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ABSTRACT

INSERTING FENCES TO GUARANTEE SEQUENTIAL CONSISTENCY

By

Xing Fang

While sequential consistency is arguably the most intuitive and natural memory con-

sistency model for programmers, many shared memory multiprocessors follow a re-

laxed consistency model. Relaxed consistency models allow reordering of reads and

writes, enabling a variety of hardware level optimizations. This boosts system per-

formance, but at the price of difficult programming and porting. In this thesis we

present a compiler that achieves the best of both worlds: performance and ease of

programming. The compiler provides a sequentially consistent view of the under-

lying architecture to the programmer by automatically mapping the program with

sequentially consistent semantics to hardware supporting relaxed consistency. This is

done by inserting memory fence instructions, Where necessary, to force the program

execution to be sequentially consistent. A simple thread—escape analysis is first per-

formed on the programs, and the result is used to direct fence insertion algorithms

in the later passes of the compiler. We present different fence insertion optimization

algorithms developed and implemented in JikesTMReserch Virtual Machine.
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Chapter 1

Introduction

Shared memory multiprocessors are becoming widely accepted in many areas of com-

puting today. Programmers using such machines generally expect the behavior of the

memory to be similar to a uniprocessor running concurrent threads of a single pro-

gram. This memory model for multiprocessors, called Sequential Consistency[9], is an

intuitive extension of the uniprocessor memory model. It is arguably the most natu-

ral memory consistency model to programmers—they assume sequential consistency

even if they don’t know exactly what it is.

Many shared memory multiprocessors follow a relaxed consistency model. Re-

laxed consistency models allow reordering of reads and writes, enabling a variety

of hardware level optimizations, such as speculative execution and data prefetching.

This boosts system performance, but at the same time it makes programming and

porting difficult because the programmer is exposed to the various instruction re-

ordering and atomicity constraints of memory operations. Results of execution may

be counter—intuitive, as shown by the following example.



Initially, x = 0, y = 0, X = 0, Y = 0

Thread 1 Thread 2

511: X = x 321: Y = y

312: y = 1 322: x = 1

lntuitively impossible outcome: x = 1, Y = 1

Figure 1.1: Example of Counter-intuitive Outcome with a Relaxed Memory Model

Figure 1.1 shows a parallel program, with two threads running on different pro-

cessors, processor 1 and processor 2. Originally all the variables are zero. After the

parallel execution we print out the value of X and Y. Under the sequential consis-

tency model the result of execution should appear to be equivalent to one of the results

shown in Figure 1.2, which are obtained by executing the two threads interleavingly.

Ea Fifi[mi Eu E11 an

[El [s21] En ran [qu [s22]
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ism [s22] 1an Ea E22] [“21
l l l l l T

X=0 X=0 X=0 X=0 X=0 X=1

Y=l Y=0 Y4) Y=0 Y=0 Y=0

 

  

  

  

Figure 1.2: Possible Sequentially Consistent Results

With a relaxed memory model we can reorder some of the instructions. We

observe that there is no dependence between 321 and 322, so reordering them is legal.

A possible execution order after the reordering is .922 —) 311 ——> .912 —) 321, which

yields the result X and Y both equaling 1.

This result is not equal to any of the results in Figure 1.2 and it is counter-intuitive.

If X is 1 then 322 must have executed before 311. Note that .92] appears before .922



in thread 2 so intuitively we would expect .521 to execute before 322. For the same

reason we expect 312 to execute after 311, so now 321 must have executed before 312.

Then Y should be 0, instead of 1.

The magnitude of the difficulties introduced by relaxed memory models have led

some to argue that future systems should implement sequential consistency as their

hardware memory consistency model because the performance boost of relaxed mem-

ory consistency models does not compensate for the burden placed on system software

programmers[8]. For example, they argue that in Figure 1.1, the hardware should

guarantee the ordering between 321 and 322, as well as the ordering between 311 and

312, in order to make the results sequentially consistent, and intuitive.

But actually this requirement is too strong. Not all the program orders (i.e.,

the orderings among the instructions, specified by the source program) have to be

enforced to guarantee sequential consistency. Only part of the orders among the

shared variable accesses need to be honored to achive that. These program orders are

called delays and the procedure to find the delays is called Delay Set Analysz's[15]. In

this example the delays are 321 —> 322 and 311 ——) 312, but in general not all the

program orders are delays.

If a compiler can find a proper delay set S for the parallel program and control

the underlying hardware to enforce S, then the programmer could treat the compiler

and architecture as a whole system and regard it as sequentially consistent. Because

S is generally smaller than the original set of program orders, this system can still

profit from the performance advantage of the relaxed memory model.

In this thesis we present implementation of such a system(Figure 1.3). The com-



piler is constructed on top of a multiprocessor system with a relexed memory model.

It performs delay set analysis and inserts fence instructions to enforce the delays,

guaranteeing a sequentially consistent view to the programmer, regardless of the un-

derlining memory model.

 

  
Programmer

[Sequential Consistencyl

Fence Instruction Insertion

A Compiler

l

Relaxed Memory Consistency

 

  
   

  
 

Multiprocessor Architecture   
 

Figure 1.3: The Compiler

The remainder of the thesis is organized as follows. Section 2 introduces memory

consistency models of multiprocessors and Section 3 describes the components of our

compiler. We focus on the fence insertion optimization techniques in Section 4. Then

in Section 5 we present our test results and analyze them. In Section 6 we conclude

and look at possible work to be done in the future.



Chapter 2

Memory Consistency Models

Programmers always have some basic expectations about the results of their program.

For example, in the uniprocessor case, if they issue a read of a memory location m

immediately after a write of m, they will expect the value returned by the read to be

the value just written into m. This simple memory semantics, in which a read of a

variable returns the value of the most recent write to the variable, is most intuitive.

Generally programmers also assume that all memory operations in a program are

executed in program order, where program order is the order of the operations specified

by the source program.

