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ABSTRACT

INCORPORATING UNCERTAINTY INTO ST. MARYS RIVER SEA LAMPREY

MANAGEMENT THROUGH DECISION ANALYSIS

By

Steven L. Haeseker

Methods used to control St. Marys River sea lampreys (Petromyzon marinas)

include trapping adults, releasing sterilized males into the Spawning population, and

applying lampricide to kill larvae living within the strearnbed. Future control activities

will require some, or all of, these methods. In addition to the costs and logistical

challenges associated with implementing control options, considerable uncertainty exists

about lamprey population dynamics and about control option effectiveness. These

uncertainties hinder the ability of scientists to accurately forecast management option

performance and thus limit the ability of decision-makers to arrive at well-informed

decisions about which control methods to use. I use the method of decision analysis to

evaluate the performance of a set ofmanagement options for controlling the St. Marys

River sea lamprey population while explicitly accounting for uncertainty. I considered

two main sources of uncertainty: uncertainty in the stock-recruitment relationship and

uncertainty in larval distribution within the St. Marys River. To characterize the first of

these, I developed a statistically-based, age-structured population model to estimate the

parameters of a Ricker stock-recruitment relationship for St. Marys River sea lampreys

and the uncertainty associated with these parameters. To characterize the second main

uncertainty, I developed a stochastic model that predicts the abundance of larvae at a

location in the next year based on the abundance in the current year. I applied the model



to forecast a variety of possible larval abundance maps for the lampricide treatment that

took place in 1999 to estimate the uncertainty in treatment effectiveness resulting from

spatial and temporal uncertainty in larval distribution. By combining these sources of

uncertainty into a stochastic simulation model that forecasted parasitic lamprey

abundance over time, I was able to examine the performance of a variety ofmanagement

options. I found that uncertainty in lamprey population dynamics and in treatment option

effectiveness can have large effects on the forecasts of lamprey abundance. In addition,

the relative ranking ofmanagement options depended on the performance indicator used

to evaluate them. Important tradeoffs exist between achieving management objectives

and the cost associated with achieving the management objective. Decision-makers

should evaluate option performance by considering several performance indicators.

Incorporating uncertainty into St. Marys River sea lamprey management decisions

through decision analysis should improve the quality of the decisions and increase the

probability of achieving management objectives.
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INTRODUCTION

Controlling the St. Marys River sea lamprey (Petromyzon marinas) population is

a major challenge facing fishery managers in the Great Lakes. The sea lamprey is an

exotic fish species that has decimated fisheries in the Great Lakes through parasitism, and

the St. Marys River is the largest remaining source of sea lampreys in the Great Lakes

basin (Schleen 1992, Eshenroder et a1. 1995). Because of the large number of lampreys

that are produced, mortality rates for several species (e.g., lake trout Salvelinus

namaycush and lake Whitefish Coregonus clupeaformis) have risen above target levels set

by management agencies (Sitar et al. 1999). Thus, reducing the number of sea lampreys

in northern Lakes Huron and Michigan has become a high priority for fisheries managers

in the region.

Methods used to control St. Marys River sea lampreys include trapping adults,

releasing sterilized males into the spawning population, and applying lampricide to kill

larvae living within the streambed. In addition to the costs and logistical challenges

associated with implementing a lamprey control program for the St. Marys River,

considerable uncertainties exist in lamprey population dynamics and in control option

effectiveness. These uncertainties hinder the ability of scientists to accurately forecast

management option performance and thus limit the ability of decision-makers to arrive at

well-informed decisions.

Uncertainty is inherent in natural resource management decisions. Within the

field of fisheries, there is a growing trend towards incorporating uncertainty and risk in

the decision-making process (Hilbom et a1. 1993). Rosenberg and Restrepo (1994) stress



the importance of estimating and communicating uncertainty to fishery managers, who

must weigh the benefits, costs, and risks of various management options. They note that

while many managed fisheries have incorporated elements of uncertainty and risk

analysis, the advice resulting fi'om these analyses needs to be expressed to decision-

makers in an effective manner. Providing fishery managers with a quantitative

evaluation of the potential consequences of alternative management actions is one of the

primary roles of stock assessment scientists (National Research Council Committee on

Fish Stock Assessment Methods 1998). Because fisheries management problems

typically involve a complex system ofbiological and socio-economic objectives and

constraints, Lane and Stephenson (1998) contend that a conceptual change is necessary,

and fisheries management needs to move toward implementing integrated decision-

making systems where uncertainty is incorporated. When uncertainty is ignored, or

accounted for in an arbitrary fashion, sub-optimal decision options may be selected,

leading to outcomes such as unnecessary losses in yields or stock collapse (Frederick and

Peterrnan 1994). Achieving fisheries management goals is more likely when

uncertainties are acknowledged, quantified, and accounted for (Peterrnan et a1. 1998).

The method of decision analysis is specifically designed to quantitatively deal

with management problems in the presence of uncertainty (Raiffa and Schlaifer 1961 ,

Morgan and Henrion 1990, Clemen 1996). Decision analysis is the application of

statistical decision theory to a management decision problem, generally with the

following components: a defined set ofmanagement options available to the decision-

maker, a listing of the alternative states ofnature and their associated probabilities which

characterize the uncertainty in the problem, a listing ofpossible outcomes resulting from



the management options, and a representation of the decision-maker’s utility for the

outcomes. The relative merit of each management option is determined by the decision-

maker’s utility for the expected outcomes.

Several researchers have applied the method of decision analysis to fisheries

management problems and found that uncertainty can affect both forecasts and optimal

decision-making. McAllister and Peterrnan (1992) used decision analysis to evaluate the

performance of experimental and status quo management strategies for pink salmon

(Oncorhynchus gorbuscha), while accounting for uncertainty in the cause of decreased

mean body weight. They concluded that the expected value of the experimental

management strategy was higher than that of the status quo under most conditions. Robb

and Peterman (1997) examined uncertainties in the stock-recruitment relationship, annual

recruitment, run timing, and catchability for a sockeye sahnon (Oncorhynchus nerka)

fishery through a decision analysis. They found that the shape of the stock-recruitment

relationship had a large effect in determining the optimal management option. Hilbom et

a1. (1994) use decision analysis to examine the performance of different quotas in the

presence of uncertainty in virgin stock size. Peterrnan et a1. (1998) summarize three case

studies where decision analysis has been applied to fisheries management and

recommend that uncertainty be included in the decision making process whenever

possible to improve the quality of management decisions.

There are several reasons why decision analysis represents a valuable tool to

assist managers who wish to control St. Marys River sea lampreys. First, managing the

St. Marys River sea lamprey population is one of the most important problems '

challenging fisheries managers in the Great Lakes. As a result ofthe high number of sea



lampreys in northern Lakes Huron and Michigan, rehabilitation of lake trout (Salvelinus

namaycush) has been difficult due to the predation mortality imposed by lamprey in these

areas (Sitar et al. 1999, Sitar et a1. 1997, Eshenroder et al. 1995). Thus, the management

problem is important enough to justify a concerted effort in evaluating management

options through decision analysis. Second, major uncertainties exist regarding lamprey

population dynamics and the effectiveness of available management options. As noted

above, decision analysis is specifically designed to incorporate uncertainty into the

decision-making process. Third, economic constraints demand careful evaluation of all

lamprey management decisions in the Great Lakes. Spending too little on control of the

St. Marys may result in foregone recovery of lake trout in northern Lake Huron.

Conversely, spending too much on the St. Marys takes money away from assessment and

control needs of other lamprey populations in the Great Lakes basin. Decision makers

want and need to know the expected benefits of directing funds at controlling the St.

Marys population in order to properly allocate funds available for control and assessment

throughout the basin. Fourth, several well-defined management options are and will be

considered as alternatives, effectively bounding the number of options available for

consideration. Fifth, specific targets exist for lake trout recovery and sea lamprey

suppression in Lake Huron that provide indicators against which the performance of

management options can be judged. Each ofthese issues argues for the application of

decision analysis to the problem ofmanaging St. Marys River sea lampreys.

In this dissertation, I applied the method ofdecision analysis to the problem of

controlling St. Marys River sea lampreys. I considered two main sources of uncertainty:

uncertainty in the stock-recruitment relationship and uncertainty in larval distribution



within the St. Marys River. I incorporated these two sources of uncertainty into a

stochastic simulation model that forecast parasitic lamprey abundance over time. By

using the simulation model within a decision analytic framework, I was able to examine

the performance of a set ofmanagement options for controlling the St. Marys River sea

lamprey population.
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CHAPTER 1

ESTIMATING UNCERTAINTY IN THE STOCK-RECRUITMENT RELATIONSHIP

FOR ST. MARYS RIVER SEA LAMPREYS

Abstract

For successful control of the St. Marys River sea lamprey population, one critical

uncertainty that needs to be characterized is uncertainty in the stock-recruit relationship.

In this paper I develop a statistically-based, age-structured population model to estimate

the parameters of a Ricker stock-recruit relationship for St. Marys River sea lamprey and

the associated uncertainty in these parameters. My analysis indicates that there is

considerable stock-independent variability in recruitment across a range of stock sizes,

potentially limiting the effectiveness ofcontrol options that reduce spawning population

abundance in comparison to control options that reduce the abundance of larvae. I found

evidence ofnegligible- to low compensation levels, which would result in nearly

proportional reductions in recruitment with spawning stock. However, I also found

evidence of strong compensation, which may reduce the effectiveness oftreatment

options that attempt to reduce the size ofthe spawning stock. Through characterizing

these uncertainties and incorporating the results into a decision analytic framework, the

effects of compensation and stock-recruit uncertainty can be evaluated in reference to the

management options available for this system.



Introduction

Connecting Lake Superior to Lake Huron, the St. Marys River has been a primary

focus area for sea lamprey (Petromyzon marinas) management efforts since 1990. The

main reason for this focus has been the recent increase ofparasitic lampreys in northern

Lakes Huron and Michigan, hindering lake trout (Salvelinus namaycush) rehabilitation

(Sitar et a1. 1999). Several studies have concluded that the St. Marys River is the primary

source ofthese lampreys (Johnson 1988, Schleen et al. 1992). However, because of its

large size and high flow, the primary method for reducing lamprey populations (i.e., the

lampricide TFM) is infeasible for both practical and financial reasons.

During 1998-99 the Great Lakes Fishery Commission (GLFC) initiated a program

to reduce the production of St. Marys River lampreys using a combination of adult

trapping, sterile male release, and the application of granular Bayluscide (a lampricide)

(Schleen et al., in review). The decision to treat the St. Marys River, and which treatment

option to select, was heavily based on models used to forecast the future abundance of

lamprey in Lake Huron. Although initial indications suggest that the treatment was

successful in reducing lamprey abundance (Fodale et al., in review), future control

actions will almost certainly be necessary.

Forecasting population dynamics is a common task in fisheries management.

Forecasting models by definition are critically dependent upon the characterization of

system dynamics. Consequently, models that forecast lamprey abundance require the

formulation of a stock-recruit relationship, as well as other important demographic

parameters that determine sea lamprey population dynamics. Although lamprey biology



has been studied extensively, comparatively little attention has been paid to the factors

and processes that govern lamprey population dynamics.

The effectiveness of control methods that alter the number of effective spawners

(e.g., adult trapping, releasing sterilized males) depends on the reproduction and

recruitment dynamics of sea lamprey populations. Specifically, the shape of the stock-

recruitment relationship and the variability around it (process error) will determine the

degree to which reductions in spawner numbers will consistently result in reductions in

recruitment. Conversely, control methods that target the larval population after year-

class strength is determined (e.g., application of larnpricides) are not affected by the

stock-recruitment relationship. For these reasons, knowledge of the stock-recruitment

relationship is key to assessing the trade-offbetween these control strategies.

Although estimates of recent spawner abundance for St. Marys River sea

lampreys are available, estimates of larval recruitment are not. Without estimates of

larval production, directly estimating a stock-recruit relationship was impossible.

However, six separate data sets provided information on the relative abundance and age-

composition of lamprey at various stages oftheir life history. This information was

combined by developing an age-structured population model describing the lamprey life

cycle and fitting model parameters to the observed data using likelihood techniques.

Through this process I was able to estimate a series ofhistorical recruitment and other

demographic parameters consistent with the observed data sets. This approach is similar

to that described by Fournier and Archibald (1982) and Methot (1989) whereby several

sources ofdata are incorporated into a single, statistically-based framework. To describe

10



the uncertainty in the stock-recruit relationship parameters, I utilize Bayesian methods to

obtain samples from the joint posterior density ofkey parameters.

Methods

Data sources

Since 1967, the Canada Department of Fisheries and Oceans (DFO) has paid Lake

Huron commercial fishermen for lamprey captured while attached to host species caught

in gillnets. In addition, the Ontario Ministry ofNatural Resources (OMNR) collected

effort data for Lake Huron commercial fisheries, recording the fisherman, location, and

km of gillnet associated with landed fish. I combined the catch and effort data to develop

a catch-per-unit-effort (CPUE) index that can be used to track the relative abundance of

parasitic-phase lamprey over time. I modeled CPUE using the relationship

CPUE.,,,. =a.fl,-6.xz~e”"” (1)

where a, is the effect of year t = 1967,. . .,1999, ,6,- is the effect of fishermanj =

1,. . .,8, 5k is the effect of location k = North Channel or Main Basin ofLake Huron, [1

is the overall mean CPUE and 6't, 13;, ~ N(0, 0'2 ). Taking the natural log ofboth sides

ofthe equation resulted in a general linear model of the form

10g, (CPUE;13k ) = loge (a: ) +10ge (flj ) + loge (alt )+ loge (1”) + £t,j,k (2)

A total of 251 observations were used to estimate the parameters of equation 2

and their associated standard errors using SAS (SAS 1997). By convention within the

SAS procedure, the last effect value for each ofthe effect types is set to 0 and the
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remaining effects are scaled relative to this value. For example, loge (63/1999) is set to 0

and the remaining log, (69,) are scaled relative to 0. These estimates for loge (6?, )

were used as an annual relative abundance index for lamprey in Lake Huron. The linear

model only contained main effects because I had no a priori information suggesting

higher order (interaction) effects.

The United States Fish and Wildlife Service (USFWS) and the DFO have

calculated mark-recapture population estimates of spawning-phase St. Marys River sea

lampreys annually since 1986. These data provide a direct estimate of the spawning

stock size within the St. Marys River. Adult lampreys migrating upstream in the St.

Marys River are collected using traps, marked, released, and a portion is subsequently

recaptured using traps. These data were used to annually estimate St. Marys River

lamprey spawning population sizes and their associated variances (Mullet et al., in

review). In addition to the spawning-phase population estimate, data on the number of

lamprey removed by trapping, the sex ratio, and the expected reduction in successful

female spawners due to the release of sterilized males were recorded. I combined the

mark-recapture population estimates with the trapping, sex ratio, and sterile male

effectiveness data to estimate the effective number of female spawners in the St. Marys

River 1985-2000.

Mark-recapture parasitic-phase population estimates have been conducted for

Lake Huron sea lamprey intermittently since 1982. Animals were marked as newly-

metarnorphosed individuals leaving their natal streams. Two years later, adults migrating

upstream to spawn were captured using traps and investigated for marks. Bergstedt et al.

(in review) describe the methods used to estimate population sizes and their associated
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variance. Because the animals were marked as metamorphosing larvae, the population

estimate refers to the population ofmetamorphosing larvae (juvenile lampreys) entering

Lake Huron (Bergstedt et al., in review). Individuals that metamorphose in the fall of

year t and winter of year t + 1 constitute the summer parasitic feeding yearclass ofyear t

+ 1. I will refer to these data as the parasitic-phase data set. The sea lamprey parasitic

population sizes in Lake Huron have been estimated for 1982, 1991, 1992, 1998, and

1999.

Intermittently since 1971, sea lamprey larvae in the St. Marys River have been

sampled using Bayluscide. The chemical is applied to the water surface, and larvae

respond by swimming to the surface where they are captured using dip nets and measured

for length. I used these data to estimate an annual length-frequency distribution for years

when the survey was conducted. An analysis of data on the size-selectivity of Bayluscide

in the St. Marys River revealed no pattern in selectivity over larval length (Michael

Fodale (USFWS), unpublished data). Therefore these distributions were assumed to be

representative ofthe length-frequency distributions for larvae in the river. These surveys

ended in 1989.

