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Abstract

Modified Cox Test for Time Series and Panel Data

By

Donggeun Kim

It has long been one of the main interests among econometricians to test

nonnested models between two different families. But computational difficulties of

the nonnested testing have restricted its application to rather simple linear or non-

linear regression models. This dissertation proposes a new approach based upon

the conditional mean and the conditional variance specification in order to solve the

computational difficulties and to extend its application to more complicated cases

including time series and dynamic panel data. The first chapter of this disserta-

tion proposes a modified Cox test under normality, examines its application to two

different nonlinear error equation models with three different time series data sets,

performs Monte Carlo experiments to investigate the potential applicability of our

proposed test. Chapter two extends its applicability under nonnormality and de—

velops a robust modified Cox test under nonnormality. Chapter three presents its

application to the nonlinear dynamic panel data models with the US. patents and

R&D expenditures data.
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Chapter 1

A Modified Cox Test for Dynamic

Models of Conditional Means and

Variances

1 . 1 Introduction

Since Cox (1961, 1962) devised a specification testing based upon a modification

of the Neyman-Pearson maximum-likelihood ratio, testing nonnested models has

been one of the main interests among econometricians. However, the application

of the nonnested Cox test has been restricted to rather simple linear or nonlinear

regression models mainly due to its complicated and, in many cases, intractable
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derivation of the pseudo-true value in the second part of the Cox test. (See, for

example, Pesaran and Deaton (1978), Gourieroux, Monfort, and Trognon (1983),

and Mizon and Richard (1986).] In general, the quasi-maximum likelihood estimate

(QMLE) of a nonlinear model does not have a closed form, so it may not be possible

to obtain the analytical derivation of its pseudo-true value and its finite sample

estimation of the pseudo-true value in the Cox test.

To avoid these computational difficulties some authors developed alternative

approaches. Davidson and Mackinnon (1981) combined the two nonnested models

as an artificial nesting model and replaced the nuisance parameter under the null

hypothesis with the estimated value. under the alternative hypothesis to avoid the

identification problems. For example, suppose there are two competing specifications

All and 11/12,

11/11 :yt : mt(Xt,’y) + ut,’where at | Xt ~2'.z'.d(0,02),t:1,-~,T (1.1)

Mg : yt : nt(Xt,6) + vt,where w | Xt ~ i.i.d(0,T2),t : 1,. - - ,T (1.2)

then Davidson and Mackinnon (1981) transformed these two nonnested models as

yt : (1*- /\)mt(Xt,7) + /\,ut(Xt,6) + whwhere wt I Xt ~ le(0,T]2),t = 1,: ' - ,T

(1.3)

They replaced 6 with an OLS estimate, 6, under Mg instead of the pseudo-true value



of 6 undeer and tested if A20. The DM test can be written as

A

M = mt(Xt,70) + )‘(Mt(Xta 5) — mt(Xt,70)) + wt (1-4)

A

Now we can regard the DM test as an omitted variables test of ( ,ut(Xt, 6)—mt(Xt, 7))

in the nonlinear model yt = mfiX?) +89. If there are nonnormality, heteroscedastic-

ity, or serial correlation, their test statistics becomes invalid. Wooldridge (1990,1991)

suggested a robust version of Davidson and Mackinnon test (DM test) by modify-

ing the misspecification indicator of his conditional Mean Encompassing test (CME

test). Under heteroskedasticity, a robust version of DM test is derived by simply set-

ting the misspecification indicator A E (pt(Xt, 6) —mt(Xt, 7)) and applying the CME

test procedure. For the weighted nonlinear least squares (WLNS) estimator, a robust

DM test is obtained by setting A E (lit/fit)(ut(Xt, 6) — mt(Xt, 6)) (See, Wooldridge

(1990)). For possible nonzero correlation between the residuals ét = yt —- m(Xt, ’y)

and a particular weighting of the difference in the estimated regression functions, set

the misspecification indicator A E (310,721(;.,(Xt,6) — mt(Xt,"y)), where C“ is the

estimated variance function for the model under the null and Cftg is the estimated

variance function for the model under the alternative (See, Wooldridge 1991). On

the other hand, Pesaran and Pesaran (1993) offered another approach to deal with

the computational difficulties of obtaining the pseudo-true value of the Cox test by

a method of stochastic simulation.



Let Hf : f(yt, a | Xt) and Hg : 9(yt,6 | Xt) be the two nonnested competing

models. Then the Cox test (1961,1962) is based upon

Q
)

Tf = {Lf(d) — L903» — Edam) — Lg( )} (1.5)

-—- Lf(d)—Lg(8)+0(a.a), (1.6)

where C(&,[§*) = Ed{Lf((3) '" 149(3)}

Lf(d) = T_IZ$=110gf(yt,a | Xt),Lg(/3) =— T‘IZthllogm/afi l Xt) are the

maximized log likelihood functions under Hf, Hg respectively, and 001,6...) is the

unconditional expectation of the log likelihood ratio when the null is correctly speci-

fied. To obtain [3... by simulation method, a T x 1 vector of independent observations

of yt is artificially generated under Hf and then the ML estimate of 6 is derived

by using these artificially generated observations under Hg. This procedure is repli-

cated R times to obtain

(3* = E2 Bi (1'7)

Then, the same procedure is applied to obtain C(d,6*) by the same simulation

method

R A

C(afiQ£321{Lf(yj,é-Lg(yjfi*)} (1-8)

Even though Pesaran and Pesaran(1993) argues that these estimators ob-

tained by the simulation method converge to the pseudo-true values consistently and

4



fairly quickly with a relatively small number of replications, this simulated method

is not such a favorable approach to the practitioners. Besides, it is very difficult

to use the original Cox test if the given models contain the lagng dependent vari-

ables: ft(yt,a | art,yt_1,:rt_1, . . .) and gt(yt,fi I rt,yt__1,:1:t_1,...) because poten-

tially very severe con'iputational difficulties arise from computing the unconditional

expectation of the differenced log likelihood functions. Bera and Higgins (1997) pre-

sented nonnested Cox test results using the stochastic simulation method proposed

by Pesaran and Pesaran (1993) between two nonlinear equation error models, the

autoregressive conditional heteroscedasticity(ARCH) and the bilinear models with

three time series data sets.

The difficulty in applying the original Cox test in time series applications

and possibly dynamic panel data is that it requires computing the unconditional

expectation of the differenced log likelihood functions when the null is correctly

specified. In this paper, we propose a new approach to solve the computational

difficulties of the Cox statistic by using conditional mean and conditional variance.

Our approach here is to conumte, for each t, the conditional expectation. In some

important applications including ARCH and GARCH models in time series, this

approach leads to substantial simplifications. Another attractive feature of our

approach is that we can test other distributional features because our approach uses

the first two conditional moments while the DM test is for the conditional mean,



E(yt I rt), only. In section 2, we describe our new modified Cox test procedure;

in section 3, we present an empirical result with three time series data sets; in

section 4, we provide simulation experiments of this modified Cox test and we draw

conclusions in section 5.

1.2 A Modified Cox Test

1.2.1 Motivation and General Concepts

Suppose that there are T individually, identically distributed random variables

yt,t : 1, - - - ,T. f(yt,a) is the probability density function under the null hy-

pothesis, Hf, and g(yt, ,3) is the probability density function under the alternative

hypothesis, Hg, where (1,6 are unknown parameters, and f(yt,o) and 9(yt, 6) be-

long to separate families. If Hf is not nested in H9, and Hg is not nested in Hf, then

it is said that the two hypotl‘ieses, Hf and Hg, are nonnested with each other. If

one model can account for the results from the other model, then the former is said

to encompass the latter. [see Mizon and Richard (1986), and Hendry and Richard

(1990).] This means that a correctly specified model can explain the results of its

competing model and the pseudo-true value is the probability limit of the alternative

model under the null hypothesis. Thus, the nonnested test statistic devised by Cox



(1961,1962) is an example of encompassing test. The Cox test, Tf,of Hf against Hg

is based on

Tf = {Lf(9') — 139(6)} — EafLfld') — L902» (1-9)

A

where Lf(ci), Lg(6) are the maximized log likelihood functions under Hf and Hg

respectively and c1, 6 are maximum log likelihood estimators. The test statistic is

based upon the difference between the log likelihood ratio and its expected estimate

under the null hypothesis, Hf. If E5,{Lf(ci) —Lg(6)} : 0, then the Cox test statistic

is just simplified to the form of log likelihood ratio statistic, but, in general, this

term is nonzero under nonnested hypotheses. So the Cox test takes the deviation

between the maximum log likelihood ratio and its expected value under the null

hypothesis. Under the correctly specified null hypothesis, Tf should be close to zero

while a large deviation from zero constitutes evidence against the null hypothesis.

The standardized Cox test statistic, \/T £1175, where Vf is a consistent estimator of

f

the asymptotic variance of Tf, is asymptotically distributed as unit normal. White

(1982) provided general regularity conditions and the asymptotic normality of the

Cox test statistic.

Despite its theoretically refined feature, the derivation of pseudo-true value

of E(-,{Lf(d) — Lg(6)} is not straightforward, and even analytically intractable.

 



To solve these computational difficulties, we offer a new approach based upon the

conditional mean and conditional variance method.

What makes difficult to apply the Cox test is that it requires computing

the unconditional expectation of the differenced log likelihood functions that is not

significantly ai‘ialytical or tractable in many cases. The observations are assumed

independent in case of Cox (1960,1961) and it reduces the computational difficul-

ties in some degree but it still requires significant computational effort. Besides,

for this reason, it becomes very challenging to apply the original Cox test to time

series applications that ccmtain the lagged dependant variables as the explanatory

variables. But these difficulties can be avoided by computing the conditional expec-

tation, for each t. And this leads to substantial simplifications in some important

applications including ARCH and GARCH models. White (1994) showed the com-

putational simplification of the second part of the Cox test using conditional densi-

ties ft and gt given It_1 where It_1 is the information set (a-algebra generated by

{a}, yt-1,;rt_1, - - }) available at time t.

Let Hf : ft(:rt, a) and Hg : g(:rt, 6) be the two nonnested competing models,

then their maximized log likelihood functions are, respectively,

. 1 T .
Ln(o') : T 2 log ft(-l?t, a) (1.10)

t=l

. 1 T -

[471(5) : ‘7: Z 10% {Ida/1,5) (1-11)

W
0
0



and let f : 3?” x a —> §R+ and g : if?” x 6 —> §R+ be conditional densities and d and

6 be the QMLEs under Hf and Hg respectively. An estimate of the expected value

of the average log likelihood ratio when the null is correctly specified is

- - 1 - . .

E}:[Lf,, — Lyn] E /—(log f"(.1:",(1n) — log 9"(1'",7n))f"(1:",an)dvn(r") (1.12)

TI.

: /(n1:]log ft(£L‘t,an) - 10g 9;:(133sz )))H ft((£t011))dvm4113)

t1

= n” Zl/(1()gft(+l7t,dn)—10g9t<$t,61’1))ft($t1éldvt($tll(1.14)
t=1

wheref” Il
l

1
:
:

h
e

The ut- fold integration in the equation(1. 14)ccauses the severe difficulties of comput-

ing the unconditional expectation. It is assumed that the observations are indepen-

dent in the case of Cox (1960,1961), so we can reduce the integral above equation

as 11-fold integral

= iZI/(logfdl'uél—10g91(13t,6))ft(115t,éldvdl‘tll (115)

£21

White (1994) argues that it still requires computational effort, even though this

is much more tractable than before. In addition, the analytical intractability still

remains when we apply Cox test to time series applications that include the lagged

dependent variables as explanatory variables. To avoid these difficulties, we suggest

an approach using the conditional densities of ft and gt given It_1. By computing

the conditional expectation for each t, we can achieve some substantial simplifica-

tions of the Cox test in some important applications. Now we can rewrite the second

9



part of Cox test as

D
:

Q

'
h
'

K
.
”

8
; I

b
1

‘
2

3
)

ll

'
fl
l
H

M
e

[/(103‘ ft(l't,d I It—I) — 10g9t(l't,6 l It—1))ft($tad l It—lld’Ut(17f:1116)
@
0
-

||
t
—
l

II

’
fl
l
t
‘

M
r
s

[EfLUOSfdiI/tfi l It—l) —10g9t(1’t,6 l It—l) l It—ll 0-”)

(
s
.

H
p
—
I

Equation (1.17) is the conditional expectation of the differenced log likelihood func—

tions.

1.2.2 A Modified Cox Test

Let (gt, Zt; t = 1, ~ - - ,T} be a sequence of observable random vectors with yt 1 x J,

and Zt 1 X K;yt is the vector of endogenous variables, and Zt is the vector of

explanatory variables. We assume the regularity conditions in White (1982) held.

Suppose the two competing nonnested parametric models ft under the null and gt

under the alternative respectively, then

Mli ft(;Ut|It—1,90)a 90 E 9 Q 3910,15: 1,2,°°'T (1-18)

612 : gt(yt |1t_1,(50), 60 E A Q diqj : 1,2, - - ~T (1.19)

where It_1 is the information set (o-algebra generated by {yt_1, Zt, - - - , Z1}) avail—

able at time t.

lf6 is VT-consistent estimator of 60 under the null hypothesis when 60 is a

10



true value of 6, and 6 is \/_-c0nsistent estimator of 60 under the alternative hypoth-

esis when 60 is a true value of 6, then x/T(6 — 60) and x/T(6 — 60) are distributed

as asymptotic normal. The null hypothesis is that A!1 is correctly specified and the

alternative hypothesis is that .Mg is correctly specified. Now we write the modified

Cox test as

T

T1111 : T—IZUngtf’yt l 11—1;90)—10891(yt IIt_1;6*)}

t=1

T

“T—1:{EMl(10gft(3/t | I1—1;6’0) —10g9t(yt | It—1;5*) | It-llGl-20)

1:1

where 6* : plimri when M1 is true. It is important to note that 6* ¢ 60 in general.

