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ABSTRACT

Nesting of Irregular Shapes Using a Parallel Genetic Algorithm and Feature

Matching

By

ANAND UDAY

The problem of finding a dense packing of a set of two-dimensional polygonal

shapes within another larger two-dimensional polygon is called nesting. This problem

is widely encountered in companies fabricating metal parts, leather cutting industry

and in the textile industry - in short, where the material is costly and scrap needs

to be minimized. This thesis describes a new approach to nesting problems. It is

a hybrid approach, which uses a parallel genetic algorithms and shape information

in the form of feature matching. Here, the shape information has been used to do

the local search and a. parallel genetic algorithm has been employed for the global

search. Various experiments were performed to determine a good set of parameters

for use in feature matching and the parallel genetic algorithm. To reduce the chances

of premature convergence of the parallel genetic algorithm, different topologies for

communication among subpopulations and different migration schemes were tried.

A good choice of communication patterns seems to maintain balance between the

frequency of migration and the degree of interconnectivity among the subpopulations.

The test problems show this approach to work well for the nesting problem, where

the search domain is often very large.
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Chapter 1: Introduction

1 .1 Introduction

Layout and cutting problems are important in many industries, as they involve

the optimal use of valuable raw material. Problems of optimal arrangement of 2-D

pieces to be cut from an initial piece of stock material are called nesting problems.

They are also called by other names such as cutting stock problems, layout

problems and packing problems. There are many varieties of problems, depending

on the shapes of the pieces, constraints on their orientations, etc. The problem to

be addressed in this report can be stated as follows: given a rectangular piece of

stock of a specified width and indefinite length, find the optimal arrangement of a

given set of polygonal part shapes onto that stock such that:

0 None of the part overlaps any other.

0 All are contained within the boundary of the stock piece.

0 The length of the stock piece used is minimized (optimality condition for this

problem)

In this case, there is no constraint on the orientation of the part shapes, but

they may not be turned over. It should be also be noted that there is no constraint

on the shape (for example convexity) of the parts to be nested. Figure 1.1 illustrates

the problem to be addressed in this report.

1.2 Application of Nesting

The nesting problem is encountered in various industries. Some of them are

listed below:
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Figure 1.1: An example showing the different shapes placed onto a bigger sheet

1. Ship Body Building Industry

2. Automobile Body Building Industry

3. Aircraft Body Building Industry

4. Textile Industry

5. Leather Industry

6. Glass Cutting Industry

7. Wood Industry

8. Heavy Equipment Manufacturing Industry

1.3 Types of Nesting

In recent years, a number of researchers have investigated the problem of

nesting of irregular shapes, and the approaches can be grouped in three categories:



manual, semiautomatic and automatic. In the first case, the draftsman makes use of

a computer with graphics input-output devices, capable of manipulating (rotating,

translating, etc.) pieces on a working display. In the second category, the system

proposes a tentative solution and then interactive improvements are allowed by a

conversational display unit, using a special set a of commands to Operate on the

solution process. The third one is totally automatic, where given the input, the

system gives the final output. Automation improves material requirement estimates

and substantially reduces man hours required for part layout. This leads to

increased productivity, reduced material handling and tracking, and thereby helps

to reduce the overall project costs. Research into the automation of the 2-D nesting

problem can be divided into three broad categories. The first involves allocation of

rectangular shapes onto rectangular stock material. The second, more general,

problem, entails nesting irregular profiles onto a sheet of rectangular shape. The

third one is the most generalized form, which is nesting of irregular profiles onto

resources of arbitrary shapes.

1.3.1 Approaches to Automated Nesting

The problem of automated nesting has been tackled in various ways. They can

be broadly classified as follows:

0 Rule-based heuristic approach: In a rule-based heuristic approach, a set of

rules is designed to try to take advantage of some characteristics of the shapes

of the parts, placing earliest those with certain characteristics, packing

together parts with certain matching features, etc. They basically try to

mimic the manual nesting.

0 Stochastic approaches: Stochastic approaches such as genetic algorithms or

simulated annealing typically use little information about part shapes, instead



use only simple packing rules and rely on the stochastic algorithm to vary the

order in which these rules are applied to the parts to be nested.

The approach used in this thesis is a hybrid one. It relies on a powerful

feature-matching heuristic capable of generating fairly good packing even without a

genetic algorithm. It uses part shape features to determine the exact placement and

orientation of the parts, here augmented by a genetic algorithm that determines the

sequence in which they are nested (now sometimes together called a memetz‘c

algorithm). In addition a parallel GA has been employed to make the search both

more global and more efficient.

1.4 Organization of Report

This report is divided into five chapters. The next chapter briefly reviews the

literature on this problem. The third chapter describes in detail the algorithm

implemented. The fourth chapter presents the results obtained. And finally the fifth

chapter discusses the scope of further work and concludes the report.



Chapter 2: Literature Review

2. 1 Introduction

As mentioned in the previous chapter, most of the proposed nesting methods

can be broadly categorized into two categories. One of them predominantly relies on

exploiting the shape information of the parts to be nested, and the other one tries

to arrive at the solution using stochastic evolution of potential solutions. In this

chapter an attempt is made to briefly cover the literature available on both the

approaches.

2.2 Review of Algorithms Using Shape

Approximation and Heuristics

One of the simplest and earliest methods of nesting irregular profiles is

approximating either a part or a group of parts using a rectangular enclosure. In

this case, Minimum Enclosing Rectangles (MER’s) of each part is constructed and

then they are nested by applying algorithms available for nesting rectangular shapes.

A considerable amount of research work has been published using this approach.