A memory consistency model for a shared address space specifies constraints on

the order in which memory operations must appear to be performed with respect to

one another[10].

Note that the only thing we care about a program is its observable behavior. In

other words the program is looked upon as a black box and when we talk about

memory consistency models, only the result of execution matters.



Popular memory consistency models include the intuitive sequential consistency

model, and various relaxed consistency models.

2.1 Sequential Consistency

Definition 2.1.1 Sequential Consistency

A multiprocessor system is sequentially consistent if the result of the execution

of any program is the same as if all operations were executed in some global

order and the operation of each parallel component appear in this sequence

in the order specified by its program/12].

Figure 2.1 depicts the abstraction of memory provided to programmers by a se-

quentially consistent system[1]. Every process appears to issue and complete memory

operations one at a time and atomically in program order, i.e., a memory operation

doesn’t appear to be issued until the previous one from the same process has com-

pleted. In addition, the common memory appears to service the requests one at a

time in an interleaved manner according to an arbitrary schedule. Memory operations

appear atomic in this interleaved order. It should appear to all the processes as if

one Operation in the consistent interleaved order executes and completes before the

next one begins[6].

Note that in reality the memory operations does not have to happen in the manner

specified above. Only the result of execution is important. The system is sequentially

consistent as long as the result is the same as one of the runs conforming to the

specification in the previous paragraph. The model completely hides the underlying
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Figure 2.1: Abstraction of the Memory Subsystem Under Sequential Consistency

concurrency in the memory system hardware from the programmer.

Sequential consistency is intuitive but it greatly restricts the use of many per-

formance Optimizations commonly used by uniprocessor hardware and compiler de-

signers. As a result various relaxed memory consistency models are proposed and

implemented in today’s commercial multiprocessor systems.

2.2 Relaxed Memory Consistency

Relaxed memory consistency models either relax the program order requirement, or

the write atomicity requirement, or both, in order to enable various system optimiza-

tions.

Popular relaxed memory consistency models include processor consistency, weak

ordering, and release consistency. They allow various reorderings to happen between

memory accesses to different locations, according to their respective ordering con-

straints.



The Java memory model is another relaxed consistency model. It is different from

the others in that it is a software model, specified in [7] and presumably supported

by the virtual machines. It is intended to be effecient and easy to use but is actually

poorly specified and difficult to understand[14].

The major problem with relaxed memory models is that they are not very intuitive,

thus very difficult to use. A concrete example was shown in Figure 1.1, where a

counter-intuitive outcome happens as the result of the reordering of two memory

accesses. Theoretically an experienced programmer should be able to understand

and/or deduce the outcome of a program running on a system with relaxed memory

model, nevertheless programming on such machines is difficult and error-prone.

2.3 The Best of Both Worlds

Figure 2.3 compares the sequential consistency model against relaxed memory models.

It seems that we are in the dilemma of having to choose from one end of the road,

where programming is easy but the system is slow, or the other.

 

Sequential Consistency Relaxed Consistency

Pros Simple and Intuitive Boosted Performance

Cons Inefficient Counter-Intuitive

Difficult to port

 

 

     

Figure 2.2: Sequential Consistency vs. Relaxed Consistency

Our compiler strives to achieve the best of both worlds, providing the ease of

programming as well as enhanced performance, by inserting fences to guarantee se-

quential consistency on top of an architecture with a relaxed memory consistency



model. Reorderings are allowed when they are in agreement with the sequential

consistency model, thus providing improved performance.



Chapter 3

The Compiler

The compiler is built on top of a relaxed memory model. It identifies the delays and

inserts fence instructions to enforce them, providing a sequentially consistent view to

the programmer.The underlying memory model could be a hardware model, such as

weak ordering, or a software model, such as the Java memory model.

Our current compiler is based on the Jikes Research Virtual Machine(RVl\I)[3],

from the IBM T.J.Watson Research Center. It runs on IBM AIX/PowerPC and

Linux/IA-32 platforms.

The compiler does three analyses to achieve its goal: Escape Analysis, Delay Set

Analysis, and Fence Instruction Insertion. We will discuss them one by one. Then

we will take a look at the structure of the Jikes RVM optimizing compiler and see

where our analyses reside.

10



3.1 Escape Analysis

Escape analysis is a technique that identifies the variables in a thread that are possibly

accessible from another thread. This analysis is needed because delays only happen

among shared variables.

We currently implemented two escape analysis algorithms in our compiler. One

of them is called simple escape analysis. It works on a method and identifies those

objects that can be accessed from outside the method. It is an iterative process.

Initially the class variables, method parameters and return variables are marked as

escaping because all of them can be accessed from outside the method. Later we

inspect each instruction in the method and if a variable is accessible from an escaping

variable then it will also be marked escaping. This process goes on until no more

variables are marked escaping. The result of this analysis is fairy conservative, because

escaping from a method(accessible from outside the method) is much more common

than escaping from a thread(accessible from another thread).

To get an estimate of our compiler’s performance, we employed another escape

analysis called manual escape analysis. Here a human being inspects the source

code of a program, does escape analysis by hand and makes the compiler aware

of the escaping variables by marking them in the source code. The compiler then

catches the markings and records the information. This approach is very optimistic

because no compiler can ever reach the preciseness of the human brain. The manual

escape analysis is only used to get an estimate of the upper bound of our system’s

performance.

11



3.2 Delay Set Analysis

The second phase of our compiler is Delay Set Analysis[15], which determines the

minimal set of delays we need to enforce.

Let P be the order enforced by the source program (i.e., program ordering) be-

tween operations. Throughout this discussion, operations are assumed to be atomic.

P is the transitive closure of the graph which contains the control flow edges of all

the control flow graphs of each thread in the parallel program. A node in the control

flow graph represents an operation. Two nodes 772. and n will be mPn if there is a

path between m and n. Let C be a conflict relation on variable accesses. The conflict

relation consists of the set of all pairs (obey), where u, and vj are operations con-

taining conflicting accesses. Two memory references conflict if they access the same

memory location in different threads that might execute concurrently, and at least

one of them is a write[11].

