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ABSTRACT

MODEL ORDER REDUCTION FOR PLANE ELASTICITY USING EQUIVALENT

MATERIAL DISTRIBUTION

By

Michael K. Penner

A model order reduction technique is presented. This technique uses a multi-resolution

analysis on a non-homogenous material distribution with fine scale features to construct a

wavelet based reduced stiffness matrix. This reduced stiffness matrix is much smaller in

size than fine scale stiffness matrix. A topology optimization technique is implemented

to find a coarse, non-homogenous material distribution that has equivalent features to the

reduced stiffness matrix. Results are presented for three different types of problems

exhibiting different scales. The results show that fine scale materials can be represented

by a coarse scale material distribution while keeping the elastic characteristics of the two

systems approximately equal.
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Chapter 1

INTRODUCTION

With the need to increase the performance of a product, decrease design time and cost,

the use of computer aided engineering techniques such as finite element methods are

becoming ever more important. While this technique can be very effective on basic

geometries and materials, its application is spreading to include more complex designs

and materials including composites and foam like materials. This is causing the finite

element model to become very complex and also increasing the computation time to

solve these problems. This can have a negative effect on the design process, leaving some

ideas unexplored due to the high computation time required. Also with the use of

optimization programs that require the finite element computation to be done once per

iteration, the time it takes to solve the problem gets multiplied. The goal of this thesis is

to help develop model order reduction techniques that will decrease the complexity and

size of the model and decrease the computation time while still keeping a high degree of

accuracy of the solution.

1.1 Problem Statement

The reduction process discussed in this thesis begins with a plane elasticity problem on a

unit square created with non-homogenous material as shown in Figure 1.1. In order to



resolve the details of the material distribution over the domain a fine scale resolution is

needed.

 
Figure 1.1 Unit square with non—homogenous material

The boundary conditions are periodic. Upon discretization and using wavelet Galerkin

methods this problem can be expressed as

Kyu?’ = FW (1)

where

K}v is the fine scale wavelet stiffness matrix

uyis the fine scale wavelet coefficients

F?) is the fine scale force wavelet coefficients



Equation (1) represents the fine scale problem. Since this process is based on a wavelet

discretization, the degrees of freedom associated with the problem are wavelet

coefficients.

Next, a reduction scheme based on a multi-resolution analysis (MRA) is applied to the

fine scale problem. This procedure starts with the (very large) fine scale stiffness matrix

(KW ) and creates a (much smaller) coarse scale stiffness matrix (KW ). The boundary
c

f

conditions remain periodic. The reduced system is

may = Few (2)

where

K2.” is the coarse scale wavelet stiffness matrix

upis the coarse scale wavelet coefficients

Few is the coarse scale force wavelet coefficients

A transformation is now applied to the reduced wavelet stiffness matrix (K(W ) to

transform the wavelet degree of freedoms into nodal degrees of freedom. This procedure

is just a coordinate transform. The result is a coarse scale stiffness matrix (K3) where

the degree of freedoms are now nodal displacements, not wavelet coefficients. Periodic

boundary conditions still remain in force. This new reduced system is

n n n
Kc “c = Fe (3)

where



K2 is the coarse scale nodal stiffness matrix

u:is the coarse scale nodal degree of freedom vector

F6" is the coarse scale nodal degree of freedom vector

It should be noticed that matrix Kg , while it relates nodal degrees of freedom to nodal

forces, it is not a finite element matrix.

The work in this thesis is to setup and solve an optimization problem to identify a coarse

scale material distribution, E(x), on the unit square domain, such that the difference

K.(E<x»—K:°"“’|| (4)
  

is minimized, where KC (E(x)) is a standard finite element stiffness matrix. This

problem is solved using a genetic algorithm, assuming that the material is isotropic and

piecewise constant, i.e., E(x) = p(x)l§0 where p(x) e [0,1j is a piecewise constant

function and E0 is a fixed material tensor.

This process can be seen in the flow diagram below.
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Figure 1.2 Flow Chart of Numerical Process



This thesis is divided into five chapters. The next chapter discusses in detail previous

techniques of model order reduction and the technique used to create the reduced

stiffness matrix used here. Chapter three talks about the equivalent material problem.

Chapter four shows the numerical solutions and the methods to Obtain these answers.

The last chapter has the conclusions of this work.