During 1993-1998, a deepwater electrofishing boat was used to sample St. Marys

River larvae. Information on the size selectivity of the deepwater electrofishing gear is

available (Bergstedt and Genovese 1994). Using the Bergstedt and Genoveese (1994)

gear selectivity function, I estimated annual selectivity-adjusted length-frequency

distributions for St. Marys River larval lamprey.

During 1993-96, sea lamprey larvae from the St. Marys River were aged using

statoliths, a structure analogous to otoliths in teleosts (T.B. Steeves, unpublished data). I
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used these data and an inverse age-length key method (Hoenig and Heisey 1987) to

estimate annual age compositions from the annual length-frequency data. This method

makes the assumption that the growth pattern is constant, but recruitment can vary over

time. Because fluctuations in temperature and flow in the St. Marys River are buffered

by the immense volume ofLake Superior, I believe that inter-annual variation in growth

should be limited, especially relative to inter-annual variation in recruitment for a highly

fecund species such as the sea lamprey. Therefore I believe that the constant growth

pattern assumption is reasonable. By using this method, I were able to apply a recently

developed age-length key to historical data, assuming that larval growth rates in the St.

Marys River have remained similar during 1971-1998. I used this method to estimate the

annual age-compositions of larvae ages 2-5 from the Bayluscide and deepwater

electrofishing length-frequencies.

During 1995 and 1996, metamorphosing sea lamprey larvae fiom the St. Marys

River were collected and aged using statoliths (T.B. Steeves, unpublished data). I

summarized these data to estimate the age-compositions ofmetamorphosing sea lamprey

larvae ages 4-6 during 1995 and 1996.

Age-Structured Population Model

I constructed an age-structured population model to describe the firll lamprey life

cycle fi'om age-0 recruitment through spawning, and fit this model to the six data sources.

The modeled life cycle consisted of a larval (riverine) population ages 0 through 6 subject

to natural mortality constant across ages and years. A maximum larval age of6 was used

because over 99% ofthe larvae aged during 1993-1996 were estimated to he s 6 years
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old (T.B. Steeves, unpublished data). As the model larvae age, they undergo a process of

metamorphosis from larval to parasitic form. I modeled the probability of

metamorphosis as an increasing function of age for larvae ages 4 though 6. Ofthe

metamorphosing larvae that were aged in 1995 and 1996, 89% were 4-6 years old (T.B.

Steeves, unpublished data). Metamorphosed larvae enter the parasitic-phase population

in Lake Huron. After 18 months in the parasitic form, a portion ofthe parasitic-phase

population in Lake Huron returns to the St. Marys River to reproduce.

The overall model required 39 parameters to be estimated. These included the

number of age-0 recruits from 1967 through 1996 ( N0,, , t = 1967,] 970,...1996 ), the

initial numbers-at-age for ages 0 through 4 during 1966 ( N3,1966 , i = 0,2,...4 ), a natural

mortality rate (M) assumed to be constant across years and ages in the larval population,

two parameters describing the probability ofmetamorphosis for larvae age 4 and 5, and

the proportion (A) of the parasitic-phase population in Lake Huron that migrates to the St.

Marys River during spawning. The A parameter represents a combination oftwo

processes: the survival fi'om metamorphosis to spawner and the fraction ofparasites in

Lake Huron that migrate into the St. Marys River.

Given the initial age- and year-specific abundance estimates, subsequent larval

abundances were calculated using the equation

N = Na a: e’” .. [1 —P(met. | age = i)] (3)i+1,t+l

where P(met. I age = i) is a larvae’s probability ofmetamorphosis given that it is age i.

This formulation ofthe equation essentially assumes that lamprey are removed from the

larval population due to mortality and metamorphosis occurring fall through winter, and
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maintain constant abundance over the rest of the year. The formulation of this equation is

consistent with observations on the timing ofmortality and metamorphosis (Youson, in

review).

Although researchers have estimated the probability of larval metamorphosis as

an increasing function of length for various tributaries to the Great Lakes, there are no

estimates of these probabilities as a function of age and no estimates for the St. Marys

River. Nearly all of the metamorphosed larvae collected from the St. Marys River have

been assigned ages 4 through 6. To reflect this auxiliary information, I constructed the

model such that the probability ofmetamorphosis increases with age by assuming that the

probability was zero at age 3 and 1.0 at age 6 and estimating as parameters the increase

from age 3 to age 4 and the increase from age 4 to age 5.

The number ofmetamorphosed lamprey produced in a particular year was

calculated using the equation

6 .

"mm/m...“ = 2;, P(met- I age = i) * N.,i (4)
1:

Because of the timing of the metamorphosis process relative to the operation of the

commercial fishery, the metamorphosed larvae produced in the fall and early winter of

year 1 would not Show up in the commercial catch until year t + 1. Similarly, parasitic

lampreys feeding in Lake Huron during the summer of year t do not spawn until the

spring and summer ofyear t + 1.

The St. Marys River is not the only river producing parasitic lamprey in Lake

Huron. At this time the river-specific contribution to Lake Huron parasitic-phase

lamprey population is largely unknown. The parasitic-phase CPUE and the parasitic-

phase mark-recapture data sets can only be used to provide information on the overall
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abundance of lamprey in Lake Huron, not on how much the St. Marys River population

contributes to the overall population. To properly describe the overall system, I needed

an estimate of the contribution of the St. Marys River to the Lake Huron parasitic-phase

population.

The St. Marys River Assessment Plan (Bergstedt et al. 1998) estimated that the St.

Marys River produces 88% ofthe total parasites in Lake Huron. I used this estimate in

my model to scale the production of the St. Marys River relative to the other sources in

Lake Huron. By using this estimate I am essentially assuming that number of lamprey in

Lake Huron is a function of the amount of larval habitat, the number of spawners, and the

number of hosts available. Ofthese three factors, I assume that only the amount and

quality of larval habitat remains constant over time. The number of spawners and hosts is

assumed to vary over time, causing the observed variability in recruitment and parasite

densities. This assumption is supported by Young et al. (1996) who concluded that

habitat quantity and quality have remained relatively constant in the St. Marys River and

that host availability was likely a more important factor in ultimately determining parasite

abundance.

To estimate parameters, the overall model was fit to the six data sets by

specifying the assumed statistical distribution of each data set and then constructing the

likelihood function. For the parasitic-phase CPUE data set, a lognonnal distribution was

assumed and the corresponding log-likelihood (ignoring constants) was

2

n, . ,.
L1 = -; 0.5 (log,[a]_ loge (at )J/a't (5)
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where n, is the estimated number ofparasitic-phase lamprey in year t, n1999 is the

estimated number ofparasitic-phase lamprey in year 1999, 63', is the relative parasitic-

phase CPUE in year t, 5', is the standard error estimate associated with each 63', . This

form for the likelihood was used because it mirrored the CPUE outputs from the linear

model used to estimate the 63', . The 5', were estimated using a separate linear model,

were treated as known values, and were not estimated within the lamprey population

model.

The parasitic-phase mark-recapture data set and the spawning-phase mark-

recapture data set were assumed to be described by lognormal distributions. The log-

likelihoods (ignoring constants) for these data sets were of the form

Li : —Z O'5[(10ge (£13: ) "' loge (x'm ”/6331 i2 (6)

where L,- is the log-likelihood for data set i, 55,3, is the empirical estimate of the

population size for data set i in year t, X23, is the model prediction ofpopulation size for

A

data set i in year t, and 0],, is the estimated standard deviation for data set i in year t.

As for the CPUE data, the 0"” were estimated in separate analyses (i.e., mark-recapture

studies). In the population model, they were treated as lcnown values and were not

estimated during model fitting.

For the Bayer survey data set, the deepwater electrofishing data set, and the

transforming larvae data set, a multinomial distribution was assumed to describe the
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proportions-at-age. The corresponding log-likelihoods (ignoring constants) were ofthe

form

L, = 2.1),, 213:.) 10ge(1)i,a,t) (7)

where L, is the log-likelihood for data set i, J” is the sample size in year t for data set

I

i, Pi,“ is the model prediction of the proportion age-a in year t, and L0,: is the

empirical estimate of the proportion age-a in year t. To prevent large sample sizes from

overwhelming the log-likelihood, a maximum effective sample size for the combined

Bayluscide and deepwater electrofishing data sets was determined using the iterative

method outlined in the appendix of McAllister and Ianelli (1997). If the number sampled

in a year was greater than the maximum sample size calculated, then J1,, was set to the

calculated maximum effective sample size. For the Bayluscide and deepwater

electrofishing data sets, Jmax = 30. Because the number of samples in the

metamorphosing larvae data set were only 34 in 1995 and 43 in 1996, a maximum

effective sample size was not estimated and instead the observed number of samples were

used for the J1,, .

Combining the six log-likelihoods, the overall log-likelihood objective function

used to estimate model parameters was

L=L1+L2 +L3 +L4 +L5 +L6 (3)

I used AD Model Builder software (Otter Research Ltd. 1994) to estimate model

parameters.
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Estimating Stock-Recruit Function Uncertainty

The primary objective of this study was to estimate the stock-recruit firnction for

St. Marys River sea lamprey and its associated uncertainty. An additional objective was

to estimate demographic parameters (M, 1, and P(met. l age = i)) and their uncertainty

for forecasting future population dynamics. To accomplish these objectives I adopted a

Bayesian estimation framework, placing bounded, uniform priors on each of the F

estimated parameters. The priors were bounded to avoid implausible parameter

estimates, such as a negative survival rate. I used a Monte Carlo Markov Chain (MCMC)

procedure to obtain samples from the joint posterior distribution ofthe estimated

parameters. These samples from the joint posterior distribution served to characterize the

uncertainty in the estimated parameters.

I assumed that lamprey recruitment was governed by a Ricker-type stock-recruit

function ofthe form

R = Sexp(a— ,615‘ + a) (9)

where R is the number of age-0 larvae produced, S is the number of female spawners that

produced R, a and ,6are parameters determining the productivity and compensation,

respectively, and log(8) is distributed N (0, 0'2). Let 6 be defined as a vector ofthe 39

parameters estimated in the population model. 0 contains the initial numbers-at-age for

1966, the number of age-O larvae from 1967-1996, M, xi, and the two parameters

describing P(met. | age = i). If I denote the information contained in the six data sets as

Z, then my primary objective is to approximate the joint posterior density
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p(a,5,03,01 z)

I accomplished this objective using a two-stage approach. For the first stage I utilized the

MCMC procedure within AD Model Builder (3 version of the Metropolis Hastings

algorithm) to obtain 12,000 samples from the posterior density of 9( p(67 | Z) ). I

generated a total of 12 million samples and saved every thousandth sample (to arrive at a

set of 12,000 samples) in order to reduce the degree of autocorrelation in the chain. Each

sample ( 0,, i = 1...12,000) determines a set of stock sizes and associated number of age-0

recruits that were produced, which are completely determined by 6! I denote these stock-

recruit sets as Y), i = l...12,000.

The second stage consisted of obtaining samples from the joint posterior density,

Mafia?2 | Y)

To accomplish this, first I converted the Ricker model above into its linear form,

ln(R/S)=a—,6IS'+£ (10)

Then for each stock-recruit set (Yi), I drew a single sample of a,- , fl,— , and 0',2 from the

joint posterior density p(a,- , fl,- , 0',2 I Yr) (Gelman et al. 1995, p. 236).

Combining the results fiom the two stages resulted in samples from an

approximation to the posterior density,

phafiflm)

This two-stage approach is not unique, as my approach is analogous to sampling from the

joint posterior distribution for hierarchical models (Gelman et al. 1995, p 129). I used
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this approach to quantify the joint uncertainty in the parameters of the stock-recruit

function as well as the demographic parameters for use in forecasting models.

Trace plots (i.e., plots of the ordered, saved sample values) for the parameters

show no trends or bum-in period. However, time series analyses revealed that there was

autocorrelation among the samples up to lags of40 saved samples (or 40,000 among the

originally-generated 12 million samples) for some of the parameters. Using the methods

described by Thiebaux and Zwiers (1984), I estimated the effective number of

independent samples among the 12,000 samples for each parameter. Based on these

methods, there were 1300 to 2000 effectively independent samples among the 12,000 for

each ofthe parameters.

One ofmy objectives was to examine the degree that compensation exhibited by

St. Marys River sea lamprey could reduce the effectiveness ofthe trapping and sterile

male release control options. During 1985-1990 (a time of relatively high lamprey

abundance), the estimated average number of spawning females in the St. Marys River

was ~9700. With a trapping rate of45% and a 3:1 ratio of sterilezfertile males (both

reasonable target levels for future control, Michael Twohey (USFWS), personal

communication), the expected number of successful female spawners would be reduced

from ~9700 to ~1100. To investigate the degree of compensation, I calculated a

compensation ratio (Figure 1.1). First I calculated the expected number of recruits (R*)

at low spawning stock size (~1100, S*=1100 in Figure 1) based on a set of stock-recruit

relationship parameters. The same parameters were also used to compute the expected

number ofrecruits (R’) at high stock size (S’=9700 in Figure 1). Linear interpolation

between zero and R’ defines the expected number of recruits (R0) that would be produced
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ifproportional stock reductions from S’ to 8* resulted in the same proportional recruit

reduction (i.e., no compensation). The compensation ratio is given by R*/Ro. For each

set of a, and ,6, (i = 1,...12,000) , I calculated the compensation ratio and defined

negligible compensation as ratios less than 1, low compensation as ratios between 1 and

2, moderate compensation as ratios between 2 and 5, and high compensation as ratios

over 5.

Results

Overall, the modal estimates ofCPUE, spawner abundance, parasitic abundance,

and age-composition were consistent with observed data. The modal posterior density

estimates for CPUE followed the observed pattern of low CPUE during the 1970’s,

increasing CPUE during the 1980’s, and high CPUE during the 1990’s (Figure 1.2). The

modal posterior density estimates for spawner abundance closely matched observed data,

with the possible exceptions of 1991 and 1992 (Figure 1.3). The modal posterior density

estimates ofparasitic abundance were relatively close to the observed data, although

there were some departures from the observations during 1992 and 1993 (Figure 1.4).

The degree to which the model fit each ofthe data sets is largely a reflection of

the number ofobservations in each data set and their associated variance estimates. The

CPUE data set contained 31 observations and the average coefficient of variation (C.V.)

was 45% (Appendix Table Al). The spawner data set contained 16 observations and

average CV. was 0.6%. The parasitic data set only contained 5 observations with an

average CV. of 1.3%. Because the average CV. for the spawner data set is so low and

the number ofobservations is fairly high, it is not surprising that the modal estimates
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were so close to the observed data. The objective function (equation 8) is penalized more

by parameter estimates that fail to fit data sets with many observations or small

measurement error estimates. Because each data set may suggest a slightly different state

of the system, simultaneously obtaining a tight fit to all ofthe data sets may be

impossible and suggests model error.

The modal estimates for age-composition also matched observed data (Figure 1.5,

Appendix Tables A2 and A3). I did not detect any consistent patterns in the larval age-

composition residuals over time or across ages. Because larval lampreys are difficult to

age, I believe that the information contained in the age-composition data sets is rather

limited. The modal estimates of the metamorphosing larvae age-composition data were

generally poor. With only two years of data, this outcome is not surprising. However,

the metamorphosing larval age-composition data did allow for the estimation ofthe

parameters describing the probability ofmetamorphosis: 0.46 for age-4 larvae, 0.57 for

age-5 larvae, and the assumed value of 1 for age-6 larvae.

The modal estimate for the larval natural mortality rate (M) was 0.82. The

histogram in Figure 1.6 depicts the marginal posterior distribution of this parameter, with

an approximate 95% posterior probability interval of (0.73, 0.92). The modal posterior

estimate for the proportion of the parasitic population migrating to the St. Marys River

(71.) was 0.045, and the histogram in Figure 1.7 depicts the marginal posterior distribution

ofthis parameter.

As mentioned earlier, 3. represents a combination ofthe survival from

metamorphosis to spawning and the fraction that migrates to the St. Marys River.

Because I was unable to estimate the survival from metamorphosis to the parasitic stage,
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I have implicitly assumed that it was 100% and therefore my estimates for A are likely

biased low. However, survival during this period may be low, especially when small

hosts are unavailable (Young et al. 1996).