A delay relation D between two operations u and v forces 12 to wait until u

completes execution. A critical cycle is a cycle of P U C that has no chords 1 in

P. The delay relation D enforces sequential consistency if all P edges in the critical

cycles appear in D. If D consists of all the P edges in the critical cycles, then D is

a minimal delay relation that enforces sequential consistency in any execution of the

program.

Currently we haven’t developed a real delay set analysis. Instead, if shared mem-

ory access it can reach shared access 11 then we assume there is a delay u ——) u that

 

1For two nonadjacent nodes u and v in a cycle, a chord is an edge (u, v).
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we need to enforce. Basically we are now using the set of all the program orderings

among the shared accesses as the delay set. This is guaranteed to be safe but it’s

very conservative.

This conservativeness adversely influences the performance of our whole system,

and also makes our fence insertion Optimization techniques less effective, as reflected

in our test results.

3.3 Fence Instruction Insertion

The last phase of our compiler concerns fence instruction insertion and Optimization.

It tries to determine the Optimal set of locations in the compiled code to insert memory

fence instructions. We devised and implemented three fence insertion/optimization

algorithms and we will talk about them in detail in the next chapter.

3.4 Structure of the Jikes RVM Optimizing Com-

piler

We implemented our compiler in the Jikes Research Virtual Machine(RVM) from

the IBM T.J.Watson Research Center. It is a research Java virtual machine written

almost entirely in Java.

Jikes RVM executes Java bytecode by compiling them to machine instructions at

run time. It has three compilers: the baseline compiler, the Optimizing compiler and

the adaptive compiler. Our system was implemented in the optimizing compiler.

13



 

 

Java Bytecode

  

Bytecode to H IR (Escape Analysis)

HIR Optimizati ons (Delay Set Analysis)

 

  

HIR (High-Level Intermediate Representation)

 

HIR to LIR (Modified

LIR Optimizations Dependence Analysis)

 

 

LIR (Low-Level Intermediate Representation)

  

LIR to MIR

MIR Optimizations (Fence Insertion)

 

MIR (Machine-specific Intermediate Representation)

   

Final Assembly

 

Binary Code

   

Figure 3.1: The structure Of Jikes RVM Optimizing Compiler

Figure 3.1 shows the structure of the Jikes RVM optimizing compiler.

The unit of compilation in the optimizing compiler is a method. The compiler be-

gins by translating Java bytecode to a High-level Intermediate Representation(HIR),

which is a register-based intermediate representation. In this process instructions are

grouped into extended basic blocks, and method exception tables are constructed.

Later the HIR is translated into Low-level Intermediate Representation{LIR), ex-

panding the HIR instructions into operations that are specific to the RVM’s object

layout and parameter passing conventions. Also a dependence graph is constructed

14



for later use. Instruction selection is performed next using the dependence graph,

and the LIR is translated into Machine-specific Intermediate Representation(MIR) in

this stage. Register allocation is performed, the prologue and the epilogue are added

and executable code is emitted[3].

Escape analysis is concerned about identifying variables that are possibly shared

among multiple threads. This should be done on a fairly high level in the compilation

hierarchy, because not only is the information about sharedness available at the high

level but also the program size is significantly smaller there , in order to reduce the

complexity of analyses. As a result we implemented escape analysis in the HIR level.

The same reasoning holds true for delay set analysis so it is implemented in the HIR

level too.

Fence insertion has to be performed at a very low level and we implemented it

after register allocation in our system. Fence instructions of different architectures

has various forms and semantics, and only at the lowest level can we discover the

specific architecture and insert fences correctly and efficiently.

The dependence graph is used for instruction selection. Each node of the graph is

an LIR instruction and each edge corresponds to a dependence constraint between a

pair of instructions, preventing code reordering during the instruction selection phase.

We modified the dependence graph construction code in the RVM, adding the

delays as dependences. The delay set. is already available by the time the dependence

graph is constructed, and the delays have to be enforced for the system to provide

sequential consistency. To do that we can not allow instruction reordering for two

instructions that has a delay between them. Adding delays as dependences ensures



the compiler will honor the delays at compile time. Fences are later inserted to force

the processor to guarantee the delays at runtime.

16



Chapter 4

Fence Instruction Insertion

In this chapter we discuss the theory of fence insertion optimization and present the

three insertion/optimization algorithms implemented in our compiler.

4.1 Fence Instruction Semantics

Fence instructions are provided in modern processors as a mechanism for overriding

their default relaxations. These intructions can be inserted in the machine code to

enforce ordering among instructions.

The fence instructions of commercial architectures have various names and se-

mantics: store barrier in the SPARC V8 architecture; read-read, read-write, write-

read, and write-write fences(MEMBAR) in the SPARC V9 architecture; memory bar-

rier(MB) and write memory barrier(VVMB) in Alpha; sync in MIPS and the PowerPC

architecture; memory fence(mf) in the Intel IA-64 architecture; and load fence(lfence),

store fence(sfence) and memory fence(mfence) in the Intel Pentium 4 processor.

17



Because the semantics of a fence differ from architecture to architecture, we assume

that a fence (or a synchronization instruction) has the following semantics[10]:

Definition 4.1.1 Fence

A fence instruction imposes ordering between memory operations in such a

way that when a fence instruction is executed by a processor, all previous

memory operations of the processor are guaranteed to have completed. Fur-

thermore, no memory operation of the processor that follow the fence instruc-

tion in the program is issued until the fence completes execution.

If the architecture supports weaker fences(e.g. read-read,read-write,write-read,

and write-write fences of the SPARC V9 architecture)than the above definition, then

more efficient executions can be attained by modifying the fence insertion algorithms

to take advantage of the weaker fences.