Chapter 2

THE REDUCTION PROBLEM

2.1 Past Techniques

In this section common modeling order reduction techniques will be discussed, also the

multi—resolution scheme used in this thesis will be shown.

(1) Static reduction. This is one of the simplest reduction methods. This process will

neglect the inertia terms. This will only produce an exact result at a static condition or

zero frequency. This can be seen in the following example taken from [3]. Start with

the following linear system

{F}= lKllx} ‘2'”

where

K is the stiffness matrix

F is a force vector

x is the nodal displacement vector

F1 KA B xm A

= 2.2

{F2} [3T CH x3} ( )

Assuming the F2 to be zeros, solving for F] produces

If [K] is symmetric

F1 = (A - BC_lB')xm (2.3)

with the reduced stiffness matrix being



K, = A- 3043' (2.4)

This creates a coordinate transform, which is equal to

I

= 7T [_ C-lB'] (-5)

which will yield the following reduced stiffness and mass matrices

K1=T.KT

(2.6)
M, = T'MT

If M is partitioned as

[M]= [; 2:] (2.7)

the reduced mass matrix is

M, = Z — EC"B'—(C"B')(§'—C—‘C"B') (2.3)

(2) Dynamic reduction. This is a modified version of the static reduction. This will

produce an exact solution or response at a certain frequency. Selecting the correct

frequency for the response is not apparent. The following process taken from Paz [5]

outlines the procedure. Start with the eigenvalue problem in separated form

lxssl-wzwssl lxspl-leMspl {x3} _ {o}

[K,,]-w2[M,,] [K,,J-..2[M,,] lrxPiHioil ‘2'”)

where K is the stiffness matrix, M is the mass matrix, {Xs} is the displacement or

eigenvector corresponding to the 5 degree of freedoms to be reduced, {Xp} are the

. . 2. . .

corresponding p degree of freedoms to remain, and a) rs the approximate eigenvalue at

each step. The first step is to assign a reasonable value to (02 for the first eigenvalue.



Then eliminate the first “5” displacements followed by elementary operations, at this

point, equation (2.9) can be shown as

113% [iélli’iiilifiil

with [T] as the transformation matrix that is defined in the following equation

{X}=ll:;il=llfi}w
and [D] is the dynamic matrix that satisfies the equation

[1?]=[5]+w2[1Ti] (2.12)

[1?] is the reduced stiffness matrix and [A7] is the reduced mass matrix which is found by

the following equation

[117l = [TI’ [M IT] (2.13)

with [T] represented as

[T] = [[511] (2.14)

The transformation [7"] can be solved for, to obtain

[T]=[‘(Kss 'ngss)_l(Ksm “wonsm)] 0-5)

These expressions will lead to the equation

[IE]-w2[AT]J{XP}={0} (2.16)

Solving this equation will lead to an almost exact value of the first natural frequency and

eigenvector. The second eigenvalue will be a close approximation. By inserting this

close approximation value into the first equation and repeating the steps above, the output



will be a near exact solution for the second eigenvalue. This process can be repeated to

produce near exact solutions for the eigenvalues and eigenvectors for the lowest p values

[5].

(3) Improved reduction system. This technique builds off the static condition by

including the inertia terms as psuedo static forces. This can be seen in the following

example taken from [6] and [7]. Start with the equations of motion assembled in the

following manner similar to the static condition

1““ “ii l‘m "mll‘ml l’ml
.. + = (2.17)

Msm M55 x: K3"! KS: x5 0

This expresses the mass [M] and stiffness [K] matrices ordered in terms of master and

slave degrees of freedom. The master (m) degrees of freedom represent the retained

values while the slave (3) degrees of freedoms represent the discarded values. Also

assume that there are no forces applied to the slave degrees of freedom.

Neglecting inertia terms in the second equation set

x’" I T (2 18)= x = x .
X5 __ K511 KS," m S m

T: represents the static transformation from the full state vector to that of a master

coordinates. The reduced mass and stiffness matrices can be shown as

MR = TSTMTS

(2.19)

KR = TSTKTs

This is where the improved reduction system follows a different path than that of the

static reduction. This is done by including the inertia terms as pseudo-static forces in the

10



transformation from the static case. This will allow the reduced model to represent the

full model in low frequency responses. The improved reduction system starts with

Tm, = T, + SMT,M,‘,7‘K,, (2.20)

where

s — O O (2 21)
- 0 Kg} '

The reduced mass and stiffness matrices are

MIRS = TIRSMTIRS (222)

KIRS = Tarts KTIRS

(4) System equivalent reduction expansion process (SEREP). The SEREP process

utilizes eigenvectors to help deicide which nodes are kept. This method will produce

exact answers for lower natural frequencies [7]. The next few steps will outline the

procedure required to the reduction technique. First define the transformation noting that

the numbers of master degrees of freedom are more than that of the modes of interest.

