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ABSTRACT

NONLINEAR DYNAMICS OF LONGITUDINAL
GROUND VEHICLE TRACTION

By

Brian John Olson

The purpose of this study is to investigate and understand the nonlinear dynamics
of longitudinal ground vehicle traction. Specifically, the performance of rubber-tired
automobiles under straight-ahead braking and acceleration conditions is discussed
in detail. Two vehicle-traction models are considered-—a quarter-car. or single-wheel
model, and a half-car, or two-wheel model-—and nonlinear analyses are undertaken for
each. Customarily, the forward vehicle speed and the rotational rate of each tire /wheel
are taken as dynamic states. This thesis motivates an alternative formulation where
wheel slip, a dimensionless measure of the difference between the vehicle speed and
the circumferential speed of the tire relative to the wheel center. replaces the angular
velocity of the tire/wheel as a dynamic state. This formulation offers new insight into
the dynamic behavior of vehicle traction. In each case considered. the unique features
of the modeling approach allow one to capture the full range of dvnamic responses
of the single- and two-wheel traction models in a relatively simple geometric manner.
The models developed here may also be useful for developing and implementing ABS

and TCS control schemes.
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CHAPTER 1

Introduction

In its most general sense, vehicle dynamics refers to the response due to imposed
forces of ground vehicles, aerospace vehicles, aircraft, and marine craft. The latter
are supported by a fluid: either air or water. Ground vehicles may be broadly cate-
gorized as either guided or nonguided. Guided ground vehicles. such as railwayv and
track-levitated trains, are constrained to move along a fixed path. whereas nonguided
vehicles are free to move in any direction on the ground. This thesis investigates
the nonlinear dynamics of rubber-tired automobiles—one class of nonguided ground
vehicles—with traction under straight-ahead, or longitudinal braking and accelera-
tion conditions. Gillespie [1] or Wong [2] offer good accounts of ground transportation
technology and the fundamentals and theory of nonguided ground vehicles.

The dynamics of ground vehicles are often described in terms of performance.
handling, and ride. The performance of a vehicle refers to its ability to respond to
imposed forces under acceleration or braking conditions and/or in cornering. Thus.
vehicle performance is based upon objective properties of the vehicle. The handling
of a ground vehicle, however, depends upon the driver/vehicle combination and the
ability of the vehicle to respond to driver commands. Ride characteristics include
the effects of noise and vibration due to, for example, road roughness. the tire/wheel.

driveline or engine, on driver comfort and her or his perception and tolerance to such



excitations.

This work investigates the tractive performance of rubber-tired automobiles under
longitudinal braking and acceleration conditions. A general background of these
systems is outlined next, followed by the motivation for the present study. The

chapter closes with an outline of the thesis organization.

1.1 Background

In studies of vehicle traction the gross vehicle dynamics and tire/wheel dyvunamics can
be captured by lumped mass models. Simplified models that are often considered for
longitudinal braking and acceleration include the single-wheel model [1. 2. 3]. and a
two-dimensional, two-wheel model (front and rear) (1, 2], or full four-wheel models
for cornering [1, 2]. The dynamics of these systems involve interactions between the
vehicle, the tire/wheel assemblies, and the road surface. The force that ultimately
slows or accelerates the vehicle is the longitudinal friction force between the road and
tire, which can be empirically described in terms of a slip condition at the interface.
Thus, writing the equations of motion for any rubber-tire vehicle svstem requires a
description of the friction force generated at the tire/road interface. in addition to
the usual laws of motion.

Experimental evidence shows that the longitudinal friction force is proportional
to the normal force at the contact [1, 2, 3], with a coefficient of friction serving as
the ”constant” of proportionality. This coefficient can be conveniently modeled in an
empirical manner that depends on the slip [4, 5], which is a dimensionless measure
of the difference between the vehicle speed and the circumferential speed of the tire
relative to the wheel center. During braking (resp. acceleration). this difference is
generated by a brake (resp. engine) torque on the wheel, which acts against (resp.

with) the inertia of the vehicle. The slip depends on the dynamics of the vehicle and



the tire/wheel, and it also influences their dynamics through the friction force. This
"feedback” results in a system of coupled equations of motion for the vehicle and
the tire/wheel. These equations of motion are most often formulated in terms of the
vehicle’s speed relative to ground and the absolute rotational rate of the tire/wheel.
This is a very natural formulation, wherein the slip is merely an internal variable
defined in terms of the system’s dynamic states, which is used to compute the friction

force that appears in the equations of motion.

1.2 Motivation

In this thesis, a formulation is considered in which the slip is taken to be a dynamic
state variable, replacing the absolute rotational rate of the tire/wheel speed. Liu and
Sun [6] have developed the equations of motion for a quarter-car model in this way.
but their investigation focuses on control algorithms based on gain-scheduling. rather
than general dynamic behavior. The formulations herein focus not on control. but
the performance aspects of vehicle traction. It will be shown that the equations of
motion for the single- and two-wheel models take on forms that lend themselves to
relatively simple investigation and interpretation using tools from nonlinear dyvnam-
ics. Specifically, in the single-wheel braking and acceleration models this formulation
allows the dynamics for the entire range of vehicle speeds and slip values to be cap-
tured by a single function (one for each model) that is defined in terms of the slip. the
brake or engine torque, and the friction/slip relationship. These functions describe
completely the behavior of a given vehicle during braking (resp. acceleration) and
under a constant or slowly varying brake torque (resp. engine torque). Similarly. for
each of the two-wheel traction models, a set of two such functions completely capture
the dynamics: one each for the front and rear slip states. In each case the phase space

of the system can be completely characterized by these functions. therebv providing



a relatively simple means of categorizing different operating regimes.

The dynamic models presented here are capable of describing both transient and
steady tractive performance. Most importantly, they clearly demonstrate how a ve-
hicle can undergo stable braking or acceleration and/or lockup. depending on the
brake/engine torque, the friction characteristic, and the vehicle parameters. These
models also allow one to clearly see how transitions between operating states ocenr
as parameters and conditions are varied. In fact, for the single-wheel models. a single
set of phase plane diagrams, drawn at varying brake/engine torque levels. completely
captures the entire range of possible behaviors for a given friction characteristic. The
two-wheel models are more complicated, but a quite complete picture of the dyvnamic
possibilities is captured in a relatively simple set of diagrams. including various com-
binations of lockup and stable slip at each tire/wheel. These ideas can be extended
to the four-wheel case, for example to analyze traction during cornering. although
such studies are not considered here.

One of the more interesting findings of this study is a stability result related to
brake lockup. The standard thinking is that the brake torque can increase until the
slip reaches a value that corresponds to the maximum coefficient of friction. bevond
which lockup occurs [1, 2]. Under steady-state braking conditions the corresponding
maximum brake torque is typically assumed to be equal to the peak moment provided
by the friction force about the wheel center. In this work it is shown that this
result is actually an approximation that is only accurate when the inertia of the
tire/wheel is large compared to that of the vehicle. Since this is generallv the case.
the approximation works well, but the present results determine where instability
to lockup actually occurs and also systematically shows how the approximation is
obtained.

The present formulations are useful for describing the important qualitative fea-

tures of vehicle traction and providing useful insight into stability issues. It is recog-



nized that slip is notoriously difficult to measure in practice, primarily since it is not
a simple matter to determine the vehicle speed relative to ground. (The speedometer
uses the tire circumferential speed, which does not match the vehicle speed during
slip—and this is precisely when both speeds are required to compute the slip [7].)
However, since methods exist for estimating the slip 8, 9, 10]. models such as those
developed here may be useful for developing and implementing anti-lock brake svs-

tems (ABS) and traction control systems (TCS).