Our current compiler is based on the IBM PowerPC architecture, and sync in-

structions are inserted into the compiled code to enforce delays.

4.2 Delay Set Reduction

Delay Set Analysis gives us a minimal set of program orderings needed to guarantee

sequential consistency. However, properties of the particular memory models are not

considered in delay set analysis. This information can be exploited to further reduce

the delay set. Each memory model specifies some ordering constraints that are forced

by the model, and we do not need to enforce the delays that are enforced by these

constraints.

18



Let D be the delays found by the delay set analysis and Do be the delays enforced

by the ordering constraints of the memory model(i.e., if uDov, then u —-) 12 match

one of the constraint patterns and is preserved by the architecture). The following is

a minimal delay relation that enforces correctness together with Do [15]:

13,,n = ((D u Dow)tr — r)o

here + and " denote transitive closure and transitive reduction Operations respectively.

Thus, only the delays in Dm need to be implemented with fences or other special

instructions, depending on the consistency model[10].

4.3 Inserting Fences to Enforce Delays

Fence insertion involves inserting memory fence instructions in the compiled code to

enforce a computed delay set. Fence instructions are costly and the ultimate objective

of the fence insertion algorithms is to minimize the number of memory fences executed

by a program. However, reducing the total static number of memory fences inserted

must be helpful and would serve as a good heuristic of this objective.

In our compiler fences are added as separate instructions. They are inserted

before a node of the control flow graph to enforce one or more delays. To make it

easier to describe we say the fence is inserted at the node and the node is called a

fence insertion location. A node y can be marked as a fence insertion location to

enforce a delay quu if y always executes after u and before 1: whenever u and u

19



execute.

A conservative condition for finding a fence insertion location y that enforces a

delay quv is: If every path from u to v in the control flow graph of a thread goes

through y, then y executes whenever u and v execute.

To find fence insertion locations, we use the notion of dominators with respect to

a node[10]. A node n dominates a node m (n dom m) if every control flow path from

the program entry node to m goes through n[10]. The (classical) dominators of a

node m are the dominators with respect to the program entry node Of the control flow

graph.

Definition 4.3.1 Dominators with respect to a Node[10]

A node 3 dominates a node v with respect to a node u if every control flow

path from u to v goes through 3. This relation is denoted by s domu v, and

the set of such dominators s are denoted by domu[v].

We use the iterative algorithm for classical dominators [4, 2] to find dominators

with respect to a node u by treating u as the program entry node.

Minimizing the number of fence insertion locations is NP-hard because its decision

version is an NP-complete problem[10, 12, 13]. Instead of checking each subset of the

nodes in Uquv domu[v] to determine whether the fences in the subset enforces all

the delays Dm, an approximation algorithm can be used to minimize the number of

fences inserted. It is a slight modification of the greedy heuristic developed to solve

the Optimization version of the MINIMUM COVER problem [5].

The algorithm listed below in Figure 4.1 is taken from [12]. It is the basis of our

discussion of fence insertion optimization.

2O



 

1 U *- U(u,v)€Dm[vl

2 C <— (l)

3 for each n E U

4 0., <— 0)

5 for each quv

6 if n E domu [v] then

7 Cut—CnU{(u,v)}

8 end if

9 end for

10 C 4— C U {Cu}

11 end for

12 X (— bfDm

13 M +— (ll

14 while X 74 (0

15 Select a Cu 6 C that maximize |C,, H X].

16 X <— X — C1,

17 M (— M U {n}

18 end while  
 

Figure 4.1: Greedy Heuristic to Optimize Fence Insertion

The algorithm first gets the dominance w. r.t. a node information and determines,

for each possible fence insertion location, the set of delays that a potential fence can

enforce. Then it greedily selects the location that enforces the largest number of

delays as the next fence insertion location. Those delays that are enforcible by the

selected fence are removed from the delay set and this selection process goes on, until

all the delays are enforced.

Some other concerns exist that influence the choice of fence insertion locations.

Since the goal of the relaxed memory consistency model is to make memory Operations

to different locations overlapped (pipelined) or reordered in order to hide the memory

latency, we want to insert a fence as close to node v as possible in order to maximize

the reordering and overlapping by processors if u —> v is a delay. Also, it is more

desirable to insert a fence at a memory-barrier node n E domu[v] that is located in
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SharedAccessPool = 0

For each instruction u in the method

if u is a shared memory access then

put u into SharedAccessPool

for each instruction v in SharedAccessPool

if there is a delay v —) u then

insert a fence instruction right before u, if there isn’t one there

end if

if there is a delay u —-) v then

insert a fence instruction right before v, if there isn’t one there

end if

end for

end if

end for   
Figure 4.2: The Naive Fence Insertion Algorithm

a less frequently executed path[10].

4.4 Fence Insertion Algorithms in Our System

We describe below the three different fence insertion algorithms implemented in our

system.

4.4.1 Naive Fence Insertion

The first insertion algorithm we implement is the naive insertion algorithm, which

does not Optimize fence insertion. The algorithm is shown in Figure 4.2.

We check every pair of shared variable accesses in the method for possible delays

between them. Here we need to check possible delays v —+ u and u ——) v because of

the possible presence of loops in the method. Even if it appears in the static program

after v, there is possibility that a program order v —> it exists. Also for the same
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reason, we check (u,u) for delay for each shared variable access ii.

In this algorithm a fence is inserted for each delay. The only exception is when

there has been a fence before the shared variable, in which case an additional consec-

utive fence is redundant. Note that with our conservative delay set analysis, we have

a delay between almost every pair of shared variables. As a result effectively every

shared variable has a fence inserted before it. We can see this is very conservative

and there must be room for optimization.

The other two algorithms try to optimize fence insertion. For this purpose the

delay set is divided into intra-block delays (delays between instructions in the same

extended basic block) and inter-block delays(delays between instructions in different

basic blocks). Inter-block delays starting from the same block and end at another

same block are combined into a single inter-block delay, between blocks (as compared

to the original concept of delay between instructions).