One of them is being described in brief below. Nee et al. in 1986 suggested an

algorithm for approximating the given shapes by means of lines, essentially trying to

find the Minimum Enclosing Polygon(MEP). After the MEP has been found, the

MER for that MEP is constructed. Depending on the shapes of the MEP’s, pair wise

clustering is also seeked. Once all the shapes have been considered by the algorithm

described above, a rectangular nesting algorithm is invoked. Here, all the rectangles

are first arranged in descending order of areas. The largest rectangle is placed in the

lower left corner of the stock sheet and the pivot points are created. The next



rectangle’s are then placed at each of the pivot points generated, both length and

breadth-wise, to check if they intersect with any of the existing rectangles. Only the

non-intersecting rectangles are considered, and the minimum enclosing area of both

the rectangles is computed. After selecting the best position, the shape inside the

rectangular module is further shifted in both horizontal and vertical directions. New

pivot points are now defined and the old ones are deleted. This process is repeated

until every rectangle has been packed. Going in steps like the above algorithm

proves to be simple and natural, but the wastage associated with approximation of

highly irregular shape to MER might lead to an inefficient final layout.

Earlier in 1975, Freeman and Shapiro, and in 1976, Adamowicz and Albano had

approached the nesting algorithm using the same technique of approximating the

given parts with MER’s and then packing the MER’s. Their solutions also suffered

from the above-mentioned problem.

Several attempts have also been made to solve this problem using local greedy

heuristics. The local greedy heuristics were essentially based on the use of a

directional placement policy, which involved placing the parts at hand on the lowest

and left-most available vertex.

In 1993, Dowsand and Dowsland used a random left-most placement policy and

allowed for pieces to jump over pieces to fill gaps. This was done in order to allow

the smaller pieces to fill in the gaps created by placement of bigger pieces. In 1980,

Albano and Sapuppo proposed another algorithm using lowest leftmost policy,

which decided the next part to be placed by evaluating the potential waste due to

the placement of the part at hand.

In 1996, Lamousin et al. proposed an algorithm that modifies Albano and

Sapuppo’s algorithm, using the concept of No Fit Polygon (NFP) for part

placement. Lamousin and Waggenspack (1996) also proposed another algorithm

that uses features of the profile. This algorithm tries to find and match



complementary features of the profile and the remaining area of stock.

Some attempts have been also made to solve this problem using Monte Carlo

algorithms. Bohme and Graham (1979) tried this method and suggested that

approximately 2000 such random trials are usually required to get satisfactory

results. The best solution was then fine tuned by fine random perturbation. In the

next section the stochastic approaches for solving this problem are described.

2.3 Review of Algorithms Using Stochastic

Approaches

Besides the above-mentioned deterministic approaches, the probabilistic and

evolutionary techniques have also been successfully employed to solve the nesting

problem. G-C Han and S-J Na (1996) used a two-stage method with a

neural-network-based heuristic for generating an acceptable initial layout, and a

simulated annealing algorithm for fine-tuning the solution.

In 1995, Ismail and Han proposed a genetic-algorithm based solution to this

problem. They generated a set of initial random layouts as their first generation

chromosomes. The layouts were allowed to have parts overlapping each other. They

constructed an objective function that tried to minimize the total area needed to

place all the parts. This objective function included a penalty term which took into

account the overlaps between two parts.

In 1998, Jain and Gea proposed a solution based on a genetic algorithm by

using a 2-D representation for a chromosome. The 2-D representation was arrived

by dividing the stock into finite equal sized square cells. The value of cell was either

1 or 0 depending on whether it was occupied by any part or not. The genetic

operator’s were modified accordingly to perform on the 2-D chromosome.

In 1999, Babu and Babu came up with a genetic algorithm approach which



aimed at finding an optimum sequence of placing the parts on the sheet. In 2000,

Sha and Kumar came up with a representation that encoded the sequence and

orientation of the parts on a 2-D chromosome and modified the genetic operator’s to

deal with that form.

2.4 Conclusion

The approaches using the shape information were unable to perform very well,

when the shapes to be nested turned out to be highly irregular. And on the other

hand the probabilistic approaches, due to their evolutionary nature and lack of any

in-built heuristic, proved to be of high time complexity. The approach proposed in

this work uses a parallel genetic algorithm wedded with a powerful heuristic to solve

the problem more effectively. The next chapter describes the algorithm used in the

present work. It builds the background knowledge required to understand the

approach as well as integrating everything to present the algorithm in totality.



Chapter 3: Nesting Using a

Parallel Genetic Algorithm and

Feature Matching

3. 1 Introduction

This chapter describes the approach taken to address the nesting problem. As

mentioned before, the approach is a hybrid. The idea comes from the observation

that in a typical packing problem the order in which the parts are placed plays a

very determining role in the quality of the final solution. Figure 3.1, which

illustrates this concept, we can see that using the same set of parts, and same set of

rules to pack them requires different sheet lengths if the order of parts are different.

The algorithm utilizes shape information in the form of feature matching, and a

genetic algorithms is used to generate the sequence in which the parts are to be

placed on the sheet.

The sequence generated by the GA module is fed to the feature matching

module, which in turn places the parts according to a predefined set of rules and

returns the length of sheet used to the GA module for further iterations. The

iterations are carried on until a good solution is obtained or a predetermined

amount of effort has been put in. Figure 3.2 illustrates this concept graphically.

Before going any further, I will briefly introduce the concept of a genetic

algorithm.



 

.AL...

 

 

Figure 3.1: Effect of Part Sequence in packing problem

3.2 Genetic Algorithms (GA’s)

Genetic algorithms are optimization procedures that Operate by mimicking

nature’s evolutionary processes. The principle of a genetic algorithm is based on the

Darwinian notion of ”survival of the fittest”. GA’s were first introduced by John

Holland in 1960 and described in his landmark book called Adaptation in Natural

and Artificial Systems ” (Holland 1975). In GA’s, an initial population of solutions is

randomly generated. Each member of this population (called a chromosome), is a

coded representation of the design attributes that represents a potential solution for

the problem to be solved. The initial group of solutions (zeroth generation)

undergoes operations like mutation and crossover (similar to those of biological

processes) to generate a new set of solutions (next generation). The idea behind

mutation is to randomly alter one or more attribute of the individual in search of a

better solution. Crossover is done in order to combine the attributes of two

individuals and carry them to the next generation. The process of creating a new

generation also involves selection, which is biased to give the fitter individuals more

chances to contribute in the formation of the next generation. This process is

10
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Figure 3.2: Flow of the Algorithm

continued until a ’good’ solution is achieved, or a predetermined number of

generations has been completed. Figure 3.3 illustrates steps involved in GA’s

graphically.

