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ABSTRACT

NONLINEAR DYNAMICS OF LONGITUDINAL

GROUND VEHICLE TRACTION

By

Brian John Olson

The purpose of this study is to investigate and understand the nonlinear dynamics

of longitudinal ground vehicle traction. Specifically, the performance of rubber-tired

automobiles under straight-ahead braking and acceleration conditions is discussed

in detail. Two vehicle—traction models are considered~a quarter-car. or single-wheel

model, and a half-car, or two-wheel model—~and nonlinear analyses are undertaken for

each. Customarily, the forward vehicle speed and the rotational rate of each tire /wheel

are taken as dynamic states. This thesis motivates an alternative fornmlation where

wheel slip, a dimensionless measure of the difference between the vehicle speed and

the circumferential speed of the tire relative to the wheel center. replaces the angular

velocity of the tire/wheel as a dynamic state. This formulation offers new insight into

the dynamic behavior of vehicle traction. In each case considered. the unique features

of the modeling approach allow one to capture the full range of dynamic responses

of the single- and two—wheel traction models in a relatively simple geometric manner.

The models developed here may also be useful for developing and implementing ABS

and TCS control schemes.
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CHAPTER 1

Introduction

In its most general sense, vehicle dynamics refers to the response due to imposed

forces of ground vehicles, aerospace vehicles, aircraft, and marine craft. The latter

are supported by a fluid: either air or water. Ground vehicles may be broadly cate-

gorized as either guided or nonguided. Guided ground vehicles. such as railway and

track-levitated trains, are constrained to move along a fixed path. whereas nonguidml

vehicles are free to move in any direction on the ground. This thesis investigates

the nonlinear dynamics of rubber-tired automobiles——one class of nonguided ground

vehicles—with traction under straight-ahead, or longitudinal braking and accelera-

tion conditions. Gillespie [1] or Wong [2] offer good accounts of ground transportation

technology and the fundamentals and theory of nonguided ground vehicles.

The dynamics of ground vehicles are often described in terms of performance.

handling, and ride. The performance of a vehicle refers to its ability to respoml to

imposed forces under acceleration or braking conditions and/or in cornering. Thus.

vehicle performance is based upon objective properties of the vehicle. The handling

of a ground vehicle, however, depends upon the driver/vehicle combination and the

ability of the vehicle to respond to driver commands. Ride characteristics include

the effects of noise and vibration due to, for example, road rmrghness. the tire/wheel.

driveline or engine, on driver comfort and her or his perception and tolerance to such



excitations.

This work investigates the tractive performance of rubber-tired automobiles under

longitudinal braking and acceleration conditions. A general background of these

systems is outlined next, followed by the motivation for the present. study. The

chapter closes with an outline of the thesis organization.

1 . 1 Background

In studies of vehicle traction the gross vehicle dynamics and tire/wheel dynamics can

be captured by lumped mass models. Simplified models that are often considered for

longitudinal braking and acceleration include the single-wheel model [1. 2. 3]. and a

two-dimensional, two-wheel model (front and rear) [1, 2], or full four-wheel models

for cornering [1, 2]. The dynamics of these systems involve interactions between the

vehicle, the tire/wheel assemblies, and the road surface. The force that ultimately

slows or accelerates the vehicle is the longitudinal friction force between the road and

tire, which can be empirically described in terms of a slip condition at the int erface.

Thus, writing the equations of motion for any rubber-tire vehicle system requires a

description of the friction force generated at the tire/road interface. in addition to

the usual laws of motion.

Experimental evidence shows that the longitudinal friction force is proportional

to the normal force at the contact [1, 2, 3], with a coefficient of friction serving as

the ”constant” of proportionality. This coefficient can be conveniently modeled in an

empirical manner that depends on the slip [4, 5], which is a dimensionless measure.

of the difference between the vehicle speed and the circumferential speed of the the

relative to the wheel center. During braking (resp. acceleration). this (.lifference is

generated by a brake (resp. engine) torque on the wheel, which acts against (resp.

with) the inertia of the vehicle. The slip depends on the dynamics of the vehicle and



the tire/wheel, and it also influences their dynamics through the friction for(.'-e. This

”feedback” results in a system of coupled equations of motion for the vehicle and

the tire/wheel. These equations of motion are most often formulated in terms of the

vehicle’s speed relative to ground and the absolute rotational rate of the tire/wheel.

This is a very natural formulation, wherein the slip is merely an internal variable

defined in terms of the system’s dynamic states, which is used to compute the friction

force that appears in the equations of motion.

1.2 Motivation

In this thesis, a formulation is considered in which the slip is taken to be a dynamic

state variable, replacing the absolute rotational rate of the tire/wheel speed. Liu and

Sun [6] have developed the equations of motion for a quarter-car model in this way.

but their investigation focuses on control algorithms based on gain-scheduling. rather

than general dynamic behavior. The formulations herein focus not on control. but

the performance aspects of vehicle traction. It will be shown that the equations of

motion for the single- and two-wheel models take on forms that lend themselves to

relatively simple investigation and interpretation using tools from nonlinear dynam-

ics. Specifically, in the single-wheel braking and acceleration models this fornmlation

allows the dynamics for the entire range of vehicle speeds and slip values to be cap-

tured by a single function (one for each model) that is defined in terms of the slip. the

brake or engine torque, and the friction/slip relationship. These functitms describe

completely the behavior of a given vehicle during braking (resp. acceleration) and

under a constant or slowly varying brake torque (resp. engine torque). Similarly. for

each of the two—wheel traction models, a set of two such functions completely capture

the dynamics: one each for the front and rear slip states. In each case the phase. space

of the system can be completely characterized by these functions. thereby prm'iding



a relatively simple means of categorizing different operating regimes.

The dynamic models presented here are capable of describing both transient and

steady tractive performance. Most importantly, they clearly dcnnonstrate how a ve-

hicle can undergo stable braking or acceleration and/or lockup. depending on the

brake/engine torque, the friction characteristic, and the vehicle parameters. These

models also allow one to clearly see how transitions between operating states occur

as parameters and conditions are varied. In fact, for the single-wheel models. a single

set of phase plane diagrams, drawn at varying brake/engine torque levels. completely

captures the entire range of possible behaviors for a given friction characteristic. The

two—wheel models are more complicated, but a quite complete picture of the dynamic

possibilities is captured in a relatively simple set of diagrams. including various com-

binations of lockup and stable slip at each tire/wheel. These ideas can be extended

to the four-wheel case, for example to analyze traction during cornering. although

such studies are not considered here.

One of the more interesting findings of this study is a stability result related to

brake lockup. The standard thinking is that the brake torque can increase until the

slip reaches a value that corresponds to the maximum coefficient of friction. beyond

which lockup occurs [1, 2]. Under steady-state braking conditions the correspomling

maximum brake torque is typically assumed to be equal to the peak moment provided

by the friction force about the wheel center. In this work it is shown that this

result is actually an approximation that. is only accurate when the inertia of the

tire/wheel is large compared to that of the vehicle. Since this is generally the case.

the approximation works well, but the present results determine where instability

to lockup actually occurs and also systematically shows how the approximation is

obtained.

The present formulations are useful for describing the important qualitative fea-

tures of vehicle traction and providing useful insight into stability issues. It is recog-



nized that slip is notoriously difficult to measure in practice, primarily since it is not

a simple matter to determine the vehicle speed relative to ground. (The speedometer

uses the tire circumferential speed, which does not match the vehicle speed during

slip—and this is precisely when both speeds are required to compute the slip [7].)

However, since methods exist for estimating the slip [8, 9, 10]. models such as those

developed here may be useful for developing and implementing anti-lock brake sys-

tems (ABS) and traction control systems (TCS).

