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ABSTRACT

Studies in nonlinear and long memory time series econometrics

By

Rehim K1119

This dissertation explores long memory and nonlinear dynamics in foreign ex-

change, commodity and stock markets. The first two chapters of this dissertation

explore nonlinearity and long memory in econometrics. In particular, chapter one

provides a concise overview of Smooth Transition Autoregressive (STAR) models.

The discussion is cast in terms of specification procedures for smooth transition mod-

els. This chapter provides simulation evidence on the power and size properties of

nonlinearity tests designed in the literature against STAR type of nonlinear behavior

in a univariate time series. The chapter also studies the small sample properties of

nonlinear least squares method in estimating STAR models. Long memory Autore-

gressive Fractionally Integrated Moving Average (ARFIMA) models for the condi-

tional mean of a process, Generalized Autoregressive Heteroscedastic (GARCH) and

Fractionally Integrated GARCH models for the conditional volatility of a process are

discussed in terms of specification, estimation and inference in chapter two.

Chapter three of the dissertation investigates a well known puzzle in international

finance literature. The purchasing power parity puzzle relates to the slow adjustment

of real exchange rates. We investigate the transactions cost-nonlinearity explanation



of the puzzle by utilizing STAR models. The findings in the chapter point out the

difficulty in explaining the puzzle by by the transactions cost theory alone. The

estimated models and further analysis reveal the extreme persistence in real exchange

rates over the floating period.

The fourth chapter of this dissertation investigates long memory dynamics in com-

modity markets. Both cash and future prices of several commodities, (coffee, corn,

gold, silver, soybean and unleaded gasoline) are analyzed. The findings indicate that

commodity cash and future prices are approximately martingale with long term de-

pendence in the higher moments. The volatility proxies, for example, squared returns,

absolute returns, and intraday range are found to exhibit long memory component.

The finding of the long memory has important implications for optimal hedge ratios.

Chapter five of the dissertation analyzes the long memory dynamics in an emerging

capital market, the Istanbul Stock Exchange (ISE) National 100 daily and weekly

dollar index returns and its absolute and squared returns. Both parametric FIGARCH

models and nonparametric methods are employed. Results indicate the presence of

long memory dynamics in the conditional variance which can be modelled adequately

by a FIGARC'H model.

The last chapter revisits the persistence and nonlinearity of deviations from PPP.

It develops new unit root test that is specifically designed to test random walk without

drift and random walk with drift against stationary exponential smooth transition

autoregressive models. The asymptotic distributions of the tests are derived and

shown to be nonstandard. The power and size of the tests in finite samples studied

by simulations. The fitted exponential STAR models and further analysis reveal the

nonlinear nature of real exchange rates as well as the persistence of the deviations.
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CHAPTER 1

Smooth Transition Autoregressive

Model: specification, estimation,

and inference

1. 1 Introduction

The aim of this chapter is to review the smooth transition model and discuss

aspects of the model that are relevant to the subsequent chapters. The presentation

is framed in terms of empirical specification and estimation of the smooth transition

autoregressive models, the basics of which are discussed in Granger and Terasvirta

(1993), Teriisvirta (1994), and Eitrheim and Teriisvirta (1996). A review of the

STAR similar in spirit to this chapter is given by Teriisvirta (1998), and by van Dijk,

et a1. (2000). This chapter contains three Monte Carlo simulation experiments. The

first experiment suggests that standard lag selection criteria (i.e. AIC, BIC) may not

always select the correct lag order in STAR models. The second experiment examines

the properties of standard and heteroscedasticity consistent (HCC) variants of non-

linearity tests. The results suggest that both variants have comparable power, (i.e. the

ability to reject linearity when false). However, the size of the standard tests becomes



worse when compared to that of HCC variants. The third experiment examines the

finite sample properties of nonlinear least squares (NLS) estimates of STAR models.

The results indicate that in sample sizes of 100 (which is approximately the available

sample size for several macroeconomic variables) the estimation performs poorly in

terms of mean square errors. When the sample size is doubled the NLS method

performs better.

1.2 The STAR Model: Representation, Specifica-

tion, and Inference

The smooth transition model for a univariate time series yt, which is observed at

times t = 1 —p,—p,...,—1,0,1,...,T— 1,T, is given by

yt = 7Irixt(1_ F(Zt;’7,C)) + W2$tF(Zt;716) + at t=1:' ° ' 1T1 (1'1)

where x, is a vector consisting of lagged endogenous and exogenous variables, x, =

(1,513,)’ with {it = (yt_1, . . . ,y¢_p, wu, . . . ,wkt)’ and it,- = (no, . . . ,7r,-,m)’,

i = 1, 2, with m = p+ k. The STAR is obtained if one considers i = (y¢_1, . . . , yt_p)’.

The presentation in this chapter is restricted to the STAR model as it is the model that

is used in the applications in this dissertation. The disturbances, (ut) are assumed

to be a martingale difference sequence with respect to the history of the time series

up to time t - 1, which is denoted by 9,4 = yt_1,...,y1_p. This means that,

E[ut|9¢_1] = O. For simplicity, we also assume that the conditional variance of at is

constant, that is, E[uf|Q¢_1] = 02. The transition function F(2,; '7, c) is a continuous

function that is bounded between 0 and 1. The transition variable 2, can be a lagged

endogenous variable, 2, = yt_d for a certain integer d > 0, as assumed most of the time

in empirical applications. It can also be an exogenous variable, or a function of both

lagged exogenous and endogenous variables, say z, = 2(1‘13). This function, in principle,

2



can be either, linear or nonlinear and it can be parametric or non-parametric. In most

of the applications it is taken to be a linear function of lagged endogenous variables.

Another possibility is to let z, to be a function of a linear time trend zt = t, which is

simply the STAR model with smoothly changing parameters, see Lin and Terasvirta

(1994). In order to keep the generality, we do not assume any particular form for

the transition function throughout this chapter. One can write out the STAR model

given in equation (1.1) in more detail as follows;

2% = (7T1,o + 7T1,1yt—1 + + 7r1,pyt—p)(1"' F(ZtW, 0))

+(7l'2,0 + n2,1y¢_1+ + 7T2,pyt_p)F(Zt; ”y, C) + u; (1.2)

There are two possible ways of interpreting the STAR model. The STAR model

can be thought of as a regime switching model that allows for two regimes, associated

with the extreme values of the transition function, F(.) = 0 and F(.) = 1, where

the transition from one regime to the other is gradual. Alternatively, it can also be

thought that the STAR model involves a c’ontinum of regimes, each associated with

a different value of the transition function between 0 and 1. The regime that prevails

at time t is determined by the observable variable, zt and the associated value of

F(..) Different choices for the transition function, F(.), leads to different types of

state-dependency and/or regime-switching behavior. In most of the applications in

econometrics, either logistic,

1
 

F ; , = , > 0, 1.3
(2; '7 C) 1+exp[—’Y(Zt'- C)] 7 ( )

or exponential function,

F(21; 7, c) = 1- expl-W: - @217 > 0, (1-4)

are the most popular choices. The choice of the logistic function leads to the logistic

STAR (LSTAR) model, while the choice of the exponential function results in so



called exponential STAR (ESTAR) model. The parameter, c in the LSTAR model is

interpreted as the threshold between the two regimes corresponding to F(.) = 0 and

F(.) = 1, in the sense that the logistic function changes from 0 to 1 as 2, increases

and F(c,7,c) = 0.5. The parameter 7 determines the smoothness of the change in

the value of the logistic function and thus smoothness of the transition from one

regime to the other. Figure 1.1 shows graphs of the logistic and the exponential

functions for different parameter specifications. From the figure it is obvious that as

ry becomes larger and larger the logistic function approaches to the indicator function

[[zt > 0], defined as I( ) = 1 if argument is true and I() = 0, otherwise. As a result

the transition from one regime to the other happens almost instantaneously at z, =

c. This implies that the LSTAR model nests a two-regime threshold autoregressive

(TAR) model as a special case. When 2, = yt_d the model is called the self-exciting

TAR model. TAR models are discussed extensively in Tong(1990). When 7 is close

to zero the logistic function is equal to the constant 0.5 and when 7 = 0, the LSTAR

model reduces to a linear model.

The type of regime switching implied by the LSTAR model may be useful for mod-

elling certain economic time series that exhibit asymmetries in terms of expansions

and recessions. This is because in the LSTAR model the two regimes correspond to

the small and large values of the transition variable 2; relative to the threshold c.

Hence it allows one to distinguish expansions and recessions in a given time series.

That is the reason why the LSTAR model has been used in the empirical business

cycle literature for modelling asymmetric behavior of macroeconomic variables, such

as output and unemployment, over a business cycle. For example, if yt is the rate

of unemployment, and if the transition variable is the unemployment rate at a pre-

determined date, say, the unemployment rate of previous period, 2, = yt_1, then the

model is capable of distinguishing high and low unemployment relative to a threshold

rate, say the natural rate of unemployment, assuming such a rate exists, over the



business cycle. Similarly, if y, is the growth rate of an output variable, and if the

transition variable is taken to be the growth rate in the previous period, if c z 0, then

the LSTAR model can distinguish periods of positive and negative growth, namely

periods of expansions and contractions over the business cycle. The LSTAR model

has been applied by Tera'svirta and Anderson (1992) and Teriisvirta, Tj¢stheim and

Granger (1994) to study the the different dynamics of industrial production in a

number of OECD countries.

It is quite plausible to come up with empirical problems in economics where dif-

ferent types of regime-switching behavior may be much more appropriate than the

one implied under the LSTAR model. A major example would be the behavior of

real exchange rates. The dynamic behavior of real exchange rates could possibly de-

pend on the magnitude of the deviations from purchasing power parity [PPP]. For

instance, the presence of transaction costs may lead to the notion of different regimes

in real exchange rates. In particular, the profits from commodity arbitrage, which

is generally thought to be the ultimate force behind maintaining PPP, do not make

up for the costs involved in the necessary transactions for small deviations from the

equilibrium value. This means that there may exist a band around the equilibrium

rate in which there is no tendency for the real exchange rate to revert to its equilib-

rium value. Whenever the rate is outside the band that is specified by the relevant

costs, arbitrage becomes profitable. This in turn forces the real exchange rate back

towards the band. Dumas (1992), for instance, builds a general equilibrium model

that implies the type of behavior outlined above.

If we want to model the type of behavior that is described in the above example

by a STAR model, with y, being the real exchange rate and z, = gt...“ it appears

much more appropriate to choose the transition function such that the regimes are

associated with small and large absolute values of 2;. A specification along these lines

for the transition function would be, for example, the exponential function given in



(1.4) as it may allow one to model symmetric adjustment towards the equilibrium

value of real exchange rates. The ESTAR model has been applied to real exchange

rates by Michael, Nobay, and Peel(1997), Taylor, Peel, and Sarno (2001) among

others.

Note the fact that the exponential function in (1.4) has the property that whenever

7 -+ 0 or 7 —+ 00, it becomes a constant, see figure 1. Thus the ESTAR model becomes

linear in both cases and it does not nest a self exciting threshold autoregressive

(SETAR) model as a special case. To remedy this drawback use of the quadratic

logistic function;

1

_ 1+ exp[—7(zt — cl)(zt — c2)]

 

F(Ztl’l/ac) 1C1 S 62: 7 > 0 (15)

has been suggested in some literature, see for instance, Jansen and Terasvirta (1996).

With the quadratic transition function, if 7 —> 0, the model becomes linear. While

when 7 —+ co, and c1 3i c2, the transition function is equal to 1 for z, < c1 and z, > C2

and equal to 0 in between. Thus the specification for the transition function in (1.5)

nests a three regime SETAR model.

1.3 Properties of the STAR Model

In this section we briefly discuss some properties of the STAR family models. The

discussion here is rather informal and intuitive. A much more formal discussion of

STAR models is given in Tong (1990) and Terasvirta (1994). Throughout this section

we concentrate on those models with autoregressive lag equal to 1 as it is easier to

present the important characteristics of the models without exposing their complex

details.

One of the first things to note about STAR models is the relatively large variety of

dynamic patterns that can be obtained from choosing the parameters appropriately.



To get an impression of the potential dynamic patterns that can be generated from

STAR models, panels of figure 1.2 show realizations of T = 250 observations from

an ESTAR model with p = 1 and 2, = yt_1. The realizations are obtained by

setting 1r” = -0.3, «2,1 = 0.7 and the parameters in the exponential function, (7, c)

are set equal to 3 and 0 respectively. The disturbances ut,t = 1,. . .T are drawn

independently from a standard normal distribution, i.e. u; ~ i.i.d.i~l(0,1). All series

are started with yo = 0, and the same values for the disturbances are used to generate

subsequent observations. The intercepts it”) and «2,0 are varied to generate different

behavior. One thing that is observed in the panels of figure 1.2 is that by just changing

the intercepts over the regimes one can obtain quite rich dynamic patterns in STAR

models. In other words by keeping the autoregressive parameters in the two extreme

regimes the same, but varying the intercepts generates series with quite different

behavior. This also illustrates how the constant terms can play an important roles

in nonlinear models. To get some idea about the dynamics of STAR models with

different parameter specifications in the autoregressive parameters, realization from

the ESTAR model with 713,1 = 1, “2.1 = —0.3 where all other parameter specifications

are the same as above except «1,0 = «2,0 = 0 is given in panels of figure 1.2 as

well. The panel f of figure 1.2 gives a sample realization from an LSTAR model with

quadratic logistic function given in (1.5), with c1: 0,c2 = 0.5, 7r1,o= «2,0: 0, and

it” = 1, «2,1 = —0.3. In these latter panels of figure 1.2, the autoregressive parameter

in the inner/middle regime is unity. This implies that the process acts like a unit root

process in the inner/middle regime and becomes a stationary process in the outer

regime. Thus as the deviation of the transition variable (in these examples, yt_.1)

from the threshold level becomes larger and larger, the process becomes increasingly

mean reverting in the sense that it tends to move back to the inner/middle regime.

Therefore, the generated processes although locally behave as a random walk, globally

they are stationary. In this sense the time series realizations are globally stationary.



Conditions that need to hold for the stationarity of STAR models is relatively

less explored. The required conditions for the stationarity in STAR models have only

been established for the first-ordered SETAR model which is obtained from (1.2) with

p = 1 and (1.3) by allowing 7 —i 00. Chan, Petrucelli, Tong, and Woolford (1985)

show the conditions for the stationarity of the first order SETAR model. They show

that the SETAR model is stationary if and only if one of the following conditions is

satisfied:

1. 771,1 <1,7r2,1 <1, 711,1, 71'2,1<1;

’ll. 771,1 = W211 < 1, 71'”) > 0;

221. 7T1,1 < 1, 7T2,1 = 1, 7T2'0 < 0,

iv. 7T1,1 =1, 71'2‘1 =1, 71'2'0 < O < 71'1’0;

’U- 7r1,1’”2,1 =1, 7T1,1< 0, 7r2,0 + 7r2,1771,o > 0.

Condition (i) allows one of the autoregressive (AR) parameters to become smaller

than -1. Note also that the conditions (ii — iv) allow unit root behavior in one or both

of the regimes. In these cases, the time series is locally nonstationary. Local station-

arity is obtained because of the conditions on the intercept terms in two regimes. The

conditions (ii — iii) on the intercepts 7r”, and «2,0 are such that the time series has

a tendency to revert to the stationary regime and hence, the time series is globally

stationary. The condition in (iv) also allows the two AR parameters to be unity and

hence the time series to be nonstationary in both regimes globally but the conditions

on the intercepts guarantees the global stationarity of the series. The testing problem

for unit roots in SETAR models is discussed in Caner and Hansen (2001), Enders and

Granger (1998) and Berben and van Dijk (1999) and in Chapter 6 of this dissertation.
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1.4 Empirical Specification of STAR models

Issues relating to the empirical specification of STAR models have been discussed

extensively in Granger(1993), Granger and Terasvirta ( 1993), and Terasvirta(1994).

The empirical specification procedure advocated by these authors involve a specifi-

cation strategy that starts with a simple or restricted model and proceeds to a more

general one only if diagnostic tests indicate that the maintained model is inadequate.

The procedure efficiently put forward in Tera'svirta (1994) consists of the following

steps.

1. Specify an appropriate linear AR model of order p [AR(p)] for the time series

under study;

2. Test the null hypothesis of linearity against the alternative of STAR—type non—

linearity. If linearity is rejected, select the appropriate transition variable 2; and

the form of the transition function F(zt; 7, c);

3. Estimate the parameters in the selected STAR model;

4. Evaluate the model using diagnostic tests;

5. Modify the model if necessary;

6. Use the model for descriptive or forecasting purposes.

The following sections discuss each of these steps in detail.

1.4.1 Specifying an appropriate linear AR model

The important issue involved in specifying an AR(p) for the time series under

consideration is the selection of the lag order p. The residuals from the AR(p) model

need to be approximately white noise as the tests for nonlinearity that are used in the



second step are sensitive to residual autocorrelation. There are several conventional

methods that can be used for lag selection purposes. The most commonly used criteria

in the linear models are the Akaike Information Criterion [AIC], AIC = Tln 62 + 2k,

Schwartz Information Criterion [BIC], BIC’ = T ln 52 + k(ln(T)), Harman and Quinn

Criterion (HQ), HQ = Tln 62 + kln(ln(T)) and the Ljung—Box (LB) statistic. The

LB statistic is used to test directly for the residual autocorrelations. The LB statistic

is LB(j) = T(T + 2) 2;, firflu) where ”(11) is the k -— th autocorrelation of the

residuals. Under the null hypothesis of no residual autocorrelation at lags 1 through

m the LB test has an asymptotic xzdi stribution with m — p degrees of freedom.

These methods are mostly developed for linear time series models. The use of

these information criteria and (partial) autocorrelation based methods may not be

quite appropriate in case of non-linear time series. One reason is the autocorrelations

of non-linear time series processes may have quite different properties. For instance,

Granger and Terasvirta (1999) and Diebold and Inonue (2001) discuss certain regime

switching models that have autocorrelations that resemble long memory properties.

Especially in finite samples, estimated autocorrelations may be quite substantial and

they may decline very slowly. Therefore, when an AR(p) model is considered for these

series the selected lag order may become large.

In order to better asses the appropriateness of the methods discussed above within

the context of STAR models, the following simulation experiment was conducted.

Time series are generated from the ESTAR model given in (1.2) with (1.4) and with

p = 1,zt = yt_1. The parameters in the two regimes were specified to be 7r” =

0.6, 1r” = 0.3, the smoothness parameter was chosen to be 7 = 3 and the threshold

parameter was kept at c = 0.5 during simulations. The sample was taken to be

T = 250 and T = 500 observations. The series were generated from at ~ iid N(0, l).

The constant terms in both regimes were kept at zero during simulations. An AR(p)

model is specified for the generated ESTAR series where p is set equal to the lag length
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that minimizes AIC, BIC, HQ, with maximum order p = 6, or to the minimum lag

length for which the LB statistic with m = 15 is not statistically significant at the 5%

level. Table (1.1) shows the frequencies out of 1000 replications, for which different

values of p are selected as the appropriate lag order. The results in (1.1) indicate

that in some cases standard lag selection criteria over estimate the autoregressive

lag order. This may mean that straightforward application of these criteria may not

always be appropriate. Hence, one needs to pay particular attention when using these

selection criteria in STAR type modelling.

1.4.2 Testing linearity against STAR

Once an AR(p) model is specified, one can proceed with testing linearity against the

alternative of STAR-type nonlinearity. This step is crucial as the failure of rejecting

the null hypothesis of linearity will invalidate the STAR modelling for the time series

under investigation.

In order to facilitate the discussion in this section re—write the STAR model given

in (1.1)

ye = «12:.(1- F(zm. 6)) + TréxtF(zt; 7.6) + ”at, t = 1, - - - ,T. (16)

where 2:, = (1,5:2)’ with it, = (y,_1, . ..y,.,,)’. The null hypothesis of linearity can

be formulated in different ways. A straightforward formulation involves setting the

autoregressive parameters in the two regimes to be equal, that is, H0 = 7r; = 7r;

against the alternative hypothesis H1 = 117,,- 79 «2,,- for at least one j E 0,. . .p.

The testing for linearity against STAR—type nonlinearity is complicated because of

the nuisance parameters problem. More explicitly, the testing for linearity becomes

complicated as there exist unidentified nuisance parameters under the null hypothesis.

This is because the STAR model contains parameters which are not restricted by

the null hypothesis, but they are present when the null hypothesis holds true. For

11



instance, the null hypothesis given above does not restrict the parameters in the

transition function, namely, 7 and 9. However observe the fact that whenever the

null hypothesis holds true the transition function, F(zt, 7, c),and hence, 7 and c drop

out of the model.

