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ABSTRACT

THE DISTRIBUTION OF THE PRODUCT OF

TWO DEPENDENT CORRELATION COEFFICIENTS

WITH APPLICATIONS IN CAUSAL INFERENCE

By

Wei Pan

Causal inference is an important, controversial topic in the social sciences, in which it

is difficult to statistically control for all possible confounding variables. To address this

concern, Frank (2000) derives an index, a product oftwo dependent correlation

coefficients (between the confounding variable and the predictor of interest and between

the confounding variable and the outcome), to express the sensitivity ofregression

inferences based on linear modeling to the impact ofa confounding variable. Frank’s

index leads to a promising methodology by which we can inform causal knowledge to

address the controversy in causal inference. However, the behavior ofthe distribution of

the product oftwo dependent correlation coefficients is little known. Frank used a

reference distribution generated through an approximation based on the Fisher 2

transformation, and then an approximation to the product oftwo normal variables;

therefore, this doubly asymptotic result is tenuous. The present study advances Frank’s

approach and provides a direct and more accurate approximation to the reference

distribution with a closed form—Pearson Type I (Beta) distribution. A simulation study

is conducted to assess the accuracy of the approximation. With the more accurate



approximation to the reference distribution, we will have more confidence to conclude

whether a causal interpretation ofa given predictor is robust to confounding variables,

that is, whether uncontrolled confounding variables are unlikely to have impacts great

enough to alter an inference about a predictor of interest. This study also conveys the

robustness into a probability scale, and guidance for interpreting the magnitude ofthe

probability is given. Applications are illustrated with an example pertaining to

educational attainment. The methodology discussed in this study would allow for

multiple partial causes in the complex social phenomena that we study, informing causal

inferences in the social sciences from statistical linear models. The findings in the

present study may also be applicable to other methodological issues, such as indirect

effects in path analysis.
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Chapter 1

INTRODUCTION

1.1 Causal" Inference

Causal inference is an important, controversial issue in most fields of the social

sciences, such as educational research, behavioral research, psychometrics, econometrics,

and sociology as well as epidemiology and biostatistics. In those fields, researchers

routinely draw conclusions about causal relationships between dependent variables and

independent variables fiom statistical linear models using data fi'om- observational studies

(See Jacobs, Finken, Griffin, & Wright, 1998; Lee, 1999; Okagaki & Frensch, 1998;

Portes, 1999, for examples). However, the usual statistical approaches may not lead to

valid causal inferences, even ifthemodels are supported by related theories and fiilly

specified (Abbott, 1998; Cook & Campbell, 1979; Holland, 1986, 1988; McKim‘&

Turner, 1997; Pearl, 2000; Rubin, 1974; Sobel, 1996, 1998). The problem mainly comes

from the failure to control for all possible confounding variables for which the list cannot

be exhausted.

For instance, Okagaki and Frensch (1998) examined the relationship between

parenting and children’s school performance for different ethnic groups, but did not

control for the children’s age, gender, or socioeconomic status. Jacobs, Finken, Griffin,

and Wright (1998) examined the relationships between parent attitudes, intrinsic values



of science, peer support, available activities, and preference for future science career for

science-talented, rural, adolescent females. However, they also failed to control for other

demographics, such as age and socioeconomic status. A third example is that Lee (1999)

examined the differences in children’s views ofthe world after they personally

experienced a natural disaster for various ethnic, socioeconomic status, and gender

groups, but failed to control for pre-world-views. Still another, Portes (1999) examined

the influence ofvarious factors in immigrant students’ school achievement and controlled-

for many demographic and sociopsychological covariates. Nevertheless, we still can ask:

“Did he control for all possible sociopsychological factors?” Therefore, the conclusions

in each case might not support causal relationships, although there are statistically

significant results.

To accommodatethis problem, the literature suggests the following options:

(1) Use alternative models, e. g., randomized and well-controlled non-randomized

studies (Rubin, 1974);

(2) Try causal discovery algorithms which operate on statistical data sets to produce

directed causal graphs (Spirtes, Glymour, & Scheines, 1993);

(3) Abandon the use of causal language and emphasize the effects of causes rather

than the causes of effects (Holland, 1986, 1988; Sobel, 1996);

(4) Spend more effort on descriptive work (Abbott, 1998; Sobel, 1998).

Ifwe are still interested in exploring causal relationships in the real world, options

(3) and (4) will not work. As for option (1), random assignment is often impractical in

the social sciences given logical, ethical, and political concerns. In addition, it is not



always possible to measure all confounding variables to be controlled for in statistical

analyses. Thus, option (1) would be also inapplicable. In option (2), the causal graphs

are generated by calculations of conditional statistical dependence or independence

among pairs ofvariables, but in most cases, the assumptions under which the algorithms

operate are not powerful enough to uniquely identify the real causal structure underlining

correlational data rather than some set of statistically equivalent but genuinely alternative

representations (Woodward, 1997). Thus, the soundness ofthe methodology ofcausal

graphs is uncertain.

Is there a comparatively simple, feasible way to explore causal relationships using

commonly used statistical linear models? The answer is optimistic. Although we are

never able to find all possible causes ofan outcome, we can statistically characterize the

extent to which a causal inference regarding a given predictor is robust to the impacts of

other minor causes ofthe outcome using Frank’s (2000) index ofthe impact ofa

confounding variable. Before going further to discuss how to implement Frank’s index, I

will first explain below what Frank’s index is as well as the concept ofconfounding.

1.2- Confounding and Frank’s Index k

A confounding variable is one related to both the predictor and the outcome and it is

also assumed to occur causally prior to the predictor (Anderson, Auquier, Hauck, Oakes,

Vandaele, & Weisberg, 1980; Cook & Campbell, 1979). If a confounding variable were-

introduced into a linear model, the effect ofa predictor of interest on an outcome might

be changed from statistically significant to not statistically significant.



For example, I took 990 schools that have complete data regarding the following

three relevant variables fi'om the NELS:88 data (National Center for Education Statistics,

1996) and found, using a simple regression, that Teachers’ Morale (BYSC47G) ofthose

schools has a significant effect (p < .001) on their Students ’ Academic Achievement

(mean score ofF12XCOMP—standardized test composite ofreading and math). Also,

extensive research has shown that School Socioeconomic Status (mean score ofBYSES)

is related to both Teachers’ Morale and Students ’ Academic Achievement (Chall, Jacobs,

& Baldwin, 1991; Miller & et al., 1986; Solomon, Battistich, & Horn, 1996; Trusty, Peck,

’ & Mathews, 1994, to name a few). Thus, School Socioeconomic Status is a potential

confounding variable for Teachers’ Morale on Students ’ Academic Achievement. After

introducing School Socioeconomic Status into the regression model, I found that the

effect of Teachers ’ Morale on their Students ’ Academic Achievement was no longer

statistically significant (p > .448) (see Table 1), supporting that School Socioeconomic

Status is a confounding variable for Teachers’ Morale on their Students ’ Academic

 

 

Achievement.

Table 1

Coefficients ofthe Regressions8|

Unstd. Std.

Model Variable Coefficient (s. e.) Coefficient t p

l Intercept 47.567 (.842) 56.493 .000

Teachers’ Morale .849 (.206) .130 4.121 .000

2 Intercept 51 .226 (.541) 94.607 .000

Teachers’ Morale .100 (.132) .015 .759 .448

School SES 8.799 (.229) .776 38.448 .000

 

Note. N = 990. ‘Dependent variable: F12XCOMP——standardized test composite (reading & math—

school mean).



Usually, we do not always have measures of confounds, and cannot always control

for them. However, we can ask: “How large must be the impact of a confounding

variable to alter the inference?” Technically, the impact can be obtained by expressing a

t-statistic for a regression coefficient in terms of zero-order correlations:

A

 

 

 

I: Bx : rxy_rxcryc (1)

59(5):) 1— r)?y — r:C "3: + 2rxyrxcryc

n—q—l

where

Xis the predictor of interest;

Y is the outcome;

C is the confounding variable;

n is the sample size;

q is the number of independent variables, e. g., 2 if are here X and C;

A

,6, is an estimate of the regression coefficient ofX;

5e63,) is the standard error of 3x;

rxy, rxc, and rye are the observed correlation coefficients between X and Y, between X

and C, and between Y and C, respectively.

This formula holds if the regression model only has Xand C as independent variables.

For the case of more than two independent variables, the formula will be more complex

(of, Frank, 2000, p. 164). If the coefficient ,6, changes from statistically significant to

non-significant after including the confounding variable, the t-statistic (1) crosses the

threshold of the critical value.



Unfortunately, in many cases, we do not have a measure of a confounding variable.

In these cases, there is no absolute rebuttal to challenges of causal inference associated

with confounding variables. Nonetheless, Frank (2000)quantifies the impact of a

confounding variable on a regression coefficient as a product of the two correlation

coefficients rJlrc and rye: k = rxcxryclll. Given this constraint, the value of the t-statistic (1)

achieves its minimum value when r2“ = rzyc = k. Thus, the t-Value can be re-expressed as

rxy — k

tmin = ’ (2)

\[(1+ rxy — 2k)(1— r9.)

 

 

,n—q—l

which affords the confounding variable the greatest impact on the inference regarding the

regression coefficient ofX.

The expression (2) reveals the relationship between the index k and the t-value. That

is, we can express k as a function of an estimated correlation rxy and the minimum t-

value, tmin (2). Therefore, ifwe set the minimum t-value equal to a critical value, we can

obtain a magnitude ofk that is necessary for a potential confounding variable to alter the

inference regarding the predictor on the outcome, even ifwe are not able to measure the

confounding variable. In other words, if we had a confounding variable, we know from

the index k how strong the correlational relationships of the confounding variable with

the predictor and with the outcome must be to alter the inference for the predictor.

Frank refers to the threshold at which the impact of a confounding variable would

alter a statistical inference as the impact threshold for a confounding variable (ITCV).

 

[I] (a) In the case of more than two independent variables, It will be the product of two partial correlations

(cf. Frank, 2000). (b) For the moment, assume k > 0. For the case of k < 0, see Frank (2000).



That is, if the index k ofany potential confounding variable does not exceed the

corresponding ITCV ofa given predictor that is statistically significant, we can say that

the causal inference about the predictor on the outcome is robust to the other causes or

confounding variables. Therefore, we may not need to worry about the validity ofthe

predictor as a major cause ofthe outcome, since we can argue for the validity in terms of

the ITCV. Thus, Frank’s methodology is a promising attempt to lessen the crisis in

causal inference that was mentioned at the beginning ofthe chapter, by rephrasing the

problem in terms ofthe sensitivity ofa statistical inference to the impact ofconfounding

variables.

Ofcourse, confounding variables are usually unmeasured or immeasurable. While

Frank’s index quantifies the impact necessary to alter an inference, how do we know the

likelihood that such an impact could or would alter the inference in the presence ofthe

confounding variable? One response is to generate a reference distribution for the impact

ofthe unmeasured confounding variable from the impacts ofexisting, measured

covariates. The reference distribution takes the same form as that of index km: the

product oftwo dependent correlation coefficients between the covariate and the predictor

and between the covariate and the outcome. With this reference distribution, we can

assess the likelihood that the causal interpretation ofthe predictor could be altered if a

confounding variable with comparable impact were measured and controlled in the linear

model.

 

[2] In the case of more than two independent variables, k is the product of two partial correlations (cf.,

Frank, 2000, p. 166).



Some researchers may be uncomfortable with the strategy ofusing measured

covariates to generate a reference distribution for the impact ofan unknown confounding

variable. For example, a poorly chosen set of covariates will underestimate the impact of

an important confounding variable. Thus, we acknowledge that this use ofthe reference

distribution is only as valid as is the set of covariates on which it is based. In this sense,

the problem is no difi‘erent fi'om any other associated with making an inference fiom a

sample that must be representative ofthe population. In this light, the impact of existing

covariates represents important information by which to assess the ITCV. For example,

would it not be informative ifthe ITCV were much larger than the impact ofany

measured covariate? Ifone agrees, then the question is not whether to use the impacts of

measured covariates, but how to use this information. This becomes the core ofthe

present study.

1.3 Purpose of the Study

In order to utilize the reference distribution, we must understand the behavior ofthe

distribution ofthe product oftwo dependent correlation coefficients. From Cohen and

Cohen (1983, p. 280), we know that the product oftwo dependent correlation coefficients

is constrained by the upper and lower limits, rather than just —1 and 1:

 
 

n—./(1-r.i—>(1....<r +./(1-r.’.)<1—r.’.>. (3)

Thus, the distribution ofthe product is obviously not exactly normal. However, beyond '

this constraint, we know little.



Frank (2000) used an approximtion based on Fisher 2 transformation, and then an

approximation to the product oftwo normal variables, to assess the likelihood ofan

impact ofa confounding variable greater than ITCV. Unfortunately, this doubly

asymptotic result is tenuous. Therefore, the remaining task is to generate a more accurate

and direct expression for the reference distribution. The purpose of this Study is to obtain

a more accurate approximation to the reference distribution that is the product oftwo

dependent correlation coefficients. Using the reference distribution generated by the

more accurate approximation method will give us a more valid conclusion about the

robustness ofa cause inference to the impact ofa confounding variable.



Chapter 2

LITERATURE REVIEW

There are my papers in the literature about the distribution of a single correlation

coeflicient (Konishi, 1978; Konishi, 1979; Kraemer, 1973; Olkin, 1967; Olkin & Siotani,

1976) or the distribution ofthe difference oftwo correlation coefficients (Choi, 1977;

Dunn & Clark, 1971; Meng, Rosenthal, & Rubin, 1992; Neil] & Dunn, 1975; Olkin,

1967; Steiger, 1980; Wolfe, 1976), but few about the distribution ofthe product oftwo

correlation coefficients. I will review the few papers below.

