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ABSTRACT

LOCAL STRAIN IN ZnSe1_,Te, ALLOYS

By

PETER F. PETERSON

Pseudobinary semiconductor alloys are of great interest because the lattice param-

eter and energy band gap can be varied by changing the composition. The atomic

structure of ZnSeHcTez is studied using the pair distribution function (PDF) mea-

sured with the General Materials Diffractometer (GEM) at ISIS. While the zinc-

blende average atomic structure interpolates linearly between the end-member (ZnSe

and ZnTe) values, the local structure stays closer to the end-member structure. Un-

derstanding the interplay between these length scales is the focus of this work.

The local structure is found to have two distinct nearest neighbor (nn) bond

lengths in the alloys. No strain effects are seen in the nu PDF peak widths using

temperature dependent data. In contrast, the far neighbor (fn) bonds show strain

in their PDF peak widths. The fn peak widths have two components to them, one

from strain and one from thermal motion. The rm and fn PDF peak widths as a

function of temperature are adequately described by the Debye and Einstein models

respectively.

Quantitative analysis is done using the Kirkwood potential model. Model PDFs

are calculated without adjustable parameters using bond bending and stretching force

constants from the literature. Agreement with the measured PDFs is quite good

showing how well the Kirkwood model describes the structure. The Kirkwood model

predicts the structure of other semiconductor alloys, here the structure InzGa1_xAs

is compared to that of ZnSe1_,Tez. Qualitatively all of the results of ZnSe1-,Tez and

InxGa1-¢As are the same, therefore the difference in chemical composition apears to

have little bearing on the atomic structure of the material.
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Chapter 1: Introduction

1 . 1 Introduction

Semiconductors are very useful and are seen throughout modern society in a

large variety of devices. The vast majority of semiconductor devices are integrated

circuits built using Silicon as a base. The best example of this is computers.

Earliest computers used amplifier tubes to make the logical circuit, occupied large

rooms, and only served to replace trajectory tables used for firing artillery. In

contrast, modern computers contain millions of transistors with feature sizes as

small as 0.13pm. As technology continues to shrink features to produce smaller,

faster, devices there is a growing need for understanding the underlying physics of

semiconductors.

In the semiconductor industry the majority of devices are made using doped

thin films of Silicon, Germanium, or Gallium-Arsenide. Because of its widespread

use, Silicon is the cheapest material to manufacture devices with and has the largest

variety of techniques surrounding its fabrication and processing. The search for new

devices has led to other semiconductor materials finding greater use in industry

because of their particular electronic or structural properties. Pseudobinary

semiconductor alloys, especially, are finding greater use because of their ability to

select the lattice parameter, a, and the energy band gap, E9. [4, 5, 6, 7]

Similar semiconductors, for example ZnSe and ZnTe, can be alloyed together to

produce pseudobinary alloys. By alloying semiconductors, the structure of the two

end-member systems, ZnSe and ZnTe, are merged to form a new material,

ZnSe1_xTe,,.. ZnSe and ZnTe, both have zinc-blende structure (space-group

symmetry F43m), [8] the alloy is also zinc-blende and has a well defined lattice

parameter that interpolates linearly between the end member values consistent with



Vegard’s law. [9] Vegard’s law states that alloying materials’ macroscopic

parameters, such as the lattice parameter, vary linearly between the end-member

values. Because the inter-atomic potential of ZnSe and ZnTe have difi'erent optimal

nearest neighbor (nn) distance, strain is introduced by alloying.

The study of alloys is complicated by the fact that considerable local atomic

strains are present due to the ordering effect of alloying. This means that local

bond-lengths can differ from those inferred from the average (crystallographic)

structure by as much as 0.1 A. [10, 11] This clearly has a significant effect on

calculations of electronic and transport properties. [5] To fully characterize the

structure of these alloys it is necessary to augment crystallography with local

structural measurements.

The traditional method of structure determination, Rietveld analysis of Bragg

peaks from powder diffraction, cannot resolve the local structure. [12] Rietveld

refinements are a probe of global structure and will fail to see the strain which

appears in the diffuse scattering produced by the local structure varying from the

crystalline behavior. In the past the extended x-ray absorption fine structure

(XAFS) technique has been extensively used. [3, 10, 13] XAFS uses the absorption

edge of an atomic species to find chemical specific local information of a powder.

XAFS lead to the result that pseudobinary alloys have two distinct bond lengths,

but it is unable to reproduce the crystallographic structure. A limitation of the

XAFS method for studying the local structure of alloys is that it only gives

information about the first and second neighbor bond-lengths. Also, the

measurement is atomic species specific and information about bond-length

distributions is less accurate than bond-length determination. More recently the

atomic pair distribution function (PDF) analysis of powder diffraction data has also

been applied to get additional local structural information from In,Ga1_,As alloys

along with the average structure. [11, 14, 15]
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Figure 1.1: Abbreviated periodic table of elements with atomic numbers.

This dissertation will discus the atomic structure of pseudobinary

semiconductor alloys, using the example of ZnSe1_zTe, at 10K, with the PDF

technique. ZnSe1_xTe,, is further explored by looking at the temperature

dependence of the structure.

1.2 Properties of Semiconductors

Silicon, Germanium, and Gallium-Arsenide are the most thoroughly understood

semiconductors due to their widespread use. Everything from the mobility as a

function of temperature to the energy diagrams are in introductory texts on the

subject. [16, 17, 18, 19, 20] All semiconductors can be placed into one of three

general groups: elemental semiconductors, compounds, and alloys. Silicon and

Germanium fit into the elemental group while InAs, GaAs, ZnSe, and ZnTe are all

semiconductor compounds. Looking at the abbreviated periodic table in Figure 1.1

one immediately sees that compounds are composed of elements in columns equally

spaced from the IV column. Semiconductor alloys are obtained by combining

semiconductors from the other two groups. Examples of alloys are SixGe1_z,
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Figure 1.2: Cartoon of a reduced zone energy diagram showing the allowed states for

a one dimensional crystal. The bands are shown to the left of the diagram.

InzGa1_3As, and ZnSe1_,,.Tez which are lV-IV, Ill-V, ll-Vl semiconductor alloys

respectively. The :r subscript in the alloy formulas denote the percentage of each

end-member material, for example, :1: = 1 in ZnSe1-;Tex is ZnTe. However, not all

elements or compounds can be alloyed together over the entire range of composition

or at all. [21]

1.2.1 Electonic Structure

Features of the electronic structure, while not explored in this dissertation, are

presented here for motivational purposes. Charge carriers in a solid material are

described by their momentum and energy. For semiconductors, the electron or hole

is travelling through a periodic potential determined by the atomic structure of the

semiconductor. Globally, semiconductors are periodic in their structure therefore

.
5



the potential is periodic and, in turn, the particle’s wavefunction must also be

periodic. This observation is succinctly stated by the Bloch theorem, [22]

“d

w(f'+ I?) -- e‘k'me, (1-1)

where Mr") is the wavefunction, 1" is the position of the particle, If is a direct lattice

vector, and I: is a reciprocal lattice vector. The result of the Bloch theorem is that

the particle must lie within particular energy bands. A qualitative picture of the

energy bands and how they arise, for a one-dimensional system, is seen in

Figure 1.2. [16, 22] The general features of the energy diagram in Figure 1.2 are also

present in the diagrams of real three-dimensional solids. One should notice that

there are bands of allowed energies separated by gaps. The size of these gaps

dictates many of the electronic properties of a given semiconductor. At room

temperature the energy gap between valance and conduction bands is 1.12eV for

Silicon, 0.66eV for Germanium, and 1.42eV for Gallium-Arsenide. [17] The size of

the band gap is of similar to visible light (0.28eV for red to 0.49eV for violet). As

seen in the Bloch theorem a very important parameter is the crystal structure of the

material which appears as If in Equation 1.1.

1.2.2 Atomic Structure

This dissertation concentrates on the structure of semiconductor alloys,

however, much is already known about the structure of bulk semiconductors. Most

semiconductors crystalize in diamond, zinc—blende or wurtzite structures. The

zinc-blende structure is shown in Figure 1.3 which can be viewed as two

interpenetrating face centered cubic (fcc) sub-lattices offset by ax(;]-,-]-,%), where a is

the lattice parameter and (i ,i) is the in the direction of the body diagonal. Thel

’4

diamond structure is a special case of zinc-blende where both sub-lattices are



     
Figure 1.3: The zinc-blende structure shown with conventional unit cell.

occupied by the same atomic species. The zinc-blende and diamond structures have

four rm and the conventional unit cell contains eight atoms.

For semiconductor alloys, as suggested above, the local structure differs from

that of a simple crystal. Alloying a material adds strain into the material by

changing the an bond lengths. Figure 1.4 demonstrates the two limits of the nu

bond length. It is possible that the nu distance, L, remains at the value dictated by

the crystallographic structure. For zinc-blende crystals this is L = a\/3/4. This is

known as the Vegard limit and can be seen as the solid line in the figure. In contrast,

the atoms can stay at their end-member values for the entire alloy range, this is

known as the Pauling limit and is represented as the dashed lines in the figure.

Somehow the intermediate length-scale structure must link the local order to

the global order. The case of the Vegard limit is trivial since the local and average

structure are the same. However, the Pauling limit produces a large amount of

strain that must be accommodated by the average structure. Strain is seen in the
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Figure 1.4: Comparison of the Pauling and Vegard limits for a pseudobinary alloy.

average structure as broadening of the bond length distributions. To reduce the

amount of broadening due to thermal motion the alloys should be studied at low

temperature. This has a disadvantage for understanding the materials as they are

normally used at or above room temperature. Therefore, it is also necessary to

study the development of the strain in the alloy as a function of temperature.

1.3 Pair Distribution Function

In this study, the PDF analysis of neutron powder diffraction data is used. The

PDF is the instantaneous atomic number density-density correlation function which

describes the atomic arrangement of the materials. It is the Sine Fourier transform

of the experimentally observed total scattering structure function, S(Q), obtained

from a powder diffraction experiment. Since the total scattering structure function

includes both the Bragg and diffuse scattering, the PDF contains both local and

average atomic structure yielding accurate information on short and intermediate

length-scales. Previous high resolution PDF studies on InzGa1_xAs were carried out



using high energy x-ray diffraction. [11, 15, 23] This yielded data over a wide

Q-range (Q is the magnitude of the scattering vector) which resulted in the very

high real-space resolution required to separate the nearest neighbor peaks from

In-As and Ga-As. The high Q-range coverage and Q-space resolution of the General

Materials (GEM) Diffractometer at the ISIS neutron source allowed similarly high

real space resolution PDFS of ZnSe1_zTez using neutrons and to resolve the Zn-Se

and Zn-Te bonds that differ in length by only 0.14 A. Furthermore, the data

collection time was an hour or less compared to the twelve hours for the x-ray data

with similar quality.

1.4 Layout of Dissertation

In Chapter 2 we discuss the basics of the PDF technique. The reader will be

introduced to the PDF formalism, terms related to the PDF and general methods

for extracting structural information from the PDF. Chapter 3 further explores the

PDF technique by determining the quality of the PDF using different criteria. The

criteria introduced are used in later chapters to automate portions of data reduction

process. The structure of ZnSe1-,Te,, at 10K is presented in Chapter 4 and

compared to predictions of the Kirkwood model. Similarities between ZnSe1_zTex

and InzGaHrAs are also discussed. Chapter 5 discusses how the low-temperature

structure of ZnSeHcTex relates to the room temperature structure using the

Einstein and Debye models. Finally, summary and discussion are in Chapter 6.



Chapter 2: The Pair Distribution

Function Technique

2.1 Introduction

Diffraction has long been used to study the microscopic structure of

materials. [24, 25, 26] Initially, crystalline materials were studied using low intensity

x—ray sources, looking at the position and relative intensity of the Bragg diffraction

the symmetry and lattice vectors can be determined. However, this left the majority

of interesting materials unavailable since they are not crystalline in nature. All

deviations from the average structure appear in diffuse scattering which, in general,

is of low intensity and time-consuming to measure. With powder diffraction all

angluar information is removed from the scattered intensity but the problem of low

intensity is greatly reduced. The development of Extended X-ray Absorption Fine

Structure (EXAFS) allows for the measure of the nearest neighbor (an) and, with

less accuracy, next nearest neighbor (nnn) distribution. [3] EXAFS uses x-rays tuned

to an energy for a particular chemical species. This opened up the study of glasses,

liquids and other amorphous materials, but limits measurements to short range

order and to materials with accessible energies. The Pair Distribution Function

(PDF) technique is another method deveIOped to study amorphous materials,

glasses, and liquids. [27] Like EXAFS, PDF has the disadvantage of averaging over

angles, however, PDF not only measures the short range order but also the

intermediate range and, potentially, long range order. Due to the greater amount of

information in the PDF measurement, a structural model can be built which, in

order to agree with data, must correctly reconstruct the angular information as well

as distances. The PDF technique is now used to study, in addition to amorphous



materials, the local deviations in the structure of crystalline materials where the

inconsistency with traditional Bragg structure refinements was not fully explained.

In this chapter we will present the formalism of the PDF technique, methods of

data acquisition, and two methods of structure determination.