3.2.1 Parallel Genetic Algorithms (PGA)

Genetic algorithms run can be run on a single processors, but they have been

proven to be highly parallelizable, capable of being run in a cluster of computers.

Besides this, although GAs can be made resistant to premature convergence, they

are not immune. One technique to reduce the likelihood of premature convergence

and overcome the problem of speed is parallelization of the GA, by the use of

  

 

 

WM; 2') * ~ If? m 0 ‘Wl‘
Mu. Mi ~—— w W! l WW}.
(Hullu : A, MU: I ~ WNW

"J Li M ' ply a l “ MW.»
l . _ .. l ._.__.___.._J L__;__

gal r "T“H ,_( HIT l‘l'lr-dlfll. I ptrn +
)l f— _) ll

Figure 3.3: The generational evolution of Genetic Algorithms
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multiple subpopulations on multiple processors. The two most commonly used

kinds of parallel GA’s are: fine-grain GA’s, and coarse-grain GA’s. In fine-grain

GA’s (ngA’s), individuals are arranged in some tessellation with an individual on

each processor. In this model, the individuals are allowed to interact only with their

immediate neighbors. Implementation of this model requires the processor topology

to be of a specified manner and high connectivity among the processors. In

coarse-grain GA’s (chA’s), each node is assigned a particular subpopulation

performing a single population GA. At certain intervals, some individuals might

migrate from one subpopulation to another. The migration rule is usually

predetermined. The next few sections describe the various components involved in

the implementation of a parallel genetic algorithm for the nesting problem.

Population Representation

In a classical GA, a binary string representation is often used. However, for

sequencing and other combinatorial problems, chromosomes often represent an

ordering of entities, specified simply as a permutation of the integers 0, 1, .., N-l).

In this problem the chromosome has been represented as an array of integers, where

each element of the array corresponds to a particular part index,

forexamplez34597108021

In the above example, the chromosome would be used for solving a problem

having 10 parts to be nested. The chromosome would be interpreted as the sequence

in which the parts are to be placed on the sheet. In the above case, this means that

part number 3 would be placed first, then part number 4, then part number 5 and

SO on.

12



Crossover Operator

For this representation, many different crossover Operators are suitable:

partially matched crossover (PMX), uniform order based crossover (UOBX), order

based crossover (OBX), and cycle crossover (CX) (Davis, 1991), (Goldberg , 1988).

Each Of the crossover Operators are described in detail in appendix A.

Mutation Operator

The mutation operators that are designed to Operate on permutation problem

are called the swap and the scramble mutation Operators (Davis, 1991; Goldberg,

1988). Appendix B describes both the mutation operators.

Crowding Factor and Incest Reduction

To reduce the chances Of premature convergence, a DeJong-style crowding

factor was used (Goldberg, 1988). It helps in allowing several distinct groups of

individuals to develop and persist in the population. This technique is useful in

exploring multi—modal problems. In addition, the mechanism Of incest reduction

(Goodman, 1994) reduces the proportion Of crossovers performed between very

similar chromosomes. Further, it also helps to maintain genetic diversity, thus

helping avoid premature convergence.

Elitism

An Elitism mechanism was used to insure that at least one copy Of the current

generations best individual appears in the next generation.

Migration

The migration policy used between the subpopulation is critical in balancing

the co-evolution of the sub populations. It affects the selection pressure and thus

13



convergence time (cantu-paz, 2000). The following are different migration policies

which are commonly used:

1. The sending subpopulation sends a random individual, and that individual

replaces a random individual in the receiving suprpulation.

2. The sending subpopulation sends a random individual, and that individual

replaces the best individual in the receiving subpopulation.

3. The sending suprpulation sends its best individual, and that replaces a

random individual in the receiving subpopulation.

4. The sending subpopulation sends its best individual, and that individual

replaces the best individual in the receiving subpopulation.

In this research the sending subpopulation sends the best individual, which in

turn replaces a random individual in the receiving subpopulation. This policy was

used in order to ensure that all the subpopulations benefit from the discovery Of a

good solution in a limited fashion. In addition, the migration rate and the number

Of migrants are also very important. Here, depending on the complexity of the

problem, one tenth Of the individuals were migrated every five to ten generation.

Subpopulation Layout (Topology)

The spatial arrangement of subpopulation and their interconnectivity is the key

to successful implementation Of chA’s. The topology of a chA should be

designed keeping in mind that, a discovery of a good solution should benefit the

entire search process, and also, at the same time, it should not lead the search

towards premature convergence because of one subpopulation influencing the others

to the extent of overshadowing their own exploration. The four different layouts

that were considered in this research are as follows:

14
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Figure 3.5: Eight subpopulation each having two neighbor

1. Ring layout with one neighbor: Eight different subpopulation laid out in a

circular manner with one neighbor each (Fig 3.4).

2. Ring layout with two neighbor Eight different subpopulations laid out in a

circular manner with two neighbors each. (fig 3.5).

3. Grid Layout with directional connectivity: Twenty different subpopulations

laid out in a grid with partially directional communication (Fig 3.6).
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Figure 3.7: Grid topology with full communication

4. Grid layout with full connectivity: Twenty different subpopulations laid out
 

in a grid with all suprpulations indirectly connected to each other (Fig 3.7).

The ring topologies are the standard topologies that have been used in previous

research work with PGA’s. But the two grid topologies are the non-standard
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topologies, and were designed because of the inability Of ring topologies to perform

well on the complicated nesting problems. The effect of these topologies is discussed

in detail in the next chapter.