My modal estimates of historical stock sizes and the number of age-0 recruits that

were produced suggest that variation in recruitment is substantial across stock sizes

(Figure 1.8). The least squares fit of the Ricker stock-recruit function to these point

estimates resulted in estimates of c“: = 9.15, ,3: 0.00018, and &2= 1.16. The marginal
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posterior distributions for these parameters can be seen in Figure 1.9. There is

considerable uncertainty in each of these parameters. Marginal posterior density values

for a were generally between 7 and 10. The marginal posterior density for a" has most

of its mass between 0 and 10, suggesting that there is considerable variation in

recmitment.

A histogram ofcompensation ratios suggests that high compensation may be

possible (Figure 1.10). Overall, 24.5% of the ratios showed negligible compensation,

15.1% showed low compensation, 27.6% Showed moderate compensation, and 32.8%

showed high compensation.

Discussion

Understanding fish population dynamics is a difficult task. Often the data

available for fitting models do not come from rigorously designed population surveys and

is of questionable quality. Data sets collected fi'om the same population often seem to

support different hypotheses on the state of the system or the parameters governing the
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population’s dynamics. However, management decisions have to be made, and will be

made, regardless of the quality of the data or the sophistication of the analyses conducted.

In this paper I have attempted to gather all relevant data sources that could help

me to make inferences about St. Marys River sea lamprey population dynamics. None of

the data sets were collected with the idea that they would be used to estimate a stock-

recruit relationship. However, I combined these data sets into a single, statistically-

‘
.
1
'

based, age-structured population model for the purpose of estimating the parameters of a

stock-recruit relationship and the associated uncertainty in these and other demographic

F
.

‘
1

parameters. Much of the model fitting process involved balancing the information

suggested by each data set. I used estimates ofthe variances associated with each data

set (both empirical estimates and effective sample size estimates derived through

iteratively fitting the model) to provide a basis for this balancing process. In so doing, I

was able to avoid attaching “emphasis factors” (Methot 1990), representing my degree of

belief in the individual data sets and their likelihood components. However, because

systematic errors (e.g., temporal trends in catchability) were not accounted for, the

estimated variances likely represent lower bounds for the true uncertainties in these data

sets.

The model that I developed attributed the increase in parasitic-phase abundance

over time to increased age-0 recruitment to the larval population. An alternative and

equally plausible mechanism, which I did not incorporate into my model, is that larval- or

parasitic-phase survival rates increased. Young et al. (1996) suggested that increased

survival for newly metamorphosed parasites was a better explanation for the increase in

parasitic-phase abundance than changes in the quality or quantity of larval habitat in the
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St. Marys River. To examine this increased survival hypothesis, I compared my modal

estimates ofthe number ofparasites (R) with the estimates ofparasites based on the

least-squares fit of a Ricker stock-recruit function to the modal estimates (RSR ). Figure

1.11 shows the residuals (13 minus 135,) plotted over time. This graph suggests that there

were a lower number of parasites in the 1970’s and early 1980’s than expected based on

the least-squares stock-recruit relationship parameters. The graph also suggests that the

number ofparasites in 1992 and 1999 was much higher than expected based on the stock-

recruit parameters. This pattern in the residuals indicates that survival rates may have

changed over time (Peterman et a1. 1998). Unfortunately, I was unable to estimate tirne-

varying survival rates due to a lack of the appropriate data. However, my analyses

support the conclusions ofYoung et al. (1996) that newly metamorphosed parasitic

survival rates may have increased over time. Potential reasons for this change may be

increased prey fish abundance or biomass. Further investigations into the factors that

determine lamprey survival rates would be beneficial and could improve the accuracy of

my model.

Fisheries management agencies have long recognized uncertainty, but until

recently it has generally been ignored or treated qualitatively in the decision-making .

process. The GLFC, which oversees the sea lamprey management program in the Great

Lakes, has accepted that uncertainty needs to be more formally incorporated into the

decision-making process, especially when decisions have to be made at considerable

public expense, as is the case with the St. Marys River. The decision to treat the St.

Marys River with Bayluscide in 1998 and 1999 had an associated cost of over $5 million

dollars, a substantial fraction of the total operating budget for the GLFC. Estimating a
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single stock-recruit relationship for St. Marys River sea lamprey certainly would have

improved the understanding of this system’s population dynamics. However, it would

have overstated the certainty about the processes and demographic parameters that

govern the system dynamics. Therefore the objective of this study was to characterize

the uncertainties in the stock-recruit relationship and demographic parameters.

Examining the uncertainty in the stock-recruit function parameters yielded several

important findings. First, it is apparent that there is considerable variability in

recruitment over a range of stock sizes. The stock-recruit data set presented in Figure 1.7

represented a data set with comparatively low variability (0"2 = 1.16), but much higher

values (5 < 6'2 < 15) rrright be possible (Figure 1.9). Second, the amount of

compensation operating in this population may be substantial. Although the majority of

the ratios were classified as negligible, low, or moderate, the potential for high

compensation remains. If this population has low amounts of compensation, reducing the

number of spawning individuals should result in a nearly proportional reduction in the

number ofrecruits. But if high compensation is operating in this population then

management options that reduce the number of spawners will not result in proportional

reductions in recruitment. However, the probability ofhigh compensation levels

suggested in this study may be overly pessimistic. Jones et al. (in review) found only

slight compensation in a meta-analysis of sea lamprey stock-recruit data from Great

Lakes tributary streams. The scale ofthe St. Marys River system is much larger than

those systems examined by Jones et al. (in review). If scaling issues are unimportant in

determining population compensation levels, then compensation levels should not

significantly differ.
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Extreme recruitment variation does not bode well for control options that aim to

reduce the number of effective spawners (e.g., trapping and releasing sterilized males).

Even if stock sizes are reduced through these control techniques, there is a high

probability that a large year-class could be produced. On the other hand, the evidence

against high compensation suggests that, on average, reducing the number of spawners

will result in a lower number of recruits. My results imply that trapping and releasing

sterilized males can be effective treatment options resulting in lower production on

average, but that strong year-classes may still result on occasion.

When the effectiveness of control options that reduce the number ofeffective

spawners is highly uncertain, control options that target the larval population may be

preferred. In smaller streams and rivers, TFM is still the main method for controlling sea

lamprey populations and its success has clearly been demonstrated. The uncertainty in its

effectiveness is relatively low. However, conditions in the St. Marys River make a TFM

treatment impractical, expensive, and ineffective (Shen et al., in review). Because

Bayluscide can be applied to localized areas with high larval densities, it represents an

opportunity to suppress the larval population in large systems with patchy larval

distributions like the St. Marys River. High recruitment variability at low stOck sizes

may make the Bayluscide treatment option preferable in the St. Marys River compared to

trapping and sterilized male releases.

The St. Marys River will continue to pose a major challenge for the integrated

management of sea lamprey in Lake Huron. Future management decisions will be

required as to which treatment options to use and how much control is necessary to

achieve management goals. In this paper I have attempted to characterize the uncertainty
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in St. Marys River sea lamprey population dynamics, specifically the stock-recruit

relationship. This information can serve as a valuable input to models that forecast and

evaluate the expected results of different treatment combinations, given the uncertainty

present in the system. When these models are incorporated into a formal decision

analysis, they can provide a valuable tool for decision-makers and managers alike and

should result in improved management ofthe system.
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Table A1 Data used in fitting the sea lamprey population model

 

SE. of Variance Variance

Year Ln(CPUE) Ln(CPUE) Ln(S) of Ln(S) Ln(P) of Ln(P)

1967 -1.30 0.64

1968 -l.39 0.55

1969 -1.36 0.55

1970 -2.46 0.60

1971 -2.50 0.64

1972 -3.57 0.60

1973 I“

1974 -2.76 0.53 '

1975 -2.63 0.51 r

1976 -2.28 0.51 g. i

1977 -2.62 0.51

1978

1979 -2. 18 0.54

1980 -l .39 0.54

1981 -l .97 0.64

1982 -2.53 0.54 12.43 0.0177

1983 -1.54 0.50

1984 -0.66 0.49

1985 -1.17 0.50 10.08 0.0007

1986 -1.15 0.50 9.73 0.0015

1987 -0.99 0.50 9.94 0.0013

1988 -1.02 0.50 9.96 0.0014

1989 -0.36 0.50 10.20 0.0013

1990 -0.84 0.50 10.05 0.0021

1991 -0.94 0.50 10.48 0.0020 13.36 0.0293

1992 -0.04 0.51 9.88 0.0020 13 .46 0.0778

1993 -0.62 0.50 10.73 0.0153 13.19 0.0206

1994 -l.l9 0.51 9.27 0.0043 13.15 0.0112

1995 -l . 10 0.52 9.88 0.0032

1996 -0.72 0.51 10.01 0.0144

1997 -1.48 0.52 9.01 0.0147

1998 -0.66 0.52 9.92 0.0046

1999 0.00 . 9.90 0.0021

2000 10.57 0.0027 12.55 0.0174



Table A2 Estimated age composition for St. Marys River sea lampreys.

 

Year Age-2 Age-3 Age-4 Age-5 n

1971 0.34 0.47 0.18 0.01 306

1972 0.40 0.38 0.20 0.02 1 147

1978 0.92 0.08 < 0.01 < 0.01 62

1980 0.56 0.39 0.05 < 0.01 298

1981 0.76 0.22 0.02 < 0.01 2033

1982 0.30 0.64 0.06 < 0.01 44

1984 0.71 0.25 0.04 < 0.01 95

1985 0.58 0.28 0.13 0.01 779

1986 0.86 0.10 0.04 < 0.01 442

1987 0.42 0.50 0.08 < 0.01 660

1988 0.91 0.07 0.01 0.01 257

1989 0.81 0.11 0.08 < 0.01 32

1993 0.44 0.19 0.29 0.07 421

1994 0.43 0.28 0.24 0.05 898

1995 0.46 0.30 0.24 < 0.01 933

1996 0.65 0.26 0.09 < 0.01 1175

1997 0.61 0.34 < 0.01 0.06 407

1998 0.52 0.27 0.17 0.04 809

Table A3 Estimated transformer age composition.

 

Year Age-4 Age-5 Age-6 n

1995 0.53 0.38 0.09 34

1996 0.3 0.44 0.26 43
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Figure 1.1 Stock-recruit relationships depicting high (Rm), moderate

(R*M), and low (R*,) values for the compensation ratio (R*/R0) at a low

stock size (8*). Recruitment at low spawning stock size with zero

compensation is denoted by R0 and recruitment at high spawning stock

size (S’) is denoted by R’.
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Figure 1.2 MPD (modal posterior density) model estimates and

observed commercial fishery catch-per-unit-effort (number of

lamprey per km of gillnet) estimates, 1967-1999.
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Figure 1.3 MPD (modal posterior density) model estimates and

observed spawning-phase population estimates based on mark-

recapture, 1985-2000.
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Figure 1.4 MPD (modal posterior density) model estimates and

observed parasitic-phase mark-recapture population estimates for

juvenile lampreys, 1982, 1991-1994, and 2000.
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Figure 1.5 Residuals (observed minus predicted value) of

proportions-at-age for larval lamprey ages 2-5, 1971-1998.
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Figure 1.6 Frequency histogram of 12,000 MCMC samples
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and age-0 recruits for the St. Marys River sea lamprey population,
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CHAPTER 2

QUANTIFYING SPATIAL AND TEMPORAL UNCERTAINTY IN LARVAL

LAIVIPREY ABUNDANCE AND ITS EFFECT ON CHEMICAL TREATMENT

SUCCESS IN THE ST. MARYS RIVER

Abstract

Effective chemical treatment of sea lamprey (Petromyzon marinas) larvae in the

St. Marys River requires reliable knowledge of their spatial distribution. However,

surveys to adequately characterize the distribution cannot be conducted in the same year

as the chemical treatment, thus raising questions about the accuracy ofusing historical

survey data to delineate treatment areas. In this project I developed stochastic models

that predict the abundance of larvae at a location in the next year based on data collected

in the current year. Recursive application of these models can allow for stochastic

forecasts at locations in space and time, simulating how population abundance may have

changed from the time each location was originally mapped (1993-1996) until the time

that the main treatment took place (1999). My approach to modeling was to develop two

generalized linear models (GLMS). The first GLM model estimates the probability that

larvae would be present at a location. The second GLM model estimates parameters

defining the probability distribution for larval abundance at that point, given that larvae

were present. I applied these models to forecast a variety ofpossible abundance maps for

the lampricide treatment that took place in 1999 to estimate the uncertainty in treatment

effectiveness resulting from spatial and temporal uncertainty in larval distribution. The

results suggest that expected treatment effectiveness did not differ from previous

predictions oftreatment effectiveness at the level oftreatment implemented in 1999.

However, if less area of the river had been targeted for treatment, then expected treatment
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effectiveness would have been lower than predicted treatment effectiveness. The large

scale ofthe 1999 treatment may have compensated for the spatial and temporal

uncertainty by targeting the majority of the high density areas in the river, leaving few

areas with larval lamprey untreated.
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Introduction

A combination of adult trapping, sterilized male releases, and chemical

applications is used to control the St. Marys River sea lamprey (PetrOmyzon marinas)

population. However, the large size and flow patterns of the St. Marys River inhibit the

effective use of the lampricide 3-triflouromethyl-4-nitrophenol (TFM), the predominant

method for controlling sea lampreys in the Great Lakes region. In other rivers and

streams, TFM is applied at a rate that saturates the water column with a lethal dosage to

kill the majority of larvae in the riverbed. With typical TFM treatments, the spatial

distribution of larvae in the river is unimportant because it is assumed that virtually all

larvae in the stream are exposed to a lethal dose of the lampricide.

Although a substantial population exists in limited areas ofthe river, most of the

St. Marys riverbed area contains few larval lampreys. So TFM is not cost-effective

(Schleen et al., in review). To control the larval population in a cost-effective manner,

managers have chosen to use granular Bayluscide, an alternative lampricide that can be

applied locally to discrete patches of larval habitat rather than saturating the entire river

with TFM. With Bayluscide, managers can achieve effective population control by

targeting local areas of high larval density. However, cost-effective control of sea

lamprey larvae in the St. Marys River using Bayluscide requires a reliable knowledge of

their spatial distribution.

During 1993-1996, nearly 12,000 locations throughout the St. Marys River were

sampled using deepwater electrofishing to determine the distribution and abundance of

larval sea lamprey (Fodale et al., in review). Based on maps generated using these data,

researchers and managers delineated areas with the highest larval densities as candidates
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for possible treatment with Bayluscide. The larval population within each treatment area

was estimated and areas were ranked according to the number that would be killed per

dollar spent on Bayluscide. Combining these estimates resulted in a graph depicting the

proportion of the total population that would be removed as a function ofthe amount of

Bayluscide applied. Given this information, decision-makers chose to spend

approximately $5 million on an aggressive treatment ofthe St. Marys River lamprey

'3:
population that included a combination of applying Bayluscide, trapping, and releasing It

sterilized males into the spawning population during 1998-1999. While a small portion I

of the river was treated during pilot studies in 1998, the majority ofthe treatment effort

took place during 1999. Biologists predicted that 55% ofthe larval population would be

killed using the level ofBayluscide that was selected.

The actual distribution of larvae in the river at the time ofBayluscide treatment

affects the performance ofthese lampricide applications. The data used to describe larval

distribution were collected during 1993-1996. The treatment took place 2-3 years later.

This raises questions about the degree to which larval distributions are spatially and

temporally stable. If the distribution changes substantially from year to year, treatment

areas delineated from data collected in one year may substantially deviate from the

optimal treatment areas based on data collected in other years. Managers recognized that

this could be an important uncertainty, and set up a series of index stations in the St.

Marys that were sampled annually 1994-1998 to assess the degree of spatial and temporal

stability.

In this study I utilized these index site data to parameterize and develop stochastic

models that predict the abundance of larvae at a location in the next year based on data
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collected in the current year. Recursive application of these models allows for simulating

how population abundance changed from the time each location was originally mapped

(1993-1996) until the time of the main treatment (1999). My approach to modeling was

to develop two generalized linear models (GLMs). The first model estimates the

probability that larvae would be present at a location in the next year. The second model

estimates parameters that define the probability distribution for larval abundance at that

point in the next year, given that larvae were present. This general approach to modeling

population change over time and space has been applied quite successfully in other

contexts (Augustin et al. 1998a, Augustin et al. 1998b, Welsh et a1. 1996, Augustin et al.

1996, Lindenrnayer et a1. 1991, Osborne and Tigar 1992).