2.2 The Pair Distribution Function

The PDF technique relies on the scattering of either neutrons or x-rays from a

powder sample. Incident radiation of a known state are scattered off an unknown

potential then the final state is measured. Information about the scattering

potential in gained since the both the initial and final states of the scattered

radiation are, within experimental uncertainty, known. In general, the final state of

radiation will have a different wave vector, E", and energy.

The formalism of the PDF will begin with the elastic scattering amplitude,

f;(0, 43), where 1: denotes the incident radiation wave vector. The scattering

amplitude is

mm = fe“'i'fU(f)e"°""id3x, (2.1)

where U(:3) is the scattering potential and It” is wave vector of the scattered

radiation. When there is more than one atom acting as a scattering center then

interference occurs between radiation scattered from different points. In the limit of

an infinite periodic array of atoms we achieve the Lane condition where a Bragg

peak appears whenever the change in wave vector, 6? = I? — If, is equal to a

reciprocal lattice vector. Recall that, for elastic scattering, Q is the familiar

_47r

Q = IQ] — 78319, (2.2)

where 20 is the diffraction angle. When the atoms are not perfectly periodic then

10



diffuse scattering appears in the diffraction pattern which cannot be seen using

analysis of the Bragg diffraction. The scattering potential can be written as a sum

of potentials from the different atoms

U(a‘=‘) = Z U413.) (23)

P

where R}, = if — z} and 35;, is the position of an atom. Then the scattering amplitude

can be written as

fr(0,¢) = [Ze‘W—‘l‘zfi‘fv’mmdm

1’

= Zeté-z‘p fe‘é'firU(R;)d3Rp. (2.4)

The integral portion of this equation is the Fourier transform of the atomic

potential, therefore

mo, ¢) = Z) e‘é'fi’UAQ‘). (2.5)

For neutron scattering, the atomic potential is essentially a delta function,

independent of direction, so U,(Q) = bp where bp is called the scattering length since

the scattering cross section is 0,, = 47th:. The square of the scattering amplitude is

the measured scattering intensity,

1(6) = f,-:-(0, ¢)fi€(9, d»)

E: b;e"é"‘7’ Z bge‘é'fq

P Q

= Z bpbqe‘Q‘m-IW. (2.6)

P?

Since the scattering intensity is measured rather than the scattering amplitude, all

phase information is lost. Because the sample is isotropic, there is no angular
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information in the scattering intensity. It is convenient to introduce r34 = x"; — 13;.

Because the scattering is isotropic it is only the relative distance between the atoms,

r,W = Irgl, that matters. In the case when only elastic scattering is considered, Q is

dependent only on the directions of the incident and scattered radiation. Averaging

the scattering intensity over all angles

1 21r 1r . .

[(62) = qupbq4_7r/0 foe'mmcmfrgqsmédédx

= 2b,,b Sin——(Q——QP:W) . (2.7)

This is known as the Debye scattering equation. [28] Here it is useful to introduce

the density function, pp(r,,q), such that the number of atoms in the volume dV}, a

distance rW away from atom p is given by pp(rpq)qu. Then, for a monatomic

material

I Q) = 2: b? + 2: h? / pp(rp.)S—"%%’ffldn (2.8)

Letting qu = r and p(r) be the average of pp(rpq) over all pairs of atoms

 I Q) = Z I)2 + Z 122/00 47rr2p(1‘) sinégt‘) dr. (2.9)

We then introduce the total number of atoms to be n. Adding and subtracting the

average number density, p0,

  I(Q) = nb2 + nb2 Aw 47r'r2 [p(r) — p0] sinégrwr + nb2 [00° 47rr2po sinégrhlr. (2.10)

The third term is the self scattering term. The self-scattering all occurs in the

forward direction and cannot be separated from the unscattered direct beam. It is

therefore not measured and cannot be included as an experimental observable. The

tails of the self-scattering become visible as ”small angle scattering” when the

12



sample contains microscopic inhomogeneities. In most crystalline and amorphous

samples this is not present but, in principle, small angle scattering should be

removed from measured data before determining S(Q). In practice, even when it is

present it has a negligible effect on the PDF since it is confined to the very low-Q

region. On the other hand, studying small angle scattering directly is a very

powerful method for studying nanometer to micron scale inhomogeneities in

samples. Following Eq. 2.10 we define the total scattering structure function , S(Q)

as

= 1(Q)
5(Q) 72?— — = [00° 47’7’2 [PU] - Pol sinégr)

When more than one atomic species is present S(Q) can be written as

dr. (2.11) 

 5(Q) = 1128; ’ (“(132“) - (2.12)

Then the scattering equation can be rearranged to resemble a Fourier transform

F(Q) = Q [5(Q) — 1) = / 4m [pm — p0] sin<Qr)dr. (2.13)
o

F(Q) is called the reduced total scattering structure function and the kernel of the

integral is the pair distribution function, 0(1) The inverse Fourier transform of

Equation 2.13 is

2 °° .

G(r) = 4m [pm — p0) = ; / Q [5(Q) — 11sm<Qr>dQ, (2.14)

which is how the PDF is obtained from scattering data. For x-rays, while the

precise derivation is different, Equations 2.12, 2.13, and 2.14 are still valid.

13



 

Figure 2.1: General physical setup of for a PDF measurement. The incident radiation

scatters off of a powder sample held at the center of the diffractometer. Scattered

radiation is detected by either an array of detectors or by a single detector that is

rotated through an angle.

2.3 Data Collection

The basics of a PDF can be seen in Figure 2.1. The incident radiation, either

neutrons or x-rays, is well charaterized and scatters off of the sample in the center of

the diffractometer. The scattered radiation is recorded as a function of scattering

angle, 20, and time (in the case of neutrons) or energy (for synchrotron x-rays). The

recorded intensity is used to create the intensity of the single scattered radiation as

a function of momentum transfer, Q. The sample environment, background, and

incident radiation are also measured to aid in data processing as described in the

next section. Below is a description of the differences between neutron and x-ray

measurements.
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2.3.1 Neutrons

All of the neutron diffraction measurements used for the production of this

dissertation were performed at the General Materials Diffractometer (GEM) at ISIS.

Pulses of neutrons are produced by accelerating bundles of 800MeV protons at a

tantalum target with a current of 20pA to produce 2x1016 neutrons per second at a

frequency of 50Hz. The spallation produces a pulse of neutrons which enter a

moderator of liquid methane kept at 100K which produces a spectrum of neutrons

with wavelengths from 0.25A to 8A. The neutrons travel from the moderator down

a 17m evacuated flight path before scattering off of the powder sample. The sample

is ten to fifteen grams of powder sealed in an extended vanadium container under a

Helium environment. The Helium is present to displace any moisture and allow for

good thermal contact between the sample and the cold stage. Moisture is a concern

because Hydrogen is a strong neutron scatterer and produces a large signal that

obscures the measurement. The temperature was controlled using a cryo-furnace

that can control the temperature from 8K to 450K to within a few tenths of a

degree.

Once scattered by the sample, the neutrons travel to an array of detectors 1m

to 2m away. The location of the incoming neutrons as well as the time of arrival are

recorded to determine the momentum transfer, Q. The wavelength of the neutron is

determined from the total time of flight of the neutron using the deBroglie relation,

A = h/p; the speed of the neutron is given by v = L/t, where L is the flight length

and t is the time of flight. The 4140 detectors are time focused to 20 angles of 17.90,

63.60, and 91.40. Time focusing is a process where detectors at 26 + 60 are offset by

a time to give times to the neutrons as if they were measured at 20. The mapping

does not significantly reduce the resolution of the measured scattering intensity.

Because of the detector locations and the finite diffraction spectrum the Q-range

and resolution of each bank is different. The effect of Q resolution is to reduce the
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absolute height of the high-r peaks of the PDF.

2.3.2 X—rays

X-ray measurements have no analog of the time of flight technique. Because of

this the incident beam has a well known energy by either using a characteristic fixed

tube (Cu, M0, or Ag), rotating annode (Cu), or synchrotron using a

monochromator. Since traditional fixed tube and and rotating annode sources have

a fixed energy (Cu 8.04keV, Mo 17.44keV, and Ag 22.11keV) which have a relatively

small maximum Q (Cu 8.15A'1, Mo 17.68A‘1, and Ag 22.41A‘1) the description

here will be limited to synchrotron sources. While the effect of a limited Qm is

discussed in the next chapter, it is sufficient to say here that a greater QM allows

for smaller differences in bond lengths to be resolved. While no data presented in

this dissertation was measured using x—rays we will discuss the method for the l-ID

hutch at SRI-CAT at the Advanced Photon Source (APS).

X—rays are produced by a electron storage ring 1.1km in diameter. To increase

the number of initial photons from the storage ring the protons pass through a

undulator insertion device (ID). A undulator has varying magnetic poles that

rapidly oscillate the electrons to produces x-rays between 2.5keV and 100keV in

energy. By varying the gap between the poles of the undulator the number of

photons entering the initial beam optics can be varied. The white beam enters the

initial optics, kept in vacuum, by first passing through slits to cut down the

physicsal size of the incident beam and reduce the heat load on the double crystal,

fixed exit, Laue type monochromator used to disperse the beam before entering

paddle slits that separate the initial optics from the enclosure. Inside the enclosure

the monochromatic beam is kept within a Helium filled flight tube to reduce air

scattering before it scatters off the sample at the center of a Huber four circle

diffractometer. The sample is in flat plate geometry held between two thin
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(~0.001 inch) pieces of kapton tape inside a displex that is attached to the ¢-circle.

The displex is used to control the temperature between 8K and 300K. The thickness

of the sample is varied to obtain an absorption, at, of 0.5 to 1.

The scattered x-rays pass through detector slits and a secondary Helium filled

flight path before entering a single energy-dispersive Germanium detector attached

to the 20—circle. The spectrum measured is sent through two sets of electronics in

parallel, a multi-channel analyzer (MCA) and a set of single channel analyzers

(SCAs) with different energy windows. The spectrum is sent through the electronics

to allow for the reduction of the spectrum to only the unmodified Thompson

scattering. This is often referred to by x-ray diffractionists as ”elastic scattering”

though it contains inelastic scattering from low energy processes such as phonons.

In general there is ”elastic” scattering, Compton scattering (often called

”inelastic”), and x-ray fluorescence from the sample. SCAs are used to specify

specific energy window that are recorded during the experiment and are normally

set to capture the elastic signal, Compton signal, elastic and compton signal, and a

fluorescence signal. While using SCAs has the advantage of speed and relatively

small data files, improperly set energy window can ruin an experiment. A MCA

records the entire energy spectrum at each point so the elastic scattering can be

extracted during the processing stage. [29]

The geometry used for synchrotron experiments has the cf- and 20—circles in the

scattering plane with the ¢-circle acting as 0 keeping the ratio 20/¢ = 2. The beam

has a small physical size (normally ~ 2mm X ~ 1mm) and the sample is fairly thin

(~ 0.5mm thick) so there is, in general, a problem with having too little sample in

the beam for proper powder averaging. To counteract the lack of sample in the

beam, the x-circle is rocked :l:2° for better powder averaging. The sample is

measured several times to improve statistics with concentration on the high-Q

region.
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2.4 Data Reduction

The intensity listed in Equation 2.12 is the scattering intensity from single

scattering events from the sample only. The measured intensity differs from the

intensity of Equation 2.12 in that it contains (for example) multiple scattering

events, absorption effects, scattering from the sample environment, varying detector

efficiencies, and changing amount of incident radiation. The methods for correcting

the data for these effects, while incomplete, include characterization measurements

of the background and theoretical models for the multiple scattering and absorption

and can be seen in Figure 2.2. The reader is referred to the software used to process

the data: PDFgetN [30] for neutron data and PDFgetX [31] for both in house and

synchrotron x-ray data for more information.

2.5 Peak Position and Width

Simple structural modeling will reveal information from the bond length

distribution of a particular bond. The PDF is a correlation function, therefore, a

change in bond length distribution can easily be seen as a change in the PDF peak

width or height. While peak fitting does not yield information about the overall

symmetry of a material it can be used to give information about the material on a

particular length scale as a function of a macroscopic parameter such as

temperature or magnetic field. To study changes in the PDF peaks, it is necessary

to introduce a few new functions which are related to the PDF. First is the radial

distribution function (RDF)

T(r) = 47rr2p(r) = 2 $60 — rij). (2.15)

1'51
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Figure 2.2: 10K Garnet data measured at the General Materials Diffractometer

(GEM) at ISIS. From top to bottom the raw data, the fully corrected total scat-

tering structure function, and the resulting PDF.
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As above, 1“,,- is the distance between the 2th and jth atoms and the RDF, like the

PDF, is a correlation function. The main difference between the function is the

baseline. Another useful function is the integral of the RDF called the correlation

number

n(r) = ./o-r T(:r)da: = for 47r552p(:c)d:r. (2.16)

n(r) is the number of neighbors, weighted by the scattering length, within the

distance 1'.

