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ABSTRACT

FEASIBILITY STUDY OF VOICE ACCESS TO COMPUTERS

FOR PEOPLE WITH LIMITED SPEECH

By

Lambert Mathias

Dysarthria is a general term for a speech disorder in which speech is slow, weak,

imprecise or uncoordinated. Commercially available automatic speech recognition (ASR)

systems cannot reliably recognize dysarthric speech due to the inherent variability in such

utterances. People with dysarthria generally lack articulatory precision. Simple phonemes

like vowels are physically the easiest sounds to produce, since they do not require

dynamic movement of the vocal system. This research is primarily a feasibility study

investigating the reliability of vowel-based phoneme recognition of dysarthric speech.

The goal is to evaluate if ASR algorithms could be used to reliably differentiate among

the different vowel sounds produced by dysarthric speakers. The intended purpose is to

provide personal computer based access methods for people with dysarthric speech. In

this work, the hidden Markov model (HMM) is the basic technological approach adopted

in developing the speech recognition algorithms, and all the experimental results

quantifying the feasibility of these algorithms are presented.
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1 Introduction

1.1 Background

Dysarthria is a general term for a speech disorder in which speech is slow, weak,

imprecise or uncoordinated. This disorder is commonly associated with other general

neuromotor disabilities (Parkinson’s disease, cerebral palsy, etc). People with dysarthria

may have difficulty in making themselves understood, or in reliably controlling

environmental and communication aids. Many individuals with dysarthric speech, who

use augmentative and alternative communication (AAC) devices have normal or

exceptional intellects, reading and language skills, and would strongly prefer to use their

residual speech, however limited [21]. AAC devices using speech technologies have the

potential of not only serving vocational and educational needs but can also help satisfy

such individuals’ social communication needs.

Current commercially available automatic speech recognition (ASR) products (e.g.,

Dragon Dictate and IBM Via Voice) are designed for individuals whose speech is not

impaired. Commercial systems may be able to recognize the speech of individuals with

mild impairments, or individuals who have received sufficient training to alter their

articulatory patterns to achieve improved machine recognition rates [25] [26]. However,

the use of off-the-shelf commercial recognizers for people with dysarthria has not been

particularly successful, with recognition rates for severely dysarthric people varying



anywhere between 18-85% [27] [28]. Severe dysarthria is still a challenge for most

commercial recognizers largely due to the extraordinary variability in dysarthric speech,

and also because commercial recognizer systems are optimized for the mass market. The

variability in dysarthric speech differs not only across individuals, but also for a

particular individual depending upon the amount of stress, the time of day and other

personal and environmental conditions. The inconsistency of dysarthric speech makes

recognition of dysarthric speech inherently a different problem than that of normal

speech.

A different perspective using ASR for people with severe dysarthria is the use of a small

set of utterances that can be reliably recognized. What is needed is a speech recognition

system that is optimized for people who are capable of producing distinct vocalizations,

even though these vocalizations may not be meaningful in normal speech. This approach

can help individuals with dysarthria to use communication aids more effectively and

improve their performance of job-related tasks. This research is primarily a feasibility

study investigating the reliability of vowel-based phoneme recognition system for

dysarthric speech. The phoneme-level recognizer developed must be capable of reliably

differentiating among the different vowel sounds produced by dysarthric speakers.

1.2 The Voice Access System Project

This thesis was written as part of a NIH-sponsored SBIR Phase 1 joint project between

Invotek Inc. , and the Speech Processing Laboratory at Michigan State University. The



goal of the Voice Access System (VAS) project is to provide persons who have physical

disabilities and unintelligible speech with an access method for assistive devices that

significantly reduces the physical fatigue experienced during device access. An important

feature of this voice access system is that it does not attempt to recognize a particular

sound sequence. The only criterion for recognition is that the system be able to

consistently discriminate among the sounds used for access. The VAS offers significant

advantages over other more physically-demanding access methods.

1.3 Research Objectives and Goals

People with dysarthria generally lack articulatory precision. Simple ‘steady-state’

phonemes like vowels are physically the easiest sounds to produce, since they do not

require dynamic movement of the vocal system [22]. In this research, we investigate the

reliability of recognizing vowel utterances of dysarthric speakers.

Hidden Markov Models (HMMs) are known to be quite efficient in speech recognition

related tasks [29]. In this study, speaker-independent HMM models of seven

representative vowel sounds, trained on normal speech, are used to build a phoneme

classifier. The test utterances consist of multiple utterances of the seven vowels spoken

by dysarthric individuals The subjects for this research have been provided by the

Madonna Rehabilitation Hospital, Nebraska and the Department of Special Education of

the University of Nebraska. The dysarthric test utterances are passed through the

phoneme classifier and the classification results are used to compute a confusion matrix.



The confusion matrix gives information about the number of test utterances that are

classified as belonging to each of the HMMs representing the different vowels. The

confusion matrix is used to evaluate which vowel sounds are most reliably recognized for

a particular speaker. A similar recognition experiment is performed using HMMs trained

on utterances from the dysarthric speech database. Furthermore, a bigram language

model is added to the phoneme classifier to evaluate its effect on vowel recognition

accuracies. Both, the speaker-dependent and speaker-independent bigram LM is

considered in this research.

Chapter 2, introduces the concept of HMMs, the algorithms commonly used for speech

recognition and training, and the extraction of observation strings from raw speech.

Chapter 3, discusses the actual implementation of the vowel-based phoneme recognition

system, the feature extraction process, the speech corpora used for training and testing,

the Baum-Welch training algorithm, the Viterbi recognition algorithm, and the bigram

language model implementation. Chapter 4, discusses the results of the phoneme

classification experiments. The focus is on which vowels can be most reliably recognized

for a particular dysarthric speaker with minimum amount of confusability, and whether

adding language information to the recognition task can help improve recognition rates.

The final chapter, Chapter 5, summarizes the research conclusions, and outlines the

course of further research.



2 Theoretical Background

2.1 Overview

Speech recognition is a difficult task, given the variability associated with speech. A

good recognition system must account for all the dynamics and uncertainties in speech in

order to achieve reasonable accuracy. Stochastic methods provide adequate models to

characterize much of the variability in speech. Furthermore, the question whether a given

utterance belongs to a certain class becomes that of hypothesis testing, a statistical

decision theory problem. Hidden Markov modeling is a parametric technique that has

been successfully applied to speech recognition with considerable success [7] [8]. The

HMM uses Markov chains to model the changing statistical characteristics that exist in

the actual observations of speech signals. The HMM also has inherent time normalization

properties. In terms of implementation, the HMM lends itself easily to computation on

sequential machines. HMMs are iteratively trained using one of two iterative algorithms

and variations: Viterbi decoding and Baum-Welch re-estimation [9] [10] [11].

However there is some front-end processing involved on the speech data to map it to a

feature space that completely characterizes the dynamics of the speech waveform. The

main purpose of the front-end processing is to derive feature vectors such that different

vectors belonging to a given class of utterance are similar to each other, while feature



vectors belonging to different utterances are maximally different from one another. The

feature extraction is carried out over small segments of speech called “frames” over

which the speech signal can be reasonably assumed to be stationary. The feature

extraction process serves to isolate the effect of the environment noise and the speaker

identity on the speech utterance, thereby enhancing the speaker independence of the

system and making it more robust to environmental changes. The procedure also reduces

the amount of data to be managed by the speech recognition and training systems. The

feature vectors thus completely represent the temporal and spectral behavior of a short

segment of the acoustical speech input. The ultimate goal of the front-end is to estimate

parameters that effectively discriminate among the different phonetic units, while

reducing the computational demand on the classifier. The mel-frequency cepstrum is the

most commonly used feature space in characterizing the speech signal. The different

aspects of speech recognition and training are discussed in the following sections. For

detailed information, the reader is referred, for example to the text by Deller et al. [2] and

the paper by Rabiner [3].

2.2 The Hidden Markov Model

Signal modeling based on HMMs is a technique that extends conventional stationary

spectral analysis principles to the analysis of time-varying signals [4]. HMMs use a

Markov state process to model the changing statistical characteristics that are

probabilistically manifested through actual observations. The state sequence is hidden,

and is observed through another set of observable stochastic processes. The observable



output probabilities associated with each of the hidden states are characterized by either

discrete probability distributions or continuous probability density functions. In this

thesis, the latter approach is used. This class of HMMs is called continuous hidden

Markov models (CHMM). The advantage of CHMMs is that the observations are

continuous signals or vectors, and therefore do not suffer from degradation due to

quantization errors as in the discrete case. The model structure usually adopted for speech

recognition is a left-to-right or Bakis structure [12]. In the Bakis model, states are aligned

so that only “left-to-right” transitions are allowed. Such a model is appropriate to

characterize speech signals whose dynamics progress sequentially along a timeline.

Based on the above discussion we can now formally define an HMM.