1.3 Thesis Organization

The thesis is organized as follows. The single-wheel braking model is developed first
in a systematic manner, thus laying the necessary groundwork for the development
and analysis of a single-wheel acceleration model, and subsequently two-wheel vehicle
traction models. The equations of motion are presented and the need to quantify the
available friction force for braking is specified. This motivates an investigation of the
tire/road interface and leads to the introduction of force coefficient characteristics as
a function of longitudinal wheel slip. The equations of motion are hence cast into
a framework that is convenient for a nonlinear dynamic analysis. Two formmlations
are considered: one in which the dynamic states are taken to be the forward vehicle
speed and the angular speed of the tire/wheel, and one in which wheel slip replaces the
angular speed as a dynamic state. The latter formulation is pursued in detail. Global
features of the single-wheel model are discussed, including steady-slip conditions.
local stability of slip dynamics, hysteresis, and the transition to unstable braking.
The effects of aerodynamic drag and rolling resistance on the resulting nonlinear
equations of motion are also considered. A single-wheel acceleration model is similarly
developed and analyzed. Finally, the single-wheel braking and acccleration models

are extended to half-car. or two-wheel traction models. The two-wheel braking and

(W7



acceleration models are developed, and the analysis of each follows in much the same
way as their single-wheel counterparts, although the range of possible behaviors is
significantly more involved. The thesis closes with conclusions and directions for

future work.



CHAPTER 2

The Single-Wheel Braking Model

A quarter-car model is developed in this chapter in order to illustrate the fundamental
aspects of vehicle braking. This single-wheel model is unrealistic by virtue of its
simplicity, and it clearly fails to capture some important dynamical features (e.g..
dynamic load transfer). It nevertheless serves to facilitate an understanding of the
basic dynamic characteristics of vehicle braking. In fact, the approach taken here
lays the groundwork for subsequent formulations, namely, that of the single-wheel
acceleration model of Chapter 3, and the two-wheel braking and acceleration models
of Chapter 4.

As depicted in Figure 2.1, the quarter-car model consists of a single wheel con-
strained to move longitudinally in the z-direction at a speed u and with a rotational
rate w. Denoted by R and J are its effective rolling radius and polar moment of
inertia, respectively. The effect of a braking mechanism on the vehicle wheel is cap-
tured by the brake torque 7T}, which opposes the forward motion of the svstem. The
vertical reaction force Z balances the static weight mg. while the longitudinal force
X serves to slow the vehicle in braking. By summing forces in the r- and z-directions

and moments about the mass center C of the vehicle/wheel. the syvstem equations are
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Figure 2.1. Schematic of the single-wheel braking model and corresponding free body
diagram

found to be

mu = —X, (2.1)
Z = mg, (2.2)
Jw = RX -T,, (2.3)

where m is the mass of the vehicle-wheel combination and g is the acceleration due
to gravity. Overdots denote differentiation with respect to time.

In general, there are a number of forces acting on a vehicle that may give rise to
a deceleration. The model considered here includes only the longitudinal brake force
X, which is discussed in detail in the next section. Other sources of deceleration
in braking include driveline drag. grade, rolling resistance. and acrodvnamic drag.
Driveline drag refers to the resistance to a change in vehicle velocity due to the
inertia of engine and transmission components, and also to bearing and gear friction
in the transmission, differential, and engine. Grade is defined as the ratio of a unit
vertical to unit horizontal distance and contributes directly—either in the positive
(uphill) or negative (downhill) sense—to vehicle deceleration. The effects of grade
and driveline drag will not be considered here. Simple modecls for acrodvnamic drag

and rolling resistance are incorporated into the equations of motion in Section 2.8.



2.1 Tractive Properties

The primary force of interest in studies of vehicle traction is the longitudinal force .X.
which acts on the vehicle through a tire/road contact patch. Experimental evidence
shows that this friction force is proportional to the normal force Z at tlie contact
and is a consequence of the relative difference between the vehicle speced « and the
rolling speed of the tire wR. The "constant” of proportionality is responsible for
the friction coupling, and can be empirically determined by a friction characteristic
in terms of road test data and wheel slip, which is a dimensionless measure of the
difference between u and wR. Since the friction characteristic captures the tvpifving
quantities of a particular tire/road combination—including slip stiffness at zero slip
and peak brake force values—it can be regarded as a tire model that characterizes
the tire behavior on a given road surface. The tractive properties are now discussed

in terms of wheel slip, the tire/road interface and friction law. and a tire model.

2.1.1 Wheel Slip

The longitudinal friction force X is a consequence of the relative difference between
the vehicle speed u and the rolling speed of the tire, which is given by wR. Wheel

slip is defined in terms of this difference as*
u—wR

s = _——max(u,wR)' (2.4)

It is assumed and taken as convention that u > 0 and 0 < wR < u in vehicle braking.
Thus, s = % is defined on the unit interval I = [0, 1], taking on the limiting values

of s = 0 for free rolling (u = wR) and s = 1 for wheel lockup (wR = 0). The former

*The maximum function max(u,wR) allows the use of Equation (2.4) to define longitudinal
wheel slip for both vehicle braking and acceleration. In braking u > wR. while u < @R for vehicle
acceleration.



case when u = wR implies the absence of a brake torque. The definition of slip.
along with the convention that wR < u allows for two possibilities for steadyv-state
vehicle braking with nonzero initial speed: (1) finite rotation of the wheel while the
vehicle decelerates and (2) deceleration under lockup conditions. It is noted that the
latter case of lockup is undesirable since steerability, directional stability. and general

control over a vehicle is severely degraded in such a state [1, 2].

2.1.2 The Tire/Road Interface and Friction Law

In a rubber tire, wheel slip results in the deformation and sliding of tread elements
in the tire/road contact patch, which in turn sustains the friction force X in braking.
Indeed, it is through this important interface between the road surface and tire tread
that braking is negotiated. In general, the microscopic physical description of the
said phenomenon is complicated and involves more physics than what are needed
here. (See, for instance, [1, 2].) It suffices to capture these interactions by the simple
algebraic relationship

X = u(s)Z, (2.

[A]
e |
=

which is known as the friction law or creep force equation. The longitudinal force
coefficient p : I — I is experimentally determined in terms of road test data and is

the subject of the next section.

2.1.3 Friction Characteristic and Tire Model

The friction coupling between a rubber tire and road surface depends on a nunber
of physical parameters involving tire construction, inflation and wear. the tire/road
interface, and vehicle speed and loading [1. 2, 3]. Since a general theory that can
accurately predict the longitudinal brake force in terms of wheel slip has vet to he de-

7

veloped, friction coupling is necessarily determined experimentallv. Various niethods

10



exist to relate the brake and normal forces X and Z in terms of a friction character-
istic p(s). See, for example, [9, 8]. The resulting data can then be represented by a
formula.

Figure 2.2 shows graphical representations of some typical longitudinal friction
characteristics. The initial rate at which u(s) increases with increasing slip is de-
pendent on the properties of the tire. For wet and dry asphalt the characteristics
increase until a peak value p, = u(s,) is attained. This typically occurs between 10
and 20 percent slip, yielding maximum braking forces of 25-50 and 70-90 percent of
the vertical load for wet and dry asphalt, respectively. The friction characteristics
then exhibit a gradual decrease to s = 1 (wheel lockup). For gravel and packed snow.
the behavior of the friction coefficient characteristics are qualitatively different. Peak
values occur at wheel lockup (here, s = s, = 1) and are the consequence of plowing
conditions on the deformable surfaces. Ice characteristics (not shown) are similar to
those for wet and dry asphalt, differing mostly in the resulting peak values [1. 2. 3].