When finding the peak width, or height, one should always find this

information from the RDF because it can be fit with a simple Gaussian. The delta

functions can be approximated by a Gaussian and the RDF becomes

 T(r) or Z ——&——2 exp (r - r") . (2.17)

1'51 (b)? 27m,- 20"

It is then obvious how peak width and height are related. Since the area under the

peak is constant the height is inversely proportional to the width. A simple example

of this is that when a sample is heated the atoms move more. In the absence of a

phase transition the width of a RDF peak will simply broaden, however, the number

of atoms at that distance are fixed, so the height of the peak must reduce in order

to keep the integrated number of atoms, n(r), fixed. This can be used to study a

particular bond length in a material. While the overall structure of the material is

fixed, a particular bond may change in width to accommodate strain introduced by

things such as polarons, [32] tilt disorder, [33] or bond-length mismatch. [11] Here

we fit the nu peak distribution to determine the position and width of the nu bond.

This quantifies the local structure which is compared with the crystal structure as

described below.
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2.6 Structural Modelling

In contrast to peak fitting, full structural refinements using PDFFIT allow for

the study of the crystal structure. [34] PDFFIT allows for constrained fitting of PDF

data without use of symmetry parameters that are not explicitly included in the

refinement. For materials studied in this dissertation all of the lattice parameters

are set to be equal (a = b = c), the angle between the lattice vectors are (a = fl = 7)

90°, and the atoms are all on the symmetry sites (Zn on [0,0,0] and Se,Te on

G, ,%]). In order to learn anything, hoWever, one must refine some parameters.

Normally the known crystal structure is refined by varying atom positions and

anisotropic thermal factors. Here we vary the scale factor, Nm, the instrument

resolution, dq, the dynamic correlation factor, 6, the lattice parameter, a, and the

chemical species specific isotropic thermal factor, U. This is a minimalist approach

to structure refinement but the main point of interest here is the effects of strain.

While strain does effect the bond lengths, the effect can be eliminated by not

including the nu peak in the refinement. By determining the isotropic thermal

factors we obtain the far neighbor (fn) peak width, 03, which quantify the effect of

the local strain on the crystal structure.

2.7 Summary

In this chapter we laid out many of the terms and techniques associated with

the PDF. We saw that the PDF allows for determination of the structure on

different length scales. This is done by high resolution measurements which are fit

using either individual peak fitting or structural refinements.
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Chapter 3: Measures of Pair

Distribution Function Quality

3.1 Introduction

In this chapter we discuss how to assess and improve the quality of a pair

distribution function (PDF) given a structure function, S(Q), that has been

obtained from experimental data. As we discussed previously, the PDF has been

widely used to study glasses and amorphous materials, [24, 25] but more recently it

has been used to study the structure of crystalline materials. [35, 36] An imptortant

aspect of every structural technique is to obtain the best results possible from a

given measurement. This can be achieved either by improving the measurement

method or by processing the data better; we will be discussing the latter.

The most important equations of the PDF are reproduced here for convenience.

The PDF, G(r), is obtained from the experimentally determined total scattering

structure function, S(Q), by a Sine Fourier transform

Gm = g [‘2 Q[S(Q) — 1)sin(Qr)dQ (3.1)

= 4WW?) - po),

where

=47rr2 Zb—i—(b)2( 13,-), (32)

is the microscopic pair density, and p0 is the average number density of the sample.

The sum is taken over all atoms in the sample and n,- = If; — rjl is the distance

separating the 1th and jth atoms. It gives the probability of finding two atoms

seperated by a distance 7‘, weighted by the scattering lengths, and averaged over all
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pairs of atoms in the sample.

In a real experiment a number of corrections to the intensity data must be

carried out in order to obtain the structure function, S(Q), normalized to the total

scattering cross-section of the sample. In principle, the data corrections are well

known and well understood [24, 25, 37, 38, 39, 40, 41] and the data analysis can be

carried out with no adjustable parameters. In practice, a number of approximations

must be made in calculating these corrections and certain parameters are not known

with high accuracy. Using these approximations results in a corrected, normalized,

S(Q) which contains distortions. The distortions are usually dealt with in somewhat

arbitrary ways as described below. Fortunately, the structural information in the

PDF is rather robust with respect to these distortions. Inadequacies in the

corrections tend to result in very long wavelength distortions to S(Q) giving rise to

features in G(r) at nonphysical low values of atomic separation, r. The distortions

do not affect the data except insofar as ripples from these features prepagate into

the high-r region. Frequently an expert eye is needed to minimize distortions to

S(Q) so the physics can be studied. Nonetheless, it is clearly of interest to find more

quantitative criteria for assessing the quality of a PDF and to minimize these

distortions and obtain the most accurate PDFs possible. As instruments such as

General Materials Diffractometer (GEM) at ISIS come online increased data

acquisition rates necessitate an automated data processing method. A number of

indirect methods have been proposed for the Fourier transform such as the case of

Reverse Monte Carlo [42] and Bayesian methods [43] and these address this issue.

Here we prefer to consider how to obtain the best S(Q) possible for direct Fourier

transform.

The most obvious problem to detect is when S(Q) does not asymptote to one

as Q —+ 00. In practice, the data are adjusted to obtain the right asymptote.

However, it is not a priori clear whether the correction should be to add a constant,
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multiply by a factor, or apply some other correction. This is because it is often not

clear which data correction, or corrections, are primarily to blame for the problem.

Some data corrections are additive, such as background, empty can, multiple

scattering and incoherent scattering subtractions, and others are multiplicative,

such as normalization for flux and number of atoms in the illuminated sample

volume and absorption corrections.

A number of different approaches are often taken at this point. The most

common is to make the sample density a parameter and vary it until the asymptotic

behavior of S(Q) is correct (S(Q) —-) 1 as Q —> 00). This practice is somewhat

arbitrary since in many cases this will not be the limiting factor in the accuracy of

the corrections as the sample density is easy to determine with reasonable accuracy.

It should be noted that varying the sample density applies a predominantly

multiplicative correction (it strongly affects the sample-normalization and the

absorption correction) to the data with a small additive part (from the multiple

scattering correction and an incorrect background subtraction due to the incorrect

absorption correction). Another commonly varied parameter is the effective beam

width. The beam-size is known from the collimation of the instrument, but the

beam may not be homogeneous. [38, 39] Therefore, the effective beam width will be

different from the physical beam-size due to varying intensity across the beam

profile. This beam-size is a predominantly multiplicative correction due to flux

normalization, however, it will also have an additive component due to difi'erently

evaluated multiple scattering corrections. Less commonly used parameters that can

be varied are sample height or effective beam-height.

Since the choice of parameters to vary is mostly arbitrary, it is interesting to

see whether taking the completely arbitrary approach of simply multiplying the

data by a constant and/or adding a constant results in PDFS of equally good

quality. Here we compare a number of different approaches for data normalization.
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Since our primary interest is the study of crystalline materials we have chosen to use

a neutron data-set from pure Germanium. We systematically apply both a

multiplicative and an additive correction to the processed S(Q), obtain the PDF by

direct Fourier transform, and analyze the results using a number of PDF quality

criteria defined below. The PDF is very sensitive to the asymptotic behavior of

S(Q) so we confine our interest to data where limqnoo(S(Q)) = 1.00(2). Since

Germanium is crystalline with a well defined structure, by modeling we can easily

determine when the data are properly normalized. It is then possible to compare

different approaches that satisfy these criteria; for example, varying a multiplicative

constant, a, and an additive constant, B, varying the sample density Pen and 13,

and so on. The resulting PDFS are then compared using the quality factors. Finally,

we suggest a protocol for automatically obtaining the best PDF given an initial

experimentally derived S(Q).

3.2 Finite Measurement Range

As discussed above, the corrections to the data are incomplete. This is not only

due to the simplifications made to the data corrections but also because

characterization runs do not yield the complete picture of the physical set-up.

Scattering events when an incident neutron scatters ofl' of the sample, then the

sample environment, before entering a detector cannot be fully subtracted using

characterization runs where the sample is not present. These inadequacies in the

measurement and processing result in a measured total scattering structure

function, 8’ (Q), that varies from the true S(Q). In general, the measured 5’(Q) can

be written in terms of the true S(Q) as,

S'(Q) = a(Q)5(Q) + 5(0), (33)
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Figure 3.1: The termination function along with its components (inset) for

Qarm'n=0.9A’1 and Qm=40A"1.

where a(Q) and 3(Q) are dimensionless functions. The simplest approximation is to

take a(Q) and B(Q) as being independent of momentum transfer, Q, in which case

Equation 3.3 becomes,

S'(Q) = 05(Q) + 3. (3.4)

The PDF associated with S"(Q) can be written in terms of S(Q) as,

G'(r) = g [0... Q[3’(Q) — 1] sin(Qr)dQ

= if)“ Q[aS(Q) + Q - 1] sin(Qr)dQ. (3.5)
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In addition to a and B, the other experimental effect is the finite measurement

range. The PDF then becomes,

2 Qma:

G'(r) = ;/Q . Q[aS(Q) + 6 — 1] sin(Qr)dQ

2 3:0:

= —/ Q[aS(Q) — a + a + F — 1] sin(Qr)dQ

7f Qmin

= a;f: Q[S(Q) — 11sin<Qr>dQ

Qmaz

+(a + B —1)%/Q . Qsin(Qr)dQ
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= aGc(r) + (a + O — 1)'y(r), (3.6)

where Gc(r) is the real C(r) convoluted with a termination function and 7(1') is

defined in Equation 3.6. 70*) is the result of an improper high-Q asymptote of the

S(Q)-

Gc(r), the PDF convoluted with a termination function, can be written as

Qmaz

0.0) = 3f ‘ Q[S(Q)-llsin(Qr)dQ (3.7)
7f

2 F{Q[S(Q)-1]}* F {8(Q - Qmin) _ 9(Q — Qmaz)} '

The step function,

 

0 'f a

6(Q _ Qa) = l IQI > IQ | 1 (3'8)

1 if IQI S lQal

has the Fourier transform

1 00

F {6(Q — Q.)} = -7; f0 9(6) — Q.) cos(Qr)dQ

= Sing”) = %jo(Qar), (3.9)

where jo denotes the zeroth order spherical Bessel function shown for completeness.

Then the convoluted PDF can be written as

sin(Qmmr) — sin(Qmazr)]

G.(r) = 00).] m

= :00") 1 [flQOfl _ 62m

7f 71’

 Ammo] . (3.10)

As seen in Figure 3.1, the high frequency oscillation from a finite QM is the

dominant effect. For this reason the modeling program PDFFIT convolutes with the
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high-Q termination function but does not take into account Qmin.

The second term in Equation 3.6 vanishes if limQ—+oo S’(Q) = 1, i.e., a + B = 1.

If 01 + B 75 1 the form of 7(7') becomes important:

chx

)(7‘) = 3; f . Qsin(Qr)dQ

= F{Q9(Q — Qmin)} — F{Q9(Q " Qmax)}

Z [Qmin c08(Qm1nT) - Q...“ cos(Qma,,r) _ sin(Qm,-,,r) — sin(er)]

7r 7‘ r2

  

= g]: maxj1(Qma:rT)_minj1(QminT)] (3°11)

The function j1(Qr) in the definition of 7(r) is the first order spherical Bessel

function. The behavior of 7(1') can be seen in Figure 3.2. The two terms of 7(1')

have 1"1 and 1"2 dependence. By selecting Qmin and QM carefully, the r'1

dependence can be minimized so only the short range r‘2 dependence remains [44].

This becomes important when a(Q) and S(Q) are not constant in Q in which case

7(1‘) cannot be completely eliminated. In fact, we will show that in this case better

quality PDFS can sometimes be obtained when when lianqm, S(Q) = 1 is not

satisfied.

The Q—independence of 01(Q) and B(Q) approximation made earlier can be

removed by convoluting Gc(r) and 7(7‘) with a(Q) and fl(Q) as they appear in

Equation 3.7. Then the relationship would be,

G'(T) = F{0(Q)} * Gob“) + F{01(Q)+ 5(Q) - 1} * 70‘). (3-12)

3.3 Quality Measure

3.3.1 Definition of Quality Measures

Quantifying the difference between the measured and real PDF is of great

29



interest when the PDF is unknown. C(r) has certain known properties that can be

used to assess its quality. Here we list several criteria used for determining an

optimal PDF that is closest to the real structural PDF.

In the case where the crystallographic structure of the sample is being studied

there are well established methods of determining the quality of data. Programs

such as PDFFIT [34] and GSAS [45, 46] allow a structural model to be refined and

then find how well the model and data agree. Usually this is used to determine how

correct a model is, however, if the structure is already well known then these

programs can be used to test the quality of measured data. In PDFFIT two criteria

that tell us about data quality are weighted profile agreement factor, Rum, and the

scale factor, Nm. R4,", is defined as, [34]

25 10(7)) [6012303) _ Gcalc(ri)l2

2111103) [0011(1"illz

 pr = (3.13)

where Gabe (1') and code(7) are the measured and model PDFS respectively and w(r)

is the weighting factor. Nm is the factor by which the model must be multiplied to

give good agreement with the data. We therefore define the factor Nd = N = l/Nm

as the factor which the data must be multiplied to result in a properly scaled C(r)

(Nm = 1). These two criteria, and others resulting from such fitting, require

significant knowledge of the material a priori. In general they will not be used to

determine data quality but instead model quality. For this reason they are not

discussed further. The remaining criteria presented will require knowledge of the

chemical composition and average number density, p0, only.