A HMM is characterized by the following sets of quantities :

1. Nstate, the number of states in the model. We denote the individual states as

S = {1,2,3,...,Nstate}, and the state at any time t I as st.

2. The transition probability matrix, A = {01.1.} where

ay=P[st+l =i|St=jL ISi,j<N for any I. (2.2.1)
" state ’

 

l The time there represents the re-indexing of the original sample sequence of speech, so

that the frames can now be indexed by sequential integers. For detailed information the

reader is referred to Chapter 4 in [2].



The state entered at time t+1 depends only on the previous state at time t. The state

sequence is therefore characterized by a stationary (or homogenous), first-order, Markov

chain.

3. The initial state distribution 7: = {7:1, 1 S i S Nstate} where

7:1. = P[s1 = 1'], 1: i < N (2.2.2)

The initial state distribution and the transition probability matrix completely specify the

probability of residing in any state at any time.

4. Let the output observation vector at any time t be denoted by 0, where 0, 6 RP . In

HMM literature, the feature vectors extracted from the speech utterance are referred to as

the output observation vectors, since they represent the information that is “observed”

from the incoming speech utterance. p denotes the dimension of the feature vectors that

have been extracted from the raw speech signal. The output observation probability

distribution in state j at any time t is denoted by, bj (0’) where

M

bj (at): zlcjmn(ot;pjm,ij). (2.2.3)

bj (0!) represents a multivariate Gaussian mixture density function of M mixtures, and

n is a single Gaussian probability density function (pdi) given by



 

 

1 —1 ,
”(0,;yjm,ij)= exp(—§(0t —,ujm)ij (0: —pjm) ].(2.2.4)

Jazz)" IQ... l

. . . . th .

With pm and ij being the mean vector and the covariance matrlx of the m mixture.

cm is the mixture coefficient of the mth mixture in state j. The mixture coefficients

must be nonnegative and satisfy the constraint

M

2 cm =1, 1 s j s Nstate’ (2.2.5)

m=l

From the above discussion, a HMM can be represented in a compact form as

2={N nl,A,{bj(o,),1sjsN }}. (2.2.6)
state ’ state

 

    
Figure 2.1. Three-state left-to-right HMM.



The output observation probabilities of the HMMs are assumed to be conditionally

independent, i.e., the output probability depends only on the state regardless of when and

how the state is entered. Formally, this means that bj (0!) is independent of time t as

implied by (2.2.3) and (2.2.4). The first-order Markov chain and the conditional output-

independence assumptions reduce the number of free parameters, and make learning and

decoding algorithms efficient.

Having formally described the HMM, we now examine two central issues on the training

and use of the HMM. These are the following :

1. Given a series of training observations for a given utterance how do we estimate the

optimum state transition matrix, A , and the observation pdfs, bj. (0) for each state j ?

This represents the HMM training problem.

2. Given a trained HMM, how do we find the likelihood that it produced an incoming

speech observation sequence? This constitutes the recognition problem.

2.3 HMM Training Algorithm

2.3.1 The General Training Problem

The training problem involves choosing the right HMM parameters for a given training

set (the data that are used to train the HMM) using an optimization criterion. The

10



maximum likelihood (ML) criterion is used here. Formally, the training procedure

involves finding

1* = argmaxP[0 | 2]. (2.3.1)

,1

where xi represents the set of HMM parameters (2.2.6), and 21* the optimal set.

0:{01’02"""0:"""0T} is the given observation sequence and P[0|/i] is the

likelihood score of that sequence given the model 11 . T here denotes the total number of

observations. There is no analytical way to solve for the model it that maximizes 1‘.

However, we can choose model parameters such that the likelihood achieves a local

maximum using an iterative procedure, like the Baum-Welch algorithm.

2.3.2 The Baum-Welch Training Algorithm

Given, an observation sequence 0 , we need to determine the parameters of a HMM that

satisfy the ML criterion. We start out with an initial model 10 of form (2.2.6) with

arbitrary parameters. The iterative procedure used to find the ML model A": is called the

Baum-Welch algorithm, also known as the forward-backward (F-B) reestimation

procedure [13]. To formally develop this algorithm, we define the forward probability

a, (i) that is the joint probability of the partial observation sequence from time 1 to time

tand the state j that is reached at time I from all possible states i at time t—l. This

can be calculated iteratively as follows :

11



Nstate

at(j)=[ Z; at_l(i)al.j]bj(ot), foranyt. (2.3.2)

Similarly, we define the backward probability as the joint probability of the partial

observation sequence from time t+ 1 to the final observation at time T , given state i at

time t . This is calculated iteratively as follows

. Nstate

flt(z)= z aijbj(0t+1),81+1(j), foranyt. (2.3.3)

j=1

The resultant probability P[0 | A] can now be calculated as

Nstate

P[0|2]= Z at(i),6t(i), foranyt. (2.3.4)

i=1

For an HMM with M mixtures, the means, covariance matrices, mixture weights and

transition probabilities are re-estimated as follows :

M
s

 

 

0',(jm)ot

- _ =1
jm —’ T (2.3.5)

20mm)

t=1

T __ _

_ 20'; (ijO, -tujm )(0, _#jm )'

ij = ’=‘ (2.3.6)

M
r
s

0, (J'm)

t l



(2.3.7)

“i1

 

T-l

Z a! (i)aijbj (01.” )flI-t-I (j)

- .21
(2.3.8)

T—l

Z a,(i)fl, (i)

(=1

where at(jm) denotes the probability of the observation sequence occupying the mm

mixture component of state j at time t, and 5t(j) denotes the probability of the

observation sequence occupying state j at time t . They are related as follows

NstateM M

. . 1 . .
61(1) = Z at(jm) = Z P 2 at_1(z)al.jcjmbjm (0: ”61(1), foranyt(2.3.9)

m=] m=l [=1

The re-estimated parameters comprise a new HMM model denoted by say, I . We can

now calculate P[O | 1] as in (2.3.4). If we define some threshold value 6‘, we can run

the above algorithm iteratively till we achieve convergence, i.e.

P[0|I]—P[0|2]s.e (2.3.10)

The HMM model always improves under the reestimation procedure unless its

parameters already represent a local maximum. So, this algorithm does not necessarily

give us the optimal model 11*. Its is common practice, to run the Baum-Welch algorithm

13



several times with different initial parameters and to take as the trained model the one

that gives the maximum likelihood score.

The Viterbi algorithm can also be used for training of HMMs. However, in the Viterbi

approach, the likelihood computation for estimating the HMM parameters is based only

on the most probable sequence of states through the model. The Baum-Welch algorithm

on the other hand is found to be more effective, precise and standard because it takes into

account all the possible state sequences through the model, while estimating the HMM

parameters [5]. The Baum-Welch algorithm has been implemented to train HMMs in this

research.

2.4 HMM Recognition Algorithm

2.4.1 The General Classification Problem

Phoneme classification involves passing the given observation sequence through a set of,

say, L,1 , given HMMs, where 2k denotes the kth HMM and l S k S LA. . In this

research, a single HMM model is used to represent each of seven vowels. Since, we are

using seven vowels in the phoneme classifier, l S k S 7 in this case and we have a set of

seven HMMs {21 , 1.2 ,..., 11.7 } each HMM representing a vowel phoneme. The HMM with

the maximum a posteriori probability represents the vowel type to which the given

utterance belongs. Baye’s well-known maximum a posteriori (MAP) decision rule for

optimal classification is given by

14



k* = argmax PMk l0]. (2.4.1)

k

Here PM}, [0] is the a posteriori probability of the HMM ’lk given the observation

sequence 0. There is no easy way to estimate PMk I 0] directly, but using conditional

probability, we can express P[/ik I0] in terms of probabilities that can be estimated.

Using conditional probability we can rewrite (2.4.1) as

. P0 xi P/l

k zargmax [ I k] [k]. (2.4.2)

k PLO]

 

The observation sequence 0 does not depend upon k and so we can leave it out of the

classification rule. Let us also assume that all phoneme HMMs are equally likely. Then

we can also drop PMk] out of the classification rule. (2.4.2) now reduces to

k,“ = argmaxP[0 | 2k ]. (2.4.3)

k

This is sometimes called the maximum likelihood (ML) classification rule and states that

we can choose an HMM ’lk in the phoneme classification process as the winning HMM

if it makes the observed data most likely. The probability P[0 | 8k] can be calculated

using the forward recursion of the PB algorithm as shown in Figure 2.2.
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Figure 2.2. Computation of P[0 | 21k ] using the forward recursion of the F-B algorithm.

