mriflrwdflxls.irrhuunwr.hfifi ‘ .~ .. 5.». Ha? . ‘ inc-“1.7.: .5. .x . . . . 33M... .L . ‘ n ‘3‘ -“ h» . . z. : . . 4V aw mam; imvcfimmpbmm _ 1.... .wflr...,¥.wu..c .... .. . . h“; 3. it . I. ”1.“?! HT: Vv t4. :2 x A s... .1. a. l a if: , a .n : E3. furl»... . A1: ,. ’92.: a . .3 I 4.1.. fl 3? ‘1)... . 1.... .1: iii-.311... {xictlt £1.25... . \ ~ ~ :i? u.‘ n, z . 3, :15»; .3333: .1 1951.31,. idurpaudu. , p.001.“ ‘35] I‘ .- .QJW‘TV '- 7’33‘ .5 .nlavv: lu"?‘.“;'7 , . u . \ )I". I. ) I . vii Va’l' Q I 4):? . 1|...“ '22.} .. . I... a: .3...- . 3v.» .9... ‘v..0..ue 9- .... r .3) 4... OZI . .vo‘v: Qty}! 3....» .{t 111-. l~.z.x1i.i. .3155»)... nvi.\v.L, .59..“ i... r! .1. :4! ~c O ififififi .t....o...‘ ... ..J.,_.,~,.n._x.._,u.‘ 411. THeszs 7: 33' )— MLIBPARY Michigan State Unlverslty l This is to certify that the thesis entitled COLLOIDAL PROCESSING OF TITANIUM DIBORIDE/ALUMINA (TiBz/A1203) presented by Lisa Prokurat Franks has been accepted towards fulfillment of the requirements for Master's degree in Materials Science and Engineering ajor profess Date August 22, 2001 0-7639 MS U is an Affirmative Action/Equal Opportunity Institution _ .,~ _. _..,..__. ._——_ PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6101 cICIRCDUoDuost-ms COLLOIDAL PROCESSING OF TITANIUM DIBORIDE/ALUMINA (T iB2/A1203) By Lisa Prokurat F ranks A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE AND ENGINEERING Department of Materials Science and Mechanics 2001 ABSTRACT COLLOIDAL PROCESSING OF TITANIUM DIBORIDE/ALUMINA (TileA1203) By Lisa Prokurat Franks TileA1203 powders produced using self-propagating high-temperature synthesis (SHS) have been densified using hot pressing and dynamic consolidation techniques, but the microstructure and phase distribution have been inconsistent. Since the SHS powders are available commercially, it's possible to also improve green body formation by controlling interparticle potentials during processing. The interactions between ”KB; and A1203 have been analyzed with respect to their colloidal properties, as measured by their respective zeta potentials, density, volume fraction, and particle size. The colloidal properties and the resulting microstructure of sintered SHS {TiBz/A1203}, with SHS TiBz in two different aluminas, have been compared. The coagulation behavior of SHS {TileAlzog} powders was insensitive to colloidal processing, and no matter the processing condition, the microstructure associated with resistance to ballistic penetration was present. The coagulation behavior of the SHS TiBz in two different aluminas was sensitive to colloidal processing, and the SHS TiBz in the Alcoa SG A1203 processed at pH 7 showed potential to produce the microstructure associated with resistance to ballistic penetration. DEDICATION This work is dedicated to my parents, Mary Pesta Prokurat and Michael A. Prokurat, whose love, encouragement and support I have always known. Thankfully, they are of that generation Tom Brokaw has called The Greatest Generation, who know and teach the value of work, especially that which comes from the labor of one’s own hands. Any graduate work, especially one that includes laboratory bench work, requires an integrity, humility, perseverance and patience that I had to have seen and lived with all these years, to be able to apply to my own work. I will always be grateful for the sacrifices that gave me, my brother, Rev. Dr. Michael D. Prokurat and my sister, Dr. Elaine M. Carroll, M.D., opportunities many children only dream about. But my parents’ lasting gift is that basically, they always were, still are, and will always be, just crazy in love with us. ACKNOWLEDGMENTS This study was made possible through the cooperation and support of the Defense Advanced Research Projects Agency (DARPA), US. Army Tank-Automotive Research Development and Engineering Center (TARDEC) and Michigan State University under the Clinton Administration’s Technology Reinvestment Project (TRP). When one pursues a graduate degree, it is never done alone. When one pursues an advanced degree as a late vocation while employed full-time, married and a parent, guidance and support are voluminous and difficult to list completely, however I’d like to mention specifically: For inspiring me to climb the mountain: Dr. Gordon Filbey, Dr. William Carson, Dr. William Gillich, Dr. Andy Niiler and Dr. William Bruchey. For initiating this program, and opening the doors I needed to get started: Dr. Ken Oscar, Ms. Pame Watts, Mr. Michael Zapf, Dr. Richard McClelland, Dr. Douglas Templeton, Dr. Douglas Rose, Dr. Jayaraman, Dr. Larry Drzal and my advisor Dr. Melissa Crimp. For getting me past bumps in the road and over the mountain: Dr. Kathryn Logan, Dr. Douglas Templeton, Dr. Jim Thompson, Dr. Ernest Chin, Mr. Gary Gilde, Dr. Jim McCauley, Dr. Eldon Case, Dr. Melissa Crimp, Mr. Jeff Swab, Mr. Jack Mullins, Mr. Patrick Sneary, Mr. Brett Wilson, Mr. Dean Opperman, Mr. Scott Hodges, Mr. Michael Parham, Ms. Mary Prokurat, Ms. Juliana Franks, Dr. Renate Snider, Dr. Susan Masten, Mr. Hiroyuki Fukushima, Mr. Yu Liu, Dr. James E. (Ned) Jackson, Ms. Julide Celik, Ms. Lili Duan, Ms. Xiangshu Jin, Ms. Tara Stabryla, Dr. James Lucas, and Dr. Andre Lee. For their friendship, inspiration and support during this journey: Ms. Sarah Newton, Dr. Elaine M. Carroll, Mr. Robert El Henicky, Ms. Elizabeth Davison, Dr. Roxanne Freedman-Petros, Ms. Kathleen (Kitty) Derbin, Ms. Lee Reimann, J.D., Ms. Juanita Pipkin, Ms. Beverly K. Sobolewski, Rev. Michael Matsko, and members of the Great Lakes Chapter of Federally Employed Women (FEW). Without the love and support of my dear husband David and my sweet daughter Juliana, I could not have completed this important work, thank you. TABLE OF CONTENTS LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES ............................................................................................................ x INTRODUCTION .............................................................................................................. 1 1 LITERATURE REVIEW ........................................................................................... 7 1.1 Titanium Diboride (TiBz) — Alumina (A1203) Composites .................................... 7 1.2 Colloidal Processing ............................................................................................... 9 1.2.1 Colloidal Systems ........................................................................................... 9 1.2.2 Particle Description ....................................................................................... l 1 1.3 Derjaguin-Landau-Verwey-Overbeek (DLVO) Theory ....................................... 17 1.4 Hogg, Healy and Fuerstenau (HHF) Theory ......................................................... 18 1.4.1 Development of HHF Theory ....................................................................... 18 1.4.2 Modeling HHF Theory ................................................................................. 21 2 EXPERIMENTAL PROCEDURE ........................................................................... 23 2.1 Starting Powders ................................................................................................... 23 2.1.1 Self-propagating-high-temperamre-synthesis (SHS) TiBz ........................... 23 2.1.2 Alumina (A1203) Powders ............................................................................. 24 2.1.3 SHS COIDpOSItC TIBz/A1203 .......................................................................... 26 2.2 Electrokinetic Sonic Amplitude (ESA) Measurement .......................................... 27 2.3 Stability Predictions .............................................................................................. 28 2.3.1 Hamaker Constant Calculation ..................................................................... 28 2.3.2 Computer Model ........................................................................................... 28 2.4 Slip Preparation and Casting ................................................................................. 29 2.4.1 Electrolyte ..................................................................................................... 29 2.4.2 Slip Suspensions ........................................................................................... 29 2.4.3 Ultrasonication .............................................................................................. 29 2.4.4 Plaster Mold Preparation ............................................................................... 30 2.4.5 Casting .......................................................................................................... 30 2.5 Traditional Binder ................................................................................................. 31 2.6 Cold Isostatic Pressing (CIPing) ........................................................................... 32 2.7 Green Bodies ......................................................................................................... 32 2.7.1 Density Measurement ................................................................................... 32 2.7.2 Binder Burnout and Thermogravimetric Analysis (TGA) ............................ 32 2.7.3 Conductivity Measurement ........................................................................... 3 3 2.8 Pressureless Sintering ........................................................................................... 33 2.9 Sintered Samples ................................................................................................... 34 2.9.1 Density Measurement ................................................................................... 34 2.9.2 Conductivity Measurement ........................................................................... 35 2.9.3 Mounting and Polishing ................................................................................ 35 vi 2.10 Scanning Electron Microscopy (SEM) Observations ....................................... 36 2.10.1 Powders ......................................................................................................... 36 2.10.2 Polished Specimens ...................................................................................... 36 2.11 Microhardness Measurement ............................................................................ 36 3 RESULTS AND DISCUSSIONS ............................................................................. 37 3.1 Properties of TiB2/A1203 Suspensions .................................................................. 3 8 3.1.1 Electrokinetic Sonic Amplitude (ESA) Measurement .................................. 38 3.1.2 Stability Ratio (W) ........................................................................................ 43 3.2 Effect of pH on Green Body Density .................................................................... 46 3.2.1 Material Loss and Sample Attrition .............................................................. 46 3.2.2 Green Body Density Measurements ............................................................. 49 3.2.3 Green Density vs. Cold Isostatic Pressure ................................................... 51 3.2.4 Green Body Conductivity ............................................................................. 51 3.3 Sintered Density .................................................................................................... 52 3.3.1 Binder Burnout and Thermogravimetric Analysis (TGA) ............................ 52 3.3.2 Material Loss and Sample Attrition .............................................................. 54 3.3.3 Sintered Density Measurements ................................................................... 54 3.3.4 Consistency of Sintered Microstructure with Suspension Stabilityc’ Predictions ................................................................................................................. 55 3.3.5 Sintered Sample Conductivity ...................................................................... 65 3.4 Microstructure ....................................................................................................... 65 3.4.1 SHS Composites ........................................................................................... 65 3.4.2 SHS TiBz / A1203 Composites ...................................................................... 65 3.5 Microhardness Measurement ................................................................................ 66 4 CONCLUSIONS ....................................................................................................... 67 5 FUTURE WORK ...................................................................................................... 70 REFERENCES ................................................................................................................. 71 APPENDICES .................................................................................................................. 78 A. Equations for Evaluating Armor Efficiencies ............................................................. 79 B. Electrokinetic Sonic Amplitude 038A) Measurements .............................................. 82 C. Green Body Density Measurements ........................................................................... 94 D. Sintered Density Measurements ............................................................................... 100 E. Conductivity Measurements ..................................................................................... 102 F. Microhardness Measurements .................................................................................. 104 G. Porosity Measurements fi'om Backseatter SEM Micrographs ........................... 106 vii LIST OF TABLES Table 1: Physical properties reported by the manufacturer for SHS powders, TiB2 and Composite {TiBz/A1203} ........................................................................... 24 Table 2: The chemical and impurity analysis and physical properties for AKP-50 A1203 reported by the manufacturer ..................................................................... 25 Table 3: The chemical and impurity analysis and physical properties for Alcoa-SG A1203 reported by the manufacturer ..................................................................... 26 Table 4: Ceramic properties for Alcoa-SG A1203 reported by the manufacturer ......... 26 Table 5: The calculation of the Hamaker constant (A,-) in a vacuum [Bleier, 1983] where A,(kT) ~ 113.7{(e3-1)2/[( e. +1)3’2(e. +2)"2]} ................................................... 