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ABSTRACT

HIGH PERFORMANCE, SCALABLE WEB SERVER SYSTEMS

By

Wenting Tang

The web has experienced phenomenal growth during the last couple of years. During

the commercialization process of the Internet, the web has become a “killer app”

and millions Of browsers now access comparatively fewer web Sites compared to the

number of clients. As more applications are built around the web architecture, web

sites have to deal with potentially unlimited number of users. Peak rates for a web

service might be as high as 10 times Of the average. Therefore, the performance and

scalability issues of such big Sites will be an important issue.

In this dissertation, we address problems related to the development of high perfor-

mance, scalable web server systems. We make contributions in two aspects of web

server performance: The first related to the performance of a single web server and

the second related to the performance Of multiple replicated web sites. For a single web

server, Browser Initiated Pushing (BIP) is proposed to improve performance based

on the observation that today’s typical web page has one or more embedded images.



Measurement Shows that BIP is an important technology to improve a single web

server’s throughput.

We propose two approaches and develope a framework to address the scalability of

replicated web Sites.

A non-dispatcher approach, Static Allocation and Client Redirection (SSCR ) shares

load between replicated web sites and is mainly targeted for global scale web sites.

Smart Server Selection (S3) addresses the server selection problem when multiple

replicated sites exist. In SB, a client DNS server is extended to prioritize a pool

of IP addresses based on the routing metric information collected from routers and

other information it collects (geographical location of servers and clients). An efficient

scheme to collect routing-metric information from routers is prOposed.

A framework to support Content-Aware request distribution in STREAMS-based

TCP/IP implementation is deveIOped and prototyped. Content-Aware request dis-

tribution provides the ability to support partial replication, flexible web site arrange-

ments, Web Quality of Service, and security. Our framework is based on the TCP

handoff mechanism. The TCP handoff mechanism is designed as STREAMS mod-

ule(s) in the protocol stack. Three different designs are reported according to work-

load characteristics. The differentiated web service in the STREAMS-based TCP/IP

implementation is discussed.
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Chapter 1

Introduction

The World Wide Web (WWW) has experienced phenomenal growth, both in terms

of the number of users and the amount of the information available. It has been

reported that, currently, the world wide web has become the killer application of the

Internet and 75% of traffic on the Internet backbone is Web (HTTP) traffic [1].

Currently, the web has evolved into the major platform for information delivery and

retrieval, distance learning, application service. More and more people depend on the

WWW to access information, purchase products, etc. Companies and organizations

depend on the WWW for fulfillment of daily activities to save costs and maintain a

lead over the competition.

As more users access the world wide web, we expect that more companies and organi-

zations will move their daily activities onto the web. This trend further triggers more

people to access the web to obtain information and to conduct business activities.

While the information available through the web is enormous and millions of users

access the Internet, many issues should be addressed to meet the user’s expectations:



delivering the right information at the right time to the right people at the desirable

place. Much effort has been put into improving web users’ web browsing experience.

Such efforts include but are not limited to:

1. performance improvements, which deliver a document as quickly as possible to

a web user when it is requested. This information includes static web pages,

dynamic web pages, audio and video streams.

2. web search engines and document ranking, which crawl through web pages

to provide the web documents a user is looking for and to rank the returned

documents in the order of relevance.

3. web information personalization, which customizes and organizes the informa-

tion according to web user profiles, to provide a better web tour experience.

4. wireless access, enabling web users to access the WWW through wireless devices.

5. security, which provides solutions to make sure that information is only available

to the right people at the prOper time.

In this dissertation, we focus on the performance of web systems, which deliver the

document as quick as possible to a web user. Technically speaking, a web delivery

system can be divided into three subsystems: web client systems, intermediate web

systems and web server systems, primarily according to the management boundaries

as shown in Figure 1.1. The web server system refers to the subsystem that is related

to web services and maintained by the service provider side. The intermediate web

system refers to the services and equipment specifically for web traffic and primarily



maintained and managed by the ISP (Internet Service Provider). The web client

system refers to the system where the web related services are managed by client

side. Such a classification facilitates the discussion of the technologies.
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Figure 1.1: Subsystems of web system

Generally, a web server system and an intermediate web system tend to be bottlenecks

because many users access the system simultaneously. Client web systems seldom

become the bottleneck for the following two reasons:

1. the desktop computer is powerful. Due to the advances in micrOprocessors and

computer systems, system performance of desktops doubles every 18 months.

2. the desktop has much less communication and computation compared to web

servers and intermediate networks in terms of number of users.

There is a hot debate whether the network system or the end system is the bot-

tleneck. However, network speed has moved to Gigabit speeds in the local area

network, and switching technology greatly improves the bandwidth available between

two nodes. While the Internet backbone moves to optical networking, we expect that

more bandwidth will become available. Under this assumption, we put our focus on

the technology which can improve the performance of the web server systems.
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The web server system is the system that delivers the content to the clients. The

core of the system is web server software, which runs on the machine named web

server. A web server accepts HTTP requests and serves documents to web clients.

As more activities are performed through the web server system, a web server must

process many requests in a short time period. The capacity of the web server system

must be increased to process and deliver these requests in a timely manner as the

number of users accessing the web site increases. For those popular and big sites, it

is increasingly difficult to deliver the contents to the end users.

Two trends further exacerbate the problem of the web server system:

1. Web document content become more complex. In order to make the web page

more illustrative and informative, an organization’s web page includes several

embedded contents, typically images. E-commerce web sites generally include

clips (images) for products. Such an image-rich web page leads to several more

HTTP requests on the web server, compared to a text-only version.

2. PeOple would like to access the information no matter When, Who, Where

(WWW). This leads to the popularity of web portals such as Yahoo. The Yahoo

web site receives about 4.5 billion page visits each month and has multiple

replicated web sites on each continent. Inside the organization, in order to

maintain the information integrity and availability and to facilitate web content

management, web content tends to be served and managed centrally.



In this dissertation, we identify four problems that are important for the development

of high performance and scalable web server systems to meet web users’ expectations.

Solutions have been developed for these problems.

1.1 Identified Problems

1.1.1 Efficient Delivery of image-rich web pages

Reduction of the download latency of web documents is very important to web users

and is especially important to web content providers. Most web users will not spend

much time browsing a web site that is slow to download. Experience indicates that

people browsing the web are quick to click “stop” to terminate a slow download and

access another similar site. Reducing download latency is important to encourage a

web user to continue to browse at the current server.

A new category of applications has emerged that use the web browser as the graphical

user interface (GUI) to the application service so that the user does not need to pur-

chase the stand-alone application. One such application is TurboTax, provided by the

Intuit company. Essentially the web page appears as the GUI for the traditional tax

preparation application. In order to make these GUI pages illustrative, intuitive, and

very similar to the traditional application GUI, greater numbers of small images are

used as menus, buttons, and logos. A page may easily have more than 30 embedded

images. As E-commerce become pervasive on the Internet, e-catalogs also include



large numbers of images. A typical entry in an e—catalog includes a small image that

shows the product and illustrates the description of the product.

Under current implementations, a browser sends a separate request for each embedded

image. By embedding larger numbers of images in a page, the situation becomes a

potential performance bottleneck. The reasons are:

1. End-users experience longer download latency. Since the images are menus

and buttons, the end users might not do anything until all the images are

downloaded. Epediting image downloading becomes more important.

2. The embedded image requests place greater pressure on server resources. In

order to service each request, the web server has a fixed overhead. Network

level overhead includes receiving the HTTP request and sending a reply, even

if the messages are small. Depending on the implementation of the web server,

embedded image requests introduce different amounts of overhead. For example,

a thread-based web server implementation creates a thread to parse the URI,

service the request and destroy the thread. As the number of embedded images

increase, the overhead introduced by each HTML page increases.

An efficient mechanism is desirable to deliver such a web page as quickly as possible

to reduce the web server’s load and reduce the download latency.

1.1.2 Load distribution for replicated web servers

As the number of accesses to a site increases, a site might not be able to serve all

the requests by a single machine. Since most web requests are short-lived and may

6



be independently processed, replicated web servers provide cost-effective way to scale

up such a large web server system. In a web cluster that all the web servers are

connected by very high-speed networks (called a Web Farm), each web server serves

all the documents available on the web site. Since each web server in the farm is only

responsible for a fraction of the requests to the web site, reasonable response times

may be achieved. In order to provide more capacity of such a system, a web farm

may be replicated on the global scale, taking advantage of the network proximity.

That is, the web server farm strategically replicates pages so that the web client may

access the same content on the nearest servers to reduce network latency and the

load on the central server. Load distribution and server selection are two important

problems to be addressed in such a system in order to ensure better performance.

One fundamental issue is how the load is shared between multiple replicated sites

effectively and efficiently in order to provide reasonable performance. An approach

that considers the network proximity and server load needs to be developed.

1.1.3 Server Selection for Global Replicated Web Server

Systems

The increase in traffic at popular web sites has been tremendous. As we mentioned

before, Yahoo has about 4.5 billions page requests per month. If the image requests

are included, the number would be much higher. Since a single computer cannot meet

the requirement of such a high request rate, replicated servers are widely used. For

example, Yahoo (www.yahoo.com) and Altavista (www.altavista.com) have replicated



server groups in each continent. With multiple replicated servers running simulta-

neously, the number of requests serviced by each server is reduced and a reasonable

response time may be achieved. The replication of servers increases fault-tolerance,

which is essential to these popular sites. By putting replicated servers at appropri-

ate places, replicated servers also increase network proximity and thus significantly

reduce access latency perceived by users.

One of the fundamental problems for a global-scale replicated service is how the best

server is selected based on the user’s preference and location.

1.1.4 Differentiated / predictive Web Quality of Services

As the web becomes the platform to deliver information and conduct business, re-

quirements from different users to access the information might be different. For

example, some online stock trading users are willing to pay more money to receive

real time quotes of stock prices while other users would rather check the stock price

on a best effort basis for a lower price. In the first case, an online user would like to

receive some predictable response time for a web request. This is commonly referred

as WebQoS. As the Internet progresses toward Internet QoS (Quality of Service), end-

to—end WebQoS service, which combines network QoS and end system QoS, becomes

possible. Since replicated web servers are widely used to address capacity needs for

serving a large number of users, how can WebQoS be efficiently supported on a web

cluster?



1.2 Our Contribution

We address problems and provide solutions to the forementioned problems. Our

contribution includes the following four parts:

1. Intelligent Browser Initiated Server Pushing (BIP)

BIP addresses the first problem to improve the performance of web servers

which serve web pages with much embedded content. In the BIP approach, the

HTML page and embedded images will be pushed to the client in one round trip

time. Three approaches are proposed to addresses the image-sharing problem

between pages in the BIP context, and the performance of these approaches is

evaluated.

2. Smart Server Selection (S3)

83 addresses the problem of server selection when multiple global-replicated

web sites are available. We propose a mechanism to prioritize IP addresses by

network metrics and also propose an efficient way to collect routing metrics

from Internet routers.

3. Load Distribution with Static Scheduling and Client Redirection (SSCR)

SSCR is a proposed way to address the wide area server load distribution prob-

lem. The number of accesses from each network are predicted and accesses are

statically assigned to the preferred server; temporary overload is addressed by

client redirection.

4. A Framework for Content-Aware Request Distribution and Processing
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Content-Aware request distribution is an important technology to improve clus-

ter throughput and enable QoS support in the web clusters. In this work, we

designed modular approach to support the content-aware request distribution

and content-aware request processing. Modular design enables such technolo-

gies to be deployed much quicker in commercial operating systems, most of

them have STREAMS-based TCP/1P implementation.

1.3 Structure of the Content

The remainder of this document is structured as follows. In Chapter 2, related work

and background information is presented. In Chapter 3, browser initiated server

pushing (BIP) is proposed and evaluated in terms of web server performance. Chap-

ter 4 describes SB, an approach to address the server selection problem when multiple

replicated web server sites exist on the global scale. In Chapter 5, SSCR, an ap-

proach proposed to deal with the load distribution issues for replicated web sites, is

presented. Content-Aware request distribution greatly improves cluster scalability in

terms of throughput. Three TCP handoff designs which are targeted for different

workloads and architectures are presented in chapter 6. Rare-TCP Handoff design

has been prototyped and some performance evaluation is also reported. Web QoS

and differentiated service is discussed in chapter 7. Kernel and user level mechanisms

and designs in FreeBSD and STREAMS environment to support web differentiated

service are presented. End-to-end QoS and its relationship with an emerging technol-
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ogy, Content Delivery Networks are also discussed. A summary is given in chapter 8.

Possible future work is outlined in chapter 9.
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Chapter 2

Background and Related Work

Much work has been done in order to improve web system performance. As we

mentioned in the Chapter 1, the web delivery mechanism may be divided logically

into three parts: the web server system, the intermediate web system, and the web

client system. Figure 2.1 shows a more detailed picture of a possible path a web

request follows. All the proxies shown in the figure are optional.

web reverse network

+—'> proxy

server proxy .rowser

Figure 2.1: Components along the path of a HTTP request

 

   

In this chapter, we first discuss the related work on latency reduction techniques,

especially web proxies. Next we discuss some of the related work on selection algo-

rithms for replicated web servers. After that, related work and background on load
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distribution of the replicated web servers are presented. Lastly, we briefly present

some of the existing work on differentiated web services.

2. 1 Latency Reduction

Latency reduction techniques currently proposed include proxying, prefetching, and

web server pushing.

2.1.1 Web Server Pushing

In this strategy, the web server pushes documents to a place along the network path

near the client. When a client requests those documents, the network latency will be

reduced. Bandwidth may be saved because the client will no longer need to access

the original server.

Web hosting and web co-location are two easy ways to achieve this goal. Web hosting

refers to an organization or a person that provides web content on its ISP and the ISP

manages the web servers and hosts the content to serve web clients. Web co—location

refers to an organization that moves its own web servers and equipment to its ISP. In

these two cases, web traffic from web users will go to the web servers directly without

entering the organization’s network and the link between the organization and its

ISP. Generally, the link connecting the organization to the ISP has relatively limited

bandwidth. Such an approach saves the amount of WAN traffic, and also reduces the

download latency.
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Some companies, such as Akamai[2], Inktomi[3] and Digital Island[4], recently started

to build Content Delivery Network (CDN), a web pushing infrastructure. Companies

may push their web documents to these CDNs, and the CDNs are responsible for

shipping the documents around the Internet to meet the client access patterns. Since

a CDN ships the documents to a place much nearer to the client, the client access

latency is reduced and the load on original web server is reduced as well.

Some work has been done in this area. The WebOS [5] project at Berkeley proposes a

“rent-a—server” idea by which a server can be temporarily rented when needed to serve

client requests. Research conducted at Boston University [6] uses traces to investigate

where to push the documents from the server’s point of view. RaDaR[7] describes a

scalable architecture for web hosting service providers when the documents may be

pushed to caches near the clients so that bandwidth may be saved.

2.1.2 Client Prefetching

In a client prefetching strategy, the client (either proxy, or browser) prefetches the

document before the user makes the request. [The main idea of prefetching is that

it tries to overlap the download time with the user thinking time. The proxy may

prefetch some popular files, and the browser may prefetch some of the documents

according to user’s access history. Client prefetching does not reduce the load on the

original server.

Mogu1[8] evaluates the performance of client prefetching. Several researchers from

Boston University[9] discuss the effect of prefetching on network traffic patterns and

14



propose an algorithm to smooth it. Prefetching also depends on accurate prediction

of the user’s next move. It has been reported that the accuracy of prediction of next

access from a client can be as high as 85%[10].

2.1.3 Proxy

Web access patterns demonstrate temporal locality and spatial locality. Temporal

locality refers to the fact that the same user tends to revisit the same page with

certain period of time. Spatial locality refers to the fact that different users behind

the same proxy tend to access the same document.

A proxy is a cache device that takes advantage of the temporal locality and spatial

locality of web accesses. It caches the most frequent accessed files in the cache. A

proxy sits between the client and web server as shown in Figure 2.1. The client

first establishes the TCP connection with the proxy, then the proxy checks the URL

requested. If the requested URL is in the cache, the document is served from cache.

Otherwise, the proxy will establish a connection to the original web server, get the

document and relay the response to the client It also might cache the document

according to a caching policy. It has been reported that the proxy hit rate is about

50%[11].

Benefits

Since the proxy may supply the document locally, the response time will be much

shorter. A client proxy also reduces the amount of WAN traffic to its ISP. In addition

to the performance improvement, a proxy offers other benefits. These benefits include:
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1. Security. Since a proxy is the only point directly connected to the Internet for

an organization, only authorized users may access the external world from an

intranet. Also, only authorized users may access the intranet from outside.

2. Privacy. Since only the proxy’s IP address is publicized, the internal network

information and IP address will remain anonymous.

3. IP address saving. The network behind the proxy may use private IP addresses

and accesses the Internet through a proxy.

Different management domains use proxies for their own purposes. A proxy may be

classified into three categories according to the management domains: client proxy,

network proxy, and reverse proxy (server side proxy). A client proxy sits in the client

network domain and is managed by the client site. A reverse proxy is the proxy

that sits at the front of the web servers at the server domain. Network proxies are

managed by ISPs. Among of the purposes of the network proxy are:

c To reduce network traffic inside the ISP and traffic to other ISPs.

0 Ease of management. While it is possible for each web browser to set up a client

proxy in a client domain, it is inconvenient for ISPs, which serve thousands of

users. In the network proxy case, the client does not know of the presence of the

proxy at all. When the web traffic comes into the ISP network, an edge router

will automatically forward the web traffic to the nearby proxy (cache engine).

The network proxy supplies the document to the client if it is in the cache, and
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relays the requests to the original server otherwise. Because it is transparent to

the clients, sometimes it is referred as transparent proxies.

Cache Replacement Policy

When a proxy is full, and a new document must be cached, the proxy must decide

which document is to be evicted from the current cache in order to cache the new

document. This is referred as a Cache Replacement Policy. Work reported in [12,

13, 11] are some of recent results regard to this topic. It has been reported that

LRU is not the best cache replacement policy and many algorithms are proposed and

evaluated.

Cache Document Consistency

When a proxy caches a document and later serves the document locally, it is possible

that the proxy returns a stale document to the client. Currently a Time-To-Live

(TTL) scheme is used to ensure consistency. The document may be cached by any

proxy at most for the period of TTL. It has been shown that a stronger consistency

model based on update is possible and the overhead is comparable to the current

scheme[14]. An approach that proposes a piggyback scheme to carry document inval-

idation information within the current response has also been reported[15].

Scalability: Cooperative Proxies

Since the proxy is the only gateway for the web traffic, it must relay web requests from

the client to the web server and relay responses from the web server to the client. For a
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large client site, a single proxy server can easily become a bottleneck. Proxy clusters,

where a number of proxies are interconnected by high speed networks, provide the

necessary scalability and availability. In such a configuration, it is desirable that the

contents of different caches in the cluster be shared or different caches in the cache

cluster cache a disjoint set of documents. The first case is referred as signature-based

cooperative proxies. The second case is referred as partition-based cooperative proxies.

1. Signature-based cooperative proxies. In this configuration, each web proxy may

independently cache any documents. However, when a proxy does not find a re-

quested document in its cache, it will try to get the document from neighboring

proxies before sending a request to the original server. In such a configuration,

a mechanism is needed to exchange what is in each proxy’s cache. In [16], a

cache sharing protocol based on multicast is proposed. When a proxy can not

find a document in its cache, the proxy sends a multicast message and sends

the request to the proxy which has the document. The Internet Cache Procotol

(ICP) is based on the multicast approach. It has been reported [17] that mul-

ticast packet exchange overhead is too large and a new protocol is proposed.

In the new protocol, each proxy keeps the information about which document

is cached in other cooperative proxies, called a signature. The proxy will send

updates if enough changes have been made in its cache contents.

2. Partition-based cooperative proxies. In this configuration, each proxy only cache

a subset of documents, and at any given time, a document will only be cached

by one proxy. Since there is no replication in cached documents, the total
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available cache size to cache unique document will be large and the cache hit

ratio will be improved. CARP[18] and Consistent Hash[19] are two examples in

this direction. In these approaches, when a client accesses a document, the client

must know which proxy must be accessed. A mechanism must be introduced

to address this problem.