60 and 60 are the true parameters which are unknown, so we replace them with

6 and 6; the ML estimators of 60, and 60 respectively. This modified Cox test is

composed of two parts, the averaged log likelihood ratio of the null hypothesis to

the alternative hypothesis and its expected value under the null hypothesis. Now

we analyze these two terms one after another.

i) The first term: Let the log likelihood functions of log ft(yt | It_1;6) and

I"

10s 9(1/1 l 11—1;6) be

 

 

- 1 1 - 1 z —mt6 2
logft(yt|1t_1;6’) : —§log27r-§loght(6)——2—(Jt h (6; )) (1.21)

t

- 1 1 . 1 yt—uti 2

loggtetllmm = ~§10827T’§10g771(5)—'2‘( 716i )) (1.22)
t

11



Plug these two log likelihood functions into the first part of the Cox test and

we can rewrite this term as

T

ZUngttl/t I 11—1;9) —10391(yt I 11—1;5)}

i=1

T T (311 — mt(9))2 (yt — 111(9))2 }
: —— 10 h( 1 — —- - — - .23

2{ g M 097”9)} 9.26 1.,(9) 111(6) (1 )
 
 

ii) The second term: The conditional expectation of the log likelihood ratio

0f10gftI ytIIt— 1; 9)t010g9(ytllt- 1; 9)“1»

T

Z [ElelogftQ/t I 11—1;9)— 10g91(yt I 11—1;5) I [if—1}]

t=l
3
"

. T 6) .

t9 +12: mt(9 MM) (124)

11(9) 2t=1 76(9)

  

N
I
’
ST 1 T

—log77t(6) — —2-loght(6) —+-2-Z

i=1
:2

i

Now we combine these two terms together and rewrite the modified Cox test

  

d _ 1 T_1T (gt—7711(9))2 (1/1-#t(9))2 (11(9)

TM 5‘72 — -

 

  

 

1:1 (11(9) 721(9) 771(9)

T ‘ 2 ‘
: T—l { _ é ( )—Au1(6) 91(9) —ht(9)

g (U1 t( )) 721(9) 2

1 1 _

x (7711—63 _ 111161)} “'26)

A more detailed derivation of this result is given in the appendix.

The equation (1.26) above is the modified Cox test statistic when we assume

M1 is correctly Specified. If we exchange the role of the hypotheses, i.e. Mg becomes

12



the null hypothesis and [W1 becomes the alternative hypothesis, then under Hg, this

modified Cox test has a different form as

TMQ :- T_1{10ggt(yt I 11—1;50)—10gft('yt I 11—599}

T

71-1}: EMQUOggtf'l/t I I11—1;(50) — log 69/11 I 11—1;9*) I It—lX}-27)

1:1

 

#1950) — mt(9*) 51(50)2 — 711(50)

_/J't (>60 ) ht(6*) + 2
 
 

T

:T’M:

t=1

1 1

><(9109*)_ 77t(90)>I
(128)

Now we consider the asymptotic distribution of the modified Cox test under

 

 

the null hypothesis that 1111 is correctly specified. Since we do not know the true

values of parameters, 60 and 6*, we use the consistent estimates, 6 and 6 instead,

so the test statistic is based upon

 

T . -

T ,1 : T_1mt(6)){mt(0)-M(6)}
M gm:

 

 

1 721(9)

+U1(9)2 —ht(9)—mtn( 1 __i_\)] 129

21(9) 111(9) (1 )

We can expand TM1 by the mean-value theorem as

  

 

 

  

T :1:

_ —1 mt(90) — 111(9 ) Ut(90) ht(90)
— T g (yt .- mt(60){ 7]t(6*) } 2

p T — 77 F — 6

x (77195“) — h't(190))I “LT-1;; 939;. IQ” — mt(9)){ ‘t(6;t(5)/‘t( )}

'ut(6—)2 — (211(6) 1 1 .. .

+ 2 (7M9) — ht(9) ] (6 —— 60) (1.30)



where 6 and 6 lie on the segment between (6, 60) and (6, 6*).

Now we multiply x/T on both sides

  

T :1: 9

—1/2 1 _ m ’mt(90) - M65 )} Ut(90)‘ * ht(9(1)
T t; [(Jt t(90){ ”“6,” +

x 1 __1__ .11” Till _ _ {mum—1145)}

(WW) M90) +T Z .(Jt mt(9)) —

1t

+ut(9)‘ *llt(9) ( 1‘ _ 1 )] fi(é_90) (1,31)

  

 

  

2

  
T_1/2 i [m _ WU, {was — mm} + Ut(90)2 — ht(00)

  

1:1 mm 2

x 1 _ 1 -1T [ _m {mime—mm}

(77th?) ht(90)) +T Eve (gt t(90)) 7}t(6*)

 

  

ut(60)2—ht(60)( 1 _ 1 )J A-

+ 2 7746*) moo) WW 90)
(1.32)

under the null hypothesis and (6 —-> 60) and (6 —> 6*) by the mean-value property

and V9 is the gradient operator.

 

 

   

 

 

Define

we 6*) = T‘liv [<21 —mt<60>){7”‘(60)““(6*)}
‘0’ “ ,2, 9 ‘ 7746*)

+Ut(90)2—ht(90)< 1 _ 1 N

2 77t(5*) ht(90)

Then

T ‘ ‘ , *2 “
T—1/2 , _m 0* {"UWIthwl} “4(9) -ht(9)( 1, _ 1, )J

1; M t( I) 71M) + 2 WW ht(9)

T *
__ _1/2 , —m "(MOM—HIM )}

T g [(3% t<00){ 7/t(6*)
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2 WW“) htI90)

—\rt(60,5*)\/T(é — 60) —”—> o (1.33)

+Ut(90)2—ht(90)( 1 _ 1 )J

The asymptotic distribution of \/TTMl is equivalent to the asymptotic distribution

m 6 (5 l 6 2—h 6 ——5

off[yt—mt(00>{ ’(791l55‘1’MI“(0)2 i<o)(m(16*)_ht(160)]+ 
 

1

 
 

 

‘Pt(9(1,5*)\/T(9—90)alld mé-eo) = (—%z$:1At<oo>)” 71—? 2;; v9 logfet, 60>.

_ m 6) (6 u 6 2—h. 6 1

Note that f Zthl ((3/1 — mt(60){ ‘I1(7’t)(6f‘)’(:)}+ 1C 0) 2 z( 0) (7,16?) _ h1(60))I

-1
—\Ilt(60, 6*) (E [71~ZT:1A1(60)]) —\/1T 231:1 V9 log f(yt, 60) is martingale difference

sequence random variable with mean zero and variance, V(60, 6*), under the null

PG— W60,)) (1
t_.1

Define

= u mt(00)’/lt(5*l ’ut(90)2—ht(60)( 1 — 1 )IDt _ IMOII 7105*) )+ 2 m(6*) Mao)

Atwo) _ 82 1 meow/00186}

,; * Z mt(9())-Ht(5*) ui(6(i)2—ht(eo)( 1 _ 1 II

”(009) ‘ V9I"(60)< 7M5“) I+ 2 m<6*) ht(90)

A TT 1

Therefore, \/TTMl ~ N((),V(60,6*)) and _v_"1~a N(0, 1) if V is a con-

hy1')othesis, where V(60, 6*) is

2
T —1

;M90)) V9 10% f (yt,(903}4)

:
E
M
HT

V(60,6*) = T’1 ZD

t:1 "
l
I

 

 
 

 

 
 

sistent estimator of V(60,6*). Under the regularity conditions, it is easily shown

that

2

A 1 T A A 1 T A _1 A

Dt — (:7 Z 114915)) (f 2 At(9)) V9 log ft(9) (1-35)

i=1 tzl
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A T

VT : T4}:

i=1

 



Thus, T — V(60, 6*)

  

1 T A 1 T A A 1 T —1 A

:: T; Dt — (That/466)) (TE/12(6)) Valogfdm

1 1 T 1 T A 2_T Z 02 _ (T Z w(00,6*)) (if: 2 242090)) V0108 f(yt,90)

2:1 2:1 2:1

1, 0
(1.36)

Under the null hypothesis, the statistic of the modified Cox test is asymp-

totically normally distributed with mean zero and variance, VMl- Thus, the stan—

. . . fiTAI . . . . .

dardized modified Cox test, 77%, IS asymptot1cally distributed as unit normal

Ml

N(0, 1) under the null hypothesis.

We now consider a time series a lication as an exam le. Su ose t t =
’

1, 2, - - - , T is a sequence of 22'. d observable random variables. Two competing models

are given as

M1 3’62 = m2(90) + 112, WWW U2 ~ N(0,ht(90)), (1-37)

E(:Ut | 12—1) 2 7712(90), (1'38)

Va'r(y, | It_1) : ht(60), where (”(60) : 020 + al'ut2-1-~ARCH(111.39)

and A212 : yt : [12(50) + 52, (1.40)

ELI/2 | 12—1) : #2610) + ()1152—152—1 (1-41)

Va7‘(yt I It—l) = 0?, (1.42)

where 52 = 19152—152—1 + £2, and it ~ Nata?)
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- - Bilinear model

Under the null hypothesis that All is correctly specified, we can write the

modified Cox test as

  

 

T . “ ‘ 2 ” -* “ 2. _ ~ mt(6 — m 6) 11(9) — ((10 + 021u_ )T1111 : T 12 [WW ).2 ( + 2 2 2 1

2:1 Ge

1 1
X“? _ . - 2 )J (1.43)

276 00 + 01111-1

Define

"22(90) - 212W)

0...

 b
N H

”
I

\
D

?

and.
9 III

1

0—2 (12(90)’

 

Ut(90)2 — h2(90)
 

 

 

02 E 112(90)D21 + 2 022

- , 62—h é .
then fiTAIl : 1/2tzl{ut(6)Dt1+ Ut( ) 2 t( )Dt2} (l. 44)

292 — h (9
Therefore, T_1/2 Z (Uta?))Dtl + ut< ) 2 ( )D22}

t=T1

 

6 —} 6_ T—1/2 Z {112(90) 021 + U2( 0) 2 It( 100”}

2: 1

T

+ (l 2,1,,(90,5*))\/f(é— 00) —”+ 0 (1.45)

21460)? — h2(90)

2

 

T T

where T—1 : wt(60,6*) : T—1 : V9 [ut(60)Dt1 + 022]

t=l tzl

. 1 T —1 1 T

and 6776—00) = -( ZA2(90)> it: 010gf(I/2 90)



The asymptotic distributions of the modified Cox test are as follows

T

fiTJ)[1 71—1/2:

t=1

X V0 10% f(y2, 90)]

1T 1T

Let (12 D2— —Z'U’22(0025*) —ZA2(0

Th1 n:

Then,

T T
1 1

"_ (It : “—

m2, «23:51

1T"
: —— Dt— 11111 — ¢’t((6,6

fig pT—ongt 0

V0105f62190)l+0p(1)

1i,

: — (1,

Vflflt

where

* : D 1 _

(1‘ t (pTI—IfOT

T

d l — (6 :- E 2 6 ,6*an p TinéoTtZlefi 0,6) [Hf 0 )l

pTlgréo—11:LZIA2()90 : ElAt(90)l

Therefore,

Efollt—l) — 0

E(q{2I12_1)

 

 

1T 1T 4
0—21 — (er ,(._ A62 pflflTgwm,)leT§tM)

T—->oo

6%

—1

0)) V9102; f(‘y2,90)

P 1T 1T 4

D2 - (T 2: 2/22(90,5*)) (f Z A2(90)> V0108 ffytfpo‘) )

2:1 2:1

1T 4

*O@figf;m%fl

um

(1.49)

XWW%2)

—1

x<pTlimoO —T: At((60) > X VQIng(3/ta‘90)
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(1.50)

E [(02 — (E [Warm (E [Atwonrl



XVe 2022222220»? I 22-1] (1.51)

 

= V1.21(60,6*) (162)

Therefore,

1 1 T 2 1 ~ 2 1 T ‘1 1

V1111 = .— 2 D2 — 202 — 2 WWW - Z At(9) V010gf(y2,9)

T1521 T t=1 T t=1

1 T , 1 T A T1 - 1

+ — Z WW5) — 2 MO) Valogf(yt,9)v2910gf(y2,9)’

T t=l T t=1

1 T ‘1 1 T ’

— 2 242(6)) (— 2 1114625)) (153)

(T 2:1 T 2:1

_. __ ,, _.. . x/TTm.
The mod1fied Cox test stat1st1c under the conditional mean and var1ance,—W2—l, 1s

Ml

standard normal, N(0, 1).

0 Proposition

Assume that the following conditions are satisfied under the null hypothesis,

1. Regularity conditions1 hold [see White (1982).]

2. T1/2(é — 220) —2 0pm) and T1/2(5 — 50) —> 0,,(1)

3. Conditional mean and conditional variance exist and are finite.

1 2222(6) - 222(5)
 

T

Then, T1141 2 T—IZ

 

  

2:1 (222 — mt( )) 772(5)

2222(6)2 — (12(6) ( 1 _ 1 >] 154

+ 2 222(5) M9) ( I ) 

1The regularity conditions are given in the appendix.
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and the standardized Cox test statistlc, 77%{1 IS asymptotically dlstrlbuted as umt

MI1

normal, N(0, 1), where 17M, is the consistent asymptotic variance of x/TTMI.

Note that the equation (1.54) is a function of 6 and 6, the ML estimators

of 60 and (50 respectively. Comparing to the Cox test (1961,1962) and the sim-

ulation method by Pesaran and Pesaran (1993), the modified Cox test does not

require pseudo-true parameters or estimators from artificially generated data. This

approach, based upon conditional mean and conditional variance specifications, is a

more convenient method for a computational purpose. Now we apply this proposi-

tion as follows;

0 Procedure 1.1

1. Obtain 6 and 6, the ML estimators of 60 and 6*, save residuals, ut(6), and

the conditional variance, ht(6) from the log likelihood function log f (yt |

It_1;6) and et(6), and 71(6) from the log likelihood function log gt(yt |

A

It—l;5)-

A A

2. Compute D21, D22, '¢’t(62(§)a 311d V0102; 6(6) Define D“ 5 MW’‘ t

D” E Eta—lull”, and 7122211 #226925) 5 i533; —ngntbtl — 26111522 2
 

212 — In

3. Compute \/TTM1 : T"1/2 21:1 [2221521 + 472—122 —(71-ZtT:12;1(6,5))

x<7l~th=1A(é))-1vglog 22(2)] and

- - . 22. 22 . ~ ~ » _
VM, = $2:le [0.2122(6) + #032 + 2% 2;; 2222, 6))(+ 2;; A26» 1
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XVe log wave log 222622722211 A<é>r1<71~ 11229222

A

—2(71~Z;I:164625))(71-2211A(6))_1(D21V97222(6)+ Tax—Vmw»
4ht(0)

and use the standardized Cox test statistic, —.,1/—‘1,li, as asymptotic unit

Ml

normal under the null hypothesis.

1.3 Empirical Application

Bera and Higgins (1997) took generalized autoregressive conditional heteroscedastic-

ity (GARCH) by Bollerslev (1986) and bilinearity by Granger and Anderson (1978)

as two competing models for nonlinear dependence in time series data and showed

the nonnested Cox test results using a stochastically simulated method by Pesaran

and Pesaran (1993) with three time series data sets; S&P 500 stock index, the daily

pound/dollar exchange rate, and the rate of growth of the monthly U.S. index of

industrial production. In this section we compare our modified Cox test results to

those results from Bera and Higgins (1997).

1.3.1 GARCH and Bilinearity

Forecasting as well as estimating a model are very substantial components in econo-

metrics. These components play a very important role in the analysis of time series

data. If a series is assumed as a white noise (this is very common assumption in
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econometrics), the process is independent of its own past and it becomes very diffi-

cult to forecast this series because we cannot get any information from its own past.