1.3 Thesis Organization

The thesis is organized as follows. The single-wheel braking model is de\.'elope(_l first

in a systematic manner, thus laying the necessary groundwork for the development

and analysis of a single-wheel acceleration model, and subsequently two-wheel vehicle

traction models. The equations of motion are presented and the need to quantify the

available friction force for braking is specified. This motivates an investigation of the

tire/road interface and leads to the introduction of force coefficient. characteristics as

a function of longitudinal wheel slip. The equations of motion are hence cast into

a framework that is convenient for a nonlinear dynamic analysis. Two formulations

are considered: one in which the dynamic states are taken to be the forward vehicle

speed and the angular speed of the tire/wheel, and one in which wheel slip replaces the

angular speed as a dynamic state. The latter formulation is pursued in detail. Global

features of the single-wheel model are discussed, including steady-slip comlitions.

local stability of slip dynamics, hysteresis, and the transition to unstable braking.

The effects of aerodynamic drag and rolling resistance on the resulting nonlinear

equations of motion are also considered. A single-wheel acceleration model is similarly

developed and analyzed. Finally, the single-wheel braking and acceleration models

are extended to half-car. or two-wheel traction models. The two-wheel braking and



acceleration models are developed, and the analysis of each follows in much the same

way as their single-wheel counterparts, although the range of possible behaviors is

significantly more involved. The thesis closes with conclusions and directions for

future work.



CHAPTER 2

The Single-Wheel Braking Model

A quarter-car model is developed in this chapter in order to illustrate the fundamental

aspects of vehicle braking. This single-wheel model is unrealistic by virtue of its

simplicity, and it clearly fails to capture some important dynamical features (e. g..

dynamic load transfer). It nevertheless serves to facilitate an understanding of the

basic dynamic characteristics of vehicle braking. In fact, the approach taken here

lays the groundwork for subsequent formulations, namely, that of the single-wheel

acceleration model of Chapter 3, and the two-wheel braking and acceleration nmdels

of Chapter 4.

As depicted in Figure 2.1, the quarter-car model consists of a single wheel con-

strained to move longitudinally in the :r-direction at a speed a and with a rotational

rate w. Denoted by R and J are its effective rolling radius and polar moment of

inertia, respectively. The effect of a braking mechanism on the vehicle wheel is cap-

tured by the brake torque Tb, which opposes the forward motion of the system. The

vertical reaction force Z balances the static weight. mg. while the longitudinal force

X serves to slow the vehicle in braking. By summing forces in the .r- and :-directions

and moments about the mass center (3' of the vehicle/wheel. the system equations are



Jr};
 

x mg

-—->u I Tb

m 2 mi

  

J

///////////////

 

Figure 2.1. Schematic of the single-wheel braking model and corresp<mding free body

diagram

found to be

mu = —X, (2.1)

Z = mg, (233)

Jo = RX—Tb, (2.25)

where m is the mass of the vehicle-wheel combination and g is the acceleraticnr due

to gravity. Overdots denote differentiation with respect to time.

In general, there are a number of forces acting on a vehicle that may give rise. to

a deceleration. The model considered here includes only the longitudinal brake force

X, which is discussed in detail in the next section. Other sources of deceleration

in braking include driveline drag, grade, rolling resistance. and aerodynamic drag.

Driveline drag refers to the resistance to a change in vehicle velocity due to the

inertia of engine and transmission components, and also to bearing and gear friction

in the transmission, differential, and engine. Grade is defined as the ratio of a unit

vertical to unit horizontal distance and contributes directly
 

either in the positive

(uphill) or negative (downhill) sense—to vehicle deceleration. The effects of grade

and driveline drag will not be considered here. Simple models for aeroclynamic drag

and rolling resistance are incorporated into the equations of motion in Section 2.8.



2. 1 Tractive Properties

The primary force of interest in studies of vehicle traction is the longitudinal force \.

which acts on the vehicle through a tire/road contact patch. Experimental evidence

shows that this friction force is proportional to the normal force Z at the contact

and is a consequence of the relative difference between the vehicle speed u and the

rolling speed of the tire wR. The ”constant” of proportionality is responsible for

the friction coupling, and can be empirically determined by a friction characteristic

in terms of road test data and wheel slip, which is a dimensionless measure of the

difference between u and wR. Since the friction characteristic captures the typifying

quantities of a particular tire/road combination—including slip stiffness at zero slip

and peak brake force values—it. can be regarded as a tire model that characterizes

the tire behavior on a given road surface. The tractive properties are now discussed

in terms of wheel slip, the tire/road interface and friction law. and a tire model.

2. 1.1 Wheel Slip

The longitudinal friction force X is a consequence of the relative difference betwman

the vehicle speed it and the rolling speed of the tire, which is given by a‘R. Wheel

slip is defined in terms of this difference as*

u—wR

S E max(u,wR)° (2.4)

It is assumed and taken as convention that u > 0 and 0 _<_ cal-7. g u. in vehicle braking.

Thus, 3 = % is defined on the unit interval I = [0, 1], taking on the limiting values

of s = 0 for free rolling (u = cal?) and s = 1 for wheel lockup (rt-'1? = 0). The former

 

*The maximum function max(u,wR) allows the use of Equation (2.4) to define longitudinal

wheel slip for both vehicle braking and acceleration. In braking u. > wR. while u < m1? for vehicle

acceleration.



case when u = wR implies the absence of a brake torque. The definition of slip.

along with the convention that wR S it allows for two possibilities for sttwly-state

vehicle braking with nonzero initial speed: (1) finite rotation of the wheel while the

vehicle decelerates and (2) deceleration under lockup conditions. It is noted that the

latter case of lockup is undesirable since steerability, directional stability. and general

control over a vehicle is severely degraded in such a state [1, 2].

2.1.2 The Tire/Road Interface and Friction Law

In a rubber tire, wheel slip results in the deformation and sliding of tread elements

in the tire/road contact patch, which in turn sustains the friction force X in braking.

Indeed, it is through this important interface between the road surface. and tire tread

that braking is negotiated. In general, the microscopic physical description of the

said phenomenon is complicated and involves more physics than what are needed

here. (See, for instance, [1, 2].) It suffices to capture these interactions by the simple

algebraic relationship

X = ,n(s)Z, (‘ ..I
\
J

g
.
"

V

which is known as the friction law or creep force equation. The longitudinal force

coefficient a : I —+ I is experimentally determined in terms of road test data and is

the subject of the next section.

2.1.3 Friction Characteristic and Tire Model

The friction coupling between a rubber tire and road surface depends on a number

of physical parameters involving tire construction, inflation and wear. the tire/road

interface, and vehicle speed and loading [1, 2, 3]. Since a general theory that can

accurately predict the longitudinal brake force in terms of wheel slip has yet to be de-

y

./

veloped, friction coupling is necessarily determined experimentally. \Iarious methods

10



exist to relate the brake and normal forces X and Z in terms of a friction character-

istic ,u(s). See, for example, [9, 8]. The resulting data can then be. represented by a

formula.

Figure 2.2 shows graphical representations of some typical longitudinal frictitm

characteristics. The initial rate at which ”(5) increases with increasing slip is de-

pendent on the properties of the tire. For wet and dry asphalt the characteristics

increase until a peak value up = a(s,,) is attained. This typically ocmirs between l()

and 20 percent slip, yielding maximum braking forces of 25-50 and 70-90 percent of

the vertical load for wet and dry asphalt, respectively. The friction characteristits

then exhibit a gradual decrease to s = 1 (wheel lockup). For gravel and packed simw.

the behavior of the friction coefficient characteristics are qualitatively (:lifferent. Peak

values occur at wheel lockup (here, 3 = 3,, = 1) and are the consequence of plowing

conditions on the deformable surfaces. Ice characteristics (not shown) are similar to

those for wet and dry asphalt, differing mostly in the resulting peak values [1. 2. 3].

