

THESIS 3 2602

This is to certify that the

dissertation entitled

THE TOTAL SYNTHESIS OF THE ASSIGNED STRUCTURE OF AMPHIDINOLIDE A

presented by

Lamont R. Terrell

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Date August 17, 2001

MSU is an Affirmative Action/Equal Opportunity Institution

0-12771

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

THE TOTAL SYNTHESIS OF THE ASSIGNED STRUCTURE OF AMPHIDINOLIDE A

Ву

Lamont R. Terrell

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

ABSTRACT

THE TOTAL SYNTHESIS OF THE ASSIGNED STRUCTURE OF AMPHIDINOLIDE A

By

Lamont R. Terrell

We initiated a synthetic venture aimed at the construction of the antileukemic macrocycle amphidinolide A (1). A synthetic target of considerable
interest, amphidinolide A has marked biological activity and several striking
structural features, including the contrast of lipophilic and hydrophilic moieties as
well as the presence of both conjugated and non-conjugated dienes. Issues
guiding our retrosynthetic plan, included the formation of multiple stereocenters
early in the synthesis, the development and evaluation of new synthetic methods,
and maintaining a flexible approach to the target molecule. Indeed, the
successful construction of the subunits in our first generation retro-analysis
allowed for the investigation of multiple coupling strategies and provided valuable
information as to which coupling sequence was employed in our final approach to
the total synthesis of amphidinolide A.

ACKNOWLEDGMENTS

I would like to express my deep appreciation to Professor Robert E.

Maleczka, Jr. for his guidance and encouragement throughout the course of my
Ph.D. studies. I could not have asked for a better advisor. I would also like to
thank Professors Greg Baker, Babak Bohran, Paul Mantica and Paul McCracken
for serving on my guidance committee. I wish to thank Professors William
Reusch, Mike Rathke and Peter Wagner for the helpful discussions throughout
my Ph.D. studies. I am very grateful to the NMR staff, Le Long Dinh and Kermit
Johnson, for without their support my work would be impossible.

On a personal note, I must thank my parents, Thelma and Larry, for encouraging me throughout my life. Without your support, all of my achievements and successes would not have been possible. This one is for you. Upon my arrival at MSU, I only had one family but upon my departure I have been blessed with a lovely wife, Susan, and son, Tyrus. You both are the love of my life. I will be forever grateful for you'll acceptance and understanding of the long hours that I spent in the lab. I will make it up.

Thanks to all my colleagues in Professor Maleczka's group for their friendship and help, especially Joseph Ward and Feng Geng, who have worked so hard to finish the total synthesis of amphidinolide A.

I would like to thank all my basketball buddies from Tuesday mornings and Friday afternoons. It was fun. If you'll practice a little harder, maybe one day you will win.

TABLE OF CONTENTS

LIST OF TABLES	V
LIST OF FIGURES	vii
LIST OF SCHEMES	viii
LIST OF ABBREVIATIONS	xiii
INTRODUCTION AND PRIOR WORK	1
CHAPTER 1 1 ST GENERATION APPROACH – SYNTHESIS OF FRAGMENTS Synthesis of Fragment A D-glyceraldehyde Acetonide Approach Triol Approach Payne Rearrangement Approach Improved Synthesis Synthesis of Fragment B Synthesis of Fragment C Synthesis of Fragment D	6 7 8 9 16 18 21 22
CHAPTER 2 COUPLING AND ELABORATION OF 1 ST GENERATION SUBUNITS Coupling of Fragments A and B Hydrostannylation of Skipped Enyne and Subsequent Cross-Coupling Hydrolysis of Advanced Intermediates	24 24 31 39
CHAPTER 3 2 ND GENERATION APPROACH – APPLICATION OF RCM Total Synthesis of "Z"-amphidinolide A Total Synthesis of the Assigned Structure of Amphidinolide A Total Synthesis of an Epimer of Amphidinolide A via L-arabitol	47 48 63 69
CHAPTER 4 3 RD GENERATION APPROACH – APPLICATION OF ALDER-ENE RXN	73
CHAPTER 5 INDIUM MEDIATED REACTIONS Investigation of an Indium Mediated Macrocyclization Generation of Vinyl Indanes and Subsequent Addition	78 78 82
CHAPTER 6 IN SITU FORMED BU₃SnH AND SUBSEQUENT HYDROSTANNYLATION	86

CONCLUSIONS	94
EXPERIMENTAL SECTION	95
Materials and Methods	95
REFERENCES AND NOTES	240

LIST OF TABLES

TABLE 1. Cytotoxicity Data of Various Amphidinolides

LIST OF FIGURES

FIGURE 1. Retrosynthetic Analysis of Amphidinolide A	3
FIGURE 2. Felkin-Ahn Model	24
FIGURE 3. Diene ABCD	38
FIGURE 4. Acetal Hydrolysis By-products	42
FIGURE 5. Semi-symmetrical Intermediate	45
FIGURE 6. Hoveyda's Catalyst	66
FIGURE 7. Possible Structure of Amphidinolide A or its enantiomer	68

LIST OF SCHEMES

SCHEME 1.	Several Amphidinolides	2
SCHEME 2.	Williard's Approach	4
SCHEME 3.	Pattenden's Model Study	5
SCHEME 4.	Pattenden's Retro-analysis	5
SCHEME 5.	Amphidinolide A Retrosynthetic Analysis	6
SCHEME 6.	Synthesis of 1,2-epoxy-3-ol (11)	7
SCHEME 7.	Synthesis of 2,3-epoxy-1-ol (14)	8
SCHEME 8.	Attempted Moffatt Epoxidation	9
SCHEME 9.	Model Payne Rearrangement	9
SCHEME 10.	Non-aqueous Payne Rearrangement	10
SCHEME 11.	Intramolecular Sulfide Displacement Investigation	11
SCHEME 12.	Synthesis of 2,3-epoxy-1-ol (21)	12
SCHEME 13.	Payne Rearrangement and In Situ Opening	12
SCHEME 14.	Isolation of 1,2-epoxy-3-ol (23)	13
SCHEME 15.	Optimization of the Oxidation and Wittig Olefination	14
SCHEME 16.	Preparation of α -acetoxy sulfide 27	15
SCHEME 17.	Isolation of Fragment A	16
SCHEME 18.	Streamline of Fragment A Synthesis	17
SCHEME 19.	Super-Hydride® Workup	17
SCHEME 20.	Attempts Toward Known Diyne 39	18
SCHEME 21.	Unsuccessful TMS-acetylide Displacement	19
SCHEME 22.	Phase Transfer Conditions Toward Subunit B	19

SCHEME 23.	Synthesis of Fragment B	20
SCHEME 24.	Synthetic Approach to Fragment C	21
SCHEME 25.	Synthesis of Fragment D (I)	22
SCHEME 26.	Isomerization of Acids	23
SCHEME 27.	Attempted Grignard Formation	24
SCHEME 28.	Coupling of Fragment B and Valeraldehyde	25
SCHEME 29.	Mechanism of By-product Formation	25
SCHEME 30.	Coupling of Fragment B and Aldehyde 33 (A)	26
SCHEME 31.	Synthesis of the PMB Derivative of Fragment A	27
SCHEME 32.	Diastereoselective Coupling of Fragment B and Aldehyde 58	28
SCHEME 33.	Optimization of Chelation Addition	29
SCHEME 34.	Investigation into the Deprotection of TMS-alkynes	31
SCHEME 35.	Pd-Mediated Hydrostannylation	32
SCHEME 36.	Attempted Bromo-alkyne Synthesis	32
SCHEME 37.	PMB Protection of Model Skipped Enyne	33
SCHEME 38.	Attempted Hydrozirconation of TMS-alkynes (I)	34
SCHEME 39.	Attempted Hydrozirconation of TMS-alkynes (II)	34
SCHEME 40.	Attempted Hydroboration of Skipped Enyne 65	35
SCHEME 41.	Stille Cross-coupling of Model System	36
SCHEME 42.	Pd-mediated Hydrostannylation of Enyne 68	36
SCHEME 43.	Synthesis of Fragment ABD	37
SCHEME 44.	PMB Protection of Fragment AB	38
SCHEME 45.	Hydrolysis of ABD Ester 70	39

SCHEME 46.	TBS Protection of Fragment AB	40
SCHEME 47.	Acetal Hydrolysis of Fragment AB Derivatives	41
SCHEME 48.	Functionalization of AB triol 78	43
SCHEME 49.	Hydrolysis of Early Intermediates	44
SCHEME 50.	Hydrolysis of Acetal 54 to give Diol 84	45
SCHEME 51.	Attempted Fragment B Displacement	46
SCHEME 52.	2 nd Generation Retrosynthetic Analysis	47
SCHEME 53.	Selective Protective Group Functionalization of Diol 84	48
SCHEME 54.	PMB Protective Investigation of 2° Alcohol 87	49
SCHEME 55.	Vinyl Magnesium Bromide Addition (I)	50
SCHEME 56.	Conversion of Phenyl Sulfide 89 to Aldehyde 95	51
SCHEME 57.	Vinyl Magnesium Bromide Addition (II)	51
SCHEME 58.	Preparation of E-vinyl Stannane 102	52
SCHEME 59.	Cross-coupling of Vinyl Stannane 102 and (Z)-vinyl lodide 300	52
SCHEME 60.	Attempted RCM (I)	53
SCHEME 61.	Preparation of RCM acyclic diene 107	53
SCHEME 62.	Preparation of Alcohol 109	54
SCHEME 63.	Preparation of Alcohol 109 via D-arabitol	55
SCHEME 64.	Vinyl Magnesium Bromide Addition (III)	56
SCHEME 65.	Preparation of Aldehyde 122	56
SCHEME 66.	Preparation of (E)-vinyl Stannane 125	57
SCHEME 67.	Recycling of 1-bromo-alkyne by-product	58
SCHEME 68.	Cross-coupling of Vinyl Stannane 125 and (Z)-vinyl lodide 300	58

SCHEME 69.	Attempted RCM of Diene 126	59
SCHEME 70.	Preparation of (Z)-macrocycle 127 via RCM	60
SCHEME 71.	PMB Deprotection Investigation (I)	60
SCHEME 72.	PMB Deprotection Investigation (II)	61
SCHEME 73.	Synthesis of the (Z)-amphidinolide A analog	62
SCHEME 74.	Cross-coupling of Vinyl Stannane 125 and (E)-vinyl lodide 301	63
SCHEME 75.	RCM of Diene 136 to give Truncated Ketone	64
SCHEME 76.	TMS Protection of RCM Diene	64
SCHEME 77.	Dimerization of Diene 138 via RCM	65
SCHEME 78.	RCM of Diene 136 to give (E)-macrocycle 140	65
SCHEME 79.	Synthesis of the Assigned Structure of Amphidinolide A	67
SCHEME 80.	Preparation of RCM Substrate via L-arabitol (I)	69
SCHEME 81.	Preparation of RCM Substrate via L-arabitol (II)	70
SCHEME 82.	Preparation of RCM Substrate vial L-arabitol (III)	71
SCHEME 83.	Preparation of Diene 162 and Subsequent RCM	71
SCHEME 84.	Synthesis of 166, an Isomer of Amphidinolide A	72
SCHEME 85.	3 rd Generation Retrosynthetic Analysis	73
SCHEME 86.	Preparation of the Alder-ene Ruthenium Catalyst	74
SCHEME 87.	Preparation of Alder-ene Vinyl Stannane 174	74
SCHEME 88.	Cross-coupling of Vinyl Stannane 174 and (E)-vinyl lodide 302	75
SCHEME 89.	Ruthenium Mediated Alder-ene Cross-coupling Investigation	76
SCHEME 90.	Ru-Mediated Alder-ene Cycloisomerization Investigation	76
SCHEME 91	Indium Mediated Cyclization	78

SCHEME 92. Proposed Stepwise Indium Diallylation	79
SCHEME 93. Retrosynthetic Analysis of Model Macrocycle	79
SCHEME 94. Synthesis of Model Vinyl Iodide 177	80
SCHEME 95. Synthesis of Model Vinyl Stannane 178	80
SCHEME 96. Cross-coupling of Vinyl Stannane 178 and (Z)-vinyl lodide 177	81
SCHEME 97. Indium Mediated Cyclization	82
SCHEME 98. Tin – Indium Transmetallation	83
SCHEME 99. In Situ Bu ₃ SnH and Subsequent Hydrostannylation (I)	87
SCHEME 100. In Situ Bu ₃ SnH Stoichiometric TBAF	88
SCHEME 101. In Situ Bu ₃ SnH and Subsequent Hydrostannylation (II)	90
SCHEME 102. <i>In Situ</i> Bu ₃ SnH via Red-Sil	91
SCHEME 103. <i>In Situ</i> Me ₂ SnH	92

LIST OF ABBREVIATIONS

Ac acetyl

Acac acetylacetonate

AIBN 2,2'-azobisisobutyronitrile

AgNO₃ silver nitrate

aq aqueous

CH₂Cl₂ dichloromethane

CI chemical ionization

CSA camphorsulfonic acid

Cy cyclohexyl

DCC dicyclohexylcarbodiimide

DBU 1,8-diazabicyclo[5,4,0]undec-7-ene

DIAD diisopropyl azodicarboxylate

DIBAL diisobutylaluminum hydride

DMAP 4-(dimethylamino)pyridine

DME dimethoxyethane

DMF N,N-dimethylformamide

DMSO dimethyl sulfoxide

El electric ionization

eq equation

FAB fast atom bombardment

hr hour

HMPA hexamethyl phosphoramide

HRMS high resolution mass spectrometry

HWE Horners-Wadsworth-Emmons reaction

IMES-H₂ 4,5-dihydro-1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene

KHMDS potassium bis(trimethylsilyl)amide

LiHMDS lithium bis(trimethylsilyl)amide

m-CPBA *m*-chloroperbenzoic acid

mL milliliter

mmol millimole

MS molecular sieves

NaHMDS sodium bis(trimethylsilyl)amide

NBS N-bromosuccinimide

NMP N-methyl-2-pyrrolidinone

NOE nuclear Overhauser effect

Ph phenyl

PMB p-methoxybenzyl

RCM ring closing metathesis

rt room temperature

TBAF tetrabutylammonium fluoride

TBS *t*-butyldimethylsilyl

THF tetrahydrofuran

TMS trimethylsilyl

PTSA p-toluenesulfonic acid

Introduction and Prior Work:

Marine microalgae are of considerable interest as new promising sources of bioactive substances. The amphidinolides (A-V),¹ isolated by Kobayashi from the marine dinoflagellate *Amphidinium sp*, represent a novel and significant class of natural products which originate from such algae. The amphidinolides have marked biological properties especially activity against L1210 marine leukemia cells and human epidermoid carcinoma KB cells in vitro as summarized in Table

Table 1 – Cytotoxicity Data of Various Amphidinolides

Amphidinolide	lactone ring size	Cytotoxicity (IC ₅₀ , µg/ml)	
		L1210	KB
Α	20	2.0	5.7
J	15	2.7	3.9
Κ	19	1.65	2.9
Р	15	1.6	5.8
N	26	0.00005	0.0006

1. Amphidinolide A (1), Scheme 1, isolated in 1986 was the first polyolefinic macrolide of this unique series of compounds to be identified.² Since 1986 there have been over twenty-two of these unique macrolides isolated with the complete stereochemistry of only a few elucidated. The absolute stereochemistry³ of amphidinolide A was elucidated in 1991 by one- and two-dimensional NMR; however, to date the proposed stereochemistry has not been verified by X-ray crystallography. In addition to its impressive anti-cancer activity, the 20-membered lactone (1), has several striking structural features, including the

Scheme 1. Several Amphidinolides

presence of lipophilic and hydrophilic moieties as well as the presence of exocyclic olefins and both conjugated and non-conjugated dienes. Because of these structural and biological features amphidinolide A is a current target for total synthesis.⁴ To date no total synthesis of amphidinolide A has been reported. Amphidinolides J, K, and P have been synthesized by Williams.⁵

Although Mother Nature supplies us with millions of molecules, the quantity isolated is often only minute (< 1 mg). For detail biological studies, which are needed for understanding the mode of action of the target compound, the minute quantities isolated are not sufficient. Since the natural source is often not the most efficient means of obtaining the target molecules, synthetic efforts are needed. The total synthesis of natural products also allows for structure-activity relationship (SAR) studies. Often new synthetic methodology is developed or expanded to assist in the synthetic quest. In our approach to amphidinolide A (Figure 1), we were interested in the development or application

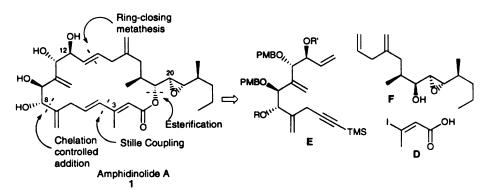


Figure 1. Retrosynthetic Analysis of Amphidinolide A

of organometallic reactions. Essential in the design of this synthesis was the generation and reaction of vinyl organometallics.

For the synthesis of vinyl tins, it was proposed that palladium-mediated hydrostannylations be investigated. Two aims of such a study would be to determine what effect the presence of the non-conjugated olefin would have on the hydrostannylations and (b) could such a palladium-catalyzed reaction be developed into a single pot stannylation-Stille coupling? Besides adding expediency to the synthesis, a one-pot sequence could minimize side reactions such a protiodestannylation which often occurs upon workup and isolation of vinylstannanes. Besides using the total synthesis of amphidinolide A to developed new methodology, we were also interested in the application of recently developed novel chemical transformations. In particular, ruthenium based macrocyclizations were investigated in our second and third generation approach to the natural product. The first ruthenium-based macrocyclization to be investigated was the ring-closing metathesis (RCM) reaction, which has developed into a powerful synthetic tool with the advent of well-defined carbene

catalysts by Grubbs.⁷ In our third generation approach, an intramolecular variant of an Alder-ene type cross-coupling⁸ was investigated.

To date only two other groups in addition to ours have reported synthetic efforts towards amphidinolide A. The first was Williard in 1989.⁹ Williard's work

Scheme 2. Williard's Approach

was prior to the stereochemical elucidation and therefore in his approach (Scheme 2) to the $C_{10}-C_{19}$ fragment 2, methodology was developed to prepare all possible stereoisomers of 2 in order to make an unambiguous assignment of the stereochemistry. From his reaction sequences, the other stereoisomers could be readily available by changing chirality of the starting materials. The optically pure ester 3 is readily available as either enantiomer from (+)- or (-)-tartaric acid. Sulfone 4 is prepared from commercially available S-(+)-methyl-3-hydroxy-2-methylpropinate, whose enantiomer is also commercially available. More recently, Williard presented a poster at the 221st ACS National Meeting in San Diego detailing his current synthetic approach to amphidinolide A.¹⁰

The second group to take on the task of synthesizing amphidinolide A was Pattenden. In 1994, Pattenden published his first of two reports on amphidinolide A. In his first report (Scheme 3) a model study was undertaken to

investigate the feasibility of a cross-coupling macrocyclization as a key step in the construction of (1). In particular, the chemical transformation investigated

Scheme 3. Pattenden's Model Study

was a palladium mediated intramolecular coupling of an alkenyl stannane and an allylic halide. The methodology proved moderately successfully when applied to the model amphidinolide A system 5. The desired macrocycle 6 was obtained in a 38% yield along with the Z-isomer (6%) and the allylic isomer (2%). Pattenden

outlined his actual synthetic
approach (Scheme 4) toward the
natural product, in a second
publication. The underlying theme
of the retro-analysis is the
application of the above-mentioned

Scheme 4. Pattenden's Retro-analysis

 $\rm sp^2-sp^3$ coupling methodology. In these studies he prepared the properly functionalized $\rm C_7-\rm C_{13}$ ene-tetra-ol unit 7. This subunit was prepared from a known readily available derivative of D-glucose in 13 linear steps with an overall yield of 2%.

Chapter 1. 1st Generation Approach – Synthesis of Fragments

Our initial retrosynthetic breakdown of amphidinolide A (Scheme 5) afforded four fragments **A** – **D** and illustrated the main synthetic challenges of this molecule. Several issues guided our retrosynthetic plan. These included the formation of multiple stereocenters early in the synthesis, the development and

Scheme 5. Amphidinolide A Retrosynthetic Analysis

evaluation of new synthetic methods, and maintaining a flexible approach to the target molecule. Furthermore, the successful construction of subunits **A** – **D** would allow us to simultaneously investigate multiple coupling strategies, providing valuable information as to which coupling sequence should be employed in our final elaboration of amphidinolide **A**. The overall synthesis was envisioned to involve the independent couplings of common precursor **B** to molecules **A** and **C**, followed by the coupling of the resultant products.

Compound **D** was expected to be added last via a Stille coupling ¹² followed by macrolactonization to close the ring.

A. Synthesis of Fragment A

In our retro-synthetic analysis of fragment **A**, the 1,2-epoxy-3-ol **11** is a key advanced intermediate and thus several routes towards its synthesis were investigated. In all cases, the starting chiral source was D-mannitol.

1. D-Glyceraldehyde Acetonide Approach

D-glyceraldehyde acetonide is readily available via the oxidative cleavage of the bisisopropylidene acetal of mannitol. The success of the oxidative cleavage in our hands depended on reagent choice. Following a procedure, which called for sodium periodate as the oxidant (Scheme 6) the desired aldehyde 9 was isolated in low yields (~37%). Although the setback was early in the synthesis, alternative oxidants were probed. With the use of lead (IV)

Scheme 6. Synthesis of 1,2-epoxy-3-ol (11)

tetraacetate as the oxidant, glyceraldehyde acetonide **9** was obtained in a moderately good yield (53%). Addition of vinyl magnesium bromide to the isolated aldehyde was not stereoselective. As a result, secondary allylic alcohol **10** was isolated as a mixture of diastereomers in 80% yield. The diastereomeric mixture was not problematic strategically since this stereocenter would be lost in the ensuing oxidation and olefination. With isolation of allylic alcohol **10**, the target 1,2-epoxy-3-ol **11** was only a Sharpless asymmetric epoxidation away. This one step proved to be quite challenging. In an effort to make the purification and identification of the epoxy alcohol easier, the epoxidation was run under

kinetic resolution conditions with (-)-DIPT as the chiral ligand. Unfortunately, epoxy alcohol 11 was isolated in very low yields (~5%). Attempted optimization of the reaction i.e. distillation of reagents, addition of molecular sieves, stoichiometric reagents, or increased reaction temperature, proved fruitless. Furthermore, upon purification of the reaction mixture, very little starting allylic alcohol was recovered. These results were quite baffling since the epoxidation of the enantiomer of 10 under kinetic resolution conditions is reported to occur in a 56% yield.¹⁴ One possible explanation for this phenomenon is that the tartrate-allylic alcohol complex is an unfavorable mismatch case and thus unproductive complexes are formed. Although the yield was not synthetically useful, the isolation of epoxy alcohol 11 was beneficial since spectroscopic data were obtained.

2. Triol Approach

Since the above route to epoxy alcohol 11 was not preparatively viable, an indirect route to **A** through known triol 15¹⁵ was also investigated. The synthesis of triol 15 (Scheme 7) began with the oxidative cleavage of 8.¹⁶ The newly

Scheme 7. Synthesis of 2,3-epoxy-1-ol (14)

generated aldehyde **9** was then subjected to an *in situ* Horners-Emmons olefination to give allylic ester **12**. DIBAL reduction of the ester provided allylic alcohol **13** in 85% yield over three steps. Sharpless asymmetric epoxidation of **13** gave 2,3-epoxy-1-ol **14** in a 56% yield with complete stereocontrol as judged

by ¹H NMR. Although the epoxide opening of **14** with aqueous NaOH is a known procedure, in our hands the procedure was nonreproducible (Scheme 8). We believed that the solubility of triol **15** in water was the major reason. In efforts to optimize the reaction, a biphasic system (*t*-BuOH / water) with a phase transfer catalyst (*n*-Bu₄NI) was employed, but to no avail. However, with a notion that triol **15** was formed but the isolation was problematic, the subsequent reaction

Scheme 8. Attempted Moffatt Epoxidation

with the Moffatt reagent to form the 1,2-epoxy-3-ol precursor was carried out on crude material. Unfortunately, upon purification of the reaction, the desired product was not isolated.

3. Payne Rearrangement Approach

It was found in the literature that non-aqueous Payne rearrangement 17 of epoxy alcohols often gives complementary results to the aqueous reaction. 18 In the aqueous case, epoxy alcohol 14 is the major isomer (>99%) after equilibration with alcohol 11 (Scheme 9). Unfortunately, in our case the minor isomer was the desired

Scheme 9. Model Payne Rearrangement compound, and therefore

non-aqueous conditions were

investigated (Scheme 10). Simply

Simpl

quenching the equilibrating alcohols (*t*-BuOK, *n*-Bu₄NI) with water or TMSCI gave inconclusive results after isolation and purification of products. Therefore,

at. The use of pivalolyl chloride as the trapping electrophile proved to be the most successful in terms of identification of isolated products.

Contrary to precedent, the "presumed" equilibration of epoxy alcohols 11 and 14 under non-aqueous conditions gave identical results as the aqueous Payne rearrangement.

quenching with other electrophiles was looked

Scheme 10. Non-aqueous Payne Rearrangement

Although the direct isolation of the 1,2-epoxy-3-ol 11 via the Payne rearrangement is not possible, Sharpless has developed a procedure which utilizes the Payne rearrangement to obtain the minor epoxide. ¹⁹ In an extensive study, he showed that exposure of 2,3-epoxy-1-ols to the equilibrating conditions of the Payne rearrangement can result in selective opening of the terminal epoxide upon the addition of t-butylthiol. It was found that the product distribution is affected by several factors including sodium hydroxide concentration, reaction temperature, and the rate of thiol addition. Upon exposure of 14 (Scheme 11) to the equilibrating conditions (0.5 M NaOH, 70 °C) and slow addition (~ 45 minutes) of t-butyl thiol, the expected diol 17 was isolated in good yields (75%). To obtain the desired 1,2-epoxy-3-ol (11), 17 must be selectively S-methylated (Me₃OBF₄) which is then followed by intramolecular displacement of methyl t-butyl sulfide by the in situ generated (NaH) neighboring oxygen anion. This sequence of reactions is worthy of additional comment. Due to the acid labiality of the acetonide, a proton scavenger was needed during the methylation step.

Upon substituting 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or 2,4,6-trimethylpyridine for 2,6-di-*tert*-butylpyridine, the material isolated after the addition of Me₃OBF₄ and NaH was either recovered starting material or unidentifiable mixtures presumably from acetal hydrolysis. When the reaction was repeated in the presence of the reportedly preferred 2,6-di-*tert*-butylpyridine, the desired epoxy alcohol was still not isolated. It is believed that the epoxy alcohol was decomposing during silica gel chromatography because TLC analysis suggested that a reaction was occurring. Based on the assumption that

Scheme 11. Intramolecular Sulfide Displacement Investigation

conditions: (a) DBU, Me₃OBF₄, NaH

(b) 2,4,6-trimethylpyridine, Me₃OBF₄, NaH

(c) 2,6-di-tert-butylpyridine, Me₃OBF₄, NaH

(d) (1) 2,6-di-tert-butylpyridine, Me₃OBF₄, NaH; (2) PivCl, pyridine

the epoxy alcohol **11** was unstable on silica gel, the crude "presumed" epoxy alcohol was subjected to a pivalolyl protection. Unfortunately, the desired protected epoxy alcohol was not isolated after purification. To alleviate the potential instability of 1,2-epoxy-3-ol (**11**), the acid labile isopropylidene protecting group was replaced with the more stable isopentylidene analog.²⁰

This synthesis began with the bisisopentylidene of D-mannitol via an approach which largely paralleled the above procedures for the preparation of Scheme 12. Synthesis of 2.3-epoxy-1-ol (21)

the isopropylidene analog. As illustrated in Scheme 12, bisisopentylidene 18 was oxidatively cleaved by KIO₄ and then subjected to an *in situ* Wittig olefination. DIBAL reduction of the resultant ester 19 provided allylic alcohol 20 in 85% yield over three steps. Asymmetric epoxidation of 20 gave 2,3-epoxy-1-ol 21 with complete stereocontrol. With the isolation of the isopentylidene variant of the 2,3-epoxy-1-ol, the previously problematic three step procedure aimed at obtaining the 1,2-epoxy-1-ol via the 2,3-epoxy-1-ol was investigated. Subjection of epoxy alcohol 21 (Scheme

13) to the Payne rearrangement conditions and slow addition of *t*-butyl thiol resulted in isolation of diol sulfide **22** in a 67% yield. Due to problems in isolating the isopropylidene 1,2-epoxy-3-ol

Scheme 13. Payne Rearrangement and *In Situ* Opening

analog, purification of the isopentylidene epoxide was not attempted until after oxidation and Wittig olefination. As such, diol sulfide 22 was selectively

S-methylated with Me₃OBF₄ in the presence of 2,6-di-tert-butyl-4-methyl pyridine and after TLC analysis indicated complete consumption of the sulfide NaH was added to generate the alkoxide for the intramolecular displacement. The assumed crude 1,2-epoxy-3-ol 23 was subjected to a Swern oxidation²¹ to give the apparent ketone 24, which was in turn subjected to Wittig olefination. These successive reactions did indeed give the desired allylic epoxide 25 (~10% overall vield) after purification by flash chromatography on basic alumina. After substantial experimentation, the overall yield of the three tandem reactions was increased to only ~20%. Unfortunately, a low yield at this stage of the synthesis was not acceptable, and therefore each individual step was investigated. As illustrated in Scheme 14, optimization of the S-methylation / intramolecular displacement procedure with diol sulfide 22 gave the 1,2-epoxy-3-ol (23) in reproducible yields of 75%. Obviously, the above results suggest that one or both of the latter Scheme 14. Isolation of 1.2-epoxy-3-ol (23) reactions in the three Me₃OBF₄ 2,6-di-t-butyl pyridine reaction sequence was

the reason for the

overall low yield.

then NaH (75%)

> Conditions: (a) (i)Swern, (ii) Ph₃PCH₂; 41% yield, 2 steps (b) (i) Dess-Martin, (ii) Ph₃PCH₂; 29% yield, 2 steps (c) (i) Doering-Parikh, (ii) Ph₃PCH₂; 25% yield, 2 steps

Therefore, the tandem oxidation/Wittig olefination procedure was investigated. When investigating the tandem reaction, a Swern, Dess-Martin,²² or Doering-Parikh²³ oxidation followed by subsequent Wittig olefination gave allylic epoxide 25 in 41%, 29%, and 25% yields, respectively. Since the oxidation/olefination tandem protocol is well established, and the above results are fairly consistent,

the olefination reaction was likely the low yielding step. This indeed turned out to be the case (Scheme 15) as the Doering-Parikh oxidation gave ketone **24** in an 80% yield. In our earlier Wittig olefination procedure, *n*-BuLi (1.1 equivalents) was the base used to form the ylide of methyltriphenylphosphonium bromide (1.1 equivalents). In our optimized procedure it was found that NaHMDS (5 equivalents) and excess methyltriphenylphosphonium bromide (5.4 equivalents) gave the desired allylic epoxide **25** in excellent yields (83%). As a note, we also believe that the addition of the ylide to the carbonyl is a fast step, but the breakdown of the 4-membered ring intermediate is slow because the starting

Scheme 15. Optimization of the Oxidatin and Wittig Olefination

(b) Dess-Marin periodanane, 24% yield

(c) TPAP, NMO, 0% yield

material is consumed within minutes. Yet, only upon extended reaction times (~3 hours) was exo-olefin **25** isolated in high yields. With the establishment of high yielding and reproducible procedures for the synthesis of these advanced intermediates, the synthesis of fragment **A** was carried forward.

As illustrated in Scheme 16, epoxide **25** was opened regioselectively with sodium benzenethiolate to give phenyl sulfide **26** in 65% yield. In preparation for a Pummerer rearrangement, oxidation of sulfide **26** with *m*-CPBA gave the corresponding sulfoxide which was immediately rearranged (Ac₂O, NaOAc, reflux).²⁴ This allowed for isolation of acetoxy sulfide **27** in 36% yield as a

mixture of diastereomers.

Acetoxy sulfide 27 is a masked aldehyde and upon reduction of the esters with DIBAL the aldehyde would be expected to be liberated

Scheme 16. Preparation of α -acetoxy sulfide 27

without epimerization of the α -stereocenter. In contrast, subjection of the acetoxy sulfides to DIBAL reduction did not give the desired aldehyde, but instead a product that probably is derived from a 5-endo cyclization of the highly reactive dianion intermediate.

To circumvent this highly reactive dianion intermediate (Scheme 17) the alcohol of phenyl sulfide 26 was protected as a silyl ether prior to oxidation and subsequent Pummerer rearrangement. It was found that the protection of alcohol 26 to give silyl ether 29 in 75% yield had to be carried out at –78 °C with TBSOTf in order to avoid a side reaction that occurred if the protection was carried out at room temperature and/or with bulkier silyl protective groups, i.e. BPS. Interestingly, at room temperature, a TBSOTf / i-Pr₂NEt solution could be used as a quench after the epoxide opening of 25 to give the desired silyl ether 29 (55%) along with unprotected alcohol 26 (36%) and recovered starting epoxide (9%) with no indication of side reactions. Exposure of sulfide 29 to m-CPBA gave sulfoxide 30 in near quantitative yield. The crude sulfoxide was subjected to the Pummerer rearrangement (Ac₂O, NaOAc, reflux) to give a

Scheme 17. Isolation of Fragment A

diastereomeric mixture of acetoxy sulfide **31** in a 40% yield. DIBAL reduction of acetoxy sulfide **31** led to the target aldehyde **33** (15%) along with the corresponding fully reduced product, alcohol **32** (14%).

4. Improved Synthesis

In efforts to streamline the synthesis of fragment **A**, we decided to open the equilibrating epoxy alcohols of the Payne rearrangement with thiophenol instead of *t*-butylthiol. This would directly set up the molecule for the ensuing Pummerer rearrangement. In practice (Scheme 18) this tactic provided sulfide **34** in a 69% yield. However, this synthetic approach can only be useful if the newly formed diol is selectively mono protected. Somewhat surprisingly, the C-2 hydroxyl could be mono protected with TBSOTf to give TBS ether **35**²⁵ in 69% yield along with disilylated material (10%) and unreacted diol (17%). A Doering-Parikh oxidation gave ketone **36** and subsequent reaction with Ph₃P=CH₂ (NaHMDS, Ph₃PCH₃Br) efficiently installed the exo olefin of **29**. After the quantitative oxidation of sulfide **29** with *m*-CPBA the Pummerer rearrangement of sulfoxide **30** was investigated. Instead of the harsh conditions of refluxing acetic

anhydride, a milder procedure utilizing a mixture of trifluoroacetic anhydride²⁶ and acetic anhydride in the presence of 2,6-lutidine at room temperature gave the desired diastereomeric mixture of acetoxy sulfide **31** in 80% yield. Unmasking of

Scheme 18. Streamline Synthesis of Fragment A

the aldehyde was accomplished in 70% yield by a lithium triethylborohydride (Super-Hydride®) reduction giving alcohol **32**. Subsequent Swern oxidation provided target aldehyde **33**.

It is worth noting that during the initial experiments on the Super-Hydride® reduction of **31** (Scheme 19) aqueous NH₄Cl workup led solely to the isolation of

an unhydrolyzed organoborane species (37) as indicated by a green flame test.²⁷ Given the resiliency of the organoborane to mildly acidic conditions, we

Scheme 19. Super-Hydride Workup

- (a) aqueous NH₄Cl; **37** [R₁=BR₂, R₂=TBS (95% crude yield)]
- (b) aqueous NaOH; 32 [R₁=H, R₂=TBS (49%) + 38 [R₁=TBS, R₂=H (25%)]
- (c) aqueous NH₄Cl, then glycerol; 32 [R₁=H, R₂=TBS (75%)]

attempted a basic workup. While treatment with aqueous NaOH did bring about complete removal of the boron, it also resulted in partial migration of the TBS group to the primary alcohol **38**. In the end, we found that a combined NH₄Cl/glycerol²⁸ workup afforded high yields of alcohol **32** without migration of the silvl ether.

This revised synthesis of fragment **A** involves a total of 11 steps from readily available bisisopentylidene **12** with an overall yield of 12%. Besides eliminating 2 steps, the revised synthesis eliminates the need to isolate the labile 1,2-epoxy-3-ol (**23**).

B. Synthesis of Fragment B

We anticipated the need for multigram quantities of subunit **B** as it is a common building block for both the upper and lower hemispheres of amphidinolide A. Somewhat surprisingly, this relatively simple molecule had yet to be described in the literature. With hindsight this should have suggested a nontrivial synthesis.

isolation of

(b) (i) n-BuLi (ii) CuCN (iii) propargyl bromide

trimethylsilylacetylene secured, the reaction to obtain divne 39 was investigated. Unfortunately, divne 39 was not isolated via the adapted literature procedure.²⁹ as well as, several variations. Scheme 21. Unsuccessful TMS-acetylide Displacement

42

displacement, a direct cuprate

With the failure of the copper

mediated Grignard

displacement was also investigated but with no success. Simultaneously, efforts were directed toward the displacement of both 2,3-dibromo- or 2-bromo-3iodopropene by either the lithium, sodium, or potassium TMS-acetylides (Scheme 21). However, neither changing the metal nor varying the reaction conditions gave fragment B.

Our next attempt at the synthesis of subunit B involved the addition of trimethylsilylacetylene to 2.3-dibromopropene under phase transfer conditions (Scheme 22).30 Disappointingly, these two reactants, which individually were efficiently employed in similar reactions, failed to couple.

Research efforts then Scheme 22. Phase Transfer Conditions Toward Subunit B returned to the use of trimethylsilylacetylide metal salt 80 % displacements of K₂CO₃ 2,3-dihalopropene but the metal 78 % Cul n-Bu₄NI salts were now converted to K₂CO₃ cuprate species as seen in Scheme 23. With the use of

CuCN, CuCl, and Cul as the copper source the formation of a cuprate species was not in question since copper salts are insoluble in THF while cuprates gave a homogeneous solution. The presumed cuprate species were unreactive toward 2,3-dihalopropene from –78 °C to 25 °C. Finally, after considerable experimentation, we discovered copper assisted Grignard conditions which ultimately provided gram quantities of **B** in 83% - 95% yield. For formation of the Grignard species of trimethylsilylacetylene heating (~55 °C) was found to be crucial. The reaction was then allowed to cool to room temperature after which CuBr was added. The reaction mixture was then heated to 50 °C, followed by the dropwise addition (~3 hours) of 2,3-dibromopropene. This sequence finally

resulted in the formation of subunit **B**.

Initially, we thought that the success of the reaction was due to the copper (I) source instead of the reaction procedure.

However, it was found that either CuCN or Cul could be substituted for CuBr with no lost in reactivity or yield. This

Scheme 23. Synthesis of Fragment B

TMS
$$\longrightarrow$$
 LI $\xrightarrow{\text{CuY}}$ $\xrightarrow{\text{CuY}}$ $\xrightarrow{\text{M}}$ $\xrightarrow{\text{M}}$

indicated that temperature modulation was key. Finally, the stability of fragment **B** proved to be a non-issue, as after several months of storage, **B** showed no signs of decomposition by ¹H NMR.

C. Synthetic Studies Toward Fragment C

Prior to our synthesis of fragment **C**, (S)-2-methylpentan-1-ol **47**³¹ was known. However, as we planned to employ an Evans aldol reaction to generate what would ultimately become the C-18 and C-19 asymmetric centers of amphidinolide **A**, it was decided that an iterative chiral auxiliary based approach to all of the stereogenic carbons in **C** would make for the most efficient synthesis of that fragment.

The synthesis of fragment **C** (Scheme 24) began with the preparation of the Evans' oxazolidinone chiral auxiliary **44**. Upon exposure and heating of the commercially available (1S,2R)-norephedrine HCl salt to K₂CO₃ and diphenyl carbonate, the desired oxazolidinone **43** was isolated in a 51% yield. The oxazolidinone was acylated by deprotonation with *n*-BuLi and subsequent

Scheme 24. Synthetic Approach to Fragment C

$$\begin{array}{c} \text{OH} \\ \text{NH}_3 \text{^+Cl} \\ \\ \hline \vdots \\ \text{CH}_3 \end{array} \begin{array}{c} 1. \ (C_6 \text{H}_5 \text{O})_2 \text{CO} \\ 2. \ K_2 \text{CO}_3 \\ (51\%) \end{array} \begin{array}{c} \text{NH} \\ \text{Me} \end{array} \begin{array}{c} 1. \ \text{Ph}^{\frac{1}{2}} \text{-} \text{Ph}^{\frac{1}$$

addition of propionoyl chloride gave the desired chiral auxiliary **44** in an excellent yield (97%). With the isolation of the chiral auxiliary, several asymmetric alkylations were investigated. Initially, alkylations were attempted with the

21

relatively unactivated electrophile, propyl chloride. These failed.³² Therefore, the chiral auxiliary was alkylated with allyl bromide or iodide, to afford **45** in a crude yield of 92%. The chiral auxiliary was oxidatively cleaved with H₂O₂ and LiOH to give recovered oxazolidinone **43** and acid **46**, which was immediately reduced with LiAlH₄ and subsequently hydrogenated to give (S)-2-methylpentan-1-ol **47**. The above series of reactions were run once, and therefore the yields are not optimized.³³

D. Synthesis of Fragment D

The known β -iodo acid **D** is readily available from ethyl 2-butynoate as illustrated in Schemes 25 and 26.34 The alkyne was added to a sealed tube containing hydriodic acid (48% aqueous) and heated to 110 °C. After 12 hours. the reaction was allowed to cool to room temperature at which time the crystalline carboxylic acid 48 which had precipitated from solution was filtered off. and the remaining filtrate which contained unhydrolyzed ester 49 (38%) was subjected to reaction conditions where the ester hydrolysis was nearly quantitative. This recycling protocol afforded β-iodo acid 48 in an 80% combined overall yield. In terms of Scheme 25. Synthesis of Fragment D (I) throughput, this process turned HI, H₂O, 110 °C (100%)out to be more efficient than running the reaction to 49 (38%) completion in a single pass.

As reported, isomerization of the double bond was achieved with heating at 135 °C. In our hands, the isomerization of (Z)-β-iodo acid **48** to the desired (E)-β-iodo

acid **D** was high yielding but only afforded a 3:1

E/Z ratio. The ratio consistently remained 3:1

even with prolonged heating or addition of aqueous HI. Fortunately, the isomers could be separated by careful flash chromatography on silica gel.

Scheme 26. Isomerization of Acids

Although the experimental procedure for obtaining β -iodo acids was straightforward, the "cis-trans" nomenclature assignment in the Le Noble communication is confusing and resulted in an early misinterpretation³⁵ as to which β -iodo acid, i.e. **48** or **D**, was initially obtained. This was not clarified until late into our synthetic venture. Therefore, all of our earlier work with the β -iodo acid was with the undesired (Z)-isomer. Our synthetic efforts toward the naturally occurring amphidinolide A (1), and its C₂ – C₃ Z-isomer analog will be presented.

Chapter 2. Coupling and Elaboration of 1st Generation Subunits

The successful construction of subunits **A-D** allowed us to simultaneously investigate multiple coupling strategies and in turn provided valuable information as to which coupling sequence would be employed in our final elaboration of amphidinolide A.

A. Coupling of Fragments A and B

magnesium turnings as

A chelation controlled addition of an organometallic derived from **B** to **A** was planned for the union of **A** and **B**. Organometals examined included organolithium, organomagnesium, and organozinc species. In our studies, the Grignard reaction proved to be the most successful. TBS-protected subunit **A** can not undergo chelation controlled addition; although the desired *threo*-diol could be obtained from Grignards if the addition occurs under the Felkin-Ahn model (Figure 2) with the vinyl appendage acting as the large Figure 2. Felkin-Ahn Model investigated in our early studies.

Prior to an investigation of the stereoselectivity of the nucleophilic addition, a reliable protocol for the formation of a metallated **B** species need to be established. As such, the formation of the Grignard reagent of fragment **B** was investigated. The vinyl

Scheme 27. Attempted Grignard Formation bromide was unreactive $\frac{B}{AB} = \frac{A}{AB} =$

24

apparent by the recovered halide. Therefore a more reactive form of magnesium was examined (Scheme 27). Rieke developed conditions to form a highly reactive Mg^o species through the reduction of magnesium salts.³⁶ Several attempts to generate the organomagnesium under these conditions were tried. The reduction of MgCl₂ with potassium metal showed characteristics traditional for Rieke conditions; however, upon isolation of the reaction mixture the Grignard formation was clearly incomplete (<1%) since vinyl bromide B was recovered. The reaction was futile even with the addition of NaI, an additive that is known to accelerate the formation of Grignard reagents from sluggish substrates such as alkyl fluorides.

Scheme 28. Coupling of Fragment B and Valeraldehyde

Although the lack of reactivity of fragment **B** under Grignard-forming conditions was discouraging, efforts at forming a metallated species continued.

After considerable experimentation a transmetallation protocol was discovered to give the Grignard (Scheme 28). First, vinyl bromide **B** was converted to the lithium derivative

Scheme 29. Mechanism of By-product Formation by a halogenmetal exchange

Scheme 29. Mechanism of By-product Formation

By a halogenmetal exchange

(t-BuLi, -78 °C).

Once formed, the

lithium derivative was converted into the magnesium species by transmetallation

with MgBr₂•Et₂O. Upon addition of valeraldehyde, two products were isolated in an excellent yield, the desired alcohol **50** (55%) and a by-product alcohol **51** (32%). The by-product (Scheme 29) comes about because the metallated vinyl species acts as a base and deprotonates the *t*-butyl bromide generated in the reaction mixture. The newly formed alkene is then deprotonated at the acidic allylic carbon by excess *t*-BuLi and the resultant anion adds to the aldehyde giving by-product **51**.

Although the above procedure was not optimized and gave a considerable amount of a by-product, the coupling protocol was tested with the amphidinolide A subunits. In practice the coupling of fragments A and B (Scheme 30) was not as clean as the model reaction. Furthermore, upon purification of the reaction

Scheme 30. Coupling of Fragment B and Aldehyde 33 (A)

mixture two separable diastereomers (1:1) were isolated indicating that there was no significant steric bias in this system. Besides not being stereoselective, the reaction also produced the undesired allylic addition product, as was seen in the model study. Several modifications to the reaction procedure were investigated to increase the stereoselectivity of the addition, and to eliminate or suppress the side reaction. To suppress the side reaction, the rate of addition of *t*-BuLi was increased and the order of addition of *t*-BuLi and vinyl bromide **B** was reversed. The latter proved to be the most successful. With the reverse addition of reagents, the transmetallation reagent (MgBr₂•Et₂O) had to be changed due to

several complications i.e. poor solubility and the addition of a solid. The new reagent of choice for the transmetallation was a toluene solution of dimethylzinc (ZnMe₂).³⁷ Secondly, given the poor stereoselectivity of the coupling with the TBS-ether derivative of aldehyde **A**, a more desirable chelating ether was needed. The PMB derivative of fragment **A** was chosen.

The PMB ether derivative of fragment **A** is readily available (Scheme 31) with slight modifications of our original synthesis of aldehyde **33**. Deprotection of TBS-ether **29** with TBAF (90%), followed by protection of the free hydroxyl as the PMB-ether (NaH, PMBCl, DMSO/THF) (85%) gave protected alcohol **54**. Analogous to the TBS series, oxidation of the sulfide to the sulfoxide **55** with *m*-CPBA (100%), followed by subjection of the crude mixture to a Pummerer rearrangement (TFAA, Ac₂O, 2,6-lutidine) (80%) and reduction of the

Scheme 31. Synthesis of the PMB Derivative of Fragment A

diastereomeric α-acetoxy sulfide **56** mixture with LiBEt₃H (90%) gave alcohol **57** the precursor to aldehyde **A**. Unlike the TBS series, the oxidation of the aldehyde precursor under Swern and Doering-Parikh oxidation was problematic.

Oxidation of alcohol **57** to aldehyde **58** was successful under Swern conditions on a small scale; however, upon scale-up enal **59** was seen as a minor product (Scheme 31). Moreover, after column chromatography on silica gel, enal **59** was the major isolated product. With the Doering-Parikh oxidation enal **59** was the only product as indicated by TLC and ¹H NMR of the crude mixture. Fortunately, internalization of the olefin was suppressed under Dess-Martin conditions, giving the desired aldehyde **58** in excellent yields (>90%).³⁸ With the appropriate aldehyde in hand, the addition of a metal species of fragment **B** to aldehyde **58** under chelation conditions was investigated.

Before coupling **B** with the PMB-variant of fragment **A**, a new experimental procedure was sought which would suppress the above mentioned side reactions. A new experimental procedure, which consisted of the addition of vinyl bromide **B** to the *t*-BuLi solution and ZnMe₂ as the transmetallating reagent, was successful. In our model study (Scheme 32) the desired alcohol **50** was isolated in excellent yields (92%) with none of the earlier by-product. More

Scheme 32. Diastereoselective Coupling of Fragment B and Aldehyde 58

importantly, with the amphidinolide A subunits, aldehyde 58 and zincate B this experimental procedure was stereoselective with only the desired diastereomer 60 being isolated albeit in modest yields (41%). One explanation for the low yield, as compared with the model study, is that aldehyde 58 is unstable in the presence of zinc Lewis acids. Therefore, MgBr₂•Et₂O was again studied as the chelating metal. It was found that magnesium bromide etherate is not soluble in Et₂O alone but often dissolved in Et₂O/benzene solutions. The successful coupling procedure was repeated using MgBr₂•Et₂O in an Et₂O/benzene solution (9:1) for the zinc Lewis acid. In this coupling procedure the crude TLC was promising, although the precomplexed aldehyde solidified upon cooling the reaction mixture. Indeed the desired addition product was isolated as a single diastereomer but in a lower yield (20%). Although the yield was low, the reaction was promising since MgBr₂•Et₂O could be used in the stereoselective chelation controlled addition. Efforts to improve the yield via a mixed metal reaction were conducted as illustrated in Scheme 33. Prechelating aldehyde 58 with MgBr₂•Et₂O and using the zincate derivative of **B** as the nucleophile afforded alcohol 60 (34% yield) and a diastereomerically pure by-product (11% yield) alcohol 61. The by-product was the result of the transfer of methyl instead of

Scheme 33. Optimization of Chelation Addition

		fr
		s
		ÿ
		!

fragment **B** onto aldehyde **58**. It should be noted that the above observation is surprising, since it has been shown that the methyl group has the least aptitude in transferring from a zincate species.³⁷ Furthermore, if two groups have the same aptitude in transferring then the larger of the two will typically transfer to relieve steric congestion. With the formation of by-product **61** under the zincate nucleophilic addition conditions, optimization of the coupling reaction using only magnesium was attempted. A stock solution [1.0 M Et₂O/PhH (3:1)] of MgBr₂•Et₂O was prepared, which facilitates the addition of the magnesium salt. Secondly, CH₂Cl₂ was added to the aldehyde solution to increase solubility. Finally the flash column was deactivated with Et₃N (1%) to prevent any acid promoted decomposition. With the above changes yields of 50 – 60% for the coupling were obtained.

B. Hydrostannylation of Skipped Enyne and Subsequent Cross-Coupling

With the successful stereoselective synthesis of the **AB** fragment, the hydrostannylation of skipped enynes was investigated. This would be important for the planned Stille cross-coupling to form the C₃ – C₄ bond. We were particularly interested in the regiochemistry of such hydrostannylation because with conjugated enynes it is known that the regiochemical outcomes are different under palladium and free radical mediated reactions i.e. the internal isomer predominates under palladium conditions and the E-isomer under free radical conditions. In the preparation of the enyne substrates (Scheme 34), the trimethylsilyl moiety of the protected alkynes had to be removed. In earlier attempts, this deprotection was incomplete and low yielding under K₂CO₃/MeOH

Scheme 34. Investigation into the Deprotection of TMS-alkynes

conditions but quantitative under basic fluoride (TBAF) conditions. Unfortunately, the deprotection did not scale-up well. When the deprotection was run on a 0.5 mmol scale or greater, the TBAF solution proved too basic leading to the formation of the allene product (eq. 2, Scheme 34). Allene formation could be

minimized if the reaction was carried out at 0 °C, albeit with low to moderate yields of the desired alcohol. Since deprotection under basic conditions was unsuccessful, acidic conditions were tried. First a citric acid/MeOH protocol was used. Although the citric acid / MeOH protocol is known to cleave silyloxy ethers, the procedure gave none of the desired product. Only starting material (eq. 3, Scheme 34) was recovered. Even with more traditional acidic conditions (HF•pyridine/THF), deprotection did not occur. Fortunately, it was found that an acetic acid buffered TBAF solution³⁹ could be used (eq. 4, Scheme 34) for **50** and similar substrates (>90% yield).

We then began to explore the hydrostannylation reaction of skipped enynes. No reaction under free radical condtions was observed. We postulate that the lack of stannane

Scheme 35. Pd-Mediated Hydrostannylation formation could result from

the formation of a stabilized

62

Bu₃SnF
Red-Sil
(Ph₃P)₂PdCl₂
TBAF(cat.)

F-isomer

63
internal isomer
(1.2: 1)

methylene position. Hydrostannylation of skipped enyne **62** (Scheme 35), under palladium catalysis was nonregioselectivity (1.2:1 E- to internal isomer).

Therefore, attempts were made to convert skipped enyne **50** to the 1-bromo-alkyne derivative which under palladium catalysis are known to give predominately the E-isomer.⁴⁰ When TMS-alkyne **50** was subjected to the

Scheme 36. Attmpted Bromo-alkyne Synthesis

bromo-silicon exchange reaction (Scheme 36) several products were formed none of which was the desired compound.

If the Stille reaction is to be the last bond connection in the total synthesis of amphidinolide A, the poor regioselectivity in the palladium mediated hydrostannylation would mean that half of our material would be lost. Therefore, other hydrometallation reactions were investigated i.e. hydrozirconation and hydroboration. Both of these metallated species can be used directly or derivatized for cross-coupling.

Hydrozirconation of TMS-alkynes is known to occur with the desired regioselectivity.⁴¹ In terms of diene construction, the newly formed zirconocene

Scheme 37. PMB Protection of Model Skipped Enyne

a Conditions A: ρ -CH₃OPhCH₂OC(NH)CCl₃, TfOH (0.3 mol%), Et₂O, 42 hours, (12%) Conditions B: ρ -CH₃OPhCH₂OC(NH)CCl₃, TfOH (0.3 mol%)/CSA,cyclohexane/CH₂Cl₂, 44 hours, (55%) Conditions C: ρ -CH₃OPhCH₂OC(NH)CCl₃, CSA (10 mol%), cyclohexane/CH₂Cl₂, 24 hours, (45%) Conditions D: ρ -CH₃OPhCH₂OC(NH)CCl₃, CSA (10 mol%), cyclohexane/CH₂Cl₂, 40°C, 12 hours, (51%) Conditions E: NaH, PMBCl, 3 hours, several by-products, no desired protection

could be used directly or converted to the vinyl stannane species for the cross coupling reaction. In our hydrozirconation investigation, we found that the alcohol of skipped enyne **50** had to be protected. The protective group of choice was the PMB group. As illustrated in Scheme 37, the protection was unsuccessful under basic conditions (NaH, PMBCI) leading only to formation of several by-products. Fortunately, protection under acidic conditions (PMB-trichloroacetimidate, catalytic acid) gave moderate yields of the PMB ether after optimization. Although literature recommends the use of triiflic acid (0.3)

mol%) as the acid catalyst, in our system it was found that CSA gave better yields and in shorter reaction times.