28 Table 6: Binder burnout schedules for PEG processed samples ............................ 33 Table 7: Pressureless Sintering schedules for all samples .................................... 34 Table 8: Hand polishing papers for sample preparation in the order used .................. 3 5 Table 9: Relative stability between SHS TiB2 and AKPSO A1203 predicted by Suspension Stabilityg ............................................................................................. 44 Table 10: Relative stability between SHS TiB2 and Alcoa-SG A1203 predicted by Suspension Stability‘D .............................................................................. 45 Table 11: Summary of processing conditions chosen for the three composite systems investigated .......................................................................................... 45 Table 12: Material loss during green body forming for each composite recipe and processing pH ....................................................................................... 46 Table 13: Sample attrition during green body forming for each composite recipe and processing pH ........................................................................................ 48 Table 14: Evaluation of sintered microstructure for consistency with processing behaviors ............................................................................................. 56 Table 95: Potentiometric Titration (POTN729.esa), 0.5 vol. % TiB2, 1x10'4 M KN03. ..83 Table 16: Potentiometric Titration (POTN733.esa), 0.5 vol. % TiB2, 1x10'3 M KNO3. ..84 Table 17: Potentiometric Titration (POTN73 1 .esa), 0.5 vol. % TiB2, 1x10’2 M KN03. . .85 viii Table 18: Potentiometric Titration (POTN717.esa), 0.5 vol. % AKP-SO A1203, 1x104 M KN03 ................................................................................................. 86 Table 19: Potentiometric Titration (POTN719.esa), 0.5 vol. % AKP-SO A1203,1x10'3 M KNO3 ................................................................................................. 87 Table 20: Potentiometric Titration (POTN723.esa), 0.5 vol. % AKP-SO A1203, 1x1 0'2 M KNO3 ................................................................................................. 88 Table 21: Potentiometric Titration (POTN710. esa), 0. 5 vol. % Alcoa SG A-1000 A1203, 1x104 M KNO3 ...................................................................................... 89 Table 22: Potentiometric Titration (POTN713.esa), 0.5 vol. % Alcoa SG A-1000 A1203, 1x10'3 M KNO3 ...................................................................................... 90 Table 23: Potentiometric Titration (POTN725.esa), 0.5 vol. % Alcoa 80 A-1000 A1203. 1x10'2 M KNO3 ...................................................................................... 91 Table 24: Potentiometric Titration (POTN702. esa), 0. 5 vol. % SHS Composite {TiB2/A1203},1x10'3M KN03 .................................................................... 92 Table 25: Potentiometric Titration (POTN705. esa), 0. 5 vol. % SHS Composite {TiB2/A1203}, 1x10'3 M KN03 .................................................................... 93 Table 26: Green Body Density Data and Calculations for SHS TiB2/AKP 50 A1203 Ceramic Composites ................................................................................ 95 Table 27: Green Body Density Data and Calculations for SHS TiB2/Alcoa SG A-1000 A1203 Ceramic Composites ........................................................................ 96 Table 28: Green Body Density Data and Calculations for SHS TiB2/A1203 Ceramic Composites ........................................................................................... 98 Table 29: Sintered Density Measurements for the Three Composite Systems Investigated ......................................................................................... 101 Table 30: Conductivity Measurements ......................................................... 103 Table 31: Microhardness Measurements (V ickers (HV)) .................................... 105 Table 32: Porosity Measurements from Backseatter SEM Micrographs .................. 108 Table 33: Summary of Lineal Analysis Data for Porosity Measurements from Backseatter SEM Micrographs .................................................................................. 112 ix LIST OF FIGURES Figure 1: The microstructure termed “continuous” and more penetration resistant, taken from Logan [1997]. Light areas are TiB2 and dark areas are A1203 ........................... 8 Figure 2: The microstructure termed “discontinuous” and less penetration resistant, taken from Logan [1997]. Light areas are TiB2 and dark areas are A1203 ........................... 9 Figure 3: Surface charge influence on the distribution of nearby ions in the polar medium, after Shaw [1992, p. 178] ........................................................................... 12 Figure 4: Potential energy of the diffuse electrical double layer, after Shaw [1992, p. 178] .................................................................................................... 13 Figure 5: Representation of the electrical double layer according to Stern's theory, after Shaw [1992, p. 183] and Heimenz [1997, p. 541] .............................................. 14 Figure 6: Potential of the electrical double layer according to Stern's theory, after Shaw [1992, p. 183] and Heimenz [1997, p. 541] ...................................................... 14 Figure 7: Total potential energy of interaction (VT) between two particles as function of their separation, after Hogg et a1. [1966] ......................................................... 18 Figure 8: Geometrical representation of the interaction between two dissimilar spherical particles of radii a, and a; as two infinitesimally small, flat plates where h< where ¢ is the volume fraction of solids, Ap is the density difference of the particles and the liquid, and c is the velocity of sound in the suspension. The ESA dynamic mobility is used to determine the zeta potential (Q) by the equation [O’Brien, 1986 & 1990, as cited in Wilson and Crimp, 1993]: c=[M]G(a)-' (7) 80 gr where n is the viscosity of the suspension, 308, is the applied electric field, and G (01)" is the correction for the inertia of the particle in an alternating field. Using a Matec ESA- 8000 system to collect ESA data, the pH, conductivity and temperature can also be measured concurrently [Matec, 2001] to employ zeta potential (Q) in the application of 16 theories of colloidal stability to ceramic composite suspensions [Wilson and Crimp, 1993]. 1.3 Derjaguin-Landau- Verwey-Overbeek (DL V0) Theory The forces that arise between similar particles in aqueous media are described by the classical DLVO theory of the stability of lyophobic colloids [Colic et al., 1997]. According to DLVO theory, the total interaction energy between two particles (VT) is obtained by summing the interaction energies due to the van der Waals attraction (VA) and the electrostatic double layer repulsion (VR): V, = V A + VR (8) When two particles are forced together, their respective diffuse layers overlap, increasing the concentration of counterions between them and giving rise to an osmotic pressure, and thus a repulsive force [Colic et al., 1997]. However, most ceramic composite systems are made up of dissimilar rather than similar particles, and the theoretical analysis of the interaction of dissimilar double layers using DLVO theory requires tedious graphical or numerical integrations [Derjaguin (1954) and Devereux and de Bruyn (1963), as cited in Hogg et al., 1966]. Therefore, another quantitative theory that can better describe the kinetics of coagulation for a ceramic composite colloidal system is needed. 17 1.4 Hogg, Healy and Fuerstenau (HHF) Theory 1.4.1 Development of HHF Theory 1.4.1.1 Colloidal Particle Interactions Hogg et a1. [1966] derived a relationship to describe the potential energy of interaction between the dissimilar electrical double layers associated with the particles in a multicomponent colloidal system. As in DLVO theory, the total potential energy of interaction is generally given by equation (8), and when the surface potentials of the two interacting particles are large and have the same sign, then V3 is positive and the total energy VT passes through a maximum (Fig. 7). 15 O = Barrier to Coagulation Total Potential Energy of Interaction (VT) 15 i '7 Separation Distance (KI-Io) Figure 7: Total potential energy of interaction (Vr) between two particles as function of their separation, after Hogg et al. [1966]. 18 The potential energy of the attractive forces (VA) is as in equation (1). Hogg et a1. [1966] expanded the expression for the potential energy of the repulsive forces (VR), however, by treating the interaction between small electrical double layers on spherical particles after Derjaguin [1934, as cited in Hogg et al., 1966]. The interaction is then as infinitesimally small parallel rings, each of which can be considered as a flat plate (Fig. 8) so that: V =£alaz(V/20,+l/Izo,[ ZWOIV’O, h[l+exp(-KHO) R 4(01 4’"2) 6’20. +V’202) l-eXp(- x110 )]+ln(1 -exp(- 260)] (9) where e is the dielectric constant, a] and a; are the particle radii, w is the particle surface potential, K is the Debye-Hiickel parameter, and H0 is the particle separation distance [Hogg et al., 1966]. Figure 8: Geometrical representation of the interaction between two dissimilar spherical particles of radii a; and a; as two infinitesimally small, flat plates where h<‘ a 200.0 «— 3 100.0 __ E *5 0.0 fi4 '3' 1000 a - . ~~ fl -2000 —— 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 pH Figure 10: Zeta potentials determined from ESA data collected using the Matec ESA 8000 for Alcoa SG A-1000 A1203 suspended in three different concentrations of electrolyte. [— sns 11112 b 1x104 M 10103 —s11s r1112 1- 1:10.3 M 10103 —sns 11112 b 1110-2 M 10103] 30.0 —— 20.0 - 10.0 —~ 0.0 1 1 1 . e r . -l0.0 . -20.0 — -30.0 — 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 T I l Zeta Potential (mV) I pH Figure 11: Zeta potentials determined from ESA data collected using the Matec ESA 8000 for SHS TiB2 suspended in three different concentrations of electrolyte. 39 The electrolyte concentration of 11110'3 M KN03 was optimal for zeta potentials (C) for each A1203 powder. The SHS {Tile A1203} powder was suspended in 1x10'3 M KN03, and the zeta potential (mV) versus the pH was plotted for each powder using Microsoft Excel 97 SR-Z (Figure 12). —— Alcoa SG - - - -AKP-50 — SHS TiBZ —SHS Composite 150.0 % 100.0 «e : 50.0 «e .59. E 0.0 1 a; -50.0 .- 13 -1000 -- -1500 -_ 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 pH Figure 12: Zeta potentials for each starting powder suspended in 1x10'3 M electrolyte from ESA data collected using the Matec ESA 8000. The estimate for the minimum potential for stability is i 25 to 50 mV [Hunter, 1993, p. 422]. Therefore, the SHS TiB2 and SHS composite {TiB2/A1203} appeared to be unstable at all pH; AKPSO was stable between about pH 4 and 6, and pH 8.5 and 10; and Alcoa-SG was stable between about pH 4 and 5.5, and pH 9 and 10. Except for the SHS composite {TiB2/A1203}, the Q—potential crossed the axis of zero potential for all the starting powders between pH 7 and 8; the point of zero Q-potential was also the isoelectric point (iep) [Heimenz 1997, p. 566]. 40 There is no reported iep for TiB2 as determined by a search of the joint Computerized Engineering Index and BI Engineering Meetings database (Bi COMPENDEX). However, an iep for titania powders is reported as pH 7.5 when the surface chemistry is affected by an inorganic such as A1203 and as low pH 6.1 when the surface chemistry is affected by an organic material [Greenwood and Kendall, 1999]. The iep for SHS TiB2 at the optimum electrolyte concentration (1x10'3 M KN03) for TiB2/A1203 composite processing was between pH 7.38 and 7.50. The iep for A1203 five different a-Ale3 powders from the same manufacturer is reported as pH 9 [Franks and Lange, 1999]. The iep for the AKP 50 A1203 (Figure 9) was not in agreement with the reported iep at pH 9, but at lower electrolyte concentrations the iep was consistent, ranging between pH 7.3 and 7.5. The iep for the Alcoa SG A1203 (Figure 10) was also not in agreement with the reported iep at pH 9, but at lower electrolyte concentrations was not as consistent, ranging between 6.8 and 7.3 at the lower electrolyte concentrations. The different (manufacturing/processing) origins of the oc- A1203 powders as well as the different impurities present (Tables 2 and 3) produced differences in surface chemistry that affected colloidal properties [Everett, 1988, p. 8; Cerovic et al., 1995]. These differences in surface chemistry may then account for the variations between the iep reported here and in the literature for the 01-A1203 powders. The increased electrolyte concentration was expected to shrink the diffuse double layer around the particle [Hunter, 1993, pp. 90-92] and increase the C-potential, but the iep was expected to remain consistent for a pure material. Variations in the molecular activity of the impurities and hence the surface chemistry may account for the inconsistency in 41 either the AKP 50 or the Alcoa SG A1203 iep at all electrolyte concentrations (Tables 2 and 3). The iep is the point at which electrophoretic mobility is zero; therefore the potential energy of repulsion between particles is minimal and the optimum condition for coagulation of a particular powder is present [Heimenz 1997, p. 567]. Generally, if two powders of different C-potentials are compared - all other factors being equal - the one with the higher absolute value of the Q—potential is expected to be more stable with respect to coagulation, and the one with the lower absolute value of the potential, less stable [Heimenz 1997, p. 567]. However, if the suspension consists of a composite of different particles — where all other factors are not equal — stability cannot be easily generalized. Rather, DLVO and HHF theories applied to Q—potential measurements provide a more precise estimate of stability of multiple, differing components in suspension [Hogg, 1966; Wilson and Crimp, 1993]. By modeling DLVO and HHF theories, the other unequal factors, including density, particle size, the interaction of dissimilar electrical double layers, and coagulation kinetics, can be taken into account to predict the stability of a composite suspension. The Q-potential results for the SHS {TiB2/A1203} were not conclusive, and possibly unstable at every pH. Therefore, three suspension processing conditions were chosen to reflect the range of pH: pH 4 (acidic), pH 7 (neutral) and pH 9 (basic). Further calculations using DLVO and HHF theories to predict stability of the SHS composite powder were not possible because of the instability of the powder at every pH. 42 3.1.2 Stability Ratio (W) For the composite systems SHS TiB2/AKP 50 A1203 and SHS TileAlcoa SG A- 1000 A1203, the Stability Ratio (W) was computed (Figures 13 and 14) to predict the stability, and conversely the coagulation kinetics, of the composite suspensions. For each powder, the calculated Hamaker constant in a vacuum (Table 5), temperature (°C), volume fraction, concentration of the electrolyte (M), particle radii (,um), C—potential (mV) vs. pH data, and the pH of the start and finishing points were entered into the computer program Suspension Stability? The program bases calculation of the logro W versus pH data on DLVO and HHF theories, and takes into account the factors of the different components in suspension. The 10810 W versus pH data were plotted using Microsofi Excel 97 SR-2 (Figures 13 and 14). _._ SHS 'mrztsrrs 1:132 _.. sns TiBZ:AKP50 A1203 +AKP50 A1203tAKP50 A1203 350 a 2503 §2004 Si @150. O 1-1100. 