4.4.2 Local Optimization

We devised the local optimization algorithm to optimize the fences being inserted

to enforce intra-block delays. The algorithm doesn’t consider global control flow

information nor seeks to Optimize insertion of fences that enforce inter-block delays.

That is why it is called local. Figure 4.3 is a description of the algorithm.

First, for each extended basic block that has a inter-block delay edge arriving into

it, the algorithm inserts a fence at the entry of the block. This fence would enforce all

the delays that come from outside the block because it dominates all the instructions
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For each extended basic block B in the method

if there exists an inter-block delay into B then

insert a fence instruction at the start of block B

end if

Get the set S of true register dependences in B;

Get the transitive closure of S, and remove it from the delay set D;

SharedAccessPool = (b

For each instruction u in B, start from the first instruction

and iterate in program order

if u is a shared memory access then

for each instruction v in SharedAccessPool

if there is a delay v -—> u then

insert a fence instruction right before u,

(if there isn’t one there)

SharedAccessPool = (0

end if

end for

put u into SharedAccessPool

end if

end for

end for

 

Figure 4.3: The Local Optimization Algorithm

 

 

For each extended basic block B in the method

Collect those extended basic block C that has delay (B —> C) and

put them into a set S.

Set up a data flow framework to compute domB[S]

end for

Apply the algorithm in Figure 4.1

Insert a fence at the start of each basic block chosen by the algorithm.

 

Figure 4.4: The Global Fence Insertion Algorithm
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in the block: the fence is on every possible control flow path coming into the block.

This leaves us with only the intra—block delays to worry about.

As we mentioned, the ordering constraints of the memory model could be exploited

to reduce the delay set. In this algorithm we are exploiting the possible true register

dependence among the instructions, which is honored by most processors(inc1uding

PowerPC) when they do reordering. If there is a delay u —-> v and there is a (transitive)

true register dependence between u and v, then the delay will be enforced by the

processor architecture and no fences need to be inserted for it.

As the last step of the local Optimization, we start from the entry point of each

extended basic block towards the end, checking each shared memory access u for pos-

sible unenforced delays with the form v —) u, where v is another shared memory access

in the same block. A set SharedAccessPool is constructed to store the candidates of

v. SharedAccessPool is initially set to (b; when we come across a shared access u it is

added into SharedAccessPool. If a delay with the form v —> u is discovered, where

v E SharedAccessPool, we insert a fence right before u and SharedAccessPool is

reset to (0 because the newly inserted fence would take care of all other possible delays

from instructions prior to u.

4.4.3 Global Optimization

We implemented the global optimization algorithm to exploit control flow information

among the basic blocks and Optimize fences being inserted to enforce inter-block

delays. At the same time the algorithm also employs the techniques used in local
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Optimization to Optimize fences inserted to enforce intra-block delays.

Figure 4.4 shows the part of the global optimization algorithm that optimizes

fences inserted to enforce inter-block delays. Basically it finds out the dominance

w.r.t. a node info and applies the algorithm in Figure 4.1.

4.4.4 Exploiting Synchronized Blocks

Synchronized blocks are implemented in the JikesTMRVM with a sync instruction at

the end of the block. We exploited this sync instruction in the global Optimization

algorithm by removing the delays that has been enforced by this SYNC from the

delay set. Figure 4.5 shows an example of such delay removal.

  

 

--------- > Delay

——-—> Program order

Fence

Figure 4.5: Exploiting Synchronized Blocks

The sync instruction(black bar in the middle of Figure 4.5) post-dominates in-
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structions u,v and x, so delays u —-> y, u —> y, and x —> 2 has been enforced by the

sync and can be removed from consideration in the fence insertion algorithms.

4.5 Fence Insertion Example with Our Algorithms

The following is an example of fence insertion with the three fence insertion algo—

rithms. Figure 4.6 shows a simple control flow graph and the contents of one of its

basic blocks, block c. The dark arrows are the delays we need to enforce. The black

lines are the program orders.

Extended Basic Block

 

Intra-block delay

\ .l a
 

--------- v Delay

Program order

 

     
Inter-block delay

Figure 4.6: An Example Control Flow Graph

We first focus on fence insertion inside the extended basic block c. With the naive

insertion algorithm we check each pair of shared memory accesses u and v in the

method body and see whether there is delay between them. If there is a delay u —> v
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we insert fence before v. So in this case there would be five fences for this block c,

as shown in Figure 4.7. Later we will see that at least three of these five fences are

redundant, as we apply the insertion optimization techniques.

Extended Basic Block
\\\\‘ i

Intra-block delay

 

 

 

   

  

‘~“~

Every delay gets a fence

......... . Delay

-——> Program order

- Fence    
Inter-block delay

Figure 4.7: Result of Fence Insertion with Naive Insertion Algorithm

The local optimization technique first notices the inter—block delay b —> c ,and

inserts a fence at the start of block c. Then it identifies the true register dependences

inside the block C(Figure 4.8), and gets the transitive closure Of it(Figure 4.9). Note

that the delay v —> g has been enforced by the hardware because (v,x) will not be

reordered and (x, y) will not be ordered.

Now we start from the entry of the block c and check whether a fence is needed to

enforce some delays. When we come to v we see the need for one so we add a fence

there.
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Load R1,0(RO) , , Load R1.0(RO)

[ Load R2, 0(Rl) w y Load R2. 0(R1)

Store R2, 0(R3) , Store R2. 0(R3)

' Dependence
" " Dependalce

--------- > Delay
........., Delay

_, Prouam order ——t Program order

Figure 4.8: Fence Insertion with Local In- Figure 4.9: Result of Fence Insertion with

sertion Algorithm: Original State Local Insertion Algorithm

The delays u —> w and u —> x are not directly enforced by a fence(there are no

fences before w or x). However u ——> w has been enforced because the only path from

u to w is from u to v to w. The fence before v is on the only path from u to w, which

means the delay u —> w is enforced by the fence at v. This is an exploitation of the

dominance relationship within the block. Delay u —-> x is enforced too because the

same reasoning holds true for the path from u to x.

