, a new FE-BI formulation
appropriate for modeling the radiation by a cavity-backed aperture recessed in a perfect
electrically conducting (PEC) prolate spheroid is presented in this dissertation.

The vector Helmholtz equation is inseparable in the prolate spheroid coordinate
system [4]. Therefore, a solution to this equation must be determined from the
corresponding scalar Helmholtz equation. Applying the method of separation of variables

to solve the scalar Helmholtz equation yields a solution of the form

v((f)’ =S, (c.7) RS (c,é){cosm’} (1.1)

- sin mg
where Smn(c,77) is the angular spheroidal wave function, R,(,,':,) (c,f) is the radial

spheroidal wave function of the 4 kind, and e or o denotes even or odd symmetry. The
parameter ¢ is given by c¢=kd where k is the wave number and dis the interfocal
distance. The parameters 77 and & are prolate spheroidal coordinate variables; prolate
spheroid geometry will be discussed in detail in Chapter 3. The lack of simple recurrence
relationships among the spheroidal wave functions [4] leads to analytically complicated
expressions which makes the numerical implementation of such functions a formidable
task and not very practical for high frequency applications. The poor convergence of the

radial functions for finite values of ¢£ has been acknowledged in the literature [5,6] and

various schemes for improving their convergence rate have been proposed [4,6].
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Once the scalar solution has been obtained, the M and N vector spheroidal wave
functions are constructed by applying vector differential operators to the scalar wave
function in conjunction with an appropriately chosen pilot vector in the following manner
[7]

M=Vyxp

1.2
=1VxM (1.2
k

where y is the scalar wave function, defined previously, and the pilot vector,

representing either a constant or a position vector, is denoted by p. In the cylindrical and

spherical coordinate systems, the unit vectors Z and R, respectively, are chosen to be

the pilot vector. By analogy with the spherical coordinate system, one may surmise that

the radially directed unit vector f; could be used as pilot vector. However, a nuance of the

prolate spheroidal coordinate system is that the M and N functions formulated using é as

the pilot vector do not satisfy the vector Helmholtz equation [8]. Furthermore, the M and
N functions formulated with the position vector, expressed in spheroidal coordinates,
chosen as the pilot vector are neither orthogonal among themselves or with each other
[4]. Moreover, the boundary conditions requiring the tangential field components to
vanish on a PEC prolate spheroid surface can only be satisfied by the M and N functions

for the case of azimuthally symmetric fields or for the limiting case of £ =0 [9]. The

implications of this are far-reaching in that the formulation of an exact closed-form
expression for a dyadic Green’s function, constructed from M and N using the method of
Tai [10], applicable to the problem of radiation from azimuthally asymmetric arbitrarily

shaped apertures may not be possible.
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Published literature treating the case of radiation by sources on a prolate
spheroid is scarce. Most work has dealt with the reciprocal problem of scattering by a
conducting prolate spheroid. Exact solutions to this problem have been found using the
modal expansion technique. Schultz obtained an exact eigenfunction solution for the
scattering of an axially incident plane electromagnetic wave by a prolate spheroid in
terms of a series of spheroidal wave functions [8]. A major drawback to this solution is
that a pair of infinite matrix equations must be truncated and solved simultaneously to
obtain the unknown expansion coefficients. Due to the complexity of the spheroidal wave
functions, such an approach would consume a significant portion of computer memory. A
solution for the fields radiated by an electric dipole located on the tip of a conducting
prolate spheroid was found by Hatcher and Leitner [11]. This solution was obtained by
directly solving Maxwell’s equations for the azimuthal component of the magnetic field
in a prolate spheroidal coordinate system. Such an approach is not feasible for an
arbitrarily shaped radiating aperture since the current distribution in the aperture may not
be available in a closed form. Taylor obtained an exact solution for the scattering of a TM
polarized electromagnetic wave by a prolate spheroid for broadside incidence [12].
However, the radiated field patterns were not included in his publication. Sinha presented
a further refinement to the modal expansion technique [6]. Sinha augmented the exact
modal expansion technique by introducing a special matrix transformation to obtain an
exact solution for the scattering of an electromagnetic wave of arbitrary polarization and
angle of incidence by a prolate spheroid. The transformation matrix is a function of the
geometry of the scatterer and is independent of the direction of the observation angle.

This approach was shown to be quite accurate in the resonance region. However, beyond
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the resonance region, the utility of this approach would be constrained by the poor
convergence rate of the spheroidal wave functions at high frequencies. A dyadic Green’s
function for a spheroidal layered medium was developed by Giarola [13]; however, it was
found to be in error due to an incorrectly assumed orthogonality between the M and N
functions, as pointed out by Li et al [14]. Li formulated expressions for the exact electric
and magnetic dyadic Green’s functions of sources in a layered spheroidal medium [14].
Although rigorous, this formulation would not be feasible for application in the FE-BI
approach developed in this work due to the aforementioned complexity and poor
convergence of the M and N functions at high frequencies and to the computational
expense involved in numerically computing the unknown expansion coefficients.
Specifically, the unknown expansion coefficients in the exact Green’s functions must be
numerically determined by simultaneously solving a system of coupled equations
involving infinite series that must be truncated. However, the truncation number is
proportional to the largest electrical dimension of a prolate spheroid [6,14]. Hence, for an
electrically large prolate spheroid, a large number of series terms would be needed to
accurately determine the expansion coefficients. In summary, an exact vector solution
does not appear to be practical for problems that involve the computation of the radiation
by an arbitrarily shaped cavity-backed inhomogeneously filled aperture antenna recessed
in an electrically large prolate spheroid.

In Chapter 2 of this work, an overview of the uniform geometrical theory of
diffraction (UTD) is presented. The UTD solution for a singly curved surface of arbitrary
curvature is developed from the canonical problem of determining the Green’s function

for the field excited by a magnetic dipole radiating on the surface of a canonical PEC



infini
dipols
SO]Ulic
conve
solutl

spher

utilize
backe
tapics
Greer
the d:
confo
valid
simy];
patch
preser
and 3
Circy)
Corroh

Tecom



infinite circular cylinder. Next, the UTD solution for the canonical problem of a magnetic
dipole radiating on the surface of a PEC sphere is presented. The development of a
solution to the problem of a magnetic dipole radiating on the surface of an arbitrary
convex, doubly curved PEC surface within the context of UTD is presented next. This
solution is developed by means of a generalization of the canonical circular cylinder and
sphere solutions.

In Chapter 3, the generalized dyadic Green’s function, developed in Chapter 2, is
utilized in the development of an FE-BI formulation appropriate for modeling cavity-
backed aperture antennas conformal to doubly curved surfaces. Moreover, the following
topics are discussed at length in Chapter 3: the specialization of the generalized dyadic
Green’s function by means of differential geometry to treat prolate spheroid surfaces and
the development of an FE-BI formulation for modeling cavity-backed aperture antennas
conformal to prolate spheroid surfaces. Analytical and numerical results to support the
validity of the Green’s function also are presented. In Chapter 4, the FE-BI numerical
simulation results for the input impedance and radiation patterns exhibited by slot and
patch antennas on prolate spheroids of varying curvature are presented. Chapter 5
presents the experimental results for the measurement of the input impedance of a square
and a rectangular patch antenna for various orientations on a prolate spheroid model,
circular cylinder, and ground plane. It will be shown that the experimental results
corroborate the numerical results presented in Chapter 4. Conclusions and

recommendations for future work are given in Chapter 6.
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CHAPTER 2

UNIFORM THEORY OF DIFFRACTION

2.1 Introduction

The applicability of exact techniques for calculating the high-frequency electromagnetic
field radiated or scattered by objects, such as the eigenfunction expansion method, is
restricted to certain canonical shapes. These shapes have surfaces that are tangential to
the constant surfaces of orthogonal curvilinear coordinate systems. Once derived, the
utility of an exact eigenfunction series solution is restricted in that these eigenfunction
series are poorly convergent at high frequencies and require on the order of 2ka (where
a is the largest dimension of the source body and k is the wavenumber) terms for
reasonable accuracy [15]. Moreover, eigenfunction series representations often mask the
physics of the high-frequency behavior, thereby making it difficult to isolate the
mechanisms of reflection and diffraction. In order to gain additional insight, special
mathematical techniques, such as the Watson transformation, must be employed to
convert the poorly convergent infinite eigenfunction series into a contour integral in the
complex plane. Cauchy’s residue theorem is then invoked to equate the contour integral
to a pole residue series. Physically, the pole residues are associated with creeping wave
modes that exponentially attenuate as they propagate into the shadow region of the
convex body. This is the mechanism by which the diffracted field is generated. Since the
field of a creeping wave attenuates with the distance traversed along the curved surface,
the pole residue series is asymptotic to the electrical radius of curvature of the body,
requiring only the first few terms to achieve suitable accuracy for large ka. Although this

approach is rigorous, it is rather laborious and impractical for arbitrarily shaped bodies,
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being restricted once again to orthogonal coordinate systems for which eigenfunctions
exist that are resolvable in terms of the known special functions of mathematical physics
such as Bessel, Hankel, or Legendre functions.

The geometrical theory of diffraction (GTD) is an asymptotic technique for
analyzing the diffraction from electrically large radiating objects. Although GTD is in the
strictest sense a high-frequency technique, it has been found to yield reasonably accurate
results at lower frequencies [15,16]. GTD was conceived by Keller [17] as a heuristic
extension of geometrical optics to accommodate the phenomenon of diffraction. Hence,
within a formalism that is analogous to geometrical optics, the high-frequency diffraction
from surfaces is treated as a localized phenomenon that is dependent only on the local
geometry and material properties at the point of diffraction. The diffraction mechanism,
to be discussed in greater detail in the next section, is ascribed to the propagation of
diffracted rays whose trajectories obey Fermat’s principle of least propagation time
analogous to the reflected and transmitted rays of geometrical optics. Fermat’s principle
of least propagation time asserts that out of all possible paths, a ray follows the path
between two points for which the optical length, defined as the product of the index of
refraction in the medium and the distance along a ray, is stationary with respect to
infinitesimal variations iﬂ the path. The formulation of GTD is based on four postulates
[18,19]:

(1) The trajectory of a diffracted ray is determined by a form of Fermat’s least
time principle that has been generalized to include points on the diffracting
surface in the ray trajectory.

(2) Energy in a diffracted ray tube or strip is conserved.
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(3) The variation in phase along a diffracted ray equals the product of the
wavenumber of the medium and the distance traversed.
(4) The phenomenon of diffraction is local in nature.

Consider a magnetic dipole situated at a point Q' on a convex curved surface. As

illustrated in Figure 2.1, the field region exterior to the dipole is divided into a shadow

and an illuminated region by a tangent plane to the surface at Q'. The tangent plane

defines the shadow boundary. Referring to Figure 2.1, the portion of the shaded regions
in the vicinity of the shadow boundary is known as the transition region. The angle

subtended by the shadow transition region is of the order of 1/m radians, where

m= {kpgT(Q)] @.1)

and p,(Q") is the radius of curvature of the surface at Q' [20]. A primary advantage of

GTD over exact techniques is that it can be applied to generally shaped objects for which
exact solutions do not exist. However, a well-known limitation of the GTD solution is
that it fails at the caustics of diffracted rays, where it predicts infinite fields, and in the
shadow transition region [21]. The failure of GTD in the shadow transition region is
attributable to the poor convergence of the creeping wave modal series representation
employed in the formulation of expressions for diffracted rays [22].

In order to overcome this limitation, the uniform theory of diffraction (UTD) was
developed by Kouyoumjian and Pathak [20,22] to extend the range of validity for the
traditional GTD to include the shadow transition region of general convex surfaces.

Essentially, the UTD formulation is a generalization of uniform asymptotic solutions to



Shadow
Region

Figure 2.1 The field regions adjacent to a magnetic dipole
situated on a perfectly conducting, convex surface.
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canonical problems, such as the diffracted field excited by electric and magnetic dipole
sources on cylinders or spheres, to treat the problem of diffraction from arbitrarily shaped
structures. Since the radiation by conformal apertures is the focus of this dissertation,
only the canonical problems involving magnetic dipole sources will be considered. The
ansatz of the UTD formulation is Fock’s principle of the locality of electromagnetic
fields at high frequencies. Fock’s theory is based on his now classic solution to the
problem of the current induced on the surface of a paraboloid of revolution in the vicinity
of the shadow boundary by an impinging magnetic field. According to Fock’s theory, the
current distribution in the shadow transition region depends only on the local curvature of
the body in the plane of incidence and on the impinging wave. The width of the

transition region £ is given by

V(4

ﬂrz 1/3
B =( £ ) 2.2)
where r, is the radius of curvature of the body at the shadow boundary [23]. The induced
current in the vicinity of the shadow boundary was expressed by Fock in terms of new
special functions, now known as Fock functions, which are resolvable as canonical

contour integrals involving the Airy function w,(7) or its derivative w,'(r) (see

Appendix D) [23]. However, Fock’s classic result suffered a flaw in that the distance

parameter £, defined in (2.2), measures the distance along the direction of propagation

of the incident field rather than along the curved surface of the body [24]. Goodrich [25],
provides an exposition that brings Fock’s theory in alignment with the creeping wave

interpretation of the surface diffracted field that is intrinsic to GTD by redefining the

11
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distance parameter f as the distance measured along a surface geodesic. The newly

defined distance parameter is given by [52]

0 kp ]1/3 1
= || = —d 23
B Qj[ > o 23)

where p, is the radius of curvature along a geodesic, ds is the incremental distance

along the geodesic, Q is the position of an observation point on the surface, and Q' is

the position of the source point. Fock surmised that since the current distribution in the
transition region depends only on the local geometry of the surface at the point of
incidence and the magnitude of the incident field at this point, Fock functions could
represent the current distribution in the shadow transition region of any convex surface
with the same principle radii of curvature at the point of incidence. This assertion, known
as the principle of locality of the diffracted field in the penumbra region [23], forms the
basis of UTD. By means of reciprocity, the same principle also can be applied to the field
excited by an aperture on a convex surface.

In the next section, expressions for the diffracted field excited by a magnetic dipole
source on a perfectly conducting circular cylinder are derived via an asymptotic
evaluation of the exact dyadic Green’s function for the circular cylinder. The canonical
asymptotic solutions are expressed in terms of Fock functions that are convergent in the
transition region and uniform across the illuminated and deep shadow regions. Next, the
asymptotic solution for a magnetic dipole source on a perfectly conducting sphere is
given. The procedure for generalizing these canonical solutions, within the context of
UTD, to treat the problem of a magnetic dipole source on a perfectly conducting general

convex surface will then be discussed. The expression for the dyadic Green’s function of

12
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the surface field excited by a magnetic dipole on a general convex surface based on the
generalization procedure is given at the end of this chapter.
2.2 Curved Surface Diffraction
An explanation of the phenomenon of diffraction by convex curved surfaces follows
directly from postulate one of the previous section. In propagating along the least-time
path, the portion of the diffracted ray path lying along the convex surface must follow a
geodesic path. A geodesic is by definition the path of minimal arc length joining two
points on a surface or more precisely, the curve whose length is stationary with respect to
infinitesimal pertubations in the path. Consider an aperture M situated in a convex curved
surface S. The source in the aperture is represented by an equivalent magnetic dipole
given by

dM(r") =E(r")xndA 24)
where Eis the electric field in the aperture and dA is an element of area in the aperture.
The symbols r' and r are position vectors directed from the origin of the coordinate
system to source and observation points on S, respectively. A magnetic dipole on a
convex curved surface excites creeping waves that propagate along as surface diffracted
rays that are directed away from the source in all directions to points in the shadow
region. The surface diffracted rays shed energy along forward tangents to their

trajectories. This phenomenon is depicted in Figure 2.2. The general form of the

incremental surface field dF(r|r') excited by a magnetic dipole is given by [26]

- Jks
eJ

dF(r|r) = ;—]:dM(r') T(rjr) D 2.5)

S

where s is the geodesic distance between source and observation points on the surface

13
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and D is the surface ray divergence factor which quantifies the change in width of a

surface diffracted ray tube due to energy conservation and is given by

D= /;S;ITW; (2.6)

In (2.6) dy, is the angle between adjacent surface rays at the source point, dy is the

angle between the backward tangents to a pair of adjacent surface rays at the observation

point, and p, is the radius of curvature of the geodesic circle centered at r. The spread

of a surface diffracted ray as it propagates along a curved surface is depicted in Figure
2.3. The parameter ?(rlr') is a dyadic transfer function for the surface field excited by a
magnetic dipole on a convex surface. It is proportional to the second-kind electric dyadic

Green’s function through the relationship ?(rlr')z— jkYEe2 (r|r'). The parameter

T(rlr') describes the launching of the surface ray field at r', the variation of the surface

ray field between rand r', and the attachment of the ray field at r. This dyadic
parameter is given by

T(r|r') = Tt '+ T,tb '+ Tybt '+ T,bb’ Q@.7)

A

where t is a ray-fixed unit vector tangent to the direction of propagation, b is the

binormal unit vector defined as b=tx#h, with i being the outward unit normal vector

to the surface, and 7 are coefficients that are deduced from the uniform asymptotic

!
solutions to canonical problems to be described in the next section. An illustration of the

fixed ray-based coordinate system is provided in Figure 2.4. In order to satisfy the

14



Surface
Diffracted Ray

Shed Ray

Figure 2.2 The mechanism of diffraction from a convex curved surface.

Surface
Diffracted Ray

Figure 2.3 Spread of a surface diffracted ray
strip due to energy conservation.
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Figure 2.4 Fixed ray-based vector coordinate system.
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requirement for rapidly convergent solutions that are continuous across the transition
region, the elements are expressed uniformly in terms of Fock functions with the distance

parameter f as their argument. In the deep shadow region where S>>0, with the
shadow boundary £ =0 taken as reference, the Fock functions revert to creeping wave
series by means of Cauchy’s residue theorem [22]. Appendix D presents details on the
asymptotic behavior of Fock functions. The creeping wave series is rapidly convergent in
the deep shadow region. Moreover, in the deep lit region where B <<0 the Fock
functions may be approximated asymptotically with respect to £ and are equivalent to
the geometrical optics current distribution [22]. Therefore, UTD provides a rapidly
convergent representation for the diffracted field that also is continuous across the
shadow transition region. Furthermore, [ can be viewed as a measurement of the
deviation of a geodesic from a straight line. As the surface curvature decreases (e.g.
surface becomes planar), f — 0 and the magnitudes of the Fock functions approach one.
Thus, the curved solution approximates the planar solution.

2.2.1 Uniform Asymptotic Evaluation of the Dyadic Green’s Function for an
Electrically Large Infinite Circular Cylinder

2.2.1.1 On-Surface

The exact eigenfunction series representation for the electric dyadic Green’s function of
the second kind for an axially infinite, PEC circular cylinder evaluated on the surface
p =a is given by (see Appendix C for the complete derivation and note that only sources

tangential to the surface are considered)

17



E‘:(P.O

Tnkk H

-—

k7 H,
where ;;
o
argumen
function
arapidly
that is ar
explaine
converg
aso kp
Svmpr
InCreas
&eomeyy
shadoy

&curgy,

\\'ar.son

dipole i]



= v  _® ey 2 2
GeZ(p,¢,z|a,¢’,z')= 1 zem‘ Idkze_‘lk’r{}l,- H" (},)_(nk:] Hn (7):'(;)6'4—

(27)’ s |22 () \ky) H'@)
k .k H® k.k H® £V o
nzz 2p }21 (7) @i,_'_ nzz 2p : (7) i(’ﬁl_l A H"2 (7) ii| (2.8)
kyy HY '(v) kyy’HP '(7) Y|\ k) H?'()

where $=¢—¢', z=2z-12", y=k,a, k, is the free-space wave number, and

k = \/kg — k! . The cylinder radius is denoted by a. As the cylinder radius increases, the

P

argument of the Hankel function grows. However, the numerical evaluation of the Hankel

function becomes increasingly difficult for large arguments (k,a >>1). In order to obtain

a rapidly convergent expression for the dyadic Green’s function of a large radius cylinder
that is amenable to numerical evaluation, the Watson transformation [18] is employed. As
explained previously, the Watson transformation effectively transforms a poorly
convergent infinite eigenfunction series into a rapidly convergent series of pole residues,

also known as the creeping wave series. The value of the pole residue series

asymptotically approaches that of the original eigenfunction series as the argument & a

increases. The poles residues are physically interpreted as creeping waves launched at the
geometrical optics shadow boundary and propagating along the cylinder surface into the
shadow zone. Hence, the number of terms in the series that are needed for a reasonably
accurate representation of the diffracted field decreases with increasing radius. The

Watson transform is given by [27]

S _—J e_jvu_;)f () ;
,,;,,e /(= 2 Cc'f sinvr 29)

and from (2.8) the Z component of the surface field attributed to a z directed magnetic

dipole is given by

18
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(2
GZ =i 3 o j‘ ""’——d)(}/ ) ik (2.10)
’ (2 ) — w ak, H?'(y)

In light of (2.9), (2.10) may be rewritten as

( j ® kg paCel) H(z)(},)
2 Pl > -dv 2.11
Cer @n¥kla 2 _;[ Cj sinvzH? \(y) @11

where v is the complex order and C is the closed contour enclosing the poles of the
integrand in (2.11), as depicted in Figure 2.5. The integral around the closed contour C

may be split into two integrals

k . ® _ -y (x-9) 17(2) v(x-9) £7(2)
G= = 1 (_,,)_i Ie—jk‘,:dk’ Ie. sz) () + Ie H2 (7’)dv (2.12)
o sinveH®(y) " dsinveHS) '(v)

with seperate integration paths denoted by C, and C,, respectively, as shown in Figure
2.6. Note that the integration path is perturbed from the real axis by a tiny amount o .
The substitution v = —v is made to reverse the direction of integration path C,. The two
contour integrals are subsequently merged via analytic continuation [27]

HP()=e”HP(y)

| (2.13)
HY ()= " HP ()
Therefore, (2.12) becomes
o e P9 4 e/v(rr—i) Hf”(y)
5= ;’ L fera, I( : : ) dv (2.14)
(27:) kia2 K sinveH® (y)

The new integration path enclosing the complex zeros of the Hankel function is depicted

in Figure 2.7. Factoring out '™

19



Figure 2.5 The Watson transform integration contour.

