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ABSTRACT
TREES, PATHS AND AVALANCHES ON RANDOM NETWORKS
By
Radu Dobrin

The investigation of equilibrium and non-equilibrium processes in disordered systems
and particularly the relation between them is a complex problem that deserves attention. We
concentrate on analyzing several relations of this type and approbriate numerical solutions.

Invasion percolation (IP) model was motivated by the problem of fluid displacement in
disordered media but in principle it could be applied to any invasion process which evolves
along the minimum resistance path. Finding the invasion paths is a global optimization
problem where the front advances by occupying the least resistant bond. Once the invasion
is finished, the union of all the invasion paths on the lattice forms a minimum energy
spanning tree (MST). We show that the geometry of a MST on random graphs is universal.
Due to this geometric universality, we are able to characterize the energy of this optimal
tree for any type of disorder using a scaling distribution found using uniform disorder.
Therefore we expect the hopping transport in random media to have universal behavior.

Kinetic interfaces is an important branch of statistical mechanics, fueled by applica-
tion such as fluid-fluid displacement, imbibition in porous media, flame fronts, tumors, etc.
These processes can be unified via Kardar-Parisi-Zhang (KPZ) equation, which is mapped
exactly to an equilibrium problem (DPRM). We are able to characterize both using Dijk-
stra’s algorithm, which is known to generate shortest path tree in a random network. We

found that while obtaining the polymers the algorithm develops a KPZ type interface. We



have extracted the interface exponents for both 2d square lattice and 3d cubic lattice, being
in agreement with previously recorded results for KPZ.

The IP and KPZ classes are known to be very different: while the first one generates
a distinct self-similar (fractal) interface, the second one has a self-similar invasion front.
Though they are different we are able to construct a generalized algorithm that interpolates
between these two universality classes. We discuss the relationship with the IP, the directed
polymer in a random media; and the implications for the broader issue of universality in
disordered systems.

Random Field Ising Model (RFIM) is one of the most important models of phase tran-
sitions in disordered systems. We present exact results for the critical behavior of the RFIM
on complete graphs and trees, both at equilibrium and away from equilibrium, i.e., models
for hysteresis and Barkhausen noise. We show that for stretched exponential and power-
law distributions of random fields the behavior on complete graphs is non-universal, while
the behavior on Cayley trees is universal even in the limit of large coordination.

Until recently, the evolution of WWW, Internet, etc., was thought to be highly complex.
The model proposed by Barabdsi and Albert shows that such networks can be modeled with
the help of "preferential attachment”, i.e. a highly connected vertex has a higher chance
to get further links compared with a weakly connected vertex. We find that the random
network constructed from a self-organized critical mechanism, (IP), falls in the same class
without imposing any "preferential” growth rule. The network obtained has a connectivity

exponent v = 2.45, close to the WWW outgoing-links exponent.
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Chapter 1

Introduction

The dynamics of disordered systems is a very attractive topic of research. In many sys-
tems, disorder leads to very interesting effects such as depinning, self-organized criticality
(SOC) and roughening transition. Physical examples include: random magnets; flux lines
in superconductors; growth and invasion processes; and avalanche dynamics. We could
classify these effects into two very broad classes (1) equilibrium and (2) non-equilibrium
processes. The main complication brought by disorder is that apart from thermal averages
we have to do a second average over the disorder. A great deal of attention is dedicated to
extracting critical exponents of relevant quantities because this enables us to classify sys-
tems according to "universality classes". Associating each invasion process with a growth
equation allows us to describe them as part of an universality class governed by that equa-
tion. Unfortunately it is not always possible to map a random process to a growth equation.
In that case, we consider that the set of critical exponents of the relevant process, defines

the universality class.



In the first chapter we discuss a non-equilibrium process called bond invasion percola-
tion (BIP) in random networks and describe its connection with the minimum spanning tree
(MST) [37], an equilibrium property. The second chapter is dedicated to the study of di-
rected polymer in random media (DPRM) [40], and its associated non-equilibrium process
the Kardar-Parisi-Zhang (KPZ) equation. We are able to investigate in the third chapter
IP, KPZ, and relations between them, as limiting cases of a generalized algorithm. In the
fourth chapter, we attempt to unravel both equilibrium and non-equilibrium effects in one
of the most important models of disordered systems, the random field Ising model (RFIM).
The fifth chapter introduces us to a very new topic called "scale-free random networks", in

which the network itself grows without any "preferential attachment" rule.

The invasion percolation (IP) model was introduced in 1983 by Wilkinson and Willem-
sen [113] as a new form of percolation theory. The proposed model tried to explain the
mechanism of one fluid displacing another from a porous medium in the presence of capil-
lary forces, with immediate application to oil recovery. The invasion process automatically
finds a critical point and is an example of self-organized criticality. IP defines a very broad
universality class without an associated growth equation. The main problem when trying
to derive a growth equation for IP is the fractal behavior of the interface, which is governed

by the local dynamics.

When studying percolation, one wants to investigate the clusters generated. This ap-
proach makes it possible to extract critical exponents and thus to relate this problem to
phase transitions. Later, it was realized that other geometrical properties of the percolation
cluster are important such as the perimeter, backbone, elastic backbone, shortest path, dan-
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gling ends, leading to new fractal dimensions and critical exponents. It is natural to extend
these methods of analyzing clusters to something involving paths and trees since we have
nodes as pores of the random media and bonds as channels connecting them. The process
described originally as invasion percolation can also be found in the context of graph theory
as the well known Prim’s algorithm. This algorithm is mapped exactly to IP [10] and it is
also known to generate the minimum spanning tree (MST) in the network. We can easily
prove that all the paths in the tree are those with the smallest barrier, making MST a valu-
able tool in characterizing this class of invasion models. We will show in this chapter, using
Prim’s algorithm, that we can solve the equilibrium process (MST) by a non-equilibrium
invasion process and also that the geometry of MST is universal, and independent of the

details of the randomness.

Another important non-equilibrium universality class is the KPZ class associated with
the growth equation of the same name [69]. Kardar-Parisi-Zhang is a non-linear model
of interface growth in random media . The KPZ invasion is often described as driving an
interface in an inhomogenous media subject to quenched or annealed forces. The noise-
driven growth leads to self-affine interfaces described by the KPZ equation. A member
of KPZ class is the directed polymer in random media (DPRM). Vortex-line wandering in
disordered superconductors, the propagation of flame fronts and domain-wall roughening
in impurity-stricken magnets are also known to be part of DPRM class. In equilibrium the
"polymer" tries to minimize its free energy. If one maps the random interacting potentials to
bond costs, minimizing the free energy is equivalent with minimizing the sum of the bond
costs along the polymer’s path. In other words, the DPRM is equivalent to the "shortest-

3



path" problem in the computer science literature. One of the attractive features of the
DPRM is that some beautiful analytical results may be derived for it. Using path-integral
techniques it can be proved that the free-energy fluctuations of the polymer are analogous
to the height fluctuation of the interface from the KPZ equation. Dijkstra’s algorithm is
a well known algorithmic method, from computer science, to solve the "shortest-path"
problem. Like Prim’s algorithm, this is an invasion algorithm but with a different invasion
rule, one which generates the shortest path tree (SPT) in a random network. Our goal for
chapter two and three is to prove that the invasion front generated by Dijkstra’s algorithm
is in the KPZ universality class and also that in the strong disorder limit the KPZ type
evolution changes to IP growth. We will also describe a generalized invasion process which
interpolates continuously between these two limits and characterize its behavior using large

scale simulations.

The random field Ising model represents one of the best models to study phase transi-
tions in random systems. It has a vast number of applications from solid-state physics to
biology and recently to economics [32, 107]. The pioneering non-equilibrium work was
done by Sethna et al. [33] who studied the ferro-magnetic RFIM as a model for hysteresis
and Barkhausen noise. Their study points to a critical point in the disorder space associated
with a strong power law distribution for avalanches. The most controversial result is the
hysteresis loop width at this point. In mean-field theory, the width of the loop is zero while
from simulations we see a split, a non-zero width, at the same critical point. One proposed
model to explain the existence of the hysteresis loop at the critical point is the soft-spin
model where spins are allowed to take any value from minus to plus infinity. Since we

4



believe that the soft-spin model has some pathological properties, we will introduce our
own model of the equilibrium RFIM on a Cayley tree and we will compare it with non-
equilibrium results. Also we will analyse the mean-field limit of RFIM in both 7' = 0 and
at finite temperatures, 7" # 0, for various random field distributions, since universality is
an important feature of this model.

A recent topic of interest in disordered systems are networks such as the WWW, with-
out a clear topological description but with large implications in every day life. These
systems called random networks were believed to have ordinary [45] random like behavior,
in other words the probability distribution of links per node was expected to follow a Pois-
son distribution. However, a recent study [12] proved that this complex system has different
behavior when compared to random networks. The calculated probability distribution for
the Internet, WWW, etc. shows no resemblance to random graph theory but is rather similar
to a scale-free graph topology in which the probability distribution is a power-law. These
early models have strict rules for evolution allowing little or no flexibility. We will con-
struct scale-free random networks from the avalanche structure of the invasion percolation
model. This enables us to show that the most common, self-organized, invasion process

has an underlying scale-free topology.



Chapter 2

Invasion Percolation and Minimum

Spanning Trees

Percolation [104] is one of the most studied problems in physics, not only because of
its fundamental nature, but also because of its applicability to a wide variety of systems.
Resistor networks [34], forest fires [58], biological evolution [67] and epidemics [85] are
some subjects where percolation has been used. Invasion percolation [113] is an extension
of the static percolation to a dynamic process. The model was motivated by the problem of
fluid displacement in disordered media but, in principle, it could be applied to any invasion

process that evolves along the minimum resistance path.

In this chapter we investigate the relation between invasion percolation and minimum
spanning trees (MST) and also the properties of the minimum spanning tree. This approach
is motivated by the fact that for the study of transport processes a detailed knowledge of the
internal structure of the cluster is necessary, in particular the topology of the conducting
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paths plays a critical role [20,42]. The tree’s paths are found to be involved in hopping
transport in semiconductors [1] where the electrons would follow similar trajectories. Also
they have been used when studying the magnetic properties of solid materials at low tem-

perature [16,60]

2.1 Universality

One of the most important properties of disordered materials is universality. Universality
is an unproven hypothesis in disordered systems, though it has been widely assumed in the
development of theories for the random-field Ising model and for spin glasses [115]. The
hope has been that scaling exponents in disordered systems should not depend on the nature
of the disorder, provided it is uncorrelated, and provided that the disorder distribution is not
too broad. Percolation [104] and the directed polymer in a random medium (DPRM) [56]
reassure us that universality does hold. However, the random field Ising model (RFIM)
has recently provided a counter example [7,38,41,105]. In particular we showed that the
mean-field RFIM is non-universal in the ground state as the order parameter exponent can
depend continuously on the details of the disorder [38,41]. In contrast we show in this
chapter that the MST is super-universal in the sense that the MST geometry is unaltered
even if the distribution of disorder is made very broad. Due to this fact, the energy of a
MST can be found from an universal function, for a given graph topology. In the strong
disorder limit The MST geometry is important in the [25, 26], for example, as a model for
spin glasses in the strong disorder limit [88] and also relates to hopping transport at low
temperatures [20, 25,42]. As we shall discuss in this chapter, the paths on the minimum

7



spanning tree are those on which the energy barrier is smallest and for this reason the MST

paths dominate the kinetics at low temperatures.

2.2 Invasion Percolation (IP)

Invasion processes are widely found in nature: paper burning, paper wetting, cell colony
growth. Invasion percolation (IP) is an extension of percolation theory that takes into ac-
count the transport processes in the network. Depending on how the invasion takes place,
there are two different types of IP, bond invasion percolation (BIP) and site invasion per-
colation (SIP). In the limit of an infinite lattice size IP is like ordinary percolation at it’s
critical threshold. IP proved to be an important tool in the oil recovery problem [73,74],

where it can estimate the quantity of oil trapped inside a reservoir after water injection.

Figure 2.1: Invasion percolation cluster on a 200x200 square lattice generated using Prim’s
algorithm and the uniform distribution of real numbers in [0, 1].



If we represent the porous media as a network of pores connected by pipes, we can view
it as a regular lattice in which sites are pores. If we consider the process of a non-wetting
fluid, oil, being displaced in such a medium, at infinitesimal constant flow rate the viscous
forces are completely dominated by the capillary forces at the oil-water interface. The
forces are stronger in narrow places, so to make a simple model we represent the motion
of water as a series of discrete jumps where the smallest pore is invaded. The process
described above, proposed for the first time by D. Wilkinson and J. F. Willemsen [113] is
called invasion percolation (IP). One of the problems with IP is the existence of trapping
if the fluid is incompressible (if the fluid is compressible, trapping can not occur). As the
water advances, it is possible to completely trap oil forming disconnected clusters. This
problem is known as "residual o0il" a problem well known in the oil industry. To create a
model we have to impose a new rule: once a region is surrounded all sites enclosed need
to be removed from the growing sites list. The effect of this rule is important because it

reduces the mass of the invading cluster.

2.2.1 The Invasion Percolation Model

The model for invasion percolation is very flexible. It consists of a graph ! on which random
numbers can be distributed on bonds (bond IP) or on vertices (site IP). We can consider any
type of geometry for the graph in any dimension (for example in 2d: honeycomb, Kagome,

square, diced etc; 3d: FCC, bcc, cubic, etc) and we can vary the distribution of the random

'A graph G is considered a collection of vertices V and bonds B. A bond connects two vertices. In physics
we have to usually deal with sparse graphs, graphs with the number of bonds having the same order as the
number of vertices.



numbers. Even though the model looks very rich, in 2d it has been proved [117] that the

corrections to the average cluster density (number per site) behaves as

b
n :71,_.+E-+-... 2.1)

were S is the number of sites and b is a function of the system only and thus an universal
constant. The most studied model in 2d is the square lattice (cubic lattice in 3d) where the

distribution is uniform, drawn from the interval [0, 1].

2.2.2 Acceptance Function

In analogy with the percolation model, Wilkinson and Willemsen were interested in the
behavior of the first IP cluster to percolate because in the infinite size limit it was believed
(and latter proved to be true [113]) that the IP cluster and percolation cluster are identical.
In order to capture the essence of IP they extracted the acceptance function defined as

follows:

number of random numbers accepted in the cluster from [r,r + dr]

(2.2)

a(r) = total available numbersin [r.r + dr]

We see that as we increase the lattice size, the acceptance function evolves to a step function
exactly as in ordinary percolation (Fig. 2.2).

To test the assumption that the invasion percolation cluster is asymptotically identical to
the percolation cluster we have calculated, following Wilkinson et. al. [113], the acceptance

10
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Figure 2.2: Acceptance function for 2d square lattices site IP for two different lattice sizes
according to the legend. As the lattice size increases the acceptance function asymptoti-
cally evolves to a step function which has the integral equal to the critical threshold, as in
ordinary percolation.

fraction p defined as the area under a(r).

1
_ / a(r)dr (2.3)
0

We see that p — p. as L — oo. The calculated value for site percolation, p. = 0.593(1)
was very accurate and coincides with p. from ordinary percolation.

Following the same steps as before we calculated the acceptance function in the BIP
case and also p, for this case, which is 0.5 (from conjecture).

As we can see from Fig. 2.3 a(r) will never evolve to a step function since there are
always bonds with cost less than p., which, when added to the tree, would make cycles
and others that are part of the front. Because of this, the acceptance fraction in the limit
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Figure 2.3: Acceptance function for BIP in 2d square lattices (solid line) and 3d cubic
lattices (dotted line). Similar to Fig. 2.2, for bond invasion percolation the acceptance
function shows a jump at the critical threshold smaller than the jump from site invasion
percolation since a tree is loop-less.

L — oo is not p.. In this case, we can define p. as the maximum bond value included in the
cluster ¢,,... This new parameter can play the role of p in the site case because as L — oo
the maximum value of the bond ¢,,,, — p.. The same arguments are valid for the site IP
because for asymptotically large samples the probability to add a site with a value bigger

than p, is zero.

2.3 Minimum Spanning Trees

Perhaps the simplest non-trivial optimization problem, the minimum spanning tree (MST),
is a tree, which visits every site in a graph so that the sum of the costs of the edges in the
tree is minimal (see Fig. 2.4). In physics terminology, each edge (i7), has an energy ¢;;,

12
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Figure 2.4: The minimum spanning tree (MST) for the 30 x 30 square lattice. Each edge
has an energy drawn from the uniform distribution on the interval [0, 1]. Only the bonds on
the minimum spanning tree are drawn. The heavy line is one path on the MST, starting at
the center of the square lattice. The Euclidian distance between the two ends of this path is
also indicated.

and the total energy is the sum of the energies of the bonds that make up the minimum

spanning tree, i.e.