Initialization: For all states i = 1,2,---,Nstate

at(i) = tribi(ol)

Recursion: For t = 2,3,...,T and j =1’2’”"Nstate

Nstate

a((j)= Z at_1(l)ay' bj(0t)

i=1

Termination:

Nstate

P[0|/ik]= Z aT(i)

i=1

 

2.4.2 The Viterbi Recognition Algorithm

In order to decode an incoming observation sequence for correct classification we need to

solve (2.4.3). Computing the likelihood P[0 | xik] using the forward recursion procedure

shown in Figure 2.2 involves summing up the probabilities over all the possible paths

(i.e. state sequences), which can be computationally intensive. Instead, we can compute

the likelihood only for the best possible state sequence using the Viterbi algorithm. Using

the Viterbi algorithm, given an incoming unknown observation sequence

0 = {01’02"°°"01""°’0T} we can find the best possible state sequence

* I!

1* ={S:,S2,....,St,....,S;~} that maximizes the probability P[O|lk]. The Viterbi

algorithm is summarized in Figure 2.3.
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The Viterbi algorithm is computationally efficient and is very easy to implement. In

addition, it is possible to obtain the best state sequence along with the likelihood score,

for a given observation sequence. Because of its advantages, the Viterbi algorithm is the

most widely used in speech recognition systems.

 

Figure 2.3. The Viterbi Algorithm.

Initialization: For all states i = 1’2’”"Nstate’

¢1(i) = ”ibt'(01);

W1(i):0;

Recursion: From time t = 2,3,...T , for all states j = 1’2"“Nstate ,

¢,(j>= Max I¢,_.(i>a,,.1bj(o,>
3’5 state

w,(j)= argmax{¢,_1(i)a,jl

ISiSNstate

Termination:

The best score, P* = Max [¢T (j)]

1313 state

s; = argmax [mm

15}5”state

Backtracking: From time t = T — l, ...... ,2,1

* *

St : Wt+l (SM)

n* i *

The best state sequence 1 = {Sl , $2 ,..., ST}
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2.5 Speech Analysis and Feature Extraction

HMMs do not use raw data directly as an input. The speech signal is first sampled,

digitized, and then transformed, into a multi-dimensional feature space using either time-

domain or frequency-domain approaches. The feature extraction process transforms the

one-dimensional speech signal into a multi-dimensional stream of feature vectors at a

reduced sampling rate (frame rate) thereby resulting in the compression of data. Although

the speech signal is non-stationary, it contains small portions of stationary spectral

characteristics within a given utterance, giving rise to the term quasi-stationary. Hence,

the feature analysis procedure must be applied over a window of speech short enough to

be considered stationary, and at the same time long enough to make a good estimate of

the speech signal parameters. The mel-cepstrum is the most popular feature space

employed in many speech recognition systems [14]. Mel-frequency cepstrum coefficients

(MFCC) feature extraction involves computing the short-term discrete Fourier transform

(stDFT) of the given speech signal, then passing it through the mel-scale filter banks to

compute the log total energy in each critical band and finally taking the inverse discrete

Fourier transform (IDFT) of the mel scale coefficients. The feature extraction process is

explained in the following sections.

2.5.1 Short-term Processing of Speech

The first step in feature extraction is the short-term processing of speech. This involves

breaking the speech signal into a series of short segments known as the analysis frame.
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Let S(n) be a discrete time speech signal and w(n) be the finite window with which we

multiply the speech signal in order to get the speech frame f(n;r) given by

f(n;r)=s(n)w(r—n). (2.5.1)

This new frame of speech is a sequence on n , which happens to be zero outside the short

term n E [r -— LS +1, r]. Here Ls is the total length of the speech frame and r is the end

position of the speech frame. Typically a Hamming window with impulse response of the

form

 
w(n) = 0.54 — O.46cos[ 1.27m1] n = 0,---LS -1- (252}

S

is used for the short-term analysis of the speech signal. The length Ls of the window is

typically less than the length of the speech utterance. Overlapping frames are used to

smooth the frame-to-frame transition. The short-term Fourier transform of the speech

signal is then obtained by using the stDFT,

, 27m
I’ "I I

S(d;r) = Z f(n;r)e N d = 0,...N’—l. (2.5.3)

n=r—N'+l

N' is the number of points used to compute the stDFT. The number of points used to

compute the DFT is generally a power of two, so that it is easier and more efficient to

implement. In the case that the frame length is not a power of two, zeros are padded at

the end of the frame sequence to increase the resolution of the stDFT by increasing the
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number of points over which the stDFT is computed. Hence, N ' is usually equal to the

length of the speech frame after zero padding. The magnitude of the above stDFT

denoted by |S(d;r)| gives the magnitude spectrum of the speech frame for which the

stDFT has been computed.

2.5.2 Mel-scale Filter-Bank Processing

The human ear resolves frequencies non-linearly across the audio spectrum and empirical

evidence [14] suggests that designing a front-end to operate in a similar non-linear

manner to that of the human auditory system improves recognition rates [6]. The mel-

scale filterbank approach is the most straightforward way to obtain the desired non-linear

frequency transformation. The mapping from the linear scale to me] scale is given by the

approximation

FHz
Fmel = 259510g10(1+%6). (2.54)

where, Fmel is the perceived frequency and FH2 denotes the real frequency [31]. A me]

is a unit of measure of perceived pitch or frequency of a tone. Figure 2.4 shows the

warping of the linear frequency scale by the mel scale.
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Figure 2.4. The mel scale.

It has been found that the perception of a particular frequency by the auditory system, is

influenced by the energy in a critical band of frequencies around that particular frequency

[17]. Further, the bandwidth of a critical band varies with frequency, beginning at about

IOOHZ for frequencies below lkHz , and then increasing logarithmically above lkHz.

The log total energy in critical bands centered around the mel frequencies are computed

by correlating the log magnitude spectrum corresponding to a critical band filter and

calculating the weighted sum of the log magnitude spectrum for that particular critical
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band filter. We use the notation Y(i) to denote the log total energy in the ith critical

band with center frequency Fic and lower and upper cutoff frequency F” and flu

respectively, where

N'/2 2”

Y(i)= 210g|5(q;r)lHi(q-fi7)

q=0

d-
Ill

= Z log|S(q;r)|Hi(q

q=dfl

(2.5.5)

27r

NI

 
)

where, N ' is the number of points used to compute the stDFT. The integers i index the

center frequencies of the critical band filters, each of which is assumed to be centered on

. 27r . .
one of the frequencres resolved by the stDFT. H[(q —]—v—,) 15 the magnitude spectrum of

the ith critical band filter. If we know the sampling frequency FS of the speech signal,

the relation between the cutoff frequencies Fil and Fm, and their corresponding

sequence indices is given by

 F. 1‘}
Fit 2 d1] N' and Fin = diu E? (25-6)

The resultant sequence is given by

~ Y i , =d. F

Y(q)= (~) q 'C , where F. =d. -—3 (2.5.7)

0 otherqe[0,N'—1] ’6 'c N'
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2.5.3 Mel-frequency Cepstrum Coefficients (MFCC)

The final step in the MFCC feature extraction process ids taking an IDFT of the mel-

scaled filter-bank coefficients. The MFCC at frame position r is given by

 

  

2 ~ 2701

CS (173‘) = ‘NT 3,: Y(dic)COS(d,-c N' ) (2.5.8)

IC

Li=l,2,...,Ncb
_

NCb is the total number of critical band filters used on the Nyquist range, hence there are

only Ncb terms in the sum of (2.5.8). Here we note that the IDFT reduces to a discrete

cosine transform (DCT). This simplifies the stochastic characterization of the features

thereby reducing computational costs.

2.5.4 Log Energy, Delta and Acceleration Coefficients

To augment the spectral parameters derived from the MFCC analysis, a log energy

coeflicient is added to the MFCC parameters which is given by

cs(0;m) = Z 17(dic) (2.5.9)

i=l,...Ncb
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A further improvement in performance can be obtained by adding differenced or delta

cepstrum coefficients to the MFCC parameters thereby accounting for the dynamics of

the speech signal. The delta coefficient at frame r is defined as

def

Acs(n;r) = cs(n;r+77Q)—cs(n;r—-77Q) (2.5.10)

for all n. Here Q represents the number of samples by which the window is shifted for

each frame and 77 is chosen to smooth the delta cepstrum. The acceleration coefficients

(also known as the delta-delta coefficients) are obtained by applying the above equation

to the delta coefficients.