<1) 1

T = [¢m][<r>;¢m]' ch; (2.23)

5

Chm and (I), are the modes of interest at the master and slave degrees of freedom.

Allowing the number of the numbers of master degrees of freedom to equal that of the

modes of interest the equation above can be simplified to result the following

transformation equation

(I) _

T = [ m ]¢ m1 (2.24)

11



Substituting equation (2.31) into IRS equation and applying to the transformation to <1)", ,

1 o 0 cm om

T<I>m = _, om + _, = (2.25)

‘ Kss Ksm Kss I (1’3 (1’3

All these methods have one goal: to be able reduce the finite element model and keep the

gives

results accurate. By reducing the model, the computation time is decreased allowing for

quicker results. Some of these techniques have been developed for specific set of

problems while others have been developed for use on a broad spectrum of problems.

The next section will discuss the techniques used in part by this thesis to create the

reduced stiffness matrix.

2.2 Wavelet Stiffness Matrix

Let Q be a domain occupied by a linearly elastic material, a square of size 2J x 2J with J>0

as a fixed integer that represents the level of discretization. Q is occupied by two

different materials. Let p(x) represent a piecewise constant function describing the

material distribution within S2. Let the material distribution within Q be of the form

E(x) = p(x) - E0 (2.26)

where

12



 
 

 

E E ‘n ‘

E1111 E1122 0 1111 l- V 2 H" l - V 2

E0 = E1122 E2222 0 E 2222 = 1 By 2 E1212 = ETC—"1%,;

0 0 51212 _ -

(2.27)

where E is the modulus of elasticity, v is the Poisson’s ratio and p6 [0,1] is piecewise

constant over the pixels [i,i+1]x[j,j+1].

Upon discretization and applying wavelet Galerkin techniques, the equilibrium equations

become

K F” (2.28)
w w _

fuf ‘

where

K;’ is the (fine scale) wavelet stiffness matrix at level J

a?) are the (fine scale) vector of displacement wavelet coefficients

F; are the (fine scale) vector of force wavelet coefficients

Here we will describe a multi-resolution process that was developed by Diaz and

Chellappa [4]. Readers are encouraged to read this and other papers in the reference for

more details and insights into the multi-resolution process proposed here. Start with

equation (2.28):

KJuJ = F] (2.29)

13



where the new notation emphasizes the scale , i.e. operator KJ is the stiffness matrix at

level J. u] is the displacement coefficients at level J and FJ is the force coefficients at

level J. In two-dimensional elasticity 14’ is a vector of size (2*22").

Using a wavelet transformation W we decompose the displacement (signal) 14] into a

coarse component at scale J-l (u!-1 ) and a orthogonal complement of details at scale J-

w :uJ—-) uJ‘l ewJ‘l (2.30)

An example of this transformation can be seen in figure 2.1.

 

 

   
 
 

 
 

1 t = sin(2'pl‘x)‘sin(4'pl’x) 1 Coarse Components

0.5

0 .

0 5 L'

'10 0.5 1 -10 0.5 i

1 { Detail Components

0.5 l

0 NWWTLMMWW

-O.5 .

'10 0:5 1

Figure 2.1 Example of wavelet decomposition

Now equation (2.29) can be written as

KJ—l BT uJ—l _ fJ—l

J—l “- J—l (2'31)
B C W g

14



fJ" and g1"1 are the coarse scale and detail components of the force. One should note

that equation (2.31) is similar to that of the static reduction (equation (2.2)) shown at the

beginning of the chapter. The only difference is that the master and slave degree of

freedoms shown in equation (2.31) are decided here by separating the detail and coarse

scales of the solution. Solving for the coarse scale problem will yield

1?]“lu’‘1 = F"1 (2.32)

where 1?] —l is

K!"1 = K‘]_1 — BTC‘IB (2.33)

This process can be repeated to give the operator I—{J-l at any reduced scale.