Im(v)
ya j o C2 Vg
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/[ — . > ,1
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Figure 2.6 The integration contour for the Watson
transform split into two segments.
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> Re(v)

Figure 2.7 Deformation of the integration contour around the complex poles
of the integrand arising from the zeros of the Hankel function.
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1 o o™ ( o VTP | 1 ) H? @)

k _
z P J -k, z
= —£ = e dk dv 2.15
2" 2r)Y ka2 CI sinvzH '(y) 1)
and noting that Imv <0 from Figure 2.7, the expansion
Y, (2.16)
sinvzw =

is utilized through a technique known as the Poisson sum formulation [18] where /
represents the number of complete encirclements made by a creeping wave in either
clockwise or counterclockwise directions. Since the magnitude of a creeping wave
exponentially decays as it propagates along the surface, the contribution from the higher
order (e.g. multiple encirclements for which / > 0) terms is negligible. Substituting (2.16)
into (2.15) and retaining only the lowest order short and long path terms (refer to Figure

2.8) results in

_ P A e—jv(:x—i) + ejvi Hfz)(}’)
= =_12_2P_ lﬂ'e-f":‘ g I( r ) dv 2.17)
(27)” kya 2, G H,”'(y)

The leading terms in the uniform asymptotic expansion of the Hanke!l function and its

derivative, for large y, in terms of Fock-type Airy functions are given by [28]

H(y) ~ Jw,(7)
v () “ndm

H‘(’2) v(}/) - _jw2 ’(T)

m*x

where w,(7) is the Fock-type Airy function (see Appendix D), m is as defined in (2.1),

(2.18)

and 7 is defined in [27]
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Figure 2.8 Lowest order short and long creeping
wave paths on a circular cylinder.
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1
r—;(v—y) (2.19)

Without a loss of generality, only the short path term e”? is considering from this point
onward. Substituting (2.18) into (2.17) and employing the change of variable dv = mdr

results in

© _ Zk _
G5 ~—— [|e* 22 [2uD et (220)
o)y 4" Ka dwme

where the complex v-plane integration contour has been deformed into the complex

7 -plane integration contour denoted by I', in Figure 2.9 [29]. Substituting complex v,

which from (2.19) is given by

v=mr+kpa (2.21)
into (2.20), yields
© _ 2k ) _ -
G5 ~—— fle* il | #o(7) o smibe g 4o58 g i, (2.22)
(2”) —0 koa ’wwz '(T)

This integral may be asymptotically approximated for k,a>>1 via saddle-point

integration. To employ this method, (2.22) is recast into an appropriate standard form by
means of the following polar coordinate transformation [29]

k, =k,sina
k,=k,cosa
ag =scosd

z=ssind

B=mg (2.23)

where s is the geodesic distance between the source and observation points on the

cylinder surface and & is the angle subtended by the geodesic curve from the azimuthal

24



Figure 2.9 The integration path around the zeros of the Fock-type Airy

function w,(7) and its derivative w, '(7) in the complex 7 -plane.
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plane of the cylinder. The mapping of the steepest descent path (SDP) from the complex

k,-plane onto the complex a-plane is accomplished by substituting (2.23) into (2.22).

Hence (2.22) becomes
2 2
G5=—1_ [|e e Z22 2 %0 -1ty e (2.24)
(2;;) < 2ra LW (7)

In order to determine the SDP contour, complex a is decomposed into real and

—-jcos(a-6)

imaginary parts (@ =a'+ ja") and the phase term e is re-evaluated for complex

a resulting in
e—jms(a'-&)cosha'+sin(a‘-5)sinha' (225)
In order for (2.24) to converge, the constraint sin(a'-J6)sinha" <0 must be satisfied.

Furthermore, in order to eliminate the oscillations of the integrand along the SDP
contour, the imaginary part of (2.25) must remain constant and equal to its value at the

saddle point. Thus, the constraint cos(a'-d)cosha"=1 determines the shape of the SDP

contour in the complex «-plane. Expressing (2.24) in terms of the hard surface Fock

function given by (see Appendix C for details on the Fock functions)

— ﬁ WZ(T) -jBr
v(ﬂ)—\[; r{——wz o dr (2.26)
yields
2 2
Gzz(z,lzy J [m chZ . j—-f;‘*(ﬂ)e"*"”“"“”]da (2.27)
Ca

where S, defined in (2.3) specializes to S = for a circular cylinder, and p, is the
P

radius of curvature along a geodesic given by

26
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a
= 2.28
Pe cos’ S (2.28)

Deforming the C, integration contour in (2.27) into the SDP contour, as depicted in
Figure 2.10, and asymptotically evaluating (2.27) for large k,s via the method of saddle-

point integration, yields the asymptotic expression for the zZ component of the electric

dyadic Green’s function for a magnetic dipole radiating on a circular cylinder

— jkos
e./o

2rs

G, ~v(p)

(2.29)

Note that (2.29) is identical to the dyadic Green’s function of a magnetic dipole radiating
in the presence of a PEC ground plane, derived via image theory, modulated by the hard

surface Fock function v(f). The physical interpretation of this result is that as the

curvature vanishes, (2.29) reverts to the dyadic Green’s function for a magnetic dipole
radiating in the presence of a PEC infinite ground-plane. This result, however, is not

expressed within the framework of UTD. In order to recast this result in terms of the

invariant ray-based unit vectors (i,f)) of UTD, which can readily be compared with the
result derived by Pathak [29], further manipulation is required. From physical reasoning,
the expression for the cylindrical dyadic Green’s function should recover the planar
dyadic Green’s function in the limit of zero curvature. Based on this assumption, an
expression for the cylindrical dyadic Green’s function in terms of the ray-based unit
vectors may be heuristically developed by substituting (2.29) into the following

expression for the planar dyadic Green’s function

Go=|1+1vy | v (2.30)
% 27s

Employing the identity from [30] which is given below

27



Figure 2.10 Deformation of the C, contour into the steepest

descent contour Cgp, .
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to evaluate (2.30) yields

ol )l s
kys kys (kys)®  kys kys kys 2rs

= ‘J"os
={(I—RR) (1 RR)q(l g)+RR (29 -2¢’ )} (A5
3 A A .koJ
={I,[1—q(l—q)]+RR(2q—2q2)}v(ﬂ)2—ﬂs (232)
where qzkis, R= -r'|, and i=?—f{ﬁ. Referring to Figure 2.11, it is
0

apparent that R is tangential to the direction of propagation for a creeping wave between
a source and observation point on the cylinder surface. Therefore, setting R=% and

i =bb' allows (2.32) to be expressed in terms of the ray-based unit vectors of UTD.

Therefore, (2.32) can be rewritten as

—/kos

Gez—{bb [1-g(1-g)]+it'2g-29 )}v(ﬂ) (2.33)

To facilitate the numerical computation of Ge, the explicit expressions for the ray-based

unit vectors in terms of the geodesic angle ¢ that are given below

t=zsind+cosd
. (2.34)
b=¢cosd -zsind

are substituted into (2.33). The subsequent evaluation of (2.33) yields the following
expressions for all four of the components of the asymptotic dyadic Green’s function for

a circular cylinder:

29
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G35(a,8,z) ~[sin’ 5 +q(1-g)(2-3sin’ 5)]v(,3) (2.35)
G? =G¥%(a,$,z) ~ —sinScos 8 [1-3q(1 - q)]v(ﬂ);kos (2.36)
G (a,4,2) ~[ cos’ 5+ q(1- g)(2-3cos® 5)]v(p) e (2.37)

Note that the @@ -component in [29] contains a mixed term comprising both the hard,
v(p), and soft, u(3), surface Fock functions. The soft Fock function u(8)arises from

the asymptotic evaluation of the first term enclosed within the brackets of the ¢ -

component of the exact dyadic Green’s function (2.8) by the procedure outlined above.

With the inclusion of the mixed term (2.37) may be rewritten as [29]

= Jkos

G (a,4,2) ~[ cos’ 6 + g(1- g)(2—3cos’ 5)]v(,B)
+q[sec? pu(8)-v(8))]

2.2.1.2 Far Zone

(2.38)

In this case, we begin with the expression for the exact electric dyadic Green’s function
of the second kind for an infinite, PEC circular cylinder given by

= 3 H®(x) jn 'HO '(x) |4
Ge .0, , r’ ' jnf dk Jk, 2z .]n + 1 n '
2 (p ¢ Z|a ¢ z ) 2 n=z—we I {[ 7xH(2)(x) yz k H’(,z) '(7) p(P

_ kkH () | | @) _(nk,\2 HO() |, o, [k HP @) "
HE Q) | | HP ) k) sHP D) | [ reeHY @)

k.k,H® (k, ) H®
o Tt T gL _,,J o) Ja: (2.39)
Y ke H,”'(y) y|\k) H>'()

where x=k,p. This time, however, we asymptotically evaluate the exact Green’s

[ ——

function for the case of a source point lying on the cylinder surface p =a, while an off-

31



surface observation point is allowed to recede to infinity. Since the Hankel function

requires n>>k,p for convergence, the exact Green’s function becomes poorly

convergent for large k, p. In order to alleviate this problem, the method of steepest

descent must be applied to derive an asymptotic approximation of the exact Green’s
function that is valid in the far zone. Substituting the following approximations, valid in
the far field, into (2.39)

lim H® '(x) ~ - jH” (x) (2.40)
p-»uo

2)
lim 2 ®) _fim— L g .41)
pro X pro e!Pp\/;

and evaluating, results in

n=-wo -

B AR PR 12 0N PPN AT PO
=~ \pz'-| —2—= RO | E
| JRHO () yH(y) Yk H ()

(k) H2® |,
BESE

Before proceeding with the application of the method of steepest descent to (2.42), it is

2
G ! ! Jn -,Ikz k H(z) AL
Galpdzjeg’ =)= (2 R fae {[ (k) H<2>'((;))}p¢

clearly evident that k, goes through 0 along the interval of integration of k,. As a result,

special consideration must be given to the asymptotic evaluation of this integral because
the arguments x and y also pass through 0, thereby, challenging any asymptotic
approximations that may be used. Since it is evident that (2.42) can be written in the form

of a steepest descent integral via the substitution of an asymptotic expression for H”(x)

into (2.42), it is known a priori that the major contribution to this integral comes from the
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region near the saddle-point where k, # 0. Therefore, the use of the asymptotic form of
the Hankel function for a large argument x=k,p>>1 is justified provided that the

observation point is not in the vicinity of the axis of the cylinder where =0 or «
radians. (Note: The near axis behavior will be discussed in the next section.)

In light of this, the second-kind Hankel function is factored out of the numerator

and replacing by its large argument form for x >>1

H:z)(X) - %e—jxejrmﬂeﬂrm (2.43)

under the constraint that 8 # 0 or 7 radians. Grouping all p and Z terms together with

the same unit source vectors, (2.42) becomes

O

BT e ko bl
(27r)2 2@ ;,[ Pk HD () H‘z"(y) P z\e

k , ju1a_—i(k,p+k,z)
+-——LT—[ﬁ ——"i]i S ¢p' i — dk, (2.44)
koaH,”'(y) ko~ K, yH,”(7) \/27rkpp

EeZ -~

-

x~
?@"

Making the substitution [ Zp—-L ]=0 and decomposing (2.42) into dyadic

A
components yields

o

Ze’"( )[G 09+ G,,02'+ G,,¢4'| (2.45)

where

- J(k,p+k
© ejkzej;rl4nk e Jkpp+ z)

G% = 2.46
S oI N 249

© ejkz jnl4 J(k,mk 2)
(2.47)

sz = I 2
2 koaH P '(k ,a) /27zk
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k2 jxl o = jk,pk,
ek el” 4(—j)e J(kpp+k, )

k,aH? (k,a)\2nk,p

G* = ]’ (2.48)

Each of the integrals in (2.46)-(2.48) is amenable to evaluation by the method of steepest
descent under the constraint that 8 #0 or 7 radians. The canonical steepest descent
integral given by

G= j F(k,)e** ) dk, (2.49)

Sbp

has first order solutions of the form

J2nF (k: )exg(k;)e"’
lxg"(k: ) 172

where, x denotes the large parameter, y is the angle at which the SDP contour intersects

(2.50)

the saddle-point, and &, denotes the saddle-point. Comparing (2.49) and (2.46)

gk,)=— j(./kg —klsin@+k, cose) @.51)
is obtained and the saddle-point can be found from d‘,i g(k.)! =0. Consequently, the
z k,=k;

2

saddle-point is given by k; = kcos@, where @ is the angle subtended from the z axis to

an observation point in the far-zone. It follows that

5 . ", 5 j
k) =—jk and g"(k°)= 2.52
g(k;)=—jk, and g"(k.) ksin’d (2.52)

where the double prime denotes second-order differentiation with respect to the argument

k.. Making the following substitutions, to express the parameters in (2.46) in terms of

spherical coordinates in the far-zone:

kp=ksint9, p=Rsinf,and z= Rcosl (2.53)
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and evaluating (2.46) at the saddle-point, the expression for F, (k;) becomes

ne’ %k cos@
F, (k)= (2.54)
#(£) (kasin )’ kH® '(kasin 8)sin 6+27kR

Setting the parameters ¥ = R and y =% and substituting (2.52) and (2.54) into (2.50) to

obtain the asymptotic form of G¥ which is valid in the far-zone of the cylinder

, , n| g+ =
G% - e "R j2k,cosGe’ % & nej[ )
kR (2r)(kasin8)’ ;= H'® '(kasin®)

(2.55)

The other components of the asymptotic dyadic Green’s function are obtained through

the same procedure and are given by the following:

o e-/k.,R jzejkcosez' © ejn(;+§)
G, ~ 3 T (2.56)
kR (27)a = H,”'(kasin®)
-JkR - jkcos6z' © j"(;+§)
4 € 2k,e e (2.57)

G ~ 27 o @) .
kR (27)°kasin@ ==, H,” '(kasin )
To facilitate numerical computation, the eigenfunction representations in (2.55)-(2.57)

can be further simplified. Decomposing the infinite summation into two separate sums,

(2.55) can be rewritten as

e R j2k, cosGet | & nj"e’ N i nj"e’* (2.58)
i H? '(kasing) 5= H»'(kasin6)

&
? kR (27)(kasin@)’

Changing the interval of the first summation via the substitution » = —n yields

} (2.59)

ng

o €’ j2k,cosfe
kR (27r)2(kasint9)2

Jkcos8z' | _nj-ne—jn; N © njne
S H?'(kasin@) 45 H?'(kasin®)
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Analytic continuation of the Hankel functions, H®'(y) =e "™ H® (), is subsequently

-n

applied to merge the two summations

kR s kcosOz' in(mé _ -mé\ . .
o €7 j2k, cos@e” " &M (e € )2]

2~ — (2.60)
' kR (27)(kasin@)’ = H?'(kasin®) 2;
Euler’s identity is invoked to simplify (2.60) which leads to the final form
_ kR jkcosfz' o nj" sin na
G¥ - e 4k, cosbfe : i ( ) 2.61)
kR (27)* (kasin8)’ 7 H,”'(kasin6)
Applying the same procedure to (2.56) leads to
o e-/kDR jzejkcost' © j" (eJ";+e-j";) 2
G ~ ; T (2.62)
kbR (2m)'a ;= H,”'(kasin@) 2
which upon simplification, results in
kR in skcos0z' m g Jj" COS(H;)
o (& J<¢ ’ (2.63)

2" kLR Q2n)a = H? (kasin)
where &, is Neumann’s constant (¢, =1, n=0 and &, =2, n#0). Following the same
procedure, (2.57) becomes

oy R e o s,,j"cos(n¢)

G ~ 2.64
kR (27)kasin@ & H® (kasin ) (2.64)

In summary, the asymptotic expressions for the far-zone dyadic Green’s function for an

axially infinite, PEC circular cylinder in the shadow region are given by

o —€ % 4k coser % & 1" sin ("5)
e2 - 2 . 2 (2) f . (2-65)
kR (27)* (kasing)’ += H,”'(kasin8)

o e_jkoR jzejkcosﬂz' © E"j" COS(na)
“ kR (n)a [ HP'(kasin6)

(2.66)
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oy €MR gt e g ) cos(n¢)

G* ~ 2.67
kR (27)'kasing 53 H? (kasiné) @67

The asymptotic approximations to the dyadic Green’s function given in (2.65)-(2.67) are
useful only for an electrically small cylinder on the order of a few wavelengths in
diameter. For a cylinder with a large radius of curvature with respect to the operating
wavelength, these expressions are slowly convergent. As discussed previously, this is a
consequence of the poor convergence property of the Hankel function with a large
argument. Consequently, the Watson transformation will be used to develop asymptotic
approximations to the expressions in (2.65)-(2.67) that are valid in the shadow region of
the far-zone for an electrically large circular cylinder. Just as in the previous section,
these asymptotic expressions are physically intepretated as components of the diffracted
field radiated by creeping waves propagating along the cylinder surface.

By means of the Watson transformation, the axial component (2.56) can be
rewritten as

—k sin Ge”* =% ej{;-%)

dv 2.68
4n’y 2 sinve H? '(y) (2.68)

6z
Ge2 -

Following the same procedure as in the previous section, (2.68) is decomposed into two

contour integrals

ej»(?—%)

| 72

—k sin Ge’* ¢+ elv( 2)
dv+ av 2.69

4n’y C-! sinveH® '(y) C-! sinvzH® (y) (269

6z
GeZ -

Where the integration paths of the two integrals in the complex v-plane are depicted in

Figure 2.6. Factoring out e’ as before, merging the two integration paths, and making

the substitution given by (2.18), (2.69) can be rewritten as
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[ g~ M/ 2m) | e—;v[(sn/z—;)+m] }

GO - = Jjk sin @e’ <% i I
&

av (2.70)
2z 27 1=0

H?'(y)

where, for a large radius cylinder, /=0 is sufficient. In order to develop a uniform
asymptotic representation for (2.70) in terms of a Fock function, the contour C, must be
closed at infinity in the lower half-plane to enclose the complex poles of the integrand
arising from the zeros of the Hankel function. Since y is large for a cylinder of large
radius, then in light of (2.21) v~ y. Hence, the uniform asymptotic expansion of the
derivative of the Hankel function in terms of the Fock-type Airy function in (2.18) will be

utilized. These functions are tabulated (see Appendix D) and are amenable for

computation. Making the necessary substitutions, as was done for the on-surface case,
and deforming the integration contour into I', according to Figure 2.9, (2.70) may be

rewritten as

H JkcosBz' e'j‘@l + e-j@;
o - ksinGeTT [ ]dr] @71

47[ [ﬁ r wl '(T)

where @, =§2£—5 and @, = 5—% Upon the substitution of (2.21), (2.71) is rewritten

as

im®.
e! 2T

W, (7) \/_ I W2 '(7)

o: ksin@e” % | _ o
Gez “'4—7[- e’ J— I

r:I (2.72)
Making the substitution m®,, =/ from (2.23), (2.72) is expressed in terms of the

complex conjugate of the far-zone hard Fock function g ()" which is given by [28]

T e”"

(u)
(5= f _ | @

(2.73)
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where u denotes the order. Noting that w,'(z) =w, '(7)" allows (2.72) to be expressed in

terms of (2.73) as
. ksin@e”™% &, _, .
Gl ~— e g (md)) (2.74)
4 p=l

Following the same procedure, the Watson transformation is applied to the azimuthal
component (2.57), which yields

ok"lzejkcosez' » 1 ij,r _ - jm®,r
j e j)¢| dz- + e -Iyol

2ry \/;l'- Wz("') \/_ J‘Wz("'

G* ~ 2.75)

In this case, (2.75) can be expressed in terms of the complex conjugate of the far-zone

soft Fock function £ (f) which is given by [28]

rel?”

By = J‘ j 5t (2.76)

Noting that w,(r) = w,(r)", the asymptotic approximation of the azimuthal component of
the far-zone dyadic Green’s function is given by

-anejllcost' 2 . .
e R o 3 e fO(md,) Q.77)
p=1

The asymptotic evaluation of the cross-polarized dyadic component of the Green’s
function in (2.55) via the Watson transformation is analogous to the axial and azimuthal

cases and leads to the following expression

: keosor [ g=I"®1 _ o= iv®
— jk cos Be’* % [e ‘e ']V

27 ) w@

G* ~ dv (2.78)

At this juncture, the remaining evaluation procedure differs from the previous cases due
to the presence of the parameter v in the numerator of the integrand. Substituting (2.21)

into (2.78) and applying the requisite change of variable dv = mdr, (2.78) becomes
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G¥ -~ jmcos@e’t =% _ o7 j're ”""" kcosHe”‘“’so" o 1 J-e"""’” dr
“ 4y Jriw @ ° 4 Jr o w,'(7)
2 ™"
. Jkcos6z' jm®,r Jkcos8z' ) - jm®r
+ Jkmcos@e e _kcosbe oI dr 2.79)

4y \/_ I W, '(r) 4 J— I w2
Employing the complex conjugate of the far-zone hard Fock function defined in (2.73),

(2.79) is rewritten as

. Jkcos6z' Jkcos6z'
G ~ kaco450e e g0 (mad )" kcos Ze e g (md, )’
Ty r
— jkmcos @e”* % _ . kcos@e” <t _
J y e " g (m®,) +Te 260 (m®,) (2.80)

Simplifying (2.80) in the same manner as before leads to

Jkcos8z'
G* - kcosBe Z
e2

. S [ RN B )

pe1
In Summary, (2.74), (2.77), and (2.81) are rapidly convergent asymptotic representations
of the electric dyadic Green’s function that are valid in the far-zone of the shadow region
for a canonical PEC circular cylinder. As discussed earlier, the analytical representation
in terms of Fock functions ensures the convergence of these expressions in the shadow
boundary transition region consistent with a UTD formulation. Moreover, since the hard
and soft far-zone Fock functions are tabulated, these expressions are amenable to
numerical computation.