An analytical treatment of these friction characteristics is possible by emploving

the widely used Pacejka tire model [4, 5]. It is described by the so-called Magic

Formula which is given by

y(z) = Dsin(C arctan(Bzx — E(Bx — arctan(B.r)))). (2.06)

where the parameters B, C, D, and E are the stiffness, shape. peak. and curvature
factors. See reference 4 for typical values of these coefficients. Horizontal and vertical

shifts of a characteristic are attained by the transformations

Y(X) = y(I) + S!’e =X + S/z-

where S, is the vertical shift and Sy is the horizontal shift. The function Y'(\) can

11
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Figure 2.2. Typical longitudinal friction characteristics: (a) dry asphalt: (b) wet
asphalt; (c) gravel; and (d) packed snow.

represent all steady-state tire characteristics—including the brake force X. side force.
and self-aligning torque—in a physically meaningful and straightforward wav. The
variable x denotes either slip angle (the angle subtended from the direction of wheel
travel to the direction of wheel heading) or longitudinal wheel slip s. In light of
Equation (2.2) and Equation (2.5), note that the Magic Formula can be scaled to
represent u(s) directly on I.

For the purpose of more efficient numerical simulations. a simple friction charac-

teristic was devised for the present study and is given by

p(s) =c (1 — ) — ess. (2.

o
=1
~

For ¢; = 1.18, c; = 10.0, and ¢3 = 0.5, this behaves similarly to wet and dry asphalt
characteristics and has a peak value of p, = 0.972 at s, = 0.316. This characteristic
was employed for all calculations and numerical simulations involving s(s) in this

chapter and in subsequent chapters.
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2.2 Equations of Motion

During wheel slip, the single-wheel model possesses two dynamic states and hence
requires a set of two coordinates to describe its motion. By inspection of Equa-
tions (2.1-2.5), it is clear that two of three possible variables of interest could be
chosen as the independent variables, namely, u, w, or s. The equations of motion for
the single-wheel braking model are developed first in terms of u and w as dvuamic
states, and the qualitative dynamics are captured in the (u,wR) phase plane. Though
such a description is physically enlightening, it is subsequently shown in Section 2.2.3
that a formulation of the equations of motion in terms of u and s as dvnamics states
lends itself to a relatively simple interpretation. Specifically, it will be shown that the
latter formulation allows the dynamics for the entire range of vehicle speeds and slip
values to be captured by a single function that is defined in terms of wheel slip and

the brake torque.

2.2.1 wu and w as Dynamic States

One possible formulation of the equations of motion is to use the speed u of the vehicle
relative to ground and the absolute rotational rate w of the tire/wheel as dyvnamic

states. Then the system dynamic equations are

1 = —p(u,w)g
0<wR<u (2.8)

WwR = gH(u,w)

where wheel slip is merely an internal variable. The restriction 0 < wR < u ensures

that s € I, according to the convention of wheel slip in braking. The function

Hluy,w) = Ypu(u,w) — T, (2.9)

13



is dimensionless, where ¥ = -'%2— is the dimensionless ratio of vehicle to wheel inertia.

and Tp = _,%Tb is the dimensionless brake torque.

2.2.2 The (u,wR) Phase Plane

Figure 2.3 shows trajectories in the (u,wR) state space for ¥ = 15 and various
dimensionless brake torque values. The rolling speed wR of the tire is defined along
the ordinate while the vehicle speed u is defined along the abscissa. Wheel slip is

implicitly defined in terms of these states by
wR = (1-3s)uy, (2.10)

which follows from the definition given by Equation (2.4). Equation (2.10) shows that
radial lines originating from (u,wR) = (0, 0) are lines of constant slip for which there
is a linear relationship between u and wR. Since s is defined on the unit interval for

vehicle braking, the dynamics need only be considered in the region
F ={(uv,wR) |u>0,0<wR < u}. (2.11)

Thus, trajectories are bounded by the line wR = wu, which corresponds to s = 0
(free rolling), and the line wR = 0, or the u-axis, which corresponds to s = 1 (wheel
lockup). For a particular brake torque, some constant-slip radial lines are invariant
under the dynamics and evolve only when the brake torque varies. The corresponding,
constant slip values shall be denoted by s*. Any such set that satisfies these conditions
and the equations of motion define invariant linear manifolds in the (v. wR) phase

plane, which are denoted by

Wy = {(uv,wR) |wR = (1 —s")u.s* € I}. (2.12)

14



Under certain conditions (to be determined subsequently). the u axis is also an in-

variant manifold (where s = 1) and is denoted by

WE = {(u,wR) |u>0,wR = 0}. (2.13)

As shown in Figure 2.3a, there is a single invariant manifold W} when T, = 7. At
this parameter value, initial conditions started in F yield stable braking conditions
(as opposed to lockup conditions), since all trajectories—including those started on
WE—rapidly approach W; for decreasing u and evolve essentially along the invariant
manifold toward zero speed at (u,wR) = (0,0). As the brake torque is increased to
T, = 12 two additional invariant manifolds are introduced, one of which corresponds
to lockup conditions, that is, WF. This is shown in Figure 2.3b. For very large brake
torques, all trajectories started in F yield lockup conditions. Figure 2.3d shows this
situation when Y, = 18.

The diagrams depicted in Figure 2.3 show that, for decreasing u. trajectories
tend rapidly toward either W} or WE, depending on the brake torque level. Hence.
the invariant manifolds, if they exist, serve two purposes: theyv (1) define steady-
slip conditions that are invariant under the dynamics and under which the vehicle
decelerates to zero speed and (2) separate regions of stable and unstable braking. It
would be desirable to quantify these manifolds without having to perform numerical
simulations.

In what follows, an alternative formulation is considered where wheel slip s re-
places wR as a dynamic state. Figure 2.4 compares the state space description of
the single-wheel braking model in the {u,wR) phase plane to its description in the
(u, s) phase plane for ¥ = 15 and YT}, = 12. The alternative formulation vields a state
space where, essentially. the point (u,wR) = (0,0) is expanded to represent wheel

slip on the unit interval. In doing so, a singularity is introduced at u = (: but. as
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Figure 2.3. State space descriptions for the single-wheel braking model in the (u.wR)
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Figure 2.4. State space descriptions for the single-wheel braking model for ¥ = 15
and Tp = 12: (a) in u and wR; (b) in v and s.

indicated in Figure 2.4b, the invariant manifolds Wy and WE are easily identified in
the (u, s) phase space as lines of constant s. It will be shown that a formulation of
the equations of motion in terms of u and s allows for the invariant manifolds. and
hence steady-slip conditions and various operating regimes. to be captured by a single

function that is defined in terms of wheel slip and the brake torque.

2.2.3 u and s as Dynamic States

Although it is very natural to cast the equations of motion in terms of the forward
vehicle speed u and the tire/wheel rate of rotation. it is instructive to replace w
with wheel slip as a state variable. Liu and Sun [6] have developed the equations of
motion for a quarter-car model using u and s as dynamic states. but their investigation
focuses on control algorithms based on gain-scheduling. Here the equations of motion

are developed similarly but with emphasis on a form suitable for a nonlinear dyvnamic
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analysis. Evaluating the time rate of change of wheel slip (for wR < u)

R (i = u),

S =
u

and performing the appropriate substitutions, the equations of motion in terms of

and s can be cast in the form

U = —pu(s)g
, u>0, sel. (2.14)

§ = %hb(s)

Since u > 0 by convention, g > 0 and u(s) € I, it follows that « < 0. which is

expected. The function

ho(s) = (s = Du(s) = Yu(s) + Yy,

—~
[SV]
—
\oa ]

~

2 ., . . . .
%— is the ratio of vehicle inertia to wheel

is nondimensional, where, recall, ¥ =
inertia and Y, = J%Tb is the dimensionless brake torque.