The presence of unidentified nuisance parameters problem can also be seen when

expressing the null hypothesis of linearity in several different ways. In addition to

the equality of the AR parameters in two regimes, H0 = 1r’l = «5, one can formulate

the null hypothesis H6 = 7 = 0. This alternative formulation of the null hypothesis

also gives rise to a linear model. For example, if 7 = 0 the logistic function in (1.3) is

equal to 0.5 for all values of zt, and the STAR model in (1.6) reduces to an AR model

with parameter W. Similarly under H6 the exponential function in (1.4) becomes

zero and hence the ESTAR model reduces to a linear AR model with parameter 7n.

Under this alternative null hypothesis, 1r1and 1r2and the threshold parameter c can

take any values.

A recent account of the problem of unidentified nuisance parameters under the

null hypothesis is given in Hansen (1996). The main consequence of the presence of

unidentified parameters under the null hypothesis is that the conventional statistical

theory can not be applied to obtain the asymptotic distribution of the test statistics.

The relevant test statistics in general tend to have non—standard distributions for

which an analytic expression is not available. Hence the critical values need to be

determined by means of simulation methods which in turn can be quite prohibitive

depending on the statistic.

To avoid the nuisance parameters problems in testing for linearity against the

STAR type nonlinearity, Luukkonen, Saikkonen and Tera'svirta (1988) proposed to

replace the transition function F(.) by a suitable Taylor series approximation. The

benefit of such a solution is that the problem is re—parameterized so that the iden-

tification problem is no longer present. The linearity is then tested by means of a

12



Lagrange Multiplier [LM] statistic which has a standard asymptotic xz—distribution

under the null hypothesis. This procedure is quite appealing as it does not require

the estimation of the model under the alternative hypothesis. It also avoids the use

of simulation methods to assess the significance of test statistics. One shortcoming

of this method is that the LM tests can potentially have power against any other

form of misspecification or nonlinearity that may be approximated by the transition

function used. In other words, rejection of the null may not always indicate that

the correct specification is a STAR model. Thus, diagnostic tests need to be used in

evaluating the fit of the models before concluding on the STAR type nonlinearity.

As noted in Granger and Terasvirta (1993), in testing linearity against the al-

ternative of a STAR model, based on an AR(p) model under the null hypothesis,

one needs to distinguish three situations depending on the nature of the transition

variable 2,:

1. z, is a lagged endogenous variable yt_d, with 1 S d S p;

2. z; is a lagged endogenous variable yt_d with d > p, or an exogenous variable wt;

3. z; is a linear combination of y,_1, . . . ,ytp, that is a’i, with (1 unknown.

The first two situations test linearity against STAR with a specified transition

variable, which is most often encountered in applications of STAR modelling in eco—

nomics and finance. The test statistic differs slightly in the first situation compared

to the second as 2t is contained as a regressor in the model under the null hypothesis

whenever d S p. The test statistics that result in situation three are usually inter-

preted as general tests against STAR-type of nonlinearity, see for instance Terasvirta

(1998). In the rest of this section we first present derivations of the test statistics

that are used in the first situation and then give some remarks on the differences that

arise in the second and third cases.
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Testing against LSTAR

In order to facilitate the presentation we first discuss the tests against the LSTAR

model and then the ESTAR model. Given the LSTAR model as in (1.6) with the

transition function (1.3) and with z, = yt_d for certain 1 g d S p, re—write (1.6) as

y: = 71,117t + (712 " 7r1)I$tF(yt—da 7, C) + “t (1-7)

Following the suggestion of Luukkonen et al. (1988) approximating the transition

function with a first order Taylor approximation around 7 = 0, we have

 

6F _ , ,c

F1(yt—d,’7, C) = F(l/t—dfl. 0) + ’7 (we; 7 )lv=o + Rl(yt—d,%cl

1 1

= ~2- + 17011-.) - C) + Rl(yt—d, 7. C) (1.8)

where R1(.) is the remainder term. Substituting F1(.) for F() in (1.7) and rearranging

terms gives the auxiliary model

311 = (150.0 + (Pair-1‘ ¢lityt—d + 77: (19)

where 17; = u; + (7T2 — 7r1)’x¢ + R1(yt_d,7,c). Note that under the null hypothesis,

the remainder term is equal to 0 and m = ut . Thus the remainder term does not

affect the properties of residuals under the null hypothesis. This in turn implies that

the distribution of the test statistics will not be affected by the remainder term. The

relationship between the parameters 4),- = (¢g,1,---,¢i,p),i = 0,1, in the auxiliary

regression model in (1.9) and the parameters in the LSTAR model in (1.7) are given

by

450,0 = %(7Tl,o + 7T2,o) — $700120 - 7T1,o) (1-10)

(150,4 = ‘;'(7r1,d + Wad) - i7 C(7T2,d - 7T1,d) — (”2,0 - ”1.0) (1-11)

¢0,j =%(771,j +7T2J) — i’YCWaj — “14): j = 11' ' 'P, j 7‘é d: (1-12)

4514' = $7007” — 7T1,j)a j = 1:°"1p° (1-13)
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These relationships show that the restrictions 1n 2 «2 or 7 = 0 imply ¢1J = 0 for

j = 1, - - - , p. Therefore testing the null hypothesis Ho : 7r] = 7r2 or H6 :7 = 0 in (1.7)

is equivalent to testing the null hypothesis H6’ : 451 = 0 in (1.9). This hypothesis

can be tested by a standard variable addition test. The test statistic is the standard

Lagrange Multiplier test for parameter restriction and denoted by LMI. This statistic

is X2 distributed with p degrees of freedom under the null hypothesis of linearity under

certain regularity conditions which are given in Saikkonen and Luukonen (1988). This

test is usually referred to LM—type statistic because the LM1 statistic does not test

the original null hypothesis H6 : 7 = 0 but rather the auxiliary null hypothesis

H6’ :43 1 = 0.

The above test statistic does not have power in cases where only the intercept is

different across regimes, that is when 7r”) 75 «2,0 but “M = 7I2.j j = 1, - - - , p. This can

easily be seen from (10—13) which shows that (1)1 J- = 0, j = l, - - ' , p. Luukonen et al.

(1988) suggest use of a third order Taylor approximation of the transition function

to solve this problem. This is because the second order Taylor approximation of the

Logistic function around 7 = 0 is zero. The third order Taylor approximation of the

transition function is;

 

 

63F _ , ,c

F3(yt_d, ’y, C) = F(y¢_d, 0, C) '1' 7 (2:7: 7 ) 17:0 + (1.14)

1 63F(y -d: ’7: C)

673 5,73 |7=o + Rafi/pd, ’7, C)

—l+l( —c)+i3( —c)3+R( C)

Now replacing the transition function F() with its third order approximation results

in the auxiliary model

3!: = ¢0,0 + 45bit + (blityt—d ‘1' 4535:3134 + (15:35:13.0: '1' Th (1-15)

where 7h = u¢+(1r2 ——1r1)’x¢R3(y¢_d,7, c), and "0.0 and the 42,-, i = 1, 2, 3, are functions

of the parameters 1n, d2, 7, and c. The null hypothesis of linearity H6 becomes H6’ :
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(151 = (I); = 933 = 0. This hypothesis can also be tested by a standard LM-type

test. Under the null hypothesis of linearity, the test statistic denoted by LM3, has

an asymptotic x2 distribution with 3p degrees of freedom. A parsimonious version

of LM3 statistic can be obtained by first observing that the only parameters that

depend on the constants 7r”) and an are $2.11 and $3,.) and hence, augmenting the

auxiliary equation (1.9) with regressors yid and yf_d, that is,

31: = (30.0 + (565% + ¢jityt—d + (”2,0113% + (b3.dyi1—d + 77: (1.16)

The null hypothesis of linearity can be tested by testing the hypothesis Ho : 461 = 0

and 952,4 = (153,4 = 0. The resulting test statistic denoted by LM3E, has an asymptotic

x2 distribution with p + 2 degrees of freedom.

Testing against ESTAR

Granger and Terfisvirta (1993)and Terasvirta (1994) show that linearity can

be tested against an ESTAR alternative, given by (1.7) with (1.4), by replacing the

exponential transition function with a first order Taylor approximation around 7 = 0.

Approximating the exponential function around 7 = 0 gives

aF(yt—d171 C)
 

F1(yt—d,% C) = F(iUt-d, 0, C) + 7 87 l7=o +R1(yt—da ”7.0)

= ’YU/t—d — C)2 + Rift/pd, ’7, C), (1-17)

which leads to the auxiliary model,

y. = ¢0,o + 453:2. + my.-. + 4532.113... + m (1.18)

where m = ut+(7r2—1r1)’mtR1(y¢_d, 7, c). Granger and Tera'svirta (1993) and Tera'svirta

( 1994) show that the restriction 7 = 0 corresponds with (bl = $2 = 0 in (1.18). The

LM2 statistic which tests this null hypothesis has an asymptotic X2 distribution with

2p degrees of freedom.
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Recently Escribano and Jorda(1999) argue that a first order approximation for

the exponential function is not sufficient to capture certain characteristics of the ex-

ponential function, especially, the two inflection points of the function. They suggest

a second order Taylor approximation,

8F(yt—da 7) C)

F2(yc—d1%0) = F(yt—da 0, C) + 7 67 |7=o

+172 82F(y;—d: 7: C)

2 8'7 17:0

 + 122(3):...“ 7. C) (1'19)

1

Substituting back to (1.7) yields the auxiliary regression,

yt = (150.0 + ¢bit+ ¢lityt—d + ¢I2ityt2—d '1' (15:35:93.1 + (blityf—d + 77: (1-20)

The null hypothesis to be tested is H6 : 451 = (152 = (153 = $4 = 0. The resulting LM

type test is denoted by LM4. It has an asymptotic X2 distribution with 4p degrees of

freedom under the null hypothesis. Escribano and Jorda(1999) show by simulation

that the LM4 test have higher power compared to the LM2 test statistic. When 2, is a

lagged endogenous variable y¢-d with d > p or an exogenous variable, w, the resulting

test statistics are very similar to the ones derived above. The only difference is the

additional regressors, zf, i = 1,2, - - - , that enter the auxiliary model. For example,

the auxiliary model (1.18) based on the first Taylor approximation of the exponential

function now becomes

9: = 450.0 + (15653: + 451,02: ‘1' 45:53:21: + 7k

while the auxiliary model (1.15)based on the third-order Taylor approximation of the

logistic function becomes;

31: = $0.0 + ¢6it+ 451.02. + ¢litzi+ (152,023 + (#251312? + 433.02? + $353.23 + 17:-

In the case linearity is tested against an alternative with z, = a’it, the number of

auxiliary regressors in the re-parameterized model increases very rapidly when the
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parameter vector (1, which defines the linear combination of yt_1, - - - , yt_,,, that is

used as transition variable, is left completely unspecified. In order to compute the

test in practice, p needs to be set fairly small or the length of the time series has to

be sufficiently large. Discussion of this issue can be found in Granger and Terasvirta

(1993).

In the small samples, the usual suggestion is to use F—versions of the LM test

statistic because these have better size and power properties than the X2 versions.

The F—versions of the LM tests can be computed as follows;

1. Estimate the model under the null hypothesis of linearity by regressing y, on 33,.

Compute the residuals, i1, and the sum of squared residuals SSRO = 2;, 11?.

2. Estimate the relevant auxiliary regression of it, on 3:, and ityLd, where i will be

based on the LM statistic considered. For instance, in the case of LM3 statistic

based on (1.15) i runs from 1 to 3. After estimating the relevant auxiliary model

compute the sum of squared residuals and label it by SSR1.

3. The LM, statistic is computed as

(SSRO — SSR1)/df0

LM‘ = SSR1/df1

 

where dfO and df1 refers to the relevant degrees of freedoms for the numerator

and the denominator which will depend on the LM statistic considered. For

example, in the case of LM3based on (1.15), the F- version is

_ (3512, — SSR1)/3p

LM3 “ ssei/(T — 4p — 1)’
 

which under the null hypothesis is approximately F distributed with 3p and

T — 4p - 1 degrees of freedom.
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Selection of transition variable and function

The selection of an appropriate transition variable in the STAR model and choice

of a suitable transition function are usually done during the linearity testing step

of the specification. As illustrated in Teriisvirta (1994) the LM3 statistic, although

developed for testing linearity against LSTAR alternative, should have power against

ESTAR alternative as well. Intuitively this can be seen by comparing the auxiliary

models (1.15) and (1.18) which are used for computing LM2 and LM3 statistics re-

spectively. It is easy to see all auxiliary regressors in (1.15) are included in (1.18).

Hence it is intuitive to think that LM3 test might have power against ESTAR al-

ternatives. Observing this Terasvirta (1994) suggests that the appropriate transition

variable in the STAR model can be determined by first, without specifying the form

of the transition function, by computing the LM3 statistics for several candidate tran-

sition variables 21,, - - - ,zmt, say, and selecting the one for which the p—value of the

test is smallest. The rationale behind this procedure is that the test should have the

highest power when the alternative model is correctly specified, that is, if the cor-

rect transition variable is used. In other words if the auxiliary regression model that

is used in calculating the LM3 statistic is considered to approximate the (L)STAR

model to a certain degree of accuracy, then selecting 2: as the choice which minimizes

the residual variance of the auxiliary model is equivalent to selecting z, as the vari-

able that maximizes the LM—type statistic. This is because LM—type statistic is a

monotonic transformation of the residual variance. Simulation results in Teriisvirta

(1994) indicates that this procedure works quite well in a univariate setting.

If linearity tests indicate presence of STAR type nonlinearity in the time series

and an appropriate transition variable has been selected then one usually proceeds

with selection of the transition function that appropriately models the STAR type

of nonlinear dynamics. In general, the logistic, the exponential, or the quadratic
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logistic function given in equations, (1.3), (1.4) and (1.5), are used. Terésvirta (1994)

suggests using a decision rule based upon a sequence of tests nested within the null

hypothesis corresponding to LM3. In particular, he proposes to test the hypotheses

H03 : ¢3 = 0:

H02:¢2:01¢3=01

H011¢1=0l¢3=¢2=0,

in (1.15) by means of LM-type tests. Under the assumption that a first order Taylor

approximation of the exponential function is sufficient, it can be observed by inspect-

ing the expressions for the auxiliary parameters, (131, $2 and 453 in terms of parameters

of the original STAR model that 953 is nonzero only if the model is an LSTAR model,

that 432 is zero if the model is an LSTAR model with 1r1'o = um and c = 0 but is

always nonzero if the model is an ESTAR model, and that 451 is zero if the model

is ESTAR model with it”) = «2,0 and c = 0 but is always nonzero if the model is

an LSTAR model.These observations indicate the following decision rule; if the p—

values corresponding to H02 is the smallest, an ESTAR model should be selected,

while in all other cases an LSTAR model should be the preferred choice.

An alternative method proposed by Escirbano and Jorda(1999) involves use of

LM4 as a test for general STAR-type nonlinearity. The proposed decision rule for

choosing between the LSTAR and ESTAR alternatives is based on the observation

that, assuming «1,0 = «2,0 and c = 0 in (1.7), the properties of ¢1 and $2 given above

also apply to 433 and 954 in (1.20), respectively. Hence, they suggest using the following

hypotheses

H63 245 2 = $4 = 0,

H6” 1 ¢1 = ¢3 = 0,

in (1.20). The selection rule is choose LSTAR (ESTAR) model if the minimum

p-value is obtained for H6 (H63). Their simulation results indicate that in case the
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true data generating process (DGP) is an LSTAR model, the power of the LM3test

is in general higher than the power of the LM4 test, while reverse holds if DGP is

an ESTAR model. This finding is intuitive as the p additional auxiliary regressors

gag/La, in (1.20)are redundant in case of an LSTAR model, and the use of p extra

degrees of freedom by the LM4 statistic causes a loss in power. In case of an ES-

TAR model however, these extra terms contain vital information which more than

compensates the use of additional degrees of freedom. They also find that their pro—

cedure in deciding between LSTAR and ESTAR models performs better than that

of Tera'svirta (1994). Recent increases in computational power have made the above

discussed decision rules about the transition function less important. It is now possi-

ble to estimate a number of STAR models with different transition functions and to

choose among them at the evaluation stage by using misspecification tests. Given the

results in Terésvirta (1994) that the above mentioned procedure may not select the

correct model always, it seems that rather than using these decision rules, one may

prefer to estimate several STAR models and choose the one that best describes the

data at hand by using certain misspecification tests that will be discussed in section

1.6.

Effects of Heteroscedasticity on tests of STAR type nonlinearity

If there is neglected heteroscedasticity it will have effects similar to residual

autocorrelation, in that it may lead to spurious rejection of the null hypothesis of

linearity. Wooldridge (1990, 1991) have developed specification tests which can be

used in the presence of heteroscedasticity of unknown form. Wooldridge’s (1990,

1991) procedure can be applied in the present context to robustify the tests against

STAR-type nonlinearity, see also Granger and Teriisvirta (1993, pp.69—70). For an

illustration consider the LM3 test discussed above. The heteroscedasticity-consistent

(HCC) variant of the LM3 statistic based upon (1.15) can be computed as follows;
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o Regress y, on at, and obtain the residuals 11,;

o Regress the auxiliary regressors :Z‘tyLd, i = 1, 2, 3, on 2:, and compute the resid-

uals é,;

a Weight the residuals é, from the regression in step 2 with the residuals it, ob-

tained in step 1 and regress 1 on me. The explained sum of squares from this

regression is the LM—type statistic.

One issue raised by the simulation results in Lundebrgh and Terésvirta (1998) on

robustifying the linearity tests for the presence of unknown heteroscedasticity is that

in some cases the robustification removes most of the power of the linearity tests, so

that existing non-linearity may not be detected. In order to better understand the

power and size properties of LM-type tests a simulation study is conducted. To see

how the two versions of the linearity tests behave under a true DGP of linearity and

nonlinearity in the conditional mean data from AR and LSTAR models generated with

GARCH and without GARCH effects in the conditional variances. The parameter

specifications for different models and conditional variances are given in (1.2), where

a missing value denotes the corresponding parameter value in the respective model is

equal to zero.

The number of replications in the simulations study is set to 2000. The length of

the generated time series is 100, 300, 500, and 1000 observations after removing the

first 100 observations from the beginning of the series to eliminate the effects of the ini-

tial values which are set to zero. For each replicate two versions of LMg, LM3 and LM4

tests against STAR-type of nonlinearity and corresponding p-values are computed.

Namely, standard least squares based version and heteroscedasticity consistent ver-

sion based on Wooldridge (1990, 1991) are computed.

To see how the two versions of the tests behave when nonlinearity is present in the

conditional mean data is generated from LSTAR models with autoregressive lag orders
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set equal to 1 and 2. For convenience, these DGPs are denoted by LSTAR(l) and

LSTAR(2). The conditional variances are generated to be either constant or follow a

GARCH(1,1) process. The results from this experiment are given in table (1.3). One

clear result from the table is that as the sample size increases the empirical power of

the LM-type tests increases substantially for all of the tests considered. The power

of the tests is better when LSTAR(2) is the alternative model against linearity. Both

versions of the tests have better power when there is GARCH effects. There is a slight

difference in power of two versions for moderate sample sizes in that LS versions of

the tests have a slightly better power than the HCC version. But this difference

disappears as the sample size increases. When there is nonlinearity and GARCH

effects both versions have comparable power, the LS variants have marginally better

performance, but this may be due to the fact that LS variants do not take GARCH

effects into consideration and they may have some power against GARCH effects and

thus they most often reject the null of linearity compared to HCC variants. In other

words standard versions of the tests may spuriously suggest nonlinearity when there

is heteroscedasticity in the conditional variance. This is also evident from table (1.4)

which gives the empirical size of the tests. As is evident from table (1.4) the empirical

size of the LS versions of all of the tests is higher than that of HCC variants. For

most of the cases considered empirical sizes of the LS variants of the tests were found

to be higher than the HCC variants and sometimes exceeds the nominal size of the

test. Thus for some of the cases especially when there are GARCH effects standard

tests suggest nonlinearity erroneously. The results from this simulation experiment

indicates that both versions of the tests have good size and power properties in terms

of detecting STAR-type of nonlinearity in the conditional mean of a given time series

and the HCC version have better size properties than the LS version in the presence

of heteroscedasticity of GARCH form.