An analytical treatment of these friction characteristics is possible by employing

the widely used Pacejka tire model [4, 5]. It is described by the so—called Magic

Formula which is given by

y(a:) = Dsin(C arctan(B$ — E(B:r. - arctan(B.r)))). (2.0)

where the parameters B, C, D, and E are the stiffness, shape. peak. and mmwfare

factors. See reference 4 for typical values of these coefficients. Horizontal and vertical

shifts of a characteristic are attained by the transformations

3’00 = ytr) + S :1: = x + SI...

where 5., is the vertical shift and 5,, is the horizontal shift. The function i'(\) can

ll
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Figure 2.2. Typical longitudinal friction characteristics: (a) dry asphalt: (b) wet

asphalt; (c) gravel; and (d) packed snow.

represent all steady-state tire characteristics—including the brake force \. side force.

and self-aligning torque—in a physically meaningful and straightforward way. The

variable x denotes either slip angle (the angle subtended from the direction of wheel

travel to the direction of wheel heading) or longitudinal wheel slip s. In light of

Equation (2.2) and Equation (2.5), note that the Magic Formula can be scaled to

represent p(s) directly on I .

For the purpose of more efficient numerical simulations. a simple friction charac-

teristic was devised for the present study and is given by

Ms) = 01 (1 — 8—C28) — C38. (‘ .i
v

K
l

v

For cl 2 1.18, c2 = 10.0, and c3 = 0.5, this behaves similarly to wet and dry asphalt

characteristics and has a peak value of up = 0.972 at 3,, = 0.316. This characteristic

was employed for all calculations and numerical simulations involving Ms) in this

chapter and in subsequent chapters.

12



2.2 Equations of Motion

During wheel slip, the single-wheel model possesses two dynamic states and hence

requires a set of two coordinates to describe its motion. By ll‘lSI)€(‘fl()ll of Equa-

tions (2.1-2.5), it is clear that two of three possible variables of interest could be

chosen as the independent variables, namely, u, w, or s. The equations of motion for

the single-wheel braking model are developed first in terms of u. and w’ as than-unit:-

states, and the qualitative dynamics are captured in the (a, col?) phase plane. Though

such a description is physically enlightening, it is subsequently shown in Section 2.2.:

that a formulation of the equations of motion in terms of u. and s as dynamics states

lends itself to a relatively simple interpretation. Specifically, it will be shown that the

latter formulation allows the dynamics for the entire range of vehicle speeds and slip

values to be captured by a single function that is defined in terms of wheel slip and

the brake torque.

2.2.1 u and w as Dynamic States

One possible formulation of the equations of motion is to use the speed u of the vehicle

relative to ground and the absolute rotational rate a) of the tire/wheel as dynamic

states. Then the system dynamic equations are

a = —u<u.w>g
0 5 wR 3 u. (2.8)

o'JR = gH(u,w)

where wheel slip is merely an internal variable. The restriction () S to]? g it ensures

that s E I , according to the convention of wheel slip in braking. The function

H(;u,w) = \Ilp.(u.,w) — Tb (2.9)

13



1s d1mensronless, where W = L} IS the dimensmnless ratio of vehicle to wheel inertia.

and Tb = J—RgTb is the dimensionless brake torque.

2.2.2 The (u,wR) Phase Plane

Figure 2.3 shows trajectories in the (u,wR) state space for ‘11 = 15 and yaritms

dimensionless brake torque values. The rolling speed wR of the tire is defined along

the ordinate while the vehicle speed u is defined along the abscissa. \N’heel slip is

implicitly defined in terms of these states by

wR = (1 -— s)'u., (2.10)

which follows from the definition given by Equation (2.4). Equation (2.10) shows that

radial lines originating from (u, wR) 2 (0,0) are lines of constant slip for which there

is a linear relationship between 21. and wit. Since 3 is defined on the unit interval for

vehicle braking, the dynamics need only be considered in the region

.7-"={(u,wR)luZ0,0SwR$u}. (2.11)

Thus, trajectories are bounded by the line wR = u, which corresponds to s = 0

(free rolling), and the line wR = 0, or the u-axis, which corresponds to s = 1 (wheel

lockup). For a particular brake torque, some constant—slip radial lines are invariant

under the dynamics and evolve only when the brake torque varies. The corresponding

constant slip values shall be denoted by 3*. Any such set that satisfies these condititms

and the equations of motion define invariant linear manifolds in the (u. wR) phase

plane, which are denoted by

W; = {(u,wR) I co]? = (1 — 5*)u.. 3* E I}. (2.12)
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Under certain conditions (to be determined subsequently), the u axis is also an in-

variant manifold (where s = 1) and is denoted by

WbL = {(u,wR) | u 2 0, col? = 0}. (2.13)

As shown in Figure 2.3a, there is a single invariant manifold W; when Th 2 7. At

this parameter value, initial conditions started in .7: yield stable braking conditions

(as opposed to lockup conditions), since all trajectories——including those. started on

WbL—rapidly approach W; for decreasing u and evolve essentially along the invariant

manifold toward zero speed at (u,wR) = (O, 0). As the brake torque is increased to

Tb = 12 two additional invariant manifolds are introduced, one of which ('(’)l‘l‘(—‘Sl)()ll(ls

to lockup conditions, that is, WbL. This is shown in Figure 2%. For very large ln'ake

torques, all trajectories started in .7 yield lockup conditions. Figure 2.3(1 shows this

situation when Tb = 18.

The diagrams depicted in Figure 2.3 show that, for decreasing u. trajectories

tend rapidly toward either W; or WbL, depending on the brake torque level. Hence.

the invariant manifolds, if they exist, serve two purposes: they (1) define steady-

slip conditions that are invariant under the dynamics and under which the vehicle

decelerates to zero speed and (2) separate regions of stable and unstable braking. It

would be desirable to quantify these manifolds without having to perfm'm numerical

simulations. 1

In what follows, an alternative formulation is considered where wheel slip .5 re-

places wR as a dynamic state. Figure 2.4 compares the state space description of

the single-wheel braking model in the (u,wR) phase plane to its description in the

(u, 3) phase plane for ‘11 = 15 and Tb = 12. The alternative fornmlation yields a state

space where, essentially. the point (u,wR) = (0,0) is expanded to represent wheel

slip on the unit interval. In doing so, a singularity is introduced at u = 0: but. as
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Figure 2.4. State space descriptions for the single-wheel braking model for \II = 1:)

and Tb = 12: (a) in u and wR; (b) in u and 3.

indicated in Figure 2.4b, the invariant manifolds W; and W5” are easily identified in

the (u, 3) phase space as lines of constant .9. It will be shown that. a formulatitm of

the equations of motion in terms of u and 3 allows for the invariant manifolds. and

hence steady-slip conditions and various operating regimes, to be captured by a single

function that is defined in terms of wheel slip and the brake torque.

2.2.3 u and s as Dynamic States

Although it is very natural to cast the equations of motion in terms of the forward

vehicle speed it and the tire/wheel rate of rotation. it is instructive to replace a;

with wheel slip as a state variable. Liu and Sun [6] have developed the equations of

motion for a quarter-car model using a and s as dynamic states. but their investigation

focuses on control algorithms based on gain-scheduling. Here the equations of motion

are developed similarly but with emphasis on a form suitable for a nmilinear dynamic
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analysis. Evaluating the time rate of change of wheel slip (for to}? g u)

._R . ,-
s-;§(wu—uto),

and performing the appropriate substitutions, the equations of motion in terms of u

and s can be cast in the form

, u>0, SE]. (2.14)

Since it > 0 by convention, g > 0 and Ms) E I , it follows that it. < 0. which is

expected. The function

hb(s) = (s —1),a(s)— \Ilii(s) + T5, (' . .I
x
)

p
—
t

v
1

v

2 .

o
C

.
.

.

L52 is the ratio of vehicle inertia to whoa]
is nondimensional, where, recall, \II =

inertia and Tb = fiTb is the dimensionless brake torque.