First, we know from asymptotic distribution theory that the distribution of a set of

correlation coefficients approaches the multivariate normal distribution, as the sample

size becomes very large (Steiger, 1980, p.246). Hence, the focal'problem ofthis thesis

could be solved by a straightforward approach that treats the product oftwo correlation

coefficients as a product oftwo asymptotically normal variables and incorporates the

findings in the literature about the distribution ofthe product oftwo normal variables

(Aroian, 1947; Aroian, Taneja, & Cornwell, 1978; Cornwell, Aroian, & Taneja, 1978;

Craig, 1936, 1942; Meeker, Cornwell, & Aroian, 1981; Meeker & Escobar, 1994;

Springer, 1983; Wallgren, 1980). However, the asymptotic convergence of this product

is very slow (Craig, 1936). Thus, this approach presents a severe limitation in

application.

10



There are two other plausible approaches to obtain the distribution ofthe product of

two correlation coefficients. Mathai and Saxena (1969) express the product oftwo

correlation coefficients as a special case ofthe product oftwo generalized Mellin-Barnes

fimctions or H-fimctions (Mathai & Saxena, 1978). However, the expression obtained

for the distribution fimction is quite unwieldy. In addition, in their study, the two

correlation coefficients are assumed independent, while the two relevant correlation

coefficients defining the impact index k are associated with a common variable—the

confounding variable or covariate. Therefore, the two correlation coefficients that we are

interested in are not statistically independent (Boyer, Palachek, & Schucany, 1983; Choi,

1977; Dunn & Clark, 1969, 1971-; May & Hittner, 1997a, b; Meng, Rosenthal, & Rubin,

1992; Neill & Dunn, 1975; Olkin & Firm, 1990; Steiger, 1980; Williams, 1959; Wolfe,

1976).

The other approach is described in Frank (2000) and mentioned above. Frank

transforms the two correlation coeflicients to two asymptotically, normally distributed

Fisher 23, then uses Aroian’s findings about the distribution ofthe product oftwo normal

variables to obtain the distribution ofthe product oftwo Fisher z’s, instead ofthe two

original correlation coefficients. A problem with this approach, however, is that we do

not have a closed form function for the distribution. Furthermore, we do not know how

stable the Fisher 2 transformation is. Moreover, we are interested in the product oftwo

original correlation coefficients, while the behavior ofthe distribution ofthe product of

two Fisher z’s is detached from that oftwo original correlation coefficients. That is,

Frank’s approach is relying on asymptotic theory for Fisher’s z, compounded with the

11



approximation error associated with Aroian’s approach, which results in very slow

convergence.
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Chapter 3

APPROXIMATION PROCEDURES

As stated in Chapter 2, the prior research does not provide sound methods for

obtaining the distribution ofthe product oftwo dependent correlation coefficients. To

address this limitation, in this Chapter, I will develop a more accurate approximation to,

and a direct expression for, the distribution ofthe product oftwo dependent correlation

coefficients. The approximation procedures have two steps. First, I obtain the first four

moments ofthe product ofrxcryc. Then, I apply these moments to Pearson distribution

family (Pearson, 1895), obtaining an approximate distribution ofrxcryc as a Pearson Type

I (Beta) distribution.

3.1 Moments of rxcryc

Let pxy, p“, and pyc be the population values of rxy, r“, and rye, respectively. Let Arxy,

Ar“, and Aryc be the deviations ofthe sample values from their population values. In

partiCUIar, Arxy = rxy _ pxy, Arxc = rxc _ pxc, arid Aryc = rye — 91“. Then, We have

13



rxcryc = pxcpyc + pchryc + @cArxc + Archryc;

(rm)2 = ,0sz y. + p2... (Aryc)2 + p’.. (Ar...)2 + (matures2 + Mammy.

+ 2pxcp2ycArxc + 2pyc(Arxc)2Aryc + 2pchrxc(Aryc)2 + 4pxcpycArchryc;

(nerve? = p3... .. + ,9... (Arya’ + p3..- (Amers + (Armfmrya’ + Madam...

+ 3p3...p..(Ary.)2 + 3p2..p3..Ar.. + 3p... .. (Ar...)2 + Isis/mam”?

+ 3p..(Ar..)2(Ar..)3 + 3%.. (martin. + 3a.(m..)3(Ar..)’

+ 9;}... ..Ar..Ar.. + 9pz...p...Ar..(Ar...)2 + 9p... .. (Ar..>’Ar..

+ 9pxc/5tc(Arxc)2(Aryc)2;

(rxcryct = pant. + Acorn)“ + puma)“ + (Arxc)‘(Aryc)4 + 4p‘mp’ycAryc

+ 4p’..p‘..Ar.. + 4p3..(Ar..)‘Ar.. + 4p..(Ar..)3(Ar..)4 + 4P4xcfl3c(Aryc)3

+ 4p’..Ar..(Ar..)‘ + 4p..p‘..(Ar..-)’ + 4p,.(Ar,.)4(Ar,..)3 + 6P4..p2y.(Ar..)2

+ winners? + 6pzm(Ar.c)2(Aryc>‘ + 6p’yc<Arxc>‘(Aryc)’

+16)?“ ,.Ar..Ar.. + 16p’..p..Ar..(Aryc)’ + 16acp’yc(Arxc)’Aryc

+ 16p..p..(Ar,.)3(Ar,.)3 + 24in imam”? + 24#.cp’yc(Ar..)’Aryc

+ 24a..a.(m..)2<Ar..)3 + 24p,.p2..(Ar..)3(Ar..)2

+ 36p2,cp2,.(Ar,.)2(Ar,.)2.

Dropping the terms oforder higher than the fourthm and taking expectations of

(rxcrycy, i = 1, 2, 3, 4, give us the approximate first four non-central moments as follows:

 

[3] Since we only want to obtain the approximate first four moments, the terms of order higher than the

fourth will have little effect on the approximation.

14



p'l = E(rxcryc) = pxcpyc + pxcllKAryc) + pch(Arx.:) + E(Archryc);

112 = Earner] = p2... ,. + mamas + p’chKArxcfl + E[(Ar,.)2(Ar,.)2]i

+ Manama.) + 2p... ..E(Ar..) + 2p..E[(Ar..)’Ary.]

+ 2p.cE[Ar..(Ar,..)’] + 4p..p,.E(Ar,.Ar,.);

pa = E[(r..r..)3] = pars. + pioneer] + p’chKArxcf] + 36.. ram.)

+ miner/Aryan + media/Ar...) + 3,... ”Erwin

+ 3p’..E[Arxc(Aryc)31 + 3p’ch[(Ar..)3Aryc] + 9d... ”Born/Ar”)  
+ 9d..p..E[Ar..(Aryc)’] + 9p... chl(Arxc)’Aryc1 (4)

+ 9p..p..E[(Ar.c)’(Ary.-)’];

to = E[(r...ry.)‘] = dept. + panama“) + p‘chKArxctl + 4p‘xcp’chWyc)

+ 4p3..p4,.E(Ar..) + 4p’.cpch[(Aryc)3] + 4p..p4,.5[(m..)3]

+ 6p4,. ..E[(Ar..)21 + 6p2xcp4ch[(Arxc)2] + 16p’.m’y.E(Ar.cAryc)

+ 16p3xcpch[Arxc(Aryc)3] + 160.. ..E[(Ar..)3Ar..]

 + 24p31cp2ch[Arxc(Aryc)2] + 24p215p3ch[(ArXC)2AryC]

J+ 36p2.cp2,.E[(Ar.c)2(Ary.)2].

In order to obtain closed form expressions for the first four moments, we need to

express E[(Ar,c)i], i = 1, 2, 3, 4, E[(Aryc)’],j = 1, 2, 3, 4, and E[(Ar,c)k(Aryc)’], k, 1= 1, 2, or

3, in terms ofp“, pyc, or pry. Before going further, we need to define some notation and

get some preliminary results. Suppose the three initial variables X, Y, and C follow a

trivariate normal distribution. Then, following Ghosh (1966) and Hotelling (1936, 1940),

the moments and the covariance of rxc and ryc can be approximately expressed as follows:
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.. P.(1‘P.2){ 9 2 3 2 4

=' r, —.-. ,-——————- 1+—-— 3+ , + 121+7O ,+25 ,fir. 12( ) p 2M 4M( p) 8M,( p p)\

3 . , 2 4 6
+.—-— 6479+4923 , +2925 , +1225 .

64M” p p p )

 
3

“I“ 4
128M

(86341 + 77260p3 + 58270p3 + 38220pf +19845pf)} ;

of) = Var(r.) = 510-. —#,. >21

1

2M2

_(1--p3)’

" M

 {1+—2iM—(14+11p3)+ (98+130p3+75p1’)

11143 (2744 + 4645p3 +4422pf + 2565p?) +

8

  + 81:44 (19208 + 37165p} + 44499pf + 40299pf + 26685pf )} ;

(5)31; , _ 3 =_£’_-_(l_p_-_L{5+.L 69+88 2a”. [(r, ya) ] M2 M( P.)

-..-. (797+1691p3 +1560pf)
41/2l.

 

4.7813702325 +33147p,2 +488099p,‘ +44109pf)};

3(1 — p3 )‘(4)_ 4 —-

0",. “EKro "#5) ]" M2

1 2
l+——— 12+35 .{ M( p)

l

2

 + 4 (436 + 2028p,2 +3025pf)

 

1
4. M3 (3552 +20009p,2 +46462pf +59751pf)};  

r“, r” = Cov(r,.c,ryc ) = E103... - t1,“ )(ryc - #5,” j

rile (1-102 ~p2 )--!-p p (lepz ~p2 -p2)M _ .ry xc yc 2 re yc xc yc xy ’
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66 99

where M= N+ 6, N is the sanrple size; the subscript . represents xc or yo; and the

superscripts “(2)”, “(3)”, and “(4)” represent a variance, a third moment, and a fourth

moment, respectively (as distinguished from quadratic, cubic, and quartic powers).

On the other hand, we have the expressions for E[(Ar.)'], i = 1, 2, 3, 4, and E(Ar..Ar,.)

as follows:

E(Ar,) = E(r, —p,) = '11,. -—p,, which will be referred to as b,’ ; \

E[(Ar.)21= E[(r. — p.)’1 = E{[<r. — 4.. )-(#. — 1431’}

= E[(r. — 41..)2]+(#r.-10.)2 = of?) +4.3;

E[(Ar.)31= E1(r.—p.)31= E{[(r. 44.144. —p. >13}

= Eur. -#., )3] — 3oz. — p. )E[<r. — 4,.)21—(4. — p.)3

_ (3) (2) 3 ,
- 0". ~30“ b,. -b, ,  

E[(Ar,)4] z E[(r, —p.)"] = E{[(r. —#,,)-(/1., -,0.)14} (6)

= E[(r, — 21,. )4] —4(u,, —p.)E[(r. #1.. )3]

+604... — p.)2 E1<r.- x4. >’1+<#+. - m“

44344 +4934 +24

E(Ar,,hryc) =. E[(r,. — p... )(ry. - 9.. )1

=E{[(rxc -#rxc)_(flrxc —pxc)][(ryc -1uryc)-(#fyc —pyc)]}

 
: E[(rxc -#"xc )(Itvc —luryc )] +(rurxc —pxC )(Iuryc —p)’c) /

=0 +b b
rev’yc ’xc ”yc'
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We also need the expressions for the higher order product-moments, E[(Arxc)’(Aryc)’], s, t

= 1, 2, or 3. Afier a few simplifications, we first have:

Hike-404444) = E[(r.- -p.-)(r,- -p,~)(rr -p.)(r1 -pr )1 \

=E{[(r,- —.u.,.)+(u.,. —p.-)][(r,- -#.,)+(#r,. —p,- )1

'10). -#..)+(#,,, -pr)][(r1 -.u,,)+(#,z #4)”

= EK’} —lur,- )(rj ‘flrj )(rk —'u"k )(r, —’u'1 )]

4. b,1E[(I;- — p... )(r,- - 44,. )(r.. - 14-. )1

+ b”, E[(r,- — p, )(r; - A, )(r/ - x4, )1

+ b,jE[(r;- —— A, )(r. - 44,. )(n - x4, )1

+ 1),, E[(rj - x4, )(r. - l4, )("1 - #r, )1

+ brk 1),, 151(4- _ ”r.- )0“) — Iqu )] + b0, b,7 E[(’;~ — fir, )(rk — lurk )]

+ 4,115,, E[(I;- - p... )(r, — 4., )1+ 4.. b. Elm - #4.- X'4 “ #4 )1

+ 1),, 12,, E[(r,- - #r,)(r1 - x4, )1 + b. b.,E[(rr - #4,. )(r, ‘ #42 )1

+bbbb
rJ-jr fk

— 0,1100sz +0JI,JJ(0,J,J7 +0J0,1 J ,1 +0,, bn‘b,7 +0,Mb, b,7

+0", ,1 b, brk +0,ka, br, +00 ,1 b, brk +0rk abribJJ J

+bbbb
r-jkrrqa
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where i, j, k, and I can be xc or yc, and Anderson’s (1958, p.39, Equations 25 & 26)

formulaem were applied to the last equality in (7). By the same fashion, we further have

E(A’1A’1A’k)=El(’i -p,-)(rj "ijrk ‘Pk )l

tar-fr} r,jrkr rjar;
=0 b+0 b+0 b+bmbb (8)

Then, in(7) letting i=j=k=xc andl=yc, lettingi=xc andj= k=l=yc, and letting

i =j = xc and k = I = yc, respectively, give us the desired expressions for some ofthe

higher order product-moments as follows:

b2 +153 b
r“, r”. r“. rxc rye 9 NE[(A7xC)3(Aryou = 36:320-5050 + 30.12:.)er bryc + 30

3 = (2) (2) 2 3 .
E[(Arxc)(Aryc) ] 30ch0 +30,” b,“ bryc +30,“ b +b b

 

rxc-ryc ,ry.c rye ’xc 'yc’

> (9)

E1(4r..)(Ary.)1=o—4:3)other?,,.,. +2314; +49%;

+40,4bMb 4.1%];2 J

And, in (8) letting i =j = xc and k = yc and letting i = xc andj = k = yc, respectively, give

us the desired expressions for the rest ofthe higher order product-moments as follows:

rxc I'yc ’. E[(Arxc)2(Aryc)]=0.5:)bryc'l'20rxcr, ”but: +b2b }

(10)