2.2.1.3 Axial Singularities

The far-zone asymptotic dyadic Green’s function for a PEC circular cylinder becomes
infinite when evaluated at the vertical axis. This anomalous behavior is due to the

presence of a singularity in the dyadic Green’s function that is manifested only when the
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observation angle &, subtended by an observation point in the far-zone from the z axis,
approaches 0 or r radians. In this section, the component of the dyadic Green’s function
that exhibits this singularity is isolated by means of a small argument approximation.

The argument y of the Hankel function, as defined previously, is ¥y =kasin@. As the

observation angle 6 approaches the vertical cylinder axis at § =0 radians, y > 0*. In

light of this, the following small argument approximations of the second-kind Hankel

function given by [31]
. ) . 2
lim H”(y)~-j—Iny (2.82)
y—0* /4
and
: (2) 1 2Y
lim H”(y)~j—T®)[—|, Re(v)>0 (2.83)
y=0* /4 4

where I'(v) is the gamma function, in conjunction with the recurrence relationship [31]

2HP (1) =HZ(»)-HI®») (2.84)

v+l
are applied to evaluate the small argument approximations of the dyadic Green’s function
components given by (2.65)-(2.67). Invoking the recurrence formula (2.84) to expand the

derivative of the Hankel function in (2.65)-(2.67), in the following manner

HE () =3[ HO0)-HE()]
HY (1) =3[ HO )~ H ()]

HY () =3[ HP )~ HP )] 285)
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and evaluating each term of (2.85) via the small argument approximations in (2.82) and
(2.83), the small argument approximations of the Green’s dyadic components are

obtained. Hence, (2.65)-(2.67) now are given by

lim G% — —e " 4nke’ cos@j" -2z sin(a) 7 sin(2$)+ y’? sin(3$)
7o' 2 kR (27)? 4j+7'(2lny-x)  j(r*-8) 2j(r*-24)
3sin(4¢
+:7t(2—(4¢;;+"}<°° = bounded (2.86)
J\Y —
i G e ok o jnue;’kﬂz'e’"[;_i) i, cos(a) . cos(ZE)
0° e2 2 . .
70 kR (27)°a 2 1 %+1n7 J 1_%
2 mly my oy
cos(3¢ cos(4¢
+ (¢) + ( ¢) +...|<o = bounded (2.87)
) )
| r w7
. IR gk 7 x . ncos(z) . ﬂ7cos(2$) . ny? cos(3$)
=0 kR 27 |y(7-j2lny) 2j 4j 16/
3cos(4¢
+WT_(¢)+..}=00 = unbounded (2.88)
J

The G¥ component of the dyadic Green’s function becomes infinite as the observation

point approaches the vertical axis giving rise to an infinite field at the vertical axis. The
existence of singularities at the vertical axis is intrinsic to this type of problem and cannot

be eliminated analytically.
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2.2.3 Generalization to Doubly Curved Surfaces

The asymptotic form of canonical solutions are generalized to treat the case of the general
convex curved surface by means of the principle of locality for the propagation of high
frequency radiation discussed in the previous section. The generalized solution should
revert to the canonical solutions for the circular cylinder, sphere, and plane when

specialized to those cases. Once the circular cylinder and sphere canonical solutions are

expressed in terms of the ray-based unit vectors i, 5, and n, the differences between
them become apparent. Expressing the canonical circular cylinder solution in terms of the

ray-based unit vectors following the methodology of [29] results in

dH,,, ~M-[B'B[(l—é)v(ﬂ)+p2 (é) v(ﬂ)+rgé{u(ﬂ)-—v(ﬂ)}]
+E'E[Dzév(ﬂ)+éu(ﬁ)—2(éJ v(ﬂ):'

+[f‘f>+f>'f]roé{u(ﬂ)—v(ﬂ)})DG(ks) (2.89)

where the parameter 7, which uniquely specifies a helical geodesic path has been

introduced. This parameter is defined as [29]

fo=— (2.90)

where T is the torsion of a surface diffracted ray and x is the surface curvature along a

geodesic. The surface curvature is defined as x =1/p, . The expression for the surface

field excited by a magnetic dipole on a perfectly conducting sphere may be found in a

manner analogous to that of the circular cylinder. The ray-based expression for the
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surface magnetic field excited by a magnetic dipole on the surface of a PEC sphere is

given by [29]
dH,, ~ M-[B’B{(l—é)v(ﬂHD’ (é) u(ﬂ)}i'i[pzév(ﬂ)
+é( —%)u(ﬂ))DG(ks) (291)

where f specializesto [ = ™ fora sphere, s=af,and D= —6-% . For the spherical
a sin

case, the geodesic path of a creeping wave is a great circle. From the definition of D, it is
readily apparent that the points 8 =0 or x, are caustics of the surface diffracted rays.
Thus, all surface diffracted rays converge at the two poles of the sphere. By setting the

torsion factor 7, =0, the circular cylinder solution reverts to the spherical solution given
by (2.91) except for the presence of the terms ¢’v(B)G(ks) for the cylinder and

q’u(B)G(ks) for the sphere. Therefore, it is apparent that the differences between these
two solutions are due to the effects of torsion on the surface diffracted rays and the
presence of either a hard v(f) or a soft u(f) Fock function in the limiting expressions.
In view of this, the canonical cylinder and sphere solutions may be generalized by
employing differential geometry to develop an expression for 7, that is appropriate for a
general convex surface and by introducing the dimensionless factors y, and y, to
interpolate between the canonical cylinder and sphere solutions. Specifically, the terms
q*v(B)G(ks) and q*u(f)G(ks) are properly weighted via 7, and y, such that the correct

term is present once the generalized solution has been specialized to either the circular



oylinder

differenti:

with & =
the pring
dimensi

weighti

where (

propert

In adg
Ihe ar
from

surfag

Note

Zener



cylinder or sphere case. The generalized torsion factor is given by (2.90) where
differential geometry is employed to generalize T as

_sin28

T (x;-x) (2.92)

with x =k, cos’ § +x, sin’ § . The parameters x, and «, are the surface curvatures along
the principle surface directions (to be discussed in detail in Chapter 3). Furthermore, the
dimensionless factors must satisfy the following constraint in order to provide the proper
weighting

y.+7, =1 (2.93)
where (7, =1, y.=0) for a sphere, and (7, =1, y, =0) for a cylinder. In view of these

properties, the dimensionless interpolating factors are given by [29]

K

y,=— and y,=1-y, (2.94)
K,

In addition, the generalized form of the distance parameter given by (2.3) is employed in
the arguments of the Fock functions to treat the general convex surface. Consequently,
from (2.90), (2.92), (2.94) via (2.89), and (2.91), the dyadic Green’s function for the

surface field excited by a magnetic dipole on a general convex surface is given by [29]

Ga(r[r) ~ (5'b{[1-a]n(B) + D¢’ [r,u(B) + r. B+ g [w(B -V P]}
+H'H{ D'qu(B) +qu(B)- 24" [ru(B) +r v(B)|} + ' B+B'D {7, q[u(B)  (2.95)
—v(B)]}) DG(k,s)

Note that this solution satisfies the criteria for an appropriate asymptotic solution for a

general convex surface in that it reduces to the canonical cylinder solution when (y, =0,

7.=1) and to the canonical sphere solution when (y, =1, y.=0) and 7, =0. The
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generalized Green’s function in (2.95) may be specialized to a prolate spheroidal

geometry. The prolate spheroidal dyadic Green’s function components are given by

G%(&,:6,0)0'0) = {(cos2 5-q[(D*+2)cos’ 5 —(D* +1) || B)

+¢* ([(D* +2)]cos’ 8 - 2)[r,u(B) +7.v(B)] (2.96)

+(z,cosd +sin 6)2 q [u(ﬂ) - v(ﬁ)]} DI;:—:;"qe’”‘"‘

Gl = G2l(&:0,000',0) = {~sin&cos & (v(B)~(D* +2) qu(B)

+(D*+2) @ [ru(B)+ 7 v(B))+[ (2¢05* 6 -1)7, - (2.97)
2

(rf - l)sin d cos 5]q [u(,B) - v(ﬂ)]} %qe-ﬂm

GH(&:6,9]0',0) = {(sim2 8 -q[(D* +2)sin’ 5 - (D? +1)])v(ﬂ)

+¢* ([(D* +2)]Jsin* 6 -2)[r,u(B) +7.v(B))] (2.98)

+(7,sin& —cos 5)2 q [u(ﬂ) - v(,B)]} D%::lqe"""I

This derivation of (2.96)-(2.98) will be discussed in detail in Chapter 3.
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CHAPTER 3

FINITE ELEMENT-BOUNDARY INTEGRAL METHOD

3.1 Introduction

The finite element-boundary integral (FE-BI) method is a hybrid computational technique
for solving general electromagnetic radiation and scattering problems. This technique
has been used with much success in the past for modeling cavity-backed aperture
antennas recessed in both flat and curved substrates. The FE-BI technique was first
successfully used to model the radiation by a cavity-backed, rectangular aperture recessed
in a planar ground plane by Jin and Volakis [1] at the University of Michigan. In this
implementation, the cavity region was tessellated into rectangular brick elements. The
use of rectangular brick elements results in a uniform mesh giving rise to a block Toeplitz
boundary integral matrix. Consequently, iterative solutions of the matrix can be
accelerated through the use of a Fast Fourier Transform (FFT) [1]. The utility of
rectangular bricks, however, is strictly limited to rectangular geometries. Gong, et al. [32]
at the University of Michigan further refined the technique by utilizing tetrahedral finite
elements to model arbitrarily shaped apertures. Tetrahedral elements are advantageous in
that they are the simplest shape capable of modeling arbitrarily shaped volumes and may
be generated automatically by commercial meshers. Kempel at the University of
Michigan first extended the FE-BI technique to accommodate cavity-backed apertures
and microstrip patch antennas on curved substrates by utilizing specially formulated
circular cylinder shell elements [2,3]. These shell elements are singly curved and capable
of uniformly discretizing a volume bounded by a singly curved surface with a constant

radius of curvature (e.g. the surface of an infinite circular cylinders). As the radius of
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curvature approaches infinity (the flat case), a shell element becomes functionally
equivalent to a rectangular brick. Analogous to the rectangular case, the uniform
discretization of singly curved regions with shell elements results in a boundary integral
matrix that is block Toeplitz and, therefore, amenable to a fast iterative solution
employing FFT. The motivation for the use of bricks and shells was the need to minimize
the computational burden associated with the boundary integral due to limitations in
computer memory and processing speed at the time. The FFT-based iterative solver
efficiently utilizes memory (O(N,)) while minimizing compute time (O(N, log, N,)),
where N, is the number of surface unknowns. Traditional vector matrix multiply routines

require O(Nf) of memory and O(Nf) of compute time. However, with the recent

advent of high performance computers and the availability of large blocks of random
access memory, the limitations on the complexity of conformal antennas that can be
modeled has been relaxed. A major limitation of the brick and shell element approach is
that they can only be used to accurately represent volumes delimited by canonical
surfaces and, therefore, they are not applicable to arbitrary geometries.

Consequently, in order to extend the range of applicability of the FE-BI technique
to the most generally shaped structures while preserving its computational efficiency,
right triangular prism elements were developed by Ozdemir et. al. at the University of
Michigan [33]. Prism elements are advantageous in that they are capable of modeling
arbitrary geometries while yielding fewer unknowns than tetrahedral elements [33], and
they are not as geometry constrained as bricks and shells. However, there is a drawback
in that distorted prisms are not functionally capable of accurately representing electric

fields because they lack tangential continuity across their faces. This defect is the result
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of their vertically oriented edges not being perpendicular to the planes of their triangular
faces [30] resulting in a nonuniform cross-sectional surface area. In modeling cavity-
backed apertures of arbitrary shape, the best features of prisms and tetrahedra are
combined by the following procedure. The aperture is discretized into a mesh of
triangular elements, which are then extruded by means of distorted prisms into the cavity.
Each prism is subsequently decomposed into three tetrahedral elements. In this manner,
extrusion can be used to form the volumetric mesh with elements that correctly represent
the unknown electric field. This method was recently used by Macon et al. [34] for
arbitrary apertures recessed in a circular cylinder.

In this chapter, the FE-BI method will be extended to model cavity-backed,
arbitrarily shaped apertures recessed in electrically large, doubly curved surfaces. A
domain decomposition approach is inherent in the FE-BI formulation for modeling
cavity-backed apertures in that the computational domain is broken into an interior and
an exterior region. The finite element method is used to model the volumetric fields in the
interior region. A boundary integral is employed to enforce the requisite conditions (e.g.
tangential magnetic field continuity across the aperture) for mesh truncation at the doubly
curved aperture surface via a specially formulated asymptotic electric dyadic Green’s
function. The doubly curved surface is modeled as an electrically large, perfect
electrically conducting (PEC) prolate spheroid. As illustrated in Figure 3.1, by allowing
the axial and azimuthal radii of curvature, in turn, to approach infinity, the circular
cylinder and plane may be recovered as limiting cases. The formulation of the asymptotic

dyadic Green’s function within the context of UTD and its analytical and numerical
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validation will be covered. Finally, the formulation of the far-zone fields in the exterior
region by means of the surface equivalence principle will be covered.

3.2 FE-BI Formulation

The FE-BI equation is derived from the weak form of the vector wave equation.

Beginning with the time-harmonic form of Maxwell’s equations
VxE™ =—jk Z i -H™ G.1)
VxH™ = jk,Y &, - E™ +J (.2)
where E™ is the unknown interior electric field, H™ is the unknown interior magnetic

field, k, =27/A, is the free-space wave number, Z, = Ko is the free-space wave

o
&

impedance, Z, and Z, are the relative anisotropic permittivity and permeability,

respectively, given by

B Ex &, &g

er=\e, &, &, (3.3)
E. &, &,

— | Hx Hy He

H=|Hs Hy Hy (3.4
Hy H, H

Note that the e’* time convention is assumed and suppressed throughout this

dissertation. Substituting (3.2) into the curl of (3.1) we get the vector wave equation
=-1 R = N .
Vx [ u, -VxE™ ] —kl g, -E™ =—jk,Z, 3" (3.5)

where J" is the impressed current due to the excitation source. The method of weighted

residuals is employed whereby the inner product of (3.5) and an edge-based, vector

50



testin

the

whe

Wwel

der

W



testing function, W, is taken over the computational volume ¥ . This procedure yields

the weak form of the vector wave equation which is given by

=-1 X = . :
J'{W.- .VX[,,, .vxE""]-kjw, -s,-E"“}dV=f,"“ (.6)

v,
where the interior excitation function used to model probe feeds is given by

[ ==jk,Z, [W,-3"™dv (3.7)
v,

The weak form of the vector wave equation approximates the vector wave equation in a
weighted sense over the computational domain ¥ . Note that (3.6) contains second-order
derivatives of the unknown electric field. Since constant tangential/linear normal
(CT/LN) vector basis functions are used, it is necessary that the order of (3.6) be reduced
through the application of the first vector Green’s theorem. The application of the
theorem transfers a curl operator from the unknown electric field and onto the testing

function, after which (3.6) becomes

=-1 = A .
[[wa, T VXE™ + KW, -5, ~E‘"’]a'V— jkZ, [ W, -ExH"dS = [ (38)
v, i

where é is the outward-directed unit normal vector in the prolate spheroidal coordinate

system. Equation (3.8) is underdetermined in that it contains unknown electric and

magnetic fields; however, the testing function represents the unknown electric field only.

The interior magnetic field H™ cannot be found easily; however, an expression for the
total magnetic field, just exterior to the aperture, may be found from

H* =H™ +H” +H” 3.9
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where H™ is the incident magnetic field, H? is the reflected magnetic field, and H?,
determined via the surface equivalence theorem, is the magnetic field attributed to the

aperture fields which is given by

H?” = jk,Y, Gez-é'xE'"'dS' (3.10)
odo
5

ap

An electric dyadic Green’s function of the second kind [10] is used to convert the
tangential electric field in the aperture to an exterior magnetic field. The natural boundary
condition, éx H"™ =éx H*, is enforced across the aperture surface by substituting the

expression for the total magnetic field just exterior to the aperture into (3.8). Upon

evaluating (3.8), we obtain the coupled FE-BI equation given by

=-1 = A = A ;
j{wa,.y, -VxE’"’—kjW,-a,-E‘"']dV+ijI(§xW)-Gez-(g’xE"")dS'dS
v 5S (3.11)
=fin! +fexl

where f is the exterior source excitation function given by

£ == jk,Z, [W,-Ex(H"™ + H")dS (3.12)
S;

Note that the surface integral in (3.11) has support only over the nonmetallic portions of
the aperture. The FE-BI equation in (3.11) is not yet in a form that is suitable for
numerical implementation. The unknown interior electric field must be expanded

throughout the computational volume in terms of subdomain, edge-based vector

expansion (e.g. basis) functions W,

E=f:Ew (3.13)
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In this formulation, Galerkin’s testing procedure is utilized whereby the vector basis

functions, W, , are CT/LN functions and identical to the testing functions W,. Note that
the expansion functions become identical to the testing functions on the aperture surface
(& =¢,), thereby, enforcing the essential boundary condition f;x E™ = éx E* across the

aperture surface. The unknown complex coefficient associated with each free edge of the

volumetric finite element mesh is given by E,. A free edge is any edge that is not
tangential to a PEC surfacé since a total electric field formulation is being used in this
work. Hence, any edge that is tangential to a PEC surface has an expansion coefficient
equal to zero. Substituting (3.13) into (3.11) gives the final discretized FE-BI equation
that is amenable to computation

=-1 =
I{VXVV, H, VxW, —kIW, &~ W pdV

y 4 X — X ___f;int +f;¢xt (314)
A4k [ [ExW,)-Ga - (Ex W,)dS"dS

3.3 Finite Element Matrix Elements

In this formulation, the volumetric unknown electric field is expanded within a
tetrahedral element in terms of CT/LN vector basis functions. CT/LN basis functions
provide a constant tangential component along one edge, while the tangential component
along the other edges equals zero. In addition, these basis functions provide a linearly
varying normal component along each edge. Tetrahedral elements are formed from prism
elements by first generating a planar surface mesh of triangular elements, mapping the

surface mesh onto the prolate spheroid surface, and extruding each surface element into
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prolate spheroid | __-._

circular cylinder

Figure 3.1 Topological transformation of a prolate spheroid
into a plane and a circular cylinder in the limits of zero
azimuthal and axial curvatures and zero axial and finite
azimuthal curvatures, respectively.
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the cavity volume by means of prism elements. The prisms are, subsequently, divided
into tetrahedra. The process of extrusion essentially amounts to growing the mesh along a
direction that has been defined as normal to the surface in a particular orthogonal
coordinate system (in this case, the é direction). This process entails generating finite
elements for each layer of the mesh by duplicating the aperture node distribution in all of
the lower layers. Thus, in order to form the layer, the aperture nodes are generated at the
interface of the first and second layer. Elements for the current layer are generated from
those nodes and the bottom nodes of the previous layer. Edges are subsequently formed
based on the chosen finite element. The scheme that is used in subdividing prism
elements into tetrahedral elements is illustrated in Figure 3.2 [35]. Two types of prism
elements are used in order to prevent the diagonal edges of adjacent prisms from
crossing, thereby, ensuring tangential field continuity across each face. Once the
tetrahedral elements have been generated, the unknown electric field is expanded in terms
of the vector basis function given by

W, =(L,VL,-L,VL ), (3.15)

In (3.15), the subscripts denote the two local node numbers defining the edge directed

h

from j1 to j2, I, is the length of the ;” edge, and the nodal basis functions are given
by

L =
J 6Ve

(@, +bx+cly+d;z) (3.16)

where the coefficients aj, bj, cj and dj are found from the coordinates of the four local

nodes that define the tetrahedral element and V¢ is the volume of the tetrahedral element

given by
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Prism Type 2

Figure 3.2 Subdivision of the two types of prisms into tetrahedra.
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, (xl —x4)|:(y2 _y4)(zs '24)"()’3 'y4)(22 -24)]'*'
Ve =% (» —y4)[(22 -2,)(%-x)~(2-2)(x _xa)]'*‘ (3.17)

(zl ‘24)[(x2 —x4)()’3 -J’4)‘(x3 —x4)(.V2 _J’4)]
The key benefit of using this type of element in the FE-BI formulation is that the vector
basis function and its curl are easily expressed in terms of Cartesian unit vectors. In light

of this, the curl of W, is given by

J17j52 Jj2 N J J

[#(c,d,n—cd)+ 9(d b, —d by )+ 2 (e, =bjc,) ] (3.18)

3.4 Boundary Integral Matrix Elements

3.4.1 Selfcell Evaluation of the Boundary Surface Integral

The selfcell evaluation is the local planar approximation due to the small cell dimensions
relative to a wavelength. This is in regards to the surface integral term in (3.14). As
discussed previously, the FE-BI method is a hybrid method combining the finite element
method with the method of moments. The boundary integral is formulated as an
integrodifferential equation that can be solved by the method of moments. The tangential
electric field in the aperture is expanded in terms of a set of divergence free, vector basis
functions having support over two triangular patch regions sharing an edge. These basis
functions were first introduced by Rao, Wilton, and Glisson [36] and will, henceforth, be
referred to as RWG basis functions. The expansion of the tangential electric field in the
aperture in terms of RWG basis functions begins with the formulation of the magnetic
field just exterior to the aperture in terms of an electric vector potential and a magnetic
scalar potential given by

H* = - joF -V, (3.19)

57



where the electric vector potential F is given by

-/kR

(3.20)

and the magnetic scalar potential @, is given by

- JkR
()

mag

3.21)

mag

2”,”0
In (3.19) and (3.20), the magnetic surface current density is given by K (r')and the

magnetic surface charge density is given by o, (r") . The distance between source and

mag
observation points on the surface is given by

=|r—r (3.22)
where rand r' are position vectors directed from the origin of the coordinate system to
observation and source points, respectively, on the prolate spheroid surface. Expressing
the surface charge density in terms of the magnetic surface current density via a purely
fictitious magnetic continuity equation

V."K,(r')=-jwo,, (r") (3.23)

the scalar potential equation may be rewritten as

mag == (3.24)
Jo2my, ;.
By enforcing tangential magnetic field continuity across the aperture, we obtain
iix{-joF -V, } =hxH" (3.25)

which, upon the substitution of the electric (3.20) and magnetic (3.24) potentials in terms
of the magnetic surface current, (3.19) becomes an integrodifferential equation amenable

to solution by the method of moments.
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The RWG basis function f (r) used to expand the magnetic surface current K (r’)

across the aperture is given by [36]

(1

—_o' reT’
2A:pn n
-l
f(r)=¢q—-p,, reT, 3.26
A (1) <2An_pn (3.26)
0, otherwise
{

where ris a global position vector from the origin of the coordinate system to a point on

the surface, p; is a local position vector, which is given by
p;(r)=x(r-r) (3.27)
in global coordinates, where r, is the position vector to vertex opposite edge i, /, is the

length of the n™ edge of a triangular patch, and 4* is the area of triangle T*. The RWG

basis function is associated with a free aperture edge of the tessellated surface, vanishing

everywhere on the surface except in the region bounded by two triangles bordering the
edge. Figure 3.3 illustrates the n™ edge shared by two triangular patches T' and T, . The

following properties of the RWG basis functions render them amenable to modeling

surface current within triangular regions [36].