2.2 Server Selection

The problem server selection tries to address is that when multiple replicated servers

exist on the global scale, which server is the best in term of expected performance? A

number of methods for the server selection problem have been proposed. They can be

divided into two categories depending on where the server selection is performed: the

client side or the server side. In client side approaches, client applications/network

services generally collect information from networks and replicated servers, and make

a selection. In server side approaches, server side network services gather information

and make a decision.

There are many client side approaches proposed. They differ in where and how the

information is collected. SmartClient [20], the probabilistic model proposed in [21]

and automatic selection [22] provide application-level implementations to collect the

metrics and make server selection. The SONAR service [23] is a special server that

prioritizes a list of IP addresses for a client according to the information it collects.

Cisco DistributedDirector [24] is a server side approach. The advantage of approaches

such as DistributedDirector is that these do not need to make changes at the client
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network; all work is done by the service provider. The disadvantage is that the

service provider must purchase and maintain special devices. Also, such an approach

generally suffers a linear increment in cost as the number of replicated servers increase.

In the long run, such a problem (finding nearby replicated servers) should be addressed

at the client side, which will make support of global replicated services much easier

for the content providers. Some researchers address different aspects of the problem:

what kind of metrics are independent and what is the correlation of existing metrics.

Metrics include network hops, AS hops, network latency, and application level latency.

Examples include [25, 21]. Some network companies [26, 27, 28] prOpose approaches

based on a pure network metric. A pure network metric server selection may be

divided into two categoies: all the servers reside in the same AS, or servers are

located in different AS.

All servers located in the same AS

If all the servers are located in the same AS, the solution provided by these companies

are similar: a device is put in front of each server cluster distributed in wide area.

In addition to balancing load for each local cluster, this device also has some routing

functionalities. In such a configuration, all the web server clusters have the same

virtual IP address. All the devices in front of clusters will advertise a route to this

virtual IP address as a host route. To the client network router, it sees multiple

routes to the same IP address (virtual IP address), each route with possibly different

network metrics, and the router will automatically select the shortest path or some

other metric. In this way, each client network automatically selects the nearest server.
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All servers located in different AS

The above approaches do not apply for server clusters in different AS. The problem

with different ASes is that the devices in front of each cluster cannot advertise the

route to the same IP address any more, because different AS should not originate

routes to the same IP address or network. In this case, some kind of variation of DNS

server is used. Cisco Distributor is one of them.

2.3 Load Sharing for Replicated Web Servers

Load sharing is very important for high throughput of the clusters. A lot of research

has been conducted both in academia and in industries. Basically all of the approaches

fall in one of two categories: front-end distribution and DNS-based distribution. In

the front-end distribution, a special device, named front-end or Load Balancer is

introduced and is put at front of the web farms. The load balancer accepts all the

inbound web traffic, and decides which web server (backend node) is going to serve

the request. In DNS-based approaches, the server side DNS server will map the web

site name to a list of IP addresses. The decision is made when the client DNS server

queries the server side DNS server for name to IP address mapping. When a client

DNS request arrives, the server DNS can decide the IP addresses and TTL value to

return.

21

 

 

 



2.3.1 DNS based load distribution vs front-end load distri-

bution

Both DNS based request distribution and front-end based request distribution have

their advantages and disadvantages. The front end accepts all incoming traffic, so it

has the following advantages:

1. better load balance.

2. better security.

3. easy management.

It has the following disadvantages:

1. possible bottleneck.

2. single point of failure.

A DNS based policy addresses the problems of the front-end based approaches, namely

bottleneck and single point of failure. Since these approaches expose each web server’s

IP address to the clients, it has some disadvantages compared to front-end based

approaches. For example, it is not easy to deal with server failure. In addition, some

times it is not desirable to expose the web server’s IP address directly to the clients.

2.3.2 Front-end request distribution

Bryhni et al. provides a good classification of front-end approaches. The front end

approaches can be classified according to decision mechanisms and delivery mecha-

nisms. Decision mechanisms are classified according to the protocol layer of the ISO
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reference model in which the decision is made regarding which servers are to serve the

request. The delivery mechanisms are classified according to the layer in which the

server is uniquely identified in the cluster. Packets are delivered to the server from

the frontend accordingly. With this classification, front-end approaches are classified

into the following categories:

Back-End

  
Client Front—End  

 

 

——)>

   

Back-End

Figure 2.2: L4/L3: Frontend forwarding incoming and outgoing traffic

1. NAT (Network Address Translation) (L4/L3). In these approaches, each web

server is identified by a unique IP address. The frontend has a virtual IP address.

When the client establishes a TCP connection, it sends the connection request

to the virtual IP address. The front-end makes the decision based on Layer 4

information, for example, IP address and port information. After the decision
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Figure 2.3: L4/L2: Response go directly from server to the client

is made, the flow (connection) is delivered to the correct server. The packets’ IP

address of that flow (connection) is changed to the selected server’s IP address

(L3) by the front-end and is forwarded accordingly. The outgoing packets’ IP

address of the flow is changed back by the front-end to the virtual IP address

(Figure 2.2). Because these approaches introduce the IP address translation

from virtual IP address to selected server’s IP address back and forth, it is

commonly referred as the Network Address Translation approach.

2. NA T-Backend (L4/L3). The above approach has considerable overhead because

the front-end must update the IP address and checksum of each packet. In

NAT-backend approaches, modification of the outgoing packets’ IP address and
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checksum is performed by the backend node, instead of the front end. Since

the number of outgoing packets is larger than the incoming packets due to

asymmetric web traffic, the load on the front-end should be reduced. Also, if

there is another path to the client, the server may send traffic to the client

directly without passing through the front-end. This improves the scalability

of the front-end. Magic Router [29], Cisco Localdirector [30] and IBM Network

Dispatcher [31] belong to this category.

. L4/L2. In this approach, each web server in the cluster is aliased to the virtual

IP address of the cluster. Each web server has a unique MAC address. When

the client sends a connection request to the front-end, the front-end makes

the decision and forwards the incoming packets to the selected server using its

MAC address. The selected server responds to the client directly without pass-

ing through the front end. The IP address and checksum update is avoided.

Therefore, the load on the frontend and backend are both reduced. The short-

coming of this approach is that since each web server is identified by MAC

address, it has to be on the same LAN. The ONE-IP approach [32] belongs to

this category(Figure 2.3).

. L7/L3. Recently, the request distribution moved from L4 to L7 in order to

address some of the problems of the L4 approach, for example, the inability

to read the user’s cookies. L7 load distribution also provides a number of

benefits, such as partial replication, ease of management, imporved security, and

overall throughput (efficient memory usage). Two mechanisms are employed to
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implement L7 load distribution: TCP handoff and TCP splicing. The main

complexity is that in order to check the URL to make the decision, the front-

end must establish the connection with the client first. However, when the

front-end establishes a connection with the selected server to serve the request,

complicated manipulation is needed to maintain the necessary transparency and

high throughput. Approaches from Resonate, Ipivot, Alteon and Arrowpoint[33,

28, 27, 34] provide solutions based on L7 load distribution. Academic efforts

include [35, 36, 37].

2.3.3 DNS based distribution

DNS based approaches may be further divided into two categories:

1. pure DNS round-robin.

2. DNS round-robin combined with redirection.

Pure DNS round—robin based approaches schedule the Internet domain and influences

the load on each web server by the way IP address and the TTL value of the name

resolution is assigned. Approaches proposed in [38, 39] are such efforts. The DNS

round-robin based approach is widely used because of its simplicity. It has been

reported that DNS round-robin causes some imbalance in the server load and does

not always provide satisfactory performance.

The algorithms of the second category come from two sources: DNS based policy

supporters that tries to provide better performance and frontend approaches that try

26



to avoid the central point. The approach proposed in [40] belongs to the first source,

while the approach proposed in [41] belongs to the second source.

2.4 Differentiated/predictive web (203

Differentiated web QoS has received some attention in recent years. In the last two

years, IETF groups and network vendors put much effort into providing differentiated

network QoS on the Internet, and many standards and drafts has been proposed.

For some applications, network delay is most troublesome. For example, VoIP and

streaming media require a preferred treatment of such a flow. However, for web traffic,

network delay is only one part of latency the web client experiences. The latency also

depends on how fast the end system can deliver the information to the network. It

is preferable to provide end-to—end QoS. When a client needs QoS, not only does the

network provide preferable treatment to the traffic, but also the end system provides

preferable treatment for the traffic as well.

There are two categories of differentiated Web QoS. One is user-based, the other

is request based. Different sites can choose one of them or combine them together.

User-based policy provides differentiated web services based on user identity. For

a particular user, no matter which URL he requests, he always gets the predefined

service. Web sites which have different groups of subscribed users might consider this

option.

Request based policies provide differentiation according to which document the user

is requesting. Some URLs have higher priority than others. For some online shopping
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sites, for example, the checkout URL has the highest priority in order to fulfill the

purchase transactions. Another application for request-based policy is shared web

hosting, where a single computer hosts multiple virtual web sites and different sites

would like to have different levels of service. Much research has been done in this

area. In [42], the authors evaluate the possibility of supporting a request-based pol-

icy on top of a commodity operating system. WebQoS [43] is a commercial system

available to support WebQoS. It supports both user-based and request-based differ-

entiation policies. Researchers from HP Labs [44] discuss what the end user perceives

as WebQoS and what that means for web site developers.
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Chapter 3

Intelligent Browser Initiated

Server Pushing (BIP)

As we mentioned in Chapter 1, web pages tend to include large number of embedded

images for various reasons. These image requests create a burden on the web server

resource and cause longer delays. Experience indicates that people browsing the web

tend to click “stop” to terminate a slow download and access another similar site.

Reducing download latency is one factor to encourage a web user to continue brows-

ing at the current server. Presently, three popular techniques are used to decrease

web download latency: Web Proxies, web server pushing,and client prefetch, as we

described in Chapter 2.

All the existing approaches have their own drawbacks. The proxy approach is not

helpful if the document is not in the cache. Furthermore, it is often unsatisfactory

due to dynamic documents and other factors (administrative overhead, one-point

bottleneck, etc). The web server pushing approach is not popular because infrastruc-
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tures for receiving large amounts of documents and placing them closer to clients are

just emerging [2, 3, 4]. These commerical infrastructures are not sufficiently flexible

for most of the web sites due to inconvenience and high-cost. Techniques to decide

whether it is appropriate to exploit these technologies are not available yet. Also it

is not clear if these approaches can be applied in the intranet environment, where

latency is mainly caused by the overloaded server and network latency plays only a

limited role. For the client prefetching approach, it is very diflicult to predict a user’s

next access.

Browser Initiated Pushing (BIP) addresses these problems. It tries to minimize the

download latency upon a cache miss using a proxy or client prefetch. It may be used

for dynamically generated HTML pages, such as active pages and CGI pages.1 It

also provides benefit to users even if no proxy is installed. It reduces the number of

HTTP requests received by web server, which may help to reduce the web server’s

load.

Presently, most HTML pages include embedded content. Since an image is the most

obvious embedded content, we focus our discussion and evaluation on images. For

simplicity, we refer to those HTML pages with embedded images as I-HTMLs, and

refer to those I-HTML pages with all embedded images on the same web server with

the I-HTML page as L-HTMLs. Those I-HTMLs that have at least one embedded

image that is not on the same server as the I-HTML page are referred to as R—HTMLs.

Under existing approaches, two or more RTTs are required for such an I-HTML,

depending on the browser implementation. BIP tries to expedite the download time

 

1Embedded links of dynamic HTML web pages may be generated as needed.
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of such an I-HTML. Under BIP, such an I-HTML may be downloaded using one

request. One benefit is that BIP reduces the download latency of L-HTML to one

RTT.

Another benefit of BIP is that it improves server resource utilization. There are two

reasons for this. First, it reduces the number of HTTP requests received by the

web server by about 20% in our simulations. This will free network and processor

resources to satisfy other requests. Second, it may reduce the connection-hold time

by at least one RTT. This leads to the improvement of server connection management

under HTTP 1.1.

BIP may be used to reduce the download latency without prefetching or proxies.

It may also be used by proxies or prefetching schemes to expedite the download of

I-HTMLs and may serve as a quick recovery mechanism upon a cache miss. Based

upon a workload found in our department and college, potentially more than 60% of

total successful HTML requests may benefit from BIP.

The rest of the chapter is organized as follows. We describe the motivation, mecha-

nism, and benefits of BIP in Section 3.1. The inefficiencies of BIP and some enhanced

approaches are presented in Section 3.2. In Section 3.3, we describe our simulation

model and performance results. In Section 3.4, we show our benchmarking results.

Implementation and possible limitations are given in Section 3.5. Finally, we sum-

marize results and discuss possible future work in Section 3.6.
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3.1 Motivation of BIP

As we mentioned before, BIP works only for I-htmls, Wthh have embedded images.

Before we describe the BIP mechanism, we need to answer the following two questions:

1. What percentage of html pages accessed are I-htmls ?

2. In those I-htmls, how many I-htmls can be downloaded in 1 RTT? That is what

percentage of I-htmls are L-htmls?

In order to answer these two questions, we use two workloads. One is the CSE

workload, which is about one-day’s trace file from our department’s web server. The

other is the EGR workload, which is about one-day’s trace file from our college web

server.

In table 3.1, some statistics of the two workloads is presented. For embedded content,

only images are considered. In our study, only static htmls are processed.

In the CSE workload, among the total of 13,433 successful html accesses, there are

4,828 non-I-htmls(36%) and 8,605 I-htmls ( 64%). Among these I-htmls, 7,949 ( 92% )

I-htmls are L-htmls, which can be downloaded by 1 RTT. 2. In the EGR workload, in

the total of 13,910 html accesses, there are 4,366 non-I-htmls (31%) and 9,544 I-html

pages (69%). Among these I-htmls, 9284(97%) I-htmls are L-htmls. In summary, we

can see that there are 64% to 69% of all the requested html pages are I—htmls and

more than 90% of those I-htmls can be downloaded in 1 RTT.

 

2BIP can not reduce latency of R-htmls as much as that of L-htmls because a browser has to

make at least one new request to another web server. However, it does reduce the number of requests

and downloads those local images in 1 RTT.

32



Another characteristics is that on average, there are about 5 embedded images in

each I-html(weighted), obtained by total accesses pushed divided by total I-htmls.

We will analyze the performance of BIP based on these characteristics.

Table 3.1: Characteristics of the Workload

 

 

 

 

 

 

 

 

 

 

Trace CSE Workload EGR Workload

Duration (in days) 1 1

Total number of accesses 116,636 90,095

total successful html accesses 13,433 13,910

total image accesses 89,352 64,883

total misslinks html 239 235

total non-I-htmls 4,828 4,366

total I-htmls 8,605 9,544

total L-htmls 7,949 9,284

total accesses pushed 42,767 44,170     
 

3.1.1 How BIP works

In the BIP approach, the web server maintains the link structure of all the I-htmls it

serves. For the static I-htmls, such information can be retrieved by an html editor or

a special tool that runs periodically to update the link structure of all the updated

I-htmls. For all the dynamic I-htmls, this can be parsed on the fly.

When a browser sends a request, it explicitly tells the web server that it allows

embedded images to be pushed. After the server receives the request, it retrieves the

link structure of the requested I-html and sends these images in addition to the I-html

page. During this process, repeated images will be suppressed and pushed only once

for each request. In the server response, the information of which embedded image(s)

will be pushed for this request is provided. When the browser receives this response,
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it parses the I-html as before. The browser will make requests to those embedded

images which are not pushed.

The main advantage of browser initiated embedded content pushing instead of server

automatic pushing is flexibility. For example, when a user turns off the automatic

image download option in his browser, the browser does not initiate the push for this

request. However, server side pushing does not have such flexibility. BIP also makes

the browser have full control on the server’s pushing behavior, which will prevent the

ambitious server from flooding the browser with too many images. Furthermore, the

browser can decide to turn off BIP due to too much overhead or it can selectively

turn on BIP for some sites while turning it off for others.

3.1.2 Benefits of BIP

In this section, we analyze the performance benefits of BIP: latency reduction and

server resource utilization improvement.

Latency Reduction

In this section, we use the number we obtained from our workload statistics to com-

pare the download latency of an L—html page under three different configurations:

HTTP 1.0, HTTP 1.1, BIP. The sample html is a L-html A, with 5 embedded im-

ages.

1. HTTP 1.0 ( Without persistent connections)
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Under HTTP 1.0 specification, the browser will establish a new connection for

each request. If we assume at most 4 parallel connections can be established

by the browser to the server at the same time, then for A, a browser will first

ask for A. After receiving A, the browser will parse A and will find it must

download 5 additional embedded images. It establishes 5 connections with 4

parallel connections each time. The browser will need 2 RTTs to download

those embedded images. So in total the browser needs 3 RTTs to display html

A with all the embedded images.

. HTTP 1.1 (Persistent connections)

In this senario, a browser first gets A and by parsing A, the browser will need

to download 5 embedded images. The browser reuses this existing connection

and sends 5 consecutive HTTP requests. Due to the pipeline of HTTP 1.1,

the browser will download those embedded images in 1 RTT approximately. In

total the browser needs 2 RTTs to display A with all the embedded images.

. BIP with HTTP 1.0 / 1.1

In this senario, a browser sends a HTTP request with the server push option.

The server will supply all the embedded images along with A. After the browser

parses A, it will find all the embedded images needed are pushed by the server,

so it takes just 1 RTT to display A.
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Server Resource Utilization Improvement

BIP improves the server resource utilization in two ways. First, it reduces the number

of HTTP requests. Simulations show that it can reduce the number of HTTP requests

by about 20%-26% in two workloads. Reducing the number of HTTP requests relieves

the pressure on the CPU and the number of messages processed by the web server.

So it improves the web server throughput.

Second, it helps to manage the connections under HTTP 1.1. The general pattern of

web accesses is that a user makes a request, takes some time to read the page, makes

another request and reads that page for a while, etc. Without BIP, the connection

management is difficult because the requests for embedded images interfere with the

requests asking for html pages. To further complicate this problem, the cache effect of

the browser makes it difficult to predict the request arrival time for the next request to

fetch those embedded images. These two factors make it more difficult for web server

to predict the next access for an established connection. With BIP, these two problems

are addressed. By web server pushing, it is insured that all the embedded images are

pushed. Also, by filtering these embedded image requests, it makes predicting the

next arrival time easier and more accurate. The web server connection management

predictor only needs to predict the next html request arrival, so the predictor accuracy

is improved. In [45], with the embedded images in the log, the connection hold time

is reduced only by 25%. However, if the embedded images are filtered in the log, the

connection hold time is reduced by 50%. Combining a highly precise html request

predictor with BIP, we can expect a much better connection management scheme.
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3.2 Enhanced BIP

BIP works fine if there are no shared embedded images between I-HTMLs or there is

no client cache. However I-HTMLs from the same person or the same group generally

share some embedded images. In this case, downloading the first I-HTML will cause

the embedded images to be cached at the client cache. Downloading the second I-

HTML does not need to download these embedded images again. This is a problem

in our simple BIP scheme because the server does not know what is in the client

cache. Simulations show that without considering the client’s cache, the web server

will push much more images than needed. This will waste system bandwidth (network

bandwidth, web server throughput, and client throughput).

The main problem we must address is that we need to convey the contents of the

client cache to the web server so that the web server does not push embedded images

already within the client cache. The main obstacle is that too much system bandwidth

would be consumed if a browser transmitted information about the contents of the

client cache to the server directly, either by the full URL or the MD5 digest.

3.2.1 Three Approaches to the Client Cache Problem

1. BIP-Ref

BIP-Ref relies on the HTTP referrer field[46]. When a browser sends a request,

it contains the last URL this browser visited, which is the referrer field (the

referrer URL is not necessary a URL from this web server). The referrer field

has been implemented in Netscape Navigator and Microsoft Internet Explorer
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browsers. The web server may exploit this information, and speculate on what

might be in the client cache. When the web server receives a request from the

client, the server will not push the embedded images of the referred HTML

document.