Attempts at the hydrozirconation of skipped enyne **50** included a subsequent *in situ* transmetallation⁴² to the vinyl stannane (Scheme 38). Isolation of the vinyl stannane and subsequent protiodesilylation would allow us

Scheme 38. Attempted Hydrozirconation of TMS-alkynes (I)

to verify the success of the reaction by spectroscopic comparison with an authentic sample formed by hydrostannylation/protiodestannylation of the parent alkyne. Unfortunately, attempts at this sequence failed and only starting material was recovered. Therefore, the TMS moiety was removed, and the hydrozirconation reaction was repeated with skipped enyne 62. Unfortunately, the results were the same as before. It is known that acidic protons can be incompatible with such reaction conditions.^{41b} Thus, the alcohol hydrogen could be contributing to the reaction's failure. Therefore, the PMB-protected alcohol

Scheme 39. Attempted Hydrozirconation of TMS-alkynes (II)

series was investigated (Scheme 39).

When the reaction was repeated with skipped enyne **64**, the same results were obtained, recovered starting material (89%). With this failure we began to consider if the doubly activated methylene hydrogens were again problematic. To explore this, the hydrozirconation reaction was repeated with both skipped enynes **64** and **65** and quenched D₂O. Deuterium incorporation at either the doubly activated methylene position of **64** or at the acetylenic position of **65**, would suggest an incompatibility between skipped enyne and the relatively basic Swartz reagent. Experimentally several products were isolated; however, none of them was the result of a simple deprotonation then deuteration.

With the lack of success with the hydrozirconation reaction, skipped enyne 65 was subjected to hydroboration conditions with catecholborane (Scheme 40). The hydroboration of 65 was unsuccessful affording only recovered starting

Scheme 40. Attempted Hydroboration of Skipped Enyne 65

enyne (54%). Since neither the hydrozirconation nor the hydroboration of skipped enynes could be realized, the palladium mediated hydrostannylation protocol was reinvestigated in efforts to improve the regionselectivity.

Although the palladium mediated procedure was inefficient, it was used in preparing the E-vinyl stannane, that was needed for the $C_3 - C_4$ bond cross coupling investigations. Our initial cross coupling investigation began with model vinyl stannane **66** as a mixture of regioisomers. The inseparable mixture of

regioisomers was used in a subsequent Stille reaction since precedant suggests that E-vinyl stannanes react preferably over internal stannanes in cross coupling

Scheme 41. Stille Cross-coupling of Model System

reactions. This proved true in our case (Scheme 41). This successful albeit low yielding Stille reaction between vinyl stannane 66 and β -iodo ester 49 was "proof of principle" for the proposed mode of diene construction.

In a total synthesis, a model study is only beneficial if the "real" system parallels the model system in reactivity and compatibility. In our early model investigations, the trimethylsilyl moiety of the skipped enynes had to be deprotected with an acetic acid buffered TBAF solution to prevent the presumed methylene deprotonation. Accordingly, skipped enyne 60 was deprotected with the TBAF/HOAc protocol (> 98% yield, crude) to give terminal enyne 68 (Scheme 42). Bu₃SnH was introduced across the triple bond of alkyne 68 under the palladium protocol utilizing our anhydrous *in situ* method (Bu₃SnF, TBAF, Red-

Scheme 42. Pd-mediated Hydrostannylation of Enyne 68

Sil) of Bu₃SnH generation (vide infra) to give a separable mixture of regioisomers. With E-vinyl stannane **69** in hand the "real" cross-coupling question could be addressed (Scheme 43). With the sluggishness of the Stille reaction utilizing (CH₃CN)₂PdCl₂ as the palladium catalyst in our model study, a more reactive catalyst system was sought. The catalyst system of choice was the combination of Pd₂dba₃ and AsPh₃ in NMP. The Stille reaction between vinyl stannane **69** and vinyl iodide **49** using the above conditions gave the desired diene **70**, fragment **ABD**, in 50% yield. Although the Stille reaction gave a moderate yield, heat (50 °C) and long reaction times were needed (16 hours).

Scheme 43. Synthesis of Fragment ABD

Conditions A: Pd₂dba₃, AsPh₃, NMP, 50 °C, 16 hours, 50% yield. Conditions B: CuTc, NMP, room temp., 30 min, 56% yield.

Liebeskind⁴³ has developed a copper mediated cross coupling protocol, which substitutes stoichiometric quantities of the inexpensive and air stable copper (I) thiophene-2-carboxylate (CuTc) for the Pd(0) catalyst. The Liebeskind procedure is often carried out at ambient temperatures but can occur at 0 °C and dramatically shorter reactions times are often possible i.e only minutes instead of hours. In our system (Scheme 43), the cross coupling reaction between vinyl stannane 69 and vinyl iodide 49 with CuTc as the "catalyst" was indeed quicker (30 minutes, room temperature) and slightly better yielding (56%). To test the scope of the cross-coupling reactions a more elaborate vinyl iodide ester was

investigated, and it was found to be similar in all regards to the previous cases under both the Stille and Liebskind protocols (Figure 3).

PMBO O O O O O

Although the hydrostannylation/Stille

reaction sequence was successful, the

Figure 3. Diene ABCD

regioselectivity of the hydrostannylation of skipped enynes still needed improvement. In particular, we wanted to reinvestigate the formation of 1-bromo-alkynes, and the subsequent palladium mediated hydrostannylation. In our earlier model investigation we found it necessary to protect the alcohol of the enyne as a PMB ether in order to prevent side reactions during certain hydrometallation reactions. As such (Scheme 44), the reinvestigation into the formation of the 1-bromo-alkyne series began with the protection of alcohol 60 as PMB ether 72 under the optimized acidic conditions. The TMS moiety of the protected skipped enyne 72 was deprotected under standard TBAF/HOAc

Scheme 44. PMB Protection of Fragment AB

conditions to give the desired alkyne **73** (93% yield, crude). Upon exposure to AgNO₃ and NBS in acetone 1-bromo-alkyne **74** was isolated (90% yield, crude). Instead of using our *in situ* method for the generation of Bu₃SnH, stock Bu₃SnH was initially used for the hydrostannylation reaction. This proved problematic as the Bu₃SnH was added too fast, resulting in the Pd(0) mediated formation of hexabutyltin dimer. Purification and product ratio determination was difficult since the reaction was run on a very small scale (37 mg, 0.062 mmol). However, while the hydrostannylation reaction was not synthetically useful, it was again "proof of principle" that the bromo-silicon exchange is a viable reaction. This would pave the way for future experiments (see page 56).

C. Hydrolysis of Advanced Intermediates

In our retrosynthetic analysis, we envisioned a Yamaguchi macrolactonization as a potential method for forming the 20-membered macrocycle. For this macrolactonization to be realized, the ethyl ester of advanced intermediate 70 would have to be hydrolyzed. The hydrolysis of ethyl ester 70 would serve two purposes. First, it would properly fuctionalize the ABD fragment for potential

esterification with a BC

fragment. Secondly, we hoped that the carboxylic acid would be a crystalline product and that an

PMBO
O
O
O
Et

LiOH

THF/MeOH/H₂O

(3:1:1)

Several products

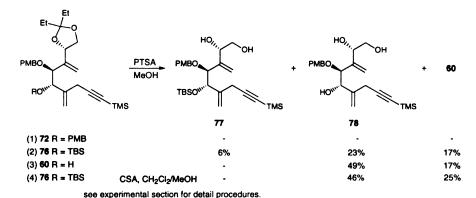
Scheme 45. Hydrolysis of ABD Ester 70

X-ray structure could be obtained. The X-ray structure would allow us to unambiguously assign the stereochemistry at C₈, which was established during

the earlier chelation coupling. Unfortunately, all attempts at the above mentioned hydrolysis (LiOH, THF/MeOH/H₂O) were unsuccessful (Scheme 45). Although TLC analysis suggested the ester was hydrolyzed, the parent acid was not isolated. This result is significant since it suggested that for a successful approach to the natural product either the ester bond linkage between fragments $\bf C$ and $\bf D$ must be formed before the $\bf C_3 - \bf C_4$ bond formation or the current $\bf C_3 - \bf C_4$ bond cross-coupling connection must occur with the parent $\bf \beta$ -iodo acid instead of the ethyl ester. In regards to the latter approach, all attempts at a Stille cross-coupling between vinyl stannane 85 and $\bf \beta$ -iodo acid 42 were unsuccessful. Therefore, in our revised retrosynthetic analysis of amphidinolide $\bf A$, the former approach was pursued.

In earlier investigations, the alcohol of advanced intermediate **60** could only be protected as the PMB ether under acidic conditions (PMB trichloroacetimidate, catalytic CSA). The yield of the reaction was poor to moderate, and often contaminated with residual imidate and/or the corresponding amide. All efforts to optimize the protection, such as using cyclohexane freshly distilled from CaH₂ and recrystallized CSA were not overly beneficial. The

reaction was slightly cleaner, but the yield was still only moderate (50%) at best. The decision to protect the alcohol as a PMB ether was chosen simply because at the end


Scheme 46. TBS Protection of Fragment AB

40

game an exhaustive DDQ deprotection could be used to obtain the desired tetrol. However given the difficulties above, a different protection strategy was investigated. The alcohol was protected as a silyl ether (Scheme 46). Interestingly, the protection of alcohol 60 with TBSOTf and i-Pr₂NEt as the base yielded none of the desired product. Instead, addition of a saturated aqueous solution of NH₄Cl turned the reaction solution black and a solid formed after the addition of Et₂O. With no apparent explanation for this phenomenon, the reaction was repeated with 2,6-lutidine instead of i-Pr₂NEt, giving advanced intermediate 76. The yield of this protection consistently ranged from 90% to quantitative.

With a high yielding protocol for the protection of the advanced **AB** subunit, attention was directed toward derivatizing the hydrophilic segment. After hydrolysis of the isopentylidene acetal, we planned to protect the newly formed diol as the *p*-methoxybenzylidene acetal. A selective reductive opening of the acetal would liberate the parent diol with the secondary alcohol protected as a PMB ether. Upon oxidation of the primary alcohol, the second chelation

Scheme 47. Acetal Hydrolysis of Fragment AB Derivatives

41

controlled vinvl addition could be investigated. As such (Scheme 47), p-toluenesulfonic acid monohydrate (PTSA)44 was initially studied as the acid catalyst for acetal hydrolysis of several AB fragment derivatives. First isopentylidene 72 (eg. 1, Scheme 47) was hydrolyzed at room temperature over 14 hours. Although the desired product was not isolated, the reaction was very informative, since it suggested that the hydrolysis was slow. Indeed, slow hydrolysis of the isopentylidene acetal was further demostrated when acetal 76 was hydrolyzed (eq. 2, Scheme 47). Deprotection of the TBS-silyl ether was competitive with hydrolysis of the acetal as indicated by the products isolated: desired diol 77 (6% yield), triol 78 (23% yield) via loss of TBS moiety, and alcohol 60 (17%) via loss of TBS moiety only. Since TBS-silyl ether 76 was very labile under the acidic conditions, hydrolysis of the parent isopentylidene acetal was investigated (eq. 3, Scheme 47). When the hydrolysis of isopentylidene acetal 60 was tested on a small scale, it was found that heat was needed to drive the reaction to completion. Hydrolysis of isopentylidene acetal 60 on a preparative scale afforded several products: desired triol 78 (49% yield), recovered acetal 60 (17%) and two minor products as indicated in Figure 4. In efforts to increase the vield and selectivity, alternative

reaction conditions were studied. The acid catalyst was changed from PTSA to CSA, and the solvent system from MeOH to a MeOH/CH₂Cl₂ solution. In addition, all reactions employing CSA

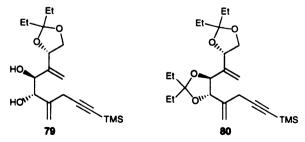


Figure 4. Acetal Hydrolysis By-products

were run at ~ 40 °C. Hydrolysis of acetal **76** (eq. 4, Scheme 47) with the above conditions afforded triol **78** (46%) and alcohol **60** (25%) via loss of TBS moiety. The products formed under these conditions (no diol) show that the TBS-silyl ether is more labile to protic acidic conditions than the acetal. Other methods for the removal of acetals, which are more compatible with TBS-silyl ethers were investigated at a later time (see page 44).

Continuing with the functionalization of the advanced **AB** fragment (Scheme 48), triol **78** was protected with the dimethyl acetal of *p*-anisaldehyde to give a diastereomeric mixture of *p*-methoxybenzylidene acetal **81** (78% yield). In turn, the secondary alcohol was protected with TBSOTf (53% yield) to give silyl ether **82**, which is the substrate needed for investigation of the reductive opening of the benzylidene acetal. Towards this end, benzylidene acetal **82** was subjected to DIBAL-H conditions, which are known to give the desired regioselectivity. Unfortunately, the reaction yielded a regiochemical mixture of

Scheme 48. Functionalization of AB triol 78

mono-protected alcohols **83a/83b** (50% yield), as well as, a polar by-product that suggests the loss of a TBS moiety. Reductive opening of benzylidene acetals are also directed by heteroatoms, ⁴⁵ in particular oxygen. Therefore, in our case

the PMB ether of **82** could serve as a chelating site for DIBAL-H and thus direct the undesired ring opening of the acetal as well as assisting in the deprotection of the TBS-silvl ether.

With the apparent lack of selectivity in the reductive ring opening of

benzylidene acetal 82 and poor chemoselectivity in the hydrolysis of the isopentylidene acetal of advanced AB intermediates, we decided the hydrolysis of the isopentylidene acetal would have to occur earlier in the synthesis. Hence, a quick investigation into the Scheme 49. Hydrolysis of Early Intermediates acetal hydrolysis of earlier intermediates was undertaken.

Borrowing from our earlier

results, conditions that are

19

CSA

MeOH/CH₂Cl₂

19

CSA

MeOH/CH₂Cl₂

HO

OH

OEt

TBS-silyl ethers were explored initially, but to no avail. One such reagent was ferric chloride supported on silica gel, ⁴⁶ which is easily prepared from FeCl₃•6H₂O and silica gel. When isopentylidene acetal **19** (Scheme 49) was subjected to the FeCl₃•SiO₂ reagent in CHCl₃, no reaction occurred even after prolonged stirring (~15 hours) at room temperature. Obviously, the reaction conditions were too mild. Subjecting acetal **19** to stronger conditions such as Dowex H⁺ resin also resulted in recovered starting material. Since TBS-silyl compatible hydrolysis conditions were not successful, acetal **19** was subjected to CSA conditions in a solution of MeOH/CH₂Cl₂. These conditions afforded the hydrolysis product within six hours. Furthermore, application of the above

Scheme 50. Hydrolysis of Acetal 54 to give Diol 84

conditions to a synthetically useful intermediate was also successful (Scheme 50). The hydrolysis of isopentylidene **54** afforded the desired diol **84** (64%), along with recovered starting material (9%) and a small amount of a triol presumably via deprotection of the PMB ether. When the reaction was carried out with a small amount of water, the completion time was shortened, and the yield of desired diol **84** increased to 80%. The selective protection of diol **84** would give an appropriate functionalized "semi-symmetrical" molecule (Figure 5) and would increase our flexibility in the total synthesis of amphidinolide A. Toward this end

(Scheme 50), the primary alcohol of diol **84** was Figure 5. Semi-symmetrical Intermediate selectivity protected to afford the tripropylsilyl

ether **85** (65%) along with the diprotected derivative **86** (22%). Unfortunately, all attempts at protecting the secondary alcohol as a PMB ether were unsuccessful. The major product of the attempts was parent diol **84**, indicating hydrolysis of the tripropylsilyl ether under the protection conditions. In later investigations, a successful protection protocol was realized when the initial protection was as the triisopropyl silyl ether (see page 48).

coupling gave valuable information for the design of our new approach. In studies by Joe Ward and myself, it was determined that a metallated fragment B derivative could not serve as a nucleophilic source in the displacement of halides and/or tosylates (Scheme 51). Therefore, a displacement coupling between fragments B and C to form the $C_{16} - C_{17}$ bond would not be possible. In summary, although the first

Scheme 51. Attempted Fragment B Displacement

generation approach did not lead to the total synthesis of amphidinolide A, much valuable information was gained that assisted in the design of our second and third generation approaches to the natural product.

In addition to the couplings previously discussed, one other attempted

Chapter 3. 2nd Generation Approach – Application of RCM

The successful construction of the subunits in our first generation approach allowed for the investigation of multiple coupling strategies and provided valuable information as to which coupling sequence would be employed in our second-generation approach. Our second retrosynthetic breakdown of amphidinolide A (Scheme 52) affords three fragments **D** – **F**. Key steps for the final elaboration included a Stille cross-coupling, chelation controlled addition,

Scheme 52. 2nd Generation Retrosynthetic Analysis

indium allylation, Mitsunobu esterification, and ring-closing metathesis (RCM). Application of the RCM reaction is the underlying theme of our second generation approach. The RCM reaction is a powerful synthetic tool for the construction of carbon-carbon double bonds. Moreover, with the advent of well-defined metal ruthenium centered carbene catalysts developed by Grubbs, the RCM reaction has served as a key step in the total synthesis of several natural products. With regards to the total synthesis of amphidinolide A, several questions concerning chemo- and stereoselectivity of the RCM must be addressed. In terms of chemoselectivity, there exists the potential for the metathesis to occur at several different olefins, which poses two questions: Could

we limit metathesis to the two mono-substituted olefins? Secondly, can we minimize dimerization and favor versus ring closure? In terms of stereoselectivity, could we control the geometry of the newly formed olefin? The above questions and others that emerged in our investigations were answered through the total synthesis of several analogs of amphidinolide A.

A. Synthesis of "Z"-amphidinolide A

The transition from our first to second generation approach was relatively easy due to flexibility in our initial design. An RCM precursor corresponding to the left hemisphere of amphidinolide is readily prepared from isopentylidene acetal 54, an intermediate in our original synthesis of fragment A. The synthesis

Scheme 53. Selective Protective Group Functionalization of Diol 84

of RCM precursor **E** (Scheme 53) began with hydrolysis (CSA, MeOH/CH₂Cl₂, 40 °C) of the acetal **54** to give diol **84**. At this stage, two approaches were investigated to differentiate the two alcohols: (1) selective protection of the primary alcohol as either an alkyl ester or silyl ether and (2) selective protection of the secondary alcohol via PMB acetal formation with the neighboring PMB ether. When diol **84** was subjected to the DDQ oxidative conditions in the absence of water,⁴⁷ the desired *p*-methoxyphenyl 1,3-dioxane **88** was formed but

the corresponding *p*-methoxyphenyl 1,3-dioxolane **88a** was also formed presumably via migration of the acetal moiety. Without the ability to control the regioselectivity during the acetal formation, efforts were directed toward the selective protection of the primary alcohol. Attempted protection of the primary alcohol with pivaloyl chloride gave several unindentifable products. Reaction of diol **84** with TIPSCI, imidazole and catalytic DMAP gave the desired monoprotected diol **87** in excellent yields (91%). With an efficient protocol to differentiate the primary alcohol, protection of the remaining secondary alcohol was studied (Scheme 54). The TIPS-silyl ether was chosen for the 1° alcohol due to its known resistance to basic hydrolysis. However, under standard basic conditions (eq. 1, Scheme 54) (NaH, DMSO/THF) for PMB-ether formation, the TIPS-silyl ether in alcohol **87** was partially hydrolyzed. The desired fully protected triol **89** was isolated in moderate yields (57%) along with recovered

Scheme 54. PMB Protective Investigation of 2° alcohol 87

		TIPSO PMB OPMB SPh	diol +	recovered alcohol 87	
	NaH, PMBCl				
	DMSO/THF (1:3)	(57%)	(10%)	(8%)	(1)
87	NaHMDS, PMBCI THF, TBAI (cat.)	(57%)			(2)
	NaHMDS, PMBCI THF/DMSO (3:1)	(79%)	-	•	(3)

alcohol 87 (8%) and the deprotected diol derivative 84 (10%). When the reaction was repeated in the absence of DMSO and with NaHMDS as the base (eq. 2, Scheme 54), the reaction was sluggish. However, the reaction went to

completion upon the addition of catalytic TBAI and heating albeit in a modest yield (57%). The optimized reaction protocol (eq. 3, Scheme 54) consists of deprotonating the alcohol with NaHMDS and subsequent addition of DMSO and PMBCI to give the fully protected triol **89** in excellent yields (79%).

Intermediate **89** is a pseudo-symmetrical molecule in the sense that both ends are masked aldehyde equivalents and with routine transformations either end can participate in the chelation controlled nucleophilic addition reactions (Scheme 55). Initially, the TIPS-silyl ether was deprotected with TBAF (84%) to give alcohol **90**. Oxidation of alcohol **90** with Dess-Martin periodinane in the presence of pyridine gave aldehyde **91** in excellent yields (97%). Unfortunately,

Scheme 55. Vinyl Magnesium Bromide Addition (I)

aldehyde **91** proved to be incompatible with the chelation controlled nucleophilic addition. Upon addition of MgBr₂•Et₂O to the aldehyde, the reaction solution turned black. Analysis of the crude material by ¹H NMR showed no indication of the desired product. The sulfide, which is only six atoms away from the aldehyde and thus capable of intramolecular nucleophilic addition,⁴⁹ is possibly causing the poor reaction.

To overcome this, the phenyl sulfide was converted into the corresponding aldehyde (Scheme 56). Oxidation of sulfide **89** with *m*-CPBA and subsequent Pummerer rearrangement (TFAA, Ac₂O, 2,6-lutidine) of crude sulfoxide **92** gave α-acetoxy sulfide **93** (65% yield, 2 steps). Reduction of α-acetoxy sulfide **93** with

Scheme 56. Conversion of Phenyl Sulfide 89 to Aldehyde 95

Super-hydride® gave alcohol **94** (82%), and with subsequent oxidation under Dess-Martin conditions, aldehyde **95** was isolated (91%).

With the isolation of aldehyde **95**, the first of two chelation-controlled additions was investigated. Addition of vinyl magnesium bromide to aldehyde **95** (Scheme 57) was inconsistent. Depending on the Grignard source, a substantial amount of alcohol **94**, presumably via 1 electron reduction, was isolated. Indeed

Scheme 57. Vinyl Magnesium Bromide Addition (II)

the Grignard solution proved to be the cause of this phenomenon, because with careful observation it was found that the dark black commercial solutions of vinyl magnesium bromide gave considerable reduced product while the clear tan transparent commercial solutions gave desired alcohol 96 diastereoselectively (8:1) in average yields of 70%. The TIPS-silyl ether of 97 was deprotected with TBAF (94%) to give alcohol 98 (Scheme 58), which was oxidized with Dess-Martin periodinane (92%) to give aldehyde 99. The addition of the Grignard of fragment B under chelation conditions occurred with poor diastereoselectivity (1:1). Unfortunately, alcohol 100 was isolated as a diastereomeric mixture due to poor separation via flash chromatography. After deprotection (TBAF/HOAc, 98% yield, crude) of the TMS-acetylene to give terminal alkyne 101, application of our

Scheme 58. Preparation of E-vinyl stannane 102

novel siloxane reduction of organotin halides and subsequent *in situ* hydrostannylation methodology gave RCM precursor vinyl stannane **102** as a regio-mixture (41% yield over 2 steps, E / internal 1.2:1). The left and right RCM precursors, vinyl stannane **102** and (Z)-vinyl iodide **300**, ⁵⁰ were connected via a Stille cross-coupling reaction to give diene **103** (Scheme 59). Although the vinyl

Scheme 59. Cross-coupling of vinyl stannane 102 and (Z)-vinyl iodide 300

stannane employed in the Stille reaction was a mixture of E- and internal stannanes, only the E-isomer reacted. With the isolation of diene 103, the ring-closing metathesis reaction was investigated (Scheme 60). The reaction was attempted under dilute conditions to minimize dimerization. Initially, a room temperature benzene solution of diene 103 was allowed to stir for 24 hours in the presence of the first generation Grubb's catalyst, $(Cy_3P)_2Cl_2Ru=Ph$. As indicated

by ¹H NMR, no apparent reaction occurred. The reaction was repeated several times in benzene-(d₆) with and without heating (60 °C) but to no avail. There was

no reaction even after 2 days of heating. One potential problem for the lack of reactivity is that the catalyst is rendered inactive through coordination to one of

Scheme 60. Attempted RCM (I)

several hetero-atoms in diene **103**. It has been shown that the addition of Ti(i-PrO)₄ can break up inactive chelates and thus facilitate ring-closing metathesis. However, the addition of Ti(i-PrO)₄ was not beneficial in our RCM reaction. Another potential reason for the lack of reactivity is sterics. Hoye has shown that allylic alcohols increase the rate of reactivity of RCM reactions in comparison to the corresponding allylic alkoxy ether. Thus, an RCM precursor with a deprotected allylic alcohol was needed. Synthesis of such a precursor began with intermediate **100** (Scheme 61). After protecting the alcohol as

103

Scheme 61. Preparation of RCM acyclic diene 107

TBS-ether 104, it was noticed that the substrate was clearly a mixture of diastereomers. Although the substrate was a mixture, the material was carried forward. Trimethylsilyl-alkyne 104 was converted to 1-bromo-alkyne 105 upon exposure to AgNO₃ and NBS (90%, crude). Once again, application of our novel siloxane reduction of organotin halides and subsequent in situ hydrostannylation methodology gave E-vinyl stannane 106 in a 57% yield over 2 steps. Instead of using a Stille protocol for the cross-coupling reaction, the Liebeskind copper (I) thiophene-2-carboxylate (CuTc) methodology was utilized. The copper mediated cross-coupling between stannane 106 and (Z)-vinyl iodide 300⁵⁰ gave the RCM diene 107 in a moderate vield (49%). As stated earlier, the more favorable unprotected allylic oxygen moiety was needed to test our sterics hypothesis and probe Hove's acceleration observation. Thus, we attempted to deprotect the PMB-ethers. While exposure of diene 107 to the DDQ oxidation protocol lead to removal of the PMB moieties, as evident by the R_f change, none of the several products isolated were the desired triol. With the need for an allylic alcohol in the RCM substrate and the lack of success in deprotecting acyclic diene 107, the synthesis of the left half of the RCM substrate clearly required a different protection strategy.

Toward this end, the synthesis of the new RCM diene began with alcohol **94** (Scheme 62). Since a TBS-silyl ether is needed later in our synthetic pathway,

Scheme 62. Preparation of Alcohol 109

protective group manipulation of the primary alcohols was examined. Protection of the free alcohol with pivaloyl chloride gave fully protected tetra-ol **108** in a 74% yield. Subsequent deprotection of the TIPS-silyl ether with TBAF gave alcohol **109**. In this sequence of reactions, it was found that subjection of the crude pivaloyl ester to the TBAF deprotection conditions gave the desired alcohol in better yields (96% yield over 2 steps).

At this stage of our synthetic venture, it was apparent that multi-gram quantities of advanced intermediates would be needed. Thus a shorter high yielding route to intermediate 109 was sought. As illustrated in Scheme 63, D-arabitol was chosen as the starting chiral sugar and through desymmetrization via protective group manipulation, gram quantities of alcohol 109 were prepared.

Scheme 63. Preparation of Alcohol 109 via D-arabitol

D-arabitol was protected as bisisopentylidene acetal 111 in high yields.

Oxidation of the 2° alcohol with SO₃•pyridine and DMSO gave ketone **112** in 68% yield. Wittig olefination with Ph₃P=CH₂ installed the olefin in near quantitative yields affording acetal **113**. Hydrolysis of the acetal with CSA in MeOH provided

tetra-ol 114 quantitatively, which was then selectively disilylated at the primary alcohols with TIPSCI to give diprotected tetrol 115 (77% yield) along with the mono-protected derivative (20%). Both secondary alcohols were protected as the PMB-ether under acidic conditions to give fully protected tetrol 116 (38% yield) and the mono-protected PMB derivative 117 (37%). The removal of the TIPS-silyl ethers with TBAF provided the corresponding diol 118. Selective mono-protection of the diol with pivaloyl chloride provided the target alcohol 109 in 41% yield along with di-pivaloyl derivative (24%). Although some of the yields

Scheme 64. Vinyl Magnesium Bromide Addition (III)

for the desired compounds are at best moderate, most side products formed were easily converted to the target alcohol 109.

Returning to the synthesis of the amphidinolide A analog (Scheme 64), the oxidation of alcohol 109 with Dess-Martin periodinane in the presence of pyridine was uneventful and gave aldehyde 110 in a 98% yield. Aldehyde 110, like similar aldehydes in our earlier approach, is pseudo-symmetrical and therefore

Scheme 65. Preparation of Aldehyde 122

the addition of vinyl magnesium bromide or the Grignard of fragment **B** could be reversed. The addition of the latter proved to be the most rewarding. With the addition of vinyl magnesium bromide, several products were isolated and none of which were the desired alcohol. Addition of fragment **B** under chelation condition gave only one diastereomer of alcohol **119** in a 55% yield (Scheme 65). The resultant alcohol was protected as a TBS-silyl ether **120** (TBSOTf, *i*-Pr₂NEt, 80% yield). With the successful protection of the secondary alcohol, the Piv protected 1° alcohol was deprotected with Super-hydride® (88% yield) to give alcohol **121**.

Scheme 66. Preparation of (E)-vinyl Stannane 125

Oxidation of the alcohol with Dess-Martin periodinane gave aldehyde 122 (98% yield). With the isolation of aldehyde 122, the second chelation controlled nucleophilic addition was carried out. Contrary to the earlier vinyl magnesium bromide addition, the coupling (Scheme 66) of the aldehyde and vinyl Grignard gave the desired alcohol 123 with good diastereoselectivity (7:1) (60% yield). In preparation for the hydrostannylation reaction, the trimethylsilyl alkyne was converted to 1-bromo-alkyne 124 (92% yield). The preparation of 1-bromo-alkyne warrants a brief comment. During the formation of 1-bromo-alkyne 124 (Scheme 67) a C-12 silylated by-product (124a) was often formed in 25% - 50% yield. Fortunately, exposure of TMS-silyl ether 124a to citric acid in MeOH

Scheme 67. Recycling of 1-bromo-alkyne by-product

allowed for the selective deprotection of the TMS-ether in the presence of the TBS-ether to give the desired alcohol **124** in excellent yields (>95%). The 1-bromo-alkyne was hydrostannylated to give the (E)-vinyl stannane **125** in excellent yields (73%) (Scheme 66). If the crude 1-bromo-alkyne was used in the subsequent hydrostannylation reaction, the vinyl stannane was isolated in an average yield of 50% over the 2 steps. As illustrated in Scheme 68, (E)-vinyl

Scheme 68. Cross-coupling of Vinyl Stannane 125 and (Z)-vinyl lodide 300

stannane 125 was coupled with the RCM substrate right half, (Z)-vinyl iodide 300,⁵⁰ via the Liebeskind cross-coupling protocol to give diene 126 in 60% yield. With the isolation of a sterically less demanding RCM diene substrate, our hypothesis about the steric demands in the RCM reaction was tested.

When a solution of diene **126** (Scheme 69) in CH₂Cl₂ (0.005 M) at room temperature was combined with 15 mol% of Grubb's catalyst added dropwise (~ 22 minutes), no reaction was detected by ¹H NMR after 24 hours. When the reaction was repeated

Scheme 69. Attempted RCM of Diene **126**

with 50 mol% of the Grubb's catalyst (15 mole%) no reaction CH₂Cl₂ (0.005 M) catalyst and a diene room temperature 24 hours Diene 126 concentration of 0.001 Grubb's catalyst (50 mole%) ¹H NMR and Mass Spec. indicates slow addition CH₂Cl₂ (0.001 M), reflux possible macrocycle M in refluxing CH₂Cl₂, 24 hours

reaction finally occurred. Two identifiable products were isolated, one of which had the correct molecular ion peak as indicated by high resolution mass spectrometry and the appropriate ¹H NMR signals. The ¹H NMR spectrum of the second isolated compound was not clean and the mass spectrum did not correspond to the starting diene, desired macrocycle, or dimer. The mass balance of the two isolated products (1:1 ratio) accounted for 67% of the correct mass balance. After extensive experimentation, a reaction procedure was established (Scheme 70), which consisted of the dropwise addition (\sim 4 – 6 hours) of Grubbs' catalyst (50 mol %) to a refluxing CH₂Cl₂ (0.001 M) solution of diene 126 and continuation of stirring for a total of 24 hours. This procedure resulted in the isolation of the desired macrocycle 127 in a 47% yield along with a by-product in a 14% yield. The by-product was not the dimer as initially thought but truncated ketone 128. Besides the presence of ketone 128, the reaction was highly chemoselective with respect to which olefins participated in the metathesis. Only the mono-substituted olefins reacted with no sign of

Scheme 70. Preparation of (Z)-macrocycle 127 via RCM

dimerization. Moreover, only the E-olefin was formed. In retrospect, formation of ketone 128 is not surprising given Hoye's observations on the use of allylic alcohols in RCM reactions. He found that if the rate of RCM was not fast, then this truncating pathway competed with cyclization. This competing pathway was eliminated with the use of the more active second generation Grubb's catalyst. With the use of the N-heterocyclic carbene catalyst (Scheme 70) not only was the desired macrocycle isolated in a higher yield (88%) but the amount of catalyst (20 mol%) and time for the cyclization (10 hours) was substantially reduced.

At this point in our synthetic venture, all that was needed to complete the synthesis of the Z-isomer analog of amphidinolide A was removal of the protective groups. Given the poor results of our earlier deprotection efforts, a model system was investigated in order to find optimal conditions for the

Scheme 71. PMB Deprotection Investigation (I)

deprotection of the PMB-ethers. As such (Scheme 71), exposure of PMB-ether 123 to DDQ in a CH₂Cl₂ / t-BuOH / pH=7 phosphate buffer solution (5:1:1) gave the undesired p-methoxyphenyl ester 130 as a regioisomer mixture. Ester formation proceeds through the intramolecular capture of a benzyl carbocation by the neighboring alcohol and subsequent opening of the newly formed benzylidene acetal by DDQ oxidation and hydrolysis. To alleviate this problem, alcohol 123 was protected as a TBS-silyl ether 131 (82% yield) as outlined in Scheme 72. Although the deprotection of 131 was initially quite frustrating, it was a helpful learning experience. In that, even successful results do not always occur as expected. Careful observation is always needed. For instance, we thought that the removal of the PMB residues would lead to a more polar

Scheme 72. PMB Deprotection Investigation (II)

product. However, deprotection of the PMB ethers gave a diol with an R_f very close to that of the parent compound. This led me to initially believe that no reaction had occurred. However upon more careful analysis, we learned that the deprotection was a success, allowing isolation of the desired diol **132** in 59% yield. This successful protection-deprotection strategy was applied to the macrocycle analog as illustrated in Scheme 73.

Protection of Z-macrocycle **127** as TBS-silyl ether **133** was substantially slower (12 hours) than the acyclic model system, but the yield remained

consistently high (>90 %) as long as the reaction was cooled (0 °C) during the initial addition of 2,6-lutidine and TBSOTf. With the isolation of 133, the all important PMB deprotection step was investigated. Similar to the model system,

Scheme 73. Synthesis of the (Z)-amphidinolide A analog

the yield of diol **134** was only moderate (52%), and relatively small differences in R_f were observed. The final step in the total synthesis of the fully deprotected Z-analog of amphidinolide A was the removal of the TBS-silyl ethers. This was accomplished with an acetic acid buffered TBAF solution in THF, giving Z-amphidinolide analog **135** in 33% yield.

B. Total Synthesis of the Assigned Structure of Amphidinolide A

The divergent point toward the synthesis of amphidinolide A began with the cross coupling of vinyl stannane **125** with (E)-vinyl iodide **301**⁵⁰ (Scheme 74). Liebeskind cross coupling protocol between vinyl stannane **125** and (E)-vinyl iodide **301**⁵⁰ provided diene **136** in a moderate 49% yield. Attempts to increase the cross-coupling yield were to no avail. Interestingly and in contrast to the Z-

Scheme 74. Cross-coupling of Vinyl Stannane 125 and (E)-vinyl lodide 301

analog, reaction with the (E)-vinyl iodide was very slow at 0 °C and thus had to be carried out at room temperature. Equally, interesting is our use of excess vinyl iodide (2 – 4 equivalents). Liebeskind has shown that the CuTC reagent is efficient in promoting the homo-coupling of vinyl iodides.⁵¹ In our system the presence of the homo-coupled product is not evident until the vinyl stannane is completely consumed.

Following the preparation and isolation of diene 136, the all-important RCM reaction was investigated (Scheme 75). Initially, the first generation Grubbs' catalyst was used with the optimized conditions from the Z-analog sequence. Unlike the Z-isomer, diene 136 under the RCM conditions only afforded truncated ketone 137 and recovered starting diene. With a notion that the conformational predisposition of the starting diene may affect the rate of ring closure, the reaction was repeated in refluxing benzene with hopes that the

Scheme 75. RCM of Diene 136 to Give Truncated Ketone

increased temperature and change in solvent may influence and/or change the conformation of the diene and thus promote the cyclization. Unfortunately, the change in solvent had no affect on the RCM reactions as the ¹H NMR of crude reaction mixture showed only the ketone and starting diene. The change in olefin geometry between the Z- and E-acyclic dienes could essentially have two effects: (1) moving the end olefins farther apart (2) affording a new conformation which allows for internal chelates. Both of these outcomes would disfavor cyclization of the E-isomer. With hopes that the second hypothesis was operative, the reaction was repeated with the addition of Ti(i-PrO)₄ to hopefully break up any chelates and promote cyclization. Unfortunately, ¹H NMR of the crude residue was identical to all previous cases; only ketone and starting diene.

Besides by the addition of additives, formation of the truncated ketone could possibly be suppressed by protecting the allylic alcohol. Such a protection

could also provide insight into the exact timing of the 1,3-hydrogen shift and reductive elimination in Hoye's mechanism for ketone formation.

diene 136 a or b

PMBO

TBSON

TBSON

Scheme 76. TMS protection of RCM diene

conditions: (a) TMSOTf, 2,6-lutidine; (70% yield) (b) AcCl, pyridine; (0% yield)

The protective group must be relatively small in order to avoid steric problems; therefore, the alcohol was protected as the TMS-silyl ether as illustrated in Scheme 76. Unfortunately, exposure of diene **138** to the RCM conditions (Scheme 77) only resulted in dimerization as evident by both ¹H NMR and HRMS. Presumably the newly introduced steric demands prohibited metathesis from occurring at the olefin nearest the allylic oxygen. Instead the mono-substituted olefin of the skipped diene reacted in an intermolecular manner

Scheme 77. Dimerization of Diene 138 via RCM

with itself. This result further substantiates Hoye's theory concerning the acceleration of the RCM reaction with the use of allylic alcohols.⁵¹ Clearly, the initial metathesis does not occur at the olefin nearest the allylic oxygen moiety with the use of the less Lewis basic and sterically more crowded silvl ether.

Still aiming to exploit the rate acceleration of the RCM reaction by allylic oxygen functionality, protection of the allylic alcohol with a more Lewis basic (and better coordinating) protecting groups (i.e. aceto) were attempted. Unfortunately,

Scheme 78. RCM of Diene 136 to give (E)-macrocycle 140

all efforts at installing the acetate group failed. With the lack of success with the first generation Grubbs' catalyst in the RCM of both diene **136** and **138**, the more reactive second generation catalyst was explored. RCM with the second generation N-heterocyclic carbene catalyst afforded macrocycle **140** in only 35% yield along with several unidentifiable products (Scheme 78). Several modifications to the reaction procedure were investigated in attempts to increase the yield of macrocyclization. As part of these efforts, the reaction medium was changed to refluxing benzene. Unfortunately, the elevated temperature did not have a substantial effect on the yield of the reaction or the products produced.

Hoveyda has developed a modified second generation catalyst, where the cyclohexyl phosphine ligand is replaced with the tethered isopropyl styrene moiety (Figure 6).⁵⁴ With his

Figure 6. Hoveyda's Catalyst

catalyst the reactivity is retained and the initial metathesis has even been initiated at room temperature. More importantly, his catalyst is inherently more stable, presumbly due to the styrene ether tether. This enhanced stability should theoretically allow one to maintain good reactivity with less catalyst since decomposition is minimized. Decreased catalyst loads should also give a cleaner reaction i.e. less ruthenium decomposition products and hopefully facilitate identification of the by-products. Our initial RCM investigation with Hoveyda's catalyst began by repeating the optimized procedure for the second generation Grubb's catalyst. Unfortunately, reaction in either CH₂Cl₂ or benzene still gave several products in low yield. The reaction was repeated at room

temperature with hopes that the lower temperature would disfavor the unproductive pathways. Unfortunately, at room temperature the initial metathesis was very sluggish, and decomposition of the starting diene was evident after 2 days. Although the more reactive N-heterocyclic carbene catalysts allowed for some cyclization with diene 136, exposure of TMS-protected diene 138 resulted only in dimerization, suggesting that the steric demands were overriding the enhanced reactivity of the catalyst.

The difference in reactivity between the E- and Z-dienes is very significant for understanding the mechanism of the RCM reaction and how subtle changes can affect both the reactivity and selectivity of the reaction. Currently, there is a debate in the literature as to the extent that the predisposition of the starting diene conformation influences the efficiency of ring-closure.⁵⁵ The results in our study clearly show that the conformation of the starting diene does indeed

Scheme 79. Synthesis of the Proposed Structure of Amphidinolide A

matter. Despite our inability to improve the RCM, the protocol could provide us sufficient material needed to complete the synthesis.

Thus application of the earlier protection-deprotection strategy was studied. As illustrated in Scheme 79, the alcohol of macrocycle **140** was protected with TBSOTf in the presence of 2,6-lutidine to give the fully protected

macrocycle **141**. DDQ oxidative deprotection led to the isolation of diol **142** albeit in low yield (29%). The TBS-silyl ethers were deprotected with a TBAF•HOAc solution to give **1**, the proposed structure of amphidinolide A.

Disappointingly ¹H NMR data of the synthesized material do not completely correlate to Kobayashi's ¹H NMR data on the natural product. The structural assignment of our compound would appear sound since all chemical transformations used are all well established, but more importantly the assigned structures of all intermediates were fully supported spectroscopically. In some

Figure 7. Possible Structure of Amphidinolide A (or its enantiomer) cases, advanced one- and two-dimensional NMR techniques were used to absolutely secure the assigned structures.

Careful examination of Kobayashi's data, revealed no direct correlation between the relative chirality of the left and right halves of the molecule.

Therefore, if the relative stereochemistry within each half is correct, one of the halves of the natural product could actually be the antipode of Kobayashi's assigned structure.

Toward this end, the total synthesis of epimer **166** (Figure 7) was carried out. If Kobayashi's relative stereochemistry for each half is correct but how the correlation is incorrect, then epimer **166** would be the natural product or its enantiomer.

C. Total synthesis of an Epimer of Amphidinolide A via L-arabitol

Compound 166 was targeted since the antipode of the left hemisphere is easily accessed by simply changing the starting chiral sugar. As illustrated in Scheme 80, L-arabitol was protected as bisisopentylidene acetal 143 in high yields albeit as a regio-mixture. The ratio of the acetals greatly depended on controlling the reaction temperature. Oxidation of alcohol 143 with SO₃•pyridine and DMSO gave ketone 144 in 68% yield, which was readily separated from the aldehydic by-product. Wittig olefination with Ph₃P=CH₂ installed the exo-olefin in excellent yields to give bisisopentylidene acetal 145. Hydrolysis of the acetal with CSA in MeOH provided tetra-ol 146 quantitatively, which was selectively disilylated at the primary alcohols with TIPSCI to give diprotected tetra-ol 147 (68% yield, 2 steps) along with the mono-protected derivative 148 (22% yield, 2 steps). Both secondary alcohols were protected as the PMB-ether under acidic

Scheme 80. Preparation of RCM substrate via L-arabitol (I)

conditions to give fully protected tetra-ol **149** (48% yield). Removal of the TIPS-silyl ethers with TBAF provided the corresponding diol **150**. Selective mono-

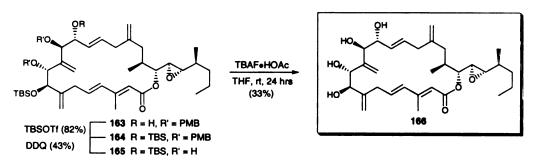
protection of the diol with pivaloyl chloride provided the target alcohol **153** (52% yield).

The previously prepared mono-protected TIPS tetra-ol (148) is readily converted to the target alcohol through a similar but modified protection strategy. The remaining primary alcohol is selectively protected as the pivaloyl ester (81%) vield) to give diprotected tetra-ol 151, where the primary alcohols are differentiated. Protection of the two remaining secondary alcohols as the PMBethers (PMB-trichloroacetimidate, CSA, 81% yield) provided fully protected tetra-ol 152, which upon deprotection of the TIPS-silyl ether with TBAF (75% yield) provided target alcohol 153. With the above sequence of reactions, gram quantities of alcohol 153 can be prepared. Dess-Martin oxidation of alcohol 153 in the presence of pyridine gave aldehyde 154 (>98% yield) which was set up for the first of two chelation controlled additions. Addition of the Grignard of fragment B (Scheme 81) occurred with complete diastereoselectively giving alcohol 155. The resultant alcohol was protected as a TBS-silyl ether (156) (TBSOTf, i-Pr₂NEt, 76% yield). Primary alcohol **157** was liberated after Super-Hydride® reduction of the ester (THF, 0 °C, 91% yield). Oxidation of the alcohol

Scheme 81. Preparation of RCM substrate via L-arabitol (II)

with the Dess-Martin periodinane in the presence of pyridine gave aldehyde **158** (98% yield) setting the stage for the second chelation controlled addition. Similar to the D-arabitol series, the addition of vinyl magnesium bromide (Scheme 82) occurred with only good diastereoselectivity (8:1 ratio) and in modest yields (56%

Scheme 82. Preparation of RCM substrate via L-arabitol (III)


yield). In preparation for the hydrostannylation reaction, TMS-alkyne **159** was converted to 1-bromo-alkyne **160** upon exposure to NBS and catalytic AgNO₃ (78% yield). The hydrostannylation of **160** utilizing our *in situ* Bu₃SnH protocol afforded (E)-vinyl stannane **161** in a 72% yield. As illustrated in Scheme 83, the copper mediated cross-coupling between vinyl stannane **161** and (E)-vinyl iodide **301**⁵⁰ provided RCM diene **162** in 63% yield.

When diene **162** (Scheme 83) was subjected to our optimized RCM conditions, the desired macrocycle **163** was isolated in only 27% yield along with an unidentifiable by-product. To complete the total synthesis of amphidinolide A

Scheme 83. Preparation of Diene 162 and Subsequent RCM

isomer 166, the protection-deprotection strategy was again utilized. As such (Scheme 84), the alcohol of macrocycle 163 was protected as TBS-silyl ether 164 (82% yield). DDQ oxidative deprotection led to the isolation of diol 165 albeit in poor yields (43%). After removal of the TBS-silyl ethers with a TBAF•HOAc solution, isomer 166 was isolated. Unfortunately, there were still inconsistencies between the ¹H NMRs of our synthetic material and the natural product. This result combined with our previous result suggest that the relative stereochemical assignments maybe in error.

Scheme 84. Synthesis of 166, an Isomer of Amphidinolide A

Chapter 4. 3rd Generation Approach – Application of Alder-ene Reaction

As with the second generation approach, the flexibility of our original retrosynthetic design allowed us to simultaneously explore a third generation approach to the natural product. Our third retrosynthetic breakdown of amphidinolide A affords three fragments **D**, **G**, and **H**. The planned syntheses of these fragments paralleled the syntheses of the 2^{nd} generation subunits. The major difference between the second and third generation approaches is how the top $C_{12} - C_{16}$ skipped diene moiety will be installed. In this approach, we

Scheme 85. 3rd Generation Retrosynthetic Analysis

envisaged Trost's recently developed ruthenium mediated Alder-ene reaction, as the key step. This reaction could occur either intramolecularly (cycloisomerization) or intermolecularly (cross-coupling). We intended to investigate both approaches.

In preparation for the Alder-ene reaction, the known ruthenium catalyst was prepared as outlined in Scheme 86. The catalyst was obtained as a yellow solid in an overall yield of 49% from RuCl₃.

Scheme 86. Preparation of the Alder-ene Ruthenium Catalyst

$$RuCl_3 = \frac{1,3-cyclohexadiene}{[(\pi-C_6H_6)RuCl_2]_2} = \frac{Tl(C_5H_5)}{[CpRu(\pi-C_6H_6)]Cl} = \frac{NH_4PF_6}{[CpRu(\pi-C_6H_6)]PF_6} = \frac{hv}{[CpRu(CH_3CN)_3]PF_6}$$

Synthesis of fragment **G** began with aldehyde **110** (Scheme 87).

Chelation controlled allylation of aldehyde **110** with tributylallylstannane gave alcohol **167** with excellent diastereoselectivity (>99:1) and moderate yields (68%). The newly generated alcohol was protected with TBSOTf to give TBS-silyl ether **168** in excellent yields (91%). Alcohol **169** was liberated upon exposure of the pivaloyl ester to a Super-Hydride® reduction (THF, 0 °C, 90% yield). Oxidation of the alcohol with the Dess-Martin periodinane in the presence of pyridine provided aldehyde **170** (88% yield). Addition of the Grignard of

Scheme 87. Preparation of Alder-ene Vinyl Stannane 174

fragment B to aldehyde 170 under chelation control occurred with excellent diastereoselectivity to give alcohol 171. After protection of the resultant alcohol as a TBS-silyl ether (172) (TBSOTf, 2,6-lutidine, 80% yield), it was noticed that the product existed as a 20:1 mixture of diastereomers, presumably at C-8.

As before preparation for the upcoming hydrostannylation (Scheme 87), began by conversion of the TMS-alkyne to a 1-bromo alkyne (173) (66% yield). The prerequisite for the subsequent cross-coupling reaction, (E)-vinyl stannane (174), was generated with our *in situ* Bu₃SnH hydrostannylation protocol (64% yield). Oddly enough, the cross coupling between vinyl stannane 174 and (E)-vinyl iodide 302⁵⁰ proved quite challenging (Scheme 88). Leibeskind's protocol, which consistently gave yields in the range of 50 – 60% with similar substrates, only afforded an unidentifiable by-product in low yield (<10%).

Scheme 88. Cross-coupling of Vinyl Stannane 174 and (E)-vinyl lodide 302

Although diene 175 could be prepared via a Stille protocol, the yield (30%) was considerably lower than previous Stille reactions with similar substrates.

With the synthesis and isolation of the intramolecular Alder-ene substrate, and the collection of several substrates for the intermolecular version, the ruthenium mediated reaction was investigated. After extensive experimentation with model compounds a procedure was established that gave a small amount of

Scheme 89. Ruthenium Mediatated Alder-ene Cross-coupling Investigation

the desired product (~22% yield).⁵⁷ As illustrated in Scheme 89, application of our model conditions to the intermolecular coupling of the amphidinolide A substrates did not provide any of the desired products. As indicated by TLC analysis, the reactions proceeded with very little consumption (<5%) of starting substrates. The lack of reactivity with alkenes 168 and 174 could potentially be explained through the coordination of the substrates via the PMB-ethers to the catalyst. The coordination of aromatic residues to the CpRu⁺ fragment has been shown to inhibit the activity of such catalysts. To eliminate the possibility of such binding, a substrate where the PMB moieties were removed was investigated. Unfortunately the vinyl stannane did not survive a DDQ deprotection of PMB-Scheme 90. Ruthenium Mediatated Alder-ene Cycloisomerization Investigation

ether 174. Furthermore, exposure of alkene 176 to the ruthenium Alder-ene reaction also gave little or no reaction as indicated by TLC. The intramolecular investigations (Scheme 90) did not fair much better. Exposure of substrate 175 to the reaction conditions only resulted in recovered starting material. In all cases, prolonged stirring (24 hours) and/or increased catalyst loads did not affect the outcome of the reaction. Given these difficulties the Alder-ene approach was abandoned.

Chapter 5. Indium Mediated Reactions

Quite often a total synthesis project is accompanied with a synthetic methodology study. More importantly, the development of synthetic methods is often one of the reason for the synthetic venture itself. As such, the structure of amphidinolide A served as the basis for an alternative vinyl indium organometallic chelation controlled addition and would serve as a means of constructing the C₈ and C₁₂ bonds of our retro-analysis stereoselectively. In addition, the structure of amphidinolide A served as a scaffold for the invention of an indium mediated macrocyclization.

A. Investigation of an Indium Mediated Macrocyclization

Recently, there has been increased interest in the use of organoindium⁵⁸ reagents for selective organic syntheses. Although the use of indium in organic synthesis has grown tremendously over the last several years, the scope of indium mediated reactions remains relatively limited. To our knowledge there is not yet an indium mediated cyclization protocol to form medium and/or large ring systems via a tandem di-allyl indium addition as that illustrated in Scheme 91.

Allyl halides in the presence of indium metal will add to both aldehydes⁵⁹ and alkynes.⁶⁰ These results led us to investigate a tandem di-allyl indium

Scheme 91. Indium Mediated Cyclization

addition to a substrate bearing an aldehyde and terminal alkyne. Formation of a medium-to-large ring system via this method could serve as a model study for the construction of amphidindolide A.

The generation of allylic diindium species is both alkyl halide and solvent dependent.⁶¹ It has been shown that some di-haloalkenes react as if a geminal dianion was the reactive intermediate. In our case, the generation of such a dianion species would be detrimental since both nucleophilic additions would occur at the same allylic carbon resulting in a ring system with an undesired

Scheme 92. Proposed Stepwise Indium Diallylation

exo-olefin. To get addition at the C-1 and C-3 positions the desired cyclization must proceed in a stepwise fashion as illustrated in Scheme 92. Toward this end, a model study was investigated to probe such reactions.

A retrosynthetic analysis (Scheme 93) of the model 20-membered lactone 181 gave rise to two fragments, vinyl iodide 177 and vinyl stannane 178. These two fragments would be joined via a Stille coupling and formation of the corresponding diene. Oxidation of the primary alcohol should give the acyclic substrate 180, which is a prerequisite for the indium mediated cyclization investigation.