The general features of the quarter-car model are best demonstrated by treating
Equation (2.14) as a state-space representation of the single-wheel system and explor-
ing their behavior in the (u, s) state space. It will be shown that this interpretation
of the single-wheel model yields good insight into its dynamic response in transient
and steady-state braking. The analysis begins by determining the steadv-slip condi-

tions and their local stability characteristics. A more detailed mathematical analvsis

follows in a discussion of the global features of the single-wheel braking model.
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2.3 Steady-Slip Conditions

Equation (2.14) shows that, for nonzero u and a slip value s* for which h,(s") = 0.
the time rate of change of slip is identically equal to zero. Correspondingly. wheel slip
remains constant at s = s*, independent of the vehicle speed. This in turn eunsures
that the vehicle acceleration & = —pu(s*)g is negative and constant. Here. ji(s*) is
the longitudinal force coefficient corresponding to the fixed slip value. Under these

conditions the vehicle speed monotonically decreases to zero according to the equation
u(t) = uo — p(s*)gt, u>0, t;>t>0, (2.16)

where u, > 0 is the initial speed at the instant when s = s*, that is, when t = 0. #;
corresponds to the time when u = 0. Wheel lockup also yields steady-slip conditions
when s = 1. Under lockup conditions, the dynamics of the vehicle are described by

Equation (2.16), with the coefficient of sliding friction p; = (s = 1) replacing i(s”).

2.4 Local Stability of Slip Dynamics

Before specifying a quantitative measure of stability, it is convenient to outline and
adopt specific notation. First, recall that constant slip values s* denote invariant
points in the slip dynamics. They may be obtained by finding the zeros of hy,(s) or.
equivalently, by finding the roots of hy(s*) = 0. More precisely. the steady-slip values
s*, if they exist, define invariant sets of the system, since once s = s* is attained. s
remains at that value for all time, independent of the values of u (for u > (). Any
such value of s = s* may be either stable or unstable and shall be denoted by st
and s~, respectively. Local stability criteria of wheel slip follows from considering a
small perturbation n(t) = s(t) — s* away from one of these roots. Differentiating with

respect to time, invoking Equation (2.14). and employing h,(s*) = 0. the local slip
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dynamics near s* can be approximated to leading order by the linearized equation
. g * 5=
0= "hy(s")n, (2.17)

where ( ) = Ed; denotes differentiation with respect to s. Since £ > (). Equation (2.17)
shows that the perturbation grows exponentially fast when h;(s*) > 0 aud decavs
exponentially when hj(s*) < 0. Thus, the stability of the slip dynamics near s = s*

are determined by the slope

hy(s™) = p'(s*) (s = 1 = W) + p(s™) (2.18)
of hy(s) at s = s*. Stable and unstable steady-slip values are defined to be

s* = {s| hy(s*) = 0, hy(s*) S 0}. (2.19)

The corresponding stable and unstable invariant manifolds of the system in the (u. s)
plane are defined by

Wi ={(u,s) |[u>0s=5"}. (2.20)

Since wheel slip is restricted to the unit interval,
WE = {{u,s) | u>0,s=1,h(1) > 0}

is also an invariant manifold, where L denotes wheel lockup. The notation W; shall

refer to either of the invariant manifolds W;" or W .
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2.5 Global Features of the Single-Wheel Braking

Model

Equation (2.17) and Equation (2.19) hint at the importance of the function h(s).
since steady-slip conditions and the local stability of the slip dvnamics are completely
determined in terms of this dimensionless function. In fact. the entire range of vehicle
speeds and slip values are captured by h,(s) under a constant brake torque or slowly
varying brake torque. This is shown in Figure 2.5, where the function h,(s) versus
slip and the corresponding state space dynamics in u and s are depicted for ¥ = 15
and for various values of the nondimensional brake torque. The intersection of the
function hy(s) with the line hy, = 0 defines the invariant points s* (sce Equation 2.19
and Table 2.1), and hence the invariant manifolds Wy in the (u.s) space. which are
defined by Equation (2.20).

For T, = 7, a small brake torque, only one invariant point exists. which is shown in
Figure 2.5a as s*. Since hj(s*) < 0 the steady-slip value s* is stable and hence defines
the invariant manifold Wyf. All initial conditions (u,s) = {(u.s) | u > 0.s € I} result
in stable braking at this parameter value.

As the brake torque is increased to T, = 12, another fixed point has been intro-
duced for which the slope of hj(s*) is negative; hence it is unstable. It is denoted by
s = s~ and defines the unstable invariant manifold W, in the (u.s) space. As shown
in Figure 2.5b, all trajectories above W, , that is, those with initial conditions in
{(u,s) |u>0,s € (s7,1]}, tend to W{ (indicating wheel lockup). Trajectories Iving
below W, are attracted to the invariant manifold W, and result in stable braking
conditions. Note that the creation of the unstable invariant point s~ corresponds to
the introduction of stable lockup at s = 1. This is essentially a saddle-node bifnrca-
tion creating s~ and s = 1 steady-slip values.

Further increasing T, causes s* and s~ to move toward each other. Eventually a
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critical brake torque T, . = 15.250 is reached where the stable and unstable invariant
points collide and mutually annihilate in a saddle node bifurcation at the critical slip
value s = s., = 0.304 (See Figure 2.5¢.) For brake torques greater than Y, no stable
points exist and wheel lockup occurs for all initial slip conditions. This situation is

shown in Figure 2.5d where T, = 18.

Table 2.1. Steady-slip values for the single-wheel braking model

LY | s [ s | s* |
7

— [ - [0.050
12 |0782] - 0117

15250 | - |0.304| -
8 | - | - | -

The set of initial conditions for which a trajectory reaches the stable invariant
manifold W is called the domain of attraction of s* in the (u.s) state space and is
denoted by D. Clearly D doesn’t exist for post-bifurcation dynamics. since all initial
conditions with u > 0 would yield lockup conditions. For pre-bifurcation dvnamics.

that is, for Tp < T, ,

D= {(u,s)|u>0,s€l\[s",l]}.

Trajectories started with initial conditions in D rapidly converge toward the stable
invariant manifold and evolve essentially along Wy, according to Equation (2.16)
toward the point (u,s) = (0,s*), where the vehicle stops. The rate at which the
vehicle decelerates under steady-slip depends only on u(s*). that is. the particular
friction characteristic and the value of s*. All trajectories started outside D and

not on Wy tend rapidly toward lockup at s = 1. subsequently move along W,

22



(a)
slip s

Y,=7
¥,
g 2 ° o
he(s)
\S_ "
) = T, =12
)
st
hy(s) ' speed u (m/s)
- 1 |
|
® |
g = | Ty, = 15.250
T
e e % 20
hy(s) speed u (m/s)
- 1< — -«
@
= E.. * T(,‘—“lB
@
g sz %
hy(s) speed u (m/s)

Figure 2.5. hy(s) vs. s and corresponding state space descriptions in v aud s for
U =15 (a) Tp=7; (b) To =12; (¢c) Tp = Tp, = 15.250; (d) T, = 18. See Table 2.1
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and monotonically approach the point (0,1). This situation corresponds to braking
under lockup conditions which, for wet and dry asphalt characteristics. is alwavs non-
optimum since u(s = 1) = pur < p(sp). Finally, trajectories started on the unstable
invariant manifold remain on W, and monotonically evolve toward the point (0. s7).
This situation is physically impossible, however, since any small perturbation in the
system would cause a trajectory to leave W,  and tend rapidly toward ecither lockup
or the stable invariant manifold.