Erst = Z €j (24)

(tJ)Etree

Due to its practical applications in a variety of contexts, including image analysis, trans-
portation networks etc, this problem has been heavily studied by the engineering commu-
nity. This problem is also one of the most fundamental problems in combinatorial opti-
mization and has been intensively studied in the computer science and applied math com-
munities [31]. The physics community has been less aware of this problem, with notable
exceptions [4, 10, 24], though it has close connections to the problem of a fluid invading
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a porous medium, as modeled by the invasion percolation (IP) process. However, inva-
sion percolation is a dynamical process which grows minimum spanning trees, whereas
the MST itself is a global minimum of a cost function. The MST must visit every site in
the graph, and so corresponds to continuing the invasion process until every site in a finite
graph is reached. This is not usually studied in invasion percolation, in which the steady

state regime in a very large lattice is of most interest [102,111].

2.3.1 MST Geometry

For simplicity, consider square and cubic lattices whose edges are assigned costs (energies)
drawn from an uniform distribution on the interval [0,1]. In order to find the minimum
spanning tree on such graphs, we use Prim’s algorithm that is a greedy algorithm (in physics
these are called growth, invasion or extremal algorithms) which chooses the best site for
advance at each time-step. In the computer science literature [31] Prim’s method starts
by choosing the cheapest bond in the whole graph, and then by growing outward to the
cheapest bond that is adjacent to the starting bond. Each bond that is invaded is added to
the growth cluster and the process is iterated until every site has been reached. Bonds can
only be invaded if they do not produce a cycle, so that the tree structure is maintained.
However, it is not essential to start from the cheapest bond. Growth starting from any site
leads to the same MST. This latter process is identical to bond invasion percolation, which
then finds the MST exactly. Intuitively, the invasion algorithm finds the exact minimum
spanning tree because each site in a MST must be visited at least once and the IP algorithm
selects the best way to make this choice at each site. It is a standard exercise in algorithm
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theory to prove this rigorously [31].

The key observation is that the geometry of the MST on a graph depends only on
the ordering of the bond energies on that graph. It does not matter if the bond energies
are nearly the same, or wildly different, it is only the ordering that matters. This can be
intuitively understood by imagining making a list of the bonds ordered from the smallest
in energy to the largest. Now start removing the largest energy bonds, however with the
rule that the removal of a bond cannot disconnect the graph into two pieces. Continue this
process until no bonds can be removed. This final state is the minimum spanning tree and is
very similar to the algorithm suggested by Cieplak et al. for this problem [25] (the invasion
method is much more efficient though). All that matters for this bond removal process
is the ordering of the bond energies, and hence the geometry of the final tree so formed
only depends on that ordering. Thus if we make a transformation ¢ — f(¢), that preserves
the ordering of the bond energies (e.g., the bond that has the fiftieth largest energy is the
same before and after the transformation), then the MST geometry is unaltered. Now note
that if f(¢) is a non-decreasing function of z, the ordering of a set {z,...z,} is unaltered
under the transformation to { f(x)...f(z,)}. This observation is germane to the issue of
universality, due to the fact that we can use the uniform distribution to sample according
to a general distribution F'(x), by assigning F'(x)dr = dy, which transforms the interval
dy of the uniform distribution to the interval F'(x)dx of the general distribution. Thus if
we randomly choose a number y from the uniform distribution, the corresponding random
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number from the distribution F'(z) is
r=G""(y) where G(z) :/ F(z")da' (2.5)
0

Now note that G(x) is a non-decreasing function of = because F'(x) is a probability and
hence positive, and hence G~'(y) is a non-decreasing function of y. Thus the transforma-
tion (2.5) preserves the ordering of the bond costs and the hence the geometry of MST is
the same for any probability distribution. Note that even if the bond costs where negative,
we can choose an uniform shift to make the bond costs positive. Since this uniform shift
does not alter the ordering of the bond costs, MST geometry is universal even when there

are negative bond costs.

The calculation of the geometry of the paths on the MST is carried out as illustrated in
Fig. 2.4, where we have shown both the total length between two points in the lattice n, and
the Euclidian length between the same points [. We plot the scaled distributions of path-
lengths, g(s), on spanning trees on a) square and b) cubic lattices. The scaling variable is
s = n/IPs where n is the number of bonds in the MST path, [ is the Euclidian distance
and Dy is the scaling dimension (D, = 1.22 £ 0.01 (square lattice) and D; = 1.42 £ 0.02
(cubic lattice)). The dashed line in these figures is the scaling distribution on the MST.
For comparison we also give the scaling distribution for the steady state during growth of
the MST, ie. invasion percolation (solid line). In both cases the paths scale with the same
fractal dimension, in fact this holds at all stages of growth of the MST. The results are
found from averaging over 2000 realizations of 401 x 401 square lattices and over 1500
realizations of 101 x 101 x 101 cubic lattices.
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Figure 2.5: The scaled distributions of path-lengths, g(s), for spanning trees generated on
2d square lattices. The scaling variable is s = n/l”s where n is the number of bonds in the
MST path, [ is the Euclidian distance and Dy is the scaling dimension (D; = 1.22 £ 0.01
for square lattice). The dotted line in the figure is the scaling distribution on the MST. For
comparison we also give the scaling distribution for the steady state during growth of the
MST, i.e. invasion percolation (solid line). The results are found from averaging over 2000
realizations of 401 x 401 square lattices.

The number of bonds, n(/), which lie on a MST path between two sites which are
separated by a Euclidian distance [, is found to scale as [, where y = 1.22 £ 0.01 (square
lattice) and y = 1.4240.02 (cubic lattice) (see Fig. 2.5 and Fig. 2.6). The fractal geometry
of paths (strands) in invasion percolation [26] gives exactly the same scaling. Thus the
paths are fractal even away from the invasion percolation critical point, as seen in the
scaling plots of Figs. 2.5 and 2.6 and as is qualitatively evident from Fig. 2.4.
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Figure 2.6: The scaled distributions of path-lengths, g(s), for spanning trees generated on
3d cubic lattices. The scaling variable is s = n/I?/ where n is the number of bonds in the
MST path, [ is the Euclidian distance and Dy is the scaling dimension (D = 1.42 £ 0.02
for cubic lattice). The dotted line in the figure is the scaling distribution on the MST. For
comparison we also give the scaling distribution for the steady state during growth of the
MST, i.e. invasion percolation (solid line). The results are found from averaging over 1500
realizations of 101 x 101 x 101 cubic lattices.

2.3.2 MST Cost

Having proven in the previous section (Section 2.3.1) that the geometry of MST is fractal
and universal, we now show that it is possible to find the energy of MST from one universal
function, for a given graph topology. Numerical results for the appropriate universal func-
tion are presented in Figs. 2.7 and 2.8 for minimum spanning trees on square and cubic

lattices.

The function we plot is the probability, P(¢), that a bond of cost ¢ for an uniform
distribution (on the interval [0, 1]), lies on the minimum spanning tree. The dashed lines in
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Figure 2.7: The probability, P(z), that a bond with energy z lies on the minimum spanning
tree for 2d square lattices. The curving dashed lines are for the MST while the solid lines
are for the steady state during growth of the MST, i.e. invasion percolation. The results are
found from averaging over 1000 realizations of 401 x 401 square lattices.

Fig. 2.7 and Fig. 2.8 are the cost distributions for the MST. The solid lines are for invasion
percolation. In invasion percolation P(¢) is the acceptance function for the case of bond
invasion. In this case, it has the interesting property that in the scaling limit P(¢) — 0 for
€ > p. (p. is the bond percolation threshold). However, the MST must reach every site of

the graph, in which case it is necessary to include bonds which have € > p. (see the dashed

lines in Figs. 2.7 and 2.8).

From the acceptance probability P(¢), the total energy of the minimum spanning tree

with bonds drawn from an uniform distribution is simply (in the scaling limit),

1
E=/ eP(¢)de (2.6)
0
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Figure 2.8: The probability, P(r), that a bond with energy z lies on the minimum spanning
tree for 3d cubic lattices. The curving dashed lines are for the MST while the solid lines
are for the steady state during growth of the MST, i.e. invasion percolation. The results are
found from averaging over 1000 realizations of 101 x 101 x 101 cubic lattices.

As shown above, the geometry of the minimum spanning tree is unaltered if we make a
transformation ¢ — f(¢) of the bond costs provided f(¢) is a non-decreasing function of
the bond costs. After making this transformation, the energy is simply £ = fol f(€)P(e)de.
In addition, using the arguments given above, we may generalize to the case of an arbitrary

distribution F'(¢), in which case (from (2.5))
1
Ep = / G () P(€)de @2.7)
0

for any disorder distribution F'(.x).

As stated above, paths on the MST are those on which the bond of maximum energy
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is minimal. In physical terms, MST paths are those on which the barrier is minimal. The
barrier on such a path is the largest cost bond that lies on that path. In the steady state limit

(i.e., on the IP percolation cluster, see Figs. 2.7, 2.8)

€barrier — Pc (28)

that is the barrier on invasion percolation paths; which in a graph with edge costs drawn
from an uniform distribution, takes a value equal to the percolation threshold on that graph.
For other distributions of disorder, the barrier on IP paths becomes €parrier = G~ (p.) (from
(2.5)). However the barrier on typical MST paths (i.e. on the whole lattice, see Figs. 2.7,
2.8) have €parrier > p. for | — oo, and it is only on the fractal IP subset of paths on
which (2.8) holds. Thus hopping transport at low temperatures will typically occur on IP
paths, which justifies the use of percolation models in the calculation of diffusivity and

conductivity in the strong disorder limit [20,42].

2.4 The Physics of Strong Disorder

It is interesting to compare the behavior of paths on the MST, with the behavior of the
directed polymer in a random medium (DPRM) (see Chapter 3). The DPRM, and the
associated Kardar-Parisi-Zhang growth process [69], has become a paradigm in the study
of disordered systems. More recently it has been noted that DPRM is a subset of the shortest
path (SP) problem in computer science and engineering [31,40,82]. The statement of the
SP problem is deceptively similar to that of the MST problem discussed above, however its
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properties are radically different. The shortest path problem seeks to find a path between

two sites in a graph such that the sum of the bond costs is minimal, so that,

Esp= Y ¢ (2.9)

(ij)€path

If one seeks the shortest path from a starting source site to all other sites in a graph, then
a shortest path tree (SPT) is formed. The total cost of the shortest path tree is the sum of
the costs of all of the paths in the tree. Note however, that in this sum it is inevitable that
some of the bond costs will appear more than once. In fact, bonds near the source site will
be counted many times. The SP problem is in the DPRM universality class except for the
limit of strong disorder, when it approaches the MST problem [26,92]. The crossover to
the strong disorder limit can be analysed explicitly using the generalized energy, €. In
the limit m — oo the largest energy dominates and hence the largest barrier is all that
matters. It is possible to show (Chapter 4), using (2.5) that m — oo corresponds to the
strong disorder limit. The SPT is also distinguished by the fact that there is a different SPT

for each starting site in the graph, whereas there is only one MST for a finite graph with

continuous disorder.

2.5 Conclusions

In summary, the geometry of minimum spanning trees(MST) is universal for all disorder
distributions because a MST is invariant under the transformation of its edge costs ¢ — f(¢)
where f is a non-decreasing function of the edge cost ¢. This universality enabled us to
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find an universal cost function for the uniform distribution (see Fig. 2.8) that can be used to
calculate the cost of minimum spanning trees, on the same graph, for any other distribution
(using (2.7)). Paths on the MST are those with minimal barrier and in the steady state IP
process this barrier approaches p. for an uniform distribution and G~!(p.) for an arbitrary
distribution (where G is given in (2.5)). The MST geometry underlies physics in the strong

disorder limit, implying that in that limit there is a strong universality.
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Chapter 3

Directed Polymers in Random Media

and KPZ Equation

The Kardar-Parisi-Zhang equation [69] describes the movement of an elastic interface when
lateral growth is allowed. Introduced originally to model non-equilibrium interface growth

it acquired a much larger importance as one of the simplest examples of strong coupling.

In this chapter we investigate the shortest path (SP) problem and its relation with the
KPZ equation. Many phenomena with similar behavior can be found not only in different
areas of physics but also biology: domain growth in the 2d Ising model [62], Eden model
for bacterial growth [43], ballistic deposition [47], magnetic flux lines in superconductors
[94]. We are motivated by the fact that the shortest path problem is of great interest in
computer science. As a result fast algorithms have been developed that could help us
understand the nature of the KPZ front. We study the paths geometry in the weak disorder
limit where overhangs play a minor role.
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Figure 3.1: Invasion using Dijkstra’s algorithm on 200 x 200 square lattice. The invasion
front is self-affine.

Another important feature of the KPZ equation is the interesting mapping to the equi-
librium properties of the directed polymer in random media problem (DPRM) [68] and also
to the noisy Burgers equation [14, 19]. Though it is easy to understand the source of the
equation, its solution has proven to be a nemesis for many years. Most of the work has
tried to explain properties of the equation in the strong coupling regime. The dynamical
renormalization group formalism which can be applied for studying time-dependent fluc-
tuations failed in finding an exact solution or a systematic approximation in dimensions
d > 3. Ford = 1+ 1 the exact exponents are obtained, while d = 2 + 1 is the critical
dimension at which the existing perturbation theory first fails. In d = 2 + 1, the mapping
to DPRM at least makes KPZ accessible through numerical simulations, though there is a
large crossover regime before the asymptotic scaling occurs. In dimensions d > 3 the fixed
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point is again not accessible; the scaling exponents can be obtained only through numerical
simulations. Another open question is the existence of a finite upper critical dimension for
the KPZ equation. Pro [29,30,54,55,77] and contrary [5, 21, 22] arguments are given for
d. = 4 + 1 as the upper critical dimension, but the debate is not over since all standard

perturbative methods fail.

3.1 Models of Stochastic Growth

3.1.1 Eden Model

One of the earliest model of stochastic growth, Eden growth was originally developed
for simulating the appearance of various biological patterns; in particular, describing the
growth of bacterial colonies, tissue or cancer colonies [43]. Although it received little
attention from biologists, it was adopted later by solid state researchers, other physicists
and chemists. The model is easy to grasp: start a colony on a square lattice with a single
cell (even though growth from multiple sites is possible) and add with equal probability
a neighboring site to grow the colony. Apply this growth rule to the two-site cluster just
formed. In this way it is possible to generate a compact, yet rough cluster as in Fig. 3.1.
There are three versions of the Eden model with different rules for choosing the next site
but all belong to the same class even though the crossover is not similar. Version (i) is the
one described above which we call Site Eden Growth. The second version (ii) is Bond Eden
Growth were instead of choosing sites we chose bonds to grow to. Both methods above are
one-step growth, since we chose the next growing site with equal probability between all

26



possible ones. The third version (iii) is the one with the weakest finite-size effects, and the
rule states that we chose the next site to grow from with equal probability from the cluster’s
perimeter and we grow to any of the possible neighbors with equal probability. Compared
with the first two variations (iii) is a two-step process, first we chose randomly from the
cluster’s perimeter a site to grow from, and second from that perimeter site we grow with

equal probability in any possible direction.

One of the biggest improvements to find an analytical solution was given by mapping
the Eden growth to the problem of directed polymer in random media [97]. The mapping
is possible since the cluster is compact and every site of the lattice will sooner or later be
part of the cluster. We introduce a new variable for each site called waiting time 7; of site
z, which is the time interval between the possibility to become part of the cluster, and the
actual event of incorporating site :. To compute the real time t; when the site : becomes

part of the cluster we observe that,
ti:tj-{—n- (31)

where ¢; is the minimum real time over all sites 7 which neighbor :. Using (3.1) recursively
we can further write ¢; in the same fashion as ¢;,. By doing this we obtain the following

expression

ti= n})in {Z Tj} (3.2)

" enr

where P; are all possible paths from the initial growth site to site :.

The energy of a polymer interacting with the substrate through the random potential
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energies x; is the sum of all energies along its path P. At zero temperature the polymer is

in the state with the minimum possible energy thus,

E = min {Za-j} (3.3)

JEP

We see that (3.2) and (3.3) have exactly the same form. The energy E of a polymer span-
ning between : and the starting seed is compared to the total time ¢;. It is possible [97]
to construct a dictionary between these problems. Numerical simulations for Eden model
proved that the roughness exponent of the interface a ~ 0.5 for d = 1+ 1 in agreement with
the DPRM predictions, while in higher dimensions strong crossover effects give scattered

results.