Scheme 93. Retrosynthetic Analysis of Model Macrocycle

Vinyl iodide 177 was readily prepared by a DCC mediated esterification of the (Z)- β -iodo acid 48 and 5-hexyn-1-ol (Scheme 94) in a 70% yield. For the synthesis of the second Stille component a Zipper reaction⁶² of 3-octyn-1-ol gave

Scheme 94. Synthesis of Model Vinyl Iodide 177

the required terminal alkyne in a modest yield of 55%. Due to difficulties with the employment of potassium hydride, including foaming during the formation of potassium 3-aminopropylamide (KAPA), an alternative Zipper procedure using sodium hydride⁶³ was investigated. The NaH protocol was not as successful as the KH procedure as incomplete reaction with the former resulted in an inseparable mixture of terminal and internal alkynes.

Scheme 95. Synthesis of Model Vinvl Stannane 178

With the isolation of 7-octyn-1-ol via the Zipper reaction, the desired vinyl stannane 178 was generated (Scheme 95). With the palladium mediated protocol, both the internal and terminal vinyl stannanes were isolated in a 1:1

ratio. Fortunately, free radical hydrostannylation, only afforded the terminal vinyl stannane 178 with an E:Z ratio of 4.7:1.

With both subtargets for the model macrolactone in hand, their union was investigated (Scheme 96). Diene **179** was prepared by a Stille protocol in low yield. In reaction optimization experiments, it was found that the cross-coupling Scheme 96. Cross-coupling of Vinyl Stannane **177** and (Z)-vinyl lodide **178**

required reaction over 18 hours at room temperature. With regards to the palladium catalyst, it was found that the bis(acetonitrile)palladium (II) dichloride catalyst was superior in the coupling reaction. Ironically, with tris(dibenzlideneacetone)dipalladium (Pd₂dba) and tri-2-furylphosphine (TFP) as the catalyst system, only recovered starting material was isolated after 30 hours in refluxing THF. In any event, after subjecting the primary alcohol to the Doering-Parikh oxidation and obtaining aldehyde 180, the indium-mediated cyclization was ready to be investigated.

After examining the literature for allyl indium addition conditions to aldehydes and alkynes, our initial protocol for the cyclization reaction consisted of the following conditions⁶⁴ (Scheme 97): THF as the solvent, indium powder as the indium source, and NaI for an *in situ* Finkelstein reaction. The reaction was

Scheme 97. Indium Mediated Cyclization

stirred at room temperature for 6.5 hours until judged complete by TLC. After purification of the crude material by flash chromatography, two compounds were isolated. From ¹H and ¹³C NMR both compounds were not of acceptable purity; therefore, further purification was attempted by preparatory HPLC. The amount of material recovered after preparatory HPLC was insufficient for complete spectroscopic identification. However, from the initial NMR data structures 181 and 182 are proposed. Compound 181 is the desired macrocycle, while alcohol 182 is proposed to be the result of an allylation of the aldehyde followed by protio-debromination. All efforts to optimize the reaction were unsuccessful, and therefore this approach to amphidinolide A was also abandoned.

B. Generation of Vinyl Indanes and Subsequent Addition

In conjuction with the chelation controlled formation of the C_7 - C_8 and C_{12} - C_{13} bonds, the generation and subsequent reaction of vinyl indium nucleophiles were investigated. Recent reports on the chelation-controlled

additions of allylindanes to carbonyls suggested that indium or ligated indium species may be useful in the chelation-controlled addition of vinyl species to carbonyls. Moreover, the generation of allyl and alkynyl indane species have been reported by several groups under varying conditions. Initially, we believed that the tin to indium transmetallation⁶⁵ protocol would better serve our purpose.

In preparation for the transmetallation reaction, several vinyl stannanes were prepared via the hydrostannylation of the

Scheme 98. Tin - Indium Transmetallation

Bu₃Sn
OH
178

OH
PhCHO
MeCN

Bu₃SnCl
no addition product

InCl₃
PhCHO
TMSCl
No addition product

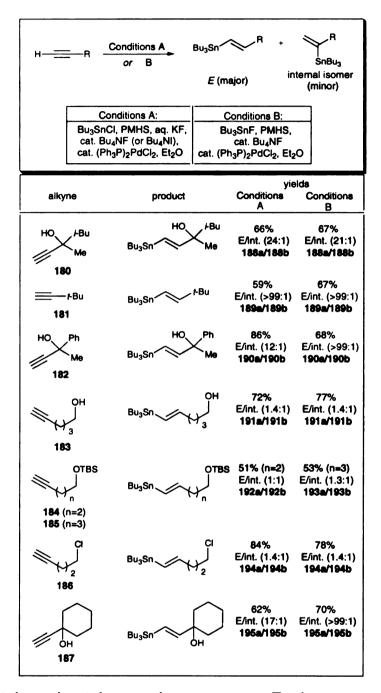
Bu₃SnCl
no addition product

parent alkyne.

Vinyl stannane 178 was the initial stannane investigated. The progress of the reaction was monitored by the disappearance of starting material by TLC analysis. After 20 minutes of stirring at room temperature, stannane 178 was completely consumed and the distinguishable Bu₃SnCl TLC streak appeared. Unfortunately, direct spectroscopic identification of organoindanes is not yet possible. Therefore, the presumed formation of the vinylindane is based solely on the apparent formation of Bu₃SnCl. After the addition of benzaldehyde, the reaction was allowed to stir at room temperature for an additional 60 minutes. Unfortunately, by ¹H NMR the crude residue showed no signs of an addition product but rather destannylated alkene. Due to the acidic nature of hydroxy protons, an internal quenching process may be operative. Therefore, the protected silyl ether 179 was used in future reactions. Although the preferred

solvent for the transmetallation is acetonitrile, protected alcohol 179 was insoluble in acetonitrile, and therefore, a solvent mixture of acetonitrile and THF (3:1) was utilized. Also, the reaction was run under Barbier-type conditions. where the electrophile was present during formation of the organometallic. After stirring for one hour at room temperature, GC-MS analysis showed three peaks that corresponded to the mass of benzaldehyde, Bu₃SnCl, and destannylated alkene. The reaction was allowed to proceed at room temperature for a total of 4 hours, after which it was heated at 55 °C for 15 hours. The GC-MS analysis after heating was identical to the one after the initial hour. The reaction was quenched by the addition of trimethylsilyl chloride (TMSCI) with two goals in mind: (a) TMSCI could activate the carbonyl for nucleophilic addition and/or (b) the presumed vinyl anion would be trapped with TMSCI thus providing evidence of vinyl indium formation. GC-MS analysis after the addition of TMSCI no longer showed the peak corresponding to the destannylated alkene. In addition to the disappearance of the destannylated alkene peak two additional peaks appeared. Unfortunately, these peaks exhibited no readily recognizable molecular ion. The crude residue was purified by flash chromatography but the isolated products were unidentifiable by ¹H NMR. The reaction was not a complete failure since it suggested that TMSCI or another Lewis acid could indeed initiate vinylindane formation. With that knowledge, the reaction was repeated with two equivalents of indium (III) chloride under the notion that the first equivalent would transmetallate with tin generating the vinvl indium species, and the second would serve to activate the carbonyl for nucleophilic addition. Unfortunately, the GC-

MS analysis was identical to the previous reactions initially showing three peaks corresponding to the aldehyde, Bu₃SnCl, and the destannylated alkene.


Collectively the results suggest that transmetallation from tin to indium is operative due to formation of Bu₃SnCl. Secondly, all the above reactions were stoichiometric in InCl₃, and the formation of Bu₃SnCl was complete (100%) within 30 minutes. Therefore, although the reactions were a failure in effecting a nucleophilic addition, they suggested that a "vinyl indane" species was present but internally quenched. Under the following conditions: catalytic in indium, rigorously dried and distilled THF as the solvent, and no TMSCI, GC analysis after 1 hour and 16 hours were identical and showed the presence of Bu₃SnCl and destannylated alkene. More importantly, the starting vinyl stannane 179 was present, thus verifying the hypothesis of an internal quench by "wet" solvent or adventitious protons. Moreover, after the addition of TMSCI, which is known^{65a,b} to be needed for nucleophic additions with catalytic indium, the GC trace was again identical to all the previous cases where the reaction failed. These results are significant because they infer that the presumed "vinyl indane" species are stable over substantial periods of time but are not nucleophilic enough to add to carbonyl electrophiles.

Chapter 6. In Situ Generated Bu₃SnH and Subsequent Hydrostannylation

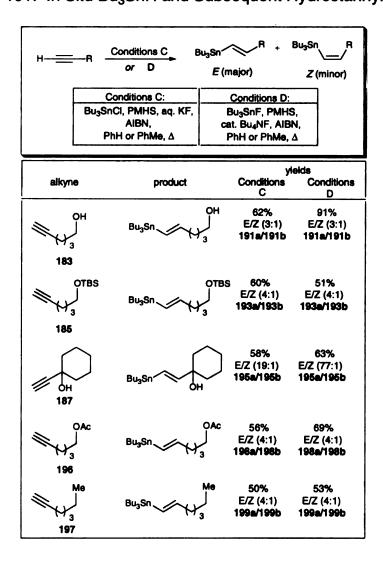
In concert with our total synthesis, amphidinolide A has served as a scaffold for the invention of new synthetic methodology. The genesis of these studies lies in the C_3 – C_4 diene disconnection of our retrosynthetic analysis. The overall goal of our methods project was to develop a one-pot hydrostannylation /Stille reaction catalytic in both palladium and tin. Traditionally, the vinyl stannane is generated by either a palladium mediated or free radical hydrostannylation of the parent alkyne with Bu_3SnH . Although the use of Bu_3SnH in organic synthesis is widespread, there are several drawbacks with its direct use i.e. its cost and toxicity. While investigating different aspects of this project, I have focused on gaining a fuller understanding of applying siloxane reductions of tin halides for the generation of tin hydrides and subsequent *in situ* hydrostannylation of alkynes.

Drawing on our experience with one-pot hydrostannylation/Stille couplings, ⁶⁶ we first focused on palladium-mediated hydrostannylations. We were initially disappointed when the reactions of several 1-alkynes with Bu₃SnCl, aqueous KF, and PMHS in THF proved inconsistent. Although the anticipated vinyltins were produced, yields and purity levels were usually low. However, after some experimentation, we found that using Et₂O as the solvent and including a catalytic amount tetrabutylammoniun fluoride (TBAF) or iodide (TBAI)⁶⁷ in the reaction, the expected vinylstannanes were formed in good yields and with standard regiochemical outcomes (Scheme 99; conditions A⁶⁸).

Scheme 99. In Situ Bu₃SnH and Subsequent Hydrostannylation (I)

remained intact throughout the reaction sequence. Furthermore, we observed no evidence of palladium-mediated hydrosilylation by the PMHS. Although the hydrostannylations with Bu₃SnCl/PMHS/KF_(aq.) proved similar in many regards to those carried out with pre-made Bu₃SnH, there were several significant

differences. For example, palladium-catalyzed hydrostannylations using Bu₃SnH directly are often complicated by the palladium-promoted conversion of Bu₃SnH into Bu₃SnSnBu₃.⁷⁰ Under the Bu₃SnCl/PHMS/KF_(aq.) conditions, the vinylstannanes are accompanied by little if any hexabutylditin byproduct. Presumably, the rates of tin hydride formation and hydrostannylation are such that the relative concentration of tin hydride is always low, thereby minimizing dimer formation. This phenomena can be of particular practical advantage when vinyltins are desired in quantities that dissuade their distillation and when they are also sufficiently nonpolar so as to make the chromatographic separation from the ditin difficult.


In terms of solvent, an obvious difference between our method and traditional hydrostannylations is the inclusion of water in the reaction. Although the advantages of running organic reactions in water have been well documented,⁷¹ we also recognized that a more anhydrous variant of our protocol would have its own advantages. Toward this aim, we examined the potential of KF or CsF in anhydrous ether to serve as Scheme 100. In Situ Bu₃SnH Stoichiometric TBAF sources of fluoride for our reaction. 1 eq. TBAF vinyl stannane + Bu₃SnCl, PMHS, Unfortunately, under such conditions little Bu₃SnSnBu₃ + H-=-R (Ph₃P)₂PdCl₂ unreacted alkyne (1.5:1:1.5)or no vinyltins were generated. Given our observation that the biphasic reactions were facilitated by the presence of catalytic amounts of TBAF, we decided to explore its use in stoichiometric quantities. Employing 1 equivalent of TBAF did result in complete and rapid generation of Bu₃SnH; however, the subsequent hydrostannylation did not go to

completion, as the reaction afforded a 1:1 ratio of vinvistannane and unreacted alkyne, along with a 50% yield of hexabutylditin (Scheme 100). This result was not entirely unexpected as tetrabutylammonium salts are known to greatly activate the Sn-H bond, leading to hydrogen gas evolution and ditin formation.⁷² The presence of Bu₂SnSnBu₂ and product were evidence that TBAF could serve to activate PMHS⁷³ and thus generate Bu₃SnH; however, it was also clear that we would have to minimize the TBAF concentration if we wished for the tin hydride to be available for hydrostannylation versus dimer formation. However. treatment of terminal alkynes with Bu₃SnCl. PMHS, and catalytic TBAF in the absence of KF also failed to provide any vinylstannane. Presumably the TBAF is reacting with the Bu₃SnCl to form Bu₃SnF and thereby not allowing for the activation of the PMHS.⁷⁴ Assuming this were the case, we rationalized that by using pre-made Bu₃SnF as the starting material the reaction could be made catalytic with respect to the TBAF, because a fluoride anion would be generated upon the PMHS-mediated conversion of Bu₃SnF into Bu₃SnH. Indeed, this proved to be the case. As indicated in Scheme 99 (conditions B), the catalytic TBAF/PMHS/Bu₃SnF combination gave the desired hydrostannylation products in good yields and with no Bu₃SnSnBu₃ formation. Interestingly, the addition of aqueous KF to THF or Et₂O mixtures of Bu₃SnF and PMHS results in the formation of only trace amounts of stannane.

Having applied the Bu₃SnX/PMHS/F⁻ method of generating Bu₃SnH to *in situ* hydrostannylations via palladium catalysis, we next decided to investigate the performance of the method in the free radical hydrostannylations. We

believed the most significant difference between the palladium-mediated and free radical reactions would be the elevated temperatures under which the free radical hydrostannylations are usually conducted. Specifically, we were concerned that in refluxing benzene or toluene our fluoride source would react with the product stannanes, diminishing the overall yield and/or effectively quenching the reaction prematurely.⁷⁵

These concerns proved to be unfounded. As illustrated in Scheme 101, both the catalytic TBAF/PMHS/Bu₃SnF method and the KF/PMHS/Bu₃SnCl Scheme 101. In Situ Bu₃SnH and Subsequent Hydrostannylation (II)

performed quite well under free radical reactions. Again the chemical yields and regioselectivities⁷⁶ observed in these reactions paralleled those found with the use of commercial tributyltin hydride. Unlike the palladium-catalyzed reactions, the employment of KF/PMHS/Bu₃SnCl under the free radical conditions did not require the inclusion of catalytic TBAF or TBAI. Presumably, the elevated temperatures of the free radical process allow the initial reaction between the KF, Bu₃SnCl, and the PMHS to take place at the water/benzene (or toluene) interface. The free radical reactions were similar to the palladium protocols in many regards, including the compatibility of silyl ethers with the procedure.

At this point, we needed to address the PMHS-related phenomena, which occasionally complicates the workup of these reactions. Our standard workup usually involves a NaOH treatment, evaporation, and chromatographic purification. With base-sensitive substrates such as the acetate in Scheme 101, the caustic workup needs to be omitted to avoid partial saponification of the ester. In such cases, the NaOH wash can be eliminated from the workup, but when omitted an almost "plastic" substance will occasionally solidify upon evaporation of the reaction solvent.

Scheme 102. In Situ Bu₃SnH via Red-Sil

This material is quite insoluble, and significant amounts of product

Red-Sil, Bu₃SnF,

1 mol% (Ph₃P)₂PdCl₂,

cat. TBAF, Et₂O

(76%)

Red-Sil, Bu₃SnF,

Bu₃Sn

OH

19:1 E/internal (195a/195b)

are usually trapped within the

polymer. To avoid this periodic annoyance, we sought a low cost PMHS substitute that could be easily removed from the reaction mixture in an efficient and simple way. Surface-immobilized silyl hydrides on silica such as those

popularized by Fry et al.⁷⁷ were viewed as excellent candidates for such a PMHS substitute. Reducing silica or "Red-Sil" is relatively simple to make^{77a} and when applied to palladium-mediated reductions^{77b} can be easily removed by filtration of the reaction mixture. In our reactions, Red-Sil performed admirably (Scheme 102), although a 4-fold excess of silane was required. Importantly, the reactions are very clean, and simple filtration of the reaction mixture through a short pad of silica gel completely removed the silane, which did not contain any detectable amounts of vinylstannane, and simultaneously removed the other reaction salts. Again, no Bu₃SnSnBu₃ byproduct was observed.

We have also investigated the application of our new method to the *in situ* generation and reaction of other tin hydrides, especially trimethyltin hydride. The very high toxicity of trimethyltin hydride coupled with its volatility (59 °C at 760 mmHg)⁷⁸ makes this reagent quite dangerous to handle. Ideally, this reagent is best prepared *in situ*, allowing its use without isolation. However, because of the absence of any commercially

Scheme 103. In Situ Me₃SnH available trimethyltin oxides, the

available trimethyltin oxides, the synthesis of trimethyltin hydride has traditionally relied on the reaction of strong hydride donors with trimethyltin chloride.^{78a} Given the

substrate tolerance exhibited by our method, we believed the

Me₃SnCl/siloxane/fluoride combination would represent the best way to perform reactions with trimethyltin hydride.⁷⁹ Indeed, trimethylvinylstannanes were

efficiently prepared via palladium-mediated hydrostannylations with trimethyltin hydride generated from the reaction of Me₃SnCl, KF (aq) and either PMHS or Red-Sil (Scheme 103).

In summary, either Bu₃SnCl/PMHS/KF (aq) or the combination of tributyltin fluoride, PMHS, and catalytic quantities of tetrabutylammonium fluoride (TBAF) can serve as in situ sources of tributyltin hydride for both free radical and palladium-catalyzed hydrostannylation reactions. Furthermore, other trialkyltin halides such as trimethyltin chloride, as well as alternative reductants such as Red-Sil appear to be amenable to the method.

Conclusion:

The convergent approach to amphidinolide A allowed for the construction of synthetically versatile building blocks. The synthesis of these building blocks and the flexibility in our design allowed for the simultaneous investigation of multiple coupling strategies, which gave valuable information as to which coupling sequence was used in our final approach to amphidinolide A. Our final approach allowed for the ready synthesis of amphidinolide A and unnatural analogs in 35 steps from articles of commerce with the longest linear sequence being 23 steps from L-(-)-ephedrine. The synthesis of amphidinolide A and unnatural analogs allowed for the instructional applications of organo-tin, indium, copper, palladium and ruthenium mediated reactions.

In addition, the *in situ* Bu₃SnH methodology study, which had its genesis at the $C_3 - C_4$ bond of our retro-analysis of, laid the ground work for the realization of a Stille reaction catalytic in both palladium and tin.

Experimental Section

Materials and Methods:

All air or moisture sensitive reactions were carried out in oven- or flamedried glassware under nitrogen atmosphere unless otherwise noted. All commercial reagents were used without purification. All solvents were reagent grade. Diethyl ether and THF were freshly distilled from sodium/benzophenone under nitrogen. Benzene, toluene, DMSO, diisopropylethylamine and cyclohexane were freshly distilled from calcium hydride under nitrogen. Except as otherwise noted, all reactions were magnetically stirred and monitored by thinlayer chromatography with 0.25-mm precoated silica gel plates or capillary GC with a fused silica column. Flash chromatography was performed with silica gel 60 Å (particle size 230-400 mesh ASTM). High performance liquid chromatography (HPLC) was performed with Ranin component analytical/ semiprep system. Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. Infrared spectra were recorded on a Nicolet IR/42 spectrometer. Proton and carbon NMR spectra were recorded on a Varian Gemini-300, VXR 500 or INOVA 600 spectrometer. Chemical shifts for ¹H NMR and ^{13}C NMR are reported in parts per million (ppm) relative to CDCl₃ (δ = 7.24 ppm for ¹H NMR or δ = 77.0 ppm for ¹³C NMR). Optical rotations were measured with a Perkin-Elmer Model 341 polarimeter. High resolution mass spectra (HRMS) data were obtained at either the Michigan State University Mass Spectrometry Service Center or at the Mass Spectrometry Laboratory of the

University of South Carolina, Department of Chemistry & Biochemistry. GC/MS were performed with a fused silica column (30 m by 0.25 mm i.d.).

Preparation of bisisopropylidene acetal (8):

A 1-L, three-necked flask equipped with an overhead stirrer, heating mantle and condenser with drying tube was charged with D-mannitol (100 g, 0.549 mol), freshly distilled 1,2-dimethoxyethane (240 mL), and 2,2dimethoxypropane (160 mL, 1.3 mol). The reaction mixture was stirred and stannous chloride (0.1 g) was added. The remaining neck was capped with a septum, and the stirred slurry was heated to reflux. Reflux was maintained until the mixture became clear (30 – 50 minutes) and was continued for 30 minutes after clarity was attained. The heating mantle was removed, and the solution was cooled below the reflux temperature and followed by the addition of pyridine (0.2 mL). After the solution was cooled to room temperature, it was transferred to a tared flask and concentrated on a rotary evaporator, beginning at room temperature and increasing the water bath to 100 °C. The semi-solid, which was white in color, was cooled to room temperature, and the residual solvent was removed with the vacuum pump to give 163 g of a white solid. According to the literature. 13 the purity of the product is ~ 55%.

Preparation of D-glyceraldehyde (9):

To a slurry of the bisisopropylidene of D-mannitol (36.0 g, 75.6 mmol, 55% purity) in CH₂Cl₂ (360 mL) and a saturated aqueous NaHCO₃ solution (20 mL) was added NaIO₄ (20 g, 93 mmol) portionwise (~ 2-3 minutes). After stirring for 2 hours at room temperature, MgSO₄ (20 g) was added and stirred for an additional 10 minutes. The reaction mixture was then vacuum filtered, and the filtrate concentrated to give a thick yellow oil. The crude residue was purified by distillation (54 °C @ 15 mm Hg) to give 7.25 g (37%) of D-glyceraldehyde acetonide 9 as a clear oil. For ¹H NMR data see below.

Pb(OAc)₄ procedure:

To a cold (0 °C) solution of the bisisopropylidene of D-mannitol (36.0 g, 75.6 mmol, 55% purity) in EtOAc (260 mL) was added Pb(OAc)₄ (52 g, 120 mmol) portionwise. The reaction mixture was warmed to room temperature and stirred for an additional 2.5 hours. The reaction mixture was filtered, and the filtrate was concentrated to give a clear syrup. Carbon tetrachloride (30 mL) was added to the residue and then evaporated under reduced pressure. This procedure was repeated three more times. The resulting residue was purified by distillation (40 °C, 3.6 mm Hg) to give 10.3 g (53%) of D-glyceraldehyde acetonide 9 as a clear oil. ¹H NMR (300 MHz, CDCl₃) δ = 9.70 (d, J = 1.9 Hz, 1H), 4.37 (ddd, J = 7.4, 4.9, 1.9 Hz, 1H), 4.15 (ABq, J = 8.8, 7.4 Hz, 1H), 4.08 (ABq, J = 8.8, 4.9 Hz, 1H), 1.47 (s, 3H), 1.40 (s, 3H). The spectroscopic data was in complete agreement with the literature. ¹³

Preparation of Allylic Alcohol (10):

To a cold (0 °C) solution of D-glyceraldehyde acetonide **9** (10.3 g, 79.5 mmol) in Et₂O (145 mL) was added vinyl magnesium bromide (81 mL, 81 mmol, 1.0 M THF) dropwise over 30 minutes. The reaction was allowed to warm to room temperature over 45 minutes and then quenched with a saturated aqueous NH₄Cl solution (20 mL). The phases were separated, and the aqueous phase was extracted with CH₂Cl₂ (100 mL x 3). The combined organic phases were washed with brine, dried over MgSO₄, and concentrated to give an oil. The crude residue was purified by flash chromatography on silica gel [Hex/EtOAc 1:1] to give 10.2 g (81%) of desired allylic alcohol **10** as a clear oil. For spectroscopic data see reference (14).

Preparation of Epoxy alcohol (11):

Kinetic resolution conditions:

To a solution of Ti(O-*i*-Pr)₄ (1.94 mL, 6.51 mmol) in CH₂Cl₂ (10 mL) at -30 °C was added (-)-diisopropyl tartrate (1.64 mL, 7.71 mmol) in CH₂Cl₂ (10 mL). After 15 minutes of stirring, allylic alcohol **10** (1.0 g, 6.3 mmol) in CH₂Cl₂ (10 mL) was added dropwise, followed by anhydrous *t*-BuOOH in toluene (4.35 M, 0.75

mL, 3.30 mmol). The reaction was allowed to proceed at -20 °C for 24 hours and then quenched with saturated aqueous Na₂SO₃ (10 mL) and Na₂SO₄ (10 mL). The resulting mixture was stirred for two hours and then filtered through a pad of Celite on a glass frit filter. The filter cake was washed with anhydrous Et₂O until the paste became granular. The granular filter cake was scraped off into a flask with EtOAc (50 mL) and stirred at reflux for 5 minutes. It was then filtered through the same pad of Celite and washed with hot EtOAc (50 mL). The filtrate was washed with 50% KOH (15 mL x 2) and brine (25 mL), dried over MgSO₄, filtered and concentrated to give 5.3 g of a yellow oil. The crude residue was purified by flash chromatography on alumina basic, activity III, (hexanes/EtOAc, 1:1) to provide 95 mg of epoxy alcohol 11 as a clear oil. For spectroscopic data see reference (19).

Standard conditions:

To a solution of Ti(O-*i*-Pr)₄ (2.27 mL, 7.63 mmol) in CH₂Cl₂ (10 mL) at -30 °C was added (-)-diisopropyl tartrate (1.70 mL, 8.01 mmol) in CH₂Cl₂ (10 mL). After 15 minutes of stirring, allylic alcohol **10** (1.15 g, 7.28 mmol) in CH₂Cl₂ (20 mL) was added dropwise, followed by anhydrous *t*-BuOOH in toluene (4.35 M, 0.75 mL, 3.30 mmol). The reaction was allowed to proceed at -20 °C for 24 hours and then quenched with saturated aqueous Na₂SO₃ (10 mL) and Na₂SO₄ (10 mL). The resulting mixture was stirred for two hours and then filtered through a pad of Celite on a glass frit filter. The filter cake was washed with anhydrous Et₂O until the paste became granular. The granular filter cake was scraped off into a flask with EtOAc (50 mL) and stirred at reflux for 5 minutes. It was then

filtered through the same pad of Celite and washed with hot EtOAc (50 mL). The filtrate was washed with 50% KOH (15 mL x 2) and brine (25 mL), dried over MgSO₄, filtered and concentrated to give 5.26 g of a yellow oil. For spectroscopic data see reference (19).

Preparation of allylic ester (12):

To a cold (0 °C) solution of bisisopropylidene acetal 8 (9.45 g, 19.8 mmol, 55% purity) in 5% agueous NaHCO₃ (50 mL) was added dropwise a solution of NaIO₄ (6.3 g, 30 mmol) in water (50 mL). The ice bath was removed and stirred at room temperature for 1 hour. The reaction temperature was lowered back to 0 °C and then triethyl-α-phosphonacetate (20.0 mL, 100 mmol) and 6 M K₂CO₃ (150 mL) were added. The ice bath was removed and stirred at room temperature for 24 hours. The reaction mixture was extracted with CH₂Cl₂ (200 mL x 4). The combined extracts were dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 1:1] to give 7.43 g (94%) of allylic ester 12 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 6.86 (dd, J = 15.7, 5.5 Hz, 1 vinyl H), 6.08 (dd, J = 15.7, 1.6 Hz, 1 vinyl H), 4.67 (dd, J = 12.64, 6.59 Hz, 1 H), 4.18 (a, J = 7.14 Hz, 2 H), 4.16 (dd, J = 8.2, 6.6 Hz, 1 H), 3.65 (dd, J = 8.2, 7.1 Hz, 1H), 1.46 (s, 3 H), 1.39 (s, 3 H), 1.27 (t, J = 7.14 Hz, 3 H). The spectroscopic data is in complete agreement with the reported literature.16

Preparation of allylic alcohol (13):

To a -78 °C solution of allylic ester 12 (5.99 g, 29.9 mmol) in CH₂Cl₂ (150 mL) was added DIBAL (75 mL, 1.0 M hexanes, 75 mmol) dropwise over 30 minutes. After stirring for 2 hours at -78 °C, the reaction was guenched with water (5 mL) and a saturated aqueous Rochelle's salt solution (150 mL). The mixture was allowed to warm to room temperature and stir overnight. The biphasic mixture was separated, and the organic phase washed twice with saturated aqueous Rochelle's salt solution. The combined aqueous phase was extracted three times with CH₂Cl₂. The combined organics were dried over MgSO₄, filtered and concentrated to give 5.5 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/Et₂O 1:3] to give 3.54 g (75%) of allylic alcohol 13 as a clear oil. ¹H NMR (300 MHz, CDCl₃) δ = 5.96 (dt, J = 15.4, 4.94 Hz, 1 vinyl H), 5.71 (ddt, J = 15.4, 7.69, 1.65 Hz, 1 vinyl H), 4.52 (app q, J = 7.14 Hz, 1 H), 4.15 (dd, J = 4.94, 1.65 Hz, 2 H), 4.07 (dd, J =7.69, 6.04 Hz, 1 H), 3.59 (t, J = 8.0 Hz, 1H), 1.46 (s, 1H), 1.41 (s, 3H), 1.38 (s, 3H). The spectroscopic data is in complete agreement with the reported literature. 16

Preparation of 2,3-epoxy-1-ol (14):

To a solution of Ti(O-i-Pr)₄ (4.52 mL, 15.2 mmol) in CH₂Cl₂ (20 mL) at -30 °C was added (+)-diethyl tartrate (2.72 mL, 15.9 mmol) in CH₂Cl₂ (20 mL). After

15 minutes of stirring, allylic alcohol 13 (2.28 g, 14.5 mmol) in CH₂Cl₂ (40 mL) was added dropwise, followed by anhydrous *t*-BuOOH in toluene (2.18 M, 14.4 mL, 31.2 mmol). The reaction was allowed to proceed at -20 °C for 24 hours and then quenched with saturated aqueous Na₂SO₃ (20 mL) and Na₂SO₄ (20 mL). The resulting mixture was stirred for two hours and then filtered through a pad of Celite on a glass frit filter. The filter cake was washed with anhydrous Et₂O (~ 1 L) until the paste became granular. The granular filter cake was scraped off into a flask with EtOAc (50 mL) and stirred at reflux for 5 minutes. It was then filtered through the same pad of Celite and washed with hot EtOAc (50 mL). The filtrate was washed with 50% KOH (30 mL x 2) and brine (30 mL), dried over MgSO₄, filtered and concentrated to give a yellow oil. The crude residue was purified by flash chromatography on silica gel [pet ether/Et₂O 1:7] to give 1.40 g (56%) of epoxy alcohol 14 as a clear oil. The spectroscopic data is in complete agreement with the reported literature.¹⁹

Preparation of diol sulfide (17):

Water and *t*-BuOH were deoxygenated prior to use by the rapid passage of nitrogen through the solvent for at least 30 minutes. A solution of epoxy alcohol **14** (1.0 g, 5.7 mmol) in 0.5 M NaOH (29 mL) and *t*-BuOH (29 mL) was immersed in a preheated (70 °C) oil bath and stirred vigorously. A solution of *t*-butylthiol (0.82 mL, 7.2 mmol) in *t*-BuOH (10 mL) was added dropwise over 45 minutes. After stirring an additional 20 minutes, the reaction was allowed to cool

to room temperature and was then neutralized with a saturated aqueous NH₄Cl solution. After water was added to clarify the aqueous phase, the phases were separated. The aqueous phase extracted 5 times with CH₂Cl₂. The combined extracts were dried over Na₂SO₄, filtered and concentrated to give a yellow oil. Flash chromatography on silica gel [hexanes/EtOAc 1:1] afforded 1.1 g (75%) of diol sulfide **17** as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 4.32 (dt, J = 6.59, 3.85 Hz, 1 H), 4.06 (dd, J = 8.24, 6.59 Hz, 1 H), 3.89 (dd, J = 8.24, 7.14 Hz, 1 H), 3.61 (dt, J = 7.69, 3.85 Hz, 1 H), 3.39 (dd, J = 7.69, 3.85 Hz, 1 H), 3.00 (dABq, J = 13.19, 3.85 Hz, 1 H), 2.69 (dABq, J = 13.19, 8.24 Hz, 1 H), 1.42 (s, 3 H), 1.36 (s, 3 H), 1.25 (s, 9 H). The spectroscopic data is in complete agreement with the reported literature. ¹⁹

Preparation of bisisopentylidene (18):

To a 40 °C slurry of D-mannitol (50 g, 27 mmol) in 126 mL of DMF containing camphosulfonic acid (CSA) (1.92 g, 8.2 mmol) was added 3,3-dimethoxypentane (76 g, 58 mol) dropwise over 15 minutes. After stirring for 3 hours, the reaction was quenched with triethylamine (1.4 g, 14 mmol). The resultant solution was concentrated under vacuum at 60 °C to afford a crude oil. The oil was diluted with 400 mL of EtOAc and then washed with brine (270 mL x 2). The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum at 60 °C to yield a white solid. The solid was dried overnight under high

vacuum at 60 °C to give 77.31 g of bisisopentylidene acetal 19. According to literature,²⁰ the purity of the bis-acetal is ~70% and the spectroscopic data is in complete agreement.

¹H NMR 300 MHz (CDCl₃): δ = 3.72 - 4.20 (m, 8 H), 1.6 (m, 8 H), 0.86 (t, J = 7.42 Hz, 6 H), 0.89 (t, J = 7.42 Hz, 6 H).

Preparation of allylic ester (20):

To a slurry of KIO₄ (6.12 g, 26.6 mmol) and KHCO₃ (0.28 g, 0.25 mmol) in H₂O (50 mL) at room temperature was added a solution of bisisopentylidene acetal 18 (11.0 g, 24.2 mmol, 70% purity) in THF (20 mL) dropwise over 5 - 10 minutes. After stirring for 3 hours at room temperature, the reaction mixture was cooled to 0 °C and followed by the addition of triethyl α-phosphonacetate (22.6 g. 20 mL, 100 mmol) and 150 mL of 6 M K₂CO₃. The resulting mixture was allowed to warm to room temperature and was stirred for 24 hr. The reaction mixture was extracted four times with CH₂Cl₂ and the combined extracts were dried over MgSO₄, filtered and concentrated under reduced pressure to give 38 g of an oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc, 3:1) to provide 7.59 g (70%) of allylic ester 19 and 2.08 g (18%) of a diastereomeric mixture. IR (neat, 4 cm⁻¹): v = 2978, 2884, 1724, 1665, 1464, 1305, 1175, 1080, 978, 920; $[\alpha]_D$ +41.6° (c 2.985, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 6.82$ (dd, J = 15.66, 5.77 Hz, 1 H), 6.06 (d, J = 15.66 Hz, 1 H), 4.60 (m, 1 H), 4.13 (m, 1 H), 4.15 (q, J = 7.14 Hz, 2 H), 3.56 (m, 1 H), 1.62 (q, J = 7.42

Hz, 2 H), 1.61 (q, J = 7.42 Hz, 2 H), 1.24 (t, J = 7.14 Hz, 3 H), 0.88 (t, J = 7.42 Hz, 3 H), 0.86 (t, J = 7.42 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 165.91$, 144.18, 122.39, 114.03, 75.22, 69.22, 60.49, 29.71, 29.33, 14.13, 8.04, 7.95; HRMS (CH₄) m/z 229.1441 [(M + H)⁺; calcd for C₁₂H₂₁O₄, 229.1440].

Preparation of allylic alcohol (20):

To a stirred solution of allylic ester 19 (3.40 g. 14.9 mmol) in 75 mL of CH₂Cl₂ at -78 °C was added DIBAL (38 mL, 1M hexanes, 38 mmol) over 30 min. The mixture was stirred at -78 °C for 3 hr, quenched with 3 mL of water and treated with 75 mL of saturated aqueous Rochelle's salt. The solution was allowed to warm to room temperature, and the phases were separated. The organic phase was washed twice with Rochelle's salt, and the combined aqueous phases were extracted with CH₂Cl₂. The combined extracts were dried with MgSO₄, filtered and concentrated under reduced pressure. The product was purified by flash chromatography on silica gel [hexanes/EtOAc, 1:3] to provide 2.39 g (86%) of allylic alcohol **20**. IR (neat, 4 cm⁻¹): v = 3418, 2974, 2941, 2882, 1464, 1172, 1078, 918; $[\alpha]_D$ +27.2° (c 2.665, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 5.91$ (dtd, J = 15.38, 4.95, 0.824 Hz, 1 H), 5.64 (ddt, J = 15.38, 7.69, 1.65 Hz, 1 H), 4.47 (q_{apo} 7.69 Hz, 1 H), 4.10 (dd, J = 4.94, 1.65 Hz, 2 H), 4.04 (qAB, J =8.24, 6.32 Hz, 1 H), 3.50 (t, J = 8.24 6 H), 1.60 (dq, J = 7.42 Hz, 4 H), 0.86 (dt, J= 7.42 Hz, 6 H); 13 C NMR (75 MHz, CDCl₃) δ = 138.86, 128.19, 113.44, 77.64, 69.99, 62.63, 30.05, 29.84, 8.25, 8.16; HRMS (CH₄) m/z 187.1335 [(M + H)⁺; calcd for C₁₀H₁₉O₃, 187.1334].

Preparation of epoxy alcohol (21):

A solution of Ti(O-i-Pr)₄ (3.70 mL, 12.4 mmol) in 20 mL CH₂Cl₂ was added to a flask filled with nitrogen and cooled to -30 °C. (+)-diethyl-L-tartrate (2.3 mL, 13 mmol) in 20 mL of dry CH₂Cl₂ was added under stirring. After 15 minutes, allylic alcohol 20 (2.20 g, 11.8 mmol) in 40 mL of CH₂Cl₂ was added dropwise over 1 hour, followed by the addition of t-BuOOH in toluene (6.0 mL, 4.35 M, 26 mmol). The reaction was allowed to proceed at -20 °C for 26 hours, before being diluted with Et₂O (50 mL) and then quenched with saturated aqueous solutions of Na₂SO₃ and Na₂SO₄ (15 mL each). The resulting heterogeneous mixture was stirred vigorously for 2 hours and then filtered through a pad of Celite. The yellow paste was washed with anhydrous ether until granular. The yellow paste was scraped into a flask with 50 mL of EtOAc. The heterogeneous mixture was heated to reflux for 5 minutes. The resulting mixture was filtered through the same Celite pad. The cake was washed with 50 mL of hot EtOAc. The filtrate was washed with 50% KOH (2 x 15 mL) and then brine, dried over MgSO₄, filtered and concentrated to give 3.95 g of a crude oil. Purification by flash chromatography on silica gel [hexanes/EtOAc, 1:3] afforded 1.75 g (70%) of epoxy alcohol **21**. IR (neat, 4 cm⁻¹): v = 3443, 2976, 2941, 2883, 1464, 1358, 1201, 1172, 1129, 1078, 916, 768; $\left[\alpha\right]_{889}^{20}$ -12.2° (c 1.40, CHCl₃); ¹H

NMR (300 MHz, CDCl₃) δ = 4.06 (m, 2 H), 3.92 (ddd, J = 12.64, 4.94, 2.20 Hz, 1 H), 3.77 (t, J = 6.59 Hz, 1 H), 3.64 (ddd, J = 12.64, 7.69, 3.85 Hz, 1 H), 3.12 (dt, J = 3.85, 2.20 Hz, 1 H), 3.07 (dd, J = 4.94, 2.20 Hz, 1 H), 2.01 (s, -OH), 1.60 (m, 4 H), 0.89 (t, J = 7.14 Hz, 3 H), 0.85 (t, J = 7.69 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 113.9, 75.5, 66.3, 60.8, 55.3, 54.8, 29.5, 29.2, 8.0, 7.9; HRMS (CH₄) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of diol sulfide (22):

Water and *t*-BuOH were deoxygenated prior to use by the rapid passage of nitrogen through the solvent for at least 30 minutes. A solution of the epoxy alcohol 21 (3.01 g, 14.8 mmol) in 74 mL of 0.5 M NaOH and 74 mL of *t*-BuOH was immersed in a preheated (70 °C) oil bath and stirred vigorously. A solution of *t*-butylthiol (2.2 mL, 20 mmol) in *t*-BuOH (30 mL) was added dropwise over 60 minutes. After stirring for an additional 30 minutes, the reaction was allowed to cool to room temperature and then neutralized with a saturated aqueous NH₄Cl solution. After water was added to clarify the aqueous phase, the phases were separated. The aqueous phase extracted 5 times with CH_2CI_2 . The combined extracts were dried over MgSO₄, filtered and concentrated to give a yellow oil. Purification by flash chromatography on silica gel [Hex/EtOAc, 3:1] afforded 3.56 g (82%) of diol sulfide 22. IR (neat, 4 cm⁻¹): v = 3464, 2973, 2941, 2884, 1462, 1366, 1169, 1080, 1059, 920; $\left[\alpha_{589}^{(20)} + 51.3^{\circ}\right]$ (c 2.545, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 4.26$ (ddd, J = 7.69, 6.59, 4.40 Hz, 1 H), 4.07 (dt, J = 8.24, 6.59 Hz, 1

H), 3.84 (t, J = 7.69 Hz, 1 H), 3.63 (m, 1 H), 3.41 (dt, J = 4.40, 6.59 Hz, 1 H), 2.98 (dd, J = 13.19, 4.40 Hz, 1 H), 2.75 (d, J = 5.49 Hz, 1 H), 2.70 (dd, J = 13.19, 7.69 Hz, 1 H), 2.51 (d, J = 7.14 Hz, 1 H), 1.62 (m, 4 H), 1.31 (s, 9 H), 0.88 (q, J = 7.69 Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ = 112.9, 79.3, 73.1, 71.4, 66.7, 42.6, 32.2, 31.0, 29.5, 29.0, 8.2, 8.0; HRMS (CH₄) m/z 293.1785 [(M + H)⁺; calcd for C₁₄H₂₉O₄S, 293.1787].

Preparation of epoxy alcohol (23):

To a solution of diol sulfide **22** (2.9 g, 9.9 mmol) and 2,6-di-*t*-butyl-4-methylpyridine (6.13 g, 24.8 mmol) in CH₂Cl₂ (60 mL) was added Me₃OBF₄ (2.26 g, 15.3 mmol) portionwise until TLC indicated that the diol was completely consumed (~ 1.5 hour @ 15 minute intervals). NaH (0.53 g, 21 mmol), which was washed prior to use with pentane or used as a 95% mineral oil suspension, was added dropwise as a suspension in CH₂Cl₂ (10 mL). After stirring for 5 minutes, the solution was quenched with a saturated aqueous solution of NH₄Cl. Water was added and the phases were separated. The aqueous layer was extracted with CH₂Cl₂ (3x). The combined organics were dried over Na₂SO₄, filtered, and concentrated to give a red oil. Purification by flash chromatography on silica gel [Hex/EtOAc, 1:3] afforded 1.46 g (73%) of epoxy alcohol **23** and 6.10 g of recovered 2,6-di-*tert*-butyl-4-methyl pyridine. IR (neat, 4 cm⁻¹): v = 3458, 2975, 2942, 2884, 1464, 1173, 1082, 918, 858; [α]_D +4.8° (c 1.335, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 4.22 (dt, J = 4.94, 6.59 Hz, 1 H), 4.07 (dd, J = 8.24,

6.59 Hz, 1 H), 3.83 (dd, J = 8.24, 7.14 Hz, 1 H), 3.37 (q, J = 5.49 Hz, 1 H), 2.98 (ddd, J = 6.59, 3.85, 2.75 Hz, 1 H), 2.82 (dd, J = 4.94, 3.85 Hz, 1 H), 2.74 (dd, J = 4.94, 2.75 Hz, 1 H), 2.36 (d, J = 4.94 Hz, 1 H), 1.64 (m, 4 H), 0.90 (t, J = 7.69 Hz, 3 H), 0.89 (t, J = 7.14 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 113.4, 77.0, 71.8, 65.9, 51.7, 45.3, 29.4, 28.9, 8.2, 8.0; HRMS (CH₄) m/z 203.1283 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of epoxy ketone (24):

To a room temperature solution of epoxy alcohol 23 (0.42 g, 2.1 mmol) in CH₂Cl₂ (20 mL) were added DMSO (5.90 mL, 82.8 mmol), diisopropylethylamine (2.16 mL, 12.4 mmol), and sulfur trioxide pyridine (0.99 g, 6.21 mmol). After stirring for 30 mintues the reaction was quenched by the addition of an aqueous saturated solution of NH₄Cl (15 mL), followed by the addition of ether (40 mL). The phases were separated, and the organic layer was washed with brine (2x). The combined aqueous layers were extracted with ether (2x). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel [hexanes/EtOAc, 3:1] to give 0.34 g (83%) of ketone 24 as a yellow oil. IR (neat, 4 cm⁻¹): v = 2977, 2944, 2884, 1730, 1464, 1383, 1361, 1201, 1173, 1130, 1078, 1061, 912; [α]²⁰₅₈₉+151.6° (c 1.43, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 4.63$ (dd, J = 7.69, 5.77 Hz, 1 H), 4.17 (dd, J = 8.51, 7.69 Hz, 1 H), 4.00 (m, 2 H), 2.99 (dd, J = 6.59, 4.67 Hz, 1 H), 2.79 (dd, J = 6.59, 2.47 Hz, 1 H), 1.64 (m, 4 H), 0.87 (t, J = 7.69

Hz, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ = 205.1, 115.2, 79.7, 66.4, 50.4, 47.8, 29.0, 28.4, 8.0, 7.9; HRMS (CH₄) m/z 201.1122 [(M + H)⁺; calcd for C₁₀H₁₇O₄, 201.1127].

Preparation of alkene (25):

Three step tandem reaction via diol sulfide 22:

To a solution of diol sulfide **22** (0.60 g, 2.0 mmol) and 2,6-di-*tert*-butyl-4-metylpyridine (1.05 g, 5.13 mmol) in CH₂Cl₂ (10 mL) was added Me₃OBF₄ (0.42 g, 2.6 mmol) portionwise until the diol was completely consumed (~ 1 hour). NaH (0.10 g, 4.3 mmol), which was washed prior to use with pentane, was added dropwise as a suspension in CH₂Cl₂ (3 mL). After stirring for 1 hour, the solution was quenched with a saturated aqueous solution of NH₄Cl. The phases were separated, and the aqueous layer extracted with CH₂Cl₂ (3x), dried over Na₂SO₄, filtered, and concentrated to give 1.45 g of crude material.

Swem Oxidation:

To a solution of oxalyl chloride (0.36 mL, 4.1 mmol) in CH₂Cl₂ (12 mL) at -78 °C was slowly added a solution of DMSO (0.58 mL, 8.2 mmol) solution in CH₂Cl₂ (1 mL). After 5 minutes, a solution of crude epoxy alcohol **23** in CH₂Cl₂ (6 mL) was added dropwise. After another 15 minutes, diisopropylethylamine (2.86 mL, 16.4 mmol) was added, and the reaction mixture was allowed to warm to room temperature. The reaction was diluted with ether (40 mL) and water (20 mL), and the phases were separated. The organic phase was washed with

water, brine and then dried over Na₂SO₄, filtered and concentrated to give crude 24 as a yellow oil.

Wittig Olefination:

To a cold (0 °C) mixture of methyltriphenylphosphonium bromide (0.81 g, 2.3 mmol) in THF (8 mL) was added *n*-BuLi (1.5 mL, 2.4 mmol) dropwise. The reaction mixture was warmed to room temperature and stirred for 30 minutes, cooled back to 0 °C and then a solution of crude ketone **24** in THF (5 mL) was added dropwise. After stirring for 1 hour, the reaction was quenched with a saturated aqueous NH₄Cl solution. Ether was added and the phases were separated. The aqueous phase was extracted with ether (2x). The combined organics were washed with water, brine and then dried over Na₂SO₄, filtered and concentrated to give 1.65 g of crude material. Purification by flash chromatography on basic alumina, activity III [hexanes/EtOAc 5%] afforded 0.15 g (36%) of alkene **25**. For spectroscopic data see below.

Optimized olefination procedure:

To a cold (0 °C) mixture of methyltriphenylphosphonium bromide (7.03 g, 19.7 mmol) in THF (30 mL) was added NaHMDS (18.3 mL, 18.3 mmol) dropwise over ~ 20 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes and then cooled to 0 °C at which time a solution of ketone 24 in THF (4 mL) was added dropwise. The reaction mixture was warmed to room temperature and stirred for 3.5 hours. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (30 mL). Water (30 mL) and Et₂O (90 mL) were added, and the phases separated. The aqueous layer was

extracted with Et₂O (25 mL x 2). The combined organic phase was washed with brine (25 mL), dried over Na₂SO₄, filtered and concentrated to give 6.83 g of crude material. Purification by flash chromatography on silica gel [hexanes/EtOAc, 3:1] afforded 0.60 g (80%) of alkene **25**. IR (neat, 4 cm⁻¹): v = 2977, 2944, 2884, 1464, 1198, 1173, 1080, 1059, 918; $\left[\alpha\right]_{589}^{20} +101.9^{\circ}$ (c 1.245, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 5.27$ (s, 1 H), 5.22 (s, 1 H), 4.57 (dd, J = 8.79, 6.32 Hz, 1 H), 4.10 (qAB, J = 7.97, 6.32 Hz, 1 H), 3.61 (qAB, J = 8.79, 7.97 Hz, 1 H), 3.43 (dt, J = 3.85, 0.82 Hz, 1 H), 2.90 (qAB, J = 5.77, 4.12 Hz, 1 H), 2.54 (qAB, J = 5.77, 2.75 Hz, 1 H), 1.66 (m, 4 H), 0.90 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 143.0$, 113.2, 113.1, 76.7, 69.4, 50.5, 49.4, 29.6, 29.2, 8.1; HRMS (CH₄) m/z 199.1326 [(M + H)⁺; calcd for C₁₁H₁₉O₃, 199.1334].

Preparation of hydroxy sulfide (26):

To a solution of sodium benzenethiolate (0.17 g, 1.2 mmol) in THF (10 mL) at room temperature was added dropwise (~ 15 minutes) a solution of epoxide **25** (0.19 g, 0.96 mmol) in THF (2 mL). After stirring for 1.5 hours, the reaction was quenched with a saturated aqueous NH₄Cl solution. Et₂O and water were added and the phases were separated. The aqueous phase was extracted with ether (2x). The combined organics were dried over MgSO₄, filtered and concentrated to give 0.34 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc, 10 %] afforded 0.20 g (67%) of hydroxy sulfide **26** as an oil. IR (neat, 4 cm⁻¹): v = 3451, 2975, 2940, 2882, 1584,

1482, 1464, 1439, 1356, 1287, 1198, 1173, 1080, 1059, 1026, 918, 739, 691; $[\alpha_{589}^{120} + 53.8^{\circ} \text{ (c } 1.04, \text{CHCl}_3); ^{1}\text{H NMR (} 300 \text{ MHz, CDCl}_3) \delta = 7.30 \text{ (m, 5 H), 5.28}$ (s, 1 H), 5.24 (s, 1 H), 4.57 (dd, J = 8.79, 6.32 Hz, 1 H), 4.17 (m, 1 H), 4.13 (qAB, J = 7.97, 6.32 Hz, 1 H), 3.59 (qAB, J = 8.79, 7.97 Hz, 1 H), 3.28 (qAB, J = 13.74, 8.52 Hz, 1 H), 3.04 (qAB, J = 13.74, 8.52 Hz, 1 H), 2.94 (d, J = 3.85 Hz, -OH), 1.64 (m, 4 H), 0.89 (t, J = 7.42 Hz, 6 H); 13 C NMR (75 MHz, CDCl₃) $\delta = 146.3$, 135.0, 130.0, 129.1, 126. 7, 113.2, 113.0, 76.9, 70.4, 69.8, 40.4, 29.7, 29.3, 8.1; HRMS (CH₄) m/z 307.1362 [(M - H)⁺; calcd for C₁₇H₂₃O₃S, 307.1368].

Preparation of α -acetoxy sulfide (27) via pummerer rearrangement:

To a solution of phenyl sulfide **26** (0.101 g, 0.327 mmol) in CH₂Cl₂ (7 mL) at -78 °C was added dropwise (~10 minutes) a solution of *m*-CPBA (0.056 g, 0.33 mmol) in CH₂Cl₂ (1 mL). After stirring for 5 minutes at -78 °C, the reaction mixture was allowed to warm to room temperature over 30 minutes. The reaction mixture was quenched by washing with 1 M NaOH (0.5 mL x 2), water (2x) and brine. The combined organic layers were dried over MgSO₄, filtered and concentrated to give 0.12 g (100%) of a yellow oil.

Pummerer Rearrangement:

The above crude sulfoxide and sodium acetate (0.10 g, 1.0 mmol) were dissolved in acetic anhydride (2 mL). The reaction mixture was heated to reflux over 30 minutes and then stirred at reflux for 3 hours. The reaction mixture was

concentrated. The resulting residue was diluted with CH₂Cl₂ (10 mL) and filtered to remove the excess sodium acetate. The filtrate was washed with a saturated aqueous NaHCO₃ solution (4 mL x 2), water and brine. The combined organic phase was dried over MgSO₄, filtered and concentrated. The residue was evaporated from toluene several times under high vacuum to remove the residual acetic anhydride. Purification by flash chromatography on silica gel [hexanes/EtOAc, 10%] afforded 42 mg (38%) of a diastereomeric mixture of α -acetoxy sulfide 27 as a thick vellow oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.27$ -7.49 (m, 10 H) 6.30 (d, J = 5.77 Hz, 1 H), 6.24 (d, J = 5.49 Hz, 1 H), 5.55 (s, 1 H), 5.42 (d, J = 5.77 Hz, 1 H), 5.39 (s, 1 H), 5.35 (d, J = 5.49 Hz, 1 H), 5.25 (s, 2 H), 4.53 (m, 2 H), 4.18 (m, 2 H), 3.58 (m, 2 H), 2.08 (s, 3 H), 2.05 (s, 3 H), 2.03 (s, 3 H), 2.03 (s, 3 H) 1.62 (m, 8 H), 0.90 (t, J = 7.42 Hz, 6 H), 0.89 (t, J = 7.42 Hz, 6 Hz,Hz, 6 H); 13 C NMR (75 MHz, CDCl₃) δ = 169. 5, 169.4, 169.2, 169.2, 142.0, 133.6, 133.4, 131.5, 131.2, 129.1, 129.1, 128.6, 128.5, 115.9, 115.4, 113.2, 113.2, 81.7, 79.7, 76.0, 74.1, 73.4, 70.3, 70.2, 29.7, 29.3, 20.9, 20.8, 8.2, 8.0,

Preparation of TBS-ether (29):

To a solution of alcohol **26** (0.13 g, 0.42 mmol) in CH₂Cl₂ (5 mL) at –78 °C were added diisopropylethylamine (0.24 mL, 1.3 mmol) and TBSOTf (0.15 mL, 0.67 mmol). After stirring for 20 minutes at –78 °C, the reaction was quenched with water (1 mL) and then allowed to warm to room temperature. The reaction mixture was diluted with Et₂O and saturated aqueous NH₄Cl and then the phases

were separated. The organic phase was washed with water and brine, dried over MgSO₄, filtered and concentrated to give 0.27 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc, 10%] afforded 0.13 g (75%) of TBS-ether **29** as an oil. For spectroscopic data see below.