Note that the rate at which a trajectory tends toward either W) or W, increases
dramatically as u tends toward zero since § ~ % In fact, from Equation (2.14). the
time rate of change of wheel slip becomes infinite as u — 0 with s # 1.s". Hence.
the vehicle must come to rest under steady-slip conditions for which s =1 or s = s*.
There are only two such physical possibilities: the vehicle decelerates to zero speced
(1) at the rate urg with the wheels locked or (2) with steady-slip at the absolute
rate u(s*)g (typically). Peak steady-braking performance would entail steady slip at
s = s, for which the maximum deceleration is equal in magnitude to s¢,g. However. a
steady-slip value s* = s, is always unstable. Thus, since s, cannot be reached under
stable braking conditions, optimum braking would entail steady-slip at s = s... The
corresponding deceleration is equal in magnitude to peg = p(s = sq)g < p,9. But
since s. is a saddle node in the slip dynamics, any perturbation in the system could
send the braking conditions into wheel lockup. The critical brake torque needed
to sustain optimum braking, and the corresponding lockup instability at that brake
torque value, are discussed in Section 2.7.

It is again stressed that the function h(s) completely determines the nonlinear
dynamic behavior of the single-wheel system in braking over the entire range of ve-
hicle speeds and slip values. Given the dimensionless brake torque T,. one needs
only calculate the zeros of hy(s) to quantify steady-slip values and the corresponding

invariant sets. The slope of hy(s) at these steady-slip values indicates the stability
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of the corresponding invariant manifolds. With this knowledge. a complete phase
plane description of the vehicle dynamics can be constructed for the brake torque
of interest from which information on regions of stable and unstable braking can be

easily extracted.

2.6 Hysteresis in the Single-Wheel Braking Model

The dimensionless function h,(s) and the (u,s) dynamics reveal certain features of
the system that may otherwise be difficult to extract. Referring again to Figure 2.5.
consider the case when the saddle-node bifurcation has already occurred and that
the current state of the system is that of wheel lockup (Figure 2.54). One mav
intuitively guess that the brake torque need only be reduced to a value slightlyv less
than T,_ = 15.250 in order for stable braking to again be restored. This. however.
is not the case. Although the stable invariant point st reappears. the state of the
system remains at (u, 1), or wheel lockup since that point remains stable as well. In
fact, Tp must be more drastically reduced to a value such that h,(1) < 0. that is.
lockup must be destabilized, in order to restore stable braking conditions. Once this

occurs, the system state jumps from wheel lockup to stable braking conditions.

2.7 The Transition to Unstable Braking

When a brake torque is applied to a rubber tire a tractive force is generated at the
tire/road interface, as described in Section 2.1. The standard thinking is that the
brake torque can increase until wheel slip reaches the value s,. bevond which lockup

occurs [1, 2]. Under steady-state braking conditions, the corresponding maxinmumn
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brake torque is typically assumed to be

o
o
—
~

Ty, = mgRu(sp), (2.

which is the peak moment provided by the friction force X = yi(s,)Z = pi(s,)mg abont
the wheel center. Thus, it is traditionally assumed that the critical brake torque for
which the lockup instability is impending and the peak brake torque are the same.
and that the transition to wheel lockup occurs at s = s, = s... In what follows. it is
shown that the lockup instability does not occur at the peak value s, corresponding
to the maximum of the u(s) curve, but at a condition that is tvpically nearbv. It is
subsequently shown that Equation (2.21) is actually only an approximation that is

accurate when the inertia ratio ¥ is large.

2.7.1 Lockup Instability

For the single-wheel braking model the function h,(s) can be written in the form

ho(s) = u(s) (s =1 — ) + T, (2.2:

(8]
o
o
—

Differentiating Equation (2.22) with respect to s and evaluating the resulting expres-

sion at critical slip yields

ho(Ser) = 1 (Ser)(8er = 1= W) + pu(5c) = 0., (2

o
o
o~
-

where, recall, s.. is the saddle node value in the slip dynamics. Since in Equa-

tion (2.23), u(ser) > 0 and (ser — 1 — W) < 0, it follows that

—ll'(srr)

_— 2.2
g (2.24)

H(ser) =
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Equation (2.24) shows that the slope of the friction characteristic at the critical value
S = Sr is positive, rather than zero, which is the case at s,. This means that. for wet
or dry asphalt characteristics, s, is actually smaller than the peak value s,. Hence.
the lockup instability, or the transition to unstable braking. corresponds not to s,
the peak of u(s), but to the critical value s, the minimum of /,(s). These results
are consistent with numerical evidence. Recall that the peak value i, = p(s = s,,) of
Equation (2.7) occurs at s, = 0.316, whereas s., = 0.304, which is approximately
percent less than s,. The corresponding critical brake torque is outlined next. from

which Equation (2.21) can be obtained by invoking a series of approximations.

2.7.2 The Critical Brake Torque

Recall from Section 2.5 that the vehicle must come to rest under steadv-slip conditions
for which s = 1 (wheel lockup) or s = s*. The brake torque corresponding to a steady-

slip value s = s* follows from Equation (2.22) and is given by

Ty=—p(s*)(s*=1-7T), (2.25)

where the condition hy(s*) = 0 has been invoked. The maximum possible brake torque
corresponding to steady-slip conditions is obtained by maximizing Equation (2.25).

The result is
or,
0s .

8=8

=u'(s*)(s* =1 =)+ pu(s*) = 0. (2.26)

Equation (2.26) is of the same form as Equation (2.23). which is an expression that
minimizes hy(s). Thus, it must be true that the maximum brake torque is given
by Equation (2.22) with the steady-slip value s* = s, satisfving Equation (2.23).

Recalling that T, = J%Tb and ¥ = "’TR2, the critical brake torque can be written in

27




the dimensional form

Th., = mgRu(se) (1 . )) . (2.27)

Equation (2.27) indicates that the typically assumed maximum brake torque given by
Equation (2.21) follows from two fundamental assumptions: (1) the inertia ratio W
of the vehicle is large relative to unity, and (2) the peak slip value s, can be attained.
These assumptions are generally acceptable so that, for many applications. the true
critical brake torque can be reasonably approximated by the assumed brake torque
given by Equation (2.21). This is shown next.

Idealizing the wheel as a thin uniform disk of mass m .. it follows that

s
J Mayheel

where, recall, m is the mass of the vehicle/wheel combination. In most applications
™M > Myheet S0 that ¥ > 1. Moreover, the peak value s, and s., are typically close.
Referring again to Equation (2.7) and noting that u(s.) = u(0.304) = 0.972. it
follows that Ty, = 14.574 for ¥ = 15. Numerical simulations show that T, = 15.250
(see Figure 2.5), rendering the approximation given by Equation (2.21) in error by

less than five percent.

2.8 The Effects of Aerodynamic Drag and Rolling
Resistance

The force X is the main source of vehicle deceleration during braking. However. there
are other factors that may be of comparable importance. For high-speed braking.

aerodynamic drag is the primary retarding force on a vehicle. whereas for verv-low
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speed braking, the primary retarding force is rolling resistance [1]. These factors are
included in the single-wheel braking model here to show their effects on the system
dynamic equations of motion.
A simple and commonly used model for aerodynamic drag on a vehicle is given
by
1 2
FD = §pACDU N (229)

where p is the ambient air density, A is the projected frontal area of the vehicle. and
Cp is an experimentally determined aerodynamic drag coeflicient.