23



Presence of outliers and their effects on nonlinearity tests

As might have been observed above STAR models can be parameterized to generate

very asymmetric realizations, in the sense that its realizations resemble linear time

series with a few outliers. A relevant question in this context is how the LM-type tests

discussed above perform when the DGP is a linear model but the observations are

contaminated by occasional outliers. This question is studied by van Dijk, Franses

and Lucas (1999). Their findings show that in the presence of additive outliers these

tests tend to reject the correct null hypothesis too often, even asymptotically. As

a solution they suggest to use outlier-robust estimation techniques. An additive

outlier can be viewed as an observation which is the genuine data point plus or

minus some value. This later value can be nonzero because of a recording error or

because of a cause outside the intrinsic economic environment that generates the

time series data. For instance, in the case of stock market or exchange rate data a

misinterpretation of sudden news flashes, which in turn can cause stock returns or

exchange rate returns to take unexpectedly large absolute values. In this sense the

data point is aberrant. An additive outlier for the time series y; formally can be

defined by y; = x, + <pI [t = T], t = 1, - - - ,T, where I [t = r] is an indicator variable,

taking a value of 1 when t = 7' and a value of zero otherwise. The time series 3:, is the

uncontaminated but unobserved time series, while y, is the observed variable. The

size of the outlier is given by cp, and in practice, the value of T is unknown.

Robust estimators are developed to obtain better parameter estimates in the pres-

ence of contamination, by assigning less weight to influential observations such as out—

liers, see for instance Huber (1981). For example, a robust estimator for the AR(p)

model y, = fl’xt + at can be obtained as the solution to the first order conditions

T

Zwr(rt)xt(yt — fi'xt) = 0 (1.21)

t=1

where rt denotes the standardized residual, rt E (y, — fl’zt)/(auwx(:rt), with on a
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measure of scale of the residuals w E y, — 6’33, and wx(.) and w,(.) are weight

functions that are bounded between 0 and 1. From (1.21) it can be seen that the

robust estimator is a type of weighted least squares estimator, with the weight for

the t—th observation given by the value of w,(.). The functions wx(.) and w,(.) is

chosen such that the t—th observation receives a relatively small weight if either the

regressor act or the standardized residual rt becomes unusually large. The weight

function w,(rt) usually specified in terms of a function 1,1)(rt) as w, (rt) = ’l/J(Tt)/Tt for

1', 76 0 and w..(0) = 1. Common choices for the w(.) function are the Huber and Thkey

bisquare functions. The Huber 1/J(.) function is given by

-K. if r, ;<_ —n,

10(71) = rt if ——n < T; S K. (1.22)

n if rt > n,

or w(r) = med(-n, rs, r), where med denotes the median and n > 0. The tuning

constant K. determines the robustness and efficiency of the resulting estimator. Since

robustness and efficiency properties of the estimator are decreasing and increasing

functions of It, the tuning constant should be chosen such that the two are balanced.

Usually n is taken to be 1.345 to produce an estimator that has an efliciency of 95

percent compared to ordinary least squares,(OLS) estimator if ut is normally dis-

tributed. The weights implied by the Huber function have the attractive property

that w,(rt) = 1, if —n g rt < It. Only observations outside this region receive less

weight. A noted disadvantage of the Huber function is that weights decline to zero

very slowly, hence subjective judgement is required to decide whether a weight is

small or not. The Tukey’s bisquare function is given by

rt(1 -(1'¢/K.)2)2 if | r, lg n,

1““) = (1.23)

0 If I T; I) K"

The tuning constant :9 again determines the robustness and efficiency of the resultant

estimator. Usually It is set equal to 4.685 to achieve 95 percent efficiency for normally
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distributed ut. In this function downweighting occurs for all nonzero values of rt.

Different from the Huber function the resulting weights decline to zero quite rapidly.

There are several possibilities for the weighting function proposed in the literature,

for a discussion of possible specifications for w(.) see van Dijk et al. ( 1999).

The weight function wx($t) for the regressor is usually specified as

wx(:rt) = w(d(:r,)°)/d(a:,)°, (1-24)

where w(.) is any appropriate function, d(:z:,) is the distance given by d(:r:t) =

Ix, — mil/oz, with m, and 0,. measures of location and scale of 23,, respectively.

These measures can be estimated robustly by the median mm = med(:1:t) and median

absolute deviation (MAD) 0;, = 1.483.med|:r:t — mz|,. The constant 1.483 is used to

make the MAD estimator a consistent estimator of the standard deviation where 1:, is

normally distributed. It is usually the practice to set a = 2 in order to obtain robust

standard errors.

Since weights w,(.) depend on the unknown parameters 3 they need to be deter-

mined endogenously. This in turn implies that the first order condition given in (1.21)

is nonlinear in 6 and 0“, and estimation of these parameters requires an iterative pro-

cedure. Recognizing that w,(.) is a function of (,6,au),wr(fi,ou), and denoting the

estimates from the nth iteration by Bwand (“7.)") respectively, it follows from (1.21)

that 760:“) can be obtained as the weighted least squares estimate

 

789;“) = Zf=1wr(76("
)a0£n))$tyt

Zf=1wr(5(").0£"))$?

where the estimate of o'u can be updated at each iteration using a robust estimation

of scale, such as MAD given above.

The above method gives robust estimators under the null hypothesis of linear-

ity. Robust estimation of STAR models has not been developed yet. The robust

estimation procedures allow one to construct test statistics that are robust to out-

liers. As illustrated in van Dijsk et al. ( 1999) outlier robust variants of LM type
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tests discussed above can be obtained as TRZ, using the R2 from the regression of

the weighted residuals 113(73) = (13,03) on the weighted regressors 623011,). :1: u’ where .4:

denotes element-by-element multiplication, V’ is the vector that includes the auxiliary

regressors. For instance in the case of LM3 statistics 11‘ = (x6,$6zt,:r;zf,x;zf). The

weights are obtained from the robust estimation of the AR(p) under the null. The

F-versions of the tests can be computed as well. The simulation results in van Dijk

et al. (1999) suggest that the robustified LM — type tests have good size properties in

small samples, also in the presence of outliers. In the case of no outliers the power of

the tests are lower than that of their non-robust counterparts. The power of standard

tests decreases drastically in the presence of outliers while power of the robustifed

tests is hardly affected.

1.5 Estimation of STAR Models

If the linearity tests indicate presence of STAR type of nonlinearity then one needs

to determine the transition variable z, and the transition function F(zt, 7, c) as above.

The next step involves estimation of the relevant STAR model. The estimation of

the STAR model carried out by nonlinear least squares (NLS). The parameter vector

1r = (1r6, 116,7, c)’ can be estimated as

T

fr = argmin,r QT(7r) = argmin,r 2(yt — S(:1:t;1r))2, (1.25)

t=1

where S(23,; 7r) is the skeleton of the model, that is,

S(xt; 71') = Wlxt(1_ F(Ztl’)’, 0)) + Wéth(ZtafY:c)' (1'26)

Under the normality assumption on disturbances NLS is equivalent to maximum

likelihood estimates. Under certain regularity conditions, which are discussed in

Gallant (1987) Pbtcher and Prucha (1997) among others, the NLS estimates are
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consistent and asymptotically normal. In other words, under certain conditions

fie: — 7m) —. N(0, 2:), (1.27)

where no denotes the true parameter vector, and 2 denotes the asymptotic covariance

matrix of the NLS estimates, it. )3 can be estimated consistently by H;leHq‘I 1, where

HT is the Hessian evaluated at ir,namely;

. 1 T 1 T
HT: -TZ qutUI = T Zlvs($t; 7T)VS($t; 7f), - V25($t; 701111, (128)

t=l t=l

with qt(ir) = (yt— S(:rt; ir))2, VS(a:t;1r)= 6301:);7r)/87r, and J} is the outer product

of the gradient

%qu.(rr)(yvq.77 = %ZafVS(mm«was,7r)’. (1.29)

Tt=l

The estimation can be performed by using any standard nonlinear optimization

procedure, see Hamilton (1994, sec. 5.7) for a brief survey. The following are the

important issues that deserve attention when carrying out the estimation procedure.

Use of good starting values will help optimization procedure to work smoothly.

In order to get good starting values, note that for fixed values of the parameters

in the transition function, 7 and c, the STAR model is linear in the autoregressive

parameters 1r1 and 71'2. Thus conditional upon 7 and c, estimates of 1r = («6,1r’2)’ can

be obtained by ordinary least squares (OLS)as

71,0710) = (21307:C)I)-I(Z$t(7ic)yt)1 (130)

where ast(7,c) = ($60 — F(zt,7,c)),:r6F(zt,7,c))’ and the notation 1r(7,c) indi-

cates that the estimate of 1r is conditional upon 7 and c. The OLS residuals

and the corresponding variance can be computed as it, = y, — 71(7, c)’:r,(7,c) and

62(7, c) = T‘1 2;, 62(7, c). An appropriate method proposed in the literature (see

for instance Tera'svirta (1998)) for obtaining sensible starting values for the nonlin-

ear optimization algorithm involves a two-dimensional grid search over 7 and c and

28



selects those parameter estimates which gives the smallest estimate for the residual

variance 6(7, c).

Another method suggested by Leybourne, Newbold and Vougas (1998) to simplify

the estimation problem involves concentrating the sum of squares function. Since the

STAR model is linear in the autoregressive parameters for fixed values of 7 and c, the

sum of squares function QT(7r) can be concentrated with respect to 7r] and 7r2as

T

omc) = 23y.— 7r(%¢)’$t(710))2- (1.31)
t=l

The estimates of 1r(7, c) is obtained from minimization of (1.31) for different values

of 7 and c and the one that gives the lowest residual variance is chosen for 7 and c as

the final estimates. This reduces the dimensionality of the NLS estimation problem

considerably, as the sum of squares function given in (1.31) is minimized with respect

to the two parameters 7 and c only.

One difficulty reported on the estimation of STAR models is obtaining a precise

estimate of the smoothness parameter 7. A reason why it is difficult to obtain a

precise estimate of 7 is that for large values of 7, the shape of the transition function

changes only little. Thus in order to get an accurate estimate of 7 one needs many

observations in the immediate neighborhood of the threshold c. As this is not typically

the case, the estimate of 7 is usually imprecise and often insignificant when judged

by its t-statistic. Granger and Teriisvirta (1993) and Terasvirta (1994) argue that

insignificance of the estimate of 7 should not be taken as evidence against the presence

of STAR-type nonlinearity. This should be assessed by means of different diagnostics,

some of which will be discussed in the next section.

To better understand the finite sample properties of the NLS estimates, the fol-

lowing simulation experiment is performed. Time series are generated from an ES-

TAR model, with 7r1 = 1,0.8,0.5,1rf = 0.9, 0.4, —0.5, 7 = 1,5,15, c = 0,0.5 and

u, ~ i.i.d.N(0, 1). The sample size is taken to be T = 100, 300, and 500 observations.
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In each replication the first 100 observations are deleted in order to minimize the

initialization problem. The parameters in the STAR model, with the lag orders set at

their true values and the correct transition function and variable, is estimated by the

NLS. Tables 1.5 through 1.10 show the mean parameter estimates, mean standard er-

rors, and root mean squared errors, skewness and kurtosis. The simulation results are

based on 2000 replications. The findings of the simulation experiment indicate that

as the sample size grows from 100 to 500 the parameter estimates improve in terms of

having smaller biases, root mean square errors and smaller standard errors. It seems

that for most of the designs the estimate of autoregressive and threshold parameters

are very precise especially for samples sizes of 300 and 500. On the other hand, the

estimate of the smoothness parameter has relatively higher biases, root mean square

errors, skewness and kurtosis. Although the precision of the smoothness parameter

increases with sample size, for small and large parameter specifications the estimates

are relatively less precise. The skewness and kurtosis values indicate that the distri-

bution of parameter estimates are far from being normal for especially small sample

sizes. As the sample size increases estimated skewness and kurtosis statistics get closer

to values that are more in line with a normally distributed random variable. The kur-

tosis for 1r and 7 is mostly above 3 indicating that larger estimates are obtained for

these parameters than one would expect under a normally distributed random vari-

able. On the other hand kurtosis estimates for 7r“ and c are mostly piled up around

values less than 3. In all experimental designs, the parameter estimates have positive

skewness except in one of the designs in which 7r = 0.5,1r‘ = —0.5,7 = 5,c = 0.

The nonzero skewness estimates reported in tables 1.5-1.10 indicate that distribution

of parameter estimates are not symmetric around the mean parameter estimate and

most often skewed in the positive direction. The general result from this experiment

is that usually the NLS performs poorly for sample sizes of 100 (which corresponds

the sample size available for many macroeconomic time series) and improves for sam-
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ple sizes higher than 300. In applications of STAR models with reasonable sample

sizes one needs to interpret inference based on asymptotic theory with caution.

1.6 Diagnostic Checking of Estimated STAR

model

This section discusses some diagnostic tests which can be used to evaluate estimated

STAR models. In particular, diagnostic tests for residual autocorrelation, remaining

nonlinearity, and parameter constancy will be discussed as developed in Eitrheim

and Tera'svirta (1996), Lundbergh, Terasvirta, and van Dijk (1999), and van Dijk

and Franses (1999).

1.6.1 Tests for serial autocorrelation

In order to facilitate the review consider the STAR model of order p,

31:: Show) ‘1' ut (1.32)

where 2:, = (1.5703172: = (yt_1,- - - ,yt_,,)’ as before and S(a:t;7r) is given in (1.26), is

called the skeleton of the model. As shown in Eitrheim and Terasvirta (1996) an LM-

test for k-th order serial dependence in u) can be obtained as TRZ, where R2 is the

coefficient of determination from the regression of fit on 65(17, 117/671' and k lagged

residuals 21,4, - - - ,a,-,.. Hats indicate that the relevant quantities are estimates under

the null hypothesis of serial independence of at. The resulting test statistic is denoted

by LMs(k), is X2 distributed with 1: degrees of freedom. As shown in Eitrheim and

Tera'svirta (1996), this test is a generalization of the LM-test for serial correlation

in an AR(p) model of Breusch and Pagan (1979), which is based on the auxiliary
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regression

P k

if; = Z (rpm-p ‘1' E at ‘1" 'Ut (1.33)

i=1 i=1

where now a, is the residuals from AR(p) model. In a linear AR(p) model (without

an intercept) S(:rt; 7r) = 25:, 7r,yt_,~, and

Maggi) = (yt_1,---,yt_p)’. In the case of STAR model, the skeleton is given by

S(a:t;7r) = n’lrrt(1 — F(z¢,7,c)) + 7r’2cctS(zt,7,c). Hence, in this case the parameter

vector is it = (1n, fig, 7, c) and the relevant partial derivatives 8%} can be obtained in

a straightforward manner, for details see Eitrheim and Teriisvirta (1996). The non-

linear function S(2:); it) needs to be twice differentiable in order for the above testing

procedure to work.

1.6.2 Testing for remaining nonlinearity

It is important to assess whether the estimated nonlinear model adequately cap-

tures the nonlinearity in the time series under investigation. An intuitive method

to examine this question is to apply a test for no remaining nonlinearity in the esti-

mated model(s). In the case of STAR models, an approach is to specify the alternative

hypothesis of remaining nonlinearity as the presence of an additional regime. This

approach is suggested by Eitrheim and Tera'svirta (1996). For instance, one can test

the null hypothesis that a two regime model is adequate against the alternative that a

third regime is necessary. Eitrheim and Teréisvirta (1996) develop an LM statistic to

test a two regime STAR model against the alternative of an additive 3-regime model

which can be written as,

y: = 77,131+ (772 — 7r1),5':t1:‘1(231t1'71)Cl)+(71'3 — W2)'31F2(22u’72,02)+ “t (134)

where F1(.) and F2(.) are the transition functions given either in (1.3) or (1.4) and

where c1 < 92 is also assumed. The null hypothesis of a two regime STAR model

can be expressed as either Ho : 72 = 0 or H0 : 7r3 = 72. This testing problem suffers
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from a similar identification problem as the problem of testing the null hypothesis

of linearity against the alternative of a two-regime STAR model discussed in section

4. The proposed solution is the same, namely approximating the transition function

F202,, 72, Cg) around 72 = 0. In the case of a third order approximation, it is shown

in Eitrheim and Terasvirta (1996) that the resulting auxiliary model will be

y; = (bbxt‘l’ (712 — ”ll'xthZufli. Cl) ‘1' (191571221 + 95255123; + (pge,z§,+ m (1.35)

where the parameters 49,-, i = 0, 1, 2, 3, are functions of the parameters 7T1,7T2,’72 and

c2. The null hypothesis H6: 72: 0 in (1.34) translates into H6’ : $1: 452 = (193: 0

in (1.35). The test statistic is computed as TR2 from the auxiliary regression of

the residuals obtained from estimating the model under the null hypothesis it, on the

partial derivatives of the regression function with respect to the parameters in the two-

regime model, 1r1,1r2, 71 and c1, evaluated under the null hypothesis, and the auxiliary

regressors itz2¢,i = 1,2,3. The resulting test statistic is shown in Eithrheim and

Teriisvirta (1996) to have an asymptotic x2 distribution with 3p degrees of freedom.

The statistic is denoted by LMAMR,3, where the subscript AMR is used to indicate

that this statistic is designed as a test against an additive multiple regime model.

van Dijk and Hanses (1999) derived an LM-type statistic for testing the null of

a two-regime STAR model against the alternative of a four regime STAR model by

using the same procedure as above. The null hypothesis is the two-regime STAR

model given in (1.2) and the alternative now is given by the following multiple regime

STAR model developed in van Dijk and Franses (1999);

y: = [73960 — F(Zu.71. C1)) + WéxeF1(Zu.71. C1)111 - F2(z2¢.72. C2)l (1-36)

+[WQC1(1— F1(2u. 71. C1)) + Wlxthzlt. 7. C1)]F2(z21. 72. C2) + at

In this model the relationship between y, and its lagged values are given by a linear

combination of four linear AR models, each associated with a particular combination
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of F1(z1t) and F2032.) being equal to 0 or 1. This model is called Multiple Regime

STAR (MRSTAR) model and is discussed in detail in van Dijk and Franses (1999).

The test statistic developed in van Dijk and Hansess (1999) involves replacement

of second transition function F2(z2t, 72, Cg) by a third order Taylor approximation to

render the auxiliary regression

y. = ((96513: + (”2 — 771)’$tF1(Z2t171101) + €5,117?th + charm; (1.37)

+¢3itz23t + ¢litFl(zlt.71.C1)22t + ¢gitF1(tha711C1)Z§t

+¢gitFl(ZIt. f71: C1)Z:23t + Tlt

The null hypothesis again can be stated as H0 : 72 = 0 in (1.37). It becomes H6 : ¢j =

0, j = 1, - - - , 6 which can be tested exactly the same way as above. The resulting test

statistic denoted by LMEMRAi s asymptotically xzdi stributed with 6(p + 1) degrees

of freedom, where the subscript EMR indicates that the statistic is designed as a test

against an ’encapsulated’ multiple regime model.

1.6.3 Testing parameter constancy

In order to assess the parameter stability in the estimated model LM type tests

are developed in Lundbergh, Tera'svirta and van Dijk (1999). For this purpose they

consider the MRSTAR model given in (1.37) with the second transition function F2

being a function of time t rather than 22.. In other words replacing the transition

variable in the second transition function with a t gives rise to so called Time-Varying

STAR (TVSTAR) model, which allows for both nonlinear dynamics of the STAR-type

and time varying parameters. With this replacement the model in (1.37) becomes

.21. = [713.(1 — F(zt.71.C1)) + 73x.F1(Z..71.C1)111- F2(t.72.C2)1 (1-38)

+[7rérc.(1- F1(z.. 71. C1)) + «bids. 7. C1)1F2(t. 72. C2) + 21,.
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This model is discussed in detail in Lundbergh, Terasvirta and van Dijk (1999). The

relevance of this model here is that by testing the hypothesis H0: 72 = 0, one tests

for parameter constancy in the two-regime STAR model (1.2), against the alternative

of smoothly changing parameters. The appropriate LM-type test statistic based on

a relevant, say a j‘h-order Taylor approximation of F2(t, 72, c2), is denoted by LMCJ-

is similar to the LMEMRJ‘ statistic with 22. = t. They also note that the asymptotic

theory works fine even if the transition variable is a non-stationary deterministic

trend, see also Lin and Terasvirta (1994).

1.7 Impulse response function analysis of esti-

mated STAR model

Since parameter estimates generally do not provide much information about

the dynamics of the estimated STAR model one needs to utilize alternative tools

in order to characterize the dynamic behavior of the series under study. Impulse

response functions (IRF) are convenient methods of evaluation of the properties of

the estimated model, as they allow one to examine the effects of shocks u. on future

evolution of the time series under investigation and hence provide a measure of the

response of y”), to an impulse i at time t.