3.1.2 Edwards-Wilkinson Equation

Edwards-Wilkinson [44] derived a linear continuum partial differential equation as an ap-
proach for sedimentary kinetic roughening. If we start from an initial flat interface, the
roughness of the growth front moving at constant velocity v increases in time as w ~ t°,

while it saturates at a size-dependent w,,, ~ L°.

ah(,d—?t't) = vVih 4+ 49(7 1) (3.4)
(n(z, t)n(z’,t)) = 2D&*(z — 2')8(t — t') (3.5)
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where h(Z,t) is the interface height at coordinate 7 in d — 1 dimensional space and
time ¢; 7 is the stochastic noise; and v is the surface tension since the term v V?2h tends to
smooth the interface by redistributing the interface irregularities while maintaining the av-
erage height unchanged. The average interface velocity is zero since the periodic boundary

conditions assure that the Laplacian contribution is zero while the stochastic noise is white:

L ‘ -2
v = / i <M> =0 (3.6)
| ot

For a moving interface we have to add velocity to the original equation (3.4),

(T, 1)

T vW2h + +q(T, 1) + v (3.7)

The motion of the interface does not affect the scaling relations since we can obtain the

original EW equation by performing the following change of variables

h — h+ ot (3.8)

The EW equation (3.4) can be solved in two ways: using scaling arguments or directly.
By using scaling, the interface should be invariant under the following scaling relations
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(keep in mind that the interface is self-affine):

h —» h =b"h

t - t'=0bt

Substituting (3.9) into (3.4) we obtain:

dh

o = Vbo—?v’lh + b—d/2—z/'2,]

ot

We have used the general property of the delta function,

§'(ax) = %W(;r)

and ) — b~%2-%/2;) since

(n(bz.b’t)n(ba',bt")) = 20b_(d+:)5d(1‘

—2)S(t — 1)

(3.9)

(3.10)

(3.11)

(3.12)

The EW equation must be invariant under these transformations. To find the relations

between exponents we multiply (3.10) with b°~,

dh

o "
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and require that the coefficients are independent of b which implies:

2 —d ) 2—-4d .
a= 5 3= T z=2 (3.14)

For d > 2 + 1 the exponents become negative, meaning that the interface is flat. Also for
d=1+4+1,a =1/2and 3 = 1/4 are close to those found for random deposition with

surface relaxation [46].

3.1.3 Solid-On-Solid Models

The Solid-On-Solid models have been introduced in order to minimize scaling corrections
[14]. These models have two basic properties: (i) they do not allow overhangs (the interface
is single valued) and (ii) eliminate large slopes by limiting the height difference between
neighboring sites.

The single-step SOS model is valuable since by mapping it to an Ising model we are
able to extract some analytical parameters. The model can be described by adding squares
to all local minima with equal probability p, on a (1, 1) oriented square lattice on an origi-
nal "flat" interface (the "flat" interface in (1, 1) oriented lattice looks like a zig-zag, in fact it
is composed of identical squares aligned along their diagonals), or removing squares from
the local maxima with equal probability p_. This ensures that at any time the height dif-
ference between two neighboring sites is always unity, even though we change the growth
site height by 2, h; = h; + 2.

Introduced by Kim and Kosterlitz [71], the restricted solid-on-solid model allowed for
growth exponents investigation in higher dimensions. The algorithm picks randomly a site
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from the interface and increases its height by one unit, with the condition that the height
difference between neighbors is not bigger than one (it can be 0). The model shows very
good scaling properties. Using a fitting ansatz [5] for the correlation function, it is possible

to precisely extract the scaling exponents.

3.2 Non-linear Stochastic Growth: KPZ Equation

The Kardar-Parisi-Zhang equation [69] is a non-linear model of interface growth in random

media:

hZ,t
% = uV2h + %(Vh)2 + (1) (3.15)
The first term on the right-hand side describes the relaxation of the interface caused by an

interface tension v, the second term reflects the presence of lateral growth and 7 is the noise

assumed for simplicity to be white:
(n(x, t)n(z',t")) = 2D (x — 2")é(t — t') (3.16)

The important feature of this model is the addition of the non-linear term (Vh)? re-
sponsible for the symmetry-breaking; i.e. (3.15) is not symmetric under h — —h transfor-
mation. The symmetry breaking implies that the positive & site of the interface represents
growth while the negative h is appropriate for erosion processes. Eden growth, Solid-On-
Solid (SOS) model, paper wetting, paper burning, driven charged density waves (CDW)
are some models proved to be part of the KPZ class.

The non-linear term from the KPZ equation accounts for the lateral growth [56] of the
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Figure 3.2: Lateral growth from KPZ equation

front such that it is important to be included it in any surface growth model. The KPZ

equation looks like a Langevin equation if one finds the appropriate Hamiltonian,

T t)  H
‘T = _E+71(1 .1) 3.17)

If we add a new particle in a direction normal to the interface vét, the increase 4 in the

interface height along the & axis (Fig. 3.2), can be easily expressed as,

oh = vdt\/1 + (Vh)? (3.18)

Since in (3.17) the §H/éh term is already in the normal direction to the interface, we have
to correct the noise 7 and the left-hand side of the equation since its direction is along h
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axis. The corrected equation should read:

h(Z.t)  oH n(7,t)

—_ =y B 3.19
L+ (Vh)?  Sh 1+ (Vh)? G19)

The correct Hamiltonian for the KPZ equation is,

H(h) = u/dx\/l + (Vh) - /\/dxh(x) (3.20)

where the first term accounts for surface tension, while the second one is the bulk contri-
bution, i.e. the area below the interface. In order to verify that H(h) recovers the original

KPZ equation (3.15) we substitute (3.20) into (3.19) obtaining

Oh(Z,t) vV
o T (vhe VI +(Vh)2 +n(7,1) (3.21)

In the limit |[VA| < 1 one can expand (3.21) and, by keeping the leading order terms
we recover the KPZ equation (3.15) implying that the (V£)? has to be present in order to

incorporate the lateral growth.

3.2.1 Scaling Functions

In order for us to "tackle" the problem correctly we have to start by choosing the correct
tools. In order to analyze universality classes and to determine critical exponents, we are
using the well known formalism of scaling functions [47,48]. The critical exponents ob-
tained in this fashion help us to classify growth/invasion (which at first sight might look
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completely different) into universality classes, proving that the intricate details of the mo-

tion can be cleverly conceded into a few relevant parameters.

The properties of the KPZ equation are usually described through the first two moments

of the associated probability function of h(?, t),

h(L,t) = (h(L,1)) = 0 (3.22)

which is the average height of the front, and is zero since the equation is written in the

center of mass, and

w?(L,t) = ((h(L,t) = (h(L,1)))*) (3.23)
which has a nontrivial scaling as a function of system size and time:

w(L,t) ~ L* f(%) (3.24)

where the scaling function f(x) is given by,

z? if -0

flz) = (3.25)
constant if z — oo
Following this hypothesis, there should be a cross-over time ¢, = L?, such that the rough-
ness of the front for times less than the cross-over time ¢, is increasing as a power-law
function of time, while in the long time regime the roughness is time independent and only
scales with the size of the lattice.
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3.2.2 Relations Between Exponents

We are left with a major problem: once all critical exponents are extracted from simula-
tions, how can we ensure that the values obtained are the ones we intended to measure? To
solve this problem one can look for relations between exponents, a practice widely encoun-
tered in RG. The first relation can be easily extracted using the definition for the scaling

function from (3.24) and (3.25), 1.e.
£\ 5
L® (—) ~ t? (3.26)

leading to

(3.27)

Using symmetry invariance, we could attempt to find other relations between expo-
nents. Unfortunately, since KPZ equation is non-linear this method (which worked well
for Edwards-Wilkinson equation (3.4)) does not work, as we will see in the next section,
instead the renormalization group approach should be used.
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3.2.3 Symmetry Breaking and Scaling Arguments

We can try to find other relations between exponents, in a similar fashion as we did for the

Edwards-Wilkinson equation. With the help of the following scaling relations,

r — ' =br

h — h"=b%h (3.28)

t — t'=bt

KPZ equation (3.15) is transformed into

b“’_Z% = VbV h 4 SERTA(VA) 67 (3.29)

The first observation regards the b — oo limit when the non-linear term dominates only if
a > 0. By multiplying both sites with b=(“~%) we obtain,

Oh - A

%7 = vb IV + SO (VA 4 b ey (3.30)
If we would consider that this equation behaves trivially, in order for the scaling to work
the equation (3.30) should be independent of b. A close inspections reveals that we have
been provided with three equations for only two exponents. A first approximation would

be to consider that the non-linear term dominates over the surface tension. The exponent
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equations then lead to the following formulas:

2-d 2—-d d+4

f=——m 2=—— 3.31
' 4+d 3 3-31)
For d = 1 + 1 the exponents are « = 1/3 and 3 = 1/5 which can not be right since
simulations [5] give o = 0.49(1) and 3 = 0.33(1). The question arising is what could be
wrong? The parameters of the KPZ equation {v, A\, D} are coupled to each other which is
the answer to the previous question. To derive the relation between exponents and dimen-

sionality, one would have to use a renormalization group approach, since it is the only one

to carefully treat the strong coupling regime.

3.2.4 Galilean Invariance

We were unable to use invariance to extract exponent relations, since we are interested in
the strong coupling regime. However, we have one more resource left, the mapping of KPZ
to Burgers equation. It has been rigorously proved [14, 56] that the KPZ equation maps
exactly to a Burgers equation for flow with random noise in a vorticity free field [19], and
thus both the KPZ equation and Burgers equation, should have related critical exponents
and relations between them.

We see that KPZ maps onto Burgers equation with noise for a vorticity-free field by
changingv —» —Vh:

dv

a5t + AMv - V)v =vVi — Vi(a,t) (3.32)

where v(z, t) is the velocity of the fluid and V)(z, ) is the random force. The left side of
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the equation originates from the total derivative

Duv _ dv

L E-F(U-V)v (3.33)

As we can see A = 1, but we will include it only for convenience. We expect that the total

derivative after re-scaling remains unchanged. The re-scaling relations are as follows:

r — br
h — b%h
(3.34)
t — bt
v o= bl
In the equations above the scaling relations lead to
Dv OV 203 ,
. (&) 7 a—=3¢ 1/ . / 3.35
D —b o0 + 6% (v - Vo (3.35)
This invariance leads to a second relation between exponents
a+:z=2 (3.36)

It has been also confirmed, using renormalization group [14], that the scaling relation
given by (3.36) is valid in any dimension.
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3.2.5 Exact Result for KPZ equationin 1 + 1D

A more detailed analyses of KPZ solutions can be obtained using renormalization group
theory (RG). Proposed by Wilson [114], RG is a systematic way of obtaining the critical
exponents. RG can be tooled to work in either real or Fourier space. In real space, RG is
more intuitive, while the Fourier space is more mathematically accessible.

For partial differential equations, such as the non-equilibrium KPZ, the standard meth-

ods were developed decades ago. The idea is to write the KPZ equation in Fourier space,

diq d
h(k,w) = ho(k,w __// q;gqk—q)h(q,Q)h(k—q,w—Q) (3.37)

where

ho(k,w) = Go(k,w)n(k,w) (3.38)

the free propagator,

and the noise correlation function,
< n(k,w)y(k',&') >=2D8(k + kK')§(w + ') (3.40)

In order to simplify the calculations it is more convenient to use diagrams for representing

(3.37), as indicated in Fig. 3.3.
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Figure 3.3: Diagrams associated with one-loop expansion for the KPZ equation RG anal-

ysis. The propagator (a); noise D (b); and vertex (c). The double arrowed line represents
the propagator (&, while the single arrowed line is Gj.

The rules for the diagrams in Fig. 3.3 are as follow:

> Q@< = 2D (@
A d?
- -3 [ Frhak-a ®)

In order to calculate physical observables, we have to perform averages over the
stochastic noise for every diagram. If there is only one noise term in the diagram its value
is zero since we have considered the noise to be white. The most important step in the
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calculations is the "elimination of the fast modes" by integration over momentum &, in the
range Ae~! < k < A. By doing this, we eliminate the small wavelength components while
the long wavelength part is left intact. The complete derivation of the flow equations [14]
is simple in principle, but in fact is a very tedious mathematics. After performing the

integration in the limit / < 1 the flow equations for the parameter set {v, A, D} are:

dv ‘ . ,2—-d

o =V [(~ —2)+ Rug 1 ] (3.41)
1D 2
L~ Dliz=d)=2a+ KL (3.42)
dl 4

D)

i = A [a +z— 2] (3.43)
dl

where the coupling constant is defined to be,

¢ = (3.44)

and hy = Sy/(27)%, while S, is the surface area of the unit sphere in d-dimensional space.
We note that the diagrams contributing to the vertex renormalization cancel in this case,
and in fact they will cancel in higher order expansion too, because the Galilean invariance
enforces the exponent relation a + = = 2. The flow equation for the effective coupling
constant can thus be written with the help of (3.44) and (3.41)-(3.43) as,

dg 2-d
dl 2

. 2d -3,
g+ Ky W g (3.45)

The RG procedure requires the flow equation to be independent of scale such that the
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right side of (3.41)-(3.43) should equal zero.

dv._dD d\ 346
dl ~ dl T dl (3.46)
By doing this the exponent relations read,
. ,2—d
2 =2+ hyg° 7 = (3.47)
g2
z—d—2(1+1\'dT:0 (3.48)
a+2-2=0 (3.49)

As we can see the flow equations have different solutions for different dimension. Ind = 1
the flow equation for the effective coupling constants has two solutions,
o\ 1/2
91 =0 ”:Gﬂ (3.50)
A 1
The first solution g, is repulsive meaning that starting with a solution different than g, it
flows away from the fixed point while the second solution g, is an attractive fixed point

the flow is toward g, if ¢ # ¢.. From equations (3.47)-(3.49) we can extract the scaling

exponents,

(8]

SRS

3.51)

| —

We have extracted the exact scaling exponents in d = 1, as a consequence of the
Galilean invariance and validity of the fluctuation-dissipation theorem. If we investi-
gate further RG for d = 2, the effective coupling constant grows under rescaling, being
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marginally stable. The only fixed point is ¢ = 0, and the perturbative RG fails to give
physical predictions. If d > 2 we have two fixed points but the only stable one is g, = 0.
The other fixed point g, sets the boundary between weak and strong coupling regimes: if
we start with g < g, the flow takes us to gy = 0 while if g > ¢, the flow diverges. The

strong coupling regime can not be accessed through current perturbative methods.

3.3 Directed Polymers in Random Media (DPRM)

The problem of finding the optimal path is frequently encountered in the physics of dis-
ordered media, and is known as the directed polymer in random media (DPRM). If we
consider a random graph (as defined in section A.1) the optimal (shortest) path between

two sites is the path P on which the sum of bond costs is minimal,

Ep = min {(Z c,,} (3.52)

ij)EP

In the literature there are two different paths defined: directed paths (DPRM) which can
not turn backwards (given a direction of growth), and non-directed paths (N-DPRM) which
have no preferential direction a priori. A recent paper [100] makes the observation that the
directed polymers and the non-directed polymers have the same critical exponents, proving
the fact that both are in the same universality class. The overhangs present in N-DPRM,
therefore, play an unimportant role in the geometry of the polymer, provided the disorder
is weak enough.

Some well known members of the DPRM class are domain wall roughening in
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impurity-sticken magnets [56], vortex-line wandering in disordered superconductors [75,

93], tearing or cracks [70], etc..

3.3.1 DPRM to KPZ Equation Mapping

In the continuum limit DPRM is described by,

Uy = /dm {g(w)? +V(z,h) (3.53)

The random pinning potential V'(x, i) is chosen to be white noise. The partition function

of the DPRM can thus be written as,

(x,h) r
/ Dh'(2')exp {—l / dz’ [Z(Vh')? + V(2 h,’)] } (3.54)

which can be viewed as the world line of a particle moving in a d — 1 dimensional space. It

is easy to show that the partition function defined above obeys a Schrodinger-like equation,

0 1T 02 1
—Z,(h) = =—==Z,(h) + =V (z,h)Z.(} 3.55
= Z.(h) = 55 5 Ze(h) + V(2. W) Z:(h) (3:5)
by simply substituting Z,.(h) in the equation above or observing that if we map,
LR
h T
v = m (3.56)



we get exactly the Schrodinger equation and Z,. (/) becomes the transition amplitude of a
quantum system. The free energy of DPRM f(z,h) = —TInZ.(h) obeys the KPZ non-

linear diffusion equation

0 . A .
O — DV + 2917 +n(h,a) (3.57)
dx 2

were D = T'/2v can be seen as the diffusion constant, A\ = —T'/v describes the strength of

coupling to nonlinearity and = V//T is the re-scaled interaction potential. This mapping
[68] f — h demonstrates that the height fluctuations during KPZ growth are identical to
free energy fluctuations in the DPRM, and also makes it possible to relate an equilibrium

configuration (the polymer) to a non-equilibrium invasion process (the front).

3.3.2 DPRM Scaling Functions

Because the free energy of a polymer interacting with random media through a random
potential at zero temperature was mapped to the KPZ equation, the scaling functions and
scaling exponents should be related. In order to distinguish between problems the expo-
nents were chosen to have different notations. Following Kim et al. [72] the energy of a
polymer of length (number of sites along the polymer’s path; sometimes referred as the
number of steps) ¢ confined in a lattice of size LY, is expected to scale as,
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AB(LY) = ((E—(E))?

