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ABSTRACT
Nesting of Irregular Shapes Using a Parallel Genetic Algorithm and Feature
Matching
By
ANAND UDAY

The problem of finding a dense packing of a set of two-dimensional polygonal
shapes within another larger two-dimensional polygon is called nesting. This problem
is widely encountered in companies fabricating metal parts, leather cutting industry
and in the textile industry - in short, where the material is costly and scrap needs
to be minimized. This thesis describes a new approach to nesting problems. It is
a hybrid approach, which uses a parallel genetic algorithms and shape information
in the form of feature matching. Here, the shape information has been used to do
the local search and a parallel genetic algorithm has been employed for the global
search. Various experiments were performed to determine a good set of parameters
for use in feature matching and the parallel genetic algorithm. To reduce the chances
of premature convergence of the parallel genetic algorithm, different topologies for
communication among subpopulations and different migration schemes were tried.
A good choice of communication patterns seems to maintain balance between the
frequency of migration and the degree of interconnectivity among the subpopulations.
The test problems show this approach to work well for the nesting problem, where

the search domain is often very large.
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Chapter 1: Introduction

1.1 Introduction

Layout and cutting problems are important in many industries, as they involve
the optimal use of valuable raw material. Problems of optimal arrangement of 2-D
pieces to be cut from an initial piece of stock material are called nesting problems.
They are also called by other names such as cutting stock problems, layout
problems and packing problems. There are many varieties of problems, depending
on the shapes of the pieces, constraints on their orientations, etc. The problem to
be addressed in this report can be stated as follows: given a rectangular piece of
stock of a specified width and indefinite length, find the optimal arrangement of a

given set of polygonal part shapes onto that stock such that:

e None of the part overlaps any other.
e All are contained within the boundary of the stock piece.

e The length of the stock piece used is minimized (optimality condition for this

problem)

In this case, there is no constraint on the orientation of the part shapes, but
they may not be turned over. It should be also be noted that there is no constraint
on the shape (for example convexity) of the parts to be nested. Figure 1.1 illustrates

the problem to be addressed in this report.

1.2 Application of Nesting

The nesting problem is encountered in various industries. Some of them are

listed below:



Figure 1.1: An example showing the different shapes placed onto a bigger sheet

[—y

. Ship Body Building Industry

2. Automobile Body Building Industry
3. Aircraft Body Building Industry

4. Textile Industry

5. Leather Industry

6. Glass Cutting Industry

7. Wood Industry

8. Heavy Equipment Manufacturing Industry

1.3 Types of Nesting

In recent years, a number of researchers have investigated the problem of

nesting of irregular shapes, and the approaches can be grouped in three categories:



manual, semiautomatic and automatic. In the first case, the draftsman makes use of
a computer with graphics input-output devices, capable of manipulating (rotating,
translating, etc.) pieces on a working display. In the second category, the system
proposes a tentative solution and then interactive improvements are allowed by a
conversational display unit, using a special set a of commands to operate on the
solution process. The third one is totally automatic, where given the input, the
system gives the final output. Automation improves material requirement estimates
and substantially reduces man hours required for part layout. This leads to
increased productivity, reduced material handling and tracking, and thereby helps
to reduce the overall project costs. Research into the automation of the 2-D nesting
problem can be divided into three broad categories. The first involves allocation of
rectangular shapes onto rectangular stock material. The second, more general,
problem, entails nesting irregular profiles onto a sheet of rectangular shape. The
third one is the most generalized form, which is nesting of irregular profiles onto

resources of arbitrary shapes.

1.3.1 Approaches to Automated Nesting

The problem of automated nesting has been tackled in various ways. They can

be broadly classified as follows:

e Rule-based heuristic approach: In a rule-based heuristic approach, a set of
rules is designed to try to take advantage of some characteristics of the shapes
of the parts, placing earliest those with certain characteristics, packing
together parts with certain matching features, etc. They basically try to

mimic the manual nesting.

e Stochastic approaches: Stochastic approaches such as genetic algorithms or

simulated annealing typically use little information about part shapes, instead



use only simple packing rules and rely on the stochastic algorithm to vary the

order in which these rules are applied to the parts to be nested.

The approach used in this thesis is a hybrid one. It relies on a powerful
feature-matching heuristic capable of generating fairly good packing even without a
genetic algorithm. It uses part shape features to determine the exact placement and
orientation of the parts, here augmented by a genetic algorithm that determines the
sequence in which they are nested (now sometimes together called a memetic
algorithm). In addition a parallel GA has been employed to make the search both

more global and more efficient.

1.4 Organization of Report

This report is divided into five chapters. The next chapter briefly reviews the
literature on this problem. The third chapter describes in detail the algorithm
implemented. The fourth chapter presents the results obtained. And finally the fifth

chapter discusses the scope of further work and concludes the report.



Chapter 2: Literature Review

2.1 Introduction

As mentioned in the previous chapter, most of the proposed nesting methods
can be broadly categorized into two categories. One of them predominantly relies on
exploiting the shape information of the parts to be nested, and the other one tries
to arrive at the solution using stochastic evolution of potential solutions. In this
chapter an attempt is made to briefly cover the literature available on both the

approaches.

2.2 Review of Algorithms Using Shape
Approximation and Heuristics

One of the simplest and earliest methods of nesting irregular profiles is
approximating either a part or a group of parts using a rectangular enclosure. In
this case, Minimum Enclosing Rectangles (MER’s) of each part is constructed and
then they are nested by applying algorithms available for nesting rectangular shapes.
A considerable amount of research work has been published using this approach.