Rolling resistance depends on a number of interdependent factors including vehicle
speed, wheel slip, and the tire temperature, pressure, loading. and coustruction. The
total force acting on a vehicle due to the rolling resistance of each wheel is tyvpically

given in terms of the vehicle weight mg as
F. =mgf,, (2.30)

where f; is a rolling resistance coefficient. Several equations are available for esti-
mating f,, but their accuracy is limited since it is virtually impossible to account for
all of the important physical properties of the tire and ground. If only a crude esti-
mate of rolling resistance is desired, f, may be taken to be constant. More accurate
models for rolling resistance may be obtained, for example. by taking f. to be speed
dependent. Gillespie [1] cites some typically used empirical relationships for f.(u).
Including aerodynamic drag and speed dependent rolling resistance in the single-

wheel braking model, the dynamic equations of motion take the form

u = —p(s)g— Flu)g
. u>0. sel (2.31)

5 = Lhy(s)+ L(s—1)F(u)
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where hy(s) is given by Equation (2.15). The function

pCDA U2

F(w) = f,(u) + 52

is dimensionless and represents the effects of rolling resistance and aerodynamic load-
ing on the vehicle dynamics. The u? terms in Equation (2.32) indicate that acrody-
namic drag becomes significant at higher vehicle speeds. Rolling resistaice increases
approximately linearly for low vehicle speeds and more closely obevs a speed-squared
relationship for higher speeds [1]. Hence, its effects on the vehicle dvnamics are
important at all speeds, particularly at high speeds. The new function F(u) in Equa-
tion (2.31) renders the nonlinear dynamic analysis of the single-wheel model more
complicated, since steady-slip values—and hence the svstem invariant manifolds -
cannot be obtained simply by finding the roots of hy(s) = 0. Invariant manifolds of
the form u = G(s) will exist, and can be determined by standard techniques [L1].
These will describe the dynamics of (u, s) as the vehicle decelerates.

It should be noted that the primary advantage of using slip as a dvnamic state is

not realized in this model.
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CHAPTER 3

The Single-Wheel Acceleration
Model

This chapter describes a single-wheel vehicle acceleration model. Here, the term ac-
celeration refers to the positive rate of change of velocity in the longitudinal direction
due to an engine torque. Longitudinal acceleration is fundamentally dependent on
two main limitations: engine power and traction [1]. However. the ensuing investiga-
tion assumes that sufficient engine power is available at any given instant to maintain
a constant torque on the wheel. Thus, focus is shifted entirely to understanding
tractive properties and their dynamic characteristics and how to maximize them.

The single-wheel vehicle acceleration model is physically identical to that of the
single-wheel braking model, consisting of a wheel/tire disk with radius R and polar
moment of inertia J. As depicted in Figure 3.1, it is constrained to move longitu-
dinally in the z-direction with its speed denoted as u. The available engine torque.
acting in the positive sense on the wheel, is denoted by T,. The vertical reaction force
Z balances the static weight mg, while the longitudinal force X serves to accelerate
the vehicle.

As with the single-wheel braking model, the forward vehicle speed v and lon-

gitudinal wheel slip s are chosen as dynamic states. In vehicle acceleration it is
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Figure 3.1. Schematic of the single-wheel acceleration model and corresponding free
body diagram

assumed and taken as convention that wR > 0 and 0 < u < wR. Thus. wheel slip

s = m:xz:fk) = =R js defined on the interval —I = [-1,0]. taking on the lim-
iting values s = —1 for pure slip (u = 0) and s = 0 for free rolling without slip

(u = wR > 0). The former case when u = 0 indicates finite rotation of the wheel
while maintaining zero vehicle speed, which is shown in Section 3.2 to be an unstable
condition. The case when u = wR implies the absence of a brake torque.

The Pacejka tire model can be employed in vehicle acceleration studies by letting
s — —s in the Magic Formula (Equation [2.6]). Similar to Equation (2.7). the
characteristic

wu(s) =c; (1 —e®®) +c3s (3.1)

was used (with ¢; = 1.18, ¢; = 10.0, and ¢z = 0.5) in all numerical simulations in
this paper involving vehicle acceleration models. It has a peak value g, = 0.972 at

§ = —s, = —0.316.

3.1 Equations of Motion

Assuming that the friction law given by Equation (2.5) holds and making the appro-

priate substitutions, the equations of motion for the single-wheel acceleration model
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can be cast in the form

u = p(s)g

§ = 2hy(s)

, u>0, se—1I. (3.2)

The nondimensional function h,(s) is given by

he(s) = (s + 1)? [(s + 1) u(s) + Tu(s) — T,,] : (3.3)
where, again, ¥ = %2- is the vehicle/wheel inertia ratio and YT, = %T, is the

dimensionless engine torque.

3.2 Steady-Slip Conditions and Local Stability

For nonzero u and a constant slip value s* for which /,(s*) = 0, Equation (3.2) shows
that wheel slip remains invariant, independent of the vehicle speed. Correspondingly.
the forward vehicle acceleration is positive and constant. and its speed monotonically

increases according to the equation
u(t) = uo + p(s*)gt, t 0. (3.4)

where u, > 0 is the initial speed when s = s*, that is, when t = 0. Clecarly the vehicle
cannot continue to accelerate indefinitely. Due to aerodynamic drag. saturation of
engine power, etc., generation of the prescribed engine torque eventually becomes
impossible. In order to quantify this limiting case one must include other factors in
the dynamic model, which will not be considered here.

Local stability of the invariant points s* follows in the same wayv as discussed for

the single-wheel braking model. (See Section 2.4.) Stable and unstable fixed points
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are defined to be

st = {s| he(s*) =0, hy(s*) S 0},

and the corresponding invariant manifolds are given by
WE = {(u,s) |u>0,s=s"}.

Note that the set {(u,s) | u > 0,s = —1} does not define an invariant manifold. since

$ is singular when u = 0.

3.3 Global Features of the Single-Wheel Vehicle
Acceleration Model

The dynamic equations describing the single-wheel acceleration model are of the same
structure as their braking model counterparts, with the only significant differences
appearing in h;(s). Whereas the brake torque appears simply as an additive term
in the function hy(s) of the single-wheel braking model (Equation [2.15]). the engine
torque is scaled by the nonlinear term (s+1)? in the function h(s) of the single-wheel
acceleration model (Equation [3.3]). It is this nonlinearity that vields slightly more
complicated dynamics as the parameter Y, is varied.

Depicted in Figure 3.2 is the function h¢(s) versus slip and the corresponding
state space dynamics in u and s for ¥ = 15 and various values of the nondimensional
engine torque. For T, = 7.5 there exists a stable invariant point s*. which defines
an invariant manifold W;t. All initial conditions {(u.s) | u > 0.5 € [0.1)} result in
stable acceleration at this parameter value, with trajectories tending toward W," at
a rate which decreases with increasing speed. As they approach the stable manifold.

trajectories evolve essentially along W;", and the vehicle accelerates according to
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Table 3.1. Steady slip values for the single wheel acceleration model.

| Y. | s~ Ser st ]
7.5 - - -0.054
15 - - -0.203
22.5 - - -0.940
14.65 - - -0.186
15.196 - -0.695 | -0.214
15.65 | -0.507 - -0.250
- - -0.806
16.032 - -0.350 | -0.834
16.65 - - -0.862

Equation (3.4).

Further increasing the engine torque to T, = 15.0 renders s* slightly more nega-
tive and brings the relative maxima and minima of h(s) very close to the line h, = 0.
At this parameter value the vehicle experiences near-maximum acceleration. The
nearly flat character of h,(s) over a range of s in this torque range implies high sensi-
tivity and rapid changes for small torque variations. An increase of the engine torque
to T, = 22.5 moves W, nearly to pure-slip conditions.