In situ protection via epoxide 25:

To a solution of sodium benzenethiolate (0.59 g, 4.5 mmol) in THF (35 mL) at room temperature was added dropwise (~ 10 minutes) a solution of epoxide **25** (0.68 g, 3.4 mmol) in THF (8 mL). After stirring for 2.5 hours, the reaction was quenched by the addition of a solution of TBSOTf (1.30 mL, 5.47 mmol) and i-Pr₂NEt (1.90 mL, 10.9 mmol) in THF (10 mL). After stirring for an additional 5 minutes, Et₂O (70 mL) and water was added, and the phases were separated. The aqueous phase was extracted with ether (2x). The combined organics were was washed with brine, dried over MgSO₄, filtered and concentrated to give 1.95 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc, 0 \rightarrow 5%] afforded 0.80 g (55%) of TBS-ether **29** as a yellow oil, 0.38 g (36%) of unprotected alcohol **26** as a yellow oil and 59 mg (9%) of recovered epoxide **25** as an oil. For spectroscopic data see below.

Oxidation and olefination via 35:

To a solution of alcohol **35** (2.26 g, 5.30 mmol) in CH₂Cl₂ (55 mL) at 0 °C was added *i*-Pr₂NEt (5.50 mL, 31.8 mmol), DMSO (10 mL) and a heterogenous solution of SO₃•pyridine (2.53 g, 15.9 mmol) in DMSO (5 mL). The ice bath was removed and the reaction was stirred at room temperature for 30 minutes. The reaction was quenched with the addition of a saturated aqueous solution of

NH₄Cl (90 mL). The reaction mixture was diluted with Et₂O (190 mL), and the phases were separated. The organic phase was washed with brine (25 mL x 2). The combined aqueous phases were extracted with Et₂O (30 mL x 2). The organics were dried over MgSO₄, filtered and concentrated to give 3.09 g of crude **36** as a yellow oil.

To a cold (0 °C) mixture of methyltriphenylphosphonium bromide (2.83 g, 7.95 mmol) in THF (30 mL) was added NaHMDS (6.4 mL, 6.4 mmol, 1 M THF) dropwise over ~ 20 minutes. The reaction mixture was warmed to room temperature and stirred for 30 minutes, cooled to 0 °C and then a solution of crude ketone 36 in THF (7 mL) was added dropwise. The reaction mixture was warmed to room temperature and stirred for 4 hours. The reaction was quenched with the addition of a saturated aqueous NH₄Cl solution (7 mL). Water (7 mL) and Et₂O (110 mL) were added and the phases separated. The organic phase was washed with brine (10 mL x 2), dried over MqSO₄, filtered and concentrated. Purification by flash chromatography on silica gel [hexanes/EtOAc, $10 \rightarrow 25\%$] afforded 1.78 g (79%, 2 steps) of alkene 29 as an oil. IR (neat, 4 cm⁻¹): v = 2930, 2884, 2859, 1471, 1464, 1439, 1256, 1173, 1080, 1005, 920, 837, 777, 737, 691; $\left[\alpha_{589}^{120} + 43.1^{\circ}\right]$ (c 0.78, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.30$ (m, 5 H), 5.34 (s, 1 H), 5.23 (s, 1 H), 4.57 (dd, J = 9.07. 6.04 Hz, 1 H), 4.27 (dd, J = 7.42, 4.94 Hz, 1 H), 4.10 (dd, J = 7.69, 6.04 Hz, 1 H), $3.52 \text{ (dd, } J = 9.06, 7.69 \text{ Hz}, 1 \text{ H)}, 3.05 \text{ (qAB, } J = 13.46, 4.94 \text{ Hz}, 1 \text{ H)}, 2.97 \text{ (qAB, } J = 13.46, 4.94 \text{ Hz}, 1 \text{ H$ J = 13.46, 7.42 Hz, 1 H), 1.66 (m, 4 H), 0.89 (m, 6 H), 0.85 (s, 9 H), 0.035 (s, 3 H), -0.021 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ = 147.9, 136.8, 129.1, 128.9,

125.9, 112.9, 112.5, 75.2, 73.4, 70.6, 41.6, 29.9, 29.6, 25.8, 25.7, 18.2, 8.2, 8.1, -4.7, -4.9; HRMS (CH₄) *m/z* 421.2228 [(M - H)⁺; calcd for C₂₃H₃₇O₃SSi, 421.2233].

Preparation of sulfoxide (30):

To a solution of phenyl sulfide 29 (1.05 g, 2.48 mmol) in CH₂Cl₂ (50 mL) at -78 °C was added dropwise (~10 minutes) a solution of m-CPBA (0.43 g, 2.5 mmol) in CH₂Cl₂ (10 mL). After stirring for 5 minutes at -78 °C the reaction mixture was judged complete by TLC, and was then quenched by the addition of 1 M NaOH (3 mL) and allowed to warm to room temperature over 30 minutes. The phases were separated, and the organic phase washed with 1M NaOH (3 mL), water (3 mL x 2) and brine (4 mL), dried over MgSO₄, filtered and concentrated to give 1.13 g (100%) of crude sulfoxide 30 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.45 - 7.65$ (m, 10 H), 5.45 (s, 1 H), 5.40 (s, 1 H), 5.35 (s, 1 H), 5.34 (s, 1 H), 4.45 – 4.70 (m, 4 H), 4.10 (dd, J = 7.42, 6.04 Hz, 1 H), 4.05 (dd, J = 7.42, 6.04 Hz, 1 H), 3.57 (dd, J = 9.07, 7.69 Hz, 1 H), 3.47 (dd, J= 9.07, 7.69 Hz, 1 H), 3.10 (qAB, J = 13.19, 6.59 Hz, 1 H), 2.95 (qAB, J = 13.19, 1.19)6.87 Hz, 1 H), 2.83 (qAB, J = 12.91, 2.20 Hz, 1 H), 2.70 (qAB, J = 12.91, 10.44 Hz, 1 H), 1.62 (m, 8 H), 0.79 – 0.96 (m, 30 H), 0.08 (s, 3 H), 0.06 (s, 3 H), 0.05 (s, 3 H), 0.03 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ = 149.1, 147.5, 146.0, 144.5, 132.9, 131.3, 130.8, 129.3, 129.0, 127.4, 127.1, 124.2, 123.6, 115.3, 113.2,

112.7, 75.5, 75.0, 70.6, 70.3, 70.1, 68.2, 66.2, 29.7, 29.4, 25.8, 25.7, 18.2, 18.0, 8.0, -2.9, -4.5, -5.0, -5.2.

Preparation of α -acetoxy sulfide (31):

A solution of trifluoroacetic acid anhydride (0.20 mL, 1.4 mmol) in acetic anhydride (1 mL) was stirred at room temperature for 6 hours. A solution of crude sulfoxide 30 (0.42 g, 0.95 mmol) in Ac₂O (1 mL) was added and followed by the addition of 2,6-lutidine (0.22 mL, 1.9 mmol). After stirring for 15 hours at room temperature, the reaction was concentrated to give a dark red residue. CH₂Cl₂ was added to the residue and the solution was washed with a saturated aqueous NaHCO₃ solution and brine. The organic phase was dried over MgSO₄, filtered and concentrated to give a red oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 0.34 g (80%) of α -acetoxy sulfide 31 as a diastereomeric mixture. ¹H NMR (300 MHz, CDCl₃) δ = 7.22-7.46 (m. 10 H) 6.14 (d, J = 4.12 Hz, 1 H), 6.10 (d, J = 7.14 Hz, 1 H), 5.55 (s, 1 H), 5.50 (s, 1 H), 5.43 (s, 1 H), 5.22 (s, 1 H), 4.62 (m, 2 H), 4.42 (d, J = 3.85 Hz, 1 H), 4.35 (d, J =7.14 Hz, 1 H), 4.21 (dd, J = 7.69, 6.04 Hz, 1 H), 4.14 (dd, J = 7.69, 6.04 Hz, 1 H), 3.59 (dd, J = 9.07, 7.69 Hz, 1 H), 3.54 (dd, J = 9.07, 7.69 Hz, 1 H), 2.01 (s, 3 H), 2.00 (s, 3 H), 1.65 (m, 8 H), 0.90 (m, 30 H), 0.08 (s, 3 H), 0.05 (s, 3 H), 0.03 (s, 3 H), 0.01 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ = 169.5, 169.4, 169.2, 169.2, 142.0, 133.6, 133.4, 131.5, 131.2, 129.1, 129.1, 128.6, 128.5, 115.9, 115.4,

113.2, 113.1, 81.7, 79.7, 76.0, 74.0, 73.4, 70.3, 70.2, 29.7, 29.3, 20.9, 20.8, 8.2, 8.0; HRMS (CI) *m/z* 479.2277 [(M - H)⁺; calcd for C₂₅H₃₉O₅SSi, 479.2287].

Reduction of α -acetoxy sulfide (31) to give alcohol (32):

To a solution of α -acetoxy sulfide 31 (0.80g, 1.8 mmol) in THF (30 mL) at 0 °C was added LiBEt₃H (Super-Hydride®) (5.6 mL, 5.6 mmol, 1.0 M THF) dropwise (~15 minutes). The ice bath was removed and the reaction stirred at room temperature for 45 minutes. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (6 mL) and glycerol (1.7 mL, 0.3 mL/mmol). After stirring for 4 hours, the reaction mixture was diluted with Et₂O (30 mL) and the phases separated. The organic phase was washed with brine (5 mL x 2), dried over MgSO₄, filtered and concentrated to give 1.2 g of a greenish-yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc, 25%] afforded 0.46 g (79%) of alcohol 32 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 5.38 (s. 1 H), 5.26 (s. 1 H), 4.52 (dd. J = 8.79, 6.59 Hz, 1 H), 4.22 (dd. J = 6.59, 3.85 Hz, 1 H), 4.12 (dd, J = 7.69, 6.04 Hz, 1 H), 3.53 (dd, J = 8.79, 7.69 Hz, 1 H), 3.53 (m, 1 H), 3.44 (m, 1 H), 1.65 (m, 4 H), 0.89 (m, 6 H) 0.89 (s, 9 H), 0.07 (s, 3 H), 0.04 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 146.1, 113.7, 112.8, 75.7, 74.5. 70.2, 66.9, 29.8, 29.4, 25.8, 18.1, 8.2, 8.1, -4.6, -5.1; HRMS (CI) m/z 331.2311 $[(M + H)^{+}; calcd for C_{17}H_{35}O_{4}Si, 331.2305].$

Oxidation of alcohol (32) to give aldehyde A (33):

To a solution of oxalyl chloride (0.10 mL, 1.2 mmol) in CH₂Cl₂ (4 mL) at -78 °C was slowly added a solution of DMSO (0.17 mL, 2.4 mmol) in CH₂Cl₂ (0.1 mL). After 5 minutes, a solution of alcohol 32 (0.195 g, 0.594 mmol) in CH₂Cl₂ (1.5 mL) was added dropwise. After another 15 minutes, i-Pr₂NEt (0.83 mL, 4.8 mmol) was added, and the reaction mixture was allowed to warm to room temperature. The reaction was diluted with ether (12 mL) and water (3 mL), and the phases were separated. The organic phase was washed with water (3 mL) and brine (3 mL). The combined aqueous phases were extracted with Et₂O (5 mL). The combined organics were dried over Na₂SO₄, filtered and concentrated to give 0.22 g a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 0.16 g (82%) of aldehyde 33 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 9.40 (d, J = 1.65 Hz, 1 H), 5.49 (s, 1 H), 5.33 (d, J = 0.82 Hz, 1 H), 4.52 (dd, J = 8.79, 6.32 Hz, 1 H), 4.41 (s, 1 H), 4.07 (dd, J = 7.69, 6.32 Hz, 1 H), 3.60 (dd, J = 9.07, 7.69 Hz, 1 H), 1.68 (m, 4 H), 0.90 (s, 9 H), 0.89 (m, 6 H), 0.07 (s, 3 H), 0.05 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) $\delta = 199.7$, 142.5. 115.9, 113.3, 79.4, 76.1, 69.5, 29.7, 29.2, 25.6, 18.2, 8.2, 8.0, -5.0.

Preparation of sulfide diol (34):

Aqueous NaOH and t-BuOH were deoxygenated prior to use by the rapid passage of nitrogen through the solvent for at least 30 minutes. A solution of epoxy alcohol 21 (2.0 g, 9.9 mmol) in 50 mL of 0.5 M NaOH and 50 mL of t-BuOH was immersed in a preheated (~88 °C) oil bath. The reaction mixture was stirred vigorously. Thiophenol (1.42 mL, 13.8 mmol) was dissolved in t-BuOH (20 mL) and added dropwise over 2 hours. After stirring for an additional 10 minutes, the reaction was allowed to cool to room temperature and was then neutralized with a saturated aqueous NH₄Cl solution (50 mL). The phases were separated, and the aqueous phase extracted with CH₂Cl₂ (75 mL x 5). The combined organic extracts were washed with a saturated aqueous NH₄CI solution (50 mL) and brine (20 mL), dried over MgSO₄, filtered and concentrated to give 4.6 g of yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 2.1 g (69%) of diol sulfide 34. IR (neat, 4 cm⁻¹); v = 3460, 2973, 2928, 2884, 1584, 1481, 1464, 1440, 1378, 1337, 1292, 1172, 1092, 1080, 1026, 912, 740; $\left[\alpha\right]_{889}^{20}$ +31.0° (c 0.90, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.3$ (m, 5 H), 4.25 (ddd, J = 7.69, 6.59, 4.40 Hz, 1 H), 4.05 (dd, J =8.2, 6.59 Hz, 1 H), 3.85 (app t, J = 7.97 Hz, 1 H), 3.65 (m, 1 H), 3.49 (m, 1 H), 3.56 (ABq, J = 14.01, 3.57 Hz, 1 H), 2.99 (ABq, J = 14.01, 8.52 Hz, 1 H), 2.76 (d. J = 5.22 Hz, -OH), 2.52 (d, J = 6.32 Hz, -OH), 1.64, (m, 4 H), 0.88 (t, J = 7.14 Hz. 3 H), 0.86 (t, J = 7.14 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 134.8$, 129.8. 129.1, 126.6, 113.0, 76.3, 72.9, 70.9, 66.7, 38.7, 29.5, 28.9, 8.2, 8.0; HRMS (EI) m/z 312.1403 [M⁺; calcd for C₁₆H₂₄O₄S, 312.1395].

Selective mono-protection of diol (34) to give TBS-ether (35):

To a solution of diol sulfide 34 (4.01 g, 12.8 mmol) in CH₂Cl₂ (180 mL) at to 0 °C were added i-Pr₂NEt (2.67 mL, 15.4 mmol) and TBSTOf (3.23 mL, 14.1 mmol). The reaction mixture was stirred for ~1.5 hours and then quenched by the addition of an aqueous solution of NH₄Cl (10 mL). The reaction mixture was concentrated to ~ half volume. Water (6 mL) and Et₂O (160 mL) were and the phases were separated. The organic phase was washed with brine (10 mL), dried over MqSO₄, filtered and concentrated to give 5.26 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/ EtOAc $5\% \rightarrow 10\%$] to afford 3.82 g (70%) of mono-protected TBS-ether **35** as an oil and 0.84 g (21%) of recovered diol 34. For 35: IR (neat, 4 cm⁻¹): v = 2931, 2886, 2858, 1585, 1482, 1472, 1464, 1439, 1360, 1253, 1172, 1082, 923, 837, 777, 738; $\left[\alpha\right]_{589}^{20}$ –25.0° (c 0.65, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.35 (m, 5 H), 4.29 (dt, J = 3.02, 6.59 Hz, 1 H), 4.00 (dd, J = 6.59, 7.69 Hz, 1 H), 3.81 (app t, J = 7.69 Hz, 1 H), 3.70 (dt, J = 7.42, 3.30 Hz, 1 H), 3.62 (dt, J = 3.30, 7.69 Hz, 1 H), 3.33 (ABq, J = 13.18, 4.39 Hz, 1 H), 3.21 (ABq, J = 13.18, 4.39 Hz, 1 H), 2.32 (d, J = 7.97 Hz, -OH), 1.61 (m, 4 H), 0.92 (m, 15 H), 0.08 (s, 3 H), 0.05 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 137.2, 129.2, 128.8, 125.8, 113.1, 74.6, 72.5, 72.1, 66.6, 38.6, 29.2, 28.8, 25.8, 18.1, 8.3, 8.0, -4.3, -4.8; HRMS (EI) m/z 426.2267 [M⁺; calcd for C₂₂H₃₈O₄SSi, 426.2260].

Preparation of ketone (36):

To a solution of alcohol 35 (3.82 g, 8.95 mmol) in CH₂Cl₂ (90 mL) at 0 °C were added i-Pr₂NEt (9.35 mL, 53.7 mmol), DMSO (18 mL) and a heterogenous solution of SO₃-pyridine (4.27 g, 26.9 mmol) in DMSO (7 mL). The ice bath was removed and stirred at room temperature for 30 minutes. The reaction was quenched by the addition of a saturated aqueous solution of NH₄Cl (65 mL). The reaction mixture was diluted with Et₂O (150 mL) and the phases were separated. The organic phase was washed with brine (20 mL x 2). The combined aqueous phases were extracted with Et₂O (30 mL x 2). The organics were dried over MgSO₄, filtered and concentrated to give 4.73 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to afford 2.73 g (72%) of ketone **36** as a yellow oil. IR (neat, 4 cm⁻¹): v = 2932, 2884, 2859, 1734, 1472, 1464, 1441, 1362, 1256, 1201, 1173, 1086, 1026, 914. 839, 810, 779, 741; $\left[\alpha\right]_{589}^{20}$ +6.7° (c 1.015, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.3 (m, 5 H), 4.84 (dd, J = 7.69, 7.14 Hz, 1 H), 4.54 (t, J = 5.22 Hz, 1 H), 4.27 (dd, J = 8.52, 7.69 Hz, 1 H), 4.07 (dd, J = 8.52, 7.14 Hz, 1 H), 3.35 (ABq, J = 8.52, 7.69 Hz)13.19, 5.22 Hz, 1 H), 3.18 (ABq, J = 13.19, 5.22 Hz, 1 H), 1.63 (dq, J = 3.30, 7.42 Hz, 4 H), 0.88 (m, 15 H), 0.08 (s, 3 H), 0.05 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 207.5, 135.9, 129.6, 128.9, 126.4, 114.8, 78.4, 75.2, 66.0, 37.9, 29.2, 28.7, 25.7, 18.1, 8.0, -4.8, -5.0; HRMS (EI) m/z 395.1712 [(M - Et)⁺; calcd for C₂₀H₃₁O₄SSi, 395.1718].

Preparation of fragment B:

To a cold (0 °C) solution of EtMgBr (11 mL, 33 mmol, 3.0 M Et₂O) was added dropwise (~45 minutes) a solution of trimethylsilylacetylene (4.2 mL, 30 mmol) in THF (45 mL). After stirring for an additional 10 minutes at 0 °C, the reaction was immersed into a preheated oil bath (55 °C) and stirred for 1 hour and then recooled to 0 °C. The septum was quickly removed and Cul (0.11 g, 0.60 mmol) was added. The reaction vessel was reimmersed into the oil bath (55 °C) and 2,3-dibromopropene (3.7 mL, 36 mmol) was added dropwise over 1.5 hours. After stirring an additional 4 hours, the reaction was guenched by the addition of a saturated aqueous NH₄Cl solution (10 mL) and then diluted with Et₂O (125 mL). The phases were separated, and the organics were washed with brine (5 mL x 2), dried over MgSO₄, filtered and concentrated to give 9.73 g of a reddish-yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5%] to afford 6.02 g (93%) of fragment B as a light yellow oil. ¹H NMR (300 MHz, CDCl₃) $\delta = 6.0$ (q, J = 1.65 Hz, 1 H), 5.53 (q, J =1.65 Hz, 1 H), 3.35 (t, J = 1.65 Hz, 2 H), 0.16 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ = 126.7, 117.9, 101.0, 88.9, 32.7, -0.12; HRMS (EI) m/z 215.9967 [M⁺; calcd for C₈H₁₃BrSi, 215.9970].

Preparation of (Z)- β -iodo acid (48):

Ethyl 2-butynoate (4.16 mL, 35.7 mmol) was added to a sealed tube containing hydriodic acid (7 mL, 48% aq) and heated to 110 °C. After heating for 12 hours, the sealed tube was removed from the oil bath and allowed to cool to room temperature. The resultant crystals were filtered with the aid of a glass frit filter and washed three times with cold water. If crystallization was slow the sealed tube was inserted into an ice bath. The wet crystals were dried overnight in vacuo over KOH to give 3.0 g (40%) of (Z)-β-iodo acid 48 as a white solid. The aqueous filtrate was diluted with Et₂O and separated the phases. The aqueous phase was extracted twice with Et₂O. The combined organics were dried over MgSO₄, filtered and concentrated to give 4.45 g (52%) of (Z)-β-iodo ethyl ester 49. Resubjection of the ethyl ester to the reaction conditions afforded the desired (Z)-β-iodo acid 48 quantitatively. mp = 66 °C; ¹H NMR (300 MHz, CDCl₃) δ = 12.54 (s, 1 H), 6.42 (s, 1 H), 3.32 (s, 1 H). The spectroscopic data is in complete agreement with the reported literature.³⁴

Isomerization of (Z)- β -iodo acid (48) to give (E)- β -iodo acid fragment (D):

The (Z)- β -iodo acid **48** was heated to 135 °C in a sealed tube for 24 hours. From ¹H NMR, the isomerization was not total but gave the desired E-isomer (**D**) in a 3:1 ratio. With careful flash chromatography on silica gel [hexanes/EtOAc 25%, 1% MeOH] the two isomers were separated. mp = 66 °C; ¹H NMR (300 MHz, CDCl₃) δ = 12.54 (s, 1 H), 6.42 (s, 1 H), 3.32 (s, 1 H). The spectroscopic data is in complete agreement with the reported literature.³⁴

Preparation of alcohol (50) [model A/B coupling]:

Vinyl bromide **B** (0.20 g, 0.92 mmol) and MgBr₂•Et₂O (0.39 g, 1.5 mmol) were dissolved in THF (10 mL) and cooled to −78 °C. t-BuLi (1.1 mL, 1.8 mmol, 1.7 M pentane) was added dropwise over ~8 minutes. After stirring for an additional 5 minutes at −78 °C, valeraldehyde (0.065 mL, 0.61 mmol) was added dropwise. After stirring for 1 hour at −78 °C, the reaction was allowed to warm to room temperature over 30 minutes and then stirred for an additional 15 minutes. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (2 mL). Et₂O (20 mL) was added and the phases were separated. The aqueous phase was extracted with Et₂O (2x). The combined organics were washed with brine, dried over MgSO₄, filtered and concentrated to give 0.26 g of an yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5%] to afford 75.5 mg (55%) of alcohol **50** and 43.3 mg (32%) of allylic addition by-product, alcohol **51**. For spectroscopic data see below.

Zincate derivative:

t-BuLi (0.90 mL, 1.5 mmol, 1.7 M pentane) was added dropwise to Et₂O (3 mL) at −78 °C. A solution of vinyl bromide **B** (0.16 g, 0.74 mmol) in Et₂O (2 mL) was added dropwise to the *t*-BuLi solution. After stirring for 10 minutes, ZnMe₂ (0.38 mL, 0.75 mmol, 2.0 M toluene) was added. After stirring for an additional 15 minutes, valeraldehyde (0.054 mL, 0.50 mmol) was added dropwise. After

stirring for 1 hour at -78 °C, the reaction was allowed to warm to room temperature over 30 minutes and then stirred for an additional 15 minutes. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (1 mL). Et₂O (15 mL) was added and the phases separated. The organic phase was washed with water (3 mL x 2). The combined aqueous phases were extracted with Et₂O (5 mL). The combined organics were washed with brine (5 mL), dried over MgSO₄, filtered and concentrated to give 0.17 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5%] to afford 0.10 g (90%) of alcohol **50** as a yellow oil. 1 H NMR (300 MHz, CDCl₃) δ = 5.22 (dd, J = 3.02, 1.37 Hz, 1 H), 5.10 (t, J = 1.10 Hz, 1 H), 4.15 (t, J = 6.59 Hz, 1 H), 3.08 (ABq t, J = 19.79, 1.37, 1 H), 2.96 (ABq t, J = 19.79, 1.37 Hz, 1 H), 1.55 (m, 2 H), 1.30 (m, 4 H), 0.88 (t, J = 7.14 Hz, 3 H), 0.15 (s, 9 H); 13 C NMR (75 MHz, CDCl₃) δ = 146.1, 112.3, 87.7, 74.9, 34.8, 27.8, 22.6, 14.0, 0.04.

Preparation of alcohol (52) [fragment A/B coupling]:

Vinyl bromide **B** (0.12 g, 0.59 mmol) and MgBr₂•Et₂O (0.30 g, 1.2 mmol) were dissolved in THF (6 mL) and cooled to –78 °C. *t*-BuLi (0.70 mL, 1.2 mmol, 1.7 M pentane) was added dropwise over ~5 minutes. After stirring for an additional 10 minutes, a solution of aldehyde **33** (38 mg, 0.12 mmol) in THF (1 mL) was added dropwise. After stirring for 1.5 hours at –78 °C, the reaction was

allowed to warm to room temperature over 30 minutes and then stirred an additional 15 minutes. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (1 mL). Et₂O was added, and the phases separated. The aqueous phase was extracted with Et₂O (2x). The combined organics were washed with brine, dried over Na₂SO₄, filtered and concentrated to give 76 mg of a crude yellow oil. The crude residue was purified by flash chromatography on silica gel [Hex/EtOAc 5%] to afford

Zincate derivative:

t-BuLi (0.86 mL, 1.5 mmol, 1.7 M pentane) was added dropwise to Et₂O (3 mL) at −78 °C. A solution of vinyl bromide **B** (0.16 g, 0.74 mmol) in Et₂O (2 mL) was added dropwise to the *t*-BuLi solution. After stirring for 10 minutes, ZnMe₂ (0.50 mL, 1.0 mmol, 2.0 M toluene) was added and the reaction stirred for an additional 15 minutes. In a separate flask, to a −78 °C solution of aldehyde **33** (0.16 g, 0.487 mmol) in Et₂O (3 mL) was added ZnMe₂ (0.25 mL, 0.50 mmol, 2.0 M pentane) and the mixture stirred for 15 minutes. The zincate derivative of fragment **B** was quickly transferred via cannula to the pre-complexed aldehyde solution. After stirring for 1 hour at −78 °C, the reaction was allowed to warm to room temperature over 60 minutes and was then quenched by the addition of a saturated aqueous NH₄Cl solution (1.5 mL). Et₂O (15 mL) was added and the phases separated. The organic phase was washed with water (3 mL x 2). The combined aqueous phases were extracted with Et₂O (5 mL). The combined organics were washed with brine (5 mL), dried over MgSO₄, filtered and

concentrated to give 0.16 g of a yellow oil. Purification by flash chromatography on silica gel [Hex/EtOAc 5%] afforded several products.

52a: ¹H NMR (300 MHz, CDCl₃) δ = 5.45 (s, 1 H), 5.30 (s, 1 H), 5.25 (s, 1 H), 5.12 (s, 1 H), 4.55 (dd, J = 9.07, 5.77 Hz, 1 H), 4.19 (dd, J = 7.59, 5.77 Hz, 1 H), 4.17 (d, J = 4.67 Hz, 1 H), 3.99 (app t, J = 5.22 / 4.95 Hz, 1 H), 3.50 (dd, J = 9.07, 7.69 Hz, 1 H), 3.10 (ABq, J = 19.50 Hz, 1 H), 2.98 (ABq, J = 19.78 Hz, 1 H), 2.78 (d, J = 5.77 Hz, 1 H), 1.68 (m, 4 H), 0.90 (m, 6 H), 0.89 (s, 9 H), 0.14 (s, 9 H), 0.05 (s, 3 H), 0.02 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 146.2, 142.5, 114.4, 114.2, 113.6, 103.3, 77.4, 76.3, 75.3, 75.1, 70.8, 38.6, 29.9, 29.6, 25.8, 18.2, 8.1 (2), 0.03, -4.5, -5.1; HRMS (EI) m/z 466.2922 [M⁺; calcd for $C_{25}H_{46}O_4Si_2$, 466.2935].

52b: ¹H NMR (300 MHz, CDCl₃) δ = 5.49 (s, 1 H), 5.31 (d, J = 1.37 Hz, 1 H), 5.25 (m, 1 H), 5.15 (s, 1 H), 4.58 (dd, J = 9.07, 5.77 Hz, 1 H), 4.20 – 4.14 (m, 2 H), 4.07 (dd, J = 3.85, 6.59 Hz, 1 H), 3.59 (dd, J = 9.0, 7.69 Hz, 1 H), 3.12 (ABq, J = 19.78 Hz, 1 H), 2.97 (ABq, J = 19.50 Hz, 1 H), 2.46 (d, J = 3.85 Hz, 1 H), 1.65 (m, 4 H), 0.90 (m, 6 H), 0.86 (s, 9 H), 0.14 (s, 9 H), 0.04 (s, 3 H), 0.01 (s, 3 H).

Preparation of PMB-ether (54):

To a stirred suspension of NaH (0.23 g, 8.9 mmol, 95% in mineral oil) in DMSO (10 mL) was added dropwise a solution of alcohol **29** (1.84 g, 5.96 mmol) in THF (30 mL) at room temperature. After stirring for 25 minutes, *p*-methoxybenzyl chloride (1.30 mL, 9.54 mmol) was added. After stirring for 3.5

hours, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (4 mL). The reaction mixture was diluted with Et₂O (80 mL) and water (5 mL) and the phases were separated. The organic phase was washed with brine (5 mL x 2), dried over MgSO₄, filtered and concentrated to give 3.53 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc $5\% \rightarrow$ 10%] afforded 2.36 g (93%) of PMB-ether 54 as a clear oil. IR (neat, 4 cm⁻¹): v =2973, 2938, 2880, 1613, 1586, 1514, 1481, 1464, 1439, 1302, 1246, 1173, 1080, 1059, 1038, 920, 822, 741, 693; $\left[\alpha\right]_{589}^{20} + 103.4^{\circ}$ (c 0.71, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.15 - 7.30$ (m, 7 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.54 (app t, J =1.10 Hz, 1 H), 5.29 (s, 1 H), 4.53 (dd, J = 8.79, 5.49 H, 1 H), 4.51 (ABq, J = 11.26Hz, 1 H), 4.26 (ABq, J = 11.26 Hz, 1 H), 4.07 (dd, J = 7.69, 6.04 Hz, 1 H), 3.96 (dd, J = 7.69, 5.49 Hz, 1 H), 3.78 (s, 3 H), 3.51 (dd, J = 9.07, 7.69 Hz, 1 H), 3.11(dABq, J = 7.97, 13.46 Hz, 1 H), 2.99 (dABq, J = 5.22, 13.46 Hz, 1 H), 1.65 (m, 4)H), 0.91 (t, J = 7.42 Hz, 3 H), 0.90 (t, J = 7.42 Hz, 3 H); ¹³C NMR (75 MHz. CDCl₃) δ = 159.2, 145.1, 136.2, 129.9, 129.6, 129.5, 128.9, 126.1, 115.1, 113.7, 112.7, 78.5, 75.3, 70.6, 70.5, 55.3, 69.0, 29.8, 29.5, 8.2, 8.1; HRMS (CI) m/z 429.2096 [(M + H) $^{+}$; calcd for C₂₅H₃₃O₄S, 429.2100].

Preparation of sulfoxide (55):

To a solution of phenyl sulfide **54** (2.34 g, 5.46 mmol) in CH₂Cl₂ (120 mL) at -78 °C was added dropwise (~20 minutes) a solution of *m*-CPBA (1.13 g, 6.55 mmol) in CH₂Cl₂ (25 mL). After stirring for 10 minutes the reaction was judged

complete by TLC. The reaction was quenched by the addition of 1M NaOH (6.5 mL). The reaction mixture was allowed to warm to room temperature and the phases were separated. The organic phase was washed with 1 M NaOH (6.5 mL), water (10 mL x 2) and brine (10 mL). The organics were dried over MgSO₄, filtered and concentrated to give 2.43 g (100%) of a cloudy oil, which was used without further purification.

Preparation of α -acetoxy sulfide (56):

Trifluroacetic anhydride (1.15 mL, 2.69 mmol) was dissolved in acetic anhydride (5.5 mL) and the solution stirred at room temperature for 8 hours. A solution of crude sulfoxide **55** (2.43 g, 5.46 mmol) in Et₂O/Ac₂O (5 mL) was added and after a few minutes 2,6-lutidine (1.27 mL, 10.9 mmol) was added. After stirring for 12 hours at room temperature, the reaction was concentrated under high vacuum. CH_2Cl_2 (40 mL) was added and the solution was then washed with a saturated aqueous NaHCO₃ solution (5 mL x 3) and brine (5 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 3.24 g of a dark red oil. Purification by flash chromatography on silica gel [hexanes/EtOAc, 10%] afforded 2.03 g (76%) of α -acetoxy sulfide **56** as a thick yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 7.41 (m, 4 H), 7.25 (m, 10 H), 6.84 (d, J = 8.79 Hz, 4 H), 6.23 (d, J = 5.49 Hz, 1 H), 6.13 (d, J = 5.77 Hz, 1 H), 5.64 (s, 1 H), 5.57 (app t, J = 1.10 Hz, 1 H), 5.44 (s, 1 H), 5.34 (s, 1 H), 4.57 (m, 4 H), 4.30 (d, J = 11.26 Hz, 1 H), 4.28 (ABq, J = 11.54 Hz, 1 H), 3.99 - 4.13 (m, 4 H), 3.79

(s, 6 H), 3.57 (dd, J = 9.07, 7.97 Hz, 1 H), 3.50 (dd, J = 9.07, 7.97 Hz, 1 H), 2.20 (s, 3 H), 1.96 (s, 3 H), 1.65 (m, 8 H), 0.90 (m, 12 H)

Reduction of α -acetoxy sulfide to give alcohol (57):

To a cold (0 °C) solution of α-acetoxy sulfide **56** (2.0 g, 4.1 mmol) in THF (55 mL) was added dropwise (~20 minutes) Super-Hydride® (13.6 mL, 13.6 mmol, 1.0 M THF). The ice bath was removed and the reaction stirred at room temperature for 45 minutes. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (12 mL) and glycerol (4.1 mL, 0.3 mL/mmol). The reaction mixture was diluted with Et₂O (80 mL) and stirred for several hours. The phases were separated, and the organic phase was washed with brine (5 mL x 2), dried over MgSO₄, filtered and concentrated to give a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 1.2 g (87%) of alcohol **57** as a yellow oil. IR (neat, 4 cm⁻¹): v = 3466, 2973, 2940, 2881, 1613, 1515, 1465, 1249, 1174, 1077, 1036, 920, 823; $\left[\alpha\right]_{589}^{20}$ +50.4 (c 0.84, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.23 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.79 Hz, 2 H), 5.53 (app t, J = 1.10 Hz, 1 H), 5.35 (s, 1 H), 4.55 (ABq, J = 11.26Hz, 1 H), 4.53 (dd, J = 8.24, 6.32 Hz, 1 H), 4.26 (ABq, J = 11.26 Hz, 1 H), 4.12 (dd, J = 7.69, 6.32 Hz, 1 H), 3.98 (dd, J = 7.14, 4.40 Hz, 1 H), 3.78 (s. 3 H), 3.52 (m, 3 H), 1.68 (m, 4 H), 0.93 (t, J = 7.42 Hz, 3 H), 0.89 (t, J = 7.42 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.3, 143.6, 129.8, 129.6, 115.4, 113.9, 113.0, 80.3,

75.9, 70.4, 70.1, 65.5, 55.2, 29.8, 29.3, 8.2, 8.1; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Oxidation of alcohol (57) to give aldehyde (58):

To a stirred solution of the Dess-Martin periodinane (0.28 g, 0.65 mmol) in CH₂Cl₂ (10 mL) were added pyridine (0.053 mL, 0.653 mmol) and a solution of alcohol 57 (0.20 g, 0.59 mmol) in CH₂Cl₂ (0.5 mL). The reaction stirred at room temperature until judged complete by TLC (~1 hour). The reaction was quenched by the addition of a saturated aqueous NaHCO₃/10% Na₂S₂O₃ (1:1) solution (5 mL) and diluted with Et₂O (25mL). After stirring for 1 hour, the phases were separated. The organic phase was washed with water (2 mL), aqueous saturated CuSO₄ solution (2 mL x 2), water (2 mL) and brine (2 mL). The organics were dried over Na₂SO₄, filtered and concentrated to give 0.18 g (90%) of aldehyde **58** as a yellow oil. $\left[\alpha\right]_{589}^{20} + 6.9^{\circ}$ (c 0.96, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 9.52$ (d, J = 1.65 Hz, 1 H), 7.25 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.79Hz, 2 H), 5.61 (app t, J = 1.10 Hz, 1 H), 5.34 (d, J = 0.55 Hz, 1 H), 4.58 (ABq, J =11.54 Hz, 1 H), 4.52 (dd, J = 8.79, 6.32 Hz, 1 H), 4.43 (ABq, J = 11.54 Hz, 1 H), 4.23 (s, 1 H), 4.05 (dd, J = 7.97, 6.32 Hz, 1 H), 3.79 (s, 3 H), 3.60 (dd, J = 9.07, 7.97 Hz, 1 H), 1.68 (m, 4 H), 0.93 (t, J = 7.42 Hz, 3 H), 0.89 (t, J = 7.42 Hz, 3 H); ¹³C NMR (75 MHz. CDCl₃) δ = 199.1. 159.5. 140.4. 129.8. 128.8. 118.2. 113.9. 113.3, 83.9, 76.3, 70.9, 69.5, 55.3, 29.7, 29.2, 8.3, 8.0.

Preparation of alcohol (60) [fragment A/B coupling]:

t-BuLi (0.30 mL, 0.50 mmol, 1.7 M pentane) was added dropwise to Et₂O (1 mL) at −78 °C. A solution of vinyl bromide B (0.055 g, 0.25 mmol) in Et₂O (0.7 mL) was added dropwise (~7 minutes) to the t-BuLi solution. After stirring for 10 minutes. ZnMe₂ (0.17 mL, 0.34 mmol, 2.0 M toluene) was added. In a separate flask, to a solution of aldehyde 58 (0.056 g, 0.167 mmol) in Et₂O (1 mL) at -78 °C was added ZnMe₂ (0.09 mL, 0.167 mmol, 2.0 M toluene). After both solutions had stirred for 15 minutes at -78 °C, the zinc reagent was quickly transferred via cannula to the pre-complexed aldehyde solution. After stirring for 1.5 hours at -78 °C, the reaction was allowed to warm to room temperature over 60 minutes and was then quenched by the addition of a saturated aqueous NH₄Cl solution (1mL) dropwise. Et₂O (5 mL) was added, and the phases were separated. The organic phase was washed with water (1 mL x 2) and brine (1 mL). The combined aqueous phases were extracted with Et₂O (5 mL). The combined organics were washed with brine (3 mL), dried over MgSO₄, filtered and concentrated to give a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc $10\% \rightarrow 25\%$] afforded 32 mg (41%) of alcohol **60** as a yellow oil.

Grignard protocol:

t-BuLi (3.8 mL, 6.56 mmol, 1.7 M pentane) was added dropwise to Et₂O (15 mL) at −78 °C. A solution of vinyl bromide **B** (0.70 g, 3.2 mmol) in Et₂O (6

mL) was added dropwise (~12 minutes) to the t-BuLi solution. After stirring for 10 minutes, MgBr₂•Et₂O (3.5 mL, 1.0 M Et₂O/PhH (3:1), 3.5 mmol) was added and stirred at -78 °C for 15 minutes and then at 0 °C for 10 minutes and then the reaction temperature lowered back to -78 °C. In a separate flask, to a solution of aldehyde 58 (0.72 g. 2.15 mmol) in Et₂O/PhH (3:1) (2mL) at 0 °C was added MgBr₂•Et₂O (2.2 mL, 1.0 M Et₂O/PhH (3:1), 2.2 mmol). The aldehyde solution was transferred via cannula to the Grignard solution. After stirring for 1 hour at -78 °C, the reaction was allowed to warm to 0 °C and stirred for 2 hours. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (2 mL) and water (2 mL). Et₂O (2 mL) was added, and the phases were separated. The organic phase was washed with brine (2x). The combined aqueous phases were extracted with Et₂O. The combined organics were dried over MgSO₄, filtered and concentrated to give 1.2 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 10%, 1% Et₃N] to give 0.65 g (64%) of alcohol **60** as a yellow oil. IR (neat, 4 cm⁻¹): v = 3546, 2969, 2883, 2178, 1613, 1515, 1465, 1303, 1250, 1173, 1078, 1036, 918, 843, 761; $[\alpha]_{589}^{20}$ +55.1° (c 0.69, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.21 (d, J = 8.52 Hz, 2 H), 6.85 (d, J = 8.52 Hz, 2 H), 5.63 (t, J = 1.37 Hz, 1 H), 5.35 (s, 1 H), 5.33 (d, J= 1.37 Hz, 1 H), 5.13 (s, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.51 (dd, J = 9.07) 6.04 Hz, 1 H), 4.22 (ABq, J = 10.99 Hz, 1 H), 4.15 (dd, J = 7.69, 6.04 Hz, 1 H), 4.08 (m, 1 H), 3.84 (d, J = 6.04 Hz, 1 H), 3.79 (s, 3 H), 3.51 (dd, J = 9.07, 7.69 Hz, 1 H), 3.07 (ABq, J = 19.78 Hz, 1 H), 2.86 (d, J = 3.57 Hz, 1 H), 2.88 (ABq, J =19.78 Hz, 1 H), 1.65 (m, 4 H), 0.94 (t, J = 7.42 Hz, 3 H), 0.90 (t, J = 7.42 Hz, 3

H), 0.14 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.4, 143.5, 141.9, 129.7, 129.5, 116.3, 115.2, 113.9, 112.8, 103.3, 87.7, 81.3, 76.2, 75.3, 70.6, 70.5, 55.2, 29.9, 29.5, 23.2, 8.2, 8.1, 0.01; HRMS (EI) m/z 443.2248 [(M - Et)⁺; calcd for $C_{25}H_{35}O_5Si$, 443.2254].

By-product alcohol **61**: ¹H NMR (300 MHz, CDCl₃) δ = 7.22 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.79 Hz, 2 H), 5.66 (t, J = 1.37 Hz, 1 H), 5.31 (d, J = 1.10 Hz, 1 H), 4.56 (m, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.22 (ABq, J = 10.99 Hz, 1 H), 4.11 (dd, J = 7.69, 6.04 Hz, 1 H), 3.79 (s, 3 H), 3.60 (m, 2 H), 3.49 (dd, J = 9.07, 7.69 Hz, 1 H), 2.78 (br s, -OH), 1.68 (m, 4 H), 1.06 (d, J = 6.04 Hz, 3 H), 0.93 (t, J = 7.42 Hz, 3 H), 0.91 (t, J = 7.42 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.4, 143.7, 129.7, 117.4, 113.9, 112.7, 86.1, 74.9, 70.9, 70.3, 68.9, 55.3, 29.9, 29.6, 18.3, 8.2, 8.1.

TMS-deprotection to give alkyne (62):

To a cold (0 °C) solution of TMS-alkyne **50** (0.127 g, 0.566 mmol) in THF (5 mL) was added dropwise (~5 minutes) an acetic acid buffered TBAF solution (1.05:1) (0.60 mL, 0.60 mmol, 1.0 M THF). After stirring for 2 hours, Et₂O (12 mL) was added and then the reaction was quenched by the addition of water (2 mL). The phases were separated, and the organic phase was washed with brine (1 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.12 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 78 mg (90%) of alkyne **62** as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ

= 0.88 (t, J = 7.14 Hz, 3 H), 1.30 (m, 4 H), 1.55 (m, 2 H), 2.13 (t, J = 2.75 Hz, 1 H), 2.92 (dtABq, J = 2.75, 1.37, 19.50 Hz, 1 H), 3.06 (dtABq, J = 2.75, 1.10, 19.50 Hz, 1 H), 4.15 (t, J = 6.59 Hz, 1 H), 5.12 (m, 1 H), 5.25 (dt, J = 1.65, 1.37 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ = 145.9, 112.3, 81.3, 74.8, 71.0, 34.7, 27.7, 22.5, 21.0, 14.0.

Preparation of PMB-ether (64):

To a solution of alcohol 50 (0.14 g, 0.624 mmol) and p-CH₃OPhCH₂OC(NH)CCl₃ (0.70 g. 2.49 mmol)⁷⁸ in cyclohexane/CH₂Cl₂ (1:1) (4 mL) was added CSA (15 mg. 0.062mmol). The reaction vessel was immersed into a preheated oil bath (~40 °C). After stirring for 3 hours, more CSA (20 mg) was added. After stirring for a total of 12 hours, the reaction mixture was allowed to cool to room temperature, diluted with ether (15 mL), and quenched by the addition of a saturated aqueous NaHCO₃ solution (2 mL). The phases were separated, and the organic phase was washed with a saturated aqueous NaHCO₃ solution (2 mL x 2) and brine (3 mL), dried over MgSO₄, filtered and concentrated to give a white-yellow solid. Hexanes were added to the residue which was stirred for 30 minutes and then filtered. The solid was washed several times with hexanes. The filtrate was concentrated to give 0.43 g of an yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 0.11 g (51%) of PMB-ether **64** as a clear oil. ¹H NMR (300 MHz, CDCl₃) δ = 0.17 (s, 9 H), 0.85 (t, J = 6.87 Hz, 3 H), 1.30 (m, 4 H), 1.55 (m, 2 H), 2.93 (ABq, J = 20.33 Hz, 1 H),

3.03 (ABq, J = 20.05 Hz, 1 H), 3.78 (m, 1 H), 3.79 (s, 3 H), 4.16 (ABq, J = 11.26 Hz, 1 H), 4.42 (ABq, J = 11.54 Hz, 1 H), 5.11 (d, J = 1.37 Hz, 1 H), 5.41 (d, J = 1.65 Hz, 1 H), 6.85 (d, J = 8.52 Hz, 2 H), 7.22 (d, J = 8.52 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.1, 143.3, 130.60, 129.4, 114.4, 113.7, 103.9, 87.7, 81.9, 69.9, 55.2, 33.6, 28.0, 22.5, 21.4, 14.0, 0.09.

Preparation of alkyne (65):

To a solution of TMS-alkyne 64 (0.11 g, 0.32 mmol) in THF (3 mL) was added dropwise an acetic acid buffered TBAF solution (0.39 mL, 0.39 mmol, 1.0 M THF). After stirring for 3.5 hours at room temperature, Et₂O (10 mL) was added and then quenched with the addition of a saturated aqueous NaHCO3 solution (0.4 mL) and water (0.4 mL). The phases were separated, and the organic phase washed with brine (0.5 mL), dried over MgSO₄, filtered and concentrated to give 93 mg of a yellow oil. Purification by flash chromatography on silica gel [Hexanes/EtOAc 5%] afforded 79 mg (91%) of alkyne 65 as a clear oil. ¹H NMR (300 MHz, CDCl₃) δ = 0.85 (t, J = 6.87 Hz, 3 H), 1.28 (m, 4 H), 1.60 (m, 2 H), 2.16 (t, J = 2.75 Hz, 1 H), 2.89 (app qABq, J = 1.92, 20.05 Hz, 1 H).3.01 (dtABq, J = 2.75, 1.37, 20.05 Hz, 1 H), 3.78 (m, 1 H), 3.78 (s, 3 H), 4.17 (ABq, J = 11.26 Hz, 1 H), 4.42 (ABq, J = 11.54 Hz, 1 H), 5.12 (d, J = 1.10 Hz, 1 H), 5.43 (app q, J = 1.65 Hz, 1 H), 6.85 (d, J = 9.07 Hz, 2 H), 7.23 (d, J = 9.07Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.1, 143.0, 130.5, 129.4, 114.6, 113.7. 81.9, 81.3, 71.2, 69.7, 55.3, 33.5, 27.9, 22.5, 19.8, 14.0.

Hydrostannylation of alkyne (65) to give vinyl stannane (66):

(Ph₃P)₂PdCl₂ (1 mg. 0.002 mmol) and Red-Sil^{75a,b} (0.22 g, 0.463 mmol, 2.1 mmol/a) were added to Et₂O (1.5 mL) and followed by the addition of a solution of alkyne 62 (0.042 g, 0.15 mmol) in Et₂O (0.5 mL), Bu₃SnF (0.057 g, 0.19 mmol) and a few crystals of TBAF. After stirring for 1.5 hours at room temperature, more Red-Sil (70 mg) was added and the reaction stirred for an additional 2 hours. The reaction was filtered through a pad of Celite on a glass frit. The residual Red-Sil was washed several times with Et₂O. The filtrate was concentrated to give 86 mg of a brown cloudy oil. From ¹H NMR, the crude vinyl stannane 66 was a mixture of E- and internal isomers (1.5:1). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.24$ (d, J = 8.79 Hz, 2 H), 7.23 (d, J = 8.79 Hz, 2 H), 6.85 (d, J= 8.79 Hz, 4 H), 5.95 (m, 2 H), 5.70 (m, 1 H), 5.29 (m, 1 H), 5.05 (s, 1 H), 5.01 (s, 1 H), 4.96 (s, 1 H), 4.84 (d, J = 1.65 Hz, 1 H), 4.46 (ABq, J = 10.99 Hz, 1 H), 4.43 (ABq. J = 10.99 Hz, 1 H), 4.18 (ABq, J = 11.54 Hz, 1 H), 4.16 (ABq, J = 11.54 Hz, 1 H), 3.78 (s, 6 H), 3.70 (m, 2 H), 3.0 – 2.70 (m, 4 H), 1.60 – 0.80 (3 series of m. 72 H).

Preparation of diene (67) - Model Stille coupling:

To a solution of (MeCN)₂PdCl₂ (2 mg, 0.008 mmol) in DMF (1 mL) were added a solution of (Z)-β-iodo ethyl ester **49** (37 mg, 0.15 mmol) in DMF (0.1 mL)

and a solution of crude vinyl stannane **66** (86 mg, 0.15 mmol) in DMF (0.1 mL). After stirring for 12 hours at room temperature, the reaction was diluted with ether (10 mL) and then washed with brine (1 mL x 3), a saturated aqueous KF solution (1 mL x 2) and brine (1 mL). The organics were dried over MgSO₄, filtered and concentrated to give 0.16 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 5%] to give 61.2 mg of a diene **67** contaminated with residual vinyl iodide **49** as a yellow oil after two columns.

Preparation of terminal alkyne (68):

To a solution of TMS-alkyne **60** (0.14 g, 0.30 mmol) in THF (3 mL) was added an acetic acid buffered TBAF (1.05:1) solution (0.36 mL, 1.0 M THF, 0.36 mmol) dropwise. After stirring for 3.5 hours at room temperature, the reaction was diluted with ether (10 mL) and then quenched by the addition of a saturated aqueous NaHCO₃ solution (0.4 mL) and water (0.4 mL). The phases were separated, and the organic phase was washed with brine (0.5 mL), dried over MgSO₄, filtered and concentrated to give 0.11 g (93%) of alkyne **68** as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 7.21 (d, J = 8.24 Hz, 2 H), 6.86 (d, J = 8.24 Hz, 2 H), 5.64 (s, 1 H), 5.35 (s, 2 H), 5.14 (s, 1 H), 4.56 (ABq, J = 10.44 Hz, 1 H), 4.51 (dd, J = 9.34, 6.04 Hz, 1 H), 4.22 (ABq, J = 10.99 Hz, 1 H), 4.14 (dd, J = 7.69, 6.04 Hz, 1 H), 4.08 (d, J = 6.59 Hz, 1 H), 3.83 (d, J = 6.59 Hz, 1 H), 3.79 (s, 3 H), 3.51 (dd, J = 9.34, 7.69 Hz, 1 H), 3.03 (ABq, J = 19.78 Hz, 1 H), 2.86 (ABq,

J = 19.78 Hz, 1 H), 2.10 (t, J = 2.75 Hz, 1 H), 1.64 (m, 4 H), 0.92 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.4, 143.5, 141.6, 129.7, 129.4, 116.4, 115.3, 113.8, 112.8, 81.3, 80.9, 76.3, 75.3, 71.2, 70.6, 70.4, 55.2, 29.8, 29.4, 21.7, 8.2, 8.1.

Preparation of vinyl stannane (69):

Red-Sil (0.53 g, 2.1 mmol/g, 1.1 mmol) and (Ph₃P)₂PdCl₂ (2 mg, 0.003 mmol) were dissolved in Et₂O (2 mL) and followed by the addition of a solution of crude alkyne **68** (0.11 g, 0.28 mmol) in Et₂O (1 mL), Bu₃SnF (0.11 g, 0.36 mmol), and a few crystals of TBAF. After stirring for 4 hours at room temperature, the reaction mixture was filtered through a glass frit filter with a pad of Celite. The Red-Sil was washed several times with Et₂O. The filtrate was concentrated to give 0.16 g of a yellow oil, which was purified by flash chromatography on silica gel [Hexanes/EtOAc 10%] to give 27 mg (14%) of pure E-vinyl stannane **69**, 51 mg (27%) as a mixture of regioisomers (E-stannane major) and 44 mg (23%) of a regio-mixture (internal major).