But most of the financial and macroeconomic data in time series shows evidence of

a dependency upon the past. Granger and Anderson (1978) suggested that a white

noise process could be forecastable from its own past in a nonlinear manner and

introduced a bilinear process that allowed dependence 011 the past realization of the

series.

Suppose Xt : 65t_1Xt_1 + 5;, where Q is white noise with mean zero and

variance 0? and Xt and 51 are uncorrelated. The conditional mean Xt is 6Xt_1€t_1

while the unconditional mean is zero because

E(Xt|12—1) : 6X2--1€2—1+E(52|12-—1) (1-55)

I 2'3X2—152—1 (1-56)

while E(Xt) -— E(,6X,~-.15)_1+€t) (1.57)

: 2’3E(X2—1)E(€t—1)+E(€t) (1-58)

—. 0 (1.59)

where It_1 is an information set (o—algebra) available at time t. Next, the condi-

2
. . . . . . . . 0'

tional variance of yt is a? while the unconditional variance lS £73523? because

6

VaT(Xt | 12-1) : 1112(5) | 12—1) (1-60)

(“
‘1
M

(1.61)
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while Var(Xt) = 62Var(Xt)Var(5t_1)+Var(5t) (1.62)

= 62Var(Xt)0§ + 052 (1.63)

27?
Therefore, Var(Xt) 1————3—2——9 (1.64)

_ ‘2 0-5

If 620? < 1, then this process is non-explosive and becomes stationary. So 23%? < 1

is a very important condition for stationarity.

Engle (1982) further developed the idea of nonlinearity in his model, the

autoregressive conditional heteroscedasticity (ARCH), which is very close to the

bilinear process. Suppose y) : X;,13+ (it, then yt ~ N(Xt’6,ht) where ht 2

h(5t_1, - - - ,et-p, a). The conditional mean and the unconditional mean are both

Xt’fiz

E(’yt I 12—1) = Xifi + E(€t l 12—1) (1265)

: Xt’fi (1.66)

and E(yt) : E(X£;3 + at) (1.67)

: X£6+E(et) (1.68)

: X,’,B (1.69)

The conditional variance is ht : 020 + 02152-1 + - - - + apet_p but the unconditional

variance is 03;

VOW/t l 12—1) 2 Va"‘(€t I 12—1) (1-70)
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: ht (1.71)

and Var(yt) = E(€t2) (1.72)

(
'
1
t
o

(1.73)

Note that the conditional variance, ht, contains the current and lagged values

of independent variables through information set available at time t because 5t :

gt — Xéfi. Thus, we can decompose the ht as follows2

ht : h{(5t_1,€t_2,'",Ef-p,O’,Xt,Xt_1,'",Xt_p) (174)

: ht(€t—115t—27 ' ' ° igt—p) O)ht(Xt,Xt_1, ' ° ' ,Xt—p) (1'75)

Bollerslev (1986) extended the ARCH process to the generalized autoregres-

sive conditional heteroscedasticity (GARCH) process allowing for a longer memory

and a more flexible lag structure. The GARCH(p,q) process includes the lagged con—

ditional variances as well as the linear function of past variances of the ARCH(q)

process so, it corresponds to and forecasts from its own past in an adaptive expec-

tation fashion . Suppose y) = X{,6 + at where y) is the dependant variable, Xt is a

vector of independent variables, and ,6 is a vector of unknown parameters, then the

GARCH(p,q) process is given as

2See p.3 on ARCH selected reading, Engle, 1995
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52 | 12—1 N N(0,ht) (1-76)

q I?

where ht :- 020 + Z a,-2:,2_,- + 2 61h“, (1.77)

i=1 i=1

and p20, q>0,

Therefore, yt ~ N(Xt’6,ht) where Var(yt I It_1) = ht, while Var(yt) =

Var(€t) = 0?.

The bilinear process and the GARCH(p,q) process as well as the ARCH(q)

process have forms of nonlinearity and provide more information for forecastability

from their own past realization. Although it is hard to find the true specification

between the bilinear and the GARCH processes due to the similarity between them,

there are some remarkable differences between these two processes. The main and

fundamental difference between the bilinear process and the GARCH (or ARCH)

process is the conditional moments condition. The conditional distributions of a

dependant variable between these two processes are pretty distinguishable. Suppose

a dependant variable yt is generated by yt : X56 + at where 22) is a stochastic error.

Under the null hypothesis, at is specified as
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.Ml :ut I It_1 ~ N(O,ht) (1.78)

where ht = 00 + (1121,24 + 1’31ht_1 - - -GARCH(1, 1) process (1.79)

and under the alternative hypothesis, at is specified as

612 : 'Ut : bllut—lgt—l + Q (1.80)

where 52 ~ N(0,o§)~-Bilmear process (1.81)

In the GARCH(1,1) model, E(yt l It_1) : Xt’fi and Var(yt | It_1) = ht and

in the bilinear model, E(yt | It_1) = Xgfi + bllut—lft—l and Var(yt | It_1) = 03.

The conditional mean of bilinearity shows that the bilinear process does augment the

adaptive information between its past errors and innovations in a nonlinear manner

while the conditional variance of the bilinear model is constant. This nonlinearity

in the conditional mean of the bilinear model may increase the forecastability of the

dependant variable while the GARCH(1,1) process does not bring any augmented

information from its own past and innovation from the unconditional or conditional

mean. On the other hand, the conditional variance of the GARCH(1,1) process

provides augmented adaptive information from its own past realization while the

conditional variance of the bilinear process is constant. Although the conditional
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distributions between the bilinear process and the GARCH process are fundamen—

tally different, the unconditional distributions between these two are very similar,

as shown earlier. Due to the nonlinearity and similar unconditional distributions

between the bilinear process and the GARCH process, it is more difficult to find

the true specification. In the next section we do the modified nonnested Cox test

between these two nonlinear specifications with three time series data sets.

1.3.2 Empirical Application

In this application, we consider three time series data sets: the daily percentage

changes of the S&P 500 stock index, the daily log price changes of the British

pound in terms of the US. dollar (£/$), and the annualized growth rate of the US.

monthly index of industrial production (IP). Note that the first two data sets are

high frequency financial time series and the third data set is a non-financial time

series. These three data sets are the same ones that Bera and Higgins (1997) used.3

We consider that the stochastic error equation follows the nonlinearity and

specify the GARCH model as the null hypothesis and the bilinear model as the

alternative hypothesis. The exogenous variables are considered as autoregressive

 

3They retained the last 10 per cent of the observations to compute root mean squared errors

for the one-step-ahead forecastability from each of models and we used the same data samples as

they did for nonnested test between GARCH and bilinear models.
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Table 1.1: Summary statistics: S&P 500
 

 

Mean s.d. Skew Kurt Max Min sample size
 

Bera&Higgins .060 .820 -.651 8.759 3.468 -5.877 1138

 

Kim .042 .925 —.711 8.796 3.455 -7.008 1138

 

 

Table 1.2: Summary statistics: British pound
 

 

Mean s.d. Skew Kurt Max Min sample size
 

Bera&Higgins -.023 .477 .032 4.758 1.959 -2.252 1210
 

Kim .0260 .692 -.202 4.632 2.990 -2.784 1210
 

 

AR models4. Now the model s )ecifications are iven as
I

All : yt : X;3 + ut

at I It_1 ~ i.i.d(0, ht)

where ht = 00 + 012234 + 6ht_1

A1223” : Xéfi + at

where at = (2112224524 + at,

and 5t ~ i.i.d(0,o§)

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

First, we take the daily S&P 500 stock index (SP) from January 4, 1978 to

May 28, 1993 and compare our statistics summary to that of Bera and Higgins ( 1997)

 

4In modeling of exogenous variables, we take autoregressive (AR) models and the order of the

autoregression following Bera and Higgins (1997).
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Table 1.3: Summary statistics: IP

 

 

 

Mean s.d. Skew Kurt Max Min sample size

Bera&Higgins 3.357 10.604 - .645 5.653 37.699 -51.732 359

Kim 2.728 8.823 -.623 5.649 33.483 -42.364 359

 

 

in Table 1.1. Next, we take the daily log exchange rate of the British pound to the

US. dollar (fl/SB) in a sample period from December 12, 1985 to February 28, 1991

and present the statistics results in Table 1.2. As Bera and Higgins (1997) considered

in their paper, we also take the annualized growth rate of the US. monthly index

of industrial production (1P), a non-financial time series data set, from January,

1960 to March, 1993 for the third empirical application and present the summary

statistics in Table 1.3. Note that the summary statistics between Bera and Higgins

(1997) and our findings given in Table 1.1 to 1.3, are similar but not exactly the

same, even though we used the same data sets with the same sample periods that

Bera and Higgins (1997) considered. There are a couple of things to be noted from

the summary statistics. First, as given in Table 1.1 through 1.3, all the series are

of high kurtosis, especially S&P 500 stock index series. Another is that we have

different signs of the mean values in the British Pound series; -0.023 of Bera &

Higgins and 0.026 of us.

Table 1.4 through 1.6 present the estimation results of the GARCH(1,1)

model. Again our estimation results, using the British Pound series, reveal the
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Table 1.4: Estimated GARCH Models: S&P 500

Bera & Higgins Kim

yt=.052 +.066yt_1+ at 21122041 +.010yt_1+ at

(025) (031) (023) (030)

22):.011 +.013u§_1+ .96822.._1 22):.013 +.01222§_1+ .97222._1

(.006) (.005) (.013) (.004) (.004) (.006)

2(6): -1367.67 2(6): -1511091
 

Table 1.5: Estimated GARCH Models: British Pound
 

 

Bera & Higgins Kim

yt:-.024 +222 yt=.032 +ut

(.014) (.018)

26 : 010 +4059u§_1+- .897h._1 ht: 017 +n065u§_1+- .902ht_1

(.004) (.002) (.017) (.009) (.022) (.036)

2(6): —785.72 2(6): -1231.208
 

Table 1.6: Estimated GARCH Models: IP
 

 

Bera & Higgins Kim

3).:268 +.2793,2,_l +.114y._2+u. y.:2.135 +2702).1 +.122y2_2+u.

(.303) (.033) (.013) (.766) (.100) (.054)

25::6024 5235261 +1012)“1 hf:47114. 22332261 + 040h2_1

(5.42) (.034) (.021) (35.128) (.116) (.524)

2(6): -1301327 2(6): -1247462
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Table 1.7: Estimated Bilinear Models: S&P 500
 

 

Bera & Higgins Kim

yt=.017 +.102yt_1 + 222 yt:—.0004 +.045yt_1 + 222

(.030) (.017) (.029) (.031)

at: .053ut_1€t_1+€t 'ut 2-047Ut—152—1

(.017) (.011)

2( “): -1368.884 2(6): 4517.299

63: .651 63: .844
 

difference in sign; -0.024 of Bera 82: Higgins vs. 0.032 of our estimation in Table 1.5.

Table 1.6 shows that the two estimations results are very close and the GARCH

effects in the IP series are rather small in both estimations (0.101 from Bera and

Higgins vs. 0.040 from out estimation) compared to the two other GARCH effects

in S & P and £/$ data sets.

Table 1.7 through 1.9 present the estimation results of the bilinear model and

there are some significant differences between Bera & Higgins and our estimation

results. First, the bilinear effects in the British Pound series are different in sign;

(0.039, 0.083) from Bera & Higgins vs. (-0.016, 0.025) from our estimation. Second,

the estimated variances of the bilinear model(65) are also different between Bera &

Higgins and our results.

Table 1.10 and 1.11 present the modified Cox test results. Table 1.10 reports

the test results when the GARCH model is the null hypothesis and Table 1.11

reports the test results when the bilinear model is the null hypothesis. Note that
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Table 1.8: Estimated Bilinear Models: British Pound

 

Bera & Higgins Kim

3112.024 +222 yt:.034 +ut

(.020) (.022)

u,:.039'ut_1€t_1

(.021)

l( )=

63

)

20832224524 + 52

(.024)

—819.62

.226

Ut:-.016U.(_1€t_1

(.031)

+.025ut_262_1 + 52

(040)

-1271.357

.478

Table 1.9: Estimated Bilinear Models: IP

 

 

Bera & Higgins Kim

y.:2.34+ .32iy._.+ .125y,_2 + u. y,:2.057+ .30792-1+ 13322-2 + u.

(.634) (.053) (.030) (.566) (.069) (.055)

12,: -.006'u¢_1€¢_1 +52 22,: -.008ut_15,_1 +52

(.003) (.005)

2( °): -131115 2( ‘): 4255.231

63: 90.69 63: 63.651
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Table 1.10: Test resultszHozGARCH vs. H1: Bilinear

Bera & Higgins modified Cox test

 

 

 

S&P 500 .023 .322

British Pound .196 -.033

Industrial Production .533 .021

 

the absolute values of our test results are bigger than those of Bera 82 Higgins when

the bilinear model is the null hypothesis in Table 1.11. When the GARCH model

is the null hypothesis, our test results are close to zero for all three series, so we

cannot reject the null hypothesis in those three data sets at any significance levels.

In Table 1.11, Bera & Higgins reject the British Pound series as the null at 1 ‘70 of

significance level and reject the IP series at 10 % of significance level when the null

hypothesis is the bilinear model, but all three series are rejected in our test results,

which produces much greater test values in absolute value than those from Bera and

Higgins (1997). In Table 1.9, the estimated bilinear effect is -0.008 and the standard

deviation is 0.005 in our estimation results, it is marginally significant and indicates

the bilinear effect is very trivial for the IP series. For the IP series the test value is

~23.724, which is almost 15 times bigger than that of Bera and Higgins and rejects

the bilinear model as the null hypothesis at any significance levels. It is shown that

the error equation does not follow the bilinear model in the IP series and this is

consistent with the test result in Table 1.11 for the IP series.
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Table 1.11: Test results:HO:Bilinear vs. H1: GARCH
 

 

Bera & Higgins modified Cox test
 

S&P 500 -.910 —6.775

British Pound -2.797 —8.300

Industrial Production -1.643 -23.724

 

1.4 Simulation Experiments

In this section we perform some simulation experiments to investigate the potential

applicability of the modified Cox test.

We consider a linear regression model with two different nonlinear error equa-

tions as competing models. We specify an AR(1)-GARCH(1,1) model as the null

hypothesis and a AR(1)-first order bilinear model as the alternative hypothesis.

Thus, the nonnested model specifications are

Mi 161,2 = 00 + 0191,2—1 + U2.

U2 |12:1 ~ N(0,ht).

ht = 22 + 21222—1 + 5722—1.

and rut : \/h.t222, vt ~ N(0, 1)

M2 3 92,2 1‘ 230 + 6192,2—1 + 82.