Using only information about the general behavior of S(Q) and the PDF there

are three criteria that .S' (Q) should conform to. The first can be found starting with

30



Equation 3.1

 4111110) — p0) = 2;wa215162 11““‘2211Q

7.201.)- p.) = me215<Q) —11“—“C§%—211Q. (3.14)

If we then consider the case when r —> 0, then

2120(0) — p0) = j: Q‘[S(Q) — 1]dQ. (3.15)

In the derivation of this equation the self-scattering is neglected [24] and p(0) =

Again, this is because no atoms can be found separated by distances less than the

an separation. Thus, we find

Sim = [00° Q2[S(Q) — 1]dQ = —27r2p0. (3.16)

This criterion was used to find normalization constants in earlier

studies [47, 48, 49, 50]. This integral can be most accurately evaluated if the

coherent intensity in S(Q) at Qmax is small. Bragg peaks disapear at this point in

crystalline materials.

Next we consider that the high-Q portion of S(Q) should approach one. This

observation can be seen starting from the definition of S(Q),

25.6122) ' «Final»’7’ ‘3'”)
 

S(Q) =

where 1) comes from the compressibility of the sample and is effectively

negligible. [24] The second term in the sum is called the normalized Laue term, L.

In the high-Q limit the scattered intensity, I(Q) is completely incoherent and

becomes simply the total scattering cross-section of the sample, (b2). Equation 3.17
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then becomes

 

. _ (b2) _ (b2) - ((9)2 _
31:20 S(Q) — W2 (b)2 —- 1. (3.18)

From a practical point of view we would like a way to determine the asymptotic

behavior of S(Q) numerically in a semiautomated fashion. We do this by finding the

mean value of S(Q) once it has achieved its high-Q asymptote. Here we call this

parameter Snug. The range of Q over which the average is calculated should extend

down from the maximum Q-value that will be Fourier transformed, QM. Ideally it

should extend over a range of data where most of the scattering is incoherent due to

Debye-Waller eflects. In general there may be some coherent scattering (since in

general QM is chosen where the coherent signal to noise ratio becomes

unfavorable); however, (3) should still have a value of one if determined over a

sufficiently wide range of Q. In this paper the average is taken over 24

A'2< Q <Qm=40 A—1 for the synthetic data in Section 3.3.2 and 15 A‘1< Q <

Qm=25 A‘1 for the measured data presented in Section 3.4.1 This represents a

range, 0.6 Qmaz< Q <Qm, that was determined empirically to be reasonable.

The low-Q asymptotic behavior of S(Q) is also known and can be used To

verify the quality of an experimentally determined S(Q) function. In the limit of

low-Q one can see that

3111;5(62) = W -— L = —L. (3.19)

Then the dispersion, 5413p, of S(Q) between its low-Q and high-Q asymptotes is

Sdt'sp = 011330 S(Q) — 3135(Q)

2 _ 2

1+ —_<”l (b) . (3.20)
(1))"

As with the high-Q assymptote, the low-Q assymptote of an experimentally

determined S(Q) is found by determining the mean value of S(Q) over a
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Predetermined range at low-Q. While the principle behind Sam, and 3.11,, are sound,

a better method of calculating their values needs to be determined. The method of

determining 3.1,”, can be improved through the use of Bayesian statistics [51],

though this is beyond the scope of the present work.

Certain correctness criteria, independent of structure, also are known for G(r)

and can be used to assess quality. The real-space analog of Equation 3.16 can be

found in the following way. If we multiply G(r) by r and integrate from 0 to co, and

using Equation 3.1, we get

foo rG(r)dr = 47r foo r2p(r)d7' - N, (3-21)

0 o

where N = fo°° 41rr2podr is the total number of atoms in the sample. r2p(r) looks

like a microscopic density and its integral over all space might also be expected to

yield N. However, it is a pair correlation function. The atom of the pair at the

origin is not included in the integral (this corresponds to the neglect of the

self-scattering1n the derivation of the PDF) and 41r fo°°rpr()dr ingetrates to

N — 1. This leads to

Gin) = / rG(r)dr = —1. (3.22)

o

For most crystalline materials, while there is a finite crystal size, the distance for

the correlations to approach the average value occur at very high-r (>>100A).

We know that G(r) should have the proper scale. If the number of nearest

neighbors is known in a particular situation, this can be used to determine the

proper scale for G(1") using

[a 47rr p(r)dr = (”2]6(r —r,-J-)d

= Z—b—'b—J' (11(1),) —n(r )1. (3.23)

(W a
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This is the coordination number, n(r), between re and n, weighted by the scattering

lengths of the atoms. For monatomic materials, Equation 3.23 reduces to

['6 47rr2p(r)dr == n(rb) — n(ra). (3.24)

This kind of scaling is often possible in crystals and network Glasses where the

nearest-neighbor coordination number is known with confidence from the

chemistry. [41] However, for many studies the coordination number is exactly what

is being determined.

In the region where r is less than the nearest-neighbor distance, now, there are

no structural correlations and it is readily seen from Equation 3.1 that

C(r) = —47rrpo. (3.25)

If the scale factor, N, is not unity we get NG(r) = —4N1rrpo. As we discussed

previously, it is in this very low-r region of G(r) where features appear that can be

directly attributed to systematic errors from experimental uncertainties. Thus,

measuring the mean-square fluctuations of the measured G(r) from -4N7rrpo and

summing them in this region below the nearest neighbor peak should be a sensitive

measure of how well the corrections are working. One problem is that, in general, N

is not known precisely a priori. However, by fitting a line through the low-r part of

the PDF, —4N7rrpo (and therefore N) can be estimated. In practice, with crystal

samples, it is convenient to use the program PDFFIT to do this, in which case Rm,

is evaluated in the range 0 < r < no", where rum, is the highest 1' point included in

the sum. Obviously the nu peak has a finite width and the summation should be

terminated below the leading edge of this peak. We thus get a new quality criterion
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[aw defined as

, _ for‘°‘”[G(r) +47rrpm]2dr

low — rlow

[a

3.26

[47r1'pm]2 dr ( )

where p,“ is the best-fit slope of the low-r PDF and ideally yields Np0. As we show

later, it is preferable to add an r-weighting to the residuals function since noise

ripples that propagate further into the PDF are more harmful than larger features

close to r = 0 that die out quickly. We therefore define a more general criterion,

1:... .
n __ fo‘w r"[G(r) + 47rrpf,¢]2dr

low — frlow .

o

3.27

[47r1‘pm]2 dr ( )

The 1'" factor in the numerator allows for different possible r-weighting of the

diflerence. Three different weightings were tried to see what produced the smallest

ripples in the low-r region. Our tests indicate that r2 weighting yields the best

result. Therefore, for brevity, we define Gm, to be

fr“ 1‘2 [G(r) + 471’p;,-t'r]2 dr

Glow : 0

for“ (47rpfur)2 dr

(3.28)

The r2 weighting was also necessary to get an accurate estimatation of pm and was

therefore used all three cases. Since Pitt should be Np0, this can be used to estimate

N if the number density of the material is known. For crystalline materials pois

known in general being the number of atoms in the unit cell divided by the unit cell

volume. This method of obtaining N has the advantage that a model for the

structure is not required, although it will be a less direct and sensitive measure of N

than using a full structural model.

In the next section the criteria (SW, 5an, 5413p, Gm, and GM”) will be further

explored using synthetic data.
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3.3.2 Testing the Quality Measures

To further understand the quality measures presented in the previous section

they will be tested against synthetic PDFS of varying quality. All of the test PDFS

were generated from the same ideal initial PDF. The initial PDF was created by

calculating G(r) from a model of germanium at 10K using PDFFIT. Instrumental

parameters in PDFFIT [34] were chosen appropriate for the Glass, Liquid and

Amorphous Materials Diffractometer (GLAD) at the Intense Pulsed Neutron Source

(IPNS) (specifically, (IQ = 0.0657). This PDF was Fourier transformed to produce

an ideal S(Q) using,

130A

Q[S(Q) — 1] = /. G(r)sin(Qr)dr. (3.29)

0A

At r=130A the PDF has already reached its asymptotic value of zero as seen in

Figure 3.3(a). The S(Q) produced by this method can be Fourier transformed back

from 0A“1 to 100A’1 to reproduce the initial PDF.

The utility of the quality factors (and the synthetic data) can be seen by

looking at the synthetic data for different values of Qmu to represent ideal and

measured data. The different quality factors calculated for Qm of 100A‘1and

40A“(R,,m=100A) are shown in Table 3.1. In the table the reader will quickly

notice that the quality factors in Equations 3.16 and 3.22 vary significantly from

their theoretical values, especially as QM is reduced to 40A‘1, even in the current

case where there are no distortions to the data. In Figure 3.4 the values of SW and

Gm are plotted as a function of QM and rm respectively. Notice that as Qm

and rm go to large values Sim and Gin, do not achieve their theoretical values of

-21r2po and -1. At present we do not understand why this is the case as

synthetically generated S(Q) and G(r) should behave ideally. The most probable

reason is some kind of numerical error due to the discrete nature of the synthetic
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Figure 3.3: Synthetic 10K Germanium PDF (a) as calculated by PDFFIT and re-

sulting S(Q) (b) calculated by Fourier transform. The synthetic data was calculated

using parameters to mimic a GLAD measurement.
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Figure 3.4: Value of SW and Gm as a function of Q"m and R"m respectively. The

dotted lines are the theoretical values.

data. Nonetheless, this fact suggests that SW and Gm are less valuable quality

measures in general, and especially for crystalline materials since they require a very

broad measurement range. For this reason they will not be considered further.

Besides S1,“ and Gm, the values of the other criteria are not more than 3% different

from their theoretical values. This also gives the minimum uncertainty in the

quality criteria.

Measured spectra tend to have errors which are both random and systematic in

nature. Random noise originates from measurement statistics. The other basic type

of error is a systematic error. There are many sources of systematic errors, from bad

detectors to an unstable source. Systematic errors are normally dealt with by
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Figure 3.5: Reduced total scattering structure function (left), form of noise (15 added

to S(Q) (inset), and associated PDFS (right). From top to bottom the synthetic data

are pure, constant noise added, Q-dependent noise added.

determining where they come from, fixing the problem and re—measuring.

Frequently it is not possible to re—measure a data-set or the systematic error is

subtle enough to not be noticed. In these cases one can either disregard the data or

get an idea of its quality and try to understand the underlying physics, knowing

that the data does have a systematic error and its effect on the data. The following

examples all started from the synthetic data set described above with errors

introduced into S(Q) and Fourier transformed using a Q"m of 40A“, obtainable at

several neutron instruments.

The effect of random noise is handled in two ways, by adding constant noise
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theory IOOA‘1 %diff 40A‘1 %diff

.9an 1.0000 1.0002 0.02 1.0003 0.03

Sam, 1 .0000 0.9814 1 .86 0.9774 2.26

Sim -0.8725 -0.8614 1.27 -1.5843 81.59

Gint -1.0000 -0.7292 27.08 -0.7286 27.14

Glow 0.0000 0.0000 - 0.0001 -

pfit 0.0442 0.0439 0.68 0.0439 0.68   
Table 3.1: Values of quality criteria unspoiled data with Qm of 100A‘1and 40A".

 

theory none constant Q-dependent

Sm,g 1.0000 1.0001 0.9999 1.0005

Sm, 1.0000 0.9772 0.9770 0.9774

GM, 0.0000 0.0001 0.0366 0.0720

p[1'1 0.0442 0.0439 0.0445 0.0458

pr 0.0174 0.0487 0.0492  
Table 3.2: Values of quality criteria for different amounts of random noise. Rm, is

calculated between the test data and the ideal PDF.

and noise that increases with Q. Noise is added by adding a random number

between :t0.5dS, where dS is shown in the insets to Figure 3.5 along with the

resulting S(Q)s and PDFS. The effect of random noise on the criteria can be seen in

Table 3.2. Random noise, of any form, should effect only quality factors which

concentrate on the agreement with ideal behavior. As seen in Figure 3.5 the effect

of random noise is most easily seen in the regions where there are no PDF peaks.

Being average criteria, the values of 3an and 541,, do not appreciably change,

within the prescribed 3%; the value of G10“, does.

One might expect the effect of systematic errors on data to be more dramatic

than random noise. Since systematic errors carry information, their effect is more

complicated than random noise which overall does not greatly affect the PDF peaks.

Three types of systematic errors will be presented here. While the source of the

errors is not mentioned they are all types of errors that have been seen in real data.