2.6 Language Modeling

When statistical relationships among utterances are known, a language model (LM)

makes it possible to reduce the search space for the given recognition task, or

alternatively assign higher probabilities to some utterances than others, thereby reducing

recognition errors. Stochastic LMs apply a probabilistic and statistical framework to the

language modeling problem. The most widely used stochastic language model in speech

recognition tasks is the N-gram model. An N-gram grammar is a representation of an N“-

order Markov LM in which the probability of occurrence of an utterance is conditioned

upon the prior occurrence of N-l other utterances. The utterances can either be whole

words or simple phonemes. In this research, we use utterances of vowel phonemes. In the

N-gram approach, the language information is formulated as a probability distribution of
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the different utterances in the vocabulary. In this thesis, the utterances represent the

individual phoneme utterances that are used in the training and testing of HMMs. Let us

formally define an N-gram stochastic language model. Let W = w ,wz, ..... ’WLw be a

string of known utterances of length Lw in the vocabulary and P(W) be the a priori

probability of the given sequence W . Then P(W) can be factored as

LW

P(W) = P(w ,w2 ,....,wLw ) = “P(W, | w1,..., WH) (2.6.1)

i=1

However estimating the joint probability above is a computationally intensive task. A

practical solution is to use an N-gram language model with N=2 (known as a bigram

LM). In a bigram LM the probability of occurrence of a given utterance is conditioned

only on the occurrence of the preceding utterance. Bigram models help reduce

computation and also provide a simple unified framework to embed both language and

phonetic information in a single HMM. In this thesis, we concentrate on bigram language

models. (2.6.1) can now be re-written as

LW

P(W) = “P(W, | w,._1 ). (2.6.2)

i=2

Let the observed string or sequence of utterances be 0 = {01,02 ,...,0L }. We can find

0

the most likely utterance string WI. using the MAP classification rule

W‘ = argmax{P(0 I W)P(W)}. (2.6.3)

W
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To evaluate (2.6.3), we replace the known word string W = w , w2 , ..... , wL with HMM

w

models representing each of the known utterances in the word string W, i.e., we

construct a network of HMMs {l , 1S k S L,1} representing each utterance in W .

Here, we assume that each utterance in the vocabulary has only one HMM associated

with it. The probability P(OIW) now is equivalent to estimating the probability

P(O | 21k ) , the likelihood score of the HMM, which can be evaluated using the forward

recursion of the forward-backward algorithm as discussed in Section 2.4.1. The bigram

probability P(W) , which is nothing but the probability of transition from one phoneme

can be obtained from the LM defined in (2.6.2). The detailed algorithm for evaluating

the bigram probability scores is described later in Section 3.5.

2.7 Phonemes and Phonetic Transcription

“The basic theoretical unit for describing how speech conveys linguistic information is

called a phoneme. For American English, there are about 42 phonemes consisting of

vowels, semivowels, diphthongs and consonants. Each phoneme is a result of a unique set

of articulatory gestures (such as the type and location of the sound excitation as well as

the position or movement of the vocal tract articulators). Due to many different factors

including, for example, accents, gender, and, most importantly, coarticulatory effects, a

given phoneme will have a variety of acoustic manifestations in the course of flowing

speech. Thus, from an acoustic point of view, the phoneme represents a class of sounds

that convey the same meaning. The phonemes of a language, therefore, comprise a

26



minimal theoretic set of units sufficient to convey all the meaning in the language. The

process of translating speech into a string of symbols representing the phoneme is called

phonemic transcription and if it includes diacritical marks indicating allophonic

variation, the process is called phonetic transcription” [2]. The three widely used

phonetic transcriptions are the International Phonetic Alphabet (IPA), the Single Symbol

Version, and the Upper Case version ofthe ARPAbet. In this thesis, we will use the upper

case ARPAbet, which is used for the phonetic transcriptions in the TIMIT database

developed by Texas Instruments and Massachusetts Institute of Technology. The

mapping of the IPA symbols and upper case ARPAbet for the vowels in American

English are shown in Table 2.1.

27

fr

 



Table 2.1. Phonetic transcriptions of vowels.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

IPA Symbol Upper case ARPAbet Example word

1 IY beet

I [H bit

E EH bet

e EY bait

2e AE bat

(1 AA bott

(1U AW bout

(II AY bite

AH but

9 A0 bought

31 OY boy

0 OW boat

U UH book

11 UW boot

a AX about

1 IX debit
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3 Implementation Details

3.1 Hardware and Software Tools

The phoneme recognition system and all the following experiments were carried out on

Pentium-III class personal computers running the Windows NT 4.0 operating system.

The HMM routines from the Bayes Net Toolbox developed by Kevin Murphy at

University of California, Berkeley [15] was used for training and implementing the

HMM based speech recognition system. In addition, the VoiceBox toolbox developed by

Mikes Brooks, Imperial College, London [16] was employed to extract MFCC

parameters from the speech signal. MATLAB-6.l was used as the development

environment as it is an interactive, matrix-oriented programming language with built-in

support for data analysis and visualization.

3.2 Speech Databases

3.2.1 TIMIT Speech Corpus

“The TIMIT database is a corpus of read speech developed by Texas Instruments and

Massachusetts Institute of Technology. The main purpose for designing his corpus was to

provide speech data for acquisition of acoustic-phonetic knowledge and for the

development and evaluation of automatic speech recognition systems. TIMIT contains
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speech from 630 speakers representing eight major dialect divisions of American English,

each speaking 10 phonetically-rich sentences. The TIMIT corpus also includes time-

aligned orthographic, phonetic, and word transcriptions, as well as speech waveform data

for each spoken sentence. The text material in the TIMIT prompts, consists of two dialect

“Shibboleth” sentences, 450 phonetically-compact sentences, and 1890 phonetically-

diverse sentences. The dialect sentences (designated SA type in the database) were meant

to expose dialectal variants of the speakers, and were read by all 630 speakers. The

phonetically compact sentences (designated SX type in the database) were meant to be

comprehensive as well as compact. The phonetically diverse sentences (designated SI

type in the database) were selected to add diversity in sentence types and phonetic

contexts. The corpus is also subdivided into training set (70-80% of the corpus) and test

set (20-30% of the corpus)” [1]. The speakers are both male and female. The speech data

were sampled at 16kHz and the digitized wavfile was stored in the National Institute for

Standards and Technology (NIST) SPeech HEader REsource (SPHERE) format using 16

bits/sample.

3.2.2 The Dysarthric Speech Corpus

This corpus consists of non-labeled speech data collected by personnel in the

Communication Center of Excellence, at Madonna Rehabilitation Hospital, Nebraska,

following an Institutional Review Board (IRB)-approved protocol for the protection of

human subjects. The principal investigator for the clinical study is Professor David

Beukelman of the University of Nebraska, Department of Special Education, and is also a

Researcher associated with the Madonna Rehabilitation Hospital. The corpus is
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comprised of isolated utterances of nine vowel sounds, four semivowel sounds and two

nasal sounds. Each of the utterances was repeated at least 10 times to provide sufficient

number of speech samples for testing and evaluation purposes. Four speakers with

varying amounts of dysarthria provided the isolated sound utterances. The description of

the four speakers is given below:

Speaker 1 is a 38-year-old male with a diagnosis of Traumatic Brain Injury (TBI).

His intelligibility is severely/profoundly impaired. Speech characteristics include

slow rate, inability to produce consonant sounds other than nasals, vowel

distortions, but some control over pitch and intonation.

Speaker 2 is a 26-year-old female with a diagnosis dysarthria secondary to

athetoid cerebral palsy. Her intelligibility is severely impaired. Speech

characteristics include imprecise consonants, slow rate, distorted vowels, and

some control over prosody.

Speaker 3 is a 39-year-old male with a diagnosis of TBI. His intelligibility is

moderately impaired. His speech characteristics include impaired control over

respiration, strained/strangled voice quality, imprecise consonant production and

decreased word boundaries.

Speaker4 is a 49-year-old female with a diagnosis of dysarthria secondary to

mixed cerebral palsy. Her intelligibility is severely impaired. Speech
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characteristics include imprecise consonants, repetition of phonemes, irregular

articulatory breakdown, and distorted vowels

The waveforms were digitally recorded at a 44.1kHz sampling rate, stereo and all the

utterances were stored in a single wave file (.wav format) [18] for each speaker. Table 3.1

tabulates the isolated utterances that were used to build the dysarthric speech corpus.

Table 3.1. Isolated utterances in the dysarthric speech database.

 

 

 

 

Sounds Uppercase Example

ARPAbet

Symbols

OW open

AA ma

IY eat

AH up

Vowels AY eye

AE cat

AO awful

UW oops

EY ate

L fall

. R earn

Sem1vowel Y young

W way

M h

Nasals N :3“     
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3.3 Creating the Observation Strings

As discussed in Section 2.5, the speech signal must be converted to a suitable feature

space. This thesis concentrates on developing vowel phoneme-level HMMs and

evaluating their performance on the dysarthric speech corpus. For this purpose, seven

vowel sounds (UW, OW, AY, AE, AO, IY and EY) were chosen for training and

evaluation purposes. The HMM models for the two remaining vowel sounds (AA and

AH) could not be properly trained as there was considerable acoustic variation associated

with these phonemes within the TIMIT database. Hence, the phonemes AA and AH were

not incorporated into the phoneme classifier. All results and experiments have been

carried out using these seven vowel sounds.