We saw that with the naive fence insertion we need 5 fences in the block; now we

only need 2. And sometimes the one at the entry of the basic block can be removed

as well, thanks to the global optimization.

Now we apply the global optimization algorithm to Optimize fence insertion to

enforce inter-block delays. First we compute, with a data flow framework, the poten-
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b -—> c: enforcible by c

b —> d: enforcible by c, d

b —-> g: enforcible by h, g

a —> h: enforcible by b, h  
 

Figure 4.10: Dominance w.r.t. a Node: Set Of Locations that can Enforce this Delay

 

c enforces b ——> c, b ——> d

d enforces b —+ d

g enforces b —> g

b enforces a -+ h

henforcesb—>g,a—>h  
 

Figure 4.11: Set of Delays Enforcible by a Potential Insertion Location

tial fences that can enforce a particular delay u —> v. It is domu[v]. The results are

shown in Figure 4.10.

Then we convert this information into the set of delays that each potential inserted

fence can enforce(Figure 4.11).

With this information, we apply the greedy heuristic in Figure 4.1. Basically we

try to find fence insertion locations that enforces as many delays as possible. In this

example the block 0 is chosen first because a fence inserted at the start of c would be

able to enforce 2 delays; then h is chosen. After that the four inter-block delays have

been enforced by the two fences in Figure 4.13, instead Of requiring four fences as in

Figure 4.12.
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--------- » Delay -------> Delay

———> Program order ——> Program order

- Fence Fence

Figure 4.12: Fences Inserted to Enforce Figure 4.13: Fences Inserted to Enforce

Inter-Block Delays, w/o Global Optimiza— Inter-Block Delays, w/ Global Optimiza-

tion tion
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Chapter 5

Performance Test Results and

Analysis

We have run some tests to get a quantitative estimate of the performance of our

compiler. Our goal here is not to provide higher performance but ease of programming

with comparable performance.

5.1 The Test Environment

Tests were run on two machines: a single processor IBM RS/6000 PowerPC in Michi-

gan State University, with 512MB of physical memory, running AIX4.3.3; And an

IBM SP machine with 8GB of physical memory, using 4 375MHz processors, located

in the University of Illinois.

The benchmarks we used include Spechm98(-201_compress, _202_jess, -209-db,

-222mpegaudio,227mtrt and -228_jack), four multi-threaded benchmark programs
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(elevator, philo, sor and tsp) from ETH, Zurich, and some programs (Crypt, LUfact,

MolDyn, MonteCarlo, SOR, Series and SparseMatmult) from the Java Grande Forum

Benchmark suite version 1.0. All the programs in Sechvm98 are single-threaded,

except .227_mtrt; the rest of the benchmark suite are multi-thrcaded.

We ran the test programs with our simple escape analysis, the manual escape

analysis, and the original escape analysis that comes with Jikes RVM. We performed

our fence instruction insertion and optimizations for each escape analysis on the

two machines respectively. The programs were run for four times and the average

execution time was recorded.
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5.2 Performance Results with the Multiprocessor

Machine

The following tables show the results we got on the multiprocessor IBM SP machine.

The ”Original” columns show the average execution time of the programs,using the

default Jikes RVM Java memory model. The ”Naive” columns show the execution

time with the naive fence insertion algorithm. The ”Local” and ”Global” columns

show the result with the local/global fence optimization algorithms, respectively. The

fence insertion algorithms were described in Chapter 4. The unit Of time is seconds

and the slowdown numbers are shown in parentheses.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Table 5.1: Performance on the multiprocessor machine, with simple escape analysis

Benchmark Original Naive Local Global

-201_compress 16.971 351.477(20.710) 261.606(15.415) 240.346(14.162)

-202_jess 9.890 45.533(4.604) 36.062(3.646) 31.201(3.155)

-209.db 30.940 62.042(2.005) 48.738(1.575) 41.795(1.351)

-222_mpegaudio 13.476 321.295(23.841) 219.742(16.306) 212.066(I5.736)

-227_mtrt 4.851 32.883(6.779) 28.165(5.806) 27.008(5.568)

-228.jack 19.552 133.980(6.852) 132.437(6.773) 130.859(6.693)

elevator 22.508 22.510(1.000) 22.509(1.000) 22.509(1.000)

philo 15.383 15.826(1.029) 15.808(1.028) 15.872(1.032)

sor 1.743 25.048(14.373) 12.206(7.004) 11.504(6.601)

tsp 2.519 29.740(11.806) 21.684(8.608) 17.073(6.778)

Crypt 23.550 42.822(1.818) 33.486(1.422) 33.066(1.404)

LUFact 3.185 31.712(9.957) 31.925(10.024) 31.778(9.978)

MolDyn 71.413 958.442(13.421) 470.258(6.585) 470.219(6.584)

MonteCarlo 13.842 37.115(2.681) 34.198(2.471) 33.954(2.453)

SOR 4.106 41.647(10.143) 41.962(10.220) 35.803(8.720)

Series 140.749 411.365(2.923) 376.404(2.674) 376.247(2.673)

SparseMatmult 3.827 43.293(11.313) 34.889(9.117) 35.061(9.162)  
Table 5.1 shows the performance data with the simple escape analysis that we
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described in Section 3.1.

The average slowdown with simple escape analysis and the global fence insertion

algorithm is 6.062. This is actually not very bad because currently our emphasis is on

the ability to provide sequential consistency, not on system performance. The escape

analysis we have is very conservative and we even don’t have a real delay set analysis

yet.