(1) The vector basis function only has a component that is normal to an edge shared by
two triangles. There are no components that are normal to the remaining triangle

boundary edges. Consequently, there are no line charges at the boundary edges.
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(2) The normal component of the basis function to a common edge is equal to the height

of a triangle 7*. The edge n is the base of the triangle and the height is given by

24,
I

n

. This normalizes the basis function to unity.

Furthermore, the surface divergence of the basis function within a triangular region is

given by [36]

1"+ , reT’

A,

-l

V.- f(r)={-2, reT; (3.28)

4,

0, otherwise

!

Taking the inner product of (3.25) with the set of vector testing functions denoted by f,,,

we obtain

i[jm(F,fm)—(vpm,fm)] =(AxH" 1, )

m=

= jo [F£,dS- [V,@,, 1,dS = [AxH" {,dS (3.29)
N S N

mag
where the inner product is denoted by (A~B> = IA-BdS‘ . Applying the surface vector
N

identity in [37] to the second term on the left-hand side of (3.29)

jo [F-£,dS- [V, (®,,f, S+ [®,,V,f,dS = [ixH" -f,dS  (3.30)
S S S

S
The second term on the left-hand side involves integration over the surface S of a closed
three-dimensional body. This surface integral may be evaluated by splitting the closed

surface S into two surfaces S, and S, bounded by the contours C, and C,, respectively,
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directed in opposite directions and applying a two-dimensional version of the divergence

theorem

jo IF-fmdS-( [V, (Dt )aS + [V, .(d>magfm)dSJ+ ®,,V, £,dS = [AxH -£,dS
s 5 5, 3 J

= jo jF-fmdS—(qC A-®,,f,dl+, ﬁ-CDmfde)
S 1 2

+[®,,V, £,dS = [axH" -f,dS (3.31)
N

N

Hence, (3.31) now becomes

mag " s

jo [F-£,dS+ [@,,V,f,dS = [axH" -£,dS (3.32)
N S N

Employing the method of moments to solve this system, we expand the magnetic surface

current in the aperture in the set of RWG basis functions

K,(r)= ilnfn(r’) (3.33)

n=1

where I, is the unknown weighting coefficient and N is the number of non-boundary
edges. Note that K, (r')=E* xf and W, =axf,(r'). Employing Galerkin’s method
whereby the set of vector testing functions, denoted by f, (r), is set equal to the RWG

basis functions f,(r) we obtain

£ e /R 1 e
jo [| == [£,=——ds" | -1,dS - [v,f,=—ads' |V, f,dS
sl27s " R 3| 27y, g R

=nxH™ (3.34)
Substituting (3.26) and (3.28) into (3.34), we obtain the boundary integral impedance

matrix
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jkY g¢, e ™
{jj o m ot (r")- pm(r) s dS—EsUA:A* S dS'dS}(3.35)
where
g ={th Fel (3.36)
-1, r'eT,
and
g =ith rel. (3.37)
-1, reT,

In light of (3.35), the electric vector potential given by (3.20) may be rewritten as

=~ At [ [or)- p"(r’) ds'ds (3.38)

m<**n Tt T!

and the magnetic scalar potential given by (3.21) may be rewritten as

m

1 e/
®,=—— [ [——ds'ds. (3.39)
A4 10 R

The potential integrals given by (3.38) and (3.39) may be evaluated over the source and
observation triangle regions 77 and 7" most efficiently by expressing them in terms of
normalized local area coordinates (¢,,¢,,5;) [38]. The local area coordinates are defined

within a triangular region in the following manner

4 A, A4,

VT, — 52 =5 =2 (3.40)

6 = I T
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where 4, 4,and A4, are the areas of the sub-triangles and A4’ is the area of the entire

triangular patch. The local area coordinate system within a triangle is depicted in Figure
3.4. The normalized area coordinates satisfy the following constraint
Git+6+6 =1 (3.41)
As a result, only two coordinates are independent. The local area coordinates may be
converted to Cartesian coordinates via the following vector transformation
r=gn+¢n+6n (3.42)
where r, is a position vector from the origin to the i™ vertex of a triangle. Surface

integration over a triangular region 77 effectively transforms the kernels of the integrals
given in (3.38) and (3.39) from a function of position defined in Cartesian coordinates to

a function of position defined in local area coordinates as given by

11-6;

[K@ds = [ [ K[in+6x,+1-6 -6,)n Fsds, (3.43)
bl 00

After the transformation, the potential integrals in (3.38) and (3.39) are re-expressed in

terms of local area coordinates. Hence, (3.38) and (3.39) may be rewritten as

F=—l-j' £ (r). —l—j' ¢y g i (3.44)
AP Tppm Aq T'pn R ¢
and
- jkR
o =L —l—j-"——ds' S . (3.45)
A7 3| 47 1R

Before the integrals in (3.44) and (3.45) can be numerically evaluated, the singularity in
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each of their kernels must first be isolated if the test and source points coalesce. This is
done inside of the bracketed expressions by adding and substracting out the singularity.

Evaluating (3.44) in this manner yields the expression

1 s R :
FT!p"(r)"Taz qu oy ——lasy L {jp PP g

(3.46)
1.
+(p—p")7! . S}

The first term on the right-hand side of (3.46) has a bounded kernel, while the bracketed
term on the right-hand side contains the singularity. Having isolated the singularity,

(3.46) may now be expressed in terms of the local area coordinates, resulting in the

expression
F 1] p-p
jpn(ro—dS' 2 j Ipn(ro————ﬁdg,'dgz +;—{ [FFas
1
+(p- —das'
(p p,.)T!'R }

The first term on the right-hand side of (3.47) is now bounded and expressed in terms of
local area coordinates. Therefore, it may be evaluated by numerical integration over each
triangular patch on the surface [39]. However, the second term on the right-hand side is
singular and must be evaluated analytically. Appendix A provides details on the
evaluation of surface integrals over triangular regions. Evaluating the bracketed

expression in (3.45) in a similar manner yields the following expression

11-g, -ij -1 1
F ——dS' 2 j j —dg,ng - IEdS' (3.48)
79
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Analogous to (3.47), the first term is bounded and well-suited for evaluation by
numerical integration over the triangular patch, while the second term containing the

singularity must be evaluated analytically [39].
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Figure 3.3 RWG basis functions supported within the
triangular regions 7 and 7.’ sharing a common edge n.

Figure 3.4 Local area coordinate
system defined within a triangular
region.
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3.4.2 Asymptotic Dyadic Green’s Function Formulation

The exact condition for finite element mesh truncation is provided by the boundary
integral by means of a dyadic Green’s function. The electric dyadic Green’s function of
the second kind [10] couples the tangential electric and magnetic fields in the aperture
and enforces the boundary condition on the tangential electric field over the PEC prolate

spheroid surface. This dyadic Green’s function is used in the hybrid FE-BI formulation

(3.14) and is denoted by az. Due to the poor convergence and high computational
expense of an exact form of the dyadic Green’s function for electrically large bodies, an
asymptotic form for an electrically large, PEC prolate spheroid will be derived. The
asymptotic Green’s function physically represents surface diffracted rays (e.g. creeping
waves) that are excited by a magnetic dipole (e.g. aperture) on the PEC prolate spheroid
surface. The formulation begins with the UTD expression for the surface magnetic field
excited by a unit infinitesimal magnetic dipole on an arbitrary convex curved surface
developed by Pathak [29] which is given by
Ga(r[r)~(b'b{[1-g]v(B) + D¢ [r,u(B) + r.v(B))+ T2q[u(B) - v(B)]}

+'t{ D’qv(B) + qu(B)-2¢’ [ru(B)+r v(B)|} + 'D+b'D){r, q[u(B)  (3.49)
~(B)]}) DG (kys)

where t'and t are the unit tangent vectors to the geodesic path, b'and b are the
binormal vectors to the geodesic path, v(f) and (/) are the hard and soft surface Fock
functions, respectively, which physically represent the attenuation of a surface diffracted
ray for various orientations of its geodesic trajectory along a convex curved surface. In

this work, prime coordinates denote source points, while unprimed coordinates denote

testing or observation points. The Fock functions critically depend on the Fock distance
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parameter £ which provides the mathematical link between surface curvature and
attenuation. For a flat surface, =0, resulting in v(f)=1 and #(f)=1. Hence, the
Green’s function for the curved surface reverts to the planar form. The parameters 7,,
Y.» ¥.» 49, and D are geodesic path and curvature dependent parameters intrinsic to the

UTD formulation. In (3.49), G(k,s) is given by

k.Y, e
G(koS) = ‘ﬁk—s- (350)
0

where k, and Y, are the free-space wavenumber and admittance, respectively. The

parameter s is the length of the geodesic path on the spheroid surface. These parameters
will be discussed in greater detail in the following sections as explicit formulas will be
developed for each of them within the prolate spheroidal coordinate system. As an initial
step, the prolate spheroid coordinate system is defined; next, an orthogonal surface
geodesic coordinate system is defined via the formalism of differential geometry. The
geodesic coordinate system provides the framework for the calculation of the surface
curvatures, the derivation of explicit expressions for the geodesic path, UTD parameters,
and the ray-fixed unit vectors.

3.4.2.1 Prolate Spheroid Coordinate System

A prolate spheroid is generated by rotating an ellipse about its major semi-axis. Consider
an ellipse with major and minor semi-axes a and b, respectively, as depicted in Figure

3.5. In this figure, f and f' denote the two foci, d is the interfocal distance, while

¢ =d /2. The eccentricity e of the spheroid is given by

(3.51)
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Figure 3.5 Prolate spheroidal geometry.
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The following Pythagorean relationship exists among a, band ¢
c’=a’-b (3.52)
The prolate spheroidal coordinates form a right-handed system when taken in the order

(n,£,9). The transformation between prolate spheroid coordinates and Cartesian

coordinates ( x, y,z) is given by

x=c[(&2-1)(1-7%)] " cosgp (3.53)
y=c[(&-1)(1-7*)] sing (3.54)
z=cén (3.55)
where
0<p<27, -1<n<l, and 1S¢ <o, (3.56)
Let
£, = coshy = constant (3.57)

define the prolate spheroid surface. Substituting (3.57) and 7 =cosé, where @ is the

elevational angle subtended by a point on the spheroid surface from the z axis, into

(3.53), (3.54) and (3.55), and applying the hyperbolic trigonometric identity

cosh’? y —sinh’ i =1 (3.58)
leads to
x =csinhy sinfcos @ (3.59)
y =csinhy sinfsin ¢ (3.60)
z=ccoshycosf (3.61)
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Since y is constant for a prolate spheroid of fixed size, the following substitutions can be
made for convenience

a=ccoshy,b=csinhy (3.62)
Substituting (3.62) into (3.59), (3.60) and (3.61) yields the parametric equations for the

surface of a prolate spheroid in terms of the spherical coordinates (8, ¢)

x=bsinfcos¢@ (3.63)
y=bsinfsing (3.64)
z=acos@ (3.65)

The parametric equation for a position vector r from the origin of the prolate spheriodal
coordinate system to a point on the surface is now given by

r(6,p) =bsinf cos px +bsinfsin py +acos Oz (3.66)
By specifying the dimensions of a prolate spheroid in terms of it major and minor semi-
axes (e.g. axb) and the angular location of a point on the surface in terms of the
spherical coordinates (6,¢), the position of point on a prolate spheroid surface may be
defined with respect to the Cartesian axes (x,y,z). This parameterization facilitates the
projection of points of the spheroid surface onto Cartesian coordinate axes for the
evaluation of integrals in conjunction with the RWG basis functions. Differential
geometry may now be applied to determine the mutually orthogonal principal directions
on the surface and the surface curvature along those directions. Knowledge of the surface
curvature is essential for calculating the UTD surface ray parameters, which will be

discussed later in this chapter.
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3.4.2.2 Surface Geometry

As a preliminary step in deriving the asymptotic dyadic Green’s function, the surface
curvature must be determined. Expressions for the curvature along mutually orthogonal
surface directions will be derived within the context of differential geometry. In
differential geometry, a surface is uniquely defined by its first fundamental form (FFF)

and its second fundamental form (SFF) [40]. The coefficients E, Fand G of the FFF for

a curved surface are given by

g2 9r6.9) or6,9) (3.67)
00 o6

F o or6.9) or6,9) (3.68)
00 op

G = r6.9) or6.p) (3.69)
op - Op

where r(0,p) was defined previously in (3.66). Upon the substitution of (3.66) into

(3.67)-(3.69), expressions for the FFF coefficients are obtained

E=b"cos’@+a’sin’@ (3.70)
F=0 (3.71)
G =b*sin* 6 (3.72)

The SFF coefficients are determined from the following expressions

o’r

M= ‘n 3.74)
Ouov
or .

N= ﬁ.n (3.75)
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where n is the unit normal vector to the surface given by

or or
—x_

_Ou Ov
or or

__x._

ou ov
_ asin@cospXx +asinfsin gy +bcosHz

- 172
(b2 cos’ @ + a* sin® 0)

~

(3.76)

Similarly, the substitution of (3.66) and (3.76) into (3.73)-(3.75) yields the following
expressions for the SFF coefficients

ab

L= 3.77
(b? cos? 6 + a’ sin? §)"? (3.77)
M=0 (3.78)
. 2
N = absin‘ @ (3.79)

(b* cos® @ + a* sin* §)"*

Since F =M =0, it follows from differential geometry that curves lying along the curves
6 =constant and ¢ = constant are orthogonal and, therefore, define a surface geodesic
coordinate system aligned with the principle surface directions [40]. The unit vectors f
and @ are aligned with the principal surface directions & and ¢, respectively.

Now that the FFF and SFF coefficients have been determined, the surface curvature
along each of the principle surface directions can be found. Expressions for the principle
surface curvatures x, and «, along the principle surface directions % and ¢,

respectively, are found from [30]

K©6)== ab

= 3.80
E (b*cos’@+a*sin’0)*? (3.80)

@)=~ a

= . 3.81
G b(b*cos’@+a’sin’9)"? (381)
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Observe that in the case of a prolate spheroid, the principle surface curvatures at a point

(8,9) on the surface are functions of the elevational angle 6. This property determines

the fundamental nature of geodesic paths on a prolate spheroid surface, which will be

seen later.

3.4.2.3 Calculating the Geodesic Path
Having determined the principal surface curvatures, an important step in the
determination of the GTD ray parameters has been completed. However, before these
parameters can be computed an expression for the geodesic path between a source and an
observation point must be determined. This is due to the fact that each of the GTD
parameters depends not only on the surface curvature but also on the geodesic trajectory
angle. In this formulation, the geodesic trajectory angle is the angle subtended by a
tangent to the geodesic curve from the zaxis; hence, the geodesic angle provides a
measure of the torsion of a geodesic curve. For a space curve, torsion is defined as the
amount by which the curve twists in the normal direction to the osculating plane, which
in this case, is the azimuthal plane of the spheroid. Geodesics on a circular cylinder are
characterized by constant torsion, whereas geodesics on a prolate spheroid, by virture of
the angular dependence of their FFF coefficients, are characterized by a variable torsion.
This implies that the torsion at a point on a geodesic is a function of angular position
along the surface. Thus, in order to determine the geodesic angle, an explicit formula for
tracing geodesic paths on the surface of a prolate spheroid is required.

The derivation of a geodesic path formula begins with the specification of the arc

length between two arbitrary points A, and P, on a curved convex surface given by
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5)
s= [(Edu® +2Fdudv+Gav* )" (3.82)

where E,F and G are the FFF coefficients derived in the previous section. Substituting

(3.70), (3.71) and (3.72) into (3.82) and rearranging terms yields

1/2

s= j (b2 cos’ @ + a* sin? 0)+b2 sin’ 0(%)2} do (3.83)
Since a geodesic is defined as the arc joining two points on a surface such that the arc
length is minimal, the equation for the geodesic may be found by determining the
extremum of this integral. Inspection of the kernel of (3.83) reveals it to be in the form of
a functional f(0,¢';6), where @' denotes the derivative of ¢ with respect to €. We
would like to find the condition under which this functional is an extremum. From the
calculus of variations, it is well known that a necessary (but not sufficient) condition for
f(0,9"60) to be an extremum is for it to satisfy the Euler-Lagrange equation [41] given
by

8
%0 f(o.0 )-@;f(cw ;6)=0 (3.84)

which, owing to the fact that ¢ =0, reduces to

d9 %0 'f( ,0)=0 (3.85)

The evaluation of (3.85) leads to the ordinary differential equation (ODE)

d (b2 sin’ 9)(0'
d6 | (8 cos’ 6+ a*sin* 6 +b?sin* 6[p']) "~

=0 (3.86)

The condition
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(b2 sin’ 0)¢'
(b2 cos’ @ +a’sin’ @ + b* sin’ 6’[¢)'])“2

=c, (3.87)

where ¢, is a constant, must hold in order for the ODE in (3.86) to be satisfied. Solving

for ¢' in (3.87) leads to

dp ¢ (b*cos’6+a’sin® 9)”2

p'=—"F= (3.88)
0 bsing(b?sin’0-c?)"
which upon integration yields the equation of a geodesic given by
¢, (a’ sin> @ + b? cos’ 0)”2
9(6)= j db+c, (3.89)

bsin(b*sin?0-c?)"
where ¢, and ¢, are integration constants that must be determined by specifying the

starting and ending points of the geodesic.

The algorithm for determining the constants ¢, and ¢, involves first specifying
the starting point (go,,@s) and end point (qof,ef) of a geodesic path on the prolate
spheroid surface in spherical coordinates. The constant ¢, is equated with the initial
azimuthal angle ¢, and ¢, is set to an initial geodesic angle in radians. A trial geodesic
path is traced for each ¢, by numerically integrating (3.89) from ¢, to ¢, . The value of
the azimuthal angle obtained by adding the result of the numerical integration to c, is
denoted by ¢, . Next, ¢, is compared to ¢, via I(p,,,a, —-qofl <tol , where tol is a
prescribed tolerance value. If ¢, falls within this tolerance, the routine terminates and

the curved that has been traced is the geodesic path. Furthermore, the value of ¢,

obtained from this routine is saved and utilized in the computation of the remaining UTD
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parameters that require this constant. However, if this condition is not met, then the
algorithm repeats until this condition is met. Figure 3.6 shows a typical geodesic traced
along a prolate spheroid surface by this algorithm.