52 = biiEt—iét—iJrEt,
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(1.91)

(1.92)

(1.93)



and Q ~ N(0,1)

We generate the artificial data in the following way. First,we generate the

normally distributed random variables from RNDN GAUSS program to calculate the

AR(1)-GARCH(1,1) model, y”. Then again we generate the normally distributed

random variables from RNDN GAUSS program for the AR(1)—first order bilinear

model, ygy. The pseudo-true population parameters for 1111 are given as y” 2 015+

0.85y1,t_1+ at with a strong GARCH effect; ht = 0.1+ 0.2u§_1+ 0.75ht_1. For M2,

the pseudo-true population parameters are given as ”62,2 2 O.19+0.8y2,t_1+5t where

at = 0-38552—152—1 + 52- The parameter values chosen for both models correspond

to the empirical estimates of the time series. Next we combine these two data sets

with weight A to generate a new data set yt = Ath + (1 — A)y2,t. Using this new

generated data, we perform the testing experiments by setting different values of

A; A:0, and 1. If A:1, then :02 : y”, so Ml becomes the correctly specified one,

while Mg is correctly specified if A20. The QMLES of these two specifications are

calculated based on BHHH algorithm and the simulation results are calculated from

200 replications and with a sample size of 1000, 2000, 3000, and 5000 and 250, 500,

and 750 for the small sample size properties. T1 is the modified Cox test when MI

is correctly specified and T2 is the modified Cox test when Mg is correctly specified.

When the null is true, the test value(T) should be approximately zero.
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Table 1.12: Simulation results when GARCH(1,1) is true
 

 

 

 

 

 

 

 

 

 

sample size N=1000 N:2000 N=3000 N=5000

T1 T2 T1 T2 T1 T2 T1 T2

mean 0.056 -19.498 0.129 -34577 -0027 -44.458 0.054 -59.661

s.d 0.846 7.045 0.986 3.986 0.945 2.353 1.019 0.678

skew -0.002 1.770 -003 5.692 -0.369 6.129 0.449 -O.276

kurt 2.866 4.423 2.368 39.269 3 782 44.359 3.630 3.138

R.F.(a:.05) 0.020 0.960 0.040 0.995 0.045 1.000 0.055 1 000

toohigh 0.005 0.000 0.030 0.000 0.010 0.000 0.040 0.000

toolow 0.015 0.960 0.010 0.995 0.035 1.000 0.015 1.000           
 

two-tailed test with 02 = 0.05 and A = 1

In Table 1.12, we report the simulation results when the null is the GARCH(1,1)

model with A z 1. The four moments of the unconditional probability distribution

of the simulated test. are very close to normal for all four sample sizes. The actual

size is very close to the nominal size for all sample sizes except for N=1000, in which

the actual size is little bit understated.

Table 1.13 reports the simulation results when the null is the bilinear model

for N=1000, 2000, 3000, and 5000. The distribution of the simulation results appear

to be very close to the standard normal distribution for all sample sizes. And the

actual size is very close to the nominal size.

Figure 1.1 and 1.2 present the empirical density functions (edfs) of the mod-

ified Cox test against the cdf of N(0,1) for N: 1000, 2000, 3000, and 5000 and 200

replications. Figure 1.1 shows that the edfs of the simulation results of T1 appear
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Table 1.13: Simulation results when Bilinear(1,1) is true
 

 

 

 

 

 

 

 

 

 

sample size N=1000 N=2000 N=3000 N=5000

T1 T2 T1 T2 T1 T2 T1 T2

mean -9236 -0.063 -13045 -0145 -15.883 -0039 -20.811 -0.136

s.d 3.125 1.029 4.050 0.923 4.631 0.969 5.394 0.905

skew 2.002 0.022 2.203 -01 18 2.369 0.022 2.548 -0241

kurt 5.949 2.794 6.851 2.439 8.069 2.745 8.720 2.625

R.F.(a = .05) 0.945 0.050 0.945 0.045 0.995 0.050 0.980 0.030

toohigh 0.000 0.020 0.000 0.005 0.000 0.025 0.000 0.000

toolow 0.945 0.030 0.945 0.040 0.995 0.025 0.980 0.030         
 

two-tailed test with a = 0.05 and A = O

to be normal for all sample sizes. Figure 1.2 shows that the edfs of the simulation

results of T2 appear to be approximately normal.
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Table 1.14: Simulation results when GARCH(1,1) is true
 

 

 

 

 

 

 

 

 

        

sample size N=250 N=500 N=750

T1 T2 T1 T2 T1 T2

mean -0.277 -5.507 0.024 -11.027 -0.007 -15.509

s.d 0.760 3.466 0.875 4.973 0.936 6.106

skew -O.446 0.411 -O.223 1.107 —0.177 1.519

kurt 3.015 1.485 2.871 2.667 3.104 3.736

R.F.(a:.05) 0.030 0.725 0.020 0.880 0.040 0.935

toohigh 0.000 0.000 0.005 0.000 0.020 0.000

toolow 0.030 0.725 0.015 0.880 0.020 0.935
 

 
two-tailed test with a = 0.05 and A : 1

Table 1.14 reports the simulation results with small sizes for N = 250, 500,

and 750. The mean and standard deviation for N = 250 slightly deviate from the

standard normal N(0,1) but close to normal for other sample sizes. The simulation

results undersize for all three sample sizes and the rejection frequency of T2 is lower

than 0.95 for N = 250 and 500.

In Table 1.15, the means are little bit greater than zero in absolute value

for all three sample sizes but this deviation is getting smaller as the sample size

increases. The actual size and the rejection frequency are approximately equivalent

to the nominal levels.
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Table 1.15: Simulation results when Bilinear(1,1) is true
 

 

 

 

 

 

 

 

 

       
 

  

sample size N=250 N2500 N=750

T1 T2 T1 T2 T1 T2

mean -4.952 -0.417 -6.806 -0.348 -8.274 -0.256

s.d 1.493 1.047 2.017 1.028 2.530 0.968

skew 2.406 -0.015 2.198 -0.325 2.076 -0.004

kurt 9.508 2.730 7.411 2.573 6.253 2.560

R.F(a=.05) 0.935 0.070 0.940 0.070 0.945 0.055

toohigh 0.005 0.010 0.000 0.000 0.000 0.005

toolow 0.930 0.060 0.940 0.070 0.945 0.050

two-tailed test with a = 0.05 and A = 0

1 .5 Conclusions

A new approach based upon the conditional mean and the conditional variance

specifications has been proposed in order to solve the computational difficulties of

the Cox test. This modified Cox test has some attractive features. The major

attraction of the modified Cox test is its computational conveniency because it

does not require computing the pseudo-true values. As this proposed test is based

upon the specification of the first two conditional moments, we can also test other

distributional features unlike the DM test is for the conditional mean property only.

Furthermore, it can be easily extended to the more complicated nonlinear models.

Monte Carlo experiments indicate that this proposed test seems to perform well for

all different sample sizes. The actual size from this proposed test is almost always

close to the nominal size but the actual size is slightly different from the nominal size
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for N = 250, and 500. Further study needs to be done to examine the applicability

to the finite-sample properties.
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Chapter 2

A Robust Version of the Modified

Cox Test

2. 1 Introduction

In the previous chapter we proposed a modified version of Cox test under speci—

fication of the first two conditional moments. We examined its applicability with

three different data sets: S&P 500 stock index, the £/ 8 exchange rate, and US

monthly IP data sets, and we also did some Monte Carlo simulation experiments.

Both, empirical and simulated, test results are quite convincing the applicability of

the modified Cox test and the actual size from the simulation results is very close

to the nominal size regardless of sample size. But these empirical test results and
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simulation performances are derived under normality assumption. In this chapter

we relax this normality assumption and extend our model in the univariate case

to the robust version of the modified Cox test under nonnormality. In section 2,

we reexamine our modified Cox test under nonnormality and derive the robust and

nonrobust versions of the modified Cox test. Section 3 summarizes some Monte

Carlo simulation experiments under nonnormality. In section 4, we compare the

test results in the previous chapter assuming normality to the test results from the

robust modified Cox test under nonnormality. Then we follow with a summary and

conclusion in section 5.

2.2 A Robust Modified Cox Test

Assume there are two competing nonnested parametric models under the conditional

mean and variance specifications.

Allzyt : mt(60)+ut (2.1)

E(92|12—1) = 2222(90) (22)

V012 112—1) = 722(90) (2-3)

and
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1212192 = 222(50)+52 (2-4)

EI'yt I12-1) = 212(50) (2-5)

WW I 12-1) = 722(50) (2-6)

Following the previous chapter when M1 is correctly specified, the modified Cox test

 

 

  

is

A 1 T M{mt-/2t()6)}

T = — 2
611 T;(Jt—

22t(6)2 —ht(6) (61 1 ))J 27

+ 2 22(6) 24(6) H

And the asymptotic distributions of the modified Cox test are as follows1

 

 

  

 

~ T mt(6

fiTMl = -71:Z1('92- 2222(9”(7: 222(5)}

22t(6)2 —ht(6) ( 1 1“66)

+ , — -

2 722(5) (22(9)

T

—(pTlm;O%Zwt((6, 6)))(p Tlimmix/1266)

XVQ log ft(6)I + op(1) (2.8)

1 T 1 T 1

*ED—-l° — ”66*'l' — A6"D€f222€ (12 2 (19Tgf;oTt;W2(0» ”@732ng 2(0))

XV6108f2I60)

Then, E(92“|12—1) = 0. (2-9)

—1

EICII‘2 I I2—1) = E (192—16(T—Z422(90,5)I) (El—ZEAM90) I)

2 1

XV6108f2(90)) 212.1) (2.10)
 

1We follow these from the previous chapter. See section 1.2.2 for more details.
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= V((IZk I 112—1) (2-11)

Under conditional normality when A11 is correctly specified,

 

 

15111120122 — ht) I [2—1) ’—‘ 0, (2-12)

and E(:21;1|1t_1) : 222460)? (2.13)

.. h, 6 2

50, E30122 I12—1) = D221h2(90)+ M40) 0222

1 T :1: 1 T —1 1 T at I

+(— Z 16260.6 ))(- Z A2(90)) (- Z 162(9045 ))

thl Tt=1 Tt=1

1 T 1 T 1

-2(— Z l6’12(90,<5"‘))(— 2 242(90)—

thl Ti=1

><(DVm(6)+ D” Vh(9)) (214)

A T A A A 2 A

Thus, VT1 : %Z D31}1t(6)+h—t(fl—Dt22

F
.
-

1 t

1: M ii A
—2< Z'¢2(9,5))(fZA2(9))—1

t=1

X(1’321V6m2(6)+ VahtIé» (2-15)
 

. . . . . fiT‘ 1/2
Under condltional normality, the modified Cox test, Tl ~ N(0, 1),

T1

but if the conditional normality does not hold, then the limiting distribution of

fly: 1/2

V is not standard normal in general. Under nonnormality the modified Cox

T1

test derived from the previous chapter is not valid and the actual size from this

nonrobust modified Cox test can be different from the nominal size. The robust
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modified Cox test under nonnormality is

Under nonnormality,

EIUtWZ? — ht) I 12—1)

E226? — 6.2)2 I 12-1)and

extended from equatior1(2.10)and (2.11).

ECU? — Utht I 12—1)

= 622261124) (2.16)

: E(uf-2u§ht+h?|1t_1)

= Em? I 12-1)-h22 (217)

Under nonnormality, E01? | It_1) and E(1121 | It_1) are generally unspecified

but we can derive the conditional variance of the robust modified Cox test using the

Law of Iterated Expectation (L.I.E):

1321022

2

D2

_QE

4

 

EI

and E [

E (Ut(90)3 I 12—

(162(90)4 I 12—

'DtlDt2
_U

  

1) = E_ 2 2(90)3I (2.18)

‘ ’ 2

1) z: E %2'Ut(60)4] (2.19)

So the conditional variance of the robust modified Cox test under nonnor-

mality is

-, 1T - - 0,132 -. D2 -
V6? = 12 0316626) 412—22 <6>3+T’2<62(6>4-62<6>)

l T , . A 1 T . -1 1 T I

+(— Z W2(9,5))(— 2 242(9)) (— Z 1.0492(5))

Tt=l T121 Tt=1



 

T i=1 t=l

x(D V m (6) + Dt? (1 — —1—)V 11(6)) (2 20)
t1 6 t 4h¢(6) h¢(6) 6 t -

Now we apply these properties as follows:

0 Procedure 2.1

1. Obtain 6 and 6, the QML estimators of 60 and 60, save residuals, ut(6),

and the conditional variance, ht(6), from the quasi-log likelihood func-

A A

tion log f (gt | It_1; 6) and (21(6) and 77t(6) from the quasi-log likelihood

function log g(yt, | It_1; 6) .

A

2. Compute D21, 1522,71~22T:1w2(6,5),(%2?=1242(6))‘1,Valogf2(é),'Ut(9)3a

. , . . 6— 8
ut(6)4, and ht(6)2. Define D“ EW,Dtg E £7205} — Bier),

A 2 ‘ A A A ~2__“ A

At(0) E W, and w2(6,6) 2 Vocal)” — hiflotg).

A A *2_‘ A A A

3. Compute 6?er 2 TV2 23le (6,1)“ + flying — (71. 23;, we, 6))

(}Z?:1A2(6))_1V01<)g 22(6)]

‘R_1T *2 * 1')D_*3D2 ‘4 2
and VT1 — T thl Dt1ht(9) + 412—”ut(6) + j‘2(ut(6) — ht(6) )

+(jl‘ 2;:1Wt(é28))(’}' Zthl AtIé))_1(%Z$:1¢’t(éag)Il

‘2(’} 2?:1 Wt”: 8))(71‘ 2?:1 AtIéII—l

A

X(Dt1ngt(6) + fiVghtw» and use the robust modified Cox test

12

statlst1c, W721 as asymptotlcally un1t normal under the null hypothes1s'.

T1
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This robust modified Cox test has some appealing characteristics. First, as

Bollerslev and Wooldridge (1992) showed in their robust version of LM test, this

approach is also valid under normality and can be applied to the case where normal-

ity assumption does hold. Second, this procedure requires only the first derivatives

of the conditional mean and variance functions, it is relatively easy to compute.

Finally, even though this robust inference procedure requires the conditional third

and fourth moments, this is not a restrictive condition and we can calculate the

third and fourth moments for the robust modified Cox test using L.I.E.