~ LNf(t/L)
' , t< L?

~ (3.58)
Lx , t>»L*?

The scaling function has the same behavior as the one previously discussed for KPZ

(3.24),
x if -0
fle) = (3.59)
constant if = — oo
Here L? is the cross-over length, i.e. once the polymer exceeds it, its energy fluctuations

become constant, only affected by the size of the system. The exponents are expected to be

dimension dependent.

3.3.3 Relations between exponents

The relations between DPRM exponents are obtained from the scaling function (3.59) and
also from the DPRM to Burgers equation mapping. From the scaling functions in the limit
t < L? we obtain,

LXf (LL) ~ t? (3.60)
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leading to,

0z = x (3.61)

The second relation is obtained from the Galilean invariance and reads,

N+z=2 (3.62)

The relations between the DPRM exponents defined in (3.59) and the KPZ exponents

from (3.25) can be found via the well known mapping described in Section 3.3.1:

™
I
[

(3.63)

In the next Section, with the help of (3.63), we are able to compare exponents obtained

with different numerical methods for both KPZ and DPRM.

3.4 Numerical Simulations

The scaling exponents for the KPZ equation are exactly known in d = 1 + 1 from Burgers
equation, a = 1/2, 3 = 1/3 and z = 3/2. These values have been confirmed by numerical
calculations such as direct integration of discretized KPZ equation [23], and simulations of
ballistic growth models [50].

Even though extensive work has been done there is no analytical solution for KPZ
equation in dimensions d > 2. It was believed that the upper critical dimension d. = 4 + 1
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[29, 30, 54, 55, 77] but numerical simulations up to d = 7 + 1 [5] and some analytical
calculations (non-perturbative renormalization) [21,22] showed no sign of an upper critical
dimension. With no strong theoretical arguments, the problem of finding d. is still under
strong debate, and no solution was found, leaving this problem very attractive for future
studies.

Numerical simulations [72] give the following values for DPRM exponents:

Dimension 0 1/z
d=1+1 0.332 £+ 0.003 0.664 £ 0.003
=2+1 0.248 £ 0.004 0.662 £ 0.01

d=3+1 0.20 £ 0.01 0.59 £ 0.01

Table 3.1: DPRM critical exponents according to [72].

This was the first serious attempt to extract the exponents. The conjecture (3.64) derived

by Kim et al. [72] is verified by their numerical simulations.

1 2 2d + 1)

-
<

= 64
i+1 YT x> d+2 (3.64)

For comparison, in the table 3.2 we have recorded values extracted for the KPZ critical
exponents according to Ala-Nissilaet al. [S]. The numerical simulation were done in higher
dimension, the highest considered d = 7 + 1. They have developed a new fitting ansatz for
the equal height correlation function for restricted solid-on-solid growth.

Using the "dictionary" given in the Section 3.3.3, we can see that the mapping between
KPZ and DPRM is in complete agreement for dimensions up to d = 2 + 1 while for d > 3
the values obtained are below the predictions given by (3.64). One of the possible answers
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Dimension a I} z

d=1+1 172 173 3/2
d=2+1 0.38 0.24 1.58
d=3+1 0.30 0.18 1.66

Table 3.2: KPZ critical exponents according to [5].

is that the results from the DPRM [72] are affected by finite size effects (the lattice size is

of order 10® but the number of runs is only of order 102).

3.4.1 Invasion Algorithm with Overhangs

In graph theory language DPRM represents the shortest path in a network where we have
assigned to each bond a cost representing the strength of the pinning potential. An impor-
tant numerical method for calculating shortest paths on a graph with positive ! bonds uses
Dijkstra’s algorithm. This algorithm is able to calculate all shortest paths between a source
and all the sites in the network by using a global optimization procedure that simply grows
to the site with the smallest distance. In order to do that we have to divide sites into two
categories: (1) labeled for which we already know the shortest distance, and (2) unlabeled,
the remainder of the graph vertices. The algorithm repeats the following steps until there is

no unlabeled vertex. A more detailed review of the algorithm is presented in Appendix B.

1. Initially all bonds and vertices are unlabeled. We denote by s the source (we will
measure distances from this source vertex to all vertices of the graph). Assign tenta-

tive distances such that d(s) = 0 and d(z # s) = oo. Let y = s.

'We need only positive numbers since the distance should be a monotonically increasing function. For
negative numbers there are other algorithms such as Negative Cycle Canceling
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2. For each unlabeled vertex = we define d(z)

d(x) = min{d(x),d(y) + c(z,y)}

Continue if there are any unlabeled vertices, otherwise stop.

3. Let y be the unlabeled vertex with the smallest distance. Label y and go to step 2.

When the viscosity of the displacing fluid is greater than that of the invaded fluid, the
displacement front in a random media is known to be smooth [99], otherwise it develops
fingers. If a long finger tries to develop from the interface, because of difficulty of move-
ment in the viscous fluid the finger will be slowed down. In the same way, in our algorithm,
when a very favorable spatial region is encountered, a finger tries to develop but is slowed
down due to the global nature of finding distances, which works in this case as "viscosity",
suggesting that both Dijkstra’s algorithm and this special case of invasion should give the

same result.

In order to find the universality class for the front developed by Dijkstra’s algorithm,
we have performed simulation in both 2d and 3d for square and cubic lattices. In order
to obtain a linear interface, we have considered that two opposing sides of the lattice are
virtually connected through zero cost bonds to a source and a sink vertex, while on the
remaining sides we have periodical boundary conditions (in Fig. 3.4 we show snapshots
for linear front invasion on a 2d square lattice with periodical boundary conditions). The
costs for the bonds are real numbers drawn from a [0, 1] uniform distribution.
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Figure 3.4: Linear front invasion using Dijkstra’s algorithm. The front taken in different
snapshots is self-similar. It can be compared with the non-directed polymer obtained (solid
line) which is known to have only few overhangs and belongs to the KPZ/DPRM class, for
weak disorder.

The linear front in Fig. 3.4 and at the same time the shortest path (solid line) have a
rough appearance but are not fractal. The lattice has periodic boundary conditions such
that the front maintains its linear aspect during evolution. In the case of free boundaries,
the front "sticks", due to a smaller degree of freedom at lattice edges. We have used for the
simulations lattices periodic in all directions except along the propagation axis. We know
that the shortest path is part of the KPZ/DPRM class, the exponent values are presented in
table 3.2 and we will not further extract its critical exponents. For the linear front obtained
in the invasion process, the roughness is similar to that of the polymer and is shown in Figs.
3.5and 3.6.

As we can see from Figs. 3.5 and 3.6, we should be able to extract the scaling expo-
nents using the previously defined scaling functions given by (3.24) and (3.25). In order
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7 L=100

10 Tme 100 1000

Figure 3.5: Plot of the Dijkstra interface roughness for 2d square lattices. The front rough-
ness is increasing as a power-law with exponent 3 = 0.33(3) at early times, saturating after
the crossover time ¢, at a value which is function of the lattice size L* with o = 0.49(1).
The averages have been done over 10000 realizations on lattice sizes from 10 x 10 to
100 x 100. The long crossover is believed to be caused by overhangs.

to precisely evaluate the exponents we have done simulations on lattices with maximum of

10° sites, the averages have been taken over 10° realizations.

As we can see from table 3.3, the Dijkstra front is in the KPZ/DPRM universality class.
The known KPZ front exponents in 2d are o?? = 1/2 and 3% = 1/3. The Dijkstra’s

invasion front exponents extracted by us in 2d, a?*? = 0.49(1) and 3%¢ = 0.33(3) are close

Dimension Qa 3 z
d=2 0.49(1) 0.33(3) 1.47(4)
d=3 0.35(3) 0.22(3) 1.58(2)

Table 3.3: The critical exponents extracted with Dijkstra’s algorithm.
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Figure 3.6: Plot of the Dijkstra interface roughness for 3d cubic lattices. Similar to Fig. 3.5
the roughness behaves as a power-law initially with exponent 5 = 0.24(1), while after the
crossover the saturation value is L* with a = 0.35(3). We have done over 10000 averages
at each lattice size, on lattices of sizes ranging from 10 x 10 x 10 to 100 x 100 x 100.

enough to KPZ exponents such that we can safely say that Dijkstra’s front is in the KPZ
class. Regarding the front in 3d, there is no unanimous agreement between simulation
extracted exponents, however Ala-Nissila et al. [5] have obtained o®? = 0.38(1) and 33¢ =
0.24(1), close to the values obtained by us a*! = 0.35(3) and 3>! = 0.22(3). We note
that the Galilean invariance is quite closely satisfied, a>? + 23¢ = 1.93(5) and a?¢ + 2% =
1.96(5) in both dimensions of interest. In order to obtain smaller errors for exponents,
much larger system sizes are needed. In our simulations the system size has been limited
by the size of the current memory. The time variable in the plots shown in Figs. 3.5 and
3.6 has unity equal with 1 7' = (d — 1)L algorithm cycles, were L is the size of the lattice,
meaning that in order to measure roughness correctly we have wait for the interface to
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Figure 3.7: Plot of the roughness of the interface in 2d and 3d. The natural time unit, T, is
the time for a complete layer to be added. In 2d (L = 1000) the time unit in figure is T'/20.
In 3d (L = 100) the time unit in figure is 7'/4.

move by (d — 1)L sites. This time unit allows for the front center of mass to move linearly
in time. The effect of changing the time unit becomes clear in Fig. 3.7.

We can see oscillations in the front roughness in both 2d and 3d, which occur only if
the time unit is less than (d — 1)L. This effect is equivalent to the one observed in layer-
by-layer crystal etching/growth [91] where the experiment showed that in a certain range
of temperature and etching/growth rate, the surface can heal itself as the etching/growth is
carried out. If one measures the "true" (complete) interface, the roughness function should
be monotonically either increasing or decreasing. The natural explanation for oscillations
occurrence is that we did not measure the height fluctuations for a "true" interface, instead
we took snapshots at intermediate growth steps, between the complete movement of the
interface.
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3.5 Conclusions

In summary our results show that the shortest path problem is in the DPRM class in the case
of uniformly distributed energies. The calculated exponents for non-directed polymer prob-
lem are very close to the DPRM exponents suggesting that overhangs play an unimportant
role. The simulations have been done using a greedy algorithm well known in computer
science as Dijkstra’s algorithm. Since shortest paths (a global optimization problem) are
constructed using local dynamics it is natural to study the nature of the growth process. The
extracted exponents for the interface generated by the greedy algorithm are a?? = 0.49(1)
and 3%¢ = 0.33(3), which are close to the KPZ exponents. The interface roughness shows

early time oscillations characteristic of layer-by-layer growth.
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Chapter 4

Generalized Invasion

To investigate the strong disorder limit of the DPRM/KPZ problems, we introduce a gen-
eralized invasion process which enables us to interpolate between the minimum spanning
tree (MST) and shortest path tree (SPT). These two universality classes are very similar
from the point of view of the invasion process and at the same time have completely differ-
ent properties. KPZ invasion is a model for interface growth/movement in random media
taking into account lateral growth, while IP invasion is a self-organized greedy process
with applications in oil recovery, generating a fractal invasion front. Both algorithms used
for modeling are able to generate paths and corresponding trees relevant for polymer equi-
librium structure (shortest paths) and hopping transport paths (paths from the minimum
spanning trees). The trees generated have an essential difference: MST is a super-universal
tree in the sense that the geometry is universally independent of the randomness and is
non-degenerate since we obtain the same tree regardless the starting point, while the SPT
has different structures when the starting seed is changed. Having said that, it would be
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very interesting to find a mechanism that could continuously interpolate between the MST
and SPT classes, since they are so different.

It has been shown [27] that in the strong disorder limit the shortest path is dramatically
different from the weak disorder limit. For weak disorder the shortest path has a fractal
dimension d; = 1 more precisely the path is not fractal at all. In the case of strong disorder
(1.e. distributions with long tails) the bonds’ energies are well spread such that the cost
of the shortest path is dominated by the largest cost. Interestingly enough, the fractal
dimension of the shortest path is identical with the fractal dimension of the paths from the
minimum spanning tree, with (l'j“ = 1.22 + 0.01 for square lattices and (1'}‘1 =1.42 £ 0.02
for cubic lattices. We will prove that our generalized algorithm interpolates between the
strong and weak disorder limits by tuning an additional parameter defined with the help of

a more generalized energy function.

4.1 Analytical Derivations

4.1.1 Strong Disorder Distribution

Using the generalized energy function,

dy = min{ Z C:’;} 4.1)

1,jEpath

additional information about invasion processes should be gained. It is trivial to see that
for m = 1, the generalized energy function gives exactly the DPRM problem. In the limit
m — oo, we argue that the functional corresponds to the invasion percolation (IP) problem
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and is relevant for "strong disorder” physics.

Equation (4.1) with a probability distribution P(c;;), which is uniform in the interval

[0, 1], is equivalent to,

dgy = min{ Z y,-j} 4.2)

i,j€Epath

with the new variables y;; = ¢} randomly distributed according to,

Glys) = —y~'*% 3)

m

To prove this note that the new probability distribution has to satisfy,
Cl'(y,'j)([_lj,‘j = P(C,'J’)([(‘,'J‘ (44)

Since both y and c are related (we have dropped the subscripts for convenience) we know
that

de = Ly_“L#dg 4.5)

m

By combining (4.5) with (4.4) we obtain (4.3). In the limit m — oo, the new probability
distribution (G becomes

. 1
G(y) ~—, m — oo, (4.6)

Y
which has a long tail. The mean and standard deviation of G/(y) are (note that the integration
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limits for G(y) are the edges of [0, 1]),

1
<y> = .
Y 14+m .7
’> = : 4.8
<y > = 142m 4.8)
om = (<y?>—<y>HV2= m 4.9
(<y y>7 (1 +m)V1+2m (49)

thus we expect that —1/2 < m < oo for the second moment of the distribution to exist.
In the case —1/2 < m < 0, Marconi and Zhang [81] found that the corresponding DPRM

problem has a wandering exponent v which varies continuously with m.

The strong distributions changes the nature of the invasion algorithm by simplifying the
energy functional. The strength of the bond costs are distributed in such a manner that the

cost of the path is dominated by the largest bond cost,

Seamam|it X (22) ]+ (4.10)

. N Cmax
Cuy ;é( max

It follows that the energy functional

do = min { 3" b = minep,, 4.11)

describes a path along which the maximum barrier is minimum.
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Figure 4.1: Invasion Front.

4.1.2 Invasion Percolation Limit

To prove that the generalized algorithm in the limit m — oo becomes invasion percolation
we proceed as follow. Let us consider two sites, ¢; and ¢,, on the invasion front (Fig. 4.1),

and ¢} and ¢}, any two neighboring sites of ¢, respectively ¢,, such that

Ctit;, < Crpe), (4.12)

We can write the generalized energies d;,; and d,,; from the source to the respective sites
as follows:

Ay = dut, + €y = Cla + (4.13)

max

max

Aoty = dsty + €y = Crax + € (4.14)
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Helped by (4.12) we see that:

dstll < dsf; (4.15)

The algorithm invades choosing the smallest energy bond. This is equivalent with choosing
the smallest cost (regardless of the previous history), which is identical with the invasion

percolation rule.

4.1.3 Relevant Scales

We have proved that the generalized algorithm interpolates between the DPRM (for m = 1)
and IP (for m — oo). It is known [100] that the directed polymer (DP) problem and non-
directed polymer (NDP) problem are in the same universality class (DPRM), provided the
disorder is weak. The overhangs, which occur in NDP, are not important. The explanation
comes from the definition of the polymer energy in which all terms are equally important,
meaning that the polymer’s "memory" is strong. Contrary, when m — oo, we have proved
that the energy functional has no "memory", because the algorithm chooses the next bond
regardless the polymer cost. The algorithm is now identical with invasion percolation.
Thus, we can associate the size of the overhangs with the inverse "memory" strength. This
takes us to the conclusion that by increasing m, the polymer looses "memory" and from

self-affine evolves into a self-similar (fractal) structure.

The crossover length [, which is the Euclidian length scale on which the polymer is
fractal, can be evaluated from the generalized energy function (4.1). We have made the
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following approximation:

(L t (LY (4.16)
Cimax N '

Cyy #Cmax

were [V is the total number of elements in the sum, thus the length of the polymer. The

polymer energy for any m,

dyy = min

~  min

- minicmax [1 + (1 B %)m]}

Cmax {1 +m>{—%}]} 4.17)

This simple argument implies that the crossover length scale n,, = m. In the simulations

we assume,

n, =mk (4.18)

were k is an exponent which is to be determined. It is believed [92] that its value is k = 1.6
regardless of the dimension (the simulations were done only for d = 2,3). Because the

polymer is fractal its fractal dimension d; is defined by,

ny = % (4.19)
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were [ is the Euclidian length and n, is the total length, the Euclidian crossover length [ is,

ng =13’
m" = li’
I, = (mk)!/ds (4.20)

4.2 Numerical Results

4.2.1 Spanning Tree Cost

We can analyze the crossover explicitly given the generalized energy function,

(ls,:min{ > c;';} 4.21)

1,J€Epath

In the limit m — oo, the largest term dominates the sum and can be interpreted as an
energy barrier. In order to test our new invasion algorithm, we have done simulations using
an uniform distribution of real numbers in [0, 1] with variable weight factor m.