3.3.1 Phoneme Extraction from the TIMIT Speech Corpus

The speech utterances in the TIMIT database are complete sentences and each wave file

is associated with a phonetic transcription of the sentence spoken. This transcription was

used to extract the seven chosen vowel phonemes from all the speakers across seven

dialects, for the training set. Before extracting the phonemes the NIST SPHERE wave

files were converted to Windows PCM wave files using the NIST-provided software

sphconvertexe [19]. Only the SI and SX type sentences were considered during the

phoneme extraction process, as the SA type sentences tend to introduce a bias in the

recognition process [20]. The resultant extracted phonemes were stored in a binary

format.
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3.3.2 Phoneme Extraction from the Dysarthric Database

The dysarthric speech database obtained from the University of Nebraska contained all

the utterances for a given speaker within a single large wave file. The wave file for each

of the speakers was broken into smaller segments containing only a single phoneme

utterance and were stored as individual wave files using the commercial software

package “Cool Edit” [30]. Before segmenting, the speech files were down sampled to

16kHz and converted from stereo (2 channels) to mono (1 channel) using Cool Edit.

3.3.3 Features Comprising the Observation Strings

The feature space is a 39-dimensional feature vector comprising 12 mel-cepstrum

coefficients, a log energy coefficient, 13 delta cepstrum coefficients and 13 delta-delta

cepstrum coefficients. The 0th order coefficient of the MFCC is not included as it is

closely related to the log energy measure. The features are computed over a speech signal

frame of 160 points after a Hamming window has been applied. The window is advanced

by 64 points for each frame. For a 16kHz speech signal, this implies that a 4ms window

is applied for every lOms of speech. The 39-dimensional MFCC parameters obtained

both for normal as well as the dysarthric speech, constitutes the observation string that is

applied as input to an HMM. Figure 3.1 shows the MFCC for the vowel phoneme ‘AE’.

The feature vector consists of 12 mel-cepstrum coefficients, 1 log energy coefficient, 13

delta coefficients and 13 delta-delta coefficients. The MPCC features have been extracted

for the entire speech waveform for all the frame positions.
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Figure 3.1. Example of MPCC feature extraction: (a) The speech waveform for the

phoneme utterance ‘AE’. (b) The 39-dimensional MFCC parameters.

3.4 Implementation of the Phoneme Recognizer

The phoneme recognizer consists of seven vowel-based HMMs trained on normal speech

from the TIMIT database. A given test speech utterance is passed through the seven

vowel HMMs and the likelihood scores are computed. The vowel associated with the

model giving the maximum score is chosen as the recognized vowel. Thus each given
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speech utterance is classified as one of the seven different vowels. Figure 3.2 shows the

structure of the phoneme classifier that was implemented.
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Figure 3.2. The phoneme classifier.
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3.4.1 HMM Topology

Phoneme utterances are typically represented by a three-state Bakis structure [12]. The

first state and the last state nominally represent the transition into and out of the

phoneme, respectively, and the middle state represents the steady-state portion of the

utterance. The state transition probabilities are governed by the following equations

ail. =0, j < i. (3.4.1)

0, i<N (342)

a .= . .

N' 1, i=N.

i.e., no transitions are allowed to state whose indices are lower than that of the current

state. Furthermore, the initial state probabilities are

1, z:

71'. = 3.4.3

' {0, ta: 1. ( )

since the state sequences must begin in state 1 and end in state N (in this case N=3). The

state transition probability matrix for the phoneme HMM has the following upper

diagonal form

an “12 “13

A = 0 a22 a23 (3.4.4)

0 O 1
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Since we are using CHMMs, the output observation pdf is modeled by 10-20 Gaussian

mixture models(GMM) depending upon the best fit for a HMM.

3.4.2 HMM Training and Testing

The Baum-Welch re-estimation procedure is used for training the HMMs as discussed in

the previous chapter. The algorithm is run iteratively for each phoneme HMM for a loop

count of 15 and the convergence threshold value is fixed at 7 x104. Each of the models

is trained over the entire training set over all the dialects in the TIMIT training set. The

speakers in the training set have been limited to male speakers as the dysarthric speech

corpus consists only of male speakers. The Baum-Welch algorithm requires proper

initialization in order to achieve correct training of the phoneme HMMs. The HMM state

transition probabilities are initialized as given in (3.4.4) and the initial state probabilities

are initialized as given in (3.4.3). The initial self-loop probabilities are assigned a value

of 0.8. The initial transition matrix has the following values

0.8 0.1 0.1

A = O 0.8 .2

O O 1

and the initial state probability matrix takes the form

1, i =

71'. =

' O, i = 2,3.
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The means and covariance matrices are initialized to the global mean and global variance

of the training data respectively.

The testing is done by using the training data as an input to the phoneme recognizer. The

accuracy of a specific phoneme model (say belonging to class k) is measured as follows

# ' h k
%Accuracy of phoneme k = correctly recognized occurences of p oneme
 

#totaloccurences of phoneme k (3.45)

A correctly trained HMM will have a recognition accuracy near 100% , when the data

upon which it is trained is used, as input. In practice, however, there is a small error in

recognition. The recognition error is due to outliers in the training set that are not

properly modeled during the training procedure. Such imperfections are acceptable given

the variability in speech and the variation in dialects of the different speakers in the

TIMIT training set. Table 3.2 shows the accuracy of the trained HMMs, when tested with

their respective TIMIT training data.

Table 3.2. Accuracy of the vowel phoneme HMM on TIMIT training data.

 

 

 

 

 

 

 

 

Vowel HMMs Training accuracy

UW 94.23%

OW 96.65%

IY 98.44%

AE 96.02%

AO 95.54%

BY 91 .01%

AY 97. 12%   
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3.5 Bigram Language Model Implementation

The phoneme recognizer discussed in Section 3.4 is the baseline acoustic recognizer. This

baseline recognizer assumes that all the vowels in the test set occur with equal

probability. From Section.2.6 we know that the performance of the recognizer can be

improved if we constrain the search path in the vocabulary by assigning different

probabilities to the different utterances. In this thesis, the dysarthric speech utterances are

phoneme utterances of the different vowel sounds. So, in order to test the hypothesis that

bigram models do improve recognition as compared to simple acoustic recognition

(phoneme classifier without bigram LM) we formulate a phoneme-to-phoneme bigram

probability matrix, which is our LM. In the context of this research, if

W 2 {W1 , ...... ,wLw} represents the string of phoneme utterances of dysarthric speech,

the bigram probability P[wl. | wH] is defined as the probability given utterance wl._l ,

utterance Wt follows it. Thus the LM gives the phoneme-to-phoneme transition

probabilities. Figure 3.3 shows a bigram LM using seven vowel phonemes. The bigram

LM, gives us the phoneme-to-phoneme transition probability and can be conveniently

represented in the matrix form as shown in Figure 3.3. The bigram LM in this research, is

a contrived one as the database consists of only isolated vowel sounds. The purpose of

using such a contrived LM is to demonstrate the increase in recognition accuracies of the

vowel phonemes as compared to a recognizer without any LM.

40



 

Vowel Phonemes

V
o
w
e
l
P
h
o
n
e
m
e
s

   
 

Figure 3.3. Example of a bigram LM using seven vowel phonemes.

Once we have deduced the bigram probability matrix, from the training data, we generate

a finite length sequence of phoneme utterances based on this bigram probability

distribution, which represents the observation string. This sequence of phonemes is then

passed through the acoustic phoneme recognizer and the resultant likelihood scores of

each of the utterances are accumulated to construct a Viterbi search grid. Figure 3.4

shows the construction of the search grid for the LM defined in Figure 3.3. The ordinate
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in Figure 3.4 represents the HMM models used in the recognizer and the abscissa

represents the observation string sequence generated from the bigram LM. The numbers

in the figure represent the actual likelihood scores (acoustic scores) obtained at the output

of each vowel HMM after passing each utterance in the observation sequence through the

 

 
 

recognizer.

UW 4.1643 4.1376 4.1854 4.3512 4.0107 4.1086 4.1014

OW 4.2468 4.2197 4.4512 4.2407 4.1413 4.1495 4.0837

% IY 4.2257 0.9919 4.0058 4.1192 4.0956 -0.9387 4.1013

E AE 4.2917 4.0380 4.2711 4.0973 4.1791 0.9470 4.1033

E A0 4.4278 4.2809 4.5394 4.2463 4.2560 4.2318 4.1889

I EY 4.2603 -0.9606 4.1173 4.1682 4.1195 -0.9267 4.0979

AY 4.2987 4.1538 4.3203 4.2008 4.1920 4.1065 4.1046

i

UW AE UW AE UW AE A0

Phoneme observation string sequence  
 

Figure 3.4. LM-based Viterbi search grid.