50. 0 - -so 1 pH Figure 13: Stability ratio data prepared from the computer program, Suspension swim", for SHS TiB; and AKP 50 A1203. a. U! 0‘ \I as \D 10 43 -.- SHS T182 : SHS T182 -.- SHS TlBZ:Alcoa-SG AI203 + Alcoa-SC AlZO3:AIcoa-SG A1203 350 - 300 - ‘ Figure 14: Stability ratio data prepared from the computer program, Suspension Stabilityo, for SHS TiB2 and Alcoa-8G A-1000 A1203. The program can predict ranges of stability by pH where log1o W > 40 [Wilson and Crimp, 1993]. Tables 9 and 10 summarize the relative stability between components, that is, where log10 W > 40 as predicted from the stability plots in Figures 13 and 14, respectively. Table 9. Relative stability between SHS TiB2 and AKP50 A1203 predicted by Suspension Stabilioio Stability SHS TiBz/ SHS TiB2] AKPSO A1203/ Ratio W SHS TiBz AKPSO A1203 AKPSO A1203 Interactions Interactions Interactions Range of Predicted pH 4-6 pH 4-6 pH 4-7 Stability and and and pH 8.5-9.5 pH 8.5-9.5 pH 8.0-9.5 44 Table 10: Relative stability between SHS TiB2 and Alcoa-8G A1203 predicted by Suspension Stability° Stability SHS TiB2/ SHS TiBz/ Alcoa-SG A1203/ Ratio W SHS T1132 Alcoa-SG Al203 Alcoa-SG A1203 Interactions Interactions Interactions Range of Predicted pH 4-6 pH 4-6 pH 4-6.5 Stability and and and pH 8.5-9.5 pH 8.5-9.5 pH 7.5-9.5 Suspension processing conditions were chosen to reflect three variations in stability of the components: dismrsed - where both components were stable, particle double-layers were large and like-charged, repulsive forces dominant, and thoroughly mixed in suspension; coggglated - where both components were unstable, particle double- layers were small and zero-charged, attractive forces dominant, and thoroughly agglomerated in suspension; and heterocoagulated - where one component was stable and the other unstable, particle double-layer sizes and charges were dissimilar, and partially agglomerated in suspension. Heterocoagulation in the SHS TiB2 plus A1203 composites occurred with the SHS TiB2 unstable with respect to the A1203. Table 11 summarizes the processing conditions chosen for the three composite systems investigated. Table 11: Summary of processing conditions chosen for the three composite systems investigated Processing Conditions SHS Composite SHS TiB2] SHS TiB2/ TiB2/A1203 AKPSO A1203 Alcoa-SG A1203 Traditional Binder W6 PEG PEG—'— ‘ Dispersed pH 4 pH 4 pH 4 Coagulated pH 7 pH 7.5 pH 7 Heterocoagulated pHT pH 8 pH T 45 3.2 Efiect of pH on Green Body Density 3.2.1 Material Loss and Sample Attrition With all liquid evaporated during slip casting and drying, each batch of each composite recipe prepared by a particular processing should yield approximately 98 grams of sample material. However, material loss was significant (Table 12). All of the material was cast into samples, but the processing steps of removing the samples from molds and cold isostatic pressing caused sample disintegration. Cold isostatic pressing completely destroyed the first set of SHS composite samples. Another batch of the SHS composite was slip cast and consequently not cold isostatically pressed prior to green density measurements to preserve sample integrity. Table 12: Material loss during green body forming for each composite recipe and processing pH Material Loss Composite Recipe Processing pH during Green Body Forming SHS TiB2-AKP 50 A1203 4 74% SHS TiB2-AKP 50 A1203 7.5 94% SHS TiBz-AKP 50 A1203 8 98% SHS TiB2-Alcoa SG A1203 4 65% SHS TiB2-Alcoa SG A1203 7 84% SHS TiB2-Alcoa SG A1203 8 82% SHS CompositeTiBz-AIZO3 4 78% SHS CompositeTiBz-Ale3 7 71% SHS CompositeTiBz-Ale3 9 49% 46 The material loss was greatest in the SHS TiB2/AKP 50 A1203 system processed at pH 8 with less than 2% of the starting material remaining. The SHS composite system processed at pH 9 had the least material loss with over 50% of the starting material remaining after processing. These findings may be consistent with A1203 being soluble under basic conditions and TiB2 being soluble in a mixture of H202 and HNO3 [Wilson, 2001]. Wilson [2001] also reports that the SHS composite powder is not a mixture of the two components as observed in the SEM image of the SHS composite powder (Figure 22) where the large (charging) particles were thought to be the non-conducting A1203 and the smaller (non-charging) particles the conducting TiB2. Rather both components constitute each particle creating a new type of surface chemistry. These composite particles may account for the material loss in the SHS composite not following the same trend as the other SHS TiB2 plus A1203 systems (Table 12). In addition to the problem of material loss, the number and size of samples available also varied by starting material and processing condition (Table 13). A greater ntunber of smaller size samples were present after squeezing in the cold isostatic press (CIP) due to the original samples breaking into smaller ones. 47 Table 13: Sample attrition during green body forming for each composite recipe and processing pH ' 1 Number of Number of AVfiLXZgh . . . Samples Intact Samples , f Composrte Rec1pe Processrng pH After Casting Available after C13.1.:rllable pt; (100%= 7) ClP Measurements (g) SHS TiBz-AKP 50 A1203 4 7 10 2.6 SHS TiBz-AKP 50 A1203 7.5 6 8 0.74 SHS TiB2-AKP 50 A1203 8 3 4 0.45 SHS TiB2-Alcoa SG A1203 4 6 9 3.84 SHS TiBz-Alcoa 86 A1203 8 6 11 1.59 SHS CompositeTiBz-Al203 4 5 7‘ 3.14 SHS CompositeTiB2-AI2O3 7 7 9‘ 3.15 SHS CompositeTiB2-Al203 9 7 9‘ 5.59 ‘SHS Composite not ClP'd For the SHS composite system, the samples processed at pH 9 experienced the least attrition compared to the other processing conditions and the sample size averaged 5.59 g. For both of the other composite powders, the samples processed for dispersion (pH 4) showed the least attrition and the “dispersed” sample size within each system averaged more than twice the average size of the samples processed for heterocoagulation and coagulation. The number and size of samples were significantly lower for the SHS TiB2/AKP 50 system processed at pH 8. Each composite system began with a total of 294 g (98 g of starting material for each of three processing conditions). In the SHS TiB2/AKP 50 system, only about 11% of the starting material remained after processing, and in the SHS TiB2/Alcoa-SG and SHS composite systems, only about 23% and 34% remained, respectively. A large part 48 of the starting material was lost through overflow and adhesion to the molds during slip casting as well as trimming of the samples for dimension and density measurements. 3.2.2 Green Body Density Measurements Green densities were measured as a function of composite recipe and pH (Figure 15). Green density measurements generally ranged from 1.34 g/cc to 2.77 g/cc, or 32.5% to 67.5% of the theoretical value (4.12 g/cc). The SHS composite system processed at pH 9 had the narrowest range of variation in densities measured for any one particular starting material or processing condition. The highest densities for both the SHS TiB2/AKP 50 and SHS TiB2/Alcoa-SG green bodies were measured in those samples processed for dispersion at pH 4 (Figure 15). Green body densities measured for SHS composites processed at pH 4 were lowest. The lowest green body densities found for any composite were for the SHS TiB2/AKP 50 processed at pH 7.5 and pH 8.0. 49 . AKPSO Comp [3 Alcoa-SG Comp A SHS COMPOSITE 3.00 1 , 5: 5 2.90 - 1 ,2 _ _ 1 - -J 2.80..“—w J-+p1 11 270,. _d_n,_, _7- , 2.60 -_ _ _ _ _ _ «._ 1. A 2.50- 7_’fi_-_ 1__ _ g) 2.40 m J E? _ E 2.30 e». — [ l —— _1 —— i”, 2_ .,_. 2.20 .. LL. - -____,. ‘_ _ g 2.10 .ml. firm 2 Q 2.00 _ ._ t _ --p . 2-... .g» 1.90 -._ __._ ..___ ‘8 1.80 - 2. _- -1 2 a 1.70 - 2 d .ng ____,__ 83 1.60 7,; _1-_- _ L 65 1.50 1 J 1, 1.40 _)*_,__$ ' .-_ e 1 1.30 '1' 3,. .-_, i 1.20 __,_4 1 2'__ 2 2 . 1.10 ' ._ 1 __- 1 1.00 . 1 1 6 , 7 8 9 10 Processrng pH Figure 15: Green density vs. processing pH for each composite recipe 50 3.2.3 Green Density vs. Cold Isostatic Pressure Neither a decrease in the range of variation in green density nor an improvement in overall green densities was achieved with cold isostatic pressing (Figure 16). The lack of any significant improvement combined with a significant risk of damage to samples during cold isostatic pressing rendered this technique very disadvantageous in improving green density. 3.00 D 250 ——eww _ “13* A - fl 2‘ 2 __ h 5 A A . 3 200 1- __ , ‘EE e-_ f ,_ i 2- 2 a fl T E 150 3 ‘ ' '2 ° “ f‘“‘ ’ “*‘—“”' ' . 1 — —1 £1.00 ,. —*——— — _ _ _2 mashrfl ___ mm _ i 0 0.50 52,, ______2_._. , eSumitomo 1:1Alcoa ASHS 0.00 . , , , , 0 50 100 150 200 250 300 350 Pressure (MPa) Figure 16: Green density vs. pressure applied to composite samples during cold isostatic pressing 3.2.4 Green Body Conductivity All green bodies were non-conductive across the length, width, and height of each sarnple. Placing the two electrodes on the any face of the sample also indicated non- conductance. 51 3.3 Sintered Density 3.3.1 Binder Burnout and Thermogravimetric Analysis (TGA) The binder burnout schedules were successful in removing the polyethylene glycol (PEG) binder from all samples prepared without colloidal processing (Figures 17, 18, 19). Although calibration errors moved starting points from the 100% point, the change in TGA curves showed that binder burnout before sintering removed 6 wt% PEG from the SHS {TiB2/A1203}, and 2 wt% PEG, fi'om each of the SHS TiB2/AKP 50 and SHS TiB2/Alcoa SG composite samples. 100.0 99.0 5____. -F __ _ __ 98.5 Mass (%) 98.0 _, ,_ 97.5 5- 97.0 , 1 0 50 100 150 200 250 300 Temperature (°C) Figure 17: Thermogravimetric analysis (TGA) for the SHS TiB2 — AKP 50 A1203 composite green samples prepared with a traditional hinder; the 2 wt% polyethylene glycol (PEG) binder was removed by binder burnout before sintering. I 52 101.0 100.5 — 100.0 Mass (%) t8 1 i3 o 1 l l 1 1 1 1 98.0 , 0 50 100 150 200 250 300 Temperature (°C) Figure 18: Thermogravimetric analysis (TGA) for the SHS TiB2 - Alcoa SG A1203 composite green samples prepared with a traditional hinder; the 2 wt% polyethylene glycol (PEG) binder was removed by binder burnout before sintering. 101.0 100.0 -___ \ — A990 7‘— \X 9", 98.0 \ -— ~~———~———~- 8 97.0 a 96.0 1' 95.0 E 94.0 ———— \ ~— 93.0 "—" 92.0 I I 1 1 1 0 50 100 150 200 250 300 Temperature (° C) Figure 19: Thermogravimetric analysis (TGA) for the SHS {TiB2/A1203} composite green samples prepared with a traditional hinder; the 6 wt% polyethylene glycol (PEG) binder was removed by binder burnout before sintering. 53 3.3.2 Material Loss and Sample Attrition As was the case for the green samples, attrition was most severe in the SHS TiB2/AKP 50 system processed at pH 8, and only one sample was available for sintering. 3.3.3 Sintered Density Measurements Sintered densities were measured as a function of composite recipes and pH (Figures 20(a) and 20(b)). Although the SHS composite green densities were among the lowest at pH 4, the SHS composite sintered densities at pH 4 were among the highest. The sintered densities of the SHS composite were greater than any other composite system under any processing condition; in addition, unprocessed SHS (PEG binder) yielded the greatest sintered density. 4.00 - __ —_.77 i 5 . y. i _ A A A A 3.50 4e __. _..—_ ._-____.--. ____‘__ __A 5 .r 1 a B 9 1 3 00 E — . D i '3‘ - e u V— — ——— 1 39 2 so 1 M g 200 -_ A- 5- 5 z r .... 5 1 3 1 .E m 1.00 ~———-—-~-— ~~— —— _. #._ _2_ ____-_.d__- 1 0.50 -__.___ C AKP 50 Composite [:1 Alcoa SG Composite ASHS Composite I] 0.00 PEG pH 4 pH 7 pH 7.5 pH 8 pH 9 Processing Condition Figure 20(a): Sintered density (g/cc) vs. processing condition for each composite recipe 54 a 100.00 a o '5 g 90.00 ~e ”-4 A ~-—A——— ‘____5___._- -——% ————d 0 i D A °\° 80.00 --e—Q—-—~——i~—————. ————— --~—~ v B E C] Q ' a 1:1 2 70.00 -______, , — ——— , — —— — o n 'u E 60.00 ,.-_ ------ _ _Z _ E ASHS DAlcoa SG OAKP 50 50.00 PEG pH4 pH7 pH7.5 pH8 pH9 Processing Condition Figure 20(b): Sintered density (% Theoretical) vs. processing condition for each composite recipe 3.3.4 Consistency of Sintered Microstructure with Suspension Stabilityc’ Predictions Using the samples with PEG binder as a baseline for comparison, the microstructures of the sintered samples in each of the three composite systems (Figure 21) were evaluated for consistency with the dispersion, coagulation, and heterocoagulation behavior of the TiB2 and A1203 as predicted by Suspension Stability©. The results are summarized in Table 14 and pictured in Figures 21 and 21(a-l). Predicted and observed dispersion behaviors of TiB2 in A1203 for the two component systems were in agreement. Acidic, neutral or basic processing conditions did not affect the hoped for dispersion, coagulation nor heterocoagulation behavior of the SHS composite system. The SHS powders were insensitive to colloidal processing. 55 In the two component systems, that is, SHS TileAKP 50 A1203 and SHS TiB2/Alcoa SG A1203 composite systems, the microstructures differed between those processed for dispersion, coagulation and heterocoagulation. The SEM micrographs showed porosity was present in all three processing conditions to varying degrees. The microstructure at pH 4 (Figure 216)) showed fine TiB2 phases uniformly distributed in an A1203 matrix with very little porosity. In the coagulated microstructures (Figures 21(g) and 21(k)), grains of A1203 and TiB2 are distinguishable with much porosity. In the samples processed for heterocoagulation (Figures 21(h) and 21(1)), coarse TiB2 grains are visible in the A1203 matrix, and the degree of porosity is much lower. The dispersed processing condition resulted in the most uniform and finest distribution of TiB2 in A1203 with low porosity. Both SHS TiB2 plus A1203 two-component-systems were sensitive to colloidal processing, and the microstructures reflected that Suspension Stability“a effectively predicted the coagulation behavior of the SHS TiB2 plus A1203 two- component-systems. Table 14: Evaluation of sintered microstructure for consistency with processing behaviors Condition 56 SHS TiB Alcoa SG .1" r . .."J’. ’-.