To investigate more closely the dynamic subtleties involved in the small engine
torque range near maximum acceleration, consider Figure 3.3 and Figure 3.4. These
figures show the function h,(s) versus slip, and the corresponding state space de-
scriptions in u and s, in detail near a rapid set of bifurcations over the torque range
14.65 < Y. < 16.65. The vehicle acceleration dynamics are rich over this torque range
primarily due to the nonlinear term (s + 1)? in the function h(s) (Equation [3.3]).
Optimum steady acceleration conditions would entail steady-slip at s, = —0.316 (sec
Equation [3.1]) for which the maximum acceleration is equal to s(s,)g. This condition
occurs for engine torques near T, = 16 (Figures 3.3c and 3.3d). though onlyv a small

set of initial conditions would yield stable acceleration at near optimum conditions.
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Figure 3.2. h,(s) vs. s and corresponding state space descriptions in u and s for
¥ =15 (a) T = 7.5; (b) Te = 15.0; (c) T, = 22.5. See Table 3.1 for steadv-slip
values.
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Figure 3.3. h¢(s) vs. s and corresponding state space descriptions in u and s in detail near
a rapid set of bifurcations: (a) T, = 14.65; (b) T, = 15.196; (¢) Y. = 15.65. See Table 3.1
for steady-slip values.
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a rapid set of bifurcations: (d) T, = 16.032; (e) T, = 16.65. See Table 3.1 for steady-slip
values.
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CHAPTER 4

Two-Wheel Braking and

Acceleration Models

4.1 The Two-Wheel Braking Model

A two-wheel vehicle braking model is developed in this chapter and is shown schemat-
ically in Figure 4.1. The entire weight mg of the vehicle is assumed to be concentrated
at its mass center, which is located a length ¢ forward of the rear axle and a distance
h normal to the road surface. The front and rear wheels are assumed to be identical.
each with an effective rolling radius R and polar moment of inertia J. Their cen-
ters are separated by a distance | = b + ¢. The vehicle moves longitudinally in the
z-direction at a rate u along the road surface, which is inclined at an angle 6 below
the horizontal.

The equations of motion describing the two-wheel vehicle braking model are de-
veloped in much the same way as in the single-wheel counterpart of Chapter 2. Where
appropriate, a distinction is made between the rear and front wheels. Hence. each
wheel requires its own description of longitudinal and reaction forces. slip. and cir-

cumferential speed. To this end, the rear and front longitudinal forces are defined
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Figure 4.1. Schematic of the two-wheel braking model and corresponding free body
diagram of a single wheel

using Equation (2.4) and are given by*
X,' = ,U,(Si)Z,' 1= T, f (-11)

Similarly, rear and front slip are defined using Equation (2.4) as

u—w;R
S =

= W, 1= T, f (—12)

It is taken as convention that u > 0 and 0 < w;R < u (i = ., f) for braking. Thus.
S = “"—:’iﬂ (¢ = r, f) are defined on the unit interval I, allowing for frec rolling.
finite slip, or lockup of the rear and/or front wheels. The introduction of another
independently rolling wheel in the vehicle braking model renders the front and rear

reaction forces as dynamic terms in the equations of motion, that is. they become

acceleration dependent. This phenomenon is know as dynamic load transfer [1] and

*The force coefficient u(s;) can take different values, depending on the respective values of s,
(i = 1, f). Note, however, that the longitudinal force coefficient characteristic is of one type only
(e.g., wet or dry ashpalt), assuming that the tires are of the same type and condition.
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is captured by the normal forces acting on the tires

Z., = mg (? cosf — %sin()) + miz%, (4.3)
Zy = mg (%0050 + %sin 0) — m'u?. (4.4)

The first terms on the right hand side of Equations (4.3) and (4.4) are recognized to

be static loads (Z;)stq: and (Zf)star on the rear and front wheels. The term nu’z’T’ is
defined as the dynamic load transfer. Since u < 0 this term is negative for vehicle
braking. Thus, in agreement with intuition, dynamic load transfer has the effect of

shifting normal loads from the rear wheel to the front wheel during braking,.

4.1.1 Equations of Motion

During wheel slip, the two-wheel model possesses three dynamic states and hence
requires a set of three coordinates to describe its motion. Similar to the single-wheel
model analysis, the states u, s,, and sy are chosen for the ensuing analysis. With the
appropriate substitutions, the dynamics of the two-wheel system are governed by the

equations

u = —g(Ap(s)cosf@ —sinf)
, u>0,selxlI. (4.5)

S 'Z'hb(S)
where s = (s,,s5) and hy(s) = (hsr(S). hes(s)) are vectors. and g is the acceleration

due to gravity. The function

_ )i+ ps)t
Mols) = 3 7 (ulsr) = “(“if))

is a measure of the nondimensional vehicle deceleration in the direction of the vehicle

heading. An example plot of Ay(s) is shown in shown in Figure 4.2. The scalar
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Figure 4.2. Ay(s) for h = 1.25, ¢ = 6, b = 4, and § = 0. A wet ashpalt friction
characteristic has been employed.

functions
hei(s) = (1 — s;) (Ap(s) cos @ — sin @) — u(s;)¥A;(8) + YLoi. i=r.f (4.6)
are dimensionless, where ¥ = -’-"-Jiz is the vehicle/wheel inertia ratio (as before). and

Ty = J%Tbi (¢ = r, f) are the rear and front dimensionless brake torques. and the

parameters
Ar(s) = (24 Au(s)}) cosd

(4.7)

A(s) = (§—As(s)

~|>

) cos 6

are the nondimensional dynamic normal loads on the rear and front wheels. respec-

tively. Example plots of hy-(s) and hys(s) are shown in Figure 4.3.

4.1.2 Steady-Slip Conditions

The relationship between slip values s, and sy and the forward vehicle speed becomes

clear by invoking a Leibniz notation scheme, forming a ratio of $, and $;. and invoking

-

Equation (4.5). Then

ds, _ h.(s) (1)
ds;  hs(s)’ *
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(a) (b)

Figure 4.3. The functions (a) hs(s) and (b) hps(s) for A =1.25.c=6.b=4. 6 = 0.
U =15, Tp = 3.5, and Ty = 10.0.

which shows that relative dynamic changes in s, and sy are a function of the ratio of
her(8) to hpg(s), and are independent of u. That is, relative changes in rear and front
slip are invariant to changes in the vehicle speed. Thus it suffices, for a qualitative
description of the dynamics, to examine a state space in the independent variables
s, and s;. Although such a topological description of the system bears no direct
information on how quickly the vehicle speed goes to zero as a particular trajectory is
traversed in the (u,8) state space, nor on the speed at which that trajectory evolves
according to the equations of motion, it does clearly exhibit the regions of stable
and unstable braking in terms of front and rear wheel slip. Some information on
how the vehicle decelerates (or whether it decelerates) can be extracted. however. by
quantifying steady-slip solutions: that is, the invariant manifolds in the (u.s) space.

For nonzero u and a pair of constant front and rear slip values. denoted s* =
(s7,8}), it follows that hy(s*) = (her(s*), hes(s*)) = (0,0). Thus. by inspection of
Equation (4.5), the time rate of change of slip in each wheel is identically equal to

zero and remains constant, independent of vehicle speed. Correspondingly. the vehicle
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acceleration & = —g (Ay(s*) cos @ — sin ) is constant and the vehicle speed monoton-
ically decreases to zero or increases—depending on the angle # and the magnitude of

Ay(s*)—according to the equation
u(t) = uo — (Ap(s*) cosf —sinf) gt, u>0, t; >t>0. (4.9)

where u, is the vehicle speed at ¢t = 0.

All combinations of s*, if they exist, define invariant sets of the two-wheel systen.
In order to quantify these steady-slip pairs, it is convenient to define the following
sets:

SE={s | hu(s) = 0.k}, (s) SO}, i=r.f.

S} and S are sets of all slip pairs s = (s, sy) such that the surfaces hy,.(s) and
hyy(s) intersect the plane hy(s) = 0 with negative and positive slopes. respectively. in
the s,-direction. The sets Sf+ and S} are similarly defined in terms of slope along the
sy-axis. Figure 4.4a shows an example plot of these sets for Y, = 3.5. T,y = 10.0.
0 = 0, and a particular vehicle geometry. The invariant sets of the two-wheel system
and their stability types are determined in terms of SF (i = r, f) and are defined as

follows:

st = §'nSf Stable Node
s = S NSy Unstable Node
st = §'nS; Saddle

st = § NS; Saddle

The corresponding invariant manifolds of the two-wheel braking model are defined in
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Figure 4.4. (a) The solution sets S (i = r, f) and (b) the corresponding state space
description of the slip dynamics of the two-wheel model for h = 1.25, ¢ = 6. b = 4.