The general features of the quarter-car model are best demonstrated by treating

Equation (2.14) as a state-space representation of the sii'igle-wheel system and explor-

ing their behavior in the (u, 3) state space. It will be shown that this interpretation

of the single-wheel model yields good insight into its dynamic response in transient

and steady-state braking. The analysis begins by determining the steady-slip condi-

tions and their local stability characteristics. A more detailed mathematical analysis

follows in a discussion of the global features of the single-wheel braking model.
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2.3 Steady-Slip Conditions

Equation (2.14) shows that, for nonzero u and a slip value 3* for which 12,,(s*) = 0.

the time rate of change of slip is identically equal to zero. Correspondingly. wheel slip

remains constant at s = 3*, independent of the vehicle speed. This in turn ensures

that the vehicle acceleration ii = —ii(s*)g is negative and constant. Here. ,u(s*) is

the longitudinal force coefficient corresponding to the fixed slip value. Under these

conditions the vehicle speed monotonically decreases to zero according to the equation

u(t) = no — ii(s*)gt, u > 0, t; > t Z 0, (2.10)

where no > 0 is the initial speed at the instant when 8 = s“, that is, when t = 0. 1‘,

corresponds to the time when it = 0. Wheel lockup also yields steady—slip conditions

when 5 = 1. Under lockup conditions, the dynamics of the vehicle are (filescrilwd by

Equation (2.16), with the coefficient of sliding friction in, = p(s = 1) replacing /,/(s").

2.4 Local Stability of Slip Dynamics

Before specifying a quantitative measure of stability, it is convenient to outline and

*

adopt specific notation. First, recall that constant slip values 3 denote invariant

points in the slip dynamics. They may be obtained by finding the zeros of 1),,(s) or.

equivalently, by finding the roots of hb(s*) = 0. More precisely. the steady-slip values

3*, if they exist, define invariant sets of the system, since once 3 = 5* is attained. .9

remains at that value for all time, independent of the values of u. (for u > 0). Any

such value of s = 8* may be either stable or unstable and shall be denoted by s+

and s‘, respectively. Local stability criteria of wheel slip follows from considering a

small perturbation 77(t) = s(t) — 3* away from one of these roots. Differentiating with

respect to time, invoking Equation (2.14). and employing lib(s*) = 0. the local slip
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dynamics near 3* can be approximated to leading order by the linearized equation

7'7 = glam. (2.1?)
u

where ( )' = If; denotes differentiation with respect to 3. Since f:- > 0. Equation (2.17)

shows that the perturbation grows exponentially fast when li],(3*) > 0 and decays

exponentially when hf,(s*) < 0. Thus, the stability of the slip dynranrics near 3 = s*

are determined by the slope

W8“) = MS”) (8* -1- ‘1’)+ MS“) (2.18)

of hb(3) at 3 = 3*. Stable and unstable steady-slip values are defined to be

33: = {3 I hb(si) = 0,12,],(3i) § 0}. (2.19)

The corresponding stable and unstable invariant manifolds of the system in the ( u. 3)

plane are defined by

Wbi={(u,3)|u>0,3=3i}. (2.20)

Since wheel slip is restricted to the unit interval,

W!“ = {(u,3) | u > 0,3 =1,h.(1) > 0}

is also an invariant manifold, where L denotes wheel lockup. The notation W; shall

refer to either of the invariant manifolds W; or W),— .
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2.5 Global Features of the Single-Wheel Braking

Model

Equation (2.17) and Equation (2.19) hint at the importance of the function 12,,(3).

since steady-slip conditions and the local stability of the slip dynamics are completely

determined in terms of this dimensionless function. In fact. the entire range of vehicle

speeds and slip values are captured by h.b(3) under a. constant brake torque or slowly

varying brake torque. This is shown in Figure 2.5, where the function lu,(s) versus

slip and the corresponding state space dynamics in u and 3 are depicted for \11 = 15

and for various values of the nondimensional brake torque. The intersection of the

function hb(3) with the line (u, = 0 defines the invariant points 3* (see Equation 2.19

and Table 2.1), and hence the invariant manifolds W; in the (11-3) space. which are

defined by Equation (2.20).

For Tb = 7, a small brake torque, only one invariant point exists. which is shown in

Figure 2.5a as 3*. Since h],(s*) < 0 the steady-slip value 3*r is stable and hence (,lefines

the invariant manifold WJ. All initial conditions (u, 3) = {(u. 3) | u > 0. 3 E I } result

in stable braking at this parameter value.

As the brake torque is increased to Tb = 12, another fixed point has been intro-

duced for which the slope of h],(3*) is negative; hence it is unstable. It is denoted by

3 = 3" and defines the unstable invariant manifold Wt," iii the (as) space. As shown

in Figure 2.5b. all trajectories above Wb“, that is, those with initial ccmditions in

{(u, 3) I u > 0,3 E (3’,1]}, tend to WbL (indicating wheel lockup). Trajectories lying

below W; are attracted to the invariant manifold W: and result in stable braking

conditions. Note that the creation of the unstable invariant point 3‘ corresponds to

the introduction of stable lockup at 3 = 1. This is essentially a saddle-node bifurca-

tion creating 3‘ and 3 = 1 steady-slip values.

Further increasing Tb causes 3+ and 3' to move toward each other. Eventually a
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critical brake torque The, 2 15.250 is reached where the stable and unstable invariant

points collide and mutually annihilate in a saddle node bifurcation at the critical slip

value 3 = 36,. = 0.304 (See Figure 2.5c.) For brake torques greater than Ti,” no stable

points exist and wheel lockup occurs for all initial slip conditions. This situatimi is

shown in Figure 2.5d where Tb = 18.

Table 2.1. Steady-slip values for the single-wheel braking model

 

 

 

 

 

 

 

l n s- 1 sa- 1 8+ 1
7 — — 0.050

12 0.782 — 0.117

15.250 — 0.304 —

18 — - —     

The set of initial conditions for which a trajectory reaches the stable invariant

manifold W; is called the domain of attraction of 3+ in the (21.3) state space and is

denoted by D. Clearly D doesn’t exist for post-bifurcation dynamics. since all initial

conditions with u > 0 would yield lockup conditions. For pre-bifurcation dynamics.

that. IS, fOI' Tb < Tb”,

D: {(u,3)|u>0,3€1\[3—,1]}.

Trajectories started with initial conditions in D rapidly converge toward the stable

invariant manifold and evolve essentially along W+, according to Equation (2.10)

toward the point (u, 3) = (03*), where the vehicle stops. The rate at which the

vehicle decelerates under steady-slip depends only on ii(3*), that is. the particular

friction characteristic and the value of 3*. All trajectories started outside D and

not on Wb" tend rapidly toward lockup at 3 = 1, subsequently move along W’b".
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and monotonically approach the point (0, 1). This situation corresponds to braking

under lockup conditions which, for wet and dry asphalt characteristics. is always non-

optimum since ,u(3 = 1) = m, < ju(3p). Finally, trajectories started on the unstable

invariant manifold remain on W; and monotonically evolve toward the point (0. 3‘ ).

This situation is physically impossible, however, since any small perturbation in the

system would cause a trajectory to leave W; and tend rapidly toward either lockup

or the stable invariant manifold.

Note that the rate at which a trajectory tends toward either WbL or W; increases

dramatically as it tends toward zero since 3 ~ %. In fact, from Equation (2.14). the

time rate of change of wheel slip becomes infinite as u —> 0 with 3 ¢ 1. 3*. Hence.

the vehicle must come to rest under steady-slip conditions for which 3 = 1 or s = 3*.

There are only two such physical possibilities: the vehicle decelerates to zero speed

(1) at the rate mg with the wheels locked or (2) with steady—slip at the al.)soliite

rate ,u(3+)g (typically). Peak steady—braking performance would entail steady slip at

s = 3p for which the maximum deceleration is equal in magnitude to pr1- However. a

steady-slip value 3* = 3,, is always unstable. Thus, since 3,, cannot be reached under

stable braking conditions, optimum braking would entail steady-slip at 3 = s”. The

corresponding deceleration is equal in magnitude to Mag 2 p,(3 = 30.)!) < ,iin. But

since 30,. is a saddle node in the slip dynamics, any perturbation in the system could

send the braking conditions into wheel lockup. The critical brake torque needed

to sustain optimum braking, and the corresponding lockup instability at that brake.

torque value, are discussed in Section 2.7.