E[(Ar,.)(Ar,.)2] = 0:31),“ +205, b +b b3

 

l4] Anderson’s equations were tactically used only for obtaining the higher order product-moments,

although these equations are based on the normal distribution.
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Applying (6), (9), and (10) to (4), I obtain the approximate first four non-central

moments ofrxcryc as follows, in terms ofp.., and pyc and the moments and the covariance

ofrxcarid rye that are the functions ofpm, pyc, and p”. (of, Equation 5):

1 = E(r,cryc) = (bare + ch )(bryc + pyc) +030,” ; \

2 = E(rxcryc)2 = [(er + 10.. )2 + 05:) 11(er + pyc)2 +032]

2 .

rxc ,ch 9
+4(b,xc + pxc )(beC + ch )0;wa +20

3=E(r r )3=-b3 p3 +b3 (3b —p )p2 +p3 p3 +3p p3 0(32)+3p p
4“ .VC ryc xc r“ ryc yc ye are ye xc yea'xc xc yea

gory:

(2)0. (2) 3 (3 (2 2

+910..py.0,J0J who;’+p..0‘J’+9[py.65J’+p3.(p§.+0‘J010

2 2 2(2)
+18pxcpyc0'rchyc+3brycpxc(pxcpyc+3pyca(’xc +3!)ch'xc’yc)

 2 2 2 (2)

+ 3b,“ pyc [pxc (3b,” + 3b,” pyc + pyc. + 30"yc )+ 3pyco'rrcm ]

+3b p 13/2264"'2’+102(102 --0‘2’)+6p p 0' l (11)CW xc yc r)“. are ye 'yc xc yc rxc,ryc

3 2 (2) 2 2 (2)

+3bJ,{bJr)... +3bJpn/0y. + 3bleicaJ +p..(p,. +0.J )+ 4p..py.0.J,.J]

+pyc[—pyCO'ar2)+pxc(pyc+30(2))+6pxcpyca0-1”- ,ycr I};

4 = E(r-“'r}’c')4 : bgcpz‘ + 4b?” (4brxc — pxc )picpyc + b4cpyc——4b::cpxcpyc + pxcpyc

 

(2) (2) (2)(7 (2 (3 3
+6px2cpyca(’xc +6pxcpyca’vc +36pxcpf’firco-CO-ch)+4pxcpch-(0”c)+4px4cpyc0'0:”)

0(4) (4) 00 2
+1040,“130360,”+16pxcpycl3pyc0'6‘c)+Prc(pyc +30;c))]0’36ch

4 4 2 (2) (3) (4) 3 3
+ pxc(bryc + 6bryc0ryc —— 4ber0ryc + 0ch )+16pxcpyc(b&cbryc +0JICJW) )
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+72p..p§.02.J.J +6193,10-16133,pyc+4b104/93,.+6p..00.2.’+P3.(/93c+0‘2’) \

+8p..p..a..,J1+6b.2pal/43.0oif’+p..<p..+60£”>+8p.cmc04.4.1

+4bprcl-3p..p..00‘J’+p..(p..+60‘J’)- p.40mf’+12p..p,0v.0,.JJ1 >(11')

+4b5’cpxc {4bixcpic +6b:cpxcp}3,c +4b5rcpyc[3pyc0'0'2) +pxc(pyc +30'(2))

 
ll-j

(2) o,(2)_ 0(3) 2

+9pxcpycarxcfy€]+pxc[6pyco.(r“. +pxc(pyc _3p,o.rVC arw)+12pxcpyco'rxc,ryc

The derivations for the formulae (11) and (11’) were done by Mathematica (Wolfram,

1999). We could further substitute (5) into (1 l) and (11’) to obtain direct expressions for

the first four moments of rxcryc in terms of pm pyc, and p” as well as the sample size N,

but this is not advisable because the formulae would be much messier. For the central

moments about the mean, substitution in Kendall and Stuart’s equations (Kendall &

Stuart, 1977, Equation 3.9, p. 58):

#2 ___ ”.2 _ #12
\

= 2 (2) (2) 2 (2)
(er + p“) 0JyC +0,“ [(bryc + pyc) +0,” ]

+204... +p..)(b.J +eyc>0....,. 4402.....4 )(12)

#3 = #3 — 3412/2 + 2#'13

=-2b3Jp..-3b3J p..0UP- 6bJena"0"“ -.3bJP..0‘:’0‘_J0’+6p..p..$730,‘2’  
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-b3c[b3 +3b,2ycpyc +2pyc +3(bryc+pyc)O-(2¢.)]+pyca£3c2+pxca0123c)
22

_3t—2p..a<2>+a:2’(b,2J +2bJ-pyc 2ij 2202205127....

4,0160% _ 10...”;y. 40:0553 Jic{bpJJa,2 +3a(2))

(2) _ (2) 3 2 3
+ [3bec (er. + 2pyJ ) + or” ]0'eryc } + 3be0 { a,“ [b’xc + 3b,“ bryc + 2pyJ

+(b+pJ)a<2>]— 2pJJ(3bJ2 +052...2)0rJy — 4(b+pJ)o-2 };
’xc’yc

p4 = [1'4 - 4fl'i/I'3 + 6fl'lzfl'2 — 3M4

_ 4(2) (2)0,(26) 4 4 3 2 2

2bJ(4p.c + 317“”,J)+6p.cp..0,JJ0 + erJ [3er +12erpyc + 6er p...

(4) (4)

+412Jp§c+8pyc+6(bJ +0..)203221+pyc0JJ +p..0,JJ +413p.cp.c0‘,2200..  
cannot?»-20‘2J’)- pyca0:3J’+p..(3p..0 +6lp.c(2p.2c--50fJ2J’) (12')

'xc’yc

w—36pJJpJJa0: +904 —4b2MpJJOpJprJ06(2)
2 2

+a‘’(——5pJ +0:2)]0’2 a,” ,JJJ

+ 2praJmch — 30:230JCJJ ) + 4b,; {pJJ [3ij + 3b,;pJ .. 31,3” (Pic _ 205.23)

— wing} +wa (2pJ + 3ch;052))1 + [6b,3 +18b2J-pJ 2pJ + 3pJaJ0(2)

+3wa (2p; +agc))]aw }+6b2 [pfc(4pJJ +0(2))0.(2) +(2pxc + 0(2))02 ]
02Wyc

2 4 2 3 2 4 (2) 3 (2) 0(2) 0(2)
+6brx[beCpJJ—2brprprJ+brxc arx +4bprcO'rJ +4pyJ0'J 6—bWpJJpJJO'

(2)012:+pyCO-rfc)O-(2cr)+6bpxc(2p}’c+byv_pyc zpyc
ryc 'xc

2 (2) 0(2)
+bM0" +2brycpyJ0'

(2) 2 2 (2) 2 4 3 3 3
+ aryc )0chch + (8wa +16wa pyJ + 2pJ + cry. )O'JXCJW ] + 4b,“ {be6 pm + 2b,” pJJpJJ  

J,( 2) 3

+ 6er10-10.ch
0(2)

+3bfJP..0‘J2J’+3b3J p..p.c0,J-9b2Jp.cpic0.2J’+6bJ10.610..ch
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2 2 2 2 2 0(2 2 013“) 4 (3)

+3brJ”pal?(7:602)Syc) —,.3bycpxpyco',0(3)(ya) _6pxcpycar”)023— bf”pica-f _zpyca’xc W

-b.ina0:33)- 2p..0.J0‘3J2 -b.ino0‘32 -p3.p..a‘32+3[2b.3Jpic-6122Jp..p..

3 0(2) 2 0(2) 0(2) 3 (2) 2 _ (2) (2)

+bJ +3b.pJ... -3.bJp..a. -p..0.JJ -(b,JJ +p.. X310... 0.JJ )0.J 205.2} 

+3pxc(8b’2yc —"2byc—pyc—4pvc+0'(:c))0'r:,ycr +9(bryc+pyc)0'rxc ,ycr }--r4b”[prcar(:2

(2) 2 C(30)
+3pJJa0(220''xyco" +3pJJachaW, +6pJ2JpJJ(0'(220'ch(22++20",2ch )+pJJ(pJJ0'J

 +9pJJ0'”(22 —3O'(220'(220'ch -90'3 )]. j

NOte that #1 = 03202,.rxcryc —lul )dF: J1”xc“ye E(rrxc rycr)]dF= £(rxcryc )dF— E(rxcryc)

_w -m

3.2 Pearson Distributions

The four moments only give us a general idea about the characteristics ofthe

distribution ofthe product oftwo dependent correlation coefficients. To better

understand the distribution ofthe product oftwo dependent correlation coefficients, we

need to explore the shape ofthe distribution. Since the Pearson distribution family

provides approximations to a wide variety of observed distributions using the only first

four moments, in this thesis the Pearson distribution family is employed to obtain an

approximate distribution for the product ofthe two dependent correlation coefficients.
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There are three main types and some other uncommon types of frequency curves in

the Pearson distribution family, which are characterized by fl-coefficients:

fl.=”—§,fl2=”—:. (13)
2

In particular, after obtaining fl] and ,6; via the first four moments, we can plot the couplet

(,61, ,62) on the (A, ,6;) plane illustrated in Pearson and Hartley (1972, p. 78). From the

(,61, 5;) plane we lmow the type to which the observed distribution belongs. Instead of

referencing the (J61, #2) plane, we can also distinguish the types ofPearson distributions

by evaluating the criterion Ic(kappa) (Kendall & Stuart, 1977, Equation 6.10):

K = fidflz +3)2 , (14)

4(432 ’ 3131 )(Zflz — 3.51 — 6)

with the. specifications illustrated in Figure l (Elderton & Johnson, 1969, p.49).

 

   

K='°° K=0 K=1 =00

I4 K'< O O < K<1 K>1

TypeI TypeIV TypeVI

Type III Normal curvem Type V Type III

(fl2=-3)

TypeIIorVII

(326300-3561

Figure 1. Specifications of K for distinguishing the types ofPearson distributions.

 

[2" [6] Originally, they are “/32 = 3” and “,6; < 3 or > 3” in Elderton and Johnson (1969, p.49), but according

to the expression (14) above (from Kendall & Stuart, 1977, Equation 6.10) and the expression (4) in

Elderton and Johnson (1969, p.41), they should be “,6; = -3” and “ < -3 or > -3”, respectively.
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Type I distributions are beta distributions and type HI distributions are gamma

distributions. Pearson and Hartley (1972, p. 261—285) have tables for percentage points

ofPearson curves for given ,6] and [92. Elderton and Johnson (1969) provide

mathematical expressions for Pearson distributions with formulae for the parameters in

terms ofthe first four moments.

3.3 Approximate Distribution of rxcry.

In order to apply the first four moments of rxcry. to Pearson distributions, I begin by

noting that there are three conditions for the dependent population correlations Jo“, Joye,

and pxy in this particular study:

(i) p... and py. are dependent and, from (3), p,, is correspondingly constrained by:

 

pxcpyc i\/(1‘Pic)(1-P;c);

(ii) Jump”, andpxyat -l, 0, or 1;

(hi) chpycpxy > 0-

It is obvious that condition (i) is supported by Cohen and Cohen’s constraint in

equation (3) above. Since -1, O, l are extreme cases and trivial, condition (ii) is sensible.

As for condition (iii), I will deal only with cases in which this condition holds for issues

ofconfounding and indirect effects. The general interpretation ofconfounding applies

when the impact of the confounding variable, K = pmoyc, takes the same sign as the
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relationship betweenXand Y, pxy. Therefore, the product ofthe two components, pxcpy.

and pxy, must be positive, showing that condition (iii) applies.

Under these three conditions, we might be able to theoretically prove that K < 0, but

for simplicity, I only numerically evaluate the criterion K. Under the conditions above, I

evaluated Kvalue for all possible conditional triplets ofp“, pyc, and pry with an increment

of. 10 for each correlation coefficient and I found that the larger N, the more values of K

are negative. When N> 300"], all values of K are negative under the three conditions.

Note that the values of K are approximate, since the fl-coefiicients are evaluated by the

approximate moments. 2 As N approaches infinity, the approximate values of K will

approach the true value that will be negative, as observed by examining the numerical

trend of K as N increases. Thus, by looking at Figure 1, we can conclude that the

distribution ofthe product oftwo dependent correlation coeflicients, rxcryc, can be

approximated by a Pearson Type I distribution. Correspondingly, the density function is

(Elderton and Johnson, 1969; Kendall & Stuart, 1977):

f(k)=fo[1+—’€-] [Ll—J ,—a.sksa2;1"—=-'—"—2-,

aI 02 a1 a2

where k = rxcryc, and

_ 61M"? 1J _ .

(a, +a,)"'1+'"2+' 13(m, +1,m2 +1) ’

 

 

[2] For N < 300, p,“ or p,,. must be greater than .10 so that Kbecomes negative. For smaller correlations,

e.g., p“ and Joy. < .10, a rare case in confounding, O < K< l; and the distribution of the product oftwo

dependent correlation coefficients, rJerJ, can be approximated by 3 Pearson Type IV distribution.
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a, +a2 =%\/Ju2[fll(s+2)2 +16(s+1)],

 

 

  

= 6(fl2 -fl1_1)

6+3fl1‘2fl2 2

and m and ”12 are given by

s— 2 is(s+2)

2 ,B,(s+2)26;16(s+1)

withm1<m2ifp3>0andml>m2 iffl3<0.

Note that here we got an approximate distribution for the product oftwo dependent

zero-order correlation coefficients. The results hold for the product oftwo dependent

partial correlation coefficients. It is evidenced by Fisher’s (1924) founding that the

distribution ofthe sample partial correlation is that ofthe zero-order correlation

coeficient.
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Chapter 4

SIMULATION STUDY

Equation (4) in Chapter 3 gives us the expressions for the first four moments of rxcryc

in terms ofthe moments and product-moments ofthe original correlation coefficients, r“

and rye. Then, by applying approximations to the moments and product-moments ofthe

original correlation coefficients, this current study obtains approximate expressions for

the non-central moments or central moments ofthe product, rxcryc. However, we do not

know how accurate the approximation is. Therefore, a simulation study is conducted to

check the accuracy ofthe approximate moments against the moments calculated fiom the

simulated data.