Having developed an explicit formula for tracing the geodesic path, the geodesic
path length s and geodesic angle § may now be calculated. As mentioned previously,
the geodesic angle is the angle subtended by a tangent to the geodesic curve from the
z axis, as depicted in Figure 3.7. From differential geometry, the relationship between

the geodesic angle and the FFF coefficients is given by [40]

siné =G & (3.90)
ds
& _do_. | E _ (3.91)
du dé G(G-c?)

du_df |G-c]

and

= (3.92)
ds ds EG
Taking the reciprocal of (3.92), the geodesic path length s is given by
o bsiné?(a2 sin @ + b® cos’ 0)”2
5= J‘ (3.93)

a  (b*sin6-ct)”
where the angular position of the source &, (or starting point) and diffraction 8, (or

ending point) of a surface diffracted ray are taken as integration limits. Note that for the
range of locations of geodesic endpoints considered in this work, the value of ¢, never
exceeds G . Furthermore, from (3.70) and (3.72) E>0 and G >0 for all elevation

angles. Hence, the expressions inside the radicals of (3.91) and (3.92) are always positive

in this work. Substituting (3.70), (3.72), (3.91) and (3.92) into (3.90) and solving for
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o yields the geodesic angle §(6,c,) in terms of the elevation angle @ and integration

constant c,

5(49,(:,)=sin"(b;;l 0) (3.94)

The equation for the geodesic angle corroborates physical intuition in that the geodesic
angle of a point on a geodesic curve would depend not only on the location of a point on
the surface but also on the particular geodesic upon which it lies. Closely associated with
the geodesic path length is the generalized Fock parameter §. As discussed in Chapter 2,
this dimensionless parameter expresses the ratio of the distance of a point from the
geometrical optics shadow boundary to the width of the transition region. The expression

for B given in Chapter 2 is repeated here for convenience

p= [ s (3.95)
p P
where as before m is given by
k 173
m =(—§—3) (3.96)

Substituting (3.80) and (3.81) into Euler’s equation from differential geometry which is
given by

k() =k, cos’ 5(8) + k, sin’ 5(0) 3.97)
we obtain the expression for the geodesic curvature, which is given by

ab* +(a’ —ab?)c}
b’ (a®sin® 8 + b* cos” 9)*">

k()= (3.98)

Note that the geodesic curvature is angularly dependent as will be the case for most of the

surface ray parameters. As mentioned previously, this is a consequence of the fact that
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the geodesic path exhibits variable torsion. The geodesic radius of curvature p,(6) is just

the reciprocal of (3.98) and is given by

b*(a* sin’ 6 + b? cos® 6)*'*
ab* +(a’ - ab*)c}

p,(0) = (3.99)

Substituting (3.96), (3.99) and the reciprocal of (3.92) into (3.95) and evaluating leads to

the expression for # given by

. )1/3 6, asin 9(b4 +[a2 —bz]cf )2/3 o (5.100)

o= ( A) b[(a2 sin® @ + b* cos® 9)(b2 sin’ @ - ¢} )]”2
, 1
The numerical integrations involved in tracing the geodesic path and in the
calculation of the associated geodesic parameters can be quite time consuming. In order
to expedite the calculation of these parameters, the following limiting cases depicted in
Figure 3.8 may be handled seperately:
(1) The geodesic endpoints lie close together and are situated on a quasi-cylindrical
midsection of the spheroid ( Figure 3.8a).
(2) The geodesic endpoints share the same azimuthal angle, lying on a circular arc
(Figure 3.8b).
(3) The geodesic endpoints share the same elevation angle and, thus, lie on an elliptical
arc (Figure 3.8c).
For the first case, the following heuristic approximation to the geodesic path length has

been found to be reasonably accurate:

S0 z\f(pwga)zw(a,e)’ (3.101)
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where p,,. is the average of the azimuthal radii of curvature of the two endpoints,

@p=¢p-¢',and E(6,e) is Legendre’s elliptic integral of the second kind [42] given by
6,
E(6,e)=a j V1-¢?cos? 8d6 (3.102)
4

where e is the eccentricity, defined previously, 6,, and 6, are the elevation angles
subtended by the endpoints of the geodesic from the z-axis. From Table 3.1, it is apparent
that the geodesic path length computed from (3.93) compares quite favorably with the
approximation to the geodesic path length given by (3.98) over the quasi-cylindrical
region.

The approximation to the Fock distance parameter for the first case is given by

2/3
cos’ @
cks | —> 2 3.103
ﬁ app [\/Ekpavg } ( )
and the geodesic angle is approximated by
E(6,
S ~tan™ (Lf) (3.104)
Pag®

For cases (2) and (3), (3.96) reverts to the circular arc length and the elliptic arc length

formulas, respectively. For the second case, £ is given by

% m
B= [— 1-€? cos? 0d6 (3.105)
6 Py
While for the third case, £ is given by
= (3.106)
Py
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Note that 6 =0 and 6 = g radians for the second and third cases, respectively.
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Figure 3.6 A geodesic on a prolate spheroid surface traced
via numerical integration.

Figure 3.7 The geodesic angle.
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(a) (b) (©)

Figure 3.8 Limiting cases for the the geodesic path length:
(a) quasi-cylindrical, (b) circular arc, and (c) elliptical arc.

83



Table 3.1 Comparison of approximate and exact geodesic path
lengths between two points located on the midsections of two prolate

spheroids. The approximate geodesic path length is denoted by s,
and the exact geodesic path length is denoted by s

geo *

pp

Angular Position
of Geodesic
Endpoints

(93, o), (“’v ¢f)

Major and Minor
Axes of Prolate
Spheroid

a=400cm
b=40cm

Major and Minor
Axes of Prolate
Spheroid

a=50cm
b=40cm

(90°,88°),(0°%,10°)

Sgeo= 15.6017 cm
Sepp = 15.6072 cm
%error =0.03535

Sgeo = 1.1870 cm
Spp =1.1941 cm
%error = 0.09870

(90°,88°),(0°,15°)

Sgeo =17.5099 cm
Sapp = 17.4491 cm
%error =0.3473

Sgeo =10.7394 cm
Sap =10.6133 cm
%error =1.1744

(90°,88°),(0°,20°)

Sgeo = 19.9119 cm
Sapp =19.7411 cm
%error =0.8574

Seeo = 14.3168 cm
Sapp = 14.0671 cm
%error =1.7441

(90°,88°),(0°,25°)

Sgeo =22.6185 cm
Sap =22.3452 cm
%error =1.2082

Sgeo =17.8799 cm
Sqp =17.5350 cm
%error =1.9289

(90°,88°),(0°,30°)

Sgeo =25.5564 cm
Sop =25.1646 cm
%error =1.5331

Sgeo = 21.5222 cm
Sapp =21.0102 cm
%error =2.3788
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3.4.2.4 UTD Surface Ray Parameters
Now that the geodesic parameters have been determined, the UTD surface ray parameters

may now be calculated. The torsion 7(8) is obtained by substituting (3.80) and (3.81) into

the following expression:

sin20
7(6) = > (x;—x))
_ C,(bz sin2 H—Cf)”za(bz _az) (3.107)
b’(a’sin’ @ +b’ cos’ )"
The torsion factor 7, may now be calculated via

7(6)

0)=——=

7,(0) <©)
12 (3.108)

ca(b’ —az)[(b2 sin® @ —c})(a’ sin? 8 + b* cos’ 0)]

ab* +a’cl —ab’c}

The ray divergence factor D, which quantifies the amount by which a surface diffracted
ray spreads within a tube, is analytically determined by evaluating the angle between
tangent vectors to adjacent geodesic paths. The adjacent geodesic paths, traced from the
same source point, are angularly seperated by approximately 1.0°. However, for this
application, the attenuation in the magnitude of the Green’s function attributable to the
surface divergence factor was found to be negligible. Hence, in order to expedite the
numerical determination of this factor without imposing an unnecessary computational
burden associated with the numerical computation of two geodesics for every source and
observation point, a heuristic expression for D was derived based on the known values

of D for a circular cylinder and a sphere

D=(1.O—K'(0)J+K‘(0) [
x,(0)) x,(0)\sin@
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0
=(1-y.)+7,|— 3.109
(1=r)+7 (3.109)
For the case of a sphere wherex, =«x,, D= LB , which is the well-known result for a
sin

sphere; for the case of circular cylinder where x;, =0, D =1, which is the well-known

result for a circular cylinder. The interpolating factors y, and y, are given by

- x,(6)
Kx,(6)

b2

7,(6)

a’sin? 0 +b*cos’ @
and

g) = X2(0)~x,(6)
7.(0) —xz(e)

(a* —b*)sin* 6

a’sin’ @ +b%cos’ 0

(3.110)

(3.111)

Now that explicit formulas for the UTD surface ray parameters have been derived,

expressions for the ray-fixed unit vectors tand b with respect to the principle surface

directions f| and ¢ must be derived. Note that fj=—0. See Appendix B for the

derivation of this result.
The unit tangent vector tis given by

t=fcosd +psind
and the unit binormal vector b is given by

txh
=@cosd —1sind

b
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where 6 is the geodesic angle, defined previously, and the unit normal vector to the
surface is n =é. Substituting (3.112) and (3.113) along with the UTD parameters into

(3.49) and after considerable algebraic manipulation, the components of the asymptotic
dyadic Green’s function for the PEC, electrically large prolate spheroid are obtained and

are given by

G% (&, :6,0/0'0) = {(cos2 5-q[(D* +2)cos? 5~ (D* +1) || W(B)
+¢* ([(D* +2)]cos? 6 -2)[r,u(B)+7.(B)] (3.114)
+(r,cosé +sind)’ g [u(ﬂ) - v(,B)]} D%qe"""’

G =GZ(&, :0,0]0'0") = {-simacosa(v(,/;r)-(D2 +2)qv(B)

+(D* +2) g [y.u(B)+ ycv(ﬂ)])+[(2cosz &-1)7,- (3.115)

(r(f - l)siné'cosd:l g[u(p)- v(,B)]} %qe"""’

G™(&,:6,9)0",9") = {(sin2 & -q[(D* +2)sin* 6 - (D +1)])v(ﬂ)
+¢* ([(D* +2)]sin? 8 -2)[r.u(B) +7.(B))] (3.116)

2
+(z,sind —cos 5)2 q[u(f) —v({)]} Dkz"—::"qe""”‘

3.4.3 Validation of the Prolate Spheroid Dyadic Green’s Function

In this section, the validity of the asymptotic dyadic Green’s function for the prolate
spheroid given in (3.114)-(3.116) is established analytically and numerically.

3.4.3.1 Analytical

Beginning with the expressions for the Green’s function given in (3.114)-(3.116), we
proceed by allowing the radius of curvature along the axial direction to approach infinity,
while maintaining a fixed azimuthal radius of curvature. In this case, the prolate spheroid

topologically approximates an infinite circular cylinder. Consequently, the magnitude of

87



the asymptotic prolate spheroidal dyadic Green’s function should approach the magnitude

of the asymptotic dyadic Green’s function for a PEC, infinite circular cylinder. The

values of surface curvatures along the axial and azimuthal directions become

. ab
K‘=h-1>2 22 2, 29)"2 =0
a (a sin” @ + b° cos 0)

and

. a
K, =lim =

- 72
aseo b(a2 sin? @ + b? cos? 0)

Q|-

From (3.117) and (3.118), the geodesic curvature ¥ now becomes

K =K, c0s’ § + K, sin* &
sin’ &
b

~

The torsion factor 7, becomes
_sindcosd
T = e (- Kl)

coso
= =cotd

sind

. . K, K, —K,
The interpolating factors now become y,=—=0 and y =—2—'=1
K, K,

(3.117)

(3.118)

(3.119)

(3.120)

For a circular cylinder D =1. Substituting (3.117), (3.118), (3.119), (3.120), and the

interpolating factors into the dyadic components given in (3.114)-(3.116) we have for the

G% component

88



lim G (6,

+¢* ([(D* +2)cos? 6 -2)[r,u(€) +7.v(8)]

+(,cosd +sin 6)2 q I:u(f) - v(«f)]} D %qe""”

= {(cos2 é‘—q[3 cos’ & — 2])\’(«5)
+q° (3cos’ 5 -2)v(&)

2 2
+((s:?nsg .cosd +sin 5) q[u(ﬁ) —v(ﬁ)]}kzo—fqe_ﬂ"s
= {cos2 V(&) +g(1-g)(2-3cos’ S)V(E)

2 kY, ks
+gesc? S[u(€)-v(&)]} =2 ge
2
similarly, for the G7 = GY components

limG%/ (6,0(6",9") = {—sin5cosé'(v(§) —(D*+2)qu®)
+(D? +2)¢* [r.u@®) + ycv(é)])+|:(20082 5-1)z,
(72 —l)sinJCosé]q[u(g)-v(f):]} %";qu‘f""’

= {-sin & cos & (v(&)-3qv(&)

P
+3g (&) +| (2c0s? 5 —1) 222 —
V) I:( o )siné'

sin

2 2
( cf)S2 g - 1) sind cos 5:| q [u(ﬁ) - V((f)]} % ge
2
= {sin & cos 5[1-3¢(1- g)]»(£)} k—"Yiqe'ﬂ“”
27
and finally for the G} component

lim G2 (6,¢16",¢") ={(sin’ 6 - [ 3sin’ 6 -2])v(¢)
+q° (3sin2 6—2)v(§)

2 2
+(:)nsg -sind —cos 5) q[u(g) —v(é)]} k—sg;iqe""”’
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= {sin? 5v(&) + q(1- g)(2 - 3sin’ SW(£)} %qe'ﬂo‘ (3.123)

As seen from the limits of the components in (3.121)-(3.123), the asymptotic prolate
spheroid Green’s function reverts to the asymptotic circular cylinder Green’s function in
the limit of an infinite radius of curvature along the axial direction 7 [2].

3.4.3.2 Numerical

To further validate the prolate spheroid asymptotic dyadic Green’s function, the relative
magnitudes of its components are compared with those of the circular cylinder
asymptotic dyadic Green’s function as a function of the electrical geodesic path length

s/ A,. The electrical geodesic path length is expressed in terms of wavelengths. Based

upon the analysis of the previous section, it is expected that the prolate spheroid
asymptotic dyadic Green’s function will reduce to the circular cylinder asymptotic dyadic
Green’s function in the limit of an infinite axial radius of curvature. A comparison can be
made by first tracing the geodesic path between a set of source and observation points
that are confined to the quasi-cylindrical midsection of a 40.04 x 4.0 4 prolate spheroid
with an initial geodesic angle 5, =15.8° as shown in Figure 3.9. A comparison between
the relative magnitudes of the asymptotic prolate spheroid Green’s function components
along this geodesic with those of the asymptotic cylindrical Green’s function along a
helical geodesic for which & =15.8° is given in Figure 3.10. There is a rapid increase in
the magnitude of the Green’s function near the origin due to the singularity of the
Green’s function at the source point. As the creeping wave propagates a few wavelengths
away from the source, the magnitude exhibits a constant rate of attenuation which is

indicative of the characteristic exponential decay of a creeping wave. Along the spheroid
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surface there is greater curvature along the ¢ direction than along the 7 direction, hence,

the attenuation of the G’ component is greatest, while the attenuation of the GY
component is least. As expected, the relative magnitude and attenuation of the G?/

component lies in between values of G and G?7 over the extent of the geodesic. Figure
3.11 depicts a geodesic path between a set of source and observation points that are
oriented such that the initial geodesic angle &, = 26.2° is larger than in the previous case.
From Figure 3.12, it is evident that the prolate spheroid asymptotic Green’s function
magnitudes along this geodesic are almost identical to the magnitudes of the cylindrical

asymptotic Green’s function along a helical geodesic for which &§=26.2°. The
attenuation of each component is less because the geodesic path spans the portion of the
spheroid surface which exhibits less curvature than in the previous case. In Figure 3.13, a

geodesic path ona 40.0 4 x 4.0 4 prolate spheriod with an initial geodesic angle given by
8, =30.1° is depicted. As seen in Figure 3.14, the relative magnitudes of the prolate

spheroid Green’s function begins to deviate from the cylindrical Green’s function along

the helical geodesic for which 6 =30.1°. This is due to the fact that the prolate spheroid
surface exhibits curvature along both the axial and azimuthal directions along the
geodesic trajectory depicted in Figure 3.13, while the circular cylinder exhibits curvature
only in the azimuthal direction along the helical geodesic.

The effect of moving the source and observation points closer to the tip of a prolate

spheroid is examined next. For the geodesic trajectory depicted in Figure 3.15 and its
associated dyadic component magnitudes shown in Figure 3.16, the attenuation of G} is

greatest within four wavelengths of the source, tapering off to a steady decay rate
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afterwards. This is most likely due to the fact that the geodesic does not follow a straight

path along the 7 direction. Instead, it follows the variably curved surface contour. On the
other hand, the G% and G’ components exhibit a constant rate of attenuation after
approximately two wavelengths from the source. This is due to the constant rate of
curvature along the ¢ direction. As expected, the magnitude of the G° component lies

in between the magnitudes of the other two components. Placing the source and

observation points even closer to the tip, as shown in Figure 3.17, primarily effects the
magnitude of G}, as gleaned from an examination of Figure 3.18. In this figure, G

exhibits a rapid decay rate, followed by a slight plateau and culminating in a steady decay
rate. This phenomenon is a consequence of the twisting of the geodesic curve, along the

variably curved 7 direction. The behavior of the dyadic Green’s function components for

the geodesic trajectory orientations considered in the previous cases appears to be
consistent with the physical behavior that one would expect for creeping wave
propagation along a variably curved surface [43, 44]. With the derivation and validation
of an appropriate electric dyadic Green’s function for the electrically large, PEC prolate
spheroid, the boundary integral is completely specified.

3.5 Solving the FE-BI System

The coupled finite element and boundary integral equation given in (3.14) generates a
large sparse matrix and a fully populately matrix, respectively. This type of system is
amenable to solution by an iterative technique. An iterative approach for large sparse
matrices is preferable to a direct approach due to the phenomenon of fill-in associated
with direct methods, that utilize matrix factorization schemes such as LU decomposition.

Specifically, the upper or lower triangular matrices, into which a large sparse matrix
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would be factored, may not represent the sparsity pattern of the original sparse matrix.
However, iterative solutions methods do not employ fill-in, which allows them to
maintain the sparsity of the system.

In order to employ an iterative technique, the FE-BI equation in (3.14) may be

rewritten in matrix form as [2]

4,+G 4, E*] [4, 4, E*] [G oE*] [ o
e 4 N R
Ara Aii E " Ala Au’ E . 0 0 E . f "
where [A] is the finite element matrix, [G] is the boundary integral matrix, E™ is the

unknown electric field in the cavity, E¥ is the unknown electric field in the aperture,

/™ denotes the interior excitation due to a probe feed. Note that £ =0 in (3.14) for

int

the case of interior excitation while f£™ =0 for the case of exterior excitation. The

decomposition of the FE-BI matrix in this manner allows the matrix-vector product,
which is the most computationally expensive task in the iterative approach, in each
partition to be optimized for solution by an iterative solver. As an example, since the
finite element matrix is sparse, the matrix can be stored in an efficient compressed sparse
row (CSR) fashion [45] and the matrix multiply scheme can be optimized for a sparse
matrix. Furthermore, although the boundary integral matrix is fully populated, it is
symmetric. Hence, only the upper (or lower) triangle needs to be stored. Thus, the
boundary integral matrix-vector product can be optimized for a symmetric matrix.

For this problem, the biconjugate gradient (BiCG) iterative scheme is chosen rather
than the conjugate gradient scheme (CG). The BiCG scheme is a variation of the CG
method and is applicable to asymmetric as well as symmetric systems of linear equations.

The main advantage of using BiCG is that for symmetric matrices, Jacob’s algorithm
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employs only one matrix-vector product, as opposed to the CG scheme which employs
two matrix-vector products [46]. Moreover, the BiCG scheme converges faster than the
CG scheme. The trade-off, however, is that the convergence of BiCG is more erratic than
that of CG [30] (See Appendix E for a listing of BiCG pseudocode).

3.6 Radiation

3.61 Input Impedance

Once the electric fields in the cavity E™ and aperture E” have been determined by
solving (3.124) with a suitable iterative solver such as the BiCG scheme, the input
impedance can be found. The input impedance is calculated from the ratio of the voltage
at the input port to the current flowing into the port. The simplest type of feed is a

Hertzian dipole feed where the source is a filament of current. For a normally directed
probe feed (e.g. directed along the é-direction) that is positioned at (7,,9,) on the
surface of a prolate spheroid, (3.7) is evaluated as
S ==k Z W, (1, ,)
=—jk,Zo1l (3.125)

For this case, the input impedance can be computed using Gauss’ Law

J(n)

_16
4=72gmﬁw dl (3.126)

in n=1
where n is the number of edges, i denotes the orientation of the probe-feed, E,,, are

the coefficients of the electric field determined by solving the FE-BI system, and as

defined previously W, are the vector basis functions. The total electric field at the feed

location is determined by summing over all the edges of the element, which would be the

six edges of the tetrahedral containing the probe-feed in this case, and integrating over
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the length of the probe. Since this approach relies upon an accurate field calculation in
the vicinity of the feed, it is important to finely sample the computational volume in the
vicinity of the probe-feed.