One of them is being described in brief below. Nee et al. in 1986 suggested an
algorithm for approximating the given shapes by means of lines, essentially trying to
find the Minimum Enclosing Polygon(MEP). After the MEP has been found, the
MER for that MEP is constructed. Depending on the shapes of the MEP’s, pair wise
clustering is also seeked. Once all the shapes have been considered by the algorithm
described above, a rectangular nesting algorithm is invoked. Here, all the rectangles
are first arranged in descending order of areas. The largest rectangle is placed in the

lower left corner of the stock sheet and the pivot points are created. The next



rectangle’s are then placed at each of the pivot points generated, both length and
breadth-wise, to check if they intersect with any of the existing rectangles. Only the
non-intersecting rectangles are considered, and the minimum enclosing area of both
the rectangles is computed. After selecting the best position, the shape inside the
rectangular module is further shifted in both horizontal and vertical directions. New
pivot points are now defined and the old ones are deleted. This process is repeated
until every rectangle has been packed. Going in steps like the above algorithm
proves to be simple and natural, but the wastage associated with approximation of
highly irregular shape to MER might lead to an inefficient final layout.

Earlier in 1975, Freeman and Shapiro, and in 1976, Adamowicz and Albano had
approached the nesting algorithm using the same technique of approximating the
given parts with MER’s and then packing the MER’s. Their solutions also suffered
from the above-mentioned problem.

Several attempts have also been made to solve this problem using local greedy
heuristics. The local greedy heuristics were essentially based on the use of a
directional placement policy, which involved placing the parts at hand on the lowest
and left-most available vertex.

In 1993, Dowsand and Dowsland used a random left-most placement policy and
allowed for pieces to jump over pieces to fill gaps. This was done in order to allow
the smaller pieces to fill in the gaps created by placement of bigger pieces. In 1980,
Albano and Sapuppo proposed another algorithm using lowest leftmost policy,
which decided the next part to be placed by evaluating the potential waste due to
the placement of the part at hand.

In 1996, Lamousin et al. proposed an algorithm that modifies Albano and
Sapuppo’s algorithm, using the concept of No Fit Polygon (NFP) for part
placement. Lamousin and Waggenspack (1996) also proposed another algorithm

that uses features of the profile. This algorithm tries to find and match



complementary features of the profile and the remaining area of stock.

Some attempts have been also made to solve this problem using Monte Carlo
algorithms. Bohme and Graham (1979) tried this method and suggested that
approximately 2000 such random trials are usually required to get satisfactory
results. The best solution was then fine tuned by fine random perturbation. In the

next section the stochastic approaches for solving this problem are described.

2.3 Review of Algorithms Using Stochastic
Approaches

Besides the above-mentioned deterministic approaches, the probabilistic and
evolutionary techniques have also been successfully employed to solve the nesting
problem. G-C Han and S-J Na (1996) used a two-stage method with a
neural-network-based heuristic for generating an acceptable initial layout, and a
simulated annealing algorithm for fine-tuning the solution.

In 1995, Ismail and Han proposed a genetic-algorithm based solution to this
problem. They generated a set of initial random layouts as their first generation
chromosomes. The layouts were allowed to have parts overlapping each other. They
constructed an objective function that tried to minimize the total area needed to
place all the parts. This objective function included a penalty term which took into
account the overlaps between two parts.

In 1998, Jain and Gea proposed a solution based on a genetic algorithm by
using a 2-D representation for a chromosome. The 2-D representation was arrived
by dividing the stock into finite equal sized square cells. The value of cell was either
1 or 0 depending on whether it was occupied by any part or not. The genetic
operator’s were modified accordingly to perform on the 2-D chromosome.

In 1999, Babu and Babu came up with a genetic algorithm approach which



aimed at finding an optimum sequence of placing the parts on the sheet. In 2000,
Sha and Kumar came up with a representation that encoded the sequence and
orientation of the parts on a 2-D chromosome and modified the genetic operator’s to

deal with that form.

2.4 Conclusion

The approaches using the shape information were unable to perform very well,
when the shapes to be nested turned out to be highly irregular. And on the other
hand the probabilistic approaches, due to their evolutionary nature and lack of any
in-built heuristic, proved to be of high time complexity. The approach proposed in
this work uses a parallel genetic algorithm wedded with a powerful heuristic to solve
the problem more effectively. The next chapter describes the algorithm used in the
present work. It builds the background knowledge required to understand the

approach as well as integrating everything to present the algorithm in totality.



Chapter 3: Nesting Using a
Parallel Genetic Algorithm and

Feature Matching

3.1 Introduction

This chapter describes the approach taken to address the nesting problem. As
mentioned before, the approach is a hybrid. The idea comes from the observation
that in a typical packing problem the order in which the parts are placed plays a
very determining role in the quality of the final solution. Figure 3.1, which
illustrates this concept, we can see that using the same set of parts, and same set of
rules to pack them requires different sheet lengths if the order of parts are different.
The algorithm utilizes shape information in the form of feature matching, and a
genetic algorithms is used to generate the sequence in which the parts are to be
placed on the sheet.

The sequence generated by the GA module is fed to the feature matching
module, which in turn places the parts according to a predefined set of rules and
returns the length of sheet used to the GA module for further iterations. The
iterations are carried on until a good solution is obtained or a predetermined
amount of effort has been put in. Figure 3.2 illustrates this concept graphically.

Before going any further, I will briefly introduce the concept of a genetic

algorithm.



Figure 3.1: Effect of Part Sequence in packing problem
3.2 Genetic Algorithms (GA’s)

Genetic algorithms are optimization procedures that operate by mimicking
nature’s evolutionary processes. The principle of a genetic algorithm is based on the
Darwinian notion of ”survival of the fittest”. GA’s were first introduced by John
Holland in 1960 and described in his landmark book called Adaptation in Natural
and Artificial Systems” (Holland 1975). In GA’s, an initial population of solutions is
randomly generated. Each member of this population (called a chromosome), is a
coded representation of the design attributes that represents a potential solution for
the problem to be solved. The initial group of solutions (zeroth generation)
undergoes operations like mutation and crossover (similar to those of biological
processes) to generate a new set of solutions (next generation). The idea behind
mutation is to randomly alter one or more attribute of the individual in search of a
better solution. Crossover is done in order to combine the attributes of two
individuals and carry them to the next generation. The process of creating a new
generation also involves selection, which is biased to give the fitter individuals more

chances to contribute in the formation of the next generation. This process is
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Figure 3.2: Flow of the Algorithm

continued until a ’'good’ solution is achieved, or a predetermined number of
generations has been completed. Figure 3.3 illustrates steps involved in GA’s

graphically.