I used the index site data to parameterize the GLMs and then recursively apply the

resulting models to the areas delineated for the 1999 lampricide treatment. I applied

these models to forecast a variety ofpossible abundance maps for the lampricide

treatment that took place in 1999 in order to estimate the uncertainty in treatment

effectiveness resulting from the spatial and temporal uncertainty in larval distribution.

Understanding how the spatial and temporal uncertainties in larval distribution affect

lampricide effectiveness is essential for assessing the trade-offs among the management

options available for controlling St. Marys River sea lampreys.

Methods

My overall approach was to develop a stochastic simulation model that could

predict population abundance at each point given the population abundance at that point

and other information observed in the previous time step. I then applied that simulation
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model to evaluate how well the procedure used to decide on areas for Bayluscide

treatment was likely to have performed. This was done by repeatedly simulating the

spatial patterns of larval catches in 1999 that might have arisen fiom those points mapped

during 1993-1996. As a preliminary step, prior to developing the stochastic simulation

model, I explored the spatial and temporal variability in the data. In part this guided my

choice of variables to include in forecasting the next year’s map of larval catches.

The data on larval distribution and catch within the St. Marys River were

collected using the boat-mounted deepwater electrofishing gear developed by Bergstedt

and Genovese (1994). The gear consists of a covered, electrified grid connected to an

onboard suction pump. The covered grid is lowered onto the river substrate and an

electric current is initiated using a DC backpack electrofishing unit (Weisser and Klar

1990). The electrical field causes larval lamprey to emerge from the substrate whereupon

they are pumped to the surface and collected in a basket, measured for length, and

enumerated. Because efficiency of the deepwater electrofishing gear varies as a function

of length, each larva was assigned an efficiency-adjusted catch (adjusted catch) equal to

the inverse of the capture probability calculated at its length (e.g., a larva with a capture

probability of 0.5 would be assigned an efficiency-adjusted catch of 2) (Bergstedt and

Genovese 1994, Fodale et al., in review). At each sampled location, a differentially

corrected global positioning system was used to determine position coordinates and a

Ponar dredge was used to categorize habitat quality as preferred, acceptable, or

unacceptable. An area of approximately 2.44 m2 was sampled at each location.

During 1993-1996, biologists under the direction of the St. Marys River Task

Force (Task Force) sampled nearly 12,000 locations spanning the St. Marys River using
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the deepwater electrofishing gear (Fodale et al., in review). The biologists used a

combination of systematic and adaptive sampling. Systematic sample locations were 65-

140 m apart, while the adaptive samples were 35 m from systematic sample locations

where more than four animals were caught. The majority of the sampled locations had

catches of zero (94.4%).

In addition to the full river survey, the Task Force also established a set of thirteen

index sites that were sampled repeatedly during 1994-1998 (Fodale et al., in review),
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prior to the Bayluscide treatment. Each site consisted of a grid of22 m x 32 In cells, with

between 48 and 244 cells per index site. Biologists sampled each cell in each index site

annually. Sites 1-4 were sampled all five years, while sites 5-9 were only sampled 1995-

1998 and sites 10-13 were only sampled 1996-1997. The index sites were established in

areas with medium to high larval densities to monitor trends in abundance and treatment

effectiveness. Figure 2.1 shows the adjusted catch (mean +/- l S.E.) across years for

index sites 1-9.

I used geostatistical methods to characterize the spatial and temporal variability in

the index site data. Based on initial data summaries, I observed that the variance in

adjusted catch increased with the mean and the data had a high proportion of zero values

(~75%) (Figure 2.2). Therefore I performed a log¢(adjusted catch + 1) transformation

(hereafier referred to as transformed catch) to help stabilize the variance and better

approximate normality. To characterize the spatial correlation, I calculated an empirical,

omnidirectional semivariogram combining all five years of index site adjusted catch data.

Because preliminary analyses did not reveal anisotropy, omnidirectional semivariograms

were used (Isaaks and Srivastava 1989). To characterize the spatial and temporal
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correlation, I calculated an empirical, omnidirectional cross-semivariogram, using a one-

year lag as the crossing variable. I used this cross-semivariogram to describe the

correlation in transformed catch between points as a function of distance at one-year lags.

I estimated the range (i.e., the distance up to which the data are spatially correlated) for

both the semivariogram and the cross-semivariogram to aid in developing the GLMs.

Using the index site data, I modeled the pointwise inter-annual changes in

adjusted catch of larval lamprey in two stages. The first stage was a logistic GLM

whereby I estimated the probability of larvae being present at each point i as a function of

the previous year’s adjusted catch (catch,) at that point, a weighted average ofthe

adjusted catches at neighboring points (autocov) (Augustin et al. 1996), and the habitat

type (habtype, ). The model took the form

 10g[1 p" J: flo + fllcatch, + flzautocovi + fl3habtypq (1)

i

where the fl‘s are estimated parameters and

"i1

_ w,jcatchj

autocov - J l

i - "ii (2)

is a weighted average of the adjusted catch values (catchj) among the set of "z;

neighbors within 120 m ofpoint i. The weight applied to catchj is wg. = l/hy. , where ha.

is the Euclidean distance between points i andj. This autocovariate is intended to help

account for the fine scale (< 120 m) spatial autocorrelation between points (Augustin et

al. 1996). However, it is only one ofmany methods available for incorporating this
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information. The influence of habitat quality was incorporated through the habtype,

term where

0, if preferred

habtypei z { (3)

1, if acceptable

By definition, if a location is classified as having unsuitable habitat, then no lamprey are

present at that location.

The second stage of the model consisted of a second GLM that fit a gamma

distribution to the adjusted catch data at each point i, conditional on the presence of

lamprey at point i. The model took the form

1

— = do + alcatChi (4)

#z'

where the 0's are estimated parameters, catch. is the previous year’s adjusted

catch at point i, and ‘1' is the link function for the mean (,u,) of the gamma distribution

describing the adjusted catch data, fit at point i (McCullagh and Nelder 1989). The

adjusted catch data showed a high proportion of zero values and a continuous, right-

skewed distribution ofpositive catch values that resembled a gamma distribution or

perhaps a Poisson distribution (Figure 2). However, residual plots and histogram plots

revealed that a gamma distribution provided a better approximation to the distribution of

the positive adjusted catch data than did the Poisson distribution. The gamma

distributions were fit with an assumed constant variance (shape). Because parameter

estimates for the weighted average of the adjusted catches at neighboring points

(autocov,) and habitat quality (habtypei) terms were not significantly different from zero
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(x2 test, p-value > 0.05), these terms were lefi out of the second stage model. A total of

1814 observations were available for fitting the first stage model and 474 observations

were available for fitting the second stage model. I limited the data to observations

where the recorded habitat quality was the same between years at each point to avoid

incorporating habitat measurement error in the estimation process.

Using the index site data set with its known transitions, I examined the ability of

the first stage model to correctly predict inter-annual transitions through calculation of a

matching coefficient (Buckland and Elston 1993). I applied the model to each point in

the index site data set and predicted whether lamprey would be present at each point the

following year. I generated a total of 1000 stochastic realizations of the model and

calculated the mean matching coefficient resulting from these simulations. As a

comparison, I also calculated the mean matching coefficient for 1000 simulations where

the predicted transitions were bootstrap samples (with replacement) from a population

with the same proportion ofpresences and absences as the index site data set.

As mentioned earlier, the overall river sampling occurred 1993-1996 and the

treatment took place in 1998-1999. To generate a larval distribution map for 1999 I had

to recursively apply the models, starting with the most historic data. The data from each

stochastic forecast became the data set used for generating the next year’s forecast until a

map was generated for 1999 (Buckland and Elston 1993). The algorithm that I used is

described in Table 2.1. I generated a total of 100 distribution maps. Each simulated map

consisted of adjusted catches during 1999 at each ofthe 2042 points within the treatment

sites areas. At this point in the analysis, I switched from a spatially explicit

characterization of the population (i.e., modeling the point data) to a spatially implicit
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characterization of the population (i.e., modeling the total abundance in each treatment

area). For each map I calculated the mean density (number of larvae/m2 ) within each of

the 46 ranked treatment areas. By multiplying the mean density of each treatment plot by

the plot area, I estimated the number of larval lampreys within each treatment plot. I then

examined the effects of selecting the ranked treatment areas (based on the original

ranking analysis performed by the Task Force) by calculating the total population that

would be targeted for each map and for each set of treatment areas.

The data used to calibrate the models came fiom index sites with relatively high

larval densities, similar to the treatment areas to which the models were applied. Because

the remaining portions of the river generally had much lower densities, I believed that it

would be inappropriate to apply the models to these low-density areas. Preliminary

applications of the models to these areas resulted in forecasted larval densities an order of

magnitude higher than observed densities. However, I was interested in incorporating

variability in the number of larvae outside the treatment areas in our calculations ofthe

percent of the total population targeted by the treatment. To do this I estimated the

coefficient of variation (CV) for the mean density in the index sites between years. I

assumed that points outside the treatment area would have the same CV for mean density.

Using the empirical estimate for the mean density outside the treatment area (flmm) and

the estimate of the total area outside the treatment areas, I estimated the number of larval

lampreys outside the treatment areas. I allowed this number to vary between simulations

by generating a random normal variable for the mean density (,uzmwe) for each

simulation with mean = from“, and standard deviation = CV - from“, . To calculate

treatment effectiveness (i.e., the proportion ofthe total population that would be removed
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for a given amount spent on Bayluscide), I divided the cumulative population in the

ranked treatment areas by the sum of the populations within all treatment areas and the

population outside the treatment areas. All estimates reflect an empirical estimate for

Bayluscide efficiency of 75% (i.e., 75% of the larvae within an area are killed when

Bayluscide is applied to that area).

The variability in treatment effectiveness has two components: variation in the

number of larvae predicted in the treatment areas due to the stochastic nature of the

models and variation in the number of larvae predicted in the non-treated areas. To

examine the degree that these two sources affected the overall treatment effectiveness

estimates, I also calculated treatment effectiveness holding the number of larvae in the

non-treated areas constant across simulations.

Results

Although the annual means for the adjusted catch data in index sites 1-9 varied

among years, a consistent trend was not evident (Figure 2.1). A linear regression of

adjusted catch versus year did reveal a slightly negative slope, but the slope parameter

estimate was not significantly different fi'om zero (p-value = 0.63). This result suggests

that a consistent trend in abundance was not present in the index site data during 1994-

1998 and thus that parameters estimated in the model should not impose a negative trend

in abundance over time.

Calculation of the empirical semivariograms elucidated some ofthe spatial

autocorrelation patterns present within the data (Figures 2.3 and 2.4). Spherical models

fit to the data generally had the lowest error sum of squares compared to exponential,
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linear, or Gaussian models (Isaaks and Shirvistrana 1989). The estimate of the range for

the semivariogram (within years) was 124 m, with a sill of 0.19 and a nugget of 0.31.

The estimate of the range for the cross-semivariogram (l-year lag) was 129 m, with a sill

of 0.21 and a nugget of 0.39. The variation among points reached an asymptote of 0.50

for the serrrivariograrn and 0.60 for the cross-semivariogram. Because spatial

autocorrelation was present in the cross-semivariogram up to a distance of 129 m, we

believe that our use of a weighted average for catches within 120 m was appropriate in

our logistic model fitting.

The results of the two GLMs are presented in Tables 2.2 and 2.3. For the logistic

GLM, all three variables (e.g., catch, autocov, and habtype) reduced the residual deviance

and were significantly different from zero (38 test, p < 0.01). The highest probability of

presence at a point in the next year came when the previous year’s catch was high, the

distance-weighted average catch was high, and the habitat was classified as preferred.

For the gamma GLM, only the previous year’s catch variable was significantly different

from zero ()52 test, p < 0.01). The estimated mean ofthe gamma distribution increased as

a function of the previous year’s catch.

Using the parameter estimates from the two-stage GLM and the data from index

site 6 (the largest index site), I simulated a series of abundance maps to illustrate the

observed variability in larval distribution and to demonstrate an execution ofour model

(Figure 2.5). Each simulated abundance map is based on the previous year’s observed

data (i.e., the simulated map for 1996 is based on the observed data from 1995, the map

for 1997 is based on 1996 observed data, and the map for 1998 is based on 1997 observed

data) and represents a possible realization of the distribution of larvae in site 6 during the
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specified year. Within both the observed and simulated maps, there were considerable

differences between years at individual points.

Based on the results of 1000 simulations applying the logistic model to the index

site data, the mean matching coefficient was 65.1% (standard deviation = 0.95%). The

mean matching coefficient for the bootstrap procedure was 60.7% (standard deviation =

1.1%). Using a t-test, I confirmed that the matching coefficient fiom the logistic model

was significantly higher than the matching coefficient from the bootstrap procedure (p <

0.01). This result does not constitute a formal test or calibration of the model because the

same data that were used to estimate model parameters were used to evaluate its

performance using the matching coefficient. However, I believe that the matching

coefficient does provide a relative measure ofmodel fit. Based on the matching

coefficient results, the logistic model did improve predictions ofthe inter-annual

transitions between presences and absences.

By sequentially applying the two-stage GLM to the treatment site areas, I was

able to simulate the pointwise adjusted catch of larval lamprey in 1999, the year ofthe

main treatment of the St. Marys River. I generated a total of 100 maps and calculated the

efficiency associated with various expenditures on Bayluscide. Plotting the cumulative

proportion killed versus cumulative cost for these 100 maps, I quantified the effects of

spatial and temporal uncertainty in larval distribution on treatment effectiveness (Figure

2.6). Also plotted is the expected percent killed based on the mapping data assuming that

the historical (1993-1996) data represent the actual values in 1999 (i.e., assuming no

uncertainty in larval distribution). Our simulation results suggest that the proportion

killed is generally lower than when uncertainty is ignored. This difference is most
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pronounced when smaller portions of the river are selected for treatment. However, as

the amount of area treated increases, which is proportional to the amount spent on

chemical treatment, this difference becomes less apparent. When the largest amount of

area is treated, the mean proportion killed for the estimates that include uncertainty is

0.57 (standard deviation = 0.04) as compared to 0.55 predicted when uncertainty is

ignored.

The total simulated variability in treatment effectiveness is due to the variability

in abundance both within the treatment areas and within the non-treated areas. Figure 2.7

shows the simulated variability in treatment effectiveness when the total abundance in the

non-treated areas is held constant. When less ofthe river is selected for treatment, the

variability in treatment effectiveness is similar to that shown in Figure 2.6. However,

when the largest amount of area is selected for treatment, the variability in treatment

effectiveness is less (standard deviation = 0.01).

Discussion

Effective control of sea lamprey larvae in the St. Marys River using Bayluscide

requires a reliable knowledge of their spatial distribution. However, determining the

distribution and abundance of larval lampreys immediately prior to the application of

Bayluscide in a system as large as the St. Marys River would be prohibitively expensive.

Likewise, financial constraints make treating the entire river with lampricide impossible.

Some sort ofcompromise between the limitations ofassessment and treatment is

necessary.
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Managers and scientists involved in the management and assessment of sea

lamprey have long recognized spatial and temporal uncertainty in larval abundance

within the St. Marys and other rivers. When delineating the treatment areas in the St.

Marys, the Task Force attempted to compensate for this uncertainty by delineating low-

density buffers around the core areas of high larval density. Final treatment areas

consisted ofboth the high-density core areas and the buffers. While this approach was

somewhat subjective, our analysis suggests that it may have performed well.

The scale of the treatment that took place in 1999 appears to have been large

enough to counteract the effects of the spatial and temporal uncertainty. Intuitively, this

should be the case, as increasing the area treated will result in a greater proportion ofthe

population being killed regardless of the degree of spatial and temporal uncertainty.

Conversely, as the scale oftreatment decreases, the effects of these uncertainties become

more profound, resulting in reduced effectiveness. The larval population in individual

treatment areas varies from year to year, and the optimal treatment area ranking based on

data from one year may not be optimal when data from other years is considered. This

ranking effect is most apparent when fewer areas are selected for treatment. A preferable

treatment ranking approach might be to utilize these models to rank areas for treatment

based on the frequency with which they are ranked highly.

One ofthe advantages of using GLMs to model changes in the spatial and

temporal distribution and abundance is that data patterns can be described without having

to model the specific processes (e.g., mortality, density dependence, emigration,

' immigration, and recruitment) that generate the patterns. Spatially explicit population

models have been used to describe changes in animal distribution and abundance, but
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they typically require a large number ofparameters to be estimated (Dunning et al.