2. BIP-Hist

BIP-Hist maintains the browser’s access history information, so that when a

request comes, the web server will check the last N accessed pages and will

not push embedded images that have been embedded in these pages. Because

maintenance of access history information is quite expensive, the depth of the

access history should be kept as small as possible.

3. BIP-Hash

In BIP-Hash, the browser uses a Bloom filter to transmit information about

its cache contents to the server in the request. Before the server pushes an

embedded image, it will first check the Bloom filter to see if the embedded

image is in the browser cache. If it does not, then the server will push the

image. Otherwise, the server will not push the image to the browser.

BIP-Ref and BIP-Hist are rather straight-forward techniques. BIP-Hash merits fur-

ther discussion of the Bloom filter mechanisms.
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3.2.2 Bloom filters

A Bloom filter is a method for representing a set V = {V1, V2, . . . , 11"} of n elements

(also called keys) to support membership queries. It was invented by Burton Bloom in

1970 [47] and was proposed recently for use in the proxy context by Cao and Fan [17]

as a mechanism for efficiently identifying pages in cooperative proxies.

The idea of Bloom filter is to allocate a vector of m bits initialized to 0 (see Figure 3.1).

The Bloom filter has k hash functions h1,h2, . . .,hk, each with a range {1,...,m }.

For each element V E V, the bits at positions h1(u),h2(u),...,hk(u) are set to 1

(a bit may be set to 1 multiple times). Given an element [1, we check the bits

h1(p), h2(u), . . . , hk(,a). If all of these bits are set to 1, then we assume u is in the set.

However, there is a possibility that we are wrong, which is called a “false positive”.
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Figure 3.1: Bloom Filter

The “false positive” probability is given by the expression (1 — (1 — 1/m)’"‘)" z

)k-

A nice feature of the Bloom filter is that there is a clear tradeoff between the probabil-

—kn

(1—em
 

ity of “false positive” and the length of vector m. For details about the Bloom filter,

its tradeoff between m and the false positive probability, and possible hash functions,

see [17].
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Applying a Bloom filter in BIP-Hash saves overhead and makes it possible for a client

to successfully transmit what is in the cache to the server with little extra overhead.

If a browser transmits the full URL, each URL might need 100 bytes. If the browser

transmits the MD5 signature, each embedded image in the cache needs 16 bytes. If

we assume 99% Bloom filter accuracy, each embedded image in the cache needs 1.3

bytes.

3.2.3 Bloom filters and BIP-Hash

In the BIP-Hash approach, the Bloom filter is maintained by the browser on a per-

site basis. The full URL is treated as the key in the Bloom filter. When a page is

downloaded from a particular site, the browser updates the Bloom filter of that site

to include those embedded images. Similarly, when an embedded image is removed

from the cache, the Bloom filter of that site is updated accordingly. When a browser

establishes a connection with the web server, it sends the Bloom filter with the HTTP

request. Each subsequent HTTP request over the same connection will send only an

update to the Bloom filter and the server will cache the old Bloom filter and update

the Bloom filter on a per-connection basis.

Two nice features of Bloom filter make BIP-Hash a very promising approach. First,

it will never push an embedded image existing in the client cache. This is because if

the embedded image is in the client cache, all k bits of the filter are set and the web

server will definitely know that the image is cached. This nice feature saves system

bandwidth, except for the Bloom filter overhead itself.
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A second nice feature is that BIP—Hash has a clear tradeoff between overhead and

the number of L-HTMLs reducing latency. If the browser reduces the length m of

the Bloom filter, due to a “false positive,” some embedded images that should be

pushed are actually not pushed. Therefore, the browser has to make requests for

these embedded images and these I—HTMLs cannot save the download latency. On

the other hand, if the browser increases the length m of the Bloom filter, the “false

positive” rate decreases, and more I-HTMLs save download latency. However, the

number of bytes of the filter that are sent over the network will increase. In practice,

the browser and the web server may negotiate the value of m.

3.2.4 BIP-Hash and a Proxy

The above description of BIP-Hash works nicely for browsers directly connected to

Internet. As we mentioned, BIPs may be used by a proxy as a recovery mechanism

upon a cache miss. Under such a scenario, the proxy becomes a client from the

server’s point of view. BIP, BIP-Ref and BIP-Hist work fine. BIP-Hash depends

on the number of cached embedded images from a particular web server. Since the

relationship between the length of the Bloom filter and the number of embedded

images cached is linear, caching of embedded images by a proxy means a larger

Bloom filter is needed.

For browsers that are behind a proxy, the browser will send a request with a Bloom

filter as normal. When the proxy receives this request from the browser, it will attach
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its own Bloom filter to the request header and forward this request to the web server.

The web server will check both Bloom filters before pushing an embedded image.

3.3 Performance Evaluation

We evaluate the performance of BIP, BIP-Ref, BIP-Hist, and BIP-Hash in this sec-

tion. We simulate the performance of BIP, BIP-Ref and BIP-Hist by trace-driven

simulation and show the performance of BIP-Hash by analysis. We also analyze

memory requirement for maintaining the link structure information.

3.3.1 Performance Metrics

BIP performs well if we only consider the RTT for I-HTMLS because it tries to push all

the embedded images in an I-HTML to the browser. However, it introduces overhead.

Other approaches have similarly tried to reduce overhead while providing the benefits

of BIP. For evaluating performance we determine the following measures:

1. What is the percentage of HTMLs that will have latency saved (L-HTMLs/total

HTML accesses)? This is “HTML saving latency” in following tables.

2. How much overhead does the approach introduce? There are two ways to mea-

sure the overhead. One is to measure the overhead as the number of pushed

image misses (pushed image miss means that an embedded image will be pushed

by the web server but it is not requested by the web browser in the trace file) di-

vided by the total number of images pushed. We call this overhead Overhead-L.

Another way to measure overhead is the number of pushed image misses divided

42



by the total number of image accesses in the trace file. We refer to this overhead

as Overhead-G.

3.3.2 Simulation Setup

We evaluated the performance of these approaches by using trace-driven simulation.

First, we obtained the trace file from the web server for one day. Then we downloaded

these HTMLs accessed by the browsers and recorded in the logs from the server. We

could not download all pages because some HTMLs are password-protected. Next,

we analyzed each HTML to generate its embedded link structure information. We

also analyzed the embedded image to see if it refers a local file or if it refers to a

remote resource.

For our simulation, only images were considered as embedded documents. We also

assumed that each host ran only one instance of a web browser. Because we use the

actual trace file from the web server instead of the browser, we need to determine

which embedded images are actually accessed by the browsers. Some browsers may

not download the images. Others may access another page without waiting until all

the images are retrieved. The browsers also have “warm” caches. However we only

simulated “cold” browser caches. We first obtained the number of embedded pushes

of all HTMLs accessed (this is maximum number of embedded images that may be

pushed), then we kept track of all the embedded images accessed by each host and

put those images accessed into the host’s infinite client cache. Web servers will only

push those embedded images not in the client cache. In this way, we obtained the
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minimum number of accesses of images from all the HTML accesses if we assume

that all the browsers turn on the automatic image download option and have infinite

caches. The difference of these two numbers is those accesses that were never made

by the browsers.

Next, the simulator examined the log file. For each successful HTML access re-

quested, the simulator checked the embedded link structure information and did the

corresponding action.

3.3.3 Performance of BIP, BIP-Ref, and BIP-Hist

We used the two web access logs described in table 3.1 to evaluate the performance

of BIP, BIP-Ref and BIP-Hist. The result is presented in Table 3.2. BIP-Hist-l

means the server keeps the access history at depth 1. BIP-Hist means the server

keeps access history with infinite depth and infinite client cache. A hit means that an

image pushed to a browser by the web server was actually requested by that browser.

Table 3.2: Performance Result of BIP,BIP-Ref, BIP-Hist-1,BIP-Hist

l

,024 21

 

Table 3.2 indicates that BIP introduces significant overhead. From the table, we see

that about 30% of total pushed images are not used. Overhead-G is up to 17%.
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Table 3.2 shows that the referrer field helps with web server pushing. Compared to

BIP, Overhead-L of BIP-Ref is reduced by 6% and 7%, and Overhead-G is reduced

by 3% and 5%, and the number of HTML saving latency is reduced a small amount.

Table 3.2 also shows the performance of BIP-Hist-l. Overhead-G is reduced by 2%

and 4%, compared to BIP-Ref. At the same time, the number of HTML saving

latency reduces by 2%. This is a slight improvement over BIP-Ref.

The result of BIP-Hist indicates that with the server maintaining the history of the

client, BIP-Hist reduces overhead—G without too much reduction of HTMLs saving

latency. However, the overhead for a web server to maintain the access history for

each browser is large. It is our observation that maintaining a limited (as small as 1)

access history is enough to obtain benefits.

3.3.4 BIP-Hash Results

The performance of BIP-Hash depends on what is in client caches and what kind

of hash functions are used. The simulation of BIP-Hash would involve the cache

replacement policy and cache size. The following provides an analysis of BIP-Hash.

Let us assume there are n unique embedded images in a browser cache from a par-

ticular site, and the “false positive” rate of the Bloom filter for this site is p. Then,

there are p * n images not in the cache and the server will assume they are in the

cache. If we assume that all embedded images in the cache are embedded in an HTML

document with equal probability, and that a particular page has k unique embedded
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images, then the probability that the page will have an embedded image that is not

in the browser cache but that the server will assume it is in the cache is given by:

C((l —p) *n. k)

1_ C(n,k)

 

When n is quite large and p is quite small,

C((l —p)nvk) ~ I:

C(n,k) ~ (1‘1”)

 

If we set k = 5 and we would like to have 95% of I-HTMLs latency-saved, then

(1 — p)5 >= 095 => p <= 0.01

In order to satisfy the condition, m/n >2 10 and k >2 5. If we suppose it = 500

then m = 5000 bits = 625 bytes. This does not require much bandwidth for high-

bandwidth networks, especially when this Bloom filter is sent only when the con-

nection is established (HTTP 1.1). Consider the overhead without any type of BIP

employed: the browser must make several requests. Each request might require sev-

eral hundreds of bytes of request header. These multiple small messages require more

CPU and network bandwidth than one large message as in the BIP-Hash approach.

We further compare the performance of BIP-Hash and BIP-Hist-l by using the CSE

workload. If we assume the above configuration, the total number of the HTMLs

saving latency is 56% (59% x 95%), which is the same as the BIP-Hist-l. We further

compare the overhead of the two approaches. In BIP-Hist-l, 4,039 pushed images

are wasted. If we assume that one embedded image on average is about 2K bytes,

then there are total 8,078K bytes bandwidth wasted. If we consider BIP-Hash and
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we assume each HTML request carries one Bloom filter, then since there are total

13,433 HTML requests in CSE workload, each Bloom filter will have 601 bytes, which

means the client cache will cache about 462 embedded images on average. In practice,

we expect the bandwidth overhead of BIP-Hash should be much smaller than BIP-

Hist-l. So under a typical configuration, we may expect BIP-Hash to have much less

overhead than BIP-Hist-l.

3.3.5 Memory requirements for maintaining the link struc-

ture information

In order to reduce the memory requirements for BIP, the web server may maintain two

data structures. One is a mapping array, which maps each embedded image (URL)

to a unique sequential number. The other is an embedded link structure list. In

this list, for each HTML the web server maintains a list of those sequential numbers

corresponding to each embedded image in the HTML page.

We assume the size of the mapping array is m and each URL takes p bytes. We

further assume the total number of HTML pages is n and on average each HTML

page has q embedded links. If we assume a sequential number can be represented by a

4-byte integer, then the total amount of memory required by the two data structures

may be expressed as: mp + 4nq. If we assume m = 20000, p = 100, n = 4000, q = 5,

then the total amount of memory required is about 2 megabytes 3. For a typical web

 

3The CSE workload contains about 4,000 unique URLs.
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site, the memory requirement for maintaining the link structure information is not a

problem.

3.4 Benchmarking BIP approaches

The benefits of BIP, as we discussed in Section 3.12, can be summarized as fol-

lows: Latency reduction, HTTP requests reduction, TCP connection keep-alive time

reduction.

The three benefits help each other. For example, BIP may avoid some overhead

introduced by embedded image requests and therefore throughput may be improved.

For the same reason, BIP improves the web server overload behavior and latency

may be further reduced. Even though we analyzed the benefits in Section 3.1.2, it

is difficult to analyze the interactions among them. Measurements provide a direct

method to evaluate the impact of BIP on web server performance.

3.4. 1 Benchmarking Tool

The tool we use to benchmark the performance of the Apache Web Server is called

httperf [48], which was developed by Hewlett-Packard Laboratories. Httperf is a com-

prehensive tool with many features. Httperf may provide sustained load and is easily

extensible. It reports network I/O throughput, reply rates, session rates, session time

and connection time. Features related to the measurements conducted in this paper

are:
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1. Support for persistent connections and request pipelines. Multiple requests may

be sent over one persistent connection in a manner controlled either by the trace

file or at a fixed rate.

2. Tracefile support. A trace file may specify which URLs should be accessed and

in which order.

3. Session support. Sessions may be defined by a tracefile to simulate session be-

havior. For example, a session may simulate the behavior of a browser accessing

the web page with embedded images. It may also support CGI requests.

3.4.2 Experiment Setup

The measurements we conducted were done mainly within the HSNP (High Speed

Network and Performance) laboratory of the Computer Science and Engineering De-

partment at Michigan State University. In our experimental environment, a network

of SUN Ultra 1 machines are connected by switched 100BaseT Ethernet. The raw

bandwidth between machines is 100 Mbps. This is an easily controlled environment

in which the network and the machines are lightly used.

The benchmark tool we described in Section 3.4.1 is running on these SUN Ultra 1

machines. One machine is used as the web server, which runs the most popular web

server - Apache 1.3.9. Other machines are used as clients to generate a sustained load

to the web server. Each Ultra 1 workstation has 64 Megabytes of memory and 1.8

Gigabytes of local hard drive. The operating system running on each workstation is

Solaris 2.7.
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For our measurements, we use a single large HTML file to simulate image pushing.

For example, if document A has a size of 1.5 KBytes, and 5 embedded images of

2 KBytes each, we simulate this by a single file of 11.5 KBytes.4 Only one sample

static page with a number of embedded images is accessed repeatedly, except for the

case of our CGI performance measurement. For the CGI measurement, the request

is sent and the sample static page is generated by a PERL script. In BIP, the CGI

script will generate the HTML page with the designated size. Trace files are used to

generate sessions. For Non-BIP cases, each session is comprised of a retrieval of the

HTML page, followed by the retrievals of the embedded images in the HTML page.

For BIP, after receiving the large HTML file, the connection is closed.

No trace file workload is introduced in our measurements because web traffic, access

patterns, and other characteristics change. It is very difficult to collect a representa-

tive trace file workload. Furthermore, such a measurement result would soon become

obsolete. It is our intention to show the potential benefits of BIP instead of BIP’s

performance under a specific workload.

Image pushing generally has some overhead [49]. We simulate pushing overhead by

increasing the size of the single file by a percentage of BIP overhead. In our example,

we select 10% BIP overhead [49].

 

4We do not measure the link structure maintenance overhead in order to avoid an implementation

limitation of Apache. Because the current version of Apache is implemented based on a process-pool,

link maintenance has to be provided by a separate process and all Apache processes access the shared

link structure by shared memory. This overhead might not exist on a thread-based implementation,

which Apache 2.0 plans to provide. Using a single large file to simulate pushing without considering

the opening and closing of embedded image files is to avoid excluding the possible optimization

of web server implementations for file access. For example, some proxies place frequently accessed

documents in memory all the time. Such an optimization does not introduce disk access for frequently

accessed documents. Therefore, we essentially measure the upper bound performance of BIP.
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The system we measured has three parts: clients, networks, and the web server. In

order to make sure that we are measuring the web server performance, network and

client machines are tested to ensure that the two components are not the bottlenecks.

Network bandwidth is measured by netperf.5. With a 99% +/-2.5% confidence inter-

val, the measured bandwidth for one TCP connection is 90.44 Mbps. When we use

httperf on the Apache Web Server, the largest effective network bandwidth (payload)

consumed by one machine is only 40 Mbps. Since one machine is sufficient to generate

a sustained load on the web server, even if we consider the protocol overhead, the

network is not the bottleneck in our measurement.

Next, we use two machines to conduct the measurements to ensure that the client

machine is not the bottleneck. Both machines have the same configuration. We

determined that the throughput of the web server does not increase compared to the

throughput when only one client machine is used. Therefore, one machine is enough

to generate load to the web server.

We also conducted our measurements across the Internet in order to obtain a better

understanding of BIP. We conducted a limited number of measurements since such

an environment is difficult to control. For such measurements, the web server runs in

the Chemistry Department at the University of New Mexico. The machine hosting

the web server is a Intel Celeron 466 with 128 Megabytes of memory and 8 GB disk

space. The operating system running at the web server is Linux Redhat 6.2 and the

web server software is Apache 1.3.9. The local area network is 10Mbps Ethernet.

 

5http://www.netperf.org/



The network round trip latency is about 71 milliseconds. The effective bandwidth

measured by httperf is 4.6 Mbps.

3.4.3 Measurement Results

This section provides measurement results of the web server’s performance under

various metrics. It also provides analysis of these results. In all the figures, BIP-NV

refers BIP without pushing overhead. BIP-V refers BIP with 10% pushing overhead.

Non-BIP is referred as NBIP.

Table 3.3 provides the measurement parameters and their default values.

Table 3.3: Simulation Parameters and their Default Values

 

Parameter Description Default value

Number of embedded images 5

Size of the sample HTML page 1.5 Kbytes

 

 

 

 

 

 

 

Size of embedded images 2 KBytes

Network Bandwidth 100 Mbps

Pushing Overhead 0

Static Page Yes

Persistent Connections Yes    
 

Default Configuration

In this section, we measured the web server performance of BIP-NV, BIP-V and NBIP

under the default parameter configuration. Figures 3.2- 3.4 show the comparison of

latency, throughput and concurrent connections, respectively. In Figure 3.2, when

the session request rate is below 60 requests/sec, all approaches have reasonable per-

formance. BIP’s latency is about one-half of NBIP. When the session request rate

52



goes above 60 requests/sec, the web server starts to become overloaded under NBIP

and the performance of NBIP degrades very quickly. Nevertheless, BIP continues

to provide very good performance. When the session request rate reaches 160 re-

quests/sec, where BIP starts to become overloaded, the latency of NBIP is 2 seconds.

The latency of BIP is 0.05 second. BIP has the maximum of 160 session requests/sec,

while NBIP only handles 60 session requests/sec. This indicates that, potentially,

BIP may improve the throughput by 150%. When both NBIP and BIP operate at

their maximum throughput (6O requests/sec and 160 requests/sec, respectively), the

latencies are 85 ms for NBIP and 51 ms BIP. This means that BIP may improve the

throughput 150% without sacrificing the latency.

The number of concurrent connections is the average number of open connections at

any given time. This reflects connection resource consumption. As we can see, when

the server is not overloaded, the number of concurrent connections is quite low. Once

the server reaches the knee point, the number of concurrent connections increases

dramatically. In our measurements, all approaches finished their session over one

persistent connection. At a request rate of 80 requests/sec, even the latency of NBIP

increases significantly, and httperf still takes the same amount of time to connect to

the web server as it does at lower rates. This indicates that connection establishment

is not the bottleneck for this default configuration. The increase in the number of

concurrent connections is because the web server has the power to accept all the

connections but cannot process the requests soon enough, such that the connections

stay in an established state longer. The benefit of BIP for connection management is

not demonstrated here.
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In all three figures, BIP-V has similar performance as BIP—NV, and is much better

than NBIP. Therefore, we will not consider BIP-V further. The three figures show

that BIP is very effective under a LAN environment and BIP boosts web server

performance dramatically for static pages with embedded images.
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Figure 3.2: Latency Comparison of BIP-NV, BIP-V and NBIP (Default)

Varying the Size of Embedded Images

In this section, we show measurements of how size of the embedded images affects

the performance of BIP. We assume in our experiments that a sample page has 5

embedded images. We further assume that all embedded images have the same size.