3.6.2 Near-to-Far Field Transformation

Once the tangential electric field in the aperture has been determined, the field radiated
by the aperture can be determined from the surface equivalence principle. In applying this
principle, a suitable dyadic Green’s function which effectively transforms the tangential
surface electric field to an exterior radiated magnetic field in the geometric optics region
must be derived. The surface topology in the immediate vicinity of an aperture situated
on an electrically large prolate spheroid may be regarded as locally planar. Hence, a
planar approximation may be used to determine the exterior magnetic field radiated by a
magnetic current distribution over the aperture in the geometrical optics region of an
electrically large prolate spheroid. The geometrical optics region is of primary interest
since the antennas under investigation in this dissertation radiate primarily in the
geometrical optics region. From image theory, the transformation of a magnetic surface
current source on a PEC plane to an exterior magnetic field is given by twice the free-

space dyadic Green’s function

= -JkR
W) ¢ (3.127)

= far =
Ge: (rfr')=2Go =| [ +~—
2(r|r) 0 ( o |22R

2
0

whererand r' are position vectors to the observation and source points, respectively, /

is the dyadic unit vector (or idem factor) given by

1= 3"+ 59+ 35", (3.128)
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and the distance between the source and observation points is given by R = Ir -r '| . Inthe

far zone, (3.119) may be expressed as

ek .
(xx'+ yp'+ 22 ) i (3.129)
27

Since the far field is evaluated in spherical coordinates, a near field to far field
transformation for a magnetic surface current distribution over a quasiplanar patch may
be found be expressing the source vector in (3.121) in prolate spheroidal coordinates,
while expressing the observation vector in spherical coordinates. Hence, the dyadic
Green’s function which effectively transforms a surface magnetic current to an exterior

geometrical optics far-zone magnetic field may be written as

_ar

Ge (8,0|6,1',0") = 06 G +67'G +0p'G% + HE'G% +pi' G

(3.130)
+9¢'GY
where each of the components are given by
GO{ _ (a cos@sind'’ COS((D ¢’) —bsinf'cosf ) e Rad _/ko[bsma sin@cos(@-@')+acosfcosd']
Jasin28'+bcos? 6" 2zr (.131)

(b00500080 COS(¢ ¢T)+a51n0 sin@ ) e Ead _/ko[bsm9 sin 6 cos(p-p')+acosfcos6’]
Jasin? @'+ bcos’ 6’ 2zr

G = (3.132)

/ko[bsma sin cos(@-@ )+acosﬂcosl9] (3 133)

G%' =cosOsin(p- (p)
r

asin@' sin(¢ ¢) e_jk" ejko[bsina'sin8cos(¢-¢')+acos0cos€']
Jasin® '+ bcos? ' 27r

G% = (3.134)

bcosd' sin(qo ¢’) e'” e_;k‘,[bsin0'sin9cos(¢—¢>‘)+acosacosa']

oy =
Jasin?@'+bcos? ' 27r

(3.135)
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- ek
' = cos(p-p)——e

Jko[bsin6'sinOcos(p-9')+acosOcos6'] (3.136)
27nr

Employing surface equivalence, the exterior magnetic field may be determined by

evaluating the radiation integral over the aperture surface
== far A
B (6,0) = jk Y [Ge (r.0,0/8,7,0)-[ExE&,n'0) [do'dn’  (3.137)
SW

whose components are given by

, bcos8'sin @
Hfar =—jk Y, [ :|E
° ’ %{{ Ja’sin?@'+b*cos’ 8" | * (3.138)

}ejk,,[bsin&'sinGoos¢+acosB'cosO]d¢'dn'

+Cos@E,

. [4
Ja*sin2@'+b?cos? 0’

}ejko[bsin0'sin0cos6+acos€’eo30]d¢.dnn

ar . bcos@cosB'cos@ +asinfsinf'
HJ" =~jkY, | [ z ]E
Se (3.139)

+cos@sin@E,

In the far-zone, the electric field components may be derived from the magnetic field
components via the following relationships

E,=ZH,

(3.140)
E,=-Z,H,
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Figure 3.9 The geodesic trajectory between two points located
at (6, =79.0°,¢, =0.0°) and (8, =80.0°,p, =160.0°) ona
40.0 1 x 4.0 A prolate spheroid for which &, =15.8°.
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Figure 3.10 Comparison of the relative magnitudes of the prolate spheroidal
asymptotic dyadic Green’s function components along the geodesic trajectory
depicted in Figure 3.9 and the components of the cylindrical asymptotic
dyadic Green’s function along the helical geodesic for which 6 =15.8° ona
circular cylinder with an equivalent azimuthal radius.
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Figure 3.11 The geodesic trajectory between two points located
at (6, =90.0°,p, =30.0°) and (6, =87.0°,¢, =92.0°) ona
40.0 A x 4.0 A prolate spheroid for which &, =26.2° .
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Figure 3.12 Comparison of the relative magnitudes of the prolate spheroidal
asymptotic dyadic Green’s function components along the geodesic trajectory
depicted in Figure 3.11 and the components of the cylindrical asymptotic
dyadic Green’s function along the helical geodesic for which & =26.2° ona
circular cylinder with an equivalent azimuthal radius.
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Figure 3.13 The geodesic trajectory between two points located
at (6, =90.0°,p, =30.0°) and (6, =87.0°,p, =82.5°) ona

40.0 A4 x 4.0 A prolate spheroid for which &, =30.1°.
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Figure 3.14 Comparison of the relative magnitudes of the prolate spheroidal
asymptotic dyadic Green’s function components along the geodesic trajectory
depicted in Figure 3.13 and the components of the cylindrical asymptotic
dyadic Green’s function along the helical geodesic for which § =30.1° on a
circular cylinder with an equivalent azimuthal radius.
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Magnitude [dB]

Figure 3.15 Geodesic trajectory between the points
(6, =50.0°,p,=0.0°) and (6, =70.0°,¢, =70.0°) on
a 40.04 x 4.0 4 prolate spheroid.
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Figure 3.16 Relative magnitudes of the prolate spheroidal dyadic Green’s
function components along the geodesic trajectory depicted in Figure 3.15.
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Figure 3.17 The geodesic trajectory between two points at
(6,=30.0°,p, =0.0°) and (8, =60.0°,p, =100.0°) ona
40.04 x 4.0 A4 prolate spheroid.
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Figure 3.18 Relative magnitudes of the prolate spheroidal dyadic Green’s
function components along the geodesic trajectory depicted in Figure 3.17.
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CHAPTER 4

NUMERICAL RESULTS

4.1 Introduction

In this chapter, FE-BI simulation results for the resonant input impedance of a cavity-
backed slot antenna and a cavity-backed patch antenna that are conformal to the surface
of a prolate spheroid are presented. In addition, numerical results for the radiation pattern
of the conformal patch antenna in the geometrical optics region of a prolate spheroid are
presented. Although published results for waveguide antennas flush-mounted on doubly
curved surfaces is becoming available [47], published data on the input impedance of
cavity-backed patch antennas conformal to prolate spheroid surfaces is nonexistent. In
light of this, this work will be validated by comparing the doubly curved results with
those of the limiting planar and cylindrical-rectangular geometries for which reference
data exists.

4.2 Input Impedance Studies

4.2.1 Cavity-Backed Slot Antenna

In this section, FE-BI numerical results for the input impedance of a cavity-backed, slot
antenna recessed in a PEC prolate spheroid are presented. Since the resonant frequency of
a planar-rectangular cavity is well known, it is modeled first. The antenna consists of a
slot that is cut into a cavity with doubly curved walls that conform to the prolate
spheroidal geometry. In the limit of zero curvature, the cavity geometry reverts to a
planar-rectangular geometry with the following dimensions: 6.0 cm in length, 3.875 cm
in width, and 1.2 cm in thickness. The slot is 2.5 cm in length, parallel to the

@ - direction, and 0.125 c¢m in width, parallel to the %)-direction. The cavity is assumed to
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be air-filled with a permittivity ¢ =1.0—j0.01. Note that a small loss is introduced to
speedup convergence. FE-BI simulation results for a normally directed (e.g. along the
é_,-direction) probe feed positioned along the bottom of the cavity so as to excite the
fundamental TE,;;, mode of the limiting planar-rectangular cavity are presented. In order

to assess the sensitivity of the cavity’s resonant frequency to curvature variation along the
elevational and azimuthal directions, the following orientations of the slot antenna with
respect to the vertical axis of the prolate spheroid are modeled: horizontal, vertical, and
tilted at 45° with respect to the vertical axis.

Following the procedure for generating the FE mesh outlined in Chapter 3, the
antenna surface is first discretized into a triangular mesh, as shown in Figure 4.1. Next,
the surface mesh is extruded into the cavity volume via triangular distorted prism
elements, which subsequently are decomposed into tetrahedral elements. The position of
the probe feed is depicted in Figure 4.2. The resulting six-layer FE mesh for the slot
antenna is depicted in Figure 4.3. The electrical length of each side of a tetrahedral

element is A,/40 at the resonant frequency of the cavity. This yields an FE mesh

comprised of 53,568 elements, 56,742 total unknowns, and 47 aperture unknowns. The
creation of the FE mesh required 16 minutes and the simulation over the frequency range
4.0 to 5.5 GHz at a frequency step of 0.025 required two hours to run on a XEON 450
MHz machine.

In Figures 4.4 and 4.5, the resonant input resistance and reactance of the
horizontally oriented slot antenna on a prolate spheroid are plotted for varying curvatures
and compared with the limiting planar and cylindrical values. From these plots, it is quite

apparent that for large axial and azimuthal radii of curvatures, the resonant frequency of
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Figure 4.1 Surface mesh for the slot antenna.
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Figure 4.2 Probe feed position for the
slot antenna.
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Figure 4.3 Different views of the six-layer doubly curved
finite element mesh for the slot antenna.
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the doubly curved cavity approaches the theoretical resonant frequency of the

fundamental TE,;, mode for the limiting 6.0 x 3.875 x 1.2 cm planar-rectangular cavity

which is 4.61GHz. This is to be expected because the surface appears planar in the
vicinity of the slot antenna. As the curvature of the spheroid increases, the magnitude of
the input resistance also increases for this slot orientation. A similar phenomenon occurs
for the case of a vertically oriented slot whereby the magnitude of the input resistance
increases with decreasing curvature. By allowing the axial radius of curvature a to
become very large (e.g. a = 400 cm) and the azimuthal radius of curvature b to remain
fixed at 8 cm, the prolate spheroid shape approaches that of the circular cylinder. Hence,
one would expect the input impedance of the patch on the prolate spheroid to approach

the value of input impedance for a patch on a circular cylinder with the same radius. This

idea is supported by Figures 4.6 and 4.7. For the 45° tilted slot, there is good agreement
between the planar input impedance and prolate spheroid input impedance with large
axial and circumferential curvatures, as seen in Figures 4.8 and 4.9. Moreover, for a
large axial radius of curvature and a relatively small fixed azimuthal radius of curvature,
the prolate spheroid results agree with those of the circular cylinder with the same
azimuthal radius. This result is consistent with those of the vertically and horizontally
orientated slot. Note that the magnitude of the input resistance decreases slightly for the
prolate spheroid surface curvature that is intermediate between the limiting planar and
cylindrical values. These results support the assertion of the planar-rectangular cavity
being the limiting case for the doubly curved cavity as the radii of curvature of the cavity
walls approach infinity and the cylindrical-rectangular cavity being the limiting case for

the doubly curved cavity as the axial radius of curvature approaches infinity.
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Figure 4.5 Input reactance of the horizontally oriented
slot antenna.
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Figure 4.6 Input resistance of the vertically
oriented slot antenna
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Figure 4.7 Input reactance of the vertically oriented slot antenna.
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Figure 4.8 Input resistance of the slot antenna oriented 45°
with respect to the vertical axis of the prolate spheroid
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Figure 4.9 Input reactance of the 45° oriented slot antenna.
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4.2.2 Cavity-Backed Conformal Patch Antenna

The resonant behavior of cylindrical-rectangular conformal patches has been investigated
using the FE-BI method [2]. For this type of conformal patch antenna, the input
impedance and resonant frequency exhibits a dependence on surface curvature. The
degree of depends on the orientation of the antenna and the location of the probe feed.
The purpose of this section is to simulate the behavior of the input impedance and
resonant frequency of cavity-backed patch antennas that are recessed in doubly curved
prolate spheroid surfaces as the surface curvature and antenna orientation are varied.
4.2.2.1 2.5cm x 2.5 cm Patch

The first antenna to be modeled consists of a 2.5 x 2.5 cm metallic patch printed on a
substrate of thickness 0.0762 cm residing in a 5.0 x 5.0 cm aperture. The substrate is

composed of a dielectric material with permittivity & =3.2— j0.045. The surface mesh

for the antenna is shown in Figure 4.10. The behavior of the input impedance and
resonant frequency for two different probe feed locations, as illustrated in Figure 4.11,
are modeled in this study. The FE mesh for the patch antenna, generated by the procedure
described in Chapter 3, is shown in Figure 4.12. Following the FE-BI procedure, the
normal electric field beneath the patch is calculated and then used to calculate the input
impedance. For the probe feed location in Figure 4.11a, a normal electric field beneath
the patch exhibiting a polarization along the spheroid’s axial direction is excited. From
the input impedance spectrum of the axially polarized patch, shown in Figure 4.13, it is
apparent that the resonant frequency is practically independent of surface curvature
variation. A plot of the strength of the normal electric field under the patch for this

polarization is shown in Figure 4.14. For the probe feed location in Figure 4.11b, a
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normal electric field exhibiting a polarization along the spheroid’s azimuthal direction is
excited. The input impedance spectrum for this polarization is shown in Figure 4.15.
From this plot, it is evident that the resonant frequency exhibits a strong dependence on
the surface curvature variation along the azimuthal direction. As the azimuthal curvature
increases, the resonant frequency also increases. The magnitude of the normal electric
field beneath the patch for this polarization is provided in Figure 4.16. Both of these
results are quite reasonable since the degree of curvature along the azimuthal direction is
large in comparison to the axial direction. Finally, we consider the case of a conformal
patch that is rotated by 45° with respect to the azimuthal plane of the spheroid. Based on
the previous results, it is expected that the input impedance for this case would display a
curvature dependence that lies in between that of the axially and circumferentially
polarized cases. The input impedance spectrum and normal electric field strength for this
case are given in Figures 4.17 and Figure 4.18, respectively. From Figure 4.17, one can
see that the resonant behavior for this case agrees with the expected result in that as the

surface curvature increases, the resonant frequency also increases.
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Figure 4.10 Surface mesh fora 2.5 x 2.5 cm
conformal patch antenna.
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Figure 4.11 Position of the probe feed for the 2.5 x 2.5 cm
patch antenna.
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Figure 4.12 Different views of the finite element mesh
for a 2.5 x 2.5 cm patch antenna conformal to a doubly
curved prolate spheroid surface.
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Figure 4.13 Input impedance of the axially
polarized 2.5 x 2.5 cm patch antenna.
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Figure 4.14 Magnitude of the axially polarized
normal electric field beneath the 2.5 x 2.5 cm patch.
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Figure 4.15 Input impedance of the azimuthally
polarized 2.5 x 2.5 cm patch antenna.

120



Figure 4.16 Magnitude of the azimuthally
polarized normal electric field beneath the
2.5 x 2.5 cm patch.
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Figure 4.17 Input impedance of the 45° rotated 2.5 x 2.5 cm

patch antenna.
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Magnitude

Figure 4.18 Magnitude of the normal electric field
beneath the 45° rotated 2.5 x 2.5 cm patch.
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4.2.2.2 3.0 cm x 3.0 cm Patch

In order to assess the effect of patch size on the curvature sensitivity of the input
impedance, the input impedance of a larger patch antenna is investigated. For this case, a
3.0 x 3.0 cm metallic within a 6.0 x 6.0 cm aperture is modeled. The same permittivity
and substrate thickness from the previous is used. Once again, the patch is excited by a
normally directed probe-feed positioned so as to excite the same field polarizations as for
the 2.5 x 2.5 cm patch. The probe feed is located 1.0 cm from the bottom of the patch

along its centerline as depicted in Figure 4.19.
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Figure 4.19 Probe feed positions on the
3.0 x 3.0 cm patch.

Analogous to the previous case, for a probe-feed positioned along the axial centerline, an
axially polarized field is excited. For this polarization, the resonant frequency of the input
impedance is practically independent of curvature, although there is a slight shift as the
surface curvature increases (a = 10 cm and b = 5 cm). However, the main difference

between this and the previous case is the decrease in the magnitude of the input
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impedance for large surface curvature, as seen in Figure 4.21. The circumferentially
polarized case, shown in Figure 4.22, exhibits a high degree of curvature dependence
which is consistent with the circumferential polarization of the previous case. The
increase in patch size does not appear to effect the amount by which the resonant
frequency shifts. Finally, for the 45° rotated patch, the curvature dependence of the
resonant frequency appears to lie in between that of the axial and circumferential case, as

seen in Figure 4.23. This is consistent with the result obtained in the previous section for

the 45° rotated patch.
Finally, the input impedance of the 3.0 x 3.0 cm patch as a function of elevational
position on 17.0 x 15.0 cm spheroid is considered in this study. The different elevational

positions are depicted in Figure 4.20.
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Figure 4.20 Elevational positions along the surface
of a prolate spheroid.

Since the axial curvature of a prolate spheroid is relatively low at the midsection and
progressively increases towards the pole, it is worthwhile to assess the effect that such

curvature variation would have on the input impedance. Comparing Figure 4.24 with
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Figure 4.25, it is apparent that the resonant frequency of the circumferentially polarized
patch exhibits a greater sensitivity to curvature variation than that of the axially polarized
patch as it is moved progressively closer to the pole of the spheroid. This result is
consistent with the previous cases.

The effect of surface curvature variation on the placement of the 45° rotated
patch is examined next in Figures 4.26 a, b, and c. For this case, an unexpected
phenomenon occurs. For the patch located at an elevation angle 8 = 80°, the single mode
splits into two modes which resonate at 2.51 GHz and 2.56 GHz. Raising the patch to the
position & = 70° the two modes resonate at 2.48 GHz and 2.60 GHz. At position 8 = 60°,
the two modes resonate at 2.41 GHz and 2.69 GHz are excited. Hence, as the patch is
located closer to the pole of the spheroid, the difference in the resonant frequencies of the
two modes increases. The normal electric field excited in this configuration, is shown

Figure 4.27.
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Figure 4.21 Input impedance of the axially polarized
3.0 x 3.0 cm patch antenna.

127



50 : : . i

o planar
— a=200 cm, b=100 cm
40 ---- a=20 cm, b=8 cm i

- a=10 cm, b=5 cm

_2 Il 1 L
8.3 2.4 2.5 2.6 2.7 2.8
Frequency [GHz]

Figure 4.22 Input impedance of the azimuthally polarized
3.0 x 3.0 cm patch antenna.
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Figure 4.23 Input impedance of the 45° rotated
3.0 x 3.0 cm patch antenna.
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Figure 4.24 Input impedance of the axially polarized 3.0 x 3.0 cm
patch antenna as a function of elevation angle.
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Figure 4.25 Input impedance of the azimuthally polarized
3.0 x 3.0 cm patch antenna as a function of elevation angle.
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Figure 4.26(a) Input impedance of the 45° rotated
3.0 x 3.0 cm patch antenna mounted at the elevation

angle 8 =80°.
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Figure 4.26(b) Input impedance of the 45° rotated
3.0 x 3.0 cm patch antenna mounted at the elevation

angle 8 =70°.
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Figure 4.26(c) Input impedance of the 45° rotated
3.0 x 3.0 cm patch antenna mounted at the elevation

angle 6 =60°.
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Magnitude

Figure 4.27 Magnitude of the normal electric field
associated with Figure 4.26(c).
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4.3 Far-field Radiation Pattern

The far-zone radiated field of a 3.0 x 3.0 cm patch in the geometrical optics region of a
prolate spheroid is calculated in this section. Due to the scarcity of published data on this
topic, the validity of the FE-BI simulation results is assessed by comparisons with the
results of the planar and cylindrical tetrahedral element based FE-BI programs [2,3]. The
planar tetrahedra based code has been experimentally verified [48], while the cylindrical
tetrahedra based code has been shown to agree quite well with the experimentally
verified cylindrical shell based FE-BI code [3]. In Figure 4.28, the azimuthal plane far-
zone field radiated by a 2.5 x 2.5 cm patch in the geometrical optics region of a 200 x 100
cm prolate spheroid at 3.09 GHz is compared with the far-zone field radiated by a patch
antenna on a planar surface. As seen in this plot, the radiated field pattern of a patch on
an electrically large prolate spheroid matches the radiated field pattern of a patch
radiating on a plane. This result agrees with expectations. Comparisons between the
radiated field pattern in the azimuthal plane of a patch residing on an infinite circular
cylinder of radius 8 cm and the field pattern of a patch located at different elevation
angles on different sized prolate spheroids are given in Figures 4.29 through 4.31. As
expected, there is good agreement between the field pattern of the patch on the cylinder
and the field pattern of the patch positioned at the equator of a 200 x 8 cm prolate
spheroid. As the elevational position of the patch along the prolate spheroid is raised, the

E, component begins to deviate from the cylindrical result. The distortion is due to the

deviation of the surface profile along the 7 (or @) direction of the spheroid from the flat
profile along the axial direction of a circular cylinder. There is practically no deviation in

the E, component, however. This is due to the fact that the deviation in the azimuthal
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radius of curvature from the cylindrical limit as the patch is moved along the spheroid in
the elevational direction is neglible. The same effect is seen as the patch is moved along
the surfaces of a 20 x 8 cm spheroid and 10 x 8 cm spheroid. There is just a slight
difference between the 20 x 8 cm and 200 x 8 cm cases in the vicinity of the null of the

E, component. The E, component, however, exhibits negligible change. For the 10 x 8

cm prolate spheroid case, both field components deviate from the cylindrical results. For

this case, the deviation exhibiting by the E; component arises from the change in

azimuthal radius of curvature as the patch is moved towards the pole of the spheroid.

From these cases, it is evident that the E; component of the far field radiated by a

conformal patch located in a region near the equator (<+20°) of a quasi-cylindrical (e.g.
highly elongated) prolate spheroid may be approximated with reasonable accuracy by the

cylindrical E; value. However, the cylindrical approximation to the prolate spheroidal
E, component is valid only at the equator of the prolate spheroid. For a patch located

above or below the equator, the E_ deviates significantly from the cylindrical value.
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Figure 4.28 Comparison of the azimuthal plane radiated
field of a 2.5 x 2.5 cm patch antenna in the geometrical
optics region of a 200 x 100 cm prolate spheroid with the
radiated field of a patch residing on a planar surface.
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Figure 4.29 Comparison of the azimuthal radiated field of a 2.5 x 2.5 cm
patch antenna mounted on a 200 x 8 cm prolate spheroid at specified
elevational angles with the azimuthal field of an identical patch antenna
mounted on a circular cylinder with an 8 cm radius.
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Figure 4.30 Comparison of the azimuthal radiated field of a 2.5 x 2.5 cm
patch antenna mounted on a 20 x 8 cm prolate spheroid at specified
elevational angles with the azimuthal field of an identical patch antenna
mounted on a circular cylinder with an 8 cm radius.
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Figure 4.31 Comparison of the azimuthal radiated field of a 2.5 x 2.5 cm
patch antenna mounted on a 10 x 8 cm prolate spheroid at specified
elevational angles with the azimuthal field of an identical patch antenna
mounted on a circular cylinder with an 8 cm radius.
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CHAPTER §

EXPERIMENTAL RESULTS

5.1 Introduction

In order to verify the FE-BI simulation results presented in the preceding chapter, the
measured input impedance of a patch antenna mounted on a ground plane and on a
prolate spheroid are presented in this chapter. For the case of a patch antenna radiating on
a ground plane, the purpose of the experiment is to assess the accuracy of the resonant
frequency and magnitude of the input impedance as predicted by the prolate spheroidal
FE-BI routine in the planar limit (e.g. large axial and azimuthal radii of curvature). For
the case of the patch antenna radiating on a prolate spheroid, the purpose of the
experiment is to assess the effect of surface curvature variation on the input impedance of
the patch at various elevational positions on the spheroid surface. The lack of published
experimental data on the input impedance of patch antennas conformal to prolate
spheroidal surfaces may be due to the considerable difficulty involved in constructing this
type of configuration. The presentation of the experimental results is preceded by a
discussion of the antenna fabrication and experimental setup.