Then a Viterbi search is applied to this search grid, which combines both the acoustic

scores and the logarithm of the bigram language model probabilities to determine the best

path, through the search grid. The Viterbi search algorithm used in the LM is a

modification to the Viterbi algorithm given in Figure 2.3. In the case of the LM-based

Viterbi search the observations are a string of phoneme utterances instead of feature

vectors, and instead of searching through each state of a single HMM, in this case, the
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search is among different HMM models representing each vowel phoneme. The best path

thus obtained represents the recognized string, based on the given bigram information.

The algorithm used for the LM-based Viterbi search is shown in Figure 3.5.

 

Figure 3.5. LM-based Viterbi search algorithm.

Let L,1 be the number of phoneme HMM classes in the phoneme

recognizer and L0 be the length of the string of utterances

W' = {w',w;_ ,...,W'L } generated using the bigram LM. The likelihood

0

score associated with utterance i given HMM A]. is given by ¢i (j) . The

. . . . i i i *

recognized utterance string 1S g1ven by W = {w ,w ,...,wL }.

0

Initialization:

For, ls st,

¢1(j)=logP[w1’|/1jl

For, lSjSL’1 andlSiSLO

Recursion:

For, 1SiSN0,1SjSL/1 and lSkSL/1

«5.0) = max{¢,-_l (j) + logPM I 2,. 1+ log PIw. l w. I}

Ila-(j)=arg£1aX{¢,-_,(j)+logP[w; I i,1+logP1w, I w, I}   
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Figure 3.5. LM-based Viterbi search algorithm (cont’d).

Termination:

:1:

wL zarglrnax{¢L0(j)}, lSjSL/1

0

Backtracking:

w; =I//n+l(n+1), for n=Lo—1 to 1

Recognized phoneme sequence

# i i t

W 2 {WI ,w ""’WL0}
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4 Experimental Evaluation

4.1 Overview

The main goal of this research is to evaluate the feasibility of a phoneme-based vowel

recognizer for dysarthric speech. The question is, are there certain vowel sounds that can

reliably be distinguished from one another, for a given dysarthric speaker? In order to use

any of the vowel sound as control triggers for an AAC device, it is necessary that they be

reliably discriminated. This chapter evaluates the feasibility of such a phoneme-based

vowel recognizer.

4.2 Experiments with Normal Speech

Recognition experiments were performed with normal speech to test the trained models

and to establish a baseline result. The test set for the recognition experiments was

obtained from the TIMIT database. The recognition accuracy of a particular phoneme, as

defined in Section 3.4.2 is given by

_ # correctly recognized occurences of phoneme k

# total occurences of phoneme k

 

Ak

The overall recognition accuracy of the recognizer is calculated by taking the weighted

sum of the different phoneme recognition accuracies. The weighting coefficient here is
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the a priori probability of occurrence of the different phonemes. If A denotes the overall

accuracy of the recognizer then

7

A = Z P[phonemek]Ak. (4.1.1)

k=I
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Figure 4.1. The a priori distribution of the seven vowels in the TIMIT test set.
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The results of the recognition experiment on the TIMIT test set are given in Table 4.1.

Table 4.1. Recognition results with normal speech.

 

 

 

 

 

 

 

  

k Vowel P[phoneme k] Ak Total Number of test %Accuracy

utterances in TIMIT

1 UW 0.0308 73/106 106 68.86%

2 OW 0.1074 306/369 369 82.92%

3 IY 0.3169 961/1089 1089 88.24%

4 AE 0.1420 419/488 488 85.86%

5 A0 0.1380 385/474 474 81.22%

6 BY 0.1397 410/480 480 85.41%

7 AY 0.1251 364/430 430 84.65%      
 

The recognition accuracy of the phoneme-based vowel recognizer can now be calculated

from the data in Table 4.1 and (4.1.1). The overall accuracy of the recognizer was

calculated to be 84.92%. This is quite consistent with the phoneme recognition

accuracies normally obtained using TIMIT, which are typically in the range of 70-80%

for phonemes. For details, the reader is referred to [32].

4.3 Experiments with Dysarthric Speech

The dysarthric speech database consists of multiple utterances of the seven vowel

phonemes (UW, OW, IY, AE, AG, EY, AY) spoken by four different speakers with

varying amounts of dysarthria. Reliability of a vowel phoneme here refers to the degree
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to which the phoneme classifier does not confuse a vowel phoneme with other vowel

phonemes. Table 4.2 shows the number of vowel utterances for each of the four

dysarthric speakers. Each of the vowels in the dysarthric speech database has been

repeated atleast 10 times by each of the speakers. The different number of uterances of

each vowel is due to the improper prompts for each of the dysarthric speech wave files,

which made it difficult to identify the dysarthric utterance.

Table 4.2. Distribution of utterances in the dysarthric speech database.

 

 

 

 

 

 

        

Dy5arthric Speakers Number of utterances of vowels

UW OW IY AE AO EY AY

Speaker 1 10 12 8 7 7 9 16

Speaker2 10 12 10 12 10 10 10

Speaker3 10 10 10 10 10 10 10

Speaker4 10 11 10 10 10 10 10

 

4.3.1 Classification Experiment

 

The dysarthric speech utterances for each of the speakers were passed through the

phoneme classifier to produce a confusion matrix. The confusion matrix is a grid. which,
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for each vowel, indicates the number of times that vowel was classified as each of the

candidate vowels in the set.

Table 4.3. Confusion matrix for Speaker 4 (shaded cells indicate reliable vowel sound).
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Table 4.3 shows the confusion matrix for Speaker 4. The columns represent the different

phoneme vowels used in the recognizer and the rows indicate the different vowel

utterances that were passed through the phoneme classifier. The number in each cell

represents the number of test utterances of a given vowel phoneme (from the dysarthric

speech database) that were classified as belonging to each vowel HMM. This method of

representation of the classification results helps identify the vowel sounds that are least

likely to be confiised with other vowel sounds.

In Table 4.3, it is observed that the three vowel phonemes OW, IY and AE are never

confused with each other and hence are the most reliable sounds produced by Speaker 4.

Thus for Speaker 4 we can postulate at least three reliable vowel phonemes.
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Similarly, confusion matrices for Speaker 1, Speaker 2 and Speaker 3 represent results of

running similar classification experiments.

Table 4.4. Confusion matrix for Speaker 1 (shaded cells indicate reliable vowel sound).

owelHMMs
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Table 4.5. Confusion matrix for Speaker 2 (shaded cells indicate reliable vowel sound).
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Table 4.6. Confusion matrix for Speaker 3 (shaded cells indicate reliable vowel sound).
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For Speaker 1, we observe from Table 4.4 that the phonemes UW and IY have high

recognition accuracies. UW is confused with IY only once and this suggests that with a

little intervention (some articulatory training by clinicians), Speaker 1 can be trained to

reliably produce the phoneme UW. Similarly, for Speaker 2 we observe that the

phonemes OW and IY are reliable choices, and for Speaker 3, OW, AE and IY are

reliable choices.

4.3.2 Conclusion

Using a phoneme classifier trained on normal speech, we were able to recognize at least

two reliable vowel sounds for each of the dysarthric speakers. This suggests that it is

feasible to build a speech recognition system capable of recognizing vowel sounds with

the minimum amount of confusability with other vowels.
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4.4 Experiments with Language Modeling

The purpose of the LM is to restrict the search space of the recognition task and thereby

help in reducing recognition error rates. In this research, we use bigram LMs to

investigate the effect of language modeling on vowel phoneme recognition rates. The

goal is to ascertain whether introducing LM in the recognition task, increases the

accuracy with which vowels are recognized. Two cases were considered for the bigram

LM. First, a speaker-independent bigram LM was computed for all speakers to determine

whether it is possible to derive a single LM that can increase recognition accuracies

across all dysarthric speakers. In the second experiment, a restrictive speaker-dependent

bigram LM was used to test for increase in vowel recognition accuracies. Speaker-

independent bigram LM in this context is a single LM that represents the entire dysarthric

population used in this research. Similarly, a speaker-dependent bigram LM is one that is

specific to each speaker. In order to quantify the bigram LM recognition task results, the

LM recognition results were compared with the baseline acoustic recognition results

using vowel phoneme error rate. In this research, the vocabulary consists of isolated

vowel phoneme utterances, so the error rate is defined as

# misrecognitions in the utterance string

length of the utterance string

 Error rate E = (4.1.2)

The utterance string here refers to a hypothetically observed sequence of phoneme

utterances that we wish to recognize.

52



4.4.1 Speaker-Independent Bigram Language Model

In this experiment, we use a single LM for all four dysarthric speakers. The transition

probabilities associated with the bigram LM used in this experiment is shown in Table

4.7. These probabilities are shown in the form of a grid in Table 4.1, where the numbers

in each cell denotes the probability of the vowel HMM representing the column (to which

the cell belongs) following the vowel HMM representing the row (to which the cell

belongs). The details of this representation of the bigram LM are explained in Section

3.5.