In the case of linear models IRFs are defined as the difference between two real-

izations of yt+k which start from identical histories of the time series up to time t— 1,

denoted as 4.22-1. In one realization, the process is hit by a shock of size iota at time

t, while in the other realization no shock occurs at time t. All shocks occur between

the intermediate periods are set equal to zero in both realizations. This IRF is named

by van Dijk and Terasvirta (2000) as the traditional IRF and given by

T111017. lI. wt—l) = Elyt+k l“ t = L.Ut+1 = = “HI: = 0.01 — (1-39)
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Elyt-Hc lat = 0.ut+1 = = “1+1: = 0.4.

for k = 0, 1, 2, - - -, where E denotes the expectation operator. The second conditional

expectation in (1.40) is usually called the benchmark profile of the series. The IRF

given in (1.40) has certain properties whenever the time series y. follows a linear

model. First of all it is symmetric, as such a shock of size —L has an effect that is

exactly opposite to that of a shock of size +1.. Moreover, it is linear in the sense that

the IRF is proportional to the size of the shock. Lastly, it is history independent as its

shape does not depend on the particular history w,_1. These properties of traditional

IRF function can be easily observed by considering an AR(l) model. In the AR(1)

model, y; = 30 + filyt—l + at. since yt-Hc = C0713t- + gill/t + ut+k '1' .Blut-l-k—l + ' ' ' + 51““:

one can easily show that TIy = 66‘ . - -, for k = 0,1,2,---. From this equation it is

trivial to observe the mentioned properties. As discussed in Koop et al. (1996) and

Pesaran and Potter (1997) in general these somewhat simple properties do not hold

when the time series follows a nonlinear model, for example a STAR model. It is

shown that the impact of a shock depends not only on the history of the process but

also on the sign and size of the shock. Furthermore, as shown in Pesaran and Potter

(1997), when one wants to analyze the effect of a shock on the time series It > 1

periods ahead, the assumption that no shocks occur in the intermediate periods may

give misleading inference concerning the propagation mechanism of the model. The

assumption of no shocks in the intermediate periods for the linear models is justified

by the existence of Wold representation of the linear time series,

00

y. = lejut—j (1.40)

:0

which shows that shocks in different periods do not interact. For nonlinear time

series there does not exist Wold representation however. Nonlinear time series can be
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represented in terms of past and present shocks by means of the Volterra expansion,

yt z] 2 l/{y'ut—j ‘1' ZZ Cjiut—jut—i (1.41)

j=0 j=0 j=i

000000

'1” ZZZ: Cjiut—jut—iut—h '1' ' ' '.

j=0 j=i 1121'

as given in Granger and Terasvirta (1993). From this representation of any nonlinear

model it is obvious that the effect of the shock at on yt+k depends on the shocks

at“, - - - , ut+k, as well as on the history of the shocks, u¢_1,ut_2, - - -. In order to deal

with these problems Koop et al. (1996) developed so called the Generalized Impulse

Response Function (GIRF). GIRF for a specific shock at = L is defined as

Glyuc. Lt—1.w) = Elyt+k In t = Lawt—ll — Elyt+k Iw t—ll. (1-42)

for k = 1, 2, - - -. Note that the expectations of yt+k are conditioned only on the history

and/or on the shock. In other words, the problem of dealing with shocks occurring

in the intermediate periods is dealt with by averaging them out. That explains also

why the benchmark profile is the expectation of ym, given only the history of the

process 1122-1. Therefore, in the benchmark profile the current shock is averaged out

as well. This GIRF reduces to traditional IRF when the model is linear.

Koop et al. (1996) emphasize that the GIRF given in (1.42) is indeed a random

variable. The GIRF is a function of L and wt-“ which are realizations of the random

variables u. and the information set, 92-1. In this framework, GIRF given in (1.42)

can be written in a more general form as

Gly(k:ut:Qt—l) = Ell/1+1: lu tat—ll — Elyt+k 1Q t—ll (1-43)

The reformulation in (1.45) is flexible and useful for certain purposes as it allows

one to consider a number of conditional versions of GIRF that can be obtained. For

example, one might consider only a particular history w._1 and treat GI as a random
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variable in terms of u, only, that is,

GIy(k.Ut.wt—1) = Elyt+k [11 “wt—11 — Elyt-Hc Ia) t—ll- (1.44)

It is also possible to reverse the roles of the shock and history by fixing the shock at

u. = L and defining the GIRF as a random variable with respect to the history, 924.

Koop et a1 (1996) show that in general it is possible to compute GIRFs conditional

on any particular subsets A and B of shocks and histories respectively.

The GIRFs can be utilized in several ways in analyzing the dynamic properties of

the estimated model. They can be used to analyze the persistence of shocks. A shock

u. = t is called transient at history w._1 if GIy(k,i,w._1) becomes equal to zero as

k —> 00. If on the other hand, GI approaches a non zero finite value when k —+ 00 then

the shock is said to be persistent. It is intuitive to think that if a time series process

is stationary and ergodic, the effects of all shocks eventually converge to zero for all

possible histories of the process. Hence the distribution of G1,,(k, L, w._1) collapses to

a spike at 0 as k -—> 00. In contrast, for non-stationary time series the dispersion of

the distribution of GI,,(k, L, w._1) is positive for all k. Koop et al. (1996) suggest that

the dispersion of the distribution of 016(k,i,w._1) at finite horizons conveniently can

be used to obtain information about the persistence of shocks. For instance, one can

compare densities of GIRFs conditional on positive and negative shocks to find out

whether there is a difference in terms of persistence for negative and positive shocks.

GIRFs can also be used to asses the significance of asymmetric effects over time.

Potter (1994) defines a measure of asymmetric response to a particular shock at = L,

given a particular history wt_1, as the sum of the GI for this particular shock and

the GI for the shock of the same magnitude but with opposite sign, that is,

ASYyUc, L,wt_1) = 011709: t,w._1) + GI,,(k,—L,wt_1). (1.45)

An alternative measure of asymmetry can be obtained by considering the distribution

of the random asymmetry measures given above for each history and average across
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all possible histories to obtain

ASYy‘UC, L) = E[GIy(k, i,w._1)] + E[G'Iy(k, —L,wt_1)] (1.46)

= Elyt+k In t = L] + Ell/t-l-k lat = —61-

One problem in computing the GIRFs is that the analytic expressions for the condi-

tional expectations are not available for k > 1. Therefore they need to be estimated.

Koop et al. (1996) discusses in detail simulation methods to estimate GIRFs. In par-

ticular Monte Carlo or bootstrap methods are suggested for computation of GIRFs.

For details see Koop et al. (1996).

1 .8 Conclusion

This chapter reviewed the STAR models in reference to specification, estimation

and inference. Both ESTAR and LSTAR models are discussed extensively. Issues

pertaining to testing presence of STAR type nonlinearity, specification of autoregres-

sive orders, estimation, diagnostic checking and inference procedures are discussed in

some detail. The simulation experiments indicate that use of standard information

criteria, say AIC or BIC may not always give the correct autoregressive order within

the STAR models hence they need to be used cautiously. Both standard and het-

eroscedasticity consistent versions of STAR type nonlinearity tests have comparable

power properties in detecting STAR type of nonlinearity. The performance of NLS

in finite samples is analyzed by an extensive Monte Carlo experiments. The find-

ings of the experiment indicate that NLS performs poorly for sample sizes of 100 but

improves for sample sizes higher than 300.
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Table 1.1: Lag selection frequencies in AR(p) model
 

AR Order AIC BIC HQC LB

p T=250 T=500 T=250 T=500 T=250 T=500 T=250 T=500

1 734 728 984 993 906 938 875 870

2 120 114 13 6 67 43 8 6

3 62 68 2 1 12 15 10 14

4 35 37 1 0 11 3 15 14

5 25 28 0 0 2 0 15 21

6 24 25 0 0 2 77 75

 

Frequencies of lag length selection in AR(p) models on series generated from ESTAR model

(1.2) and (1.4), With 7r1'0 = 7r2‘0 = 0, TF1,1 = 0.6, 7T2; = 0.3, C = 0.5,ut ~ iidN(O, 1).

Table 1.2: Parameter Specifications for the generated DGPs:

generated with c = 0 and 7 = 5

DGP Conditional mean equation

“1,0 72,0 771,1 7T2,1 7T1,2 ”2,2

LSTAR(l) -0.3 0.1 -0.5 0.5

LSTAR(1)-GARCH(1,1) -0.3 0.1 -0.5 0.5 . .

LSTAR(2) -0.3 0.1 -0.5 0.3 0.5 -0.3

LSTAR(2)-GARCH(1,1) -0.3 0.1 -0.5 0.3 0.5 -0.3

AR(1) 0.5 0.8

AR(1)-GARCH(1,1) 0.5 0.8 .

AR(2) 0.5 0.8 -0.4

AR(2)-GARCH(1,1) 0.5 0.8

43

-0.4

All of the DGPs are

Conditional Variance

w or

1

1

0.3

0.3

0.3

0.3

5

0.6

0.6

0.6
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Table 1.3: Empirical power of the linearity tests.

Sample size: T=100
 

DGP LS HCC

LM2 LM3 LM4 LM2 LM3 LM4

STAR(1) 0.26 0.23 0.20 0.19 0.15 0.12

STAR(1)-G(1,1) 0.22 0.20 0.19 0.16 0.14 0.10

STAR(2) 0.56 0.50 0.45 0.39 0.33 0.25

STAR(2)-G(1,1) 0.62 0.57 0.53 0.44 0.39 0.31

Sample size: T=300

STAR(1) 0.65 0.62 0.57 0.61 0.57 0.50

STAR(1)-G(1,1) 0.62 0.59 0.55 0.57 0.52 0.46

)
)-

 

 

STAR(2 0.98 0.99 0.99 0.96 0.98 0.94

STAR(2 G(1,1) 1.00 0.99 0.99 0.98 0.98 0.97

Sample size: T=500

 

 

STAR(1) 0.88 0.87 0.83 0.87 0.84 0.79

STAR(1)-G(1,1) 0.86 0.83 0.80 0.83 0.79 0.75

STAR(2) 0.99 1.00 0.99 0.98 0.99 0.97

STAR(2)-G(1,1) 1.00 1.00 1.00 1.00 1.00 1.00

Sample size: T=1000

 

 

STAR(1) 0.99 0.99 0.99 1.00 0.99 0.99

STARE(1)- 1.00 1.00 1.00 1.00 1.00 0.99

G(1,1)

STAR(2) 1.00 1.00 1.00 1.00 1.00 1.00

STAR(2)-G(1,1) 1.00 1.00 1.00 1.00 1.00 1.00

Note: The LS stands for the standard least squares based versions of the LM-type tests,

HCC refers to the Wooldridge version of the unknown heteroscedasticity consistent version

of the tests. The empirical powers are computed at 5% significance level. The transition

variable used in the linearity tests is 312.1
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Table 1.4: Empirical size of the linearity test.

Sample size: T=300
 

 

 

 

DGP LS HCC

LM2 LM3 LM4 LM2 LM3 LM4

AR(1) .044 .042 .043 .037 .037 .028

AR(1)-G(1,1) .043 .036 .039 .044 .029 .028

AR(2) .048 .034 .034 .039 .033 .022

AR(2)-G(1,1) .048 .048 .044 .037 .029 .021

hline

Sample size: T=500

AR(1) .049 .043 .037 .048 .039 .030

AR(1)-G(1,1) .052 .041 .037 .051 .036 .028

AR(2) .051 .045 .053 .050 .040 .042

AR(2)-G(1,1) .053 .045 .045 .040 .028 .025

Sample size: T=1000

AR(1) .045 .040 .046 .048 .044 .041

AR(1)-G(1,1) .052 .044 .044 .049 .048 .037

AR(2) .056 .053 .050 .055 .048 .045

AR(2)-G( 1,1) .057 .056 .055 .050 .037 .035
 

Note: Each cell represents the proportion of rejections of the true null hypothesis of

linearity at 5% significance level. LS columns give the standard least squares based tests

and HCC columns give the Wooldridge type heteroscedasticity consistent versions of the

tests. The transistion variable used in the linearity tests is y¢_1.

Table 1.5: Simulation Results on the finite sample performance of NLE of STAR

 

models

Parm. Mean Est Mean RMSE BIAS Skewness Kurtosis

_ S.E.

T=100

77 1.043 1.143 1.717 0.430 1.370 5.360

1r‘ 0.850 0.322 0.172 -0.051 1.010 1.071

7 4.605 1.981 6.651 3.605 2.144 5.329

T=300

7r 0.964 0.522 0.795 -0.036 1.376 3.274

7r" 0.885 0.188 0.092 -0.015 1.014 1.038

7 3.657 1.900 5.123 2.657 2.313 5.091

T=500

7r 1.008 0.425 0.631 0.008 1.308 2.705

77‘ 0.888 0.164 0.078 -0.012 1.008 1.020

7 3.100 1.785 5.100 2.100 2.270 4.950
   

Key: Mean and RMSE, Bias, skewness and the kurtosis of NLS estimates of the parameters

in the ESTAR model, with 1r; = 1, 7r; = 0.9, 7 = 1, c = 0 and u; ~ i.i.d.N(0, 1). The table

is based on 2000 replications.
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Table 1.6: Simulation Results on the finite sample performance of NLSE of STAR

 

models

Parm. Mean Est Mean RMSE BIAS Skewness Kurtosis

_ SE.

T=100

1r 1.081 1.000 1.704 0.081 1.611 6.406

7r“ 0.852 0.269 0.166 -0.048 1.005 1.044

7 4.383 2.050 5.441 -0.617 2.138 5.246

T=300

rt 1.021 0.500 0.790 0.021 1.116 3.023

77" 0.878 0.161 0.115 -0.022 1.006 1.022

7 4.830 1.800 4.900 -0.170 2.036 4.850

T=500

7r 0.994 0.406 0.590 -0.006 1.039 2.636

77* 0.883 0.160 0.106 -0.017 1.008 1.015

7 4.885 1.650 4.225 -0.115 2.016 4.550

  

Mean and RMSE, Bias, skewness and the kurtosis of Nfi estimates of the parameters in

the ESTAR model, with 1r1 = 1, nf = 0.9, 7 = 5, c = 0 and at ~ i.i.d.N(0,1). The table is

based on 2000 replications.

Table 1.7: Simulation Results on the finite sample performance of NLSE of STAR

 

models

Parm. Mean Est Mean RMSE BIAS Skewness Kurtosis

__ S.E.

T=100

71' 1.028 1.053 1.611 0.028 1.740 7.025

1r* 0.846 0.396 0.180 -0.054 1.015 1.057

7 4.086 2.294 12.065 -10.914 2.258 5.958

T=300

7r 1.007 0.673 1.090 0.007 1.060 3.994

7r“ 0.883 0.146 0.118 -0.017 1.009 1.022

7 8.874 2.078 9.900 -6.126 2.006 4.395

T=500

7r 1.005 0.465 0.790 0.005 1.004 3.676

77“ 0.885 0.108 0.106 -0.015 1.008 1.011

7 10.389 2.005 7.151 -4.61_1_ 2.120 4.255
  

Mean and RMSE, Bias, skewness and the kurtosis of NTS estimates of the parameters in

the ESTAR model, with m = 1, «1' = 0.9, 7 == 15, c = 0 and at ~ i.i.d.N(0, 1). The table

is based on 2000 replications.
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Table 1.8: Simulation Results on the finite sample performance of NLSE of STAR

 

models

Parm. Mean Est Mean RMSE BIAS Skewness Kurtosis

S.E.

T=100

1r 0.960 0.439 1.527 -0.040 3.433 9.159

7r"‘ 0.815 0.219 0.213 -0.085 1.022 1.073

7 6.948 1.365 8.767 5.948 1.694 3.224

c 0.203 0.366 2.357 -0.297 0.142 2.524

T=300

7r 0.934 0.242 0.807 -0.066 1.851 4.186

7r" 0.878 0.210 0.157 -0.022 0.996 1.031

7 5.875 1.335 7.168 4.875 1.249 2.933

c 0.440 0.326 2.119 -0.060 0.368 2.023

T=500

7r 0.975 0.171 0.545 -0.025 1.984 4.019

7r* 0.887 0.071 0.067 -0.013 0.771 1.055

7 4.099 1.206 6.951 -3.099 1.118 3.349

c 0.515 0.289 1.847 -0.015 0.040 2.689

  

Mean and RMSE, Bias, skewness and the kurtosis of 0T8 estimates of the parameters in

the ESTAR model, with in = 1, 7r; = 0.9, 7 = 1, c = 0.5 and ut ~ i.i.d.N(0, 1). The table

is based on 2000 replications.

Table 1.9: Simulation Results on the finite sample performance of NLSE of STAR

models

 

Parm. Mean Est Mean RMSE BIAS Skewness Kurtosis

S.E.

T=100

7r 0.913 1.769 3.229 0.113 1.931 9.199

77" 0.379 0.657 0.278 -0.021 1.056 4.117

7 7.811 2.343 11.077 2.811 3.029 10.697

T=300

7r 0.901 0.866 1.944 0.101 2.004 5.082

7r“ 0.393 0.442 0.202 -0.007 1.071 3.419

7 6.611 2.176 7.783 1.611 2.902 6.179

T=500

7r 0.881 0.822 1.299 0.081 1.638 4.236

1r‘ 0.395 0.330 0.133 -0.013 1.016 1.686

7 5.991 2.110 6.817 0.991 2.771 5.353

  

Mean and RMSE, Bias, skewness and the kurtosis of NTS estimates of the parameters in

the ESTAR model, with M = 0.8, it} = 0.4, 7 = 5, c = 0 and at ~ i.i.d.N(0, 1). The table

is based on 2000 replications.
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Table 1.10: Simulation Results on the finite sample performance of NLSE of STAR

 

models

Parm Mean Est Mean RMSE BIAS Skewness Kurtosis

S.E.

T=100

7r 0.853 1.778 3.190 0.353 2.177 12.876

7r‘ -0.480 0.441 0.223 -0.020 -0.803 2.323

7 8.293 2.065 12.933 3.293 3.432 14.816

T=300

1r 0.724 1.121 1.800 0.224 2.094 6.876

7r‘ -0.507 0.225 0.167 -0.007 -1.049 2.146

7 6.684 1.175 8.286 1.684 3.174 7.559

T=500

7r 0.625 0.976 1.447 0.125 2.674 4.190

7r* -0.504 0.215 0.112 -0.004 -0.509 1.726

7 6.097 1.634 7.064 1.097 2.578 6.532

  

Mean and RMSE, Bias, skewness and the kurtosis of N_L—S estimates of the parameters in

the ESTAR model, with in = 0.5, it; = —0.5, 7 = 5, c = 0 and u. ~ i.i.d.N(0,1). The

table is based on 2000 replications.
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Figure 1.1: Examples of the exponential, logistic, functions for values

25 and threshold parameter c = 0.
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Figure 1.2: Sample realizations from the STAR models ”1.1 = —.3,1r1.2 = 0.7, c = 0

and u. ~ NID(0, 1)
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Notes: The figures in 2a-2e are sample realizations from ESTAR model with the given

parameter specifications, while figure in 2f is a sample realization from LSTAR model with

quadratic logistic function given in (1.5) with the same parameter specification as in 2e,

except, thresholds are specified to be C1 = 0, C2 = 0.5
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CHAPTER 2

Review of long memory models for

conditional mean and variance

2.1 Introduction: Definition and sources of long

memory in economic time series

This chapter briefly discusses the properties of long memory process with par-

ticular attention given to fractionally integrated processes. Surveys of long memory

processes, their statistical properties and applications in economics, finance and some

other fields can be found in Baillie ( 1996), and Beran (1994).

Traditionally, long memory has been defined in the time domain in terms of de

cay rates of long-lag autocorrelations, or in the frequency domain in terms of rates

of explosion of low-frequency spectra. A process with the long-lag autocorrelation

function given by,

7), = qkzd'las k —> 00 (2.1)

is called a long memory process. The definition in (2.1) implies the following condi-

tion,

T

1330 Z |p.-l= oo. (2.21

j=—T

That is, for a discrete time series, autocorrelation function, p,- is not absolutely

summable. See for instance, McLeod and Hipel (1978).

In the spectral domain a long memory process is defined in terms of the behavior of

the spectral density at low frequencies. A process is called long memory if the spectral
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density, fy(w) = cfw’z“ as w ——> 0+. A more general definition, provided by Heyde

and Yang (1997) in the frequency domain is simply, f(w) = 00 as w —-1 0*. Note

that the constants, c, and Cf can be replaced by so—called slowly varying functions,

i.e., functions such that for any t6 R, L(ty)/L(y) —> 1 as y —> 00 or y —1 0. Since

knowing the covariances (or correlations and variance) is equivalent to knowing the

spectral density, the long-lag autocorrelation definition in the time domain and low-

frequency spectral definitions are equivalent under the conditions given, for example

in Beran (1994, pp. 42-44).