15



Chapter 3

THE EQUIVALENT MATERIAL PROBLEM

3.1 Equivalent Material

Let p(x) represent a piecewise constant function describing the material distribution

within the domain 52 where p(x) 6 [0,1]. The material tensor for each element in $2 is

defined as

_ 0

E(x) - .0005: (11)

where E0 is a fixed tensor of elastic properties. The finite element stiffness matrix (K) is

created using the material distribution p(x) , i.e.

K(p<x))u = f (3.2)

where

K(p(x)) = the finite element stiffness matrix

u = the finite element nodal displacement vector

f = the finite element force vector

It should be noted that the material distribution within 82 will vary from element to

element. The stiffness matrix in equation (3.2) is called here the finite element stiffness

matrix.

Starting with equation (2.32) from the last chapter

Ku = F (3.3)

16



This (I? ) is a reduced matrix at scale J-l. if relates wavelet (coefficients) degrees of

freedom to wavelet (coefficient) forces. We now set out to find an equivalent finite

element matrix. To achieve this, first we must convert K to a matrix that relates nodal

displacements to nodal forces. Such matrix, Kn is of the form

K" = B(r)T 31430) (3.4)

where

r = {r1, r2 ,. . .,rn }is a coarse scale material distribution

The stiffness matrix Kn from equation (3.4) is called here the target stiffness matrix.

This matrix is the same dimension as the reduced wavelet matrix from equation (2.33).

The matrix (B) is such that if uwis a vector of wavelet coefficients, which results in a

strain field E(u"), B uwis a vector of nodal forces associated with this pre-strain, ie, B is

a (global) strain-displacement matrix.

The effective density for the fine scale and coarse scale problem can be defined as

1 ”°
efid =; 2216:.) (3.5)

1

where Nc is the number of elements

Here the effective density for the fine scale and coarse scale problems are called effdrm.B

and effdcoam respectively.

17



The objective of the equivalent material problem is to minimize the difference between

the topology finite element stiffness matrix (K(p)) and the target stiffness matrix. This

can be set up so that the energies of the two systems can be compared.

Find: pc={p., p2,... on}

Minimize: f(p)

SUbjCCI IO: xlowcr bound S p: S xuppcrbound

Cffdfinc z effdcoarse

The objective function is defined as

f(p) = Z (<1>,.TK"<1>, - <1>,TK (p)<1>, )2 + ”A — diag(A)||Wm

where

A =‘I’T(K" -K (10)}?

‘1’ = matrix of size (m, 2 * 22") with the iths eigenvectors

(D, = is the ith eigenvector of K "

m = dimension (1)

This problem is solved using a genetic algorithm. This method of solving was chosen

over other gradient-based methods, this was because the gradient-based methods were too

dependent on the staring guess. This means that the solutions from the gradient-based

methods were finding local minimums instead of global minimums. The genetic

algorithm was setup to maximize the fitness or the inverse of the objective function.

3.2 Genetic Algorithm (GA)

18



dependent on the staring guess. This means that the solutions from the gradient-based

methods were finding local minimums instead of global minimums. The genetic

algorithm was setup to maximize the fitness or the inverse of the objective function.

3.2 Genetic Algorithm (GA)

The genetic algorithms start with an initial population and employ the idea that only the

fittest members of the population will reproduce and make it to the next generation. The

evaluation or fitness of each member of the population is based on a function that is

created and is specific to the problem. The following summarized outline of a GA

program is shown below to illustrate the ideas mentioned here [13].

generate initial population, G(O)

evaluate G(0)

t =0

repeat

t=t + I

generate G(I)from G(t—I)

evaluate G(t)

until solution isfound

This process is repeated until a solution that is fit enough is found.

There are six major components that make up a genetic algorithm [14]. They are

chromosome representation, selection function, genetic operators making up the

reproduction function, the creation of the initial population, termination criteria and

finally the evaluation function. They will be listed here and discussed in detail.

1. Chromosome Representation

This how each individual member of the population is represented and this will

determine how the GA is setup. This representation could be in many formats

19



including binary digits, floating-point numbers, integers, symbols, matrices, etc.