We set image sizes to 0.5 KBytes, 1 KBytes, 2 KBytes, and 4 KBytes respectively, to

measure the performance of both approaches.
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Figure 3.3: Throughput Comparison of BIP-NV, BIP-V and NBIP (Default)

Figure 3.5 and Figure 3.6 show the latency and throughput of both approaches using

different image sizes. In Figure 3.5, the upper group of curves shows the latency of

NBIP. The bottom group of curves shows the latency of BIP. The curves in each

group from bottom to top are corresponding to image sizes of 0.5 KBytes, 1 KBytes,

2 KBytes, 4 KBytes. In Figure 3.6, the curve sequence is in reverse order since as the

sizes of the images increase, the throughput decreases.

We may clearly see from the two figures that the size of the embedded image is

not as important as it first appears. All NBIP approaches have similar throughput

with limited difference on the latency. For BIPs, increasing size of the embedded

image gradually degrades the throughput, from 180 requests/sec for 0.5 KBytes to

140 requests/sec for 4 KBytes. Surprisingly, we did not see any overlap between the
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Figure 3.4: Concurrent Connections Comparison of BIP-NV, BIP-V and NBIP (De-

fault)

two groups of curves using our measurements. Therefore, when the size of embedded

image changes, BIP continues to offer good performance.

Varying the Number of Embedded Images

In this section, we show measurements of how the number of embedded images in each

HTML page affects the performance of the web server. In our experiments, we use a

sample page with a number of 5, 10, 20, and 40 embedded images, respectively. The

latencies shown in Figure 3.7 are the latencies when the maximum throughput under

each configuration is achieved. The throughputs shown in Figure 3.8 are the maximum

throughputs under each configuration. If we examine Figure 3.8, we see that as

the number of the embedded images increases, the throughput suffers tremendously.
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While the throughput of NBIP is 60 session requests/sec if a page has 5 embedded

images, it drops to less than 11 session requests/sec when 40 images are embedded.

At the same time, BIP throughput drops from 180 to 140. The latency increases

while the gap between the two approaches becomes larger.

NBIP needs several connections to finish a session under a larger number of embedded

images in a page. If a page has 20 embedded images, on average, the browser needs

2 connections to serve the session. When the page has 40 embedded images, the

browser needs 3 connections to serve the session. Since the size of the image increases,

the only overhead is the transmission time, which is low in our measurements. When

the number of the embedded images increases, a separate request must be sent for
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Figure 3.6: Throughput Comparison of BIP-NV and NBIP (Size)

each embedded image and the overhead increases dramatically. This is the situation

where BIP may work very well.

BIP over Wide Area

We describe in this section some measurements we conducted over a wide area as de-

tailed in Section 3.4.2. The default configuration is used. Figures 3.9, 3.10 and 3.11

show the latency, throughput and number of concurrent connections for both ap-

proaches over the wide area. From our measurements, the throughput for BIP is

about 50% more than NBIP, and latency is about 500 ms less than NBIP. Since it

takes much longer for the web server to process transfers, the benefits of throughput
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drops because the overhead introduced by processing embedded images compared to

the time to serve the session is much less than that in the LAN case.

CGI

In this section, we show measurements of the performance where CGI scripts (PERL)

are executed. Figures 3.12 and 3.13 show the latency and throughput of both ap-

proaches. Our Apache Web Server does not include a built-in PERL module. There-

fore, each time that a PERL script is invoked, a process is created. Due to this

prohibitive overhead, the throughput drops dramatically. Since BIP tries to decrease

the overhead of embedded image processing, BIP does not provide much benefit in

this case, because the overhead to process the embedded image is much less com-
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pared to the case where a static page is served. For example, in the CGI case, it takes

400 ms to receive the first response while in the static page case, the first byte is

received after about 8 ms. BIP has only 20% throughput improvement. Nevertheless,

BIP provides benefits of reducing latency because it still takes time for the server

to process the embedded image requests. If the PERL module is built within the

Apache binary, the overhead of processing a PERL script is much smaller. Therefore,

20

Number of Embedded Images

better throughput improvement would be expected.

Summary

From the above measurements, we see that in any case, BIP reduces latency in com-

parison to NBIP. The improvement of throughput of BIP depends on the overhead
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Figure 3.9: Latency Comparison of BIP-NV and NBIP (Wide Area)

introduced to process the embedded images compared to the time required to serve

the web requests in both BIP and NBIP.

We summarize our results:

1. BIP is very effective for boosting web server performance to serve static pages.

2. The size of the embedded image is not as important as would be intuitively

expected within a LAN environment.

3. BIP works very well when the number of embedded images in the HTML page

is large.

4. BIP improves the latency and throughput reasonably well when the relative

overhead(the overload compared to the total time to service the request) intro-
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Figure 3.10: Throughput Comparison of BIP-NV and NBIP (Wide Area)

duced by processing embedded images is much less compared to the relative

overhead of serving static web pages over a LAN. This conclusion is valid for

the WAN and CGI case.

3.5 Implementation and Possible Limitations of BIPs

It is important to consider how our mechanism might fit with the current HTTP

1.1 Specification. Within the HTTP 1.1 standard, the HTTP request header may

have optional fields which may be interpreted by the web server and by the proxy.

The addition of a “push request” optional field and a “push response” optional field

may be easily fitted into the HTTP 1.1 standard. For deployment, BIP approaches

may be implemented by the web browser and supported by web server. Because it
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Figure 3.11: Concurrent Connections Comparison of BIP-NV and NBIP (Wide Area)

is implemented in the browser and web server, no special hardware or software is

needed or administrated. Since web users tend to upgrade their browsers often, quick

deployment could be expected.

Possible limitations include:

1. BIP has not been extended to download embedded images in one I-HTML in

parallel using different connections originated from the same browser. It is not

clear whether this is a desired behavior because one of benefits of HTTP 1.1

is to pipeline the requests and to provide a type of fairness among clients by

limiting the connections to the server.

2. BIP does not work well in low-bandwidth links, such as modern users. This is

because in such an environment the dominant latency is the transmission delay.
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3.6 Summary

In this chapter we proposed a browser initiated approach (BIP) to web document

pushing. BIP reduces the download latency of those HTML pages having embed-

ded contents and improves server resource utilization. Simulations show that BIP

can download up to 56% of all the HTML pages in one RTT and saves up to 20%-

26% of total web accesses. BIP-Hash is best for modest caches with a limited num-

ber of proxy levels. Phrthermore, BIP-Hist with history depth 1 and BIP-Ref offer

reasonable performance with acceptable overhead. Benchmarking shows that in all

cases, BIP improves the throughput and reduces latency. BIP impressively boosts the

throughput of the web server to serve static web pages with embedded images. .BIP

improves the throughput of a web server reasonably over a wide area and improves

Request Rate( Sessions/Sec)
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Figure 3.13: Throughput Comparison of BIP-NV and NBIP (CGI)

throughput of web servers that serve CGI requests. The size of the embedded image

is not as important as the number of embedded images in an HTML page. BIP offers

reasonable latency reduction in all configurations. Our work provides an upper bound

for the benefits of BIP. Future work includes implementing an Apache Web Server

module to determine a lower bound of the benefits of BIP.
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Chapter 4

S3 - Smart Server Selection

Replicated servers are widely used to meet the increasing traffic demand of some busy

web sites such as Yahoo (www.yah00.c0m) and Altavista (www.altavista.com). These

web sites have replicated server groups in each continent. With multiple replicated

servers running simultaneously, the number of requests serviced by each server is re-

duced and a reasonable response time may be achieved. The replication of servers

increases fault-tolerance, which is essential to these popular sites. By putting repli-

cated servers at appropriate places, replicated servers also increase network proximity

and thus significantly reduce access latency perceived by users.

A fundamental issue for a global-scale replicated service is how the best server is

selected based on the user’s preference. Most replicated server sites now have a menu

at the home page of the site. Users may manually select one server according to

their knowledge of geographical proximity. However, geographic proximity does not

necessarily reflect the network proximity and thus it cannot guarantee the best server

selection. It is desirable to automate the server selection so that it is transparent to
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users. In this chapter we propose an approach, called Smart Server Selection (SB)[50],

to perform the server selection based on multiple network metrics efficiently collected

from routers. The rest of the chapter is organized-as follows. In section 4.1, we argue

that network metrics should be used in server selection. Based on this assumption,

Section 4.3 presents an overview of our approaches and extensions to current routers

and the DNS. Performance evaluations are presented in Section 4.4. Deployment is-

sues are discussed in Section 4.5. A brief discussion is given in Section 4.6. Section 4.7

provides conclusions.

4.1 Selection Metric

The very first question we need to answer is the selection metric. Some of the ap-

proaches consider the server’s load and some of the approaches do not. Some re-

searchers argue that the purpose of the replication of the web site is to provide better

web user navigation experience. The most important issue is the user-peceived la-

tency. When server selection is performed, the server’s load should be considered.

Other approaches only take network metrics into consideration.

Research has shown very dynamic server load behavior. In Figure 4.1, the number of

accesses per minute computed from a trace file of the web server of the department of

computer science and engineering at Michigan State University is shown. As we can

see, even during peak hours, the web server load exhibits dramatic changes in several

minutes. Accurately estimating a server’s load on time is a challenge. Studies on

server selection traditionally have tried to address server selection and load sharing
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together. In our approach, we separate the server selection problem from the load

sharing problem. The server selection is proposed as one of the network services. In

our approach, only network metric information is considered. The client is always

directed to the nearest site according to network metrics. It is the service provider’s

responsibility to provide load sharing and resource scheduling to address the resource

requirement.
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Figure 4.1: One Day’s Access History From CSE workload

The principles of 83 are:

1. The server selection criteria should select the server based on network metrics.

2. Temporary server overload should be addressed by efficient server side load

balancing approaches such as [40, 41].

3. Persistent severe overload should be addressed by capacity planning and moni-

toring on the server system, given that today’s hardware is inexpensive.
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We argue that the principles of S3 make better use of network resources. Load

balancing may redirect a user to a server half way around the world simply because

that server has lighter usage. By doing this, valuable network resources are wasted.

We believe overloaded servers should be avoided by adding new servers, moving the

locations of the servers, or choosing server locations that better matches users’ access

pattern.

4.2 Introduction of the S3 approach

A promising method to solve the server selection problem is to use DNS servers at

clients side. All replicated servers may be aliased to the same DNS name. When

a client accesses the service, the client DNS may select from a pool of IP addresses

corresponding to the replicated servers and return the IP address of the server best

matching the user’s preference, such as shortest path or shortest latency.

In order to select a server based on shortest path or latency, the DNS server must

know metrics regarding routing information leading to different servers. However,

such information is only available from the routers. Routers know the metrics of the

routes corresponding to each IP address but they have no idea which IP addresses

are providing same services. This is only known by DNS.

To solve the server selection problem, a mechanism is needed to enable DNS servers

and routers to communicate with each other. Router extensions are proposed in this

paper to support a route metric query for IP addresses. Extensions to current DNS
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are prOposed to allow it to collect and cache routing metrics and select the best server.

we named the mechanism Smart Server Selection (S3).

83 takes advantage of DNS’s role in the activity of accessing the replicated service.

Due to the popularity of the replicated services, it is very likely that multiple hosts

that share the common DNS access the same service within a short period of time.

When that happens, the routing metric information to the service cached in the DNS

may be shared by multiple DNS queries, and therefore reduce the number of routing

metric queries and the DNS server response time.

Our simulation results Show that S3 provides substantial performance improvement

over the DNS round robin approach, which is the default method of server selection,

both in terms of the number of hops used and total latency experienced. The overhead

analysis shows that the overhead introduced by our routing metric collection scheme

is negligible.

4.3 S3 - Smart Server Selection

We begin by giving an overview of S3.

83 Operates as follows:

1. The server side DNS maps a DNS name to all replicated servers’ IP addresses.

2. When a client DNS asks for the name-to-IP-address mapping for the replicated

services (DNS name), the server DNS sends all available IP addresses to the

client DNS.

70



3. When a host sends a domain name query to the client DNS, the client DNS

examines whether multiple addresses for this service are available. If multiple

addresses are available and the metric is not cached, the client DNS sends a

query to collect necessary routing metrics.

4. The DNS selects a server according to the route metrics it collected from the

routers and other information available to DNS servers (such as the geographical

distance between the client and the replicated servers) and returns the selected

IP address to the host.

4.3.1 Possible Approaches to Collect Routing Metrics

The DNS must query a router that has full knowledge of Internet routes, which is

usually a BGP (Border Gateway Protocol) router [51]. We propose two different

approaches. The approach to use depends on the conditions of the local network.

Query the gateway router

In this first approach, we assume that the client DNS knows at least one gateway

router when it is configured. Armed with such information, the DNS sends queries

directly to this gateway router. The gateway router searches its routing table and

supplies the necessary information to the DNS. The DNS must find the gateway

router through other means, and is probably configured manually. A daemon runs on

both the DNS and the gateway router, which allows them to communicate with each

other. The daemon on the DNS enables the sending of routing information queries
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and the daemon on the gateway router accepts such queries and sends responses back

to the DNS.

The main advantage of this approach is the ease of deployment. Only the gateway

router needs to be upgraded to support the routing metric query. All other routers

need not be upgraded.

A technical issue arises if one replicated server is in the same Autonomous System

(AS) and may be reached without passing through the gateway router. In this case,

the gateway router may not know the routing metric from the DNS to the replicated

server. This is the case where OSPF (Open Shortest Path First) [52] is used as the

Interior Gateway Protocol (ICP) and the gateway router is in a different area than

the DNS. The gateway router provides routing metrics based on the routes from itself

to the replicated servers, which may be different from what is perceived by the DNS

and the actual clients. Fortunately, since the difference is only for routes inside the

same AS, the inaccuracy is not likely to cause noticeable performance degradation.

Query the direct-attached router

In this second approach, the DNS may send a query to the router to which it is directly

attached (default router) to obtain the routing metric information. This approach

relieves the requirement of DNS knowledge of the gateway router.

We propose extending ICMP (Internet Control Message Protocol) [53] to support

such a mechanism instead of developing a brand new protocol because ICMP is im-

plemented on every router and such a mechanism is a natural extension of ICMP.
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The ICMP packet header has a “Packet Type” field. We extend ICMP to make

use of two currently obsolete packet types: type 15 (“information request”) and 16

(“information reply”). We specify that routing queries from the DNS use ICMP

packet type 15 and responses from the router use type 16. The scenario of collecting

routing information is as follows:

1. In a query packet, the DNS sets the packet type to 15 and specifies in the

packet body the IP addresses and the routing metrics for which it is looking

(hops, latency or others). It then sends the packet to its default router.

2. Upon receiving such a query, a router looks up its own routing table. If it can

provide all the required information, it replies to the DNS. Otherwise, it fills

the information available in the ICMP packet and forwards the packet along

the default path to its default router, if there is one.

3. The upper level router tries to find the missing information. It will not overwrite

or repeat the information that is supplied by lower level routers.

4. This process continues until a router supplies the last piece of information. This

router creates and sends a reply packet (ICMP type 16) to the DNS.

The query packet eventually reaches an EGP router if some routing information about

destinations outside the AS is requested. If there is no default path on a router and the

information is still not complete, then it means some IP addresses are not reachable

from that network. This router may safely send a reply to the DNS.
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Discussion of the two approaches

The second approach has obvious and important advantages over the first approach.

First, it relieves the requirement of DNS’s knowledge of the “working” router address.

It is completely transparent to the network and DNS administrators, and it works

independently of the routing protocol used. Second, it results in highly accurate

routing metrics because ICMP packets go through the same path as the data packets

to those IP addresses. Third, because it queries IGP routers, the problem of the first

approach is addressed. Last, because ICMP extension provides a way to collect route

metrics for multiple IP addresses, this service can be exploited by other servers or

hosts too.

Compared to the first approach, the second one involves all the routers along the

default path up to a router where all routing metric can be supplied. All these

routers need to be upgraded to support the new ICMP functions. This may result in

longer time to deployment, and more investment.

These two approaches are complementary to each other. The first approach may

be deployed quickly, while the second one should be used when enough new ICMP

function enabled routers are available.

4.3.2 DNS Extensions

DNS servers will be extended to handle routing metric queries. The DNS cache

entries will also be extended to store routing metrics. Under the current approach,

the selection criteria based on the available metrics is configured in a central place:
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the DNS server. Technically, it is easy to let the host or application specify the

selection criteria (by applying different weights to each criteria). However, this will

lead to the extension of the DNS protocol. At this point, it is not clear if such an

extension is necessary.

4.4 Performance Evaluation

In this section, we present the results of several simulations conducted to evaluate

S3’s performance.

4.4.1 Performance Metric

In our simulations, the following two metrics are used to evaluate the performance.

1. Total hops. This is the total number of hops all the packets traverse.

2. Total network latency in milliseconds. This is the total network latency experi-

enced by all the packets.

4.4.2 Simulation Setup

In our simulations we measured web accessing performance from a network to a site

that provides the service globally. The client network modeled in the simulations

is the public computer laboratory connected by a 100 Mbps Fast Ethernet in the

Department of Computer Science and Engineering at Michigan State University. Ya-

hoo (www.yahoo.com) is chosen to be the site that provides the global replicated
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services. The web site of Yahoo is replicated at over 20 places, and each place has at

least two different IP addresses. To be more realistic, only servers providing the En-

glish language are selected. The 5 places chosen were: yahoo.com and ca.yahoo.com

(North America), sg.yahoo.com (Asia), uk.yahoo.com (Europe), and yahoo.com.au

(Australia). Each group is on a different continent. The hops and latency from each

place were measured by traceroute [54], and the collected data is shown in Table 4.1.

Table 4.1: Route metrics for Yahoo replicated servers

 

 

 

 

 

 

Location Hops Latency(ms)

United States 15 66

Canada 15 69

United Kingdom 18 154

Australia 20 425

Singapore 15 340      

Our client network is modeled as a cluster of NH hosts. In our simulation, this number

is set to 100, which is roughly the number of machines in the public instructional

laboratories in our department. Each host generates requests to replicated servers

independently according to a Poisson process with arrival rate of AH. Different arrival

rates are used to model different usage levels of the labs in our department. Usually

the labs are heavily used during daytime and lightly used during the night time. Only

the number of requests generated by the hosts is considered without simulating the

network condition of labs.

A change in the route metric occurs as another Poisson process with rate of AR. In

our simulation, this parameter is fixed to approximate the real situation between our

local network and the five targeted Yahoo sites.
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Based on the data we observed, the hop number change is modeled as a weighted

discrete uniform distribution. The latency change is modeled as a weighted linear

combination of Gamma distributions 0, /\ and a uniform distribution, which happens

as a Poisson process with rate of AL. For some sites, the Gamma distribution has been

reported as the model of latency changel. But for many other routes, the latency

change is so vigorous that it cannot fit into a Gamma distribution. To simulate such

a condition, a uniform distribution is introduced to the model. The parameters A

and a are found by manually fitting the data we collected. The client DNS caches

domain-name—to—IP-address mapping during the simulation period. It refreshes the

route metric information at a constant rate of TTLDR. The resolver at each host

refreshes the knowledge of the best replicated server at a constant rate of TTLH.

4.4.3 Simulation Results

Figure 4.2 shows the hops traversed by all the packets during different length of

simulations and using different host request arrival rates. The route selection criterion

is shortest path first. The figure shows that the total number of hops increases linearly

as the simulation time increases. In all cases, the number of hops experienced by the

S3 method is 12% less than that generated by the RR method. We have 3 different

sites in these experiments with the same mean of the path length (15). If the difference

between different routes becomes larger, the savings due to 83 would be greater.

 

1Based on work done by the ACS lab, Department of Computer Science and Engineering, Michi-

gan State University.
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Figure 4.3 shows the hops versus TTLDR (the frequency DNS refreshes the routing

metric from routers). It should be noted that the experiments were performed under

different TTLH. Each dot in the graph represents the results of 6 experiments. The

experiments use the same DNS method, host request rate and TTLDR value, but with

different TTLH values at 300, 600, 900, 1800, 2700 and 3600 seconds. Since each set

of the 6 numbers is similar (less than 1% difference), the average is used to represent

them.