A third definition of long memory involves the rate of growth of variances of partial

sums,

T

ST: Z 311-

t=1

A process is said to be a long memory process if var(ST) = 0(T2d“) for d > 0.

In other words, a process is a long memory process if the growth rate of variances

of its partial sums are in the order of Tad“. There is a connection between the

variance-of-partial—sum definition of long memory and the spectral definition of long

memory (and hence also the autocorrelation definition of long memory). In particular,

because the spectral density at frequency zero is the limit of %ST, a process has long

memory in the generalized spectral sense of Heyde and Yang if and only if it has

long memory for some at > 0 in the variance-of-partial-sum sense. Therefore, the

variance-of-partial—sum definition of long memory is quite general.

It should be emphasized that these definitions are asymptotic in the sense that

they characterize the ultimate behavior of the correlations, and variance of partial

sums as lags and/or sample size approaches infinity. In general they do not specify

the correlations and/or variance of the partial sums for any fixed finite lag and/or for

any fixed finite sample size. In particular, both correlation definition and the spectral

density definitions do not determine the absolute size of the correlations. In other

words, each individual correlations can be arbitrarily small while the decay rate of
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correlations is slow.

There is a natural desire to understand the nature of various mechanisms that

could generate long memory. Most econometric attention has focused on the role

of aggregation. Granger (1980) considered the aggregation of i = 1, - - - , N cross-

sectional components, 311,1 = my” + 65,2, where 6,3. is white noise, and it is also

assumed that for i 76 j 6,"; is independent of 6]"; and a,- is also independent of 6]";

for all i, j, t. As N —+ 00, it is shown in Granger (1980) that the spectrum of the

aggregated process, y. = 26:, y” is approximately given by,

 

N 1

fl! _ fiElvaT(6i.t)l/' |1__ aexpiwlzdpm)’

where F(a) = 0° Mdt, is the cumulative density function governing the 038.
B(PJ’)

Here, B(p, b) = fol ap'1(1 — a)b‘1doz = W, is the beta function, and p, b > 0.

Upon assuming that a,’s are distributed as a Beta distribution with parameters (p, b),

2

”(0) = 776.71
azp_1(1— a2)b_ldoz, 0 3 al,

then the kth autocovariance of y. is

 

_ 2 1 2p+k—l 2 b—2 1-1,
7y(k)—B(p,b)/Oa (1—a) da—Ck .

Thus Granger ( 1980) shows that the aggregated series, y), is a long memory process

in the sense that it is integrated of order (1 — 6).

Recently, Lippi and Zaffaroni (1999) generalized Granger’s result by replacing

Granger’s assumed beta distribution with weaker semi-parametric assumptions and

obtained similar results. Chambers (1998) considers temporal aggregation in addition

to cross sectional aggregation in both discrete and continuous time as the source of

long memory.

An alternative source of long memory, which also involves aggregation, has been

studied by Ciozek-Georges and Mandelbrot (1995), Taqqu, Willinger and Sherman
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(1997), and Parke (1999). This source of long memory involves the distribution of

the duration between consecutive events. In particular, the idea is based on the mod-

elling of aggregate traffic computer networks. For illustration, consider the stationary

continuous time binary series S(t), t 2 0 such that S(t) = 1 during ”on” periods and

S(t) = 0 during ”off” periods. The lengths of the on and off periods are assumed to

be independently and identically distributed (i.i.d) at all leads and lags. It is also

assumed that on and off periods alternate. Under these assumptions, consider M

sources, Sm(t),t 2 0, m = 1, - - - , M, and define the aggregate count in the interval

10. tT] by

tT M

SM(tT) = / (Z Sm(v))dv.

0 m=l

Let F1(y) denote the c.d.f. of durations of on periods, and F2(y) be the c.d.f. of dura-

tions of off periods, and further assume the following for the tail of the distributions

of on and off durations,

1— F1(y) N Cly-alLl(y),Wlth1< (11 < 2,

1 — F2(y) ~ ng_a2L2(y),W1tll1 < (12 < 2.

Thus the power-law tails imply infinite variance for the on and off durations. By

letting first M —1 co and then T -> oo Cioczek-Georges and Mandelbrot (1995)

and Taqqu et al. (1997) show that SM(tT) after being appropriately standardized,

converges to a fractional Brownian motion. The regular Brownian motion, B(r),

is a continuous time stochastic process whose increments are independent Gaussian

distributed. The fractional Brownian motion, Bd(r) is regarded as the approximate

(—d) fractional derivative of regular Brownian motion, Bd(r) = Fur—LT) f;(r—y)ddB(y)

See Beran (1994) for details. Hence, the aggregate counts in the interval [0, tT] is a

long memory process.
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Parke (1999) considers a closely related discrete-time error duration model. In

particular, he assumes that the aggregate process, yt is being generated by the follow-

ing sum, yt = Z:=_°o g,,tu,, where at ~ i.i.d.(0,0‘2), and 98,: = 1(t g s + n,), where

1(.) is the indicator function, and n, is the stochastic duration between consecutive

errors. Assuming a probability law for the distribution of n, that implies infinite

variance for the durations, similar to above, leads y, to be long memory.

An alternative route, that may lead to long memory, explored by Diebold and

Inoue (2001), involves structural change or stochastic regime switching. They show

how some simple stochastic regime switching models may produce realizations that

appear to have long memory under conditions that ensure that as sample size increases

the realizations tend to have just a few breaks. For illustration purposes consider the

following mixture model,

yt=l1t+€t

#t = #t—l + Ut

0 w.p. l—p

'Ut =

wt w.p. p

where wt ~ iidN(0, 0,2”) and at ~ iz'dN(0, of). They show that under the assumption

that p = 0(T2d‘2), O < d < 1, yt will be an I(d) (integrated of order d) process.

Diebold and Inoue (2001) show several other stochastic models under certain con-

ditions (mostly assumptions that dictate how certain parameters, such as mixture

probabilities vary with T) can generate realizations with long memory. Their theo-

retical results indicate that regime switching (structural change) and long memory are

easily confused when only a small number of regime switchas/breaks occurs. Guided

by their theoretical results, they conduct extensive Monte Carlo analysis to verify

how in finite samples with fixed-parameter stochastic regime switching models whose

dynamics is either I(O) or I(1) one can obtain realizations that have long memory
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dynamics. Diebold and Inoue (2001) conjecture that threshold autoregressive (TAR),

smooth transition autoregressive models (STAR) may have realizations with long

memory once one allows thresholds to change appropriately with sample size.

2.2 Long Memory Models

This section discusses parametric models that are capable of capturing long

memory phenomena in both the conditional mean and the conditional variance of a

univariate series. In particular, the fractionally integrated autoregressive moving av-

erage (ARFIMA) model, developed by Granger and Joyeux ( 1980), Granger ( 1980),

and Hosking (1981) for the conditional mean of a time series, and fractionally inte-

grated autoregressive conditional heteroscedastic (FIGARCH) model due to Baillie

etal. (1996) will be reviewed in terms of representation, specification, estimation,

and inference.

2.2.1 The ARFIMA Model

Integrated autoregressive moving average (ARIMA) models were introduced by Box

and Jenkins (1970). The theory of statistical inference for the ARlMA models is

well developed, see for instance, Brockwell and Davis (1997), and Hamilton (1994).

ARFIMA models are natural extensions of the ARJMA models. Therefore, let us

first recall the definition of ARMA and ARIMA processes. To simplify the notation

assume that E(yt) = p = 0. Otherwise, 3;, needs to be replaced by y, — p in the

following formulas. First define the polynomials,

p .

(15(13) = 1 — 2 45,33

i=1

q

0($)=1+ 261151.

i=1
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where pandq are integers. Assuming that all the solutions of polynomial equations,

(19(3) = 0 and 0(x) = 0 are outside the unit circle, an ARMA(p, q) model is defined

to be the stationary solution of

(MI/)9: = 6(L)u,, (23)

where L is the lag operator, and disturbances, u, are usually assumed to have zero

mean, E(ut = 0), and finite variance, E(uf) = 03 and are serially uncorrelated,

E(utu,) = O for t 76 3. If equation (2.1) holds true for the dth difference (1 — L)dy¢,

then y; is called an ARIMA(p, at, q) process with the corresponding equation, now

given by

¢(L)(1 — L)dy, = 0(L)u,. (2.4)

Note that ARMA(p, q) model is encompassed by the ARIMA(p, d, q) model in the

sense that ARMA(p, q) model is obtained from ARIMA(p, (1, q) model by letting

d = 0. If (1 2 1, then the original series 3;, is not stationary and hence to obtain

a stationary process y; needs to be differenced d times. Generalization of (2.4) to

non-integer values of (1 gives the ARFIMA(p,d,q) model. Note that if d is an integer

(d 2 0), then (1 — L)dcan be written as

d

(1—L)d=§j d (-1)"L".
i=0 k

with the binomial coefficients

d d! F(d + 1)

k k!(d—k)! = F(k+1)I‘(d—k+1)’

 

where F(.) denotes the gamma function and is defined by

F(s) = [00° exp(—:r)a:"ld:c.
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Since the gamma function is defined for all real numbers, the binomial coefficients

can be extended to all real numbers d. For any real number (1, (1 — L)di 3 defined by

(1—L)d=:: :=F((—1)"L’°=1—dL—5i(—l—;!—d)L—2—m (2.5)

 

°° F(k d) k

—,,d11,)—LZI‘(k+1)I‘(—d)L’

where F stands for the hypergeometric function which is defined formally by

F(m +j)F(n +j)

F(m))I‘)(n))2 F(s +j)F(j + 1) '

 F(m,;n,s:r)=

For all positive integers only the first d + 1 terms are nonzero and hence, for positive

integer d (2.6) is the usual dth difference operator while for non-integer d, the

summation in (2.6) is genuinely over an infinite number of indices. Given (2.6)

Granger and Joyeux (1980) and Hosking (1981) proposed the following definition for

the ARFIMA model:

Definition 2.1 Let 3;, be a stationary process such that

¢(L)(1 - leyt = 0(Llut (2-5)

for some —% < d < %. Then y; is called an ARFIMA(p, (1, q) process.

The range that makes the ARFIMA(p, (1, q) process in (2.6) long memory is

O _<_ d < %. The upper bound (1 < % makes the process covariance stationary.

For d 2 % the ARFIMA(p, d, q) process is not covariance stationary. In particu-

lar, the usual definition of the spectral density of yt would lead to a non-integrable

function. Whenever d falls in g, 1) then the process is considered to be covariance

non-stationary. Moreover, the ARFIMA(p, d, q) process given in (2.6) is invertible

for values of d > —-;— and have an infinite order autoregressive representation. For

the range —% < d < % the ARFIMA(p, d, q) process is invertible and stationary

and can be represented by both as an infinite order autoregressive or infinite order
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moving average process. These representations for the general ARFIMA(p, d, q) are

given in Sowell (1992). They are complicated functions of hypergeometric function.

For p = q = 0 the ARFIMA(0, (1, 0) process is also called fractional white noise, see

Baillie (1996). This is because a random walk is the discrete analog of the Brownian

motion and similarly the discrete time version of fractional Brownian motion is the

fractionally differenced white noise. Note that ARFIMA(O, d, 0) process is given by

(1 — L)dyt = Ut. (2.7)

In this case, the infinite order autoregressive and moving average representations are

easy to obtain from (2.7) as shown in Hosking (1981). In particular, the infinite order

autoregressive representation is,

co

zn=§jmmh+mb as)

k=0

where the infinite order autoregressive weights are given in (2.6) and for k —) oo,

7r,c ~ file-d“. (2.9)

The infinite order moving average representation is obtained by use of the Wold

decomposition, and given by,

Kit = (1 — Ill—dth = E :wkUt—k

k=0

2 3
d(d+ 1)L + d(d+1)(d+ 2)L + . .11“ (2.10)

=u+dL+ 2! a 

The infinite order moving average coefficients alternatively can be expressed by use

 of the gamma function. Since, F(d + k) = d(d+l)(d?a')"(d+k'1) it follows that W =

Tglff—lc‘gfi. When k —) 00, the infinite order moving coefficients will be approximately

equal to,

1
~ _kd-l, 2.11
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Equation (2.6) can be interpreted in several ways. For instance, defining, 37, ==

¢‘1(L)0(L)ut, it can be written as

(1‘ L)dyt = 9:-

This representation means that an ARMA process is obtained after passing yt through

the fractional difference operator (or infinite linear filter) (1 -— L)“. Alternatively, (2.6)

can be written as

y. = ¢(L)’10(L)y{,

where y,“ is an ARFIMA(0, (1, 0) process defined in (2.7). In this representation, y, is

obtained by passing an ARFIMA(0, d, 0) process through an ARMA filter. Figures

1.a to 1.d show sample realizations of several ARFIMA processes with disturbances

u, ~ iidN(0,0.25) and the same long memory parameter d = 0.3. It is apparent

from these graphs that many different types of dynamic behavior can be obtained.

Figures 2.a to 2.d show the first fifty autocorrelations of the corresponding processes

together with the 95 percent confidence intervals. As is evident from the figures the

sample realizations are quite persistent in their autocorrelations in that there are

very significant correlations in higher lags. The parameter d determines the long run

behavior of the process while autoregressive and moving average parameters allow

one to model short-run dynamics more flexibly. In this sense, ARFIMA models are

very flexible and parsimonious as they allow one to model both short run and long

run behavior of a time series simultaneously.

The spectral density of an ARFIMA process can be obtained directly from (2.6).

Note that the spectral density of an ARMA process, g, is given by;

_ 0?: l6’(<‘3“‘")l2

M“) ‘ % |¢(e‘“)|2’

where w is the angular frequency. Since the ARFIMA process is obtained from a

process fit with spectral density, fg by applying the infinite linear filter, 2:10 “37,4,
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then by a result from Priestley (1981, pp.243-66), the spectral density of y, is equal

to |A(w)|2f,-,(w), where A(w) 2 22:0 wke‘k‘”. Hence, it follows from (2.6) that the

spectral density of 3;; will be;

fy(w) = |1— eW|-2df,-,(w), (2.12)

where |1 — ewl = 28in(%w). Since, limw_.0 w‘1(sin(%w) = 1, the behavior of the

spectral density of the process at low frequencies (alternatively, at high periods, or

as sample size approaches infinity) will be given by

3 “9(1)!2

27f l¢>(1)l2

For —% < d < 0, fy(0) = O, and hence the sum off all autocorrelations is zero. For

 

2

an ._

fy(w) ~ gfgw) = M 2d. (2.13)

d = 0, spectral density reduces to that of an ordinary ARMA(p, q) process with

bounded spectral density. Long-range dependence, and/or long memory occurs when

0 < d < %. To transform yt into a process with bounded spectral density, the infinite

linear filter, (1 — L)d needs to be applied.

Obtaining explicit expressions for all covariances for the ARFIMA(p, d, q) process

is relatively difficult, except in the case of ARFIMA(0, d, 0) process. In this case, it

is shown in Sowell (1992) that the covariances are given by the formula;

2 (—1)*I‘<1 — 2d)

uF(k-d+1)1-‘(l — k—d)

 

’71: = 0 (2.14)

The autocorrelations are given by,

_ r(1— d)I‘(k + d)

p" " F(d)I‘(lc +1 — d)‘

 (2.15)

By using the approximation, i%gi_f%) z [cw—1 for large k,p k can be expressed asymp-

totically by

pk ~ szd‘1 as (k —-> oo) (2.16)

To obtain the covariances of the general ARFIMA(p, d, q) process as suggested in

Beran (1994) one can use the covariances of the ARFIMA(0, (1, 0) process. This can
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be done by first recalling that y, is obtained by passing an ARFIMA(0, d, 0) process,

y; through the linear filter,

A(L)= ¢(-L)6 =2 ,\L‘.

i=0

Denoting the covariances of y',’, in the first step, calculate the coefficients A,- by match-

ing the powers of ¢(L)0‘1(L) with those of A(L). In the second step the covariances

of ARFIMA(p, (1, q) process, yt are obtained from /\(L) and the covariances ’7; by

71 = Z A./\n;+.-_,. (2.17)

i,l=0

See Chung (1994) for alternative derivation of autocorrelations of ARFIMA(p, d, q)

model. The asymptotic formulas for the covariances and autocorrelations are:

 

7:. ~ 7)(d,<¢>.9)|l€l2d‘1 (2-18)

where

2 0 1 2

C,(d,¢,6) = % ||¢(1)II2F(1 — 2d) sin d1r.

and

pr. ~ Cp(d ¢0)lk|2d1 (2-19)

where

_ C7(da¢30)

Cp(di¢16) — ff" f(W)dLIJ

2.3 Long memory volatility models

Risk is an important factor in financial markets. At a theoretical level, the Cap-

ital Asset Pricing Model (CAPM) developed by Sharpe (1964) and Merton (1973)

indicates presence of a direct relationship between return and risk of an asset. Also

an important determinant of an option is the risk associated with the price of the

underlying asset, as measured by its volatility. One of the stylized facts of asset
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returns in financial markets is that volatilities of assets change over time. Periods

of large price changes are followed by periods of relatively stable prices. This prop-

erty of asset prices is referred to in the literature as volatility clustering. The time

varying nature of the volatility was recognized early in 19603, see for instance, Man-

delbrot (1963a, 1963b) and Fama (1965). Econometric modelling of the volatility

clustering phenomenon occurred relatively recently in 19803. The Autoregressive

Conditional Heteroscedasticity (ARCH) model introduced first by Engle (1982) and

modified by Bollerslev (1986) and labelled as Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) models and their extensions have become popular both

among practitioners and researchers. GARCH models are able to describe certain

properties of economic time series, such as volatility clustering and excess kurtosis.

Although the GARCH model is able to capture the volatility clustering phenomenon

well it is not able to capture certain other empirically relevant properties of financial

time series. For instance, in the standard GARCH model the effect of a shock on

volatility depends only on the shocks’ size not sign. However, as observed in Black

(1976) negative shocks or news may affect the volatility quite differently than positive

ones. Hence, the sign of the shock may be relevant in understanding the dynamic

nature of the volatility. Another example constitutes the persistence of the effects

of shocks in the volatility process. As observed in Ding, Granger, and Engle (1993)

sample autocorrelations of certain volatility measures, such as absolute and squared

returns, decline at a hyperbolic rate. Standard GARCH models fail to account for this

slow decay in the autocorrelations which is inherent in the volatility process. These

considerations led several researchers to develop volatility models that are capable of

modelling several aspects of volatility in financial markets. In this section, we will

review GARCH class of models with particular attention given to parametric long

memory volatility model of Baillie et a1. (1996), namely the fractionally integrated

GARCH, (FIGARCH) model.

63



In general, an observed time series y, can be written as the sum of a predictable

and an unpredictable component,

yt = Elyt Int—11+ “at, (2.20)

where 91—1 is the information set consisting of all relevant information up to

and including time t— 1. In the previous section, different specifications (such

as ARIMA(p, q), or ARFIMA(p, d, q) for the predictable or conditional mean

E[yt|f2t_1] have been discussed. In section 2.2, the unpredictable part or distur-

bance at is assumed to satisfy the white noise properties. In particular, it was

assumed that at is both conditionally and unconditionally homoscedastic, that is,

E[uf] = E[uflflt_1] = 0,2, for all t. In the ARCH modelling of volatility, this assump-

tion is relaxed, and replaced by the assumption that the conditional variance of u, can

vary over time, that is, E[u?|9¢_1] = ht for some nonnegative function ht E h,(f2t-1).

Hence, the disturbances are conditionally heteroscedastic. Following Engle (1982), a

convenient functional form is

at = zt\/h—t (2.21)

where 7., independent and identically distributed with zero mean and unit variance.

For convenience, it is usually assumed that 2, has a standard normal distribution.

This latter assumption can be replaced with another distributional assumption, for

example, following Bollerslev (1987) one may assume that zt follows a student-t distri-

bution with 11 degrees of freedom. From (2.21) and the properties of 2, it follows that

the distribution of at conditional upon the history {2,4 is either normal or student-t

with mean zero and variance h,. The unconditional variance of at is,

a: E Elull = ElElulet—lll = Elhtl: (232)

where the latter equality follows from the law of iterated expectations, assuming

that the expectations exist. It follows that the unconditional variance of at should
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be constant, that is, the unconditional mean, E[h,] = constant. Equations (2.21-

2.22) specify the general representation of GARCH type of models. The complete

specification involves how one assumes the conditional variance of u, evolves over

time. GARCH type models specify the conditional variance of u, as such the specified

model captures (some) of the empirically observed facts of the economic and financial

time series.