1995). Many of these parameters are difficult or nearly impossible to estimate

empirically (Conroy ct al. 1995). In contrast, GLMs take advantage of the correlations

between covariates and the independent variable to statistically reproduce the patterns in

the data. However, the variable selection process requires special attention to avoid the

inclusion of irrelevant variables (Buckland and Elston 1993) and applications ofthe

model to different systems may result in poor performance. Because ofthe limited

number ofvariables available for modeling lamprey in the St. Marys River, the likelihood

that irrelevant variables were included in our model is small.

One of the shortcomings ofmy analysis was an inability to correctly model the

pointwise inter-annual changes in the non-treated portions ofthe river. The data used to

estimate the parameters ofthe GLMs came from index sites that have relatively high

larval densities. Data summarizing inter-annual changes in areas of low larval density

were not available. An implicit assumption of the way I modeled these non-treated areas

of the river was that mean adjusted catch in these areas did not increase or decrease over

time. Mean adjusted catch these areas may vary temporally around a mean, as I have .

modeled, or may follow a trend over time (i.e., either increasing or decreasing) with some

noise. If the latter is true, then my results (Figure 2.6) should be considered minimum

estimates of the variability in treatment effectiveness. To address this issue, index sites

need to be established in low-density areas of the river and sampled annually. These data

would provide a starting point for better describing how low-density areas behave over

time and could easily be incorporated into the model described here.
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Related to the problem of applying the model to non-treated areas are the issues of

future assessment and treatment decision needs. An ongoing monitoring program is in

place to monitor trends in overall larval abundance within the river. However, redoing

the detailed, extensive surveys that took place during 1993-1996 would be an expensive

and difficult task. To map the distribution and abundance of larvae in the river and

provide decision-makers with appropriate estimates oftreatment effectiveness, a version

ofour model could be applied to surveys conducted within a limited portion of the river

or to simulated maps that incorporate the reductions due to the treatment that took place

in 1999. Another alternative would be to survey a limited portion ofthe river and use

Gibbs sampling to estimate the abundance at non-sampled locations (Weir and Pettitt

2000, Augustin et al. 1996). Despite having samples for only 20% ofthe total area,

Augustin et al. (1996) was able to effectively predict presence/absence at non-sampled

locations by using Gibbs sampling. Given the rich data available in the St. Marys, this

type of approach may be feasible.
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Table 2.1 Algorithm for generating a single abundance map.

1. Starting with the data collected in 1993 and the logistic GLM, estimate the

probability of larval presence at each point for 1994.

2. Conduct a Bernoulli trial at each point using the probability calculated in step 1.

- If the trial results in larval presence predicted at that point, estimate the

abundance at that point by generating a random sample from a gamma

distribution with the parameters given by the gamma GLM.

3. Append the location and habitat data from 1993 to the abundance map simulated

in step 2.

4. Append the data collected in 1994 to the data from step 3.

5. Repeat steps 1—4, sequentially adding the location and habitat data that was

collected in each year, to generate abundance maps for 1995, 1996, 1997, 1998,

and 1999.
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Table 2.2 Logistic GLM results.

 

 

 

Residual

Parameter DF Estimate S.E. Pr > x2 Deviance Residual DF

flo -1.5165 0.0842 2083.97 1813

151 1 0.0686 0.0164 < 0.0001 2001.71 1812

52 1 0.3130 0.0401 < 0.0001 1941.40 1811

’63 1 -0.7624 0.1687 < 0.0001 1918.55 1810

Table 2.3 Gamma GLM results.

Residual

Parameter DF Estimate S.E. Pr > x2 Deviance Residual DF

0’0 0.2019 0.0113 354.92 473

an 1 -0.0031 0.0010 0.0063 347.46 472
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Figure 2.6 Results of one hundred simulations of the percent of larval

population targeted versus dollars spent on Bayluscide (dots). Also plotted is

the predicted percent targeted versus dollars spent assuming temporal

stationarity in larval distribution and abundance.
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Figure 2.7 Results of one hundred simulations of the percent of larval

population targeted versus dollars spent on Bayluscide (dots), holding the total

abundance in non-treated areas constant. Also plotted is the predicted percent

targeted versus dollars spent assuming temporal stationarity in larval

distribution and abundance.
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CHAPTER 3

AN APPLICATION OF DECISION ANALYSIS TO THE MANAGEMENT OF

ST. MARYS RIVER SEA LAMPREYS (PETROMYZON MARINUS)

Abstract

Controlling the St. Marys River sea lamprey population is one ofthe most

challenging and important problems facing fishery managers in the Great Lakes. In

addition to the costs and logistical challenges associated with implementing control

options, considerable uncertainties exist in lamprey population dynamics and in control

option effectiveness. These uncertainties hinder the ability of scientists to forecast

management option performance and thus limit the ability ofdecision-makers to arrive at

well-informed decisions. In this paper, three methods for controlling the St. Marys River

sea lamprey population are considered: trapping, releasing sterilized males, and applying

Bayluscide. Performance of the management options is measured using forecasts of

future lamprey abundance, an economic net benefit statistic, and risk tolerance measures.

I found that uncertainty in lamprey population dynamics and in treatment option

effectiveness can have large effects on the forecasts of lamprey abundance. In addition,

the relative ranking of a particular management option depends on the performance

indicator used to evaluate it. Important tradeoffs exist between achieving management

objectives and the cost associated with achieving the management objective. Therefore

decision-makers will have to evaluate option performance in light of several performance

indicators. Incorporating uncertainty into St. Marys River sea lamprey management

decisions through decision analysis should improve the quality of the decisions used to

manage the system and increase the probability of achieving management objectives.
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Introduction

The field of statistical decision theory merges the concepts of utility and

subjective probability to quantitatively deal with management problems in the presence

of uncertainty (Raiffa and Schlaifer 1961, Morgan and Henrion 1990, Clemen 1996).

The method of decision analysis is the application of statistical decision theory to a

management decision problem, generally with the following components: a defined set

ofmanagement options available to the decision-maker, a listing of the alternative states

of nature and their associated probabilities which characterize the uncertainty in the

problem, a listing ofpossible outcomes resulting from the management options, and a

representation of the decision-maker’s utility for the outcomes. The relative merit of

each management option is determined by the decision-maker’s utility for the expected

outcomes.

Uncertainty is inherent in natural resource management decisions. Within the

field of fisheries, there is a grong trend towards incorporating uncertainty and risk in

the decision-making process (Hilbom et al. 1993). Rosenberg and Restrepo (1994) stress

the importance of estimating and communicating uncertainty to fishery managers, who

must weigh the benefits, costs, and risks of various management options. They note that

while many managed fisheries have incorporated elements ofuncertainty and risk

analysis, the advice resulting from these analyses needs to be expressed to decision-

makers in an effective manner. Providing fishery managers with a quantitative

evaluation of the potential consequences of alternative management actions is one ofthe

primary roles of stock assessment scientists (National Research Council Committee on

Fish Stock Assessment Methods 1998). Because fisheries management problems
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typically involve a complex system ofbiological and socio-economic objectives and

constraints, Lane and Stephenson (1998) contend that a conceptual change is necessary,

and fisheries management needs to move toward implementing integrated decision-

making systems where uncertainty is incorporated. When uncertainty is ignored, or

accounted for in an arbitrary fashion, sub-optimal decision options may be selected,

leading to outcomes such as unnecessary losses in yields or stock collapse (Frederick and

Peterman 1994). Achieving fisheries management goals is more likely when

uncertainties are acknowledged, quantified, and accounted for (Peterman et al. 1998).

Several researchers have applied the method of decision analysis to fisheries

management problems and found that uncertainty can affect both forecasts and optimal

decision-making. McAllister and Peterman (1992) used decision analysis to evaluate the

performance of experimental and status quo management strategies for pink salmon

(Oncorhynchus gorbuscha), while accounting for uncertainty in the cause ofdecreased

mean body weight. They concluded that the expected value ofthe experimental

management strategy was higher than that ofthe status quo under most conditions. Robb

and Peterman (1997) examined uncertainties in the stock-recruitment relationship, annual

recruitment, run timing, and catchability for a sockeye salmon (Oncorhynchus nerka)

fishery through a decision analysis. They found that the shape ofthe stock-recruitment

relationship had a large effect in determining the optimal management option. Hilbom et

al. (1994) use decision analysis to examine the performance of different quotas in the

presence of uncertainty in virgin stock size. Peterman et al. (1998) summarize three case

studies where decision analysis has been applied to fisheries management and
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recommend that uncertainty be included in the decision making process whenever

possible to improve the quality of management decisions.

In this paper I apply decision analysis to one of the major problems confronting

fishery managers in the Great Lakes region: controlling sea lampreys (Petromyzon

marinas) originating from the St. Marys River. The sea lamprey is an exotic fish specie

that has decimated fisheries in the Great Lakes through parasitism. The St. Marys River

is the primary source of sea lampreys in the Great Lakes. Because ofthe large number of

lampreys that are produced, mortality rates for several managed species (e.g., lake trout

and lake Whitefish) have risen above target levels. Although a substantial and effective

program exists for controlling sea lampreys in other tributaries to Great Lakes, the unique

characteristics ofthe St. Marys make the typical approaches for control inadequate.

Reducing the number of sea lampreys in northern Lakes Huron and Michigan is a high

priority for fisheries managers in the region.

There are several reasons why decision analysis represents a valuable tool to

assist managers who wish to control St. Marys River sea lampreys. First, managing the

St. Marys River sea lamprey population is one ofthe most important problems

challenging fisheries managers in the Great Lakes. Connecting Lake Superior to Lake

Huron, the St. Marys River has become the largest source ofparasitic sea lampreys in the

Great Lakes (Schleen 1992, Eshenroder et al. 1995). The St. Marys is believed to

produce more lampreys than all other tributaries to the Great Lakes combined. As a

result of the high number of sea lampreys in northern Lakes Huron and Michigan,

rehabilitation of lake trout (Salvelinus namaycush) has been difficult due to the predation

mortality imposed by lamprey in these areas (Sitar et al. 1999, Sitar et al. 1997,
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Eshenroder et al. 1995). Thus, the management problem is important enough to justify a

concerted effort in evaluating management options through decision analysis. Second,

major uncertainties exist regarding lamprey population dynamics and the effectiveness of

available management options. As noted above, decision analysis is specifically

designed to incorporate uncertainty into the decision-making process. Third, economic

constraints demand careful evaluation of all lamprey management decisions in the Great

Lakes. Spending too little on control ofthe St. Marys may result in foregone recovery of

lake trout in northern Lake Huron. Conversely, spending too much on the St. Marys

takes money away from assessment and control needs of other lamprey populations in the
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Great Lakes basin. Decision makers want and need to know the expected benefits of

directing funds at controlling the St. Marys population in order to properly allocate funds

available for control and assessment throughout the basin. Fourth, several well-defined

management options are and will be considered as alternatives, effectively bounding the

number of options available for consideration. Fifth, specific targets exist for lake trout

recovery and sea lamprey suppression in Lake Huron that provide indicators against

which the performance ofmanagement options can be judged. Each ofthese issues

argues for the application of decision analysis to the problem ofmanaging St. Marys

River sea lampreys.

In this paper we summarize our efforts to conduct a decision analysis on the St.

Marys River sea lamprey management problem. Our summary follows the main steps in

conducting a decision analysis: (1) Identifying alternative management actions; (2)

Specifying management objectives; (3) Identifying the uncertain states of nature; (4)

Assigning probabilities to the states ofnature; (5) Calculating outcomes with a simulation
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of the fishery; and (6) Using a decision analysis framework to evaluate management

options in terms ofperformance indicators.

Description of the System and Sea Lamprey Control

The St. Marys River is believed to be the primary source ofparasitic sea lampreys

in northern Lake Huron (Schleen 1992, Eshenroder et a1. 1995). The St. Marys River is

the outflow ofLake Superior, beginning at the lake’s eastern tip. After a distance of

roughly 40 km, the river flows into an area known as the North Channel ofLake Huron.

The river’s mean annual discharge is 2,140 m3/s, over 20 times the largest flow

previously treated with the chemical 3-t1ifluoromethyl-4-nitrophenol (TFM), the primary

method for controlling sea lampreys in the Great Lakes. The large size and high flow of

the St. Marys rendered conventional control methods inappropriate and new approaches

needed to be developed.

Anadromous in their original range, sea lampreys have a life history adapted to

living in the Great Lakes (Lawrie 1970). In late spring-early summer, adult sea lampreys

move up Great Lakes tributaries to spawn. During spawning, eggs are deposited into

nests. Viable eggs develop into larvae, which leave the nests but remain in the streambed

for a period of 3-17 years. Once they obtain sufficient size and energy reserves, they

undergo a process ofmetamorphosis from detrital to a parasitic feeding form. Following

metamorphosis, juvenile lampreys leave their natal stream to parasitically feed in the

Great Lakes. During this time they parasitize host species (e.g., lake trout, lake Whitefish,

salmonids) for a period of approximately 18 months, often causing death ofthe host.
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Sea lamprey life history characteristics are exploited to achieve population

control in the Great Lakes. Barrier dams and weirs are control methods designed to block

lamprey access to suitable spawning locations. Trapping of adults moving upstream is

also used to help control the number of spawning individuals. Releasing chemically

sterilized males into spawning populations is a control method used to interfere with

reproductive success. However, the primary method used to control lamprey populations

in the Great Lakes is the lampricide, TFM. This liquid chemical is applied to Great

Lakes tributaries to kill larval lampreys in the streambeds and has been very effective in

controlling lamprey populations. Another lampricide, the 2-aminoethanol salt of 2’,5-

dichloro-4’-nitrosalicylanilde (Bayluscide), achieves the same effect ofkilling larval

lampreys, but can be applied in the form ofdry granules. Because of this, Bayluscide can

be applied to small, specific areas ofhigh larval density, whereas TFM is applied at the

whole tributary level.

The sea lamprey control program in the Great Lakes is directed and coordinated

by the Great Lakes Fishery Commission (GLFC), a bi-national governmental

organization. In 1997 the GLFC adopted a control strategy for the St. Marys River that

included trapping adults, releasing sterilized males, and applying Bayluscide to

approximately 1000 ha of high-density larval habitat in the river during 1998 and 1999.

The decision to adopt this strategy was based on deterministic models presented to the

GLFC Commissioners that forecasted the effects of various management options along

with a cost-benefit analysis ofthose management options. An ongoing assessment

program is in place to evaluate the effects of this control strategy, but regardless of the
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outcome, future control decisions will be necessary. The decision analysis presented here

is intended to help inform decision-makers with these future decisions.

Conducting the Decision Analysis

Identifying alternative management actions

In May 1998, we convened a meeting of scientists, agency management

personnel, and other stakeholders to explain our decision analysis approach and identify a

list of alternative management actions that could be used to control St. Marys River sea

lampreys in the future. The group identified trapping, sterile male releases, and the

application of Bayluscide as the primary actions that could be used. There was

considerable interest in examining the effects ofvarious levels of use and timing ofthese

actions. The sterile male option relies on obtaining trapped animals from the St. Marys

and other Great Lakes tributaries. Because a large portion of the animals used in the

sterile male program comes from the St. Marys, the intensity ofthe sterile male release

technique (SMRT) is not independent ofthe intensity of trapping. Therefore the group

believed that different intensity levels of trapping and SMRT should be examined in

concert with each other. The group also argued that trapping (and therefore SMRT)

should be considered as a management action regardless ofwhether Bayluscide

applications are considered because of the relatively low costs associated with trapping

and the large capital investment of the traps currently in place. The intensity and timing

ofBayluscide applications are independent ofboth trapping and SMRT, and therefore

could be investigated at various intensity levels without defining a relationship between

Bayluscide and the other control actions. The option of treating the river with TFM was
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briefly discussed, but the group concluded that this potential action was cost prohibitive

and not likely to be effective as a future control technique.

Specifying management objectives

Defining the set ofmanagement objectives proved a more difficult challenge for

the group. Ultimately, they agreed that the goal of controlling lamprey populations in the

Great Lakes is to provide the opportunity for a healthy, productive fish community.