2.3 Monte Carlo Experiments

To investigate the applicability of the robust modified Cox test, we perform some

simulation experiments for different sample sizes. Following the previous chapter,

we consider a linear regression model with two different nonlinear error equations:

we specify the AR(1)-GARCH(1,1) model as the null hypothesis and the AR( 1)-the

first order bilinear model as the alternative hypothesis. Thus, these two nonnested

model specifications are

M1592 = 00+0113/2—1+U2, (2-21)

at I It__1 N i.i.d(0,ht), (2.22)
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ht = K + 7U%_1 + 6ht_1, (2.23)

and at = \/h7tz/t (2.24)

MQ i yt = 60 + 61312—1 + 52, (225)

and 62 I It—l = 51152—152—1 + {2 (2-26)

As seen often in time series analysis, high frequency financial time series are

of leptokurtosis and the unconditional distribution of many finantial time series typ—

ically shows fatter tails than a normal distribution. But as shown in Engle (1982)

and Bollerslev (1986), unconditional error distribution could be leptokurtic even

though the conditional error distribution is normal. Bollerslev (1987) proposed that

if the error distribution is not normal, for example the conditionally t-distributed

errors, then it permits a conditional leptokurtic distribution and it also accounts for

the unconditional kurtosis. To investigate the valid inference from the robust mod-

ified Cox test under nonnormality, we generate the error terms from two different

nonnormal distributions. First, we have considered that Vt (ft as well) is condi-

tionally distributed as a Student’s t-distribution with 5 and 10 degrees of freedom.

The mean and variance of t-distribution are 0 and figflf v 2 3, respectively,

where v is degree of freedom, so the variance from t). distributed random variables

is bigger than the variance from the random variables generated by the standard
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normal distribution, if v is relatively small number. But the t-distributed random

variables still contain symmetricity on the distribution. Next, in order to examine

the effect of asymmetric error distribution, we generate the error terms from two

i.i.d x? distribution, i.e. Vt (5t as well) is formed from £21—T1722 where xt1,:1:t2 are i.i.d

x? variates, respectively. Thus, the distribution of Vt (fit as well) is i.i.d(0,1) per-

taining to asymmetric property. The tv distributed random variables were formed

as (v — 2) times a N(0,1) random variable divided by the square root of X3. variate.

The normal variate was generated by the RNDN GAUSS program and X3, with 1)

df by the RNDCHI GAUSS program. Beside the error generating procedures under

nonnormality, we proceed in a similar way for the pseudo-true population parame-

ters for M1 and Mgzand for the data generating procedure in the previous chapter

(see 1.4 Simulation Experiments). The QMLES for both models are found through

BHHH algorithm and the simulation results are based upon 200 replications and a

sample size of 500, 1000, 2000, and 3000.

Table 2.1 and 2.2 report the simulation results under nonnormality: the error

terms were generated from x? distribution. In Table 2.1, the four moments of the

unconditional probability distribution of T1 are approximately close to normal but

the means are a little bit larger than zero in absolute value for N = 500, and 1000.

The actual size is very close to the nominal size for all sample sizes.

 

2We change the bilinear parameter value to b“ = 0.085 for a computational conveniency.

51



Table 2.1: Robust Cox test results when GARCH(1,1) is true
 

 

 

 

 

 

 

 

 

     
 

 

      

sample size N=500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -0373 -14.269 -0207 -23.380 -0075 -35.692 0.105 -46.313

s.d 0.966 3.341 1.069 4.390 1.008 5.043 1.050 2.436

skew -0272 2.023 -0031 3.080 0.003 4.011 0.170 10.404

kurt 4.868 6.470 4.361 11.810 3.148 19.776 2.599 127.053

R.F.(a=.05) 0.050 1.000 0.060 1.000 0.060 1.000 0.055 1.000

toohigh 0.010 0.000 0.015 0.000 0.020 0.000 0.045 0.000

toolow 0.040 1.000 0.045 1.000 0.040 1.000 0.010 1.000

max3 0.148 0.076 0.015 0.060

min4 -0.096 -0075 -0.056 -0047

mean5 0.004 0.001 0.001 -0000

 

Data are generated from X“)

Table 2.2 reports the simulation results from the nonrobust modified Cox

test under nonnormality: the error terms were formed from the x? distribution.

Nonrobustness indicates that we apply the modified Cox test derived from the nor-

mality assumption to the situation where this normality assumption does not hold

any more. The means and standard deviations are overstated in absolute value and

the actual size is more than twice as large as the nominal size varying from 0.095 to

2

 

3The maximum value of correlations for a sample size N = 500, 1000, 2000, and 3000, and with

200 replications

4The minimum value of correlations for a sample size N = 500, 1000, 2000, and 3000, and with

200 replications

5The mean of correlations
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Table 2.2: Nonrobust Cox test results when GARCH(1,1) is true
 

 

 

 

 

 

 

 

 

     
 

 

 

sample size N=500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -0495 -13930 -0439 -22590 0.059 -36.517 0.008 -45741

s.d 1.211 3.821 1.262 5.108 1.383 3.139 1.240 3.822

skew 0.165 1.669 0.029 2.337 0.168 6.017 0.106 6.561

kurt 3.582 4.636 2.875 7.194 2.879 48.729 3.354 54.734

R.F.(a=.05) 0.120 0.995 0.160 1.000 0.135 1.000 0.095 1.000

toohigh 0.035 0.000 0.035 0.000 0.085 0.000 0.045 0.000

toolow 0.085 0.995 0.125 1.000 0.050 1.000 0.050 1.000

max 0.117 0.083 0.072 0.045

min -0102 -0.069 -0052 -0055

mean -0001 -0004 -0003 0.003     
 

 
Data are generated from X21) distribution and R2200

A

0.160. Under nonnormality, the robust modified Cox test performs far much better

than the nonrobust modified Cox test.

Figure 2.1 and 2.2 Show the empirical density functions (the edfs) of the

robust and the nonrobust modified Cox tests against the cdf of N (0,1). In Figure

2.1, the empirical density functions appear to be equivalent to the cdf of N(0,1) for

all the sample sizes except for N : 500. In Figure 2.2, the edfs are distorted and

are far from normal for all four sample sizes.

Table 2.3 reports the simulation results of the robust modified Cox test under

x? distribution when the bilinear model is correctly specified. The actual size is a

little bit overstated than the nominal size but approaches the nominal size as sample
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Table 2.3: Robust Cox test results when Bilinear(1,1) is true

 

 

 
 

 

 

 

 

 

     
 

 

 

sample size N=500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -3.736 -0404 -4.898 -0090 -6.865 -0.106 ~8.278 0.152

s.d 1.930 1.326 2.711 1.108 3.563 1.182 4.448 1.060

skew 0.215 -0.811 0.405 -0294 0.556 -O.328 0.589 -0.469

kurt 2.689 4.066 2.389 2.479 2.268 2.549 2.182 3.276

R.F.(a=.05) 0.840 0.120 0.820 0.090 0.865 0.080 0.845 0.060

toohigh 0.000 0.005 0.000 0.020 0.000 0.010 0.000 0.030

toolow 0.840 0.115 0.820 0.070 0.865 0.070 0.845 0.030

max 0.151 0.101 0.101 0.088

min -0. 126 -0077 -0051 -0044

mean -0002 -0000 -0002 0.001       
 

Data are generated from x?” distribution and R2200

size becomes larger. The four moments of the unconditional probability distribution

of T2 are close to normal but, again, the mean and standard deviation are slightly

different from N(0,1) for N = 500.

Table 2.4 reports the simulation results of the nonrobust modified Cox test

under x? distribution. As expected, the four moments of the unconditional prob-

ability distribution of T2 are far from normal and the actual size is very different

from the nominal size and overstated varying from 0.150 to 0.260.

Figure 2.3 and 2.4 show the edfs of the robust and nonrobust modified Cox

test of T2. In Figure 2.3, the edfs are very close to the cdf of N(0,1) for all four

sample sizes but the edfs are severely distorted and far from the cdf of N(0,1) in
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Table 2.4: Nonrobust Cox test results when Bilinear(1,1) is true

sample size N2500 N21000 N=2000 N23000

T1 T2 T1 T2 T1 T2 T1 T2

 

 

 

 

mean -3.736 0.172 -4.898 0.309 -6.865 0.358 -8.278 0.322

 

s.d 1.930 2.080 2.711 2.820 3.563 2.912 4.448 2.877

 

skew 0.215 1.138 0.405 1.610 0.556 0.450 0.589 0.337

 

kurt 2.689 6.646 2.389 9.842 2.268 4.106 2.182 3.376

 

R.F.(a2.05) 0.840 0.290 0.820 0.350 0.865 0.450 0.845 0.475

 

toohigh 0.000 0.150 0.000 0.220 0.000 0.260 0.000 0.255

 

tOOIOW 0.840 0.140 0.820 0.130 0.865 0.190 0.845 0.220    
 

 

   
max 0.135 0.074 0.079 0.049

min -0107 -0.068 -0054 -0045

mean -0002 0.001 0.001 0.000    
 

Data are generated from the x?” distribution and R2200

Figure 2.4.

Table 2.5 and Table 2.6 report the simulation results for the robust and

the nonrobust modified Cox test under t5 distribution. The means and standard

deviations are approximately normal but the actual size is understated than the

nominal size for N 2 500 and slightly overstated for other three sample sizes in

Table 2.5.

Table 2.6 reports the simulation results of the nonrobust modified Cox test

under t5 distribution. The actual size and the unconditional four moments of the

probability distribution of T1 are far from normal for all sample sizes.
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Table 2.5: Robust Cox test results when GARCH(1,1) is true

sample size N=500 N21000 N=2000 23000

T1 T2 T1 T2 T1 T2 T1 T2

 

 

 

 

mean -0.112 -13.739 0.101 ~23.109 0.026 -35.247 0.147 -45.876

 

s.d 0.965 3.003 1.065 3.504 1.115 5.193 1.105 2.170

 

skew 0.693 1.657 0.277 3.435 -0.016 3.866 0.469 8.670

 

kllI‘t 3.748 4.852 2.937 15.485 3.410 18.060 3.251 96.825

 

R.F. 0.025 1.000 0.070 1.000 0.075 1.000 0.075 1.000

 

toohigh 0.020 0.000 0.055 0.000 0.055 0.000 0.050 0.000

  tOOlOW 0.005 1.000 0.015 1.000 0.020 1.000 0.025 1.000

Data are generated from the t-distribution with 5 degrees of freedom and R2200.

          

Table 2.6: Nonrobust Cox test results when GARCH(1,1) is true

sample size N=500 N=1000 N22000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

 

 

 

 

mean -0.754 -13.255 -0.407 -22.793 -0.102 -35.999 0.019 45.765

 

s.d 1.912 3.338 2.309 4.134 2.228 3.470 2.232 2.439

 

skew -1327 1.352 -0971 2.741 -0531 5.113 -0354 5.532

 

kurt 7.495 3.704 4.700 10.334 2.963 31.989 2.981 39.032

 

R.F. 0.250 1.000 0.325 1.000 0.370 1.000 0.385 1.000

 

toohigh 0.035 0.000 0.125 0.000 0.180 0.000 0.200 0.000

  toolow 0.215 1.000 0.200 1.000 0.190 1.000 0.185 1.000

Data are generated from the t-distribution with 5 degrees of freedom and R2200.

        
  



Figure 2.5 and 2.6 show the edfs of the robust and the nonrobust modified

Cox test. The edfs in Figure 2.5 are very close to the cdf of N(0,1) while the edfs in

Figure 2.6 are far from the cdf of N(0.1).

Table 2.7 and 2.8 report the simulation results of the robust and the nonro-

bust modified Cox test under t5 distribution when the null is the bilinear model.

The simulation results show that the robust modified Cox test performs far better

than the nonrobust modified Cox test generally under nonnormality except for the

simulation results from the robust modified Cox test for N 2 500. They are very

similar to the results from the nonrobust modified Cox test for the same sample size.

The edfs in Figure 2.7 are slightly deviated from the cdf of N (0,1). In Figure 2.8,

the edfs are more distorted from the cdf of N(0,1). We suspect that this relatively

poor performance may be mainly due to the parameter value chosen for the bilinear

effect.6

Table 2.9 and 2.10 report the simulation results under 7310 distribution. In

Table 2.9, the simulation results are very close to normal and the actual size is also

 

6We could not compute the Hessian matrix for the GARCH(1,1) model when we used the

same parameter value(0.385) for the bilinear effect in the previous chapter, so we chose a different

parameter value(0.085) that managed to fit in the GARCH(1,1) model. But this parameter value

chosen for the bilinear effect is rather small and dose not provide a strong bilinear effect. Thus,

the error terms generated from this bilinear parameter value do not fit in well enough to perform

the simulation experiments and the performance is particularly worse in the small sample size.
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Table 2.7: Robust Cox test results when Bilinear(1,1) is true
 

 

 

 

 

 

 

 

         
   

sample size N=500 N=1000 N22000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -4052 -0.569 -5.386 -0375 —7.823 -0151 -8.496 —0.209

s.d 2.208 1.529 2.828 1.193 4.206 0.932 4.693 0.967

skew -0429 -1332 0.167 -O.678 0.275 -0323 -0011 -0277

kurt 4.425 5.217 2.316 3.979 1.931 2.752 1.908 3.141

R.F.(a2.05) 0.880 0.145 0.865 0.080 0.900 0.040 0.905 0.050

toohigh 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.005

toolow 0.880 0.140 0.865 0.080 0.900 0.040 0.905 0.045

Data are generated from the t-distribution with 5 degrees of freedom and R2200

Table 2.8: Nonrobust Cox test results when Bilinear(1,1) is true
 

 

 

 

 

 

 

 

 

           
 

sample size N=500 N21000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -4052 -0101 -5.386 -0222 -7.823 -0174 -8.496 -0320

s.d 2.208 1.587 2.828 1.577 4.206 1.630 4.693 1.840

skew -0429 1.126 0.167 0.824 0.275 0.050 -0011 -0.783

kurt 4.425 7.683 2.316 4.716 1.931 4.170 1.908 7.390

R.F.(a2.05) 0.880 0.145 0.865 0.175 0.900 0.210 0.905 0.265

toohigh 0.000 0.080 0.000 0.070 0.000 0.080 0.000 0.105

toolow 0.880 0.065 0.865 0.105 0.900 0.130 0.905 0.160

Data are generated from the t—distribution with 5 degrees of freedom and R2200
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Table 2.9: Robust Cox test results when GARCH(1,1) is true
 

 

 
 

 

 

 

 

 

 

     

sample size N=500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -0.083 -13.378 0.041 -22550 0.118 -35794 0.079 -45379

s.d 0.882 2.643 0.967 2.523 1.050 1.394 1.021 0.709

skew 0.130 1.826 0.246 3.332 0.085 6.267 0.051 0.630

kurt 2.532 5.476 3.438 16.512 2.723 62.431 3.496 5.046

RF. 0.015 1.000 0.050 1.000 0.055 1.000 0.060 1.000

toohigh 0.005 0.000 0.035 0.000 0.030 0.000 0.045 0.000

toolow 0.010 1.000 0.015 1.000 0.025 1.000 0.015 1.000    
 

  
Data are generated from the t-distribution with 10 degrees of freedom and R2200.

very close to the nominal size for all four sample sizes. The simulation results of the

nonrobust modified Cox test in Table 2.10 are far from normal. Figure 2.9 and 2.10

show evidence that robust modified Cox test performs better than the nonrobust

modified Cox test under nonnormality and that the robust modified Cox test is also

very accurate.