Also with Table 5.1, we can see the average slowdown with the naive fence insertion

algorithm is 9.036 and with the local insertion optimization algorithm, the average

is 6.451. Comparing to the slowdown with simple escape analysis and global fence

insertion optimization, this shows that our fence insertion optimization algorithms

are effective, although the effect is not so much as we expected. The reason is again,

we currently don’t have delay set analysis. With a delay between almost every pair Of

shared accesses, the Optimization techniques, especially the global Optimization, can

really do little. This result can be viewed as a lower bound of system performance.

Figures are easier to understand so we made a graphical representation of the data

in Table 5.1, as shown in Figure 5.1. We can easily see the trend we mentioned from

the figure.
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Table 5.2: Performance on the multiprocessor machine, manual escape analysis
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Benchmark Original Naive Local Global

-20l_compress 16.971 185120.091) 185040.090) 184510.087)

.202_jess 9.890 9.930(1.004) 9.9450006) 9.962( 1.007)

-209_db 30.940 30.603(0.989) 30.664(0.991) 30.748(0.994)

.222_mpegaudio 13.476 31.894(2.367) 30.599(2.271) 30.572(2.269)

.227_mtrt 4.851 4.881454(1.006) 4.869(1.004) 4.884(1.007)

.228.jack 19.552 19.88054(1.017) 199360.020) 199650.021)

elevator 22.508 225080.000) 225080.000) 225080.000)

philo 15.383 15.8367(1.029) 158520.030) 15.899(1.034)

sor 1.743 1.834(1 .052) 1.824(1 .046) 1.756(1 .008)

tsp 2.519 10.491(4.165) 10.244(4.066) 8.059(3.199)

Crypt 23.550 24.820(1.054) 24.896( 1.057) 24.885(1.057)

LUFact 3.185 3.180(0.998) 3.172(0.996) 3.172(0.996)

MolDyn 71.413 776960.088) 787100.102) 78.206(1.095)

MonteCarlo 13.842 18.582(1.342) 18.750(1.354) 186530.348)

SOR 4.106 4.113(1.002) 4.109(1.001) 4.114(1.002)

Series 140.749 339.044(2.409) 339.085(2.409) 338.728(2.407)

SparseMatmult 3.827 7.086(1.852) 7.3910931) 7.380.928)       
Now let’s take a look at the other extreme. Table 5.2 shows the performance

data with manual escape analysis, and a graphical representation of this data is given

in Figure 5.2. We can see that this time, 12 out of the 17 benchmarks showed no

slowdowns, and the slowdowns for the other 5 programs are much less than in the

previous case, averaging 2.28. Some of those programs performed poorly because the

analysis techniques we have described are not sufficient to eliminate false dependences

in the program, for example, those that occur due to indirect array indexing. We are

looking into new ways to improve the accuracy of analysis.

This result can be viewed as a rough upper bound of possible system performance.

It shows that it is feasible to provide sequential consistency without much performance

degradations.
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Table 5.3: Performance on the multiprocessor machine, original escape analysis
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Benchmark Original Naive Local Global

-201_compress 16.971 331.79609.551) 24046204523) 22518503269)

-202_jess 9.890 43.634(4.412) 34.513(3.490) 29.520(2.985)

-209_db 30.940 509160.646) 45.363)(1.466) 395650.279)

-222.mpegaudio 13.476 26457309632) 17017003072) 17446902946)

-227_mtrt 4.851 31.252(6.443) 27.663(5.703) 26. 529(5.469)

-228.jack 19.552 42.387(2.168) 41.911(2.144) 41.084(2. 101)

elevator 22.508 225090.000) 225090.000) 22.5090.000)

philo 15.383 158270.029) 158310.029) 15.7820.026)

sor 1.743 16.250(9.325) 10.643(6.107) 10.607(6.087)

tsp 2.519 3036802056) 21.297(8.454) 16.960(6.733)

Crypt 23.550 328050.393) 327220.389) 32.7420.390)

LUFact 3.185 3.586(1.126) 3.524(1.106) 3.512(1. 103)

MolDyn 71.413 78106200937) 446.444(6.252) 444.847(6.229)

MonteCarlo 13.842 29.871(2.158) 29.141(2105) 28. 763(2.078)

SOR 4.106 41.63900141) 4200600230) 3.5751(8.707)

Series 140.749 410861(2.919) 376.404(2.674) 376.216(2.673)

SparseMatmult 3.827 26.033(6.803) 26.008(6.796) 26.027(6.801)      
Table 5.3 shows the performance data with the original escape analysis that comes

with Jikes RVM. Here the average slowdowns for the naive, local and global insertion

algorithms are 6.632, 5.149 and 4.816 respectively. Except this, the trend here is the

same as with the simple escape analysis we implemented. This result could serve as

a better lower bound of system performance.
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5.3 Performance Results on the Uniprocessor Ma-

chine

The following tables show the the results we got on the uniprocessor PowerPC

RS/6000 machine. They confirmed the same trend as on the multiprocessor machine.

The meanings of the columns are the same as in the previous section.

Table 5.4: Performance on the uniprocessor machine, with simple escape analysis
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Benchmark Original Naive Local Global

-201_compress 25.781 44099907106) 34454603365) 321.45102469)

-202_jess 15.005 61.033(4.067) 54734(3.648) 44.886(2.991)

-209.db 62.941 933830.484) 844860.342) 737500.172)

-222.mpegaudio 16.582 28384407118) 27358400499) 27133800364)

-227_mtrt 10.276 71.649(6.973) 62.919(6.123) 60606(5.898)

-228.jack 27.338 60.752(2222) 59.227(2166) 56.621(2071)

elevator 22.504 225060.000) 225050.000) 225050.000)

philo 12.789 136860.070) 133370.043) 132990.040)

sor 6.494 138.609(21.343) 65.86100141) 61.563(9.480)

tsp 8.050 168.844(20.974) 12336205324) 9786202157)

Crypt 104.921 215.429(2.053) 1616640641) 1594710620)