3.2.1 Parallel Genetic Algorithms (PGA)

Genetic algorithms run can be run on a single processors, but they have been
proven to be highly parallelizable, capable of being run in a cluster of computers.
Besides this, although GAs can be made resistant to premature convergence, they
are not immune. One technique to reduce the likelihood of premature convergence

and overcome the problem of speed is parallelization of the GA, by the use of
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Figure 3.3: The generational evolution of Genetic Algorithms
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multiple subpopulations on multiple processors. The two most commonly used
kinds of parallel GA’s are: fine-grain GA’s, and coarse-grain GA’s. In fine-grain
GA'’s (fgGA’s), individuals are arranged in some tessellation with an individual on
each processor. In this model, the individuals are allowed to interact only with their
immediate neighbors. Implementation of this model requires the processor topology
to be of a specified manner and high connectivity among the processors. In
coarse-grain GA’s (cgGA’s), each node is assigned a particular subpopulation
performing a single population GA. At certain intervals, some individuals might
migrate from one subpopulation to another. The migration rule is usually
predetermined. The next few sections describe the various components involved in

the implementation of a parallel genetic algorithm for the nesting problem.

Population Representation

In a classical GA, a binary string representation is often used. However, for
sequencing and other combinatorial problems, chromosomes often represent an
ordering of entities, specified simply as a permutation of the integers 0, 1, .., N-1).
In this problem the chromosome has been represented as an array of integers, where
each element of the array corresponds to a particular part index,

for example: 34597108021

In the above example, the chromosome would be used for solving a problem
having 10 parts to be nested. The chromosome would be interpreted as the sequence
in which the parts are to be placed on the sheet. In the above case, this means that
part number 3 would be placed first, then part number 4, then part number 5 and

SO On.
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Crossover Operator

For this representation, many different crossover operators are suitable:
partially matched crossover (PMX), uniform order based crossover (UOBX), order
based crossover (OBX), and cycle crossover (CX) (Davis, 1991), (Goldberg , 1988).

Each of the crossover operators are described in detail in appendix A.

Mutation Operator

The mutation operators that are designed to operate on permutation problem
are called the swap and the scramble mutation operators (Davis, 1991; Goldberg,

1988). Appendix B describes both the mutation operators.

Crowding Factor and Incest Reduction

To reduce the chances of premature convergence, a DeJong-style crowding
factor was used (Goldberg, 1988). It helps in allowing several distinct groups of
individuals to develop and persist in the population. This technique is useful in
exploring multi-modal problems. In addition, the mechanism of incest reduction
(Goodman, 1994) reduces the proportion of crossovers performed between very
similar chromosomes. Further, it also helps to maintain genetic diversity, thus

helping avoid premature convergence.

Elitism

An Elitism mechanism was used to insure that at least one copy of the current
generations best individual appears in the next generation.
Migration

The migration policy used between the subpopulation is critical in balancing

the co-evolution of the sub populations. It affects the selection pressure and thus

13



convergence time (cantu-paz, 2000). The following are different migration policies

which are commonly used:

1. The sending subpopulation sends a random individual, and that individual

replaces a random individual in the receiving subpopulation.

2. The sending subpopulation sends a random individual, and that individual

replaces the best individual in the receiving subpopulation.

3. The sending subpopulation sends its best individual, and that replaces a

random individual in the receiving subpopulation.

4. The sending subpopulation sends its best individual, and that individual

replaces the best individual in the receiving subpopulation.

In this research the sending subpopulation sends the best individual, which in
turn replaces a random individual in the receiving subpopulation. This policy was
used in order to ensure that all the subpopulations benefit from the discovery of a
good solution in a limited fashion. In addition, the migration rate and the number
of migrants are also very important. Here, depending on the complexity of the

problem, one tenth of the individuals were migrated every five to ten generation.

Subpopulation Layout (Topology)

The spatial arrangement of subpopulation and their interconnectivity is the key
to successful implementation of cgGA’s. The topology of a cgGA should be
designed keeping in mind that, a discovery of a good solution should benefit the
entire search process, and also, at the same time, it should not lead the search
towards premature convergence because of one subpopulation influencing the others
to the extent of overshadowing their own exploration. The four different layouts

that were considered in this research are as follows:

14
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Figure 3.5: Eight subpopulation each having two neighbor

1. Ring layout with one neighbor: Eight different subpopulation laid out in a

circular manner with one neighbor each (Fig 3.4).

2. Ring layout with two neighbor Eight different subpopulations laid out in a

circular manner with two neighbors each. (fig 3.5).

3. Grid Layout with directional connectivity: Twenty different subpopulations

laid out in a grid with partially directional communication (Fig 3.6).
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Figure 3.7: Grid topology with full communication

4. Grid layout with full connectivity: Twenty different subpopulations laid out

in a grid with all subpopulations indirectly connected to each other (Fig 3.7).

The ring topologies are the standard topologies that have been used in previous

research work with PGA’s. But the two grid topologies are the non-standard

16



topologies, and were designed because of the inability of ring topologies to perform
well on the complicated nesting problems. The effect of these topologies is discussed

in detail in the next chapter.

Evaluation Function

The problem aims at minimizing the length used of a fixed-width piece of
rectangular stock. However, in preliminary studies, it was observed that nesting
larger parts first often yields a better solution. In order to speed the search and
exploit this, in some of our runs, a bias term was added to the fitness function that
slightly favored nesting in which larger (area) parts were placed first. But, the effect

of this term was not found to be large, and its use was abandoned in the later runs.