The largest value of m that we can use is in the range of 30 for single precision while
for double precision we have been able to successfully work with exponents m = 60. For
values larger than these it becomes very difficult to do any mathematical operations on the
variables due to the round-off.

From Fig. 4.2 we can see that the cost of the shortest path tree, Espr, increases linearly
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Figure 4.2: Plot of the tree cost E,,.. versus time for shortest path tree (SPT) (solid line),
minimum spanning tree (MST) (long dashed line). For m = 33 the generalized algorithm
tree cost function is almost identical with that of the MST. All simulations have been done
on 401 x 401 square lattices averaging over 100 configurations.

in time as an effect of the direct proportionality between the cost of the paths and their
length. The "time" increases by 1 any time we add a new bond to the tree (initially when we
start the algorithm we turn the time to 0) and cost of the tree is calculated using (4.1). The
cost of the minimum spanning tree, EarsT, is linear in time until the cluster first percolates
the lattice. After this point, since it is necessar to explore unfavorable cost regions, the
East rises higher than a linear dependence. The exact cost function eludes us but we
point to the fact that in the large limit for m we recover the IP class.
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4.2.2 Acceptance Function

To further clarify the transition, we have extracted (similar to Figs. 2.7 and 2.8 ) the ac-
ceptance function «a(r), since it tells us how close to the IP phase we get as we increase m.

The definition of the acceptance function reads,

( number of random numbers accepted in the cluster from [r,r + dr]
a(r) =

(4.22)

total available numbers in [r,r + dr]

In other words, the acceptance function gives the probability for a bond to be in the
tree/cluster given its weight is in the interval [r,r + dr|, where dr is the size of the bin.
In percolation, we are interested in the properties of the first percolating cluster. In this
case, for site IP the acceptance function for the first percolating cluster is a step function
(in the infinite size limit) at the critical threshold (p. = 0.593(1)). In contrast, for the bond
IP the acceptance function shows a jump at critical threshold but its size is less then 1. Up
to the critical threshold, «(r) < 1, because some bonds with weight ¢;; < p. would make
cycles such that the tree property would be destroyed, which is not a valid option for our

bond IP algorithm.

As we can see in figures 4.3 and 4.4 the acceptance function for both the first percolating
tree and for the complete tree gets closer to the IP curve as we increase m. For m = 33,
the acceptance function of the generalized algorithm moves close to the one representing
the bond IP. If we further increase the generalized weight exponent m, the algorithm has
to suffer from real numbers round-off, giving incorrect data. For the simulation, we have
used square lattices of size 401 x 401 and averaged over 1000 simulations.
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Figure 4.3: Acceptance function for the first percolating tree (cluster) on square lattices.
The function is approaching the MST acceptance function (the long dashed line) as we
increase the exponent m. The solid line is the acceptance function for the shortest path
tree. The lattice size used in simulations is 401 x 401, while the averaging is done over
2000 realizations.

4.2.3 Path Geometry and Fractal Dimension

We have argued in previous chapters (Chapter 2, 3) that the paths have important roles in
transport, flux lines in superconductors, etc.. It is of great importance to see how the struc-
ture of the paths change from polymers at small m with no fractal dimension (d; = 1),to a
fractal paths (d; = 1.22(1) in 2d, and d; = 1.42(2) in 3d) at large m. We have been able to
extract the geometrical structure evolution by measuring the probability distribution g(s)
for a path to have s, where s is the path length scaled with the Euclidian length raised to the
power d; = 1.22(1), as seen in Fig. 4.5. Since we argued that our generalized algorithm
gives both IP and KPZ limits we have added as an extra proof the distribution of scaled
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Figure 4.4: Plot of the acceptance function for the complete tree on square lattices. We can
see that with increasing m we get closer to the IP (long dashed line). The solid line is the
acceptance function for the shortest path tree. The averages are done over 2000 realizations
of a 401 x 401 lattice.

paths length as seen in Fig. 4.5. While increasing the weight exponent m the distribu-
tion function g¢(s) approaches the IP limit, where paths are fractal with fractal dimension
dy = 1.22(1). To better understand the transition from DPRM to IP we have studied the
paths fractal dimension as a function of m. The distribution of the weights is again uniform
in [0, 1]. We find that the paths are self-similar for length [ < [, the cross-over length while

self-affine for [ > [,.. The cross-over length scales as,

[ ~ (m*)Y (4.23)
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Figure 4.5: The scaled distributions of path-lengths, g(s), on spanning trees on square
lattices. The scaling variable is s = n/I?s where n is the number of bonds in the MST
path, [ is the Euclidian distance and Dy is the scaling dimension (D; = 1.22 + 0.01 for
square lattices with m = 10,90 and D; = 1.00 £+ 0.01 for square lattices with mm = 1). The
dotted line in these figures is the scaling distribution on the trees for various m = 1,10, 90.
For comparison we also give the scaling distribution for the steady state during growth of
the trees, i.e. invasion percolation like (solid line). In both cases the paths scale with the
same fractal dimension, in fact this holds at all stages of growth of the trees. The results
are found from averaging over 90000 realizations of 201 x 201 square lattices.

were d; is the fractal dimension and £ = 1.60 + 0.03 is an exponent that does not depend
on dimensionality [92]. The simulations were done for 2d square lattices with L = 401
and over 1000 simulations. The fractal dimension on short length scales proved to be self-
similar behaving like [!/47 with d; = 1.22(1), while over large scales the fractal dimension
of the path changes continuously from d; = 1 for m = 1 (DPRM) to d; = 1.22(1) for
m — oo (IP). The conclusion is that if [ < [, the path is dominated by the largest bond
while for [ > [, the path is no longer self-similar, showing self-affine behavior depending
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Figure 4.6: Scaled plot of the total length n, versus the Euclidian length /. The constant
k = 1.6 from [92]. The fractal dimension has been assumed to have the value d; = 1.22(1).
The dotted line has slope equal to 1 and is for invasion percolation (the IP paths have fractal
dimension d; = 1.22(1)).

on the value of m. Because [, is the only relevant scale we expect that,

[

l=1.f (l_> (4.24)

where f(x) is a scaling function. The same behavior is expected for the polymer roughness:
¢

w=t,q <t——) 4.25)

Here g(x) is the roughness scaling function and ¢, = {,. From Fig. 4.6 we conclude that
overhangs come in to play as we transition from KPZ to IP paths. While for the KPZ we
have been able to prove that overhangs play no role (as they are almost nonexistent) the
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bond IP paths are completely dominated by them.

4.2.4 Trees Overlapping Function

An important part of our study was to perform numerical simulations for a high general-
ized exponent m. As we have already seen in previous sections a very good overlap with
IP curves occurred at a value m = 33 at L = 401. By further increasing m we did not
increase the quality of the overlap, rather we have decreased it. To verify this hypothesis,
we have calculated the overlap function F'(m) between the tree obtained from the general-
ized algorithm and either the shortest path tree or the minimum spanning tree. We define
the overlap as the number of bonds part of a tree but not part of the other one (uncommon
bonds), divided by the total number of bonds in the tree. As seen in the log-log plot from
Fig. 4.7 the overlap with the SPT increases with the increase of m. At the same time, the
overlap with the MST shows a minimal value for m above which the trees start to differ
more than before, contrary to our analytical calculations which suggested that in the limit
m — oo the generalized tree and MST become identical. To explain the minima in the
MST overlap we have run the same simulations on two different machines. The results
(Fig. 4.7) proves that a round-off for reals occurs at the approximate value m = 33 on a 32

bit machine, while on the 64 bit machine the value is doubled m = 60.

4.3 Conclusions

We have found that the generalized algorithm given by (4.1) is able to continuously inter-

polate between two important universality classes: KPZ when m = 1 and IP for m — oo.
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Figure 4.7: The fraction F' of uncommon bonds to the total number of bonds in the tree ver-
sus the generalized exponent m for a 201 x201 square lattices (10 simulations) on different
processors; the solid line is for simulation running on a Digital UNIX V4.0E, while the
long dashed line is for simulation running on an Intel Pentium III. We can clearly see that
the machine round-off for the real numbers accounts for the valley in the overlap function,
while the maximum overlap it is achieved for m ~ 30 for the 32 bit machine, on a 64 bit
machine the maximum overlap occurs at m = 60 value of the generalized exponent. The
dot-dashed line is for overlap between the generalized tree and SPT (on an Intel Pentium
III); all other curves are for MST overlap with the generalized tree.

The paths are characterized by only one scale the crossover length /., which divides the
paths into self-similar for [ < [, and self-affine [ > [,. The paths fractal dimension in the
IP limitis d; = 1.22(1) for 2d square lattices while d; = 1.42(2) for 3d square lattices. The
overhangs behavior is responsible for the path geometry. In weak disorder they are almost
nonexistent contrary to the strong disorder case when they dominate the paths. Our results
are in agreement with similar calculations done for DPRM problem in the strong disorder
limit [26,27,92,100], where, using Dijkstra’s algorithm, they have obtained paths with the
same geometrical structure as MST. We have been able to prove that our generalized algo-
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rithm with weak disorder is equivalent to the DPRM problem in the strong disorder case,
which in turn, for m — oo is identical with invasion percolation. Furthermore the path
length scaling proves that our analytical results are true. One problem is the round-off for
real numbers once they are raised to high powers (remember our original real numbers are
uniformly distributed in [0, 1]). The tree overlap function shows a minimum as a function

of m, which could be attributed to the machine precision.
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Chapter 5

Random Field Ising Model

5.1 Introduction

The central issue in the equilibrium random field Ising model(RFIM) is the nature of the
phase transition from the ferromagnetic state at weak disorder to the frozen paramagnetic
state at high disorder. The existence and universality class of the RFIM transition, is key as
the best experimental tests of RFIM theory are diluted antiferromagnets in a field, which
are believed to be in the same universality class as the RFIM [49]. After some controversy,
it was rigorously demonstrated that the RFIM transition occurs at a finite width of the
distribution in three dimensions [63] and at an infinitesimal width in one and two dimen-
sions. Moreover, Aharony [2] showed that within mean field theory at low temperatures,
the transition is first order for bimodal disorder distributions but second order for unimodal
distributions. Numerical studies at zero temperature suggest, that in four dimensions, the
bimodal case is first order and the Gaussian case is second order. The analysis in three di-
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mensions is less conclusive [105]. The difference between the Gaussian and bimodal cases
has been attributed to percolative effects [106]. We have recently shown that at zero tem-
perature, the mean-field theory is non-universal [41] in the sense that the order parameter
exponent may vary continuously with the disorder. Exact optimization calculations [6,94]
in three dimensions have also suggested that the correlation length exponent, as deduced

from finite size scaling, is non-universal [7].

Motivated by the fact that the RFIM is non-universal within mean-field theory for the
stretched exponential distribution, we have analyzed the RFIM on complete graphs with
disorder distribution, (6h/|h|)* (0 < = < 1, |h| < §h). We find that this distribution is
anomalous in the sense that this sort of disorder never destroys the spontaneously mag-
netized state, at least within mean-field theory. The behavior of the RFIM on complete
graphs is thus quite varied and anomalous. To determine whether this non-universality
extends to other lattices, we have analyzed the zero temperature RFIM on a Bethe lattice
for the stretched exponential and power law distributions of disorder. We prove that the
Bethe lattice is universal, provided the transition is second order, even in the limit of large
co-ordination. This is surprising since in this limit the Bethe lattice usually approaches the

mean-field limit.

We also extend the results outlined above to the non-equilibrium case. Ground state cal-
culations of hysteresis and Barkhausen noise in the RFIM have demonstrated that the spin
avalanches are controlled by the equilibrium RFIM critical point [33,101]. It is thus not sur-
prising, and we confirm, that the magnetization jump in the hysteresis loop is non-universal
for the stretched exponential disorder distribution. The integrated avalanche distribution
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also has a non-universal exponent due to the non-universality of the order parameter. But
the “differential" mean-field avalanche exponent is universal, even in cases where the order
parameter exponent is not. In contrast, as expected from the equilibrium results, the Bethe

lattice exhibits universal non-equilibrium critical behavior.

5.2 Non-equilibrium Random Field Ising Model

The Lenz-Ising model is probably the oldest and simplest non-trivial model for cooperative
behavior that shows spontaneous symmetry breaking. It has a vast number of applications

from solid state physics to biology and recently to economics. The Hamiltonian is,

ZJ,W 5= D _(H +h)S; (5.1)

where the exchange is ferromagnetic (J;; > 0) and the fields h; are random and uncorre-
lated. In the non-equilibrium problem we sweep the applied uniform field, H, from —oo
to co and monitor the magnetization at a fixed J;; = J and for a fixed disorder configura-
tion {h;}. This model has been proposed as a model for Barkhausen noise by Dahmen et

al. [33]. The local effective field responsible for a spin-flip is

W' =038, +hi+H (5.2)
J#i

The condition for a spin to flip is that hfff /"> 0. The random fields are drawn from a
specified distribution p(k). To test universality, we use the following distributions which
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Figure 5.1: The disorder distribution p, given by (5.3) for A = 1.0. The most important
feature of this function is the behavior near the origin for various y exponents.

are defined on the interval -6h < h < éh,

y+1 IR\
h) = - — .
p1(h) 55 6% [1 (5}1 O<y<oo (5.3)
and
_yR LN
p2(h) = 557 (5}2 l<y<oo 54)

We have shown that p;, which is the low field expansion of a stretched exponential disorder
distribution, leads to non-universality in the ground state of the equilibrium mean-field
RFIM [41]. Here, we extend that result to the non-equilibrium case. We then show that
the distribution p, destroys the RFIM phase transition, within mean-field theory but not on
Bethe lattices, for —1 < y < 0.
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Figure 5.2: The disorder distribution p, given by (5.4) for §~ = 1.0.

5.2.1 Mean-Field Theory

Mean-field results can provide us with insight to the problem. Using the Hamiltonian
defined above and mean-field (MF) formalism we discuss the behavior of the ground state |

at zero-temperature.