Evaluation Function

The problem aims at minimizing the length used Of a fixed-width piece of

rectangular stock. However, in preliminary studies, it was Observed that nesting

larger parts first Often yields a better solution. In order to speed the search and

exploit this, in some of our runs, a bias term was added to the fitness function that

slightly favored nesting in which larger (area) parts were placed first. But, the effect

Of this term was not found to be large, and its use was abandoned in the later runs.

Selection Method

Selection is an important component Of GAs. According to some schemes, the

fitter members of the pOpulation are chosen to be taken to the intermediate

generation . Selection makes a large contribution in determining the final quality of

solution and the time taken to achieve it. For this problem the stochastic universal

sampling and tournament selection were considered for selection. Appendix C

explains these methods in detail. The selection was done using linear scaling of

fitness value (Goldberg, 1988) except when using the tournament selection.

3.3 Feature Matching and Placement Policy

In this hybrid (or memetic) algorithm, shape information is used to effectively

match complementary features on the parts and the stock. In this case, building on

the earlier work of another graduate student (Debnath, 1997), a feature was defined

to be an instance Of two adjacent edges on a polygon. The data defining this type Of
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Figure 3.8: Feature Information

feature are the lengths of the two adjacent edges and the internal angle between

these edges. Figure 3.8 shows an example of such a feature.

3.3.1 Placement Policy

Given the next part to be nested, the algorithm determines what position and

orientation is best for the part vis-a-vis the current state of the stock. At any point,

the system tracks a stock profile, a polyline comprised Of portions of edges of stock

and parts, and that includes all currently open area in the stock as nested to date.

Candidates for features at which to nest subsequent parts are located on this profile.

The profile will grow to include many small, closed areas in which no additional

parts can be nested, and the algorithm, after numerous attempts to nest subsequent

parts in such an area, will eventually mark the points in that area as bad points, and

will refrain from trying to nest more parts there. Figure 3.9 shows typical packing

in progress. The packing heuristic first selects the vertex on the stock profile

(ignoring bad interior points) with the lowest y-co—ordinate. If more than one vertex
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has the same y-co—ordinate, the vertex with the smallest x—co—ordinate is selected.

This selection is based on the placement policy Of lowest and if necessary leftmost.

The heuristic forms a target feature on the stock, and iterates through all the

features of the part at hand. To each of the iterations through the part features it

assigns a particular score. The orientation yielding the highest score is retained for

the final placement. This score is calculated using the following parameters:

3.3.2 Left Shadow Area

Since the placement policy was selected to fill up the stock from left to right,

any closed-Off areas to the left of the stock would be unfavorable for the final

solution. See Figure 3.10

3.3.3 Bottom Shadow Area

Since the placement policy was also set to fill up the stock from bottom to top,

any closed-Off areas towards the bottom of the part would again be unfavorable for

the solution. See Figure 3.10

3.3.4 Contact Length of the Feature

To effectively exploit a corner feature, it is necessary to calculate the

contribution due to the feature itself. TO ensure good local packing, we wanted the

contact length between the part at hand and existing stock profile to be maximized.

Further, in order to yield comparable units in the scoring function, the value Of this

measure is squared. See Figure 3.10

The scoring function used is thus:

2 a * (Left Shadow Area) + b * (Bottom Shadow Area) + c * (Contact Length)2
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wherea,b<0andc>0

The next chapter discusses the experimentation conducted and results Obtained.
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Figure 3.9: Developing Stock Profile
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Chapter 4: Results and Discussions

The algorithm was tried on various problems set with varying parameters of

GAs and the feature matching coefficients. In the feature matching module, the

coefficients of the scoring function were varied such that:

a, be {—1, —2, —3, —4} and Co: {1, 2, 3, 4}

After initial experimentation, it was found that a good set Of values for (a, b, c)

is (-1,-1,3). Here the shadow coefficients are given equal negative values and the

contact length co—efficient takes a high positive value. This made the local search

more biased towards placing parts in orientations that maximize their contact with

the ongoing stock profile.

For the GA module, the following are the scope of variations which were

considered or tested:

0 Crossover Operators : Among the four different crossover Operators suitable for

permutation type problems in GALOPPS the PMX and UOBX were the most

logical candidates for the nesting problem. Both of them were tested and it

was found that UOBX performed slightly better than the PMX Operator.

Considering the nature of this problem and the manner in which UOBX

works, the UOBX Operator was chosen for further use. There seems to be a

higher probability that meaningful building blocks are preserved, by UOBX,

further supporting the test results.

0 Mutation operators : Between swap and scramble mutation, the swap

mutation makes a better choice in this case, considering the fact that it does

not have as destructive an effect as the scramble mutation. It was used for all

the experiments.
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0 Selection methods : Both tournament and stochastic selection methods

performed approximately equally well for this problem. In the experiments

where it was desired to increase the rate of convergence, the tournament

selection was used with size Of the tournament between 3 and 5.

o Topology in which the subpopulations are arranged : It was Observed that the

grid layouts performed better than the ring layouts. In the case Of ring

layouts, the improvement in solution used to stop earlier than with the grid

layouts. This may be due tO the fact that the grid tOpOlogy helped in

maintaining genetic diversity among individuals for more generations and thus

gave the subpopulations more time to evolve. In addition, the fully connected

grid layout was found to yield more consistent results than the partially

directional grid layout. This was expected, as in the case of a fully connected

layout the finding Of a good individual benefits all the subpopulations, which

is not true with the directional connectivity.

The GA module was implemented using GALOPPS version 3.2.2 (Goodman,

1996), a GNU-licensed freeware developed at MSU’S GARAGe.

The sample problems for, which the results are shown have been derived from

the existing literature. However, since in most of the literature, the part geometries

are not published, a definitive comparison cannot be made.

4. 1 Problem 1

This problem involves nesting Of rectangular parts on a rectangular stock sheet.