Table 2.11 and 2.12 report the simulation results of the robust and the nonro—

bust modified Cox tests under 1510 distribution. As expected, the simulation results

are very similar to those from Table 2.7 and 2.8.

Figure 2.11 and 2.12 Show the edfs of the robust and the nonrobust modified

Cox test. Again, the edfs in Figure 2.11 slightly deviate from the cdf of N (0,1) but

they are relatively close to the cdf of N(0,1) compared to the edfs in Figure 2.12.

So far, we have illustrated the applicability of the robust modified Cox test
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Table 2.10: Nonrobust Cox test results when GARCH(1,1) is true
 

 

 

 

 

 

 

 

 

     

sample size N=500 N:1000 N22000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -0030 -22592 -0.096 -22347 0.120 -35.860 0.129 -45420

s.d 1.309 2.622 1.315 2.969 1.443 1.179 1.523 0.755

skew -O.158 3.182 0.226 2.914 -0117 4.036 0.269 0.377

kurt 3.131 14.538 2.921 12.381 2.859 29.950 2.813 2.816

RF. 0130 1.000 0.110 1.000 0.160 1.000 0.210 1.000

toohigh 0.050 0.000 0.030 0.000 0.090 0.000 0.125 0.000

toolow 0.080 1.000 0.080 1.000 0.070 1.000 0.085 1.000      
Data are generated from the t-distribution with 10 degrees of freedom and R2200.

Table 2.11: Robust Cox test results when Bilinear(1,1) is true
 

 

 

 

 

 

 

 

 

          

sample Size N:500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

mean -3885 -0510 -6.280 -0.632 -8.182 -O.261 -10227 -0.189

s.d 2.195 1.407 3.550 1.232 4.962 0.992 6.202 1.005

skew -0.596 -1532 0.060 -0453 0.024 -0293 -0072 -0204

kurt 2.951 6.808 2.097 3.329 1.865 2.914 1.700 2.499

R.F.(a2.05) 0.830 0.120 0.850 0.160 0.880 0.070 0.875 0.065

toohigh 0.000 0.000 0.000 0.010 0.000 0.010 0.000 0.010

toolow 0.830 0.120 0.850 0.150 0.880 0.060 0.875 0.055

 

Data are generated from the t-distribution with 10 degrees of freedom and R2200
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Table 2.12: Nonrobust Cox test results when Bilinear(1,1) is true

sample size N2500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

 

 

 
 

mean -4.052 -0.101 ~5.864 -0.285 -8.324 -0.153 -9.712 0.167

 

s.d 2.208 1.587 3.370 1.215 4.763 1.219 6.019 1.420

 

skew -0429 1.126 -0.075 0.619 0.043 0.343 -0.063 0.356

 

kurt 2.076 4.195 2.076 4.195 1.778 2.880 1.783 4.015

 

R.F.(a2.05) 0.870 0.120 0.870 0.120 0.915 0.120 0.885 0.125

 

toohigh 0.000 0.080 0.000 0.045 0.000 0.065 0.000 0.050

 

toolow 0.880 0.065 0.870 0.075 0.915 0.055 0.885 0.075

Data are generated from the t-distribution with 10 degrees of freedom and R2200

          
 

from the procedure 2.1 but in order to use this proposed test we have to calculate

each term in the conditional variance in equation (2.15). This might be a little

cumbersome. As an alternative way, we suggest E [qz‘ 2 I It_1] from equation (2.10)

as the conditional variance of the robust modified Cox test. Both the robust and

nonrobust modified Cox test are originally derived from the equations (2.10) and

(2.11). An attractive feature of this robust modified Cox test is that it does not

require computing every term in equation (2.15). If the error terms do not follow

normality, then the third and fourth moments are automatically calculated in equa-

tion (2.10). We did the simulation experiments with some selective cases. But these

simulation results strongly suggest that this alternative robust modified Cox test

would perform properly for other cases as well.

Table 2.13 reports the simulation results under nonnormality when we use
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Table 2.13: Robust Cox test results when GARCH(1,1) is true
 

 

 

 

 

 

 

 

 

     
 

 

      

sample size N=500 N:1000 N=2000 N23000

T1 T2 T1 T2 T1 T2 T1 T2

mean -0355 -14130 -0192 -22715 -0059 -35.198 0.043 -45845

s.d 0.899 3.597 0.927 4.937 0.951 6.516 0.9745 3.761

skew 0.313 1.840 0.285 2.222 -0.668 3.498 -0043 5.766

kurt 3.848 5.427 2.791 6.731 5.060 14.637 2.834 37.900

R.F.(a2.05) 0.030 0.995 0.025 1.000 0.040 1.000 0.045 1.000

toohigh 0.010 0.000 0.010 0.000 0.010 0.000 0.020 0.000

toolow 0.020 0.995 0.015 1.000 0.030 1.000 0.025 1.000

max 0.096 0.061 0.047 0.060

min -0.096 -0077 -0051 -0.056

mean 0.004 0.001 -0000 -0002

 

Data are generated from x2 distribution, R2200, and the conditional
(1)

variance from equation (2.10) is used
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equation (2.10) as the conditional variance for the robust modified Cox test. These

simulation results are very similar to those in Table 2.1. Note that the actual size

in Table 2.13 is slightly understated than the nominal size while the actual size in

Table 2.1 is slightly overstated than the nominal size. But these differences from

both cases are trivial and very close to the nominal size for all sample sizes.

Figure 2.13 shows the edfs of the alternatively proposed robust modified Cox

test. The edfs are also very close to those in Figure 2.1 and they approach the cdf

of N (0,1) as sample size increases.

Table 2.14 reports the simulation results under x? distribution when the

bilinear model is correctly specified. The means and standard deviations of this

simulated results appear to be approximately normal and the actual size is lower

than that in Table 2.3 for N 2 500, and 1000.

Figure 2.14 shows the edfs of this proposed test. The edfs are very close to

the cdf of N(0,1) for all sample sizes as in Figure 2.3.

Table 2.15 reports the simulation results of the robust modified Cox test

using the conditional variance from equation (2.10) under tlo distribution. The

simulation statistics are outperformed compared to Table 2.7. The four moments

of the probability distribution of T2 are very close to normal and the actual size is

also very close to the nominal size for all sample sizes. Note that the actual size
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Table 2.14: Robust Cox test results when Bilinear(1,1) is true

sample Size N=500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

 

 

 

 

mean -3.736 -0.250 -4.898 -0.076 -6.865 0.091 -8.278 0.078

 

s.d 1.930 1.139 2.711 1.026 3.563 1.196 4.448 1.063

 

skew 0.215 -0433 0.405 -0380 0.556 -0473 0.589 -0074

 

kurt 2.689 2.651 2.390 2.900 2.268 3.068 2.182 2.944

 

R.F.(a2.05) 0.840 0.085 0.820 0.060 0.865 0.100 0.845 0.060

 

toohigh 0.000 0.005 0.000 0.010 0.000 0.040 0.000 0.025

 

tOOlOW 0.840 0.080 0.820 0.050 0.865 0.060 0.845 0.035    
 

 

    
max 0.094 0.099 0.071 0.066

min -0122 -0088 -0.063 -0044

mean -0001 -0001 -0001 0.000   
 

Data are generated from x?” distribution, R2200, and the conditional

variance from equation (2.10) is used
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Table 2.15: Robust Cox test results when Bilinear(1,1) is true

sample size N=500 N=1000 N=2000 N=3000

T1 T2 T1 T2 T1 T2 T1 T2

 

 

 

 

 

mean -4.052 -0.235 -5.386 -0.254 -7.823 -0.119 -8.496 -0.197

 

s.d 2.208 0.920 2.828 1.021 4.206 0.914 4.693 0.914

 

skew -0.429 -0.095 0.167 -0.051 0.275 -0.143 -0.011 -0.180

 

kurt 4.425 2.538 2.316 2.609 1.931 2.553 1.908 3.065

 

R.F.(a2.05) 0.880 0.040 0.865 0.050 0.900 0.015 0.905 0.045

 

toohigh 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.005

       toolow 0.880 0.040 0.865 0.040 0.900 0.015 0.905 0.040

Data are generated from tlo distribution, R2200, and the conditional

   
 

variance from equation (2.10) is used

for N 2 500 in Table 2.15 is 0.040 which is almost equivalent to the nominal size of

0.05 and it is more than three times lower than the actual size of 0.145 from Table

2.7 for N 2 500.

Figure 2.15 shows the edfs of the robust modified Cox test. The edfs are

almost equivalent to those in Figure in 2.7 and they appear approximately to be the

cdf of N(0,1).

These simulation results, in Table 2.13 through 2.15, exhibit that the actual

size is very close to the nominal size and that the simulation statistics are very

similar to those from Table 2.1, 2.3, and 2.7. But the main difference between this

type of robust modified Cox test and the previously proposed one is that the actual

size of the alternative way of the robust modified Cox test is slightly understated
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2.4 Empirical Application under Nonnormality

As noted earlier, high frequency financial time series ususally exhibit leptokurtosis

and the distribution from these time series typically shows fatter tails than the

normal distribution. Applying the modified Cox test, assuming normality to the

situation under nonnormality, generally leads to invalid test inferences. As seen in

Table 1.1 through 1.3 in section 1.3, all the empirical data sets reveal higher kurtosis

than the normal distribution, so we suspect that the distributions of these time series

follow the normal distribution. To investigate this, we perform the robust modified

Cox test for these three time series data sets and compare the test results from

the robust modified Cox test to the test results from the modified Cox test in the

previous chapter.

Table 2.16 and 2.17 are the test results from the robust modified Cox test

and Table 2.18 and 2.19 are the test results from an alternative way of the modified

COx test. First, when the null is the GARCH(1,1) model, the test values from the

rObust modified Cox test are smaller than those from the nonrobust test but both

test results from the robust and the nonrobust modified Cox test could not reject

the null hypothesis at any significance levels. Second, when the null is the bilinear

model, the test values from two types of the robust modified Cox test are much

S'Irlaller than those from Table 1.11, especially the test value of IP series but the test
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Table 2.16: Test resultszHozGARCH vs. H1: Bilinear

stochastically simulated Cox test modified Cox test

S&P 500 .023 .114

British Pound .196 -.011

Industrial Production .533 .017

Table 2.17: Test results:H0:Bilinear vs. H1: GARCH

stochasticly simulated Cox test modified Cox test 

 

 S&P 500 -.910 -2.896

British Pound -2.797 -6.289

Industrial Production -1.643 -3.802

 

values between these two robust modified Cox tests are very similar: Test results

in Table 2.16 vs. Table 2.18 and Table 2.17 vs. Table 2.19. And both test results

reject the bilinear model as the null at any significance levels. The test results, in

Table 2.16 through 2.19, are different from those in Table 1.10 and 1.11 and show

evidence that these time series do not follow the normal distribution and the test

Statistics from the robust modified Cox test are more valid.

Table 2.18: Test resultszH0:GARCH vs. H1: Bilinear

  

 

: stochasticly simulated Cox test modified Cox test

S&P 500 .023 .179

British Pound .196 -.051

Nindustrial Production .533 .020
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Table 2.19: Test resultszffiyzBilinear vs. H1: GARCH

stochasticly simulated Cox test modified Cox test

 

S&P 500 -.910 -2.896

British Pound ~2.797 ~7.058

Industrial Production -1.643 -2.282

 

2.5 Conclusions

As noted earlier, most financial time series do not show evidence of the conditional

normality. Thus, applying the modified Cox test, assuming normality to the non—

normal situation, yields invalid test inferences. In this chapter, we have pr0posed

the robust modified Cox test under nonnormality.

Monte Carlo simulation experiments suggest that the robust modified Cox

test performs fairly well and can improve the validity of the test statistics and the

actual size over the nonrobust modified Cox test under nonnormality. In comparison

With the simulation results in the previous chapter, the means and standard devi-

ations are slightly deviated from the standard normal distribution for some sample

Sizes such as N 2 500. It is also shown that the robust modified Cox test oversizes

but not significantly and the actual size approaches the nominal size as sample size

increases. Evidence from Lumsdain(1995) suggested that the robust modified Cox

t(Est would perform relatively well under nonnomality. She compared the robust tra-

C1itional test statistics to the nonrobust traditional test statistics under normality
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and showed the actual size and the test statistics are not close enough to the nominal

levels even under normality. We infer that these results would be even worse under

nonnormality. We also performed an alternative way of the robust modified Cox test

with the conditional variance from equation (2.10). The simulation results are very

similar to those from the robust modified Cox test in general but the actual size is

usually understated while the robust modified Cox test usually slightly oversizes.

In some situations, as shown in Table 2.15, an alternative way of robust

modified Cox test that we proposed here preforms very well and the simulation

results are very close to normal. It is emphasized that this robust modified Cox test

has computational advantage because it does not require computing every term in

the conditional variance in equation (2.15).

We also have summarized the nonrobust Cox test with three time series data

sets in the previous chapter. The robust test results are far different from the

nonrobust test results, especially when the null is the bilinear model: the test values

are much smaller than those from the nonrobust modified Cox test in absolute value

fOr all three data sets.
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Chapter 3

An Application of a

Quasi-Modified Cox Test to

Nonlinear Panel Data Models

3. 1 Introduction

Irl many instances, the dependent variable takes on nonnegative integer values: for

eJv<€-.tmple, number of hospital visits in a given year, number of alpha particles emitted

fI‘Om a radioactive source during a given period of time or number of patents applied

for and received by a firm during a year. When a variable takes on nonnegative

iIlteger values, it is referred to as a count variable. With the nonnegative property
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of count data, the most p0pular functional form for the conditional mean is the

exponential function: E(y | 2:) 2 exp(:1:fi), where y is a count variable and :1: is a

vector of explanatory variables. When there are unobserved effects in count panel

data models, we cannot simply apply the standard linear unobserved effects model

if we want to impose nonnegativity of the conditional mean. Hausman, Hall, and

Griliches (1984) (hereafter HHG) is a pioneering work that deals with the unobserved

effects in count panel data analysis using the conditional maximum likelihood (CML)

approach of Anderson (1970, 1972). HHG also presented an application to the

patents and R&D expenditures relationship. Wooldridge (1999) showed the QCMLE

is consistent and asymptotically normal just under the conditional mean assumption

in the multiplicative models. He also showed that Poisson QMLE is robust if the

conditional mean is correctly specified. But it will be inefficient, in general, unless

the conditional varience is also correclty specified.