Selection Method

Selection is an important component of GAs. According to some schemes, the
fitter members of the population are chosen to be taken to the intermediate
generation . Selection makes a large contribution in determining the final quality of
solution and the time taken to achieve it. For this problem the stochastic universal
sampling and tournament selection were considered for selection. Appendix C
explains these methods in detail. The selection was done using linear scaling of

fitness value (Goldberg, 1988) except when using the tournament selection.

3.3 Feature Matching and Placement Policy

In this hybrid (or memetic) algorithm, shape information is used to effectively
match complementary features on the parts and the stock. In this case, building on
the earlier work of another graduate student (Debnath, 1997), a feature was defined

to be an instance of two adjacent edges on a polygon. The data defining this type of

17
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feature are the lengths of the two adjacent edges and the internal angle between

these edges. Figure 3.8 shows an example of such a feature.

3.3.1 Placement Policy

Given the next part to be nested, the algorithm determines what position and
orientation is best for the part vis-a-vis the current state of the stock. At any point,
the system tracks a stock profile, a polyline comprised of portions of edges of stock
and parts, and that includes all currently open area in the stock as nested to date.
Candidates for features at which to nest subsequent parts are located on this profile.
The profile will grow to include many small, closed areas in which no additional
parts can be nested, and the algorithm, after numerous attempts to nest subsequent
parts in such an area, will eventually mark the points in that area as bad points, and
will refrain from trying to nest more parts there. Figure 3.9 shows typical packing
in progress. The packing heuristic first selects the vertex on the stock profile

(ignoring bad interior points) with the lowest y-co-ordinate. If more than one vertex

18



has the same y-co-ordinate, the vertex with the smallest x-co-ordinate is selected.
This selection is based on the placement policy of lowest and if necessary leftmost.
The heuristic forms a target feature on the stock, and iterates through all the
features of the part at hand. To each of the iterations through the part features it
assigns a particular score. The orientation yielding the highest score is retained for

the final placement. This score is calculated using the following parameters:

3.3.2 Left Shadow Area

Since the placement policy was selected to fill up the stock from left to right,
any closed-off areas to the left of the stock would be unfavorable for the final

solution. See Figure 3.10

3.3.3 Bottom Shadow Area

Since the placement policy was also set to fill up the stock from bottom to top,
any closed-off areas towards the bottom of the part would again be unfavorable for

the solution. See Figure 3.10

3.3.4 Contact Length of the Feature

To effectively exploit a corner feature, it is necessary to calculate the
contribution due to the feature itself. To ensure good local packing, we wanted the
contact length between the part at hand and existing stock profile to be maximized.
Further, in order to yield comparable units in the scoring function, the value of this
measure is squared. See Figure 3.10

The scoring function used is thus:

= a * (Left Shadow Area) + b * (Bottom Shadow Area) + ¢ * (Contact Length)?
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wherea,b<0andc>0

The next chapter discusses the experimentation conducted and results obtained.
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Chapter 4: Results and Discussions

The algorithm was tried on various problems set with varying parameters of
GAs and the feature matching coefficients. In the feature matching module, the

coefficients of the scoring function were varied such that:
a,be{-1,-2,-3,-4} and ce {1,2,3,4}

After initial experimentation, it was found that a good set of values for (a, b, c)
is (-1,-1,3). Here the shadow coefficients are given equal negative values and the
contact length co-efficient takes a high positive value. This made the local search
more biased towards placing parts in orientations that maximize their contact with
the ongoing stock profile.

For the GA module, the following are the scope of variations which were

considered or tested:

e Crossover operators : Among the four different crossover operators suitable for
permutation type problems in GALOPPS the PMX and UOBX were the most
logical candidates for the nesting problem. Both of them were tested and it
was found that UOBX performed slightly better than the PMX operator.
Considering the nature of this problem and the manner in which UOBX
works, the UOBX operator was chosen for further use. There seems to be a
higher probability that meaningful building blocks are preserved, by UOBX,

further supporting the test results.

e Mutation operators : Between swap and scramble mutation, the swap
mutation makes a better choice in this case, considering the fact that it does
not have as destructive an effect as the scramble mutation. It was used for all

the experiments.
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e Selection methods : Both tournament and stochastic selection methods
performed approximately equally well for this problem. In the experiments
where it was desired to increase the rate of convergence, the tournament

selection was used with size of the tournament between 3 and 5.

e Topology in which the subpopulations are arranged : It was observed that the
grid layouts performed better than the ring layouts. In the case of ring
layouts, the improvement in solution used to stop earlier than with the grid
layouts. This may be due to the fact that the grid topology helped in
maintaining genetic diversity among individuals for more generations and thus
gave the subpopulations more time to evolve. In addition, the fully connected
grid layout was found to yield more consistent results than the partially
directional grid layout. This was expected, as in the case of a fully connected
layout the finding of a good individual benefits all the subpopulations, which

is not true with the directional connectivity.

The GA module was implemented using GALOPPS version 3.2.2 (Goodman,
1996), a GNU-licensed freeware developed at MSU’s GARAGe.

The sample problems for, which the results are shown have been derived from
the existing literature. However, since in most of the literature, the part geometries

are not published, a definitive comparison cannot be made.

4.1 Problem 1

This problem involves nesting of rectangular parts on a rectangular stock sheet.
It is a artificial problem published in (Burke and Kendall 1999). Figure 4.1 shows

the part and the Figure 4.2 shows the solution obtained.
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Figure 4.1: Parts for Problem 1 (Total Part Area = 11112 sq. units)

Number of Parts 13

Total Area of Parts 11112.00 sq. units
Total Rectangular Area Required 11200 sq units
Width of Stock Sheet 80 units
Percentage Utilization 99.21

Percentage Utilization as Reported 99.21

Generations Required 425

Topology Used Fully Connected
Crossover Operator UOBX

Mutation Operator Swap

Selection tournament selection
Stopping Criterion 500 generations
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Figure 4.2: Solution obtained for Problem 1 (Percentage Utilization = 99.21)

4.2 Problem 2

This problem involves nesting of irregular shapes onto the rectangular stock
material. This is an artificial problem published in (Jakobs, 1996). Figure 4.3 shows

the parts and the Figure 4.4 shows the results obtained.
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Figure 4.3: Parts for Problem 2 (Total Part Area = 392 sq units)