It is a artificial problem published in (Burke and Kendall 1999). Figure 4.1 shows

the part and the Figure 4.2 shows the solution Obtained.
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Figure 4.1: Parts for Problem 1 (Total Part Area = 11112 sq. units)

Number Of Parts

Total Area of Parts

Total Rectangular Area Required

Width Of Stock Sheet

Percentage Utilization

Percentage Utilization as Reported

Generations Required

Topology Used

Crossover Operator

Mutation Operator

Selection

Stopping Criterion

13

11112.00 sq. units

11200 sq units

80 units

99.21

99.21

425

Fully Connected

UOBX

Swap

tournament selection

500 generations
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Figure 4.2: Solution Obtained for Problem 1 (Percentage Utilization = 99.21)

4.2 Problem 2

This problem involves nesting Of irregular shapes onto the rectangular stock

material. This is an artificial problem published in (Jakobs, 1996). Figure 4.3 shows

the parts and the Figure 4.4 shows the results Obtained.
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Figure 4.3: Parts for Problem 2 (Total Part Area = 392 sq units)

Number Of Parts

Total Area of Parts

Total Rectangular Area Required

Width of Stock Sheet

Percentage Utilization

Percentage Utilization as Reported

Generations Required

Topology Used

Crossover Operator

Mutation Operator

Selection

Stopping Criterion

25

392 sq. units

502.37 q units

40 units

78.03

65.33

192

Fully Connected

UOBX

Swap

Stochastic Universal Sampling

500 generations
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Figure 4.4: Solution Obtained for Problem 2 (Percentage Utilization = 78.03)

4.3 Problem 3

This is a jigsaw problem and was constructed from the results published in

(Dighe and Jakiela, 1996). This problem was chosen to test the effectiveness of the

feature matching algorithm. Figure 4.5 shows the parts used in this problem; Figure

4.6 shows the solution Obtained. The details of the solution are as follows:
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Figure 4.5: Parts for Problem 3 (Total Parts Area = 10000 sq. units)

Number Of Parts

Total Area Of Parts

Total Rectangular Area Required

Width Of Stock Sheet

Percentage Utilization

Percentage Utilization as Reported

Generations Required

Topology Used

CrossOver Operator

Mutation Operator

Selection

Stopping Criterion

10

10000 sq. units

10000 sq units

100 units

100.00

100.00

94

Fully Connected

UOBX

Swap

Tournament Selection

500 generations
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Figure 4.6: Solution Obtained for problem 3 (Percentage Utilization = 100.00)

4.4 Effect of variations in the PGA module

4.4.1 Effect of different topologies

In this section a comparison has been made between the various parallel genetic

algorithm topologies. The parts to be nested have been taken from the shipbuilding

industry. Figure 4.7 shows the parts used for the experimentation. These parts are

characterized by their complex geometries and the large variation in their sizes.

Figure 4.8 to fig 4.11 shows the result obtained using different topologies. The

details of the solution Obtained are as follows:

Number of Parts 10

Total Area Of Parts 3748.75 sq. units

Width of Stock Sheet 65 units

Crossover Operator UOBX

Mutation Operator Swap

Selection Stochastic Universal Sampling

Stopping Criterion NO improvement for about 100 generation

or max Of 500 generations

30



 

 

 

Figure 4.7: Parts of Problem 4 (Total Part area = 3748.75 sq. units)

Table 4.1: Results Obtained for Various Topologies (best of all the runs performed)
 

 

 

 

 

 

Topology Used Percentage Utilization Generations Needed

Ring Topology One Neighbor 82.07 252

Ring Topology Two Neighbor 82.31 310

Grid Topology Partial Connection 84.77 394

Grid Topology Full Connection 85.33 442  
 

Table 4.2: Results Obtained for Various Topologies (average Of the three test runs)
 

 

 

 

 

 

Topology Used Percentage Utilization Generations Needed

Ring Topology One Neighbor 81.42 270

Ring Topology Two Neighbor 82.00 290

Grid Topology Partial Connection 83.07 370

Grid Topology Full Connection 84.50 389  
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Figure 4.8: Solution to Problem 4 Obtained using ring topology with one neighbor

(Percentage Utilization = 82.07)
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Figure 4.9: Solution to Problem 4 Obtained using ring topology with two neighbors

each (Percentage Utilization = 82.31)
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Figure 4.10: Solution to Problem 4 obtained using the grid topology having partially

directional communication (Percentage Utilization = 84.77)
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Figure 4.11: Solution to Problem 4 obtained using the grid topology having full

directional communication (Percentage Utilization = 85.33)
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Table 4.3: Results Obtained for PMX and UOBX Operator (best Of the three test

 

 

 

runs)

Operator Percentage Utilization Generations Needed

PMX 83.54 245

UOBX 83.67 190      

Table 4.4: Results Obtained for PMX and UOBX Operator(average Of the three test

 

 

 

runs)

Operator Percentage Utilization Generations Needed

PMX 82.88 272

UOBX 83.03 210     
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Figure 4.12: Solution to Problem 4 Obtained using the UOBX Operator (Percentage

Utilization = 83.67)

4.4.2 Effect Of PMX and UOBX operators

In this case, problem 4 was solved three times, with maximum generations set

at 300. It was found that both the Operators were able to generate sequences giving

almost equally good packings but in the case of UOBX, the number of generations

required was smaller. Figure 4.12 and Figure 4.13 show the results Obtained in each

case for the best result out of the three runs performed.

To draw a conclusion about the performance Of the various topologies and the
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Figure 4.13: Solution to Problem 4 Obtained using the PMX Operator (Percentage

Utilization = 83.54)

crossover Operators this problem was run repetitively for three to four times for each

experiment. The results shown here are the best Obtained from each of the test

cases. The multiple runs performed gave fairly good indications about the

capabilities Of the the various topologies, and helped in ultimately recommending

the fully connected grid topology and the UOBX crossover Operator. The sizeable

amount of computer resources required for each run (generally at least overnight on

a cluster of 20 processors) precluded making enough runs to draw a firm, statistially

significant conclusion about each comparision. But there was sufficient consistency

to strongly support the recommended choices given here.