5.2 Antenna Fabrication

The fabrication of the patch antennas to be used in these experiments is discussed in this
section. The dimensions of the first antenna to be considered are as follows: 3.0 x 3.0 cm
patch within a 6.0 x 6.0 cm aperture. The face of the antenna is milled from GML 1100
copper clad laminated board with a thickness of 0.0236 cm. The laminated board consists

of a layer of dielectric material with a permittivity £=3.29-;0.0132 at 2.5 GHz

sandwiched between two copper layers. The feed configuration consists of a female SMA
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connector soldered to 3.2 cm of semi-rigid coaxial cable. The coax center conductor
provides the probe feed for the antenna. As shown in Figure 5.1b, 2 0.914 mm (0.0360 in)
hole through which the center conductor of the coaxial cable connects to the patch is
drilled 0.98 cm from the bottom edge and 1.48 cm from the left edge of the patch. To
prevent a short circuit between the patch and back antenna surfaces, the center conductor
is encased by a teflon tube to insulate it from the walls of the top and bottom copper
layers of the laminated board before it is fed through the probe feed hole. The center
conductor is soldered to the patch while the outer conductor is soldered to the metallic
back surface of the antenna. The 4.0 x 3.0 cm patch is fabricated from the same material
using the same procedure, except that the feed-through hole for the center conductor is
located 0.52 cm from the bottom edge and 1.99 cm from the left edge of the patch as
shown in Figure 5.1.

The fabrication of the patch antenna to be mounted on a metal foil covered bowl,
which simulates a PEC prolate spheroid, is described next. The maximum radius of the
bowl is 14.74 cm and its height is 17.0 cm. The dimensions of the conformal patch
antenna are as follows: 3.0 x 3.0 cm patch within a 6.0 x 6.0 cm aperture. Since the
antenna must conform to the doubly curved surface of the bowl, it is fabricated from
GML 1100 copper clad laminated board with a thickness of 0.014 cm in order to
minimize buckling along the surface of the bowl. The thinness of the board necessitates a
different fabrication technique than was used for the thicker patch antenna. In view of the
thinness of the metallic layer, the face of the antenna is chemically etched from the GML
1100 board using a full-strength ferric chloride solution. In Figure 5.2 cross-sectional and

top views detailing the construction of the patch antenna are provided. The probe feed
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consists of an SMA connector soldered to 4.55 cm of semi-rigid coaxial cable. A 0.914
mm hole through which the center conductor is fed is drilled 1.01 cm from the bottom
and 1.54 cm from the left edge of the patch. A caveat of constructing a patch antenna out
of such thin board is that it is quite difficult to ensure electrical isolation across the
dielectric when solder is applied near the probe feed hole to electrically bond the center
and outer conductors to the patch and back surfaces, respectively, of the antenna. Hence,
in order to ensure electrical isolation between the back and patch surfaces, the following
technique is used. First, nonconductive epoxy (Stycast 2850FT) is used to structurally
bond the coaxial outer and center conductors to the bottom and patch surfaces,
respectively, and also to prevent metallic debris from entering the hole and shorting
across the top and bottom surfaces. Next, to prevent a short circuit between the patch and
back antenna surfaces, the center conductor is encased by a teflon tube to insulate it from
the walls of the top and bottom copper layers of the laminated board before it is fed
through the probe feed hole. Finally, instead of solder, a silver coating obtained from the
evaporation of a colloidal silver solution is applied to furnish a low impedance electrical
connection between the coax outer conductor and the bottom surface and between the

center conductor and patch surface as shown in Figure 5.2.
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for mounting on a doubly curved platform.

146



5.3 Experimental Setup and Measurements
5.3.1 Ground Plane

The S,, of a patch antenna mounted on a PEC ground plane was measured using the

Hewlett-Packard 8753D network analyzer over the range 1.0-6.0 GHz. A PEC ground

plane was simulated by a large flat aluminum covered sheet as depicted in Figure 5.3.

Ground plane Antenna
HP 8753D Ntype N type (m) i \
Network adaptor (f) connectors p \

Analyzer = u i ]
/ Calibration
L /L | | reference
”j 4 el
Barrel

connector N type (m) N type (m)
connector to
SMA (m) adaptor

Figure 5.3 Experimental setup for the
patch antenna on a ground plane.

The S,, of the antenna alone cannot be measured directly. In order to determine the
antenna S,,, the electrical length of the feed from the tip of the SMA connector along the

micro-coax cable to the point where the outer conductor is bonded to the back surface of
the antenna must be calibrated out. In order to accomplish this, the coaxial cable feed first
is cut to the length to be used in the antenna fabrication. Next, the cable is shorted at the

end and the S, of the shorted cable is measured over the frequency range 1.0-6.0 GHz

and saved. The following calibration formula is used to remove the ,, of the probe feed:
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S, (an) = | Su(S)_ (5.1)
Sy (coax)
where S,,(sys) is the measured S, for the antenna which includes the probe feed,

S,,(coax) applies to the shorted probe feed, and S,,(ant) is the desired S, for the

antenna alone. Now that the length of coaxial cable from the tip of the SMA connector to
the point where it is bonded to the back surface of the antenna has been calibrated out,
S,,(ant) is converted to the input impedance Z,, of the antenna via the following

formula:

(5.2)

where Z, =50Q, the characteristic impedance of the coaxial feed.

In Figure 5.4, the input impedance of the 3.0 x 3.0 cm patch radiating on the
ground plane measured over the frequency range 1.0 to 6.0 GHz is given. The FE-BI
simulation results are provided for comparison. As seen in the plot, the FE-BI routine
predicts the lowest order and two higher order resonant modes. Focusing on the
frequency range in the vicinity of the dominant mode, the measured input impedance data
is compared with the FE-BI simulation results for (a = 800 cm and b=700 c¢m) in Figure
5.5. For comparison against measured data over this narrow frequency range, fairly
stringent criteria are used in the FE-BI simulation. The sampling factor used in the

generation of the finite element mesh is 4,/92 at the resonant frequency, resulting in

13,824 elements and 5,040 aperture unknowns. The FE-BI simulation required
approximately eleven hours to run on a XEON 450 MHz machine. As seen in the plot,

the measured resonant frequency is 2.71 GHz and the numerical result is 2.63 GHz. This
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represents an error of 2.95%. In Figure 5.6, the input impedance of a 4.0 x 3.0 cm patch
radiating on a ground plane measured over the same frequency range as in the previous
case is compared against the FE-BI simulation results. As seen in the plot, the FE-BI
routine predicts the lowest order and two higher order resonant modes. As in the previous
case, the measured input impedance data is compared with the FE-BI simulation results
in the vicinity of the dominant mode resonant frequency, as shown in Figure 5.7. The
same sampling factor is used over this frequency range as in the previous case, yielding a
finite element mesh with 18,432 elements and 6,744 aperture unknowns. As seen in the
plot, the measured resonant frequency is 2.70 GHz and the numerical result is 2.64 GHz.
This represents an error of 2.22%.

One possible source of experimental error is the discrepancy between the modeled
and actual location of the feed point on the patch. As the feed point is positioned closer to
the center, the magnitude of the electric field at the feed point for the excited mode
decreases, resulting in a reduction in the magnitude of the input impedance. The method
of antenna construction could be another source of error. In applying solder to electrically
bond the inner and outer conductors of the coaxial feed to the patch and back surfaces,

respectively, the metallic surface in the vicinity of these points is heated to approximately

650° F, which is the temperature of the soldering iron. It is quite possible that the
temperature of the dielectric layer in the vicinity of the feed which is in immediate
contact with the heated metallic surface would exceed the range of stability of the
dielectric constant. From the data sheet for the GML 1100 substrate (manufacured by

GIL Technologies), the dielectric constant of the material is stable only in the
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temperature range —131°F to 257°F. Published data on the value of the dielectric

constant outside of this temperature range is not available.
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Figure 5.4 Comparison of the measured and FE-BI simulated

input impedance of a 3.0 x 3.0 cm patch antenna radiating on a
metallic ground plane.
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Figure 5.5 Comparison of measured and FE-BI simulation
results near the resonant frequency of the dominant mode of
the 3.0 x 3.0 cm patch antenna.
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antenna radiating on a metallic ground plane.

153



50

1 I

— Measured
---- FE-BI

R, X [Q]

_3 1 1 1 1 1
2.5 255 26 265 27 275 28 285
Frequency [GHz]

2.9

Figure 5.7 Comparison of measured and FE-BI simulation

results near the resonant frequency of the dominant mode
of the 4.0 x 3.0 cm patch antenna.

154



5.3.2 Prolate Spheroid

This experiment is designed to measure the effect of surface curvature variation on the
input impedance of a patch antenna. In order to simulate an electrically large, perfectly
conducting prolate spheroid, the outer surface of a plastic bowl is covered in several
layers of aluminum foil. Holes with a diameter of 0.94 cm, large enough for the SMA
connector on the antenna feed to pass through, are drilled at consecutive elevational
positions along the bowl surface. In order to minimize the possibility of electromagnetic
coupling with nearby metallic objects, the measurements are taken with the antenna
configuration placed inside an anechoic chamber. The network analyzer is calibrated
using an 85032B Type N calibration kit. However, the SMA type connector on the probe
feed to the antenna necessitates the use of an Type N-to-SMA adaptor to transition from
the male N type cable to the female SMA probe feed on the antenna. The weight of this
configuration places considerable strain on the joint at the interface between the semi-
rigid coax of the probe feed and the bottom surface of the antenna. As a result,
considerable bracing is required at the attachment point of the Type N-to-SMA adaptor
on the antenna probe feed. Note that there is considerable buckling of the antenna as it is

mounted on the surface of the bowl, despite efforts to minimize its occurrence. The S, of

the antenna system, which includes the feed configuration, is measured over the
frequency range 1.0 to 6.0 GHz, sampled at 1,600 points. The experimental setup is

shown in Figure 5.8.
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Figure 5.8 Experimental setup for modeling the 3.0 x 3.0 cm
patch antenna mounted on a doubly curved platform.

In Figures 5.9, 5.10, and 5.11, the measured input impedance as a function of
elevational position for various antenna orientations is presented. In Figure 5.9, the
measured input impedance of a 3.0 x 3.0 cm patch excited for axial polarization is given

for various elevation angles along a 17.0 x 14.75 cm prolate spheroid. From this plot, the
resonant frequency exhibits negligible shifts between the 70° and 50° positions. Between

the 50° and 40° positions, however, there is a significant shift in the resonant frequency.
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In addition, it is observed that the magnitude of the input impedance decreases between

the 70° and 50° positions. However, it increases between the 50° and 40° positions. In
Figure 5.10, the measured input impedance of a 3.0 x 3.0 cm patch excited for azimuthal
polarization is given. In this figure, the resonant frequency appears to shift as the surface

curvature decreases. Moreover, the magnitude appears to decreases as the surface
curvature increases. The measured results for a 45° rotated patch at different elevational
positions along the bowl are given in Figure 10.11. Between 70° and 50° the resonant

frequency appears to decrease, but between 50° and 40° it appears to increase, although
not by a large amount.

Due to the sensitive nature of these experiments, crudeness of the antenna
fabrication techniques, and experimental setup, which give rise to experimental error as
discussed previously, it is not possible to draw any concrete conclusions from these
measurements. In order to improve upon the reliability and accuracy of any future
experiments, improvements in the following areas are needed: fabrication techniques
used in the construction of the planar and doubly curved patch antennas, fabrication of
the mounting platform used to simulate a doubly curved surface, and the method by

which the antenna is mounted on the surface in order to eliminate buckling.

157



20 ‘ ' ' | i

— Position 1: 70°
---- Position 2: 50°
----------- Position 3: 40° ]

-
(3]
T

A A

_1 1 1 1
2.6 2.65 2.7 2.75 2.8 2.85 29
Frequency [GHz]

Figure 5.9 Measured input impedance as a function of the
elevational position of a 3.0 x 3.0 cm patch antenna excited
for axial polarization.
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Figure 5.10 Measured input impedance as a function of the
elevational position of a 3.0 x 3.0 cm patch antenna excited
for azimuthal polarization.
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position.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this dissertation, a new approach to modeling the behavior of conformal antennas on
doubly curved convex surfaces utilizing the finite element-boundary integral method has
been presented. This method provides a practical alternative to previous methods such as
the cavity model and the rigorous integral equation based approaches for analyzing these
types of antennas. In this approach, a doubly curved, closed, convex surface is modeled
by a canonical prolate spheroid. The advantage of using a prolate spheroid is that it is
sufficiently general to represent the curvature of an arbitrary doubly curved surface
through the careful selection the azimuthal and elevational radii of curvatures. The PEC
surface boundary condition is enforced within a boundary integral whose formulation
relies upon an asymptotic prolate spheroidal dyadic Green’s function. This approach,
which essentially is a hybridization of traditional FE-BI and UTD, is well suited for
modeling conformal antennas on electrically large doubly curved surfaces that enforces
the Neumann boundary condition. In Chapter 1, a historical overview of the problem of
determining the radiation by sources on prolate spheroids was given. It was concluded
that exact formulations based upon the eigenfunction expansion method in a prolate
spheroidal coordinate system leads to extremely complex eigenfunctions expressed in
terms of spheroidal wave functions. Due to their complexity, they are not practical for
numerical implementation and are limited by the well-known convergence problems

associated with electrically large bodies.
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In Chapter 2, an overview of the uniform theory of diffraction was given. In this
chapter, the solutions for the canonical problems associated with a magnetic dipole
radiating on the surface of an PEC cylinder and on the surface of a PEC sphere were
generalized to accommodate a magnetic dipole radiating in the presence of an arbitrary
closed convex doubly curved PEC surface. The generalized solution was expressed in
terms of surface Fock functions that provide a smooth transition from the shadow
boundary to the deep shadow region. Since these functions are well tabulated, they are
highly amenable to numerical computation.

In Chapter 3, the generalized dyadic Green’s function was specialized to a prolate
spheroidal geometry by means of differential geometry. The prolate spheroidal dyadic
Green’s function physically represents creeping waves that are excited by a magnetic
current on the spheroid surface. Since creeping waves traverse the surface along geodesic
paths, the mathematical property of torsion that is exhibited by a geodesic curve was
discussed. It was shown that, unlike that canonical circular cylinder and sphere, an
intrinsic property of the prolate spheroid is that a geodesic lying along a non-meridianal
line is characterized by variable torsion. This important property precludes the existence
of closed-form analytical expressions for such geodesics. Differential geometry was
applied to develop an expression for the geodesic path that can be evaluated by numerical
integration. The validation of the Green’s function was based on the premise that the
magnitude of the prolate spheroid Green’s function should approach the magnitude of the
circular cylinder Green’s function within the quasi-cylindrical midsection of the spheroid.
It was found that there was good agreement between the prolate spheroid and circular

cylinder Green’s function within this region. The magnitudes of the prolate spheroid
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Green’s function along arbitrary geodesics were presented in order to provide reference
data for possible future work and to gain additional insight into the nature of coupling
along the spheroid surface. The prolate spheroidal dyadic Green’s function was
incorporated into the boundary integral. The magnetic current in the aperture was
expanded in terms of RWG vector basis functions over triangular regions. With the
specification of appropriate volumetric basis functions defined over tetrahedral elements
for the cavity region, the finite element-boundary integral equation was formulated.

In Chapter 4, the FE-BI method was used to model the resonant frequency and
input impedance of a cavity-backed slot antenna and patch antenna conformal to a prolate
spheroid as its surface curvature was varied. The curvature of the spheroid was controlled
via the specification of the azimuthal and elevational radii of curvature. Due to the lack of
published reference data, the numerical results were verified through comparisons with
planar and cylindrical FE-BI results, which have been experimentally confirmed
elsewhere. The resonant frequency of the cavity-backed slot antenna for various
orientations was modeled. It was found that the resonant frequency of a horizontally
oriented slot exhibits a stronger curvature dependence than the resonant frequency of a
vertically oriented slot. A slot oriented at 45° with respect to the vertical axis exhibits a
curvature dependence that lies in between that of the horizontal or vertical orientations.
From an examination of the electric structure beneath a patch antenna, it was found that
by varying the location of the probe feed, an electric field exhibiting either an azimuthal
or axial polarization was excited. The azimuthally polarized electric field was found to

exhibit a greater curvature dependence than the axially polarized electric field. A similar

result was obtained for a 45° rotated patch that was moved along the prolate spheroid
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from a region of low to a region of high curvature near the tip. For this patch orientation,
however, the excited resonant mode split into two resonant modes. The difference in the
resonant frequency between the two modes was found to increase with increasing

curvature. Finally the far field pattern of a patch radiating in the geometrical optics region

of the spheroid was calculated. It was found that the E, component exhibits a strong

curvature dependence. Specifically, the null of this component shifted and became
shallower as the curvature increased. Moreover, the gain of this component was found to

increase with the increasing curvature. Conversely, the E, component is practically

invariant with respect to curvature, except when radiating on the 10 x 8 cm prolate
spheroid. On this highly curved surface, the shape of the pattern grew slightly narrower
as the curvature increased. The gain of this component, however, remained constant.

In Chapter 5, experimental results for the patch antenna radiating on a planar
surface and on a doubly curved surface were given. The FE-BI simulation for a patch
radiating on a prolate spheroid was specialized to the planar limit and compared with
measured data results. The agreement between the simulated resonant frequency and
measured resonant frequency was good. Next, the input impedance of a patch antenna
mounted at various points on a bowl, was measured. The bowl provided a crude model of
a prolate spheroid surface. Due to the crude nature of this experimental setup, no
conclusions could be drawn from these experiments beyond general behavior consistent
with a patch radiator.

6.2 Future Studies
Several areas of future study arise from this research. An improvement in the efficiency

and speed at which geodesic paths on prolate spheroids are calculated is needed. Such an
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improvement would provide a significant increase in the ability to analyze complex
apertures. Another avenue of possible research is the investigation of the effects of
doubly curved surface curvature variation on the coupling between multiple apertures. In
this work, a near-to-far field transformation for calculating the radiated field in the
geometrical optics region was developed. As an extension of this work, a near-to-far field
transformation for the transition and deep shadow region that is amenable to computation
could be developed. This would provide a means to study the effects of doubly curved
surface curvature variation on the radiation pattern in these regions. Another possible
extension of this work is the development of a suitable surface dyadic Green’s function to

model cavity-backed apertures on coated doubly curved surfaces.
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APPENDIX A
EVALUATION OF POTENTIAL SURFACE INTEGRALS

OVER TRIANGULAR REGIONS

A.l1 1-,4-, and 7-Point Approximation Weights

A table listing the approximation weights that are used for numerical integration over
triangular regions in this work is provided for the convenience of the reader. The values
listed in this table are taken from [7]. The triangle integration points are depicted in
Figure A.1.1.

Table A.1.1 Approximation weights for numerical integration over
triangular regions. Note that o, = 0.0597158717, B, = 0.4701420641,

a, =0.7974269853, and B, =0.1012865073.

Points | Triangular Coordinates (g, ¢;,6;) Weights
a 1/3,1/3,1/3 1.0
a 1/3,1/3,1/3 ~27/48
b 0.6,0.2,0.2
c 0.2,0.6,0.2 25/ 48
d 0.2,0.2,0.6
a 1/3,1/3,1/3 0.2250000000
b a, B, B
c Ba, Bt 0.1323941527
d B By |
e ay, By, B \
f By, By b 0.1259391805
g B B,
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Figure A.1.1 The integration points on a triangular patch for
1-, 4-, and 7-point numerical integration.

A.2 Analytical Formulas

The expressions for integration over triangular regions encountered in the evaluation of
boundary integral by the method of moments in this work include singular integrals that
must be evaluated analytically. The technique for deriving analytical solutions to these
types of integrals is discussed in detail in [39] and, therefore, will not be repeated here.
The form of the integral of a uniform source distribution over a triangular patch is given

by

1 ¢
2 (A.1)

where T is the triangular patch region. The analytical solution for integrals of the type

(A.1) is given by [39]

1 A R’ +1' P°I*

—dS'=SY' P-4 {P° il BRI/ B I

TIR Z i (R, ) e [R°] +|d|R?
_ -1 BOI:‘_ A2
& +aix o

The form of the integral of a linearly varying source distribution over a triangular patch is

given by
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;7 R
The analytical solution for integrals of the type (A.3) is given by [39]

j—d";" S = %Zu, [(RP ) m(—ﬁf :j J+I,*R,* —I,'R,'} (A4)
T i i Tl

The definitions of the various parameters used in (A.2) and (A.4) are listed here for

convenience [39].

I, = ::"l (A.5)

4, =1xn (A.6)

R =|r-r}| (A7)
I¥=(p; -p)-L, (A.8)
p; =r—(B-r*)h (A9)
P’ =[(p; -p)-d| (A.10)
P’ =W (A.11)
R =|(P*) +a* (A.12)
d=h-(r-r*) (A.13)

Referencing Figure A.2.1, r' is the position vector from the origin to a source point on

the triangular patch, r is a position vector from the origin to an observation point in

space, p' and p are the projections of r' and r onto the plane of the patch, r* denotes
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the position vectors from the origin to the endpoints [, p’ is the projection of the
position vectors r® onto the patch plane, and dis the height of the observation point
above the patch surface. The parameter P° is the perpendicular distance of the projected
observation point in the plane of the patch to the i” edge of the patch. The unit vector i,.

is tangent to the i* edge and points in the direction of increasing length. The unit vector

G, is the outward normal vector to the i edge.