H=-> hils, (5.5)

The magnetization is given by

he(m) oo
m = —/ p(h)dh +/ p(h)dh (5.6)
- h

oo (m)
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were h.(m) = —Jm — H. The energy at a given magnetization is

Jm? > he
E(m) = — - / [h|p(h)dh + 2/ hp(h)dh. 5.7
- 0

=~ 20

Extremizing with respect to the order parameter, m, yields the ground-state mean-field
equation,

Jm.+H
me = '2/ p(h)dh (5.8)
0

The non-equilibrium critical points are found from the susceptibility x = dm/JH,

which from (5.8) is given by,

_ 2p(Jm+ H)
N T 20p(Um+ H)

(5.9)

5.2.2 Mean-Field Avalanches

Using the same framework one can also calculate the scaling exponent for the avalanche
size distribution. If a spin is flipped the average number of spins that will be triggered is
given by n,.i; = 2JP(—JM — H). If ny;y < 1 the avalanche will die-out, (will have a
finite size) while if n¢,;, = 1 the avalanche will be infinite sweeping the entire system. The
probability II(.S) for an avalanche of size S starting with a spin flipat h; = —JM — H is
given by the Poisson distribution with the average value A = 2JSP(—JM — H) divided

by 1/S5

' exp(—A) (5.10)



Expanding near the critical point and also using Stirling’s formula we obtain the scaling

form for avalanche size distribution

D ~ §73/7 (5.11)

More generally, the avalanche distribution, d(s,t) gives the probability of finding an
avalanche of size s at parameter value ¢, found using a Poisson statistics argument [33],
yields,

d(s,t) ~ s et = s Tg(s%t), (5.12)

where g(r) is a scaling function and ¢t = 1 — 2Jp(Jm. + H). Experimentally, it is more
natural to make a histogram of all avalanches up to the critical applied field at which the

magnetization changes sign. This “integrated” distribution behaves as,

D(s,6h) = s77"7%g(s%r) (5.13)

where r = |§h — 8h.|. For a Gaussian distribution of disorder, 3 = 1/2, ¢ = 1/2,
7 = 3/2. We have shown, however, that in the ground state for the distribution (5.3), the
equilibrium order parameter exponent, 3 = 1/y. In contrast, it is evident from (5.12) that
the exponents o and 7 are universal. The non-universality in non-equilibrium behavior
arises in the magnetization jump and in the shape of the non-equilibrium phase boundary,
as we will demonstrate in this chapter.
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5.2.3 Magnetization and Critical Field

Consider the distribution (5.3). Integrating (5.8) yields the mean field equations,

1 — — 1 —
m =Y i (Jm+ H) — —|Jm + H*! (5.14)
Yy Yy
forJm + H > 0, and
y+1 — — - —
m = yi—(Jm + H)+ ~|Jm+ H|**! (5.15)
Y Y

for Jm + H < 0. Here we have defined, J = J/8h, H = H/S§h. Setting H = 0 in either

(5.14) or (5.15) yields the equilibrium magnetization [41],

<=

Meg =

1/y
Y [1___y_] 1
ly + 1] T D) (5.16)

At the critical point, the magnetization scales with the magnetic field as
me(r =0,H) ~ H'5. From (5.15) it is evident that § = y + 1. The susceptibility
x = Om/OH diverges when the barrier between the two local magnetization minima of

the ground state energy ceases to exist. From (5.9), we have

_ T\
_ (y+1)[1_ (Jm_+ H)_] ' (5.17)
y—(y+ DJ[l = (Jm+ H)Y]
and the critical condition
y=(y+ 1)J[1 = (Jmue, + H.)Y). (5.18)
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This equation has the simple solution,

_ . y 1/y
re=Jmyue, + H. = [1 — :—] . (5.19)
! Jy+1)

Substituting (5.19) into (5.14), we find that the non-equilibrium magnetization jump is

positive and has the value

m = [1 + —;—] l:l — L} " (5.20)
e J(y+1) Jy+1)] -

for H — HT. Substituting this into (5.19), the critical field is found to be,

1+1/y
y Oh )] . (5.21)

H=-J|] - —
[ J(y+1

This negative critical field is expected when starting with the positive magnetized state.
By symmetry, the negative magnetization solution is at — M. (figure 5.3). The value of
the magnetization at that point is —m,,,. Note that |m,.,| is not the size of the magne-

tization jump in the hysteresis loop. The jump in magnetization in the hysteresis loop is

Stinyst = |Mney| + m(|H;|) (figure 5.4), where m(|H,|) is found by solving (5.15). The
critical exponent associated with the jump in magnetization is determined by the behavior
of the distribution p(h) at small fields, so that the critical exponents found here apply to
distributions of the form p(h) = exp(—(|h|/H)Y). For y < 1 these are the stretched expo-
nential distributions ubiquitous in glasses, while for y > 2 they are more concentrated near

the origin.
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Figure 5.3: The phase diagram of the non-equilibrium RFIM MFT using the disorder dis-
tribution (5.3). In this figure, we took the exchange constant J = 1. The dotted line is for
y = 0.5 while the solid line is for y = 2. Note that at the equilibrium critical disorder, éA.,
the hysteresis loop disappears. Below the critical disorder point the hysteresis loop is finite
while above it disappears. The model is not universal; as we can see from equation (5.21)
the critical field has an associated exponent dependent on the disorder exponent y.

Now we briefly consider the distribution p, (%) givenin (5.4). For y > 0 this distribution
is bimodal and it is easy to confirm the conclusion of Aharony [2] that the transition is first
order. However the cases —1 < y < 0 are more interesting. In these cases the disorder is
dominated by small random fields, as the distribution is singular at the origin. It is easy to

carry out the mean-field calculation (5.8) with the result,

/ l+1/y
Moy = (%i) oh > J (5.22)

By comparing the energies of £'(m = 0), E(m = 1) and E(m.,) (using (5.7)), we find that
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Figure 5.4: The magnetization jump at the phase boundary. In this figure, we took the
exchange constant J = 1. The dotted line is for y = 0.5 while the solid line is for y = 2.
Note that at the equilibrium critical disorder, 8k, the hysteresis loop disappears. The
critical exponent associated with the jump in magnetization is determined by the behavior
of the distribution p(4) and has different values when changing y as seen above.

for 6h < J, the ground state is fully magnetized, while for h > J the ground state has
magnetization (5.22). The interesting feature of the result (5.22) is that there is no phase
transition at finite §h, and the system is always ordered. The disorder distribution (5.4)
thus destroys the ground state phase transition, due to the large number of small random

fields.

5.3 Equilibrium RFIM on Cayley Tree

Now, we determine whether the non-universal results found above for the mean-field theory
extend to the ground state of the RFIM on a Cayley tree. The coordination number of a
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tree is taken to be =, while the probability that a spin is up is P, and the probability that a
spin is down is P_. The probability that a spin is up at level [ can be written in terms of the

probabilities at the level which is one lower down in the tree, this yields [18,36]

Puly=)" <a> Pl =1)P279(l = 1)ay(a.g) (5.23)

where a4 (a, g) is the probability that the local effective field is positive when g neigh-
bors are up. If we know the distribution p(h;) we can compute a,(a, g). Analyzing the

equilibrium behavior, we have,

«Jla.g) = / ‘ p(h)dh (5.24)
(a=2g)J-H

The equilibrium Cayley tree model has been extended to the non-equilibrium case by
considering a growth problem in which the spin above the currently considered level in the
tree is pinned in the down position [36,98]. This models the growth of a domain. The

formalism is the same as in (5.23), with the modification that

ay(a,g9) = a{(z.9). (5.25)
From this equality and the form (5.23) it is easy to derive all of the non-equilibrium results
from the equilibrium results found using (5.23) and (5.24). To find the hysteresis curve
on a Cayley tree, we just shift the equilibrium magnetization as a function of field: by
H — H — J when sweeping from large positive fields and by H — H + J when sweeping
from large negative fields (figure 5.5). The behavior is evident in previous numerical work,
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Figure 5.5: The phase diagram for the non-equilibrium RFIM on a Cayley tree with coordi-
nation number o = 3 using the distribution (5.3) and taking the exchange constant J = 1.
The dotted line is for y = 0.5 and solid line is for y = 2. The initial, linear part, of the
phase boundary is due to the finite cutoff of the distribution (5.3). There is a discontinuity
in slope of H.(4h) at the equilibrium critical disorder éA..

but does not seem to have been noticed before.

By direct iteration of the recurrence relation (5.23) we show that a stable steady state
solution, P; = 1— P~, exists. It is easy to solve equation (5.23) in the steady state limit, at
least for small values of a. For a = 1, 2 Cayley trees have no ordered state for any finite
dh, for the disorder distribution (5.3). But for o = 3 a ferromagnetic state does exist for a
range of disorder. As we see from (5.23), the o = 3 case leads to a polynomial of order 3

which can be simplified to,

%"[nﬂ(l —3b+a)—1+3a+3b]=0 (5.26)
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Figure 5.6: The magnetization jump for the RFIM on Cayley trees for = = 4 and the
distribution (5.3), with the exchange constant J = 1. The dotted line is for y = 0.5 while
the solid line is for y = 2. In both cases we find the same critical exponent, for example
3 = 1/2. In contrast, the mean-field result is 3 = 1/y.

were m = 2(P; —1/2),a = «{(3,0) and b = (3, 1). (5.26) has the following solutions:

(5.27)

3a+3b-1 1/2
3b—-1—a '

m=0; and m =+ (

These solutions apply for any disorder distribution. For the distribution p; (h), performing

the integrals yields,

(5.28)

—y+1

_ — 1/2
qy — 12(y + 1)J + 3(3¥*H! + l).]y+l !
m =

3(1 —=3v)J
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We can now expand the magnetization around the critical point, J., J = J. — e. We find,

1/2

y+ 1)(1 + 3y+1)7y)c] (5.29)

m ~ [(——1‘2(}/ +1) + 3< 1
Y

Thus m ~ €!/2 for any y, so that 3 = 1/2 is universal (figure 5.6). Since the non-
equilibrium behavior on trees is related to that of the equilibrium behavior in such a simple
manner, this universality extends to the hysteresis and avalanche exponents. It is easy to
confirm numerically that the behavior extends to large values of the branch co-ordination
number «. Moreover by doing an expansion of (5.23) using P, = 1/2+ m, itis possible to
show analytically that only the first and third order terms in m exist, regardless of the value
of y in the disorder distribution (5.3). This confirms that for this distribution, the behavior

is universal for all coordination numbers.

For the distribution p,(h) and a = 3 we get from (5.27)

(5.30)

—Sy+1

4_3(3y+1 + 1)7y+1 1/2
m = .
3(3v —1)J

Just like we have done before we can expand m around the critical point, J = J. — €

] . 1/2
e [(J ) 1)‘3"“ + 1)»&”‘] '
y

Thus for p,, 3 = 1/2 is an universal exponent, too.
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5.4 Finite Temperature Expansion

The analysis above can be extended to finite temperature.The mean field equation in this
case is,

m= /Oo dhP(h)tanh{(Jm + H + h)/T) (5.31)

[o.9]

Carrying out the same procedure like in the T = 0 case the susceptibility is,

I poo
7/ dhP(h)sech®[(Jm + H + h)/T)]
. e (5.32)

J =
1 - T/ dhP(h)sech®[(Jm + H + h)/T)

0

The poles of the susceptibility will give us the critical condition,

— J > < 27(
1= T/~ dhP(h)sech?[(z + h)/T) (5.33)

20

where + = Jm + H. Integrating by parts and using the symmetry of P(h) yields,

B ~ JP(h) [ x+h x—h
1 = J/_w dh—ar [Lanh ( T ) - tanh( T )] (5.34)

from which it is easy to see that when 7" — 0 this reduces to the ground state result,(5.18).

Now we want to find the behavior at finite temperature case, especially near the critical

point. In the case of no random fields the critical point is determined by,

| = % sech? (%) (5.35)
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To leading order this leads to « ~ T(1 — T//J)'/2. Substituting this in the mean-field
equation m = tanh(x/T), yields m,., ~ (1 — T/J)"2. Using this result for x, the
critical field for this case turns tobe H. = T(1 — J/T)(1 — T/J)'/> Now we seek to find
generalizations to the case of finite disorder. A more convenient form, found using some

trigonometric identities is,

2z Qh\
1 4 cosh i cosh T
| = 21/‘ dhP(h) / ~ (5.36)
T J, .
2T 2h
cosh | — | + cosh T

For finite temperature and near the critical point, there is a regime in which z /7 is small.

In that limit (5.36) reduces to,

J T
L= 2510, T)sech’ (?) (5.37)
where
o 1
[(H.T) = / dh P(h) (5.38)
° 2h + H)
1 4+ cosh —

Using the fact that the field distribution is symmetric, and the properties of the hyper-
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bolic functions, we can write magnetization as,

[>¢) P(ll)
m=2 t'cmh(‘.ZJm/T)/ dh (5.39)

° cosh (2(h + H)/T)
cosh (2m/T)

1+

As we can see there is a regime when the magnetization is much smaller than the tempera-

ture, m/T < 1. The magnetization becomes in this case,

m=2[(H,T) tanh(2Jm/T) m/T < 1 (5.40)

Providing there is a regime where m <« T we can expand to third order in magnetization,
and we find,
J

1=41(H.T) 5 (5.41)

We also solved (5.39) numerically using Mathematica. The results show indeed an
universal behavior as soon as temperature is turned on. The surface in Figs. 5.9 and 5.10
are the phase diagrams in the 3d parametric space { H, 0k, T} for y = 0.5,2.0. In Figs. 5.7
and 5.8 we have solved (5.39) for two special cases when the field H or the disorder éh
have been suppressed giving us a clear look at the surface boundaries from Figs. 5.9 and

5.10.
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Figure 5.7: Critical disorder versus temperature in the absence of the field (H = 0). We
can see that for different disorders both functions have the same behavior approaching the
temperature critical point (' = J = 1). The plot has been obtained by numerical solving
(5.39) in the limit H = 0.
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Figure 5.8: Critical field as a function of temperature when disorder is suppressed (02 = 0).
The RFIM is now the regular ferromagnetic Ising model at finite temperatures.
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Figure 5.9: The phase diagrams for 7 # 0 RFIM for y = 0.5. In order to obtained the
surface we have fixed T' and solved (5.39).

Figure 5.10: The phase diagrams for 7" # 0 RFIM for y = 2.0. This figure is obtained
identical to Fig. 5.9.
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5.5 Conclusions

In summary, on complete graphs (i.e., in mean-field theory) the RFIM at " = 0 is non-
universal. In particular, the stretched exponential disorder distribution leads to a non-
universal order parameter exponent and non-universal integrated avalanche exponent. In
addition, the power law distribution has a regime in which a predominance of small random
fields destroys the transition and the RFIM always has a finite magnetization. In contrast
the Cayley tree does not show either of these behaviors. Even in the limit of large coordi-
nation, it is universal, with the usual mean-field order-parameter exponent 1/2. We have
carried out some preliminary numerical studies of the behavior in three dimensions (with
short range interactions) and find that the power law distribution of random fields does not
destroy the transition. Moreover, the exceedingly small value of 3 in three dimensions ren-
ders any non-universality in 5 a moot point. However the behavior in dimensions higher
than three, or for longer range interactions in three dimensions could be more interesting.
Finally, even for short range interactions in three dimensions, there have been suggestions
of non-universality in the finite size scaling behavior [7]. It is unclear, as yet, whether that

behavior is related to the non-universality seen here.
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Chapter 6

Scale-Free Random Networks

Complex interacting networks are a common theme in diverse disciplines. One example is
the world wide web (WWW) with great impact on economy and also on Internet security.
Another example is the large scale study of biological networks that just now becomes
accessible experimentally and, remarkably, raises considerable interest in the statistical

physics community.

6.1 Models for Random Networks

6.1.1 Erdos-Rényi Model

The first model for random networks, proposed by Erdés and Rényi [45] is known to be
inadequate as a representation of real networks for many reasons, in particular it has a Pois-
son degree distribution. Regardless of its inability to model real networks, it was the first
work to be considered "the first conscious application of the probabilistic method" [65].

95



This simple model is the base of the most basic random graph models, the binomial model
and the uniform model. We denote by G(n, p) a graph with n vertices with probability p
that an edge between any two vertices exists; {2 the set of all graphs with n vertices; and e

the number of edges in the graph G.

Given 0 < p < 1, in the binomial model, technically speaking, (G(n, p) is defined as

part of the ensemble 2 of all graphs with n vertices for which,

m

M@=ﬁ%bq¥*m;c;=Cv 6.1)

This probability can be intuitively explained as the result of C'J' independent coin flippings

for each pair of vertices with probability of success p.

In the uniform model, one choses a graph randomly uniform from the set of all graphs
with n vertices and M edges. More precisely, if the number of edges M,0 < M < (7,
G(n, M) is defined as part of the ensemble (2 of all graphs with n vertices and M edges for

which,

s =1
mn:(ﬁ) 62)

There are many other types of random graphs that do not fall in any of these classes. One
example is reliability networks where the vertices rather than edges are destroyed. Other
random graphs are a result of a very complicated probabilistic processes, but it is important
to study first the much simpler models that will constitute the building blocks of a more

complicated theory.

It is important to also introduce the random graph process as the stochastic pro-
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cess of building a random graph in time. The simplest model, introduced by Erdos and
Rényi (1959), starts with no vertex at time 0 and adds a new edge at random (uniform)
from all edges not in the graph yet. This is a Markovian process where time is the set
{0,1,2,...,C7}. Thus if we consider a stage of time M the corresponding graph would be
G(n, M), allowing us to study the evolution of random graphs with edges growing from 0
to M.

Having defined some of the random graph models, we are interested now in finding
their properties. As physicists we want to represent these properties as a function of the
average vertex degree' z rather than p. By doing this we will have a better understanding
about the graphs structure in terms of connectivity. Since the average number of edges in a

graph is n(n — 1)p/2 the resulting average vertex degree is,

i
<~

= n(n=1p (6.3)

n

In the limit n — oo this becomes
z~np, n— 00 (6.4)

so instead of talking in terms of p we could express everything in terms of z.

The Erdos-Rényi model has the ability to give exact average properties in the large
n limit [17,65]. In particular it has been demonstrated that the model exhibits a phase

transition with increasing =. If initially (z < 1), in the incipient stages of the evolution,

I'The degree of a vertex is the number of edges connecting that vertex
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G(n, M) is formed by components? with the size of the maximum component of order
O(log n). As we increase the number of edges the size of the maximum component changes
sharply and for M > n/2 (z > 1) scales linearly with the graph size, becoming rhe giant
component of order O(n). The small components do not completely disappear but their
average size remains constant as the graph grows, the size of the next largest component
is at most O(log n). This phase transition has been thoroughly investigated [17, 65] and
the detailed phase diagram it somehow more complicated by the existence of a "double
jump", as proved by Erdds and Rényi, the size of the largest component changes twice
near the critical point, from O(log n) in sparse graphs with M < n/2 to O(n?/3) for M =
n/2(sub critical phase), and from O(n??) to O(n) if M > n/2 (super-critical phase). This
phase transition falls in the same universality class as the mean-field percolation transition,

considering max S the size of the giant component the order parameter.