4.5 Problem 5

Each of the parts of problem 4 was duplicated to yield a more challenging

problem. Figure 4.14 shows the result Obtained from best of the two runs. It can be

seen that the algorithm is fairly scalable and produces sheet utilization comparable
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Figure 4.14: Solution for Problem 5 (Percentage Utilization = 83.65)

to problem 4.

Number of Parts

Total Area of Parts

Total Rectangular Area Required

Width of Stock Sheet

Percentage Utilization

Generations Required

Topology Used

Crossover Operator

Mutation Operator

Selection

Stopping Criterion

56

7497.50 sq. units

8962.94 sq. units

65 units

83.65

182

Fully Connected

UOBX

Swap

tournament selection

200 generations

4.6 Conclusion

The above set of experiments shows the ability of the algorithm to solve both

simple and complex nesting problems with good consistency. The time involved in

36



finding the final solution is dependent on the computational time needed for one

evaluation Of the Objective function, which in turn is dependent on the number and

complexity Of parts constituting the problem. For example, the time required to

calculate the objective function for problem 4 was 17 seconds, on a one processor Of

a dual processor machine in which each processor has a speed of 850 MHz, with 256

Mbytes Of shared RAM. Thus the approximate run time required for this problem

was 65 hours. However, for problem 1, the time required for the evaluation of one

Objective function was 1 second and thus the approximate run time for this problem

was 4 hours. All the experiments were performed on a cluster of ten computers each

running one or two subpopulations at a time (maximum Of one subpopulation per

processor) .
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Chapter 5: Discussion and

Recommendations

This research work investigated the application Of a shape-feature-matching

heuristic and a coarse-grain PGA, to the irregular shape nesting problem.

The use of shape information and feature matching helped in finding feasible

solutions very effectively. It made the search more efficient by doing local search

within each evaluation Of the GA.

An unusual grid topology, and migration scheme was designed and tested. The

results suggest that, this led to the improvement in performance of the PGAs.

Nesting is essentially finding the right permutation Of sequence of the part

placement over the stock sheet. Even if we enumerate all the possible permutations

for the case where we have just 10 parts, then it is equal to l10, which in turn is a

large number, 3628800. Assuming one evaluation of the enumerated solution takes 1

seconds and we want to try all the possible combinations, it would require 42 days

to solve the problem involving 10 parts. The approach presented here, helps in

reducing the time involved to get a good solution considerably. But, it would still be

inappropriate to use this approach for solving a problem, which requires real-time

decision making, or which does not follows any particular template. For example, in

the leather industry, the shape Of the stock keeps changing every time, because it

comes from animal skin. And requires generation of a fresh nesting pattern for each

stock sheet.

However, in industries such as shipbuilding, where the material is quite costly

and we need to cut same shapes repeatedly; even a half-percent improvement in

packing density is sufficient to justify a fairly intensive search process, such as

represented by the method described here.
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5. 1 Recommendations

Once the layout has been generated, the next step is to generate the Optimal

tool path. This research does not address this problem, but it can be extended

to provide the functionality Of generating Optimal tool path.

In this case, the Objective function is inversely proportional to the length of

sheet used. But, this design would not work in the case where the stocks have

irregular shape. SO, there is a need to design the Objective function that can

represent the sheet utilization for the irregular stock sheets.

The algorithm should be extended to solve problems involving multiple stock

sheets.

The feature matching heuristic should be extended to also handle curve-linear

features.

It is necessary to improve the current geometric algorithm in terms Of

computational speed. An intelligent method should be developed to

distinguish between the features which are important and which are not, and

while calculating the score function the unimportant features should not be

used. This would save some computational time.

The packing problem also finds application in the cargo industry, where its

needed place the 3—dimensional shapes in Optimal space. This algorithm can

be extended to handle this kind of packing problems by adding routines

capable Of classifying and matching 3-dimensional features.
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Appendix A: Crossover Operators

A.1 Partial Matched Crossover Operator (PMX)

The PMX Operator (Davis, 1991; Goldberg, 1988) is carried out in following

steps:

1. The two candidate strings are first aligned and two crossing sites are picked

uniformly at random along the strings.

A=984—325——10761

B=125—789—10643

2. PMX proceeds by position wise exchanges. First, mapping string B to string

A, the 7 and the 3, the 8 and 2, and the 9 and 5. Similarly also mapping

string A to string B, the 3 and the 7, the 2 and the 8 and the 5 and the 9.

3. Under PMX we Obtained following two Offspring, containing ordering

information partially determined by each parent.

ChildA=524—789—10361

ChildB=189—325——10647

A.2 Order Based Crossover

The order based crossover Operator (Davis, 1991; Goldberg 1988) is carried out

in following steps:

1. The order based crossover Operators also starts Off by aligning the two

candidate strings and picking two crossing sites uniformly at random along the

strings.
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A:923—568—14810

B:857—239—16104

2. Like, PMX each strings maps to constituents Of matching section Of other

parent. But instead of using point-by-point exchanges as in PMX, order based

crossover uses a sliding motion to fill holes left by transferring the mapped

positions. In this case when string B maps to string A, the positions of 5, 6

and 8 will leave holes (marked by H) in the string:

A’=HHH—568—1481O

B’=HH7—239—1H104

3. These holes are filled with a sliding motion that starts following the second

crossover site:

A’=568—HHH—14810

B’z239—HHH—11047

4. These holes are then filled with the matching section from the other string.

Performing this Operation we Obtain the two Offspring’s as follows:

ChildAz568—239—14810

Childe239—568—11047

A.3 Uniform Order Based Crossover Operator

(UOBX)

The UOBX (Davis 1991) is carried out in following steps.

1. Selection of parents

A:123456789

3:245796318
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2. In the second step a uniformly random binary template is generated.

011001011

3. The 1’s specify loci to be filled by the corresponding alleles of the first parent

in the first child, and the 0’s are filled on the second child with corresponding

alleles of the second parent.

Child A (partial): - 2 3 - - 6 - 8 9

Child B (partial): 2 - - 7 9 - 3 - -

4. The void ’-’ space Of the first child is filled by the genes of parent 2 in their

order of appearance (without duplication, since the result must be a

permutation) and the second child is handled correspondingly.