Number of Parts
Total Area of Parts
Total Rectangular Area Required

Width of Stock Sheet

Percentage Utilization

Percentage Utilization as Reported

Generations Required
Topology Used
Crossover Operator
Mutation Operator
Selection

Stopping Criterion

25

392 sq. units
502.37 q units
40 units

78.03

65.33

192

Fully Connected
UOBX

Swap

Stochastic Universal Sampling

500 generations
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Figure 4.4: Solution Obtained for Problem 2 (Percentage Utilization = 78.03)
4.3 Problem 3

This is a jigsaw problem and was constructed from the results published in
(Dighe and Jakiela, 1996). This problem was chosen to test the effectiveness of the
feature matching algorithm. Figure 4.5 shows the parts used in this problem; Figure

4.6 shows the solution obtained. The details of the solution are as follows:
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Figure 4.5: Parts for Problem 3 (Total Parts Area = 10000 sq. units)

Number of Parts

Total Area of Parts

Total Rectangular Area Required
Width of Stock Sheet

Percentage Utilization
Percentage Utilization as Reported
Generations Required

Topology Used

CrossOver Operator

Mutation Operator

Selection

Stopping Criterion

|

o
I
.

|

10

10000 sq. units
10000 sq units
100 units

100.00

100.00

94

Fully Connected
UOBX

Swap
Tournament Selection

500 generations
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Figure 4.6: Solution Obtained for problem 3 (Percentage Utilization = 100.00)

4.4 Effect of variations in the PGA module

4.4.1 Effect of different topologies

In this section a comparison has been made between the various parallel genetic
algorithm topologies. The parts to be nested have been taken from the shipbuilding
industry. Figure 4.7 shows the parts used for the experimentation. These parts are
characterized by their complex geometries and the large variation in their sizes.
Figure 4.8 to fig 4.11 shows the result obtained using different topologies. The

details of the solution obtained are as follows:
Number of Parts 10

Total Area of Parts 3748.75 sq. units

Width of Stock Sheet 65 units

Crossover Operator UOBX

Mutation Operator Swap

Selection Stochastic Universal Sampling

Stopping Criterion No improvement for about 100 generation

or max of 500 generations
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Figure 4.7: Parts of Problem 4 (Total Part area = 3748.75 sq. units)

Table 4.1: Results Obtained for Various Topologies (best of all the runs performed)

Topology Used Percentage Utilization | Generations Needed
Ring Topology One Neighbor 82.07 252
Ring Topology Two Neighbor 82.31 310
Grid Topology Partial Connection | 84.77 394
Grid Topology Full Connection 85.33 442

Table 4.2: Results Obtained for Various Topologies (average of the three test runs)

Topology Used Percentage Utilization | Generations Needed
Ring Topology One Neighbor 81.42 270
Ring Topology Two Neighbor 82.00 290
Grid Topology Partial Connection | 83.07 370
Grid Topology Full Connection 84.50 389
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Figure 4.8: Solution to Problem 4 obtained using ring topology with one neighbor
(Percentage Utilization = 82.07)
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Figure 4.9: Solution to Problem 4 obtained using ring topology with two neighbors
each (Percentage Utilization = 82.31)
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Figure 4.10: Solution to Problem 4 obtained using the grid topology having partially
directional communication (Percentage Utilization = 84.77)

Figure 4.11: Solution to Problem 4 obtained using the grid topology having full
directional communication (Percentage Utilization = 85.33)
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Table 4.3: Results obtained for PMX and UOBX operator (best of the three test

runs)
Operator | Percentage Utilization | Generations Needed
PMX 83.54 245
UOBX 83.67 190

Table 4.4: Results obtained for PMX and UOBX operator(average of the three test

runs)

Operator | Percentage Utilization | Generations Needed
PMX 82.88 272
UOBX 83.03 210

% I

Ld e

/\1 .K \,\ /
_;L . ;“i.—' v ‘\\

Figure 4.12: Solution to Problem 4 obtained using the UOBX operator (Percentage
Utilization = 83.67)

4.4.2 Effect of PMX and UOBX operators

In this case, problem 4 was solved three times, with maximum generations set
at 300. It was found that both the operators were able to generate sequences giving
almost equally good packings but in the case of UOBX, the number of generations
required was smaller. Figure 4.12 and Figure 4.13 show the results obtained in each
case for the best result out of the three runs performed.

To draw a conclusion about the performance of the various topologies and the

34



Figure 4.13: Solution to Problem 4 obtained using the PMX operator (Percentage
Utilization = 83.54)

crossover operators this problem was run repetitively for three to four times for each
experiment. The results shown here are the best obtained from each of the test
cases. The multiple runs performed gave fairly good indications about the
capabilities of the the various topologies, and helped in ultimately recommending
the fully connected grid topology and the UOBX crossover operator. The sizeable
amount of computer resources required for each run (generally at least overnight on
a cluster of 20 processors) precluded making enough runs to draw a firm, statistially
significant conclusion about each comparision. But there was sufficient consistency

to strongly support the recommended choices given here.

4.5 Problem 5

Each of the parts of problem 4 was duplicated to yield a more challenging
problem. Figure 4.14 shows the result obtained from best of the two runs. It can be

seen that the algorithm is fairly scalable and produces sheet utilization comparable
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Figure 4.14: Solution for Problem 5 (Percentage Utilization = 83.65)

to problem 4.