Table 4.7. Speaker-independent Bigram LM.

 

 

 

 

 

 

 

 

 

         

Vowel HMMs

uw ow IY AE AO EY AY

uw 0 0.56 0 0.66 0.45 0 0

g ow 0.45 0 0.56 0 0 0.55 0

2 IY 0 0.75 0 0 0.65 0 0

5 AB 0.75 0 0 0 0.6 0 0.65

g A0 0.6 0 0.5 0 0 0.43 0.6

§ BY 0 0.45 0 0.78 0 0 0.6

AY 0 0.5 0 0.6 0 0.5 0
  

The bigram LM shown in Table 4.7 is a contrived one as we have only phoneme

utterances in the dysarthric database. The results of the experiments in Section 4.2 were

first used to ascertain which vowels could be considered as reliable phonemes. The
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phoneme-to-phoneme transition probabilities were then assigned such that a poorly

recognized vowel phoneme is always followed by a reliably recognized vowel phoneme.

In addition, the probability of a vowel phoneme being immediately following itself was

made zero. The probability distribution of the vowel HMMs from the bigram LM in

Table 4.7 was used to generate finite strings of 30 vowel phoneme utterances for the

recognition task. The vowel phonemes used in the LM task are randomly generated,

which implies that the number of utterances used in the acoustic recognition task in case

of the LM is not necessarily the same as those used in the recognition task of Section 4.2.

Hence, the classification results shown in Section 4.2 are not always the same as those

shown in the bigram LM recognition task. The results from the acoustic classification

task and the bigram LM recognition task are tabulated below.

Table 4.8. Confusion matrix with speaker-independent LM for Speaker 1.

 

 

 

 

 

 

 

 

 

Vowel HMMs

UW OW IY AE A0 EY AY

UW 6 0 1 0 0 1 0

OW 0 6 0 5 0 0 0

_ § IY l 0 4 0 0 2 0

‘3’ 5, AB 0 0 0 3 0 0 0

§ § A0 0 1 0 0 0 0 0

:5 BY 0 0 0 0 0 0 0

AY 0 0 0 0 0 0 0          
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Table 4.9. Confusion matrix without speaker-independent LM for Speaker 1.
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Table 4.10. Confusion matrix with speaker-independent LM for Speaker 2.
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Table 4.11. Confusion matrix without speaker-independent LM for speaker 2.
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Table 4.12. Confusion matrix with speaker-independent LM for Speaker 3.

 

 

 

 

 

 

 

 

 

Vowel HMMs

uw ow IY AE A0 EY AY

uw 6 0 1 0 0 3 0

m ow 0 7 0 1 0 0 0

7. “g IY 0 0 5 0 0 0 0

g 4,3 AB 0 0 0 6 0 0 0

> g A0 0 0 0 0 0 0 1

‘3 BY 0 0 0 0 0 0 0

AY 0 0 0 0 0 0 0          
 

Table 4.13. Confusion matrix without speaker-independent LM for Speaker 3.

Vowel HMMs

 

Table 4.14. Confusion matrix with speaker-independent LM for Speaker 4.

Vowel HMMs

IY AB A BY AY

 
56



Table 4.15. Confusion matrix without speaker-independent LM for Speaker 4.
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Table 4.16. Error rates for the recognition task with the speaker-independent LM.

 

 

 

 

 

   

Dysarthric Error rate for phoneme Error rate for phoneme

Speakers recognition with LM recognition without LM

Speakerl 11/30 14/30

Speaker 2 15/30 14/30

Speaker 3 6/30 17/30

Speaker 4 14/30 13/30
 

 

The confusion matrices for the recognition task shown in Table 4.8 and Table 4.15 give

the distribution of the classified vowel utterances for each speaker, for both baseline

acoustic recognition and recognition with the bigram LM. As a side note, the baseline

recognition results in Table 4.9, Table 4.11, Table 4.13 and Table 4.15 consists of vowel

utterances randomly chosen from the database depending upon the sequence of phonemes

being generated using the speaker-independent bigram LM. This implies that the baseline
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classification results from the tables mentioned before may be different from those shown

in Table 4.3 to Table 4.6. The speaker-independent LM does improve recognition rates

for Speaker 1 and Speaker 3 as observed from the error rates in Table 4.16. However, the

baseline acoustic recognition rates outperform those of the recognizer with the bigram

LM for Speaker 2 and Speaker 4. This suggests that although we can improve recognition

rates for dysarthric speech with a bigram LM, it is not possible to deduce a speaker-

independent bigram LM to represent the entire dysarthric population.

4.4.2 Speaker-Dependent Bigram Language Model

In this experiment, a speaker-dependent bigram LM was computed and the recognition

rates for both the baseline acoustic recognition task and the recognition with speaker —

dependent bigram LM were compared. In this case, too, the bigram LM is a contrived

one. The phoneme-to-phoneme transition probabilities are defined for each speaker such

that there is a high probability transition from a poorly recognized vowel phoneme (for

that speaker) to a reliably recognized vowel phoneme (for that speaker). In addition, the

LM used is very restrictive so as not to allow too many transitions from a given phoneme.

The probability of a vowel phoneme following itself is zero. Using these rules we can

generate numerous such LMs for the recognition task. The LMs shown in the Tables

below are the ones that perform consistently better than the baseline recognition task

more than 90% of the time. The results of the language modeling experiments for each

speaker are presented in the tables below.
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Table 4.17. Bigram LM for Speaker 1.
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Table 4.18. Confusion matrix with speaker-dependent LM for Speakerl (shaded cells

indicate reliable vowel sound).
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Table 4.19. Confusion matrix without speaker-dependent LM for Speaker 1(shaded cells

indicate reliable vowel sound).

 

 

   

 
  

  

  
 
 

 
 

 

 

Vowel HMMs

UW|ow IY AE Ao EY AY

a UW 0 1 0 0 0 0

g ow 6 1 0 0 1 0

g IY 0 0 6 0 0 0 0

.3 AB 0 0 1 0 3 0

7, A0 0 2 0 0 0 0 0

5 BY 0 0 7 0 0 0 0

> AY 0 0 4 0 0 4 0           
 

Table 4.20. Error rate for Speaker 1.

 

Error Rate

with bigram LM 5/45

without bigram LM 30/45

 

 

   
 

We observe from Table 4.18 and Table 4.19 that the bigram model improves recognition

rates for the vowels OW, AE, AO, EY and AY. Furthermore, if we observeTable 4.19,

the phoneme pairs UW and AE, and OW and AE are never confused with each other for

the baseline acoustic recognizer. From, Table 4.18 we also observe that the phoneme set

UW, OW, EY and AY are never confused with each other. Thus, there is an increase in

the number of reliable vowel phonemes recognized for Speaker 1, as a result of the

bigram LM.
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Table 4.21. Bigram speaker-dependent LM for Speaker 2.
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Table 4.22. Confusion matrix with speaker-dependent LM for Speaker 2 (shaded cells

indicate reliable vowel sound).
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Table 4.23. Confusion matrix without speaker-dependent LM for Speaker 2 (shaded cells

indicate reliable vowel sound).
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Table 4.24. Error rate for Speaker 2.

 

Error Rate

with bigram LM 1/50

without bigram LM 25/50

 

 

   
 

For Speaker 2, without the LM the vowel phonemes OW and IY, and IY and AY

respectively, can be considered to be reliable vowels. With the bigram LM, we obtain

significant improvements in the recognition results, as six vowel phonemes UW, OW, IY,

AE, A0 and AY can be reliably recognized.
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Table 4.25. Bigram speaker-dependent LM for Speaker 3.
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Table 4.26. Confusion matrix with speaker-dependent LM for Speaker 3 (shaded cells

indicate reliable vowel sound).
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Table 4.27. Confusion matrix without speaker-dependent LM for Speaker 3 (shaded cells

indicate reliable vowel sound).
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Table 4.28. Error rate for Speaker 3.

 

Error Rate

with bigram LM 7/40

without bigram LM 25/40

 

 

   
 

For Speaker 3, without language modeling the vowels OW, IY and AE can be considered

as reliable vowels for recognition. With the introduction of the bigram LM, the vowel

phonemes OW, IY, AE, EY and AY are never confused with each other.
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Table 4.29. Bigram speaker-dependent LM for Speaker 4.
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Table 4.30. Confusion matrix with speaker-dependent LM for Speaker 4 (shaded cells

indicate reliable vowel sound).
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Table 4.31. Confusion matrix without speaker-dependent LM for Speaker 4 (shaded cells

indicate reliable vowel sound).