4.1 Simulation Design

The parameters in this simulation study are the sample size, N, and the population

correlations, p“, Joyc, and pxy. For p“, pyc, and pm I choose .10, .30, and .50 as small,

medium, and large correlations (Cohen, 1988); and for the sample size, I select 28, 84,

and 783, which correspond to a statistical power of .80 for the small, medium, and large

correlations (Cohen & Cohen, 1983). Table 2 shows the parameter specifications for this

simulation study.
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Table 2

Parameter the Simulation

 

  

   

  

 

  

  
    

ch 28

.10

  

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

  

 

  

 

   

 

  

  

  

  

  

  

  

  

   

 

.30

  

  

  

  

  

  

   

.50

  

 

As can been seen in Table 2, we do not need to include every possible combination

of. 10, .30, and .50, because p... and Joy. are symmetric in the mathematical expressions in

Chapter 3. Therefore, I have removed the duplicate cases. In addition, under the

condition where pxcgcpxy > 0, we can always change the sign ofthe relevant variable to

have all three correlations positive. Thus, there are only 18 positive correlation triplets

needed for this simulation study. Multiplied by the three magnitudes ofN, we have 18 x

3 = 54 cells to simulate.

For each of 54 cells (i.e., for each set ofN, pm, pyc, Joy), by Cholesky factorization, I

generate X, Y, and C with the specified population correlations (cf., Browne, 1968) and

with the sample size as N. For simplicity, I generate (X, Y, C) as a trivariate standard
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normal distribution given values of p... p,., and p.,. Then, I compute the pair of

estimated correlation coefficients, which are defined as EJJ and 'r'JJ. Within each cell, the

same procedure is replicated 1000 times, resulting in 1000 pairs of 'r'JJ and FJJ values.

Directly multiplyingrJandrJJ gives us a simulated distribution of the product r..r,.,

which serves as the true distribution of rxcryc, with which the approximate moments”) and

distribution can be compared. Tables 3 to 14 show the comparisons of the first four

moments.

To quantify the accuracy of the approximation method in this paper, by following

Kendall and Stuart (1977, p. 247), the standard errors of the first four moments, [1”, , [13 ,

H3 , and m , of the simulated distribution of the product rxcry. are also computed (see the

numbers in the parentheses in Tables 3 to 14) by the following formulae:

 

5.8.0.1221): 000112 ;

seal.) \/=——(.u4-u22): b (15)

_J l

s.e.(u3)=\/'1—OFO'(#6 — #32’6114112 2’9“?)3

 

 

 
J 

s.e.(fl4) = —1_8(/1 114'" 8H5l13 +16fl2fl3)
1000

 

[2] The approximate moments were calculated by SPSS (See Appendix A for the SPSS code). To make the

code clearer, I computed Equations (6), (9), and (10) substituted them into (4), instead of using the messy

Equations (12), (12’), and (12”).
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here I simply use the formulae (15) above to calculate the standard errors instead.

Actually, the two approaches yield similar results, except for J33 for which the standard

errors were a little overestimated by the formula in (15). For instance, for the cell ofN =

84, p... = .30, py. = .30, and pxy = .50, by the formulae (15) the standard errors of [7'] , 272 ,

2123 , and )2, are .001632, .000137, .000018, and .000004, respectively, while they are

.001542, .000127, .000014, and .000003, respectively, ifwe generate 1000 ofeach of

those moments. Thus, Tables 3 to 14 display in the parentheses the standard errors

calculated only by the formulae (15).

In addition, to help to have a good look at how far the approximated values are from

the simulated values relative to the standard errors (s. e.) ofthe simulated values, the

Approximated — Simulated
 standardized diflerences (Std. Diff. = ) are also listed in

s.e.

Tables 3 to 14.
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Table 3

Simulation Resultsfor the Mean ,u '1 (N = 28)

stpwji

.10

.30

.50

.10

.30

.50

.30

.50

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s.e.)

.016237540(.001416792)

.022705850(.001482690)

.029056640(.001561022)

.035789020(.002169760)

.041859490(.002253031)

.047860880(.002344481)

.054815860(.003166590)

.059943050(.003241347)

.065037510(.003320096)

.093832050(.002612237)

.099503540(.002755509)

.105077490(.002891617)

.151518190(.003232683)

.156342730( .003393298 )

.161155260(.003549875 )

.248737050(.OO3346673)

.252917640(.003566791)

.257125970(.003767061)

Approximated (Std. DiflEL

.015379623( «605534834)

.021156094(-L045232565)

.026944329(-L353158933)

.034214339( 2725739594)

.039543751(-L027832596)

.044908457(-L259307843)

.053042589( 4559993936)

.057454354( -.767796859)

.061924942( 2937493265)

.091340180( 4953922018)

.096269592(-L173629978)

.101304886(—1.304669237 )

.1489] 7726( -.804428991 )

.152976550( -.992008421 )

.157211844(-l.110860634 )

.245704306( -.906196698 )

.248939600(-1.1 15299353 )

.252469012(-1.236231048 )

 

Table 4

Simulation Resultsfor the Mean ,1: '1 (N = 84)

pic

.10

.30

.50

pK‘

.10

.30

.50

.30

.50

.50

Pm

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s. e.)

.010398070(.000618555)

.012648370(.OOO655401)

.014908830(.000694075)

.030208880(.001164637)

.032315040(.001213070)

.O34499610(.001262882)

.050552070(.001821664)

.052358840(.001865880)

.054340980(.001914181)

.089548730(.00143646l)

.091304370(.001536766)

.093066460(.001632057)

.149496750(.001868874)

.150922470(.001980651)

.152451530(.002090734)

.248913370( .001942712 )

.249983780( .002086890 )

.251040100( .002226773 )

Approximated (Std. Difi‘.)

.010916407( .837980770)

.013098629( .686998108 )

.015285296( .542399656)

.030509873( .258443555)

.032523206( .171602560)

.034549873( .039800247)

.050096700(-t249974738)

.051763367(-n319137803)

.053452256(-a464284l33)

.089522706( -.0181 16748 )

.091384928 ( .052420470 )

.093287151 ( .135222607)

.148693461 ( -.429825126 )

.150226795( -.351235456 )

.151826795( -.29881 1281)

.247612886( -.669416767)

.248835108 ( -.550422870)

.250168441 ( -.391444850)
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Table 5

Simulation Resultsfor the Mean Ju '1 (N = 783)

Pa-

.10

.30

.50

A

.10

.30

.50

.30

.50

.50

pry

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s. e.)

.010037140(000167601 )

.010288380(000181604 )

.010545220 ( .000194859 )

.030017610 ( .000358608 )

.030253530(.000376577 )

.030497610(.000393853 )

049967830(000568102 )

050166610(.000584003 )

.050371640(000599416 )

.089681690(.000442595 )

.089872890 ( .000482732 )

.090092450 ( .000520759 )

.149624530(000572730 )

.149788470(.000616166 )

.149987730(000658331 )

.249354340 ( .000582864 )

.249408930(000638882 )

.249522490(.000695198 )

Approximated (Std. Diff.)

.010105409( .407331195 )

.010354331 ( .363158371 )

.010603761 ( .300427607)

.030060721 ( .120217478 )

030290379( .097852579 )

030521557( .060801909 )

.050015047(.083113581)

.050205161(.066011599)

.050397810(.043659134)

089953037( .613082460 )

.090165458( .606067374 )

.090382441 ( .556862130 )

.149862675 ( .415806530 )

.150037580( .404290690 )

‘ .150220089( .352951511 )

.249745934( .671844984 )

.249885351 ( .745710667 )

.250037442( .740727301 )

 

Table 6

Simulation Resultsfor the Variance Jug (N = 28)

Pg. p1"; In

.10

.30

.50

.10

.30

.50

.30

.50

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s.e.)

.002007300(000145714)

.002198370(.000168953)

.002436790(.000193817)

.004707860 ( .000262925 )

.005076150(.000288296)

.005496590(000319352)

.010027290 ( 000479899 )

.010506330(.000504464 )

.01 1023040 ( .000542946 )

.006823780(.000324890)

.007592830(.000360409)

.008361450(.000398414)

.010450240(.000464233)

.011514470(.000494732)

.012601610(.000532917)

.01 1200220 ( .000472091 )

.012722000( .000519374 )

.014190750( .000561380 )

Approximated (Std. Diff.)

.002082915( .518928191 )

.002259304( .360657337)

.002502991 ( .341563738)

004732986( 095563454)

005094097 ( .062251932 )

005514970( 057553959)

.010002292 ( -.052090086 )

.010463308( -.085282518 )

.010970180( -.097357668)

006634122( -.583760512)

007529351 ( -.176130254)

008493985( .332656208)

010310752( -.300469693)

011511735( -.005528245)

012800062( .372388203 )

.010941769( -.547459824)

.012522676( -.383777661 )

.014271177( .143266703)
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Table 7

Simulation Resultsfor the Variance [12 (N = 84)

13y
Shnuhned(301) Approximated (Std. Diff.)
 

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

000382610 ( 000030085 )

.000429550(.000036380)

.000481740( 000042849)

.001356380(.000077782)

.001471540(.000088283)

.001594870(.000099699)

.003318460(.000161163)

.003481510(.000173131)

.003664090(.000186859)

.002063420(.000104842)

.002361650(.000121537)

.002663610(.000137272)

003492690 ( .000 1 63370 )

.003922980(;000183839)

.004371170(,000204267)

.003774130(.000171079)

.004355110(.000195961)

.004958520(.000220055)

.000394662( .400597850)

.000447068( .481529421)

.000509135( .639344415)

.001320810( 4457303157)

.001447716( a269860865)

.001583651( a112528167)

.003138425(-L117101076)

.003308192(-L001078030)

.003485889( n953663857)

.001977716( a817455669)

.002314607( a387068319)

.002665894( .016638551)

.003225462(-L6357l7828)

.003683807(-L300989915)

.004167092( a999076307)

.003398698(-2.194491155)

.004005468(-L784244005)

.004670806(-L307466027)

 

__215 Pt:

.10 .10

.30

.50

.30 .30

.50

.50 .50

Table 8

Simulation Resultsfor the Variance [12 (N = 783)

Px_c 1015 Pry

.10

.30

.50

.10

.30

.50

.30

.50

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Shnukned(301)

.000028090(.000001459)

.000032980(.000001747)

.000037970(.000002035)

.000128600 ( 000006030 )

.000141810(.000006616)

.000155120(.000007225)

.000322740(.000014903)

.000341060(.000015682)

.000359300(.000016454)

.000195890(.000008773)

.000233030(.000010558)

.000271190(.000012356)

.000328020(.000014938)

.000379660(.000017344)

.000433400(.000019839)

.000339730(.000015007)

.000408170(.000018179)

.000483300(.000021619)

Approximated (Std. Diff.)

.000028980(.609886393)

.000034073(.625794230)

.000039300(.653585335)

.000130418(.301481748)

.000144278 ( .373008067 )

.000158337(.445249186)

.000328215(.367377356)

.000347269(.395920301)

.000366650(.446687221)

.000202016(.698282409)

.000240276(.686304995)

.000279452(.668649487)

.000336743(.583938073)

.000389197(.549883427)

.000443997(.534151916)

.000353338(.906795524)

.000422995(.815510421)

.000499029(.727550288)
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Table 9

Simulation Resultsfor the Third Moment [13 (N = 28)

chpigpnr

.10

.30

.50

.10

.30

.50

.30

.50

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s. e.)

.000102612 ( .000022926 )

.000158858 ( .000030373 )

.000213329 ( .000037334)

.000229896 ( .00004073 1 )

.000342621 ( .000049056)

.000460741 (.000058132)

.000312498( .000091352 )

.000528974 ( .000102736)

.000761741 (.000122471 )

.000400153 ( .000055523 )

.000514982 ( .000066161 )

.000637833 ( .000078976 )

.000332125 ( 000086245 )

000484532(000095090)

000656781 (000107726)

000186486(000080016)

000223523 ( 000089843 )

.000281911 (000100228)

Approximated (Std. Difi‘.)

000081765( -.909316933 )

.000086309(-2.388601719)

000088324 (-3.348288423 )

.000240334 ( .256266726 )

.000347121 ( .091731898)

.000460429 ( -.005367096 )

000289363( -.253251 160)

.000538633( 094017676)

.000801008( .320622841)

.000532525( 2384093079)

.000707575( 2.910974743 )

.000911491 ( 3.465077998)

000526148( 2.249672445)

.000778373( 3090135661 )

.001073164( 3.865204315)

000490178( 3.795390922)

000713757( 5.456563116)

00099461 1 ( 7.110787405)

 

Table 10

Simulation Resultsfor the Third Moment4113 (N = 84)

1&9}:ny

.10

.30

.50

.10

.30

.50

.30

.50

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s. e.)

.000010500( .000002313 )

.000015611 (.000003300)

.000020994 ( .000004420 )

000032053 ( 000008501 )

000047655 (00001 1095 )

000064406 ( 000014054 )

000051326( 000020603 )

000082326 ( 000024813 )

.0001 16846 ( 000029601 )

000052947 ( 00001 1332)

000072472 ( 000014632 )

0000931 17 ( 000017853)

.000054061 (.000019433 )

.000075321 (.000024430)

.000098774 ( .000029508 )

.000027162(.000017725)

00003 1018 ( 000022389 )

.000041201 (000027059)

Approximated (Std. Difi‘.)

.000009451 ( -.453523562)

.000012091 (-1.066666667)

.000014954(-1.366515837)

.000026099 ( -.700388190 )

.000040805( -.6l7395223 )

.000056834( -.538778995)

.000030707(-1.000776586)

.000062103( -.815016322)

000095498( -.721191852)

000055051 ( .185668902)

000077684( .356205577)

000104548( .640284546)

000051763( -.1 18252457)

000083043( .316086779)

.000120181( .725464281)

000045863( 1055063470)

000072871( 1.869355487)

000107492( 2.449868805)
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Table 11

Simulation Resultsfor the Third Moment #3 (N = 783)

$1015va

.10

.30

.50

.10

.30

.50

.30

.50

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

Simulated (s. e.)