For the round robin method, there is no concept of server selection based on the

routing metric. It is not affected by the value of TTLDR. For SB, the hops increases

when TTLDR becomes larger. This suggests that in order to save hops, the DNS

needs to refresh the routing metric information more frequently. The slope of the line

has a major change when TTLDR changes from 3600 seconds to 1800 seconds, which

marks the critical point where DNS changes from the status of being able to update

routing information promptly to the status that it can no longer do so.

Figure 4.4 shows hops versus TTLH. Similar to Figure 4.3, this is an aggregate

representation of a set of experiments. Each dot in this figure corresponds to different

TTLDR values at 1800, 3600, 7200, 14400, and 28800 seconds. The graph shows that

smaller TTLH results in larger hop saving.

A large TTLH means that the host machine refreshes a domain-name-to—IP-address

mapping for a long period. In practice, it may also be a result of longer session. In

a long session, once a host establishes a connection with a replicated server (such

as TCP), all packets of this session should be forwarded to this particular server no

matter how the route metric changes at the DNS.
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Figure 4.5 shows the simulation results of finding the best latency routes. Overall,

they are very similar to the results based on hops, but the latency changes may occur

frequently due to network congestion, and the number of hops between two networks

is relatively stable. This requires the DNS to collect the route metric more frequently.

For stable routes, the latency changes according to a Gamma distribution. For un-

stable routes, the distribution is difficult to find and we approximate it using uniform

distributions. We further mix the two types of distributions to reflect different situ~

ations.

W * Gamma(n, A)+ (1 — W) >1: Uniform(a, b),

whereOSW§1

The weight W represents how the two distributions are mixed together.

Figures 4.6-4.9 are the result of running S3 for different latency change distributions.

In Figure 4.6, W is 1, so the distribution is Gamma. In Figure 4.9, W is 0, cor-

responding to a uniform distribution. Figures 4.7 and 4.8 use W of 0.6 and 0.3,

respectively.

Let us temporarily call the latency change distribution D. If TTLH is reasonably

small, such as 30 seconds, we see that the closer D is to Gamma, the more insensitive

the latency is to the TTLDR change. The closer D is to uniform, the more sensitive

the latency is to the TTLDR change. In other words, TTLDR changes cause large

latency variations if D is similar to uniform; but can only cause small latency variation
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if D is similar to Gamma. We see a large slope in Figure 4.9 and an almost flat slope

in Figure 4.6. Figure 4.7 and Figure 4.8 have slopes in between the two extreme cases.

In Figures 4.8 and 4.9, the performance of S3 under different TTLH is also providedz.

From Figure 4.9, we see that when the TTLDR value is small, the DNS is able to

capture the route metric quickly, and TTLH should be set to a small value to exploit

the information on the DNS. When the TTLDR is large, the benefit of a small TTLH

decreases. For example, when TTLDR = 30, the latency of 83 degrades about 65%

when TTLH increases from 30 to 1800. However, when TTLDR = 600, the latency

of S3 degrades about only 20% when TTLH increases from 30 to 1800.

The results suggest that DNS should not treat all routes and route metrics in the

same way. It should observe the pattern of the changes. A vigorously changing route

deserves a high frequency of routing metric refreshing, while a relatively static, close

to Gamma distribution route only needs to be refreshed with a larger interval. The

TTLH should be set according to the value of current TTLDR.

4.4.4 Overhead Analysis

The overhead of the S3 method mainly occurs at the exchange of routing collection

packets. However, compared to the total packets forwarded by a router, the traffic

overhead introduced by 83 is negligible. The smallest TTLDR in our simulation is

10 seconds, which is significantly smaller than what is used in a real route (current

router information exchange happens every 30 seconds). Since the ICMP query and

 

2Figure 4.6 and Figure 4.7 do not include the performance of 83 under different TTLH because

the performance is very similar.
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response each will need one IP packet, there will be only 2 IP packets exchanged

every 10 seconds.

4.5 Deployment Issues

The deployment of S3 depends on the approach being selected. The attributes of

the network under deployment are another key factor. If approach 1 described in

Section 4.3 is used, the deployment process is rather simple. This involves only the

client DNS server and the router having full knowledge about Internet routes, usually

a BGP router. The DNS server needs to be manually configured to know the router

it needs to query. Also, on both the DNS and the router, S3 extension of functions

needs to be set up, which enables them to communicate with each other.

If approach 2 described in Section 4.3 is used, S3 requires support from routers on the

default path from the client DNS to a full knowledge router. That path consists of

the links from each router to its default higher level gateway router. The routers on

that path have to understand the ICMP extensions S3 introduced. We can classify

the client networks into two classes. One class includes large networks, where a

full-knowledge BGP router is available. In such a network, all routers needed may

be upgraded for S3 in one step since the managers have full control. The other class

includes small networks. These networks are connected to ISPs and do not maintain a

full-knowledge BGP router. In this case, the ISP of the small network has to upgrade

their routers to support S3 first, then the small network can be upgraded afterwards.
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4.6 Discussion

This section discusses other aspects of the S3 approach.

1. Fast metric collection and low level resource consumption.

We discussed in the previous section that as the number of servers increases,

other server selection methods suffer either a linear increment in latency of

metric collecting or a linear increment in resource consumption. With S3, the

latency of metric collection is independent of the number of replicated servers

and may always be done by sending a query to the router. Therefore, it is fast

and I‘GSOUI‘CB conservative.

2. High level of fault tolerance.

Traditional DNS does not know the status of each replicated server. It may

select the IP address at random or round robin. The server it chooses may

be unreachable because the DNS has no knowledge of the routing information.

With S3, a server that cannot be reached from a router’s point of view will not

be selected by the DNS.

4.7 Summary

In this chapter, a new mechanism to support replicated server selection, SB (smart

server selection), is presented. Extensions to current DNS and routers are proposed.

With S3, users may choose the best server among the replicated servers that meet

their preferences. The selection metric may be hops, latency, monetary cost, or a
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combination of these. Simulation results show that S3 significantly reduces network

resources usage and the latency perceived by the user.
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Chapter 5

Static Scheduling and Client

Redirection

In this chapter, we describe an approach, to address the load sharing problem for

global replicated web services. It is complementary to the approach proposed in

previous chapter.

5.1 Introduction

Global replicated services provide an economic way to provide high throughput and

availability required by popular web sites such as Yahoo! and Altavista. In the last

chapter we proposed an approach to select servers based on network metrics. In

this chapter, we address the complementary problem: how to share the load between

multiple replicated sites effectively and efficiently in order to provide reasonable per-

formance.

92



Two categories of load sharing approaches, front-end dispatcher approaches such as

Network Dispatcher [31] and DNS round-robin approaches such as those algorithms

deveIOped by Philip Yu [38]. cannot be applied directly under global replicated services

because they do not consider the network proximity. An approach that considers the

network proximity and server load needs to be developed.

As the web evolves into the primary information and application platform, the web

access patterns becomes more regular and predictable. This is especially true for

membership-based applications, for example, mail.yahoo.com, my yahoo!, E*trade,

etc. If such a site is replicated, the number of accesses from a specific user and

where those accesses originated are usually more predictable. It is possible for these

web sites to replicate only portal pages (interfaces) without the user-specific data.

User-specific data can be migrated to a place where network proximity to the user is

improved. However, we still want to keep the load on each web server balanced.

Based on these considerations, in this chapter we propose SSCR (Static Scheduling

and Client Redirection)[55]. Our approach has advantages over existing approaches

in the following ways:

1. It is applicable to both the NOW architecture and web servers dispersed on

wide-area networks.

2. It introduces marginal overhead. -

3. It scales well in comparison with other competitive approaches because load

sharing is determined in a distributed manner without central control.
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4. It avoids those drawbacks caused by aggressive DNS approaches which have

short TTLS [40].

The rest of the chapter is organized as follows. The details of SSCR are given in

section 5.2. In section 5.3, we describe our simulation model and performance results.

Finally we summarize the conclusions and future work in section 5.4.

5.2 Our Proposed Approach: Static Scheduling

and Client Redirection (SSCR)

The basic idea of SSCR is:

o A static scheduler at the web server site does static scheduling upon each T,

interval.

0 Each client network is assigned a preferred web server. This is considered as

a permanent assignment for a period of T8. After T3, each client network is

rescheduled by the static scheduler and might be assigned to another web server.

Generally T3 is quite large; for example, T, can be one day.

0 The client networks always try to access their preferred servers. If the preferred

web server is overloaded, then the web server redirects some clients to other

servers for a period of T) in a distributed manner. This new assignment is

temporary. T, is quite small (2 minutes) relative to Ts. After T, period, these

redirected clients continue to access their preferred servers.
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SSCR has the following steps:

1. Future load Prediction

2. Static Scheduling

3. Load Distribution

4. Client Redirection.

5.2.1 Future Load Prediction

A web server’s access log currently provides the following information:

o hostname/IP address

0 request date and time

o URI

return code

response length

To predict the future load (the number of accesses in the next day), the access history

is examined and the number of accesses from each network (preferably C class net-

works) on each day is calculated. Different weights are given to information derived

from logs of different days. Several values of weights have been examined. We have

found that giving the most recent information the heaviest weight seems to perform

appropriately. Therefore, SSCR puts weights of 0.6, 0.3, and 0.1 (these weights pro-

duce the best performance in our simulation) on the number of accesses from the
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last three days except weekends, giving information from the latest day the largest

weight. By having several days’ history information, the variation can be reduced

and prediction is more accurate.

Static Scheduling

Here we briefly discuss static scheduling for a NOW configuration that is not applica-

ble for the wide-area configuration, which is discussed in section 5.2.4. Our method

for static scheduling is quite simple. After the static scheduler obtains the future load

prediction, it sorts all networks according to the number of accesses in descending

order. Then the static scheduler schedules all the networks in this order. When the

static scheduler schedules a network, it checks all available servers’ assigned load and

picks the server with the least load.

5.2.2 Load Distribution

After the static scheduler generates the assignments (client network, assigned server),

it sends the assignments to all the servers to enforce this access policy. Each web

server has a different IP address but shares one host URL (e.g., www.mysite.com).

All web servers have all the documents served by this web site. Load distribution

has been implemented at two places and static scheduling is enforced by the web

servers themselves. When a client first accesses a web site, it does not have any

knowledge about the web server group. It relies on the client side DNS server to find

an IP address to access. The current implementation of DNS supports round-robin

selection. First, the server side DNS server returns a list of available IP addresses to
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the client DNS in a round robin fashion to DNS queries. Second, the client DNS uses

the list to return to each individual host in the domain an IP address in the round-

robin manner. When a web server receives an HTTP request from a client, it checks

whether the client is assigned. If this client has not been assigned, the web server

uses the client’s network and look up the assignment table for the static assignment

and returns the assigned server (IP address) to the client. From now on the client

accesses the assigned server. This assignment is considered a permanent assignment

and expires upon the next static scheduling point. For performance considerations,

permanent assignments might be used across multiple sessions so that each browser

does not ask the DNS several times during each T, period. If a client is from a network

that is not in the assignment table, the web server assigns the client in the round robin

fashion by itself. In this case, the scheduling unit is not a network, but an individual

host. It is possible that two clients from the same network access different servers.

Usually these assigned hosts have a small amount of traffic so that the round-robin

assignment works well.

It seems natural to enforce static scheduling based on domains instead of networks

and static scheduling should be enforced by the server side DNS. We use the network

as the scheduling unit for the following reasons:

1. When the server DNS receives a request, it does not know which DNS originated

the request except when the client DNS operates in the “recursive mode”. Ex-

pecting all DNS servers to operate in the recursive mode may have performance

implications, and more importantly, this change cannot be made quickly.
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2. A network offers a smaller scheduling granularity than a large domain, which

might not be handled by a single web server. Since each small network in this

domain may be assigned to different web servers, better performance is possible.

Also, it is natural to base the measurement of the network proximity on network

address instead of domain names because a domain might have several networks

at several places, which have different network proximities to the web servers.

5.2.3 Client Redirection

Under static scheduling, the server’s load is nearly balanced in the long run (T,

period). However, due to inherently bursty accesses, a server may be temporarily

overloaded. In order to address this problem, SSCR relies on the HTTP redirect

mechanism [46] to temporarily redirect accesses to other servers.

When a web server reaches its predetermined threshold, it sends an alarm message to

the web server group by multicast to indicate it is overloaded. This prevents remote

servers from redirecting clients to the overloaded server. The web server group does

not need to exchange the load information periodically.

At the same time, the overloaded web server triggers the redirection mechanism,

and redirects the clients that currently have accesses to the web server to other web

servers not overloaded in a round-robin manner. This is done by returning a different

IP address to each client. The redirected client accesses the temporary redirected

server (temporary assignment) for period Tt. After that period, it continues to access

the original server again.

98



It is very interesting to know if the document should be piggy-backed to the client

in addition to the redirection, which would save the latency and a connection to the

redirected server under HTTP 1.0. Since there is a fixed overhead associated with

each request processing, only a small amount of extra time may be needed to serve

this request. Also, if one server is overloaded, other servers might also have high

load. Piggy-backing can prevent a client request from being bounced back several

times before being served, even if it is a small HTML page. Therefore, a server may

estimate the processing time. If the processing time is not too long, the server may

serve it. Otherwise, the server will return a redirection code without serving it.

5.2.4 Wide Area Extensions

SSCR can be easily extended to wide area networks, in which the web servers are

dispersed over a wide area connected by relatively slow links. In this case, accesses

to the “nearest” server are preferred. Our definition of “nearest” server is that the

number of hops between the client network and the server is minimal. Depending on

the objectives, other definitions are possible.

Using our definition, after the static scheduler predicts the future load, the static

scheduler tries to schedule these networks to their nearest server, while maintaining

apprOpriate load distribution. For those networks that do not appear in the assign-

ment table, two approaches might be used depending on the effectiveness of static

prediction. The effectiveness of static prediction is determined by the web traffic

characteristics. If there is less random traflic, round robin is sufficient. When there is
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much more random traffic and the static scheduler is not effective, a more elaborate

approach can be applied.

In such an approach, a central database of network distances from each web server

to known client networks is collected and maintained by the network distance server

(one part of the static scheduler). Each web server has an agent, which can find the

network distance from itself to a client network when a request for network distance

is received. When a web server receives a request from a client whose network is not

assigned and there is no entry in the assignment table, it will ask the static scheduler

for the appropriate server. The static scheduler returns the appropriate server if this

client network has been assigned. Otherwise, the static scheduler utilizes the network

distance information and load information on each web server to select a web server

and return the decision to the web server that makes the request. The web server

will add this assignment in its own assignment table.

The static scheduler either maintains or accesses an available knowledge database

that contains the geographical information of each individual network.

Maintaining a knowledge database of the network distances from the client networks

to the web servers is possible. Tracerovte and ping [54] may be used off-line to

collect network distance information. More efficient online approaches are proposed

in [24, 50].
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5.2.5 Fault-Tolerance and Scalability

DNS approaches raise concerns because if one server is down or needs to be main-

tained, those domains mapped to that server cannot access the services anymore and

there is no simple method to invalidate these DNS mappings. This may be addressed

by the browser implementation. When a browser calls the gethostbyname() system

call, the DNS will return a list of IP addresses corresponding to a particular host

name. The browser may try the second IP address available if the first IP address is

not reachable. The problem of “server is not available” can be prevented.

5.2.6 Advantages of SSCR

The advantages of the SSCR can be summarized as follows:

1. It works for a globally replicated service.

2. It relieves requirements for small TTL values proposed in DNS-based approaches.

SSCR saves a lot of DNS requests made by client DNS and improves the DNS

system performance.

3. It avoids the front—end dispatcher. Because a front-end dispatcher accepts all

the incoming traffic and makes a decision, the front-end dispatcher may become

a bottleneck to the whole system. Such a dispatcher generally has to be backed

up in case of primary dispatcher failure.

4. It can implement more advanced resource scheduling. Since the static scheduler

controls how the web server resources are allocated, it is pOSSIble to implement
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more advanced resource scheduling instead of load sharing. For example, with

web server’s priority queues, it is very easy for the static scheduler to sup-

port differentiated web services based on IP addresses and make coresponding

resource allocations.

5.2.7 Implementation of Redirection

Redirection can be implemented in the following three ways. The first way is to

rely on HTTP redirection. Current HTTP standards only support per URI-based

redirection. In order to redirect web accesses to non-preferred servers, the preferred

server has to do redirection on a per URI basis. This is undesirable.

A second way is to rely on connection redirection [41]. When the preferred server

is overloaded, it redirects the TCP connection request (the SYN packet) to another

web server.

The last choice is URI rewriting. In this approach, when a preferred server is over-

loaded, it changes all the URIs in the page it serves to point to another non-overloaded

web server. The next time the user follows the link to access a document, it accesses

the non-overloaded server. URI rewriting serves the purposes of both permanent

assignment and temporary assignment.
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5.3 Performance Evaluation

We compare the performance of our proposal with existing DNS approaches using

trace driven simulation. Below, we discuss the performance metrics that we are

interested in, the web trace file, and the performance results.

5.3.1 Performance metrics

Our performance comparison of approaches includes the following criteria:

1. Percentage of intervals that at least one server is overloaded. We count the

number of intervals that at least one server is overloaded at any given moment

during this interval. The server is overloaded when the number of accesses

between two load evaluation points exceeds the server processing capacity. This

is the same criteria as that used in [38].

2. Number of redirections. Since redirection causes a new connection to open on

a web server, the number of redirections should be minimized.

3. Number of DNS requests. The number of DNS requests reflects the load on the

DNS system. Keeping the number of DNS requests small is essential to the

health of the DNS system.

5.3.2 Traces used in our study

We use three traces of web accesses that we obtained from various sources. The

following table provides some information about the traces:
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Table 5.1: Web Access Traces Used for Trace-Driven Simulation

 

Trace CLARK CSE EGR

Duration (in days) 14 28 28

Total number of accesses 3,328,632 2,116,072 3,942,989

Average accesses /day 237,759 75,574 140,821

 

 

 

     
 

The CSE workload is a 4-week trace file from our Computer Science and Engineering

Department’s web server. The EGR workload is a 4-week trace file from our engineer-

ing college’s web server. The CLARK workload is from a commercial Internet Service

Provider in the metropolitan Baltimore- Washington DC area, which we downloaded

the Internet.1

5.3.3 Simulation Setup

We use the traces of web access to run our simulations since we do not think models

of web access are well understood to drive simulation studies. For our work at this

point, we only simulate the NOW configuration of a web server. The network of each

host is found in the following way: if the host is named, we strip off the first part of

the name. If the host is an IP address, then we strip off the last byte. Piggy-backing

is used in our simulation by default. Also, the latency of redirection is not considered.

That means that redirection is seen at once by the client. Once the decision is made

by a web server, the next request from that client will go to the newly assigned

server. After the assignment is generated as described before, the simulator reads the

trace file and obtains the number of accesses during each overload evaluation interval.

 

lWorkload downloaded from http: / / ita . ee . 1b1 . gov/html/contrib/ClarkNet-H'I'I‘P . html.
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After the end of each interval, the simulator checks the number of accesses on each

server. If any server’s load is beyond its capacity, the number of overload intervals is

incremented by 1. For each individual server, if its load is beyond the server capacity,

it will carry those excessive requests to the next interval. A capacity Cs where 97%

of time the web server is not overloaded in the trace is determined. Each server’s

capacity Cb is computed as Cs/n where n is the number of servers. The relative

capacity is the ratio where the actual server’s capacity compared to its Cb.

5.3.4 Simulation Results

Table 5.2: Load distribution policies studied.

 

Approach Description

PP Perfect Policy. In each interval,

the number of accesses is averaged

to each server. This is the best

performance possible.

RR2 Two-tier Round-Robin.

RR2_alarm RR2 with asynchronous alarm message.

ACR_RR-alarm Round Robin with Client

Redirection and alarm message.

SSCR Static Scheduling with Client

Redirection.