Restoring lake trout in northern Lakes Huron and Michigan is a particular concern, and
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 therefore some believed that creating self-sustaining lake trout populations should be a

management objective. However, issues ofcommercial and recreational fishing levels,

stocking levels, and the lack ofnatural spawning populations all affect lake trout

restoration separate from the issue of lamprey control. As a result of discussions on this

topic, the group agreed that while restoring lake trout was indeed a management goal, it

was too broad a topic to serve as a management objective in this particular instance.

Eventually, the group agreed on an objective ofreducing the number ofparasitic

sea lampreys in Lake Huron. Setting this as the objective implied that reducing the

number of lampreys would aid lake trout recovery efforts in Lake Huron. The group

discussed several ways to measure achievement of the objective by various management

options. The timing and magnitude of the reductions were regarded as important

components ofmeasuring performance, as well as the probability that a particular

management action will be successful in achieving the objective. Recent agreements

between the State ofMichigan and several Native American tribes have implicitly

established target levels for future lamprey abundance in Lakes Huron and Michigan.
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The group expressed an interest in using these targets as a measure of option

performance. Because greater reductions are generally associated with greater control

costs, some expressed an interest in incorporating economic factors such as the economic

injury level approach described by Koonce et al. (1993). We describe the specific details

of our methods for evaluating management option performance in light of the general

objective of lamprey suppression below. ' l

1

Identifying the uncertain states ofnature

 After discussing the uncertainties that could have effects on the St. Marys River

lamprey population, the group identified a set of critical uncertainties that needed to be

incorporated into the decision analysis. This exercise was important for narrowing the

large number of potential uncertainties down to a number manageable in a decision

analysis. The group identified two principal uncertainties. The first was uncertainty in

St. Marys River lamprey population dynamics, particularly the stock-recruitment

relationship. The group recognized that little is known about lamprey demographic rates,

their productivity, and their degree of compensation (i.e., larval density-dependence).

These uncertainties limit the ability to forecast the effects of implementing different

treatment options, especially those options that affect adults attempting to spawn (e.g.,

trapping and SMRT). The second major uncertainty identified by the group was

uncertainty in larval distribution. During 1993-1996, nearly 12,000 locations in the St.

Marys River were sampled to determine the distribution of larvae. The Bayluscide

treatment that took place in 1998 and 1999 only targeted areas identified as having high

larval densities based on the historical survey. The effectiveness of any Bayluscide
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treatment depends on the distribution of larvae in the river just prior to treatment, and any

differences due to spatial or temporal variability may reduce treatment effectiveness. The

group agreed that a characterization of this uncertainty would be critical for evaluating

the likely effects of Bayluscide treatments. To be consistent, the group agreed that

uncertainty in trapping and SMRT effectiveness should also be included in the decision

analysis. Similar to the larval distribution uncertainty, trapping and SMRT uncertainties

deal with implementation error. That is, how well will a control method actually perform

if it is selected? Thus, four uncertainties were identified to be included in the decision

analysis: demographic and stock-recruitment uncertainty, larval distribution uncertainty,

trapping uncertainty, and SMRT uncertainty.

Assigningprobabilities to the states ofnature

My first analytical task was to characterize the uncertainty in d-ographics and

the stock-recruit relationship for St. Marys River sea lampreys. In doing this, my first

objective was to develop sets ofparameter values that span the range ofvalues possibly

underlying the population dynamics of St. Marys River sea lampreys. In the terminology

of decision analysis, these sets ofparameter values are known as “alternative states of

nature.” From an ecological perspective, these sets represent alternative hypotheses

about the abundance and vital rates of this sea lamprey population.

The methods describing the quantification of the demographic and stock-recruit

uncertainty are presented in Chapter 1 of this dissertation. To summarize, I built an age-

structured population model that reflects the life history of St. Marys River sea lampreys,

utilizing six sources of data to fit demographic parameters. These demographic

84



parameters included time series of age-0 abundance from 1967 to 1996, initial age

composition in 1966, a constant larval natural mortality rate, two parameters describing

the probability of larval metamorphosis as a function of age, and a parameter describing

the proportion ofmetamorphosed juvenile lampreys that survive to maturity and return to

the St. Marys River to spawn. Using a nonlinear optimization program, I obtained the

parameter estimates that maximized the objective function (i.e., the set ofparameter

estimates that best fit the six data sources). I refer to this set ofparameters values as the
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modal posterior density (MPD) estimates.

To characterize demographic uncertainty, I used Monte Carlo Markov Chain

(MCMC) methods to obtain 1000 samples (each sample containing the full set of

demographic parameters) fi'om the approximate joint posterior distribution of the

demographic parameters. The 1000 samples were independent random samples from the

autocorrelated chain of 12,000 samples described in Chapter 1. With the resulting

parameter estimates, I reconstructed 1000 stock and recruitment data sets. The stock-

recruit data sets could be determined because the age-0 recruitrnents were estimated

parameters and the stock sizes could be calculated fiom the recruitment time series and

the demographic parameters. I characterized the stock-recruit uncertainty by estimating

parameters of a stock-recruit function for each data set. I then obtained estimates of (1;,

Bi, and 62; (i = 1, 2, ..., 1000) for a Ricker model of the form

R=Sexp(a—fl§+£) (1)

where R is the number of age-0 larvae produced, S is the number of female spawners that

produced R, and log (a) is distributed N (0, 02 ). I used the set of 1000 demographic

parameter estimates and the associated stock-recruit parameter estimates to characterize
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the uncertainty in St. Marys River lamprey population dynamics. The MPD combined

estimates represented the most likely state of nature, while the other sets represented

alternative (possible) states of nature. Because the HPD estimates are biased estimates of

the expected value for each of the parameters, I also consider a set of estimates that are

the means from each distribution ofparameter values (termed “average parameters”).

While the average parameters do not maintain the full covariance structure of the joint

posterior distribution, they may better approximate the central tendency ofthe joint

posterior than the maximum likelihood (HPD) estimates.

The second source of uncertainty to be characterized was the spatial and temporal

uncertainty in larval lamprey distribution and abundance. The principal objective in the

estimation of this uncertainty was to characterize the implementation uncertainty

associated with Bayluscide applications. In other words, how well will a Bayluscide

treatment perform if it is chosen as a management option in the future, given the spatial

and temporal variability in larval distribution and abundance?

The methods used to describe this uncertainty are presented in Chapter 2. I used

two spatially-referenced data sets containing information on larval distribution and

abundance. One data set contained the results of annual samples collected from small

index sites in the river. The other data set contained the results of an extensive, complete

sampling ofthe river that took place 1993-1996. Using the index site data, I estimated a

model that described the annual changes in abundance at individual sample locations

based on habitat quality at those locations, the measured abundance at those locations the

previous year, and the inverse distance-weighted average of abundance at neighboring

locations. I applied this model to the historic survey ofthe whole river to generate a
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series ofmaps representing the possible distribution and abundance of larvae in 1999, the

year of the major treatment of the St. Marys with Bayluscide. I then simulated the

application ofBayluscide to the simulated maps, and calculated the proportion of larvae

that would have been killed (i.e., treatment effectiveness) for each map. The distribution

of effectiveness values for a given level of treatment characterizes the implementation

uncertainty associated with different levels ofBayluscide applications.

The simulated values of the proportion killed at the highest level ofBayluscide

treatment appeared to be normally distributed with a mean of 0.57 and a standard

deviation of 0.04. Biologists with the St. Marys River Task Force separately estimated

the proportion killed at the level ofBayluscide treatment that was selected by the

decision-makers (i.e., a large-scale treatment) to be 0.55 (Bergstedt et al. 1998). The

empirical estimate for the actual proportion killed was 0.45 (Fodale et al., in review). I

assume that the variability about the mean proportion killed at the large—scale treatment

level would be similar to the variability about the realized proportion killed. Therefore I

characterize the implementation uncertainty associated with large-scale Bayluscide

treatments to be normally distributed with a mean of 0.45 and a standard deviation of

0.04.

The third source of uncertainty to be characterized was the implementation

uncertainty associated with trapping efficiency. During 1991-2000 the average trapping

efficiency (i.e., the proportion of the spawning population removed by trapping) in the St.

Marys River was nearly 40% (Figure 3.1). Annually, efficiencies ranged from 20% to

54%. Based on a histogram plot of these values, they appeared to come from a uniform

distribution. Therefore I characterize the implementation errors associated with trapping
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as unifomrly distributed from —18% to +18%. To characterize the implementation

uncertainty associated with a particular level of trapping, I take the target level and add a

randomly selected implementation error from the uniform distribution specified above.

In the decision analysis I only examine trapping levels of40% and 70%. Because the

errors come from a uniform distribution, each alternative state ofnature (i.e., combination

of target efficiency and implementation error) has equal probability.

The fourth source ofuncertainty to be characterized was the implementation

uncertainty associated with SMRT effectiveness. Biologists with the St. Marys River

Task Force have collected data on SMRT effectiveness in the St. Marys River 1992-

2000. Complications associated with estimating the number of spawners in 1997 resulted

in an unreliable estimate of SMRT effectiveness (Mike Twohey, personal

communication). Therefore, this year’s data was excluded from my analyses. The data

include an estimate of the ratio of sterilezfertile males in the spawning population based

on mark-recapture methods. For example, a sterilezfertile ratio of 3 implies that there are

3 sterilized males for every one fertile male in the spawning population. The theoretical

proportion ofviable eggs in a population where sterilized males compete with fertile

males can be estimated using the equation

V: 1

1+SFR

 

(2)

where PV is the proportion of eggs that is viable and SFR is the sterilezfertile ratio. Using

the example above, a sterilezfertile ratio of 3 would result in only 25% of the eggs being

viable.

In addition to the estimated SMRT ratio in the river, biologists with the Task

Force empirically estimated the annual PVby sampling spawning nests and comparing
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the number of viable eggs to the total number of eggs in the nests. Even in the absence of

sterilized males, nests showed viabilities of considerably less than 100% (43.4% is the

estimate for incomplete viability in the St. Marys River nests not visited by sterile males).

After adjusting for incomplete viability, for each year I calculated the SMRT ratio that

would have resulted in the empirical estimates for PVbased on the nest sampling.

Combining the two sources ofdata resulted in an estimated SMRT ratio based on mark-

recapture and an estimated SMRT ratio based on the egg viability sampling (Figure 3.2).

I then calculated the percent deviation of the SMRT ratio based on nest sampling from

the SMRT ratio based on mark-recapture (Figure 3.3). Essentially these values form an

estimate of the deviations from the assumed relationship (Equation 2) and form the

implementation error associated with SMRT. The mark-recapture SMRT ratio provides

an estimate of theoretical performance, while the egg viability SMRT ratio provides an

estimate of actual performance (i.e., the reduction in viability). A regression of the

percent deviation versus the mark-recapture ratio did not reveal a slope significantly

different fi'om zero, indicating that the errors did not follow a trend over the range ofthe

mark-recapture ratios. However, I was unable to determine the distribution of the errors.

Therefore I assumed that the observed errors define the distribution and rely on

bootstrapping to quantify the implementation uncertainty associated with a target level

for SMRT. Operationally, I would take the target ratio and multiply it by a randomly

sampled percent deviation (sampled using bootstrapping with replacement) to calculate

the PV associated with a given target for the SMRT ratio.
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Calculating outcomes with a simulation ofthefishery

I used a simulation model, similar to the demographic parameter estimation

model, to forecast future abundance ofparasitic sea lamprey in Lake Huron. Whereas the

parameter estimation model (Chapter 1) was utilized for reconstructing historic

population dynamics, the simulation model was used to forecast future population

dynamics in light of the uncertainties identified above and the effects of different control

options.

The simulation model shared the same age-structure characteristics and life-

history basis as the parameter estimation model. I modeled larvae ages 0-6 in the St.

Marys River with age-specific abundance determined by the previous year’s abundance

minus losses due to natural mortality and emigration (i.e., metamorphosis). Larvae ages

4-6 underwent the process ofmetamorphosis according to the estimated parameters that

define the probability of metamorphosis as a function of age. Juvenile (newly

metamorphosed) lampreys that leave the river in any particular year form the parasitic

population the following year, plus an addition of 30,000 parasites fi'om other Lake

Huron tributaries. In the next year, a proportion of the.total Lake Huron parasitic

population migrates to the St. Marys River to spawn. Trapping reduces the number of

female spawners, which produce age-0 recruits according to the parameters ofthe Ricker

stock-recruit relationship. The number ofviable age-0 recruits .is determined by the

SMRT ratio, if SMRT is selected as a treatment option. If Bayluscide is selected as a

treatment option, then a portion (45% +/- the Bayluscide implementation error) of the

larval population is removed during the year of application.
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Some calculations were necessary to set up the initial conditions, defined as the

abundance of lampreys in the river and Lake Huron in 2000. The initial conditions were

calculated for each of the 1000 demographic parameter sets, termed “demographic

models.” Each demographic model was associated with an estimate ofthe larval age

composition in 1996. The numbers of age-0 recruits for 1997-2000 were determined by

the stock-recruit parameters for each demographic model and the empirical estimates of

the number of spawning lamprey present in each of those years. The stock-recruit

parameters and the forecasted number of spawners determined recruitment subsequent to

2000. In setting up the initial conditions, I incorporated the estimated effects ofthe

Bayluscide treatments that took place during 1998 and 1999.

As mentioned earlier, one of the 1000 demographic models represented the modal

posterior density estimates for the demographic parameters underlying sea lamprey

population dynamics. I designed the simulation model in such a way that forecasts could

be generated using only this model or using all 1000 demographic models. The

timeframe considered in the simulation model forecasts was year 2001 through 2030.

Using a decision analysisframework to evaluate management options

To evaluate the performance ofmanagement options under uncertainty, I

incorporated the four uncertainties described above into a decision analysis fiarnework.

Figure 3.4 offers a depiction of this framework in the form ofa decision tree.

Uncertainties are represented by the circular “uncertainty nodes” while alternative

management options arise out of the square management options box. Outcomes

(defined here as abundance of lamprey in Lake Huron 2001-2030) are calculated for each
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branch arising fiom the uncertainty nodes and for each management option. A Monte

Carlo approach is used to obtain sample values at each of the uncertainty nodes. Values

at these nodes are sampled according to their probability distribution defined above.

Based on the management options under consideration, individual uncertainties

may or may not be included in the outcome calculations. For example, to implement no

control is one potential management option. To calculate the range of possible outcomes

associated with no control, I simply calculate lamprey trajectories sampling the

demographic model uncertainty distribution. When trapping and SMRT options are

under consideration, I calculate lamprey trajectories sampling the range of trapping

uncertainty, SMRT uncertainty, and demographic model uncertainty. Likewise, all four

uncertainties are sampled for management options that consider trapping, SMRT, and

Bayluscide applications.

Measuring the performance of any management option depends critically upon

the utility decision-makers have for the various performance indicators provided.

Different performance indicators will be more meaningful to individual decision-makers

than other performance indicators. Determining which management option is “optimal”

may depend on which performance indicator is chosen. A management options that

maximizes one performance indicator may minimize other performance measures. The

decision to choose a particular management option will almost invariably involve trade-

offs in the performance measures. In this decision analysis, the management objective

was to reduce the number ofparasitic sea lamprey in Lake Huron. I attempted to provide

a suite ofperformance indicators from which individual decision-makers could choose

indicators that they believed to be most meaningful. The indicators fall into three general
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categories: abundance trajectories, economic cost/benefit rankings, and risk-tolerance

measures.

Abundance trajectories represent trends in the abundance ofparasitic sea lamprey

in Lake Huron over time. The principal type of abundance trajectory that I used was the

average parasitic abundance. To calculate this trajectory, I averaged, by year, the

individual outcomes across realizations of the uncertain states ofnature for each

management option under consideration. The values in this trajectory represent how

many parasitic lampreys would be present in Lake Huron in any particular year, on

average. The second type of abundance trajectory that I used was the median parasitic

abundance. To calculate this trajectory, I estimated the median abundance, by year,

across realizations of the uncertain states ofnature for each management option under

consideration. By definition, half of the outcomes associated with the management

option were above the year-specific median value and halfwere below. Differences exist

between the implications associated with using the median versus using the average

abundance. Individual decision-makers may prefer one over the other in evaluating

management option performance.