ChildA:423576189

Childe214795368

A.4 Cycle Crossover Operator (CX)

The cycle crossover (Davis, 1991; Goldberg, 1988) is carried out as follows:

1. The two candidates are randomly chosen.

A=98217451063

B=12345678910

2. In this case we start from the left by picking the first parent.

A = 9 ---------

3. Since, we want each position to be taken from one of the parent, in this case

the choice of 9 from string A means that we must get 1 from the string A

because of the position Of 1 in string B.

A=9--1 ......
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4. This selection in turn requires that we select position 4 from string C. This

process continues until we are left with the following pattern:

A=9--1-4--6-

5. The selection of 6 means that we should now choose a 9 from string A:

however this is not possible: a 9 having selected at the first position. So, we

eventually return to the position Of origin and this complete the cycle.

Following the first cycle, the remaining positions are filled from the other

string. Thus the final Offspring’s which are Obtained are as follows:

ChildAz92315478610

Childel8247651093
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Appendix B: Mutation Operator

B.1 Swap Mutation

In swap mutation (Davis, 1991; Goldberg, 1988) two positions are picked up

and their alley’s are exchanged. For example

2457801369 2157804369

B.2 Scramble Mutation

In scramble mutation (Davis, 1991; Goldberg, 1988) a subset of positions are

picked at random and are reordered. For example

2457801369 2147805369
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Appendix C: Selection Methods

C.1 Tournament Selection

In tournament selection a ’n’ (where n g, 2 and less then population size)

number of individuals are chosen at random from the population and the best

individual among them is selected as parent. This implies that the bigger the ’n’

more the selection pressure.

C.2 Stochastic Universal Sampling Method

Stochastic universal sampling method provides a bias free way Of selecting

individuals. In this methods the individual are mapped onto a roulette wheel with

the sector size equals to their relative fitness. Next, N equally spaced pointers are

drawn from the center, (where N equals to the number Of individuals desired to be

selected). The individuals which are pointed by the pointers are selected as parents.

For example in the Figure C.1, there are 7 individual mapped onto the roulette

wheel according to their relative fitness, and four individuals are desired tO be

selected. Therefore, four equally spaced pointers are drawn from the center. These

pointers point tO 6, 4, 1 and 7. Thus these individuals are selected as parents.
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Figure C.1: Stochastic Universal Sampling Method
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Appendix D: Geometry of the

Example Problem

D.1 Data for Test Problem 1

NEWSTOCK

STOCKVERTEXOO

STOCKVERTEXSOO

STOCKVERTEX803M)

STOCKVERTexosm)