It is again stressed that the function hb(3) completely determines the nonlinear

dynamic behavior of the single-wheel system in braking over the entire range of ye-

hicle speeds and slip values. Given the dimensionless brake torque Tb. one needs

only calculate the zeros of hb(3) to quantify steady-slip values and the corresponding

invariant sets. The slope of hb(3) at these steady—slip values il‘ldlC'aU’PS the stability
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of the corresponding invariant manifolds. With this knowledge. a complete phase

plane description of the vehicle dynamics can be constructed for the brake torque

of interest from which information on regions of stable and unstable braking can be

easily extracted.

2.6 Hysteresis in the Single-Wheel Braking Model

The dimensionless function hb(3) and the (u, s) dynamics reveal certain features of

the system that may otherwise be difficult to extract. Referring again to Figure 2.5.

consider the case when the saddle-node bifurcation has already occurred and that

the current state of the system is that of wheel lockup (Figure 2.511). One may

intuitively guess that the brake torque need only be reduced to a value slightly less

than Tb... = 15.250 in order for stable braking to again be restored. This. liowevi r.

is not the case. Although the stable invariant point s+ reappears. the state of the

system remains at (u, 1), or wheel lockup since that point remains stable as well. In

fact, Tb must be more drastically reduced to a value such that 12,,(1) < 0. that is.

lockup must be destabilized, in order to restore stable braking conditions. Once this

occurs, the system state jumps from wheel lockup to stable braking conditions.

2.7 The Transition to Unstable Braking

When a brake torque is applied to a rubber tire a tractive force is generated at the

tire/road interface, as described in Section 2.1. The standard thinking is that the

brake torque can increase until wheel slip reaches the value 3,,. beyond which lockup

occurs [1, 2]. Under steady-state braking conditions, the corresponding maximum
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brake torque is typically assumed to be

[
\
J

[
\
D

H

VTop = ngfL(SP)3 ( -

which is the peak moment provided by the friction force X = ii(3,,)Z = Ms,,)mg about

the wheel center. Thus, it is traditionally assumed that the critical brake torque for

which the lockup instability is impending and the peak brake torque are the same.

and that the transition to wheel lockup occurs at 3 2 3p = 30.. In what follows. it is

shown that the lockup instability does not occur at the peak value 3,, corresponding

to the maximum of the “(3) curve, but at a condition that is typically nearby. It is

subsequently shown that Equation (2.21) is actually only an approximation that is

accurate when the inertia ratio ‘1! is large.

2 . 7. 1 Lockup Instability

For the single-wheel braking model the function hb(3) can be written in the form

ht(8) = M8) (8 -1- “0+ Tb- (' -'I
V

[
V

N
;

v

Differentiating Equation (2.22) with respect to 3 and evaluating the resulting expres-

sion at critical slip yields

h’b(scr) = (1"(Sc-r)(scr _ 1 _ ‘1')+H(Scr) = 02 A

I
v

I
Q

,
.

V

where, recall, 30,. is the saddle node value in the slip dynamics. Since in Equa-

tion (2.23), M36.) > 0 and (30, — 1 — ‘11) < 0, it follows that.

—l"(3cr)

————>0.

36,—1—\II (
MOS”) : I

v

I
v

4
.
.

v
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Equation (2.24) shows that the slope of the friction characteristic at the critical value

3 = SC, is positive, rather than zero, which is the case at 3,,. This means that. for wet

or dry asphalt characteristics, 36,. is actually smaller than the peak value 3],. Hence.

the lockup instability, or the transition to unstable braking. corresponds not to s,,.

the peak of [1(3), but to the critical value 30., the minimum of I2b(8). These results

are consistent with numerical evidence. Recall that the peak value [1,, = [1(3 2 s,,) of

Equation (2.7) occurs at 3,, = 0.316, whereas 3C, = 0.304, which is approximately 4

percent less than 3,,. The corresponding critical brake torque is outlined next. from

which Equation (2.21) can be obtained by invoking a series of approximations.

2.7.2 The Critical Brake Torque

Recall from Section 2.5 that the vehicle must come to rest under steady-slip conditions

for which 3 = 1 (wheel lockup) or 3 = 3*. The brake torque correspomling to a steady-

slip value 3 = 3* follows from Equation (2.22) and is given by

Tb = —;i(3*) (3* — 1— \II), (2.25)

where the condition hb(3*) = 0 has been invoked. The maximum possible brake torque

corresponding to steady-slip conditions is obtained by maximizing Equation (2.25).

The result is

BL,

X = ,u.’(3*)(3* — 1 — \Il)+ii(s*) =0. (2.26)

323‘

Equation (2.26) is of the same form as Equation (2.23). which is an expression that

minimizes hb(3). Thus, it must be true that the maximum brake, torque is given

by Equation (2.22) with the steady-slip value 3* = 30,. satisfying Equation (2.23).

. 2 . . . .

Recalling that Tb = fin and \II = %, the critical brake torque can be written in
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the dimensional form

1

Ti... = ngMsc.) (1+ 3(1— 30.)) . (2.27)

Equation (2.27) indicates that the typically assumed maximum brake torque given by

Equation (2.21) follows from two fundamental assumptions: (1) the inertia ratio \II

of the vehicle is large relative to unity, and (2) the peak slip value 3,, can be attained.

These assumptions are generally acceptable so that, for many applications. the true

critical brake torque can be reasonably approximated by the assumed brake torque

given by Equation (2.21). This is shown next.

Idealizing the wheel as a thin uniform disk of mass mwhpd. it follows that

mR2 m

‘11 = = 2 .

J mwheel

  (2.23)

where, recall, m is the mass of the vehicle/wheel combination. In most applications

m >> mwheez so that ‘1' >> 1. Moreover, the peak value 3,, and 30,. are typically close.

Referring again to Equation (2.7) and noting that ids”) = “(0.304) : 0.972. it

follows that Tb? = 14.574 for W = 15. Numerical simulations show that Th], 2 15.250

(see Figure 2.5), rendering the approximation given by Equation (2.21) in error by

less than five percent.

2.8 The Effects of Aerodynamic Drag and Rolling

Resistance

The force X is the main source of vehicle deceleration during braking. However. there

are other factors that may be of comparable importance. For high-speed braking.

aerodynamic drag is the primary retarding force on a vehicle. whereas for very-low
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speed braking, the primary retarding force is rolling resistance [1]. These factors are

included in the single-wheel braking model here to show their effects on the system

dynamic equations of motion.

A simple and commonly used model for aerodynamic drag on a vehicle is given

by

1 2
FD = EpACDu , (2.29)

where p is the ambient air density, A is the projected frontal area of the vehicle. and

CD is an experimentally determined aerodynamic drag coefficient.

Rolling resistance depends on a number of interdependent factors including vehicle

speed, wheel slip, and the tire temperature, pressure, loading, and construction. The

total force acting on a vehicle due to the rolling resistance of each wheel is typically

given in terms of the vehicle weight mg as

F, = mgfr, (2.30)

where f, is a rolling resistance coefficient. Several equations are available for esti-

mating fr, but their accuracy is limited since it is virtually impossible to account for

all of the important physical properties of the tire and ground. If only a crude esti-

mate of rolling resistance is desired, f, may be taken to be constant. More accurate

models for rolling resistance may be obtained, for example. by taking f,. to be speed

dependent. Gillespie [1] cites some typically used empirical relationships for f,.(u).