2.3.1 The (G)ARCH Model

Engle (1982) introduced the class of Autoregressive Conditionally heteroscedastic

(ARCH) models to capture the volatility clustering phenomenon that occurs in eco-

nomic and financial time series. In the basic ARCH model, the conditional variance

of the disturbance that occurs at time t is specified to be a linear function of the

squares of past disturbances. The general ARCH(q) model is given by

q

ht = w + Z on-uf_j (2.23)

j=1

Obviously, the conditional variance ht needs to be nonnegative. To guarantee nonneg-

ativeness of the conditional variance, it is required that w > 0 and oz,- 2 0 for allj =

1, - - - ,q. To understand why the ARCH model can describe volatility clustering, ob-

serve that model (2.21) with (2.23) basically states that the conditional variance of

at is an increasing function of the disturbance/shock that occurred in the previous q

periods with some nonnegative weights. Hence, if say ut_1i 8 large in absolute value,

at is expected to be large in absolute value as well. In other words, large (small)

shocks tend to be followed by large (small) shocks of either sign. An alternative way

to see the same thing is to note that the ARCH(q) model can be written as an AR(q)

model for uf. Adding u? to (2.23) and subtracting h, from both sides gives

q

11?: w + Zuffl- + vt (2.24)

i=1
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where vt E u? — h, = h¢(z,2 — 1). Note that E[v,|f2¢_1] = 0. Given the AR representa-

tion of ARCH(q) process, the condition that needs to be satisfied in order for u? to be

covariance stationary is that the roots of the lag polynomial a(L) = 1 —a1L-- - ~01qu

need to be outside the unit circle. Moreover, the unconditional variance of at, or un-

conditional mean of u? can be obtained as

w

 32 E[u§]_— (2.25)

1 _ j:-1 aJ

Hence 2'12, 01,- < 1 in order for the unconditional variance to be well defined. Under

these conditions, (2.24) can be rewritten as

21?: 1_ Za,)+ZaJut_J+vt

j=—1aJ(

= (1 —anj)0,2, +q;ajuf_j + vt

-—03 +(1201: — 02) + vt (2.26)

 

Equation (2.26) shows that if 21,2“1 is larger (smaller) than its unconditional expected

value 03, a? is expected to be larger (smaller) than of, as well.

ARCH model cannot only capture the volatility clustering of the time series under

investigation but also their excess kurtosis which is common in economic and financial

time series. Horn (2.21) it can be seen that the kurtosis of u, is always greater than

that of 2,,

ElUZ’] = ElZflElhflz ElZZ’KElhtV) = ElZflWlUfl”),

where the inequality follows from Jansen’s inequality. As shown by Engle (1982), for

the ARCH(1) model with normally distributed 2; the kurtosis of at is equal to

Elull _3(1“__a_1)
K t“:
“T E[u?]2 1—3ag

 

which is finite if 30% < 1. It is clear that Kurtu is always larger than the normal

value of 3.
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To capture the dynamic patterns in conditional volatility adequately by means

of an ARCH(q) model, q needs often to be quite large. Hence it can be quite

cumbersome to estimate the parameters in an ARCH(q) model with large q, as

nonnegativity and stationarity conditions need to be imposed. To reduce the com-

putational problems one needs to impose some structure on the parameters, such as

01,- = oz(q +1 —j)/(q(q+1)/2),j = 1, - - - ,q, which implies that the parameters of the

lagged squared shocks/disturbances decline linearly and sum to a, see Engle (1982).

An alternative method is suggested by Bollorslev (1986) which involves adding lagged

conditional variances to the ARCH specification. For instance, adding p such condi-

tional variances to the ARCH(q) model results in the GARCH(p, q) model,

q :9

ht = w + Z ajugfl- + Zfilht_jh¢_j

j=1 j=1

= w + a(L)ut + fi(L)ht (2.27)

This model avoids the necessity of adding many lagged squared disturbance terms

by adding lagged values of conditional variance terms. To see why a GARCH spec-

ification takes care of adding large number of lagged residual terms consider the

GARCH(1, 1) model,

ht = w + 0111.? + filht_1. (2.28)

This model can be rewritten as,

ht = w + 011134 + [310.0 + aluiz + fllht_2),

or by continuing the recursive substitution one can obtain,

h. = Z [31w + a12 sf‘1uf_,. (2.29)

j=l j=1

This equation shows that the GARCH(1, 1) model corresponds to an ARCH(00)

model with a particular parameter structure. This clearly illustrates why in most of

the applications a low order, for instance a GARCH(1, 1) model, is usually found to
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be general enough to capture the dynamic behavior of many economic and financial

time series.

An alternative representation of a GARCH(1, 1) model can be obtained by adding

u? to both sides of (2.28) and moving ht to the right-hand side,

u? = w +(oz1+ [Mail + vt — [31v¢_1, (2.30)

where again vt = u? — ht. This ARMA(1, 1) representation allows one to establish

conditions for the covariance stationarity of the GARCH(1, 1) process. From (2.30) it

is obvious that GARCH(1, 1) model is covariance stationary if and only if 01 +61 < 1.

In this case the unconditional mean of u? - or unconditional variance of u, - is equal

to

2 _ w

u — 1 — 011 + 51.

The parameters in GARCH(1, 1) model need to satisfy w > 0, a; > 0 and ,81 2 0 in

an0'

order to guarantee that h, 2 0. Moreover, al needs to be strictly positive in order for

H1 to be identified. This is because, if a1 = 0 in (2.30) both AR and MA polynomials

become 1- 61L, hence when one rewrites the ARMA(1, 1) model for u? as an MA(00)

process polynomials will cancel out,

“=1-sm

‘ 1—mL

which indicates that )61 is not identified, see Bollerslev (1986) for details.

 

W = Uta

In the case of GARCH(1, 1) Bollerslev (1986) showed that the kurtosis of at under

normality of 2, is given by

3[1 -— (01 + flln

1 — (01 + ,31)2 — 20%,

 

Kurtu =

which is always larger than the normal value of 3. The autocorrelations of u? are

derived in Bollerslev (1988) and are given by,

aifli

l - 20131 — fit”

pk = (01 + '61)k-1p1 fork = 2a 3a ' ° ° (233)

 

P1 = 01 + (2-32)
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The decay factor of autocorrelations is 011 + 61. This means that if this sum is close

to 1, the autocorrelations decline gradually still at an exponential rate. If the fourth

moment of at does not exist (if (a1 + fll)2 + 201% _>_ 1, as shown by Bollerslev 1986)

then the autocorrelations of u? are timevarying. As shown by Ding and Granger

(1996), if the GARCH(1, 1) model is covariance stationary but with infinite fourth

moment, one can still compute the sample autocorrelations.

In the general GARCH(p, q) model if all the roots of 1 — fl(L) lie outside the unit

circle, the model can be written as an infinite-order ARCH model,

 

 

_ w _9_(_L_)___ 2

h“1—B(1)+1—fi(L)“‘

=1_ 31w _ fip; 2:6,th (2.34)

To guarantee the nonnegativity of the conditional variance all 6J- need to be nonneg-

ative. The ARMA(m, p) representation of u? is given by

-—w + 2(09 + )6J)u J—ZflJ-vt_J + vt, (2.35)

j=1

where m = maa:(p,q),aJ- E 0 for j > qand flJ- forj > p. The GARCH(p,q) model is

covariance stationary if all the roots of 1 — a(L) - B(L) lie outside the unit circle.

2.3.2 The IGARCH Model

In applications of the GARCH(1, 1) model to high frequency economic and

financial data, it is usually found that the estimates of alandfll are such that their

sum is close to or equal to 1. The GARCH(1, 1) model with restriction 01 + 31 = 1

is referred to be the Integrated GARCH (IGARCH) model. The reason is that the

restriction on these parameters leads a unit root in the ARMA(1, 1) representation of

GARCH(1, 1) model. From equation (2.30) the ARMA representation of the model

becomes,

(1'— L)“: = O.) + 'Ut— ,Bl’Ut_1.
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From (2.31) it can easily be seen that the unconditional variance of at is not finite.

Therefore, the [GARCH(1, 1) model is not covariance stationary. Although, the

autocorrelations of u? for an IGARCH model are not defined properly, Ding and

Granger (1996) show that they are approximately equal to

1 2 —k/2
Pk: 3(1+201)(1+201) .

I The autocorrelations still decay exponentially. This is in sharp contrast to an I(1)

process, say for instance a random walk model, for which the autocorrelations are

approximately equal to 1.

2.3.3 The FIGARCH Model

The properties of the conditional variance h, as implied by the IGARCH model are

not very attractive from an empirical point of view. The IGARCH model implies that

a shock to the volatility process will have very persistent effects. The IGARCH model

also implies that there is a linear trend in the future forecast of the volatility process,

i.e. E¢h¢+k = ht + kw, hence, the forecasts of future conditional variance increases

linearly with the forecast horizon. This is not realistic from an empirical point of

view. On the other hand, estimates of the GARCH(1, 1) model from high frequency

financial time series invariably yield a sum of a1 and [31 close to 1, with (11 small

and fll large. From the ARCH(oo) representation of GARCH(1, 1) model, equation

(2.29), it can be seen that the impact of a shock at on the conditional variance at a

future date, hm. is given by 0161‘“. With 61 close to 1, the impact of a shock at

time t on the conditional variance will decay very slowly as It gets larger and larger.

Moreover, the autocorrelations for u? given in (2.33 and 2.34) are die out very slowly

if the sum (11 + 61 is close to 1, although the decay is still at an exponential rate.

This can be seen from panel a of figure (2.3) which displays the autocorrelations for

u? from a sample realization of GARCH(1, 1) with w = 0.001, a} = 0.2, and ,61 = 0.7.
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It is evident from the figure that the autocorrelations decay slowly but still the decay

rate is too fast to mimic the observed autocorrelation patterns of empirical volatility

processes. For example, Ding, Granger, and Engle (1993), deLima, Breidt, and Crato

(1994), Baillie and Bollerslev and Mikkelsen (1996), Lobato and Sevin (1998), Da-

corogna etal. (1993), Andersen and Bollerslev (1997), and Baillie, Cecen, and Han,

(2001), all report that the sample autocorrelations of absolute returns and power

transformations of returns for various asset prices at different frequencies decline only

at a hyperbolic rate. As this discussed in the previous section, this type of behavior of

autocorrelations can be modelled by means of long memory or fractionally integrated

processes.

Baillie, Bollerslev, and Mikkelsen (1996) propose the class of Fractionally Inte-

grated GARCH (FIGARCH) models. The FIGARCH process is capable of modelling

very slow hyperbolic decay in the autocorrelations of the volatility process quite flex-

ibly. Rewriting the ARMA(m, p) representation of the GARCH(p, q) model as,

[1 — B(L) — a<L>1uf = w +[1 — fl(L)lvt.

the FIGARCH(p, 6, q) model can be obtained by simply adding (1 — L)6 term

on the left hand side of this ARMA(m, p) representation. More explicitly, the

FIGARCH(p, 6, q) model is given by

¢(L)(1 - M6”? = w + [1 - 3(L)lvt, (2.36)

where ¢(L) = [1 — 6(L) — a(L)](1 — L)‘5, all the roots of ¢(L) and [1 — fi(L)] lie

outside the unit circle, and 0 < 6 < 1. For 0 < 6 < 1, ¢(L) is an infinite order

polynomial, while it is of order m — 1 for 5 = 1. As it is evident from (2.36) the

FIGARCH model nests GARCH and IGARCH models in the sense that when 6 = 0

the FIGARCH model reduces to the GARCH model while for d = 1 it becomes an

IGARCH model. Rearranging the terms in (2.36) an alternative representation for
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the FIGARCH model can be obtained as,

[1 — mm. = w + [1 — ML) - ¢<L><1 — L)"]uf- (2.37)

From this representation, the conditional variance of at, or infinite ARCH represen-

tation of the FIGARCH process, is simply

 

 

_ w __¢(_L)_ _ 6u2

’“U—zmfi“ l-fl(L)(1 L)“

E 1 _ 3(1) + A(L)ut, (2.38)

where ML) = A1L+A2L2 +- - - . For the FIGARCH(p, 6, q) process to be well defined

and the conditional variance to be positive for all t, all the coefficients in the infinite

ARCH representation in (2.38) need to be nonnegative, i.e. AJ- 2 Ofor j = 1,2,---.

The general conditions for nonnegativity of lag coefficients in /\(L) are not easy to

establish, but as illustrated in Baillie et al. (1996) it is possible to show sufficient

conditions in a case by case basis.

The FIGARCH process implies a slow hyperbolic rate of decay for the autcorre-

lations of u? as can be seen from panel b of figure 2.3 which displays the first fifty

autocorrelations of a? from a sample realization of a FIGARCH(1, 6,1) process. For

0 < 6 S 1, M1) = 0 and hence the second moment of the unconditional distribution of

u, is infinite, and FIGARCH process is not covariance stationary similar to IGARCH

processes. As argued in Baillie et al. (1996) just like the IGARCH processes it can

be shown that FIGARCH processes are strictly stationary and ergodic for 0 < 6 S 1.

Baillie et al. (1996) show that it is possible to obtain impulse response coefficients

from the definition given in (2.36). Specifically, the coefficients from the 7(L) lag

polynomial,

(1 - DU? = (1 - L)1“5¢(L)‘1w + (1 - L)1"‘5¢(L)'1[1 - 5(Lllvt

a c + 7(L)vt. (2.39)
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The long run impact of past shocks for the volatility process can be assessed in terms

of the cumulative impulse response weights,

1:

7(1) = gig, 20). = 31;; A. = F(6 — 1,1,1;1)¢(1)‘1[1— 3(1)],
.7:

where F(6 — 1, 1, 1, 1; 1) is the hypergeometric function. For details, see Baillie et

al. (1996). Since for 0 S 6 < 1, F(6 — 1,1,1; 1) = 0, shocks to the conditional

variance of FIGARCH process will die out eventually in a forecasting sense similar

to a GARCH process. But the shocks to the GARCH process dissipate at a fast

exponential rate while shocks to the conditional variance of a FIGARCH process

is much slower at a hyperbolic rate. In contrast, for 6 = 1, F(6 — 1,1,1; 1) = 1

and hence cumulative impulse rates for a IGARCH process converge to the nonzero

constant 7(1) = ¢(1)1[1 — 6(1)]. This implies that shocks to the conditional variance

of the IGARCH process persist indefinitely. For an illustration, consider the basic

FIGARCH(1, 'y, 0) model discussed in Baillie et al. (1996). This model can be written

as

(1 — L)6]uf = w + U; — filvt_1.

Using the definition of vt = u? — ht, this can be rewritten as an ARCH(oo) process

for the conditional variance as,

 

 

__ w (l-L)6 2

m— —a'“*1—aflm

l—fll +A(L)ut’

where )((L) E 1 - (1 — L)5/(1 — 61L). By using the expansion (2.6) for (1 — L)‘, it

can be shown that for large k

A), z [(1— ,61)I‘(L)‘1]k‘5‘1.

It is evident from this expression that the effect of at on ht+k decays only at a

hyperbolic rate as k increases.
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2.4 ARFIMA-FIGARCH Model: Modelling long

memory in both conditional mean and vari-

ance

A model that combines long memory processes for both the conditional mean and

variance processes and allows one to model jointly the long memory in time series that

may have long memory property in both its conditional mean and variance process is

the ARFIMA(P, d, Q) -— FIGARCH(p, 6, q). The ARFIMA-FIGARCH process can

be expressed as,

‘I’(L)(1 — L)dyy = 9(Llut

Ut =Zt\/h—t

ML)h. = w + [1 — ML) — ML)(1 — Mu? (2.40)

where B(L), and ¢(L) are the same as before, while <I>(L) = 1 — <I>1L — - - - — <I>pLP,

9(L) = 1 + 81L + + OQLQ, and have all their roots outside the unit circle.

Moreover, Et_lzt = 0, E¢_1(z,2) = 1. This model is capable of modelling both short

run dynamics and long run properties of a time series in both conditional mean

and variance very parsimoniously. Note that if ht = w then the model reduces to

the ARFIMA(p, (1, q) model for the conditional mean process discussed above. If

p = q = d = 0 the model becomes so called Martingale-FIGARCH process for the

conditional mean and variance. The Martingale-FIGARCH model is appealing as

it allows one to model random walk and highly persistent conditional second mo—

ments of many high frequency asset prices. The Martingale-FIGARCH model is

fit to daily and high frequency exchange rate data (hourly of half-an hour data)

by Baillie, Bollerslev and Mikkelsen (1996), and most recently by Baillie, Ceqen,

and Han (2001). On the other hand, Baillie, Han and Kwon (2001) applied the

ARFIMA(p, d, q) — FIGARCH(P, 6, Q) model to inflation series and obtained re—

sults that indicate presence of long memory dynamics in both the conditional mean
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and variance of the inflation series for several industrial countries. As noted in Bail-

lie, Han and Kwon (2001), contrary to pure ARFIMA process, ARFIMA-FIGARCH

process have an infinite unconditional variance for all (1 given 6 7E 0.

2.5 Estimation and Inference

Several methods of estimating long memory parameter d have been suggested

in the literature. The early methods are mostly heuristic in the sense that they

are simple diagnostic tools used in detecting the presence of long memory. Most of

these methods are discussed extensively in Beran (1994). More advanced and rigor-

ous methods are developed to estimate long memory and parameters of long memory

models discussed in the previous sections in both time and frequency domain. A

complete review and discussion of them can be found in Baillie ( 1996) and Beran

(1994) and references therein. In this section some of these methods, those mostly

used among applied economists are discussed. In particular, semi-parametric estima-

tion in the frequency domain (or least squares regression in the frequency domain)

due to Geweke and Portar-Hudak (1983) and Robinson (1994, 1995), approximate

maximum likelihood estimation in the frequency domain due to Whittle (1951) and

Fox and Taqque (1986), and approximate maximum likelihood estimation (or non-

linear least squares estimation, or conditional sum of squares estimator) in the time

domain due originally to Hosking (1984) in the context of ARFIMA processes, and

Baillie and Chung (1993) in the context of ARFIMA-FI/GARCH processes, will be

discussed in some detail within the context of the long memory models discussed in

the previous sections.

2.5.1 Regression based estimation in the frequency domain

In the spectral domain, Geweke and Portar-Hudak (1983) suggested a semi-

parametric procedure to obtain an estimate of the fractional differencing parameter
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d based on the slope of the spectral density function around the angular frequency.

The spectral density of a stationary Gaussian long-memory time series yt is given by

f(w) = I1 - eXP(-iW)|‘2df(W)’ (2-41)

where d E (-0.5, 0.5) and f(w)" is an even, positive continuous function on [——7r, 7r],

bounded above and bounded away from zero with first derivative f" = 0 and second

and third derivatives bounded in a neighborhood of zero. The function f(w)"‘ endows

the model (2.41) with a short-term correlation structure which is free of any paramet-

rically imposed constraints. For this reason the semi-parametric model in (2.41) may

be preferable to the assumption that the time series obeys an ARFIMA(p, (1, q) pro-

cess with p and q finite, either known or unknown as in the ARFIMA(p, (1, q) model

discussed above. Note the fact that the ARFIMA model is a special case of (2.41)

that can be obtained by assuming f(w)“' to be the spectral density of a stationary

invertible ARMA(p, q) process as in (2.12). The long memory parameter, d can be

estimated semi-parametrically based on the first periodogram ordinates

 

T—l
l . .

12' = 27rTjTl 21:0: y. expawjtllz. .7 = 1. ' ' ° .771 (2-42)

where W = 2j7r/T and m is a positive integer. The semi-parametric estimator which

is also known as GPH estimator in the literature, is given by —% times the least

squares estimate of the slope parameter in an ordinary linear regression of {log IJ- };-’f__1

on the explanatory variable

_ . . 0’1

$1 =10g||1 - exp (—sz)|| = log ||281n(3)ll.

together with a constant term. Therefore the GPH estimator can be written as

(J —0.5 223:1(25- — i) log IJ-

GPH = firn _

Zk=1 ($1: — my

 (2.43)
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where E = $1- 22; 22),. The GPH estimator can be motivated heuristically by noting

that

t

log [J = (log f5 — C) — 2(1er- + logfi + q,

0

Where 62‘ = 108(11/13) + C, With fj = flwj), f; = fJ‘-'(w,-) and C = 0577215 18 the

Euler’s constant. It is assumed that m —+ 00, so that the variance of clap” will

decrease to zero as T -—> co, and also that % ——) 0, so that bias due to the non-

constancy of log(fJ‘/f5) will tend to zero.