0= O, v = 15, and Tbr = 3.5, be = 10.0.

terms of these invariant sets as
V; ={(u,s) |u>0,s=5s"}.
Since wheel slip is restricted in the plane such that s € I x I.
VE={(u,s) |u>0,s,=1}, i=rf (4.10)

are also invariant manifolds, where, recall, L denotes lockup. Figure 4.4b shows an
example state space description of the two-wheel model slip dynamics. indicating the
steady-slip values s = s* and their stability type as well as steady-slip values at wheel
lockup. Depending on the relative values of T4 and T,; there may be between zero

and four such invariant points s* in the s-plane.
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4.1.3 Global Features of the Two-Wheel Braking Model

Depicted in Figure 4.5 is a qualitative description of the possible operating regimes —
stable, mixed, or lockup—of the two-wheel model in braking as a function of the front
and rear brake torques. The front brake torque Ty is defined along the ordinate. while
the rear brake torque T, is defined along the abscissa. Here, "stable™ implies that all
trajectories tend toward a stable invariant set s* and the system experiences stable
braking. ”"Mixed” regions indicate the possibility of either front or rear wheel lockup.
but not both. Finally, "lockup” implies that sy = 1 and/or s, = 1 such that one or
both wheels are locked.

In the stable region, which is indicated by the roman numeral I, there is a single
stable invariant set and all initial slip conditions yield stable braking. In the mircd
(front) region, denoted by II, the front wheel can tend to lockup—depending on
the front brake torque—while the rear wheel experiences stable braking conditions.
Similarly in region III (mized [rear]), the rear wheel can tend to lockup—depending
on the rear brake torque—while the front wheel experiences stable braking conditions.
The mized (front € rear) region, denoted by IV, indicates lockup conditions for either
the front or rear wheel, or both. Region V is characterized by wheel lockup. where
at most one wheel experiences stable braking. There are various subregions within
region V, but the determination of these various regimes of lockup is left for future
work. In Figure 4.5, the shaded regions indicate complicated bifurcation sequences
that occur over small brake torque ranges. Example phase plane plots showing the
slip dynamics of the system in each operating regime are also shown in Figure 4.5.
Front slip is defined along the ordinate, while rear slip is defined along the abscissa.

As with the single-wheel braking model, the dynamic behavior of the two-wheel
system in braking is completely determined by, in this case. the two functions hy,(s)

and hys(s). For a particular set of dimensionless brake torques. one need only find
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Figure 4.5. Qualitative description of the steady-slip conditions for the two-wheel
braking model as a function of the brake torques (h = 2m, ¢ = 6m. b = 4m. 6 = 0.
and ¥ = 15): (I) Stable; (II) Mized (Front); (III) Mized (Rear); (IV) Mired (Front &
Rear); (V) Lockup. Example slip space vector fields in front and rear slip.

the slip pairs s* = (s}, s}) that make both hy(s) and hys(s) vanish identically. along
with the gradients of each of these functions in the s,- and sy-directions. respectively.
With this knowledge, a qualitative description of the slip dvnamics can be constructed
for the front and rear brake torque combination of interest. Figure 4.5 captures
the essence of the possible operating regimes. There is much left for consideration.

however; this is left for future work.
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Figure 4.6. Schematic of the two-wheel vehicle acceleration model and corresponding
free body diagram of a single wheel

4.2 The Two-Wheel Acceleration Model

A two-wheel vehicle acceleration model is shown schematically in Figure 4.6. It is
identical to the two-wheel braking model of Section 4.1, except in the direction of the
front and rear wheel torques and longitudinal forces. Here, the model is developed.
and an analysis similar to that of the two-wheel braking model is motivated. but an
investigation of the dynamics is not pursued.

The equations of motion are developed in the same way as the two-wheel ve-
hicle braking model of Section 4.1. Rear and front wheel slip are determined by
Equation (4.2), with w;R > u (i =, f), and the longitudinal acceleration forces X,

(i = r, f) are defined in terms of the friction law given by Equation (4.1).

4.2.1 Equations of Motion

The two-wheel acceleration model is formulated in terms of the dvnamic states u.
sy, and sy;. Rear and front longitudinal braking forces and wheel slip are. respec-

tively, defined by Equation (4.1) and Equation (4.2). The system dynamics are then
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governed by

u = gAy(s)cosf+ gsinf
, wiR>0(i=nrf), se —Ix-—1I. (4.11)
s = %ht(S)

where s = (s, s7) and hy(s) = (h¢(s), hes(s)) are vectors. The function

(ll'(sr)lz'7 + #(Sf)ﬂ
At(s) = h .
1= 73 (u(sr) — u(sy))
is nondimensional and is a measure of the vehicle acceleration along the road surface.

The functions

hii(s) = (si +1)% [(si + 1) 7 (Ae(s) cos@ + sin @) + Tu(s;)A(s) = T..]. i=rf
(4.12)
are dimensionless, where T,; = J%Tei (¢ = r, f) are the rear and front dimensionless
engine torques, and \; (¢ = r, f) are the nondimensional dynamic normal loads on the
rear and front wheels given by Equation (4.7). Since Z_:,L = L’:I—iz; invariant sets can
be defined similarly to the two-wheel braking analysis and a qualitative description

of the steady-slip conditions could be obtained similar to Figure (4.5). This is left for

future work.
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CHAPTER 5

Conclusions and Directions for

Future Work

The results presented here offer new insight into the behavior of vehicles during
longitudinal braking and acceleration. In each case considered. the unique features
of the modeling approach allow one to capture the full range of dyvnamic behavior
of single- and two-wheel models in a simple geometrical manner. By choosing the
forward vehicle speed and longitudinal wheel slip as dynamics states. the dynamic
equations of motion for the single- and two-wheel traction models lend themselves
to a relatively simple investigation and interpretation using the tools from nonlinear
dynamics. This choice of dynamic states, where wheel slip plays a central role. allows
the dynamics for the entire range of vehicle speeds and slip values to be captured by a
single function for the single-wheel model and two functions for the two-wheel model.
These functions completely describe the tractive behavior of a given vehicle in terms of
slip and the brake or engine torque. The relative simplicity of the analvses described
herein is a consequence of the choice of dynamic states and the interpretation of the
resulting equations of motion.

Perhaps the most important conclusion from this work is the fact that the lockup

instability in the single-wheel model does not occur when the brake torque leads to
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the maximum point on the slip curve but at a lower brake torque. The traditional
assumption—that attaining the maximum coefficient of friction leads to lockup —is
shown to be an approximation that is accurate only when the ratio of the tire/wheel
inertia is small compared to the vehicle inertia. Since this ratio is typically small. the
approximation is quite good. However, when considering a light vehicle with relatively
large tire/wheel inertia, the approximation becomes less accurate. In either case. it is
of interest to note that the commonly held view of lockup is only an approximation.

This analysis is the first step in a new direction for the modeling of braking
dynamics, and much remains to be done. Some lines of future work include the

following:

e more detailed parameter studies for specific vehicles under various road condi-

tions.

e use of the two-wheel braking model to assess brake proportioning strategies

wherein torques are independently assigned to the front and rear wheels.
e a more thorough study of the two-wheel acceleration model.

o the effects of cornering on braking and acceleration, wherein a four-wheel model

would be required.

e the incorporation of these models into ABS/TCS development. where slip plavs

a central role.
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