Number of Parts

Total Area of Parts

Total Rectangular Area Required
Width of Stock Sheet

Percentage Utilization
Generations Required

Topology Used

Crossover Operator

Mutation Operator

Selection

Stopping Criterion

4.6 Conclusion

56

7497.50 sq. units
8962.94 sq. units

65 units

83.65

182

Fully Connected
UOBX

Swap

tournament selection

200 generations

The above set of experiments shows the ability of the algorithm to solve both

simple and complex nesting problems with good consistency. The time involved in
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finding the final solution is dependent on the computational time needed for one
evaluation of the objective function, which in turn is dependent on the number and
complexity of parts constituting the problem. For example, the time required to
calculate the objective function for problem 4 was 17 seconds, on a one processor of
a dual processor machine in which each processor has a speed of 850 MHz, with 256
Mbytes of shared RAM. Thus the approximate run time required for this problem
was 65 hours. However, for problem 1, the time required for the evaluation of one
objective function was 1 second and thus the approximate run time for this problem
was 4 hours. All the experiments were performed on a cluster of ten computers each
running one or two subpopulations at a time (maximum of one subpopulation per

processor).
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Chapter 5: Discussion and

Recommendations

This research work investigated the application of a shape-feature-matching
heuristic and a coarse-grain PGA, to the irregular shape nesting problem.

The use of shape information and feature matching helped in finding feasible
solutions very effectively. It made the search more efficient by doing local search
within each evaluation of the GA.

An unusual grid topology, and migration scheme was designed and tested. The
results suggest that, this led to the improvement in performance of the PGAs.

Nesting is essentially finding the right permutation of sequence of the part
placement over the stock sheet. Even if we enumerate all the possible permutations
for the case where we have just 10 parts, then it is equal to !10, which in turn is a
large number, 3628800. Assuming one evaluation of the enumerated solution takes 1
seconds and we want to try all the possible combinations, it would require 42 days
to solve the problem involving 10 parts. The approach presented here, helps in
reducing the time involved to get a good solution considerably. But, it would still be
inappropriate to use this approach for solving a problem, which requires real-time
decision making, or which does not follows any particular template. For example, in
the leather industry, the shape of the stock keeps changing every time, because it
comes from animal skin. And requires generation of a fresh nesting pattern for each
stock sheet.

However, in industries such as shipbuilding, where the material is quite costly
and we need to cut same shapes repeatedly; even a half-percent improvement in
packing density is sufficient to justify a fairly intensive search process, such as

represented by the method described here.
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5.1 Recommendations

e Once the layout has been generated, the next step is to generate the optimal
tool path. This research does not address this problem, but it can be extended

to provide the functionality of generating optimal tool path.

e In this case, the objective function is inversely proportional to the length of
sheet used. But, this design would not work in the case where the stocks have
irregular shape. So, there is a need to design the objective function that can

represent the sheet utilization for the irregular stock sheets.

e The algorithm should be extended to solve problems involving multiple stock

sheets.

e The feature matching heuristic should be extended to also handle curve-linear

features.

e It is necessary to improve the current geometric algorithm in terms of
computational speed. An intelligent method should be developed to
distinguish between the features which are important and which are not, and
while calculating the score function the unimportant features should not be

used. This would save some computational time.

e The packing problem also finds application in the cargo industry, where its
needed place the 3-dimensional shapes in optimal space. This algorithm can
be extended to handle this kind of packing problems by adding routines

capable of classifying and matching 3-dimensional features.
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Appendix A: Crossover Operators

A.1 Partial Matched Crossover Operator (PMX)

The PMX operator (Davis, 1991; Goldberg, 1988) is carried out in following

steps:

1. The two candidate strings are first aligned and two crossing sites are picked

uniformly at random along the strings.

A=984—325—10761
B=125—789—10643

2. PMX proceeds by position wise exchanges. First, mapping string B to string
A, the 7 and the 3, the 8 and 2, and the 9 and 5. Similarly also mapping
string A to string B, the 3 and the 7, the 2 and the 8 and the 5 and the 9.

3. Under PMX we obtained following two offspring, containing ordering

information partially determined by each parent.

Child A=524—789—10361
ChildB=189—-325—10647

A.2 Order Based Crossover

The order based crossover operator (Davis, 1991; Goldberg 1988) is carried out

in following steps:

1. The order based crossover operators also starts off by aligning the two
candidate strings and picking two crossing sites uniformly at random along the

strings.
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A:923—-568—14810
B:857—239—16104

2. Like, PMX each strings maps to constituents of matching section of other
parent. But instead of using point-by-point exchanges as in PMX, order based
crossover uses a sliding motion to fill holes left by transferring the mapped
positions. In this case when string B maps to string A, the positions of 5, 6
and 8 will leave holes (marked by H) in the string:

A'=HHH—-568—14810
B=HH7—239—1H104

3. These holes are filled with a sliding motion that starts following the second

crossover site:

A'=568—HHH—-14810
B=239—-HHH-—-11047

4. These holes are then filled with the matching section from the other string.

Performing this operation we obtain the two offspring’s as follows:

Child A: 568 —239—14810
ChildB:239—568—11047

A.3 Uniform Order Based Crossover Operator
(UOBX)

The UOBX (Davis 1991) is carried out in following steps.

1. Selection of parents

A:123456789
B:245796318
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2. In the second step a uniformly random binary template is generated.

011001011

3. The 1’s specify loci to be filled by the corresponding alleles of the first parent
in the first child, and the 0’s are filled on the second child with corresponding
alleles of the second parent.

Child A (partial): -23--6-89
Child B (partial): 2--79-3--

4. The void ’-’ space of the first child is filled by the genes of parent 2 in their
order of appearance (without duplication, since the result must be a

permutation) and the second child is handled correspondingly.

Child A: 423576189
ChildB:214795368

A.4 Cycle Crossover Operator (CX)

The cycle crossover (Davis, 1991; Goldberg, 1988) is carried out as follows:

1. The two candidates are randomly chosen.

A=98217451063
B=12345678910

2. In this case we start from the left by picking the first parent.

3. Since, we want each position to be taken from one of the parent, in this case
the choice of 9 from string A means that we must get 1 from the string A

because of the position of 1 in string B.