The most popular distributional assumption for count data is the Poisson dis-

t'I‘ibution. To remove the unobserved heterogeneity or fixed effects in the nonlinear

Count panel data analysis, the Fixed Effects Poisson (FEP) model was developed

by HHG. But one of the shortcomings of the Poisson model is that the first two

1rl'loments are the same. But in many applications the variance of a count variable

is larger than the mean of it and we encounter overdispersion of the data. To solve

t'11is problem, the Fixed Effects Negative Binomial (FENB) model was developed
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as an alternative to the FEP. As shown in Wooldridge (1999), both the FEP and

the FENB models have the same form of the conditional mean and are estimated

by the multinomial QCML methodology. Like the GARCH and the Bilinear mod-

els in the previous chapters, the FEP and the FENB are two competing models in

nonlinear count panel data analysis. It is worth while to note that the QCMLE of

the FEP is consistent and asymptotically normal if the conditional first moment is

correctly specified but, in general it is inefficient. On the contrary, the QCMLE of

the FENB is not consistent unless the first two conditional moments are correctly

specified because negative binomial is not in LEF but the FENB is usually more

efficient than the FEP. Therefore, there is a robustness and efficiency trade-off be-

tween these two models. In principle, we could try the Cox test when we consider

the specification testing between these two models because the Cox test applies to

any two distributions and it is derived from the difference between log likelihood

ratio and its expected value under the null. But using the original Cox test or even

1311s modified Cox test from the previous chapter is very challenging task in this case.

The log likelihood function of the FEP model is derived from Poisson distribution

and the log likelihood function of the FENB model is derived from negative binomial

distribution and these two log likelihood functions take very different forms from

tells normal log likelihood function. Therefore, to get the difference between these

two different log likekihood ratio and its expected value is very complicated and
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computationally very difficult too. Instead, we want something computationally

simpler and we derive a new Cox test (quasi-modified Cox test) using the property

of normal quasi log—likelihood as shown, for example in Bollerslev and Wooldridge

(1992). In this case the quasi-modifed Cox test is based only upon the implied con-

ditional varience because the conditional means of these two models are the same.

In section 2 we briefly explain these two models and the quasi-modified Cox test. In

section 3 we present the applications of these models to the US. patents and R&D

expenditures panel data, and then apply the quasi-modified Cox test to see if either

model is rejected. Conclusions follow on section 4.

3.2 Two Competing Count Panel Data Models

with the Unobserved Effects

Developed first by HHG, the FEP and the FENB models have been used as two

cOmpeting counterparts in the nonlinear count panel data analysis. In this section

We briefly discuss these two models.

We assume ramdom sampling from cross section and let {(yit,x,-t, 43,-),2' :-

1 3 2, . . .,N,t 2 1,2,...,T} be a sequence of i.i.d random variables across i, but

Ilot t, where y.” denotes the discrete observable count variable, fit is a vector of
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explanatory variables and g0, is an unobserved random scalar. For the FEP model

we assume that

W | 934,054 ~ P01880n(¢iu($itifl0))it = 1,2, - - - ,T (3-1)

yihyis are independent conditional on $21,054, tsés, (3.2)

and the conditional mean of Mt is

E(yit I Mic/>1) = Eff/it | 13mm)

= 451M332, 30) (3-3)

HHG took the functional form of the conditional mean of Hit as an exponential

function: E(y,-t l 23,-, (0,) 2 diexpCvl-tfio). Under assumptions (3.1) and (3.2), HHG

used the CML techniques of Anderson(1970,1972) to estimate ,6, conditioning on

the sum of the dependent variable across time, £3le yit 2 n.,-. HHG showed that

M | 711,331,454 ~ multinomialmiiptnfii50).---,PiT(Iz'ii50)) (3-4)

T T

where Pit = €$P($iti50)/ Z€$P($irifio) and 21921::1 (35)

1‘21 t21

Eq(3.4) reveals that the distribution of (yil,y,-2, - - - ,yz-T) given (23,-,ni) does

not, depend upon the unobserved effects 42,-. Therefore, the log likelihood function
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of the Poisson CML methodology by HHG can be written as

T T T

li(fi)FEP = 2 “911+ 1) — Z flit log 2 (KM—(5132': - 5%)5), (3-6)

321

where F(.) is gamma function.

Gourieroux, Monfort, and Trognon (1984) (hereafter GMT) showed that the

multinomial QCMLE of the FEP is consistent even though the multinomial distri-

bution is not correctly specified if

E(yit I 715,141) = p'it($ia/60)ni

T

where n,- 2 Zyit

t21

However, Wooldridge (1999) argued that this is too restrictive and showed that,

while the FEP estimator is derived under assumptions (3.1) and (3.2), it is consistent

and asymptotically normal only under the conditional mean assumption (3.3).

On the other hand, E(y.,-t | 2,, 05,-) 2 Var(y,-t | 23,345,) 2 A.“ where A“ is the

Poisson parameter from assumption (3.1). But it is not difficult to find, empirically,

t1lat the conditioanl variance of Hit is not the same as the conditional mean of ytt-

More likely, the conditional variance of yet is larger than the conditional mean of Mt

01‘ it is increasing with yit in many cases. To solve this overdispersion problem, HHG

uSed the negative binomial distribution and developed the Fixed Effects Negative

Binomial (FENB) model as an alternative to the FEP. To derive the FENB by HHG,
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we assume that1

yit | (Ii, (0,- ~ NegativeBinomial(/r(:r.it,60),1/qbi) (3.8)

where <15,- is the unobserved effect and 05,- > 0

yit, y.,-,. are independent conditional on (crit, 05,), t 2 7‘ (3.9)

E(yit|élii,¢-i) = (bi/41711.50) (3-10)

Interestingly, under (3.8) to (3.10), the conditional mean is E(yit | ni, 33,-) 2 pit(:ri, 60)n,-,

which is the same as Eq. (3.7).

The conditional log likelihood function2 for the FENB by HHG is

T

1.1-(mum = 2008120123 + yit) — 103 170141) — 103N921 + 1))

t=1

T T

+ log IX: flit) + log F(n,~ + 1) — log N: 1111+ n,) (3.11)

t=1 t=1

Under assumptions (3.8) to (3.10), the strict exogeneity of grit, the CMLE of the

FENB is consistent and asymptotically normal.

Now, we compare the Possion model and the Negative Binomial model ana-

1y28d in Wooldridge (1999). In Possion model,

5(3/2'1 131311.451) = ¢'i#($it1760) (3.12)

\
= VaT(yit|$iti¢i) (3.13)

1 We follow the notation from Wooldridge (1999)

2see HHG p.924 for more details
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and the variance to mean ratio of the Possion model is unity. In Negative Binomial

model,

E(yz't I Mtfiz‘) = ¢t#($itifio) (3-14)

Va?‘(yz't | $23,951) : E(yit l xiti¢i)(1+ 451') (3-15)

and the variance to mean ratio of the NB model is (1 + 65,-) > 1. The NB model

shows the overdispersion and also allows the variance to mean ration to be different

from each i.

The conditional mean of both Poisson and NB models conditional on the

sum of dependant variable across time is E(y,-t | n,,2:,-) 2 p.it(:ri,flo)n,-. Next,

we consider the conditional variance of both the FEP and the FENB models.

Following HHG (1984), we first construct the conditional variance of the FEP

model from the multinomial covariance matrix, Q,- 2 diag(p,-) — pfipz- where Pit 2

”(cribfiofl XIII ,LL(£L‘.i7~,,Bo). From the fixed effects assumption, 9,- is singular by

construction. Therefore, we remove the first row and column to construct 92-, which

iS (T — 1) x (T — 1) matrix.3 We derive the conditional variance of the FEP from

the diagonal elements of Q): V(y,-t | h), 23,-) 2 (1 — Pit)Pit- Next, we derive the con—

ditional variance of the FENB as we did that of the FEP but an extra term added

En the NB assumption: 91‘ = (221% + ZT=1H($itBO))/(1+ Lit/4131250)) and

3We can remove any time period from 0,. We take the first row and column for convenience.
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“FENB 2 g.,-(diag(pz-) — pgpi) and the conditional variance of the FENB is the

diagonal terms of Q : V(y.,;t | 714,913,) 2 gip.,;t(1 — Pit)-

The original Cox test is Tf : {Lf(d)—Lg(e)}—Ed{Lf(d)—Lg(6) }. The test

statistic of the Cox test is based upon the difference between the log likelihood ratio

and its expected estimate under the null. In principle, we can try the original Cox

test but this may cause very severe computational difficulties. Instead, we use the

first two conditional moments from the QCML methodology and construct a quasi-

Inodified Cox test using the normal quasi-log likelihood framework. Bollerslev and

Wooldridge (1992) showed that the normal log-likelihood and its expected values are

Inaximized when the correct conditional mean and variance are used, even though

the normality assumption is violated. Using this property, we now construct a quasi-

modified Cox test. Let Ml denote the model defined by Eqs. (3.1) and (3.2). Under

 

M1,

Hm I n-iiivi) = Pit($i,50)ni (3-16)

Vartyit l "int/‘1) = (1 —pit($ii50))Pit($iifio) (3-17)

T

where ”it 2 Z yit,

t=l

d . “($21,180)

an pit T ,
Zrzl Mimi fio)

Let Mg denote the model by Eqs. (3.8) and (3.9), so that

E(yit l niixi) = Pit($ii90)ni (3-18)
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Va?“(yit l niixi) = 91(1 - Pit($ii90))19it(33ii90) (3-19)

where m. = :4...

”(xiii 60)

2L1 #(fliiri 60)

T T

and 92' = (2 ”it + Z #(Iriti90))/(1+ Z #(WtaQOD

— t21

 

Pit Z

We use these two conditional mean and variance from QCML methodolody and put

them into the modified Cox test that we derived from previous chapter to get the

test statistic. Now, the quasi-modified Cox test has a form of

 

 

N T— 1 ‘ ‘. . , Pit($iii3)ni-Pit($ii9)ni

TMI 1:11-1:11; (Wp“(”Pl (I-piitz.,é>>pe(z..é>}

Wimp —(1 — Pit($iifi))Pit($iiB) 

+ 2

x< 1- . — 1 . N (3.20)

91(1 _Pit(xiig))Pit($i19) (1—Pit(1‘ii P))Pit($ii5)

  

Following the previous chapter4, we can derive the asymptotic distribution of the

quasi-modified Cox test:

 mm, = VL‘ilfg“ p,i,,a)n){’§
i (

fl(2)2 —(1 ~Pi($i .815»i(37i

2

ianiB) P1($210)ni}

Pi ($i16))Pi($i16)

)
 +

  

l l

x <9t(1—Pi($ii9))fii(fliié) — (1 —fii($ii5))fii($ii3))

A A N _ A —l _

- (enigma) (dammit—.232“) W"“”””l
+op(1) (3.21)

4see section 2.2 for more detail
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And the variance of the robust quasi-modified Cox test, VTI, is

A 1 N A -

VT1 = N Z [012210—I3i($i,fi))fii($i,fi)+—

 

 

><(1— 1i _ A )

(1 - fii($i,fi))Pi(-’Ei,fl)

A

XVfi ((1 — 15i($i,3))13i($i,3)))] (3.22)

 

8 2
"

C
b

‘
3

C
b

b
3 H

l
I

 

‘ _ _1__t:11((19it(33it, W) pit(517itaé))ni)

gzp1t(miti 0)(1— pit($iti 6)

A 1 1

_1t“

11<gipit(17it,9)(1 - Pit($ita 9)

b E, III  

ll:
M
E
E
H

K
3

 

l

Pit($itaB)(]: — pit($it,B)) ,

— . _ 1 3212i(fi)FEP

— T—l afiafi’

1 “l < “—— v3 a-tmwnl
T_1t=1 z

_ait(6)2 - Pit($ita8)(1_ Pit($it,3))D 2)]
2 n

 

3
?

§

I

’

  

D 3 9
.
.

fi
n

:
Q
’
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2
>
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And the robust quasi-modified Cox test statictics, 16—1351, follows aymptotically unit

T1

normal under the null hypothesis.
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Table 3.1: Summary Statistics: the Patents and lnR&D Data
 

 

mean s.d median Min Max proportion of zeros

Patents 37.133 72.642 6.000 0.000 515 0.000

lnR&D 1.415 1.947 1.196 -3.849 7.034

 

 

 

 

3.3 An Empirical Application

3.3.1 An Application to US. Patents and R&D Data

In this section, we estimate the FEP and the FENB models under the CML frame-

work using the U.S. patents and R&D expenditures data and apply the quasi-

modified Cox test between these two competing models.

We examined the dynamic specification properties from the data on US.

patents and R&D expenditures from 1970 to 1979. We obtained this US. patents

and R&D spending data set, patrhghtxt, from the data directory in the NBER

website. This data set is a subset of the patents and R&D data used in HHG

(1986), ”Patents and R&D: Is there a Lag?”, IER 27: 265-283. There are a total

of 346 firms and 22 firms (about 6.4% of all the firms) have zero patents during all

time periods and we deleted these firms from our data because these observations

do not contribute to the estimation.

Table 3.1 presents the summary statistics of the dependent variable, patents,

and the explanatory variable, lnR&D.

96



Table 3.2: Estimation Results for the Patents Model: Linear Time Trend
 

 

 

Parameter the Fixed Effects Poisson the Fixed Effects Neg Bin

lnR&D 0.428 (0.038) 0.261 (0.090)

lnR&D_1 -0.159 (0.048) —0.112 (0.115)

lnR&D_2 0.021 (0.044) 0.042 (0.103)

lnR&D_3 0.174 (0.041) 0.114 (0.098)

lnR&D_4 0.090 (0.039) 0.178 (0.092)

lnR&D_5 0.259 (0.030) 0.224 (0.068)

time -0.083 (0.003) —0.080 (0.010)

Sum of lnR&D 0.813 0.707

log likelihood -6069.156 -3935.991

Skewness of residuals 0.141 0.207

Kurtosis of residuals 7.430 7.559

Probability of Normality 0.000 0.000 
 

 

* The standard errors are in the parentheses.

Table 3.2 presents the estimation results for a patents model with linear time

trend using the FEP and the FENB estimators. In this table, both estimation

results indicate that the contemporaneous effect of lnR&D is significant. The sums

of lnR&D are similar but the sum of lnR&D of the FEP is slightly bigger than that

of the FENB. In the FEP estimator, the sum of lnR&D is 0.813 but it is 0.707 in

the FENB estimator. And the time coefficient is -8.3 per cent per year in the FEP

estimator and -8 per cent per year in the FENB estimator. Table 3.3 presents the

estimation results for patents model with a full set of year dummies by the FEP

and the FENB estimators.
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Tablciifi: Estimation RESILtS for the Paten_t:s Modelszull Set of Year Dummies

 

 

Parameter the Fixed Effects Poisson the Fixed Effects Neg Bin

lnR&D 0.407 (0.039) 0.245 (0.090)

lnR&D_l -0.115 (0.058) -0.087 (0.120)

lnR&D_2 0.061 (0.045) 0.063 (0.108)

lnR&D-3 0.111 (0.042) 0.084 (0.099)

lnR&D_4 0.073 (0.040) 0.165 (0.094)

lnR&D_5 0.279 (0.030) 0.238 (0.069)

year76 -0.044 (0.014) -0.052 (0.038)

year77 -0.077 (0.014) -0.105 (0.040)

year78 -0.238 (0.015) -0.233 (0.041)

year79 -0.320 (0.015) -0.309 (0.042)

Sum of lnR&D 0.816 0.708

log likelihood -6042.707 -3934.719

Skewness of residuals 0.229 0.259

Kurtosis of residuals 7.290 7.437

Probability of Normality 0.000 0.000 
 
 

 

* The standard errors are in the parentheses.