E-isomer. ¹H NMR (300 MHz, CDCl₃) δ = 7.22 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.79 Hz, 2 H), 5.90 (m, 2 H), 5.62 (s, 1 H), 5.33 (s, 1 H), 5.09 (s, 1 H), 4.96 (d, J = 1.10 Hz, 1 H), 4.56 (ABq, J = 10.44 Hz, 1 H), 4.51 (dd, J = 8.79, 6.04 Hz, 1 H), 4.23 (ABq, J = 10.99 Hz, 1 H), 4.14 (dd, J = 7.69, 6.04 Hz, 1 H), 3.98 (dd, J =

6.04, 3.85 Hz, 1 H), 3.82 (d, J = 6.04 Hz, 1 H), 3.79 (s, 3 H), 3.50 (dd, J = 8.79, 7.69 Hz, 1 H), 2.92 (dABq, J = 4.40, 19.32 Hz, 1 H), 2.86 (d, J = 3.85 Hz, -OH), 2.70 (dABq, J = 4.40, 19.23 Hz, 1 H), 1.65 (m, 4 H), 1.46 (m, 6 H), 1.26 (m, 12 H), 0.87 (m, 15 H); 13 C NMR (75 MHz, CDCl₃) δ = 159.4, 146.0, 145.7, 143.9, 130.9. 129.7. 129.6. 116.1. 114.1. 113.8. 112.7. 81.5. 76.8. 75.2. 70.8. 70.4. 55.3, 40.7, 29.9, 29.5, 29.1, 27.3, 13.7, 9.4, 8.2, 8.1. internal isomer. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.22$ (d, J = 8.79 Hz, 2 H), 6.85 (d. J = 8.24 Hz. 2 H), 5.60 (s. 1 H), 5.59 (m. 1 H), 5.33 (s. 1 H), 5.21 (m. 1 H), 5.15 (s, 1 H), 4.90 (s, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.52 (dd, J = 7.69, 6.59 Hz, 1 H), 4.23 (ABq, J = 10.99 Hz, 1 H), 4.17 (dd, J = 7.69, 6.59 Hz, 1 H), 3.93 (t, J = 5.49 / 4.40 Hz, 1 H), 3.82 (d, J = 4.94 Hz, 1 H), 3.79 (s, 3 H), 3.52 (dd, J = 8.79, 7.69 Hz, 1 H), 3.01 (ABq, J = 15.93 Hz, 1 H), 2.71 (ABq, J = 15.93Hz, 1 H), 2.68 (d, J = 4.94 Hz, -OH), 1.66 (m, 4 H), 1.44 (m, 6 H), 1.26 (m, 12 H), 0.87 (m, 15 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.3, 152.4, 146.3, 144.2, 129.7. 129.6, 127.4, 115.7, 114.2, 113.8, 112.7, 80.7, 75.8, 75.2, 70.8, 70.3, 55.2, 44.0, 29.9, 29.5, 29.0, 27.4, 13.7, 9.8, 8.2, 8.1.

Preparation of diene (70) "ABD":

Stille Cross-coupling:

A solution of Pd₂dba₃ (1 mg, 0.001 mmol) and AsPh₃ (1.3 mg, 0.0044 mmol) in NMP (0.2 mL) was stirred at room temperature for 10 minutes and then

a solution of (Z)-β-iodo ethyl ester **49** (0.013 g, 0.055 mmol) in NMP (0.2 mL) was added. The reaction vessel was immersed into a preheated oil bath (~50 °C) and a solution of vinyl stannane **69** (0.038 g, 0.055 mmol) in NMP (0.2 mL) was immediately added. After stirring for 16 hours at 50 °C, the reaction was allowed to cool to room temperature and then diluted with Et₂O (6 mL). The organic phase was washed with water (0.2 mL), brine (0.2 mL), a saturated aqueous KF solution (0.2 mL x 2) and brine (0.2 mL). The organics were dried over MgSO₄, filtered and concentrated to give 95 mg of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 15 mg (52%) of diene **70** as a yellow oil. For spectroscopic data see below.

Liebeskind's Cross-coupling:

To a solution of (*Z*)- β -iodo ethyl ester **49** (0.017 g, 0.072 mmol) in NMP (0.2 mL) was added copper (I) thiophene-2-carboxylate (CuTc) (0.010 g, 0.054 mmol). To this suspension was added a solution of vinyl stannane **69** (0.026 g, 0.036 mmol) in NMP (0.2 mL). After stirring for 30 minutes, the reaction was diluted with Et₂O (6 mL) and filtered through a bed of Celite. The green filter cake was washed with Et₂O (3 mL). The clear filtrate was washed with water (0.6 mL x 3), a saturated aqueous KF solution (0.5 mL x 2), and brine (0.6 mL). The organics were dried over MgSO₄, filtered and concentrated to give 48 mg of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 10 mg (56%) of diene **70** as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 7.56 (d, J = 15.93 Hz, 1 H), 7.22 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.79 Hz, 2 H), 6.06 (dt, J = 15.38, 7.14 Hz, 1 H), 5.62 (s, 1 H), 5.61 (s, 1 H), 5.34

(s, 1 H), 5.10 (s, 1 H), 4.95 (s, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.51 (dd, J = 8.79, 6.04 Hz, 1 H), 4.23 (ABq, J = 10.99 Hz, 1 H), 4.13 (m, 3 H), 4.0 (dd, J = 6.04, 3.30 Hz, 1 H), 3.83 (d, J = 6.59 Hz, 1 H), 3.79 (s, 3 H), 3.50 (dd, J = 8.79, 7.69 Hz, 1 H), 2.99 (dABq, J = 6.59, 16.48 Hz, 1 H), 2.90 (d, J = 3.30 Hz, -OH), 2.79 (dABq, J = 7.69, 16.48 Hz, 1 H), 1.95 (d, J = 1.10 Hz, 3 H), 1.65 (m, 4 H), 1.25 (t, J = 7.14 Hz, 3 H), 0.94 (t, J = 7.69 Hz, 3 H), 0.89 (t, J = 7.69 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 166.2$, 159.4, 150.6, 145.6, 143.7, 135.6, 129.8, 129.5, 116.5, 116.4, 114.9, 113.9, 112.8, 81.5, 76.8, 75.1, 70.7, 70.4, 59.7, 55.3, 35.8, 29.9, 29.5, 21.1, 14.3, 8.2, 8.1; HRMS (CI) m/z 515.3001 [(M + H)⁺; calcd for $C_{30}H_{43}O_7$, 515.3009].

Preparation of PMB-ether (72):

To a solution alcohol **60** (0.095 g, 0.201 mmol) and *p*-CH₃OPhCH₂OC(NH)CCl₃⁷⁸ (0.23 g, 0.80 mmol) in cyclohexane/CH₂Cl₂ (3:1) (2 mL) was added CSA (5 mg, 0.02 mmol). The reaction vessel was immersed into a preheated oil bath (~40 °C). After stirring for 3 hours at 40 °C, more CSA (11 mg) was added. After stirring for a total of 12 hours, the reaction mixture was allowed to cool to room temperature, diluted with Et₂O (15 mL), and quenched by the addition of a saturated aqueous NaHCO₃ solution (1 mL). The phases were separated, and the organic phase was washed with a saturated aqueous NaHCO₃ solution (2 mL x 2) and brine (3 mL), dried over MgSO₄, filtered and concentrated to give a

white-vellow solid. Hexanes were added to the residue, stirred for 30 minutes and then filtered. The solid was washed several times with hexanes. The filtrate was concentrated to give 0.21 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 49 mg (41%) of PMB-ether **72** as an oil. ¹H NMR (300 MHz, CDCl₃) $\delta = 7.27$ (d, J = 8.79 Hz, 2 H), 7.22 (d, J = 8.24 Hz, 2 H), 6.87 (d, J = 8.24 Hz, 2 H), 6.83 (d, J = 8.79 Hz, 2 H), 5.54 (s, 1 H), 5.45 (s, 1 H), 5.31 (s, 1 H), 5.16 (s, 1 H), 4.53 (ABq, J = 10.99Hz, 1 H), 4.46 (ABq, J = 11.54 Hz, 1 H), 4.45 (m, 1 H), 4.27 (ABq, J = 10.99 Hz, 1 H), 4.23 (ABq, J = 11.54 Hz, 1 H), 3.99 (dd, J = 7.69, 6.04 Hz, 1 H), 3.95 (d, J =5.49 Hz. 1 H), 3.84 (d, J = 6.04 Hz, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.41 (dd, J =8.79, 7.69 Hz, 1 H), 3.04 (ABa, J = 20.33 Hz, 1 H), 2.94 (ABa, J = 20.33 Hz, 1 H). 1.64 (m, 4 H), 0.91 (t, J = 7.14 Hz, 3 H), 0.87 (t, J = 7.14 Hz, 3 H), 0.17 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.1, 159.0, 143.7, 140.8, 130.4, 130.2, 130.1, 129.7, 115.9, 115.3, 113.8 (2), 112.6, 103.6, 87.6, 83.0, 81.2, 75.5, 71.4, 70.7, 70.6, 55.2, 29.8, 29.5, 23.6, 8.1, 0.08.

Preparation of terminal alkyne (73):

To a solution TMS-alkyne **72** (0.049 g, 0.083 mmol) in THF (0.8 mL) was added an acetic acid buffered TBAF (1.05:1) solution (0.10 mL, 1.0 M THF, 0.10 mmol) dropwise. After stirring for 5 hours at room temperature, the reaction was diluted with Et₂O (5 mL) and then quenched by the addition of a saturated

aqueous NaHCO₃ solution (0.1 mL) and water (0.1 mL). The phases were separated, and the organic phase was washed with brine (0.2 mL), dried over MgSO₄, filtered and concentrated to give 40 mg (93%) of crude alkyne **73** as a yellow oil.

Preparation of 1-bromo-alkyne (74):

To a solution of crude alkyne **73** (0.040 g, 0.077 mmol) in acetone (0.2 mL) were added NBS (0.0164 g, 0.0924 mmol) and AgNO₃ (1.3 mg, 0.0077 mmol). The flask was wrapped with aluminum foil and stirred at room temperature for one hour. The reaction was quenched by the addition of water (0.2 mL), diluted with Et₂O (1.5 mL) and the phases were separated. The organic phase was washed with brine, dried over MgSO₄, filtered and concentrated to give 37 mg of crude 1-bromo-alkyne **74** as a yellow oil.

Preparation of TBS-ether (76):

To a solution of alcohol **60** (0.45 g, 0.95 mmol) in CH_2Cl_2 (4.5 mL) was added 2,6-lutidine (0.22 mL, 1.9 mmol) and TBSOTf (0.33 mL, 1.4 mmol). After stirring for 60 minutes, the reaction was quenched with water (1 mL) and a

saturated aqueous NH₄Cl solution (1 mL). The reaction was diluted with Et₂O (50 mL), and the phases were separated. The organic phase was washed with brine (2 mL x 2), a saturated aqueous CuSO₄ solution (2 mL x 2) and brine (2 mL). The combined aqueous phases were extracted with Et₂O (3 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 0.59 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc $5\% \rightarrow 10\%$] to give 0.50 g (89%) of TBS-ether **76** as a yellow oil. IR (neat, 4 cm⁻¹): v = 2957, 2929, 2857, 2178, 1613, 1514, 1464, 1258, 1173, 1079, 1040, 920, 842, 777, 760, 699; $\left[\alpha_{589}^{120} + 16.9^{\circ}\right]$ (c 0.825, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.21 (d, J = 8.52 Hz, 2 H), 6.83 (d, J = 8.52 Hz, 2 H), 5.52 (s, 1 H), 5.24 (s, 2 H), 5.07 (s, 1 H), 4.52 (app d, J = 9.07 Hz, 1 H), 4.50 (ABq, J = 11.26 Hz, 1 H), 4.28 (d, J = 5.49 Hz, 1 H), 4.24 (ABq, J = 11.26 Hz, 1 H), 4.05 (dd, J = 7.42, 6.04 Hz, 1 H), 3.78 (s, 3 H), 3.63 (d, J = 5.49 Hz, 1 H), 3.43 (dd, J = 9.07, 7.69 Hz, 1 H), 3.07 (ABq, J = 19.78 Hz, 1 H), 2.90 (ABq, J =19.78 Hz, 1 H), 1.65 (m, 4 H), 0.92 (t, J = 7.42 Hz, 3 H), 0.88 (t, J = 7.42 Hz, 3 H), 0.84 (s, 9 H), 0.14 (s, 9 H), -0.01 (s, 3 H), -0.02 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 143.4, 130.3, 129.3, 114.2, 113.6, 104.1, 100.3, 82.0, 70.6, 55.3, 30.1, 29.7, 25.8, 25.7, 23.9, 18.2, 8.2, 8.1, 0.11, -2.9, -4.9; HRMS (CI) m/z $587.3573 [(M + H)^{+}; calcd for C_{33}H_{55}O_{5}Si_{2}, 587.3588].$

Hydrolysis of isopentylidene acetal (76) to give diol (77) and triol (78):

p-toluenesulfonic acid monohydrate:

To a solution of isopentylidene acetal **76** (0.12 g, 0.20 mmol) in MeOH (2 mL) was added p-toluenesulfonic acid monohydrate (PTSA) (4 mg, 0.02 mmol). After stirring at room temperature for 12 hours, the reaction was quenched by the addition of a saturated aqueous NaHCO $_3$ solution (0.4 mL). The reaction mixture was diluted with Et $_2$ O (10 mL) and water (2 mL) and then the phases were separated. The organic phase was washed with brine (0.5 mL x 2). The combined aqueous phases were extracted with Et $_2$ O (3 mL). The combined organics were dried over MgSO $_4$, filtered and concentrated to give 63 mg of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 10% \rightarrow 25%] to give 6.7 mg of desired diol **77** (6%) as a yellow oil, 19 mg (23%) of triol **78** via acetonide hydrolysis and loss of the TBS moiety, and 16.4 mg (17%) of alcohol **60** via loss of the TBS group only. For spectroscopic data see below.

10-camphorsulfonic acid:

To a solution of isopentylidene acetal **76** (0.46 g, 0.78 mmol) in MeOH/CH₂Cl₂ (2:1) (9 mL) was added 10-camphorsulfonic acid (CSA) (0.018 g, 0.078 mmol). The reaction was immersed into a preheated oil bath (40 °C). After stirring for 6 hours, additional CSA (18 mg) was added. A second portion of CSA (18 mg) was made after 24 hours. After stirring for a total of 31 hours, the reaction was allowed to cool to room temperature and was then neutralized with

Et₃N (0.5 mL). The reaction mixture was then concentrated to give 0.45 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/ EtOAc 25% \rightarrow 50%, 0.5% MeOH] to give 0.145 g (46%) of triol **78** and 92 mg (25%) of alcohol 60 as clear oils. diol 77: IR (neat, 4 cm⁻¹): v = 3417, 2957, 2931, 2858, 2177, 1613, 1515, 1471, 1464, 1303, 1250, 1174, 1084, 1037, 915, 842, 777, 760; ¹H NMR (300 MHz, CDCl₃) $\delta = 7.21$ (d, J = 8.79 Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.30 (s, 1 H), 5.28 (d, J = 1.65 Hz, 1 H), 5.21 (s, 1 H), 5.07 (s, 1 H), 4.49 (ABq, J = 11.54 Hz, 1 H), 4.43 (d, J = 6.04 Hz, 1 H), 4.34 (ABq, J = 11.54 Hz, 1 H), 4.19 (m, 1 H), 3.83 (d, J = 6.04 Hz, 1 H), 3.79 (m, 4 H), 3.56 (m, 1 H), 3.09 (ABq, J = 19.78 Hz, 1 H), 2.94 (ABq, J = 19.78 Hz, 1 H), 0.86 (s, 9 H), 0.14 (s, 9 H), 0.03 (s, 3 H), 0.01 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ = 159.2, 144.6, 143.1, 129.4, 115.2, 114.6, 113.7, 103.9, 84.4, 77.2, 75.2, 72.1, 71.2, 65.4, 55.3, 25.8, 23.5, 18.2, 0.08, -5.0; HRMS (CI) m/z 519.2948 [(M + H)⁺; calcd for C₂₈H₄₇O₅Si₂, 519.2962]. triol **78**: IR (neat, 4 cm⁻¹): v = 3397, 2958, 2929, 2178, 1612, 1515, 1457, 1420. 1303, 1251, 1174, 1036, 922, 845, 760; $\left[\alpha\right]_{589}^{20}$ +56.9° (c 0.50, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.20 (d, J = 8.52 Hz, 2H), 6.85 (d, J = 8.52 Hz, 2 H), 5.45 (s, 1 H), 5.34 (s, 2 H), 5.16 (s, 1 H), 4.53 (ABq, J = 10.99 Hz, 1 H), 4.25 (ABq, J = 10.9910.99 Hz, 1 H), 4.22 - 4.18 (m, 2 H), 3.88 (d, J = 5.77 Hz, 1 H), 3.78 (s, 3 H), 3.69 (dd, J = 11.26, 3.57 Hz, 1 H), 3.57 (dd, J = 11.26, 7.14 Hz, 1 H), 3.06 (ABq, J = 19.78 Hz, 1 H), 2.90 (ABq, J = 19.78 Hz, 1 H), 0.14 (s, 9 H); ¹³C NMR (75) MHz, CDCl₃) δ = 159.5, 145.2, 142.2, 129.7, 129.2, 116.6, 114.9, 113.9, 103.4,

87.8, 82.0, 76.4, 72.4, 70.8, 65.8, 55.3, 23.3, 0.01; HRMS (CI) *m/z* 405.2079 [(M + H)⁺; calcd for C₂₂H₃₃O₅Si, 405.2097].

Hydrolysis of isopentylidene acetal (60) to give triol (78):

To a solution of isopentylidene acetal **60** (0.38 g, 0.80 mmol) in MeOH was added PTSA (0.015 g, 0.080 mmol). The reaction vessel was immersed into a preheated oil bath (~40 °C). After 11.5 hours, additional PTSA (15 mg) was added, as well as THF (1 mL). After stirring for 24 hours, CSA (19 mg) and THF (2 mL) was added. After stirring an additional 4.5 hours, the reaction was neutralized by the addition of Et₃N (0.5 mL) and then concentrated to give 0.49 g of a yellow oil. CH_2Cl_2 (5 mL) was added to residue. The residue was washed with brine (0.5 mL), water (0.5 mL), a saturated aqueous NaHCO₃ solution (0.5 mL), and brine (0.5 mL). The combined aqueous phases were extracted with Et_2O . The organics were dried over MgSO₄, filtered and concentrated to give 0.38 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25% \rightarrow 50%, 0.5% MeOH] to give 0.16 g (50%) of desired triol 78 as a yellow oil, 65 mg (17%) of recovered alcohol 60 and small amounts of by-products 79 and 80.

by-product **79**: IR (neat, 4 cm⁻¹): v = 3426, 2971, 2944, 2884, 2180, 1464, 1250, 1199, 1175, 1076, 1034, 928, 843, 760; ¹H NMR (300 MHz, CDCl₃) $\delta = 5.38$ (s, 1 H), 5.34 (s, 1 H), 5.30 (s, 1 H), 5.18 (s, 1 H), 4.33 (s, 2 H), 4.27 (m, 1 H), 3.69 (m,

2 H), 3.14 (ABq, J = 19.23 Hz, 1 H), 3.0 (ABq, J = 19.23 Hz, 1 H), 2.94 (s, 1 H), 2.33 (s, 1 H), 1.75 – 1.62 (m, 4 H), 0.93 (t, J = 7.69 Hz, 3 H), 0.92 (t, J = 7.69 Hz, 3 H), 0.14 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 143.6$, 139.1, 116.5, 116.1, 112.9, 88.0, 83.1, 80.8, 76.3, 71.9, 65.4, 30.2, 30.1, 22.3, 8.1, -0.06; LRMS (CI) m/z 353 [(M + H)⁺; calcd for C₁₉H₃₃O₄Si, 353].

by-product **80**: IR (neat, 4 cm⁻¹): v = 2957, 2926, 2855, 2180, 1746, 1464, 1250, 1198, 1173, 1080, 1059, 1034, 922, 843, 760; ¹H NMR (300 MHz, CDCl₃) $\delta = 5.53$ (s, 1 H), 5.40 (d, J = 1.10 Hz, 1 H), 5.34 (s, 1 H), 5.22 (s, 1 H), 4.53 (dd, J = 8.79, 6.04 Hz, 1 H), 4.26 (d, J = 8.79 Hz, 1 H), 4.22 (d, J = 9.07 Hz, 1 H), 4.17 (dd, J = 7.69, 6.04 Hz, 1 H), 3.49 (dd, J = 8.79, 7. 69 Hz, 1 H), 3.15 (ABq, J = 19.50 Hz, 1 H), 3.01 (ABq, J = 19.78 Hz, 1 H), 1.70 (m, 8 H), 0.90 (m, 12 H), 0.14 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 143.4$, 139.7, 116.6, 113.4, 112.8, 112.6, 87.9, 83.7, 79.3, 77.2, 75.5, 70.9, 30.1, 29.9, 29.6, 29.4, 22.7, 22.3, 8.1, 8.0, -0.02; LRMS (CI) m/z 421 [(M + H)⁺; calcd for C₂₄H₄₁O₄Si, 421].

Preparation of *p*-methoxybenzylidene acetal (81):

To a solution of triol **78** (0.16 g, 0.40 mmol) in DMF (1 mL) were added PTSA (4 mg, 0.02 mmol) and *p*-MeOC₆H₄CH(OMe)₂ (0.080 mL, 0.47 mmol). The reaction was immersed into a preheated oil bath (~55 °C) and stirred for 2.5 hours. The reaction was neutralized with Et₃N (0.1 mL). The resulting mixture was diluted with EtOAc (10 mL). The phases were separated, and the organic phase washed with brine (1 mL x 2) and H₂O (1 mL). The combined aqueous

phases were extracted with EtOAc. The organics dried over MgSO₄, filtered and concentrated to give 0.49 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 25%] to give 0.16 g (78%) of a diastereomeric mixture of *p*-methoxybenzylidene acetal **81** as an oil.

Preparation of TBS-ether (82):

To a solution of alcohol **81** (0.16 g, 0.31 mmol) in CH₂Cl₂ (1.5 mL) were added 2,6-lutidine (0.071 mL, 0.61 mmol) and TBSOTf (0.10 mL, 0.46 mmol). After stirring at room temperature for 1 hour, the reaction was quenched by the addition of water (0.3 mL) and a saturated aqueous NH₄Cl solution (0.3 mL). The mixture was diluted with ether (15 mL) and then the phases were separated. The organic phase was washed with brine (0.6 mL), a saturated aqueous CuSO₄ solution (0.6 mL x 2) and brine (0.6 mL). The combined aqueous phases were extracted with Et₂O (1 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 0.26 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.11 g (56%) of TBS-ether **82** as a clear oil.

Reduction of benzylidene acetal (82) to give PMB-ether (83):

To a solution of *p*-methoxybenzylidene acetal **82** (0.11 g, 0.17 mmol) in CH₂Cl₂ (1 mL) at -78 °C was added DIBAL-H (0.51 mL, 1.0 M hexanes, 0.51 mmol) dropwise. After stirring for 1 hour at –78 °C, the reaction was gradually allowed to warm to room temperature and stirred ovemight (~20 hours). The reaction was quenched by the addition of EtOAc (0.2 mL) and a aqueous solution of Rochelle's salt (1 mL). The mixture solidified and therefore, CH₂Cl₂ was added. After stirring overnight, the reaction mixture was separated. The organic phase was washed with Rochelle's salt (2x). The combined aqueous phases were extracted with CH₂Cl₂ (3x). The combined organics were dried over MgSO₄, filtered and concentrated to give 82 mg of an yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 25%] to give 49 mg (50%) of a mixture of PMB-ethers **83**.

Preparation of diol (84):

To a solution of isopentylidene acetal **54** (1.68 g, 3.92 mmol) were added CSA (0.091 g, 0.39 mmol) and water (0.25 mL). The reaction was immersed into a preheated oil bath (40 °C). After stirring for 12 hours, the reaction was allowed to cool to room temperature and was then neutralized with Et₃N (0.17 mL). The reaction solution was concentrated and Et₂O (20 mL) was added to the residue. The resulting solution was washed with brine (1 mL x 2), dried over MgSO₄, filtered and concentrated to give 1.48 g of a thick yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 50%, 1% MeOH] to give 1.26

g (89%) of diol **84** as a clear oil. IR (neat, 4 cm⁻¹): v = 3409, 2932, 2870, 2836, 1613, 1586, 1514, 1482, 1464, 1439, 1302, 1248, 1175, 1080, 1034, 928, 822, 741; $\left[\alpha_{589}^{120} + 73.1^{\circ} \text{ (c } 0.73, \text{ CHCl}_3); ^{1}\text{H NMR (300 MHz, CDCl}_3) \delta = 7.30 - 7.13 \text{ (m, 7 H), 6.84 (d, <math>J = 8.79 \text{ Hz, 2 H), 5.36 (s, 1 H), 5.26 (s, 1 H), 4.49 (ABq, <math>J = 10.99 \text{ Hz, 1 H), 4.32 (ABq, } J = 10.99 \text{ Hz, 1 H), 4.26 (m, 1 H), 3.99 (t, <math>J = 7.14 \text{ Hz, 1 H), 3.78 (s, 3 H), 3.67 (m, 1 H), 3.57 (m, 1 H), 3.25 (dABq, <math>J = 7.14, 13.19 \text{ Hz, 1 H), 3.11 (dABq, } J = 6.04, 13.19 \text{ Hz, 1 H), 2.69 (m, -OH), 2.23 (m, -OH); $^{13}\text{C NMR (75 MHz, CDCl}_3) \delta = 159.3, 146.0, 135.9, 129.6, 129.5, 128.9, 126.2, 116.4, 113.8, 79.9, 76.6, 72.0, 70.8, 65.8, 55.3, 38.5; HRMS (CI) <math>m/z$ 361.1462 [(M + H)⁺; calcd for $C_{20}H_{25}O_4S$, 361.1474].

Preparation of mono-protected 1,2-diol (85):

To a solution of diol **84** (0.420 g, 1.17 mmol) in CH_2Cl_2 (12 mL) was added imidazole (0.16 g, 2.3 mmol), DMAP (0.014 g, 0.12 mmol), and tri-n-propylsilyl chloride (0.26 mL, 1.2 mmol). After stirring for 2 hours at room temperature, the reaction was quenched by the addition of a saturated aqueous NH_4Cl solution (4 mL). Ether (25 mL) was added, and the phases were separated. The organic phase was washed with brine (3 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.60 g of a clear oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.39 g (65%) of mono-silylated **85** and 0.17 g (22%) of the fully disilylated diol as clear oils. IR (neat, 4 cm⁻¹): v = 3480, 2955, 2926, 2869, 1612, 1586, 1514, 1481, 1462, 1439,

1302, 1248, 1209, 1173, 1090, 1067, 1038, 924, 822, 739; $\left[\alpha\right]_{589}^{120} + 65.0^{\circ}$ (c 0.785, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.30 – 7.10 (m, 7 H), 6.83 (d, J = 8.79 Hz, 2 H), 5.42 (s, 1 H), 5.33 (s, 1 H), 4.52 (ABq, J = 10.99 Hz, 1 H), 4.27 (ABq, J = 11.54 Hz, 1 H), 4.17 (m, 1 H), 3.97 (dd, J = 7.69, 4.94 Hz, 1 H), 3.78 (s, 3 H), 3.60 (dd, J = 9.89, 3.30 Hz, 1 H), 3.44 (dd, J = 10.44, 8.24 Hz, 1 H), 3.16 (dd, J = 13.19, 7.69 Hz, 1 H), 3.07 (dd, J = 13.19, 5.49 Hz, 1 H), 2.75 (d, J = 2.75 Hz, -OH), 1.32 (m, 6 H), 0.93 (t, J = 7.14 Hz, 9 H), 0.57 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.2, 146.4, 136.5, 129.9, 129.5, 129.2, 128.8, 125.9, 115.5, 113.7, 78.7, 71.6, 70.4, 66.8, 55.2, 39.2, 18.3, 16.7, 16.2; HRMS (CI) m/z 517.2807 [(M + H)⁺; calcd for C₂₉H₄₅O₄SSi, 517.2808].

Preparation of mono-protected 1,2-diol (87):

To a solution of diol **84** (1.41 g, 3.91 mmol) in CH₂Cl₂ (40 mL) were added imidazole (0.53 g, 7.8 mmol), DMAP (0.048 g, 0.391 mmol), and triisopropylsilyl chloride (0.88 mL, 4.1 mmol). After stirring for 24 hours at room temperature, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (5 mL). Et₂O (80 mL) was added, and the phases were separated. The organic phase was washed with brine (5 mL x 2). The combined aqueous phases were extracted with Et₂O (5 mL x 2). The combined organics were dried over MgSO₄, filtered and concentrated to give 2.34 g of a clear oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 25%] to give 1.84 g (91%) of mono-silylated **87**. IR (neat, 4 cm⁻¹): v = 3474, 2944, 2889, 1613,

1586, 1514, 1464, 1439, 1385, 1302, 1248, 1173, 109/, 1038, 920, 884, 820, 739; $[\alpha]_{589}^{120}$ +64.1° (c 0.695, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.30 – 7.11 (m, 7 H), 6.82 (d, J = 8.79 Hz, 2 H), 5.44 (s, 1 H), 5.33 (s, 1 H), 4.52 (ABq, J = 10.99 Hz, 1 H), 4.28 (ABq, J = 10.99 Hz, 1 H), 4.20 (m, 1 H), 3.97 (dd, J = 5.49, 7.69 Hz, 1 H), 3.78 (s, 3 H), 3.70 (dd, J = 3.85, 9.89 Hz, 1 H), 3.55 (dd, J = 8.24, 9.89 Hz, 1 H), 3.16 (dABq, J = 7.69, 13.19 Hz, 1 H), 3.08 (dABq, J = 5.49, 13.19 Hz, 1 H), 2.84 (d, J = 2.20 Hz, -OH), 1.03 (m, 21 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.2, 146.3, 136.5, 129.9, 129.5, 128.8, 125.9, 115.5, 113.7, 78.6, 77.2, 71.8, 70.4, 67.5, 55.2, 39.3, 17.9, 11.8; HRMS (CI) m/z 517.2805 [(M + H)+; calcd for C₂₉H₄₅O₄SSi, 517.2808].

Preparation of fully protected triol (89):

To a cold (0 °C) solution of alcohol **87** (0.46 g, 0.89 mmol) in THF (8 mL) was added NaHMDS (1.34 mL, 1.0 M THF, 1.34 mmol) dropwise. The ice bath was removed and the reaction stirred at room temperature for 30 minutes, after which time DMSO (2.5 mL) and PMBCI (0.20 mL, 1.4 mmol) were added. After stirring for 1.5 hours, the reaction was quenched with a saturated aqueous NH₄CI solution (1 mL) and diluted with Et₂O (20 mL) and water (0.5 mL). The phases were separated, and the organic phase was washed with brine (1 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.85 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5% → 10%] to give 0.45 g (79 %) of fully protected triol **89** as a clear oil. IR (neat, 4

cm⁻¹): v = 2940, 2865, 1613, 1514, 1464, 1302, 1246, 1173, 1086, 1038, 884; $\left[\alpha_{L589}^{120} + 71.9^{\circ} \text{ (c } 0.705, \text{ CHCl}_{3}); \right]^{1}$ H NMR (300 MHz, CDCl₃) $\delta = 7.30 - 7.10$ (m, 9 H), 6.85 (d, J = 8.79 Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.45 (s, 1 H), 5.44 (s, 1 H), 4.59 (ABq, J = 11.54 Hz, 1 H), 4.53 (ABq, J = 11.54 Hz, 1 H), 4.43, (ABq, J = 11.54 Hz, 1 H), 4.29 (ABq, J = 11.54 Hz, 1 H), 3.98 (t, J = 6.59 Hz, 1 H), 3.89 (dd, J = 4.40, 6.59 Hz, 1 H), 3.82 – 3.74 (m, 7 H), 3.65 (dd, J = 4.40, 10.44 Hz, 1 H), 3.11 (d, J = 6.59 Hz, 2 H), 1.03 (m, 21 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 159.1$, 145.7, 136.7, 130.5, 130.2, 129.4, 129.3, 129.2, 128.8, 125.8, 115.4, 113.7, 80.0, 77.9, 70.6, 70.5, 66.8, 55.2, 39.6, 17.9, 11.9; HRMS (CI) m/z = 637.3365 [(M + H)⁺; calcd for C₃₇H₅₃O₅SSi, 637.3383].

Preparation of alcohol (90):

To a solution of TIPS-silyl ether **89** (0.126 g, 0.198 mmol) in THF (2 mL) was added TBAF (0.24 mL, 1.0 M THF, 0.24 mmol) dropwise. After stirring for 20 minutes, the reaction was diluted with Et₂O (5 mL) and water (0.2 mL). The phases were separated, and the organic phase was washed with brine (0.2 mL x 2). The combined organics were dried over MgSO₄, filtered and concentrated to give 0.13g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 25% \rightarrow 50%] to give 80 mg (84%) of alcohol **90** as a yellow oil. IR (neat, 4 cm⁻¹): v = 3409, 2932, 2870, 2836, 1613, 1586, 1514, 1482, 1464, 1439, 1302, 1248, 1175, 1080, 1034, 928, 822, 741; ¹H NMR (300 MHz, CDCl₃) δ = 7.21 (d, J = 8.79 Hz, 2 H), 7.20 (d, J = 8.79

Hz, 2 H), 7.20 (m, 4 H), 6.85 (d, J = 8.79 Hz, 2 H), 6.84 (m, 1 H), 6.83 (d, J = 8.79 Hz, 2 H), 5.48 (s, 1 H), 5.44 (s, 1 H), 4.57 (ABq, J = 11.54 Hz, 1 H), 4.51 (ABq, J = 11.54 Hz, 1 H), 4.30 (ABq, J = 11.54 Hz, 1 H), 4.28 (ABq, J = 11.54 Hz, 1 H), 3.93 (m, 2 H), 3.78 (s, 6 H), 3.50 (m, 2 H), 3.18 (dABq, J = 7.69, 13.19 Hz, 1 H), 3.07 (dABq, J = 5.49, 13.19 Hz, 1 H).

Preparation of aldehyde (91):

To a stirred solution of Dess-Martin periodinane (0.074 g, 0.18 mmol) in CH₂Cl₂ (3 mL) were added pyridine (0.014 mL, 0.18 mmol) and a solution of alcohol 90 (0.080 g, 0.17 mmol) in CH₂Cl₂ (0.5 mL). After stirring for 50 minutes at room temperature, the reaction was quenched by the addition of a saturated aqueous NaHCO₃ /10% aqueous Na₂S₂O₃ (1:1) solution (2 mL) and diluted with Et₂O (10 mL). After stirring for 30 minutes, the phases were separated. The organic phase was washed with water (0.4 mL), a saturated aqueous CuSO₄ solution (0.4 mL x 2), water (0.4 mL) and brine (0.5 mL), dried over Na₂SO₄, filtered and concentrated to give 77 mg (97%) of crude aldehyde 91 as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ = 9.52 (d, J = 1.65 Hz, 1 H), 7.19 (m, 8 H), 6.85 (d, J = 8.24 Hz, 2 H), 6.84 (m, 1 H), 6.83 (d, J = 8.24 Hz, 2 H), 5.47 (s, 1 H), 5.43 (s, 1 H), 4.58 (ABq, J = 10.99 Hz, 1 H), 4.45 (ABq, J = 11.54 Hz, 1 H), 4.36 (ABq, J = 11.54 Hz, 1 H), 4.22 (d, J = 1.65 Hz, 1 H), 4.14 (ABq, J = 10.99 Hz, 1 H), 3.97 (dd, J = 7.14, 6.04 Hz, 1 H), 3.78 (s, 6 H), 3.22 (dABq, J = 7.14, 13.73 Hz, 1 H),3.11 (dABq, J = 6.04, 13.73 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 199.2$,

159.5, 159.3, 141.7, 136.2, 129.7, 129.6, 129.1, 128.9, 128.8, 125.9, 120.5, 113.9, 113.7, 84.2, 78.9, 71.0, 70.7, 55.3, 38.2.

Preparation of α -acetoxy sulfide (93):

To a solution of phenyl sulfide **89** (0.43 g, 0.68 mmol) in CH₂Cl₂ (13 mL) at -78 °C was added dropwise (~8 minutes) a solution of *m*-CPBA (0.14 g, 0.81 mmol) in CH₂Cl₂ (4 mL). After stirring for 10 minutes (until judged complete by TLC), the reaction was quenched with 1 M NaOH (0.81 mL) and then allowed to warm to room temperature. The phases were separated, and the organic phase was washed with 1 M NaOH (0.81 mL x 2) and brine (1 mL), dried over MgSO₄, filtered and concentrated to give 0.43 g (100%) of crude sulfoxide **92** as a clear oil.

Pummerer rearrangement:

Trifluoroacetic anhydride (0.14 mL, 1.0 mmol) was dissolved in acetic anhydride (0.7 mL) and the solution stirred at room temperature for 7.5 hours. A solution of crude sulfoxide **92** (0.43 g, 0.68 mmol) in Ac₂O (0.7 mL) was added and after a few minutes 2,6-lutidine (0.16 mL, 1.4 mmol) was added. After stirring for 12 hours at room temperature, the reaction mixture was concentrated under high vacuum. CH₂Cl₂ (15 mL) was added to the residue and the resultant solution was then washed with a saturated aqueous NaHCO₃ solution (1.5 mL x 2) and brine (2 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 0.47 g of a dark red oil. The crude residue was purified by

flash chromatography on silica gel [hexanes/EtOAc, 10 %] to give 0.28 g (60 %) of α -acetoxy sulfide **93** as a yellow oil. IR (neat, 4 cm⁻¹): ν = 2942, 2867, 1750, 1613, 1514, 1464, 1370, 1302, 1246, 1219, 1173, 1090, 1036, 884, 821, 745; ¹H NMR (300 MHz, CDCl₃) δ = 7.41 (m, 4 H), 7.23 (m, 14 H), 6.82 (m, 8 H), 6.34 (d, J = 3.85 Hz, 1 H), 6.22 (d, J = 3.85 Hz, 1 H), 5.61 (s, 1 H), 5.56 (s, 1 H), 5.52 (s, 1 H), 5.50 (s, 1 H), 4.63 – 4.49 (m, 4 H), 4.29 – 4.41 (m, 4 H), 4.22 (d, J = 3.30 Hz, 1 H), 4.11 (d, J = 3.30 Hz, 1 H), 3.96 (t, J = 5.49 Hz, 1 H), 3.91 (dd, J = 4.40, 6.59 Hz, 1 H), 3.79 – 3.64 (m, 16 H), 1.96 (s, 3 H), 1.94 (s, 3 H), 1.01 (m, 42 H); 13C NMR (75 MHz, CDCl₃) δ = 169.5, 169.4, 159.2, 159.1, 158.9, 142.8, 142.4, 132.9, 132.7, 130.8, 130.6, 129.8, 129.5, 129.2 (2), 129.1, 128.9, 127.9, 127.8, 117.4, 116.3, 113.7, 113.6, 113.5, 83.5, 81.5, 80.5, 80.4, 79.1, 78.9, 70.9, 70.7, 70.6, 67.2, 66.9, 55.2, 20.9, 20.8, 18.0, 17.9, 11.8; HRMS (CI) m/z 712.3697 [(M + NH₄)+*; calcd for C₃₉H₅₈O₇SSiN, 712.3703].

Preparation of alcohol (94):

To a cold (0 °C) solution of α-acetoxy sulfide **93** (0.28 g, 0.43 mmol) in THF (5 mL) was added dropwise (~4 minutes) Super-Hydride[®] (1.4 mL, 1.0 M THF, 1.4 mmol). The ice bath was removed. After stirring at room temperature for 30 minutes, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (2.2 mL) and glycerol (0.66 mL, 0.3 mL/mmol) and diluted with Et₂O (20 mL). After stirring for several hours, the phases were separated. The organic phase was washed with brine (2 mL x 2), dried over

MgSO₄, filtered and concentrated to give 0.45 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10% \rightarrow 25%] to give 0.18 g (82%) of alcohol **94** as a yellow oil. IR (neat, 4 cm⁻¹): v = 3453, 2944, 2867, 1613, 1514, 1464, 1302, 1248, 1173, 1094, 1067, 1038, 884, 822; $\left[\alpha\right]_{589}^{20}$ +64.9° (c 0.5825, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.23 (m, 4 H), 6.84 (m, 4 H), 5.46 (s, 1 H), 5.44 (s, 1 H), 4.56 (ABq, J = 11.54 Hz, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.38 (ABq, J = 11.54 Hz, 1 H), 4.26 (ABq, J = 10.99 Hz, 1 H), 4.01 (dd, J = 4.40, 7.14 Hz, 1 H), 3.90 (t, J = 6.04 Hz, 1 H), 3.78 (m, 7 H), 3.68 (dd, J = 5.49, 10.44 Hz, 1 H), 3.62 – 3.48 (m, 2 H), 2.40 (dd, J = 4.40, 8.79, -OH), 1.02 (m, 21 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.1, 144.0, 130.3, 130.2, 129.4, 129.2, 116.9, 113.9, 113.7, 80.3, 79.9, 70.7, 70.3, 66.3, 65.3, 55.3, 17.9, 11.9; HRMS (FAB, NBA + KI) m/z 583.2838 [(M + K)⁺; calcd for C₃₁H₄₈O₆SiK, 583.2857].

Preparation of aldehyde (95):

To a stirred solution of Dess-Martin periodinane (0.24 g, 0.57 mmol) in CH₂Cl₂ (10 mL) were added pyridine (0.050 mL, 0.57 mmol) and a solution of alcohol **94** (0.28 g, 0.51 mmol) in CH₂Cl₂ (1.5 mL). After stirring for 3 hours at room temperature, the reaction was quenched by the addition of a saturated aqueous NaHCO₃/10% aqueous Na₂S₂O₃ (1:1) solution (8 mL) and diluted with hexanes (40 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with water (1 mL), a saturated aqueous CuSO₄

solution (1 mL x 2), water (1 mL) and brine (1 mL), dried over Na₂SO₄, filtered and concentrated to give 0.26 g (91%) of aldehyde **95** as a yellow oil. IR (neat, 4 cm⁻¹): v = 2944, 2867, 1734, 1613, 1514, 1464, 1302, 1250, 1175, 1092, 1036, 884, 820; $\left[\alpha\right]_{589}^{20}$ +21.2° (c 0.865, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 9.46$ (d, J = 1.47 Hz, 1 H), 7.23 (m, 4 H), 6.85 (d, J = 8.79 Hz, 2 H), 6.82 (d, J = 8.79 Hz, 2 H), 5.48 (s, 1 H), 5.46 (s, 1 H), 4.56 (ABq, J = 11.72 Hz, 1 H), 4.43 (ABq, J = 11.72 Hz, 1 H), 4.41 (ABq, J = 11.72, 1 H), 4.26 (s, 1 H), 4.24 (ABq, J = 11.72 Hz, 1 H), 3.94 (app t, J = 5.37 and 6.35 Hz, 1 H), 3.84 (dd, J = 6.84, 10.25 Hz, 1 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.68 (dd, J = 5.37, 10.25 Hz, 1 H), 1.0 (m, 21 H); 13 C NMR (75 MHz, CDCl₃) $\delta = 199.0$, 159.1, 141.4, 130.2, 129.5, 129.4, 129.1, 119.4, 113.8, 113.6, 84.2, 80.9, 70.7, 70.6, 66.2, 55.2, 17.9, 11.8.

Preparation of alcohol (96):

To a solution of crude aldehyde **95** (0.16 g, 0.30 mmol) in Et₂O/PhH (3:1) (4 mL) was added MgBr₂•Et₂O (0.31 mL, 1.0 M Et₂O/PhH (3:1), 0.31 mmol). The mixture was then cooled to 0 °C. Vinyl magnesium bromide (0.44 mL, 1.0 M THF, 0.44 mmol) was added dropwise. After stirring for 40 minutes at 0 °C, the reaction was quenched with a saturated aqueous NH₄Cl solution (0.5 mL) and water (0.1 mL). Et₂O (1 mL) was added, and the phases separated. The organic phase was washed with water (0.2 mL) and brine (0.2 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.16 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%

→ 25%] to give 0.12 g (71 %) of vinyl addition alcohol **96** as a clear oil. IR (neat, 4 cm^{-1}): v = 3456, 2961, 2944, 2867, 1613, 1514, 1464, 1302, 1250, 1173, 1090, 1038, 922, 884, 801; $\left[\alpha\right]_{589}^{220}$ +51.3° (c 0.31, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.25$ (d, J = 8.24 Hz, 2 H), 7.20 (d, J = 8.79 Hz, 2 H), 6.85 (d, J = 8.79 Hz, 2 H), 6.83 (d, J = 8.24 Hz, 2 H), 5.81 (ddd, J = 17.03, 10.99, 6.04 Hz, 1 H), 5.52 (s, 1 H), 5.43 (s, 1 H), 5.32 (dt, J = 17.03, 1.65 Hz, 1 H), 5.15 (dt, J = 10.44, 1.65 Hz, 1 H), 4.57 (ABq, J = 11.54 Hz, 1 H), 4.56 (ABq, J = 11.54 Hz, 1 H), 4.43 (ABq, J = 11.54 Hz, 1 H), 4.23 (ABq, J = 10.99 Hz, 1 H), 4.09 (m, 1 H), 3.93 (t, J = 5.49 Hz, 1 H), 3.80 − 3.70 (m, 9 H), 2.89 (d, J = 3.85 Hz, -OH), 1.03 (m, 21 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 159.2$, 159.0, 143.7, 136.7, 130.6, 129.9, 129.4, 129.2, 116.8, 113.8, 113.7, 82.3, 80.4, 74.4, 71.0, 70.4, 66.7, 55.3, 17.8, 11.9; HRMS (CI) m/z 588.3718 [(M + NH₄)⁺; calcd for C₃₃H₅₄O₆NSi, 588.3720].

Protection of alcohol (96) to give PMB-ether (97):

To a cold (0 °C) solution of alcohol **96** (0.16 g, 0.28 mmol) in THF (4 mL) was added NaHMDS (0.31 mL, 1.0 M THF, 0.31 mmol) dropwise. The ice bath was removed and the reaction stirred at room temperature for 20 minutes, after which time DMSO (1.3 mL) and PMBCI (0.053 mL, 0.392 mmol) were added. After stirring for 3 hours, the reaction was quenched with a saturated aqueous NH₄CI solution (0.3 mL) and water (0.3 mL) and then diluted with Et₂O (15 mL). The phases were separated, and the organic phase was washed with brine (0.3 mL x 2). The combined aqueous phase was extracted with Et₂O (1 mL). The

combined organics were dried over MgSO₄, filtered and concentrated to give 0.47 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.15 g (79 %) of fully protected tetra-ol **97** as a clear oil. IR (neat, 4 cm⁻¹): v = 2961, 2865, 1613, 1586, 1512, 1464, 1302, 1250, 1173, 1068, 1036, 922, 882, 802; $\left[\alpha\right]_{589}^{20} + 40.3^{\circ}$ (c 0.71, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.20$ (d, J = 8.24 Hz, 6 H), 6.81 (m, 6 H), 5.82 (m, 1 H), 5.50 (s, 1 H), 5.39 (s, 1 H), 5.27 (d, J = 2.75 Hz, 1 H), 5.22 (s, 1 H), 4.50 (series ABq, 3 H), 4.30 (series ABq, 3 H), 3.91 (m, 3 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.75 (s, 3 H), 3.63 (m, 2 H), 1.01 (s, 21 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 158.9$, 158.8, 143.9, 135.3, 131.2, 130.6, 130.5, 129.4, 129.3, 129.1, 118.3, 114.9, 113.7, 113.6, 113.5 (2), 81.9, 81.0, 80.3, 70.8, 70.5, 70.4, 67.2, 55.2, 18.0, 11.9; HRMS (CI) m/z 708.4292 [(M + NH₄)+; calcd for C₄₁H₆₂O₇NSi, 708.4296].

Deprotection of TIPS-silyl ether (97) to give alcohol (98):

To a solution of TIPS-silyl ether **97** (0.15 g, 0.22 mmol) in THF (2 mL) was added TBAF (0.24 mL, 1.0 M THF, 0.24 mmol) dropwise. After stirring for 30 minutes, the reaction was diluted with Et₂O (12 mL) and water (0.4 mL). The phases were separated, and the organic phase was washed with brine (0.30 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.15 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/ EtOAc 25%] to give 0.11 g (94 %) of alcohol **98** as a clear oil. IR (neat, 4 cm⁻¹): v = 3445, 2961, 2865, 1613, 1586, 1514, 1464, 1302, 1248, 1173, 1068, 1034,

926, 816; $\left[\alpha\right]_{589}^{20}$ +62.2° (c 0.31, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.21 (m, 6 H), 6.84 (m, 6 H), 5.86 (ddd, J = 17.03, 10.44, 6.59 Hz, 1 H), 5.53 (s, 1 H), 5.46 (s, 1 H), 5.31 (m, 2 H), 4.56 (ABq, J = 11.54 Hz, 2 H), 4.50 (ABq, J = 10.99 Hz, 1 H), 4.34 (ABq, J = 11.54 Hz, 1 H), 4.33 (ABq, J = 12.09 Hz, 1 H), 4.12 (ABq, J = 10.99 Hz, 1 H), 4.00 (m, 2 H), 3.87 (d, J = 4.94 Hz, 1 H), 3.80 (s, 6 H), 3.77 (s, 3 H), 3.54 (m, 1 H), 3.39 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.1, 159.0, 142.7, 134.8, 130.3, 130.2, 130.1, 129.5, 129.4, 129.2, 118.8, 116.1, 113.7, 113.6, 81.6, 80.6, 79.6, 70.6, 70.4, 70.4, 64.9, 55.1.

Preparation of aldehyde (99):

To a stirred solution of Dess-Martin periodinane (0.096 g, 0.23 mmol) in CH₂Cl₂ (4 mL) were added pyridine (0.020 mL, 0.23 mmol) and a solution of alcohol **98** (0.11 g, 0.21 mmol) in CH₂Cl₂ (0.5 mL). After stirring for 2 hours at room temperature, the reaction was quenched with the addition of a saturated aqueous NaHCO₃ /10% aqueous Na₂S₂O₃ (1:1) solution (4 mL) and diluted with Et₂O (25 mL). After stirring for 2 hours, the phases were separated. The organic phase was washed with water (0.8 mL), a saturated aqueous CuSO₄ solution (0.8 mL x 2), water (0.8 mL) and brine (1.5 mL), dried over Na₂SO₄, filtered and concentrated to give 0.10 g (92 %) of aldehyde **99** as a yellow oil. IR (neat, 4 cm⁻¹): v = 2944, 2867, 1734, 1613, 1514, 1464, 1302, 1250, 1175, 1092, 1036, 884, 820; $\left[\alpha_{589}^{120} + 10.8^{\circ} \text{ (c 0.58, CHCl₃); }^{1}\text{H NMR (300 MHz, CDCl₃)} \delta = 9.36 \text{ (d, } J = 1.65 \text{ Hz, } 1 \text{ H), } 7.20 \text{ (m, } 6 \text{ H), } 6.83 \text{ (m, } 6 \text{ H), } 5.76 \text{ (m, } 1 \text{ H), } 5.51 \text{ (s, } 1 \text{ H), } 5.45 \text{ (s, } 1.65 \text{ Hz, } 1 \text{ H), } 7.20 \text{ (m, } 6 \text{ H), } 6.83 \text{ (m, } 6 \text{ H), } 5.76 \text{ (m, } 1 \text{ H), } 5.51 \text{ (s, } 1 \text{ H), } 5.45 \text{ (s, } 1.65 \text{ Hz, } 1 \text{ H), } 7.20 \text{ (m, } 6 \text{ H), } 6.83 \text{ (m, } 6 \text{ H), } 5.76 \text{ (m, } 1 \text{ H), } 5.51 \text{ (s, } 1 \text{ H), } 5.45 \text{ (s, } 1.65 \text{ Hz, } 1.40 \text{ (m, } 1.40 \text{ H), } 5.45 \text{ (s, } 1.40 \text{ (m, } 1.40 \text{ (m$

1 H), 5.27 (s, 1 H), 5.23 (dd, J = 6.59, 1.65 Hz, 1 H), 4.49 (ABq, J = 11.54 Hz, 2 H), 4.44 (ABq, J = 11.54 Hz, 1 H), 4.33 (ABq, J = 11.54 Hz, 1 H), 4.32 (m, 1 H), 4.31 (ABq, J = 10.99 Hz, 1 H), 4.23 (ABq, J = 11.54 Hz, 1 H), 4.0 (m, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.77 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ = 199.1, 159.3, 159.1, 159.0, 140.3, 134.7, 130.3, 130.1, 129.5, 129.4, 129.3, 118.7, 113.8, 113.6, 84.3, 81.6, 80.6, 71.1, 70.9, 70.5, 55.2.

Preparation of alcohol (100):

t-BuLi (0.30 mL, 1.7 M pentane, 0.507 mmol) was added dropwise to a Et₂O (1.5 mL) at −78 °C. A solution of vinyl bromide **B** (0.55 g, 0.25 mmol) in Et₂O (0.6 mL) was added dropwise to the t-BuLi solution. After stirring for 10 minutes, MgBr₂•Et₂O (0.27 mL, 1.0 M Et₂O/PhH (3:1), 0.27 mmol) was added and stirred at −78 °C for 15 minutes and then at 0 °C for 10 minutes and then lowered back to −78 °C. In a separate flask, crude aldehyde **99** (90 mg, 0.17 mmol) was dissolved in an Et₂O/benzene/CH₂Cl₂ (3:1:1) solution (1.5 mL) and cooled to 0 °C and MgBr₂•Et₂O (0.17 mL, 1.0 M Et₂O/PhH (3:1), 0.17 mmol) was added. The Grignard solution of **B** was transferred via cannula to the precomplexed aldehyde solution. After stirring for 2 hours at 0 °C, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (0.2 mL) and water (0.1 mL). The phases were separated, and the organic phase was washed with water (0.2 mL) and brine (0.2 mL x 2). The combined aqueous phases were extracted with Et₂O (2x). The combined organics were dried over

MgSO₄, filtered and concentrated to give 0.11 g of a yellow oil, which was purified by flash chromatography on silica gel [hexanes/EtOAc 25%] to give 63 mg (56 %) of a diastereomeric mixture of alcohol **100** as a yellow oil.

Preparation of alkyne (101) via TMS deprotection:

To a solution of TMS-alkyne **100** (0.033 g, 0.049 mmol) in THF (1 mL) was added dropwise an acetic acid buffered TBAF solution (1.05:1) (0.060 mL, 0.060 mmol, 1.0M THF). After stirring for 4 hours at room temperature, Et₂O (4 mL) was added to the reaction and which was then quenched by the addition of a saturated aqueous NaHCO₃ solution (0.06 mL) and water (0.1 mL). The phases were separated. The organic phase was washed with brine (0.2 mL), dried over MgSO₄, filtered and concentrated to give 29 mg (98 %) of alkyne **101** as a yellow oil, which was used crude in the subsequent reaction.

Hydrostannylation of alkyne "101" to give vinyl stannane "102":

(Ph₃P)₂PdCl₂ (0.3 mg, 0.0005 mmol) and Red-Sil (0.089 g, 0.1872 mmol, 2.1 mmol/g) were added to Et₂O (0.5mL). A solution of crude alkyne **101** (0.028 g, 0.047 mmol) in Et₂O (0.5 mL), Bu₃SnF (0.019 g, 0.0608 mmol) and a drop of TBAF (1.0 M THF) were added. After stirring for 2.5 hours at room temperature, the reaction was filtered through a pad of Celite on a glass frit. The Red-Sil filter cake was washed several times with ether. The filtrate was dried over MgSO₄, filtered, and concentrated to give 31 mg of a yellow oil. The crude residue was

purified by flash chromatography on silica gel [hexanes/EtOAc $10\% \rightarrow 25\%$] to give 17 mg (41%) of (E)-vinyl stannane **102** as a diastereomeric regio-mixture.