 

 

 

 

 

 

 

 

 

Vowel HMMs

uw ow IY AB AO BY AY

uw 0 10 0 0 0 0 0

,, ow 1 6.; 0 0 0 0 0

.3 g IY 0 0 3 0 0 1 0

g 2 AB 0 0 0 ' 5y 0 0 0

> 5‘; A0 0 2 0 1 0 0 4

9 BY 0 0 0 l 0 1 0

IY 0 0 0 2 0 0 3          
 

Table 4.32. Error rate for Speaker 4.

 

Error Rate

with bigram LM 4/40

without bigram LM 22/40

 

 

   
 

For Speaker 4, we can identify the vowels OW and AE as reliable vowel sounds for the

recognition task without LM. In the bigram LM case, the vowel phonemes OW, IY,EY

and AY are never confused with each other.
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4.4.3 Conclusion

The bigram LM increases recognition rates of the phoneme vowels. However, it is not

possible to deduce a speaker-dependent LM that represents this dysarthric population,

due to the variability in dysarthric speech. Different speakers produce different vowel

sounds reliably, depending upon the degree and type of dysarthria. A better approach is to

build a LM that is specific to a dysarthric speaker. From the language modeling

experiments, we observe that the speaker specific LMs always improve the recognition

rates of vowel phonemes. Furthermore, with the help of a proper LM it is possible to

obtain a larger number of reliable vowel sounds than in the baseline acoustic recognition

case. This suggests that including a bigram LM in the baseline recognition task can give

us more reliable sounds that can be used as control triggers for an AAC device.

4.5 HMMs Trained on Dysarthric Speech

In this experiment, the seven vowel HMMs were trained on the dysarthric speech

database. The utterances of each speaker were partitioned into a training set and test set.

Table 4.33 shows the number of utterances that were used as training set and test set for

the HMM training and recognition tasks respectively.
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Table 4.33. Partitioning the dysarthric speech database into training and test sets.

 

 

 

 

 

 

 

 

 

Speaker 1 Speaker 2 Speaker 3 Speaker 4

Vowels Train Test Train Test Train Test Train Test

set set set set set set set set

UW 6 4 6 4 6 4 5 5

OW 7 5 8 4 6 4 6 5

IY 5 3 6 4 6 4 5 5

AB 5 2 8 4 6 4 5 5

A0 4 3 6 4 6 4 5 5

BY 5 4 6 4 6 4 5 5

AY 12 4 6 4 6 4 5 5          
 

4.5.1 Classification Experiment

The purpose of this experiment is to investigate whether we can obtain reliable vowel

recognition when the phoneme classifier consists of HMMs trained on the utterances of

dysarthric speakers themselves. To achieve speaker independence, the vowel HMMs are

trained on the training sets across all the four speakers. The test utterances of each of the

four speakers are then passed through this phoneme classifier trained on dysarthric

speech. The classification results obtained are used to deduce a confusion matrix for each

speaker.
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Table 4.34. Confusion matrix for Speaker 1 (shaded cells indicate reliable vowel sound).
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Table 4.35. Confusion matrix for Speaker 2 (shaded cells indicate reliable vowel sound).
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Table 4.36. Confusion matrix for Speaker 3 (shaded cells indicate reliable vowel sound).

V
o
w
e
l

U
t
t
e
r
a
n
c
e
s

 

Table 4.37. Confusion matrix for Speaker 4 (shaded cells indicate reliable vowel sound).

V

-5

iii
00

>3:

:2

 

For Speaker 1, the vowel phoneme OW is the only one that is well recognized. The

phonemes OW, IY and A0 are never confused with each other. However, the phoneme

sounds IY and A0 do not have high recognition rates as a result of which they cannot be

considered as reliable vowel sounds. For Speaker 2, the vowel phonemes OW, IY and AB
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are reliably recognized and are never confused with each other. Similarly for Speaker 3, it

is OW, IY and A0, and for Speaker 4 it is IY and A0, which can be considered as

reliable vowel phonemes.

4.5.2 Conclusion

In the above experiment, we trained a classifier based on the dysarthric speech utterances

across four speakers. We were able to obtain reliable recognition from some vowel

phonemes, for all speakers except Speaker 1. There is tremendous variability associated

with dysarthric speech, primarily due to the articulatory imprecision associated with the

dysarthric speakers. The inconsistency of dysarthric speech makes it difficult to train a

reliable recognition system that can reliably recognize phonemes for a large population of

dysarthric speakers.
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5 Conclusions and Future Research

5.1 Conclusions

The main goal of this research was to evaluate the feasibility of using ASR techniques to

obtain reliable recognition of dysarthric vowel utterances, with the long-term goal of

incorporating this vowel recognizer into AAC and PC-based devices. It is very difficult to

achieve high recognition accuracies for words or utterances spoken by severely dysarthric

individuals, mainly due to the inconsistency of dysarthric speech. A different perspective

would be to identify the vocalizations, which can be used as reliable sounds for the

recognition task. A “reliable sound” in the context of this research is the one that the

recognizer can consistently discriminate among the given vocalizations. To test this

hypothesis, only vowel phoneme utterances obtained from four dysarthric speakers at the

Madonna Rehabilitation Hospital, Nebraska were used for evaluation purposes.

The experimental results obtained from the phoneme-based vowel recognizer (without a

LM) trained on normal speech indicate that for each of the speakers, at least two vowel

phonemes can be identified as reliable vocalizations. The next task was to investigate

whether the addition of language modeling information to the phoneme recognizer could

increase reliability of vowel recognition. For this purpose a bigram, LM was incorporated

into the recognition task. The results from the bigram LM recognition task imply that

including language information does increase vowel recognition accuracy. In addition,
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we observe that the number of reliable vowel phonemes obtained for each of the speakers

is more than those obtained from the recognition task without a LM. However, it is not

possible to build a speaker-independent language modeling framework representing a

large dysarthric speaker population. It is not possible for the LM to take into account all

the variability associated with dysarthric speech. This implies that we can obtain the

benefits of language modeling by building a speaker-dependent LM. The main advantage

of language modeling is that it enables us to identify more control words that can be used

as access controls for any AAC device. For example, for Speaker 1, the baseline

recognition system (without LM) identified three vowel sounds (UW, OW and AE) as

reliable access sounds. This means we can access a maximum of nine vowel pairs using a

row-column access method. However, the bigram LM implementation gives us four

reliable vowel sounds (OW, AE, EY and AY). This implies now we can access a

maximum of 16 keys using a row-column access method.

 

Column Control Vocalizations

UW OW AE

 

 

 

 

      

Row UW Key 1 Key 2 Key 3
Control OW K 4 K 5

Vocalizations ey 31/ Key 6

AB Key 7 Key 8 Key 9
 

(a)

 

Column Control Vocalizations

OW AE EY AY

Row OW Key 1 Key 2 Key 3 Key 4

Control AB Key 5 Key 6 Key 7 Key 8

Vocalizations EY Key 9 Key 10 Key 11 Key 12

AY Key 13 Key 14 Key 15 Key 16

(lb)

 

 

 

 

 

      
  

Table 5.1. Row-column access for Speaker 1 using reliable vowel phonemes from (a)

recognition task without LM (b) recognition task with LM.
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Table 5.1 shows the construction of a row-column access type keypad using the reliable

vowel phonemes obtained from the recognition tasks for Speaker 1.

An additional recognition experiment was carried out using a vowel recognizer trained

on dysarthric speech of the four participants in the study. The dysarthric speech database

was partitioned into training and testing sets for this experiment. The goal of this

experiment was investigate if we could obtain reliable vowel phonemes from this

recognition task. The results obtained indicated that although it was possible to obtain

reliable vowel phoneme sounds for each of the speakers, the results were not consistent

with those obtained from the vowel recognizer trained on normal speech. The training

utterances in the dysarthric speech database do not result in a good representation of their

representative vowel sounds. As a result, the HMM models used in the phoneme

recognizer trained on dysarthric speech is not as well modeled as the HMMs used in the

phoneme recognizer trained on dysarthric speech. However, if we are interested only in

the feasibility of a recognizer trained on dysarthric speech, then it is possible to obtain

reliable vowel phonemes.

5.2 Future work

The scope of this work was limited to testing the feasibility of using ASR techniques for

reliable recognition of dysarthric speech. The long-term goal is to use these reliable

sounds as control triggers for an array of AAC devices, including the personal computer

(PC). All the conclusions and results obtained in this research were from the four
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dysarthric speakers selected to participate in this study. More reliable statistics to validate

the conclusions above can be obtained by performing similar experiments over a larger

population of dysarthric individuals. Another improvement would be to use words built

around the reliable vowel sounds as access triggers. For example, if ‘OW’ is a reliable

sound, we can use words like ‘boat’ and ‘open’ built around this vowel phoneme as

control triggers. Of course, this requires more sophisticated algorithms to implement

vowel spotting within a given word. Further, we can evaluate the performance of a

context dependent phoneme-based vowel recognition system to investigate which words

can be most reliably used as control triggers in the AAC device.
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