Figure A.2.1 The geometrical parameters associated with the evaluation
of potential integrals over the triangular patch T .
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APPENDIX B
PARAMETERIZATION OF THE PROLATE SPHEROID UNIT

VECTORS IN TERMS OF SPHERICAL COORDINATES

To facilitate the numerical implementation of the prolate spheroidal unit vectors in this
work, it is desirable to eliminate their dependence on the hyperbolic terms involving the
prolate spheroidal parameters £ and 7 and instead express the prolate spheroidal unit
vectors in terms of the major and minor semiaxes a and b, respectively, via the usual
spherical coordinates § and ¢ . The parameters & and 7 are defined as follows [6], [4],
[49]

& =coshQ (B.1)

n=cosé@ (B.2)
where @ is the usual elevation angle in spherical coordinates and Q is a constant that
defines the surface of a prolate spheroid. The major @ and minor b semiaxes are defined
in the prolate spheroidal coordinate system by means of (B.1) and (B.2) as follows [31]

a=ccoshQ (B.3)

b=csinhQ (B.4)
where ¢ =+va? -b% and is equivalent to one-half of the interfocal distance.

The expression of the prolate spheroidal unit vectors (ﬁ,é,(}) in terms of the Cartesian

unit vectors (X,y,z ) is given by [5]

- , 1-n° . ,1—7]2 T s
£ = .,][5—=&cospx+ Esinpy + nz (B.5)
52 -'72 52 —'72 52 _”2

Substituting (B.1) and (B.2) into (B.5)
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coshQ ) R coshQ
sinfcos@px +
\/ cosh? Q-cos* 6 \/ cosh? Q—-cos? 8

\/ cosh? Q-1 R
+ cosfz

é= sin@singpy

cosh? Q-cos* @

Expressing coshQ in terms of a and ¢ via (B.3) and substituting into (B.6)

E = alc sinfcospx+ alc
\/(a/c)z—cosze

\/(a/c)2 —cos2 @
\/ (a/c) - cosfz

(a’c)’ —cos? @
asinfcosp .  asinfsin , .
=T f 4 cos&z
\/a -c“cos“ @ \/a —c%cos 9 —c?cos?
asinfcos . asin@sin R
=75 f x+ £ \/ cosez
Jat-ctcost0 a*-ctcos 9 —c? cos?

1
Ja?sin2 6+ b cos? @

sin@sinpy

- E-

(asin@ cospx +asin@sin py +bcosO z)

Following the same procedure for 1, beginning with [6]

. ,52—1 L [E-1 . L |1-* .
n=-,[>—=ncospx-— nsingy + £z
52 _772 62 _nz 62 _772

substitute (B.1) and (B.2) into (B.8) and simplifying

2 2
ﬁ:\/( (ale) -1 cosecosqai—\/( (ale) -1 cosf@singy

alc)’ —cos?@ alc)’ —cos @

alc
+ sinfz

a/c) —cos2 8

a -—
1’ cosecosq;x—‘/ cosesm(py
a’ —c*cosé —c? cos?
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asin@ -
V4

\/a2 —c%cos* O

1

Ja?sin2 0 +b* cos? 0

= = (-bcosOcospx—bcosfsingy +asindz) (B.9)

Finally, the azimuthally directed unit vector ¢ is the same in prolate spheroidal and
spherical coordinates and is given by

¢ =-sinpXx+cospy (B.10)
Conversely, the Cartesian unit vectors may be expressed in terms of prolate spheroidal

unit vectors. Beginning with [5]

. | 1-7? s | £2-1 R .
X=, |5——5¢cospE— [S—ncospn-sing@ (B.11)
¢ -7 ¢ -1

Following the same procedure as before, substitute (B.1) and (B.2) into (B.11) and

simplify which results in

R 1-cos? @ A J cosh?Q-1 A . A
X= coshQcosp& - cosf cos pn—sin 12
\/cosh2 Q-cos’ 8 vt cosh? Q—cos? @ on ve (B.12)

Expressing coshQ in terms of a and c as before leads to

asinfcosep : a* -c?

\/az—c:2 cos’ @ a’ -c*cosf

X = cos@cospi—sinp @ (B.13)

After further simplification by means of the Pythagorean relationship between a, b, and
¢ the final expression for X is obtained

X= ! (asin&cos¢%—bcos€cos¢ﬁ—singz)(i)) (B.14)

s/a2 sin? @ + b2 cos® 6

In the same manner, y initially is given by [6]
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y= ’ /i ésin¢%—‘/£qsin¢ﬁ+cos¢¢ (B.15)
62_772 62—'"2

which, upon the substitution of (B.1) and (B.2), and simplification becomes

1
Ja?sin? 0 +b* cos? 0

y= (asinOsin(oé—bcosGsin¢ﬁ+cos¢(i)) (B.16)

The unit vector Z is written initially as [6]

n B.17
\/é 7 J:_nzﬁn BA7

which, by the same procedure, becomes

A 1
z= 2 2 2 2
Ja sin@+b°cos” 0

(bcoseé+asin0ﬁ) (B.18)

Summarizing, the prolate spheroidal unit vectors parameterized in terms of the spherical

coordinates & and ¢ and expressed in terms of the Cartesion unit vectors are given by

é: 1 (asin@cos px +asinGsin gy +bcosHz) (B.19)
\/a2 sin? @ +b? cos? @

= 1 (-bcosOcospX—bcosfsinpy +asinfz) (B.20)
\/a2 sin® @ +b* cos* @

@=-sinpXx+cospy (B.21)

The Cartesian unit vectors, parameterized in terms of the spherical coordinates € and ¢

and expressed in terms of the prolate spheroidal unit vectors, are given by

. 1

x —1
\/a2 sin? @ +b* cos’ @

(asin0c08(p§_,—bcos0cos¢f]—sin(o(i>) (B.22)

1
Ja?sin?@ +b% cos? 0

y (asin6’sin¢f;—bcosesin(oﬁ+cos¢¢) (B.23)
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. 1 5 .
zZ= bcosOE+asinfn (B.24)
Va*sin® 6 + b cos20( )

For the case of a sphere where a =5

1

§ = (asincospx +asinfsinpy +bcosH )
\/a2 sin? @ + b? cos? @
= sin@ cos % +sin@sin @y +cosfz =R (B.25)
n= 1 (-bcosfcospx-bcosfsingy +asinfz)
Va?sin? 8 +b? cos? 8
= —cosfcospx —cosfsin@y +sinfz=—-9 (B.26)

?=9 (B.27)
The Cartesian unit vectors expressed in terms of the prolate spheroidal unit vectors now

become

X = ! (asinacosq)é—bcos&cos¢ﬁ—sin(p6)

\/a2 sin? @ +b* cos’ @

=sin@cos@ R +cosfOcos 0 —sinp (B.28)

1
Ja?sin?0 + b cos? @

=sin@sin @R +cosfsin 0O +cosp (B.29)

y= (asinasin(pé—bcosBsin¢ﬁ+cos¢6)

a 1 ) o
Z= Jaz Sin’ 0 + b’ cos’ 0 (b0080§+asm0n)

=cosdR -sin69 (B.30)

which express the Cartesian unit vectors in terms of the spherical coordinate unit vectors.
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APPENDIX C
DERIVATION OF THE EXACT EIGENFUNCTION SERIES FOR THE

CIRCULAR CYLINDER DYADIC GREEN’S FUNCTION

The second-kind electric dyadic Green’s function for the infinite perfectly conducting

circular cylinder is derived most expediently from the free-space magnetic dyadic

Green’s function E,,,o. Beginning with the dyadic form of the vector wave equation,

expressed in terms of the free-space electric dyadic Green’s function, a relationship
between the free-space electric dyadic ao and the free-space magnetic dyadic Green’s
function Emo may be derived [10]. Beginning with

VxVxGe (R[R)-k*Geo (R|R") =I5(R-R’) (C.1)
where R and R' are three-dimensional position vectors to the field and source points,

respectively. Employing the relationship
VxGeo (R|R')=Gmo (R[R) (C2)

results in . . .
VxGm (R|R)=16(R-R")+k*Geo (R[R) (C3)

Since G mo is piecewise continuous with a discontinuity at p =0, it may be decomposed
into two components
Gro =Gl (p= p')+Gual (0" p) (C.4)

where the unit step functions are defined by

, L, p>p'
U(p—p):{o p<p’
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1, <p'
uio-n)-{g 05 )

Taking the curl of (C.4) and invoking an appropriate dyadic identity from [10] yields
VxGmo = (an;o]U(p-p')+VU(p—p')xE;o
+(Vx(=;;o)U(p'—p)+VU(p’—p)xE;o (C.6)
From the theory of distributions, the following relationships can be derived [10,49]
VU(p-p)=p5(p-p)
VU(p'-p)=-pd(p-p') (C.7)

Substituting (C.7) into (C.6) gives

VxGmo =(ng;o)U(p—p')+(VxE;.o)U(p'—p)

+f)5(p-p')x(a;o-3;o) (C.8)

The boundary condition on tangential magnetic fields across an interface may be

expressed in dyadic form as

ﬁx(E;o —E;o) =Lé(r-r) (C.9)

where I, =I-hh is the two-dimensional idem factor, I is the three-dimensional idem
factor, r, and r' are position vectors from the origin to the field point and source point
on the surface, respectively, and n is the outward unit normal vector to the interface.

Evaluating (C.9) in cylindrical coordinates yields
f)x(a:o—E;o)=(i-—ﬁﬁ)5((o—(p')6(z—z') (C.10)
and rewriting (C.8) in terms of (C.10) yields
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Vxémo =(VXE;OJU(p—p')+(VxE;o)U(p'—p)
+(i—ﬁf))&((p-(p')é(z—z')5(p—p') (C.1D
Rewriting (C.3) in terms of (C.11) and solving for G.o
(anmo)U(p—p')+(an;.o)U(p'—p)+(i—f)f))&((p-q)')5(z—z’)5(p—p')
= I5(R-R")+k*Geo
:(Vx(—}mo)U(p—p')+(an;.o)U(p'—p)+(i—ﬁﬁ)5(¢—(p')5(z—z')6(p—p')
~15(p-9)8(2-2)8(p-p)+ K Guo
= Eeo(RIR')=;—21[(VxE;o)U(P"P')+(sz;o)U(P"P)
-ppS(R-R')] (C.12)
Thus, (C.12) expresses the free-space electric dyadic Green’s function Eeo in terms of

the free-space magnetic dyadic Green’s function (=3 mo Which satisfies the dyadic form of

the wave equation
VxVxGus (R[R)~KGao (RIR) = Vx| I5(R-R') (C.13)

At this point, the method of Ohm-Rayleigh is employed whereby the source term in
(C.13) is expanded in the orthogonal basis of solenoidal vector wave functions M and N

and manipulated according to the procedure in [10] resulting in

= —ik =° N®(k,)M'(-k,)+M? (k,)N'(-k,), >p'
G:,o(RIR')=Lk IdeZ—l—z (k.) ) (-F.) ( ’)2 (k). p>p (C.14)
87 o ek, [N(k,)MP'(<k,)+M(k,)N?'(<k,), p<p’
where the vector wave functions are given by
M‘z’(kz)={j—nH,‘,2) (x)p-H® (x)a}k,,ewefk-r C.15)
x
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M'(-k,)= {'—ch'—’ J,(x)p'-J, '(x')@'} ke e (C.16)

k
Nm(k):{,k HY (x)p- ——H‘”( )¢+H,‘,2’(x)kpi}—kie’"“’e""’ (C.17)

k C
N(k)={- k)=, ()i, ()b oo (g
X

where x=k,p, x'=k,p', and H\”(x) is the second-kind Hankel function representing

outgoing cylindrical waves.

Taking the curl of each component (i.e. E;o or E;o) and exploiting the symmetrical
property of the vector eigenfunctions

VxM =kN

VxN=iM (C.19)

the following expressions are obtained
VxGno = — jdk 3L % LIM® (k)M (k) +N® (K, )N'(=k,)], p>p'  (C20)

®©

VXE;O =

a [M(k)M“"( k)+N? (K )N?(=k,)], p<p' (C21)

n=—w

Substituting (C.20) and (C.21) into (C.12) to obtain the free-space electric dyadic Green’s
function _G—-eo in terms of the vector wave functions

P ' -1.. '

G.o(R|R')= Fppcs(R-R )

a3 {“>(k)M'(k>+Nm(k)N(k> p>p'
8—w

=1 A ) (C.22)
Mk M® (k,)M®'(=k,)+N(k,)N?'(=k,), p < p'

The second-kind electric dyadic Green’s function may now be obtained by exploiting the

principle of scattering superposition
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G (R|R')=Ga (R[R)+Ga (R[R) (C.23)
where as is proposed such that when it is added to (=3¢o , the composite function EeZ
will satisfy the Neumann boundary condition f)xVerz =0 on the cylinder surface

p=a and the Sommerfeld radiation condition at infinity. Hence, the following

expression for G, is proposed
. © 1
Gos (RIRY) ==L [ak, Y k2 —[aM? (k,)MP(=k,)+b,N® (k,)N®'(-k,)] (C24)

After enforcing the Neumann boundary condition on the cylindrical surface

pxVx[M+a,M?P+N+5N]| =0 (C.25)
p=a

and defining y =x'=k,a the expansion coefficients are given by

- —Jn '(7)
=—2n _and b =—n )
H? () H?'(7)

Substituting (C.26) into (C.24) and evaluating (C.23), the electric dyadic Green’s

(C.26)

function of the second kind for the perfectly conducting infinite circular cylinder is

obtained

Eez Z ejn¢ J'dk "/"zz{[__—_JnH( )(x)+jn( ) H(Z) '(x)]“'

(2zr)2 s yxHP () y HP '(v)

[k HO ..., | H2@) (nk,\ HOx) |.., [k HOx)]..
~ I T 02| | | s (00| g |92
rksH () yH?(¥) \ky ) xH?? ') yxky HP '(7)

kk H® kY g
+ n2, >, (;,)'(_x) i‘i"_l (_p} H("z).(x) zz' (C.27)
kaHn (7) y kO Hn (7)

where p=p-¢', z=z-2',and x=k,p.
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APPENDIX D

FOCK FUNCTIONS

In his investigations into the phenomenon of diffraction by convex bodies, Fock
encountered certain recurring canonical integrals. These canonical integrals take the form
of a contour integral whose integration path encloses the complex poles of Airy functions
or their derivatives and are known as Fock functions [23]. Two varieties of Fock
functions are encountered in this work: the on-surface and far-zone. Furthermore, these
types of Fock functions occur in two forms: hard and soft. The hard Fock functions arise
from canonical problems where the Neumann boundary condition has been enforced,
while the soft Fock functions arise in cases where the Dirichlet boundary condition has
been enforced.

The on-surface Fock functions are given by

_ ,J3n/4 §_3£ y w, (1) e
u(&)=e T e ——ew2 = dr (D.1)

=_1_ /4 _‘f_ T wm() - Jér
v(¢) e ﬂw_!w-—ewz ,(T) dr (D.2)

where u(&) is the soft type and v(&) is the hard type. The Fock-type Airy function of

the second kind, denoted by, w, (), and its derivative, w,'(7), are defined as

1 rz-2°
wy(7) - j e Pdz (D.3)
I,

Ize""’/ 3dz (D.4)

(7)==
W, (z‘)—‘/_ﬂTrz
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where the integration contour I', in the complex 7 plane is depicted in Figure D.1. The
relationship between the Fock-type Airy function and Miller-type Airy function, Ai(-), is

expressed as
w, (1) =2vme ™" 4i(-re’") (D.5)

The asymptotic expansions of (D.1) and (D.2) for small arguments (5 < 0.6) are given by

(2]
u(&)~ 1.0-%[/”‘5” + j%§3 +£Z\/Ee—f”/‘g°/2 +.. (D.6)
N 7 7 o
v(£)~1.0 - y YT ey j%§3+51—2\/;e I L (D.7)

The asymptotic expansions of (D.1) and (D.2) for large arguments (¢' >0.6) take the

form of rapidly converging pole residue series and are given by [2]

u(&)~2e"" ﬁf”zi(rn)-]e""‘“ (D.8)
n=1

v(&)~ e g i(r,, ) e (D.9)

where the complex zeroes of w,(7) and w,'(7) are denoted by 7, and 7,', respectively.
The values of 7, and 7,' are listed in Table D.1.

The far-zone Fock functions are given by

e1~§r

/4 rj 1(7)

(")

dr (D.10)

T e/§

(")(5) J—-[wl'(r) T

(D.11)
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where /(&) is the soft type, g™ (&) is the hard type, and w,(r) is the Fock-type Airy
function of the first kind. Note that w;(r) is the complex conjugate of w,(7). The
integration contour I', in the complex 7 plane for the far-zone Fock functions is depicted

in Figure D.2. The formulas given below are valid within the specified domains of & and

are used for the numerical computation of these functions [2].

for g (¢):

E<-13:89)=2.0e¢" (D.12)
©) 8. c(m) m
~13<£<0.5:80(8) = 1.39937+27(x/;') (D.13)
m=1 .
o 10 e[ra'(m)él
0.5<£<4.0: =N — D.14
<§240:8%(8)=2, @ (m)Ai(m) (0-14)
£>4.0:8%(&)=1 8325¢[ OB (D.15)
for gV (¢&):
E<-28: gV (&)=- j2.0(§2 + jo'éﬁ—%)e'”% (D.16)
M & e(m)K"™ [ \m-i
—2.8<¢<05: gV (&)= — (¢) (D.17)
m=1 .
o 10 e[m(rn)é] g
0.5<£<4.0: = D.1
<¢ g"(¢) xZ e (D.18)
£>4.0: g (£)=-1.8325(0.8823 - j0.5094 + j& )e['("‘“’"’“""“"""/”] (D.19)

for f©(&):
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£<-L1: fO (&)= ﬁf( 0525 OS)e'J*"/’

~11<£<0.5: fO(£)=0.77582+ e'f"”iL”:)(xg)“
m:

m=1

[m(m)¢]

0.5<£<4.0: 1 (&)=e ”"’3ZA )

£>4.0: f9(£)=0.0

(D.20)

(D.21)

(D.22)

(D.23)

In (D.12)-(D.23), x =e™/**/®, the coefficients used in (D.12)-(D.19) are listed in Table

D.2, and the coefficients used in (D.20)-(D.23) are listed in Table D.3.

Im(7)
r, A

Figure D.1 Integration contour for w,(7).

ImA(‘r)

T

Figure D.2 Integration contour for the far-zone Fock functions.
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Table D.1 Zeros of the Fock-type Airy function of the second kind

w,(7) and of its derivative w, (7). Note that 7, =|r,|e”"*” and
z_” ' T,, lle-jﬂ/3 .

n |l |z,

1 2.33811 [1.011879

(2 4.08795 | 3.24819

3 5.52056 | 4.82010

4 6.78661 | 6.16331

5 7.94413 |7.37218 |

6 9.02265 | 8.48849

7 10.0402 ] 9.53545

8 11.0085 |10.5277

9 11.9300 [ 11.4751

10 | 12.8288 | 12.3848

Table D.2 Constants for g”(¢£) and g (¢).

m | c(m) a'(m) Ai(m)
1 0.7473831 1.01879297 0.5356566

| 2 -0.6862081 3.2481975 -0.41901548
3 -2.9495325 1 4.82009921 0.38040647
4 -3.4827075 1 6.16330736 -0.35790794
5 8.9378967 7.37217726 0.34230124
6 56.1946214 | 8.48848673 -0.33047623
7 9.53544905 0.32102229
8 10.52766040 | -0.31318539
9 11.47505663 | 0.30651729
10 12.38478837 [ -0.30073083
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Table D.3 Constants for £ (&).

m | c(m) a(m) Ai'(m)

1 1.146730417 | 2.33810741 0.70121082
2 0.86284558 4.08794944 -0.80311137
3 -2.0192636 5.52055983 0.86520403
4 -9.977776 6.78670809 -0.91085074
5 -14.59904 7.94413359 0.94733571
6 49.0751 9.02265085 -0.97792281
7 10.04017434 | 1.00437012
8 11.00852430 | -1.02773869
9 11.93601556 | 1.04872065
10 12.82877675 | -1.06779386
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APPENDIX E

BiCONJUGATE GRADIENT PSEUDOCODE

An iterative solver approach is employed to solve the FE-BI system of equations.
Iterative solvers are more efficient than direct solvers at solving the large sparse matrices
that arise from PDE based techniques in that direct solvers employ matrix fill-in, whereas
iterative solvers do not. Consequently, iterative solvers preserve the sparseness of the
system. The Biconjugate Gradient (BiCG) iterative solver employing Jacob’s algorithm

has proven to be readily applicable to the solution of sparse linear systems [46].

Initialize
r,=b-Ax,
Po=T
Do until (res. < tol.)
fm)
* (pi-Ap,)

X =X+, P,
L =T —Q,Ap,

.
: <rlz+l’rk+l>

B = (rk.9rlz>
Pin =T + By

End Do

where x is the unknown solution vector for which an accurate estimate is to be
determined, p is the search vector which points in the direction in the n-dimensional
space that the algorithm must move in order to improve upon the solution estimate, and r

is the residual vector. The subscript 0 denotes an initial guess which for x, can be set

186



equal to {0}, subscripts k and k+1 denote the previous and current estimates,

respectively.

The complex scalar coefficient ¢, , which dictates how far the algorithm moves along the
search vector, is chosen to enforce the biorthogonality condition
(rI:+ls rk) = (rlms rl:’> =0
While the complex scalar coefficient S, is chosen to enforce the biconjugacy condition
(p;u ’ Apk) = (pk+l > A‘rp;> =0
The solution is said to converge when a prescribed tolerance condition

(rm s rm) <e
55)

is satisfied, where ¢ is a tolerance threshold value.
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