Much work has been done [Michalewicz 1994] comparing the performance

between different representations. In Michalewicz [Michalewicz 1994] it is

shown that floating-point numbers between the lower and upper bounds give

quicker and better results. This is the technique that was used in this research.

2. Selection Function

This will determine which and how many individuals contribute to the successive

generations. Based on performance a probabilistic selection is done with the

better-fit individuals having a better chance to get selected. The method used

here is a ranking selection function based on the normalized geometric

distribution. Ranking methods only need to map the solutions of a partially

ordered set. The normalized geometric ranking methods can be seen as

P[selecting the ith individual ]= q'(1 - q)'-1

with

q = the probability of selecting the best individual

r = the rank of the individual, where l is the best

P = the population size

1 q

q=l_(1_q)P

3. Genetic Operators

20



There are many crossover techniques used in GA’s these include simple

crossover, arithmetic crossover and heuristic crossover. The technique

implemented in this thesis was an arithmetic crossover and will be explained

below.

The arithmetic crossover produces two complimentary linear combinations of the

“parents”.

Mutation techniques can take on many forms. The technique used in this research

was non-uniform mutation.

4. Creation of the Initial Population

In most applications the initial population is created from a random set of values

with in the bounds of the problem. Once this is done the initial population gets

evaluated and the fitness of each member is then used to start the GA. Many

techniques can be implemented to create the initial population. This research

used a three-part technique to create the population.

The initial population was created using three different techniques. The first

technique creates the maximum number of black elements allowed by comparing

it to the effective density of the fine scale. An element is defined as one entry in

pc. A black element means that the entry will have a value of one. Once this is

done the black elements are then scaled down to achieve the actual effective

density.

21



 

Figure 3.1 Distribution of p(x) computed using the 1“ technique to create initial

population.

The second technique is a random distribution over all elements. If the effective

density of the random solution is below the prescribed effective density, the

elements with lower values are scaled up. If the density of the random solution is

above the effective density the elements with higher values are scaled down, this

uses an iteration technique to get the correct effective density.

22



 

Figure 3.2 Distribution of p(x) computed using the 2“d technique to create initial

population

The third technique (figure 3.3) involves using the images similar to that of the

reduced wavelet transform of the fine scale material distribution. These images

are created from taking the reduced wavelet transform of the fine scale material

distribution and adding noise as seen in the following figure.

23



 

Figure 3.3 Distribution of p(x) computed using the 3rd technique to create initial

population

This is done to partially seed the initial population. The density of this solution is

also equal to that of the effective density. Each of these three parts contributes

equally to the creation of the initial population. The initial population was created

using 85,000 members. This value was obtained from a trade off between size

and the time it took to solve the problem. Values calculated above this value

yielded little better results but increased the computation time.

24



5. Termination Function

The GA operates by evaluating all the members in a population, creating a new

population. This process is continued until some criteria are met. The usual

termination function (and the method used in this research) is the maximum of

generations allowed. The number used in this thesis was 65. Other techniques

include population convergence. This is when the sum of the deviations between

fitness values of members of the population becomes less then some specified

number, then the generations are terminated. The technique of terminating the

sequence after 65 generations was used instead of the population convergence

because of wanting to keep all the problems in the library consistent.

6. Evaluation Function

This is the function that evaluates the fitness of each member of the population.

This is done by using the objective function defined at the beginning of the

chapter. The fitness is defined as the inverse of the objective function. This done

because GAs aim to increase the fitness level, so by taking the fitness as being the

inverse of the objective function, it will be minimized.

25

 



Chapter 4

EXAMPLES

This chapter illustrates the use of the model order reduction technique developed in the

previous chapters. In these examples the fine scale material distribution of different

geometries is present in the figures along with the coarse scale material distribution

solution. In all the examples cited the fine scale material is resolved by a 64x64 pixel

distribution, with the coarse scale distribution representing 8x8 pixel grid. As stated

before this represents three levels of reduction. In all cases the black material represents

the following elastic material tensor

.91 .3 O

Eblack = .3 .91 0 (4.1)

0 0 .769

and white material tensor shown as

9le — 6 .3 0

EMU-u, = .3 9le — 6 O (4.2)

0 0 70e — 6

The gray material is a linear interpolation between these two bounds.