STOCKEND

PART

VERTExoo

VERTEX240

VERTEX2416

VERTEX016

PARTEND

PART

VERTEXOO

VERTEX28O

VERTEX2816

VERTEXOlG

PARTEND

PART

VERTEXOO

VERTEX280

VERTEX2816

VERTEX016

PARTEND

PART

VERTEXOO

VERTEXGOO

VERTEX6014

VERTEX014

PARTEND

PART

VERTEXOO

VERTExsoo

VERTEX6014

VERTEX014

PARTEND

PART

VERTEXOO

VERTEX200

VERTEX2028

VERTEX028

PARTEND

PART

VERTEXOO

VERTEX220

VERTEX2226

VERTEXO26

PARTEND

PART

VERTEXOO

VERTEX220

VERTEX2226

VERTEX o 26

PARTEND
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PART

VERTEX 0 0

VERTEX 42 0

VERTEX 42 44

VERTEX 0 44

PARTEND

PART

VERTEX 0 0

VERTEX 18 0

VERTEX 18 70

VERTEX 0 70

PARTEND

PART

VERTEX 0 0

VERTEX 62 0

VERTEX 62 26

VERTEX 0 26

PARTEND

PART

VERTEX 0 0

VERTEX 18 0

VERTEX 18 48

VERTEX 0 48

PARTEND

PART

VERTEX 0 0

VERTEX 18 0

VERTEX 18 48

VERTEX 0 48

PARTEND

D.2 Data for Test Problem 2

NEWSTOCK

STOCKVERTEX 0 0

STOCKVERTEX 40 0

STOCKVERTEX 40 120

STOCKVERTEX 0 120

STOCKEND

PART

VERTEX 0 0

VERTEX 2 0

VERTEX 0 2

PARTEND

PART

VERTEX 0 0

VERTEX 3 0

VERTEX 0 3

PARTEND

PART

VERTEX 0 0

VERTEX 4 0

VERTEX 0 4

PARTEND

PART

VERTEX 0 0

VERTEX 5 0

VERTEX 0 5

PARTEND

PART

VERTEX 0 3

VERTEX 6 0

VERTEX 6 3

PARTEND

PART

VERTEX 0 4

52



VERTEX70

VERTEX74

PARTEND

PART

VERTEXOO

VERTEXSO

VERTEX53

VERTEX33

VERTEX35

VERTEXOS

PARTEND

PART

VERTEXOO

VERTEX40

VERTEX41

VERTEX21

VERTEX24

VERTEX04

PARTEND

PART

VERTEXOO

VERTEXGO

VERTEX63

VERTEX43

VERTEX46

VERTEXOG

PARTEND

PART

VERTEXOO

VERTEXSO

VERTEX52

VERTEX32

VERTEX31

VERTEXOI

PARTEND

PART

VERTEXOO

VERTEX40

VERTEX42

VERTEX32

VERTEX31

VERTEXOI

PARTEND

PART

VERTEXOO

VERTEX60

VERTEX63

VERTEX43

VERTEX46

VERTEXOG

PARTEND

PART

VERTEXOO

VERTEXGO

VERTEX66

VERTEX06

PARTEND

PART

VERTEXOO

VERTEXSO

VERTEX55

VERTEX05

PARTEND

PART

VERTEXOO

VERTEX40

VERTEX44

VERTEX04
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PARTEND

PART

VERTEX 2 0

VERTEX 4 0

VERTEX 4 2

VERTEX 6 2

VERTEX 6 4

VERTEX 4 4

VERTEX 4 6

VERTEX 2 6

VERTEX 2 4

VERTEX 0 4

VERTEX 0 2

VERTEX 2 2

PARTEND

PART

VERTEX 1 0

VERTEX 2 0

VERTEX 2 l

VERTEX 3 1

VERTEX 3 2

VERTEX 2 2

VERTEX 2 3

VERTEX 1 3

VERTEX 1 2

VERTEX 0 2

VERTEX 0 1

VERTEX 1 1

PARTEND

PART

VERTEX 2 0

VERTEX 4 0

VERTEX 4 2

VERTEX 6 2

VERTEX 6 4

VERTEX 4 4

VERTEX 4 6

VERTEX 2 6

VERTEX 2 4

VERTEX 0 4

VERTEX 0 2

VERTEX 2 2

PARTEND

PART

VERTEX 1 0

VERTEX 2 0

VERTEX 2 1

VERTEX 3 l

VERTEX 3 2

VERTEX 2 2

VERTEX 2 3

VERTEX 1 3

VERTEX l 2

VERTEX 0 2

VERTEX 0 l

VERTEX l 1

PARTEND

PART

VERTEX O 0

VERTEX 6 0

VERTEX 6 3

VERTEX 0 3

PARTEND

PART

VERTEX 0 0

VERTEX l 0

VERTEX 1 4

VERTEX 0 4
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PARTEND

PART

VERTEX 0 0

VERTEX 5 0

VERTEX 5 2

VERTEX 0 2

PARTEND

PART

VERTEX 2 0

VERTEX 4 0

VERTEX 6 2

VERTEX 6 4

VERTEX 4 6

VERTEX 2 6

VERTEX 0 4

VERTEX 0 2

PARTEND

PART

VERTEX 3 0

VERTEX 6 0

VERTEX 8 2

VERTEX 8 4

VERTEX 6 6

VERTEX 3 6

VERTEX 0 4

VERTEX 0 2

PARTEND

PART

VERTEX 0 l

VERTEX 2 0

VERTEX 4 0

VERTEX 6 1

VERTEX 6 2

VERTEX 4 3

VERTEX 2 3

VERTEX 0 2

PARTEND

D.3 Data for Test Problem 3

NEWSTOCK

STOCKVERTEX 0 0

STOCKVERTEX 100 0

STOCKVERTEX 100 200

STOCKVERTEX 0 200

STOCKEND

PART

VERTEX 0 0

VERTEX 33 0

VERTEX 33 19

VERTEX 3 11

PARTEND

PART

VERTEX 0 0

VERTEX 42 0

VERTEX 37 30

VERTEX 0 19

PARTEND

PART

VERTEX 5 0

VERTEX 30 0

VERTEX 30 51

VERTEX 0 30

PARTEND

PART

VERTEX 0 0
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VERTEX 3 11

VERTEX 7 33

VERTEX 8 38

VERTEX 0 36

PARTEND

PART

VERTEX 0 0

VERTEX 30 8

VERTEX 67 19

VERTEX 56 29

VERTEX 4 22

PARTEND

PART

VERTEX 23 0

VERTEX 53 21

VERTEX 53 70

VERTEX 19 70

VERTEX 7 42

VERTEX 0 23

VERTEX 12 10

PARTEND

PART

VERTEX 0 0

VERTEX 52 7

VERTEX 40 20

VERTEX 47 39

VERTEX 3 30

VERTEX l 5

PARTEND

PART

VERTEX 0 0

VERTEX 8 2

VERTEX 10 27

VERTEX 12 64

VERTEX 0 64

PARTEND

PART

VERTEX 0 0

VERTEX 44 9

VERTEX 16 37

VERTEX 2 37

PARTEND

PART

VERTEX 0 28

VERTEX 28 0

VERTEX 40 28

PARTEND

D.4 Data for Test Problem 4

NEWSTOCK

STOCKVERTEX 0 0

STOCKVERTEX 65 0

STOCKVERTEX 65 120

STOCKVERTEX 0 120

STOCKEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6
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VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 2.1 2.1

VERTEX 8.4 9.6

VERTEX 0.6 16.2

VERTEX 0.0 15.0

VERTEX 0.0 3.1

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0
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VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 8.0 2.0

VERTEX 8.0 6.0

VERTEX 0.0 6.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 10.5 0.0

VERTEX 10.5 2.4

VERTEX 6.9 3.9

VERTEX 6.9 6.3

VERTEX 10.5 13.8

VERTEX 10.5 16.2

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 10.5 0.0

VERTEX 10.5 2.4

VERTEX 6.9 3.9

VERTEX 6.9 6.3

VERTEX 10.5 13.8



VERTEX 10.5 16.2

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 10.5 0.0

VERTEX 10.5 2.4

VERTEX 6.9 3.9

VERTEX 6.9 6.3

VERTEX 10.5 13.8

VERTEX 10.5 16.2

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 43.5 0.0

VERTEX 43.5 6.0

VERTEX 39.9 6.0

VERTEX 39.9 10.2

VERTEX 0.0 10.2

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 43.5 0.0

VERTEX 43.5 6.0

VERTEX 39.9 6.0

VERTEX 39.9 10.2

VERTEX 0.0 10.2

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 43.5 0.0

VERTEX 43.5 6.0

VERTEX 39.9 6.0

VERTEX 39.9 10.2

VERTEX 0.0 10.2

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 51.0 0.0

VERTEX 54.6 6.3

VERTEX 33.9 20.1

VERTEX 33.9 14.7

VERTEX 28.8 9.9

VERTEX 7.5 12.0

PARTEND

PART

VERTEX 0.0 0.0

VERTEX 51.0 0.0

VERTEX 54.6 6.3

VERTEX 33.9 20.1

VERTEX 33.9 14.7

VERTEX 28.8 9.9

VERTEX 7.5 12.0

PARTEND
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