 

 

 

 

 

   
 

We simulated the five approaches listed in Table 5.2 using the three traces. RR2,

RR2-alarm, ACR_RR_alarm (DNS-based approaches) are proposed in [40]. Figure 5.1

shows the simulation results for CSE workload. The :r-axis is the server capacity

relative to the base-line capacity. The y-axis is the percentage of periods that is

overloaded.
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Figure 5.1: Performance of Different Approaches under CSE workloads

Under our load model and simulation configuration, we have the following observa-

tions:

1. Web traflic has some burstiness. It is very hard to prevent overload from hap-

pening by either static assignment or DNS mapping with reasonable short TTLs.

This is verified by our performance simulations which are not shown in the fig-

ure.

2. The alarm message (overload notification) is very important. This can be veri-

fied by the fact that RR2_alarm is much better than RR2. For example, when

there were 4 servers, em RR2_alarm is about 12% better than RR2 using the

EGR workload under the default configuration. This is confirmed by [38].

3. Redirection is an effective method and is sufficiently robust to deal with the dis-

tribution of web traflic. In the performance figure, we can clearly see that both

SSCR and ACR-RR-alarm achieve performance similar to the perfect policy

by redirection. Redirection improves the performance by more than 20% over
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R122-alarm in the default configuration. Also, it improves performance across

all the server capacity configurations, which makes it a very effective way to

prevent overload. SSCR is slightly better than ACR.RR_alarm.

4. In our simulation, especially when the server has limited capacity, piggy-backing

is important. The reason is that when the capacity of the web server is limited,

in order to maintain the appropriate load, the redirection traffic is much more

than that of the web server which has larger capacity. Redirection traffic may

put more burden on a capacity-starved web system and makes things worse.

In our default configuration, without piggy-backing, the overloaded percentage

decreases more than 15%.

5. Quick redirection (which is redirection made by a non-preferable server) is nec-

essary if only an alarm message is used. The reason might be because if an

alarm message is available, when a web server decides to redirect a client, it

only knows that a specific web server is not overloaded, but it does not know

what is the load on that server (it might be overloaded 1 second later). It may

be the case that a web server will redirect clients to a server nearly overloaded.

Quickly redirecting a client to a new server is needed even if this client has been

redirected before.

We simulated the number of DNS requests introduced by DNS-based approaches

and SSCR. If we assume TTL is one day in SSCR, we found out that RR based

approaches generate 2.5 times of DNS requests than SSCR, and the DNS traffic of
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RR based approaches is about 1 /7 - 1 / 10 of total web requests made by all the clients.

Compared to RR based approaches, SSCR introduces much less DNS traffic.

We also ran the simulations on the redirection traflic. Under the default configuration,

SSCR has about 5.4% of redirections compared to the total number of web requests.

The redirected accesses are about 20% of total web accesses. This number gives some

sense of how the approach is performed in the wide area case. ACR_RR.alarm has

about 6.3% of redirections compared to the total number of web requests.

5.4 Summary

In this chapter, we investigated the possibility of using web servers to enforce static

scheduling and to redirect web traffic. Our performance simulations show that SSCR

provide nearly Optimal performance with little overhead. Redirection is very effective

in dealing with the load distribution of web traffic and the alarm message is important

in load distribution. Piggybacking is important when a server has limited capacity

and quick redirection might be needed when only an alarm message is available as

the indication of load on each web server. There are three future directions in our

research. One is to investigate the trace files further to do better load prediction

and static scheduling. Another direction is to evaluate the performance under the

assumption that HTTP 1.1 is being used. The last direction is that we will simulate

the performance of SSCR on a wide-area configuration, if possible.
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Chapter 6

A Framework for Content-Aware

Request Distribution

The replicated web server cluster is the most popular configuration used to meet. the

growing traffic demands imposed by the World Wide Web. However, for clusters to

be able to achieve scalable performance as the cluster size increases, it is important

to employ the mechanisms and policies for a “balanced” request distribution. As the

web sites become the platform to conduct the business, it is important to protect the

web server from overload and to provide service differentiation when different client

requests compete for limited server resources. Mechanisms for intelligent request

distribution and request diflerentiation help to achieve scalable and predictable cluster

performance and functionality, which are essential for today’s Internet web sites.

This chpater discusses content-aware request distribution. The next chapter covers

content-aware request processing to provide differentiated web service.

109

 



6. 1 Introduction

Traditional request distribution tries to distribute the requests among the nodes in

a cluster based on the parameters, such as IP addresses and port numbers, and

some load information. Since the request distribution has the ability to check the

packet header up to Layer 4 in the OSI network reference model (in this case, TCP)

when it makes the distribution decision, it commonly referred to as Layer 4 request

distribution. I

Content-aware request distribution takes into account the content (URL name, URL

type, or cookies, etc) when making a decision to which server the request is to be

routed. Content-aware request distribution mechanisms enable smart, specially tai-

lored routing inside the cluster and provide many benefits. Some of the benefits

are:

1. It allows the content of a web site to be only partially replicated. Dedicated

nodes can be set up to deliver different types of documents.

2. It provides support for differentiated Web Quality of Service (WebQoS).

3. It can significantly improve the cluster throughput. Previous work on content-

aware request distribution [35, 36, 56] has shown that policies distributing the

requests based on cache affinity lead to significant performance improvements

compared to the strategies taking into account only load information.

Compared to traditional Layer 4 request distribution, the complexity of content-aware

request distribution lies in the fact that HTTP is based on the connection-oriented
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TCP protocol. In order to serve the client request (URL), a TCP connection has to

first be established between a client and a server node. If the node cannot or should

not serve the request, some mechanism has to be introduced to forward the request

for processing to a capable node in the cluster. TCP splicing and TCP handoff are

two mechanisms proposed to support content-aware request distribution.

Back-End

   

   
  

 

Client
 

 

   

Back-End

Figure 6.1: Tiraffic flow with TCP splicing mechanism
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Client Front-End

3‘ w

*1

!

 

   

Back-End

Figure 6.2: Traffic flow with TCP handoff mechanism
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6.1.1 TCP Splicing

TCP splicing [57] is an optimization of the front-end relaying approach, with the

traffic flow represented in Figure 6.1. In this cluster architecture, the front-end only

dispatches the requests to the back-end node and it does not serve any requests at all.

The response is forwarded to the client by the request distributor. A straightforward

approach is to setup a content-aware proxy, which distributes the requests based on

the URL. However,because each request and response has to be forwarded at the user

level of the front-end, the throughput of the front-end is very limited. TCP splicing

optimizes the front-end relaying approach by forwarding the data at lower levels in

the protocol stack. For example, data may be forwarded at the socket layer, on top

of IP layer or at IP layer. TCP sequence numbers and IP addresses are updated

accordingly so that the whole process is transparent to the clients. By forwarding the

packets at the lower level in the protocol stack, the performance of the front-end is

greatly improved.

6.1.2 TCP handoff

The TCP handoff mechanism was introduced in [35] to enable the forwarding of back-

end responses directly to clients without passing through the front-end, with traflic

flow represented in Figure 6.2. After the front-end establishes the connection with

the client and the request distribution decision is made, the established connection is

handed off to the selected back-end node to serve the request. The TCP state related

to the established connection is migrated from the front-end to the selected back-
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end node. The main benefit of the TCP handoff mechanism compared against TCP

splicing is that the back-end node can send the response directly to the client. The

front-end is not involved in the response data forwarding. It has been shown in [36]

that TCP handoff provides better performance and scalability than TCP splicing.

6.1.3 Content Aware Request Distribution in the STREAMS

environment

STREAMS-based TCP/IP implementations, which is available in leading commercial

operating systems, ofler a framework to implement the TCP handofl' mechanism as

plug-in modules in the TCP/IP stack, and to achieve the flexibility and portability

without much of a performance penalty.

In this chapter, we use three different applications to discuss specifics of content—aware

request routing and related architectural design issues:

0 a multi—language web site;

a partition-based cooperative web proxies;

o a simple e—commerce site.

Using these applications, we distinguish three most typical usage patterns of the TCP

handofl mechanism. The usage pattern is defined by the fraction of the requests being

handed off:

0 rare-TCP handoff — when only a small fraction of the requests are handed off

for processing to a different cluster node;
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o frequent-TCP handoff — when most of the requests are forwarded for processing

to a different node using the TCP handoff mechanism;

0 always-TCP handoff — when the requests are always handed off for processing

to a different cluster node.

This difference in the usage patterns leads to different trade-off decisions in the mod-

ular implementation of TCP handoff mechanisms. We discuss these trade-offs and

propose a library of STREAMS modules implementing the TCP handoff function-

ality which addresses different cluster architectures and optimizes the TCP handoff

mechanism for specific usage patterns.

The proposed approaches and a library of STREAMS modules[58, 59] have the fol-

lowing advantages:

0 portability: the new modules are relatively independent of the implementation

internals. New STREAMS modules are designed to satisfy the following re-

quirements: all the interactions between new modules and the original TCP/IP

modules are message-based, no direct function calls are made; and new mod-

ules do not change any data structures or field values maintained by the original

TCP/1P modules. This enables maximum portability, so that the new modules

may be ported to other STREAMS-based TCP/IP implementation very quickly.

0 flexibility: the new modules may be dynamically loaded and unloaded as DLKM

(Dynamically Loadable Kernel Module) modules without service interruption.
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o transparency: no application modification is necessary to take advantage of new

solutions. This is a valuable feature for applications where no source code is

available.

0 efficiency: the new modules are only peeking into the messages, with minimum

functionality replication of the original TCP/1P modules.

The rest of the chapter is organized as follows. Section 6.2 gives a brief introduction

to STREAMS and STREAMS-based TCP/IP implementations. Section 6.3 outlines

three different web applications using content-aware request distribution and discusses

the corresponding supporting architectures. Sections 6.4, 6.5, 6.6, argue that the

efficient TCP handoff implementation in a STREAMS environment should take into

account the TCP handoff usage patterns to minimize the overhead introduced by the

TCP handoff mechanism.

6.2 STREAMS-Based TCP/IP Implementation

STREAMS is a modular framework for developing communication services. Each

stream generally has a stream head, a driver and multiple optional modules between

the stream head and the driver (see Figure 6.3). A stream is a full-duplex processing

and data transfer path between a STREAMS driver and a process in user space.

Modules exchange the information by messages. Messages can flow in two directions:

downstream or upstream. Each module has a pair of queues: a write queue and a read

queue. When a message passes through a queue, STREAMS modules for this queue
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are called to process the message. The modules may drop a message, pass a message,

change the message header, and/or generate a new message.
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Figure 6.3: STREAMS

 

 

 

The stream head is responsible for interacting with user processes. It accepts the pro-

cess request, translates it into appropriate messages, and sends the messages down-

stream. It is also responsible for signaling to the process when new data arrives or

some unexpected event happens.

The STREAMS modules for a STREAMS-based TCP/IP implementation are shown

in Figure 6.4. The Transport Provider Interface (TPI) specification [60] defines the

message interface between TCP and the module on top of it. The Data Link Provider

Interface (DLPI) specification [61] defines the message interface between the driver

and the IP module. These specifications define the message format, valid sequences

of messages, and semantics of messages exchanged between the neighboring modules.
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Figure 6.4: STREAMS-Based TCP/IP Implementation

When the TCP module receives a SYN request for establishing the HTTP connec-

tion on the listen stream, the TCP module sends a T_CONN_IND message upstream.

Under the TPI specification, TCP should not proceed until it gets the response from

the application layer. However, in order to be compatible with BSD implementation-

based applications, the TCP module continues the connection establishment proce-

dure with the client. When the application decides to accept the connection, it sends

the T-CONN-RES downstream on the listen stream. It also creates another stream

to accept this new connection, and TCP module attaches a TCP connection state to

this new stream. The data exchange continues on the accepted stream until either

end closes the connection.
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Figure 6.5: New Plug-in Modules for rare-TCP Handoff in STREAMS-Based TCP/IP

Implementation

6.3 Content-Aware Request Distribution: Cluster

Design and Application Specific Issues

TCP handoff is a mechanism which enables the intelligent routing of web requests

between cooperative nodes either locally or in the wide area. In this section, we

use three different applications to discuss content-aware request routing and request

processing and related architectural design issues.

In our discussion of different cluster designs which can be used to implement content-

aware distribution strategies, we adopt terminology prOposed in [36]. There are three

main components comprising a cluster configuration with content-aware request dis-

tribution: the dispatcher which implements the request distribution strategy, it de-
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cides which web server will process a given request; the distributor which interfaces

with the client and implements the TCP handoff that distributes the client requests

to a specific web server; and the web server which processes HTTP requests.

1. Multi-language web site design.

Big sites have different language versions to service different client communities. For

example, Yahoo has a site representation in different languages to serve different lan-

guage groups. A client may access the same content in different languages. Another

example is the big commercial companies which have on-line manuals in different

languages to serve different communities. Due to the volume of traffic to these big

sites, generally these sites are replicated at different places. It is neither economical

nor necessary to replicate all different language versions of the same document in all

the places at the same time. Typical practice is that servers at a particular place will

only partially replicate a group of languages commonly used in the local community.

It would be desirable that a client will be automatically directed to the right server

to get the desired language document.

One simple and typical solution is to put a link on each page pointing to different ver-

sions of the same document in diflerent languages, and let the user to select the right

version manually. However, this method is not convenient for web page developers

and very hard to manage in big sites.

The alternative solution is to apply a TCP handoff mechanism to automatically hand-

off the connection to the right server when the content is not present on the original

server, and the selected server will respond to the client directly.
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Each server in a cluster keeps a mapping (defined in a dispatcher module) to manip—

ulate the URL according to some rules established in advance by the site administra-

tors. In particular, these rules assign the specific language versions to be served by

diflerent servers in a cluster. This is a more flexible and convenient way to manage a

multi-language web site.
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Figure 6.6: Web server cluster configurations with content-aware request distribution

to support a multi-language web site design.

Figure 6.6 shows a cluster architecture to support a multi-language web site. Web

servers are connected by a wide area network, and thus, handoff has to be implemented

over a wide area network. In this architecture, the distributor component is co—located

with the server and dispatcher components.

For simplicity, we assume that the clients directly contact the distributor, for instance

via Round-Robin DNS. In this case, the typical client request is processed in the

following ways:
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1. The client web browser uses the TCP/IP protocol to connect to the chosen

distributor;

2. The distributor component accepts the connection and parses the request;

3. The distributor contacts the dispatcher for the assignment of the request to a

server;

4. The distributor hands off the connection using the TCP handoff protocol to the

server chosen by the dispatcher;

5. The server takes over the connection using the handoff protocol;

6. The server application at the server node accepts the created connection;

7. The server sends the response directly to the client.

The specifics of this cluster architecture is that each node in a cluster has the same

functionality: it combines the functions of distributor and web server. In other words,

each node acts as a front-end and back-end node in providing TCP handoff function-

ality. For each web server, we expect that most of the HTTP requests are processed

by the node accepting the connections (we refer to such requests as local), and hence

TCP handoff happens relatively infrequently. We use the term rare-TCP handoff

to specify this usage pattern. Under such a usage pattern, a goal for the rare-TCP

handofl design and implementation is a minimization of the overhead imposed by the

TCP handoff mechanism on local requests.

2. Partition-based cooperative web proxies design.
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As a web proxy is a typical place where an entire intranet accesses the Internet,

it is very easy for a single proxy to become a bottleneck. In order to provide a

scalable proxy service, cooperative proxy clusters are commonly used. One kind

of cooperative proxy is partition-based proxies[19]. In partition-based cooperative

proxies, each proxy caches a disjoint subset of the documents. Partition-based web

proxy clusters increase the number of cached documents and improve the cache hit

ratios.

However, the same partition function has to be applied by the browser to contact

the correct proxy for a particular URL. Implementing the partition function in a

browser-transparent way is a difficult task in partition-based proxy clusters.
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Figure 6.7: Partition-based cooperative web proxies design with content-aware request

distribution

TCP handoff can be used to implement the partition function in a client transparent

manner. Figure 6.7 shows a cluster architecture to support a partition-based proxy
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cluster. In this architecture, the distributor component is co-located with the server

component. The dispatcher component can be centralized as shown in Figure 6.7

or decentralized as shown in Figure 6.6 (typically, the decision is influenced by the

choice of the partition function aiming to cache different files on a different servers).

Round-Robin DNS or a front-end Layer 4 switch can be used to direct the traffic

to the proxies in the cluster. When an HTTP request comes in, the proxy consults

with a dispatcher module to determine which server is to serve the request. If the

request is to be served by another proxy in the cluster, the original proxy hands the

connection off to the proxy designated to process this request. The serving proxy will

send the response back to the client directly.

This cluster architecture is similar to the architecture considered above for multi-

language web site design. The difference is in the usage pattern of the TCP handofl.

Let N be the number of nodes in the partition-based proxy cluster. Statistically,

each node in the cluster will be serving only 1/N of the requests locally, while for-

warding (N — 1)/N of the requests to the different nodes in the cluster using the

TCP handoff mechanism. We use the term frequent-TCP handofi' to specify this us-

age pattern. Under such a usage pattern, an efficient frequent-TCP handofl design

and implementation should minimize the TCP handoff overhead for remote request

processing.

3. E-commerce site design.

The HTTP protocol is stateless, i.e. each request is processed by the web server inde-

pendently from the previous or subsequent requests. In an e-commerce environment,

the concept of session (i.e. a sequence of requests issued by the client) plays an es-
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sential role [62, 63]. For a session, it is important to maintain state information from

the previous interactions between a client and a server. Such state might contain

the content of the shopping cart or a list of results from the search request. Thus,

when the user is ready to make a purchase, or is asking for the next 10 entries from

the search list, the state information from the previous request must be retrieved.

For efficient request processing and session integrity, it is desirable to send the client

request to the same server. One popular scheme for handling the state on the web is

cookies. Content-aware request routing provides a convenient mechanism to support

session integrity (the other common term for this is a “sticky” connection).

Figure 6.8 shows a cluster architecture to support a simple e—commerce site. In this

architecture, the front-end node has co-located distributor and dispatcher modules

to support session integrity, i.e. based on the cookie in the HTTP header, it sends

subsequent requests belonging to the same session to the initially chosen back-end

server.

The specifics of this cluster architecture is that front-end and back-end nodes now have

different functionality: front-ends combine the functions of distributor and dispatcher,

while the back-ends perform as web servers. The front-end node checks the cookie

and decides which back-end server is to process the request. The distributor module

always hands off the connection to the appropriate back-end server. The front-end

node never processes the request. We use the term always-TCP handofir to specify

this usage pattern. Under such a usage pattern, the design and implementation of the

always-TCP handofl is very different from the previously discussed cases of rare- and
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frequent-TCP handoff. The crucial difference is that front-end and back-end nodes

play very different roles in this architecture.
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Figure 6.8: Web server cluster configurations to support session integrity and differ-

entiated services for e-commerce site design

Web server QoS is very important for business web sites. When a web site is over-

loaded, it is desirable that important requests get preferable service [62], or some form

of the admission control mechanism is employed [63]. Content-aware request process-

ing (CARP) proposes an interesting framework to implement differentiated services

in a web server. For example, difl'erent request scheduling and processing policies

could be deployed based on client or request priority. Session-based admission con-

trol, introduced in [63], can be easily implemented using CARP on the back-end web

server nodes.

Thus, content—aware front-end nodes in the cluster configuration shown in Figure 6.8

provide the session integrity mechanism, while back-end web server nodes can de-
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ploy differentiated services such as request classification, session management, request

queuing, admission control, and/or request scheduling.

This concludes our discussion of three different applications employing content-aware

request processing and TCP handoff for different purposes. We illustrated the specifics

of the TCP handoff usage patterns in these applications. Efficient implementation

of the correspondent TCP handoff mechanism should take into account these us-

age patterns. The TCP handoff modules may be developed at diflerent places in a

TCP/IP stack to implement the content-aware request distribution, according to the

architecture and workload characteristics.

Section 6.4 will present a detailed design of rare-TCP handoff. Using this detailed

description, we discuss what should be done differently for efficient implementation

of frequent-TCP handoff and always-TCP handoff.

6.4 Rare-TCP Handoff Design

In the cluster architecture shown in Figure 6.6, each node performs both front-end and

back-end functionality: the distributor is co—located with the web server. We use the

following denotations: the distributor-node accepting the original client connection

request is referred to as FE (Front-End). In the case, where the request must be

processed by a diflerent node, this node receiving the TCP handoff request is referred

to as BE (Back-End).