However important these models are, there are some fundamental differences between
them and real-world networks. The first one, noted by Watts and Stogratz [108, 109], is a
difference in clustering®. The real-world random networks have very high clustering coeffi-
cient C' compared with the Erdos-Rényi model in which the edges are drawn independently

giving C' = p.

The second, found by Barabdasi and Albert [11, 13] and described in the next section,

regards the degree distribution.

2The components of a graph G are its maximal connected sub-graphs [110].
3The average probability that two neighbors of a given vertex are also neighbors of one another [108]
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Network n z C Random Network C
wWww 153127 35.2 0.11 0.00023
Power Grid 4941 2.7 0.08 0.00054

Food Web 134 8.7 0.22 0.065
Metabolic Network 315 28.3 0.59 0.09

Table 6.1: The number of sites n, vertex degree z and clustering C for some known net-
works compared with the clustering coefficient for the random network with the same n
and z.

6.1.2 Barabasi’s Model for Scale-Free Networks

In the Erdos-Rényi model the probability that a vertex has degree & is

— 1Y\ .
pk(:) _ (71 . )pk(l _ p)n—l—k (65)

which in the limit n > Az is,

pe(z) = o (6.6)

the Poisson distribution (Fig. 6.1.2). It is well known that both binomial and Poisson
distribution are strongly peaked at the mean value of z, with rapidly decaying tails. In
contrast, in the real-world networks, the degree distribution is nowhere near the Poisson
distribution. Many well known networks (WWW, Internet (also see Fig. 6.3), etc.) have
a power-law degree distribution (Fig. 6.4), which means that there is a small fraction of
highly connected vertices while the majority of vertices are weakly connected.

Barabdsi and Albert [11, 13] proposed an improved version to account for the scaling
properties of these systems, that tries to partially answer an important question: what is the
mechanism that leads to power-law connectivity distribution?

99



Figure 6.2: The Poisson distribution for
k = 6 has a clear maxima, which tels us
that that most of the vertices on a random
graph obeying such a distribution have
connectivities in the range of the peak
value.

Figure 6.1: 1928 United States of Amer-
ica, North-West highway map. The map-
ping to a graph is trivial in this case; note
that the connectivity distribution follows
a Poisson distribution as in Fig. 6.2.

The Erdos-Rényi model is static, i.e. the number of nodes N is always fixed and the
probability that two vertices are connected p is uniform, in contrast, most real-life networks
are open, i.e. they continuously increase by addition of new vertices, and the connectivity
is not uniform, for example a newly created web page will more likely include popular
documents with already high connectivity. A simple model to incorporate both of these

ingredients can be defined in two steps:

1. Growth: starting with a small number n, of vertices at every time step we add a new
vertex with n(< ng) edges that will be connected to the vertices already present in

the system.

)

. Preferential attachment: when choosing the vertices to which the vertex connects
we assume that the probability II that a new vertex will be connected to vertex ¢

depends on the connectivity k; of that vertex, such that TI(k;) = k;/ 3 k;.

The model evolves to a scale-free network with the probability that a vertex has k links
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following a power-law with exponent Y,,,4¢s = 2.9 £ 0.1 [13]. This model tries to capture
the essence of the scale-free networks but can not explain the exact topology of the WWW
(Yout = 2.45, vin = 2.1). Naturally the WWW has a much richer structure, for example,
links are not invariant in time, documents are not stable, such that in order to obtain accurate

results we have to incorporate these ingredients.

Through a simple mean-field type of calculation it is possible to evaluate the power-law
exponent [11]. Keeping in mind the evolution rules of this model, the connectivity growth

rate for a vertex is,

ok; k,
a0 = (k) (6.7)
which integrated gives,
£\ /2
ki(t)=n (Z—) (6.8)

with n the initial number of edges the attached vertex has, and ¢; the time when vertex :
was added to the network. Thus, older vertices with small ¢; become richer, at the expense
of the newly added vertices with larger t;. This phenomenon, rich-get-richer, can be tested
in the real-life networks and makes possible the analytical determination of the power-law
exponent . Assuming that vertices are added with a constant rate, the probability that a

vertex ¢ has connectivity smaller than &, P[k,(t) < k], can be written,

2
, . ‘ t
. 2 .2 s < 2 \2] n _ .
Pit; > nt/k*] =1— P[t; <n°t/k*] =1 T 6.9)
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since after ¢ steps the network has ¢ + ng vertices and tm edges. The probability density is,

COP[k(t) < K] 2m? 1

P(k) ok T+ noﬁ

(6.10)

Thus, the model proposed by Barabisi and Albert gives an exponent y = 3 independent
of n. They also show that if the probability for the preferential attachment II(k;) does not
depend on k; the network has an exponential distribution, proving that the main ingredient
for scale-free network is the preferential attachment. They have also used the arbitrary
attachment probability [1(k;) ~ k> and showed from numerics [11] that only for o = 1

does scaling hold.

Figure 6.3: Hierarchical topology of the international web cache by Bradley Huffaker,
http://www.caida.org/Tools/Plankton.
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Figure 6.4: The connectivity distribution for WWW, incoming P,,(k) and outgoing
P,u(k) links, J. Kleinberg, et. al, Proceedings of the ICCC (1999).

6.2 Self-Organized Growth

The standard invasion percolation (IP) theory was originally introduced to model fluid flow
in porous media [113] and only later viewed as an important model in statistical mechanics,
explaining growth and invasion in a variety of systems such as paper burning and wetting,
cell colony growth, and many other. The details of invasion percolation have been previ-
ously detailed in Section 2.2.

Here we view IP as a network growth process. We have found recently [37] that on a
random network the minimum spanning tree geometry is universal. Since in nature we see
that cells could be organized in interacting colonies (fungus on a forest floor) we would be
more interested in studying and modeling the evolution of the interaction network, which
would give us the behavior over large length scales. WWW has an underlying regular
lattice (over short length scales) with computers as nodes, since physically they are located
in houses and institutions, while over large length scales as has been recently proved [12],
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the WWW has the same structure as a scale-free random network. An invasion model that
gives rise to a random scale-free network is of interest because it gives the local and global

behavior simultaneously.

6.2.1 Avalanche Distribution

A very important aspect of the IP model is the existence of avalanches. Avalanches [51,83]
are a geometrical growth event triggered by an initiator such that, after the initiator is
invaded, the front discovers a highly favorable region (low cost bonds) where it can grow

without increasing the maximum bond cost.

Bond Cost

Hhoo 4000
Time

Figure 6.5: The succession of bonds cost versus time in the Prim’s invasion algorithm
(sometimes called time signal). The avalanche structure allows for the avalanches-within-
avalanches situation.

An avalanche can be stopped in two ways: one if the current growth site is older than
the initiator and second if the bond invaded has the same value as the initiator bond the
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avalanche stops. In invading models the avalanche structure is complex, leading to a hier-
archical structure of avalanches within avalanches. One way to extract avalanches is from
the temporal signal, (Fig. 6.5) which is the value of the invaded bond as a function of time.
If one defines c,,,, as the bond cost at the beginning of the avalanche, (avalanche thresh-
old) we see that their statistics depend on the cp,ax value, such that in the thermodynamic
limit when L — oo, there exists a critical value c.;;;., above which we can always find an
avalanche of infinite size percolating the lattice. If cax < ccritic there is no infinite size
avalanche, thus c,,.x can be identified with the percolation threshold for bond percolation
and has the value c., ;. = 0.5.

The avalanche distribution can be assumed to be similar to that from directed percola-
tion [53]. It is possible to define forward and backward avalanche probability distribution

relative to the time axis [83]

Py(s, fo) = s7TGy(s(f = fo)'/°) (6.11)

Py(s, fo) = sT Gy(s(f — fo)'!7) (6.12)

where 7 and 7, are forward and backward avalanche exponents, and ¢ is a model depen-
dent exponent. The scaling functions G; and G, decay rapidly if the argument is large
and are constants if the argument is small enough. For invasion percolation the forward
avalanche exponent is known to be 7 = 1.6(0). The equations above give the probability
that an avalanche of size s and initiator cost f, could take place in the system. The scaling
functions have been confirmed by numerical simulations [79,96]. The overall avalanche
distribution has an universal exponent 7%/ = 2 [83] for a broad class of self-organized
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models such as invasion percolation, interface depinning, and a model for evolution.

6.2.2 From Avalanches to Networks

An interesting problem can be built using the avalanche structure: what if we could con-
sider avalanches as separate entities, part of a network where nodes are avalanches and links
are present only if two avalanches have a common boundary. This construction is equiva-
lent to contracting each avalanche into a hub connected to all neighboring avalanches (see
Figs. 6.7-6.9). The network emerging from this construction can be a model for the Inter-
net growth (or WWW) in the following way: the big hubs correspond to a big investment,
such that after they have been built there are no more financial resources to create new
ones. These large hubs can be naturally identified with the biggest avalanches in the lat-
tice. After the early building phase, where big avalanches take place occupying most part
of the lattice, we see a connection phase, dominated by small avalanches, in which many
other groups or individuals connect to the big hubs since their financial power is smaller,
causing the inability to build new large hubs. The scale-free type connectivity is automat-
ically ensured since most of the small avalanches occur on trapped regions always in the
neighborhood of a large avalanche. The network matures, i.e.. becomes scale-free, only
during the connection phase, the building phase ensures only the existence of highly con-
nected hubs. This model differentiates itself from other scale-free network models [12, 13]
by naturally evolving to its final state in an undeterministic fashion, from a SOC process

such as BIP.
The invasion process widely encountered in every aspects of life, turns out to have
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two very important characteristics: (1) it is SOC and (2) its avalanche structure has an
underlying scale-free network associated with it, the most frequent network topology found
in nature or society.

An optimized method in studying BIP is using Prim’s algorithm [10, 37], which is
known to generate the minimal spanning tree (MST) on the lattice. We can decompose
the tree into sub-trees, such that each sub-tree represents a different avalanche. We have
considered in all our simulations that the avalanche threshold is always ¢,ox < Ceriticat DY
choosing the injection sites to have the smallest bond cost in the lattice. By contracting
each sub-tree into a node and linking it with all neighboring nodes, we create a self-similar

network.

6.2.3 New-network Topology

Following the work of Barabasi et al. [12] we have investigated the obtained structure by
calculating the probability P (k) that a vertex in the network is connected to k other vertices.
As for WWW, Internet and many other encountered systems, the probability distribution
for our network is a power-law, following P(k) ~ k=24 (Fig. 6.6), very close to the
measured WWW outgoing links exponent v,,, = 2.45 [12], only if one starts the invasion
from the lowest cost site. It is important to ask what happens if we increase the number
of injection sites, observing that network maturity occurs at the end of the evolution while
the tail properties of P(k) are defined by the early growth. An intuitive explanation would
be that the big clusters fragments into smaller domains, in this way destroying the scale-
free topology. Increasing the number of injection sites is also equivalent with decreasing
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Figure 6.6: The P(k) calculated on a 200 x 200 lattice running 5000 simulations. The
increase in the tail is due to the small size of the square lattice. The only difference in using
bigger lattices is the reduction of finite size effects on the distribution. Unfortunately using
big lattices make simulations much slower due to sorting.

cmar below the critical value, in this way big avalanches are hierarchically decomposed

into smaller sub-avalanches.
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Figure 6.7: The network (right) obtained from avalanches (left) using Prim’s algorithm
with 4 invasion sites.

Figure 6.8: The network (right) obtained from avalanches (left) using IP with 10 invasion
sites.

Figure 6.9: The network (right) obtained from avalanches (left) using IP with 30 invasion
sites.
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6.3 Conclusions

In summary, we found that the invasion percolation growth can be viewed as a more gen-
eral scale-free network growth. In the most popular models in order to obtain a power-law
distribution for the connectivity is is necessary an additional rule based on the rich-gets-
richer paradigm called preferential attachment. We have found that this rule is not always
necessary to be imposed by-hand as a part of the growth rules for our system, rather us-
ing a self-organized critical growth process (invasion percolation in our case) a scale-free
network is grown while the preferential attachment can be extracted posteriory. The self-
free network was constructed on avalanches has an exponent v = 2.4 close to the WWW

outgoing links exponent YWWW = 2,45,
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Chapter 7

Outlook

Disordered materials have become the focus of great interest in research. Amorphous ma-
terials, like glasses, polymers, gels, colloids, ceramic superconductors and random alloys
or magnets, do not have a homogeneous microscopic structure. At a microscopic level the
system’s properties vary from site to site, this randomness adding to the complexity and
the richness of the properties of these materials. The dynamical behavior is particularly
challenging, relaxation in disordered systems generally follows an unusual time-dependent
trajectory. Our work is theoretical in nature, but the questions we address are relevant
to a broad area of interdisciplinary research, involving studies of the physics, chemistry,

mathematics, biology and engineering aspects of random systems.

Nature is rather good at producing statistically non-trivial objects. One of the first en-
countered features in surfaces is the self-similar (fractal) scaling. Later, invasion percola-
tion was proposed as a new dynamical percolation theory were one could study the behavior
of such interfaces. One other feature often encountered in the properties of surfaces is self-
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affine scaling of surface wandering. Such a phenomenon can arise in fracture processes
or cracks (the fracture lines of paper have been claimed to be of the Kardar-Parisi-Zhang
universality class in 2D) and in a bit more esoteric context when studying domain walls in
Ising ferromagnets. The latter problem is formally equivalent to perfect plasticity in ran-
dom systems, and is an example of minimum energy interfaces. The mapping between KPZ
and the directed polymer in random media (DPRM) makes KPZ accessible through numer-
ical simulations. As described in Chapter 3, in graph theory language DPRM problem is
equivalent to finding the shortest path on a random weighted network. One advantage of
making contact with the computer science community is that useful strategies exist for opti-
mizing the algorithms’ efficiency. Numerical simulations show a change in behavior when
using strong disorder for DPRM. The polymers obtained in this limit are no longer part of
the KPZ/DPRM class rather, from the extracted fractal dimension, they belong to the IP
class. The disorder dependence can be further studied (see Chapter 4) using a generalized

algorithm.

The random field Ising model, one of the most important model for phase transitions
in disordered systems, has long been believed to be universal. Numerical simulations in
finite dimensions confirmed that to be true, while RG calculations did not even take into
consideration the possibility of disorder depended properties. Our analytical mean-field
calculations show that the universality is broken in the ground state while the model at finite
temperatures is universal. Another remarkable fact is that calculations on the Cayley tree
for random field Ising model confirm the universality hypothesis, leading to the conclusion
that the finite connectivity is the source for universality. Further directions would be to per-
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form numerical simulations for finite dimensional systems using our custom made random
distributions. It is known that at the critical point in the disorder space the avalanche distri-
bution is a power-law, which is the only indication of the transition. The lack of precision
in determining the critical point suggests that one should look for other properties, such as
percolation effects, which would give a better understanding of the transition’s nature.
The random network model in the last chapter shows that scale-free random networks
can be obtained from the most simple self-organized critical process, invasion percolation.
The natural extension would be to study the random networks which could be similarly ob-
tained from the random field Ising model since the model has a much richer phase diagram
with the avalanche distribution changing as function of disorder. In order to complete the
study, we would have to also investigate the connectivity evolution and also the robustness

of the network.
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Appendix A

Definitions

A.1 Graph definitions

Graph: A graph (/(V, F) is a collection of two sets (1) V(G) = {v1,v2,...,v,} a vertex
set and (2) F(G) = {e1,€ea.....e,,} an edge set. Each edge has two end-points. If the
end-points are equal the edge is called loop. We denote an edge e = (ij) € E(G) with

end-points ¢, 7 € V().
Weighted Graph: A graph (1, ') where we assign to each bond (7)) a cost ¢;; € R.

Directed Graph: The graph G(V, F) is called directed if each edge is an ordered

pair (i) with 1 the tail and j the head.

Connected Graph: The graph G/(V, E) is called connected if there is a path be-
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tween any two vertices v; and v;, otherwise it is disconnected.

Tree: A tree is a connected graph with no cycles.

Spanning Tree: A spanning tree of a graph G/(V, F) is a sub-graph T'(V, E’), E' C E,

with tree property.

Distance: If there is a path in G between two vertices s and ¢, we call the distance
from s to ¢, written d,, or d(s,t), the least length path between ¢ and j. If there is no such

a path in G then, d;; = oo.

ds; = min Z Cij (1.1

(1j)Epath
All the graphs used in our research are finite and undirected. A lattice is a regular
graph with precise rules in assigning bonds between vertices. We used for simulation the
well known square, cubic and triangular lattices. The random costs c;; are drawn from an
uniform distribution in [0, 1]. All algorithms used in simulations are using the graph as a
rich environment which can be further characterized. We define the most important trees,

minimum spanning tree (MST) and shortest path tree (SPT).