Including aerodynamic drag and speed dependent rolling resistance in the single-

wheel braking model, the dynamic equations of motion take the form

a = -u(8)g- F(ur)g

, u>0. 361. (2.31)

3' = gh,(s)+§(s—1)F(u)
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where hb(3) is given by Equation (2.15). The function

PCDA 2
——u

F(u) = fr(u) + 2mg A

[
v

.
.

I
v

'
V

is dimensionless and represents the effects of rolling resistance and aermlynainic load-

ing on the vehicle dynamics. The 11.2 terms in Equation (2.32) indicate that aerody-

namic drag becomes significant at higher vehicle speeds. Rolling resistance increases

approximately linearly for low vehicle speeds and more closely obeys a Sl)(‘(‘(l-S(]lltll'(‘(l

relationship for higher speeds [1]. Hence, its effects on the vehicle dynamics are

important at all speeds, particularly at high speeds. The new function F ( u) in Equa-

tion (2.31) renders the nonlinear dynamic analysis of the single-wheel model more

complicated, since steady-slip values—and hence the system invariant manifolds

cannot be obtained simply by finding the roots of hb(3) = 0. Invariant manifolds of

the form a = Q(3) will exist, and can be determined by standard techniques [11].

These will describe the dynamics of (u, 3) as the vehicle decelerates.

It should be noted that the primary advantage of using slip as a dynamic state is

not realized in this model.
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CHAPTER 3

The Single-Wheel Acceleration

Model

This chapter describes a single-wheel vehicle acceleration model. Here, the term ac-

celeration refers to the positive rate of change of velocity in the longitudinal directitni

due to an engine torque. Longitudinal acceleration is fundamentally dependent on

two main limitations: engine power and traction [1]. However. the ensuing investiga-

tion assumes that sufficient engine power is available at any given instant to maintain

a constant torque on the wheel. Thus, focus is shifted entirely to understanding'

tractive properties and their dynamic characteristics and how to maximize them.

The single-wheel vehicle acceleration model is physically identical to that of the

single-wheel braking model, consisting of a wheel/tire disk with radius R and polar

moment of inertia J. As depicted in Figure 3.1, it is constrained to move longitu-

dinally in the x-direction with its speed denoted as u. The available engine torque.

acting in the positive sense on the wheel, is denoted by T8. The vertical reaction force

Z balances the static weight mg, while the longitudinal force X serves to accelerate

the vehicle.

As with the single-wheel braking model, the forward vehicle speed u and lon-

gitudinal wheel slip 3 are chosen as dynamic states. In vehicle acceleration it is
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Figure 3.1. Schematic of the single-wheel acceleration model and corresponding free

body diagram

assumed and taken as convention that wR > 0 and 0 g u S wR. Thus. wheel slip

3 = 5% = 15:—R is defined on the interval —1 = [—1,0]. taking on the lim-

iting values 3 = —1 for pure slip (a = 0) and s = 0 for free rolling without slip

(a = wR > 0). The former case when u = 0 indicates finite rotation of the wheel

while maintaining zero vehicle speed, which is shown in Section 3.2 to be an unstalne

condition. The case when u = id]? implies the absence of a brake torque.

The Pacejka tire model can be employed in vehicle acceleration studies by letting

s —> —3 in the Magic Formula (Equation [26]). Similar to Equation (2.7), the

characteristic

,u.(3) 2 01(1— eczs) + C38 (3.1)

was used (with c1 = 1.18, 02 = 10.0, and c3 = 0.5) in all numerical simulations in

this paper involving vehicle acceleration models. It has a peak value up = 0.972 at

3 = —s,, = —O.316.

3.1 Equations of Motion

Assuming that the friction law given by Equation (2.5) holds and making the appro-

priate substitutions, the equations of motion for the single-wheel acceleration model
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can be cast in the form

a = M99

3 = gas)

, u > 0, 3 E —I. (3.2)

The nondimensional function h,(3) is given by

h,(3) = (3 +1)2 [(3 +1)"1ii(3) + ‘I’lt(8) —- T,.] , (3.3)

where, again, \I' = "—‘F is the vehicle/wheel inertia ratio and Y... = 'ii/T' is the

dimensionless engine torque.

3.2 Steady-Slip Conditions and Local Stability

For nonzero u and a constant slip value 3* for which h.,(3*) = 0, Equation (3.2) shows

that wheel slip remains invariant, independent of the vehicle speed. Correspomlingly.

the forward vehicle acceleration is positive and constant, and its speed monotonically

increases according to the equation

W) = no + #(8*)gt. t2 0, (3.4)

where no > 0 is the initial speed when 3 = 3*, that is, when t = 0. Clearly the vehicle

cannot continue to accelerate indefinitely. Due to aerodynamic drag. saturation of

engine power, etc., generation of the prescribed engine torque eventually becomes

impossible. In order to quantify this limiting case one must include other factors in

the dynamic model, which will not be considered here.

Local stability of the invariant points 3* follows in the same way as discussed for

the single-wheel braking model. (See Section 2.4.) Stable and unstable fixed points
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are defined to be

3i = {3 | h,(3i) = 0,h[(3i) § 0},

and the corresponding invariant manifolds are given by

W? = {(u,3) I u > 0,3 = 3*}.

Note that the set {(u, 3) I u 2 0, 3 = —1} does not define an invariant manifold. since

3 is singular when u = 0.

3.3 Global Features of the Single-Wheel Vehicle

Acceleration Model

The dynamic equations describing the single-wheel acceleration model are of the same

structure as their braking model counterparts, with the only significant differences

appearing in ht(3). Whereas the brake torque appears simply as an additive term

in the function hb(s) of the single-wheel braking model (Equation [215]). the engine

torque is scaled by the nonlinear term (3+ 1)2 in the function h, (3) of the single-wheel

acceleration model (Equation [33]). It is this nonlinearity that yields slightly more

complicated dynamics as the parameter Te is varied.

Depicted in Figure 3.2 is the function ht(s) versus slip and the corresponding

state space dynamics in u and 3 for \11 = 15 and various values of the, nontlimensicmal

engine torque. For T8 = 7.5 there exists a stable invariant point 3*. which defines

an invariant manifold Wf. All initial conditions {(11.3) I u 2 0. s E [0. 1)} result in

stable acceleration at this parameter value, with trajectories tending toward W,‘L at

a rate which decreases with increasing speed. As they approach the stable manifold.

trajectories evolve essentially along WP“, and the vehicle accelerates according to



Table 3.1. Steady slip values for the single wheel acceleration model.

 

 

 

 

 

 

 

 

 

 

 

  

Te 3‘ 30,. 3+ I

7.5 — - -0.054

15 - - -0.203

22.5 — - -0.940

14.65 - - -0.186

15.196 - -0.695 -0.214

15.65 -0.507 - —0.250

- — -0.806

16.032 - -0.350 -0.834

16.65 — - -0.862    
 

Equation (3.4).

Further increasing the engine torque to Te 2 15.0 renders s+ slightly more nega-

tive and brings the relative maxima and minima of h.( 3) very close to the line 12, = 0.

At this parameter value the vehicle experiences near-maximiun acceleration. The

nearly flat character of h.t(3) over a range of 3 in this torque range implies high sensi-

tivity and rapid changes for small torque variations. An increase of the engine torque

to Te = 22.5 moves W,+ nearly to pure-slip conditions.

To investigate more closely the dynamic subtleties involved in the small engine

torque range near maximum acceleration, consider Figure 3.3 and Figure 3.4. These

figures show the function h,(3) versus slip, and the corresponding state space de-

scriptions in u and 3, in detail near a rapid set of bifurcations over the torque range

14.65 3 Te 3 16.65. The vehicle acceleration dynamics are rich over this torque range

primarily due to the nonlinear term (3 + 1)) in the function Ii,(3) (Equation [33]).