The most common systematic error is a scaling error. This comes from the fact that
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a 0.5 1.0 2.0

3..., 1.0005 1.0003 0.9999

3.11,, 0.4894 0.9774 1.9557

0..., 0.0000 0.0000 0.0000

,0,“ 0.0219 0.0439 0.0878

Snap/a 0.9788 0.9774 0.9778

p,.-./a 0.0438 0.0439 0.0439

Table 3.3: Values of quality criteria for various scaling.

diffraction data are inherently arbitrarily scaled. Therefore, this type of systematic

error will always be encountered. Many authors have described various techniques

for finding either an absolute scale factor [47, 48, 49, 52, 53, 54] or a relative scale

factor [38, 39, 55] to compare data sets. When S(Q) is scaled, this changes the

asymptotic behavior. To ensure proper asymptotic behavior we set )8 = 1 — 0, hence

S'(Q) = aS(Q) + (1 — a), (3.30)

As expected from the analytic result, Equation 3.6, G’(r) = aGc(r) and G(r)

remains undistorted but changes its scale. In principle, therefore, 54.3,, and PM

could be used to determine the scale of the data. 8,11,, only requires knowledge of

the sample chemical composition and pf“ only the average sample number density.

The effect of scaling can be seen in Figure 3.6 and Table 3.3. By definition, Sm,g

does not change for the three cases within reasonable accuracy, while it is also

noticed that Glow is scale invariant as well. The other two criteria 5111111 and pf“ do

vary with scale as seen in the second half of Table 3.3.

We now consider a slowly oscillating additive sine wave that might originate

from an imperfectly corrected background. As before we want 8’(Q) to have the

right asymptotic form, Snug-:1, so the constant a is changed in such a way that this

is satisfied at Qm. This is a common situation in real experimental PDFS: an

unknown slowly oscillating additive correction is arbitrarily corrected with a
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Figure 3.6: S(Q) (left), and associated PDFs (right). From top to bottom the scale,

a, is 0.5, 1.0 and 2.0. Both S(Q) and 0(1) are offset for clarity.

error theory (a) (b) (c)

- 0.97 1.07 0.97

Sm,g 1.0000 1.0124 1.0218 1.0129

Glow 0.0000 0.0469 0.1311 0.1507

Rm, - 0.0175 0.0217 0.0442

 

 

  
Table 3.4: Values of quality criteria for various systematic errors. R4”, is calculated

between the test data and the appropriately scaled ideal PDF. The three columns are

shown in Figures 3.7 and 3.8 as (a), (b), and (c) respectively.
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Figure 3.7: Q[S(Q) — 1] for three types of errors, (a) long wavelength sine oscillation,

(b) step function, and (c) sine oscillation with Q-dependent random noise. Below

each structure function is the difierence between the data with and without errors.

The insets are the same data plotted from 0A'1 to 100A“.
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step function, and (c) sine oscillation with Q—dependent random noise. Below each

PDF is the difference between the data with and without errors.
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(mostly) multiplicative correction. The exact form of S’(Q) introduced here is

S’(Q) = a [S(Q) + .1 sin (%Q)] (3.31)

The choice of the amplitude (0.1) and wavelength (IOOA‘I) were done to produce

3’(Q) similar to what is seen with measurements. The reduced total scattering

structure function is in Figure 3.7(a) and associated PDF can be seen in

Figure 3.8(a) with the quality factors being listed in Table 3.4(a). From

Equation 3.6 we expect to see the PDF scaled and low-r ripples due to 7(7‘). While

there is little noticeable change in S(Q), the effect on the PDF is quite large.The

most interesting feature of this type of systematic error is that it is the first type of

error presented here that shows the behavior normally seen in PDF data. That is

large peaks near 1' = 0A and oscillations carrying into the physical portion of the

PDF. Both Sm,g and 54,-”, are within reasonable range of their ideal values while

Gm, varies significantly. This is expected because Glow is a quantification of the

low-r noise in the PDF.

The third, type of systematic error to be discussed here is a slowly varying

multiplicative factor. This type of systematic error would result from an improper

multiple scattering correction. The exact form of the function used here is

S’(Q) = aSIQ) [e‘<r%"] (3.32)

The reduced total scattering structure function is in Figure 3.7(b) and associated

PDF can be seen in Figure 3.8(b) with the quality factors being listed in

Table 3.4(b). In this case the value of 34,-”, is less than one because this systematic

error suppresses the high-Q intensity. There is also a clear effect on the low-r

portion of the PDF due to this effect, illustrating the next point: the low-r portion

of the PDF is related to high-Q.
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For completeness, the fourth spoiling of the synthetic data was done by

introducing both Q-dependent random noise and a sine wave oscillation. The results

of this synthetic data can be seen in Figure 37(0) and 3.8(c) with some of the

quality factors listed in Table 3.4(c).

From these seven examples we know which quality criteria are most useful. SW

and Gm are not working on the test data, and even if they were they are still not

useful for measurements of crystalline materials due to the large measurement range

required. 8.1,”, and pf“ were determined to be scale dependent. While this

dependence could be used to achieve a proper relative scale between data sets,

which is outside the scope of this paper, the necessity of knowing the scale of the

data makes these two less useful. This leaves Sm,g and Glow as the preferred criteria.

For perfect data, Sm,g and G10“, are equivalent. However, for real data Glow is a more

robust criterion. In the next section these criteria, Sm,g and Grow, will be tested with

real data and be used to determine the best pair of parameters to adjust to optimize

a PDF.

3.4 Data Analysis Protocols

Time of flight neutron powder diffraction data were measured using GLAD at

IPNS at Argonne National Laboratory. Finely powdered Germanium was sealed

inside an extruded cylindrical vanadium container with He exchange gas. The

sample weighed 4.472g and filled a container (0.9272cm diameter and 5.4cm high) to

a height of 4.0cm. We therefore estimate the mass density of the powder sample to

be 1.7g/cm3. This was mounted on a closed cycle helium refrigerator. Neutron

powder diffraction data were measured at 10K for 4 hours with a collimator

0.4636cm wide. Parasitic scattering from the heat-shields was estimated by taking

data with the sample environment in place but no sample at the sample position.
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Figure 3.9: Representative reduced total scattering structure factor for Germanium

at 10K measured using GLAD at IPNS.

Scattering from the sample container was measured from an empty container. The

scattering from a vanadium rod was also measured to allow the data to be

normalized for the incident spectrum and detector efficiencies. Standard data

corrections were carried out as described elsewhere [24, 40] using the program

PDFgetN. [30] A representative reduced total scattering structure factor

(Q[.S'(Q) — 1]) is shown in Figure 3.9 and Fourier transformed using Q,,.m,=25A‘l to

produce the PDF shown in Figure 3.10 as the open circles.

The data were modeled using PDFFIT. [34] Pure Germanium is a diamond

structure (F43m with atoms at [0,0,0] and [1}, %, i—D. The structure refinement was

carried out over the range of 2A< r <15A using the following method. The starting
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Figure 3.10: Representative PDF (circles), PDFFIT model (line) and difference curve

with 20 error bars as dotted lines (below) for Germanium at 10K measured using

GLAD at IPNS. The sine systematic error with Q-dependent noise test data with

QM of 25A‘1 (inset) is also shown for comparison.

structure was a crystal structure with lattice parameter of 5.66A and Germanium

atoms only at the symmetric sites. The anisotropic thermal factors were set to be

equal (U11 = U22 = U33 = 0.0021A2). Then the refinement proceeded by varying

parameters in five steps:

1. The scale factor (Nm), Q-resolution (qsig[1]), and Q-dependent sharpening

(delt[1]) are varied.

2. Nm, delt[1] and the lattice parameter (latt[i]) are varied.

3. Nm, qsig[1], delt[1], and latt[i] are varied.
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4. isotropic thermal factor (u[i,j]) is varied

5. Nm, latt[i], and u[i,j] are varied.

This method was repeated for all data, however processed, to obtain values of N

and Rum that were reproducible. A representative fit is shown in Figure 3.10 as the

solid line. A difference curve is shown beneath the data. Notice the unphysical peak

in the experimental PDF at very low-r coming from the imperfect data corrections.

Also, note that the structural information is not affected in a significant way by this

feature.

3.4.1 Methods of Optimizing PDFS

When processing a given run there are multiple ways which the processing

parameters can be varied to minimize 010w. This discussion is better understood by

looking at Table 3.5 The first refined column is that done by using the physical

values for all of the parameters. While this does represent the experimental setup it

clearly is not the best PDF. Traditionally one adjusts the effective sample density,

Pen, the effective beam width, areIl1 or both to obtain the optimal PDF. Two of the

more common methods of adjusting Pen and Geff, seen in the first half of Table 3.5

are

0 vary pen

0 reduce ac" to reflect beam profile then adjust pen accordingly

These methods allow for obtaining an optimal PDF for a particular measurement,

but the relative scale of the data is set by other means. While the t0pic of scale is

outside the scope of this work, it should be taken into account, in general, when

processing data. Normally an experiment is performed where multiple data sets are

compared rather than individual runs independent of other measurements. The
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scale of the runs is determined when using the above methods to minimize Glow

because p.” and 0.,” are used in predominantly multiplicative corrections. In order

to scale the data and minimize Gm, both multiplicative and additive processing

parameters are needed.

In Equation 3.6 the parameters 07 and [3 were introduced. While a has a

multiplicative effect like p1,ff and Ueff, 0 allows for optimizing the PDF without

affecting the scale. B can be combined with the different multiplicative factors as

follows

0 vary a and B

o vary Pen and B

o vary 0,,” and B

The effect of these parameters is seen in the second half of Table 3.5 The

multiplicative factor in these cases was chosen to produce N... = 1 to demonstrate

the ability of scale selection.

As seen in the five columns of Table 3.5 that are associated with these methods

the values of R4”, 0 and (U) are all near identical. While the values of Sm,g and

Glow vary between the two halves of the table, there are some tendencies. The value

of Sm is distinctly less than its ideal value of one and Glow is between two and

three for the optimized PDFS. Because all of the criteria are in fairly good .

agreement, it is hard to chose one which one is the best. The optimization methods

that utilize 0 have the obvious advantage of being able to decide the scale factor

which makes them more desirable methods. As seen in Sec. 3.3.2, varying a and 13

when 19 = 1 — 0 allows the scale to be varied without changing the quality of the

PDF. For this reason, using a and B is the recommended method.
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3.5 Summary

Errors in scattering data, both random and systematic, have an effect on the

low-r region of the PDF. To determine the quality of PDF data various criteria were

introduced. The quality criteria (501191 51111;), Glow, and PM) were compared to

synthetic data with diflerent errors to demonstrate what each criterion is sensitive

to. Tests with synthetic data show that 3.1,", and p,“ vary with scale while Sm,g and

Glow do not. This is important for finding the optimal processing parameters for a

given data set. Future work should be done to find a more appropriate version of

both Sm,g and 3d,”, since both methods are using averaging over a range rather than

a fitting method to determine their values. Finally, real data was optimized using

different methods only to find that no one method obtains better results, however,

the use of a and 5 is preferable.
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Chapter 4: Local Bond Length

Mismatch in ZnSe1__xTex

4.1 Introduction

The study of alloys is complicated by the fact that considerable local atomic

strains are present due to the disordering effect of the alloying. This means that

local bond-lengths can differ from those inferred from the average (crystallographic)

structure by as much as 0.1 A. [10, 11] This clearly has a significant effect on

calculations of electronic and transport properties. [5] To fully characterize the

structure of these alloys it is necessary to augment crystallography with local

structural measurements. In the past the extended x-ray absorption fine structure

(EXAFS) technique has been extensively used. [3, 10, 13] More recently the atomic

pair distribution function (PDF) analysis of powder diffraction data has also been

applied to get additional local structural information from InzGa1-zAs

alloys. [11, 14, 15] In that case high energy x-rays combined with good resolution

and a wide range of momentum transfer allow the In-As and Ga-As nearest

neighbor peaks to be resolved. In this Chapter we describe PDF measurements of

the ll-Vl alloy ZnSe1_zTez from neutron powder diffraction measurements using the

new General Materials Diffractometer (GEM) at ISIS. In these measurements the

distinct Zn-Se and Zn-Te bonds, which difler in length by just Ar = 0.14 A, could

be distinguished demonstrating the quality of the data from GEM.

Both ZnTe and ZnSe have the zinc-blende structure (F43m) where the Zn

atoms and Te, Se atoms occupy the two interpenetrating face-centered-cubic (fcc)

lattices as seen in Figure 4.1. In the alloys the lattice parameter of ZnSe1_,Te,

interpolates linearly between the end member values consistent with Vegard’s
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Figure 4.1: The zinc-blende structure shown with conventional unit cell.

law. [9] However, both EXAFS experiments [3, 13] and theory [1, 56, 57, 58] show

that the atomic nearest neighbor (nn) distances deviate strongly from Vegard’s law.

Rather, they stay closer to their natural lengths found in the end-member

compounds: L%n_Te=2.643(2)A and L%n_se=2.452(2)A.