LUFact 16.103 18354201398) 184.260(11.442) 18351801396)

SOR 20.507 241.764(11.789) 240816(11.743) 204.544(9.974)

Series 614.199 2158.710(3.515) 1964300(3.198) 1958.620(3189)

SparseMatmult 52.248 284035(5.436) 235.728(4.512) 236.473(4.526)
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Table 5.5: Performance on the uniprocessor machine, manual escape analysis
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Benchmark Original Naive Local Global

-201_compress 25.781 55.117(2.138) 55.191(2.141) 56.086(2176)

-202.jess 15.005 107470.116) 168160.121) 159640.064)

-209_db 62.941 630830.002) 629770.001) 630360.002)

-222_mpegaudio 16.582 47.624(2.872) 46.330(2.794) 45766(2.760)

-227_mtrt 10.276 103530.008) 10.098(0.983) 10.102(0.983)

-228.jack 27.338 278180.018) 286660 .049) 291050.065)

elevator 22.504 22.505(1000) 225410.002) 225060.000)

philo 12.789 134040.048) 132630.037) 132960.040)

sor 6.494 6.645(1023) 6621(1020) 7.8930215)

tsp 8.050 55171(6.854) 54.720(6.797) 41692(5.179)

Crypt 104.921 1053200004) 1049120000) 1053160013)

LUFact 16.103 162950.012) 152180.007) 163840.017)

SOR 20.507 20.043(0.977) 20.180(0.984) 20.112(0.981)

Series 614.199 1745.110(2841) 1742.900(2.838) 1742.550(2.837)

SparseMatmult 52.248 748060.432) 724450.387) 736220.409)
 

Table 5.6: Performance on the uniprocessor machine, original escape analysis
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Benchmark Original Naive Local Global

-201_compress 25.781 47913108585) 35870003914) 32666202671)

-202_jess 15.005 61.345(4.088) 48.361(3.223) 41.325(2754)

-209_db 62.941 757870.220) 685240.089) 60.474(0.961)

-222_mpegaudio 16.582 375.009(22616) 24946305044) 24735204917)

-227_mtrt 10.276 69.155(6.730) 60.113(5.850) 57.700(5615)

-228.jack 27.338 55.256(2021) 55.554(2.032) 523260.914)

elevator 22.504 22.5500 .002) 225050.000) 22.504(1000)

philo 12.789 132740.038) 134030.048) 132640.037)

sor 6.494 8756303483) 56.429(8689) 56.200(8.654)

tsp 8.050 168.399(20.919) 12197105152) 9945602355)

Crypt 104.921 1591870517) 1591100516) 1588700514)

LUFact 16.103 173360.077) 172010.068) 107380.039)

SOR 20.507 240.596(11.732) 241.041(11.754) 203.852(9941)

Series 614.199 2163.570(3.523) 1963.540(3.197) 1962.470(3195)

SparseMatmult 52.248 215.444(4.124) 200990(3.847) 204.008(3.905)     
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5.4 Counting the Fences

 

 

 

 

 

 

Method Name Percentage in Naive Local Global

sequential time" (Manual/Simple) (ManuaL’Simple) (ManuaI/Simple)

Compressor. 41 03% 0/5 1 O/36 0/28

compressO

Decompressor. 25 . 0796 0/58 O/44 0’4 1

Decompress()

Compressor. 8. 18°76 37/67 37/67 37/67

Output()

Decompressor. 4.09% 16/58 16/56 16/56

GetcodeO       
*: Profiled on SPARC Machine

Figure 5.3: Static Count of Syncs Inserted in Hot Methods of -201_Compress

To try to interpret the performance results we got the hot methods of the bench-

marks by profiling and counted the static number of fences inserted into the hot

methods. Figure 5.3 shows the hot methods in -201_compress and the number of

fences inserted in them, with each of the escape analyses and fence insertion algo-

rithms. The profiling was done on a SPARC machine, but the hot methods should

be the same as on a PowerPC. We could see that with the manual escape analysis

we didn’t insert any fence instructions in the two hottest methods, while we inserted

quite a lot of fences with the simple escape analysis. This explains the difference

in the slowdown with the two escape analyses. Also we could see that with simple

escape analysis, the number of fences we inserted did decrease as we employ more

aggressive insertion optimization techniques. This explains the difference of slowdown

in Figure 5.1, among columns denoting different fence insertion algorithms.
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Chapter 6

Conclusions and Future Work

6. 1 Conclusions

In this thesis, we described the design and implementation of a compiler that inserts

fences to guarantee sequential consistency. We devised three fence instruction inser-

tion algorithms and ran tests to get the two boundries of system performance. We

proved that it is feasible to provide sequential consistency on top of a relaxed memory

model by inserting memory fences during compilation.

We are devising some reasonably accurate escape analyses and delay set analyses

to make the compiler more realistic. When these analyses are deployed, we expect to

get modest slowdowns somewhere in between the two extremes (closer to the result

with manual escape analysis).
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6.2 Future Work

We are still looking into new Opportunities to Optimize fence instruction insertion.

Currently we only implemented the compiler on the PowerPC architecture, which

has only one memory fence instruction (sync). For other parallel architectures with

relaxed memory models, there may exist several fence instructions with slightly dif-

ferent semantics. We can exploit these different kinds of fences and fine-tune our

fence insertion algorithms. We are planning to port our implementation onto the

Linux/Intel Pentium 4 platform, where there are three different fence instructions:

load fence, store fence, and memory fence.

Another Opportunity for Optimization is to reduce the delay set before enforcing

them with fences. Some delays may actually be redundant; They will automatically

be enforced if some other set of fences are enforced. An example of this is shown in

Figure 6.1.

Here delay u —> v is redundant because if the delays a —> b and e —> f are enforced

then delay u ——> v will automatically be enforced. SO we can remove u —> v from the

delay set before the fence insertion.
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Program

Order 
Figure 6.1: Example Of Delay Reduction
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