Preparation of diene (103) via Stille reaction:

A solution of Pd_2dba_3 (0.6 mg, 0.0006 mmol) and AsPh₃ (0.8 mg, 0.0025 mmol) in NMP (0.1 mL) was stirred at room temperature for 10 minutes and followed by the addition of vinyl iodide 300^{50} (0.014 g, 0.0315 mmol) as an NMP solution (0.1 mL) to the yellowish-green solution. The reaction was immersed into a preheated oil bath (~45 °C) and a solution of vinyl stannane 102 (0.028 g, 0.0315 mmol) in NMP (0.2 mL) was added immediately. After stirring for 18 hours at 50 °C, the reaction was allowed to cool to room temperature and was then diluted with Et_2O (6 mL). The organic phase was washed with water (0.2 mL), brine (0.2 mL), a saturated aqueous KF solution (0.2 mL x 2) and brine (0.2 mL). The organics were dried over MgSO₄, filtered and concentrated to give 0.11 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc $10\% \rightarrow 25\%$] to give 7 mg (24%) of a diastereomeric mixture of diene 103 as a yellow oil.

Preparation of TBS-ether (104):

To a solution of alcohol **100** (0.057 g, 0.085 mmol) in CH_2Cl_2 (0.5 mL) were added 2,6-lutidine (0.020 mL, 0.17 mmol) and TBSOTf (0.030 mL, 0.13 mmol). After stirring for 10 minutes, the reaction was quenched with water (0.1 mL) and a saturated aqueous NH_4Cl solution (0.1 mL). The reaction was diluted with Et_2O (5 mL), and the phases were separated. The organic phase was washed with brine (0.2 mL x 2), dried over MgSO₄, filtered and concentrated to give 91 mg of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10% \rightarrow 25%] to give 48 mg (72%) of a diastereomeric mixture of TBS-protected alcohol **104** as a clear oil.

Preparation of 1-bromo-alkyne (105):

TMS-alkyne **104** (0.048 g, 0.06 mmol) were dissolved in acetone (0.5 mL). NBS (0.013 g, 0.073 mmol) and AgNO₃ (1 mg, 0.006 mmol) were added to the solution. After stirring for 65 minutes, the reaction mixture was diluted with water (0.25 mL) and Et₂O (2.5 mL). The phases were separated, and the organic phase was washed with brine (0.1 mL x 2), dried over MgSO₄, filtered and concentrated to give 44 mg (90%) of a yellow oil, which was used crude in the subsequent reaction.

Preparation of vinyl stannane (106):

(Ph₃P)₂PdCl₂ (0.4 mg, 0.0005 mmol) and Red-Sil (0.21 g, 0.43 mmol, 2.1 mmol/g) were added to Et₂O (0.6 mL). A solution of crude 1-bromo-alkyne **105** (0.043 g, 0.054 mmol) in Et₂O (0.6 mL), Bu₃SnF (0.037 g, 0.12 mmol) and a drop of TBAF (1.0 M THF) were added. After stirring for 1.5 hours at room temperature, the reaction was filtered through a pad of Celite on a glass frit. The residual Red-Sil was washed several times with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated to give 69 mg of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 31 mg (57%) of diastereomeric mixture of vinyl stannane **106** as a yellow oil.

Preparation of diene (107) via Liebeskind's coupling:

To a solution of (Z)-vinyl iodide 300^{50} (0.014 g, 0.031 mmol) in NMP (0.2 mL) was added copper (I) thiophene-2-carboxylate (CuTc) (0.009 g, 0.05 mmol). To this suspension was added a solution of vinyl stannane 106 in NMP (0.2 mL). After stirring for 50 minutes, the reaction was diluted with Et₂O (10 mL) and filtered through a bed of Celite. The green filter cake was washed with Et₂O (3

mL). The clear filtrate was washed with water (0.6 mL x 3), a saturated aqueous KF solution (0.5 mL x 2), and brine (0.6 mL). The organics were dried over MgSO₄, filtered and concentrated to give 51 mg of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 16 mg (49%) of a diastereomeric mixture of diene **107** as a pink oil.

Preparation of Piv-ester (108):

To a cold (0 °C) solution of alcohol **94** (0.092 g, 0.17 mmol) in CH₂Cl₂ (1.5 mL) were added pyridine (0.027 mL, 0.34 mmol) and a solution of PivCl (0.025 mL, 0.20 mmol) in CH₂Cl₂ (0.2 mL) dropwise. After stirring for 2.5 hours, the ice bath was removed and the reaction stirred at room temperature for 30 minutes. The reaction was quenched by the addition of water (0.1 mL) and then diluted with Et₂O (4 mL). The phases were separated, and the organic phase was washed with a saturated aqueous CuSO₄ solution (0.2 mL x 2), water (0.2 mL x 2) and brine. The organics were dried over MgSO₄, filtered and concentrated to give 0.15 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 78 mg (74%) of fully protected tetra-ol **108** as a clear oil.

Preparation of alcohol (109):

To a solution of crude fully protected tetra-ol 108 (1.69 g, 2.31 mmol) in THF (15 mL) was added TBAF (2.8 mL, 1.0 M THF, 2.8 mmol) dropwise. After stirring for 5.5 hours the reaction was judged complete by TLC analysis. The reaction was then diluted with Et₂O (40 mL) and water (2.5 mL) and the phases were separated. The organic phase was washed with brine (2.5 mL x 2). The combined aqueous phase was extracted with Et₂O (2 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 1.53 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 1.05 g (96% yield, 2 steps from 94) of alcohol 109 as a clear oil.

via diol (118):

To a cold (0 °C) solution of diol **118** (1.19 g, 3.06 mmol) in CH₂Cl₂ (30 mL) were added pyridine (0.50 mL, 6.1 mmol) and a solution of PivCl (0.38 mL, 3.1 mmol) in CH₂Cl₂ (2 mL) dropwise (~3 minutes). After stirring for 18 hours between 0 °C and room temperature, the reaction was quenched by the addition of water (1 mL) and a saturated aqueous NH₄Cl solution (1 mL). Et₂O (35 mL) was added, and the phases were separated. The organic phase was washed with a saturated aqueous CuSO₄ solution (7 mL x 2), water (5 mL x 2) and brine (5 mL), dried over MgSO₄, filtered and concentrated to give 1.40 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 35% \rightarrow 75%] afforded 0.68 g (47%) of alcohol **109** as a clear oil and 0.33 g (28%) of recovered diol **118**. For **109**: IR (neat, 4 cm⁻¹): v = 3492, 2965, 2872, 2838, 1728, 1613, 1588, 1514, 1646, 1399, 1364, 1302, 1285, 1250, 1173, 1139, 1073, 1036, 927, 820; $[\alpha]_{589}^{220}$ +91.3° (c 1.095, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.23 (d, J =

8.79 Hz, 4 H), 6.86 (d, J = 8.79 Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.50 (s, 2 H), 4.55 (ABq, J = 11.54 Hz, 1 H), 4.54 (ABq, J = 11.54 Hz, 1 H), 4.33 (ABq, J = 11.54 Hz, 1 H), 4.25 (ABq, J = 11.54, 1 H), 4.14 – 4.07 (m, 2 H), 4.03 – 3.95 (m, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.56 (m, 2 H), 2.22 (dd, J = 8.79, 4.94 Hz, 1 H), 1.17 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ = 178.3, 159.3 (2), 142.5, 129.9, 129.8, 129.5, 129.3, 117.2, 113.9, 113.8, 80.0, 70.5, 65.7, 65.3, 60.4, 55.2, 38.7, 27.2.

Preparation of bisisopentylidene acetal (111):

To a 40 °C slurry of D-arabitol (15 g, 99 mmol) in DMF (15 mL) containing CSA (0.70 g, 3.0 mmol) was added 3,3-dimethoxypentane (29.0 g, 217 mmol) dropwise (~40 minutes). After stirring for an additional 5.5 hours, the reaction was quenched with Et₃N (0.45 mL) and then concentrated via rotovap at 60 °C to afford a crude oil. The residue was diluted with Et₂O (200 mL) and then washed with brine (50 mL x 4), dried over MgSO₄, filtered and concentrated to give 26 g (90%) of acetal **111** as a clear oil.

Preparation of ketone (112):

To a solution of alcohol **111** (1.0 g, 3.5 mmol) in CH₂Cl₂ (35 mL) were added DMSO (2.46 mL, 34.7 mmol), *i*-Pr₂NEt (3.62 mL, 20.8 mmol) and

SO₃•pyridine (1.65 g, 10.4 mmol). After stirring at room temperature for 90 minutes, the reaction was quenched with a saturated aqueous NH₄Cl solution (70 mL) and water (6 mL). Et₂O (140 mL) was added, and the phases were separated. The organic phase was washed with brine (20 x 2). The combined aqueous phase was extracted with Et₂O (20 mL x 3). The combined organics were dried over MgSO₄, filtered and concentrated to give a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 0.68 g (68%) of ketone 112 as a clear oil. IR (neat, 4 cm⁻¹): v = 2975, 2944, 2884, 1736, 1464, 1360, 1262, 1201, 1173, 1082, 1061, 912, 799; α_{589}^{120} +62.4° (c 0.66, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 4.82$ (t, J = 7.14 or 7.69 Hz, 2 H), 4.31 (t, J = 7.69 or 8.24 Hz, 2 H), 3.96 (dd, J = 7.14, 8.79 Hz, 2 H), 1.69 (m, 8 H), 0.93 (m, 12 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 205.3$, 114.9, 78.7, 66.2, 29.1, 28.2, 8.2, 8.0.

Preparation of alkene (113):

To a cold (0 °C) mixture of methyltriphenylphosphonium bromide (1.35 g, 3.77 mmol) in THF (5 mL) was added NaHMDS (3.5 mL, 1.0 M THF, 3.5 mmol) dropwise. The ice bath was removed and the reaction stirred at room temperature for 30 minutes before the temperature was lowered back to 0 °C. A solution of ketone 112 (0.20 g, 0.70 mmol) in THF (1 mL) was added dropwise and the reaction stirred for 3 hours at room temperature. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (5 mL) and

water (5 mL). The reaction was diluted Et₂O (15 mL) and the phases were separated. The aqueous phase was extracted with Et₂O (5 mL x 2). The combined organic phase was washed with brine (5 mL), dried over MgSO₄, filtered and concentrated to give an oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 0.196 g (99%) of alkene **113** as a clear oil. IR (neat, 4 cm⁻¹): v = 2975, 2942, 2882, 1464, 1356, 1271, 1198, 1173, 1132, 1080, 1059, 1040, 920; [α_{589}^{120} +63.1° (c 0.90, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 5.29$ (br s, 2 H), 4.50 (dd, J = 6.04, 8.79 Hz, 2 H), 4.18 (dd, J = 6.04, 7.69 Hz, 2 H), 3.55 (dd, J = 7.69, 8.79 Hz, 2 H), 1.64 (m, 4 H), 0.90 (t, J = 7.69 Hz, 3 H), 0.89 (t, J = 7.69 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 144.6$, 112.8, 76.1, 70.0, 29.7, 29.4, 8.1 (2).

Hydrolysis of acetal (113) to give tetra-ol (114):

To a solution of bisisopentylidene acetal **113** (5.08 g, 17.9 mmol) in MeOH/CH₂Cl₂ (2:1) (180 mL) was added CSA (0.83 g, 3.6 mmol) and water (3 mL). The reaction flask was immersed into a preheated oil bath (~40 °C). After stirring for 8.5 hours, the reaction was allowed to cool to room temperature and then concentrated under high vacuum overnight to give 3.73 g of crude tetra-ol **114** as a yellow oil.

Preparation of TIPS-ether (115):

To a solution of crude tetra-ol 114 (from above) in CH_2Cl_2/DMF (1:1) (130 mL) were added imidazole (4.86 g, 71.4 mmol), DMAP (0.22 g, 1.8 mmol) and TIPSCI (8.0 mL, 37 mmol). After stirring for 12 hours, the reaction was concentrated to give a yellow residue. CH_2Cl_2 (150 mL) was added to the residue and then washed with water (25 mL) and brine (25 mL x 2). The organics were dried over MgSO₄, filtered and concentrated to give 9.54 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc $10\% \rightarrow 50\%$] afforded 6.3 g (77% yield, 2 steps) of TIPS disilylated tetra-ol 115 as a clear oil and 1.04 g (19% yield, 2 steps) of TIPS monosilylated tetra-ol 115a as a white solid.

Preparation of fully protected tetra-ol (116):

To a solution of tetra-ol **115** (2.30 g, 4.99 mmol) in cyclohexane/CH₂Cl₂ (3:1) (44 mL) were added PMB-imidate (5.64 g, 20 mmol) and CSA (0.12 g, 0.50 mmol). The reaction flask was immersed into a preheated oil bath (~40 °C). After stirring for 24 hours, additional CSA (60 mg) and PMB-imidate (2.8 g) were added. After stirring for a total of 50 hours, the reaction was allowed to cool to room temperature and was then quenched with a saturated aqueous NaHCO₃ solution (3 mL). Et₂O (80 mL) was added and the phases were separated. The organic phase was washed with a saturated aqueous NaHCO₃ solution (3 mL x

2) and brine (4 mL). The organics were dried over MgSO₄, filtered and concentrated to give a milky white solid. Hexanes were added to the residue. After stirring for several hours, the mixture was filtered and concentrated to give 5.3 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 1.35 g (38%) of fully protected tetra-ol 116 as a clear oil and 1.06 g (37%) of mono-protected PMB-ether derivative 117.

Deprotection of TIPS-ether (116) to give diol (118):

To a solution of TIPS disilylated tetra-ol 116 (5.97 g, 8.51 mmol) in THF (90 mL) was added TBAF (19 mL, 1.0 M THF, 19 mmol) dropwise (~25 minutes). After stirring an additional 1.5 hours, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (10 mL) and water (10 mL). Et₂O (300 mL) was added and the phases were separated. The organic phase was washed with brine (10 mL x 2). The combined aqueous phases were extracted with Et₂O (10 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 7.6 g of a yellow oil, which was used crude in subsequent reactions.

Preparation of aldehyde (110):

To a stirred solution of Dess-Martin periodinane (0.50 g, 1.2 mmol) in CH₂Cl₂ (20 mL) were added pyridine (0.10 mL, 1.187 mmol) and a solution of

alcohol 109 (0.51 g, 1.1 mmol) in CH₂Cl₂ (2 mL). After stirring for 4 hours at room temperature, the reaction was quenched by the addition of a saturated aqueous NaHCO₃/10% aqueous Na₂S₂O₃ (1:1) solution (20 mL) and diluted with Et₂O (100 mL). After stirring for 30 minutes, the phases were separated. The organic phase was washed with water (4 mL), a saturated aqueous CuSO₄ solution (4 mL x 2), water (4 mL x 2) and brine (8 mL), dried over Na₂SO₄, filtered and concentrated to give 0.50 g (100%) of crude aldehyde 110 as a vellow oil. IR (neat, 4 cm⁻¹): v = 2963, 2870, 2837, 1730, 1613, 1514, 1464, 1397, 1366. 1283, 1250, 1173, 1157, 1078, 1034, 822; $\left[\alpha\right]_{889}^{20}$ +50.1° (c 0.685, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 9.51$ (d, J = 1.65 Hz, 1 H), 7.23 (d, J = 8.79 Hz, 1 H), 7.19 (d, J = 8.79 Hz, 2 H), 6.85 (d, J = 8.79 Hz, 2 H), 6.83 (d, J = 8.79 Hz, 2 H), 5.51 (s, 1 H), 5.48 (s, 1 H), 4.57 (ABq, J = 11.54 Hz, 1 H), 4.44 (s, 1 H), 4.38 (ABq, J = 11.54 Hz, 1 H), 4.13 - 4.22 (m, 3 H), 4.06 - 4.12 (m, 2 H), 3.77 (s, 3 H), 3.76 (s, 3 H), 1.15 (s, 9 H); 13 C NMR (75 MHz, CDCl₃) δ = 199.1, 178.1, 159.5, 159.2, 140.3, 129.6, 129.5, 128.7, 120.5, 113.9, 113.7, 84.0, 77.9, 70.9, 70.5, 65.6, 55.2, 38.6, 27.1.

Preparation of alcohol (119) – Fragment AB coupling:

t-BuLi (2.85 mL, 1.7 M pentane, 4.85 mmol) was added dropwise to Et₂O (12 mL) at −78 °C. A solution of vinyl bromide **B** (0.52 g, 2.4 mmol) in Et₂O (5 mL) was added dropwise to the t-BuLi solution. After stirring for 10 minutes, MgBr₂•Et₂O (2.60 mL, 1.0 M Et₂O/PhH (3:1), 2.60 mmol) was added and the

reaction stirred at -78 °C for 15 minutes and then at 0 °C for 10 minutes. In a separate flask, to a 0 °C solution of crude aldehyde 110 (0.76 g, 1.62 mmol) in CH₂Cl₂ (8 mL) was added MgBr₂•Et₂O (1.60 mL, 1.0 M Et₂O/PhH (3:1) 1.60 mmol) and the solution stirred for several minutes. The Grignard solution was transferred via cannula to the precomplexed aldehyde solution. After stirring for 45 minutes at 0 °C, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (1.5 mL) and water (1.5 mL). The reaction was diluted with Et₂O and the phases were separated. The organic phase was washed with water (0.7 mL) and brine (0.7 mL x 2). The combined aqueous phases were extracted with Et₂O (2x). The combined organics were dried over MgSO₄, filtered and concentrated to give 1.11 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 0.57 g (58%) of alcohol 119 as a yellow oil. IR (neat, 4 cm⁻¹): v = 3382, 2961, 2917, 2885, 2178, 1727, 1653, 1617, 1514, 1458, 1250, 1154, 1036, 843, 760; $\left[\alpha_{589}^{120}\right.$ +72.3° (c 0.495, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.22 (d, J = 8.39 Hz, 2 H), 7.19 (d. J = 8.39 Hz, 2 H), 6.85 (d, J = 8.39 Hz, 2 H), 6.84 (d, J = 8.39 Hz, 2 H), 5.57 (s, 1 H). 5.48 (s, 1 H), 5.36 (s, 1 H), 5.19 (s, 3 H), 4.53 (ABq, J = 10.99 Hz, 1 H), 4.51 (ABq, J = 11.54 Hz, 1 H), 4.36 (ABq, J = 11.54 Hz, 1 H), 4.29 (d, J = 9.34 Hz, 1 H), 4.24 (ABq, J = 10.99 Hz, 1 H), 3.97 – 4.14 (series m, 2 H), 3.90 (d, J = 4.94Hz, 1 H), 3.78 (m, 1 H), 3.78 (s, 1 H), 3.77 (s, 3 H), 3.06 (ABq, J = 19.78 Hz, 1 H), 2.92 (ABq, J = 19.78 Hz, 1 H), 2.85 (d, J = 4.40 Hz, 1 H), 1.18 (s, 9 H), 0.12 (s, 9 H); 13 C NMR (125 MHz, CDCl₃) δ = 178.3, 159.5, 159.4, 143.1, 142.7, 130.3, 129.7, 129.5, 129.2, 116.8, 114.7, 114.0, 113.9, 103.6, 87.8, 80.4, 77.6,

76.0, 71.2, 70.9, 66.1, 55.3, 38.8, 27.2, 23.4, 0.07; HRMS (CI) *m/z* 626.3513 [(M + NH₄)⁺; calcd for C₃₅H₅₂O₇SiN, 626.3501].

Preparation of TBS-ether (120):

To a cold (0 °C) solution of alcohol 119 (1.11 g, 1.82 mmol) in CH₂Cl₂ (18 mL) was added 2,6-lutidine (0.27 mL, 2.3 mmol) and TBSOTf (0.48 mL, 2.1 mmol). After stirring for 30 minutes at 0 °C, the reaction was quenched with water (1.4 mL) and a saturated aqueous NH₄Cl solution (1.4 mL). The reaction was diluted with Et₂O (90 mL) and the phases were separated. The organic phase was washed with a saturated aqueous CuSO₄ solution (1 mL x 2), water (1 mL x 2) and brine (2 mL), dried over MgSO₄, filtered and concentrated to give 1.36 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 1.07 g (81 %) of TBS-silylated alcohol **120** as a clear oil. IR (neat, 4 cm⁻¹): v = 2955, 2858, 2174, 1720, 1613, 1587, 1514, 1464, 1362, 1302, 1157, 1099, 862, 841; $\left[\alpha_{589}^{20}\right]$ +19.8° (c 0.57, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.29$ (d, J = 8.79 Hz, 4 H), 6.89 (d, J = 8.24 Hz, 4 H), 5.57 (s, 1 H), 5.41 (s, 1 H), 5.33 (d, J = 1.65 Hz, 1 H), 5.16 (s, 1 H), 4.56 (ABq, J= 11.54 Hz, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.46 (d, J = 4.94 Hz, 1 H), 4.35 (ABq, J = 10.99 Hz, 1 H), 4.33 (ABq, J = 10.99 Hz, 1 H), 4.23 - 4.27 (m, 2 H),3.90 - 4.0 (m, 2 H), 3.83 (s, 3 H), 3.82 (s, 3 H), 3.20 (ABq, J = 19.78 Hz, 1 H), 3.10 (ABq, J = 19.78 z, 1 H), 1.24 (s, 9 H), 0.87 (s, 9 H), 0.19 (s, 9 H), 0.03 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ = 178.4, 159.0, 142.9, 142.6, 130.7, 130.4,

129.0 (2), 114.3, 113.7, 104.3, 86.9, 81.0, 78.1, 77.3, 71.2, 70.9, 66.1, 55.2, 38.7, 27.2, 25.6, 24.4, 18.1, 0.1, -5.1; HRMS (FAB) m/z 723.4119 [(M + NH₄)⁺; calcd for C₄₁H₆₆O₇Si₂N, 723.4112].

Preparation of alcohol (121):

To a cold (0 °C) solution of Piv-ester 120 (1.07 g, 1.48 mmol) in THF (12 mL) was added dropwise (~3 minutes) Super-Hydride® (3.11 mL, 1.0 M THF, 3.11 mmol). After stirring for 35 minutes, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (3.1 mL), glycerol (0.93 mL, 0.3 mL/mmol) and water (3.1 mL) and then the reaction mixture was diluted with Et₂O (100 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with brine (1.5 mL), 0.5 M NaOH (1.5 mL x 2), and brine (1.5 mL). The combined aqueous phases were extracted with Et₂O (3 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 1.33 g of a clear oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 25%] to give 0.83 g (88 %) of alcohol 121 as a clear oil. IR (neat, 4 cm⁻¹): v = 3455, 2957, 2932, 2897, 2859, 2176, 1613, 1514, 1464, 1302, 1250, 1173, 1096, 1063, 1038, 841, 777, 760; $[\alpha]_{89}^{20}$ +26.3° (c 0.51, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.23$ (d, J = 8.79 Hz, 2 H), 7.22 (d, J =8.79 Hz, 2 H), 6.86 (d, J = 8.79 Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.47 (s, 1 H), 5.35 (s, 1 H), 5.29 (s, 1 H), 5.11 (s, 1 H), 4.55 (ABq, J = 10.99 Hz, 1 H), 4.50 (ABq, J = 12.09 Hz, 1 H), 4.40 (d, J = 5.49 Hz, 1 H), 4.28 (ABq, J = 11.54 Hz, 1

H), 4.23 (ABq, J = 10.99 Hz, 1 H), 4.08 (m, 1 H), 3.78 (s, 6 H), 3.78 (m, 1 H), 3.63 (m, 1 H), 3.39 (ddd, J = 4.40, 7.14, 11.54 Hz, 1 H), 3.16 (ABq, J = 19.29 Hz, 1 H), 3.04 (ABq, J = 19.78 Hz, 1 H), 2.14 (dd, J = 9.34, 3.85 Hz, 1 H), 0.84 (s, 9 H), 0.14 (s, 9 H), -0.01 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 159.2$, 159.1, 142.9, 142.8, 130.5, 130.3, 129.3, 129.0, 114.5, 113.8, 113.7, 104.2, 80.7, 80.6, 70.9, 70.7, 64.8, 55.2, 25.8, 24.4, 18.2, 0.08, -5.1; HRMS (CI) m/z 639.3510 [(M + H)⁺; calcd for C₃₆H₅₅O₆Si₂, 639.3537].

Preparation of aldehyde (122):

To a stirred solution of Dess-Martin periodinane (0.64 g, 1.5 mmol) in CH_2Cl_2 (25 mL) were added pyridine (0.13 mL, 1.5 mmol) and a solution of alcohol 121 (0.80 g, 1.3 mmol) in CH_2Cl_2 (5 mL). After stirring for 1.5 hours at room temperature, the reaction was quenched by the addition of a saturated aqueous NaHCO₃/10% aqueous Na₂S₂O₃ (1:1) solution (22 mL) and then diluted with Et_2O (170 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with water (4 mL), a saturated aqueous CuSO₄ solution (4 mL x 2), water (4 mL x 2) and brine (8 mL), dried over Na₂SO₄, filtered and concentrated to give 0.74 g (93%) of crude aldehyde 122 as a yellow oil. IR (CHCl₃, 4 cm⁻¹): v = 2955, 2857, 2174, 1730, 1613, 1588, 1514, 1464, 1362, 1304, 1101, 1003, 910, 862, 841; $\left[\alpha\right]_{589}^{20}$ -55.2° (c 0.545, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 9.33$ (d, J = 2.75 Hz, 1 H), 7.24 (d, J = 8.79 Hz, 2 H), 5.52 (s, 1

H), 5.41 (s, 1 H), 5.26 (s, 1 H), 5.05 (s, 1 H), 4.52 (ABq, J = 11.54 Hz, 1 H), 4.42 (ABq, J = 11.54 Hz, 1 H), 4.42 – 4.32 (m, 3 H), 4.18 (ABq, J = 10.99 Hz, 1 H), 3.91 (d, J = 5.49 Hz, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.11 (ABq, J = 19.78 Hz, 1 H), 2.98 (ABq, J = 19.78 Hz, 1 H), 0.83 (s, 9 H), 0.14 (s, 9 H), -0.02 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 199.1, 159.4, 159.0, 142.9, 139.7, 130.3, 129.5, 129.4, 129.2, 117.0, 114.4, 113.9, 113.5, 104.3, 87.0, 84.3, 81.2, 71.6, 70.9, 55.2, 25.8, 24.0, 18.2, 0.08, -5.1, -5.2.

Preparation of alcohol (123):

To a cold (0 °C) solution of crude aldehyde 122 (0.74 g, 1.2 mmol) in a Et₂O/PhH/CH₂Cl₂ (3:1:1) solution (18 mL) was added MgBr₂•Et₂O (1.3 mL, 1.0 M Et₂O/PhH (3:1), 1.3 mmol). After stirring for 6 minutes, vinyl magnesium bromide (2.3 mL, 1.0 M THF, 2.3 mmol) was added dropwise (~ 12 minutes). After stirring for 60 minutes at 0 °C, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (1 mL) and water (1 mL). The reaction mixture was diluted with Et₂O (40 mL) and the phases separated. The organic phase was washed with water (2 mL) and brine (2 mL). The combined aqueous phases were extracted with Et₂O. The combined organics were dried over MgSO₄, filtered and concentrated to give 0.74 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.45 g (58%) of alcohol 123 as a clear oil. IR (neat, 4 cm⁻¹): v = 3552, 2958, 2932, 2900, 2858, 2176, 1614, 1514, 1464, 1362, 1303, 1250, 1173, 1091, 1037, 921,

841, 779, 760; $\left[\alpha_{589}^{120} + 6.8^{\circ} \text{ (c } 0.575, \text{ CHCl}_3); ^{1}\text{H } \text{ NMR } (500 \text{ MHz, CDCl}_3) \delta = 7.26\right]$ (d, J = 8.39 Hz, 2 H), 7.22 (d, J = 8.39 Hz, 2 H), 6.86 (d, J = 8.39 Hz, 4 H), 5.90 (ddd, J = 17.23, 10.16, 5.30 Hz, 1 H), 5.50 (s, 1 H), 5.42 (s, 1 H), 5.33 (s, 1 H), 5.31 (m, 1 H), 5.18 (s, 1 H), 5.15 (m, 1 H), 4.55 (ABq, J = 11.49 Hz, 1 H), 4.54 (ABq, J = 11.05 Hz, 1 H), 4.50 (d, J = 4.86 Hz, 1 H), 4.35 (ABq, J = 11.49 Hz, 1 H), 4.23 (ABq, J = 10.60 Hz, 1 H), 4.03 (br s, 2 H), 3.93 (d, J = 4.86 Hz, 1 H), 3.79 (s, 6 H), 3.17 (ABq, J = 19.44 Hz, 1 H), 3.10 (ABq, J = 19.88 Hz, 1 H), 0.86 (s, 9 H), 0.16 (s, 9 H), 0.01 (s, 3 H), 0.01 (s, 3 H); $^{13}\text{C }$ NMR (125 MHz, CDCl}₃) $\delta = 159.2$, 159.1, 143.1, 142.9, 138.2, 130.6, 130.5, 129.3, 129.1, 128.9, 116.1, 114.4, 113.8, 113.7, 104.5, 86.8, 82.1, 80.5, 73.5, 71.7, 70.8, 55.2, 25.9, 24.8, 18.3, 14.1, 0.10, -5.0, -5.1; HRMS (CI) m/z 665.3695 [(M + H)⁺; calcd for $C_{38}H_{57}O_6Si_2$, 665.3694].

Preparation of 1-bromo-alkyne (124):

TMS-alkyne **123** (0.31 g, 0.47 mmol) was dissolved in acetone (5 mL) and NBS (0.10 g, 0.56 mmol) and AgNO₃ (0.020 g, 0.12 mmol) were added. After stirring for 3 hours the reaction was judged complete by TLC analysis. The reaction was quenched by the addition of water (1 mL) and then diluted with Et₂O (35 mL). The phases were separated, and the organic phase was washed with brine (1 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.43 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/ EtOAc 10%] afforded 0.28 g (92%) of 1-bromo-alkyne **124** as a clear oil. ¹H NMR (500

MHz, CDCl₃) δ = 7.24 (d, J = 8.84 Hz, 2 H), 7.22 (d, J = 8.39 Hz, 2 H), 6.86 (d, J = 8.84 Hz, 4 H), 5.89 (ddd, J = 16.79, 10.16, 5.30 Hz, 1 H), 5.50 (s, 1 H), 5.41 (s, 1 H), 5.32 (s, 1 H), 5.29 (s, 1 H), 5.18 (s, 1 H), 5.16 (s, 1 H), 4.55 (ABq, J = 11.93 Hz, 1 H), 4.53 (ABq, J = 10.60 Hz, 1 H), 4.41 (d, J = 4.86 Hz, 1 H), 4.31 (ABq, J = 11.93 Hz, 1 H), 4.23 (ABq, J = 11.05 Hz, 1 H), 4.02 (m, 2 H), 3.92 (d, J = 4.86 Hz, 1 H), 3.79 (s, 6 H), 3.17 (ABq, J = 19.44 Hz, 1 H), 3.04 (ABq, J = 19.44 Hz, 1 H), 2.45 (br s, -OH), 0.85 (s, 9 H), -0.01 (s, 6 H); ¹³C NMR (125 MHz, CDCl₃) δ = 159.2, 159.1, 142.9, 142.8, 138.1, 130.5, 130.4, 129.3, 129.0, 116.2, 114.5, 114.4, 113.7, 82.0, 80.5, 77.7, 77.5, 73.5, 71.7, 70.8, 55.2, 40.2, 29.5, 25.9, 24.3, 18.3, -5.1 (2); HRMS (FAB, NBA + KI) m/z 709.1994 [(M + K)+; calcd for C₃₅H₄₇O₆BrSiK, 709.1962].

Preparation of vinyl stannane (125):

To a solution of $(Ph_3P)_2PdCl_2$ (2 mg, 0.003 mmol), Red-Sil (0.94 g, 2.0 mmol, 2.1 mmol/g), and Bu₃SnF (0.17 g, 0.55 mmol) in Et₂O (4.5 mL) was added of a solution of 1-bromo-alkyne **124** (0.167 g, 0.248 mmol) in Et₂O (0.5 mL) and a drop of TBAF (1.0 M THF). After stirring for 2.5 hours at room temperature, the reaction was filtered through a pad of Celite on a glass frit. The residual Red-Sil was washed several times with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated to give 0.27 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10% \rightarrow 15%] to give 0.16 g (73%) of E-vinyl stannane **125** as a clear oil. IR (neat, 4 cm⁻¹): v = 2955, 2928,

2855, 1613, 1514, 1464, 1361, 1302, 1250, 1173, 1084, 1040, 920, 835, 777; $[\alpha]_{589}^{20} + 3.6^{\circ}$ (c 0.555, CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.25$ (d, J = 8.84 Hz, 2 H), 7.21 (d, J = 8.84 Hz, 2 H), 6.85 (d, J = 8.84 Hz, 2 H), 6.84 (d, J = 8.84 Hz, 2 H), 5.95 – 5.85 (m, 3 H), 5.50 (s, 1 H), 5.45 (s, 1 H), 5.30 (m, 1 H), 5.16 (m, 1 H), 5.07 (s, 1 H), 4.94 (s, 1 H), 4.56 (ABq, J = 11.49 Hz, 1 H), 4.54 (ABq, J = 11.05 Hz, 1 H), 4.34 (m, 2 H), 4.20 (ABq, J = 11.05 Hz, 1 H), 4.03 (m, 2 H), 3.92 (d, J = 5.30 Hz, 1 H), 3.79 (s, 6 H), 3.0 (m, 2 H), 2.39 (d, J = 5.74 Hz, 1 H), 1.50 (m, 6 H), 1.30 (m, 6 H), 0.87 (m, 24 H), -0.01 (s, 3 H), -0.02 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 159.2$, 159.1, 146.6, 143.2, 138.3, 130.7, 130.6, 130.2, 129.3, 129.0, 116.0, 114.2, 113.7, 113.7, 113.1, 81.9, 80.8, 78.0, 73.4, 71.7, 70.7, 55.3, 55.2, 41.5, 29.1, 27.3, 25.9, 18.3, 13.7, 9.4, -4.9, -5.0; HRMS (EI) m/z 823.3694 [(M - Bu)⁺; calcd for C₄₃H₃₇O₆SiSn, 823.3726].

Preparation of diene (126) via Liebeskind's coupling:

To a cold (0 °C) solution of (Z)-vinyl iodide **300**⁵⁰ (0.12 g, 0.27 mmol) in NMP (1 mL) was added copper (I) thiophene-2-carboxylate (CuTc) (0.039 g, 0.204 mmol). To this suspension was added a solution of vinyl stannane **125** (0.12 g, 0.14 mmol) in NMP (0.5 mL). After stirring 15 minutes at 0 °C, the ice bath was removed and the reaction stirred at room temperature for 15 minutes. The reaction mixture was diluted with Et₂O (20 mL) and filtered through a pad of

Celite on a glass frit. The green filter cake was washed with Et₂O (3x). The yellow filtrate was washed with water (2 mL x 3), a saturated aqueous KF solution (2 mL x 2), and brine (2 mL). The organics were dried over MgSO₄, filtered and concentrated to give 0.23 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10% → 15%] to give 75 mg (60%) of diene 126 as a clear oil. IR (neat, 4 cm⁻¹): v = 3513, 3077, 2959, 2930, 1715, 1636, 1613, 1588, 1514, 1464, 1381, 1302, 1248, 1173, 1150, 1074, 1036, 914, 835, 779; $\left[\alpha\right]_{589}^{20}$ -6° (c 0.205, CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.64$ (d, J = 15.91 Hz, 1 H), 7.25 (d, J = 8.39 Hz, 2 H), 7.21 (d, J = 8.39 Hz, 2 H), 6.85 (m, 4 H), 6.11 (dt, J = 15.91, 7.51 Hz, 1 H), 5.90 (m, 1 H), 5.76 (s, 1 H), 5.68 (s, 1 H), 5.51 (s, 1 H), 5.45 (s, 1 H), 5.31 (d, J = 17.23 Hz, 1 H), 5.16 (d, J = 1710.60 Hz, 1 H), 5.09 (s, 1 H), 5.03 (d, J = 7.51 Hz, 1 H), 5.01 (s, 1 H), 4.93 (m, 1 H), 4.83 (s, 1 H), 4.76 (s, 1 H), 4.65 (t, J = 6.19 Hz, 1 H), 4.57 (ABq, J = 11.93Hz, 1 H), 4.54 (ABq, J=11.05 Hz, 1 H), 4.34 (m, 1 H), 4.32 (ABq, J=11.49 Hz, 1 H), 4.22 (ABq, J = 11.05 Hz, 1 H), 4.04 (br s, 2 H), 3.94 (d, J = 4.86 Hz, 1 H), 3.78 (s, 6 H), 3.09 (dABq, J = 6.63, 16.35 Hz, 1 H), 3.00 (dABq, J = 7.95, 15.91 Hz, 1 H), 2.87 (dd, J = 2.21, 6.19 Hz, 1 H), 2.71 (t, J = 7.51 Hz, 2 H), 2.62 (dd, J= 2.21, 7.07 Hz, 1 H), 2.44 (d, J = 5.30 Hz, 1 H), 2.30 (dABq. J = 4.42, 13.70 Hz. 1 H), 2.05 (m, 1 H), 1.98 (s, 3 H), 1.83 (m, 1 H), 1.50 – 1.20 (series m, 5 H), 0.95 (d, J = 6.63 Hz, 3 H), 0.91 (d, J = 7.07 Hz, 3 H), 0.85 (m, 3 H), 0.84 (s. 9 H).-0.03 (s, 3 H), -0.04 (s, 3 H).

Ring-closing metathesis of diene (126) to give (Z)-macrocycle (127):

To a slightly refluxing solution of diene 126 (74 mg, 0.081 mmol) in CH₂Cl₂ (74 mL) was added dropwise (~8 hours) a solution of bis(tricyclohexylphosphine) benzylidene ruthenium dichloride (33 mg, 0.040 mmol) in CH₂Cl₂ (8 mL). After stirring an additional 18 hours at reflux, the reaction was allowed to cool to room temperature and then concentrated to give 0.14 g of a black residue. The black residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 34 mg (47%) of (Z)-macrocycle 127 and 10 mg (14%) of ketone 128 as oils. For spectroscopic data see below.

2nd generation catalyst:

To a slightly refluxing solution of diene 126 (26 mg, 0.029 mmol) in CH₂Cl₂ (26 mL) was added dropwise (~2 hours) a solution of PhHC=Ru(PCy₃)(IMes-H₂)Cl₂ (5 mg, 0.006 mmol) in CH₂Cl₂ (2 mL). After stirring an additional 8 hours at reflux, the reaction was allowed to cool to room temperature and then concentrated to give 33 mg of a black residue. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 22 mg (88%) of macrocycle 127.

macrocycle **127:** IR (neat, 4 cm⁻¹): v = 3515, 2957, 2930, 2857, 1709, 1636, 1613, 1514, 1464, 1381, 1302, 1248, 1173, 1154, 1074, 1038, 909, 835, 777; $[\alpha]_{589}^{20}$ +37.5° (c 0.557, CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 7.41$ (d, J = 15.91

Hz, 1 H), 7.23 (d, J = 8.84 Hz, 2 H), 7.19 (d, J = 8.84 Hz, 2 H), 6.84 (d, J = 8.84Hz. 2H), 6.82 (d, J = 8.84 Hz, 2 H), 6.19 (dt, J = 15.91, 7.51 Hz, 1 H), 5.65 (s, 1 H), 5.61 (m, 2 H), 5.54 (dd, J = 4.86, 15.46 Hz, 1 H), 5.50 (s, 1 H), 5.13 (s, 1 H), 4.95 (s, 1 H), 4.86 (s, 1 H), 4.74 (s, 1 H), 4.64 (dd, J = 3.53, 6.63 Hz, 1 H), 4.52(ABq, J = 11.49 Hz, 1 H), 4.48 (ABq, J = 10.60 Hz, 1 H), 4.26 (ABq, J = 11.05 Hz, 1 H), 4.20 (ABq, J = 11.49 Hz, 1 H), 4.19 (d, J = 6.19 Hz, 1 H), 3.96 (br s, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.78 (m, 1 H), 3.69 (br s, 1 H), 3.07 (dABq, J = 7.51, 15.91 Hz, 1 H), 2.96 (dABq, J = 6.19, 15.46 Hz, 1 H), 2.90 (dd, J = 2.21, 6.63 Hz, 1 H), 2.78 (dABq, J = 6.19, 14.58 Hz, 1 H), 2.64 (dABq. J = 5.74, 14.58 Hz, 1 H), 2.59 (dd, J = 2.21, 7.51 Hz, 1 H), 2.30 – 2.20 (m, 3 H), 1.86 (d, J = 1.33 Hz, 3 H), 1.78 (m, 1 H), 1.50 – 1.20 (series m, 5 H), 0.98 (d, J = 7.07 Hz, 3 H), 0.92 (d, J =6.63 Hz, 3 H), 0.88 (m, 12 H), 0.02 (s, 3 H), 0.01 (s, 3 H). ketone **128**: IR (neat, 4 cm⁻¹): v = 2957, 2930, 2857, 1715, 1636, 1613, 1514, 1464, 1389, 1358, 1302, 1250, 1173, 1150, 1074, 1038, 912, 835, 777; ¹H NMR (500 MHz, CDCl₃) δ = 7.59 (d, J = 15.46 Hz, 1 H), 7.22 (d, J = 8.39 Hz, 2 H), 7.19 (d, J = 8.84 Hz, 2 H), 6.85 (d, J = 8.39 Hz, 2 H), 6.83 (d, J = 8.84 Hz, 2 H), 6.06(dt, J = 15.91, 7.51 Hz, 1 H), 5.75 (m, 1 H), 5.66 (s, 1 H), 5.60 (s, 1 H), 5.39 (s, 1 H)H), 5.00 (series m, 3 H), 4.82 (s, 2 H), 4.75 (s, 1 H), 4.64 (dd, J = 4.86, 6.19 Hz, 1 H), 4.44 (ABq, J = 11.49 Hz, 1 H), 4.35 (ABq, J = 11.49 Hz, 1 H), 4.33 (s, 1 H), 4.32 (ABq, J = 11.05 Hz, 1 H), 4.23 (d, J = 5.74 Hz, 1 H), 4.14 (ABq, J = 11.49Hz, 1 H), 3.93 (d, J = 5.74 Hz, 1 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.02 (dABq, J =6.63, 16.35 Hz, 1 H), 2.90 (dABq, J = 6.63, 16.35 Hz, 1 H), 2.86 (dd, J = 2.21, 6.19 Hz, 1 H), 2.70 (t, J = 7.51 Hz, 2 H), 2.60 (dd, J = 2.21, 7.07 Hz, 1 H), 2.29

(dABq, J = 4.86, 13.70 Hz, 1 H), 2.11 (s, 3 H), 2.03 (m, 1 H), 1.97 (s, 3 H), 1.81 (dABq, J = 9.72, 13.70 Hz, 1 H), 1.50 – 1.20 (series m, 5 H), 0.95 (d, J = 7.07 Hz, 3 H), 0.90 (d, J = 7.07 Hz, 3 H), 0.87 (t, J = 7.07 Hz, 3 H), 0.82 (s, 9 H), -0.04 (s, 3 H), -0.06 (s, 3H).

DDQ deprotection of PMB-ether (123) to give alcohol (130):

To a solution of PMB-ether 123 (24 mg, 0.036 mmol) in *t*-BuOH/aqueous pH=7 buffer/CH₂Cl₂ (1:1:5) (1.4 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (33 mg, 0.14 mmol). After stirring for 2 hours, the red reaction mixture was diluted with CH₂Cl₂ (10 mL) and a saturated aqueous NaHCO₃ solution (10 mL) and then separated the phases. The aqueous phase was extracted with CH₂Cl₂ (5 mL x 3). The combined organic phases were washed with a saturated aqueous NaHCO₃ solution (10 mL), water (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated to give 24 mg of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 11 mg (56%) of PMB-ester 130 as a clear oil, which is a mixture of regioisomers.

Preparation of TBS-ether (131):

To a cold (0 °C) solution of alcohol 123 (0.26 g, 0.39 mmol) in CH₂Cl₂ (4 mL) were added 2,6-lutidine (0.060 mL, 0.51 mmol) and TBSOTf (0.11 mL, 0.47 mmol). After stirring for 20 minutes, the reaction was quenched with water (0.20 mL) and a saturated aqueous NH₄Cl solution (0.20 mL). The reaction was diluted with Et₂O (20 mL) and the phases were separated. The organic phase was washed with brine (0.5 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.35 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5% →10%] to give 0.25 g (82 %) of fully protected tetra-ol 131 as a clear oil. IR (CHCl₃, 4 cm⁻¹): v = 2930, 2857. 2174, 1711, 1613, 1588, 1514, 1464, 1362, 1302, 1099, 1005, 912, 864, 841; $\alpha_{\rm Kgo}^{20}$ -22.5° (c 0.525, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.24 (app t, J = 7.95 or 8.84 Hz, 4 H), 6.85 (app t, J = 7.51 or 8.39 Hz, 4 H), 5.91 (ddd, J = 4.86. 10.60, 17.23 Hz, 1 H), 5.40 (s, 1 H), 5.37 (s, 1 H), 5.33 (d, J = 1.33 Hz, 1 H), 5.20 (m, 1 H), 5.14 (s, 1 H), 5.10 (m, 1 H), 4.57 (ABq, J = 11.05 Hz, 1 H), 4.53 (ABq, J = 11.05 Hz, 1 H), 4.54 (ABq, J = 11.05 Hz, 1 H), 4.55 (ABq, J = 11.05 Hz = 11.05 Hz, 1 H, 4.32 (m, 4 H), 4.20 (d, J = 5.74 Hz, 1 H), 3.94 (d, J = 4.86 Hz, 1 HzH), 3.79 (s, 6 H), 3.21 (ABq, J = 20.32 Hz, 1 H), 3.10 (ABq, J = 20.32 Hz, 1 H), 0.92 (s, 9 H), 0.88 (s, 9 H), 0.14 (s, 9 H), 0.08 (s, 3 H), 0.02 (s, 3 H), 0.017 (s, 3 H), 0.002 (s, 3 H); 13 C NMR (125 MHz, CDCl₃) δ = 158.9, 158.8, 144.2, 143.3. 137.4, 131.6, 131.4, 128.8, 128.7, 115.5, 114.5, 113.7, 113.6, 113.5, 104.5, 87.3, 82.2 (2), 78.8, 76.5, 71.2, 70.9, 55.2, 31.6, 26.0, 25.9, 24.5, 22.6, 18.3, 18.2, 14.1, 0.12, -4.7, -4.8, -4.9, -4.9.

DDQ deprotection of PMB-ether (131) to give diol (132):

To a solution of PMB-ether 131 (0.22 g, 0.28 mmol) in t-BuOH/ aqueous pH=7 buffer/CH₂Cl₂ (1:1:5) (14 mL) was added 2,3-dichloro-5,6-dicyano-1,4benzoguinone (DDQ) (0.19 g, 0.85 mmol). After stirring for 60 minutes, additional DDQ (65 mg) was added. After stirring an additional 5.5 hours, the red reaction mixture was diluted with CH₂Cl₂ (30 mL) and a saturated aqueous NaHCO₃ solution (10 mL) and then the phases were separated. The aqueous phase was extracted with CH₂Cl₂ (5 mL x 3). The combined organic phase was washed with a saturated aqueous NaHCO₃ solution (10 mL), water (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated to give 0.21 g of a red oil. The crude residue was purified by flash chromatography on silica gel [hexanes/ EtOAc 5%] to give 90 mg (59%) of diol 132 as a light yellow oil. IR (neat, 4 cm⁻¹): v = 3560, 2957, 2930, 2899, 2859, 2178, 1701, 1603, 1580, 1512, 1471, 1464,1406, 1362, 1252, 1161, 1074, 1032, 930, 839, 779; $\left[\alpha\right]_{589}^{20}$ -23.4° (c 0.435, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 5.83 (ddd, J = 6.63, 10.60, 17.23 Hz, 1 H), 5.34 - 5.14 (series m, 6 H), 4.31 (d, J = 4.42 Hz, 1 H), 4.10 (t, J = 6.19 Hz, 1 H), 3.89 (t, J = 5.30 or 4.86 Hz, 1 H), 3.80 (t, J = 5.30 or 4.86 Hz, 1 H), 3.10 (ABq, J = 19.88 Hz, 1 H), 3.01 (ABq, J = 19.88 Hz, 1 H), 2.87 (d, J = 5.74 Hz, -OH), 2.86 (d, J = 3.98 Hz, -OH), 0.91 (s, 9 H), 0.90 (s, 9 H), 0.16 (s, 9 H), 0.09 (s, 3 H), 0.08 (s, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H); 13 C NMR (125 MHz, CDCl₃) $\delta =$ 147.4, 143.4, 137.8, 116.9, 114.5, 114.0, 87.5, 77.7, 76.7, 75.9, 74.6, 31.6, 25.9, 23.6, 22.6, 18.2 (2), 14.1, 0.05, -4.2, -4.7, -4.8, -5.0.

TBS-protection of macrocycle (127) to give TBS-ether (133):

To a cold (0 °C) solution of alcohol 127 (0.017 g, 0.019 mmol) in CH₂Cl₂ (0.4 mL) were added 2.6-lutidine (3 drops) and TBSOTf (4 drops). After stirring for 4 hours, additional 2,6-lutidine (3 drops) and TBSOTf (4 drops) were added. After stirring yet an additional 4 hours at 0 °C, the ice bath was removed and the reaction stirred at room temperature for 4 hours. The reaction was diluted with Et₂O (6 mL) and washed with water (0.2 mL), a saturated aqueous CuSO₄ solution (0.2 mL x 2), water (0.2 mL) and brine (0.2 mL). The organics were dried over MgSO₄, filtered and concentrated to give 36 mg of a vellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 18 mg (92%) of fully protected macrocycle **133** as a clear oil. IR (neat, 4 cm⁻¹): v = 2957, 2928, 2857, 1709, 1614, 1514, 1464, 1389, 1360, 1302, 1248, 1173, 1152, 1082, 1038, 914, 835, 777; $\left[\alpha_{589}^{20} + 18.2^{\circ}\right]$ (c 0.80, CHCl₃); ¹H NMR (500) MHz, CDCl₃) $\delta = 7.37$ (d, J = 15.91 Hz, 1 H), 7.22 (d, J = 8.84 Hz, 2 H), 7.18 (d, J == 8.39 Hz, 2 H), 6.82 (d, J = 8.84 Hz, 2 H), 6.81 (d, J = 8.84 Hz, 2 H), 6.11 (dt, J= 15.92, 6.63 Hz, 1 H), 5.64 (m, 3 H), 5.48 (s, 1 H), 5.47 (s, 1 H), 5.20 (s, 1 H), 4.94 (s, 1 H), 4.83 (s, 1 H), 4.77 (s, 1 H), 4.71 (dd, J = 3.53, 6.19 Hz, 1 H), 4.51 (ABq, J = 11.05 Hz, 1 H), 4.47 (ABq, J = 11.05 Hz, 1 H), 4.27 (ABq, J = 11.05 Hz, 1 H)1 H), 4.19 (d, J = 4.86 Hz, 1 H), 4.14 (app t, J = 4.86/6.19 Hz, 1 H), 4.06 (ABq, J

= 11.49 Hz, 1 H), 3.78 (s, 6 H), 3.74 (d, J = 4.42 Hz, 1 H) 3.57 (d, J = 4.86 Hz, 1 H), 3.01 (d, J = 6.19 Hz, 2 H), 2.83 (dd, J = 1.77, 6.19 Hz, 1 H), 2.70 – 2.50 (series m, 3 H), 2.16 (m, 2 H), 1.86 (s, 3 H), 1.86 (m, 1 H), 1.50 – 1.20 (series m, 5 H), 1.01 (d, J = 6.63 Hz, 3 H), 0.92 (d, J = 7.07 Hz, 3 H), 0.90 – 0.80 (series m, 21 H), -0.02 (s, 6 H), -0.04 (s, 3 H), -0.04 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ = 166.6, 158.8, 158.6, 150.4, 146.6, 145.7, 143.5, 136.6, 132.7, 131.6, 131.3, 129.4, 129.1, 128.8, 128.5, 128.1, 116.5, 115.7, 115.2, 113.5, 113.4, 112.1, 83.6, 81.1, 78.9, 75.9, 75.8, 71.3, 70.2, 61.1, 56.6, 55.2, 39.6, 39.0, 36.7, 35.3, 35.1, 34.6, 26.0, 25.9, 21.1, 20.0, 18.4, 15.9, 15.4, 14.2, -3.6, -4.2, -4.5, -4.7.