-1 t‘ .‘ SHS TiB7/AKP-50 SHS{TiBZ/AIZO ”I 31.". \o‘; PEG Dispersion Coagulation Heterocoagulation Figure 21: Backseatter scanning electron micrographs (20.0 kV) of the microstructures of each of the three composite systems at the four processing conditions; markers are 100 11m in every micrograph; white areas are the TiB2, gray areas are the A1203, and black areas are pores. 57 Figure 21(a): Backscatter scanning electron micrograph (20 kV) of SHS composite {TileAlzog} processed with PEG20M binder; marker (white line at bottom of micrograph) is 100 pm; white areas are the “82, gray areas are the Al203, and black areas are pores. w t , 1 ..‘ Figure 21(b): Backseatter scanning electron micrograph (2 kV) of SHS composite {TiBz/Al203} processed at pH 4; white areas are the 1182, gray areas are the Al203, and black areas are pores. 58 Figure 21(c): Backseatter scanning electron micrograph (20 kV) of SHS composite {TiBZ/Alzog} processed at pH 7; marker (white line at bottom of micrograph) is 100 pm; white areas are the TiBz, gray areas are the Al203, and black areas are pores. Figure 21(d): Backscattcr scanning electron micrograph (20 kV) of SHS composite {TiB2/Al203} processed at pH 9; marker (white line at bottom of micrograph) is 100 pm; white areas are the TiBz, gray areas are the A1103, and black areas are pores. (pa .0}. . 3‘ , ,_.‘ ,- a. Figure 21(c): Backseatter scanning electron micrograph (20 kV) of SHS TileAKP 50 A1203 processed with PEG20M binder; white areas are the TiBz, gray areas are the A1203, and black areas are pores. Figure 21(i): Backscatter scanning electron micrograph (20 kV) of SHS TiBz/AKP 50 AIZOJ processed pH 4; white areas are the “82, gray areas are the Al203, and black areas are pores. 60 . , ‘_ t; , 1" «wt-9"». ”‘3" " l ’, Figure 21(g): Backseatter scanning electron micrograph (20 kV) of SHS TiBz/AKP 50 AI203 processed pH 7.5; white areas are the TiB2, gray areas are the Al203, and black areas are pores. ,______,__, n ”A--. ,__ .7.— -7-» .7 V-___: Figure 21(b): Backscatter scanning electron micrograph (20 kV) of SHS TiBz/AKP 50 Al203 processed pH 8; white areas are the TiBz, gray areas are the AleJ, and black areas are pores. 61 Figure 21(i): Backseatter scanning electron micrograph (20 kV) of SHS TiBz/Alcoa SG A1203 processed with PEGZOM binder; marker (white line at bottom of micrograph) is 100 pm; white areas are the TiB2, gray areas are the AIZOJ, and black areas are pores. Figure 210): Backseatter scanning electron micrograph (20 kV) of SHS TileAlcoa SG Al203 processed at pH 4; marker (white line at bottom of micrograph) is 100 pm; white areas are the “82, gray areas are the A1203, and black areas are pores. 62 53%. it: '- «VI “'th “-i A ‘ Figure 21(k): Backseatter scanning electron micrograph (20 kV) of SHS TileAlcoa SG Al203 processed at pH 7; marker (white line at bottom of micrograph) is 100 pm; white areas are the “82, gray areas are the Al203, and black areas are pores. Figure 21(I): Backseatter scanning electron micrograph (20 kV) of SHS TileAlcoa SG Al203 processed at pH 8; marker (white line at bottom of micrograph) is 100 pm; white areas are the Tim, gray areas are the A1203, and black areas are pores. 63 Figure 22: Scanning Electron Microscope (SEM) image of SHS {TileAI203} composite powder dusted onto carbon tape; the large charging particles were thought to be the non-conducting Al203 and the small particles were thought to be the conducting TiB2; recent investigations [Wilson, 2001] indicate most particles are a mixture of both the TiBz and the AIZOJ. 3.3.5 Sintered Sample Conductivity All sintered samples were conductive across their length, width, and height. Placing the two electrodes on any face of all the samples also indicated conductance. 3.4 Microstructure 3.4.1 SHS Composites Among the microstructures made from SHS composite starting powder, there were no significant differences. In the SHS composite samples, the TiBz surrounded the A1203 in an interconnecting network, which was visible from the SEM micrographs (Figures 21 and 21(a—d)) and supported by the conductivity measurements. Thus, the free-sintered SHS composite powders, no matter the processing conditions, produced the microstructure most similar to the “continuous” microstructure (Figure 1) defined by Logan [1997]. 3.4.2 SHS Ti82 / A1203 Composites In the other SHS TiB2 plus A1203 two-component-systems, the “continuous” microstructure was not evident in the SEM micrographs (Figures 21 (e-j, 1), except in some areas of the micrograph of the SHS TileAlcoa SG A1203 composite processed for coagulation at pH 7 (Figure 21(k)). All the microstructures (Figures 21(e-j, 1)), but the SHS TiB2/Alcoa 80 A1203 composite processed for coagulation at pH 7 (Figure 21(k)), were similar to the “discontinuous” microstructure (Figure 2) defined by Logan [1997]. 65 Although there were large agglomerations of TiBz (Figure 21(k)) in the SHS TiBz/ Alcoa 86 A1203 processed at pH 7, there were also distinct areas of the TiBz surrounding grains of theA1203. The TiBz was interconnected even in the discontinuous microstructures (Figures 21(e-j, 1)), as the measurements for conductivity were positive across all dimensions of the sintered sample where there was no conductivity in the green bodies. 3.5 Microhardness Measurement Even at a reduced load of 500 g rather than 1000 g for the indentation test, the samples crushed easily, and the microhardness data was inconclusive. 66 4 Conclusions The computer model Suspension Stability"D was effective in predicting optimum suspension conditions for colloidal processing of two-component ceramic composites. For SHS TiBz (30 wt%) plus A1203 (70 wt%) composite systems, the predicted pH value of 4 was suitable for slip casting and reduced the extent of agglomeration such that the SHS TiB2/AKP 50 A1203 and SHS TiBz/Alcoa SG A-IOOO A1203 composite systems processed at these conditions achieved the highest green body densities. However, the process of slip casting created samples highly vulnerable to physical damage and material loss. In both the SHS TiBz/AKP 50 A1203 and SHS TileAlcoa 86 A1203 composites prepared in other than acidic conditions, material loss was high, which was consistent with the solubility of A1203 under basic conditions. It was expected that composite systems with the highest green body densities would yield sintered composites with the highest densities. The data for both the SHS TiB2/AKP 50 A1203 and SHS TiB2/Alcoa 86 A1203 composite systems processed at pH 4 yielded sintered densities lower than those processed at pH 7 and above. This trend was consistent with A1203 going into solution under basic conditions [Wilson, 2001], thereby leaving material with a greater percentage of the denser TiB2. Also, the result of fewer and/or significantly smaller (less than half the average weight) samples in those processed at pH 7 was likely to create more error in these measurements, which may also have accounted for this discrepancy in the data where the highest green body densities did not produce the highest sintered densities. 67 That the computer model Suspension Stability‘D was also effective in predicting coagulating behavior of the SHS TiB2 plus A1203 composites was evident in the backseatter micrographs of the colloidally-processed samples compared to the traditional binder PEGZOM samples. The SHS TiB2 behavior was sensitive to colloidal processing and dispersed, coagulated or heterocoagualated with respect to both the AKP 50 and Alcoa SG A-lOOO A1203. Suspension Stability" was not effective in predicting optimum suspension conditions for colloidal processing of SHS composite {TiB2/A1203}. Green body densities of the SHS composite {TiBz/Al203} were slightly higher for those processed at pH 7, but sintered densities were similar (within 0.5%) no matter the processing condition. The sintered densities of the traditional binder samples, which were not colloidally-processed, were less variable and slightly higher than those colloidally- processed. Although processing at pH 4 caused some material loss in the SHS composite {TileAle3} system and slightly lower green body densities as would be expected if TiBz was removed after going into solution, the green body densities, the sintered densities, and the invariant microstructures in the sintered samples, indicated the SHS composite {TiB2/A1203} system was insensitive to colloidal processing. When the microstructures of the traditional binder PEGZOM and colloidally- processed, pressureless-sintered SHS TiB2 plus A1203 composite systems were compared to the SHS (or non-SHS-but-dry-mixed), hot-pressed TiB2/A1203 ceramic composites, only the SHS TileAlcoa 86 A1203 processed at pH 7 was of further interest for ceramic armor applications. The coagulated behavior of the SHS TiB2/Alcoa SG A1203 processed at pH 7 was able to produce some of the “continuous” microstructure associated with 68 ballistic penetration resistance with a final density comparable to the high densities achieved with the SHS composite {TiB2 /A1203} starting powders. With more control over coagulation behavior, the desired microstructure could dominate the SHS TiBz/Alcoa SG A1203 ceramic composite system. When the microstructures of the traditional binder PEGZOM and colloidally- processed, pressureless-sintered SHS composite {TiBZ/A1203} composite system were compared to the SHS (or non-SHS-but-dry-mixed), hot-pressed TiBz/A1203 ceramic composites, all were consistent with the “continuous” microstructure associated with ballistic penetration resistance. The SHS composite {TiB2/A1203} starting powders continue to be of interest for armor applications as the factors necessary for the “continuous” microstructure appeared to be inherent in the poWder itself and not dependent on any colloidal processing of the starting powders. 69 5 Future Work In this research effort, the colloidal processing of TiBZ/A1203 was explored. Further research is recommended to better understand the following: - electrolyte options to reduce the apparent solution and loss of the TiB2 and A1203 [Wilson, 2001] and to increase opportunities for adjusting the pH during processing so as to oppositely charge the components and agglomerate the TiB2 around the A1203 particles as suggested by Hogg et a]. [1966] and Franks et a1. [1995] o advantages of freeze drying then pressing to form samples rather than slip casting of colloidal suspensions, which experienced high material loss and sample attrition o differences in zeta potential and stability between carbothermic Ti82 and SHS TiB2; Logan [1997] used carbothermic TiBz for some of the penetration resistant ceramic armor targets 70 REFERENCES 71 References G. Abfalter, N.S. Brar, and D. Jurick, “Determination of the Dynamic Unload/Reload Characteristics of Ceramics,” Contract No.: DAAL03-88-K-0203, US. Army Research Ofi‘ice, University of Dayton Research Institute, Dayton, Ohio, 1992 P. Becher, Dictionary of Colloid and Surface Science; Marcel Dekker, Inc.: New York, 1990,p.95 A. Bleier, “Fundamentals of Preparing Suspensions of Silicon and Related Ceramic Powders,” Communications of the Am. Ceram. Soc., C79-81, May 1983 W. D. Callister, Jr., Materials Science and Engineering, An Introduction; John Wiley & Sons: New York, 2000, p. 441 LS. Cerovic, S.K. Milonjic and L. Kostic-Gvozdenovic, "Intrinsic Equilibrium Constants of b-Silicon Carbide Obtained from Surface Charge Data," J. Am. Ceram.Soc., 78 [11] 3093-96 (1995) M. Colic, G.V. Franks, M.L. Fisher and RF. Lange, "Effect of Counterion Size on Short Range Repulsive Forces at High Ionic Strengths,” Langmuir 1997, 13, 3129-3135 CRC Handbook of Chemistry & Physics, 79th Edition, David R. Lide, Ph.D., Editor-in- Chief, 1998, pp. 12-48 Derjaguin (1954) and Devereux and de Bruyn (1963) as cited in R. Hogg, T.W. Healy and D.W. Fuerstenau, “Mutual Coagulation of Colloidal Dispersions,” Trans. Faraday Soc. 1966, 62, 1638-1651 Derjaguin (1934) as cited in R. Hogg, T.W. Healy and D.W. Fuerstenau, “Mutual Coagulation of Colloidal Dispersions,” Trans. Faraday Soc. 1966, 62, 1638-1651 Encyclopedia of Materials Science and Engineering, Michael B. Bever, Editor-in-Chiefi MIT Press: Cambridge, MA, 1986, Volume 5, O—Q, p. 3832 Engineered Materials Handbook, Vol. 4, Ceramics and Glasses; ASM International: U.S.A., 1991, pp. 48 Engineered Materials Handbook, Vol. 4, Ceramics and Glasses; ASM International: U.S.A., 1991, pp. 50 DH. Everett, Basic Principles of Colloid Science; Royal Society of Chemistry: London, 1988,p.8 72 D.H. Everett, Basic Principles of Colloid Science; Royal Society of Chemistry: London, 1988,p.42 D.H. Everett, Basic Principles of Colloid Science; Royal Society of Chemistry: London, 1988,p.90 G.V. Franks and F.F. Lange, “Mechanical Behavior of Saturated, Consolidated, Alumina Powder Compacts: Effect of Particle Size and Morphology on the Plastic-to-Brittle Transition,” Colloids and Surfaces A: Physicochem And Engr Aspects, 146 [1-3] pp. 5-17 (15 January 1999) G.V. Franks, B.V. Velamakanni and F .F. Lange, "Vibraforming and In Situ Flocculation of Consolidated, Coagulated, Alumina Slurries," J Am. Ceram.Soc., 78 [5] 1324-28 (1995) Fuchs (1934) as cited in R. Hogg, T.W. Healy and D.W. Fuerstenau, “Mutual Coagulation of Colloidal Dispersions,” Trans. Faraday Soc. 1966, 62, 163 8-1651 R. Greenwood and K. Kendall, “Selection of Suitable Dispersants for Aqueous Suspensions of Zirconia and Titania Powders Using Acoustophoresis,” J. Eur. Ceram. Soc., 19 [4] 479-88 (1999) Hamaker (1937) as cited in D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth-Heinemann: Oxford, 1992, p. 216 W. Blair Haworth, Jr., The Bradley and How It Got That Way; Greenwood Press: Westport, CT, 1999, pp. 28, 95 P.C. Heimenz and R. Rajagopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p. 499 P.C. Heimenz and R. Rajagopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p. 529 P.C. Heimenz and R. Rajagopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p. 534 P.C. Heimenz and R Rajagopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p. 541 P.C. Heimenz and R. Raj agopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p. 566 P.C. Heimenz and R. Rajagopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p. 567 73 J .G. Hetherington, “Two-Component Composite Armours,” Lightweight Armour Systems Symposium, Royal Military College of Science, Shrivenham, Swindon, UK 28-30 June 1995 R. Hogg, T.W. Healy and D.W. Fuerstenau, “Mutual Coagulation of Colloidal Dispersions,” Trans. Faraday Soc. 1966, 62, 1638-1651 V. Hohler, A.J. Stilp, K. Weber, “Ranking Methods of Ceramics and Experimental Optimization of a Laminated Target with Ceramics,” Lightweight Armour Systems Symposium, Royal Military College of Science, Shrivenharn, Swindon, UK 28-30 June 1995 D.A. Hoke and M. A. Meyers, "Consolidation of Combustion-Synthesized Titanium Diboride-Based Materials," J.Am.Ceram.Soc., 78 [2] 275-84 (1995) R. J. Hunter, Foundations of Colloid Science; Clarendon Press: Oxford, 1993; Vol. 1., p. 2 R. J. Hunter, Foundations of Colloid Science; Clarendon Press: Oxford, 1993; Vol. 1., p. 7 R. J. Hunter, Foundations of Colloid Science; Clarendon Press: Oxford, 1993; Vol. 1., p. 90-92 R. J. Hunter, Foundations of Colloid Science; Clarendon Press: Oxford, 1993; Vol. 1., p. 98 R. J. Hunter, Foundations of Colloid Science; Clarendon Press: Oxford, 1993; Vol. 1., p. 382 R. J. Hunter, Foundations of Colloid Science; Clarendon Press: Oxford, 1993; Vol. 1., p. 422 P.W.M. Jacobs and EA. Kotomin, "Modeling of Point Defects in Corundum Crystals," J. Am.Ceram.Soc., 77 [10] 2505-508 (1994) J .T. Jones and M.F. Berard, Ceramics: Industrial Processing and Testing; The Iowa State University Press: Ames, IA, 1972 L.J. Kecskes, A. Niiler, T. Kottke, K.V. Logan, and GR. Villalobos, "Dynamic Consolidation of Combustion-synthesized Alumina-Titanium Diboride Composite Ceramics," J.Am.Ceram.Soc., 79 [10] 2687-95 (1996) W.D. Kingery, H.K. Bowen, and DR. Uhlmann, Introduction to Ceramics, Second Edition; John Wiley & Sons: New York, 1976, p. 9 74 F.F. Lange, “Powder Processing Science and Technology for Increased Reliability,” .1. Am. Ceram. Soc., 72 [1] 3-15 (1989) F.F. Lange, B.V. Velamakanni, J.C. Chang and D.S. Pearson, “Colloidal Powder Processing for Structural Reliability: Role of Interparticle Potential on Particle Consolidation,” Structural Ceramics Processing, Microstructure and Properties Proc. of the Riso International symposium on Metallurgy and Mater. Sci, Riso Natl Lab, Riso Library, Roskilde, Den. 1990, p. 57-78. J. Liu and PD. Ownby, “Enhanced Mechanical Properties of Alumina by Dispersed Titanium Diboride Particulate Inclusions,” J. Am. Ceram. Soc., 74 [1] 241-243 (1991) K.V. Logan, "Elastic-Plastic Behavior of Hot Pressed Composite Titanium Diboride/Alumina Powders Produced Using Self-Propagating High Temperature Synthesis," Georgia Institute of Technology, Ph.D. Thesis, September 1992 Commmrication from K.V. Logan, Ph.D., Principal Investigator, School of Material Science and Engineering, Georgia Institute of Technology to T. Furrnaniak, Project Engineer, Contract No. DAAEO 7-95-C-R040, US. Army Tank Automotive Research Development and Engineering Center (TARDEC), February 28, 1997 London (1930) as cited in D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth-Heinemann: Oxford, 1992, p. 215 Matec Applied Sciences. The ESA-9800. [Online] Available http://www.matec.com lesa9800.htm, January 20, 2001 A.G. Merzhanov, “Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings,” Keynote Address, The Institute of Structural Macrokinetics, USSR Academy of Sciences, Chemogolovka, Moscow, USSR, Combustion and Plasma synthesis of High-T emperature Materials, Z.A. Munir and J .B. Holt Editors, VCH, New York, 1990, pp. 1-3 C. Mroz, "Titanium Diboride," Am. Ceram. Soc. Bulletin, 76 [6] 158-9 (1995) Communication from J. Mullins, Laboratory Technician, Weapons Material Research Directorate, Army Research Laboratory, Aberdeen Proving Ground, Maryland, August 1999 O’Brien (1986, 1990) as cited in BA. Wilson and MJ. Crimp, "Prediction of Composite Colloidal Suspension Stability Based upon the Hogg, Healy, and Fuerstenau Interpretation," Langmuir 1993, 9, 2836-2843 75 M.A. Occhionero, S.L. Marallo, A.E. Karas and BE. Novich, “Influence of Surface Area and Particle Size Distribution on Sintering and Microstructure Development,” Symposium on Sintering of Advanced Ceramics, American Ceramic Society, Cincinnati, OH, 2-5 May 1988 RM. Ogorkiewicz, “Development of Lightweight Armour Systems,” Keynote Lecture, Lightweight Armour Systems Symposium, Royal Military College of Science, Shrivenham, Swindon, UK 28-30 June 1995 D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth- Heinemann: Oxford, 1992, p. 174 D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth- Heinemann: Oxford, 1992, p. 178 D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth- Heinemann: Oxford, 1992, p. 190 D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth- Heinemann: Oxford, 1992, p. 216 D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth- Heinemann: Oxford, 1992, p. 217 D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth- Heinemann: Oxford, 1992, p. 218 Shaw (1992) as cited in B.A. Wilson and M.J. Crimp, "Prediction of Composite Colloidal Suspension Stability Based upon the Hogg, Healy, and F uerstenau Interpretation," Langmuir 1993, 9, 2836-2843 Smoluchowski (1916, 1917) as cited in R. Hogg, T.W. Healy and D.W. Fuerstenau, “Mutual Coagulation of Colloidal Dispersions,” Trans. Faraday Soc. 1966, 62, 1638- 1651 Stern (1924) as cited in D. J. Shaw, Introduction to Colloid and Surface Chemistry, Fourth Edition; Butterworth-Heinemann: Oxford, 1992, p. 182, and P.C. Heimenz and R. Rajagopaian, Principles of Colloid and Surface Chemistry, Third Edition Revised and Expanded; Marcel Dekker, Inc.: New York, 1997, p.527 E. Strassburger, H. Senf, H. Rothenhausler, “Comparison of Failure Behaviour During Impact and Ballistic Performance of Different A1203 Ceramics,” Lightweight Armour Systems symposium, Royal Military College of Science, Shrivenham, Swindon, UK 28- 30 June 1995 76 Sumitomo Chemical. Alumina products. [Online] Available http://sumitomo- chem.co.jp/kiso_e/alumina/index.html, March 9, 2001. M. Takeo, Disperse Systems; Wiley-VCH: New York, 1999, p. 1 M. Takeo, Disperse Systems; Wiley-VCH: New York, 1999, p. 5 J. Texter, Particle Characterization; Strider Research Corporation: Rochester, NY, 2000 W.J. Walker, Jr., J .8. Reed and SK. Verma, “Polyethylene Glycol Binders for Advanced Ceramics,” Paper 52-EP-92, 94th Annual Meeting of the Am. Ceram. Soc., Minneapolis, MN, April 12-16, 1992 S. Warden, Slip Casting; A&C Black: London, 1997, pp. 14-17 B.A. Wilson and M.J. Crimp, "Prediction of Composite Colloidal Suspension Stability Based upon the Hogg, Healy, and Fuerstenau Interpretation," Langmuir 1993, 9, 2836- 2843 Communication from O.C. Wilson, Jr., “Characterization of Aluminum Oxide/Titanium Diboride Composite Powders Formed by SHS Reactions,” Paper SI-013-01, 25th Annual International Conference on Advanced Ceramics & Composites, American Ceramic Society, Cocoa Beach, FL, 21-26 January 2001 P. Woolsey, D. Kokidko and S. Mariano, “An alternative Test Methodology for Ballistic Performance Ranking of Armor Ceramic,” MT L TR 89-43, US. Army Materials Technology Laboratory, Watertown, MA, 1989 Z. Yeh, “Colloidal Processing of SiC(w)/Si3N4 Ceramic Composites by Slip Casting.” Michigan State University, Masters Thesis, February 1996 77 APPENDICES 78 APPENDIX A Equations for Evaluating Armor Efficiencies 79 Tests of depths of penetration GDOP) are conducted to characterize the ballistic performance of a specific armor material. DOP test data can be used to calculate the mass efficiency (em), as well as space efficiency (e,) and the armor quality factor (qz), which is a quality of particular interest to armor designers. The armor quality factor (qz) relates both mass and space efficiencies and provides a quantity to compare between different armor materials. The weight and space claim of an armor material is necessary for armor designers to evaluate ballistic performance for protection of military ground vehicles. The following equations [Woolsey et al., 1989] were used to calculate space efficiency (es) mass efficiency (em), and the armor quality factor (qz): e,=——P"’”"'PR (17) TCER em=(PWrIN-PR)*pWITN zesaggfl (l8) TCER * pCER pCER q2 =e~ *es (19) Pmm is the depth of penetration of the projectile into the semi-infinite witness plate without the ceramic facing, PR is the penetration of the projectile into the semi-infinite witness plate with the ceramic mounted to the front face, T can is the thickness of the ceramic applied to the face of the witness plate, and p is the density of the respective material. Each of these quantities is dimensionless. The e," compares the areal density (AD), that is, (density "' thickness) of a material to the areal density of the witness plate also called the backing material, which is usually RHA steel. Aluminum is usually employed for DOP tests when the projectile velocity or mass is too low to penetrate the reference material. When aluminum is used as the 80 witness plate, e". is then called the ballistic efficiency (11). The e,,. and e, of the witness plate, that is, the reference material, is by definition equal to 1.0; results greater than 1.0 indicate better ballistic performance as compared to the reference material. 81 APPENDIX B Electrokinetic Sonic Amplitude (ESA) Measurements 82 Table 15: Potentiometric Titration (POTN729.esa), 0.5 vol. °/o “32, 1x10'4 M KNO; ESA DynMob m*2N‘e) Net(meql1) (mPa’MN) ( W 0409 -0.330 -0.235 -0.130 0.000 0.010 0.080 -0.030 0.000 -0.010 0.180 0.320 0.454 0.594 0.749 0.914 1.083 0.394 0.380 0.389 0.383 0.357 0.358 0.352 0.358 0.349 0.358 0.382 0.359 0.358 0.385 0.388 0.370 0.374 0.379 0.382 0.380 0.388 0.383 0.382 0.383 0.378 0.378 0.372 1. 1.505 1.452 1.409 1.389 1.388 1.389 1.344 1.388 1.335 1.383 1.384 1.374 1.372 1.397 1.400 1.418 1.431 1.453 1.483 1.455 1.487 1.489 1.483 1.489 1.452 1.443 1.429 1.401 1.389 1.387 1.357 1.328 1.318 1.293 1.287 1.237 1.191 1.182 1.142 1.085 1.023 0.817 Phase 201: (mV) (doc) 17.563 -10.900 18.981 -8.700 16.450 -1 .300 16.271 -0.600 16.002 0.300 16.050 2.400 15.678 3.800 15.955 4.600 15.566 4.600 15.976 7.600 16.233 11.100 16.126 15.200 16.109 16.500 16.409 22.500 16.447 25.600 16.666 26.000 16.623 31.300 17.069 32.600 17.216 35.200 17.122 37.300 17.515 39.100 17.306 40.100 17.244 41.500 17.316 41.900 17.124 43.500 17.026 43.400 16.666 44.500 16.545 45.700 18.404 45.600 18.151 48.400 16.043 46.600 15.663 47.700 15.590 47.500 15.296 46.600 14.993 50.100 14.646 50.700 14.116 51.300 14.006 52.300 13.537 52.500 12.673 54.200 12.150 58.000 11.773 57.700 10.601 62.500 9.720 66.700 6.636 76.000 7.964 65.900 -7.146 101.400 -6.500 114.000 -6.266 132.200 -5.977 142.300 -6.093 153.300 -5.766 162.100 -5.761 173.500 -5.634 -175.100 -5.564 -159.600 -6.424 -149.400 -7.656 -141.700 -8.385 -1 37.900 -9.629 436.900 -10.306 -135.400 -11.529 -137.600 -12.661 -140.900 pH (unite) 3.900 4.020 4.150 4.160 4.190 4.230 4.270 4.260 4.290 4.320 4.420 4.510 4.600 4.690 4.790 4.660 4.970 5.060 5.150 5.240 5.330 5.430 5.540 5.640 5.750 5.660 9.910 83 Good. (US/cm) 1885.000 1845.000 1820.000 1875.000 1877.000 1878.000 1804.000 1599.000 1597.000 1880.000 1877.000 1880.000 1883.000 1883.000 1888.000 1691.000 1897.000 1898.000 1707.000 1715.000 1718.000 1729.000 1740.000 1750.000 1758.000 1758.000 1783.000 1788.000 1773.000 1779.000 1788.000 1787.000 1789.000 1792.000 1800.000 1801.000 1808.000 1818.000 1822.000 1834.000 1847.000 1880.000 1882.000 1902.000 1925.000 1955.000 1992.000 2022.000 2088.000 2111.000 2170.000 2230.000 2288.000 2345.000 2413.000 2474.000 2534.000 2598.000 2883.000 2710.000 2775.000 2835.000 Temp (600 C) 35.700 35.700 35.800 35.800 35.800 35.800 35.800 35.800 35.800 35.800 35.800 35.800 35.500 35.500 35.500 35.500 35.500 35.500 35.400 35.500 35.400 35.400 35.400 35.400 35.400 35.300 35.300 35.300 35.300 35.300 35.300 35.300 35.300 35.200 35.200 35.200 35.200 35.200 35.200 35.100 35.100 35.100 35.100 35.000 35.100 35.100 35.000 35.000 35.000 35.000 35.000 35.000 35.000 Acid (ml) Base (ml) Total (mt) 200 068 200.047 200.028 200 172 200.174 200.184 200 006 200 000 200.002 200.208 200.238 200.283 200 291 200 322 200 355 200 389 200.428 200 487 200 512 200 560 200 812 200 888 200 723 200.773 200 821 200 865 200 904 200 938 200 989 200.999 201 030 201 061 201 092 201.124 201 .157 201.192 201.222 201.281 201 307 201.384 201.425 201.489 201 561 201.838 201.726 201.819 201.925 202 037 202.185 202 300 202.454 202.817 202.788 202 980 203.153 203 344 203.533 203.720 203 905 204.078 204 245 204 393 Table 16: Potentiometric Titration (POTN733.esa), 0.5 vol. % TiB2, 11:10’3 M KNO3 Net (meq/1) (mPe‘MN) (m‘2N‘e) Zete(mV) —30‘3'30 0.351 1 -0.235 -0.130 ESA Dyn Mob 0.328 1.254 0.301 1.149 0.303 1.157 0.300 1.149 0.301 1.150 0.278 1.058 0.278 1.081 0.280 1.089 0.292 1.118 0.287 1.099 0.282 1.077 0.279 1.088 0.274 1.048 0.284 1.085 0.277 1.059 0.278 1.083 0.277 1.081 0.270 1.038 0.289 1.032 0.288 1.028 0.257 0.985 0.258 0.982 0.250 0.958 0.237 0.910 0.234 0.898 0.223 0.854 0.219 0.840 0.209 0.801 0.200 0.789 0.197 0.755 0.185 0.711 0.181 0.894 0.173 0.888 0.181 0.819 0.159 0.810 0.152 0.583 0.144 0.553 0.138 0.523 0.119 0.457 0.112 0.429 -0.099 -0.380 0.0” -0.329 -0.078 -0.300 -0.072 -0.278 -0.073 -0.280 -0.092 -0.353 -0.112 -0.434 -0.148 -0.584 -0.192 -0.742 -0.243 -0.941 -0.284 -1.097 -O.328 91.283 -0.352 -1 .388 -0.388 -1.429 -0.383 -1.411 -0.387 -1.502 —0.407 -1.583 -0.437 -1.700 -0.487 -1.818 -0.503 -1.980 -0.544 -2.123 15.871 14.357 14.478 14.378 14.385 13.184 13.283 13.345 13.980 13.758 13.484 13.374 13.117 13.598 13.278 13.338 13.290 12.982 12.930 12.883 12.359 12.317 12.017 11.420 11.253 10.739 10.554 10.081 9.882 9.483 8.928 8.721 8.377 7.779 7.871 7.330 8.985 8.578 5.748 5.400 4.787 -4.145 -3.778 -3.479 —3.529 -4.451 -5.471 -7.108 -9.348 -11.852 -13.823 -1 5.912 -17.214 -1 8.005 -17.785 -18.943 -19.988 -21.448 -22.983 -24.741 -28.828 Phase (doc) -0.100 3.400 7.200 8.800 110.500 127.800 145.800 188.200 179.500 -189.800 482.100 -158.800 -154.100 -149.800 -148.900 -143.200 -140.500 -138.800 -138.200 -134.500 434.000 -133.400 434.300 pH (units) 4.000 4.130 4.180 4.170 4.210 4.250 4.280 4.270 4.310 84 Good. (US/cm) 1712.000 1893.000 1724.000 1728.000 1723.000 1871.000 1872.000 1688.000 1731.000 1723.000 1728.000 1722.000 1734.000 1733.000 1742.000 1741.000 1749.000 1759.000 1758.000 1788.000 1780.000 1788.000 1798.000 1802.000 1813.000 1815.000 1823.000 1832.000 1830.000 1838.000 1835.000 1841.000 1844.000 1851.000 1859.000 1858.000 1N8.000 1878.000 1890.000 1895.000 1902.000 1923.000 1937.000 1983.000 1988.000 2020.000 2048.000 2087.000 2124.000 2189.000 2222.000 2280.000 2341.000 2398.000 2455.000 2512.000 2578.000 2838.000 2887.000 2738.000 2787.000 Temp (den 0) 33.000 33.000 33.000 32.900 33. 