4. This selection in turn requires that we select position 4 from string C. This

process continues until we are left with the following pattern:

A=9--1-4--6-

5. The selection of 6 means that we should now choose a 9 from string A:
however this is not possible: a 9 having selected at the first position. So, we
eventually return to the position of origin and this complete the cycle.
Following the first cycle, the remaining positions are filled from the other

string. Thus the final offspring’s which are obtained are as follows:

Child A: 92315478610
ChildB:18247651093
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Appendix B: Mutation Operator

B.1 Swap Mutation

In swap mutation (Davis, 1991; Goldberg, 1988) two positions are picked up
and their alley’s are exchanged. For example

2457801369 2157804369

B.2 Scramble Mutation

In scramble mutation (Davis, 1991; Goldberg, 1988) a subset of positions are
picked at random and are reordered. For example

2457801369 2147805369
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Appendix C: Selection Methods

C.1 Tournament Selection

In tournament selection a 'n’ (where n ; 2 and less then population size)
number of individuals are chosen at random from the population and the best
individual among them is selected as parent. This implies that the bigger the 'n’

more the selection pressure.

C.2 Stochastic Universal Sampling Method

Stochastic universal sampling method provides a bias free way of selecting
individuals. In this methods the individual are mapped onto a roulette wheel with
the sector size equals to their relative fitness. Next, N equally spaced pointers are
drawn from the center, (where N equals to the number of individuals desired to be
selected). The individuals which are pointed by the pointers are selecéed as parents.
For example in the Figure C.1, there are 7 individual mapped onto the roulette
wheel according to their relative fitness, and four individuals are desired to be
selected. Therefore, four equally spaced pointers are drawn from the center. These

pointers point to 6, 4, 1 and 7. Thus these individuals are selected as parents.
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Figure C.1: Stochastic Universal Sampling Method
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Appendix D: Geometry of the

Example Problem

D.1 Data for Test Problem 1

NEWSTOCK
STOCKVERTEX 0 0
STOCKVERTEX 80 0
STOCKVERTEX 80 300
STOCKVERTEX 0 300
STOCKEND
PART
VERTEX 00
VERTEX 24 0
VERTEX 24 16
VERTEX 0 16
PARTEND
PART
VERTEX 00
VERTEX 28 0
VERTEX 28 16
VERTEX 0 16
PARTEND
PART
VERTEX 00
VERTEX 28 0
VERTEX 28 16
VERTEX 0 16
PARTEND
PART
VERTEX 0 0
VERTEX 60 0
VERTEX 60 14
VERTEX 0 14
PARTEND
PART
VERTEX 00
VERTEX 60 0
VERTEX 60 14
VERTEX 0 14
PARTEND
PART
VERTEX 00
VERTEX 20 0
VERTEX 20 28
VERTEX 0 28
PARTEND
PART
VERTEX 0 0
VERTEX 22 0
VERTEX 22 26
VERTEX 0 26
PARTEND
PART
VERTEX 00
VERTEX 22 0
VERTEX 22 26
VERTEX 0 26
PARTEND
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PART
VERTEX 00
VERTEX 420
VERTEX 42 44
VERTEX 0 44
PARTEND
PART
VERTEX 00
VERTEX 18 0
VERTEX 18 70
VERTEX 0 70
PARTEND
PART
VERTEX 00
VERTEX 62 0
VERTEX 62 26
VERTEX 0 26
PARTEND
PART
VERTEX 0 0
VERTEX 18 0
VERTEX 18 48
VERTEX 0 48
PARTEND
PART
VERTEX 00
VERTEX 18 0
VERTEX 18 48
VERTEX 0 48
PARTEND

D.2 Data for Test Problem 2

NEWSTOCK
STOCKVERTEX 0 0
STOCKVERTEX 40 0
STOCKVERTEX 40 120
STOCKVERTEX 0 120
STOCKEND

PART

VERTEX 00
VERTEX 2 0
VERTEX 0 2
PARTEND

PART

VERTEX 00
VERTEX 3 0
VERTEX 0 3
PARTEND

PART

VERTEX 00
VERTEX 40
VERTEX 0 4
PARTEND

PART

VERTEX 0 0
VERTEX 5 0
VERTEX 0 5
PARTEND

PART

VERTEX 0 3
VERTEX 6 0
VERTEX 6 3
PARTEND

PART

VERTEX 0 4
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VERTEX 7 0
VERTEX 7 4
PARTEND
PART
VERTEX 00
VERTEX 5 0
VERTEX 5 3
VERTEX 3 3
VERTEX 3 5
VERTEX 0 5
PARTEND
PART
VERTEX 00
VERTEX 4 0
VERTEX 4 1
VERTEX 21
VERTEX 2 4
VERTEX 0 4
PARTEND
PART
VERTEX 0 0
VERTEX 6 0
VERTEX 6 3
VERTEX 43
VERTEX 4 6
VERTEX 0 6
PARTEND
PART
VERTEX 0 0
VERTEX 5 0
VERTEX 5 2
VERTEX 3 2
VERTEX 3 1
VERTEX 01
PARTEND
PART
VERTEX 00
VERTEX 40
VERTEX 4 2
VERTEX 3 2
VERTEX 31
VERTEX 01
PARTEND
PART
VERTEX 00
VERTEX 6 0
VERTEX 6 3
VERTEX 4 3
VERTEX 4 6
VERTEX 0 6
PARTEND
PART
VERTEX 00
VERTEX 6 0
VERTEX 6 6
VERTEX 0 6
PARTEND
PART
VERTEX 00
VERTEX 5 0
VERTEX 5 5
VERTEX 0 5
PARTEND
PART
VERTEX 0 0
VERTEX 40
VERTEX 4 4
VERTEX 0 4
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PARTEND
PART
VERTEX 20
VERTEX 4 0
VERTEX 4 2
VERTEX 6 2
VERTEX 6 4
VERTEX 4 4
VERTEX 4 6
VERTEX 2 6
VERTEX 2 4
VERTEX 0 4
VERTEX 0 2
VERTEX 2 2
PARTEND
PART
VERTEX 10
VERTEX 2 0
VERTEX 21
VERTEX 3 1
VERTEX 3 2
VERTEX 2 2
VERTEX 2 3
VERTEX 13
VERTEX 1 2
VERTEX 0 2
VERTEX 01
VERTEX 11
PARTEND
PART
VERTEX 20
VERTEX 4 0
VERTEX 4 2
VERTEX 6 2
VERTEX 6 4
VERTEX 4 4
VERTEX 4 6
VERTEX 2 6
VERTEX 2 4
VERTEX 0 4
VERTEX 0 2
VERTEX 2 2
PARTEND
PART
VERTEX 10
VERTEX 20
VERTEX 21
VERTEX 3 1
VERTEX 3 2
VERTEX 2 2
VERTEX 23
VERTEX 13
VERTEX 1 2
VERTEX 0 2
VERTEX 01
VERTEX 11
PARTEND
PART
VERTEX 00
VERTEX 6 0
VERTEX 6 3
VERTEX 0 3
PARTEND
PART
VERTEX 0 0
VERTEX 10
VERTEX 1 4
VERTEX 0 4
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PARTEND
PART
VERTEX 0 0
VERTEX 5 0
VERTEX 5 2
VERTEX 0 2
PARTEND
PART
VERTEX 2 0
VERTEX 4 0
VERTEX 6 2
VERTEX 6 4
VERTEX 4 6
VERTEX 2 6
VERTEX 0 4
VERTEX 0 2
PARTEND
PART
VERTEX 3 0
VERTEX 6 0
VERTEX 8 2
VERTEX 8 4
VERTEX 6 6
VERTEX 3 6
VERTEX 0 4
VERTEX 0 2
PARTEND
PART
VERTEX 0 1
VERTEX 20
VERTEX 4 0
VERTEX 6 1
VERTEX 6 2
VERTEX 4 3
VERTEX 2 3
VERTEX 0 2
PARTEND