DDQ deprotection of PMB-macrocycle (133) to give macrocycle diol (134):

To a solution of PMB-ether **133** (16.4 mg, 0.0164 mmol) in *t*-BuOH/ aqueous pH=7 buffer/CH₂Cl₂ (1:1:5) (1 mL) was added DDQ (15 mg, 0.066 mmol). After stirring for 3.5 hours, the red reaction mixture was diluted with CH₂Cl₂ (6 mL) and a saturated aqueous NaHCO₃ solution (6 mL). The phases were separated. The aqueous phase was extracted with CH₂Cl₂ (3 mL x 3). The combined organic phases were washed with a saturated aqueous NaHCO₃ solution (3 mL), water (3 mL) and brine (3 mL), dried over MgSO₄, filtered, and concentrated to give 27 mg of a dark red oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 6.4 mg (52%) of diol **134** as a clear oil. IR (neat, 4 cm⁻¹): v = 3567, 2965, 2928, 2857, 1707,

1636, 1603, 1464, 1379, 1262, 1154, 1098, 1030, 905, 801; $\left[\alpha_{L89}^{120} + 15^{\circ}\right]$ (c 0.23, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.54 (d, J = 15.91 Hz, 1 H), 6.14 (m, 1 H), 5.70 (s, 1 H), 5.56 (dt, J = 15.02, 6.63 Hz, 1 H), 5.42 (dd, J = 4.86, 15.02 Hz, 1 H), 5.32 (s, 2 H), 5.23 (s, 1 H), 5.09 (s, 1 H), 4.83 (s, 1 H), 4.74 (s, 1 H), 4.57 (dd, J = 3.53, 7.07 Hz, 1 H), 4.01 (d, J = 2.65 Hz, 1 H), 3.91 (t, J = 3.53 Hz, 1 H), 3.85 (m, 1 H), 3.69 (dd, J = 3.53, 6.10 Hz, 1 H), 3.16 (dABq, J = 15.02, 5.30 Hz, 1 H), 2.90 (dd, J = 2.21, 6.63 Hz, 1 H), 2.85 (dABq, J = 15.02, 8.84 Hz, 1 H), 2.66 (m, 3 H), 2.64 (dd, J = 2.21, 7.51 Hz, 1 H), 2.30 (m, 2 H), 1.99 (s, 3 H), 1.78 (m, 1 H), 1.50 – 1.20 (series m, 5 H), 0.96 (d, J = 7.07 Hz, 3 H), 0.94 (d, J = 7.07 Hz, 3 H), 0.89 (m, 3 H), 0.88 (s, 9 H), 0.85 (s, 9 H), 0.01 (s, 3 H), -0.02 (s, 3 H), -0.04 (s, 3 H), -0.05 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ =

Preparation of Z-amphidinolide A (135):

To a solution of disilylated macrocycle **134** in THF (0.5 mL) was added dropwise an acetic acid buffered TBAF (1.05:1) solution (0.07 mL, 0.2 M THF, 0.014 mmol). After stirring for 4.5 hours at room temperature, the reaction was directly loaded onto a silica gel (0.5 g) column [hexanes/EtOAc 75%] and eluted with EtOAc to give 3.4 mg of an oil. Purification by flash chromatography on silica gel (0.3 g) [hexanes/EtOAc 75% \rightarrow 100%] afforded 1.1 mg (33%) of z-amphidinolide A **135** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ = 7.52 (d, *J*

= 15.91 Hz, 1 H), 6.10 (m, 1 H), 5.70 (s, 1 H), 5.68 (m, 1 H), 5.45 (s, 1 H), 5.42 (dd, J = 5.74, 15.63 Hz, 1 H), 5.40 (s, 1 H), 5.35 (s, 1 H), 5.13 (s, 1 H), 4.87 (s, 1 H), 4.73 (s, 1 H), 4.64 (dd, J = 3.09, 6.63 Hz, 1 H), 4.24 (br s, 1 H), 4.14 (br s, 1 H), 4.12 (br s, 1 H), 4.04 (br s, 1 H), 3.09 (dABq, J = 15.02, 5.74 Hz, 1 H), 2.94 (d, J = 8.39 Hz, 1 H), 2.91 (dd, J = 2.21, 6.63 Hz, 1 H), 2.82 (dABq, 14.58, 6.19 Hz, 1 H), 2.63 (m, 3 H), 2.0 (s, 3 H), 1.73 (m, 1 H), 1.50 – 1.20 (series m, 5 H), 0.99 (d, J = 6.63 Hz, 3 H), 0.93 (d, J = 7.07 Hz, 3 H), 0.88 (t, J = 7.07 Hz, 3 H); HRMS (CI) m/z 553.3115 [(M + Na)+; calcd for $C_{31}H_{46}O_7Na$, 553.3141].

Preparation of diene (136) via Liebeskind's coupling:

To a cold (0 °C) solution of (E)-vinyl iodide **301**⁵⁰ (0.27 g, 0.31 mmol) in NMP (2.2 mL) was added copper (I) thiophene-2-carboxylate (CuTc) (0.12 g, 0.61 mmol). To this suspension was added a solution of vinyl stannane **125** (0.27 g, 0.31 mmol) in NMP (1.1 mL). After stirring for 15 minutes at 0 °C, the ice bath was removed and the reaction stirred at room temperature until judged complete by TLC analysis (~ 30 minutes). The reaction mixture was diluted with Et₂O (30 mL) and filtered through a pad of Celite on a glass frit. The green filter cake was washed with Et₂O (3x). The yellow filtrate was washed with water (3 mL x 3), a saturated aqueous KF solution (3 mL x 2), and brine (3 mL). The organics were dried over MgSO₄, filtered and concentrated to give 0.60 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel

[hexanes/EtOAc $10\% \rightarrow 15\%$] to give 0.17 g (62%) of diene 136 as a light yellow oil. IR (neat, 4 cm⁻¹): v = 3513, 3077, 2959, 2930, 1715, 1636, 1613, 1588, 1514, 1464, 1381, 1302, 1248, 1173, 1150, 1074, 1036, 914, 835, 779; α_{589}^{720} -2° (c 0.70, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.24 (d, J = 8.39 Hz, 2 H), 7.21 (d, J = 8.84 Hz, 2 H), 6.86 (d, J = 8.39 Hz, 2 H), 6.84 (d, J = 8.39 Hz, 2 H), 6.07(s, 1 H), 5.90 (m, 2 H), 5.76 (m, 1 H), 5.71 (s, 1 H), 5.50 (m, 1 H), 5.44 (m, 1 H), 5.30 (d, J = 17.23 Hz, 1 H), 5.16 (m, 1 H), 5.10 (s, 1 H), 5.03 (m, 2 H), 4.93 (s, 1 H), 4.83 (s, 1 H), 4.76 (s, 1 H), 4.66 (dd, J = 5.30, 6.19 Hz, 1 H), 4.55 (m, 2 H), 4.34 (t, J = 5.30 Hz, 1 H), 4.30 (ABq, J = 11.93 Hz, 1 H), 4.21 (ABq, J = 11.05Hz, 1 H), 4.03 (m, 2 H), 3.95 (d, J = 4.86 Hz, 1 H), 3.79 (s, 6 H), 3.0 (m, 2 H), 2.88 (dd, J = 2.21, 6.19 Hz, 1 H), 2.71 (t, J = 7.51 Hz, 2 H), 2.62 (dd, J = 2.21, 7.07 Hz, 1 H), 2.40 (dd, J = 5.74, 8.84 Hz, 1 H), 2.31 (dABq, J = 4.86, 13.70 Hz, 1 H), 2.25 (s, 3 H), 2.06 (m, 1 H), 1.84 (dABq, J = 9.72, 13.70 Hz, 1 H), 1.50 – 1.20 (m, 5 H), 0.97 (d, J = 7.07 Hz, 3 H), 0.92 (d, J = 7.07 Hz, 3 H), 0.86 (t, J =7.07 Hz, 3 H), 0.84 (s, 9 H), -0.02 (m, 6 H); 13 C NMR (75 MHz, CDCl₃) $\delta = 1$ HRMS (FAB) m/z 913.5652 [(M + H)⁺; calcd for C₅₅H₈₁O₉Si, 913.5650].

Ring-closing metathesis of diene (136) to give (E)-macrocycle (140):

To a slightly refluxing solution of diene **136** (26 mg, 0.029 mmol) in CH₂Cl₂ (25 mL) was added dropwise (~6 hours) a solution of bis(tricyclohexylphosphine) benzylidene ruthenium dichloride (12 mg, 0.014 mmol) in CH₂Cl₂ (3 mL). After

stirring an additional 18 hours at reflux, the reaction was allowed to cool to room temperature and then concentrated to give 43 mg of a black residue. The black residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 8.7 mg (34%) of truncated ketone **137** as an oil and 6 mg (23%) of the recovered diene.

2nd generation catalyst:

To a slightly refluxing solution of diene **136** (20 mg, 0.022 mmol) in CH₂Cl₂ (20 mL) was added dropwise (~8 hours) a solution of PhHC=Ru(PCy₃)(IMes-H₂)Cl₂ (19 mg, 0.022 mmol) in CH₂Cl₂ (5 mL). After stirring an additional 10 hours at reflux, the reaction was allowed to cool to room temperature and then concentrated to give 34 mg of a black residue. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 7 mg (36%) of macrocycle **140**.

macrocycle **136**: IR (neat, 4 cm⁻¹): v = 3515, 2957, 2930, 2857, 1709, 1636, 1613, 1514, 1464, 1381, 1302, 1248, 1173, 1154, 1074, 1038, 909, 835, 777; HRMS (FAB) m/z 907.5197 [(M + Na)⁺; calcd for $C_{53}H_{76}O_{9}$ SiNa, 907.5156]. ketone **137**: IR (neat, 4 cm⁻¹): v = 2957, 2930, 2857, 1715, 1636, 1613, 1514, 1464, 1389, 1358, 1302, 1250, 1173, 1150, 1074, 1038, 912, 835, 777; ¹H NMR (500 MHz, CDCl₃) $\delta = 7.20$ (d, J = 8.84 Hz, 2 H), 7.19 (d, J = 8.84 Hz, 2 H), 6.86 (d, J = 8.84 Hz, 2 H), 6.83 (d, J = 8.39 Hz, 2 H), 6.05 (m, 2 H), 5.76 (m, 1 H), 5.72 (s, 1 H), 5.63 (s, 1 H), 5.40 (s, 1 H), 5.01 (m, 3 H), 4.83 (s, 1 H), 4.82 (s, 1 H), 4.76 (s, 1 H), 4.66 (dd, J = 4.86, 6.19 Hz, 1 H), 4.43 (ABq, J = 11.49 Hz, 1 H), 4.36 (ABq, J = 11.49 Hz, 1 H), 4.32 (m, 2 H), 4.23 (d, J = 5.74 Hz, 1 H), 4.13

(ABq, J = 11.05 Hz, 1 H), 3.94 (d, J = 5.30 Hz, 1 H), 3.78 (s, 6 H), 2.95 (m, 1 H), 2.88 (dd, J = 2.21, 6.19 Hz, 1 H), 2.86 (m, 1 H), 2.71 (t, J = 7.51 Hz, 2 H), 2.62 (dd, J = 2.21, 7.51 Hz, 1 H), 2.31 (dABq, J = 4.42, 13.70 Hz, 1 H), 2.24 (s, 3 H), 2.12 (s, 3 H), 2.05 (m, 1 H), 1.83 (dABq, J = 10.16, 13.70 Hz, 1 H), 1.50 –1.20 (series m, 5 H), 0.96 (d, J = 7.07 Hz, 3 H), 0.92 (d, J = 7.07 Hz, 3 H), 0.88 (t, J = 7.07 Hz, 3 H), 0.84 (s, 9 H), -0.03 (s, 3 H), -0.05 (s, 3 H); HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of TMS-ether (138):

To a cold (0 °C) solution of diene **136** (0.017 g, 0.019 mmol) in CH₂Cl₂ (0.3 mL) were added 2,6-lutidine (2 drops) and TMSOTf (2 drops). After stirring for 3.5 hours, additional 2,6-lutidine (2 drops) and TMSOTf (2 drops) were added. After stirring an additional 10 hours at 0 °C, the reaction was diluted with Et₂O (5 mL) and washed with water (0.2 mL), a saturated aqueous CuSO₄ solution (0.2 mL x 2), water (0.2 mL x 2) and brine (0.2 mL). The organics were dried over Na₂SO₄, filtered and concentrated to give 13 mg (70%) of crude TMS-ether **138** as a yellow oil.

Ring-closing metathesis of diene (138) to give dimer (139):

To a slightly refluxing solution of diene **138** (13 mg, 0.013 mmol) in CH₂Cl₂ (11 mL) was added dropwise (~5.5 hours) a solution of PhHC=Ru(PCy₃)(IMes-H₂)Cl₂ (4 mg, 0.004 mmol) in CH₂Cl₂ (2 mL). After stirring an additional 14 hours at reflux, the reaction was allowed to cool to room temperature and then concentrated to give 22 mg of a black residue. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 10 mg (79%) of dimer **139**.

TBS-protection of macrocycle (140) to give TBS-ether (141):

To a cold (0 °C) solution of alcohol **140** (0.021 g, 0.024 mmol) in CH₂Cl₂ (0.6 mL) were added 2,6-lutidine (6 drops) and TBSOTf (6 drops). After stirring for 7.5 hours, additional 2,6-lutidine (3 drops) and TBSOTf (3 drops) were added. After stirring an additional 60 minutes, the reaction was diluted with Et₂O (8 mL) and washed with water (0.5 mL), a saturated aqueous CuSO₄ solution (0.5 mL x 2), water (0.5 mL) and brine (0.5 mL). The organics were dried over MgSO₄, filtered and concentrated to give 59 mg of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 21 mg (90%) of fully

protected macrocycle 141 as a clear oil. IR (neat, 4 cm⁻¹): v = 2957, 2928, 2857. 1709, 1614, 1514, 1464, 1389, 1360, 1302, 1248, 1173, 1152, 1082, 1038, 914, 835, 777; ¹H NMR (500 MHz, CDCl₃) $\delta = 7.26$ (d, J = 8.39 Hz, 1 H), 7.19 (d, J =8.39 Hz, 1 H), 7.18 (d, J = 8.39 Hz, 1 H), 7.15 (d, J = 8.39 Hz, 1 H), 6.85 (d, J =8.84 Hz, 1 H), 6.83 (d, J = 8.84 Hz, 1 H), 6.78 (d, J = 8.84 Hz, 1 H), 6.76 (d, J =8.39 Hz, 1 H), 5.96 (m, 1 H), 5.92 (d, J = 15.46 Hz, 1 H), 5.65 (s, 1 H), 5.57 (dd, J= 7.51, 15.46 Hz, 1 H), 5.57 (s, 1 H), 5.54 (s, 1 H), 5.46 (m, 1 H), 5.36 (s, 1 H),5.14 (s, 1 H), 5.0 (s, 1 H), 4.95 (s, 1 H), 4.73 (d, J = 6.63 Hz, 1 H), 4.59 (ABq, J =11.49 Hz, 1 H), 4.50 (m, 3 H), 4.41 (ABq, J = 11.49 Hz, 1 H), 4.32 (d, J = 5.30Hz, 1 H), 4.31 (ABq, J = 12.37 Hz, 1 H), 4.14 (d, J = 6.63 Hz, 1 H), 4.13 (ABq, J =12.37 Hz, 1 H), 4.05 (dd, J = 2.21, 7.07 Hz, 1 H), 3.58 (d, J = 6.63 Hz, 1 H), 3.36 (s, 1 H), 3.0 (dABq, J = 9.28, 14.14 Hz, 1 H), 2.96 (dd, J = 2.21, 7.07 Hz, 1 H), 2.85 (m, 2 H), 2.70 (dd, J = 2.21, 7.51 Hz, 1 H), 2.53 (m, 2 H), 2.47 (dABq, J =4.86. 13.25 Hz, 1 H), 2.16 (m, 1 H), 2.05 (s, 3 H), 1.86 (dABq, J = 7.95, 13.25 Hz, 1 H), 1.50 - 1.20 (series m, 4 H), 1.01 (d, J = 7.07 Hz, 3 H), 0.97 (d, J = 6.63 Hz, 3 H), 0.90 - 0.80 (series m, 21 H), -0.07 (series s, 12 H); HRMS (CI) m/z 203.1280 $[(M + H)^{+}; calcd for C_{10}H_{19}O_{4}, 203.1283].$

DDQ deprotection of PMB-macrocycle (141) to give macrocycle diol (142):

To a solution of PMB-ether **141** (21 mg, 0.021 mmol) in *t*-BuOH/ aqueous pH=7 buffer/CH₂Cl₂ (1:1:5) (1.6 mL) was added DDQ (19 mg, 0.086 mmol). After

stirring for 3.5 hours, the red reaction mixture was diluted with CH₂Cl₂ (6 mL) and a saturated aqueous NaHCO₃ solution (6 mL). The phases were separated. The aqueous phase was extracted with CH₂Cl₂ (2.5 mL x 3). The combined organic phases were washed with a saturated aqueous NaHCO₃ solution (3 mL), water (3 mL) and brine (3 mL), dried over MgSO₄, filtered, and concentrated to give 25 mg of a dark red oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 4.6 mg (52%) of diol 142 as a clear oil. IR (neat, 4 cm⁻¹): v = 3567, 2965, 2928, 2857, 1707, 1636, 1603, 1464, 1379, 1262, 1154, 1098, 1030, 905, 801; ¹H NMR (500 MHz, CDCl₃) $\delta = 6.17$ (d, J =15.91 Hz, 1 H), 6.07 (m, 1 H), 5.78 (s, 1 H), 5.59 (s, 1 H), 5.37 (s, 1 H), 5.34 (s, 1 H), 5.24 (dd, J = 3.53, 15.02 Hz, 1 H), 5.21 (s, 1 H), 5.11 (s, 1 H), 4.78 (s, 1 H), 4.74 (s, 1 H), 4.44 (dd, J = 3.53, 7.51 Hz, 1 H) 4.13 (d, J = 2.65 Hz, 1 H), 4.08 (d, J = 3.53 Hz, 1 H), 3.89 (m, 1 H), 3.57 (d, J = 8.39 Hz, 1 H), 3.09 (m, 1 H), 2.90 (dd, J = 2.21, 7.51 Hz, 1 H), 2.67 (dd, J = 2.21, 7.51 Hz, 1 H), 2.66 (m, 1 H), 2.53(dABq, J = 8.84, 15.02 Hz, 1 H), 2.51 (d, J = 7.07 Hz, 1 H), 2.44 (d, J = 8.39 Hz, 1 Hz, 1 Hz, 2.44 (d, J = 8.39 Hz, 2.44 (d, J = 8.34 (d, J = 8.34 (d, J = 8.34 (d, J = 8.41 H), 2.42 (dABq, J = 4.86, 13.25 Hz, 1 H), 2.27 (s, 3 H), 2.15 (m, 1 H), 1.78 (dABq, J = 8.84, 13.25 Hz, 1 H), 1.50 - 1.20 (series m, 5 H), 0.99 (d, J = 7.07 Hz,3 H), 0.97 (d, J = 7.07 Hz, 3 H), 0.90 (m, 3 H), 0.90 (s, 9 H), 0.87 (s, 9 H), 0.05(s, 3 H), 0.02 (s, 3 H), 0.01 (s, 3 H), 0.005 (s, 3 H).

Preparation of the assigned structure of amphidinolide A (1):

To a solution of disilylated macrocycle **142** (1.8 mg, 0.0024 mmol) in THF (0.2 mL) was added dropwise an acetic acid buffered TBAF (1.05:1) solution (0.05 mL, 0.1 M THF, 0.005 mmol). After stirring for 21 hours at room temperature, the reaction was directly loaded onto a silica gel (0.3 g) column [hexanes/EtOAc 25%, 1% MeOH] and eluted with hexanes/EtOAc (1:3) to give 0.3 mg (25%) of amphidinolide A (1) as a white solid. HRMS (CI) *m/z* 553.3115 [(M + Na)⁺; calcd for C₃₁H₄₆O₇Na, 553.3141].

Preparation of bisisopentylidene acetal (143):

To a 40 °C slurry of L-arabitol (14.80 g, 97.27 mmol) and CSA (0.70 g, 3.0 mmol) in DMF (15 mL) was added 3,3-dimethoxypentane (29.0 g, 217 mmol) dropwise (~30 minutes). After stirring an additional 6 hours, the reaction was quenched with Et₃N (0.5 mL) and then concentrated via rotovap at 60 °C to afford a crude oil. The residue was diluted with Et₂O (200 mL) and washed with brine (50 mL x 4), dried over MgSO₄, filtered and concentrated to give 27.84 g of crude acetal **143** as a clear oil.

Preparation of ketone (144):

To a cold (0 °C) solution of alcohol 143 (3.42 g, 11.9 mmol) in CH₂Cl₂ (40 mL) were added DMSO (7 mL), TEA (9.9 mL, 71.156 mmol) and a suspension of SO₃•pyridine in DMSO (10 mL). The ice bath was removed and the reaction stirred at room temperature for 90 minutes and was then guenched with a saturated aqueous NH₄Cl solution (25 mL) and water (6 mL). Et₂O (50 mL) was added, and the phases were separated. The organic phase was washed with brine (15 mL x 2). The combined aqueous phases were extracted with Et₂O (15 mL x 2). The combined organics were dried over MgSO₄, filtered and concentrated to give 6.02 g of a reddish-yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 2.32 g (68%) of ketone **144** as a yellow oil. IR (neat, 4 cm⁻¹): v = 2975, 2944, 2884, 1736, 1464. 1360, 1262, 1201, 1173, 1082, 1061, 912, 799; $\left[\alpha_{889}^{120}\right]$ -63.6° (c 0.66, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 4.82$ (t, J = 7.14 or 7.69 Hz, 2 H), 4.31 (t, J = 7.69 or 8.24 Hz, 2 H), 3.96 (dd, J = 7.14, 8.79 Hz, 2 H), 1.69 (m, 8 H), 0.93 (m, 12 H); ¹³C NMR (75 MHz, CDCl₃) δ = 205.3, 114.9, 78.7, 66.2, 29.1, 28.2, 8.2, 8.0; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of alkene (145):

To a cold (0 °C) mixture of methyltriphenylphosphonium bromide (15.9 g. 44.5 mmol) in THF (60 mL) was added NaHMDS (36 mL, 1.0 M THF, 36 mmol) dropwise. The ice bath was removed and the reaction stirred at room temperature for 30 minutes. A solution of ketone 144 (8.50 g, 29.7 mmol) in THF (10 mL) was added dropwise and the reaction stirred for 3.5 hours at room temperature. The reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (10 mL) and water (10 mL). The reaction was diluted Et₂O (120 mL) and the phases were separated. The aqueous phase was extracted with Et₂O (10 mL x 2). The combined organic phases were washed with brine (15 mL), dried over MgSO₄, filtered and concentrated to give 13.7 g of a red oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 6.96 g (83%) of alkene **145** as a yellow oil. IR (neat, 4 cm⁻¹): v = 2975, 2942, 2882, 1464, 1356, 1271, 1198, 1173, 1132, 1080, 1059, 1040, 920; $\left[\alpha_{589}^{120}\right]$ -63.9° (c 0.90, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 5.29 (br s, 2 H), 4.50 (dd, J = 6.04, 8.79 Hz, 2 H), 4.18 (dd, J = 6.04, 7.69 Hz, 2 H), 3.55 (dd, J = 7.69, 8.79 Hz, 2 H), 1.64 (m, 8 H), 0.90 (t, J = 7.69 Hz, 6 H), 0.89 (t, J = 7.69 Hz, 6 H); ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3) \delta = 144.6, 112.8, 76.1, 70.0, 29.7, 29.4, 8.1 (2); HRMS (CI) m/z$ 203.1280 $[(M + H)^{+}; calcd for C_{10}H_{19}O_{4}, 203.1283].$

Hydrolysis of acetal (145) to give tetra-ol (146):

To a solution of bisisopentylidene acetal **145** (6.96 g, 24.5 mmol) in MeOH/CH₂Cl₂ (2:1) (250 mL) were added CSA (1.14 g, 4.89 mmol) and water (3

mL). The reaction flask was immersed into a preheated oil bath (~40 °C) and the reaction stirred for 8.5 hours. The reaction was allowed to cool to room temperature and then concentrated under high vacuum overnight to give 4.84 g of crude tetra-ol **146** as a yellow oil.

Preparation of TIPS-ether (147):

To a solution of crude tetra-ol **146** (from above) in CH_2Cl_2/DMF (1:1) (180 mL) were added imidazole (6.66 g, 97.9 mmol), DMAP (0.30 g, 2.4 mmol) and TIPSCI (11 mL, 51 mmol). After stirring for 24 hours at room temperature, the reaction was concentrated to give a yellow residue. CH_2Cl_2 (150 mL) was added to the residue, which was then washed with water (25 mL) and brine (25 mL x 2). The organics were dried over MgSO₄, filtered and concentrated to give 15.9 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc $10\% \rightarrow 50\%$] afforded 7.61 g (68% yield, 2 steps) of TIPS disilylated tetra-ol **147** as a clear oil and 1.61 g (22% yield, 2 steps) of TIPS monosilylated tetra-ol **148** as a white solid.

tetra-ol **147**: IR (neat, 4 cm⁻¹): v = 3422, 2944, 2894, 2887, 1464, 1385, 1260, 1107, 1061, 1015, 920, 884, 801; $[\alpha]_{589}^{20}$ -11.5° (c 0.925, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 5.27$ (br s, 2 H), 4.23 (m, 2 H), 3.83 (dd, J = 4.40, 9.89 Hz, 2 H), 3.60 (dd, J = 8.24, 9.89 Hz, 2 H), 3.10 (d, J = 2.75 Hz, -OH), 1.03 (m, 42 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 146.3$, 113.4, 73.4, 67.3, 17.9, 11.9; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of fully protected tetra-ol (149):

To a solution of tetra-ol 147 (8.20 g, 17.8 mmol) in cyclohexane/CH₂Cl₂ (1:1) (180 mL) was added PMB-imidate (20.11 g, 71.18 mmol) and CSA (0.41 g, 1.8 mmol). The reaction flask was immersed into a preheated oil bath (~40 °C). After stirring for 48 hours, additional CSA (0.2 g) and PMB-imidate (3.6 g) were added and the reaction continued to stir an additional 23 hours. The reaction was allowed to cool to room temperature and then quenched with a saturated aqueous NaHCO₃ solution (8 mL). Et₂O (200 mL) was added and the phases were separated. The organic phase was washed with a saturated aqueous NaHCO₃ solution (5 mL x 2) and brine (10 mL). The organics were dried over MgSO₄, filtered and concentrated to give a milky white solid. Hexanes were added to the residue. After stirring for several hours, the mixture was filtered and concentrated to give 16 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 6.03 g (48%) of fully protected tetra-ol **149** as a clear oil. ¹H NMR (300 MHz, CDCl₃) δ = 7.24 (d, J = 8.24 Hz, 4 H), 6.82 (d, J = 8.24 Hz, 2 H), 6.80 (d, J = 8.79 Hz, 2 H), 5.38 (br s, 2 H), 4.56 (ABq, J =11.54 Hz, 2 H), 4.37 (ABq, J = 11.54 Hz, 2 H), 3.92 – 3.60 (series m, 12 H), 1.02 (m, 42 H); 13 C NMR (75 MHz, CDCl₃) δ = 158.9, 144.7, 130.8, 129.0, 113.7, 113.5. 80.5. 70.4. 67.0. 55.2. 117.9. 11.9; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for $C_{10}H_{19}O_4$, 203.1283].

Deprotection of TIPS-ether to give diol (150):

To a solution of TIPS disilylated tetra-ol 149 (6.03 g, 8.61 mmol) in THF (90 mL) was added TBAF (19 mL, 1.0 M THF, 19 mmol) dropwise (~30 minutes). After stirring an additional 2.5 hours, the reaction was guenched by the addition of a saturated aqueous NH₄Cl solution (10 mL) and water (10 mL). Et₂O (200 mL) was added and the phases were separated. The organic phase was washed with brine (10 mL x 2). The combined aqueous phases were extracted with Et₂O (10 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 8.2 g of a reddish-yellow oil. IR (neat, 4 cm⁻¹): v = 3443. 2926, 1612, 1586, 1514, 1464, 1393, 1302, 1248, 1175, 1034, 818; $\left[\alpha\right]_{589}^{20}$ -98.3° (c 0.65, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.22$ (d, J = 8.79 Hz, 4 H), 6.86 (d, J = 8.24 Hz, 4 H), 5.48 (s, 2 H), 4.55 (ABq, J = 10.99 Hz, 2 H), 4.27 (ABq, J =10.99 Hz, 2 H), 3.93 (dd, J = 4.40, 6.59 Hz, 2 H), 3.78 (s, 6 H), 3.58 (m, 4 H), 2.42 (br s, -OH); ¹³C NMR (75 MHz, CDCl₃) δ = 159.3, 142.7, 129.7, 129.5, 117.2, 113.9, 80.1, 70.5, 65.1, 55.2; HRMS (CI) m/z 203.1280 [(M + H) $^{+}$; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of alcohol (153):

To a cold (0 °C) solution of diol **150** (1.12 g, 2.88 mmol) in CH₂Cl₂ (30 mL) were added pyridine (0.47 mL, 5.8 mmol) and a solution of PivCl (0.36 mL, 2.9

mmol) in CH₂Cl₂ (2 mL) dropwise (~3 minutes). After stirring for 12 hours between 0 °C and room temperature, the reaction was quenched by the addition of water (1 mL) and a saturated aqueous NH₄Cl solution (1 mL). Et₂O (40 mL) was added and the phases were separated. The organic phase was washed with a saturated aqueous CuSO₄ solution (3 mL x 2), water (3 mL x 2) and brine (4 mL), dried over MgSO₄, filtered and concentrated to give 1.50 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 35% \rightarrow 75%] afforded 0.71 g (52%) of Piv-ester 153, 0.25 g (16%) of the di-pivaloyl derivative and 0.30 g (27%) of recovered diol 150 as oils. For spectroscopic data see below.

via fully protected tetra-ol (152):

To a solution of TIPS protected alcohol **152** (2.49 g, 3.96 mmol) in THF (35 mL) was added TBAF (4.7 mL, 1.0 M THF, 4.7 mmol) dropwise. After stirring for 2 hours, the reaction was diluted with Et₂O (85 mL) and water (3 mL), and then the phases were separated. The organic phase was washed with brine (4 mL x 2). The combined aqueous phases were extracted with Et₂O. The combined organics were dried over MgSO₄, filtered and concentrated to give 3.10 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25% \rightarrow 35%] afforded 1.40 g (75%) of alcohol **153** as a clear oil. IR (neat, 4 cm⁻¹): ν = 3492, 2965, 2872, 2838, 1728, 1613, 1588, 1514, 1646, 1399, 1364, 1302, 1285, 1250, 1173, 1139, 1073, 1036, 927, 820; α_{589}^{120} -82.1° (c 0.78, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.23 (d, J = 8.79 Hz, 4 H), 6.86 (d, J = 8.79 Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.50 (s, 2 H), 4.55 (ABg, J =

11.54 Hz, 1 H), 4.54 (ABq, J = 11.54 Hz, 1 H), 4.33 (ABq, J = 11.54 Hz, 1 H), 4.25 (ABq, J = 11.54, 1 H), 4.14 – 4.07 (m, 2 H), 4.03 – 3.95 (m, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.56 (m, 2 H), 2.22 (dd, J = 8.79, 4.94 Hz, 1 H), 1.17 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 178.3$, 159.3, 159.2, 142.5, 129.9, 129.8, 129.5, 129.3, 117.2, 113.9, 113.8, 80.0, 70.5, 65.7, 65.3, 60.4, 55.2, 38.7, 27.2; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Pivaloyl protection of tetra-ol (148) to give diprotected tetra-ol (151):

To a cold (0 °C) solution of monosilylated tetra-ol **148** (1.85 g, 6.08 mmol) in CH₂Cl₂ (60 mL) were added pyridine (0.98 mL, 12 mmol) and a solution of PivCl (0.82 mL, 6.7 mmol) in CH₂Cl₂ (4 mL) dropwise. After stirring for 23 hours between 0 °C and room temperature, the reaction was quenched by the addition of water (1 mL) and a saturated aqueous NH₄Cl solution (1 mL). Et₂O (150 mL) was added and the phases were separated. The organic phase was washed with water (5 mL), a saturated aqueous CuSO₄ solution (6 mL x 2), water (6 mL x 2) and brine (7 mL), dried over MgSO₄, filtered and concentrated to give 3.03 g of a clear oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 1.91 g (81%) of diprotected tetra-ol **151** as a clear oil, and 0.24 g (13%) of recovered monosilylated tetra-ol **148** as a white solid.

For **151**: IR (neat, 4 cm⁻¹): v = 3430, 2965, 2944, 2889, 1732, 1464, 1285, 1262, 1157, 1101, 920, 884, 801; $\left[\alpha\right]_{589}^{20}$ -19.9° (c 0.605, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 5.22$ (s, 1 H), 5.20 (s, 1 H), 4.40 (dd, J = 4.94, 6.04 Hz, 1 H), 4.32 (dd,

J = 3.85, 7.69 Hz, 1 H), 4.21 (m, 2 H), 3.80 (dd, J = 3.85, 9.89 Hz, 1 H), 3.68 (dd, J = 7.69, 9.89 Hz, 1 H), 3.10 (br s, -OH), 1.18 (s, 9 H), 1.05 (m, 21 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 178.7$, 146.2, 114.0, 73.6, 71.7, 67.3, 67.1, 38.8, 27.1, 17.9, 11.8; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

PMB protection of tetra-ol (151) to give fully protected tetra-ol (152):

To a solution of tetra-ol 151 (1.91 g, 4.92 mmol) in cyclohexane/CH₂Cl₂ (1:1) (50 mL) was added PMB-imidate (5.55 g, 19.7 mmol) and CSA (0.11 g, 0.49 mmol). The reaction flask was immersed into a preheated oil bath (~40 °C). After stirring for 50 hours, the reaction was allowed to cool to room temperature and was then quenched with a saturated aqueous NaHCO₃ solution (6 mL). Et₂O (125 mL) was added and the phases were separated. The organic phase was washed with a saturated aqueous NaHCO₃ solution (6 mL x 2) and brine (6 mL). The organics were dried over MgSO₄, filtered and concentrated to give a milky white solid. Hexanes were added to the residue. After stirring for several hours, the mixture was filtered and concentrated to give 5.26 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 2.49 g (81%) of fully protected tetra-ol 152 as a clear oil.

Preparation of aldehyde (154):

To a stirred solution of Dess-Martin periodinane (1.63 g, 3.85 mmol) in CH₂Cl₂ (60 mL) were added pyridine (0.31 mL, 3.9 mmol) and a solution of alcohol 153 (1.40 g, 2.96 mmol) in CH₂Cl₂ (6 mL). After stirring for 45 minutes at room temperature, the reaction was quenched by the addition of a saturated agueous NaHCO₃/10% agueous Na₂S₂O₃ (1:1) solution (60 mL) and diluted with Et₂O (300 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with water (10 mL), a saturated aqueous CuSO₄ solution (10 mL x 2), water (10 mL x 2) and brine (10 mL), dried over Na₂SO₄, filtered and concentrated to give 1.37 g (98%) of crude aldehyde 154 as a yellow oil. IR (neat, 4 cm⁻¹): v = 2963, 2870, 2837, 1730, 1613, 1514, 1464, 1397. 1366, 1283, 1250, 1173, 1157, 1078, 1034, 822; $\left[\alpha\right]_{589}^{20}$ -41.9° (c 0.45, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 9.51 (d, J = 1.65 Hz, 1 H), 7.23 (d, J = 8.79 Hz, 2 H), 7.19 (d, J = 8.79 Hz, 2 H), 6.85 (d, J = 8.79 Hz, 2 H), 6.83 (d, J = 8.79 Hz, 2 H), 5.51 (s, 1 H), 5.48 (s, 1 H), 4.57 (ABq, J = 11.54 Hz, 1 H), 4.44 (s, 1 H), 4.38 (ABq, J = 11.54 Hz, 1 H), 4.13 - 4.22 (m, 3 H), 4.06 - 4.12 (m, 2 H), 3.77 (s, 3 H), 3.76 (s, 3 H), 1.15 (s, 9 H); 13 C NMR (75 MHz, CDCl₃) δ = 199.2, 178.2, 159.5, 159.2, 140.3, 129.6, 129.5, 128.7, 120.5, 113.9, 113.7, 84.0, 77.9, 71.0, 70.5, 65.6, 55.2, 38.6, 27.1.

Preparation of alcohol (155) – Fragment AB coupling:

t-BuLi (3.95 mL, 1.5 M pentane, 5.93 mmol) was added dropwise to Et₂O (15 mL) at -78 °C. A solution of vinyl bromide **B** (0.64 g, 3.0 mmol) in Et₂O (4

mL) was added dropwise (~18 minutes) to the t-BuLi solution. After stirring for 10 minutes, MgBr₂•Et₂O (3.20 mL, 1.0 M Et₂O/PhH (3:1), 3.20 mmol) was added and the reaction stirred at -78 °C for 15 minutes and then at 0 °C for 10 minutes. In a separate flask, to a 0 °C solution of crude aldehyde 154 (0.93 g, 2.0 mmol) in CH₂Cl₂ (9 mL) was added MgBr₂•Et₂O (2.0 mL, 1.0 M Et₂O/PhH (3:1), 2.0 mmol) and the reaction stirred for several minutes. The Grignard solution was transferred via cannula to the precomplexed aldehyde solution. After stirring for 50 minutes at 0 °C, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (3 mL) and water (1 mL). The reaction was diluted with Et₂O, stirred for 30 minutes and then the phases were separated. The organic phase was washed with brine (1 mL x 2). The combined aqueous phases were extracted with Et₂O (2x). The combined organics were dried over MgSO₄, filtered and concentrated to give 1.5 g of a reddish-yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 0.68 g (57%) of alcohol 155 as a yellow oil. IR (CHCl₃, 4 cm⁻¹): v = 3381, 2961, 2917, 2865. 2178, 1727, 1684, 1616, 1514, 1458, 1250, 1154, 1036, 843, 760; $\left[\alpha_{589}^{120}\right]$ -61.9° (c 0.60, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ = 7.22 (d, J = 8.20 Hz, 2 H), 7.19 (d, J= 8.20 Hz, 2 H), 6.85 (d, J = 8.20 Hz, 2 H), 6.84 (d, J = 8.20 Hz, 2 H), 5.58 (s. 1)H), 5.49 (s, 1 H), 5.36 (s, 1 H), 5.20 (s, 3 H), 4.53 (ABq, J = 10.77 Hz, 1 H), 4.51 (ABq, J = 11.02 Hz, 1 H), 4.34 (ABq, J = 11.28 Hz, 1 H), 4.29 (dd, J = 2.31, 11.29 Hz, 1 H), 4.23 (ABq, J = 11.02 Hz, 1 H), 3.97 – 4.14 (series m, 2 H), 3.90 (d, J =5.13 Hz, 1 H), 3.78 (m, 1 H), 3.79 (s, 1 H), 3.78 (s, 3 H), 3.06 (ABq, J = 19.99 Hz. 1 H), 2.92 (ABq, J = 19.99 Hz, 1 H), 2.85 (d, J = 4.36 Hz, 1 H), 1.19 (s, 9 H), 0.13

(s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ = 178.4, 159.4, 159.2, 142.7, 142.3, 130.1, 129.6, 129.5, 129.3, 116.8, 114.9, 113.9, 113.8, 103.4, 87.8, 80.1, 76.0, 71.0, 70.7, 66.0, 55.2, 38.8, 27.2, 23.3, 0.05; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of TBS-ether (156):

To a cold (0 °C) solution of alcohol 155 (0.445 g, 0.731 mmol) in CH₂Cl₂ (7 mL) were added 2,6-lutidine (0.10 mL, 0.91 mmol) and TBSOTf (0.19 mL, 0.84 mmol). After stirring for 40 minutes at 0 °C, the reaction was guenched with water (0.3 mL) and a saturated aqueous NH₄Cl solution (0.3 mL). The reaction was diluted with Et₂O (25 mL) and the phases were separated. The organic phase was washed with a saturated aqueous CuSO₄ solution (0.5 mL x 2), water (0.5 mL x 2) and brine (1 mL), dried over MgSO₄, filtered and concentrated to give 0.54 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.40 g (77%) of TBS-silylated alcohol **156** as a clear oil. IR (neat, 4 cm⁻¹): v = 2955, 2858, 2174, 1720, 1613, 1587, 1514, 1464, 1362, 1302, 1157, 1099, 862, 841; $\left[\alpha\right]_{89}^{20}$ -18.1° (c 0.49, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.23 (d, J = 8.39 Hz, 4 H), 6.84 (d, J= 8.39 Hz, 2 H), 6.83 (d, J = 8.84 Hz, 2 H), 5.52 (t, J = 1.33 Hz, 1 H), 5.35 (s, 1 H), 5.28 (d, J = 1.335 Hz, 1 H), 5.11 (s, 1 H), 4.50 (ABq, J = 11.49 Hz, 1 H), 4.49 (ABq, J = 11.49 Hz, 1 H), 4.41 (d, J = 5.30 Hz, 1 H), 4.32 (ABq, J = 11.05 Hz, 1 H), 4.29 (ABq, J = 11.05 Hz, 1 H), 4.24 (dABq, J = 2.21, 11.93 Hz, 1 H), 4.19 (d,

J = 7.51 Hz, 1 H), 3.90 (dABq, J = 7.51, 11.49 Hz, 1 H),3.88 (d, J = 5.30 Hz, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.14 (ABq, J = 19.44 Hz, 1 H), 3.05 (ABq, J = 19.88 z, 1 H), 1.19 (s, 9 H), 0.83 (s, 9 H), 0.14 (s, 9 H), -0.02 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 178.4$, 159.0, 142.9, 142.6, 130.8, 130.4, 129.0 (2), 113.7 (2), 104.4, 86.9, 81.0, 78.1, 77.4, 71.2, 70.9, 66.1, 55.3, 38.8, 27.2, 25.8, 24.4, 18.1, 0.12, -5.1 (2); HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of alcohol (157):

To a cold (0 °C) solution of Piv-ester 156 (1.01 g, 1.38 mmol) in THF (14 mL) was added dropwise (~10 minutes) Super-Hydride® (2.9 mL, 1.0 M THF, 2.9 mmol). After stirring for 55 minutes, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (2.9 mL), glycerol (0.87 mL, 0.3 mL/mmol) and water (2.9 mL). The reaction mixture was diluted with Et₂O (125 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with brine (1.5 mL), 0.5 M NaOH (1.5 mL x 2), and brine (1.5 mL). The combined aqueous phases were extracted with Et₂O (3 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 1.13 g of a clear oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 25%] to give 0.80 g (91%) of alcohol 157 as a clear oil. IR (neat, 4 cm⁻¹): v =3455, 2957, 2932, 2897, 2859, 2176, 1613, 1514, 1464, 1302, 1250, 1173, 1096, 1063, 1038, 841, 777, 760; $\left[\alpha\right]_{589}^{20}$ -22.8° (c 0.61, CHCl₃); ¹H

NMR (500 MHz, CDCl₃) δ = 7.23 (d, J = 8.84 Hz, 2 H), 7.22 (d, J = 8.84 Hz, 2 H), 6.86 (d, J = 8.84 Hz, 2 H), 6.84 (d, J = 8.84 Hz, 2 H), 5.47 (s, 1 H), 5.35 (s, 1 H), 5.30 (s, 1 H), 5.11 (s, 1 H), 4.55 (ABq, J = 11.05 Hz, 1 H), 4.50 (ABq, J = 11.49 Hz, 1 H), 4.40 (d, J = 5.74 Hz, 1 H), 4.29 (ABq, J = 11.49 Hz, 1 H), 4.24 (ABq, J = 11.05 Hz, 1 H), 4.08 (dd, J = 3.09, 7.07 Hz, 1 H), 3.78 (s, 6 H), 3.78 (m, 1 H), 3.63 (m, 1 H), 3.40 (ddd, J = 3.98, 7.07, 11.49 Hz, 1 H), 3.15 (ABq, J = 19.44 Hz, 1 H), 3.05 (ABq, J = 19.44 Hz, 1 H), 2.12 (dd, J = 4.42, 9.29 Hz, 1 H), 0.85 (s, 9 H), 0.15 (s, 9 H), -0.01 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.2, 159.1, 142.9, 142.8, 130.5, 130.3, 129.3, 129.0, 114.5, 113.8, 113.7, 104.2, 80.7, 80.6, 70.9, 70.7, 64.8, 55.2, 25.8, 24.4, 18.2, 0.08, -5.1;

Preparation of aldehyde (158):

To a stirred solution of Dess-Martin periodinane (0.69 g, 1.6 mmol) in CH_2CI_2 (22 mL) were added pyridine (0.14 mL, 1.6 mmol) and a solution of alcohol 157 (0.80 g, 1.25 mmol) in CH_2CI_2 (5 mL). After stirring for 40 minutes at room temperature, the reaction was quenched by the addition of a saturated aqueous NaHCO₃/10% aqueous Na₂S₂O₃ (1:1) solution (24 mL) and diluted with Et_2O (125 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with water (5 mL), a saturated aqueous CuSO₄ solution (5 mL x 2), water (5 mL x 2) and brine (5 mL), dried over Na₂SO₄, filtered and concentrated to give 0.79 g (98%) of crude aldehyde **158** as a yellow oil. IR (CHCl₃, 4 cm⁻¹): v = 2955, 2857, 2174, 1730, 1613, 1588, 1514, 1464, 1362,

1304, 1101, 1003, 910, 862, 841; $\left[\alpha_{589}^{120} + 58.1^{\circ} \text{ (c } 0.40, \text{CHCl}_3); {}^{1}\text{H } \text{NMR } (600 \text{MHz, CDCl}_3) \delta = 9.35 \text{ (d, } J = 2.31 \text{ Hz, } 1 \text{ H), } 7.26 \text{ (d, } J = 8.46 \text{ Hz, } 2 \text{ H), } 7.22 \text{ (d, } J = 8.46 \text{ Hz, } 2 \text{ H), } 6.88 \text{ (d, } J = 8.46 \text{ Hz, } 2 \text{ H), } 6.85 \text{ (d, } J = 8.46 \text{ Hz, } 2 \text{ H), } 5.53 \text{ (s, } 1 \text{ H), } 5.43 \text{ (s, } 1 \text{ H), } 5.22 \text{ (s, } 1 \text{ H), } 5.07 \text{ (s, } 1 \text{ H), } 4.55 \text{ (ABq, } J = 11.28 \text{ Hz, } 1 \text{ H), } 4.44 \text{ (ABq, } J = 11.28 \text{ Hz, } 1 \text{ H), } 4.41 \text{ (d, } J = 5.90 \text{ Hz, } 1 \text{ H), } 4.38 \text{ (ABq, } J = 11.53 \text{ Hz, } 1 \text{ H), } 4.35 \text{ (s, } 1 \text{ H), } 4.20 \text{ (ABq, } J = 11.28 \text{ Hz, } 1 \text{ H), } 3.93 \text{ (d, } J = 5.90 \text{ Hz, } 1 \text{ H), } 3.81 \text{ (s, } 3 \text{ H), } 3.80 \text{ (s, } 3 \text{ H), } 3.12 \text{ (ABq, } J = 19.74 \text{ Hz, } 1 \text{ H), } 3.02 \text{ (ABq, } J = 19.74 \text{ Hz, } 1 \text{ H), } 0.84 \text{ (s, } 9 \text{ H), } 0.16 \text{ (s, } 9 \text{ H), } -0.01 \text{ (s, } 3 \text{ H), } -0.02 \text{ (s, } 3 \text{ H); } {}^{13}\text{C NMR } \text{ (75 MHz, } CDCl_3) \delta = 199.1, 159.4, 159.0, 142.9, 139.7, 130.3, 129.5, 129.4, 129.2, 117.0, 114.4, 113.9, 113.5, 104.3, 87.0, 84.3, 81.2, 71.6, 70.9, 55.2, 25.8, 24.0, 18.2, 0.08, -5.1, -5.2.$

Preparation of alcohol (159):

To a cold (0 °C) solution of crude aldehyde **158** (0.79 g, 1.2 mmol) in CH₂Cl₂ (20 mL) was added MgBr₂•Et₂O (1.24 mL, 1.0 M Et₂O/PhH (3:1), 1.24 mmol). After stirring for 6 minutes, vinyl magnesium bromide (2.5 mL, 1.0 M THF, 2.5 mmol) was added dropwise (~ 12 minutes). After stirring for 60 minutes at 0 °C, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (1.3 mL) and water (1.3 mL). The reaction mixture was diluted with Et₂O (40 mL), stirred at room temperature for 30 minutes, and then the phases were separated. The organic phase was washed with brine (1.5 mL x 2). The combined aqueous phases were extracted with Et₂O. The combined organics

were dried over MgSO₄, filtered and concentrated to give 1.0 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.51 g (61%) of alcohol 159 as a clear oil. IR (neat, 4 cm⁻¹): v = 3552, 2958, 2932, 2900, 2858, 2176, 1614, 1514, 1464, 1362, 1303, 1250, 1173, 1091, 1037, 921, 841, 779, 760; $\left[\alpha\right]_{889}^{20}$ -6.8° (c 0.325, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.26 (d, J = 8.72 Hz, 2 H), 7.22 (d, J = 8.72 Hz, 2 H), 6.86 (d, J = 8.20 Hz, 4 H), 5.89 (ddd, J = 16.66, 11.02, 5.38 Hz, 1 H), 5.49 (s, 1 H), 5.41 (s, 1 H), 5.32 – 5.29 (m, 2 H), 5.16 (m, 1 H), 5.14 (s, 1 H), 4.54 (ABq, J = 11.53 Hz, 1 H), 4.53 (ABq, J = 10.77 Hz, 1 H), 4.49 (d, J = 4.87 Hz, 1 H), 4.34 (ABq, J = 10.77 Hz, 1 H), 4.21 (ABq, J = 10.77 Hz, 1 H), 4.01 (m, 2 H), 3.91 (d, J= 4.87 Hz, 1 H), 3.79 (s, 6 H), 3.17 (ABq, J = 19.48 Hz, 1 H), 3.10 (ABq, J = 19.48 Hz), 3.10 (ABq, 19.48 Hz, 1 H), 2.41 (d, J = 5.90 Hz, -OH), 0.85 (s, 9 H), 0.14 (s, 9 H), 0.00 (s, 3 H), -0.01 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ = 159.2, 159.1, 143.1, 142.9, 138.1, 130.5, 130.4, 129.3, 129.1, 128.9, 116.1, 114.2, 113.7, 113.6, 104.4, 86.8, 82.0, 80.5, 77.1, 73.5, 71.6, 70.7, 55.2, 25.9, 24.8, 18.3, 14.1, 0.10, -5.0, -5.1.

Preparation of 1-bromo-alkyne (160):

TMS-alkyne **159** (0.34 g, 0.51 mmol) was dissolved in acetone (5.5 mL) and NBS (0.11 g, 0.61 mmol) and AgNO₃ (0.013 g, 0.077 mmol) were added. After stirring for 11 hours the reaction was judged complete by TLC analysis. The reaction was quenched by the addition of water (1 mL) and was then diluted with Et₂O (35 mL). The phases were separated. The organic phase was

washed with brine (1 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.49 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/ EtOAc 10%] afforded 0.27 g (78%) of 1-bromo-alkyne **160** as a clear oil.

Preparation of vinyl stannane (161):

To a solution of (Ph₃P)₂PdCl₂ (3 mg, 0.004 mmol), Red-Sil (1.4 g, 2.9 mmol, 2.1 mmol/g), and Bu₃SnF (0.25 g, 0.80 mmol) in Et₂O (6 mL) were added a solution of 1-bromo-alkyne 160 (0.245 g, 0.365 mmol) in Et₂O (1 mL) and a drop of TBAF (1.0 M THF). After stirring for 2 hours at room temperature, the reaction was filtered through a pad of Celite on a glass frit. The residual Red-Sil was washed several times with Et₂O. The filtrate was dried over MgSO₄, filtered, and concentrated to give 0.39 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10% → 15%] to give 0.233 g (72%) of E-vinyl stannane **161** as a clear oil. IR (neat, 4 cm⁻¹): v = 2955, 2928, 2855, 1613, 1514, 1464, 1361, 1302, 1250, 1173, 1084, 1040, 920, 835, 777; $\left[\alpha_{589}^{120}\text{-}2.0^{\circ}\right]$ (c 0.67, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ = 7.25 (d, J = 8.72 Hz, 2 H), 7.21 (d, J = 8.72 Hz, 2 H), 6.85 (d, J = 8.72 Hz, 2 H), 6.84 (d, J = 8.72Hz, 2 H), 5.95 - 5.85 (m, 3 H), 5.50 (s, 1 H), 5.45 (s, 1 H), 5.30 (md, J = 10.51Hz, 1 H), 5.16 (md, J = 10.51 Hz, 1 H), 5.07 (s, 1 H), 4.94 (s, 1 H), 4.56 (ABq, J =10.77 Hz, 1 H), 4.54 (ABq, J = 10.51 Hz, 1 H), 4.35 (d, J = 5.13 Hz, 1 H), 4.33 (ABq, J = 11.79 Hz, 1 H), 4.19 (ABq, J = 11.02 Hz, 1 H), 4.01 (m, 2 H), 3.91 (d, J

= 5.38 Hz, 1 H), 3.79 (s, 6 H), 3.0 (m, 2 H), 2.40 (d, J = 5.64 Hz, 1 H), 1.50 (m, 6 H), 1.30 (m, 6 H), 0.87 (m, 24 H), -0.02 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ = 159.2, 159.1, 146.6, 143.2, 138.3, 130.7, 130.6, 130.2, 129.3, 129.0, 116.0, 114.2, 113.7, 113.7, 113.1, 81.9, 80.8, 78.0, 73.4, 71.7, 70.7, 55.3, 55.2, 41.5, 29.1, 27.3, 25.9, 18.3, 13.7, 9.4, -4.9, -5.0; HRMS (CI) m/z 203.1280 [(M + H)⁺; calcd for C₁₀H₁₉O₄, 203.1283].

Preparation of diene (162) via Liebeskind's coupling:

To a cold (0 °C) solution of (E)-vinyl iodide 301⁵⁰ (0.23 g, 0.52 mmol) and vinyl stannane 161 (0.23 g, 0.26 mmol) in NMP (3 mL) was added copper (I) thiophene-2-carboxylate (CuTc) (0.10 g, 0.52 mmol). The ice bath was removed and the reaction stirred at room temperature until judged complete by TLC (~40 minutes). The reaction mixture was diluted with Et₂O (30 mL) and filtered through a pad of Celite on a glass frit. The green filter cake was washed with Et₂O (3x). The yellow filtrate was washed with water (3 mL x 3), a saturated aqueous KF solution (3 mL x 2), and brine (3 mL). The combined aqueous phases were extracted with Et₂O. The organics were dried over MgSO₄, filtered and concentrated to give 0.52 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc $10\% \rightarrow 15\%$] to give 0.15 g (63%) of diene 162 as a clear yellow oil. IR (neat, 4 cm⁻¹): v = 3501, 3075, 2957, 2928, 2857, 1715, 1613, 1514, 1464, 1391, 1360, 1302, 1250, 1173, 1150,

1076, 1038, 914, 835, 779; $\left[\alpha_{589}^{120}\right]$ -8.0° (c 0.415, CHCl₃); ¹H NMR (600 MHz, CDCl₃) $\delta = 7.25$ (d, J = 8.72 Hz, 2 H), 7.21 (d, J = 8.72 Hz, 2 H), 6.87 (d, J = 8.46Hz, 2 H), 6.85 (d, J = 8.46 Hz, 2 H), 6.07 (m, 1 H), 5.89 (m, 2 H), 5.76 (m, 1 H), 5.71 (s, 1 H), 5.52 (s, 1 H), 5.44 (s, 1 H), 5.31 (d, J = 17.17 Hz, 1 H), 5.17 (d, J = 17.17 Hz, 1 Hz, 8.97 Hz, 1 H), 5.10 (s, 1 H), 5.03 (m, 2 H), 4.93 (s, 1 H), 4.83 (s, 1 H), 4.76 (s, 1 H), 4.65 (dd, J = 5.13, 6.41 Hz, 1 H), 4.57 (ABq, J = 11.53 Hz, 1 H), 4.54 (ABq, J= 11.02 Hz, 1 H), 4.34 (m, 1 H), 4.30 (ABq, J = 11.53 Hz, 1 H), 4.21 (ABq, J = 11.53 Hz), 4.31 (ABq 11.02 Hz, 1 H), 4.03 (m, 2 H), 3.94 (d, J = 4.61 Hz, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.0 (m, 2 H), 2.88 (dd, J = 2.05, 6.41 Hz, 1 H), 2.71 (dABq, J = 6.41, 15.64 Hz, 1 H), 2.69 (dABq, J = 7.18, 15.38 Hz, 1 H), 2.63 (dd, J = 2.05, 7.43 Hz, 1 H), 2.40 (dABq, J = 5.90, 11.28 Hz, 1 H), 2.31 (m, 1 H), 2.25 (s, 3 H), 2.05 (m, 1 H), 1.83 (dABq, J = 9.99, 13.84 Hz, 1 H), 1.50 – 1.20 (series m, 5 H), 0.96 (d, J =7.18 Hz, 3 H), 0.92 (d, J = 6.92 Hz, 3 H), 0.88 (t, J = 7.18 Hz, 3 H), 0.84 (s, 9 H), -0.03 (s, 6 H); 13 C NMR (125 MHz, CDCl₃) δ = ; HRMS (CI) m/z 203.1280 [(M + H) $^{+}$; calcd for C₁₀H₁₉O₄, 203.1283].