Two new modules are introduced to implement the functionality of rare-TCP handoff

for multiple language web sites as shown in Figure 6.5. According to the relative
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position in the existing TCP/1P stack, we refer to the module directly on top of the

TCP module in the stack as UTCP (UpperTCP), and the module directly under the

TCP module as BTCP (BottomTCP).
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Figure 6.9: Remote Request Processing Flow During rare-TCP Handoff

These two modules provide a wrapper around the current TCP module. In order to

explain the proposed modular TCP handoff design and its implementation details,

we consider a typical client request processing. There are two basic cases:

remote request processing, i.e. when the front-end node accepting the request must
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handoff the request to a different back-end node assigned to process this request;

and local request processing, i.e. when the front-end node accepting the request is the

node which is assigned to process this request.

First, we consider remote request processing. There are six logical steps to perform

the TCP handoff of an HTTP request in rare-TCP handoff:

1. Finish 3-way TCP handshaking (connection establishment) and get the re-

quested URL.

2. Make the routing decision: decide which back-end node is assigned to process

the request.

3. Initiate the TCP handoff process with the assigned BE node.

4. Migrate the TCP state from the FE to the BE node.

5. Forward the data packets.

6. Terminate the forwarding mode and release the related resources on the FE

after the connection is closed.

Now, we describe in detail how these steps are implemented by the newly added

UTCP and BTCP modules and original TCP/1P modules in the operating system.

1. 3-way TCP handshake. Before the requested URL is sent to make a routing

decision, the connection has to be established between the client and the server.

The proposed design depends on the original TCP/IP modules in the current op-

erating system to finish the 3-way handshake. In this stage, BTCPFE allocates
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a connection structure corresponding to each connection request upon receiv-

ing a TCP SYN packet from the client. After that, BTCP“; sends the SYN

packet upstream. Upon receiving a downstream TCP SYN/ACK packet from

the TCPFE module, BTCP“; records the initial sequence number associated

with the connection and sends the packet downstream. After BTCPFE receives

an ACK packet from the client, it sends the packet upstream to TCPFE. During

this process, the BTCPFE emulates the TCP state transitions and changes its

state accordingly.

In addition to monitoring the 3-way TCP handshaking, BTCP”; keeps a copy

of the incoming packets for connection establishment (SYN packet, ACK to

SYN/ACK packet sent by the client) and URL (Figure 6.9), for TCP state

migration purposes, which are discussed later.

Also, because the TCP handofl should be transparent to server applications,

the connection must not be exposed to the user level application before the

routing decision is made. UTCPFE intercepts the T_CONN_IND message sent

by TCPFE. TCPFE continues the 3-way handshake without waiting for explicit

messages from the modules on top of TCP.

. URL parsing. BTCPFE parses the first data packet from the client, retrieves

the URL and makes the distribution decision.

. TCP handofir initiation. A special communication channel is needed to initiate

the TCP handoff between FE and BE. A Control Connection is used for this

purpose between two UTCPFE and UTCPBE as shown in Figure 6.9. This
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control connection is a pre—established persistent connection set up during the

cluster initialization. Each node is connected to all other nodes in the cluster.

The TCP handoff request is sent over the control connection to initiate the

handoff process. Any communication between BTCPFE and BTCPBE mod-

ules goes through the control connection by sending the message to the UTCP

module first (see Figure 6.9). After BTCPFE decides to handoff the connection,

it sends a handoff request to the BTCPBE (Figure 6.9, step 1). The SYN and

ACK packets from the client and the TCP initial sequence number returned

by TCPFE are included in the message. BTCPBE uses the information in the

handoff request to migrate the associated TCP state (steps 2-4 in Figure 6.9,

which are discussed next). If BTCPBE successfully migrates the state, an ac-

knowledgement is returned (Figure 6.9, step 5) BTCPFE frees the half-open

TCP connection upon receiving the acknowledgement by sending a RST packet

upstream to TCPFE and enters forwarding mode. UTCPFE discards the cor-

responding T-CONN_IND message when the T_DISCONJND is received from

the TCPFE.

. TCP state migration. In the STREAMS environment it is not easy to get

the current state of a connection at TCPFE, to transfer it and to replicate this

state at TCPBE. First, it is difficult to obtain the state out of the black box

of the TCP module. Even if this could be done, it is diflicult to replicate the

state at BE. TPI does not support schemes by which a new half-Open TCP

connection with predefined state may be opened. In the proposed design, the
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half-open TCP connection is created by replaying the packets to the TCPBE by

the BTCPBE. In this case, the BTCPBE acts as a client(Figure 6.9). BTCPBE

uses the packets from BTCPFE, updates the destination IP address of SYN

packet to BE and sends it upstream (Figure 6.9, step 2). TCPBE responds with

SYN-ACK(Figure 6.9, step 3). BTCPBE records the initial sequence number of

BE, discards SYN-ACK, updates the ACK packet header properly, and sends

it upstream (Figure 6.9, step 4).

. Packet forwarding. After the handoff is processed successfully, BTCPFE enters

forwarding mode. It forwards all the pending data in BTCPFE, which includes

the first data packet (containing the requested URL) (Figure 6.9, step 6). It

continues to forward any packets on this connection until the forwarding session

is closed.

During the packet forwarding step, BTCPFE updates (corrects) the following

fields in the packet: 1) the destination IP address (to BE’s IP address); 2) the

sequence number of the TCP packet; 3) the TCP checksum.

For packets that are sent directly from BE to the client, the BTCPBE mod-

ule updates (corrects): 1) the source IP address (to FE’s IP address); 2) the

sequence number; 3) TCP checksum. After that, BTCPBE sends the packet

downstream.

. Handoff connection termination. Connection termination frees state at BE

and FE. The data structures at BE are closed by the STREAMS mechanism.

BTCPBE monitors the status of the handed ofl' connection and notifies the
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BTCPFE upon the close of the handed off connection in TCPBE (Figure 6.9,

step 7). BTCPFE releases the resources related to the forwarding mechanism

after receiving such a notification.

Local request processing is performed in the following way. After the BTCPFE finds

out that the request should be served locally, the BTCPFE notifies UTCPFE to re-

lease the correct T_CONN_IND message to upper STREAMS modules, and sends the

data packet (containing the requested URL) to the original TCP module (TCPFE).

BTCPFE discards all the packets kept for this connection and frees the data structures

associated with this connection. After this, BTCPFE and UTCPFE send packets up-

stream as quickly as possible without any extra processing overhead.

6.5 Frequent-TCP Handoff Design

Partition-based web proxy clusters demonstrate a different usage pattern of TCP

handofl: HTTP requests are more likely to be handed off compared to rare-TCP

handoff, as we pointed out in the section 6.3. This difference leads to a different TCP

handoff design. In this design, the overhead of remote request should be minimized.

The flow of the remote request processing is illustrated in Figure 6.10.

The additional modules are introduced at the same positions in the protocol stack as

in the previous design, and are referred as BFTCP and UFTCP module, to indicate

these modules have different functionalities.

1. Connection setup. Under rare—TCP handoff design, the connection-related re-

sources in the TCP module are released by the RST message when the handoff
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Figure 6.10: Remote Request Processing for Frequent-TCP Handoff

is successful. In the case of frequent TCP handoff, it is inefficient to establish a

TCP connection with the TCP module at the front-end node and then free the

connection most of the time. Connection setup (the original 3-way handshak-

ing) is reimplemented by the BFTCPFE module to trigger the client to send the

URL. The BpTCPFE also has better control on TCP options. After BFTCPFE

receives the URL and makes the decision, BFTCPFE may initiate the hand-

off connection through the control connection as before (Figure 6.10, step 1).

However, no packet is shipped along the persistent connection in the handoff

request at this time. BFTCPFE may gather necessary information (for exam-
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ple, Initial Sequence Number (ISN), etc.) from the connection establishment

packets, and then BFTCPBE may construct these packets from the information

provided in the handoff request, and replay the packets locally at the back-end

node (Figure 6.10, step 2-4). An acknowledgement is returned by the BE to

the FE through the control connection to indicate if the handoff is successful

(Figure 6.10, step 5). If the request is processed locally at the front-end, the

kept connection establishment packets are replayed to the local TCP module to

create the necessary state.

. Packet forwarding. Packets may be forwarded to the selected server on top of

the IP layer, in the IP layer, or under the IP layer, depending on the clus-

ter configuration and the ratio between the local traffic and forwarding traffic.

While the BFTCP module may forward the packets on top of IP layer, similar

functionality can be achieved by inserting a module on top of the device driver.

When BpTCP is implemented on top of the device driver, and all the back-end

nodes are located on the same LAN (as in the described partition-based proxy

application), it is possible for a cluster to have a virtual IP address, each back-

end node is uniquely identified by MAC address, and the packet is forwarded

by filling in the right MAC address. This avoids Network Address Translation

(NAT) on the front-end and NAT on the back-end node for outgoing traffic.

Upon receiving the DLPI message from the device driver, BFTCPFE changes

the DLPI message format and destination MAC address and sends the message

downstream.
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When the forwarding packets must traverse a router or a WAN, the packet’s

destination may be changed to the selected server’s IP address and a propri-

etary protocol may be developed to carry the packet’s original IP address to

the selected server so that the response packet’s source IP address may be up-

dated accordingly. BFTCPFE updates the packet’s IP address to the selected

server’s IP address, and sends the packet upstream. The IPFE forwards the

packet according to its routing tables to the back-end node. BFTCPBE has to

manipulate the TCP header anyway and updates the initial sequence number

and TCP checksum.

The original TCP connection establishment can be done in two different mod-

ules: either in the operating system TCP module or the BFTCP module. When

the TCP module is used to establish the connection with the client, the initial

sequence number is correct so local request may be sent to the client directly

without any packet header manipulation. If the BFTCP module is used, be-

cause of the local handoff, the initial sequence number used by, the TCP module

and BTCP module might be different, and therefore BFTCP has to update the .

initial sequence number and TCP checksum for every outgoing packet for local

requests. In this design, we improve the remote request processing at a price of

an additional small penalty for local request processing.

. Handoff connection termination. In order to successfully and robustly free the

front-end forward session, either the back-end or the front-end node has to

observe the two-way TCP control traffic. In the rare-TCP handoff design, the
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BTCPBE sees the two-way traffic and knows the status of the TCP connection

and sends the notification to the front-end upon termination of the connection.

In the frequent-TCP handoff design, connection termination depends on where

the modules are inserted. If the modules are on top of IP level, the rare-

TCP handofl' termination approach is more elegant. If the functionality of the

BFTCP is implemented by a module inserted on top of the device driver, the

termination approach described in the next section for always-TCP handoff is

better1 .

6.6 Always-TCP Handoff Design

In always-TCP handoff, there are two kind of nodes, the dedicated front-end node and

the back-end web servers. The purpose of the front-end node is to trigger the client

to send the URL, and then handoff the connection to the selected server. The request

flow of always-TCP handoff is shown in Figure 6.11. In this configuration, only one

module is introduced, BATCP module, at both the front-end and the back-end nodes.

The difference between always-TCP handoff and the previously described rare- and

frequent-TCP handoff is as follows.

1. Connection setup. The BATCPFE implements the connection setup function

as in BFTCPFE module. Packets are exchanged to establish the connection

with the client and to get the URL. State migration is done by replaying the

 

1The module on top of the device driver may not see two-way traffic in case multiple network

interface cards exist, and incoming traffic and outgoing traffic go through different interfaces.
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Figure 6.11: Request Processing for always-TCP Handoff

packets between the front-end and the back-end node. Since all web traffic is

handoff traffic, a TCP SYN packet arrived at web server listening port indicates

a handoff request is initiated (Figure 6.11, step 1) and BATCPBE sends the SYN

packet upstream (Figure 6.11, step 2). A TCP persistent connection may not

be needed because there is no need to tell the back-end node that a particular

flow is the handoff connection.

The SYN-ACK packet from TCPBE is intercepted by BATCPBE to the front-

end by changing IP address (Figure 6.11, step 3). The BATCPBE receives

the ACK and records the initial sequence number returned by the BATCPFE
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(Figure 6.11, step 4). No acknowledgement is needed. the URL is forwarded as

before in step 6.

Packet forwarding should be done as quickly as possible. In this configuration,

it might be better to forward the packet on top of the device driver. Also virtual

IP address should be used to avoid network address translation at the front-

end because it is easy for the front-end to become the bottleneck for the whole

cluster.

2. Handofir connection termination. The handoff connection is closed in the

following fashion. The BATCPBE intercepts the TCP control packets (packets

with flags on, for example, RST, FIN) and sends it to the BATCPFE (step 7).

The BATCPFE records the connection progress and relays the packets to the

client. Data traffic goes directly to the client. The front-end sees two ways traffic

and may keep track of handoff connection status and closes the connection in

timely manner.

6.7 Performance evaluation

The rare-TCP handoff design is prototyped on HP-UX platform. The HP-UX operat-

ing system supports Dynamically Loadable Kernel Modules (DLKM). As we described

before, two new modules are developed: BTCP and UTCP.

In this section, we report the performance and overhead introduced by modular rare-

TCP handoff design.
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6.7.1 Measurement testbed

A small testbed is set up to evaluate the modular TCP handoff mechanism. A 100

Mbps Ethernet switch is used to connect four HP-UX workstations. Two machines

(HP J6000 workstations) are used as web servers. These two HP J6000 workstations

each have the following configurations: dual 553M HZ CPU, 1G bytes of memory,

120 MHZ central bus, 512KB/1MB cache and more than 16 Gigabytes of disk space.

The tool httperf is used to benchmark the web server performance and latency. Two

client machines are used to drive the measurement.

6.7.2 Performance Measurement

. This section shows the TCP handoff measurement. The four configurations we mea-

sured are described in table 6.1.

We measured the latency and throughput with different document sizes: 120 bytes,

1200 bytes, 6000 bytes and 12000 bytes.

Table 6.1: Configuration measured

 

Configuration Description

No modules Standard original operating system protocol stack.

Dummy modules Two dummy modules which forward the packets without any

further processing.

Handoff-local Local handoff. After the decision is made, the packets are

forwarded without further processing.

Handoff-remote Remote handoff. Requests will be handed off to another

server.

 

 

 

 

   
 

Table 6.2 shows the TCP handoff latency performance.
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As we may see, the two dummy modules introduce a negligible delay in all the con-

figurations on all file sizes. TCP handoff introduces a little extra delay. For example,

if the document size is 120 bytes, the latency is increased from 0.9ms to 1.1ms. The

latency does not depend on the file size significantly. This is because after the deci-

sion is made, the only delay is the forwarding delay. In the case of handoff, the delay

increases proportionally with the document size. This is because as the document

size increases, the number of forwarded packets (ACK packets) increase.

Table 6.2: Latency of TCP handoff (ms)

 

Configuration 120 1200 6000 12000
 

 

 

No modules 0.8 1.2 1.4 2.8

Dummy modules 0.9 1.2 1.4 2.8

Handoff-local 1.1 1.3 1.5 2.9
 

      Handoff-remote 1.6 2.1 2.8 4.4
 

Table 6.3 shows the TCP handoff throughput performance. As we may see, there is

overhead associated with the insertion of two dummy modules. This is the overhead

of the STREAMS mechanism. In our approach, the two dummy modules degraded

the performance by 5.6% if the document size is 120 bytes. This overhead is per

packet overhead. Because this overhead is proportional to the size of the document,

the throughput degradation increases as document size becomes larger. In the case

of local handoff and a document size of 120 bytes, the throughput degraded about

9%. When the document size reaches 6000 bytes, the network becomes saturated

(about 78Mbps web server throughput) and becomes the bottleneck. We were not

able to measure the overhead under such configurations. In the case of TCP handoff,

the performance degraded about 16% if the document size is 120 bytes. The network
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is saturated again when the document size is 6000 bytes; the throughput is 770

requests/second.

Table 6.3: Throughput of TCP handoff ( req/s )

 

Configuration 120 1200 6000 12000

No modules 1430 1385 850 800

Dummy modules 1350 1300 800 800

Handoff-local 1300 1260 800 800

Handoff-remote 1200 1130 770 770

 

 

 

 

       

6.8 Summary

Research on request distribution and request differentiation receives much attention

from both industry and academia. Providing scalable and predictable service is essen-

tial for future Internet web sites. Content-aware request processing enables intelligent

routing and request processing inside a web cluster to support the quality of service

requirements for different types of content and to improve overall cluster performance.

A STREAMS-based TCP/1P implementation, which is available in leading commer-

cial operating systems, offers a framework to implement the TCP handoff mechanism

as plug—in modules in the TCP/IP stack.

In this chapter, we use three different applications to discuss specifics of content-

aware request routing and related architectural design issues. The difl'erence in the

usage patterns leads to different trade-off decisions in the modular implementation

of TCP handoff mechanism. We discuss these trade-offs and propose a library of

STREAMS modules implementing the TCP handoff functionality which addresses
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different cluster architectures and optimizes the TCP handoff mechanism for specific

usage patterns.

The library of STREAMS modules proposed in this chapter offers a set of attractive

benefits: portability, flexibility, transparency, and efiiciency to support scalable web

server cluster design and smart, specially tailored request routing inside the cluster.

More importantly, these modules allow much easier deployment of the solution in

commercial systems.
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Chapter 7

Web Quality of Service and

Differentiated Service

Providing a positive user navigation experience is very important for web site oper-

ators and is especially important for business web sites. It has been reported that

eight seconds is the practical critical point for a web site. A healthy web site should

deliver the content of a web page within 8 seconds.

As we discussed in chapter 1, the web request serving process involves a web server

system, a network system and a client system. As we pointed out in chapter 1, the

web server system and the network system are most likely to be the bottlenecks.

In this chapter, we first discuss some of the approaches available to address web differ-

entiated service in the web server system and outline the design and implementation

of such approaches in both a FreeBSD-like TCP/1P stack and a STREAMS-based

TCP/IP stack. We then briefly discuss network QoS and differentiated service. After
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that, we discuss end-to-end QoS. At last, we discuss an interesting approach: content

delivery networks and its relationship to end-to-end web Q08.

7.1 Differentiated Web Service at Web server sys-

tems

Differentiated web service at web server systems refers to the situation where certain

requests receives preferred treament in terms of resource allocation than do other

web requests when the site capacity may not be able to satisfy all the requests with

acceptable performance. Differentiated service assumes that access to a web site may

be divided into several classes according to some criteria. In chapter 2, we outline

two such criteria: one criteria is to classify the users into several classes, which we

refer to as client-oriented differentiated service. In this case, users in different classes

might receive different levels of service when the resource at the site is limited, no

matter which URL the users access. The other criteria is to classify the URLs into

several classes, and accesses to different URLs receive different levels of service. We

refer to this as service-oriented differentiated service. In practice, the two criteria

may be combined. Other criteria may be specified when such a requirement arises.

Before we discuss the mechanisms to provide various levels of differentiated service, we

take a look at the main steps involved to serve a web request. Web request processing

may be logically divided into four sequential stages:
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1. TCP connection setup with the web site. Web access is based on the HTTP

protocol, which uses the TCP protocol. In this stage, the client initiates the

TCP connection to the web server site.

2. Request scheduling. During this stage, the web server site schedules this request

according to the predetermined policy.

3. Web request processing by the web server. During this stage, the request is

received by a web server and processed.

4. Response transmission. During this stage, the response data is transmitted

through the network to the client.

7.1 . 1 Mechanisms

In this section, we discuss some of the possible mechanisms and policies to provide

differentiated service at each stage according to the four stages we outlined in the

previous section.

0 TCP connection setup. During this stage, the client initiates the TCP connec-

tion setup by sending a SYN packet. The web server site returns a SYN/ACK

packet, then the client sends the ACK packet possibly with the URL as well.

From a web site’s point of view, the web site may want to reject unwanted traffic

as early as possible. A web site may decide to reject the SYN traffic based on

layer 4 information, such as IP address and/or port number according to the

predefined policy. However, it is not clear if silently rejecting the SYN packet
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is beneficial for the server’s load. It has been reported the client will try to

reconnect to the server again soon.