D.3 Data for Test Problem 3

NEWSTOCK
STOCKVERTEX 0 0
STOCKVERTEX 100 0
STOCKVERTEX 100 200
STOCKVERTEX 0 200
STOCKEND

PART

VERTEX 0 0
VERTEX 33 0
VERTEX 33 19
VERTEX 3 11
PARTEND

PART

VERTEX 00

VERTEX 42 0
VERTEX 37 30
VERTEX 0 19
PARTEND

PART

VERTEX 5 0

VERTEX 30 0
VERTEX 30 51
VERTEX 0 30
PARTEND

PART

VERTEX 0 0
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VERTEX 3 11
VERTEX 7 33
VERTEX 8 38
VERTEX 0 36
PARTEND
PART
VERTEX 0 0
VERTEX 30 8
VERTEX 67 19
VERTEX 56 29
VERTEX 4 22
PARTEND
PART
VERTEX 23 0
VERTEX 53 21
VERTEX 53 70
VERTEX 19 70
VERTEX 7 42
VERTEX 0 23
VERTEX 12 10
PARTEND
PART
VERTEX 0 0
VERTEX 52 7
VERTEX 40 20
VERTEX 47 39
VERTEX 3 30
VERTEX 15
PARTEND
PART
VERTEX 00
VERTEX 8 2
VERTEX 10 27
VERTEX 12 64
VERTEX 0 64
PARTEND
PART
VERTEX 0 0
VERTEX 44 9
VERTEX 16 37
VERTEX 2 37
PARTEND
PART
VERTEX 0 28
VERTEX 28 0
VERTEX 40 28
PARTEND

D.4 Data for Test Problem 4

NEWSTOCK
STOCKVERTEX 0 0
STOCKVERTEX 65 0
STOCKVERTEX 65 120
STOCKVERTEX 0 120
STOCKEND

PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND

PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
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VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 2.1 2.1
VERTEX 8.4 9.6
VERTEX 0.6 16.2
VERTEX 0.0 15.0
VERTEX 0.0 3.1
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
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VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 8.0 2.0
VERTEX 8.0 6.0
VERTEX 0.0 6.0
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 10.5 0.0
VERTEX 10.5 2.4
VERTEX 6.9 3.9
VERTEX 6.9 6.3
VERTEX 10.5 13.8
VERTEX 10.5 16.2
PARTEND
PART

VERTEX 0.0 0.0
VERTEX 10.5 0.0
VERTEX 10.5 2.4
VERTEX 6.9 3.9
VERTEX 6.9 6.3
VERTEX 10.5 13.8



VERTEX 10.5 16.2
PARTEND

PART

VERTEX 0.0 0.0
VERTEX 10.5 0.0
VERTEX 10.5 2.4
VERTEX 6.9 3.9
VERTEX 6.9 6.3
VERTEX 10.5 13.8
VERTEX 10.5 16.2
PARTEND

PART

VERTEX 0.0 0.0
VERTEX 43.5 0.0
VERTEX 43.5 6.0
VERTEX 39.9 6.0
VERTEX 39.9 10.2
VERTEX 0.0 10.2
PARTEND

PART

VERTEX 0.0 0.0
VERTEX 43.5 0.0
VERTEX 43.5 6.0
VERTEX 39.9 6.0
VERTEX 39.9 10.2
VERTEX 0.0 10.2
PARTEND

PART

VERTEX 0.0 0.0
VERTEX 43.5 0.0
VERTEX 43.5 6.0
VERTEX 39.9 6.0
VERTEX 39.9 10.2
VERTEX 0.0 10.2
PARTEND

PART

VERTEX 0.0 0.0
VERTEX 51.0 0.0
VERTEX 54.6 6.3
VERTEX 33.9 20.1
VERTEX 33.9 14.7
VERTEX 28.8 9.9
VERTEX 7.5 12.0
PARTEND

PART

VERTEX 0.0 0.0
VERTEX 51.0 0.0
VERTEX 54.6 6.3
VERTEX 33.9 20.1
VERTEX 33.9 14.7
VERTEX 28.8 9.9
VERTEX 7.5 12.0
PARTEND
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ICHIGAN STATE LIBRARIES

WA

3 1293 02316 334;