A limitation of the EXAFS method for studying the local structure of alloys is

that it only gives information about the first and second neighbor bond-lengths and

information about the bond-length distributions with less accuracy. Here PDF

analysis of neutron powder diffraction data is used. As was discussed in earlier

chapters the total scattering structure function includes both the Bragg and difl'use

scattering, the PDF contains both local and average atomic structure yielding

accurate information on short and intermediate length-scales. Previous high

resolution PDF studies on InzGa1_,As were carried out using high energy x-ray

diffraction. [11, 15] This yielded data over a wide Q-range (Q is the magnitude of

the scattering vector) which resulted in the very high real-space resolution required

54

 



to separate the nearest neighbor peaks from In-As and Ga—As. The high Q-range

coverage and Q-space resolution of the GEM Diffractometer allowed us, for the first

time, to obtain similarly high real space resolution PDFS of ZnSe1_xTe¢ using

neutrons and to resolve the Zn-Se and Zn-Te bonds that differ in length by only

0.14 A. Furthermore, the data collection time was only sixty minutes compared to

the 12 hours for the x-ray data with similar quality. The nn distances and average

peak widths are fit using model independent techniques to better understand the

local and intermediate structure. The PDFS of the full alloy series have been

calculated using a model based on the Kirkwood potential giving excellent

agreement over a wide range of r with no adjustable parameters.

4.2 Experimental

4.2.1 Synthesis and Characterization

The powder samples were made in collaboration with Hyoung-sook Choi and

Professor M. G. Kanatzidis in the Chemistry Department at Michigan State

University. Finely powdered samples of ~10g of ZnSe1-xTez were made with x=%,

%, g, g, g. The starting reagents (zinc selenide, metal basis, 99.995%; zinc telluride,

metal basis, 99.999%) were finely ground, mixed in the correct stoichiometry, and

sealed in quartz tubes under vacuum. The samples were then heated at 900°C for

12-16 hours. [59] This procedure (grinding, vacuum sealing, and heating) was

repeated four times to obtain high quality homogeneous products. The colors of the

solid solutions vary gradually from dark red (ZnTe) to yellow (ZnSe) as the :r-value

decreases reflecting the band-gap of the alloy samples smoothly changing in the

optical frequency range. The homogeneity of the samples was checked using x-ray

diffraction by monitoring the width and line-shape of the (400), (331), (420), and

(422) Bragg peaks measured on a rotating anode Cu K, source. Finely powdered
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Figure 4.2: (331) and weak (420) peaks of ZnSe1_.,Tez measured at 300K using Cu

rotating anode.

samples were sieved through a 200—mesh sieve then packed into flat plates and

measured in symmetric reflection geometry. The (331) and (weak on high angle

side) (420) peaks are reproduced in Figure 4.2. The double-peaked shape comes

from the K01 and K02 components in the incident beam. The line-widths are narrow

and smoothly interpolate in position between the positions of the end-members

verifying the homogeneity of the samples.

56



4.2.2

(1111131

L300)

seals

cold-

19.36

3112

bro

COT

C0

of ,

Wei

EXp

1th

end-

0111

Glide

detec

l'IeldI



4.2.2 Neutron Measurements and Data Processing

Time of flight neutron powder diffraction data were measured on the GEM

diffractometer at the ISIS spallation neutron source at Rutherford Appleton

Laboratory in Oxfordshire, UK. The finely powdered ZnSe1_zTez samples were

sealed inside extruded cylindrical vanadium containers. These were mounted on the

cold-stage of a helium cryostat immersed in cold He gas in contact with a liquid He

reservoir. The temperature of the samples was maintained at 10K using a heater

attached to the cold-stage adjacent to the sample. 10K was used to minimize

broadening of the PDF peaks due to thermal effects. The empty cryostat, an empty

container mounted on the cryostat and the empty instrument were all measured,

allowing us to assess and subtract instrumental backgrounds. The scattering from a

vanadium rod was also measured to allow the data to be normalized for the incident

spectrum and detector efficiencies. Standard data corrections were carried out as

described in Chapter 2 and elsewhere [24, 40] using the program PDFgetN. [30]

After being corrected the data are normalized by the total scattering cross-section of

the sample to yield the total scattering structure function, 5(Q). This is then

converted to the PDF, C(r), by a Sine Fourier transform according to Eq. 2.14.

The GEM instrument yields useful diffraction information up to a maximum Q

of greater than 90 A“. Unfortunately, due to a neutron resonance in Tellurium we

were forced to terminate the Fourier transform at a maximum Q of 40 A“1 in this

experiment. This resulted in nn peaks in these alloys which are resolution limited

rather than sample limited. This was verified by Fourier transforming the ZnSe

end-member at higher values of Qm. The nn peak kept getting sharper up to

Qm = 60 A". Nonetheless, the distinct short and long bond distances are still

evident in the alloy PDFS. At the time of this measurement the backscattering

detector banks on GEM were not operational. With the backscattering banks

yielding better statistics in high Q and adding detector coverage, one might expect
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Figure 4.3: Q[S(Q) — 1] for ZnSe1_,Te3 measured at 10K.

to get similar quality PDFS in a fraction of the time. The reduced structure

functions, Q[S(Q) — 1], obtained from the ZnSe1_3Tez samples are shown in

Figure 4.3 and the resulting PDFS are shown in Figure 4.4.

4.2.3 Method of Modeling

We have used three approaches to obtain structural information from the PDF.

First, we carry out a model independent analysis by fitting Gaussian functions to

peaks in the RDF. Next we calculate the PDF expected from the average crystal

structure using the methods described in Chapter 2. Using a least squares

approach, atomic displacement (thermal) parameters are then refined to obtain

empirically the PDF peak widths in the alloys. This was done using the PDF

refinement program PDFFIT. [34] Finally, we calculate the PDF from a Kirkwood

potential based model where the atom positions and thermal broadenings are fully
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Figure 4.4: G(r) = 47rr(p(r) — p0) for ZnSeHrTex measured at 10K.

determined by the atomic potential parameters.

The Zn—Se and Zn-Te nn distances in the alloys were found by fitting two

Gaussians, convoluted with termination functions to account for the termination

effects, to the nearest neighbor peak in the RDF. Peak positions and widths were

varied. The relative peak intensities were constrained to those expected from the

alloy composition. The widths refined to the same values as the end-members

within the errors for all the alloys. We thus repeated the fits constraining the peak

widths to have the values refined from the end-member RDFs. This more highly

constrained fitting procedure resulted in less scatter in the refined peak positions.

To find the far neighbor peak widths PDFFIT [34] was used. The zinc-blende

crystal structure was used with all the atoms constrained to lie on their average

positions. Lattice parameters, scale factor, isotropic thermal factors, and

r-dependent PDF peak broadening parameters [34, 60] were allowed to vary but the
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atoms were not allowed to move off the symmetry sites. In this way, all of the

atomic disorder, static and dynamic, is included in the refined thermal factors that

are giving an empirical measure of the PDF peak widths at higher-r. This approach

is better than fitting unconstrained Gaussians because of the problem of PDF peak

overlap at higher distances. Clearly this approach does not result in a good model

for the alloy structure but will yield a good fit to the intermediate PDF in the

alloys. However, it should give reliable empirical estimates of the width of high-r

PDF peaks, even when they are strongly overlapped, and allows us to separate the

disorder on the cation and anion sublattices. The PDFS were fit over the range of 3

to 15 A”. This range was selected so the global properties of the alloys could be fit

without influence from the nu behavior.

Potential based modeling to yield realistic alloy structures has been carried out

using a model based on the Kirkwood potential. [61] This procedure has been

described in detail elsewhere. [1, 56, 62, 63] The model consists of 512 atoms

arranged in the zinc-blende structure with periodic boundary conditions where the

interatomic force is described by the Kirkwood potential. The system is then

relaxed by moving atoms to minimize the energy.

The Kirkwood potential can be written as,

V = %Z(Lij — [49,-)2 + “€143 2,, (cos 0,111 + %)2, (4.1)

1: 1:

where L: is the nn bond length of an undistorted reference crystal structure, L1,- is

the length of the bond between the atoms 2' and j, and L9]- is the natural

bond-length. In this definition the bond-stretching, a, and bond-bending, 0, force

constants have the same units and 0,5). = arccos(—%), for an ideal tetrahedron.

Literature values [1] were used for the bond-stretching and bond-bending parameters

obtained from elastic constant measurements. We also tried Optimizing a and 13 by
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0(N/m) INN/m) 6/0 31"
 

 

ZnSe 33.7 4.6 0.14 0.78

ZnTe 31.1 4.7 0.15 0.76

InAs 35.1 5.8 0.16 0.74

GaAs 44.3 9.2 0.21 0.70

Table 4.1: a and 6 reported for ZnSe1_xTex and InxGa1_3As. [1]

fitting to the ZnSe and ZnTe end-member PDFS; however, the PDFS calculated

using both sets of parameters gave comparable agreement when compared to the

alloy data so we simply report the results obtained with the literature values of a

and B. The values of a and B for ZnTe and ZnSe used are shown in Table 4.2.3.

The PDFS for the alloys are calculated with no adjustable parameters using the

same potential parameters used for the end-members. The additional bond-bending

parameters present in the alloy due to Te-Zn-Se type configurations are determined

as a geometric mean of the 6 parameters for the end-members. [62] The thermal

broadening of the PDF is calculated by determining the dynamical matrix from the

potential and projecting out the atomic displacement amplitudes for each

phonon. [62]

4.3 Results and Discussion

4.3.1 Model Independent Results

Upon inspection of the PDFS presented in Figure 4.4 one will immediately

notice the splitting of the first peak. This comes from the fact that the nn distances

of Zn-Te and Zn-Se stay close to the end-member values of 2.643(2)A and 2.452(2)A

respectively. The positions of each component of the doublet were determined by

fitting Gaussians as described above. The values for the nu bond-lengths are shown

as filled circles with 20 error bars in Figure 4.5. Also plotted in the same Figure as
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Figure 4.5: an positions from the PDF (0), EXAFS data [3] (o), and Kirkwood

model z-plot (solid line) [1] as a function of composition, 2:, for ZnSe1_zTe3. The

angled dashed line is the average nn distance. The horizontal dashed lines are at the

end-member distances for comparison. Note that not all EXAFS points had reported

error bars so they were all set to the same value.

open circles are the nu bond-lengths determined from an earlier EXAFS study by

Boyce and Mikkelson. [3] There is clearly excellent agreement between the two

results. Superimposed on the data are lines which are the predictions of the

Kirkwood model for the nearest neighbor bond-lengths using the potential

parameters given in Table 4.2.3. [1] Again, there is excellent agreement with the

data with no adjustable parameters.

In contrast to the local structure, the long-range structure is well described by

the virtual crystal approximation (VCA). [64, 65] The VCA assumes that the

structural properties of a crystal alloy all are a linear interpolation of the

end—member values. If this were true in semiconductor alloys then not only would

one be able to find the lattice parameter of the alloy from Vegard’s law but the an

distance would be, for zinc-blende crystals A1-zB,,C, LAC = Lac = 345a. This is

shown in Figure 4.5 as the angled dashed line.
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Figure 4.6: Square of the PDF peak widths for near (0) and far (0) neighbors as a

function of composition, 2:. The extracted values are plotted with parabolas (lines)

to guide the eye. The upper dotted line is at 0.0056A2 and the lower is at 0.0024A2.

It is clear that the local bond-lengths remain closer to those in the

end-members than to the prediction of Vegard’s law. In fact the bond-lengths stay

close to the Pauling limit [66] in which they would remain completely unchanged in

length across the alloy series. The deviation from the Pauling limit is attributed to

the disorder in the force constants as we describe below.

The difference in the local structure of the alloys leads to a large amount of

atomic strain resulting in much broader PDF peaks in the high-r region of the PDF.

In Figure 4.6 the strain is quantified. Little strain is seen in the nu distribution as

characterized by the lack of appreciable dispersion in the nu peak widths. The

dotted line at a; =0.0056A2 represents the mean square width of the PDF peak, 0:,

attributed to the thermal motion of the atoms while the parabolas indicate

additional peak broadening due entirely to static strain in the system. The largest

peak broadening is seen in the mean-square width of the Zn-Zn peaks

(cation-cation) which is as much as 5x as large as the mean-square width due to
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thermal broadening and zero-point motion at 10 K. It is also evident that the

disorder is larger on the unalloyed (Zn) sublattice than the mixed (Se,Te) sublattice

similar to the observation in InzGa1_,As. [11, 15]

4.3.2 Kirkwood Model

The Kirkwood potential [61] is widely used to describe semiconductor alloys.

Petkov et al. [11] showed that the Kirkwood model is good at describing

InzGa1_3As, a Ill-V semiconductor. ZnSe1_,Te1 is a ll-Vl semiconductor so it is of

great interest to know whether or not the Kirkwood model is equally successful for

this more polar semiconductor alloy. The values of a and 3 used in this study are

shown in Table 4.2.3 with appropriate values for InzGa1_,As for comparison.

Other quantities of note are the ratio, fl/a, and the topological rigidity

parameter, a", [56] which is a function of fl/a:

1. 1+ 1.25(B/a)

= 1+ 3.6(0/0) + 1.17(0/a)2' (4'2)

 

The topological rigidity parameter, a”, can vary from 0 to 1 and quantifies the

effect of the lattice. The Pauling limit results when a"=l, the fl0ppy lattice limit.

If a”=0 the lattice is rigid and Vegard’s law will hold true locally as well as

globally. As can be seen in Table 4.2.3, the values found for a" are close to 0.75

which appears to be fairly universal for all semiconductors. [56]

In this study, the Z-plot shown in Figure 4.5 and PDFS from each alloy

composition were all calculated using the Kirkwood parameters apprOpriate for the

end-members with no adjustable parameters. Figure 4.7 shows PDFS obtained from

the Kirkwood model plotted with measured PDFS for characteristic compositions.