When the web site is overloaded, it has also been noticed that the web server is

slower to respond to a SYN packet. The reason is that when the web server has

lot of data to transfer, it receives a lot of ACK packets from clients to acknowl-

edge the data packets sent by the web server. If SYN packets are processed

in the order they are received, connection establishment will be significantly

delayed. To make the situation worse, when the client waits for connection

establishment for too long, it starts to resend SYN packets. This further cre-

ates load on the server system. One way to overcome this problem is to give

connection establishment related packets a higher priority.

Before discussing multiple-priority traffic support in the protocol stack, the

process of the packet reception in the protocol stack will be discussed. Here the

FreeBSD TCP/IP implementation is used as an example. First, the incoming

packet processing is described.

When a network interface card (NIC) receives a frame, the handler for this

device is invoked. The interrupt handler checks the packet and puts the packet

into an appropriate queue. In case of an IP packet, the packet is put into the IP

queue. A software interrupt handler (IP packet handler) is invoked to process

the IP packets from the IP queue once the system interrupt priority drops below

the software interrupt’s priority.
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The IP packet handler (ip_input() function) gets an IP packet from the IP queue

and processes the IP header, then it calls the TCP protocol handler function

(tcp_input()) to process the TCP layer information. The TCP layer puts the

data in the socket buffer. The IP packet handler gets the next packet on the IP

queue and starts the same process again until either the queue is empty or this

process is interrupted by higher priority interrupts.

The application issues a receive() or read() system call to receive this data from

the socket buffer. After system call read copies the data from the socket buffer

to the buffer supplied by the application, the data is removed from the socket

buffer.

Multiple queues with different priorities are supported by replacing the IP queue

with multiple IP queues with different priorities. When the IP packet handler

starts to process the IP packet, depending on the queue policy, the IP packet

handler gets a packet from a particular queue, and processes it according to the

process described before.

Since TCP connection setup related packets have higher priority, the connection

setup progresses much more quickly than before. This can solve the previously

mentioned problem.

Request scheduling. After the connection is established, the client sends the

URL. The request scheduler has the ability to check the URL (more general,

the HTTP header) and schedules the request based on the content requested by
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the user. The request scheduler schedules the order the web requests are seen

by the web server software.

The request scheduling is supported by ordering the ready TCP connections

in the listen queue. In the FreeBSD-based TCP/1P implementation, the listen

queue is the queue of the sockets. Each socket represents either a complete

connection ( connections that have finished 3-way handshaking with the clients

and are ready to be accepted by the application) or an incomplete connection

(connections that have been initiated by the clients, but for which 3-way hand-

shaking has not yet been completed yet). In FreeBSD, two separate queues are

maintained by the kernel: so->q is the queue for complete connections, and so-

>q0 is the queue for incomplete connections. The application may only accept

connections on the complete queue. When the kernel receives the SYN packet,

the kernel creates an incomplete socket corresponding to this connection if the

particular listen queue is not full and puts it on the incomplete queue so—>q0.

After the 3-way handshake finishes, the socket is moved from so->q0 to sO->q

in preparation for application acceptance. By default, the apache web server

sets the listen queue length to 511 connections.

The completed connections will be accepted in the order on the listen queue.

Web differentiated service may be supported by ordering the connections in

such a way that the high priority connections will be placed in front of the low

priority connections.
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Different scheduling policies might be used here, for example, FIFO (first in,

first out), fair queue, weighted fair queue, etc. More advanced policies may be

supported, too. For example, one of the policies proposed serves the shortest

requests first. Smaller web objects are served earlier than longer web objects,

and static pages served earlier than dynamic pages.

The previous discussion only applies for HTTP 1.0 connections, because the

scheduling happens at the granularity of a connection, instead of a request.

The decision for scheduling is made based on the first HTTP header or URL.

For example, WebQoS only supports connection scheduling. Support for re-

quest scheduling over persistent connections ( HTTP 1.1) is not as easy as the

connection scheduling.

Request processing. After the web server software accepts the connection, it

starts to process this request. At this stage, depending on the web server

implementation, the process or thread to process the high priority request may

be given a high priority.

For a typical E-business application, there are 4 tiers: web client (browsers),

web servers, application servers, and database servers. The browsers are used

by clients to access the web sites. The web server provides the interface to

the server side system. The application server is used to fulfill the processing,

and the database server provides the data to be manipulated. In this chain,

differentiated service at the web server contributes only partially to this process.

Ideally, the priority could be maintained across all the activities in the tiers at
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the server side. Howerver, this is much more complex and involves all the

components along the processing path.

0 Response transmission. During this stage, the kernel might implement several

policies regarding the packet transmission. As we may imagine, the kernel

may transmit the response data of high priority requests earlier than that of

low priority requests. One such policy is shortest request first. That is, the

response data from the shortest job receives highest priority.

Some of the kernel mechanisms described above may also be implemeneted at the

application level. Request scheduling may be supported either at user level or at the

kernel level. At user level, the request differentiation is typically implemented by

the distribution process, which accepts all the incoming HTTP requests and classifies

the requests into one of several classes (queues). The working processes get the

requests from the queues and process the requests. The distribution process may be

implemented by the web server software itself, or may be supported by a separate

process that feeds the requests to the web server software transparently.

Kernel based request differentiation has the following advantages:

No extra bottlenecks. User-level implementation introduces the distribution pro-

cess, which controls all the incoming traffic, and classrfies them into different priority

queues. That introduces another central control point, which might become a bottle—

neck. The number of distributing processes that are sufficient to process the incoming

requests efficiently is highly workload dependent. Kernel-level implementation does
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not introduce the additional central control points except the ones existing in the

kernel already.

Less resource consumption. When the server reaches the overloaded point, the

admission control has to take place. It is strongly desirable that if the server decides

to reject the request (or a new session), a simple rejection message is returned so

that the user will not try to submit the same request again and again. For such

requests, processing them as quickly and efficiently as possible is critical. User-level

implementation has to accept the connection, get the request, and return a message.

Kernel-level implementation performs similar actions much more efficiently: it does

not introduce context switches and socket buflers.

Efficient measurements. Kernel-level implementation may get accurate informa-

tion quickly and accurately compared to user-level implementation. These measure-

ments may be important to the decision process, such as the number of connections

openned at a given moment, activities on each open connection, average response

time, the network bandwidth and roundtrip times of each connection, etc. The kernel

implementation may take advantage of these measurements and make more intelligent

decisions.

7.1.2 Content-Aware Request Processing and Differentia-

tion

In this section, we outline a modular design of the web differentiation in a STREAMS-

based TCP/1P implementation. In order to provide web differentiated service, two
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new modules, UTCP (Upper TCP) and BTCP (Bottom TCP), are introduced. We

discuss the request classification, request scheduling, admission control, and trans-

mission design to support web differentiated service.

0 Request Classification. The classification identifies a request and assigns it to a

class. Information within the request or provided by the application is applied

against the classification policies to determine the request class.

The client sets up the TCP connection with the TCP module in the operating

system. The UTCP maintains the necessary number of priority queues and a

partially-finished connection queue. BTCP creates a simple structure for each

connection and sends the connection establishment packets upstream. UTCP

holds the corresponding T-CONN_IND message into the partially-finished con-

nection queue. After TCP module finishes three-way handshaking with the

client, the client sends the URL to the server. BTCP retrieves the URL after

receiving the packet and classifies the request according to the policy specified

by the administrator. BTCP sends the classification of the URL to the UTCP,

and UTCP places the corresponding T-CONN-IND message from the partially

finished connection queue to one of the supported class queues.

This design may support persistent connections. Since for persistent connec-

tions, the connection has been already established and is exposed to the appli-

cation, UTCP intercepts the subsequent requests, and classifies them into one

of the classes, and places the message (T_DATAJND) in one of the queues.
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e Admission Control. The admission control mechanism prevents server overload.

The classes of requests, the admission control policies and the system or service

load measurements may be used to determine whether to accept a request (or

a new session).

The admission control mechanism can be deployed using the UTCP module.

First, BTCP checks the URL (or cookie). If this request can not be served

at this time, then the BTCP notifies the UTCP module. The UTCP module

then sends the message to the client and releases the connection by sending

T_DISCON-REQ.

For subsequent requests on a persistent connection, UTCP checks the URL

(cookie) from the T-DATA.IND message and makes the decision. If such a

request can not be served at this time, UTCP sends the customized message to

the TCP module and releases the connection. The returned message may be a

redirection to other servers, or a customized message stating that the server is

busy at this moment.

0 Request Scheduling. Request scheduling is used to provide performance isolation

or differentiation depending on the scheduling and classification policies. UTCP

module may support a set of request scheduling strategies, for example, FIFO,

fair-sharing, weighted fair-sharing, strict priority queue, etc.

0 Transmission Bandwidth Management. STREAMS already supports flow con-

trol. Flow control may be used to implement the rate based transmission policy

by default.
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7.2 Network Quality of Service

In the last section, the web differentiated service mechanism is discussed. In this

section, we briefly discuss network (.208.

Traditionally, Internet only provides best effort service. Packets are delivered by the

underlying network as fast as possible. Packets might be delayed, or dropped. Upper

level protocols are responsible for recovering from the packet loss. In the last three

years, many efforts have been contributed to provide Quality of Service over the

Internet. Network QoS may be classified into two categories: Integrated service and

differentiated service.

0 Integrated Service. In an integrated service environment, the client reserves

the resources for a flow according to its usage along the path. RSVP may be

used as a resource reservation protocol. All the routers along the path have to

support resource reservation. Per-flow status has to be kept by routers in order

to deliver desired Quality of Service. The per-flow status greatly impairs the

scalability of network core routers. Given that today’s “killer app”, the web, is

built on top of TCP and the connections are short-lived, it would be interesting

to see whether such an approach could be justified in overhead.

0 Differentiated Services. In differentiated service, the priority of the traffic is

supported at each router. No hard QoS is guaranteed. The client traffic will be

classified and marked in the IP header at the network egde before it enters the

network. The backbone routers are only responsible to forward the packet as

quickly as possible according to the traflic priority, and higher priority traflic is
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forwarded first. No per flow status is kept. Backbone router design is greatly

simplified.

Differentiated service seems easier to be supported by ISP and might be incrementally

deployed. It may also be applied for web applications.

7.3 End-to—End Web QOS

From the user’s point of view, the ultimate measurement is the response time, the

time between initiation of the web request and arrivial of the response data. In a

typical web request, many components are involved. The client needs to access the

DNS system first. Then the network system is involved. The web server system is a

big part.

Providing End-to-End QOS for web applications is a big challenge. In order to provide

some performance guarantee, different components involved have to provide some level

of guarantee, too. DNS and network are Operated by different Operating domains

and are difficult to modify in order to provide guaranteed services without extensive

changes in the infrastructure. Providing QOS at the web system side is not an easy

task as well. As we described before, today’s typical web application involves four

tiers: clients, web servers, application servers, and database servers. The client uses

a web browser to access the web site. The web server works as a gateway to the

web applications’ logic. The application server executes the application logic and

generates the response data to web servers. The database server provides necessary

data to the application servers. Providing QOS means that the Q08 requirement
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has to be propogated through all the components, including web servers, application

servers and database servers. Moreover, processing time for every component has to

be bounded. This is not an easy task.

Providing a differentiated service of the web server system is not as challenging as

the guaranteed service. Also, it is much easier to integrate the network differentiated

service with the web system differentiated service. WebQoS supports integration of

network differentiated service and web server system differentiated service.

7.4 Content Delivery Networks

As we mentioned in chapter 2, web hosting and content delivery networks are two

complementary ways to improve the web site performance and user-perceived latency

for web documents. In web hosting, the content publisher moves the contents to the

ISPs so that web traffic will not enter content publisher’s network. As we know,

Internet routing has an inherent hierarchy similar to a tree. That means that when

a web site is accessed, the client (leaf) first sends the packet to the local ISP (inter-

mediate node) and the ISP forwards the traffic to a regional ISP. Then, the regional

ISP forwards the packet to the backbone ISP (root of the tree). After that, traffic is

forwarded back to another regional ISP, and forwarded again to another ISP where

the web site is connected. In short, the packet is sent upward till it reaches the root

of the tree and is sent down to another leaf Of the tree. As we may imagine, a good

place for the web hosting service is in the root of the tree, that is, backbone network.

Statistically this will cut the traffic path by half.
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What a CDN does is to provide reverse proxies for the web sites near the client

locations. A CDN does this by putting servers at the intermediate nodes of the

tree as we previous described, and tries to cache documents from web sites so that

documents accessed by clients are in the cache and much closer to the clients. A CDN

provides the content delivery service so that web site operators focus their effort on

the publishing without worrying too much about the performance and management

of the web sites.

7.4.1 How Does A CDN Work?

Difl'erent CDNs have different offerings. Here we show how Akamai (one of the major

CDNs) provides content delivery service. Akamai claims it has put about 8,000 servers

near the POPS (Points Of Presence) of ISPs where the client networks are connected

to the Internet.

When a web site decides to take advantage of Akamai service, the site uses the pro-

gram Free Flow Launcher provided by Akamai to customize the URLs to be served by

Akamai server. As we mentioned before, typical web pages contain a lot of embedded

images that constitute about 80% of the web traffic One Observation is that although

the HTML document containing the embedded images changes frequently, the em-

bedded images themselves change less frequently. Typically a web site akamaizes the

embedded images and still maintains either static HTML or dynamically generated

files. This partially helps the consistency problem.

Any document served by Akamai CDN has a URL in the following format:
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http://a388.g.akamaitech.net/7/388/21/fc35ed7f236388/cnn.com/images/hub2000/ad.infagif

In this URL, the A388 refers to a customer, CNN. The URL Of the document in the

original server is also included ( cnn.com/images/hub2000/ad.info.gif).

In the case the embedded images are akamaized and the HTML documents are still

served by the original site, the client first accesses the HTML document. The browser

parses this document and gets the URLs like above. The client side DNS server

consults the akamai DNS server to get the nearest akamai servers available (IP address

list) which most likely have the document or are appropriate to serve the document.

The selection process is done by proprietary algorithms. If an Akamai’s server does

not have that document, the server retrieves the document from the original server

and caches it in the Akamai network.

7.42 Benefits of CDN

The benefits of content delivery networks may be summarized as follows:

0 latency reduction. Because a CDN may reduce the load on the original servers

and avoid a lot Of long network round trip latency, the CDN might greatly

reduce the latency perceived by the end-users.

e scalability . CDNs also provide better scalability. It has been reported that

the web site peak rate might be as much as 10 times the average rate. A

typical practice is that the web sites do capacity planning and try to provide

enough capacity to accomodate the peak rate of web requests. This obviously

leads to waste of the computing resources and increases the web site Operation
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costs both in the hardware and management. Another observation is that since

different web sites might have peak rates at different times, the aggregrate

resource requirement will be much smaller. In an extreme case, a CDN might

allocate resources to serve only one site. Thus CDNs provide almost unlimited

scalability for today’s typical web applications.

availablility. A CDN may also be used to enhance the availability of documents

pushed on the CDN. CDN servers may cache the documents at multiple loca-

tions and serve directly from the content servers even under the failure of the

original sites.

maintenance cost. Under current CDN practice, the embedded images are

pushed to the content delivery network, which greatly reduces the burden on

the publiser who Operates the web site. This greatly reduces the hardware and

management overhead of the web sites.

7.4.3 Content Delivery Network and End-to-End QOS

Streaming media is believed to be the next thing in the industry. Streaming media

is much more sensitive to the network conditions. A stream has a fixed bandwidth

requirement and is very sensitive to the network latency variation. Network QOS, both

integrated service and differentiated service, is still a dream in some sense, because

the technology requires a lot of changes in the Internet infrastructure. A typical

Internet path usually involves several ISPs. It is difficult for application developers

to benefit from the technology if only one or several ISPs deploy such technologies.
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The deployment Of such technologies will take some time. Application developers

may not be able to take advantages Of these solutions in the near future.

By placing the content servers at POP’s, where the client network connects to the

Internet, a CDN bypasses the whole Internet network. Because clients are just about

a few hops away from the content servers, network latency is much more stable and

predictable. So CDNs will be an interesting technology to deliver streaming media

documents.

7.5 Summary

In this chapter, end—tO-end WebQoS is discussed. We described some of the kernel

and user-level mechanisms to achieve web differentiated service at the web system

side to differentiate web requests and how these mechanisms may be supported both

on the FreeBSD network stack and a STREAMS-based protocol stack. Network QOS

is briefly described. Content Delivery Networks (CDN) are presented. We showed

CDNs do address some of the need Of the today’s web service, namely, latency re-

duction, scalability, availability and maintenance cost. We also showed that because

CDN servers are deployed at the network edge, it is an interesting technology for the

emerging streaming media delivery.
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Chapter 8

Summary

The web has experienced phenomonal growth during the last couple of years. As

the Internet evolves into client/server based computing, where millions Of clients

(browsers) access a comparatively few number of popular sites, web site performance

and scalability is an important issue to be addressed. In this dissertation, we address

some problems related to the development of high performance, scalable web server

systems. Our achievement may be divided into two parts: a number of technologies

that target a single web server and technologies for multiple replicated web sites.

For a single web server, Browser Initiated Pushing (BIP) is proposed to improve

performance based on the Observation that today’s typical web page has one or more

embedded images. Measurement shows that BIP reduces the user perceived response

time by 40% under normal load and improves response time 3-4 times under heavy

load for a typical file in a LAN environment. BIP increases server’s throughput

by 150% under our measurement configuration in a LAN environment. Trace-driven
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simulation shows that enhanced BIP reduces the overhead of traditional pushing from

32% to 10%. BIP is an important tool to improve single server performance.

For replicated web sites, we proposed two approaches and developed a framework to

address the scalability of such a system. A non-dispatcher approach Static Alloca-

tion and Client Redirection SSCR to share load between replicated web servers is

developed. SSCR is mainly targeted for web server replication at global scale. Trace

file simulation shows that SSCR Offers competitive performance to a dispatcher based

approach without one-point bottleneck and failure in the cluster environment.

Smart Server Selection (S3) addresses the server selection problem. In SB, client DNS

server is extended to prioritize a pool of IP addresses based on routing metric infor-

mation collected from routers and other information it collects (geographical location

of servers and clients). An efficient scheme to collect routing-metric information from

routers is proposed. The overhead of such a scheme is independent of the number

of replicated servers. This is a big achievement over existing approaches because the

overhead of these approaches suflers a linear increment as the number of replicated

web server increases.

A framework to support Content-Aware request distribution in a STREAMS-based

TCP/1P implementation is developed and prototyped. Content-Aware request dis-

tribution provides the ability to support partial replication, flexible web site ar-

rangements, web Quality Of Service, and security. Our framework is based on the

TCP handoff mechanism. The TCP handoff mechanism is designed as a STREAMS

module(s) in the protocol stack. Three different designs are reported according to
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workload charateristics. Differentiated web service support in the STREAMS-based

TCP/1P implementation is discussed.
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Chapter 9

Further Work

There are several opportunities to extend and improve the work that we have already

accomplished. This section outlines some of the areas Of further research.

0 Performance evaluation of scalable proxy servers based on TCP handoff mech-

anisms. In chapter 6, we outlined the approach to use a content-aware protocol

stack to support a request resolution in a partition-based cooperative proxy

environment. It would be nice to have the performance evaluation of such an

approach.

0 Prototype web differentiated service in a STREAMS based TCP/1P environ-

ment. We outlined the design in chapter 7. A performance evaluation will

strongly augment this work.

a For the BIP approaches, we plan tO develop new Apache modules to give a

tighter bound on the benefits Of BIP, and possibly measure the performance of

the BIP under realistic workloads.
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o For our SB approaches, a special tool may be developed which prioritizes the

IP address list. Such a tool can measure the latency and the number of hops

information from the network, because we do not have access to a BGP routing

table directly. However, we may use dumped BGP routing tables to identify

the number of groups of the servers, so that the number Of entries processed by

this tool is limited to the size of a backbone router of the Internet, which has

about 400,000 entries.

0 For the SSCR approach, the evaluation is done for local clusters. It would be

nice if the ideas may be further validated over wide area replicated web site

logs.
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