For all the problems shown here a symmetry constraint was introduced. This constraint

was introduced because the fine scale material distribution had symmetry about the x and

y axis. Only allowing M1 of the design domain space to be solved and then duplicating or
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repeating that area to fill in the rest of the design space accomplished the symmetry

constraint. This can be seen in figures (4.1) and (4.2).

 

Figure 4.1 V4 of material design

 

Figure 4.2 Symmetric material design

As stated before these examples were obtained by implementing a Genetic Algorithm

[14] technique to solve the inverse homogenization problem for the reduced stiffness

matrix. The details of these calculations are shown in the previous chapters. The rest of

this chapter will be divided into three sections, each section devoted to each one of the

scales. The geometries are laid out as shown in figure 4.3 for the first scale, figure 4.4 for

the second and figure 4.5 for the third scale.
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Figure 4.3 Geometry layouts for fine scale materials —Scale 1
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Figure 4.4 Geometry layouts for fine scale materials —Scale 2
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Figure 4.5 Geometry layouts for fine scale materials —Scale 3

The values of A and B vary depending on the scale that they are on. This can be seen in

the table list below.

Starting

0

 

Table 4.1 Values of A and B for the three scales
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4.1 Scale 1 Solutions

The fine scale picture and coarse scale picture are shown in figures 4.6 and 4.7. The

fitness of this particular solution is shown to be 1.171. This represents a solution is 1.171

times better than that of the wavelet transform of the fine scale picture. The eigenvectors

that contributed to this solution are the 13th through the 28‘". These were picked so that

they exhibit the fine scale features of figure 4.6 and the location of movement was not in

an node that was surrounded by weak material. The rigid body mode shapes were not

included in the calculations. This procedure was done by examining each mode shape of

the reduced finite element solution and the wavelet transform of the fine scale material.

For the examples shown here the fine scale material will be presented along with the

coarse scale material solution. Following these figures mode shapes will be shown

demonstrating the fact that if the two systems are equivalent, similar mode shapes should

appear at approXimately the same frequency.
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Figure 4.6 Fine scale material distribution

 

1 2 3 4 5
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Figure 4.7 Coarse scale material solution
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The following figures will demonstrate the accuracy of the solution above. This is done

by showing that certain mode shapes of each solution and noting that the energy

(eigenvalue) associated with that deformation shape is about equal.
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Eigenvalue = 0.0835029
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Figure 4.8 9th Mode shape from the target stiffness matrix

 

  
 

Eigenvalue = 0.080813
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Figure 4.9 13th Mode shape for the coarse material distribution
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As seen in figures (4.8) and (4.9) the mode shape deformations are qualitatively the same,

with the eigenvalues about equal. The following figures will demonstrate this point for

more mode shapes.

Eigenvalue = 0.134917
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Figure 4.10 10th Mode shape from the target stiffness matrix

Eigenvalue = 0.122476
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Figure 4.11 14th Mode shape from the target stiffness matrix
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Another example of scale one solution.
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Figure 4.13 Coarse scale material distribution
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Readers should note that the fine and coarse scale material distributions are very similar.

This is because the values of A and B correspond exactly to the wavelet transform of the

reduced material. Again noting the similarity between the energies of the two systems at

deformed shapes.
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Eigenvalue = 0.0876951
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Figure 4.14 5th Mode shape from the target stiffness matrix

Eigenvalue = 0.0911849
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Figure 4.15 9th Mode shape for the coarse material distribution
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Eigenvalue = 0.157605
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Figure 4.16 6th Mode shape from the target stiffness matrix

Eigenvalue = 0.151615
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Figure 4.17 10th Mode shape for the coarse material distribution
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5.2 Scale 2 Solutions
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Figure 4.19 Coarse scale material solution
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The second scale results also yield interesting solutions; this can be seen in the figures

above. As seen in the solutions the use of gray material becomes more apparent and

necessary. Also in general, lower mode shapes are taken into account for the higher

scale materials. Again the mode shapes are inspected showing good results.
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Eigenvalue = 0.108431
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Figure 4.20 3rd Mode shape from the target stiffness matrix

 

Eigenvalue = 0.0746933
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Figure 4.21 4th Mode shape for the coarse material distribution
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Eigenvalue = 0.305737
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Figure 4.22 10th Mode shape from the target stiffness matrix

Eigenvalue = 0.229096
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Figure 4.23 15th Mode shape for the coarse material distribution
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Eigenvalue = 0.408616
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Figure 4.24 12th Mode shape from the target stiffness matrix

 

   

Eigenvalue = 0.347141
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Figure 4.25 215‘ Mode shape for the coarse material distribution



The figures above showed one common trend: the target matrix was always stiffer than

the coarse scale material distribution. This problem can be solved by scaling up the

values in the coarse scale material.