000000108( 000000020)

000000151 ( 000000026)

000000197( 000000032)

.000000127 ( .000000123 )

.000000288 ( .000000142 )

.000000461 ( .000000164 )

-000000203 ( 000000467)

000000128( 000000503 )

000000506( 000000542)

.000000605 ( .000000214 )

.000000801 ( .000000293)

.000000992( .000000373 )

.000000137( .000000456)

.000000275 ( .000000573 )

.000000389 ( .000000700 )

000000545 ( 000000449)

000000710( 000000606)

000000774( 000000798)

Approximated (Std. Diff.)

.000000111( .150000000)

.000000155( .153846154 )

.000000205( .250000000 )

000000299( 1.398373984)

000000485( 1.387323944)

000000692( 1.408536585)

000000348( 1.179871520)

000000732( 1.200795229)

000001144(1.177121771)

.000000615 ( .046728972 )

.000000895( .3208191 13)

.000001231 ( .640750670)

.000000565( .938596491 )

.000000945 ( 1 . 169284468 )

.000001401 ( 1.445714286)

000000490( -.122494432)

.000000814( .171617162)

000001235( .577694236)
 

Table 12

Simulation Resultsfor the Fourth Moment ,m (N = 28)
 

 

pg gt! pm, Simulated (s. e.) Approximated (Std. Difl)

.10 . 10 .10 .000025395 ( .000005791 ) .000000932 (4224313590 )

.30 .000033559(.000008163) -.000001358(-4.277471518)

.50 .000043744 ( .0000] 0421 ) -.000004857 ( 4663755878)

.30 .10 .000091691 ( .000012082 ) .000038147(-4.431716603 )

.30 .000109363 ( .000015133 ) .000036404(-4.821185489)

.50 .000132794 ( .000018452 ) .000028269 ( -5.664697594)

.50 . 10 .000332066 ( .000036967 ) .000252585 ( -2. 150052750)

.30 .000366214 ( .000042815 ) .000267453 (-2.306691580)

.50 .000417883 ( .000053603 ) .000271646 ( 2728149544 )

.30 .30 .10 .000152673 (.000018407 ) .000105481 (2563807247)

.30 .000188228( .000022664 ) .000125898 ( 2750176491 )

.50 .000229483 ( .000028618 ) .000141015(-3.091341114)

.50 .10 .000325797( .000034324) .000300419 ( -.739366041 )

.30 .000378532 ( .000038363 ) .000369983 ( -.222844929)

.50 .000444161 (.000044656) .000440353 ( -.085274095)

.50 .50 .10 .000349379(.000031879) .000374644( .792527996)

.30 .000432846 ( .000036435 ) .000486989( 1.486016193 )

.50 .000517932(.000041225 ) .000619684 ( 2.468211037)
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Table 13

Simulation Resultsfor the Fourth Moment Ju4 (N = 84)

Pm
Simulated (s. e.) Approximated (Std. Difl'.)
 

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.000001057 ( 000000269 )

000001517(000000437)

000002080 ( 000000652 )

000007925 ( 000001627)

000010005(000002306)

000012543 ( 000003136)

000037124(000005280)

000042258 ( 000006742 )

.000048534(.000008487)

000015310(000002288)

000020430 ( 000003221 )

000026042 ( .000004214 )

.000039028 ( .000004820 )

.000049363 ( .000006550)

.000061049 ( .000008456 )

.000043661 (.000004284 )

.000057562 ( .000005858)

.000073253 ( .000007544)

.000000160(-3.334572491 )

.000000094 ( -3 .256292906 )

-.000000048 ( -3.263803681 )

.000004301 (~2.227412415 )

.000004813 ( -2.251517780)

.000005068 ( -2.383609694 )

000027981 (-1.731628788)

.000030662(-1.719964402)

000032974(-1.833392247)

.000010897(-1.928758741 )

.000014492(-l.843526855)

.000018342(-1.827242525 )

.000030707(-1.726348548)

.000039828(-l.455725191 )

.000050142(-l.289853359)

.000035330(-1.944677871 )

.000048855(-1.486343462)

.000065800( -.987937434)

 

Simulation Resultsfor the Fourth Moment ,u4 (N = 783)
 

Pry
Simulated (s. e.) Approximated (Std. Diff)
 

ch P:

.10 .10

.30

.50

.30 .30

.50

.50 .50

Table 14

_&€ 491.6

.10 .10

.30

.50

.30 .30

.50

.50 .50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

.10

.30

.50

000000003 ( 000000001 )

000000004( 000000001 )

000000006 ( 000000001 )

000000053 ( 000000006 )

000000064 ( 000000007 )

000000077 ( 000000008 )

.000000327 ( .000000033 )

.000000364 ( .000000037 )

.000000401 ( .000000041 )

000000116(000000012)

.000000166 ( .000000019 )

000000227 ( 000000025 )

000000332 ( 000000033 )

000000447 ( 000000044 )

000000583 ( 000000058 )

000000342 ( 000000032 )

000000499 ( 000000047 )

000000703 ( 000000069)

.000000002 (-1 .000000000 )

.000000003 ( -1 .000000000 )

.000000004 ( -2.000000000 )

.000000050 ( -.500000000 )

.000000061 ( -.42857l429)

.000000072 ( -.625000000)

.000000321( -.181818182)

.000000359( -.135135135)

.000000399( -.048780488)

.000000122 ( .500000000)

.000000171 ( .263157895 )

.000000230 ( . 120000000)

.000000340( .242424242 )

.000000453 ( . 136363636)

.000000589( . 103448276 )

.000000375 ( 1.03 1250000)

.000000538( .829787234)

.000000748( .652173913 )
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4.2 Simulation results

The simulation results are listed in Tables 3 through 14, and the first set ofthe results

is the estimated first four moments ofthe product oftwo simulated correlations, EJJ 'r‘JJ

(Under the “simulated” column in Tables 3 to 14). To establish whether 1000

replications (numbers of simulated correlations per cell) are enough, Figure 2 displays the

distributions ofthe simulated product PJJ 'FJJ for selected cells with different replications.

From the figure 2, we can see that there is not much difference in the shapes ofthe

distributions across the difi‘erent numbers ofreplications, verifying that 1000 replications

are adequate for this simulation design. On the other hand, as the population correlations,

ps, become bigger, the distributions are more spread, while as the sample size N becomes

larger, the distributions are less spread.

Now, we turn to the comparison ofapproximated values and those obtained via

Frank’s method for the first four moments against the simulated values. Comparing to

the simulated values, Figure 3shows the most noticeable fact that the approximated

values are much more accurate than Frank’s values which consistently, heavily

overestimate all four moments. For the approximated values themselves, most ofthem

are within or very close to one standard error ofthe simulated values, except for the third

and the fourth moments when N is 28 or 84. The inaccuracy might come from the lower-

order approximation of O'JMJJyc (of, Equation 5) which is heavily involved in the third and

the fourth moments. In Chapter 5, I will introduce a regression approach to correct the

inaccuracy for the third and the fourth moment when N = 28 or 84.
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Figure 2. The distributions ofthe product of simulated correlations r: 7" with different
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Now we examine the trends ofthe accuracy ofthe approximated and Frank’s values.

Figure 3 shows the trends ofthe accuracy of the approximated and Frank’s values ofthe

four moments along one parameter, N, pm pyc, or pxy, holding the other parameters

constant. As the sample size N becomes larger, all ofthe approximated values and most

ofFrank’s values become more accurate, except for Frank’s mean. This is not an

unexpected result for Frank’s mean in that it is obvious that the mean ofthe Fisher 2,

 E[z(r.)] = élnfi :g‘ ] , does not equal the mean ofthe original correlation, E(r.) = p. —

00%;) (cf., Equation 5); and therefore, the abnormal trend regarding N for Frank’s mean

is predictable. It also shows the inadequacy ofFrank’s approach as an approximation to

the distribution ofthe product ofthe two dependent correlation coeflicients.

Frank might argue that he was trying to get a p-value through Aroian’s procedure, not

approximate the distribution. However, the P-P plots in Chapter 6 also will show that

Frank’s quantiles are not comparable to the extremely accurate approximated quantiles

obtained by the approximation procedure described in this current study (of, Figure 6).

As for the trends of the approximated and Frank’s values regarding ps, there is no

clear trend in the approximated values, except for the third moment in which the

approximated values increasingly overestimate the third moment as ps become larger.

As stated above, I will fix this problem by a regression approach based on simulated

values. For Frank’s values, they consistently overestimate all ofthe moments when any

of the ps become large, since the magnitude ofthe corresponding Fisher z’s increase

much more than do those ofthe original correlations. It is yet another evidence of the
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detachment ofthe distribution ofthe product oftwo Fisher z’s from that ofthe two

original correlation coefficients.
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Chapter 5

APPROXIMATION CORRECTION

As we can see in Tables 3 through 14 and Figure 3, the approximations in this study

to the first four moments are very accurate, acknowledging a little discrepancy for the

third and the fourth moments when N is small. To account for this discrepancy, we can

borrow the principle ofregression analysis in which we use predictors to explain as much

variation in an outcome as possible through a linear model. In this light, we can model

the deviations ofthe simulated values from the approximated values ofthe moments as a

fimction ofp“, pyc, pxy, fill—2 , and up to 4-way interactions. By the nature ofthe formulae

in Equations (12), (12'), and (12"), a regression model without an intercept is employed.

To keep the work for the approximation correction minimum, we may need to model the

discrepancy for only the third and the fourth moments when N= 28 and 84. For the other

cases, we do not need to model the deviations, since the approximations are accurate

enough and the deviations do not have much variation to be explained in the regression

model. For instance, for the very accurate approximation to the variance ,uz, only 41% of

the outcome variance could be explained by all predictors in the model, whereas as

shown below for the third moment #3, more than 99% ofthe outcome variance can be

explained by the predictors.
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Since we only have 54 cells ofrecords, a stepwise regression is used to obtain more

statistical power; and the stepwise regression results in a simpler model for the third

moment when N= 28 and 84. In particular, the model is

D: S—A: 41(7’§;—)+fl2(y§3-:—)+fls(.3.)+fl4(_.___,.)+ fls(——9)

+&(3—’EA-:.fi-) + a. (16)

where D is the deviation between the simulated value and the approximated value;

S is the simulated value;

A is the approximated value;

,6.- is the regression coefficient;

a is the error.

We now can use the predicted value ofthe deviation, 0 , to correct the inaccuracy of

the approximation to the third moment. The corrected or estimated value ofthe

approximation, denoted as Z = A + D , is theoretically assumed to be more accurate than

the approximated value, A. The virtue of this methodology is to utilize all the available

information borne in the simulation data across pm, '15,, pm and N to correct the

inaccuracy ofthe approximation. This method is consistent with the general principle of

statistical analysis; and the method works because the range ofparameters in the

experimental design is limited by theory, constraining ps according to what are defined as

small, medium, and large effects.
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Afier model (16) was fittedm to the data in Tables 9 and 10, I obtained the predictive

equation as follows (R2 = .991):

A

X

D”: = _.176408(7‘;‘—;) + .116374(%;—) + .447522(.’1;_*;) _ .550128(p.. 2p»)

paw... ppm,

——2—)- ——r—)-
— 1.659398( .805672( (17)

And, the estimated values, X , for the third moments, along with the simulated values, S,

as well as the approximated values, A, are listed in Tables 15 and 16 that show more

accurate results for the third moment than those in Tables 9 and 10.

For the fourth moments when N = 28 and 84, a stepwise regression ended up with the

following model:

pry

 

D= S—A= fl(p—‘§)++.62(—’j)+ 017’;—3+) fl.(—p—“———”EL—HM)

+fls(p—”———p—Nx2p“”)+fl.< H2”:”we. (18)

After model (18) was fitted (cf., Footnote 9) to the data in Tables 12 and 13, I

obtained the predictive equation as follows (R2: 981):

___.p_): 15,,‘=.097559(-§;;)+.113876(;y; .72—084159(jy- 425381( )

X X X X

+1.090953(5£N—f—‘y—)+.564063(51‘A7€£)—3.620234(p‘C ’13”; p1"" ).(19) 

 

'91 Here a regular (unweighted) regression was conducted. A WLS regression weighted by the sample sizes

was also tried, but the result was not evidently better than that of the unweighted regression.
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The estimated values, A , for the fourth moments, along with the simulated values, S, as

well as the approximated values, A, are listed in Tables 17 and 18 that show more

accurate results for the fourth moment than those in Tables 12 and 13.

To determine whether the correction is sample dependent, a cross validation is

analyzed by fitting the models (16) and (18) to the full sample in Tables 9 through 14.

Extremely good approximations were obtained. Specifically, compared with ones in

Equations (17) and (19), only two coefficients have differences in 10".
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Chapter 6

DISTRIBUTION COMPARISON

Up to now, we have compared the approximate distribution ofthe product oftwo

dependent correlation coefficients with the simulated distribution in terms ofthe first four

moments. However, we usually use p-values obtained from the shape ofa distribution,

rather than the moments, to do analysis. Thus, it is more desirable to compare the shapes

ofthe approximate distributionwith the simulated distribution. After obtaining the

distribution function for the approximate distribution ofthe product oftwo dependent

correlation coefficients as a Pearson Type I distribution, the distribution comparison

becomes achievable. A P-P plot is employed for this comparison.

A P-P plot, a probability plot, is a graphical tool for assessing the fit ofdata to a

theoretical distribution (Rice, 1995, p. 321). Specifically, for a given sample data X1, ...,

X", we plot

X0) VS- F-l(—l-)
n+1

where X(,), i = 1, ..., n, are the order statistics ofX1, ..., X", and F is the cumulative

distribution function of the theoretical distribution.