Ring-closing metathesis of diene (162) to give (E)-macrocycle (163):

To a slightly refluxing solution of diene **162** (0.15 g, 0.16 mmol) in CH₂Cl₂ (150 mL) was added dropwise (~9 hours) a solution of PhHC=Ru(PCy₃)(IMes-H₂)Cl₂ (70 mg, 0.082 mmol) in CH₂Cl₂ (18 mL). After stirring an additional 15 hours at reflux, the reaction was allowed to cool to room temperature and then

concentrated to give 0.26 g of a black residue. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 39 mg (27%) of macrocycle 163.

TBS-protection of macrocycle (163) to give TBS-ether (164):

To a cold (0 °C) solution of alcohol **163** (0.039 g, 0.044 mmol) in CH₂Cl₂ (0.6 mL) were added 2,6-lutidine (0.02 mL, 0.088 mmol) and TBSOTf (0.013 mL, 0.11 mmol). After stirring for 75 minutes at 0 °C, the reaction was diluted with Et₂O (15 mL) and was then washed with water (1 mL), a saturated aqueous CuSO₄ solution (1mL x 2), water (1 mL x 2) and brine (1 mL). The organics were dried over MgSO₄, filtered and concentrated to give 75 mg of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 37 mg (82%) of fully protected macrocycle **164** as a clear oil.

DDQ deprotection of PMB-macrocycle (164) to give macrocycle diol (165):

To a solution of PMB-ether **164** (36 mg, 0.037 mmol) in *t*-BuOH/aqueous pH=7 buffer/CH₂Cl₂ (1:1:5) (2 mL) was added DDQ (33 mg, 0.15 mmol). After stirring for 4 hours, the red reaction mixture was diluted with CH₂Cl₂ (12 mL) and a saturated aqueous NaHCO₃ solution (12 mL). The phases were separated.

The aqueous phase was extracted with CH₂Cl₂ (5 mL x 3). The combined organic phases were washed with a saturated aqueous NaHCO₃ solution (3 mL), water (3 mL) and brine (3 mL), dried over MgSO₄, filtered, and concentrated to give 33 mg of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 12 mg (43%) of diol 165 as an oil.

Preparation of the amphidinolide A isomer (166):

To a solution of TBS-silylated macrocycle **165** (7.8 mg, 0.010 mmol) in THF (1 mL) was added dropwise an acetic acid buffered TBAF solution (1.05:1) (0.11 mL, 0.2 M THF, 0.022 mmol). After stirring for 21 hours, the reaction was directly loaded onto a silica gel (0.4 g) column [hexanes/EtOAc 25%, 1% MeOH] and eluted with hexanes/EtOAc (1:3) to give 2.1 mg of amphidinolide A isomer **166** as a white solid.

Preparation of alcohol (167):

To a -23 °C solution of crude aldehyde **110** (0.58 g, 1.24 mmol) in CH₂Cl₂ (18 mL) was added MgBr₂•Et₂O (1.36 mL, 1.0 M Et₂O/PhH 3:1, 1.36 mmol) and allyltributyltin (0.50 mL, 1.6 mmol). The reaction was allowed to warm to 0 °C over 1 hour and then stirred an additional 2 hours at 0 °C. The reaction was

quenched by the addition of a saturated aqueous NH₄Cl solution (1.5 mL) and water (1.5 mL). Et₂O (60 mL) was added and the phases were separated. The organic phase was washed with a saturated aqueous KF solution (1.5 mL x 2) and brine (1 mL). The organics were dried over MgSO₄, filtered and concentrated to give 1.1 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 0.46 g (72%) of alcohol 167 as a clear oil. IR (neat, 4 cm⁻¹); v = 3511, 2961, 2936, 2909, 2870, 2838, 1727, 1613.1514, 1479, 1464, 1397, 1302, 1282, 1250, 1173, 1157, 1064, 1036, 920, 820; $[\alpha]_{580}^{20}$ +79.0° (c 0.78, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ = 7.23 (d, J = 8.24 Hz, 2 H), 7.21 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.24 Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.77 (m, 1 H), 5.58 (s, 1 H), 5.45 (s, 1 H), 5.06 – 4.97 (m, 2 H), 4.56 (ABq, J =10.99 Hz, 1 H), 4.55 (ABq, J = 11.54 Hz, 1 H), 4.37 (ABq, J = 11.54 Hz, 1 H), 4.22 (ABq, J = 10.99 Hz, 1 H), 4.21 (m, 1 H), 4.10 (m, 2 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 3.72 (d, J = 4.97 Hz, 1 H), 3.64 (m, 1 H), 2.51 (br d, J = 3.30 Hz, 1 H), 2.22 (br t, J = 7.14 Hz, 2 H), 1.18 (s, 9 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 178.4$, 159.4, 159.2, 142.6, 134.7, 130.0, 129.6, 129.3, 118.1, 117.4, 113.9, 113.8, 81.8, 76.7, 71.7, 70.7, 66.1, 55.3, 38.7, 37.7, 27.2; HRMS (FAB) m/z 513.2869 [(M + H)⁺; calcd for $C_{30}H_{41}O_7$, 513.2852].

Preparation of TBS-ether (168):

To a cold (0 °C) solution of alcohol 167 (0.46 g, 0.90 mmol) in CH₂Cl₂ (9 mL) were added 2,6-lutidine (0.14 mL, 1.2 mmol) and TBSOTf (0.23 mL, 0.99 mmol). After stirring for 40 minutes at 0 °C, the reaction was guenched with water (0.5 mL) and a saturated aqueous NH₄Cl solution (0.5 mL). The reaction was diluted with Et₂O (30 mL) and the phases were separated. The organic phase was washed with a saturated aqueous CuSO₄ solution (0.5 mL x 2), water (0.5 mL x 2) and brine (1 mL), dried over MgSO₄, filtered and concentrated to give 0.63 g of a light pink oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 10%] to give 0.51 g (91%) of TBSsilvlated alcohol 168 as a clear oil. IR (neat. 4 cm⁻¹): v = 2959, 2934, 2907, 2859. 1730, 1613, 1514, 1464, 1302, 1284, 1250, 1173, 1155, 1101, 1067, 1038, 912, 828, 810, 777; $\left[\alpha_{589}^{120} + 48.0^{\circ} \text{ (c 0.585, CHCl}_{3}\right]$; ¹H NMR (300 MHz, CDCl₃) $\delta = 7.25$ (d, J = 8.79 Hz, 2 H), 7.23 (d, J = 8.24 Hz, 2 H), 6.85 (app d, J = 8.24 Hz, 2 H), 6.84 (app d, J = 8.79 Hz, 2 H), 5.85 – 5.71 (m, 1 H), 5.61 (s, 1 H), 5.45 (s, 1 H), 5.01 (m, 1 H), 4.97 (m, 1 H), 4.57 (ABq, J = 10.99 Hz, 1 H), 4.53 (ABq, J = 11.54Hz, 1 H), 4.37 (m, 1 H), 4.37 (ABq, J = 10.99 Hz, 1 H), 4.22 (ABq, J = 11.54 Hz, 1 H), 4.20 - 4.16 (m, 1 H), 3.96 (dd, J = 7.69, 11.54 Hz, 1 H), 3.84 - 3.76 (m, 2 H), 3.78 (s, 3 H), 3.77 (s, 3 H), 2.4 - 2.3 (m, 1 H), 2.03 (dt, J = 13.73, 8.24 Hz, 1 H), 1.19 (s, 9 H), 0.79 (s, 9 H), -0.03 (s, 3 H), -0.09 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 178.3$, 159.1 (2), 142.4, 135.9, 130.6, 130.4, 129.2, 129.1, 11639, 115.1, 113.7, 80.8, 74.5, 70.9, 70.6, 66.1, 55.3, 38.8, 37.5, 27.2, 25.9, 18.1, -4.4, -4.7; HRMS (FAB) m/z 627.3735 [(M + H)⁺; calcd for C₃₆H₅₅O₇Si, 627.3717].

Preparation of alcohol (169):

To a cold (0 °C) solution of Piv-ester 168 (0.51 g, 0.812 mmol) in THF (8 mL) was added dropwise (~12 minutes) Super-Hydride® (1.71 mL, 1.0 M THF, 1.71 mmol). After stirring for 30 minutes, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (1.7 mL), glycerol (0.51 mL, 0.3 mL/mmol) and water (1.7 mL). The reaction mixture was diluted with Et₂O (60 mL) and stirred for 90 minutes. The phases were separated. The organic phase was washed with 0.5 M NaOH (1 mL x 2), and brine (1 mL). The combined aqueous phases were extracted with Et₂O (2 mL). The combined organics were dried over MgSO₄, filtered and concentrated to give 0.52 g of a clear oil. The crude residue was purified by flash chromatography on silica gel [hexanes/ EtOAc 25%] to give 0.40 g (91%) of alcohol **169** as a clear oil. IR (neat, 4 cm⁻¹): v = 3468, 2957, 2930, 2857, 1613, 1588, 1514, 1464, 1362, 1302, 1250, 1173,1061, 1038, 912, 826, 777; $\left[\alpha\right]_{589}^{20}$ +56.9° (c 0.37, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 7.24$ (d, J = 8.79 Hz, 2 H), 7.22 (d, J = 8.79 Hz, 2 H), 6.86 (d, J = 8.79Hz, 2 H), 6.84 (d, J = 8.79 Hz, 2 H), 5.80 (m, 1 H), 5.54 (s, 1 H), 5.42 (s, 1 H), 5.02 (s, 1 H), 4.98 (m, 1 H), 4.60 (ABq, J = 11.12 Hz, 1 H), 4.53 (ABq, J = 11.54Hz, 1 H), 4.29 (ABq, J = 10.99 Hz, 1 H), 4.25 (ABq, J = 11.40 Hz, 1 H), 4.22 (dd, J = 3.02, 7.69 Hz, 1 H), 3.80 (m, 1 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 3.72 (d, J =5.08 Hz, 1 H), 3.62 (m, 1 H), 3.43 (ddd, J = 3.85, 7.28, 11.26 Hz, 1 H), 2.35 (m, 1 H), 2.24 (dd, J = 3.85, 9.20 Hz, -OH), 2.06 (tABq, J = 7.83, 14.01 Hz, 1 H), 0.82 (s, 9 H), -0.01 (s, 3 H), -0.09 (s, 3 H); 13 C NMR (75 MHz, CDCl₃) δ = 159.2,

159.1, 142.7, 135.6, 130.4, 130.2, 129.4, 129.2, 117.0, 115.4, 113.9, 113.7, 81.0, 80.1, 74.2, 70.7, 70.5, 65.2, 55.3, 37.6, 25.9, 18.1, -4.3, -4.7; HRMS (FAB) m/z 543.3130 [(M + H)⁺; calcd for C₃₁H₄₇O₆Si, 543.3142].

Preparation of aldehyde (170):

To a stirred solution of Dess-Martin periodinane (0.38 g, 1.6 mmol) in CH₂Cl₂ (14 mL) were added pyridine (0.070 mL, 0.88 mmol) and a solution of alcohol 169 (0.40 g, 0.74 mmol) in CH₂Cl₂ (2 mL). After stirring for 2 hours at room temperature, the reaction was quenched by the addition of a saturated aqueous NaHCO₃/10% aqueous Na₂S₂O₃ (1:1) solution (14 mL) and diluted with Et₂O (65 mL). After stirring for 60 minutes, the phases were separated. The organic phase was washed with water (3 mL), a saturated aqueous CuSO₄ solution (3 mL x 2), water (3 mL x 2) and brine (3 mL), dried over Na₂SO₄, filtered and concentrated to give 0.35 g (88%) of crude aldehyde 170 as a yellow oil. IR (neat, 4 cm⁻¹): v = 2955, 2930, 1732, 1613, 1514, 1464, 1362, 1302, 1250, 1173, 1070, 1038, 912, 830, 777; $\left[\alpha_{589}^{120}, -29.9^{\circ}\right]$ (c 0.50, CHCl₃); ¹H NMR (300 MHz, CDCl₃) $\delta = 9.41$ (d, J = 2.20 Hz 1 H), 7.25 (d, J = 8.24 Hz, 2 H), 7.19 (d, J = 8.79Hz, 2 H), 6.86 (d, J = 8.79 Hz, 2 H), 6.83 (d, J = 8.24 Hz, 2 H), 5.84 – 5.70 (m, 1 H), 5.58 (s, 1 H), 5.48 (s, 1 H), 5.10 – 4.92 (m, 2 H), 4.45 (m, 1 H), 4.57 (ABq, J =10.99 Hz, 1 H), 4.46 (ABq, J = 10.99 Hz, 1 H), 4.38 (ABq, J = 11.54 Hz, 1 H), 4.13 (ABq, J = 11.54 Hz, 1 H), 3.86 (m, 2 H), 3.79 (s, 3 H), 3.78 (s, 3 H), 2.29 (m, 1 H), 2.02 (m, 1 H), 0.81 (s, 9 H), -0.04 (s, 3 H), -0.07 (s, 3 H); ¹³C NMR (75

MHz, CDCl₃) δ = 199.1, 159.4, 159.1, 140.0, 135.5, 130.2, 129.5, 129.4, 118.1, 117.0, 113.9, 113.6, 84.1, 81.6, 73.7, 71.3, 70.6, 55.2, 37.7, 25.9, 18.1, -4.3, -4.7. Preparation of alcohol (171):

t-BuLi (0.98 mL, 1.7 M pentane, 1.7 mmol) was added dropwise to Et₂O (4 mL) at -78 °C. A solution of vinyl bromide B (0.18 g, 0.83 mmol) in Et₂O (1 mL) was added dropwise (~7 minutes) to the t-BuLi solution. After stirring for 10 minutes, MgBr₂•Et₂O (0.88 mL, 1.0 M Et₂O/PhH (3:1), 0.88 mmol) was added and the reaction stirred at -78 °C for 15 minutes and then at 0 °C for 10 minutes. In a separate flask, to a 0 °C solution of crude aldehyde 170 (0.30 g, 0.55 mmol) in CH₂Cl₂ (3 mL) was added MgBr₂•Et₂O (0.55 mL, 1.0 M Et₂O/PhH (3:1), 0.55 mmol) and the reaction stirred for several minutes. The Grignard solution was transferred via cannula to the precomplexed aldehyde solution. After stirring for 90 minutes at 0 °C, the reaction was quenched by the addition of a saturated aqueous NH₄Cl solution (0.4 mL) and water (0.4 mL). The reaction was diluted with Et₂O (3 mL) and stirred for 30 minutes. The phases were separated. The organic phase was washed with brine (0.5 mL x 2). The combined aqueous phases were extracted with Et₂O. The combined organics were dried over MgSO₄, filtered and concentrated to give 0.38 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 0.20 g (53%) of alcohol 171 as a yellow oil. IR (neat, 4 cm⁻¹): v = 3553, 2957, 2930, 2857, 2178, 1613, 1514, 1464, 1362, 1302, 1250, 1173, 1062, 1038, 912, 841, 777;

[α]₅₈₉ +44.0° (c 0.338, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.24 (d, J = 8.84 Hz, 2 H), 7.21 (d, J = 8.84 Hz, 2 H), 6.85 (d, J = 8.84 Hz, 4 H), 5.86 (m, 1 H), 5.56 (s, 1 H), 5.52 (s, 1 H), 5.39 (d, J = 1.33 Hz, 1 H), 5.19 (d, J = 1.33 Hz, 1 H), 5.0 (m, 2 H), 4.57 (ABq, J = 11.05 Hz, 1 H), 4.55 (ABq, J = 11.49 Hz, 1 H), 4.28 (ABq, J = 11.05 Hz, 1 H), 4.27 (ABq, J = 11.49 Hz, 1 H), 4.13 (d, J = 3.09 Hz, 1 H), 4.05 (t, J = 4.42 Hz, 1 H), 3.86 (dt, J = 7.51, 4.42 Hz, 1 H), 3.79 (s, 3 H), 3.79 (s, 3 H), 3.75 (d, J = 4.86 Hz, 1 H), 3.09 (ABq, J = 20.32 Hz, 1 H), 2.98 (ABq, J = 20.32 Hz, 1 H), 2.71 (d, J = 5.30 Hz, -OH), 2.42 (m, 1 H), 2.13 (dt, J = 14.14, 7.51 Hz, 1 H), 0.85 (s, 9 H), 0.15 (s, 9 H), 0.01 (s, 3 H), -0.03 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 159.3, 159.1, 143.4, 143.2, 135.8, 130.5, 130.1, 129.4, 129.1, 116.9, 115.4, 114.0, 113.8, 113.7, 103.6, 87.9, 81.0, 80.6, 75.4, 74.6, 71.1, 70.6, 55.3, 37.6, 26.0, 23.5, 18.2, 0.10, -4.1, -4.5; HRMS (FAB) m/z 679.3833 [(M + H)⁺; calcd for C₃₉H₅₉O₆Si₂, 679.3850].

Preparation of TBS-ether (172):

To a cold (0 °C) solution of alcohol 171 (0.198 g, 0.291 mmol) in CH₂Cl₂ (3 mL) were added 2,6-lutidine (0.044 mL, 0.38 mmol) and TBSOTf (0.080 mL, 0.35 mmol). After stirring for 30 minutes at 0 °C, the reaction was quenched with water (0.2 mL) and a saturated aqueous NH₄Cl solution (0.2 mL). The reaction was diluted with Et₂O (15 mL) and the phases were separated. The organic phase was washed with a saturated aqueous CuSO₄ solution (0.2 mL x 2), water (0.2 mL x 2) and brine (0.4 mL), dried over MgSO₄, filtered and concentrated to

give 0.29 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5%] to give 185 mg (80%) of TBS-silvlated alcohol 172 as a clear oil. IR (neat, 4 cm⁻¹): v = 2957, 2930, 2896, 2857, 2178, 1614, 1588, 1514, 1472, 1302, 1250, 1173, 1094, 1040, 912, 839, 777; $\left[\alpha\right]_{580}^{20}$ -5.4° (c 0.40, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.25 (d, J = 8.84 Hz, 4 H), 6.87 (d, J = 8.84 Hz, 2 H), 6.85 (d, J = 8.39 Hz, 2 H), 5.80 (m, 1 H), 5.48 (s, 1 H), 5.46 (s, 1 H), 5.36 (s, 1 H), 5.16 (s, 1 H), 4.98 (m, 2 H), 4.59 (ABq, J = 11.05 Hz, 1 H), 4.56 (ABq, J = 11.49 Hz, 1 H), 4.42 (ABq, J = 11.05 Hz, 1 H), 4.29 (m, 2 H), 4.14 (d, J = 5.74 Hz, 1 H), 3.89 (dt, J = 7.51, 3.53 Hz, 1 H), 3.84 (d, J = 3.53 Hz, 1 H), 3.80 (s, 3 H), 3.80 (s, 3 H), 3.22 (ABq, J = 20.32 Hz, 1 H), 3.09 (ABq, J = 20.32 Hz, 1 H), 2.45 (m, 1 H), 2.18 (dt, J = 14.14, 7.51 Hz, 1 H), 0.91 (s, 9 H), 0.88 (s, 9 H), 0.15 (s, 9 H), 0.07 (s, 3 H), 0.04 (s, 3 H), 0.03 (s, 3 H), 0.02 (s, 3 H); 13 C NMR (125 MHz, CDCl₃) δ = 159.0, 158.8, 144.4, 143.4, 136.3, 131.4, 131.3, 128.8 (2), 116.7, 115.1, 114.8, 113.6, 113.6, 104.3, 87.5, 82.3, 82.0, 79.1, 74.5, 71.3, 55.2 (2), 37.7, 26.1, 25.4, 24.4, 18.2, 0.10, -4.0, -4.1; HRMS (FAB) m/z 793.4742 [(M + H)⁺; calcd for C₄₅H₇₃O₆Si₃, 793.4715].

Preparation of bromo-alkyne (173):

To a solution of TMS-alkyne **172** (0.14 g, 0.18 mmol) in acetone (2 mL) was added NBS (0.038 g, 0.21 mmol) and AgNO₃ (0.007 g, 0.04 mmol). After stirring for 7 hours the reaction was judged complete by TLC analysis. The reaction was quenched by the addition of water (0.4 mL) and was then diluted

with Et₂O (14 mL). The phases were separated. The organic phase was washed with brine (0.4 mL x 2), dried over MgSO₄, filtered and concentrated to give 0.18 g of a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 5%] afforded 92 mg (66%) of 1-bromo-alkyne 173 as a clear oil. IR (neat, 4 cm⁻¹): v = 2953, 2928, 2894, 2857, 1613, 1587, 1514, 1464, 1362, 1302, 1248, 1173, 1094, 1040, 1005, 911, 837, 777; $\left[\alpha\right]_{589}^{20}$ +1.3° (c 0.49, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.26 (d, J = 8.84 Hz, 2 H), 7.24 (d, J = 8.39 Hz, 2 H), 6.88 (d, J = 8.84 Hz, 2 H), 6.85 (ABq, J = 8.39 Hz, 2 H), 5.80 (m, 1 H), 5.48 (s, 2 H), 5.33 (d, J = 1.77 Hz, 1 H), 5.15 (s, 1 H), 5.0 (s, 1 H), 4.97 (br d, J = 4.86Hz, 1 H), 4.59 (ABq, J = 11.05 Hz, 1 H), 4.55 (ABq, J = 11.49 Hz, 1 H), 4.39 (ABq, J = 11.05 Hz, 1 H), 4.28 (ABq, J = 11.49 Hz, 1 H), 4.25 (d, J = 5.74 Hz, 1 H), 4.13 (d, J = 5.74 Hz, 1 H), 3.89 (dt, J = 7.51, 4.42 Hz, 1 H), 3.84 (d, J = 3.98Hz, 1 H), 3.80 (s, 3 H), 3.80 (s, 3 H), 3.21 (ABq, J = 20.32 Hz, 1 H), 3.05 (ABq, J= 20.32 Hz, 1 H), 2.45 (m, 1 H), 2.17 (dt, J = 14.14, 7.51 Hz, 1 H), 0.90 (s, 9 H), 0.88 (s, 9 H), 0.05 (s, 3 H), 0.04 (s, 3 H), 0.02 (s, 3 H), 0.01 (s, 3 H); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta = 159.0, 158.9, 144.1, 143.3, 136.2, 131.3, 131.2, 128.8 (2),$ 116.7, 115.3, 114.9, 113.7, 113.6, 82.2, 81.9, 79.0, 77.7, 74.5, 71.2, 55.3, 55.2. 40.6, 37.7, 26.1, 25.9, 24.0, 18.2 (2), -4.1 (2), -4.8, -4.9;

Preparation of vinyl stannane (174):

To a mixture of (Ph₃P)₂PdCl₂ (0.8 mg, 0.001 mmol), Red-Sil (0.44 g, 0.92 mmol, 2.1 mmol/g), Bu₃SnF (0.078 g, 0.25 mmol) and 1-bromo-alkyne 173 (0.092 g, 0.12 mmol) in Et₂O (2.5 mL) was added a drop of TBAF (1.0 M THF). After stirring for 2 hours at room temperature, the reaction was diluted with Et₂O (5 mL) and then filtered through a pad of Celite on a glass frit. The residual Red-Sil was washed several times with Et₂O. The filtrate was dried over MgSO₄, filtered. and concentrated to give 0.14 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/ EtOAc $2\% \rightarrow 5\%$] to give 74 mg (64%) of E-vinyl stannane 174 as a clear oil. IR (neat, 4 cm⁻¹): v = 2955, 2928, 2857. 1614. 1514, 1464. 1302, 1250, 1173, 1090, 1040, 910, 837, 777; $[\alpha]_{589}^{20}$ -4.5° (c 0.59, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.23 (d, J = 8.39 Hz, 2 H), 7.21 (d, J = 8.84 Hz, 2 H), 6.84 (d, J = 8.84 Hz, 2 H), 6.83 (d, J = 8.39 Hz, 2 H), 5.91 (m, 2 H), 5.78 (m, 1 H), 5.48 (s, 1 H), 5.44 (s, 1 H), 5.06 (s, 1 H), 4.97 -4.91 (m, 3 H), 4.59 (ABq, J = 11.05 Hz, 1 H), 4.54 (ABq, J = 11.49 Hz, 1 H), 4.41 (ABq, J = 11.05 Hz, 1 H), 4.24 - 4.20 (series m, 2 H), 4.09 (d, J = 5.74 Hz, 1 H), 3.88 (m, 2 H), 3.79 (s, 6 H), 3.06 (ABq, J = 18.56 Hz, 1 H), 2.91 (ABq, J = 18.99Hz, 1 H), 2.42 (m, 1 H), 2.17 (dt, J = 14.58, 7.07 Hz, 1 H), 1.47 (m, 6 H), 1.27 (m, 6 H), 0.87 (m, 33 H), 0.03 (s, 3 H), 0.02 (s, 3 H), -0.001 (s, 3 H), -0.01 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ = 158.8, 158.7, 147.7, 146.5, 144.3, 136.3, 131.5, 131.3, 130.2, 128.7 (2), 116.7, 115.1, 113.8, 113.6, 113.4, 82.2, 82.0, 79.5, 74.4, 71.1, 71.0, 55.3, 55.2, 41.3, 37.7, 29.1, 27.3, 26.1, 25.9, 18.3, 18.2, 13.7, 9.4, -4.0, -4.7, -4.8; HRMS (FAB) m/z 955.4766 [(M - Bu)⁺; calcd for C₅₀H₈₃O₆Si₂Sn, 955.4750].

Preparation of diene (175) via Stille cross-coupling:

A solution of Pd₂dba₃ (1.3 mg, 0.0014 mmol) and AsPh₃ (1.8 mg, 0.0058 mmol) in NMP (0.3 mL) were stirred at room temperature for 10 minutes, at which time a solution of (E)-vinyl iodide 302⁵⁰ (0.035 g, 0.072 mmol) in NMP (0.2 mL) was added to the yellowish-green solution. The reaction flask was immersed into a preheated oil bath (~50 °C) and a solution of vinyl stannane 174 (0.073 g, 0.072 mmol) in NMP (0.2 mL) was added immediately. After stirring for 21 hours at 50 °C, the reaction was allowed to cool to room temperature and was then diluted with Et₂O (10 mL). The organic phase was washed with water (0.3 mL x 2), a saturated aqueous KF solution (0.3 mL x 2) and brine (0.4 mL). The organics were dried over MgSO₄, filtered and concentrated to give 0.16 g of a yellow oil. The crude residue was purified by flash chromatography on silica gel [hexanes/EtOAc 5%] to give 23 mg (30%) of diene 175 as a clear oil. IR (neat, 4 cm⁻¹): v = 2959, 2930, 2857, 2176, 1717, 1614, 1587, 1514, 1464, 1388, 1362, 1302, 1250, 1173, 1148, 1094, 1038, 912, 839, 777; $\left[\alpha\right]_{589}^{20}$ -5.6° (c 0.57, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ = 7.23 (d, J = 8.39 Hz, 2 H), 7.21 (d, J = 8.39 Hz, 2 H), 6.85 (d, J = 8.84 Hz, 2 H), 6.84 (d, J = 8.39 Hz, 2 H), 6.04 (m, 2 H), 5.78 (m, 1 H), 5.67 (s, 1 H), 5.48 (s, 2 H), 5.08 (s, 1 H), 4.98 (s, 1 H), 4.96 (m, 1 H), 4.88 (s. 1 H), 4.75 (t, J = 6.19 Hz, 1 H), 4.60 (ABq, J = 11.05 Hz, 1 H), 4.53 (ABq, J =11.49 Hz, 1 H), 4.37 (ABq, J = 11.05 Hz, 1 H), 4.25 (ABq, J = 11.05 Hz, 1 H),

4.21 (d, J = 5.74 Hz, 1 H), 4.13 (d, J = 5.74 Hz, 1 H), 3.90 (m, 2 H), 3.79 (s, 3 H), 3.79 (s, 3 H), 3.05 (dABq, J = 5.74, 16.35 Hz, 1 H), 2.94 (dABq, J = 6.63, 16.35 Hz, 1 H), 2.91 (dd, J = 2.21, 6.19 Hz, 1 H), 2.66 (dd, J = 2.21, 7.51 Hz, 1 H), 2.44 (m, 1 H), 2.40 (dABq, J = 4.86, 16.79 Hz, 1 H), 2.28 (m, 1 H), 2.24 (s, 3 H), 2.18 (dt, J = 14.14, 7.07 Hz, 1 H), 2.07 (m, 1 H), 1.50 – 1.20 (series m, 5 H), 1.11 (d, J = 7.07 Hz, 3 H), 0.93 (d, J = 7.07 Hz, 3 H), 0.88 (m, 12 H), 0.87 (s, 9 H), 0.14 (s, 9 H), 0.03 (s, 6 H), 0.003 (s, 3 H), -0.02 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ = 166.2, 158.9, 158.8, 153.2, 147.4, 144.1, 136.2, 135.4, 135.0, 131.4, 131.2, 128.8, 128.6, 117.6, 116.8, 115.4, 114.3, 113.7, 113.6, 104.7, 86.6, 82.2, 82.1, 79.2, 75.1, 74.5, 71.1 (2), 61.6, 56.8, 55.3, 37.8, 36.6, 36.3, 35.3, 26.1, 25.9, 23.6, 20.0, 18.3, 18.2, 15.8, 15.3, 14.2, 14.0, 0.06, -4.0, -4.7, -4.8; HRMS (FAB) m/z 1071.6600[(M + H)⁺; calcd for $C_{62}H_{99}O_9Si_3$, 1071.6597].

DDQ deprotection of PMB-ether (174) to give diol (176):

To a solution of PMB-ether 174 (40 mg, 0.040 mmol) in *t*-BuOH/aqueous pH=7 buffer/CH₂Cl₂ (1:1:5) (2 mL) was added DDQ (27 mg, 0.12 mmol). After stirring for 7 hours, the red reaction mixture was diluted with CH₂Cl₂ (12 mL) and a saturated aqueous NaHCO₃ solution (12 mL). The phases were separated. The aqueous phase was extracted with CH₂Cl₂ (5 mL x 3). The combined organic phases were washed with a saturated aqueous NaHCO₃ solution (10 mL), water (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated to give 41 mg of a red oil. The crude residue was purified by flash

chromatography on silica gel [hexanes/EtOAc 5%] to give 10 mg (53%) of diol 176 as an oil. Note: the vinyl stannane moiety did not survive the reaction. IR (neat, 4 cm⁻¹): v = 3551, 3079, 2955, 2930, 2895, 2859, 1472, 1464, 1390, 1362, 1255, 1070, 1005, 914, 837, 777; ¹H NMR (300 MHz, CDCl₃) δ = 5.77 (m, 2 H), 5.30 (s, 1 H), 5.26 (s, 1 H), 5.11 – 5.03 (series m, 5 H), 4.93 (d, J = 1.33 Hz, 1 H), 4.06 (d, J = 5.30 Hz, 1 H), 3.83 (m, 2 H), 3.76 (dt, J = 7.51, 4.42 Hz, 1 H), 2.89 (d, J = 4.86 Hz, -OH), 2.85 (m, 1 H), 2.74 (d, J = 7.51 Hz, -OH), 2.70 (m, 1 H), 2.43 (dt, J = 14.14, 7.51 Hz, 1 H), 2.23 (m, 1 H), 0.89 (s, 9 H), 0.88 (s, 9 H), 0.07 (s, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H), 0.01 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ = 148.5, 147.2, 135.6, 134.2, 118.1, 116.9, 113.6, 113.1, 78.6, 73.9, 73.4, 73.0, 38.9, 36.3, 25.9 (2), 18.2, 18.1, -4.4 (2), -4.5, -5.0; HRMS (FAB) m/z 483.3344 [(M + H)⁺; calcd for $C_{26}H_{51}O_4Si_2$, 483.3326].

Preparation of β -iodo ester (177):

To a solution of (Z)- β -iodo acid **48** (0.50 g, 2.4 mmol) in CH₂Cl₂ (5 mL) were added 5-hexyn-1-ol (0.29 mL, 2.6 mmol) and DMAP (0.029 g, 0.24 mmol). The reaction flask was cooled to 0 °C after which a solution of DCC (0.54 g, 2.6 mmol) in CH₂Cl₂ (1 mL) was added. After stirring for 5 minutes at 0 °C, the ice bath was removed and the reaction continued to stir at room temperature for 6 hours. The reaction mixture was filtered through a pad of Celite on a glass frit. The filter cake was washed with CH₂Cl₂ several times. The filtrate was washed with 0.5 M HCl (2 mL x 2) and a saturated aqueous NaHCO₃ solution (2 mL).

The organics were dried over MgSO₄, filtered, and concentrated to give 1.05 g of an oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 0.54 g (78%) of (Z)-β-iodo ester **177** as a clear oil.

¹H NMR 300 MHz (CDCl₃): δ = 6.27 (d, J = 1.37 Hz, 1 H), 4.15 (t, J = 6.32 Hz, 2 H), 2.70 (d, J = 1.37 Hz, 3 H), 2.20 (dt, J = 2.47, 6.87 Hz, 2 H), 1.93 (t, J = 2.47, 1 H), 1.76 (m, 2 H), 1.59 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ = 164.3, 125.4, 113.5, 83.8, 68.7, 36.5, 27.6, 24.9, 18.1.

Isomerization of 3-octyn-1-ol to 7-octyn-1-ol via "Zipper Reaction":

Potassium 3-aminopropylamide (KAPA) was prepared by first washing the KH (8.2 g, 71.32 mmol, 35% mineral dispersion) suspension with hexanes (3x, 5 mL/g of dispersion). The light gray to white solid was cooled to 0 °C and 1,3-diaminopropane (50 mL) was added dropwise and the reaction stirred at 0 °C for 1 hour. The ice bath was removed, and the reaction was stirred at room temperature for 2 hours after which 3-octyn-1-ol (3.0 g, 24 mmol) was added dropwise. After stirring for 8 hours, the reaction was quenched by the slow addition of water (20 mL) and a saturated aqueous NH₄Cl solution (10 mL). The reaction mixture was further diluted with 1.0 M HCl (20 mL) and Et₂O (50 mL). The phases were separated. The aqueous phase was extracted with Et₂O (50 mL x 3). The combined organics were dried over MgSO₄, filtered and concentrated to give a yellow oil. Purification by flash chromatography on silica gel [hexanes/EtOAc 25%] afforded 2.5 g (83%) of 7-octyn-1-ol as a clear oil.

¹H NMR (300 MHz, CDCl₃) δ = 3.58 (t, J = 6.59 Hz, 2H), 2.14 (dt, J = 2.74, 6.87 Hz, 2H), 1.90 (t, J = 2.74 Hz, 1H), 1.75 (s, –OH), 1.5 (m, 4 H), 1.35 (m, 4 H); ¹³C NMR (75 MHz, CDCl₃) δ = 84.5, 68.1, 62.7, 32.5, 28.4, 28.3, 25.2, 18.2.

Preparation of vinyl stannane (178):

To a solution of 7-octyn-1-ol (0.18 g, 1.4 mmol) in benzene (15 mL) were added AIBN (0.012 g, 0.071 mmol) and Bu₃SnH (0.57 mL, 2.1 mmol). The flask was immediately immersed in a preheated ~85 °C oil bath. After stirring for 3 hours, the reaction mixture was concentrated. Purification by flash chromatography on silica gel [hexanes/EtOAc 10%] afforded 0.47 g (79%) of a mixture (4.7:1) of E- and Z-vinyl stannane **178** as a clear oil.

Preparation of diene (179) via Stille coupling:

To a solution of bis(acetonitrile)palladium (II) chloride (13 mg, 0.052 mmol) in DMF (10 mL) were added a solution of vinyl iodide 177 (0.30 g, 1.0 mmol) in DMF (0.5 mL) and a solution of vinyl stannane 178 (0.47 g, 1.1 mmol) in DMF (0.5 mL). After stirring for 18 hours at room temperature, the reaction was quenched with the addition of a 10% aqueous NH₄OH solution (10 mL). The phases were separated. The aqueous phase was extracted with Et₂O (20 mL x 3). The combined organic phases were washed with water (10 mL x 2), brine (10 mL), dried over MgSO₄, filtered, and concentrated to give 0.63 g of a red oil.

Purification by flash chromatography on silica gel [Hexanes/EtOAc 25%] afforded 0.11 g (37%) of diene **179** as a yellow oil.

¹H NMR 300 MHz (CDCl₃) δ = 7.53 (dd, J = 0.82, 15.93 Hz, 1 H), 6.10 (dt, J = 15.93, 6.87 Hz, 1 H), 5.57 (d, J = 0.55 Hz, 1 H), 4.09 (t, J = 6.59 Hz, 2 H), 3.60 (dt, J = 5.49 Hz, 2 H), 2.20 (m, 4 H), 1.95 (d, J = 1.1 Hz, 3 H), 1.93 (t, J = 2.75 Hz, 1 H), 1.2 - 1.8 (m, 12 H); ¹³C NMR 75 MHz (CDCl₃) δ = 166.44, 151.48, 139.11, 127.64, 115.48, 83.89, 68.61, 63.08, 62.79, 33.11, 32.59, 28.89, 28.82, 27.71, 25.45, 24.96, 21.05, 18.03.

Preparation of aldehyde (180):

To a solution of alcohol 179 (0.11 g, 0.38 mmol) in CH_2Cl_2 (4 mL) were added DMSO (0.27 mL, 3.8 mmol), i-Pr₂NEt (0.39 mL, 2.3 mmol), and SO_3 •pyridine (0.18 g, 1.1 mmol) at room temperature. After stirring for 25 minutes, the reaction was quenched by the addition of an aqueous saturated NH₄Cl solution (4 mL). The reaction mixture was diluted with Et₂O (12 mL), and the phases were separated. The organic phase was washed with brine (2 mL x 2). The combined aqueous phases were extracted with Et₂O (3 mL x 2). The combined organics were dried over Na₂SO₄, filtered, and concentrated to give 0.10 g. The crude product was purified by flash chromatography on silica gel [hexanes/EtOAc 10% \rightarrow 25%] to give 57 mg (53%) of aldehyde **180** as a yellow oil.

¹H NMR 300 MHz (CDCl₃): δ = 9.74 (t, J=1.65 Hz, 1 H), 7.54 (dd, J= 0.82, 15.93 Hz, 1 H), 6.10 (dt, J= 15.93, 6.87 Hz, 1 H), 5.58 (s, 1 H), 4.09 (t, J= 6.59 Hz, 2 H), 2.41(dt, J= 1.65, 7.42 Hz, 2 H), 2.20 (m, 4 H), 1.96 (d, J= 1.1 Hz, 3 H), 1.93 (t, J= 2.75 Hz, 1 H), 1.1 - 1.8 (m, 10 H).

Indium cyclization of aldehyde / alkyne (180):

Aldehyde-alkyne **180** (57 mg, 0.20 mmol), 1,3-dibromopropene (0.020 mL, 0.196 mmol), indium powder (45 mg, 0.393 mmol), and sodium iodide (59 mg, 0.393 mmol) were added to THF (2 mL). After stirring at room temperature for 6.5 hours, the reaction was quenched with the addition of a saturated aqueous NH₄Cl solution (0.5 mL). The reaction mixture was diluted with Et₂O (4 mL) and the phases were separated. The organic phase was washed with brine (1 mL). The combined aqueous phases were extracted with Et₂O (2 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated to give 0.090 g of a yellow oil. The crude material was purified by flash chromatography on silica gel [Hexanes/EtOAc 10%] to give two identifiable products in very small quantities.

References and Notes:

- 1. Review: Ishibashi, M.; Kobayashi, J. Heterocycles, 1997, 44, 543 572.
- 2. Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y. *Tetraheron Lett.* **1986**, *27*, 5755 5758.
- 3. Kobayashi, J.; Ishibashi, M. J. Nat. Prod. 1991, 54, 1435 1439.
- 4. Terrell, L. R.; Ward, J. S., III; Maleczka, R. E., Jr. *Tetrahedron Lett.* **1999**, 40, 3097 3100.
- (a) Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198 11199.
 (b) Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765 766.
 (c) Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945 948.
- 6. (a) Zhang, H. X.; Guibe, F.; Balavoine, G. *Tetrahedron Lett.* **1988**, *29*, 619. (b) Zhang, H. X.; Guibe, F.; Balavoine, G. *Tetrahedron Lett.* **1988**, *29*, 623.
- 7. (a) Grubbs, R. H.; Chang, S. *Tetrahedron* **1998**, *54*, 4413 4450. (b) Tmka, T. M. Grubbs, R. H. *Accts. Chem. Res.* **2001**, *34*, 18 29.
- 8. Trost, B. M.; Indolese, A. F.; Műller, T. J. J.; Treptow, B. *J. Am. Chem. Soc.* **1995**. *117*. 615 623.
- 9. O'Connor S. J.; Williard P. G. Tetrahedron Lett. 1989, 30, 4637 4640.
- 10. Yu, Y.; Williard, P. G.; 221st American Chemical Society National Meeting, April 1-5, San Diego, CA; The Division of Organic Chemistry of the American Chemical Society: Washington, DC, 2001; ORGN 580.
- 11. (a) Boden, C.; Pattenden, G. *Synlett* **1994**, 181 182. (b) Hollingworth, G. J.; Pattenden, G. *Tetrahedron Lett.* **1998**, *39*, 703 706.
- 12. (a) Stille, J. K.; Groh, B. L. *J. Am. Chem. Soc.* **1987**, *109*, 813 817. (b) Mitchell, T. *Synthesis* **1992**, 803 815.
- 13. (a) Schmid, c. R.; Bryant, J. D.; Dowlatzadeh, M.; Phillips, J. L.; Prather, D. E.; Schantz, R. E.; Sear, N. L.; Vianco, C. S. *J. Org. Chem.* 1991, *56*, 4056 4058. (b) Hertel, L. W.; Grossman, C. S.; Kroin, J. S. *Synth. Comm.* 1991, *21*, 151 154.
- 14. Sharma, P. K.; Srivastava, S. K.; Sharma, S. *Synthetic Comm.* **1995**, *25*, 1249 1253.

- 15. Katsuki, T.; Lee, A. W. M.; Ma, P.; Martin, V. S.; Masamune, S.; Sharpless, K. B.; Tuddenham, D.; Walker, F. J. *J. Org. Chem.* **1982**, *47*, 1373 1378.
- 16. Marshall, J. A.; Trometer, J. D.; Cleary, D. G. Tetrahedron 1989, 45, 391 402.
- 17. Page, P. C. B.; Rayner, C. M.; Sutherland, I. O. *J. Chem. Soc. Perkin Trans.* 1 1990, 1375 1382.
- 18. Payne, G. B. J. Am. Chem. Soc. 1962, 3819 3822.
- 19. Behrens, C. H.; Ko, S. Y. K.; Sharpless, K. B.; Walker, F. J. *J. Org. Chem.* **1985**, *50*, 5687 5696.
- 20. Schmid, C. R.; Bradley, D. A. Synthesis 1992, 587 590.
- 21. Mancuso, A. J.; Huang, S. L.; Swern, D. *J. Org. Chem.* **1978**, *43*, 2480 2482.
- 22. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277 7287.
- 23. Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505 5507.
- 24. Pummerer, R. Chem. Ber. 1909, 42, 2282 2291.
- 25. The regiochemistry of TBS ether **35** was made obvious through the spectroscopic analysis of compounds later in the Scheme such as **29**.
- 26. Tanikaga, R.; Yabuki, Y.; Ono, N.; Kaji, A. *Tetrahedron Lett.* **1976**, 2257 2258.
- 27. Hall, J. A.; Keyworth, D. A. *In Brief Chemistry of the Elements with Qualitiative Analysis*, Benjamin: Meleno Park, 1971, p.119.
- 28. Brown, H. C.; Kim, S. C.; Krishnamurthy, S. J. Org. Chem. 1967, 89, 5505.
- 29. Nakadaira, Y.; Sato, R.; Sakurai, H. *J. Organomet. Chem.* **1992**, *441*, 411 417.
- 30. (a) Jeffery, T. *J. Chem. Soc., Chem. Commun.* **1988**, 909 910. (b) Jeffery, T. *Tetrahedron Lett.* **1989**, *30*, 2225 2228.
- 31. (a) Mori, K.; Murata, N. *Liebigs Ann. Chem.* **1994**, 1153 1160. (b) Abiko, A.; Masamune, S. *Tetrahedron Lett.* **1996**, *37*, 1081 1084. (c) Desrut, M.; Kergomard, A.; Renard, M. F.; Veschambre, H. *Tetrahedron* **1981**, *37*, 3825 3829.

- 32. After consulting with Professor Carriera, these results should have been expected since he stated that an activated electrophile is needed for the alkylation.
- 33. This part of the project was taking over by Joe Ward.
- 34. (a) Le Noble, W. J. J. Am. Chem. Soc. 1961, 83, 3897-3899.
- 35. For a discussion on the addition of aqueous HI to alkynes see the following references: (a) Zoller, T.; Uguen, D. *Tetrahedron Lett.* **1998**, *39*, 6719 6720. (b) Abarbri, M.; Parrain, J.; Cintrat, J.; Duchene, A. *Synthesis* **1996**, 82 86.
- 36. (a) Rieke, R. D.; Bales, S. E. *J. Am. Chem. Soc.* **1974**, *96*, 1775 1781. (b) Burns, T. P.; Rieke, R. D. *J. Org. Chem.* **1987**, *52*, 3674 3680.
- 37. Tückmantel, W.; Oshima, K.; Nozaki H. *Chem. Ber.* **1986**, *119*, 1581 1593.
- 38. The aldehyde was not purified because during column chromatography on silica gel the exo-olefin internalized with similar substrates.
- 39. Smith, A. B., III; Chen, S. S. Y.; Nelson, F. C.; Reichert, J. M.; Salvatore, B. A. J. Am. Chem. Soc. 1995, 117, 12013 12014.
- 40. Nishikawa, T.; Shibuya, S.; Hosokawa, S.; Isobe, M. *Synlett* **1994**, 485 486.
- 41. (a) Lipshutz, B. H.; Kell, R.; Barton, J. C. *Tetrehedron Lett.* **1992**, *33*, 5861 5864. (b) review: Wipf, P.; Jahn, H. *Tetrahedron* **1996**, *52*, 12853 12909.
- 42. Kim, S.; Kim, K. H. *Tetrahedron Lett.* **1995**, *36*, 3725 3728.
- 43. Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748 2749.
- 44. Mori, Y.; Yaegashi, K.; Furokawa, H *Tetrahedron* **1997**, *53*, 12917 12932.
- 45. Takano, S.; Akiyama, M.; Ogasawara, K. *Chem. Pharm. Bull.* **1984**, *32*, 791 794.
- 46. Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn, C. S. *J. Org. Chem.* **1986**, *51*, 404 407.
- 47. Wang, Z. *Tetrahedron Lett.* **1989**, *30*, 6611 6614.

- 48. The lack of success of this reaction is probably due to the purity of the pivaloyl chloride, and with the success of the silyl protection, the pivaloyl protection was not repeated.
- 49. (a) Gill, D. M.; Pegg, N. A.; Rayner, C. M. *Tetrahedron* **1996**, *52*, 3609 3630. (b) McIntyre, S.; Warren, S. *Tetrahedron Lett.* **1990**, *31*, 3457 3460.
- 50. For the synthesis and characterization of this compound see the PhD dissertation of Feng Geng **2001**, Michigan State University.
- 51. Hoye, T. R.; Zhao, H. Org. Lett. 1999, 1, 1123 1125.
- 52. Zhang, S.; Zhang, D.; Liebeskind, L. S. *J. Org. Chem.* **1997**, *62*, 2312 2313.
- 53. The lack of identification of the by-products was due to the scale of the reactions and the contamination of products with residual catalyst.
- 54. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2000**, *122*, 8168 8179.
- 55. For a leading reference see: Furstner, A.; Langemann, K. *J. Org. Chem.* **1996**, *61*, 3942 3943.
- 56. The yield of the oxidation was higher if the reaction was ran on a smaller scale (12 mmol or less).
- 57. This investigation was necessary since no detailed experimental procedure is reported in the literature.
- 58. (a) Paquette, L.A.; Bennett, G.D.; Isaac, M.B.; Chhatriwalla, A. *J. Org. Chem.* **1998**, *63*, 1836 1845. (b) Paquette, L.A.; Mitzel, T.M.; Isaac, M.B.; Crasto, C.F.; Schomer, W.W. *J. Org. Chem.* **1997**, *62*, 4293 4301. (c) Cintas, P. *Synlett*, **1995**, 1087 1096. (d) Araki, S.; Shimizu, T.; Johar, P.S.; Jin, S.; Butsugan, Y. *J. Org. Chem.* **1991**, *56*, 2538 2542.
- 59. Binder, W.H.; Prenner, R.H.; Schmid, W. *Tetrahedron*, **1994**, *50*, 749 758.
- 60. Ranu, B.C.; Majee, A. *J. Chem. Soc., Chem. Commun.* **1997**, 1225 1226.
- 61. (a) Li, C.; Chen, D. *Tetrahedron Lett.* **1996**, *37*, 295 298. (b) Araki, S.; Hirashita, T.; Shimizu, H.; Yamarmura, H.; Kawai, M.; Butsugan, Y. *Tetrahedron Lett.* **1996**, *37*, 8417 8420. (c) Li, C. *Tetrahedron Lett.* **1995**, *36*, 517 518.

- 62. Brown, C.A.; Yamashita, A. J. Chem. Soc., Chem. Commun. 1976, 959.
- 63. Macaulay, S. J. Org. Chem. 1980, 45, 734 735.
- 64. see ref. 6b
- 65. (a) Miyai, T.; Inoue, K.; Yasuda, M.; Baba, A. *Synlett*, **1997**, 699 700. (b) Yasuda, M.; Miyai, T.; Shibata, I.; Baba, A. *Tetrahedron Lett.* **1995**, 36, 9497 9500. (c) Marshall, J. A.; Hinkle, K. W. *J. Org. Chem.* **1995**, *60*, 1920 1921.
- 66. (a) Terstiege, I.; Maleczka, R. E., Jr. *J. Org. Chem.* **1999**, *64*, 342 343. (b) Maleczka, R. E., Jr.; Terstiege, I. *J. Org. Chem.* **1998**, *63*, 9622 9623.
- 67. Although successful, reactions carried out in the absence of TBAF or TBAI ran considerably slower.
- 68. CsF may be substituted for KF with little change in the outcome of the reaction.
- 69. Some substrate intolerance was observed when 6-(*tert*-butyldimethyl-silyloxy)-1-hexyne (**185**) was subjected to conditions A. In this case, although the TBS group remained in place, a significant amount of destannylation occurred.
- 70. Mitchel, T. N.; Amamria, A.; Killing, H.; Rutschow, D. *J. Organomet. Chem.* **1986**, *304*, 257 265.
- 71. (a) Lubineau, A.; Augé, J.; Queneau, Y. *Synthesis* **1994**, 741 760. (b) Chan, T. H.; Li, C. J.; Lee, M. C.; Wei, Z. Y. *Can J. Chem.* **1994**, *72*, 1181 1192. (c) Li, C. J. *Chem. Rev.* **1993**, *93*, 2023 2035. (d) Grieco, P. A. *Aldrichimica Acta* **1991**, *24*, 59 66. (e) Breslow, R. *Acc. Chem. Res.* **1991**, *6*, 159 164.
- 72. Kawakami, T.; Shibata, I.; Baba, A. *J. Org. Chem.* **1996**, *61*, 82 87.
- 73. Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. *Chem. Rev.* **1993**, *93*, 1371 1448.
- 74. Preliminary ¹¹⁹Sn NMR data is consistent with this hypothesis, as is literature precedent, see Leibner, J. E.; Jacobus, J. *J. Org. Chem.* **1979**, *44*, 449 450.
- 75. (a) Corey, E. J.; Guzmann-Perexz, A.; Lazerwith, S. E.; *J. Am. Chem. Soc.* **1997**, *119*, 11769 11776. (b) Pearlman, B. A.; Putt, S. R.; Fleming, J. A. *J. Org. Chem.* **1985**, *50*, 3622 3624. (c) Harpp, D. N.; Gingras, M. *J. Am.*

- Chem. Soc. 1988, 110, 7737 7745. (d) Keck, G. E.; Enholm, E. J.; Yates, J. B.; Wiley, M. R. Tetrahedron 1985, 41, 4079 4094.
- 76. This trend continues when the Bu₃SnCl/KF/PMHS method is used under free radical conditions that promote kinetic Z-olefin formation (excess alkyne, short reaction times; Leusink, A. J.; Budding, H. A. *J. Organomet. Chem.* 1968, 11, 533 539; Tolstikov, G. A.; Miftakhov, M. S.; Danilova, N. A.; Vel'der, Y. L. *Synthesis* 1986, 496 499; and ref (3b). However, for reasons that remain unclear, the reactions were significantly less selective for the cis vinylstannanes with the Bu₃SnF/TBAF/PMHS protocol.
- 77. (a) Reed-Mundell, J. J.; Nadkami, D. V.; Kunz, J. M., Jr.; Fry, C. W.; Fry, J. L. *Chem. Mater.* **1995**, *7*, 1655 1660. (b) Kini, A. D.; Nadkami, D. V.; Fry, J. L. *Tetrahedron Lett.* **1994**, *35*, 1507 1510. (c) For other immobilized hydrosilanes, see: Rudzinski, W. E.; Montgomery, T. L.; Frye, J. S.; Hawkins, B. L.; Maciel, G. E. *J. Catal.* **1986**, *98*, 444 456.
- 78. (a) Scott, W. J.; Moretto, A. F. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. Ed.; Wiley: New York, 1995; Vol. 7, 5327 5328.
 (b) Dyer, R. S.; Walsh, T. J.; Wonderlin, W. F.; Bercegeay, M. *Neurobehav. Toxicol. Teratol.* 1982, 4, 127 133.
- 79. At 9-20 mg/kg the LD50 of Me₃SnCl is similar to that of Me₃SnH (7 mg/kg in large rates). However, as a solid (mp 37-38 °C) the Me₃SnCl does not pose the same inhalation hazard as Me₃SnH. Furthermore, the reaction of R₃SnCl with KF/PMHS initially involves the conversion of the tin chlorides into the corresponding tin fluorides, which given their associated nature are generally only sparingly soluble in organic solvents. Thus, tin poisoning through absorption is also minimized by this protocol.
- 80. Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. *Tetrahedron Lett.* **1988**, *29*, 4139 4142.