Looking at another example from scale 2, again noticing the energy similarity in the

mode shapes.
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Figure 4.27 Coarse scale material distribution solution
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Eigenvalue = 0.0945083
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Figure 4.28 3rd Mode shape from the target stiffness matrix

 

 

  
 

Eigenvalue = 0.0742874
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Figure 4.29 4th Mode shape for the coarse material distribution
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Eigenvalue = 0.133876
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Figure 4.30 5‘h Mode shape from the target stiffness matrix

 

 

 

  
 

Eigenvalue = 0.105763
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Figure 4.31 5‘h Mode shape for the coarse material distribution
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5.3 Scale 3 Solutions
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Figure 4.33 Coarse scale material distribution solution
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Eigenvalue = 0.202476
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Figure 4.34 4.1. Mode shape from the target stiffness matrix

Eigenvalue = 0.174474
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Figure 4.35 3rd Mode shape for the coarse material distribution

50



Eigenvalue = 0.291125
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Figure 4.36 7.1. Mode shape from the target stiffness matrix

 

  
 

Eigenvalue = 0.31518
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Figure 4.37 7.1. Mode shape for the coarse material distribution
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Eigenvalue = 0.364857
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Figure 4.38 9m Mode shape from the target stiffness matrix

 

  
 

Eigenvalue = 0.365677
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Figure 4.39 9th Mode shape for the coarse material distribution
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Showing another scale 3 problem.
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Figure 4.40 Fine scale material distribution
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Figure 4.43 4... Mode shape for the coarse material distribution
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Eigenvalue = 0.188319

Figure 4.42 3rd Mode shape from the target stiffness matrix
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Eigenvalue = 0.1 65655

Again looking at the eigenvectors of the two systems and comparing the eigenvalues.



Eigenvalue = 0.24342
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Figure 4.44 5‘h Mode shape from the target stiffness matrix

 

 

 

  
 

Eigenvalue = 0.291453

0 v . I a -

‘. l 9. I
\\\ v : . v [4

1 r- ‘ fi:—'— / \|/ \\\ .__7\. I/ q

1’4 .19 \

"I,

2 r9% 9—— . :> >; Ix ‘

A

x: ; ,9:
. _ ‘ ‘ /3 / <— — \ 9\ ”‘3’ \ ‘

g T l A \

E 4 _ l . .

§ .9 i
V /’31 1 V9 \i/

59 \ ~—-> / \ (=— ,9 ~

\ /

\‘k X4

/
6 y ’3" > >3 O ‘-< < 4 q

\

fl \
7 '- / *9 \ t / é“ \\ 1

n. 19’
VI

8 r r r

0 2 4 6 8

Figure 4.45 7th Mode shape for the coarse material distribution
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As shown in the figures for the third scale the use of gray material is increased from the

second scale. The eigenvectors taken into account start with the 3rd mode shape. As

stated before, this is the first non-rigid body mode shape.

This chapter presented fine scale material distributions along with the coarse scale

material solutions. These solutions had varying success, which can be seen by comparing

the energies associated with the modes shapes for the solutions. The last chapter is going

to discuss the conclusions of this research.
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Chapter 5

CONCLUSIONS

A model order reduction technique was shown. This technique uses a multi-resolution

analysis on a non-homogenous material distribution with fine scale features to construct a

wavelet based reduced stiffness matrix. A Equivalent material problem was posed; find a

material distribution that represents a reduced wavelet stiffness matrix. This problem

was successfully solved using a genetic algorithm.

Results for three different scales are shown along with mode shapes of the reduced matrix

and the coarse scale material solution. These mode shapes were matched, and then the

energy (eigenvalues) compared. If the energy between the two systems were equal it

could be said that the fine scale material distribution could be represented by the coarse

scale solution for that frequency. This fact has been shown with good accuracy that this

procedure can be done not for just one frequency, but a range of frequencies, making this

correlation between the fine scale and the coarse scale correct for a wide range of loading

conditions.
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