Although we do not know the theoretical distribution ofthe product oftwo dependent

correlation coefficients, we have the approximated Pearson Type I distribution. Then, we
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can compare the simulated data with the approximated Pearson Type I distrlbution to

validate the approximation ofthe distribution ofthe product oftwo dependent correlation

coefficients to the Pearson Type I distribution. Thus, here in the P-P plot, I will plot the

quantiles ofthe Pearson Type I distribution against those ofthe simulated distribution of

the product oftwo dependent correlation coefficients. Due to the complexity ofthe

calculations of its mathematical fimction for obtaining every duantile ofthe Pearson Type

I distribution, I used the common 15 percentiles, .25%, .5%, 1%, 2.5%, 5%, 10%, 25%,

50%, 75%, 90%, 95%, 97.5%, 99%, 99.5%, and 99.75%, which can be looked up in

Pearson and Hartley’s table (Pearson & Hartley, 1972, Table 32). Setting —l—1 = .25%,

n +

.5%, 1%, 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 97.5%, 99%, 99.5%, or 99.75%,

and noting that n = 1000 in this (simulation) study, I obtained the corresponding ith order

statistic Xm in the simulated data Therefore, in our P-P plot there are only 15 points,

instead of 1000 points, each corresponding to one ofthe 15 percentiles above.

Figure 4 displays some P-P plots for selected cells. From the P-P plots, we can see

that when the correlations are larger and N becomes bigger, the simulated data fit the

Pearson Type I distribution better, which is consistent with the conclusion in Chapter 3

(Approximation Procedures). I argued there that ifthe correlations are larger than a small

size, say .10, and N is bigger than 300, the distribution ofthe product oftwo correlations

can be approximated as the Pearson Type I distribution. Also, Figure 4 shows the

unmatched low ends for the cases of smaller correlations, which results from the

inaccuracy ofthe approximations to the fourth moment (cf., Tables 12 and 13) that

regulates the tails ofthe distribution. However, for smaller correlations, these cases are

less interesting to us in that the impact ofthe confounding variable would be so small that

we would not need to assess its impact on the causal inference about the predictor of

interest.

To address the concern above, I also created P—P plots (see Figure 5) using the

estimated values, via the regression approach, for the third and the fourth moments.

Figure 5 shows a better fit ofthe simulated data to the Pearson Type I distribution using

the estimated third and fourth moments. The nicer results come from the better
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Figure 4. P-P plots for the selected cells.
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Figure 5. P-P plots for the selected cells using the estimated values for the third and the

fourth moments.

approximation ofthe estimated values ofthe moments to the simulated ones (relative to

that ofthe approximated values). Thus, the better results validate the regression approach in

Chapter 5 as a helpful methodology to correct the inaccuracy ofthe approximated values.
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Figure 5 also shows that the estimated values for the third and the fourth moments did

a good correction job, and the P-P plots indicate a better fit of the simulated values to

Pearson Type I distribution for small correlations.

To compare the approximate distribution—Pearson Type I distribution—with the

Frank’s distribution, Figure 6 is a P-P plot including the two distributions. According to

Frank’s approach, Fisher z’s, z(rxc) and z(ryc), were obtained from the simulated

correlations and standardized by the variances. Then, the quantiles of the standardized

product z(r,c)xz(ryc) were looked up in Meeker, Cornwell, and Aroian’s tables (1981) (see

Frank, 2000, p.174 for the detailed steps). Figure 6 shows that the approximated

distribution is fitted much better by the simulated data than is Frank’s distribution. In

addition, Frank’s distribution is too conservative. For example, the quintile of .30 is

corresponding to the percentile of 99% for the approximate distribution, but only 50% for

Frank’s distribution. Therefore, it provides evidence that the approximation procedures

using the Pearson Type I distribution are more advanced and accurate than Frank’s

approach for approximating the distribution of the product of two dependent correlation

coefficients.
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Chapter 7

APPLICATIONS

'In this Chapter, through a real example I will illustrate an application in causal

inference by using the methodology with the approximate distribution ofthe product of

two dependent correlation coefficients discussed in the current study.

7.1 An Index of the Robustness of a Causal Inference (IOROCI)

Suppose a causal inference about a predictor of interest, X, on an outcome, Y, was

made through the following regression model

Y=flo+fl,X+£, (20)

and the corresponding hypothesis regarding the coefficient ofX, ,B,, was

Ho: ,6, = 0 versus H]: ,6, at 0.

We know that a t-value under the null hypothesis H0 is

  



Suppose we also have the second model (21) that includes a potential confounding

variable, C:

Y=flo+flxX+flcC+a (21)

Then, the t—value under the null hypothesis Hg with respect to the model (21) is

 

 

t- %—Q%

c _ O

2 2 2
\/1— rxy — rxc — rye + 2rxyrxcryc

n — 3

We want to know the likelihood that we will retain the primary statistical inference

that rejects Ho, when C is in the model (21). That is, for a particular study with an

observed to which is larger than ta, we are interested in the following probability function

W:

W = W00 1 t0) = PM: > tal T: 10): for ’0 > (“[10], (22)

where ta is a t-critical value at level a W is a likelihood that we will reject the null

hypothesis Ho, when the potential confounding variable is in the model (21), for an

observed to from model (20) which is larger than ta.

In practice, we make use ofthe all information we have for assessing the robustness of

causal inference. In view ofthe unobserved confounding variable C, the information about

 

“01 (a) Without loss of generality, to> 0 is assumed, because the case of to < 0 is symmetrical. (b) Different

ta’s might be used for the two models (20) and (21), because the degrees of freedom are different. One is n

- 2, and n — 3 for the other. But, the two 10’s are very close, and when n fairly large, they are almost

identical. For simplicity, we used the same symbol for the both ta’s.

63



r“ and rye can be acquired from the distribution ofobserved covariates. We can use

information about the distribution ofthe covariates to estimate W in the following manner.

Suppose we have m covariates Z1, ..., Zn. The models (20) and (2]) become as

follows, respectively:

Y=,60+,B,X+,621Z1+ ...+,6sz,,,+£, (23)

Y=fio+fl,X+,BcC+flle1 + +,6’sz,,,+6: (24)

The impact ofthe confounding variable is the product oftwo partial correlations,

r x r (of, the footnote [1], p. 6). Ifwe use the distribution of the covariates to
xcozl...z,,, ycozl...zm

acquire the information about confounding variable C, then the impact ofthe confounding

variable r x r can be estimated from the impacts ofthe covariates,
’ XCIZ1...ZmyCIz1...Zm 3

i = 1, ..., m. Consequently, we can estimate ther X r .
x2102]...z,-_1z,-+1...zm yzi.21...Zl'__18".1.1,1...2.m ’

probability fimction W(22) as follows:

W: W(talto,F 5M): P(tc>ta|T= to,p,c= r,,,,,p,.= f,._,,,) forto>ta,(25)

m m

erzxziz'oz1...z,'_1z,-+1...m ry.z0! eryzyz-Iz1...z,-12,+1...zm

i=1”:

_1_

m

_ _ 1
where rm,z — —-

m
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Intuitively, tc could be any value when to > ta, but tc and to are related. For example, in

the case ofconfounding (pmoycpxy > 0), [tel < ta; in the case of suppression, tc < -ta; and in

the case ofrobust, tc > ta. Note that ITCV is not defined when to < ta. Following Frank’s

Figure 1 (2000, p. 156), Figure 7 shows a general relationship between tc and to.
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Table 19

Detailed Counts and Percentagesfor tc < -2, -2 < tc < 2, and 2 < tc Based on A

Simulated Dataset with N = 84 andpa. = .30
 

 

k tc<-2 -2<tc<2 2<tc

pxc=.10&pyc=.10 .01

-2 < to < 2 180(95. 7%) 8(4.3%)

2 < to < 4 14(2.1%) 648(97.9%)

4<to<6 147(100%)

6 < to 3(100%)

p,c=.10&pyc=.30 .03

-2 < to < 2 169(89.9%) 19(10.1%)

2 < to < 4 56(8.5%) 606(9l.5%)

4 <10 < 6 147(100%)

6 < to 3(100%)

pgc=.10&pyc=.50 .05

-2 < to < 2 139(73.9%) 49(26.I%)

2 < to < 4 73(11%) 589(89%)

4 < to < 6 l(.7%) 146(99.3%)

6 < to 3(100%)

p“ =.30&pyc =.30 .09

-2 < to < 2 188(100%)

2 < to < 4 222(33.5%) 440(66.5%)

4 < to < 6 l(.7%) 146(99.3%)

6 < to 3(100%)

ch=.30&gic=.50
.15

-2 < to < 2 188(100%)

2 < to < 4 416(62.8%) 246(37.2%)

4 < to < 6 13(8.8%) 134(9l.2%)

6 < to 3(100%)

,0“ = .50 & pyc = .50 .25

-2 < to < 2 4(2.1%) 184(97.9%)

2 < to < 4 638(96.4%) 24(3.6%)

4 < to < 6 93 (63.9%) 54(36.7%)

6 < to 3(100%)

 

Figure 8 displays a sample relationship between tc and to for the 1000 simulated data

sets with N = 84 and )oxy = .30. We can see in Figure 8 that tc and to are positively related.

When to becomes large, most of tc’s also become large. We also notice that there are

some tc’s scattered around, but when to > 2 (a ta for N = 84 and a = .05) they are never
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below -2, which is the suppression case (of, Figure 7). In addition, Figure 8 shows that

more points fall into the robust region as pxc or pyc become smaller and that more points

fall into the confounding region as p“ and pyc become larger. This information is also

illustrated in Table 19 with the detailed counts and percentages for to < -2, -2 < tc < 2, and

2 < tc. This emphasizes the importance ofusing 7'“. and Pyc which are employed in (25)

through their estimates as the means ofthe partial correlations with respect to the

observed covariates. When the impacts ofcovariates are generally large, the primary

inferences are less robust because we anticipate that there would be a hypothetical

confounding variable comparable to the covariates in terms ofthe (large) impact on the

primary inferences for the predictor of interest. This is based on the assumption that the

impact ofthe unmeasured covariates would behave as do the impacts ofthe measured

covariates.

One way to obtain the value of W in (25) is through the impact threshold ofthe

confounding variable, ITCV. When 1., > ta, the coeflicient ofX, ,6” is significant in the

model (20) or (23), which means that the impact ofthe confounding variable does not

exceed the impact threshold ofthe confounding variable, ITCV. Therefore, the value of

H" can be obtained as follows in terms ofITCV:

ITCV

W = P(K < ITCV) = 1f(k)dk, for to > ta, (26)

-m

where K is the impact ofthe confounding variable with the reference distributionf(k).

Note that the condition T = to in (25) is implied by ITCV because ITCV is a fimction of to
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(cf., Equation 18 in Frank, 2000, p. 167), and the reference distribution captures pxc =

rxz.oz and to?“ = ryzpz '

Of course, we cannot always measure confounding variables, but under the

assumption that the impacts of existing covariates represent the impact of the

confounding variable, we can use the impacts of existing covariates to represent the

impact of the confounding variable through estimating the means for p.CC = 7,2,2 and pyc =

717,2. It is for this reference distribution that I have obtained the approximated Pearson

distribution in the preceding chapters. Thus, we still can obtain the value of W as

described in (26) by using the reference distribution generated from the measured

covariates for the impact of the unmeasured confounding variable.

For the impacts of the measured covariates to have a tractable distribution that is

representative of the impact of the unmeasured confounding variable, we assume

homogenous impacts of the covariates. When the empirical distribution of the impacts is

heterogeneous, researchers need to evaluate the sources of impacts according to

substantive theory. Concerns about the heterogeneity of the impacts of the covariates

would be greater if the impacts of the covariates were obtained from multiple estimated

models accounting for different sets of covariates. The heterogeneity could be assessed

by generating a P-P plot of the observed impacts against the theoretical distribution.

In addition, one may be also concerned about the influence of small values of

population correlations on obtaining the value of W through (26). The fact that my

approximation to the distribution of the product of two dependent correlations is
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comparatively poor for small values ofp” and pyc becomes more ofa concern if the

partial correlations ofobserved covariates with the outcome and with the predictor of

interest are smaller than their zero-order correlations, which usually happens in the social

sciences because the covariates are’ofien correlated with one another. On the other hand,

in the case ofconfounding, given the generally negative relationship between the t-value

for the predictor of interest and the product ofthe correlations with respect to the

covariates, when the impacts ofthe covariates are small, the inferences about the

predictor of interest through the t—test are more likely to be robust to the small impacts of

the covariates. Thus, we are more likely to retain the primary inference due to the small

impacts of covariates, although we may have some difficulty in characterizing the

distribution for the small, partialled impacts of covariates. In other words, the poor

approximation for small correlations would only result in more conservative decision.

The following is a guideline for interpreting the value of W. If W > .95, this means

that the probability of sustaining the original inference is large and we can say that the

statistical inference is very robust with respect to concerns about confounding variables.

If .8 < W s .95, the statistical inference is fairly robust, but we may still need to check

some poss1ble confounding variables, and we should interpret the causal inference

regarding Xwith caution. If W S .8, we may want to say that the statistical inference is

not robust and we need to consider the possibility ofa confounding variable, that is, we

cannot make a causal inference regarding Xfrom the linear model. Thus, W serves as an

index ofthe robustness ofa causal inference (IOROCI) to a confounding variable. Please

note that here .95 and .8 for IOROCI are arbitrary, as is .05 for the significance level or

.2, .5, and .8 for small, medium, and large effect sizes. Researchers can make their own
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judgments based on what is studied. The example below will show how exactly to

implement this technique.

7.2 An Example

In the following text, I will use an example pertaining to educational attainment to

illustrate the applications ofthe methodology delineated in this study.

,3:

Father’s Occupation~

(X—predictor Of interest) Educational Attainment

g (Y—outcome)   

 

rXC

Father ’s Education

(C—confounding variable)

Figure 9. Father ’s Education as a potential confounding variable for the causal

relationship between Father ’s Occupation and Educational Attainment.