Although the GPH estimator is widely used in practice, its consistency for all

at E (—0.5, 0.5) and asymptotic normality have only recently been proved by Hurvich

et al. (1998). Robinson (1995) did prove consistency and asymptotic normality for

a modified regression estimator which regresses {log 1337;,“ on {233};+1, where l

is a lower truncation point which tends to infinity more slowly than m. However,

simulations (e.g. Hurvich and Beltaro, 1994) indicate that the modified estimator is

typically outperformed in finite samples by the GPH estimator itself. The reason is

that any bias reduction resulting from omission of the first I periodogram ordinates

from the regression is more than offset by inflation of the variance (see Hurvich and

Beltrao, 1994). Hurvitch et al (1998) show that the optimal (in the sense that it

minimizes the theoretical mean squared error of the GPH estimator) choice of m is

in the order of 0(T4/5). They present simulation results to asses the accuracy of

their asymptotic theory on the mean squared error for finite sample sizes. Their

findings indicate that the choice m = Tm, originally suggested by Geweke and

Porter-Hudak (1983) and used extensively in the empirical literature, can lead to

performance which is markedly inferior to that of asymptotically optimal choice in

reasonably small samples.

The GPH estimation only allows one to estimate the long memory parameter. In

a parametric model, such as in the case of ARFIMA(p, d, q) model given in (2.6) all

of the other parameters (i.e. ARMA parameters, variance, and the mean parameter)
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in principal can be estimated in the second step by any appropriate method, such as

maximum likelihood once the series is filtered by the estimate of the long memory

parameter, clap”. A problem with this two-step approach is that the sampling distri-

bution of estimators is not known yet. The problem may be much more serious in the

models with GARCH or FIGARCH effects in the conditional variance of the process.

Moreover, there is some evidence that in the case of autocorrelated disturbances the

GPH estimator may have serious biases. See for instance Agiakloglu, Newbold, and

Whoar (1993). The next subsection discusses methods that estimates jointly the long

memory parameter and the ARMA parameters.

2.5.2 Parametric Methods: Approximate Maximum Likeli-

hood

It seems that if one is only interested in having an idea about the presence of long

memory or not in a time series the GPH estimator may provide information about

the presence of long memory. If on the other hand one needs to understand both

short run and long run dynamics of a time series and use the model for describing

the dynamic structure of the series and/or use the model for forecasting purposes,

the GPH estimator obviously will not tell anything about the short term properties

of the process. Methods which allow one to model the whole autocorrelation struc-

ture, or, equivalently, the whole spectral density at all frequencies, have to be used

to characterize the short-run behavior of the series. One such approach is to use

parametric models, such as the ARFIMA model in (2.6) and estimate parameters, for

example, by maximizing the likelihood. One such method is the exact maximum like-

lihood estimator (MLE) of the ARFIMA(p, d, q) model under the assumption that

u, is normally distributed. The exact MLE for the ARFIMA(p, at, q) model is devel-

oped in Sowell (1992). Given the ARFIMA(p, d, q) process in (2.6) the log-likelihood
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function is

T 1 1 , _1

My; cp) = --2-10g(27r) - 5 log detZW) - 53/ 20.0) y (2-44)

where 2 is the variance-covariance matrix whose i, jth element is given by Eia‘ =

7I,_J-|, y is the T—dimensional vector of observations on the process 3)., and (p =

(d, (231 - - - ,¢>J,, wl, - - - ,wq, 03)’, is the parameter vector in the ARFIMA(p, d, q) model

with known mean a. The exact MLE of (,0 is obtained by maximizing (2.44) with

respect to the k = p + q + 2 dimensional parameter vector. The consistency and

normality of exact MLE of the ARFIMA(p, d, q) model is established in Yajima

(1985) and Dahlhaus (1989) for the Gaussian long memory processes. Although exact

MLE of 1;) can in principal be obtained by the MLE procedure, in practice, exact MLE

has serious computational problems. The exact MLE requires the inversion of a T x T

matrix of nonlinear hypergeometric functions at each iteration of the maximization

of the likelihood. To solve the computational problem an alternative approach is to

maximize an approximation to the likelihood function. There are several alternative

approximate MLE of the ARFIMA(p, at, q) model under normality of disturbances.

Two such approximate MLEs that are mostly used in empirical work are discussed

here.

2.5.3 Whittle’s approximate MLE

The two terms in (2.44) that depend on the parameter vector, (p are the logarithm

of the determinant of the covariance matrix,

log det 2((p),

and the quadratic form

y’3(cp)"‘y-
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The Whittle’s approximate MLE uses the approximations for these terms in the log-

likelihood function. In particular,

alim log det 2(4p) = log(21r)f(wJ-).

and second term approximated by I(wJ- /f(wJ). Then the approximate log-likelihood

is

 

T—l T-l

4. = Zlogl(27r)f(wj; 10)) + Z 1(..,) (2.45)
_ f(wj; 1P),

where wJ- = 27rj /T — 1, and f(.) is the spectral density. An alternative approximate

MLE is given by Fox and Taqque (1986) which numerically minimize the quantity

2 (w?) (2.46)

where m is the number of frequencies used. For a detailed discussion of Whitlle’s

 

approximate MLE see Beran (1994) and references there.

2.5.4 Approximate MLE in the time domain

In this subsection estimation of long memory models will be discussed within

the context of both ARFIMA(p, (1, q) model for the conditional mean process as

well as the FIGARCH(P, 6, Q) model for conditional volatility. The setup of the

technique is general enough to cover both types of long memory processes and the dual

long memory model ARFIMA(p, d, q) — FIGARCH(P, 6, Q). To this end general

principles are discussed first, and some remarks on specific models will be given.

Consider the ARFIMA(p, d, q) — FIGARCH(P, 6, Q) model given in (2.40). Un-

der the assumption that disturbances are conditionally normally distributed the con-

ditional log-likelihood can be written in the time domain is

T T u2
3(u1...,uT;.p) =—§ln21r—Z[lnh¢+é], (2.47)

t=1

where (,0’ = (a, (PI - - - (Pp, 91-°-eq,w6fll---fip,¢1---¢q). Since conditional normal-

ity of u, is often not a very realistic assumption for many economic and financial
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time series, the resulting model fails to capture the kurtosis in the data. Instead,

following Bollerslev (1987) one sometimes assumes that 2t is drawn from a (standard-

ized) Student-t distribution. Note that the standardized Student-t distribution with

u degrees of freedom is,

f(z.) _ r((u +1)/2) _;3_

_ ,/7r(u"'—" _2)F(u/2)( + u —- 2)

The Student-t distribution is symmetric around zero (and thus E[2; = 0]). while it

—(u+1)/2.
 

converges to the normal distribution as the number of degrees of freedom V becomes

larger. A further characteristic of the Student-t distribution is that only moments

up to order 11 exist. Hence, for V > 4, the fourth moment of 2: exists and is equal

to 3(1/ — 2) /(u — 4). As this is larger than the normal value of 3, the uncondi—

tional kurtosis of at will also be larger than in the case where 2, followed a normal

distribution. The number of degrees of freedom of the Student-t distribution can

be estimated along with the other parameters of the model. Indeed any other dis-

tribution can be assumed. The parameters of the model under consideration then

can be estimated by maximizing the log-likelihood corresponding with this partic-

ular distribution. As one can never be sure that the specified distribution of the

disturbances is the correct one, an alternative approach is to ignore the problem and

base the likelihood on the normal distribution as in (2.47). This method usually

is referred to as quasi-maximum likelihood estimation (QMLE). In general, the re-

sulting estimates are still consistent and asymptotically normal, provided that the

models for the conditional mean and conditional variance are correctly specified. Li

and McLeod (1986) have shown the consistency and asymptotic normality of QMLE

for the ARFIMA(P, d, Q)-homoscedastic model with mean [1 either known or zero.

Dahlhaus (1988, 1989) and Moehring (1990) showed the same result with 11 unknown.

In particular, they show that the parameter estimates in the ARFIMA model with

homoscedastic disturbances are asymptotically normal, with the ARFIMA parame-
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ter estimates being Tl/2 consistent while the QMLE of p is Tl/Z‘d consistent. For

the conditional variance process, asymptotic normality and consistency have only

been shown in specific cases. Weiss (1984, 1986) has demonstrated consistency and

asymptotic normality for QMLE of ARCH(q) model as in (2.24), while Bollerslev and

Wooldridge (1992), Lee and Hansen (1994) and Lumsdaine (1996) have obtained the

same result where h, follows a GARCH(1, 1) under varying assumptions on the prop-

erties of 2,. Lumsdaine (1996) also illustrated consistency and asymptotic normality

for the QMLE of IGARCH(1, 1) model. While simulation experiments for FIGARCH

processes in Baillie and Bollerlev (1996) indicate consistency and asymptotic normal-

ity of the QMLE, a fully general theoretical treatment is not available yet. In the

case of the more general models ARFIMA-GARCH and ARFIMA-FIGARCH, Baillie,

Chung, and Tieslau (1996) and Baille, Han, and Kwon (2001) through simulations

provide evidence that the QMLE is consistent and asymptotically normal.

As the true distribution of z, is not assumed to be the same as the normal distri-

bution which is used to construct the likelihood function, the standard errors of the

parameters have to be adjusted accordingly. In particular, the asymptotic covariance

matrix of DT(¢ — (pg) is equal to

Dr1A(900)_lB(900)A(800)DT1 a (248)

where A(.) is the Hessian, i.e. the negative of the matrix of second-order partial

derivatives of the log likelihood function with respect to the parameters in the model,

H(<p) E —0€(u1, - - - ,UT; <p)2/61p6<p’, B(.) is the expected value of the outer product

of the gradient matrix,

 

and DT is a diagonal matrix with=dliag(DT) = [Tl/Z‘d, Tm, - - - ,Tl/Z]. The matrices
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A(.) and B() can be consistently estimated by their sample analogs, namely,

 

T ..

ATW?) = —% (35):?)

and

T A A

8(2) = %Z<%"—)a—§gfl)

As the first order conditions in maximization of the log likelihood will be nonlinear

functions in the parameter of the models discussed here, an iterative optimization

procedure has to be used to obtain the MLE o. The most frequently used iterative

optimization procedures that can be used to estimate the parameters typically require

the existence of first and second order derivatives of the log likelihood function with

respect to (a -that is, the score S((p) E 66/690 and Hessian matrix H(cp) defined above.

For example, the iterations in the well known Newton-Raphson method take the form

TT

4"“ -- «\(Z HAM—1)"1 Z3M“). (2.49)

t=l

@k

where of is the estimate of the parameter vector obtained in the mth iteration and

the scalar /\ denotes a step size. In the BHHH algorithm which is by far the most

popular method to estimate GARCH and FIGARCH models, the Hessian H.(cfi) in

(2.49) is replaced by the outer product of the gradient matrix Bt(¢k‘1) as given above.

2.6 Conclusion

This chapter provided a concise review of the long memory models for the

conditional mean and variance of a time series. In particular, ARFIMA(p, d, q) model

for the conditional mean of a time series and GARCH(p, q) and FIGARCH(p, 6, q)

models for the conditional variance are discussed. The discussion is cast in terms of

properties of the models and estimation of these models. Chapters 4 and 5 of the

dissertation include applications of these models in commodity and stock markets.
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Figure 2.1: Sample realizations from ARFIMA(p, ,q) processes
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Figure 2.2: Autocorrelations of the Sample realizations from ARFIMA(p, d, q) pro—

cesses
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Figure 2.3: Autocorrelations of 11? from sample realizations of GARCH(1, 1) and

FIGARCH(1,d,1) processes
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CHAPTER 3

Persistence and Nonlinearity in

Real Exchange Rates

3. 1 Introduction

The purchasing power parity (PPP) condition states that a common basket of

goods quoted in the same currency needs to cost the same in all countries. The

condition rests on the assumption of perfect commodity arbitrage across countries.

Although very few economists would believe that PPP holds true continuously in

the real world, most would believe some form of PPP holds at least as a long-run

relationship. Both traditional and new open economy macroeconomics based on in-

tertemporal optimizing models assume some variant of PPP (Obstfeld and Rogofl’,

1996). Apart from a constant term reflecting differences in units of measurement,

real exchange rates are defined to be the deviation from PPP,

Qt = 3t - (Pt— PE), (3-1)

where s, is the logarithm of the nominal exchange rate observed at time t, and p,

and p; are the logarithms of the domestic and foreign price levels, respectively. A

necessary condition for PPP to hold in the long run is that the real exchange rate

needs to be stationary, not driven by permanent shocks.

Previous results from many single equation unit root tests indicate that, the unit

root hypothesis in real exchange rates cannot be rejected in data from the free-floating
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period. Similarly, there is an absence of cointegration between nominal exchange rates

and relative price levels, see Froot and Rogoff (1996), and Rogoff (1996), for recent

surveys. Only from 1900 or further back is there evidence that real exchange rates are

stationary, see for instance Diebold et al. (1991). To overturn this somehow puzzling

empirical evidence, Pedroni (1995), Frankel and Rose (1996), Oh ( 1996), Wu (1996)

and Lothian (1997) among others, applied panel data variants of standard unit root

and cointegration tests. The idea behind these studies is to increase the power of the

tests by increasing the sample size. These studies report evidence of mean reversion

in real exchange rates for the floating era. One important critique of the panel data

methods came from O’Connell (1998a). O’Connell’s criticism centers on the failure of

the panel data tests in controlling cross-sectional dependence in the data. He finds no

evidence against the unit root in real exchange rate data for several countries when

cross-sectional dependencies are taken into account. As noted by Rogoff (1996), the

results of panel data and long—span studies seem to indicate a half-life of deviations

from the PPP to be about three to five years. Since it is hard to believe that real

shocks will account for the majority of short run volatility of real exchange rates and

it is intuitive to think that nominal shocks can only have strong effects only a time

period in which nominal wages and prices are sticky, then the apparent persistence

of real exchange rates is puzzling, even if real exchange rates are mean reverting.

A recent strand of literature stresses the importance of allowing market imper-

fections in understanding the persistence in the adjustment of real exchange rates

towards their long run equilibrium. General equilibrium models of real exchange rate

determination developed in Dumas (1992) and in Sercu et al. (1995) take into ac-

count transaction costs and show that the adjustment of real exchange rates toward

PPP is a nonlinear process. In these models, transaction costs create a band of in-

action within which international price difierentials are not arbitraged away, as only

the price differentials exceeding transaction costs (outside the band) are profitable to
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arbitrage away. Therefore, the presence of transactions costs leads to the notion of

different regimes in real exchange rates. In particular, the profits from commodity ar-

bitrage, which is generally thought to be the ultimate force behind maintaining PPP,

do not make up for the costs involved in the necessary transactions for small devia-

tions from the equilibrium value. This means that there may exist a band around the

equilibrium rate in which there is no tendency for the real exchange rate to revert to

its equilibrium value. Whenever the rate is outside the band that is specified by the

relevant costs, arbitrage becomes profitable, this in turn forces the real exchange rate

back towards the band.

Several studies have tested and modelled the implications of transaction costs in

real exchange rates. Micheal et al. (1997), use a long span of annual as well as

quarterly data for the interwar period and report statistically significant evidence of

nonlinearity in the adjustment of real exchange rates. Sarantis (1999), and Sarno

(2000) reject linearity for several effective and bilateral real exchange rates respec-

tively for a group of industrial countries over the floating period. Baum et al. (2001)

fit the Exponential Smooth Transition Autoregressive (ESTAR) models to deviations

from PPP which are obtained using the Johansen cointegration method on nominal

exchange rates, home and foreign price levels. Taylor et al. (2001) report supportive

evidence that the speed of convergence of real exchange rates towards their long run

equilibrium increases with the size of the PPP deviation over the floating period for

a number of US Dollar real exchange rates. On the other hand O’Connell (1998b)

finds large deviations from PPP to be at least as persistent as small deviations.

The results of the literature seem to be unsettled and contentious in explaining

the puzzling behavior of real exchange rates. Although, findings from the more recent

studies that take nonlinearities into account are promising, there are certain issues

that need to be investigated in judging the empirical success of these studies. Micheal

et al. (1997), and Baum et al. (2001) test for cointegration in PPP, and subsequently
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apply the ESTAR model to the residuals from the cointegration relationship to ana-

lyze the adjustment process towards PPP. This approach may be questionable on the

ground that if the residuals of PPP relationship follow a nonlinear process, the valid-

ity of the linear coinegration tests and interpretation of these residuals are doubtful.

Moreover, the concept of equilibrium in nonlinear models may be different from that

of linear models. To avoid these problems this chapter applies the Smooth Transition

Autoregressive (STAR) models directly to the real exchange rate and then inves-

tigates the dynamic properties of the exchange rate process using well established

statistical methods. Note also that theoretical models in Dumas (1992) and in Sercu

et al. (1995), analyze directly the dynamic behavior of the real exchange rate process

rather than the residuals that are obtained from a cointegration regression. Taylor

et al. (2001), fit ESTAR models to the log real exchange rates, and then tested if

there were any remaining nonlinearities left out. The problem with their approach

is that the testing procedures in Taylor et al. (2001) departs from the original PPP

by calling for further economic information about the other real exchange rates in

the testing step, but has the drawback that this additional information is left aside

in the univariate estimation of ESTAR models for the real exchange rate. For this

reason, the stationarity evidence provided from their panel data tests may not be

applied to univariate real exchange rates. If real exchange rates are nonstationary in

the sample, then the results of their specification tests may also be questionable, as

these tests are based on the assumption of stationary residuals. Moreover, since the

transition variable used in their study was the lagged log real exchange rates, if the

real exchange rates were nonstationary in their sample, then the process has a certain

probability of being absorbed into a single regime. This in turn may invalidate the

inference in the other regime.

Given the concerns discussed above, the purpose of the present chapter is twofold.

One, to reinvestigate more rigorously the threshold type nonlinear behavior in real
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exchange rates; two, to analyze carefully the persistence/mean reverting nature of

real exchange rates when a nonlinearity of threshold form is allowed. More precisely,

this chapter attempts to address the question to what extent does the presence of

threshold dynamics in the real exchange rate resolve the puzzling evidence from unit

root tests? To this end, this chapter carefully tests for the presence of threshold type

nonlinearities. Three different forms of nonlinearity tests and their robust variants

that take possible heteroscedasticity and outliers into consideration are applied. In

addition to standard residual diagnostics, newly developed specification tests due

to Eitrheim and Tera'svirta ( 1996), van Dijk and Pianses (1999), and generalized

impulse response functions, developed by Koop et al. (1996), are used as diagnostic

tools to better evaluate the estimated models. The results of linearity tests and

estimated STAR models provide evidence on the presence of threshold behavior in

real exchange rates for several currencies but with the caveat that real exchange rates

are still reasonably persistent when far away from PPP. This finding on persistence

is similar to the findings of O’Conell (1998b) but contrary to Taylor et al. (2001),

who employ a. similar approach to modeling nonlinearity. The main reason for the

different finding is that this chapter considers the first differences of real exchange

rates, while Taylor et al. (2001) consider the levels. The simulation experiments on

the power/size of the standard unit root and stationarity tests support the findings

in that, these tests have power to detect nonlinear mean reversion in general. Hence,

allowing transaction costs may not be able to solve the PPP puzzle alone.

The rest of this chapter is structured as follows. Section 3.2 discusses the issues

relating to representation, testing and specification of the STAR model. Section 3.3

discusses nonstationarity and nonlinearity of real exchange rates and presents the

simulation results on the power/size properties of the LM type linearity tests, unit

root and stationarity tests. The data and empirical results are presented in section 3.4.

In section 3.5, the dynamic behavior of real exchange rates is evaluated by analyzing
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the characteristic roots in different regimes and by estimating the generalized impulse

response functions from the fitted ESTAR models. Finally section 3.6 concludes and

discusses the implications of the empirical findings.