000 33. 000 33.000 33. 000 32.900 32.900 32. 900 32. 900 32. 900 32.900 32 . 900 32.800 32.900 32. 900 32.900 32.900 32.900 32.900 32. 800 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.700 32.800 32.700 32.700 32.700 32.700 32.800 32.800 32.800 32.800 32.800 32.800 32.800 32.500 32.800 32.500 Acid (ml) Base (ml) 0.047 0.028 0.088 0.088 0.068 0.008 0.000 3.473 4.154 Total (ml) . O 200 047 200.026 200.132 200.134 200.144 200.006 200 000 200.002 200.171 200.198 200.226 200.254 200.283 200 317 200.354 200 392 200.435 200.481 200.530 200.586 200.846 200 707 200.766 200.820 200.869 200.912 200.949 200 981 201 009 201.036 201.062 201.090 201.118 201.147 201.171 201.202 201.242 201.285 201.337 201.395 201.452 201.512 201.580 201.859 201.746 201.844 201.947 202 064 202.195 202.333 202.481 202.646 202.817 202.987 203.166 203.354 203 539 203.721 203.891 204.055 204.220 Table 17: Potentiometric Titration (POTN731.esa), 0.5 vol. % TiBz, 1x10'2 M KN O 3 Net (meql1) (mPa'MN) W -0.280 0.000 0.020 0.120 -0.180 0.435 0.849 -0.045 0.000 -0.015 1.218 1.517 1.792 2.081 2.305 2.545 2.784 3.023 3.287 18.573 19.499 20.414 21.295 22.121 22.888 ESA 0.441 0.413 0.403 0.397 0.391 0.377 0.385 0.359 0.341 0.339 0.335 0.348 0.338 0.331 0.325 0.321 0.322 0.321 0.320 0.322 0.320 0.328 0.320 0.317 0.315 0.311 0.302 0.288 0.283 0.274 0.287 0.254 0.248 0.245 0.237 0.223 0.218 0.207 0.198 0.187 0.172 DynMob 1.579 1.541 1.518 1.497 1.439 1.474 1.372 1.304 1.295 1.281 1.328 1.293 1.287 1.244 1.231 1.238 1.231 1.226 1.238 1.228 1.252 1.229 1.218 1.211 1.198 1.181 1.128 1.107 1.087 1.055 1.029 0.979 0.953 0.943 0.913 0.858 0.841 0.798 0.782 0.720 0.884 0.807 0.554 0.497 -0.443 -0.429 -0.444 -0.494 -0.599 —0.899 -0.819 -0.985 -1.132 -1.198 -1.297 -1.354 -1.422 -1.483 -1.530 -1.811 -1.729 -1.880 -1.988 (m‘2N‘s) Zen (mV) 1 18.318 17.920 17.888 17.438 18.899 17.188 15.991 15.125 15.004 14.843 15.488 15.079 14.780 14.521 14.378 14.439 14.375 14.328 14.450 14.388 14.849 14.391 14.243 14.185 14.017 13.812 13.227 12.998 12.783 12.384 12.087 11.508 11.214 11.102 10.732 10.093 9.897 9.378 8.989 8.488 7.821 7.185 8.537 5.885 -5.228 -5.070 -5.242 -5.835 -7.078 -8.287 -9.882 ~11.418 -1 3.405 -14.191 -15.388 -18.047 -18.851 -17.588 -18.183 -19.127 -20.538 -22.329 -23.599 Phase (600) -18.000 -16.300 -15.100 -14.100 -14.100 -11.900 -7.600 -9.000 -8.100 -6.600 -2.100 3.400 7.900 14.500 16.300 23.300 27.400 31.300 34.500 37.700 40.900 43.400 45.600 46.900 49.300 51.600 51.900 53.400 54.600 56.100 56.000 57.400 58.500 60.200 60.700 61.400 82.200 65.100 65.300 67.600 89.600 73.500 77.500 82.200 94.600 110.200 134.100 149.300 164.300 174.900 474.900 -166.000 458.700 -152.000 447.300 -143.600 -140.300 -136.400 -136.300 -138.000 -138.600 -136.800 -137.800 pH (units) 3.910 3.930 3.950 3.980 4.030 4.050 4.180 4.170 4.200 4.210 4.290 4.390 4.490 4.800 4.700 4.800 4.900 5.000 5.090 5.190 5.290 85 Cond. (US/cm) 3358.000 3371 .000 3384.000 3358.000 3332.000 3353.000 3352. 000 3313.000 3303.000 3308.000 3353.000 3348.000 3350.000 3342.000 3348.000 3349.000 3353.000 3357.000 3385.000 3357.000 3388.000 3370.000 3378.000 3388.000 3398.000 3400.000 3403.000 3412.000 3415.000 3419.000 3418.000 3429.000 3428.000 3431 .000 3440.000 3445.000 3445.000 3458.000 Temp (dos C) 38.000 35.900 35.800 35.900 38.000 35.900 35.800 38.000 38.100 38.000 35.800 35.800 35.800 35.800 35.800 35.700 35.800 35.700 35.700 35.700 35.700 35.700 35.800 35.800 35.800 35.800 35.600 35.800 35.500 35.500 35.500 35.500 35.400 35.400 35.500 35.500 35.400 35.400 35.400 35.400 35.400 35.400 35.400 35.400 35.300 35.300 35.300 35.300 35.300 35.300 35.200 35.200 35.200 35.200 35.200 35.200 35.200 35.100 35.100 35.100 35.100 35. 100 35. 100 Acid (ml) 0.052 0.073 0.073 0.073 0.032 0.073 0.073 0.009 0.000 0.003 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 Base (ml) 0.000 0.073 0.077 0.097 0.000 0.180 0.243 Total (m1) , 3— 200.052 200 146 200.150 200.170 200.032 200 233 200 316 200.009 200 008 200.003 200.390 200.450 200.505 200.559 200.606 200.858 200.704 200.752 200.801 200 853 200 905 200 961 201 017 201.073 201 126 201.179 201.215 201.252 201 290 201.327 201.383 201 397 201 429 201 480 201.490 201 521 201.553 201 587 201 828 201.875 201.731 201.790 201.851 201.917 201 992 202.072 202.167 202.263 202.382 202.508 202.643 202.796 202.958 203.129 203.312 203.506 203.698 203.899 204.088 204 275 204 455 204 824 204.777 Table 18: Potentiometric Titration (POTN717.esa), 0.5 vol. % AKP-S0 A1203, 1x104 M KNO; 14610116071) (mPa'MN) (m‘2IV'6) W 1.79! 0.030 0.130 0.195 0.240 0.270 0.295 0.325 0.350 0.375 0.405 ESA 0111 Mob 6.148 1.837 6.324 1.854 8.401 1.696 6.596 1.926 6.726 1.966 6.917 1.996 9.044 2.011 9.114 2.005 9.066 2.032 9.210 2.015 9.130 2.007 9.096 1.962 8.963 1.941 6.796 1.920 6.701 1.762 6.076 1.633 7.404 1.430 6.482 1.272 5.768 1.089 4.935 0.993 4.502 0.982 4.450 0.957 4.337 0.910 4.126 0.905 4.102 0.823 3.731 0.766 3.474 0.666 3.110 0.626 2.636 0.551 2.499 0.488 2.213 0.431 1.952 0.368 1.669 0.310 1.407 0.251 1.138 0.201 0.912 0.153 0.693 0.071 0.324 -0.034 0.154 -0.065 -0.385 -0.141 -0.638 -0.199 -0.903 -0.287 -1 .302 -0.383 -1.646 -0.449 -2.035 -0.549 -2.492 -0.619 -2.810 -0.722 .3274 -0.624 .3740 -0.909 4.125 -1.026 4.664 -1 .129 -5.120 -1.242 -5.634 4.327 -6.021 -1469 -8.820 -1.583 -7.094 -1.701 -7.722 -1.829 -6.304 -1.966 4.926 -2.078 -9.438 -2.178 -9.894 -2.290 40.405 -2.388 40.650 -2.500 -1 1.383 Phase 201- (mV) (doc) 94. - . 96.660 -13.500 97.803 -13.300 99.927 -12.200 101.491 40.900 103.599 -10.500 105.106 -10.600 106.012 -10.100 105.738 -9.200 107.121 -6.500 106.228 -7.500 106.040 -6.500 104.647 -6.200 102.463 -5.200 101.457 -4.200 94.093 -3.100 66.266 -1.600 75.539 -1.700 67.197 -1.000 57.549 -0.100 52.492 -0.100 51.905 0.400 50.590 0.200 46.152 0.900 47.663 0.000 43.571 1.700 40.560 0.900 36.326 0.600 33.150 0.600 29.197 0.500 25.654 -0.100 22.621 0.000 16.519 -0.200 16.450 -0.900 13.336 -2.500 10.675 -4.700 6.114 -6.300 3.767 -21.600 -1.600 -94.000 4.505 447.600 4.469 -160.000 -10.571 -162.700 -15.252 -167.500 49.293 -168.600 -23.851 -169.600 -29.204 -169.700 -32.930 -171.300 -36.369 -171.700 43.664 -173.200 46.397 -173.300 -54.721 -174.100 -80.062 -174.200 -66.120 -174.300 -70.702 475.200 -77.767 -175.500 -63.256 -175.300 -90.721 -175.500 -97.532 -176.100 404.902 -175.600 -110.677 -175.600 -116.288 -175.800 422.290 -175.600 427.573 -175.500 -133.601 -175.600 [311 (units) 3.810 3.980 4.090 4.220 4.320 4.410 4.510 4.810 4.890 4.780 4.870 4.950 5.040 5.110 5.200 5.300 5.410 5.520 5.840 86 Good. (US/cm) 121.000 123.000 125.000 127.000 129.000 130.000 132.000 133.000 138.000 138.000 140.000 143.000 148.000 149.000 154.000 158.000 183.000 187.000 170.000 172.000 173.000 173.000 174.000 175.000 176.000 177.000 178.000 179.000 180.000 181.000 183.000 184.000 185.000 187.000 187.000 189.000 191.000 193.000 195.000 197.000 198.000 201.000 204.000 207.000 211.000 215.000 219.000 228.000 232.000 241.000 Temp (doc C) 31.300 31.300 31.300 31.300 31.300 31.300 31.300 31.300 31.300 31.300 31.200 31.200 31.200 31.200 31.200 31.200 31.200 31.200 31.200 31.200 31.200 31.200 31.100 31.100 31.100 31.100 31.100 31.100 31.100 31.100 31.100 31.100 31.100 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 30.900 31.000 31.000 30.900 30.900 30.900 Acid (ml) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Base (ml) 0.008 0.028 0.039 0.048 0.054 0.059 0.065 0.070 0.075 0.081 0.087 0.093 0.100 0.107 0.117 0.127 0.136 0.144 0.151 0.158 0.159 0.161 0.183 0.185 0.188 0.171 0.174 0.177 0.180 0.183 0.188 0.189 0.192 0.195 Total (ml) 200.006 200 028 200.039 200.048 200 054 200.059 200.085 200 070 200 075 200 081 200.087 200 093 200.100 200.107 200.117 200 127 200.136 200.144 200 151 200.156 200 159 200.181 200.163 200.185 200.188 200.171 200.174 200.177 200.180 200.183 200.186 200.189 200.192 200.195 200.198 200.201 200.205 200.209 200 213 200.217 200.221 200.228 200.231 200.237 200.243 200 249 200.256 200.284 200.273 200.284 200.295 200 308 200.322 200 339 200.359 200.383 200.412 200.446 200.479 200.516 200.581 200.812 200 872 Table 19: Potentiometric Titration (POTN719.6sa), 0.5 vol. % AKP-50 Ale3,1x10'3 M KNO; Not(moql1) (mPa'MN) (m‘2/V‘9) 2616(mV) 1.973 2.133 2.302 2.502 2.748 3.020 3.329 ESA Oyn Mob 2.298 10.400 2.338 10.592 2.382 10.795 2.400 10.875 2.410 10.918 2.415 10.944 2.435 11.033 2.415 10.945 2.431 11.015 2.408 10.914 2.398 10.869 2.355 10.872 2.298 10.407 2.280 10.245 2.182 9.798 2.042 9.258 1.882 8.439 1 .888 7.851 1.524 8.910 1.348 8.101 1.270 5.758 1.208 5.488 1.139 5.185 1.051 4.787 0.972 4.407 0.873 3.957 0.822 3.729 0.778 3.527 0.731 3.318 0.693 3.142 0.847 2.932 0.584 2.555 0.482 2.184 0.402 1.823 0.319 1.448 0.245 1.112 0.118 0.527 0.032 0.144 -0.102 -0.480 -0.185 -0.838 -0.288 4 208 -0.377 4 .707 -0.485 -2.201 -0.578 -2.823 -0.882 -3.000 -0.757 -3.432 -0.858 -3.880 -0.980 4.358 4 .071 4.858 4.183 -5.385 4 .305 -5.920 4 .402 -8.358 4 .530 -8.943 4 .848 -7.479 4 .781 -7.989 4.880 -8.534 -2.038 -9.250 -2.145 -9.739 -2.284 40.280 -2.377 4 0.793 4.48 41.337 -2.832 41.981 -2.781 42.842 117.911 120.188 122.754 123.422 123.948 124.275 125.300 124.308 125.158 124.075 123.545 121.311 118.348 118.438 111.483 105.349 98.077 87.124 78.724 89.453 85.554 82.313 58.874 54.333 50.233 45.142 42.543 40.280 37.835 35.859 33.488 29.204 24.955 20.823 18.532 12.710 8.025 1.845 -5.288 -9.588 43.825 49.541 -25.195 -30.032 -34.370 -39.313 44.488 49.933 -55.880 -81.500 -87.890 -72.985 -79.824 45.829 -91.877 -98.024 408.280 411.828 418.118 424.033 430.301 437.498 445.404 Phase (609) 5.400 5.900 8.200 8.500 8.400 7.000 7.500 8.000 8.200 8.500 8.800 9.800 9.800 10.300 10.800 11.200 11.700 12.500 12.400 12.800 13.000 13.500 14.100 13.900 14.000 14.200 14.200 14.000 13.400 14.400 13.700 13.400 13.200 12.500 11.500 9.100 2.400 -88.100 441.000 452.800 455.100 457.900 4 58.400 459.800 4 59.900 480.900 480.800 481.500 482.100 482.100 482.800 483.000 483.300 483.100 483.200 483.800 483.400 483.400 483.400 483.200 483.500 483.400 483.600 pH (units) 3.790 3.980 4.110 4.230 4.310 4.390 4.490 4.800 4.850 4.750 4.840 4.930 5.030 5.100 5.190 5.280 5.390 5.490 5.800 5.710 5.820 5.920 8.010 8.100 8.190 87 0000. (uS/cm) 289.000 272.000 274.000 278.000 277.000 278.000 281 .000 283.000 284.000 287.000 288.000 292.000 293.000 298.000 299.000 302.000 305.000 308.000 31 1.000 314.000 315.000 318.000 317.000 319.000 319.000 321 .000 322.000 321 .000 323.000 323.000 323.000 325.000 327.000 327.000 328.000 329.000 332.000 334.000 851.000 Temp (609 C) 32.400 32.400 32.300 32.300 32.300 32.300 32.300 32.300 32 .300 32.300 32.300 32.300 32.300 32.300 32.200 32.200 32.200 32.200 32.200 32.200 32.200 32.100 32.200 32.200 32.200 32.100 32.100 32.100 32.100 32.100 32.100 32.000 32.000 32.100 32.000 32.000 32.000 Add (ml) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8666 (ml) Total (m!) 0.007 0.027 0.038 0.045 0.050 0.055 0.081 0.088 0.070 0.289 0.550 0.687 200 007 200 027 200 038 200.045 200.050 200 055 200.061 200.066 200.070 200.076 200.082 200.088 200.094 200.100 200.107 200.114 200 122 200.129 200.135 200.140 200.144 200.147 200.150 200.153 200.158 200.159 200.161 200.163 200.165 200.167 200 169 200.172 200 175 200.178 200.161 200 184 200 188 200.192 200.196 200 200 200 204 200.209 200 214 200 219 200.224 200.230 200.237 200.245 200.254 200.264 200.276 200.289 200.305 200.322 200.342 200.368 200.395 200.427 200.461 200.501 200.550 200.605 200.867 Table 20: Potentiometric Titration (POTN723.esa), 0.5 vol. '/o AKP-50 Ale3,lx10'2 M KN03 N61 ESA Dyn Mob Zeta Phase Cond. Temp 8666 Total (men/1) (mPa'NW) (WW8) (mV) (dog) 9“ (um) (Us/cm) (609 G) Add (01') (MD (MD 1 11 ;' '3; :e' -1 12 0'1'1 ' 019 " ’ 3 0.725 3.210 14.546 154.428 37.700 3.690 1092.000 35.100 0.019 0.019 200.036 0.750 3.211 14.549 154.509 37.700 3.910 1093.000 35.100 0.019 0.024 200.043 0.775 3.153 14.288 151.321 37.300 3.920 1077.000 35.200 0.005 0.000 200 005 0.805 3.155 14.293 151.395 37.200 3.970 1074.000 35.200 0.000 0.000 200.000 0.834 3.187 14.444 153.484 37.400 4.040 1091.000 35.100 0.019 0.049 200.088 0.684 3.190 14.458 153.779 37.500 4.140 1092.000 35.000 0.019 0.087 200.088 0.894 3.247 14.719 156.409 37.200 4.240 1095.000 35.100 0.019 0.064 200.103 0.919 3.282 14.768 157.285 37.400 4.380 1097.000 35.000 0.019 0.100 200.119 0.939 3.287 14.811 157.509 37.900 4.510 1101.000 35.000 0.019 0.113 200.132 0.959 3.238 14.860 156.258 38.800 4.820 1103.000 35.000 0.019 0.121 200.140 0.979 3.216 14.589 155.242 39.000 4.740 1107.000 35.000 0.019 0.126 200.147 0.994 3.195 14.484 154.228 38.000 4.830 1108.000 35.000 0.019 0.133 200.152 1.009 3.171 14.378 153.214 38.000 4.910 1109.000 34.900 0.019 0.138 200.157 1.024 3.143 14.252 151.957 39.600 5.010 1111.000 34.900 0.019 0.144 200.183 1.039 3.181 14.330 152.619 39.300 5.100 1113.000 34.900 0.019 0.149 200.166 1.054 3.088 13.902 146.336 39.600 5.190 1115.000 34.900 0.019 0.154 200.173 1.084 3.078 13.956 146.672 40.200 5.280 1116.000 34.900 0.019 0.159 200.176 1.074 2.981 13.425 143.292 40.200 5.360 1116.000 34.900 0.019 0.184 200.163 1.064 2.925 13.284 141.862 39.300 5.450 1123.000 34.900 0.019 0.169 200.168 1.094 2.820 12.786 138.558 41.100 5.530 1124.000 34.900 0.019 0.174 200.193 1.109 2.755 12.492 133.495 41.600 5.620 1130.000 34.600 0.019 0.180 200.199 1.129 2.600 11.792 126.057 42.000 5.720 1127.000 34.600 0.019 0.186 200.205 1.149 2.422 10.985 117.418 42.000 5.610 1134.000 34.600 0.019 0.192 200.211 1.189 2.310 10.474 111.966 42.900 5.920 1135.000 34.800 0.019 0.198 200.217 1.189 2.136 9.867 103.597 42.300 6.020 1137.000 34.800 0.019 0.203 200.222 1.204 2.008 9.106 97.451 42.800 8.120 1139.000 34.600 0.019 0.207 200.228 1.224 1.643 8.357 89.429 43.300 8.220 1144.000 34.600 0.019 0.211 200.230 1.244 1.688 7.857 81.968 43.700 6.320 1143.000 34.600 0.019 0.215 200.234 1.284 1.609 7.298 78.104 43.600 8.420 1143.000 34.600 0.019 0.218 200.237 1.284 1.493 8.771 72.526 43.300 8.510 1145.000 34.700 0.019 0.221 200.240 1.309 1.380 8.259 87.061 43.600 6.800 1147.000 34.700 0.019 0.224 200.243 1.334 1.261 5.612 82.330 43.300 8.700 1148.000 34.700 0.019 0.227 200.248 1.384 1.188 5.298 58.625 44.000 8.600 1148.000 34.700 0.019 0.230 200.249 1.394 1.108 5.027 53.947 42.900 8.690 1148.000 34.700 0.019 0.232 200.251 1.429 1.048 4.743 50.911 43.100 8.970 1148.000 34.700 0.019 0.234 200.253 1.489 1.003 4.551 48.686 43.400 7.040 1149.000 34.800 0.019 0.238 200.255 1.514 0.947 4.298 46.130 43.200 7.110 1150.000 34.800 0.019 0.238 200.257 1.583 0.638 3.799 40.618 43.100 7.200 1151.000 34.800 0.019 0.241 200.280 1.823 0.860 3.065 33.154 40.600 7.310 1152.000 34.800 0.019 0.245 200.264 1.863 0.545 2.472 26.570 39.300 7.430 1153.000 34.800 0.019 0.249 200.286 1.766 0.423 1.920 20.653 35.600 7.550 1158.000 34.800 0.019 0.253 200.272 1.656 0.297 1.347 14.485 30.800 7.880 1159.000 34.800 0.019 0.257 200.278 1.988 0.236 1.076 11.595 28.600 7.780 1159.000 34.800 0.019 0.280 200.279 2.102 0.130 0.586 8.327 8.000 7.660 1183.000 34.800 0.019 0.284 200.263 2.257 0.092 0.417 4.490 48.400 7.980 1185.000 34.500 0.019 0.286 200.267 2.441 -0.134 -0.608 -6.527 -90.400 8.090 1168.000 34.500 0.019 0.272 200.291 2.858 -0.216 -0.966 40.637 406.700 6.160 1187.000 34.500 0.019 0.278 200.295 -0.328 -1 .480 -1 5.935 -1 16.000 6.290 1178.000 34.500 0.019 0.261 200.300 -O.425 -1 .929 -20.797 -1 19.500 6.390 1174.000 34.500 0.019 0.268 200.305 -0.554 -2.512 -27.060 422.400 8.500 1161.000 34.500 0.019 0.292 200.311 -0.885 -3.016 -32.542 424.200 6.800 1162.000 34.500 0.019 0.298 200.317 -0.776 -3.526 -36.056 -1 25.700 6.710 1192.000 34.500 0.019 0.305 200.324 -0.902 4.094 44.199 426.800 6.820 1198.000 34.400 0.019 0.313 200.332 -1.016 4.820 49.689 427.800 6.930 1203.000 34.400 0.019 0.322 200.341 4.137 -5.161 -55.748 426.500 9.040 1214.000 34.400 0.019 0.332 200.351 4.282 -5.727 81.648 430.600 9.150 1225.000 34.400 0.019 0.344 200.383 4.384 -8.192 48.924 430.400 9.240 1238.000 34.400 0.019 0.358 200.375 4.502 -6.820 -73.754 -131 .000 9.380 1258.000 34.400 0.019 0.373 200.392 4.823 -7.368 -79.777 432.000 9.480 1273.000 34.300 0.019 0.391 200.410 4.747 -7.933 -85.603 432.100 9.580 1299.000 34.300 0.019 0.413 200.432 4.902 -8.838 -93.407 432.800 9.870 1329.000 34.300 0.019 0.440 200.459 «2.033 -9.233 599.926 433.400 9.770 1386.000 34.300 0.019 0.471 200.490 -2.187 -9.935 407.558 433.100 9.660 1415.000 34.300 0.019 0.506 200.527 -2.306 40.488 -1 13.537 433.900 9.960 1487.000 34.300 0.019 0.551 200.570 88 Table 21: Potentiometric Titration (POTN710.esa), 0.5 vol. % Alcoa SG A4000 M203, 15104 M KNO, ESA Dyn Mob Not (meg/1) (mPa'M/V) (m‘2N‘6) -0.030 1.655 6. 