From a general linear model, Featherman and Hauser (1976) concluded that family

background, e.g., Father ’s Occupation, has an effect on Educational Attainment, but

Sobel (1998) argued that both family background and Educational Attainment are

affected by Father ’8 Education which was not controlled for in the analysis. That is,
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Father ’5 Education is a potential confounding variable for the causal relationship

between Father’s Occupation and Educational Attainment (cf, Figure 9). Now, I use the

methodology described in this study to assess how robust Featherman and Hauser’s

causal inference about Father ’s Occupation is to the impact ofFather ’s Education.

In order to compare my results with Frank’s results (Frank, 2000), I will use the same

data set extracted from Featherman and Hauser (1976) and Duncan, Featherman, and

Duncan (1972). Let Xbe Father ’s Occupation, Ybe Educational Attainment, and C be

any covariate (we have 14 covariates and N = 10,567 in the data). First, we need to

obtain the reference distribution from the 14 covariates. We could estimate ,6-

coeflicients for the reference distribution directly fi'om the sample moments ofrxcryc.

But, we only have 14 covariates and the sample error for the sample moments would be

too large. Thus, I will estimate the fl-coefficients for the reference distribution fi'om the

formulae (5), (12), (12'), (12"), and (13) in Chapter 3.

First, I got the estirmted population correlations p“, pyc, and p.y as follows:

114

——2r _, , . =.235;
14 XC, C1 ...C,_1CH,1...C14

i=1

A —

pxc '-

1 l4

pyc _I;Zrycrci~-Ci—1€i+1---€14 ~ 260’

i=1

[in = r = .325.
xy'C1...C14

Substituting those estimated population values into Formulae (5), (12), (12'), (12"), and
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(13) gives us the estimated values of,3] and ,6; as bl = .0073 and b2 = 2995“”. Also,

fiom (14), I obtained 13 = —.1726 < 0, verifying that the reference distribution can be

approximated by a Pearson Type I distribution (cf. Figure 1). From the formulae at the

end ofChapter 3, I obtained the distribution functionf(k) for rxcryc as follows:

It 87.28 [C 180.99

f(k)=33.18[1+—] (1——-) ,—.l4Sk_<_.28.

.14 .28

Wt)

30

 

 

A_ L A 4 Ag 4 A4 A A %

—0.1 0 0.1 0.2 k

Figure 10. Distribution function ofk = rxcryc.

Given the ITCV for Father ’5 Occupation as .228 (Frank, 2000), I obtainedm]

ITCV .228

IOROCI = [food/t = jf(k)dk = .99999 via a numerical integration using

 

[”1 It is not necessary to use the corrected pg and ,u, for this example, because the sample size N is very big,

but the corrected ,u; and ,u, would be applied for small N, say N < 90: First, one would obtain the estimated

mean values of,0“ and pyc; second, substitute these into Equations (17) and (19) to obtain D”3 and D,“ ;

and last, from A1,3 = A”, + D1,3 and A114 = A1,,4 + D“ one would obtain the corrected #3 and 214.

“2‘ There are also two other methods to obtain IOROCI: (a) Programming using Bowman and Shenton’s

(1979) approach; and (b) looking up the probability value in Pearson and Hartley’s table (1972) with

interpolation.
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Mathematica. According to the guidance ofthe interpretation for IOROCI in the

previous section, we would like to say that the inference regarding Father ’s Occupation

on Educational Attainment is very robust and that it is very unlikely for the impact of a

covariate to alter the inference. To the extent that the impact ofFather ’3 Education is

represented by the impacts ofthe other covariates, we could then conclude that it is very

unlikely that the impact ofFather ’s Education will alter our inference about Father ’s

Occupation.
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Chapter 8

DISCUSSION

8.1 Conclusions and Limitations

Causal inference is a controversial topic in the social sciences, where we are often not

able to conduct a randomized experiment or statistically control for all possible

confounding variables. In the literature, some have attempted to deal with the crisis in

causal inference, but most approaches have practical or theoretical limitations. Frank’s

(2000) index is the soundest approach that leads to a very promising methodology.

Frank’s index is composed ofthe product oftwo dependent correlation coefficients:

the correlation between the predictor of interest and the outcome and the correlation

between the confounding variable and the outcome. The index is most informative when

evaluated against a reference distribution defined by the impacts ofexisting covariates,

due to the irnmeasurability ofconfounding variables. Thus, Frank used the reference

distribution to statistically assess how robust the causal inference for a given predictor on

an outcome is to the impacts ofuncontrolled confounding variables. Unfortunately, when

he generated the reference distribution, Frank used an approximation based on

approximately normally distributed Fisher 2 for each r, and then another approximation to
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the product oftwo normal variables; and therefore, this doubly asymptotic result is very

rough.

The current study provided a much more accurate approximation to the reference

distribution with a closed form——Pearson Type I (Beta) distribution than Frank’s. With

the more accurate approximation to the reference distribution, we can make a more valid

conclusion about whether the causal inference for a given predictor on an outcome is

robust to the impacts ofother possible confounding variables, that is, all uncontrolled

confounds are unlikely to have an impact great enough to alter the inference. This

methodology would allow for multiple partial causes in the complex social phenomenon

that we study. Therefore, we are able to inform the controversy about causal inference

that arises from the use of statistical linear models in the social sciences.

As stated in Chapter 1, some researchers may be uncomfortable with the use of

measured covariates to generate a reference distribution for the impact ofan unknown

confounding variable. But, we acknowledge that this use ofthe reference distribution is

only as valid as is the set ofcovariates on which it is based, which is no different from

any other inference from a sample that must be representative ofthe population. In this

light, the impact of existing covariates represents important information by which to

assess the ITCV. Ultimately, this approach also allows us to rescale ITCV to a

probability scale, IOROCI, that can be represented by the existing covariates.

We hope to have homogenous impacts ofcovariates, because it will produce a

desirable reference distribution that is representative ofthe unknown confounding

variable. We can use Q-statistic, like one in meta-analysis, or P-P plot, to test the
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homogeneity. In case of having heterogeneous impacts of covariates, it is reasonable,

but arguable, to use the maximum impact to get a reference distribution. Concerns about

heterogeneity would be greater if the impacts of covariates were obtained from multiple

estimated models accounting for different sets of covariates. Researchers should evaluate

the likelihood of the observed extreme impacts according to theoretical and statistical

criteria. In any case, the solutiOn that is provided in the current study is technical, only

provides a quantitative discussion, and not solves the problem of causal inference.

A simulation study was conducted to check the accuracy of the approximation

method in this study. The simulation results (Tables 3 to 14), along with the line charts

(Figure 3) and the P-P plot (Figure 6), indicate that the approximation technique is

generally much better than Frank’s (2000). We also understand that the approximation is

not very favorable with respect to the third and the fourth moments when N is small. The

problem may come from the lower-order approximation to the covariance of rxc and ryc

(cf., the expression of 0',“ in Equation 5). Although the approximation correction by

the regression approach nicely solved the problem, it would be worth finding a better

approximation to the covariance of rm and rye through further study.

For researchers in the field of the social sciences, this study provides IOROCI to

assess the robustness of causal inferences drawn from correlational data via statistical

linear models. Thus, IOROCI provides a statistical index for researchers to evaluate the

robustness of causal inferences.

Note that the current study is based on linear modeling which assumes that all

dependent and independent variables are measured without measurement error. This
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concern does not apply directly to the confounding variable which is assumed to be

perfectly measured to maximize impact. But, it does apply to the distribution of impacts

of covariates used to generate the reference distribution. To the extent that the covariates

are unreliably measured, their impacts will underestimate their true impacts. When

reliabilities are known, a correlation disattenuation is recommended. That is, one can

conduct all analyses on a correlation matrix that has been adjusted for attenuation. It is

especially important to use a correlation disattenuation when the impact of covariates

comprises two partial correlations, because partial correlations produce an

underestimated small impact.

8.2 Extensions

In addition to the applications of the distribution of the product of two dependent

correlation coefficients to causal inference in educational research, the distribution of the

product of two dependent correlation coefficients may be also applicable to other issues

in the social sciences. For example, the distribution of the product could be applied to

assessing indirect effects with respect to mediating processes in path analysis. This is

because the indirect effect can be considered as a product oftwo correlation coefficients.

Thus, if we know the distribution of the product, we can better understand the likelihood

of observing an indirect effect of a given size.

Another task would be to extend the simulation range for the correlation coefficient

beyond .50. Although .50 is a large size for correlation coefficients in the social sciences

(Cohen & Cohen, 1983), in social research on real data we often see correlation
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coefficients larger than .50. Thus, it would be a valuable exploration to see if the

conclusions of the current study still hold for correlation coefficients larger than .50.

That is, it is important to know whether the Pearson Type I distribution still can be a

reasonable approximate distribution for the product of two dependent correlation

coefficients when some population correlations are larger than .50. It would also be

valuable to conduct a larger number of replications for small ,0“ or pyc, where

approximation was poor, or to obtain better estimates of small p—values.

Note that the approximation method in this paper is based on the assumption that the

three initial variables X, Y, and C follow a trivariate normal distribution. However, it is

not necessary for predictors and covariates to be normally distributed in linear models.

Hence, for an extension of this study, it would be interesting to find an approximate

distribution of the product of two dependent correlation coefficients for non-normal,

categorical or mixed initial variables X, Y, and C.
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APPENDIX A

Below is the SPSS code for calculating the approximate moments for N = 28 or M=

N + 6 = 34 as an example, where

bxc = brx; s2xc0 = 01:); sBch = 0'82; s4xc0 = 02:);

b c: b ; = (2). = (3). = (4).
Y 5,, 82yc0 0',” , s3yc0 or” , s4yc0 a,” ,

pxc = pxc; stc = E[(Arxcf]; s3xc = E[(Arxc)3]; s4xc = E[(Arxc)4];

pyc=p,.; 82yc=E[(Aryc)2]; s3yc=E1<Aryc)31; s4yc=g[(nr,.)4];

pxy = pry; sxcch = 0%,,” ; sxcyc = E(Archryc);

ch] = E[(Ar...)"(Ar,.)’], k. I = l. 2, 3, or 4; mi = a}, mui = 11:, i=1,2,3,or4.

***************************************~k******************************

* 'k

* The SPSS program for calculating approximate moments using SPSS *.

* data "PCM.sav". (PCM = Population correlation matrix) *.

* *

******************‘k*********************************‘k*****************

GET

FILE='C:\My Documents\Academics\Dissertation\Smulation\PCM.sav'.

EXECUTE .

***4 N = 28 ****.

COMPUTE bxc = (~pxc*(1 - pxc ** 2)/(2*34)*(1 + 9*(3 + pxc**2)/(4*34)

+ 3*(121 + 70*pxc**2 + 25*pxc**4)/(8*34**2)

+ 3*(6479+4923*pxc**2+2925*pxc**4+1225*pxc**6)/(64*34**3)

+ 3*(86341+77260*pxc**2+58270*pxc**4+38220*pxc**6

+ 19845*pxc**8)/(128*34**4))

EXECUTE

COMPUTE byc = (-pyc * (1 — pyc ** 2) /(2*34))* (l+9*(3+pyc**2)/(4*34)

+ 3*(121+70*pyc**2+25*pyc**4)/(8*34**2)

+ 3*(6479+4923*pyc**2+2925*pyc**4+1225*pyc**6)/(64*34**3)

+ 3*(8634l+77260*pyc**2+58270*pyc**4+38220*pyc**6

+ 19845*pyc**8)/(128*34**4))

EXECUTE .

COMPUTE stc0 = ((1 — pxc ** 2) ** 2 / 34)* (1+(l4+11*pxc**2)/(2*34)

+ (98+130*pxc**2+75*pxc**4)/(2*34**2)+(2744+4645*pxc**2+4422*pxc**4

+ 2565*pxc**6)/(8*34**3)+19208+37l65*pxc**2+44499*pxc**4+40299*pxc**6

+ 26685*pxc*’8)/(8*34**4)) .

EXECUTE

COMPUTE s2ch = ((l - pyc ** 2) ** 2 / 34)* (1+(14+11*pyc**2)/(2*34)

+ (98+130*pyc**2+75*pyc**4)/(2*34**2)+(2744+4645*pyc**2+4422*pyc**4

+ 2565*pyc**6)/(8*34**3)+(19208+37165*pyc**2+44499*pyc**4+40299*pyc**6

+ 26685*pyc**8)/(8*34**4))
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+ 2565*pyc**6)/(8*34**3)+(l9208+37165*pyc**2+44499*pyc**4+40299*pyc**6

+ 26685*pyc**8)/(8*34**4))

EXECUTE

COMPUTE s3xc0 = (-pxc*(1 - pxc ** 2)**3/(34**2))*(6+(69+88*pxc**2)/34

+ 3*(797+l691*pxc**2+1560*pxc**4)/(4*34**2)+3*(12325+33147*pxc**2

+ 48099*pxc**4+44109*pxc**6)/(8*34**3))

EXECUTE

COMPUTE s3yc0 = (—pyc*(l - pyc ** 2)**3/(34**2))*(6+(69+88*pyc**2)/34

+ 3*(797+1691*pyc**2+1560*pyc**4)/(4*34**2)+3*(12325+33147*pyc**2

+48099*pyc**4+44109*pyc**6)/(8*34**3))

EXECUTE

COMPUTE s4xc0 =(3*(1 - pxc ** 2) ** 4 /(34**2))* (1+(12+35*pxc**2)/34

+ (436+2028*pxc**2+3025*pxc**4)/(4*34**2)+(3552+20009*pxc**2

+ 46462*pxc**4 +59751*pxc**6)/(4*34**3))

EXECUTE

COMPUTE s4yc0 = (3*(1 - pyc ** 2) ** 4 /(34**2))*(l+(12+35*pyc**2)/34

+ (436+2028*pyC**2+3025*pyC**4)/(4*34**2)+(3552+20009*pyc**2

+ 46462*pyc**4+59751*pyc**6)/(4*34**3))

EXECUTE

COMPUTE sxcyCO = (pxy * (l - pxc ** 2 — pyc ** 2)

- pxc * pyc * (1 - pxc ** 2 - pyc ** 2 - pxy ** 2) / 21/34

EXECUTE

COMPUTE stc 2 stc0 + bxc**2.