Minimum Spanning Tree: Minimum spanning tree (MST) on a weighted graph

G(E,V) is the spanning tree with total minimum weight Eysst,

Farst = min Z Cij (1.2)

(ij)Etree
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The minimum in (1.2) is taken over all spanning trees. Prim’s algorithm generates the

MST in any graph.

Shortest Path Tree: Shortest Path Tree (SPT) on a weighted graph G(FE,V) is the
spanning tree rooted at vertex s such that any path on the tree, d; is the minimum distance

between vertex : and vertex s,

dy =min¢ Y ¢ (1.3)

(ij)€path

The minimum in (1.3) is over all possible paths between the two considered vertices. It is

known that Dijkstra’s algorithm generates the SPT on any graph with positive weights.

Xs Xt X

Figure A.1: A connected graph. The dotted and solid lines are the edges of the graph.
Between the vertices s and ¢ we have drawn a path (solid lines) and the Euclidian distance
(long dashed line) /;;.

Following this definitions we can clearly see that between any two vertices on the lattice
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we can have an Euclidian distance,

Lt = V(xs — 202 + (ys — yt)? (1.4)

were r,, and y,, are the coordinates for the vertices s and ¢, and a path, with length d;.
The number of bonds in the path N, and the Euclidian distance /,; are related to one other

through the fractal dimension d; of the path,

Ny ~ 131 (1.5)

118



Appendix B

Greedy Algorithms

There are a large number of well developed graph algorithms in computer science (3,31,
57, 80, 89] which are useful in the study of disordered systems [95]. One advantage of
making contact with the computer science community in this area is that useful strategies
exist for optimizing the efficiency of these algorithms. In many cases algorithm libraries
exist (e.g. [78]), although many of these algorithms are rather simple, in which case writing
ones own code is not too arduous. However it is important to check that one is using the
optimal strategy as there are enormous differences in speed between some of the "generic"

implementations as compared to the optimal implementations.

We discuss two classes of graph algorithms [3,31,57,80,89]: Shortest path algorithms
(Section B.1); and Minimal cost spanning tree algorithms (Section B.2). We also clarify the
relation of these methods to standard [59,61,62,78,112,113] and more recent algorithms
[52, 87,95, 100] for percolation and minimal path problems. Since it has the same flavor,
non-equilibrium dynamics of Random Field Ising Model [76] is discussed in Section B.3.
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These greedy algorithms [31, 80, 89] work by choosing moves which are locally opti-
mal. This locality condition makes their implementation very efficient. Although greedy
methods solve some optimization problems exactly, they are also useful as approximate
methods for hard computational problems. Greedy algorithms are similar in the spirit to
hottest bond [35,39] or extremal (9, 84,103, 116] algorithms as will be discuss briefly in
Section B.4.Two other physically important classes of graph algorithms [15, 64, 86, 95]
(namely flow [3] and matching methods [80]), rely upon efficient implementations of some

of the algorithms described here.

B.1 Minimal Cost Path

Consider a graph (7(V, A) containing a vertex set V' and arc set A with Size[V] = N and
Size[A] = E. The pair (ij) € A identifies the arc between vertices : € V and j € V.
A connected graph has sufficient arcs such that a connected path exists between any two

vertices.

Now each bond is assigned a cost ¢;;. We seek the minimal cost path between site s
and any site 2. The cost of this path is d,;. To identify the path we also need a "predecessor
index" pred,; and a "label index" label; which has only two possible values: 1 if the site has
been visited by the algorithm and thus its path cost is known; or 0 if the site is unvisited.
Dijkstra’s method [31, 110] is an example of a greedy algorithm which accepts the best

point of advance on a "growth front".

& Algorithm: Minimum Cost Path/Dijkstra’s Algorithm
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1. Initially:
d(s)=0andd(i # s) =
label, = 1 and label;xzs = 0

predss = 0

2. CONTINUE if there are any unlabeled vertices
STOP otherwise

For each unlabeled vertex : we define d(¢)

d(7) = min{d(7),d(s) + csi}

3. Let 1 be the unlabeled vertex with the smallest overall distance

d(i) = min{d(j) | d(j) < oo, and label; = 0}

label; = 1
pred; = s
s=1

GO TO Step 2.

The critical and nontrivial programming step in this algorithm is maintaining an or-
dered list of "active" or potential growth sites. That is, we must keep track of the sites
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at the growth front and chose among them the point of advance that costs the least. It is
straightforward to prove that this program finds the minimal distance between the source
and all points in the graph. Dijkstra’s algorithm is O(/N?) for generic implementations,
O(E log E) for general implementations which maintain a heap of sites at the growth front.
However, for sparse graphs, we use a priority list based on buckets which is O(F) in prac-

tice. An example of the Dijkstra’s algorithm is presented in Fig. B.1.

34 3 33 8 28 5 33 4 34
24 22 20 23 25
7 7 4 7 3
27 8 26 5 24 9 26 b 31
18 16 15 17 21
9 10 10 6 9
18 7 16 5 14 9 20 1 27
11 10 7 13 19
10 7 4 6 8
8 4 9 ] 10 4 14 10 20
4 5 6 8 14
8 3 10 2 1
0 I 6 1 7 (] 16 B | 19
1 2 3 9

Figure B.1: Dijkstra’s algorithm example on a 5 x 5 square lattice. Only the tree bonds
are drawn. In the lower right corner is the step number while in the square’s middle we
have written the distance to that vertex i.e. sum of all costs of the bonds on the path . The
random numbers were chosen integers in [1, 10].

Dijkstra’s algorithm generates undirected shortest paths with "overhangs" [28,95,100].
The transfer matrix method is an alternative shortest path algorithm [62], which works for
solid-on-solid interfaces which have no overhangs [95]. In fact if we restrict Dijkstra’s
algorithm to layer-by-layer growth, it is exactly the same as the transfer matrix method.
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The interface energy is equivalent to distance in Dijkstra’s algorithm.

B.2 Minimal Spanning Trees

We seek a tree that reaches each node of a connected graph, and that minimizes ), . ci;.
Prim’s algorithm and Kruskal’s algorithm are two methods for finding the minimal span-
ning tree [31,110]. Prim’s algorithm is very similar in structure to Dijkstra’s algorithm,
although the physics is very different. In Prim’s algorithm we start by choosing the lowest
cost bond in the graph and growing outward from this seed site. This leads to a growth

front which sweeps through the lattice.

& Algorithm: Minimum Cost Spanning Tree/Prim’s Algorithm

1. Initially:
d(s) =0and d(: # s) = <

label, = 1 and label;z, = 0

2. CONTINUE if there are any unlabeled vertices
STOP otherwise

For each unlabeled vertex : we define d(1)

d(i) = min{d(i), cs:}
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3. Let ¢ be the unlabeled vertex with the smallest overall distance

d(7) = min{d(j)|d(j) < oo, and label; = 0}

label; = 1
s =1
GO TO Step 2.

In Fig. B.2 we show an example of Prim’s algorithm on a 5 x 5 square lattice where for

simplicity we have chosen the random numbers to be integers:

3 3 7 8 5 S 4 4 3
22 21 18 17 16
7 7 4 7 3
7 8 5 S 4 9 6 5 5
23 20 19 14 15
9 10 10 6 9
7 1 5 3 4 9 6 1 7
25 12 11 13 24
10 7 4 6 8
4 4 3 1 L4 4 10 1
6 4 S 7 10
8 3 10 2 1
0 [ 6 1 1 9 2 3 3
1 2 3 8 9

Figure B.2: Prim’s algorithm example. Only the tree bonds are drawn. In the lower right
corner is the step number while in the square’s middle we have written the bond cost to
reach that vertex.

In Dijkstra’s method, one chooses the site at the growth front that has the minimum cost
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path to the source, while in Prim’s algorithm one simply chooses the minimum cost bond.
Both of these algorithms lead to spanning trees, but Prim’s has lower total cost (it is less
constrained). In Dijkstra’s algorithm one is checking the cost of the path from the tested
site all the way back to the "source" or "root" of the tree. It is thus more non-local. As has
been noted recently [10], Prim’s algorithm is trivially equivalent to the invasion algorithm
for percolation. Note that this corresponds to "perfectly compressible" fluid and does not
consider "trapping” which is important in more realistic models of fluid invasion in porous
materials [112].

An alternative method for finding the minimal spanning tree is Kruskal’s algorithm,
which nucleates many trees and then allows trees to merge successively into one tree by
the end of the procedure. Using the same strategy as for Dijkstra’s method (i.e. a priority

list based on buckets), we are have an implementation of Prim’s algorithms which is O( F).

B.3 Spin-flip Dynamics

Consider the zero temperature Random Field Ising Model where we assign to each vertex
¢ a spin and also a random field. The interaction between spins is modeled through bonds.
We are interested in finding the sequence of spin flips as one sweeps the applied field H

from small negative to large positive values.

As discussed in Chapter 5 the Hamiltonian reads,

H==> JySS; = (H+h)S (2.1)



where the spin-spin interaction is of the same strength J;; = J and the random fields h; are
randomly distributed according to p(h;). Then the spin flips are governed by the change in

sign of the local field. That is, a spin flips when

R =03 S +hi+H 2.2)
J#i

changes sign. The sign change can occur in two different ways: the spin-flip can be part of
an avalanches so it flips when some of the neighbor flip; or can be the avalanche initiator,
in this case the spin-flip is triggered by the increase in the external field H. This model
has been used by H. Ji and M.O. Robbins [66] for fluid invasion and interface movement in
random media and also by Sethna et al. [33,76,90,101] as a model for Barkhausen noise,

and noisy hysteresis loops.
The simplest method to flip spins is to store the spins and the corresponding random
field for each spin in a list and apply an increasing field with constant rate AH. First we
check which spins have flipped and after that we checked their neighbors and so one until

there are no spins to flip.

@ Algorithm: Brute Force Algorithm

1. Initially:
H = large negative

AH = fixed

2. CONTINUE if there are any unflipped spins.
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STOP otherwise.

Calculate the new effective fields 2T := rST + H.

(a) Flip all needed spins and re-calculate h¢T of the neighbors.

(b) Repeat the previous step (a) until there are no spins left to flip.

3. H:=H+ AH

GO TO Step 2.

This algorithm continues until there are no spins to flip in the lattice. It is possible
to change the increment A H, the only problem arising would be that if the increment is
too large several avalanches might occur resulting in a loss of information about single
avalanches. The running time is of order O(N X T') where N is the number of spins, X is
the number of fields at which we measure the magnetization, and T is the average time to
check the neighbors of a flipped spin.

It is possible to refine this method by computing the field increments A [, such that
only one avalanche occurs at a time. This can be done by keeping all the spins effective
fields in an ordered list with variable length, extracting all spins that have flipped. Always
the avalanche initiator will have the smallest effective field ant is located at the top (bottom)
of the list making possible the calculation of the next field increment accordingly to the
following equation,

AH, = — ma.x{hfﬂ} 2.3)

& Algorithm: Effective Field Sorted List
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1. Initially:
For H = 0 compute and order A¢™.
H = — max{h¢f}

he = hel 4 H
2. CONTINUE if there are any unflipped spins.
STOP otherwise.
(a) Flip all needed spins and re-calculate ¢ of the neighbors.
(b) Repeat the previous Step (a) until there are no spins left to flip.
3. AH = — max{h¢f}

H:=H+ AH

GO TO Step 2.

This brute force algorithms is very inefficient compared with the sorted list which has
the running time O(N log V) but is memory costly. In order to have a very efficient al-
gorithm Sethna et al. [76] combined the sorted list with an one-bit-per-spin algorithm,
described next. The key is to recognize that we have to generate random fields only along
the interface, similar to the invasion percolation (IP) problem. Further it is possible to
compute the probability that a spin will flip give the change in its local effective field. It
is unnecessary to store the random fields in this case since only the field H, the status
of the spin (flipped/unflipped), and the orientation of the spins is necessary to calculate
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the flipping probability. The spins can be stored on single bits making the algorithm very

memory-efficient.

The probability P, that a spin is down at external field H given that ns neighboring

spins are up is given by,

—(H+(2nt-2))
Py(ny, H) = / p(h) dh (24)

X

where z is the coordination number of the lattice. To find the field increment A H such that
only one avalanche occurs is the key of the algorithm. The probability for a spin with n4

neighboring up spins not to flip at a field increase by AH is,

P¢(nT, H + AH)

2.5
P,(ns, H) (22)

Punﬂip =1- Pﬂip =

Thus the probability P;2" that no spin with n4 neighboring up spins has flipped after the

increase A H is,

Pi(nT,H-%AH)]N"T

bt :[ Py(ny, H) (2)

with N,4 the total number of spins with ny neighbors up. Further, the probability that no

spin has flipped in the interval H and H + AH is,

prone _ H prone Q2.7

nt=0

We can proceed now calculating A H. Since the next spin to flip is determined by randomly
choosing n+ and after that randomly chosing the spin with n4 neighbors up, one has to
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generate a random number r from an uniform distribution in [0, 1] such that AH is obtain

by solving the following equation:

PllOllC(AH) =r

The solution is found numerically, using an initial guess,

log(r)

A==

(2.8)

2.9)

[" is the flip rate (constant), analog to the nuclear decay if the spins flip with with the rate

[, it is expected that the probability that no spins have flipped to be

giving

Pnone — e—FAH

dlog(Pmo"e)

LH) = = —/3H

AH=0

_ d = [Pung, H + AH)]™™
~ T UAH (lognn [ P,(ns, H)

1=0

B Z . dlog (P(ne, H + AH)))
nt dAH

AH=0
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A second better guess can be made looking at the error of the first guess:

Ar = P"™"™(AH) (2.12)
, _ _10g(r — Ar)
AH, = ___F(H) (2.13)

Together AH, and A H, can be used as an input in a find-root subroutine. The authors of
this algorithm found that for very large guesses AH choosing AH;, = 0 and AH, = 20

work much better.

& Algorithm: One Spin Per Bit

1. Generate randomly uniform r € [0, 1].

2. Pre-calculate P, (n4, H) from (2.4).

3. Use root-find method to calculate A H using A H; and A H, given by (2.12) and (2.9).

4. H:= H+AH

5. Calculate ProbFlip[n4] for a spin to flip at current field H when n; increases by 1

forny = 1.z.

6. Calculate the spin flipping rates ['(n4, H) at field H and total rate I'( H ):

p(H + (2ny — 2))

F(?IT,fI) = 1\",11 PL(nT H)

z

[(H) = Y T(ny.H)

nt=0
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7. Chose n4 random uniform from [0, I'].

8. Locate randomly a spin in the lattice with nj.

9. START the avalanche with that spin.

10. Flip all necessary spins:

(a) Push the first spin onto the queue.
(b) Pop the top spin off the queue.

(c) If it is unflipped flip it and decrease N,+ := N,3+ — 1; otherwise GO TO Step

(e).

(d) For each unflipped neighbor find its n+ and:

1\",11-_1 = ]VnT—l -1

.’IVNT = IVnT +].

Push the spin on to the queue with ProbF'lip[ny — 1] as in Step (5).

(e) If any spins left in the queue GO TO Step (b).

11. GO TO Step 1 if there are any unflipped spins in the lattice.

An implementation of the algorithm is available at:

http://www.lassp.cornell.edu/sethna/sethna.html.
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B.4 Greedy Dynamics in Disordered Systems

In "greedy"” algorithms one chooses and updates locally optimal sites [31,80,89,110]. The
greedy strategy is useful in solving exactly some important theoretical and practical opti-
mization problems (e.g. telephone distribution networks). They form a general strategy for
non-linear optimization. In the physics community the greedy strategy is actually relevant
to the dynamics nature chooses, and it has been called extremal dynamics [9,84,103,116].
Extremal dynamics occurs in systems that are driven weakly and so are evolving slowly. In
these systems, there is a lot of time for the systems to explore phase space and to chose the
optimal ways in which to advance. The hottest bond algorithm for fuse networks [35,39]
and the invasion algorithm for percolation are two important examples of extremal dynam-
ics.

However, two key differences between fracture and invasion percolation are: load con-
servation and load redistribution. In the case of fuse networks, and fracture in general, load
(e.g. applied stress) is conserved so that when a bond breaks the load it was carrying must
be passed on the other bonds in the network. In contrast, in percolation there is no such
load redistribution. When load is conserved, the loading condition in combination with the
load redistribution law determine whether it undergoes a jump discontinuity to an unstable

state.

To this point we have not included earthquake models, evolution models, and sand-
pile models in the discussion. These systems have an additional feature in their dynamics,
namely renewal, that is, each region in the system may return to its original state given

the correct conditions. In fracture models (invasion percolation), a bond remains broken
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(invaded), however renewal would allow these bonds to reform (reverse their invasion). A
popular account of the application of self-organized criticality and extremal dynamics to a

wide variety of physical systems is now available [8].
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