0.000 1.859 8.624 0.025 1.673 6.693 0.000 1.657 6.814 0.120 1.666 8.782 0.190 1.905 8.842 0.240 1.900 6.616 0.260 1.666 6.783 0.315 1.679 6.722 0.355 1.651 6.590 0.395 1.616 8.439 0.440 1.786 6.196 0.465 1.719 7.962 0.545 1.620 7.521 0.610 1.534 7.120 0.665 1.366 6.447 0.760 1.225 5.668 0.835 1.050 4.876 0.905 0.669 4.035 0.964 0.716 3.325 1.009 0.620 2.661 1.039 0.578 2.676 1.064 0.539 2.506 1.069 0.466 2.267 1.114 0.427 1.966 1.139 0.366 1.709 1.164 0.309 1.434 1.169 0.250 1.160 1.214 0.205 0.951 1.239 0.159 0.739 1.264 0.122 0.567 1.269 0.096 0.456 1.314 0.096 0.445 1.339 -0.103 -0.476 1.359 -0.116 -0.537 1.379 -0.137 -0.636 1.404 -0.158 -0.733 1.439 -0.206 -0.957 1.474 -0.246 4.144 1.509 -0.262 4.312 1.544 -0.321 4 .494 1.579 -0.351 4 .631 1.614 -0.366 4 .793 1.653 -0.422 4 .961 1.693 -0.455 -2.116 1.736 -0.500 -2.326 1.766 -0.543 -2.524 1.636 -0.573 -2.664 1.903 -0.625 -2.905 1.973 -0.676 -3.142 2.046 -0.731 4.399 2.126 -0.763 .3640 2.222 -0.635 -3.863 2.327 -0.897 4.171 2.442 -0.966 4.491 2.576 4 .031 4.796 2.726 4 .069 -5.086 2.905 4.176 .5473 3.105 4.250 -5.620 3.329 4.346 -8.267 3.563 4.428 -6.646 3.672 4 .461 8697 Phase 201- (mV) («9) 107.998 -9.900 106.657 -9.600 107.723 40.400 109.777 -9.300 110.765 -6.300 110.457 -7.300 109.796 -7.000 109.310 -6.500 107.701 -5.700 105.622 -5.200 102.612 -5.300 100.096 4.200 94.326 -5.100 69.331 -5.600 60.666 -5.400 71.376 -5.600 61.201 -6.200 50.641 -6.900 41.745 -9.100 36.179 40.900 33.639 40.900 31.461 41.900 26.462 42.400 24.951 42.400 21.475 44.000 16.017 46.100 14.576 49.600 11.954 -24.100 9.292 -33.600 7.132 45.600 5.735 -63.600 5.599 49.500 -6.016 413.600 -6.753 425.000 -6.009 430.900 .9226 440.500 42.041 446.100 44.399 455.000 46.524 456.200 46.613 456.600 -20.543 460.600 -22.569 461.900 -24.700 462.900 -26.663 463.600 -29.307 463.500 -31.613 464.700 43.567 465.600 —36.621 466.500 49.619 466.600 42.672 467.900 45.935 467.400 46.965 469.000 -52.632 469.400 -56.665 469.500 40.543 469.700 -63.941 470.000 49.092 470.100 -73.463 470.000 -79.155 470.900 43.963 469.900 -67.131 470.100 pH (units) 3.890 3.920 3.930 9.170 9.280 9.380 9.490 9.720 9.830 9.930 89 Good. (US/cm) 217.000 216.000 211.000 219.000 222.000 224.000 228.000 228.000 231.000 234.000 237.000 240.000 248.000 251.000 257.000 283.000 289.000 275.000 280.000 283.000 288.000 288.000 289.000 291.000 293.000 295.000 298.000 297.000 299.000 301.000 302.000 305.000 308.000 308.000 309.000 310.000 313.000 318.000 319.000 321.000 325.000 328.000 332.000 337.000 341.000 347.000 354.000 382.000 372.000 385.000 398.000 415.000 433.000 454.000 482.000 513.000 552.000 598.000 850.000 710.000 780.000 Temp (699 C) 29. 700 29. 700 29.700 29.800 29.800 29.600 29.800 29.800 29.800 29.800 29.800 29.800 29.800 29.800 29.800 29. 500 29.800 29.800 29.500 29. 500 29. 500 29. 500 29. 500 29. 500 29.500 29. 500 29. 500 29.500 29. 500 29. 500 29.500 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.400 29.300 29. 300 29.300 29.300 29.300 29. 300 29. 300 29. 300 29.300 29. 300 29. 300 29. 300 29. 300 29 . 300 29. 300 29. 300 Acid (ml) 8666 (ml) T016! (111!) 0.008 0.011 200 O1 2 200 017 200 000 200.036 200 050 200.080 200 068 200.075 200 083 200 091 200.100 200 109 200.121 200.134 200.149 200.184 200.179 200 193 200 205 200 214 200.220 200.225 200 230 200.235 200.240 200.245 200.250 200.255 200.280 200.265 200 270 200 275 200 280 200 284 200.288 200.293 200.300 200 307 200.314 200 321 200 328 200.335 200.343 200.351 200.380 200.370 200.380 200.393 200.407 200.422 200.438 200.457 200.478 200.501 200.528 200 558 200.594 200.834 200.879 200.730 200 788 Table 22: Potentiometric Titration (POTN713.esa), 0. 5 vol. % Alcoa SG A-1000 M203, 1110.31“ KN03 Not(m6ql1) (mPa' MN) (m‘2N’6) —2'.'082 346 2.097 2.128 2.151 2.178 2.198 ESA Dyn Mob 2.10. 2 319 10.828 2.305 10.781 2.295 10.718 2.300 10.738 2.282 10.851 2.278 10.833 2.288 10.580 2.253 10.515 2.238 10.449 2.243 10.471 2.234 10.427 2.233 10.423 2.227 10.394 2.221 10.388 2.220 10.380 2.200 10.271 2.188 10.211 2.173 10.142 2.152 10.043 2.108 9.827 1.991 9.292 1.790 8.354 1.821 7.588 1.472 8.870 1.314 8.131 1.170 5.459 1.034 4.828 0.877 4.090 0.719 3.354 0.588 2.852 0.415 1. 935 0.290 1. 353 0.188 0.878 0.109 0.507 0.092 0 428 -0.115 -0. 537 -0.181 -0. 752 -0.224 -1 .044 -0.280 4.305 -0.333 -1 .552 -0.394 4.837 -0.447 -2.087 -0.491 -2.289 -0.551 -2.589 -0.812 -2.855 -0. 881 -3. 177 -0. 781 ~3. 549 -0.828 -3.851 -0.914 4.283 4.020 4.758 4 .098 -5.109 4.207 -5.827 4.333 4.212 4.443 -8.728 -1 .524 -7.102 4.575 -7.338 -1 .575 -7.337 Zeta (mV) 135.552 134.739 134.058 134.244 133.290 133.028 132.319 131.543 130.881 130.905 130.359 130.304 129.987 129.584 129.435 128.373 127.821 128.718 125.470 122.713 118.057 104.334 94.491 85.753 78.520 88.125 80.220 51.031 41.850 33.078 24.140 18.875 10.922 8.321 5.341 th (M) 17.800 17.800 17.200 17.500 17.900 17.400 17.800 17.800 17.800 17.700 17.700 17.700 17.800 18.100 17.400 17.800 17.800 17.900 18.200 17.900 18.300 19.000 18.100 18.300 17.700 18.200 17.500 18.800 15.800 14.000 11.000 8.100 -3.100 -30.800 -88.700 408.400 423.900 434.400 438.000 442.200 443.700 445.500 447.300 447.700 448.900 450.200 451.000 452. 000 -1 53. 700 453.400 454.800 -1 55. 000 458.000 455. 400 455. 700 458. 000 -1 55. 700 pH (units) 3.900 4.000 4.100 4.210 4.310 4.410 4.520 4.810 4.890 4.740 4.810 4.890 4.970 5.080 5.220 5.390 5.590 5.830 8.090 8.380 8.580 8.750 8.870 8.950 7.030 7.110 7.180 7.270 9.240 9.590 9.710 9.840 9.950 10.000 10.010 90 Good. (US/cm) 872.000 885.000 859.000 858.000 852.000 848.000 845.000 841 .000 842.000 841 .000 840.000 839.000 837.000 837.000 838.000 835.000 833.000 Temp (deg C) 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.700 29.800 29.700 29.700 Acid (ml) 0.409 0.403 0.398 0.393 0.389 0.385 0.381 0.378 0.378 0.375 0.374 0.373 0.372 0.371 0.370 0.389 0.388 0.387 0.385 0.380 0.351 0. 338 0.325 0.318 0.308 0.302 0.297 0.292 0.287 0.282 0.278 0.270 0.258 0. 253 0. 248 0. 243 0.233 0.228 0. 218 0.213 0.207 0.192 0.183 0.174 0.183 0.150 0.135 0.118 0.093 0.083 0.029 0.009 0.005 8966 (ml) 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.626 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 Total (ml) 201 237 201.231 201.226 201.221 201 217 201.213 201.209 201.206 201.204 201.203 201.202 201 201 201 200 201.199 201.198 201.197 201.196 201.195 201.193 201.188 201.179 201.166 201.153 201.144 201.136 201.130 201.125 201.120 201.115 201.110 201.104 201.098 201.092 201.086 201.081 201.076 201.071 201.066 201.081 201.058 201.051 201.046 201.041 201.035 201.028 201.020 201.011 201.002 200.991 200.978 200.963 200.944 200.921 200.891 200 857 200.837 200.833 Table 23: Potentiometric Titration (POTN725.esa), 0.5 vol. % Alcoa SG A4000 M203, 1x10 2 M KN03 ESA Dyn Mob Phase “(moo/1) (mPa'M/V) (m‘2N'6) Zota(mV) (dog) pH (units) 41.145 4.925 22951—259394 0.200 3. -0.090 4.962 23.119 261.164 0.500 3.960 0.000 4.941 22.932 259.436 1.400 4.060 0.015 4.959 23.017 260.554 1.300 4.070 0.090 5.026 23.337 264.175 1.400 4.140 -0.015 5.033 23.354 263.697 0.900 4.140 0.000 5.042 23.394 264.033 1.000 4.160 0.200 5.027 23.333 264.251 2.100 4.220 0.325 5.043 23.411 265.256 3.200 4.330 0.440 5.120 23.772 269.466 3.500 4.450 0.535 5.144 23.666 270.713 4.300 4.590 0.600 5.231 24.293 275.330 5.500 4.740 0.640 5.242 24.343 275.933 6.900 4.650 0.675 5.276 24.514 276.062 7.600 4.960 0.705 5.266 24.560 276.645 6.300 5.060 0.729 5.267 24.556 276.597 6.600 5.130 0.759 5.340 24.603 261.441 9.900 5.220 0.769 5.290 24.573 276.956 10.900 5.310 0.624 5.294 24.592 279.421 11.600 5.400 0.659 5.276 24.506 276.242 12.900 5.490 0.694 5.229 24.290 275.906 13.700 5.560 0.929 5.144 23.696 271.575 14.900 5.670 0.964 5.076 23.562 266.106 15.700 5.760 0.999 4.966 23.071 262.337 16.300 5.650 1.039 4.639 22.479 255.724 16.700 5.950 1.074 4.673 21.712 246.919 19.500 6.040 1.109 4.491 20.667 237.597 20.500 6.150 1.139 4.263 19.606 225.477 20.600 6.260 1.164 4.062 16.966 215.971 21.900 6.350 1.169 3.666 16.056 205.647 21.600 6.450 1.214 3.626 16.649 192.044 22.600 6.560 1.234 3.404 15.620 160.269 22.000 6.650 1.254 3.166 14.613 166.617 22.700 6.730 1.274 2.977 13.636 157.743 22.600 6.620 1.294 2.666 13.411 152.922 23.600 6.920 1.314 2.666 12.493 142.496 23.300 7.010 1.334 2.460 11.523 131.476 24.300 7.090 1.359 2.214 10.291 117.419 25.000 7.200 1.369 1.954 9.060 103.631 26.200 7.310 1.419 1.736 6.060 92.216 26.600 7.420 1.446 1.490 6.924 79.074 27.500 7.540 1.476 1.217 5.657 64.632 27.700 7.650 1.506 0.992 4.610 52.659 26.900 7.760 1.543 0.731 3.396 36.624 30.600 7.660 1.576 0.465 2.162 24.715 32.200 6.000 1.613 0.212 0.967 11.290 32.200 6.100 1.653 -0.059 -0.273 -3.121 179.900 6.230 1.693 -0.306 4.424 46.267 455.000 6.340 1.733 -o.527 -2.446 -26.041 451.600 6.440 1.776 -0.749 -3.464 419.672 451.300 6.560 1.626 -0.960 4.465 -51.102 450.600 6.670 1.676 4.142 -5.310 450.760 450.000 6.760 1.936 4.346 6.269 -71.785 450.700 6.690 1.997 4.510 -7.023 -60.459 450.300 9.000 2.062 4.666 -7.759 .66675 450.600 9.110 2.137 4.647 .6566 -98.439 450.500 9.220 2.222 -2040 -9.469 406.794 450.300 9.330 2.317 -2200 40.234 417.345 450.500 9.440 2.421 -2.396 41.146 427.763 450.100 9.540 2.546 -2.569 41.953 437.107 450.200 9.650 2.666 -2.751 42.602 446.911 450.600 9.750 2.655 -2.922 43.596 456.252 450.700 9.660 3.044 4.101 44.437 465.723 451.400 9.970 91 Good. (US/cm) 2049.000 2085.000 2081.000 2081.000 2035.000 2043.000 2084.000 2088.000 2087.000 2072.000 2072.000 2080.000 2084.000 2084.000 2084.000 2088.000 2085.000 2089.000 2101.000 2103.000 2104.000 2099.000 2104.000 2112.000 2115.000 2114.000 2118.000 2122.000 2118.000 2125.000 2127.000 2129.000 2128.000 2131.000 2128.000 2127.000 2130.000 2135.000 2131.000 2138.000 2141.000 2148.000 2147.000 2151.000 2151.000 2157.000 2181.000 2187.000 2188.000 2170.000 2175.000 2183.000 2190.000 2205.000 2212.000 2225.000 2243.000 2288.000 2289.000 2314.000 2357.000 2397.000 Temp (609 C) 34.300 34.200 34.200 34.200 34.300 34.300 34.200 34.200 34.100 34. 100 34.100 34. 100 34.100 34. 100 34.100 34.100 34.100 34.000 34.100 34.100 34.000 34.000 34.000 34.000 34.000 34.000 34.000 34.000 33.900 33.900 33.900 33.900 33.900 33.900 33.900 33.900 33.900 33.900 33.900 33.800 33.800 33.800 33.800 33.800 33.800 33.700 33.800 33.700 33.700 33.700 33.700 33.700 33.700 33.700 33.700 33.700 33.700 33.700 33.700 33.800 33.800 33.800 Acid (ml) 896. (ml) Total (ml) 0.018 0.029 0.029 0.029 0.003 0.000 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.000 0.029 0.032 0.047 0.000 0.000 0.395 0.417 0.429 0.442 0.457 0.474 0.493 0.514 0.539 0.587 0.801 0.839 - 200.018 200.057 200.060 200.075 200.003 200.000 200.097 200.122 200.145 200.164 200.177 200.185 200.192 200.198 200.203 200.209 200.215 200.222 200.229 200.238 200.243 200.250 200.257 200.265 200.272 200.279 200.285 200.290 200.295 200.300 200.304 200.308 200.312 200.318 200.320 200.324 200.329 200.335 200.341 200.347 200.353 200.359 200.388 200.373 200.380 200.388 200.398 200.404 200.413 200.423 200.433 200.445 200.457 200.470 200.485 200.502 200.521 200.542 200.587 200.595 200.829 200.867 Table 24: Potentiometric Titration (POTN702.esa), 0.5 vol. % SHS Composite {TiszAle3}, 1x104“ M KN03 ESA Dyn Mob Net (meql1) (mPe'MN) (m‘Z/V’s) Zeta (mV) 4.968 0.354 1.525 34.942 4.963 0.326 1.412 32.408 4.958 0.311 1.340 30.881 4 .953 0.298 1.273 29.330 4 .948 0.278 1.198 27.856 4.943 0.263 1.131 26.144 4.938 0.253 1.090 25.192 4.933 0.243 1.048 24.202 4.928 0.233 1.005 23.341 4.923 0.228 0.984 22.862 4.918 0.221 0.952 22.168 4.913 0.210 0.905 21.077 4.908 0.204 0.877 20.491 4.903 0.196 0.844 19.740 4.898 0.194 0.834 19.548 4.888 0.186 0.801 18.781 4.873 0.178 0.768 18.019 4.648 0.189 0.730 17.151 4.813 0.164 0.708 18.671 4.768 0.153 0.859 15.518 4.714 0.148 0.837 15.034 4.654 0.142 0.612 14.458 4.579 0.133 0.573 13.579 4.489 0.127 0.547 12.978 4.384 0.128 0.550 13.059 4.270 0.121 0.522 12.403 4.135 0.123 0.530 12.619 -0.970 0.120 0.519 12.382 -0.791 0.123 0.529 12.652 -0.547 0.127 0.546 13.050 -0.253 0.129 0.558 13.340 0.106 0.137 0.590 14.137 0.489 0.148 0.838 15.297 0.947 0.158 0.875 18.188 1.454 0.167 0.721 17.342 2.025 0.181 0.781 18.778 2.828 0.192 0.831 19.979 3.297 0.198 0.858 20.660 4.011 0.209 0.904 21.879 4.695 0.222 0.981 23.301 5.388 0.228 0.990 23.990 8.078 0.235 1.022 24.791 8.769 0.244 1.062 25.800 7.438 0.250 1.085 28.434 8.024 0.242 1.054 25.881 8.891 0.242 1.053 25.649 9.174 0.243 1.080 25.658 9.882 0.239 1.042 25.447 10.180 0.234 1.021 24.946 10.712 0.235 1.027 25.129 11.289 0.243 1.060 25.974 11.928 0.249 1.068 28.879 Phase («9) 142.800 142.400 142.500 142.800 143.700 142.000 142.500 142.400 142.100 142.100 142.400 141.300 141.500 141.300 140.900 141.300 140.900 139.800 139.100 138.300 138.500 138.100 135.800 133.500 133.500 132.800 131.500 130.400 129.900 131.200 128.800 129.400 129.100 127.800 127.800 128.400 128.000 127.000 127.000 128.500 124.800 124.200 122.500 120.700 118.500 115.500 112.700 110.700 107.400 105.900 102.700 102.200 pH (units) 4.830 4.880 5.030 5.180 9.030 9.570 9.910 92 Good. (US/cm) 818.000 822.000 829.000 832.000 835.000 837.000 844.000 844.000 850.000 850.000 858.000 880.000 859.000 862.000 882.000 885.000 884.000 889.000 874.000 878.000 880.000 885.000 893.000 902.000 908.000 920.000 933.000 948.000 983.000 990.000 1021.000 1057.000 1100.000 1144.000 1198.000 1281.000 1320.000 1385.000 1454.000 1528.000 1598.000 1858.000 1732.000 1801 .000 1881.000 138.000 2041.000 2133.000 2240.000 2351.000 2486.000 2858.000 Temp (609 C) Acid (ml) 8666 (ml) 2.807 Total (m!) 200 398 200.399 200.400 200.401 200.402 200.403 200.404 200 405 200 406 200.407 200.408 200.409 200.410 200.411 200.412 200.414 200 417 200.422 200.429 200.438 200 449 200.481 200.478 200.494 200 51 5 200.538 200.585 200.598 200.834 200.883 200.742 200.814 200.891 200 983 201.085 201.200 201.321 201.458 201.800 201.738 201.878 202.017 202.157 202292 202411 202.548 202.844 202.747 202.848 202.958 203.073 203.203 Table 25: Potentiometric Titration (POTN705.esa), 0. 