The model is very successful in matching both the short and longer-range behavior

of the PDFS for all alloy compositions. The measured and calculated PDF peaks of
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Figure 4.7: Comparison of the Kirkwood model (lines) and data (0) PDFs for (from

t0p to bottom) ZnTe, ZnSe3/5Te3/6, ZnSe4/5Te2/6, and ZnSe.

the nearest neighbor bonds are shown on an expanded scale in Figure 4.8. It is

clear that the model based on the Kirkwood potential does a very satisfactory job of

explaining both the PDF peak positions and widths and appears to produce a very

satisfactory model for the structure of these ll-Vl alloys.

4.3.3 Comparison with InzGal_2As

The results found for ZnSe1._,Tez are not entirely unexpected. In a previous

study of InzGa1_,As similar results were obtained. [11] With high real space

resolution measurements now possible, direct observation of the nu distances in

addition to the static strain in the system is observed. The basis for the comparison
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Figure 4.8: Comparison of the Kirkwood model (lines) and data (points) nn distances

for ZnSe1-;Te,, where a: is 0 (x), % (o), g (0), g (Q), g (1:), g (A), and 1 (+).

between ZnSe1-,Te, and InxGa1_zAs is that the two systems are both

semiconductor alloys with zinc-blende structures. However, they vary in a couple of

important aspects. The salient diflerence is number of valence electrons.

ZnSe1_zTex are more polar alloys and so might be expected to have bonding with

more ionic character than InzGa1_xAs which should give rise to smaller 13 values

since ionic bonding is less directional than covalent bonding. Indeed the

bond-bending magnitudes are less in ZnSe1_,,Te, than InzGa1_,As (Table 4.2.3).

However, the nearest neighbor bonds are stiffer in InxGa1_zAs. This is presumably

also due to the lower polarity of this material resulting in greater orbital overlap

and covalency. The result is that the B/a ratio and a" are similar for the two

systems. Since it is this ratio, rather than the values of a and fl themselves, that

has the greatest impact on the structure of the alloy, we find very strong similarities

in the local structures of InzGal-zAs and ZnSe1_zTe3. For example, the Z-plots

from both systems are plotted on the same scale in Figure 4.9.

The similarity in the Z-plots is even more striking because of the similar
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Figure 4.9: Comparison of the theoretically calculated ZnSe1__,.Tex (solid line) and

InzGa1-xAs (dashed line) z-plots.

A - B

GaAs 1.26 1.18

InAs 1.44 1.18

ZnSe 1.31 1.14

ZnTe 1.31 1.32 

1A (A) rB (A) 1A+B (A)

2.44

2.62

2.45

2.63

Table 4.2: Ionic radii from literature when atoms are in tetrahedral covalent bonds. [2]

bond-lengths of the end-members in these two alloy systems. The ionic radii for the

atoms in these two alloy series are reproduced in Table 4.2. Despite the ionic radii

themselves being somewhat different, it is clear that the sums of the ionic radii of

the end-members yield values that are within 0.01 A of each other.

As well as the Z-plots of InxGa1_zAs and ZnSe1_zTex matching rather well, the

observed magnitude of the mean-square width of the high-r PDFs peak are rather

similar in the two alloy series. This can be seen by comparing Figure 4.6 with

Figure 4 in Ref. [11]. For example, the static strain contribution to the PDF peak

widths of the unalloyed site has a maximum at 0.027A2 and 0.023A2 for a: = 0.5 in

ZnSe1_,Tez and InzGa1_zAs, respectively.
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It thus appears that the structure of the alloys is principally determined by the

differences in bond-length of the end-members and by the B/a ratio rather than by

the absolute values of a and 5 or the absolute values of the ionic radii themselves.

It has been shown [56, 1] that the B/a ratios of tetrahedral semiconductors are

somewhat universal resulting in a" values close to 0.75 for a wide range of

semiconductors. It also does not appear to matter whether the cation or anion

sublattice is alloyed. The unalloyed sublattice accommodates the majority of the

atomic scale strain.

4.4 Conclusion

From high real space resolution PDFs of ZnSe1_zTe,. we conclude the following.

In agreement with earlier EXAFS results and the Kirkwood model the Zn-Se and

Zn-Te bond-lengths do not take a compositionally averaged length but remain close

to their natural lengths. Direct measurement of this was allowed by the new GEM

instrument at ISIS. The bond-length mismatch creates considerable local disorder

which manifests itself as broadening in the PDF peak widths and can be separated

into thermal motion and static strain. ZnSe1-xTe, was compared with InxGa1_xAs.

Despite having different polarity the atomic strains in both systems are very similar

and both are well modeled by the Kirkwood potential based model. This suggests

that the atomic strains in tetrahedral semiconductor alloys are quite universal

depending principally on the bond-length mismatch of the end-members and the

ratio of the bond-stretch to bond-bending forces.
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Chapter 5: Temperature

Dependence of ZnSe1_xTex

5.1 Introduction

Information about the atomic potential can be obtained from the thermal

motion of atoms in the solid measured from the pair distribution function (PDF). If

a model potential is known it is possible to calculate the PDF including all the

lattice dynamics. The dynamical matrix is determined from the potential and its

eigenvalues and eigenvectors are found. The PDF peak broadening due to thermal

motions is then obtained by projecting the phonons into real-space and taking into

account the Bose factor. This procedure was done in the present case using a

Kirkwood potential as described in Chapter 4. While temperature dependent data

present a more exacting test of model potentials, semi-quantitative information

about the potential can be obtained through empirical fitting of the Einstein and

Debye models to the temperature dependence of the PDF peak widths.

For this reason we have studied the temperature dependence of the PDF peak

widths in the endmember compounds (as a more stringent test of the potential

model) and in the alloys. Certain questions remain regarding the nature of the

potential in the alloys. For example, the approximation has been taken that the

Se—Zn-Te bond bending interaction is the geometric mean of Se-Zn-Se and Te-Zn-Te

which are known from bulk moduli measurements of the endmember compounds.

Verifing whether the atomic level strain in the alloy significantly modifies the

potential parameters is also of great interest. Here we present preliminary results

using empirical methods. While using the full potential is superior, it is beyond the

scope of this study and will be carried out in the future.

69



 

<°>O O O O
—> <- <— ->

Figure 5.1: Cartoon of motion in solids. Rigid body motion (a), correlated atomic

motion (b), and uncorrelated atomic motion (c) are shown.

ZnSe1_zTe, alloys have two distinct nearest neighbor (nn) bond lengths due to

the different interatomic potentials of Zn-Se and Zn-Te. The atoms in ZnSe1_zTez

move about their ideal sites because of thermal motion. However, local

displacements will also force the atoms from the average crystallographic sites

resulting in static disorder, as described in the previous chapter. This static disorder

masks the PDF peak broadening due to the dynamics making it difficult to study

the nature of the potential directly in the alloy. However, as shown in Figure 4.6, the

width of the nu peaks is not significantly increased by static disorder in the alloys.

These measurements present an opportunity to look for softening of the

bond-stretch term in the potentials of the alloys. The motion of the atoms in solids

is correlated. Figure 5.1 shows a cartoon of three different levels of interaction

between the atoms. In the case of rigid body motion (a), all of the atoms in a

material would move in unison. In the limit of uncorrelated motion (c), the atoms

do not interact at all. The atoms would be at the average structure distances and

observe random thermal motion. The real situation lies between these two limits

(b); the motion is somewhat, but not completely correlated. The motional
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correlations die out with increasing atomic separation. To understand this we can

make a simple model for a highly correlated solid. If we start with the completely

correlated rigid body case, we see that all the atoms move together regardless of

separation. Now cut the rigid rods of Figure 5.1(a) and insert a small, stiff, but

compressible, spring where we cut. We see that near neighbors still move in a highly

correlated fashion with a small amount of randomness coming from the springs.

Between second neighbors lie two springs, between third neighbors three springs,

and so on. It is immediately apparent that the correlation of the motion will die out

with further neighbors. In the PDF this is evident as an r-dependent peak

broadening that is clearly evident, especially in semiconductors. [67, 68] In the

previous chapter the local bond length order at 10K was shown to produce strain

seen as broadening of the fn peaks with most of the strain on the Zn sites. This

chapter will use temperature dependent data to verify the assumption that the

contribution of the PDF peak width due to thermal motion varies linearly between

the end member values for all of the compositions. To test this assumption ZnSe,

ZnSeo,5Teo,5, and ZnTe were measured as a function of temperature. By extracting

both the rm and fa peak widths the nature of the bonds can be further understood.

5.2 Experimental

5.2.1 Data Reduction

Three samples (ZnSe, ZnSeo,5Teo,5, and ZnTe) were measured using the General

Materials Diffractometer (GEM) at ISIS as described in Section 4.2.2. The data

were measured for thirty to sixty minutes per data-set as shown schematically in

Figure 5.2. The 10K data parameters were used as a template to process the other

data of the same material, then G10", was minimized by changing B as suggested in

Chapter 3. To improve statistics, data that were seperated in temperature by 10K
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Figure 5.2: Data measured as a function of temperature and composition. The data

was measured for 60 minutes (0), 45 minutes ([3), and 30 minutes (A).

were combined; the effective temperature is the average of the two temperatures.

5.2.2 Method of Extracting Peak Widths

The nn widths were extracted using rwid. rwid is a program based on the

PDFFIT [34] engine that can fit any number of Gaussians to a radial distribution

function (RDF). The RDF can be written in terms of the PDF as

T(r) = rG'(r) + 47rr2po, (5.1)

where p0 is the average number density. For zinc-blende structures p0 = 8/a3 where

a is the lattice parameter found using PDFFIT and there are eight atoms in the

conventional unit cell. While the range that the fit was being done over was

different for znse (2.2Ag r 52.7131), znseo,1,'re.,,5 (2.2145 1' 32.9.4), and ZnTe

(2.2AS r 53.0A) due to the different nn bond lengths, the method was the same.

After choosing appropriate initial values for peak width, height and position, the

refinement took place in three steps
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1. width and height are varied.

2. position is varied.

3. width and height are varied.

In the case of ZnSeo_5Teo,5 there were two Gaussians being fit to the data while for

ZnSe and ZnTe only one was used. The initial peak position is 3450 for ZnSe and

ZnTe and 390 2t 0.07A for ZnSeo,5Teo,5. The i0.07A for ZnSeo,5Teo_5 is to account

for the nominal peak seperation of 0.14A in the alloy as determined in Chapter 4.

To extract the fn peak widths the data was modeled using PDFFIT. The

modeling was done in three steps:

1. The scale factor (Nm), and the lattice parameter (latt[i]) are varied.

2. The isotropic thermal parameters, U2,, and Uauoy, are varied.

3. Nm, latt[i], UZn, and Uauoy are varied.

The refinement range was 2.3ASr320A for ZnSe and ZnTe and 3.1A31320A for

ZnSeo,5Teo,5 with a fixed Q-resolution (qsig[i]) of 0.03536 representative of GEM.

The correlation factor (delt[i]) was fixed at 0.15, 0.16, and 0.17 for ZnSe,

ZnSeo,5Teo,5, and ZnTe respectively. Once the isotropic thermal parameters were

extracted they were converted to PDF peak widths by

03 = U; + Uj (5.2)

where z' and j signify the atomic components of the PDF peak.

5.3 Nearest Neighbor Information

The nn are highly correlated as seen by the sharpening of the nu peak

width. [67] However, in the case of low temperature the nu peak does not broaden
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ZnSe ZnSeo,5Teo,5 ZnTe

Zn-Se 420(30)K 530(30)K -

Zn-Te - 350(30)K 450(30)K

 

Table 5.1: Debye temperature found from the nn peak widths with 63,,=0.0A2.
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Figure 5.3: nn peak widths for Zn-Se (a) and Zn-Te (b). The widths are extracted

from ZnSe (Cl), ZnSeo,5Teo.5 (O), and ZnTe (A). The solid lines are the Debye model

fit to the data.
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due to static strain. This observation led to the result that the width of the nu peak

arises from thermal motion not static strain.

We fit the nu widths as a function of temperature using the Debye model, [69]

3112 1 T 2
2 _ __ 2

OD _ makbOD [4 + (SD) (1)1] + 00”, (5.3)

where ma is the average mass, OD is the Debye temperature, 03” is the static

contribution to the peak width, and <I>1 is given by

eD/T $11

(1),, = / dz. (5.4)

0

 

ex—l

Due to the correlated nature of the nu motions the Debye temperature determined

in this way will not correspond to that determined crystalographically or from

thermal measurements such as specific heat. Nonetheless, we can compare Debye

temperatures obtained from similar samples. Because of the complex nature of (1)1,

fitting the Debye model to data directly is difficult at best. An alternative method

is to fit the Einstein model then use the relation

with the same value of 03". [70] This method of determining OD emphasizes the

need for good statistics to distinguish between the Debye and Einstein models.

Unfortunately, the statistical nature of the nu distribution does not allow this here.