Table 3.4: Estimation Results for the Patents Model: Linear Time Trend
 

 

 

Parameter the Fixed Effects Poisson the Fixed Effects Neg Bin

lnR&D 0.826 (0.009) 0.694 (0.020)

Time -0.065 (0.009) -0.079 (0.020)

Time*lnR&D -0.008 (0.002) -0.005 (0.005)

Sum of lnR&D 0.826 0.694

log likelihood -6273.494 -3981.590

Skewness of residuals -0.245 -0.295

Kurtosis of residuals 36.014 35.173

Probability of Normality 0.000 0.000 
 

 

* The standard errors are in the parentheses.
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Table 3.5: Estimation Results for the Patents Model: Linear Time Trend Only
 

 

 

 

Parameter the Fixed Effects Poisson the Fixed Effects Neg Bin

lnR&D 0.800 (0.006) 0.679 (0.014)

Time -0.097 (0.003) —0.096 (0.010)

Sum of 1nR&D 0.800 0.679

log likelihood —6280.996 -3982.094

Skewness of residuals -0.392 -0.394

Kurtosis of residuals 38.446 37.159

Probability of Normality 0.000 0.000  
 

* The standard errors are in the parentheses.

In this table, only the contemporaneous effect of lnR&D is significant in both

models except the last lag of lnR&D. In the FEP estimator, the sum of lnR&D is

0.816 but it is 0.708 in the FENB estimator. Table 3.4 presents the estimation

results including only current lnR&D, time trend and the multiplication of these

two variables. The coeffiecients of current lnR&D in both models are much higher

than those in Table 3.2 and 3.3 but the sum of lnR&D are very similar. Table

3.5 presents the estimation results including current lnR&D and time trend only.

The time trend coefficient for the FEP is -9.7 per cent and -9.6 per cent for the

FENB. These coefficients are bigger in absolute value than those in Table 3.4. Not

surprisingly, the standard errors in the FENB are much larger than those in the FEP

and it is expected from the increased noise in the Negative Binomial Specification.
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Table 3.6: The quasi-modified Cox Test Results
 

 

HozFEP vs. leFENB H0:FENB vs. H1 :FEP
 

Nonrobust Cox test -8.740 -6.318
 

 
Robust Cox test  -7.570  -6.531
 

 

:4: Test results from the patents model with Linear Time "fiend

Table 3.7: The quasi-modified Cox Test Results
 

 

HozFEP vs. leFENB HozFENB vs. H1 :FEP
 

Nonrobust Cox test -0.725 -2.170
 

 Robust Cox test  -0.706  -2.181
 

 

 

 
at Test results from the patents model with a full set of year dummies

3.3.2 The Quasi-Modified Cox Test Results

Our quasi-modified Cox test has been used to compare the correct specification

between the FEP model and the FENB model.

Table 3.6 presents the quasi-modified Cox test results for the patents model

with liner time trend. In this table, the nonrobust test results indicate that both

models are rejected against the correctly specified model at any significance level.

The Jarque—Bera test (probability of Normality) reveals that the residuals of both

models are not distributed as normal in Table 3.2. And the robust quasi-modified

Cox test results also reject both models to be correctly specified.

Table 3.7 presents the quasi-modified Cox test results for the patents model

with a full set of year dummies. In this table, the nonrobust quasi-modified Cox test

results show that the FENB model is rejected against the correct specification at the
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Table 3.8: The quasi-modified Cox Test Results

HozFEP vs. leFENB HozFENB vs. leFEP

Nonrobust Cox test ~28.417 -6.678

Robust Cox test -10.621 -7.043

* Test results from the patents model with linear time trend

 

 

 

 

    
 

 

5 per cen significance level but we fail to reject both models at 1 per cent significance

level. The probability of normality in Table 3.3 indicates that the residuals from

both models are not normally distributed.

The robust quasi-modified Cox test results are very close to the nonrobust

test results and the FENB is rejected at 5 per cen significance level but both models

failed to reject the null at a 1 per cent significance level. Table 3.8 presents the quasi-

modified Cox test results for the patents model including only current lnR&D, time

trend and the multiplication of these two variables. Both nonrobust and robust test

results reveal that both models are rejected against the correctly specified model at

any significance level. Table 3.9 presents the quasi-modified Cox test results for the

patents model including current lnR&D and time trend only and shows that both

models are 8810 rejected at any significance level. Interestingly, including a full set

of year dummies seems to play an important role to correct the model specification.

We can suggest the role of time dummy with an example below. Suppose

Var(yit l $i,¢i,7t) = 7t¢i€xp(17it5)

: [Vt/1'0“}: $2)
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Table 3.9: The quasi-modified Cox Test Results
 

 

HozFEP vs. leFENB H0:FENB vs. [-11 :FEP

 

Nonrobust Cox test -13.345 -10.088
 

 Robust Cox test  -9.773  -11.437

 

 

* Test results from the patents model with linear time trend only

If at is time dummy, then there is no more overdispersion problem when we include

this time dummy in the model.

Varfyz‘t I 332', 4%)

What we can infer from this example and possibly from the test results is that the

overdispersion problem may be caused not by the distributional misspecification

but by the parametric misspecification. And including this time dummy can correct

the overdispersion problem and lead the Poisson model to be the correctly specified

model.

= ¢~i€$P(Izt,3 + at)

where 7t 2 exp(ozt)

Further, suppose ’Yt is independent of (451,351), then

= E[Var(yz-t l $1,978.70 | $23451]

+Var [E(yz‘t | 331,618,711) | $23M

= madam) + 03[¢,.exp(:r.-.m12

> Cb'ieirpmtfi) = VaT(yz't I (”bah/7t)
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3.4 Conclusion

In the count panel data models with unobserved effects, the FEP and the FENB

models are frequently compared as two competing counterparts. The QMLE of the

FEP is consistent if only the conditional mean is correctly specified but it is generally

inefficient. On the contary, the QMLE of the FENB is not consistent unless the first

two moments are correctly specified but it is more efficient than that of the FEP.

Therefore, there is robustness and efficiency trade-off between these two models.

We applied the FEP and the FENB models to the US. patents and lnR&D

expenditures relationship. The quasi-modified Cox test results indicate that includ-

ing a full set of year dummies plays a major role for the correct model specification.

When we include a full set of year dummies, the quasi-modified Cox test results

become different from those without a full set of time dummies and both the FEP

and the FENB models fail to be rejected against the correctly Specified model at 1

per cent significance level while both models are rejected at any significance level if

we include the linear time trend instead. We can conjecture from these test results

that the overdispersion problem may not be a matter of the distributional misspec-

ification but a matter of parametric misspecification. The further study is needed

to find more correctly speicified model for the nonlinear count or continuous panel

data model with unobserved effects.
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Appendix A

Modified Cox test

Here we derive the modified Cox test. The original Cox test statistic can be written

in terms of the information set available at time t as

:r
- 1 ..
TM1 = ftzlflogfdytIIt—1;9o)-1089t(ytIIt—1;6)}

T

1 *

“EMllf ZflOBftfl/t IIt—1;90)—1089t(yt |1t—1;5 )} | It—1l(A-1)

t=l

where 60 is the MLE under M1 and 6* is the MLE under M2 when M1 is correctly

specified. Now we decompose the equation (A.1) by two terms and rewrite these

two terms as

i) The first term;

T

Zflogftlyt |1t—1;90)—1089t(yt I It—1§6*)} (A?)

t=1
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1 1 1 —m 6 2

108ft(ytIIt—1;90) = -§108271—'2-108ht(90)—'2'(yt ht(9t(I)O)) (A3)

* 1 1 , 1 -— 6* 2

loggtet IIt_1;6 ) = ~§Iog2vr—§Iogm(6 )— 5(1). 77.13:) )) (AA)

From HOW 011 we define 108ft(yt I It—1§60) = 10813:, 1089t(yt I It—1;6*) = loggt,

ht(60) : ht, 77t(6*) : 0t, mt(60) 2 rm, and MW“) = M for notational simplicity.

1 1 1 —m 2 — 2

logft — loggt = -10877t — — loght — — [Iii—1 — (946%)”)

 

2 2 2 ht

T T 2 2
1 (1% — mt) (yt - Mt)

80,2{108ft-1089t} Z _"Z _——_——

t=1 2 t=1 ht 7”

T

—§{108 ht —1080t} (A-6)

ii) The second term;

T T 1T — 2

 

T

EM] Zilogft-loggtHIt—l] = EM1

t=1 2 2 t=1 "t

“(gt—2?): I lit—1}] (A.7)

= 310877: — I loght +132": EM {_(y‘_ ”)2
2 2 2 H I 7%

Jig-17793 | It—l} (A8)

T T T

— glognt— '2‘108ht— 5

1 T _ 2

+§ Z E11141 {—(yt fit) I It--l} (A9)

t=1 ’72

Because

( EM1{(3/t — mt)2 I It—1} = 130110251!2 I It—1}

= ht

T T T

— 510877: " 5108M — ‘2-
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T 2 2

1 yt — mt + mt — Ht
+5 E E1111 {( > ( ) I It_1} (A.10)

t=1 Tit

Because

( (yt — #02 = (Ll/t — W + mt - #02

= (M - mt)2 + (mt - #02

+2(’yt - mt)(mt - Mt)

= (M - mt)2 + (mt - #02 + 2Ut(mt - lit)

EMIIIyt - #02 I It—l} = EM1{(l/t - mt)2 I It—l}

+EM1{(mt - #02 I It-1}

+2EM1{(?/t - 77%th - Mt) I It—1}v and

 

EMIIIE/t - mt)(mt - #t) I It—l} = EM1{ut(mt - fit) I It—l}

= Eleut I It—IIEMIImt - fit I It-I}

= O

50, EMIIIUt — #02 I It—I} = EM1{(?/t - mt)2 I It—I}

+EM1{(mt - (0)2 I It—I}

I = ht + (W — (0)2

= glognt—gloght—§—+ éé:—+éém;M)2 (A.11)

Now we combine these two terms back together, and we produce

T 1T yt-mt2 1T Kit—W2
= —§{loght—lognt}——Z(——h—)—+ ZL—l-

21:1 2 2t=1 '72

T T 1 ht 1 T (yt-Ht)2
— —lo ——10 h}+———§j———§:——— A.12{2 8m 2 8t 2 2t=177t 2t21 m I I

 

 

= I _ l {i Eur T (mt “.1102 + T: (yt—mt)2 _ i (yr-#02}, 13)

2 2 t=1 ’72 t=1 "2 t=1 ht t=1 7”

T 2 T _ 2 2

z Z_1zflt_+:{ht+(mt #t) (3111 #0} (A14)

2 2t=1 t t=1 77‘

T 2 T 2 _ 2
Z I _12 fit. + Z (9: m) ht (mt 74) (A15)

2 2 t=1 t t=1 2’72
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On the other hand, we can rewrite the numerator of the third term as

( (yt — #02 mt + Ht #02=I

=Imt- #t + Ut)2

=Imt- #02 + “t + 2utImt - Ht)

=Imt80, (yt — Mt)2 — ht - (mt — #02 #02 + u? — 2UtImt - Ht)

 

  

   

  

— — (mt - #02

I ——ut— ht- zutImt - Mt)

T 1 T U? T “at-(mt Mt) Tu? - ht
= ———Z—+Zut +2 (A16)

2 2 t=1 ht t=1 7” t=1 2’72

T T u? — ht + ht T ut(mt - pt) T u? - ht

= '— — + + A.l7

2 t; 27% t; 7h t; 2m ( )

T T 2 __ T T T 2 _ h

2 5‘2“ch ht_ glziJrZUtImt #t)+mz):2 t (A.18)

t=1 t t=1 t t=1 WT t=1 '72

T T 1 T 2 (11) ,1)
= ———+— u—h —-—— + A.192 2 2t=1( t t) 77t ZIyt— Tit I )

Therefore, the modified Cox test is derived as

.. T

TM; = TZlflogftIyt I [t—1§60) loggtIyt I It—1§5*)}

—EM1ITtZ:1{108ftI3/t I I1-1;90)—1089tIyt I It—1;(5"‘)} I It—ll

_ 1T (mt-pt) 02—h) 1 1

T Tt=1I(yt—mt) 7h + t2 (——_)I (A20)
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Appendix B

Regularity Conditions

Suppose yt,t = 1, - - - , T is a vector of i.i.d observations and we wish to compare when

yt has the density function f(gt, 6) for some 6 in 9 under the null hypothesis, Hf,

and when yt has the density function g(yt, 6) for some 6 in A under the alternative

hypothesis, Hg. Then let 60 denote the true value of 6 under Hf, let 6 be the MLE

of 60 and let 6* denote the value that 6, the QMLE of 6, converges to. For notational

brevity, we state the regularity conditions in terms of f(y, 6) but these conditions

are also applicable to g(y,6) as well. Below are the regularity conditions for the

existence and the consistency of QMLE(White, 1982).

1. The sequence of i.i.d observations yt,t = 1, - - - ,T have common joint distrib-

ution function G on Q with measurable Radon-Nikody’m density 9 : dG/dv.
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2. Radon-Nikody’m density f(y,6) = dF(y,6)/dv where F(y, 6) is the family of

distribution function is measurable in y for every 6 in O, a compact subset of

a p—dimensional Euclidean space, and continuous in 6 for every y in Q.

3. a) | log f(y, 6) IS m(g) for all 6 in 9, where m is integrable with respect to G.

b) E(log f(yt, 6)) has a unique maximum at 6 in O.

4. 610g f(y,6)/06,—,z' = 1, ~ - - ,p, are a measurable function of y for each 6 in O

and a continuously differentiable function of 6 for each y in Q.

5. | a2 log f(y,6)/66,- . 89,- | and | Blog f(y,6)/86,- - 010g f(y,6)/86j |,z',j 2

1, - - - , p, are dominated by functions integrable with respect to G for all y in

Q and6 in O.

6. Define 21(9) 2 {19(02 log f(y, 6)we, . 00,-»,

and 8(6) E {E69108 f(9.0/80. ~ 6109 f(90)/09j)}.

a) 6 is interior to O,

b) 24(6) and 8(6) are nonsingular.

Under these conditions, /T(6 — 60) is asymptotically normally distributed.
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