Optimum steady acceleration conditions would entail steady-slip at 3,, = —().316 (see

Equation [3.1]) for which the maximum acceleration is equal to /.i.(s,,)g. This ctnidition

occurs for engine torques near T8 = 16 (Figures 3.36 and 33(1). though only a small

set of initial conditions would yield stable acceleration at near optimum cmiditimis.
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Figure 3.2. ht(3) vs. 3 and corresponding state space descriptions in u and .s for

‘11 = 15: (a) T6 = 7.5; (b) Te = 15.0; (c) Te = 22.5. See Table 3.1 for stei‘uly-slip

values.

36



 

     

 

  

SI

3 T, = 14.65

(74(5)

:3 0 —— - -—

t i i. f.

§ T(. = 15.196

 

     
 

 

 

 

    
 

 

F ht(3) I speedu (m/s)

° °“‘“ "—7" t“ V

K co X \\ \

- i— ,g/ .
9, S 9 f Tp=15.()5

118+ \— '

'- h,(3) T speedu (m/s)

Figure 3.3. ht(3) vs. 3 and corresponding state space descriptions in u and 3 in detail near

a rapid set of bifurcations: (a) T8 = 14.65; (b) Te = 15.196; (c) T8 = 15.65. See Table 3.1

for steady-slip values.
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a rapid set of bifurcations: ((1) Te = 16.032; (e) Te = 16.65. See Table 3.1 for steatgly-slip

values.
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CHAPTER 4

Two-Wheel Braking and

Acceleration Models

4.1 The Two-Wheel Braking Model

A two-wheel vehicle braking model is developed in this chapter and is shown schemat-

ically in Figure 4.1. The entire weight mg of the vehicle is assumed to be concentrated

at its mass center, which is located a length c forward of the rear axle and a distance

h normal to the road surface. The front and rear wheels are assumed to be identical.

each with an effective rolling radius R and polar moment of inertia J. Their cen-

ters are separated by a distance I = b + c. The vehicle moves longitudinally in the

x-direction at a rate it along the road surface, which is inclined at an angle 0 below

the horizontal.

The equations of motion describing the two—wheel vehicle braking model are de-

veloped in much the same way as in the single-wheel counterpart of Chapter 2. Where.

appropriate, a distinction is made between the rear and front wheels. Hence. each

wheel requires its own description of longitudinal and reaction forces. slip. and cir-

cumferential speed. To this end, the rear and front longitudinal forces are definml
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Zr

Figure 4.1. Schematic of the two—wheel braking model and corresponding free body

diagram of a single wheel

using Equation (2.4) and are given by“

Similarly, rear and front slip are defined using Equation (2.4) as

’U. — 011R

3. E

z max(u,w,-R)’

 i: r, f. (42)

It is taken as convention that u > 0 and 0 _<_ wiR S u (i = r, f) for braking. Thus.

3,- : 93211-5 (i = r, f) are defined on the unit interval 1, allowing for free rolling.

finite slip, or lockup of the rear and/or front wheels. The introduction of another

independently rolling wheel in the vehicle braking model renders the front and rear

reaction forces as dynamic terms in the equations of motion, that is. they become

acceleration dependent. This phenomenon is know as dynamic load transfer [1] and

 

*The force coefficient p(s,) can take different values, depending on the respective values of s,

(i = r, f). Note, however, that the longitudinal force coefficient characteristic is of one type only

(e.g., wet or dry ashpalt), assuming that the tires are of the same type and condition.
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is captured by the normal forces acting on the tires

I,

Z, = mg (? cos6 — %sin 6) + iii/£172. (4.3)

h h

Zf = mg ($- C086 + 78111 6) — 771/117. (‘14)

The first terms on the right hand side of Equations (4.3) and (4.4) are recognized to

be static loads (Z,)3tat and (Zf)5tat on the rear and front wheels. The term Int/'7’ is

defined as the dynamic load transfer. Since it < 0 this term is negative for vehicle

braking. Thus, in agreement with intuition, dynamic load transfer has the effect of

shifting normal loads from the rear wheel to the front wheel during braking.

4.1.1 Equations of Motion

During wheel slip, the two-wheel model possesses three dynamic states and hence

requires a set of three coordinates to describe its motion. Similar to the single-whwl

model analysis, the states u, 3,, and 3f are chosen for the ensuing analysis. With the

appropriate substitutions, the dynamics of the two-wheel system are governed by the

equations

”ft = —g (Ab(s) cos6 — sin 6)

, u>0,s€1><1. (4.5)

S = fithS)

where s = (3,, 3f) and hb(s) = (hb.,.(s),hbf(s)) are vectors, and g is the acceleration

due to gravity. The function

“(316% + ”(8,”?A =
b(S) 1+ % (“(ST) — ”(SID

 

is a measure of the nondimensional vehicle deceleration in the direction of the vehicle

heading. An example plot of Ab(s) is shown in shown in Figure 4.2. The scalar
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Figure 4.2. Ab(s) for h = 1.25, c = 6, b = 4, and 6 = 0. A wet ashpalt. friction

characteristic has been employed.

functions

fun-(s) = (1 — 3,) (Ab(s)cos6 — sin 6) —- a(3,:)\IIA,-(s) + TM. 2' = r. f (4.6)

are dimensionless, where ‘11 = Elf—2 is the vehicle/wheel inertia ratio (as before). and

Tb, = £71m (i = r, f) are the rear and front dimensionless brake torques. and the

parameters

Ar(s) = (I2 + 111(8)?) cos6

(4.7)

Af(S) = ("12- Ab(S)-f;) C089

are the nondimensional dynamic normal loads on the rear and front wheels. respec-

tively. Example plots of hb,(s) and hbf(s) are shown in Figure 4.3.

4.1.2 Steady-Slip Conditions

The relationship between slip values 3, and 3f and the forward vehicle speed becomes

clear by invoking a Leibniz notation scheme, forming a ratio of 3,. and 3,. and invoking
.3

Equation (4.5). Then

dsr : hr(S) (4 Q)

de hf(S)l .3
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Figure 4.3. The functions (a) hb,(s) and (b) hbf(S) for h = 1.25, c = 6, b = 4. 6 = 0.

‘11 = 15, Tb, = 3.5, and TM = 10.0.

which shows that relative dynamic changes in 3,. and 3f are a function of the ratio of

hbr(s) to (lb/(S), and are independent of a. That is, relative changes in rear and front

slip are invariant to changes in the vehicle speed. Thus it suffices, for a qualitative

description of the dynamics, to examine a state space in the independent variables

3,. and 3f. Although such a topological description of the system bears no direct

information on how quickly the vehicle speed goes to zero as a particular trajectory is

traversed in the (u, 3) state space, nor on the speed at which that trajectory evolves

according to the equations of motion, it does clearly exhibit. the regions of stable

and unstable braking in terms of front and rear wheel slip. Some information on

how the vehicle decelerates (or whether it decelerates) can be extracted. however. by

quantifying steady-slip solutions: that is, the invariant manifolds in the (a. s) space.

For nonzero a and a pair of constant front and rear slip values. denoted s* =

(3:,3}), it follows that hb(s*) = (hb,(s*),hbf(s*)) = (0, 0). Thus. by inspection of

Equation (4.5), the time rate of change of slip in each wheel is identically equal to

zero and remains constant, independent of vehicle speed. Correspondingly. the vehicle
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acceleration ii = —g (Ab(s*) cos6 — sin 6) is constant and the vehicle speed monoton-

ically decreases to zero or increases—depending on the angle 6 and the magnitude of

Ab(s*)——according to the equation

u(t) = no — (Ab(s*)cos6 — sin 6) gt, a > 0, if > t _>_ 0. (4.9)

where no is the vehicle speed at t = 0.

All combinations of 8*, if they exist, define invariant sets of the two-wheel system.

In order to quantify these steady-slip pairs, it is convenient to define the following

sets:

8ft: {Sihbi(S)=Oethi(S)§0}v i=7‘,f,

8,3“ and 8,.— are sets of all slip pairs 3 = (susf) such that the surfaces li,,,.(s) and

h.bf(s) intersect the plane hb(s) = 0 with negative and positive slopes. respectively. in

the sr-direction. The sets 8; and S; are similarly defined in terms of slope along the

3f-axis. Figure 4.4a shows an example plot of these sets for Tb, = 3.5, T1,; = 10.0.