The extracted nn peak widths can be seen in Figure 5.3 with fit parameterson

in Table 5.1. It is immediately apparent that significant fluctuations are evident in

the data which do not exhibit smooth, monotonic, Debye behavior. This behavior is

unlikely to be real. Furthermore, these fluctuations do not appear to be completely

random in nature and are not reflected in the estimated error bars. The higher
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temperature measurements have larger uncertainties due to the statistics related to

the shorter measurement times. The fluctuations may come from some kind of

systematic instability in the experimental setup. One such effect is moderator

temperature which, it is now known, fluctuated on the order of hours at the time of

the measurements. Steps have since been taken to rectify this problem. With the

understanding that this limits the uncertainty of the measurements data have been

fit using the Debye model. The reader will notice that the an peak width does not

have any additional offset due to static strain in agreement with the low

temperature results in Chapter 4, i.e., the measured asymptotic low-temperature

peak width is well explained by quantum zero point motion. The lack of strain is

re-iterated in the fact that plotting the Zn-Se peak width for ZnSe and ZnSeo,5Teo.5

together yields a single curve, as do the Zn-Te peak widths. This behavior shows

that the peak width is independent of material composition and instead depends on

the interatomic potential. This is the reason for the Zn-Se widths being on one

curve and Zn-Te widths on another.

5.4 Far Neighbor Information

For convenience we fit far neighbor peaks using the Einstein model, [71]

h? 92 E 2
CE = ———2be coth (_2T) + 00” (5.6)

where m, is the reduced mass, 9;; is the Einstein temperature, and off” is the

static contribution to the peak width. As we have discussed, both Einstein and

Debye models give qualitatively similar temperature dependence and our data are

not good enough to distinguish them. The fit parameters are shown in Table 5.2

and the extracted widths are shown in Figure 5.4.

As before, significant non-random fluctuations are evident in the alloy data
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915 in K ogffin A2

ZnSe ZnSeo,5Teo,5 ZnTe ZnSe ZnSe0,5Teo,5 ZnTe

Zn-Zn 145(2) 141(2) 151(2) 0.0013(4) 0.0232(4) 0.0006(4)

Zn-Se 146(1) 144(1) - 0.0009(4) 0.0160(4) -

Zn-Te - 132(2) 125(2) - 0.0164(4) 0.0010(4)

Se-Se 148(1) 148(1) - 0.0005(4) 0.0088(4) -

Te-Te - 119(5) 99(5) - 0.0095(4) 0.0015(4)

Se-Te - 134(5) - - 0.0092(4) -  
Table 5.2: Parameters for Einstein model fit to the fn peak widths.
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Figure 5.4: fn peak widths for Zn-Zn (a), Zn-Alloy (b), and Alloy-Alloy (c) plotted

with fits of the Einstein model. The widths are extracted from ZnSe (Cl), ZnSeo,5Teo,5

(O), and ZnTe (A).
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that compromises the fit somewhat. However, the qualitative effects are very clear.

First it is apparent from Figure 5.4 that all the curves are nearly parallel but have

different offsets. This is also reflected in the fact that the refined Einstein

temperatures are very similar to each other. The values for the Einstein

temperatures are somewhat lower than those obtained from the nu peak. If we

convert the nu Zn-Se and Zn-Te peak Debye temperatures to Einstein temperatures

using Equation 5.5 we get 250K and 270K respectively compared to 146K and 125K

measured from the fn peaks. This simply reflects the fact that the nu motion is

correlated and that this has not been properly accounted for in the Debye model fit

to the nu peaks. This is being investigated in more detail elsewhere [72]. For the

Zn-Se/Te pairs the Einstein temperature is lower in the Te compound. As is evident

in Table 5.1, a for this material is about 8% smaller than in the Sc compound so

this smaller Einstein temperature might be real. It is less easy to explain why this

trend is reversed in the case of Zn-Zn pairs (ZnTe compound has a higher 63 in this

case), although we note the 6 parameters for each compound are comparable

(Table 5.1) and Zn—Zn pairs are second neighbor pairs. Although this may be a real

effect, it is somewhat dangerous to overinterpret these numbers given the

quantitative nature of the fits.

We now consider the Einstein temperatures in the alloy compound in contrast

to the end-members. First note that, as expected from Figure 5.4, the values are

very similar to those of the endmember compounds, supporting the use of potential

parameters from the endmembers with the alloys. We also note that the value for

Se-Te, which has no analog in the endmember compounds, is the mean of the values

for Se-Se and Te-Te in the alloys. Again, caution should be exercised against

overinterpretation. Nonetheless, the main approximations that we have made in our

potential based modeling appear to be confirmed here.

Finally, we consider the offsets yielded by the Einstein modeling. The offsets
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should be a direct measure of the static (non zero-point) disorder present in the

compounds. They can, therefore, be compared with the values presented in

Chapter 4 which were extracted assuming that the thermal disorder in the alloys

was the same as in the end-members. The offsets refined for the endmember

compounds are, indeed, very small and are unlikely to be significant. Since we

expect no static disorder and no offset in these compounds this is an independent

measure of the quality of our procedures for extracting PDF peak widths on an

absolute scale and fitting them. It is reasonable to use the offsets for the

endmembers as a measure of the uncertainty in this paramater of around 0.001A2.

The absolute values of the peak widths can therefore be expected to be accurate at

around the 2% level or better.

Turning to the alloys it is clear that significant disorder exists and that it is

least on the alloy (SeTe) sublattice and greatest on the Zn sublattice. The mean of

the two values is seen for Zn-alloy pairs as expected. Referring to Figure 4.6, it is

clear that this is also in rather good agreement with the values determined for the

static strain using the approximations of Chapter 4.

5.5 Conclusions

From the temperature dependent PDF measurements we conclude the

following. The evolution with temperature of the PDF peak widths is material

independent as seen by all curves for a given type of peak being either parallel or

overlapping and from the fitting values. Thus, the approximation that potentials

from the endmembers can be reasonably transferred to the alloys is reasonable. Our

procedures for extracting peak widths from the PDF of neutron data gave, in this

case, peak widths that are accurate on an absolute scale at the level of a few

percent. The Einstein and Debye models work reasonably well to explain the data,
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though clearly a more complete analysis using a measured phonon density of states

would be preferable. However, in the spirit that the PDF is a relatively quick and

easy experiment that can yield useful (though low precision) information about the

atomic potential, these empirical models appear to be a valuable approach for

studying trends. The results for static strains obtained on low-temperature data are

quantitatively reproduced by this temperature dependent experiment. In the future,

temperature dependent PDFs will be calculated from the Kirkwood potential to

compare to the data as well.
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Chapter 6: Summary and

Discussion

6.1 Summary

The purpose of this work is to understand the atomic structure of bulk

ZnSe1_,,Tex alloys. In particular we wanted to determine the relation between the

local, intermediate, and average structure. Learning about the interplay between

these different length scales is motivated by the need to understand (and engineer)

alloy pr0perties even in the presence of atomic scale disorder present in alloys. A

prerequisite for most theoretical studies of electronic structure is an accurate atomic

structure of the material in question. Despite their importance, a full description of

the accurate local structure of semiconductors was lacking before this study and a

related one. [15] This study was done using the pair distribution function (PDF)

which allows for accurate local and intermediate structure determination.

The average zinc-blende atomic structure interpolates linearly between the

end-member (ZnSe and ZnTe) values of the lattice parameter, a. In order to

minimize peak broadening, measurements of the structure were done at 10K for a

variety of compositions. In Chapter 4 these measurements were used to confirm the

nearest neighbor (nn) peak splitting seen by earlier XAFS measurements [3] and

provide further insight into the nature of the bonds. The nn bonds were close to the

Pauling limit (staying near their end-member values) in contrast to the average

structure which behaves very closely to the Vegard limit (linear interpolation

between end-member values). The efl'ect of the nn bond on the far neighbor (fn)

distribution was then explored by looking at the rm and fn PDF peak widths. We

determined that, while the nu peak widths do not vary from the end member
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values, the fn peak widths are affected by the local bond length order. The

broadening of the fn peaks is interpreted as static strain and is bond—specific, with

the Zn-Zn accounting for the majority of broadening due to strain. Looking at the

five different local neighborhoods of the Zn site in contrast to the one neighborhood

of the alloy site explains this phenomenon.

The measured PDFs were then compared to the Kirkwood potential model

without adjustable parameters. Since the Kirkwood model agreed with the

measured PDFs so well, other predictions of the Kirkwood were explored. Among

the predictions is the structure of other semiconductor alloys, specifically

InxGa1_,,As. We saw that the difference in chemical composition had little bearing

on the atomic structure of the material. Qualitatively all of the results of

ZnSe1_xTex and InxGa1-zAs are the same.

Since semiconductors are normally used at or above room temperature rather

than at 10K, it is of great interest to see how the low and room temperature

structures compare to each other. In Chapter 5 ZnSe, ZnSeo,5Teo,5, and ZnTe were

measured over a large range of temperatures. It was confirmed that the peak widths

can indeed be split into static and thermal contributions. Also observed was the

fact that the temperature dependence of the peak widths depends only on the type

of bond, not the material.

In the course of this work we used, for the first time, the new GEM neutron

powder diffractometer at ISIS neutron facility at the Rutherford Laboratory in

Oxfordshire, England. This is the first of a new generation of neutron

diffractometers with very high solid angle coverage on bright sources giving

unprecedented gains in measurement throughput. To put this in perspective, we

found that the data rate from GEM is of the order of 100x faster than the SEPD

diffractometer at the Intense Pulsed Neutron Source at Argonne National

Laboratory that has been the instrument of choice for many previous studies in the
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Billinge group. Thus, four days of GEM beam-time would correspond to more than

1 year of continuous SEPD beamtime. This revolution in data acquisition presented

special challenges for the computer based data reduction and analysis. In order to

successfully carry out this project the data acquisition software, and data analysis

protocols, had to be completely overhauled. The necessity to somewhat automate

data reduction, when faced with Z 100 data-sets from a single measurement,

became apparent and methods for assuring that PDFs of Optimal quality were

obtained in this process had to be developed. This is described in Chapter 3 of this

thesis. Though not described in detail in the thesis, a straightforward GUI interface

was also developed for the computer analysis programs, as well as a number of other

program improvements. The interested reader is referred to the program

documentation for the program PDFgetN and the accompanying publication. [30]

6.2 EJture Work

This work has produced a greater understanding of ZnSe1-,Tez, but more

questions need to be answered. While the temperature dependence of the peak

widths was appropriately described using the Debye and Einstein models, they are

only rough approximations. Since the Kirkwood model was successfully used to

describe the atomic structure of ZnSe1_zTex at 10K, it should be tested against the

temperature dependence of the peak widths. The potential model will give further

insight into the nature of the bonds.

Use of the Kirkwood model suggests other work that could be done. Similar

measurements of other pseudobinary semiconductors will further the understanding

of the atomic structure. By measuring more ll-Vl semiconductors the structure can

be studied by varying the lattice parameters as the general chemistry is unchanged.

Then by measuring alloys with the same lattice parameter, semiconductors of
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different families (IV-IV, Ill-V, and l-VII) should be measured to study the effect of

the chemistry on the structure. Comparison with InzGa1_xAs in Chapter 4 hints

that chemistry is not as important in the atomic structure first believed. This would

mean that the electronic and atomic structure are actually quite independent of

each other.

This work has shown in general that local structure can be quite different from

the average structure determined crystallographically. This is also true in a wide

range of materials beyond semiconductor alloys where multiple elements or

anharmonicities exist. In fact, this describes a majority of materials of interest to

physicists, chemists and materials scientists these days. With the advent of powerful

spectrometers like GEM and easier, faster, and more accurate PDF data analysis

and modeling codes similar to those developed as part of this work, we expect the

use of the PDF technique to increase as an adjunct to crystallography for verifying

and solving local structures.
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APPENDIX
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A large component of this dissertation was deve10ping various software for a

large number of tasks. Here is an incomplete list of what was written with brief

descriptions. Everything listed was written using the Perl language

(http://www.perl. com).

All programs are fully documented and avaialable to academic researchers upon

request. Many are also documented on the web under ”downloads” on the

Billinge-group web-page, http://www.pa.msu.edu/cmp/billinge-group/ .

o PDFgetN [30] - A program to extract the pair distribution function from

spallation source neutron scattering measurements.

0 PDFsaveN, PDFsearchN, and PDFrestoreN — A suite for archiving neutron data.

0 pow - Calculate the x-ray diffraction Bragg positions of a crystal.

0 Activate - CGI script that calculates the time until a sample is no longer

radioactive after exposed to a neutron source.

http://skywalker.pa. msu. edu/cgi-bz'n/activate. cgz'

o mu-t - CGI script that calculates the x-ray absorption of samples.

http://skywalker.pa. msu. edu/cgi-bz'n/mut. cgz'

0 Beam Time Scheduler - CGI script used for planning and tracking experimental

measurements.

0 einsteinfit and einstein - Fit and calculate the PDF peak width (0;)as a

function of temperature using the Einstein model for a given 9;; and 03”.

o debye - Calculate the PDF peak width (0:)as a function of temperature using

the Debye model for a given OD and 03”.
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