5 vol. % SHS Composite {TiB2/A1203}, 1310‘1 M KNO; Net (meal) -2.148 -2.138 -2.133 -2.128 -2.123 -2.118 -2.1 13 -2.108 -2.103 -2.098 -2.093 -2.088 -2.083 -2.078 -2.073 -2.088 -2.083 -2.058 -2.048 -2.028 4 .998 4 .958 4 .908 4 .853 4 .788 4 .714 4 .829 4 .529 4 .414 4 .275 4. 120 -0. 827 ESA (mPa'MN Dyn Mob (m‘2N‘6) Zeta (mV) ) . 0.171 1.125 17.542 19. 729 21.298 21.758 22.781 23.991 24.929 25.545 28.287 27.091 28.034 26.523 25.941 25.318 24.714 24.887 24.844 25.010 25.727 Phase (609) 143. 3% 142. 7% 142.5% 142.1% 141.3% 140.800 140.8% 140.4% 140. 9% 141.2% 139.7% 139.500 138. 9% 137. 8% 1%. 5% 134. 2% 131.800 130.100 128.2% 124.0% 121.4% 118.8% 117.4% 115.2% Cond. PH (Um) (uS/cm) 93 Temp (deg C) Add (ml) 8666 (ml) Total (ml) APPENDIX C Green Body Density Measurements 94 ..o . ... o 8.. .84 .5. 02 mom a... m 9:8 852 8.. 33 .3 3.. 8. .. 02 now an. m 9:8 892 mm. and 8.. .3 93. mm; 9.. m. o 9:8 892 9... ..o. .3 m3 8... mw> 8a a o 2.8 892 m. .N m.m.o .2 .0.” .3. 02 on. 3. m. 9:8 892 6.. own... 8... 8m 2... mm; 8. m. m. 9:8 892 8.. .9... .3 8.. 9%. oz 84. 8 m. 9:8 852 v... .8... .3 .3 84. 02 8m 8 m. 9:8 852 8.. 33 84 9.6 mm... mm; 8,. m. m. 980 892 8.. 8.... 8.0 8.9 8.6. oz 8. m. m. 9:8 852 we. .30 3... .3. 8.... 02 8m 24. m. 9:8 892 3.. .m..o 3.... ..... 8.. 2:. SN 8 m. 9:8 8%.... 9.4. 8... 8.. m; 8.6. xz: com 8. v 9:8 892 SN 90.6 86 3.. 0.3 x2: 8.” n. v 9:8 852 Now mam... 5.... 5.... 3.8 3.2: can cm 9 2.8 892 «N. meow m... «.6 mg. 3.2: 8.” no. .. 568 892 v..~ 0.4.4 Em 8... 2.8 .2: com 8. v 5&8 852 ...N 0.0.. m... 3.0 ..... x2: com o v 5&8 852 cm... o...o .00 8.... m..o. 2: com m e ano 852 5.. 8.4 mg mm... 8.2 x23 8... 8. v 9:8 892 m... 89o 8.0 NB m... 22: com 8 v 9:8 892 m... 96.. «to ...m 2.0. 22: 08 an. e 5&8 852 3.38.. oz 8. < \2 UP. 9:8 $52 .8 E E is. Ass. .66. .5 FE: 4 232 :6 63...... .5656 .563 .56: £33 £85.. 9:6... 06.60:. 6.9... 9.688... 292.65 53.8.. Eu wan . _ b 8.92.65 5.820 no"? 8 8.4 3... $5 a. 98:28.0 .5 25 5.9.5 .68 :80 a... 835.. 95 .8 . .80 0mm 58 E 5. oz 8. c. w 9:8 8-852. 8 . mm... mm... «mm mm m. 02 mo. n«« m 9:8 8582 ...« 8.... .3 mg «.0. oz 4... om« . 9:8 8.482 8.« m8. .«.. «8 8.0. oz 0.. m« . 9:8 8.802 8.. mom. ..... «... 3... 02 nt... 8« . 9:8 8-582 8.. ammo «m... .8 «to. 02 m.. o« . 9:8 8.582 8.. 85.. 8.» «a... «m... 02 9. mm« . 9:8 8582 .m.« 8v.« 8.: m«.. m«. .« 02 .o. m. . 9:8 8.582 ...« «.mo 8.. «.6 .8 02 .o. o. . 9:8 8.582 8.« 8..« 8m. 9... m«.v« 02 .o. 8 . 9:8 8582 8.« .88 .8 8.8 .3... 02 .o. a. . 9:8 8.582 .m. «8.. on.» 98 «no. 02 .o. «. . 9:8 8.882 8.. «mac «n... «..o a... 02 .o. 3 . 9:8 8582 ...« .«mo 8.. .08 2.8 oz 8.. «. .. 9:8 0.6.582 .m.« 80.. 9.. m. .o o«..m 02 com «« v 9:8 8.482 .4.« 8a.. 8.» .08 8.8 Oz 8» .. v 9:8 8582 .m.« 9m. 8.... «..o 8... 02 8o m« .. 9:8 8.582 .m.« 8«.« 8.» 0.... «..o« 02 com mm« 9 9:8 8.824. m..« 86...” «m. ...m 8.0.. 02 8n n« v 9:8 09582 ...« 33.0 «..m .88 8.0. 02 com mo. 9 9:8 8.582 8.. 83. 0.5 8.. 9.9. oz can 8. v 9:8 8.582 8.. .m«.« 8... 3.... ma.«« oz 8.” nm« 3 9:8 69982 .3438... oz 5.2: < \2 cm.— 980 8582 4843 3 2:5 .68 «.55 EU 58$ 4 Ea: :6 535.8 bum—80 Emma; Emma: 53>) fiwcua mama—6 9589.5 8.8—m $589095 9:89:60 83.8.. Eu wan 8.9868 5.628 no“? 8: .-< Um «82 3... $5 a. 2828.8 .35 25 .3659 .88 :88 5 use. 96 .9. 8.... m9... 3.. m... 02 mo. 3. m 9:8 8.82 e... 89. .90. «90 m... 02 mo. 8. o 9:8 8.82 .9. 8:... m... ...m o9... oz 8. am. a 9:8 8.82 .9. ..9o .9. 8.. 8.8 02 mo. .. m 9:8 08.82 .9. 89. m9. .... v.6. oz 8. a. o 9:8 8.802 8.. ..9. 8.. m8 ..... 02 no. a.. m 9:8 8.802 m... m...o .98 8.0 .9. 02 mo. m. o 9:8 8.82 v... 89. e... m8 .9... 02 mo. e m 9:8 8.82 m... 3.... 8... .90 o... 02 no. a. m 9:8 0882 .8 E E Ass. .66. is. .5 F96 * 2:2 mm 83.8 3.959 Emma; immum 53>» saw—3.— wfiuav 9580.5 manna—m wfimnuuoa 3.89.50 85.8.. .5 m3 38.58 8:28 no.2. :83. 8 «8:. 3.... m8 8. 8828.8 E; 38 £88 :98 526 “.398. .. as... 97 .mwé VFW? EMN mPF find. (.2 (.2 LE. F FEE 9N omvwr mm.m . E RE 32 m. h .EmOn—Ebbumflm. m9. 85'5le E. 2.2 Sz 5. . :moazop mum .r 89v Plum... 8... 2.2 2.2 b . :mDnEmemm. 3.. wand or.» 9:. ms. ..n (\z (\z a x. twOaEOO 9.5 09. _‘mmé «of. and sad. (2 (\z (vN n tmOQEOO 9.5 mm... VNNN 3... 3.» 99mm (.2 (.2 MN 5 twOmEOO 9.5 E... mvod Nod vmd ovdw (.2 (.2 n. h twOQEOO .045 we. 3.5m «0.0 mm.» wndm (.2 (.2 mvu s. #502200 mIm (.50me Food .I. II II (.2 (.2 I. v twOaEOO wIm DmnEOmo II .I. ..l I... (\Z (.2 n v tmOQEOO 9.5 mm... 02.6 mod 5d mmdm $2 $2 or v twOaEOO wIw ooé 03d mod :6 ohhm (.2 $2 (a. v twOQEOU 9.5 E... N3... 90.x. nod mad. (2 (.2 0.. 9 #509200 9.5 2... mam.” mvfi mm.» 3.9” (.2 (.2 (P v #509200 9.5 es... mi... and ac.» Etna (\Z (.2 ON v 5.50.2200 9.5 $0.. mam..." 096 8.5 .Ndo (\2 $2 0 v twoaioo wIm no.9 wmmé , «Ev mud mad. (.2 (2 m9. 9 twOQEOO 9.5 $9.58.. <2 <2 < \z 8.. 88.28 mzm .8 v 3.. AEEV ASE. AEEV EUWEBU Aug. t EOE Em mfinnuuoum 539mm bump—on— Ewmog Emma: 53>» Emu—o‘— owS—aua 0.389..— ..385 3.39.30 .3 Eu _ 898.88 9528 no"? 3... m8 3. 2828.8 9; 38 £88 .95 :88 a. as“. 98 99 _hm. msmd mm... v.5 9.. .0 «<2 (.2 v a .CmOn—EOO $75 _8. 89. 8.. 09. .99., 2.2 22 m. a 80928 mxw _BLIFFIFE. 3: sz 2 . 528 DP. hnmd . 0...? and (.2 (.2 0 m tmgbblmmm. 8.. .Nbd. mad 00¢ mvdm (.2 (.2 mm m twOa—ZOO WIw 8.. .390. and 3d main (.2 (.2 N. a twOQEOU wIm No. no.9 m..o. an... deN (2 (.2 h. m twOaEOO wIm 5.. coin mod 9.» mwdm (.2 $2 \. a #502200 9.5 FFFE ..m (.2 (.2 m m tmohfibbbmm. .8 B E. .86. 3:5 .56. .8 man... .82. t. 2:: a. .5382. as. m 5.289 25.85. «sum... 5...; 598.. mus—8.. 9589... .38... 3.39.30 . man .5 9 8:89.30 9.5980 n0..< \mfi. mflm .8. 28.31530 .35 3am— b.u:on— been :35 2.5.59. an 03¢... APPENDIX D Sintered Density Measurements 100 able 29: Sintered Measurements for the Three Condition/1m T in in Water ‘YYEQQ‘. in Water ConditioerBOOC T Condition/1m SHS TiBJAleoa-SG Temperature 203 in in Water in Water Condition/1800C SHS TiBjAlcoa-SG Temperature in Water in Water in in Water in Water in Water Condition/1m SHS TiBJAKP-SO Temperature A120, 1 74 .83 101 APPENDIX E Conductivity Measurements 102 Table 30: Conductivity Measurements Direction SHS '1'in Alcoa SHS TiB2] AKP— Green Body Conductivity on Sample SHS Composite 86 A120, 50 A1203 ms MWmctions No Conductivity No Conductivity No Conductivity General Sintered Body Direction SHS '11le Alcoa SHS '1'in AKP- Conductivity on Sample SHS Composite 86 A1203 50 A1203 All Processing CEHHI'ons All (firedions Conductive uctive uctive e: erednié to m Specific Sintered Body Conductivities Ma (1700 Direction 511an Alcoa SHS 1131/ AKP- °C) on Sample SHS Composite 56 “2°: 50 A1203 ~l-"EG Squace 0.2 0.2 "' Across broadest point of sample 1 .3 0.2 0.2 pH 4 u ce 0.2 " 0.2-1.8 Across broadest point ofsample 0.7-42 0.3 3.0 pH 7 or 7.5 urfaoe 0.2 0.1-‘0: 0.3-9k“ Across broadest point of sample 1.1-9kfl' 0.2 0.2-6 m fidfice 0.2 0.1 no data Across broadest point of sample 0.4-3.5 varies 0.5-1040 no data 'Fluctuates - multimeter will not come to rest top surface had light and dark areas; multimeter readings ranged from 0.1-0.9 but went as high as 162.47 and down to 137+ mulfiméfer will not come to rest I variation over top surface: matte black 0.6. grey powdery 7.4. mafia black to grey 72.1; bottom 0.2 Specific Sintered Body Conductivities Ma (1800 Direction sns “my Alcoa sns my ma- °C) on Sample SHS Composite 56 A1203 50 A1203 PET Sfiraoe 0.3-1.1 0.2 None Across broadest point olsample 0.5-2.1‘ 0.4 2.2 pH 4 Surface 0.3—0.9 3.4‘ 3.3-4.0 Across broadest point ofsample 0.8-4.1’ 5.0’ -1 (very smelt. rinegular shaped pH 7 or 7.5 Surtace 0.2 sample) 3.4‘ Across broadest point of sample 0.6-4.1’ 1.5’ 2.4’ 2.9 (very small pH 8 or 9 Surface 0.5 0.2 sample) Across broadest point of sample 0.4 J_0.5 1.2 ’Fluctuates-multimeter will not come to rest 103 APPENDIX F Microhardness Measurements 104 Table 31: Microhardness Measurements (Vickers (HV)). Composite System SHS AKP-50 ALCOA mm“! 5/17; AVG 1109; Cum" PEG 1700 C NO DATA 270 STD DEV 0/5 3/15; 874 AVG; 90 1800 C NO DATA STD DEV NO DATA 1/12; 1382 "AVG"; 0 pH 4 1700 c STD DEV 0/6 0/8 5/15; 913 AVG; 222 5/20; 679 AVG; 368 1800 c NO DATA STD DEV STD DEV 2/15; 1426 AVG; 34 3/15; 901 AVG; 126 pH 7 or 7.5 1700 c STD DEV NO DATA STD DEV 5/20; 915 AVG; 356 4/19; 846 AVG; 238 10/20; 860 AVG; 1800 C STD DEV STD DEV 293 STD DEV 3/16; 633 AVG; 224 8/20; 747 AVG; 351 pH 8 or 9 1700 c NO DATA STD DEV STD DEV 10/26; 974 AVG; 1800 c NO DATA N/A 234 STD DEV 11/54; 1892 AVG; None Hot Pressed 175.1 STD DEV N/A N/A 'Data: valid measurements/attempted measurements (# I if); average of valid #’s (AVG); standard deviation for valid #’s (STD DEV); Note that HV =GPa x 102 105 APPENDIX C Porosity Measurements from Backscatter SEM Micrographs 106 Reconstruction of three-dimensional information about the pore structure was determined by a direct a lineal analysis of backseatter SEM micrographs. This direct method was sufficient for estimations to compare between micrographs, but was not as detailed as would be expected by instrumental analysis. The definition of porosity was [EMSE 1986, p. 3832]: LP m ‘2‘” where Lp and L_, are the total lengths of lines lying in pores and matrix of a series of lines across the micrograph (Figure 23). : " ‘ » - H g Figure 23: Backseatter SEM micrograph with lineal analysis, after EMSE [1986, p. 3832] Although it was of no consequence whether the lines were regularly or randomly distributed, a regular pattern is typical of instrumental analysis. and was used in these direct measurements. Further, this type of analysis is independent of magnification [EMSE 1986, p. 3832], which was convenient since micrographs of various origins were compared in this study. 107 Table 32: Porosity Measurements from Backscatter SEM Micrographs Porosity (a) s = L,/(L,+L,) Composite Recipe Processing Condition SHS {'TiB,/Al,0,} PEG (Figure 2101)) Line 1 Line 2 Line 3 Line 4 Lp (mm) Ls (mm) Lp (mm) Ls (mm) Lpunm) Ls (mm) Lp (mm) Ls (mm) 0 55 ll 17 18 18 2 48 2 3 2 75 8 6 5 l I 10 3 4 12 18 6 2 3 13 1 22 7 5 4 2 6 3 20 5 8 24 84 17 92 39 7O 23 86 108 109 109 109 s = 23.68% SHS {TileAl103} pH 4 (Flgure 21(b)) Line 1 Line 2 Line 3 Line 4 LP (mm) L, (mm) LptmIn) L, (min) L9 (mm) L: (mm) Ln (mm) L, (mm) 30 42 5 6 11 19 16 27 5 12 8 31 1 13 58 1 l 6 8 57 1 22 6 7 35 65 26 74 12 89 16 85 100 100 101 101 6 = 22. l4°/o SHS ff 13:/A1203} pH 7 (Film 21(9)) Line 1 Line 2 Line 3 Line 4 Lp (mm) L11(n11n) Lp(1'r1m) Ls (mm) Lp (mm) Ls (mm) I-'p (mm) Ls (mm) 2 25 12 7 15 2 17 47 35 15 3 8 3 56 5 5 7 12 7 6 l 2 15 l l l l l 7 18 8 5 3 5 3O 2 6 ll 4 55 52 34 73 39 68 42 66 107 107 107 108 6 = 39.639/0 108 SHS {TiB,/A1,0,) pH 9 (Figure 21(d)) Line 1 Line 2 Line 3 Line 4 Lp (turn) Ls (mm) Lp (min) L: (mm) Lp (mm) L: (mm) Lp (min) Ls (mm) 19 10 6 5 2 l6 7 44 14 22 8 63 10 10 6 4 10 23 1 1 3 5 15 7 24 7 9 7 3 6 30 10 5 4 2 20 7 6 50 64 42 76 23 91 37 77 114 118 114 1 14 a = 33.04% SHS TileAKP 50 A50, PEG (Figure 21(e)) Line 1 Line 2 Line 3 Line 4 LP (mm) Ls (mm) Lptmrn) Ls (mm) LNM) Ls (mm) Loom» Litmml 7 10 5 5 4 15 5 43 76 10 61 2 67 10 12 12 5 23 7 86 15 78 6 87 15 78 93 93 93 93 a = 11.56% SHS Tug/AKP so A110, pii 4 (Figure 21(1)) Line 1 Line 2 Line 3 Line 4 Lorain) L-(mm) Loin-m) Lin-uni LNM) L- (m) LPtIIun) L, (m) 10 8 7 54 10 2 4 32 9 7 10 5 5 10 5 l9 6 31 15 10 20 4 25 7 ll 5 21 2 2 8 32 59 32 59 30 61 13 78 91 91 91 91 8 = 29.40% SHS Tug/AKP so AI,O, pH 7.5 (Figure 21(g)) Line 1 Line 2 Line 3 Line 4 L01mm) L, (m) Lptmm) Lurmm) LNM) Lsrmm) Lpimm) L: (m) 20 51 l 12 8 5 5 9 4 9 4 20 9 28 6 7 7 2 30 7 30 3 41 11 ll 4 2 6 12 24 67 18 73 24 67 16 75 91 91 91 91 E = 22.530/0 109 sus TiB,/AKP 50 A50, pH 8 (Figure 2101)) Line 1 Line 2 Line 3 Line 4 LPtrnIn) Ls (mm) Lptmrn) Lstmm) LP (mull Luann) LPtIMI) Lilmm) 8 65 3 5 3 15 7 36 3 15 9 l9 3 70 13 20 55 15 ll 80 12 79 6 85 20 71 91 91 91 91 a = 13.46% sus TiB,/A1eoe SG 141,0, PEG (Figure 21(i)) Line 1 Line 2 Line 3 Line 4 Lp(mrn) Ls (mm) Lp(mm) l-’s(mm) Lp (min) Ls (mm) Lp(mm) l~‘s(mm) 4 l3 3 15 2 12 3 41 4 16 l 20 7 21 5 l7 1 18 1 20 6 12 6 42 2 10 6 18 7 15 2 17 6 13 2 l8 2 18 l 10 10 7 15 99 18 96 24 88 14 100 114 114 112 114 a = 15.64% SHS TiB,/Alcoa SG Ago, pH 4 (Figure 21(1)) Line 1 Line 2 Line 3 Line 4 Lp (mm) Ls (mm) Lp(ri'irn) I-’ii(mm) Lp (mm) Ls (mm) Lp(mm) L8(mm) 3 8 1 l3 4 l7 3 2 1 5 l 4 l 10 l 12 1 52 95 1 33 l 22 2 4 5 35 l 44 l 10 8 2 15 4 9 ll 13 12 101 2 112 ll 103 8 106 113 114 114 114 6' = 7250/0 110 SHS TileAIcoa 86 A110, pH 7 (Figure 21(k)) Line 1 Line 2 Line 3 Line 4 I4p (mm) Ls (mm) Lp(mm) Luann) Lp(rnm) Lr(mm) Lptmru) Lstmm) 3 5 2 5 1 3 4 5 2 32 2 32 l 6 I 4 l 23 1 70 4 60 4 32 1 36 2 1 5 2 18 11 5 15 5 3 3 2 2 4 l 3 1 25 4 3 7 107 5 109 16 98 19 94 114 114 114 113 a = 10.33% SHS TiB,/Alcoa SG A120, pH 8 (Figure 21(1)) Line 1 Line 2 Line 3 Line 4 LPtmml Ls (mm) Lptmm) Litmm) Lotion!) Lit-um) Lptmm) LItmm) 1 31 1 3 4 15 2 12 2 31 1 6 2 65 4 29 1 6 3 16 28 2 48 1 20 2 22 17 21 2 35 23 5 109 9 105 6 108 8 106 114 114 114 114 s = 6.14% l-lotPressed "Continuous" Siis {TiB,/Al,0,} Microstructure Line 1 Line 2 Line 3 Line 4 Lp(mm) Ls (mm) Lp(mm) Lstrnrn) Lptmm) L8(mm) Lp(nun) LHmm) 1 16 7 5 15 52 3 20 4 28 1 5 2 91 6 10 6 17 4 5 14 15 4 47 2 3| 6 29 8 5 35 6 45 3 5 6 4 41 4 23 56 2 4 3 2 4 34 2 10 17 22 19 178 53 144 31 166 24 172 197 197 197 196 6‘ = 16.14% 111 Table 33: Summary of Lineal Analysis Data for Porosity Measurements from Backseatter SEM Micrographs Processing Condition SHS {TiB1/A1103} SHS TiB2/AKP 50 A110, SHS TileAlcoa SG A120, PEG 23.7% 1 1 .6% 15.6% Dispersion 22.1% 29.4% 7.3% Coagulation 39.6% 22.5% 10.3% Heterocoagulation 33.0% 13 .5% 6.1% Hot Pressed 16.1% N/A N/A 112 IIIIIIIIIIIIIIIIIIIII iiiiiii‘i \1W\\\\\\\\\\\\\i\\1\ . l 3 1293 02318 804 11M ,