For sea lamprey management, there will always be a tradeoffbetween the benefits

and costs of control. The most effective management options, in terms of suppressing the

population by the greatest amount, are also the most expensive. Following the tenets of

integrated pest management, the aim of the sea lamprey control program has been to

achieve a level of control that maximizes the difference between benefits and costs. My

second type ofperformance indicator attempts to examine this tradeoffbetween benefits

and costs.
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When the GLFC Commissioners chose the control strategy for the St. Marys

River, they were supplied with graphs that depicted the relative abundance of lamprey

over time for each management option, along with its associated cost (Figure 3.5). In the

end, they chose to go with the most effective option (in terms ofreducing lamprey by the

greatest amount in the shortest period of time), but it was also the most expensive option

available. I contend that this decision provides insight to the value the decision-makers

held for reducing lamprey. A simple way to look at benefits is through the equation

Net benefit = Outcome "' Value — Cost (3)

I assume that the decision-makers implicitly evaluated the net benefits associated with

each of the different treatment options, and chose the option with the greatest net benefit.

In this case, the outcome was the relative reduction in parasitic abundance and the cost

was the amount ofmoney that the option required for implementation. The only

unknown is the value that the decision-makers held for reductions in lamprey.

One way to solve for this unknown is to examine the problem using the concept

of implied value. Because the decision-makers chose the most expensive option

presented for consideration over options that were also effective (albeit to a lesser

degree), this suggests that the decision-makers associated a high value with lamprey

reductions. By substituting different dollar amounts for the value unknown in the net

benefit equation above, we can estimate the minimum dollar value where the net benefit

for the most expensive treatment option exceeds the net benefit for the next most

expensive treatment option. The value at which this occurs is termed the implied value.

Values higher than the implied value increase the difference in net benefit between the

most expensive and next best treatment options. Therefore the implied value represents a
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minimum value that the decision-makers held for lamprey reductions in order to justify

choosing the most expensive treatment option.

Discussions with the decision-makers revealed that they were mainly concerned

with the performance of the management options over a 15 year period (Gavin Christie,

personal communication). In addition, they preferred options that reduced lamprey faster

over options that reduced lamprey by the same amount, but over a longer period of time.

This difference in preference as a function oftiming implies that the decision-makers

were employing some sort of discounting. That is, immediate benefits were valued

higher than benefits deferred into the future.

To calculate an implied value that the decision-makers may have used, I estimated

the net benefits associated with the two most expensive treatment options considered in

1997. The more expensive option consisted of a 40% rate of trapping, a 2.8 SMRT ratio,

and removing 55% of the larvalpopulation with Bayluscide. The next most expensive

option consisted of a 40% rate of trapping and a 2.8 SMRT ratio (Figure 3.5). Using the

same graph as was presented to the decision-makers in 1997 (Figure 3.5) and my estimate

ofthe number ofparasites present in 1997, I calculated the discounted, 15-year total

reduction in parasitic lamprey for both treatment options as compared to no control. I

used a discount rate of6% and a 1997 parasitic abundance of 500,000 lampreys (a

reasonable number based on my model estimates). By substitution, I determined that the

implied value was $15.65 per additional lamprey removed by control. Values greater

than this amount had a higher net benefit for the most expensive treatment option

(trapping, SMRT, and Bayluscide application) than the alternative treatment option

(trapping and SMRT). With an estimate ofthe implied value, net benefits of firture
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management options can be estimated in a similar fashion. The net benefit calculation

forms my cost/benefit performance indicator for the different treatment options.

The final group ofperformance indicators is risk-tolerance measures. As a result

of the negations between the State of Michigan and several Native American tribes

regarding treaty-related fishing rights (termed the “Consent Agreement”), there are

implied targets for reductions in lamprey abundance in Lake Huron for the years 2006

and 2012. These targets are proportional to the average abundance of lamprey in Lake

Huron during 1998-2000. My estimate for average abundance during this time period is

658,000. The Consent Agreement implies lamprey abundance targets of 183,000 in 2006

and 114,000 in 2012. As a performance indicator, for each management option I

calculate the proportion of cases where the outcomes are at or below the Consent

Agreement targets established for 2006 and 2012. These proportions represent an

estimate of the probability that the targets will be achieved by the management options

under consideration. In a related measure ofrisk-tolerance, I graph the probability of

being below a range ofparasitic abundances in the years 2012 and 2030. These graphs

provide indications ofperformance based on the risk of exceeding various levels of

parasitic abundance for the management options under consideration.

Simulation details and management option notation

Within the simulation model, a standard run consisted of 100,000 30-year

forecasts for each management option. This total number is the result of 100 realizations

ofthe stock-recruit process error term for each ofthe 1,000 demographic models (100 *
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1,000 = 100,000). Each forecast randomly samples the distributions of the

implementation uncertainties defined above when applicable.

Three options are available for controlling sea lampreys from the St. Marys River:

trapping, SMRT, and Bayluscide applications. The objective of this decision analysis is

to compare different levels of use and timing for these control options. I considered nine

options and use a shorthand notation to refer to these options (Table 3.1). The notation

consists ofthe proportion removed by trapping followed by a “/”, the target SMRT ratio

followed by a “I”, and the proportion of the larval population removed by Bayluscide

followed by the timing ofthe Bayluscide applications.

Costs for the various treatment options were estimated using the data contained in

Bergstedt et al. (1998). A linear regression was fit to the costs for three levels ofSMRT

(0.67, 2.77, and 3.8) and was extended to predict the costs associated with SMRT ratios

of4:1 and 7:1. The cost of a high level of trapping (70%) was based on expert opinions

(St. Marys River Decision Analysis Workshop, April 2425, 2001). To provide a relative

measure of the total costs associated with the treatment options, costs were annualized

over the thirty-year period considered in this study. When estimating net benefits for the

treatment options, both the costs and benefits (the reduction in the number of lamprey

compared to no control) were discounted. I used a discount rate of 6%.

Results

The results ofthe simulations that included all ofthe defined uncertainties and all

of the treatment options revealed several interesting patterns (Figure 3.6). As expected,

maximum population suppression was associated with the most expensive treatment
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option (0.7 / 7 / 0.45 every 4, 2004-2030). However, options that included trapping at

70% and a SMRT ratio of 7 performed nearly as well, even without the application of

Bayluscide (e.g., 0.7 / 7 / 0). Options that included trapping at 40% and a SMRT ratio of

4 displayed relatively poor performance, with the exception ofthe 0.4 / 4 / 0.45 every 4,

2004-2030 option. But even the worst option (0.4 / 4 / 0) was able to achieve suppression

levels that were, on average, 50% ofthe no control levels.

The results presented in Figure 3.6 incorporate the effects of all the uncertainties

that were considered in this decision analysis. When I examined the uncertainties

individually, I found that not all uncertainties affect the average number of parasites over

time. Average trajectories for treatment options where uncertainties were characterized

using symmetrical distributions (i.e., the trapping uncertainty and the Bayluscide

uncertainty) did not differ fi'om average trajectories where these uncertainties were

ignored. However, uncertainty did make a difference in the average trajectories when an

asymmetric distribution was used to characterize the uncertainty (i.e., the demographic

uncertainty and the SMRT uncertainty).

Figure 3.7 shows the forecasted trajectories for no control and low levels of

trapping and SMRT, with and without uncertainty in trapping and SMRT. The

differences between those simulations with uncertainty and those without are due to the

asymmetric distribution that was used to characterize SMRT effectiveness (Frederick and

Peterman 1994). The asymmetry is due to the differences between observed and

theoretical SMRT effectives, and is a combination ofprocess error and model error. The

process error is a result ofnatural variability in the underlying relationship while the

model error is a result of not having the correct model describing how SMRT ratios
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translate into reductions in viable eggs. Of the seven estimates ofthe SMRT percent

deviation, five are negative (Figure 3.3). When these negative deviations are randomly

selected through bootstrapping, the predicted effectiveness of SMRT is reduced and

therefore greater lamprey abundances would be forecasted.

Figure 3.8 shows the forecasted trajectories for the no control management

option, using various descriptions ofthe demographic uncertainty. When I assume that

only the maximum likelihood model (the MPD model) describes the stock-recruitment

relationship and the associated demographic rates, trajectories are lower than when I

consider all models. Using the “average parameters” set is a better approximation to the

firll uncertainty (all models) results, but is biased low beyond year 2015. These effects

are due to a complex asymmetry in the parameters describing the demographic

uncertainty. Allowing for demographic uncertainty results in less optimistic forecasts of

lamprey abundance than if the MPD or average parameters models are used.

The results ofthe simulations are also dependent upon the statistic used to

measure central tendency. The distribution of abundance forecasts within most years

showed positive skewness. This observation is reflected in Figure 3.9, where the mean

and median forecasts are compared for a no control option and a 0.4 / 4 / 0 option. The

mean forecasts for the no control option approach 570,000 whereas the median forecasts

approach 270,000. Similarly, the mean ofthe 0.4 / 4 / 0 option forecasts is around

490,000 whereas the median forecast values lie around 130,000. With positively skewed

distributions, the mean is greater than the median. The median may be a more useful

indicator ofperformance than the mean for decision-makers concerned with the
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frequency ofhigh and low abundances, but not so much concerned with the average

abundance across simulations.

By calculating the mean net benefits associated with each option, I was able to

rank the options and examine the sensitivity of this ranking to alternative assumptions of

the implied value, the time horizon, and the discount rate (Table 3.2). Option 5 was

generally ranked highest over the range of assumptions examined within the sensitivity

analysis. Option 6 was also ranked highly and was ranked highest for my approximation

ofthe values, time horizon, and discount rate associated with the 1997 decision by the

GLFC Commissioners. The 0.4 / 4 / 0 option ranked lowest across all assumptions.

However, there is considerable variation and overlap in the net benefits across

simulations for the treatment options (Figure 3.10). While there are slight differences in

the mean net benefits for each treatment option (Table 3.2), the variation in net benefits

across simulations is large, making the differences in mean option performance

negligible.

In terms of achieving the Consent Agreement targets for lamprey abundance,

several ofthe options show a high probability of success (Table 3.3). While option 7 had

the highest chance ofmeeting both targets, option 6 also showed a high probability of

success. With no control, there is a 50% chance ofmeeting the 2006 target, but only a

18% chance ofmeeting the 2012 target. Option 4 had a high probability of meeting the

2006 target at relatively low cost. Interestingly, option 9 (the most expensive option) did

not perform much better (in terms ofmeeting the Consent Agreement goals) than option

5, at half the cost.
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Another way to view these same results is presented in Figure 3.11. The x-axis

represents the number of parasites in 2012 while the y-axis represents the proportion of

simulation cases where the parasitic abundance was less than the values on the x-axis.

The vertical arrow marks the location of the Consent Agreement target for 2012. For

example, there is a 60% chance of less than 200,000 parasites in 2012 when the 0.4 / 4 / 0

option is selected. The y-values at the intersections of the vertical arrow with the lines

representing the treatment options are the same as those values listed in Table 3.3.

Similarly, Figure 3.12 shows the chances of exceeding parasite abundances in 2030 for

the different treatment options. Notice that over a longer time fiame, the performance of

a Bayluscide application in 2004 does not differ fiom relying only on trapping and SMRT

at the same levels.

Discussion

Over the last decade the sea lamprey control program has moved towards

incorporating greater quantitative rigor into their assessment and treatment activities.

The St. Marys River provides an excellent example ofthe use of quantitative methods

and assessment tools to address the problems confronting natural resource management.

When it became apparent that something needed to be done about sea lampreys in the St.

Marys River, a Task Force was formed and began the long process of identifying and

addressing the most critical knowledge gaps about the system. Through the studies that

followed, knowledge about the system grew tremendously. When the time arrived for

decision-makers to evaluate alternative control strategies, scientists and agency personnel
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were well prepared to communicate their best estimates of treatment option performance

(Bergstedt et al. 1998).

This decision analysis represents the next logical step along the road ofproviding

decision-makers with the information necessary to make good decisions. The problem of

the St. Marys River will persist and future strategic decisions will be necessary. The

decision analysis that I have presented in this paper serves as a tool that can be used to

investigate the expected performance of alternative control strategies in the presence of

uncertainties in demographic rates and in management option implementation. Although

the GLFC did consider uncertainty when evaluating the decision options in 1997, it was  
done subjectively (Bergstedt et al. 1998). In the presentation of each management

option, the GLFC provided a qualitative assessment ofthe uncertainty associated with it.

This uncertainty assessment likely influenced the decision-maker’s evaluation of the

treatment options under consideration. The decision analysis that I present forrnalizes

and quantifies that uncertainty assessment. I have also presented several indicators that

can be used by decision-makers to evaluate the performance of alternative management

options. Both of these features of a decision analysis should help decision-makers to

consider the trade-offs when choosing a strategy that best meets their objectives.

One important issue to be recognized when using this decision analysis is the

feasibility of achieving the targeted levels for the control methods. In the analyses, I

assumed that the control agents would be able to achieve the specified levels and timing

of trapping, SMRT, and Bayluscide applications. Based on the recommendations and

knowledge ofmanagement personnel, I limited the range of control effort to that which

realistically could be achieved. However, up to this point in time, the control program
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has not been able to trap 70% of the spawning population, or implement a 7:1 SMRT

ratio. Likewise, removing 45% of the larvae with Bayluscide every two years may be

difficult to achieve. As the number of larvae in the river is reduced, more area may need

to be treated to achieve the target control level. Issues such as this are not reflected in the

analysis because I assume that the specified treatment levels and timing are achieved,

albeit with some measure of error, when evaluating option performance.

Another important issue is the limitation of the net benefit calculations. The

implied value that I calculated was based on the 1997 decision. It is not the same as the

economic injury level proposed by Koonce et a1. (1993) and should not be construed as a

true economic value for lamprey suppression. It served as a first approximation for the

values that decision-makers apparently held for comparisons among a limited set of

management options. A more comprehensive analysis ofthe economic values associated

with sea lamprey reductions (and lake trout restoration) is ultimately needed to properly

exarninine management option performance.

One important finding of this study was the degree of overlap in the range of

estimated net benefits among treatment options. While certain treatment options may

perform better on average (in terms ofmaximizing the average net benefit), the high

amount of overlap in net benefits among decision options suggests that these differences

are small relative to their variability. The variability in net benefits may itselfbe an

important consideration for decision-makers, however. An option that has less variability

in net benefits but a lower average value may be preferable to an option with more

variability and a higher average value. Preferences regarding this variation around the
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mean values relate to the economic risk tolerances of the decision-maker. In spite of this,

economic considerations may not strongly influence decision-maker choices.

The parameter estimates and model relationships that I used in this project

represent a summary of our current understanding of lamprey demographics and control

method effectiveness. However, the decision analysis model that I developed is a

flexible one that can be re-parametcrized as new information becomes available. Each of

the uncertainties that I considered includes a combination ofprocess error, model error,

and measurement error. Of these three types, both model error and measurement error

can be reduced by scientific investigations. If the costs and benefits ofthese

investigations can be estimated, then this decision analysis model can be used for

prioritizing future studies aimed at reducing uncertainty using “value of information”

calculations (Morgan and Henrion 1990). This model could also be used for examining

adaptive management opportunities (Walters 1986). By altering the number of spawners

through trapping and SMRT and observing the effects on recruitment, it may be possible

to learn about the shape of the underlying stock-recruitment relationship for St. Marys

River sea lampreys (Smith and Walters 1980). However, the high variability in

recruitment for sea lamprey (see Chapter 1) may hinder learning about the stock-

recruitrnent relationship for this population (I-Iinrichsen 2001).

Similar to the findings ofRobb and Peterman (1997), I found that uncertainty in

the stock-recruit relationship affected the forecasts ofparasitic abundance. In addition, I

found that uncertainty in SMRT effectiveness affected forecasts. Ignoring these two

uncertainties would have resulted in more optimistic forecasts ofparasitic abundance

than forecasts that ignored these uncertainties. As a general recommendation, it appears
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that stock-recruitment uncertainty should routinely be included in the evaluations of

fishery management options. When other asymmetric uncertainties affect forecasts (as

with SMRT), then these uncertainties should be incorporated as well.

The sea lamprey population of the St. Marys River will continue to present

challenges for Great Lakes fishery managers. The analysis presented in this dissertation

should help managers as they consider the risks associated with alternative control

strategies. The development ofthese decision and simulation models represents an

incremental step forward. As knowledge about the system and the processes that govern

its dynamics advances, these models can and should be revised to reflect changes in

understanding. Hopefirlly, as the models improve, decision-making will also improve,

and a healthier Great Lakes ecosystem will be the result.

Acknowledgements

John Netto provided valuable assistance in programming the simulation model

used to conduct the decision analysis.