EXECUTE

COMPUTE s2yc = sZch + byc**2.

EXECUTE

COMPUTE s3xc = s3xc0 - 3*52xc0‘bxc — bxc**3.

EXECUTE '

COMPUTE sByc = s3yc0 - 3*sZch*byc - byc**3.

EXECUTE

6*82xc0*bxc**2 + bxc**4.+COMPUTE s4xc = s4xc0 - 4*s3xc0*bxc

EXECUTE

COMPUTE sdyc = s4ch - 4*s3yc0*byc + 6*52yc0*byc**2 + byc**4.

EXECUTE

COMPUTE sxcyc = sxcch + bxc*byc.

EXECUTE.

COMPUTE e21 = bxc**2*byc + 52xc0*byc + 2*sxcyc0*bxc.

EXECUTE.

Compute e12 = byc**2*bxc + 32yc0*bxc + 2*sxcyc0*byc.

Execute.

Compute e31 = 3*s2xc0*sxcyc0 + bxc**3*byc + 3*52xc0*bxc*byc

+ 3*sxcyc0*bxc**2.

Execute.
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Compute e13 = 3*52yc0*sxcyc0 + byc**3*bxc + 3*52yc0*byc*bxc

+ 3*sxcyc0*byc**2

Execute.

Compute e22 = 52xc0*s2yc0 + 2*sxcyc0**2 + bxc**2*byc**2 + s2xc0*byc**2

+ 52yc0*bxc**2 + 4*sxcyc0*bxc*byc.

Execute.

COMPUTE ml = pxc*pyc + pxc*byc + pyc*bxc + sxcyc.

EXECUTE

COMPUTE m2 = pxc**2*pyc**2 + pxc**2*52yc + pyc**2*32xc + e22

+ 2*pxc**2*pyc*byc + 2*pxc*pyc**2*bxc + 2*pyc*e21 + 2*pxc*e12

+ 4*pxc*pyc*sxcyc.

EXECUTE

COMPUTE m3 = pxc**3*pyc**3 + pxc**3*33yc + pyc**3*s3xc

+ 3*pxc**3*pyc**2*byc'+ 3*pxc**3*pyc*52yc + 3*pxc**2*pyc**3*bxc

+ 3*pxc*pyc**3*s2xc + 3*pxc**2*e13 + 3*pyc**2*e31

+ 9*pxc**2*pyc**2*sxcyc + 9*pxc**2*pyc*e12 + 9*pxc*pyc**2*e21

+ 9*pxc*pyc*e22.

EXECUTE

COMPUTE m4 = pxc**4*pyc**4 + pxc**4*s4yc + pyc**4*s4xc

+ 4*pxc**4*pyc**3*byc + 4*pxc**3*pyc**4*bxc +4*pxc**4*pyc*53yc

+ 4*pxc*pyc**4*53xc + 6*pxc**4*pyc**2*32yc + 6*pxc**2*pyc**4*82xc

+ 16*pxc**3*pyc**3*sxcyc + l6*pxc**3*pyc*e13 + 16*pxc*pyc**3*e31

+ 24*pxc**3*pyc**2*e12 + 24*pxc**2*pyc**3*e21 +36*pxc**2*pyc**2*e22.

EXECUTE

m2 —m1**2.COMPUTE mu2

EXECUTE

COMPUTE mu3 m3—3*m1*m2+2*m1**3.

EXECUTE

COMPUTE mu4 = m4-4*ml*m3+6*ml**2*m2-3*m1**4.

EXECUTE

SAVE OUTFILE='C:\My Documents\Academics\Apprenticeship\8mulation\PCM

and Approximate Moments (N = 28).sav‘

/keep=pxc pyc pxy ml mu2 mu3 mu4

/COMPRESSED

82



REFERENCES

Abbott, A. (1998). The causal devolution. Sociological Methods and Research, 27(2),

148-181.

Anderson, S., Auquier, A., Hauck, W. W., Oakes, D., Vandaele, W., & Weisberg, H. I.

(1980). Statistical Methodsfor Comparative Studies: Techniquesfor Bias Reduction.

New York: Wiley. -

Anderson, T. W. (1958). Introduction to multivariate statistical analysis. New York:

John Wiley and Sons.

Aroian, L. A. (1947). The probability function of the product of two normally

distributed variables. The Annals ofMathematical Statistics, 18(2), 265-271.

Aroian, L. A., Taneja, V. S., & Cornwell, L. W. (1978). Mathematical forms of the

distribution of the product of two normal variables. Communications in Statistics:

Part A—Theory and Methods, 7(2), 165-172.

Bowman, K. 0., & Shenton, L. R. (1979). Approximate percentage points for Pearson

distributions. Biometrika, 66, 147-151.

Boyer, J. E., Jr., Palachek, A. D., & Schucany, W. R. (1983). An empirical study of

related correlation coefficients. Journal ofEducational Statistics, 8(1), 75-86.

Browne, M. W. (1968). A comparison of factor analytic techniques. Psychometrika, 33.

267-334.

Chall, J. 5., Jacobs, V. A., & Baldwin, L. E. (1991). The reading crisis: Why poor

children fall behind. Cambridge, MA: Harvard University Press.

Choi, S. C. (1977). Tests of equality of dependent correlation coefficients. Biometrika,

64(3), 645-647.

Cohen, J. (1988). Statistical power analysisfor the behavioral sciences (2nd Ed.).

Hillsdale, NJ: Erlbaum.

Cohen, J., & Cohen, P. (1983). Applied multivariate regression/correlation analysis for

the behavioral sciences (2nd Ed.). Hillsdale, NJ: Erlbaum.

Cook, T., & Campbell, D. T. (1979). Quasi-experimentation.' Design and analysis issues

forfield settings. Boston: Houghton Mifflin.

83



Cornwell, L. W., Aroian, L. A., & Taneja, V. S. (1978). Numerical evaluation of the

distribution of the product of two normal variables. Journal ofStatistical Computing

and Simulation, 7, 123-131.

Craig, C. C. (1936). On the frequency function of xy. The Annals of Mathematical

Statistics, 7(1), 1-15.

Craig, C. C. ( 1942). On frequency distributions of the quotient and of the product of two

statistical variables. American Mathematical Monthly, 49(1), 24-32.

Duncan, 0. D., Featherman, D. L., & Duncan, B. (1972). Socioeconomic background

and achievement. New York: Seminar Press.

Dunn, O. J., & Clark, V. (1969). Correlation coefficients measured on the same

individuals. Journal of the American Statistical Association, 64, 366-377.

Dunn, O. J., & Clark, V. (1971). Comparison of tests of the equality of dependent

correlation coefficients. Journal of the American Statistical Association, 66, 904-908.

Elderton, W. P., & Johnson, N. L. (1969). Systems offrequency curves. London, UK:

Cambridge University Press.

Featherman, D. L., & Hauser, R. M. (1976). Sexual inequalities and socioeconomic

achievement in the US. 1962-1973. American Sociological Review, 41, 462-483.

Fisher, R. A. (1924). The distribution of the partial correlation coefficient. Metron, 3 ,

329-332.

Frank, K A. (2000). The impact of a confounding variable on a regression coefficient.

Sociological Methods and Research, 29(2), 147-194.

Ghosh, B. K (1966). Asymptotic expansions for the moments of the distribution of

correlation coefficient. Biometrika, 35, 258-262.

Holland, P. W. (1986). Statistics and causal inference. Journal of the American

Statistical Association, 81, 945-970.

Holland, P. W. (1988). Causal inference, path analysis, and recursive structural

equations models (With discussion). In C.C. Clogg (Ed), Sociological methodology

(pp. 449-493). Washington, DC: American Sociological Association.

Hotelling, H. (1936). Relations between two sets of variables. Biometrika, 28. 321-377.

84



Hotelling, H. (1940). The selection of variables for use in prediction with some

comments on the general problem of nuisance parameters. The Annals of

Mathematical Statistics, 11(3), 271-283.

Jacobs, J. E., Finken, L. L., Griffin, N. L., & Wright, J. D. (1998). The career plans of

science-talented rural adolescent girls. American Educational Research Joumal, 35,

681-704.

Kendall, M., Sir, & Stuart, A. (1977). The advanced theory of statistics, Vol.1,

Distribution theory (4th ed.). New York: Macmillan.

Konishi, S. (1978). Asymptotic expansion for the distribution of functions of a

correlation matrix. Journal ofMultivariate Analysis, 9, 259-266.

Konishi, S. (1979). An approximation to the distribution of the sample correlation

coefficient. Biometrika, 65(3), 654-656.

Kraemer, H. C. (1973). Improved approximation to the non-null distribution of the

correlation coefficient. Journal of the American Statistical Association, 68, 1004-

1008.

Lee, 0. (1999). Science knowledge, world views, and information sources in social and

cultural contexts: making sense after a nature disaster. American Educational

Research Journal, 36, 187-219.

Mathai, A. M., & Saxena, R. K. (1969). Distribution of a product and the structural set

up of densities. The Annals ofMathematical Statistics, 40(4), 1439-1448.

Mathai, A. M., & Saxena, R. K. ( 1978). The H-function with applications in statistics

and other disciplines. New York: John Wiley & Sons.

May, K., & Hittner, J. B. (1997a). A note on statistics for comparing dependent

correlations. Psychological Reports, 80, 475-480.

May, K., & Hittner, J. B. (1997b). Tests for comparing dependent correlations revisited:

A Monte Carlo study. Journal of Experimental Education, 65(3), 257-269.

McKim, V. R., & Turner, S. P. (Eds). (1997). Causality in crisis?: Statistical methods

and the search for causal knowledge in the social sciences. Notre Dame, IN:

University of Notre Dame Press.

Meeker, W. Q., Cornwell, L. W., & Aroian, L. A. (1981). The product of two normally

distributed random variables. In W. Kenney & R. Odeh (Eds), Selected tables in

mathematical statistics (Vol. VII, pp. 1—256). Providence, IR: American

Mathematical Society.



Meeker, W. Q., & Escobar, L. A. (1994). An algorithm to compute the CDF of the

product of two normal random variables. Communications in Statistics: Part B—

Simulation and Computation, 23(1), 271-280.

Meng, X. L., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation

coefficients. Psychological Bulletin, 111(1), 172-175.

Miller, J. W., Ellsworth, R., & Howell, J. (1986). Public elementary schools which

deviate from the traditional SES-achievement relationship. Educational Research

Quarterly, 10, 31-50.

National Center for Education Statistics ( 1996). NELS:88-94 data files and electronic

codebook system. Washington, DC: US. Department of Education, Office of

Educational Research and Improvement.

Neill, J. J., & Dunn, O. J. (1975). Equality of dependent correlation coefficients.

Biometrics, 31, 531-543.

Okagaki, L., & Frensch, P. A. (1998). Parenting and children’s school achievement: A

multiethnic perspective. American Educational Research Journal, 35, 123-144.

Olkin, I. (1967). Correlations Revisited. In J. C. Stanley (Ed), Improving experimental

design and statistical analysis (pp. 102-128). Chicago: Rand McNally & Company.

Olkin, I., & Finn, J. (1990). Testing correlated correlations. Psychological Bulletin,

108, 330-333. -

Olkin, I., & Siotar'n, M. (1976). Asymptotic distribution of function of a correlation

matrix. In S. Ikeda (Ed.,) Essaysin probability and statistics (pp. 235-25 1). Tokyo,

Japan: Shinko Tsusho Co., Ltd.

Pearl, J. (2000). Causality: Models, reasoning, and inference. New York: Cambridge

University Press.

Pearson, E. S., & Hartley, H. O. (1972). Biometrika tablesfor statisticians, Vol. I]. New

York: Cambridge University Press.

Pearson, K (1895). Contributions to the mathematical theory of evolution. 11. Skew

variations in homogeneous material. Philosophical Transactions of the Royal Society

ofLondon, Series A, 186, 343-414.

Portes, P. R. (1999). Social and psychological factors in the academic achievement of

children of immigrants: a cultural history puzzle. American Educational Research

Journal, 36, 489-507.

86



Rice, J. A. (1995). Mathematical statistics and data analysis (2nd Ed). Belmont, CA:

Duxbury Press.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and

nonrandomized studies. Journal ofEducational Psychology, 66(5), 688-701.

Sobel, M. E. (1996). An introduction to causal inference. Sociological Methods and

Research, 24(3), 353-379.

Sobel, M. E. (1998). Causal inference in statistical models of the process of

socioeconomic achievement: A case study. Sociological Methods and Research,

27(2), 318-348.

Solomon, D., Battistich, V., & Hom, A. (1996). Teacher beliefs and practices in schools

serving communities that differ in socioeconomic level. Journal of Experimental

Education, 64, 327-347.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search

[Lecture Notes in Statistics 81]. New York: Springer-Verlag.

Springer, M. D. (1983). [Review of Selected tables in mathematical statistics (Vol. VII),

The product of two normally distributed random variables]. Technometrics, 25(2),

211.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix.

Psychological Bulletin, 87(2), 245-251.

Trusty, J., Peck, H. I., & Mathews, J. (1994). Achievement, socioeconomic status and

self-concepts of fourth-grade students. Child Study Journal, 24, 281-298.

Wallgren, C. M. (1980). The distribution of the product of two correlated t variables.

Journal of the American Statistical Association, 75, 996-1000.

Williams, E. J. (1959). Significance of difference between two non-independent

correlation coefficients. Biometrics, 15, 135-136.

Wolfe, D. A. (1976). 011 testing equality of related correlation coefficients. Biometrika,

63, 214-215.

Wolfram, S. (1999). The Mathematica book (4th Ed). New York: Cambridge

University Press.

Woodward, J. (1997). Causal models, probabilities, and invariance. In V. R. McKim &

S. P. Turner (Eds), Causality in crisis?: Statistical methods and the search for

causal knowledge in the social sciences (pp. 265-315). Notre Dame, IN: University

of Notre Dame Press.

87

 