6 = 0, and a particular vehicle geometry. The invariant sets of the two-wheel system

and their stability types are determined in terms of Sf (i = r, f) and are defined as

follows:

8+ = 8: fl 8; Stable Node

8— = 8,— fl 5,“ Unstable Node

s‘t = 8,3 F) 8,? Saddle

s; = 5,.— flSf Saddle

The corresponding invariant manifolds of the two-wheel braking model are defined in
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Figure 4.4. (a) The solution sets 8? (i = r, f) and (b) the corresponding state space

description of the slip dynamics of the two-wheel model for h = 1.25, c = 6. b = 4.

a = 0, \II = 15, and Tb, = 3.5, Tb, = 10.0.

terms of these invariant sets as

V; = {(u,s) I u > 0,5 = s*}.

Since wheel slip is restricted in the plane such that s E I X I ..

Vf={(u,s)|u>0,s,-=1}, i=r.f (4.10)
l

are also invariant manifolds, where, recall, L denotes lockup. Figure 4.4!) shows an

example state space description of the two—wheel model slip dynamics, indicating the

steady-slip values 8 = 3* and their stability type as well as steady—slip values at wheel

lockup. Depending on the relative values of Tb, and be there may be between zero

and four such invariant points 3* in the s-plane.
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4.1.3 Global Features of the Two-Wheel Braking Model

Depicted in Figure 4.5 is a qualitative description of the possible operating regimes» —

stable, mixed, or lockup—of the two-wheel model in braking as a function of the front

and rear brake torques. The front brake torque be is defined along the ordinate. while

the rear brake torque Tb, is defined along the abscissa. Here, ”stable" implies that all

trajectories tend toward a stable invariant set 8* and the system experiences stable

braking. ”Mixed” regions indicate the possibility of either front or rear wheel lockup.

but not both. Finally, ”lockup” implies that .9, = 1 and/or s, = 1 such that one or

both wheels are locked.

In the stable region, which is indicated by the roman numeral 1, there is a single

stable invariant set and all initial slip conditions yield stable braking. In the nulml

(front) region, denoted by [1, the front wheel can tend to lockup—depending on

the front brake torque—while the rear wheel experiences stable braking comlitimis.

Similarly in region 11] (mixed [rear/), the rear wheel can tend to lockup—1lepentling‘

on the rear brake torque—while the front wheel experiences stable braking conditions.

The mixed (front 85 rear) region, denoted by IV, indicates lockup conditions for either

the front or rear wheel, or both. Region V is characterized by wheel lockup. where

at most one wheel experiences stable braking. There are various subregions within

region V, but the determination of these various regimes of lockup is left for future

work. In Figure 4.5, the shaded regions indicate complicated bifurcation sequences

that occur over small brake torque ranges. Example phase plane plots showing the

slip dynamics of the system in each operating regime are also shown in Figure 4.5.

Front slip is defined along the ordinate, while rear slip is defined along the abscissa.

As with the single-wheel braking model, the dynamic behavior of the two-wheel

system in braking is completely determined by, in this case, the two functions h,,r(s)

and h,bf(s). For a particular set of dimensionless brake torques. one need only find
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the slip pairs 5“ = (8;, 3}) that make both h,b,.(s) and hbf(S) vanish identically. along

with the gradients of each of these functions in the ST- and sf-directions. respectively.

With this knowledge, a qualitative description of the slip dynamics can be constructed

for the front and rear brake torque combination of interest.

the essence of the possible operating regimes. There is much left for consideration.

however; this is left for future work.
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Figure 4.6. Schematic of the two-wheel vehicle acceleration model and corresponding

free body diagram of a single wheel

4.2 The Two-Wheel Acceleration Model

A two-wheel vehicle acceleration model is shown schematically in Figure 4.6. It is

identical to the two-wheel braking model of Section 4.1, except in the direction of the

front and rear wheel torques and longitudinal forces. Here, the model is (,le\-'e101.)e("l.

and an analysis similar to that of the two-wheel braking model is motivated. but an

investigation of the dynamics is not pursued.

The equations of motion are developed in the same way as the two-wheel ve-

hicle braking model of Section 4.1. Rear and front wheel slip are determined by

Equation (4.2), with 01,-}? > u (2' = r, f), and the longitudinal acceleration forces X,

(2' = r, f) are defined in terms of the friction law given by Equation (4.1).

4.2.1 Equations of Motion

The two-wheel acceleration model is formulated in terms of the dynamic states '11.

3,, and sf. Rear and front longitudinal braking forces and wheel slip are. respec-

tively, defined by Equation (4.1) and Equation (4.2). The system dynamics are then
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governed by

a = gAt(s)cosd+gsint9

, wiR>0 (i=r,f), 86 —1x —I. (4.11)

S = ght(S)

where s = (8,, Sf) and ht(s) = (h.tr(s), htf(s)) are vectors. The function

 

is nondimensional and is a measure of the vehicle acceleration along the road surface.

The functions

flu-(S) = (81+1)2 [(si+1)—1(At(s)cosd + sin 6) + \II;1.(.S,)/\(s) — TH] , i = r. f

(4.12)

are dimensionless, where Te, = fi-Te; (z' = r, f) are the rear and front dimensionless

engine torques, and A; (2' = r, f) are the nondimensional dynamic normal loads on the

. . . I ,. ~) . . »

rear and front wheels given by Equation (4.7). Smce $1- - " I” . invariant sets can
(18]. _ hff(S)

be defined similarly to the two-wheel braking analysis and a qualitative description

of the steady—slip conditions could be obtained similar to Figure (4.5). This is left for

future work.
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CHAPTER 5

Conclusions and Directions for

Future Work

The results presented here offer new insight into the behavior of vehicles during

longitudinal braking and acceleration. In each case considered. the unique features

of the modeling approach allow one to capture the full range of dynamic l.)ehavior

of single— and two-wheel models in a simple geometrical manner. By choc.)sing the

forward vehicle speed and longitudinal wheel slip as dynamics states. the dynamic

equations of motion for the single— and two-wheel traction models lend themselves

to a relatively simple investigation and interpretation using the tools from nonlinear

dynamics. This choice of dynamic states, where wheel slip plays a central role. allows

the dynamics for the entire range of vehicle speeds and slip values to be captured by a

single function for the single-wheel model and two functions for the l\-\'O-\\'ll(‘(:‘l model.

These functions completely describe the tractive behavior of a given vehicle in terms of

slip and the brake or engine torque. The relative simplicity of the analyses descrilwd

herein is a consequence of the choice of dynamic states and the interpretation of the

resulting equations of motion.

Perhaps the most important conclusion from this work is the fact that the lockup

instability in the single—wheel model does not occur when the brake torque leads to
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the maximum point on the slip curve but at a lower brake torque. The traditional

assumption—that attaining the maximum coefficient of friction leads to lockup-is

shown to be an approximation that is accurate only when the ratio of the tire/wheel

inertia is small compared to the vehicle inertia. Since this ratio is typically small. the

approximation is quite good. However, when considering alight vehicle with relatively

large tire/wheel inertia, the approximation becomes less accurate. In either case. it is

of interest to note that the commonly held view of lockup is only an approximation.

This analysis is the first step in a new direction for the modeling of braking

dynamics, and much remains to be done. Some lines of future work include the

following:

o more detailed parameter studies for specific vehicles under various road condi-

tions.

0 use of the two-wheel braking model to assess brake proportioning strategies

wherein torques are independently assigned to the front and rear Wl'lOPIS.

o a more thorough study of the two-wheel acceleration model.

0 the effects of cornering on braking and acceleration, wherein a four—wheel model

would be required.

0 the incorporation of these models into ABS/TCS development. where slip plays

a central role.
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