105



References

Bergstedt, R.A. and eleven coauthors. 1998. St. Marys River Assessment Plan. Great

Lakes Fishery Commission, Ann Arbor, MI. 37 pp.

Clemen, RT. 1996. Making hard decisions: an introduction to decision analysis.

Duxbury Press, Pacific Grove, CA.

Eshenroder, R.L., N.R. Payne, J.E. Johnson, C. Bowen' H, and M.P. Ebener. 1995. Lake

trout rehabilitation in Lake Huron. Journal of Great Lakes Research 21(Supplement

l):108-127.

Fodale, M.F., R.A. Bergstedt, D.W. Cuddy, and J.V. Adams. In review. Planning and

executing a lampricide treatment ofthe St. Marys River using georeferenced data.

Submitted to the Journal of Great Lakes Research.

Frederick, SW. and RM. Peterman. 1994. Choosing fisheries harvest policies: when

does uncertainty matter? Canadian Journal of Fisheries and Aquatic Sciences 52:291-

306.

Haeseker, S.L., M.L. Jones, and J.R. Bence. In review. Estimating uncertainty in the

stock-recruit relationship for St. Marys River sea lampreys. Submitted to the Journal of

Great Lakes Research.

Haeseker, S.L. and ML. Jones. In prep. Quantifying the spatial and temporal

uncertainty in the abundance of larval lamprey and its effect on chemical treatment

success in the St. Marys River.

Hilbom, R., E.K. Pikitch, and RC. Francis. 1993. Current trends in including risk and

uncertainty in stock assessment and harvest decisions. Canadian Journal of Fisheries and

Aquatic Sciences 50:874—880.

Hilbom, R., E.K. Pikitch, and MK. McAllister. 1994. A Bayesian estimation and

decision analysis for an age-structured model using biomass survey data. Fisheries

Research 19:17-30.

Hinrichsen, R.A. 2001. High variability in spawner-recruit data hampers learning.

Canadian Journal ofFisheries and, Aquatic Sciences 58:769-776.

Koonce, J.F., R.L. Eshenroder, G.C. Christie. 1993. An economic injury level approach

to establishing the intensity of sea lamprey control in the Great Lakes. North American

Journal ofFisheries Management 13:1-14.

Lane, DE, and R.L. Stephenson. 1998. A fiarnework for risk analysis in fisheries

decision-making. ICES Journal ofMarine Science 55:1-13.

106



Lawrie, AH. 1970. The sea lamprey in the Great Lakes. Transactions of the American

Fisheries Society 99:766z775.

McAllister, M.K., and RM. Peterman. 1992. Decision analysis of a large-scale fishing

experiment designed to test for a genetic effect of size-selective fishing on British

Columbia pink salmon (Oncorhynchus gorbuscha). Canadian Journal of Fisheries and

Aquatic Sciences 49:1305-1314.

Morgan, M.G. and M. Henrion. 1990. Uncertainty: a guide to dealing with uncertainty

in quantitative risk and policy analysis. Cambridge University Press, Cambridge, UK.

.National Research Council Committee on Fish Stock Assessment Methods. 1998.

Improving fish stock assessments. National Academy Press, Washington, DC.

Peterman, R.M., C.N. Peters, C.A. Robb, and SW. Frederick. 1998. Bayesian decision

analysis and uncertainty in fisheries management. In Reinventing Fisheries Management,

Pitcher, T.J., P.J.B. Hart, and D. Pauly, editors. Kluwer Academic Publishers, The

Netherlands.

Raiffa, H. and R. Schlaifer. 1961. Applied statistical decision theory. Harvard

University, Boston, MA.

Robb, CA. and RM. Peterman. 1997. Application of Bayesian decision analysis to

management of a sockeye sahnon (Oncorhynchus nerka) fishery. Canadian Journal of

Fisheries and Aquatic Sciences 55:86-98.

Rosenberg, A.A. and V.R. Restrepo. 1994. Uncertainty and risk evaluation in stock

assessment advice for US. marine fisheries. Canadian Journal of Fisheries and Aquatic

Sciences 51:2715-2720.

Schleen, LP. 1992. Strategy for control of sea lampreys on the St. Marys River, 1992-

95. Great Lakes Fishery Commission, Ann Arbor, Michigan.

Sitar, S.P., J.R. Bence, J.E. Johnson, and W.W. Taylor. 1997. Sea lamprey wounding

rates on lake trout in Lake Huron, 1984-1994. Michigan Academician 29221-37.

Sitar, S.P., J.R. Bence, J.E. Johnson, M.P. Ebener, W.W. Taylor. 1999. Lake trout

mortality and abundance in southern Lake Huron. North American Journal of Fisheries

Management 19:881-900. -

Smith, A.D., and C.J. Walters. 1980. Adaptive management of stock-recruitment

systems. Canadian Journal of Fisheries and Aquatic Sciences 38:690-703.

Walters, C.J. 1986. Adaptive Management ofRenewable Resources. Macmillian, New

York, New York.

107



108

T
a
b
l
e

3
.
1
A

l
i
s
t
i
n
g
o
f
t
h
e
n
i
n
e
m
a
n
a
g
e
m
e
n
t
o
p
t
i
o
n
s
u
n
d
e
r
c
o
n
s
i
d
e
r
a
t
i
o
n

i
n
t
h
e
d
e
c
i
s
i
o
n
a
n
a
l
y
s
i
s
a
l
o
n
g
w
i
t
h
t
h
e
s
p
e
c
i
fi
c
l
e
v
e
l
s
a
n
d

t
i
m
i
n
g
a
s
s
o
c
i
a
t
e
d
w
i
t
h
e
a
c
h

c
o
n
t
r
o
l
m
e
t
h
o
d
.

O
p
t
i
o
n
N
u
m
b
e
r

s-NC‘OV'IOCDNQO)

M
a
n
a
g
e
m
e
n
t
O
p
t
i
o
n

N
o

c
o
n
t
r
o
l

0
.
4
I
4

I
0

0
.
7

I
7

I
0

0
.
4

I
4

/
0
.
4
5
o
n
c
e

i
n
2
0
0
4

0
.
7

I
7

I
0
.
4
5
o
n
c
e

i
n
2
0
0
4

0
.
4

I
4

I
0
.
4
5
e
v
e
r
y
2
,
2
0
0
3
-
2
0
0
9

0
.
7

I
7

I
0
.
4
5
e
v
e
r
y
2
,
2
0
0
3
-
2
0
0
9

0
.
4

I
4

I
0
.
4
5
e
v
e
r
y
4
,
2
0
0
4
-
2
0
3
0

0
.
7

I
7

I
0
.
4
5
e
v
e
r
y
4
.
2
0
0
4
-
2
0
3
0

T
r
a
p
p
i
n
g
r
a
t
e

0
.
0
0

0
.
4
0

0
.
7
0

0
.
4
0

0
.
7
0

0
.
4
0

0
.
7
0

0
.
4
0

0
.
7
0

S
M
R
T

r
a
t
i
o

0
.
0

4
.
0

7
.
0

4
.
0

7
.
0

4
.
0

7
.
0

4
.
0

7
.
0

P
r
o
p
o
r
t
i
o
n

k
i
l
l
e
d

w
i
t
h
B
a
y
l
u
s
c
i
d
e

0
.
0
0

0
.
0
0

0
.
0
0

0
.
4
5

0
.
4
5

0
.
4
5

0
.
4
5

0
.
4
5

0
.
4
5

T
i
m
i
n
g
o
f

B
a
y
l
u
s
c
i
d
e
a
p
p
l
i
c
a
t
i
o
n
s

N
I
A

N
/
A

N
I
A

o
n
c
e

i
n
2
0
0
4

o
n
c
e

i
n
2
0
0
4

e
v
e
r
y
2
y
e
a
r
s
,
2
0
0
3
-
2
0
0
9

e
v
e
r
y
2
y
e
a
r
s
,
2
0
0
3
-
2
0
0
9

e
v
e
r
y
4
y
e
a
r
s
,
2
0
0
4
-
2
0
3
0

e
v
e
r
y
4
y
e
a
r
s
,
2
0
0
4
-
2
0
3
0



109

T
a
b
l
e

3
.
2
.
A
v
e
r
a
g
e
n
e
t
b
e
n
e
fi
t
s
(
o
v
e
r

a
l
l
s
i
m
u
l
a
t
i
o
n
s
)
a
s
s
o
c
i
a
t
e
d
w
i
t
h
t
h
e
e
i
g
h
t
a
c
t
i
v
e
t
r
e
a
t
m
e
n
t
o
p
t
i
o
n
s
a
c
r
o
s
s
a
r
a
n
g
e
o
f
a
s
s
u
m
e
d

v
a
l
u
e
s
f
o
r
t
h
e
i
m
p
l
i
e
d
v
a
l
u
e
,
t
h
e
t
i
m
e
h
o
r
i
z
o
n
,
a
n
d
t
h
e
d
i
s
c
o
u
n
t

r
a
t
e
.
T
h
e
r
a
n
k
f
o
r
e
a
c
h
t
r
e
a
t
m
e
n
t
o
p
t
i
o
n

i
s
l
i
s
t
e
d

i
n
s
u
p
e
r
s
c
r
i
p
t

n
e
x
t
t
o
t
h
e
c
a
l
c
u
l
a
t
e
d
a
v
e
r
a
g
e
n
e
t
b
e
n
e
f
i
t
f
o
r
e
a
c
h
s
e
t
o
f
a
s
s
u
m
p
t
i
o
n
s
.

g
a
t
i
o
n
N
u
m
b
e
r

2 ”VIDCDNQO)

M
a
n
a
g
e
m
e
n
t
O
p
t
i
o
n

0
.
4

I
4

I
0

0
.
7

I
7

I
0

0
.
4

I
4

I
0
.
4
5
o
n
c
e
2
0
0
4

0
.
7

I
7

I
0
.
4
5
o
n
c
e
2
0
0
4

0
.
4

I
4

I
0
.
4
5
e
v
e
r
y
2
,
2
0
0
3
-
2
0
0
9

0
.
7

I
7

I
0
.
4
5
e
v
e
r
y
2
,
2
0
0
3
-
2
0
0
9

0
.
4

I
4

/
0
.
4
5
e
v
e
r
y
4
,
2
0
0
4
-
2
0
3
0

0
.
7

I
7

I
0
.
4
5
e
v
e
r
y
4
,
2
0
0
4
-
2
0
3
0

I
m
p
l
i
e
d
v
a
l
u
e
:

T
i
m
e
h
o
r
i
z
o
n

(
y
r
s
)
:

D
i
s
c
o
u
n
t

r
a
t
e
:

A
n
n
u
a
l
i
z
e
d
c
o
s
t
(
o
v
e
r
3
0

y
r
s
.
)

$
4
0
0
,
0
0
0

$
8
5
1
,
0
0
0

$
5
3
9
,
0
0
0

$
9
9
0
,
0
0
0

$
9
5
6
,
0
0
0

$
1
,
4
0
7
,
0
0
0

$
1
,
3
7
3
,
0
0
0

5
1
,
8
2
4
,
0
0
0

5
1
5
.
6
5

1
5

0
.
0
6

1
3
.
4
“

1
6
.
0
7

1
6
.
9
“

1
8
.
3
2

1
8
.
3
‘

1
6
.
4
“

1
7
.
7
“

1
6
.
7
“

 

$
1
5
.
6
5

3
0

0
.
0
6

2
9
.
4
“

3
8
.
0
“

3
3
.
6
7

4
0
.
7
‘

3
7
.
6
“

4
0
.
2
2

3
8
.
0
“

3
8
.
4
3

$
1
5
.
6
5

1
5 0

N
e
t
B
e
n
e
f
i
t

(
i
n
m
i
l
l
i
o
n
s
$
)

2
5
.
1
“
r

3
1
.
6
7

3
1
.
6
“

3
6
.
1
2

3
6
.
8
‘

3
5
.
4
“

3
4
.
3
“

3
4
.
2
“

$
1
5
.
6
5

3
0 O

8
6
.
5
“

1
1
6
.
2
“

9
5
.
6
7

1
2
1
.
9
“

1
0
9
.
5
“

1
2
5
.
3
1

1
1
3
.
4
“

1
1
8
.
0
3

5
1
2
.
6
5

1
5

0
.
0
6

1
0
.
1
7

1
1
.
3
“

1
2
.
2
2

1
2
.
4
1

1
1
.
6
“

9
.
3
“

1
1
.
9
3

1
0
.
3
“

$
1
8
.
6
5

1
5

0
.
0
6

1
6
.
8
“

2
0
.
7
7

2
1
.
6
“

2
4
.
1
2

2
4
.
9
1

2
3
.
6
“

2
3
.
4
“

2
3
.
2
“



110

T
a
b
l
e
3
.
3

P
r
o
p
o
r
t
i
o
n
o
f
s
i
m
u
l
a
t
i
o
n
c
a
s
e
s
t
h
a
t
m
e
e
t

O
p
t
i
o
n
N
u
m
b
e
r

M
a
n
a
g
e
m
e
n
t
O
p
t
i
o
n

I-NMV’IDCDNDO)

N
o

c
o
n
t
r
o
l

0
.
4

I
4

I
0

0
.
7

I
7

l
0

0
.
4

I
4

I
0
.
4
5
o
n
c
e
2
0
0
4

0
.
7

/
7

I
0
.
4
5
o
n
c
e
2
0
0
4

0
.
4

I
4

I
0
.
4
5
e
v
e
r
y
2
,
2
0
0
3
-
2
0
0
9

0
.
7

I
7

I
0
.
4
5
e
v
e
r
y
2
,
2
0
0
3
-
2
0
0
9

0
.
4

I
4

I
0
.
4
5
e
v
e
r
y
4
,
2
0
0
4
-
2
0
3
0

0
.
7

I
7

I
0
.
4
5
e
v
e
r
y
4
,
2
0
0
4
-
2
0
3
0

A
n
n
u
a
l
c
o
s
t
(
o
v
e
r
3
0

y
r
s
.
)

$
0

$
4
0
0
,
0
0
0

$
8
5
1
.
0
0
0

$
5
3
9
,
0
0
0

$
9
9
0
,
0
0
0

$
9
5
6
,
0
0
0

$
1
.
4
0
7
,
0
0
0

$
1
,
3
7
3
,
0
0
0

$
1
,
8
2
4
,
0
0
0

P
r
o
p
o
r
t
i
o
n
o
f
c
a
s
e
s
w
i
t
h

p
a
r
a
s
i
t
e
s
<
1
8
3
,
0
0
0

i
n
2
0
0
6

0
.
5
0

0
.
5
0

0
.
5
0

0
.
6
9

0
.
7
0

0
.
8
4

0
.
8
4

0
.
7
0

0
.
7
0

 

C
o
n
s
e
n
t
A
g
r
e
e
m
e
n
t
i
m
p
l
i
e
d
l
a
m
p
r
e
y
a
b
u
n
d
a
n
c
e
t
a
r
g
e
t
s
o
f
1
8
3
,
0
0
0

i
n
2
0
0
6
a
n
d

1
1
4
,
0
0
0

i
n
2
0
1
2

f
o
r
e
a
c
h
o
f
t
h
e
n
i
n
e
m
a
n
a
g
e
m
e
n
t

o
p
t
i
o
n
s
.

A
l
s
o

l
i
s
t
e
d

i
s
t
h
e
c
o
s
t
a
s
s
o
c
i
a
t
e
d
w
i
t
h
e
a
c
h

o
p
t
i
o
n
.

P
r
o
p
o
r
t
i
o
n
o
f
c
a
s
e
s
w
i
t
h

p
a
r
a
s
i
t
e
s
<
1
1
4
,
0
0
0

i
n
2
0
1
2

0
.
1
8

0
.
4
1

0
.
6
0

0
.
4
8

0
.
6
7

0
.
7
5

0
.
8
6

0
.
6
3

0
.
7
8



0.6 1

 

 
 

>. 0.5- /\ /\‘
O

E

g 0.4-

ur 0.3-

2’

‘3 0.2-

E

"" 0.1 1

0.0 . . . . 4

1990 1992 1994 1996 1998 2000

Year

Figure 3.1 Trapping efficiency in the St. Marys River 1991-2000. The

horizontal line represents the average efficiency for this period.
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Figure 3.10 Box and whisker plots of the net benefits across all simulations

for decision options 1-9. The dot represents the median net benefit and the

box ends represent the 25th and 75th percentiles of the distribution.
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