3.2 Modelling Nonlinearity by Smooth Transition

Autoregressive Modes

The nonlinear dynamic behavior of real exchange rates in this chapter is modelled in

terms of the STAR models that were discussed in chapter 1. In this section for the sake

of completeness a brief overview the model is given. The STAR model for a univariate

time series 3),, which is observed at times t = 1 —p, —p, . . . ,—1,0, 1,. . .,T —1,T, is

given by

yt=(7T1,o + 7r1,1yt—1 + + 7T1.pyt—p)(1 - F(Zt;%C))

+(7r2,0 + 7r2,lyt_1 + + 1r2myt_p)F(zt;7, c) + at, (3.2)

where y, is a stationary process with disturbances, at, which are martingale difference

sequences with respect to the history of the time series up to time t — 1, which is

denoted by (2‘4 = (yt_1, . . . ,y1_,,). This means that, E[ut|Q¢_1] = 0. It is usually

assumed that the conditional variance of u, is constant, that is, E[uf|9¢_1] = 02. The

transition function F(21; 7, c) is a continuous function that is bounded between 0 and

l. The transition variable zt can be a lagged endogenous variable, 2; = yt_d for a

certain integer d > 0, as assumed most of the time in empirical studies. As discussed in

chapter 1, the logistic and/or the exponential function are frequently used in empirical

studies. Since the STAR models and their specification and estimation are discussed

in chapter 1, we will briefly discuss the strategy as applied in this chapter.

In this study the autoregressive (AR) order is selected by a combined use of AIC,

BIC, and Ljung-Box statistics for autocorrelation. Whenever these criteria do not

agree on the appropriate lag order, the highest lag number is selected, because a low
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AR order may not be able to take care of the possible serial correlation in the series

which in turn might lower the power of the non-linearity tests. The usual practice

in the literature is to first identify a linear AR(p) model and then to estimate STAR

models with the same specified order in each regime. This approach is somewhat

problematic as the true AR order in a linear model may not be the same in a nonlinear

STAR type of model. Simulation evidence reported in chapter 1 suggests that these

criteria may fail to correctly select the true lag order in STAR models. In this chapter,

whenever an estimate is found to be statistically insignificant then it has been removed

and the model is re-estimated with different AR orders in each regime. Diagnostic

tests are used to decide if the removal of a lag is appropriate or not.

Testing linearity against the STAR type of nonlinearity are carried out by use

of the LM- tests discussed in chapter 1. Standard, heteroscedasticity robust and

outlier robust versions of LM2, LM3 and LM4 are applied in this chapter. To specify

the value of the delay parameter, d, the tests are performed for values of d ranging

from 1 to 12. Following Terasvirta (1994) the delay parameter is usually determined

by d = arg minP(d) for 1 S d _<_ 12, where P(d) is the p-value of the LM3 test. The

choice between the LSTAR and the ESTAR model is usually done by a sequence of

tests nested within the null hypotheses corresponding to the LM3 and the LM4 tests,

see Teriisvirta (1994) and Escirbano and Jorda(1999). The type of regime switching

implied by the LSTAR model can be convenient for modelling certain economic time

series that exhibit asymmetries in terms of expansions and recessions. This is because

in the LSTAR model, the two regimes correspond to the small and large values of

the transition variable zt relative to the threshold c. The ESTAR model may be

better suited for modelling real exchange rates, as regimes in the ESTAR model

are associated with small and large absolute values of the transition variable. In

other words, properties of the ESTAR model allow symmetric adjustment of the real

exchange rate for deviations above and below the equilibrium level. In the context of
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real exchange rates both models imply that there are distinct regimes in the exchange

rate market, for example, an appreciating regime and a depreciating regime. The

LSTAR model implies that real exchange rates behave differently in the two regimes,

while the ESTAR model implies that the two regimes have rather similar dynamics,

while the transition period can have different dynamics. In this chapter instead of,

a priori, excluding LSTAR model as a possible model for the real exchange rates,

the LSTAR models are also estimated along with the ESTAR models to check the

adequacy of the ESTAR model. In all of the reported cases in section 3.4, the ESTAR

model is found to better represent the dynamic behavior of real exchange rates. This

way of selecting the appropriate STAR model and delay parameter is quite flexible

and in general may be preferable to the strict application of the procedures described

in Terasvirta (1994) and Escirbano and Jord5.(1999), as it allows one to compare the

estimated models for each of the transition variables and functions. This approach

is also suggested by Tera'svirta (1998). Another difference from the studies which

apply STAR modelling to exchange rates is that this study estimates STAR type of

models with different autoregressive orders in each regime. Given the results from

linearity tests, several ESTAR and LSTAR models are estimated by nonlinear least

squares (NLS). Under certain regularity conditions, which are discussed in Gallant

(1987) Potcher and Prucha (1997) among others, the NLS estimates are consistent and

asymptotically normal. The estimation is performed by using constrained maximum

likelihood library of Gauss. The Newton-Raphson algorithm is used in optimization.

Apart from the standard diagnostic analysis of residuals the diagnostic tests developed

by Eitrheim and Tera'svirta (1996) and van Dijk and Franses (1999) are applied. For

details, see chapter 1.
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3.3 Nonlinearity, Non-stationarity and Real Ex-

change Rates

The application of linearity tests and of the STAR models presumes stationary

time series. An issue that deserves particular attention in modelling real exchange

rates by STAR type models involves the treatment of non-stationarity. The recent

empirical literature argues that standard unit root tests fail to detect mean reverting

behavior of real exchange rates as the the true data generating mechanism (DGP) for

the real exchange rates follow a nonlinear model of the STAR type. This idea rests

on the following re-parameterization of the real exchange rates;

p—l

AQt = (a + pqt—i + Zmama—Ml - F(zt, 7, c)) +

j=1

p-l

(a' + p’Qt—l + Z 7r2JAQt—j)F(Zta ’7, C) + ut- (3-3)

j=1

Note that equation (3.3) indicates that when the process is in the middle regime, (that

corresponds to F() = 0 in the ESTAR model) the behavior of real exchange rates is

mostly determined by the value of p and when the process is in the outer regime (that

corresponds to F(.) = lin the ESTAR model) the behavior is mostly determined by

the value of p’. Hence, for small deviations from PPP the coefficient p will govern the

adjustment process whereas for large deviations from PPP the coeflicient p’ becomes

more and more important. In this sense, STAR models of the form (3.3) are consistent

with the predictions of equilibrium models of real exchange rate determination in the

presence of transactions costs. In particular, the larger the deviation from PPP, the

stronger the tendency to move back to equilibrium, provided that the estimates of

p and p’ are such that p is even positive while p’ is negative. These conditions will

ensure the global stationarity of the real exchange rates generated from model in

(3.3). If the true DGP of real exchange rates is given by the model in (3.3), then unit

root tests which are based on a linear AR(p) model of the augmented Dickey-Fuller
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regression form

p- 1

AQt = (04* + p'qi—i + Z 1r;Aq,_,-) (3-4)

i=1

may not be able to detect the mean reverting behavior of real exchange rates, as

the estimates of the parameter p“ in (3.4) will tend to be a combination of p and p’.

Thus, failure to reject the unit root hypothesis on the basis of a linear model does not

necessarily invalidate long-run PPP. That is, the unit root hypothesis Ho : p‘ = 0 may

not be rejected against the stationary linear alternative hypothesis H1 :p ‘ < 0, even

though the true DGP is a nonlinear globally stable process. Given this possibility of

non-rejection of the unit root hypothesis when in fact the true process is nonlinearly

mean reverting, it is worthwhile to investigate the frequency with which the hypothesis

of a unit root can be rejected using standard test procedures when, under the null

hypothesis, the data generating process is a mean reverting STAR process. This may

shed some light on understanding the power/size properties of the standard tests and

may reveal information on the reasons why previous research has resulted in non-

rejection of unit root null or rejection of stationary null for real exchange rates over

the floating period.

Since, a priori, it is not known, whether or not real exchange rates are stationary,

it is also worthwhile to investigate the frequency with which the hypothesis of nonlin-

earty is rejected when the true DGP is a linear unit root and/or stationary process.

This is important as the linearity tests and estimation of STAR models assume that

the time series under study is stationary. Results of this experiment combined with

the results of the experiment on the power/size of unit root/stationarity tests will

guide us in testing and estimating the STAR models in the subsequent sections.

To investigate the size of linearity tests, data is generated from AR(p) model.

To investigate the power/size properties of unit root and stationarity tests the data

is generated from the ESTAR model with p = 1 and p = 2. The parameters in
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ESTAR models are specified so that the generated series are globally stationary even

though they may behave as a random walk in the middle regime. In all experiments,

disturbances are generated from independent and identically distributed Gaussian

innovations with zero mean and unit variance. Starting values are set equal to zero and

in each replication the first 100 observation is discarded in order to remove the possible

effects of starting values. A sample size of 305 observations is generated from AR(p)

and ESTRAR(p) models as this corresponds to the sample size used in this study.

The results are given in tables 3.1 and 3.2. Table 3.1 gives the empirical rejection

frequencies of the F variants of LM type tests. Linearity tests and corresponding

p—values are computed and compared with the 5% significance level. Both levels and

first differences are used in computing the tests. The first values in the table are the

empirical size of tests when the level of the generated data is used while the values in

the square brackets correspond to the size of tests when first difference of the data is

used. Tests are computed given the true lag order of 2. Experiments are conducted

with different p values. Since the results are similar only results from p = 2 are

reported. The results from table 3.1 indicate that for the values of the AR parameter

which make the AR(p) model stationary the standard versions of LM—type tests have

estimated empirical sizes closer to the nominal size of 5%. As the the coefficients in

AR(p) processes take values so that the processes become near unit root or a pure unit

root process the empirical size of the tests worsens and becomes unity. This means

that the LM—type tests may spuriously suggest presence of nonlinearity even though

the true DGP is a linear process. The results also indicate that first differencing the

series in general improve the size of the tests.

The results in table 3.2 indicate that the ability of Phillips-Perron (1988) (PP),

Augmented Dickey-Fuller (ADF) and KPSS tests to reject nonstationarity when non-

stationarity is false depend on the parametric specification for the true data generating

process (DGP). When the true DGP is a STAR model with near unit root or unit

102



root behavior in the middle/inner regime and stationary in the outer regime such that

the process is globally stable then the unit root tests and stationarity tests have good

power and size properties in terms of detecting global stationarity of the series. How-

ever, when the root of the autoregressive parameter in the outer regime approaches

unity then the ability of ADF and PP tests declines in detecting nonlinear mean

reversion. This indicates that the power of the ADF and PP tests depend on the

behavior of the process in the outer regime as the global behavior of the time series

in an ESTAR model is dictated by the roots of the autoregressive polynomial in the

outer regime. As the autoregressive parameter(s) in the outer regime approaches to

unity, the ESTAR model becomes more and more persistent and hence the ADF and

the PP lose power in detecting the global stationarity of the process while the power

of KPSS rises as KPSS has power against persistent but stationary alternatives.

3.4 Empirical Results

3.4.1 The Data

The data used in this study consists of monthly observations on consumer

price indices for Belgium, Canada, France, Germany, Italy, Japan, the Netherlands,

Switzerland, the UK, and the US and end-of-period spot exchange rates for Belgian

franc, Canadian dollar, French franc, German mark, Italian lira, Japanese yen, Dutch

guilder, Swiss franc, the UK pound against the US dollar. All data cover the sam-

ple period from 1973M03 to 1998M07 and derived from the International Monetary

Fund’s International Financial Statistics data compact disks. The logarithmic real

exchange rate series constructed with these data as in equation (3.1), with st taken

as the logarithm of the dollar price of currency, pt as the logarithm the US price level,

and p; as the logarithm of the price level of the relevant country.

PP, due to Phillips, and Perron (1988), KPSS, due to Kwiatkoski, Phillips

Schmidt, and Shin (1992), statistics in both levels and first differences are used to
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evaluate the nonstationarity-stationarity nature of real exchange rates. The results

are given in Table 3.3. The results from the table indicates that for all series the real

exchange rates are non-stationary, and clearly have a unit root. The log differenced

real exchange rates are all stationary. Combined with the results from the simulation

experiments reported above the first difference logarithmic real exchange rates are

going to be used in analyzing the nonlinear behavior of the real exchange rate series

over the free floating period in the rest of the study.

3.4.2 Nonlinearity tests and STAR model specification

The p—values for linearity tests with the maximum AR lag determined by combined

use of AIC, BIC and LB statistics, are reported in table 3.4. Following the suggestion

in Tera'svirta (1994, 1998) F-variants of linearity tests are used as they have more

power in finite samples. Each table gives three versions of each of the LM-type tests

discussed above. Each row in table 3.4 gives the transition variable(s) for which

at least one of the p—values from any version of the test is less than 0.10. One

of the striking result from table 3.4 is that for some of the currencies (especially

for Belgian franc, the British pound, Dutch guilder, French franc, Italian lira and

Japanese yen) the standard variant of the tests indicate presence of very significant

nonlinearity while either HCC or OR or both variants have highly insignificant p-

values, indicating either the results from LS variants may be spurious in the sense

that a finding of nonlinearity possibly due to either presence of heteroscedasticity,

outliers or both, or robust variants are not able to detect nonlinearity. There is

almost no evidence of nonlinearity at any reasonable level of significance for the

British pound and Swiss franc for the sample in this study from HCC variants of the

tests. For all other currencies either some or all of the tests indicate the presence of

STAR type of nonlinearity at either 5% or 10% significance levels. In some of these

cases evidence from HCC and/or OR versions of nonlinearity tests on the presence
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of STAR form nonlinearity is not very strong. In these cases it is not clear how

to conclude about the presence of nonlinearity. An approach is to estimate STAR

models for all of the delay parameters for which nonlinearity is suggested by the LS

versions of the nonlinearity tests and then let the diagnostic and specification tests

reveal the relevance of the nonlinear model for the data. This approach is intuitive,

because if there is no STAR type of nonlinearity in the data, either the estimation

procedure would fail (indicating threshold type of nonlinearity is not being identified)

or else, in the case of curve fitting, the fitted model would fail to pass at least some

of the diagnostic and specification tests. This is the approach taken in the remaining

part of this chapter.

3.4.3 Results from the Estimated STAR Models

For all currencies, both ESTAR and LSTAR models are estimated for each of the

transition variable for which some evidence of nonlinearity is obtained from linearity

tests. LSTAR models are used for comparison purposes to check if the ESTAR models

appropriately model the dynamics of real exchange rates as suggested by economic

intuition. Consistent with the intuition, in all cases the ESTAR model is found

to represent the dynamics better than the LSTAR model. The estimated models

for the Belgian franc, British pound, Dutch guilder and Swiss franc either failed in

the estimation stage or failed to pass the diagnostic tests, especially the presence

of remaining nonlinearity and presence of serial correlation tests. Hence no results

for these currencies are reported in the following. The selection of the model with

the appropriate transition variable is done by use of diagnostic statistics. The use

of diagnostic tests in selecting the appropriate transition variable and function is

quite flexible and in general should be preferred as it allows one to compare the

estimated models for each of the transition variables and fimctions. For example for

the French franc and Italian lira the LS versions of the tests indicated the presence
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of strong nonlinearity especially at d = 1 while other versions suggested that these

findings are probably due to the presence of heteroscedasticity or outliers. Despite

this, both LSTAR and ESTAR models were estimated with d = 1 and it was found

that there were considerable nonlinearities left out for higher delay parameters, and

significant correlations are found in the residuals. Hence these and several other

estimated models were discarded as they failed to pass the diagnostic tests. On the

other hand, for the German mark, consistent with the results of the LS variant of

linearity tests, the ESTAR model with delay parameter d = 1 is found to be the best

one. STAR models of the form given in (3.3) are estimated without any restriction.

The hypothesis that the process is white noise in the outer regime as suggested by

economic theory, is tested by testing the null of, Ho :p ‘ .= —1, «1' = = 1r? = O, in

(3.3). This hypothesis implies that real exchange rates, although they can behave as

random walks or even have explosive paths within the neighborhood of a threshold

level, become increasingly mean reverting with the absolute size of the deviations

from equilibrium level. In all of the estimated models this hypothesis is rejected

significantly. Those parameters which are found to be nonsignificant are deleted

and the model is re-estimated. The model best fits the data in terms of adequate

diagnostic properties selected and reported.

Tables 3.5 and 3.6 present the results from five of the countries. The ESTAR

model is found to be an adequate representation for the rates reported. This implies

that real exchange rates move from high or low levels towards the middle level or

their normal level in a similar fashion. Diagnostic statistics are satisfactory in all

cases. The '7 estimates vary across countries, with the speed of adjustment for some

real exchange rates being much higher than others. The estimated values for 'y for

all series are found to be significantly different from zero. The estimate of threshold

parameter, 6 is found to be indistinguishable from zero.

In order to better evaluate the estimated models, panels of Figure 3.1 display
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the graphs of the estimated transition function versus time and threshold variable.

The figures reveal that transition functions, visit each of the extreme regimes in

general. This means that real exchange rates behave in a nonlinear fashion in that

they visit extreme regimes quite often and a linear representation that ignores this

behavior will not be appropriate to fully understand the dynamic behavior of real

exchange rates. It can be observed from the panels of figure 3.1 that the Dutch guilder

and Italian lira rates spend most time during the sample period closer to the outer

regime, while German mark, Canadian dollar and Japanese yen rates stay closer to the

middle regime. The estimated transition functions over threshold variable indicate

that transition between regimes is relatively fast. That is to say that real exchange

rate differences adjust to shocks rapidly as the slope of the transition functions for all

currencies are high. The estimated transition functions in general provide evidence

of nonlinearity for all of the series.

3.5 Further Analysis of the Dynamics of Esti-

mated Star Models: Characteristics Roots and

GIRFs

To gain some insights into the dynamic behavior of real exchange rates this section

examines the dynamics of estimated models first by computing the characteristic

roots from estimated equations and second by analyzing the propagation mechanism

of shocks to real exchange rate process through use of generalized impulse response

functions (GIRF). Characteristic roots are obtained by solving the equation

p .

A” - Elm-(1 — £12.. 7, c)) + M.,-Fob 7, cur-3 = 0. (3.5)
j=1

For illustration two extreme regimes are considered, namely F = 0, (middle regime)

and F = 1 (outer regime). Characteristic roots are computed for the level series.

Table 3.7 gives roots for each regime. The striking result is that for all of the series
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the modulus is equal to unity in the middle regime. This implies that the real exchange

rates will behave as if they are a unit root process in this regime. Although for all

the series, the modulus in the outer regime is less then one, albeit they are very close

to unity. This implies that, although real exchange rates tend toward the stationary

equilibrium as time passes, the speed with which they tend to the equilibrium level

is very slow. In other words, when ta real exchange rate is in the outer regime it will

adjust towards its equilibrium level, but most probably the size of the adjustment is

very small hence it takes for a long time for the real exchange rate to revert back

to its respective equilibrium path. The rest of this section further investigates this

implied persistence by means of GIRFs developed by Koop et al. (1996).

Impulse response functions (IRF) for a linear model and a nonlinear model are

different. An IRF for a linear model is symmetric, as such a shock of size —6 has an

effect that is exactly opposite to that of a shock of size +6. Moreover, it is linear in

the sense that the IRF is proportional to the size of the shock. Lastly, it is history

independent as its shape does not depend on the particular history wt._1. As discussed

in Koop et al. (1996) and Pesaran and Potter (1997), in general, properties of IRFs

from a linear model do not carry to IRFs from a nonlinear model. Koop et al. (1996)

show that the impact of a shock depends not only on the history of the process but

also on the sign and size of the shock when the time series follows a nonlinear process

such as a STAR model. Furthermore, as shown in Pesaran and Potter (1997), when

one wants to analyze the effect of a shock on the time series It > 1 periods ahead,

the assumption that no shocks occur in the intermediate periods may give misleading

inference concerning the propagation mechanism of the model. GIRF for a specific

shock at = 6 is defined as

01140615, wt-l) = Elyt+k '11 t = (SM—1] — Eli/1+1. Iw t-lla (3-6)

for k = 1, 2, - 1 -. Note that the expectations of gm, are conditioned only on the history
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and/or on the shock. In other words, the problem of dealing with shocks occurring in

the intermediate periods is dealt with by averaging them out. That explains also why

the benchmark profile is the expectation of yt+k given only the history of the process

wt_1. Therefore, in the benchmark profile the current shock is averaged out as well.

This GIRF reduces to traditional IRF when the model is linear. Koop et al. (1996)

emphasize that the GIRF given in (3.6) is indeed a random variable. The GIRF is

a function of 5 and cut.” which are realizations of the random variables at and the

information set, 9,4.

The GIRFs can be utilized in several ways in analyzing the dynamic properties of

the estimated model. They can be used to analyze the persistence of shocks. A shock

at = 6 is called transient at history wt-1 if GIy(k,6,w¢_1) becomes zero as k —-¢ 00.

If on the other hand, GIRF approaches a non zero finite value when lc —+ 00 then

the shock is said to be persistent. It is intuitive to think that if a time series process

is stationary and ergodic, the effects of all shocks eventually converge to zero for all

possible histories of the process. Hence the distribution of GIy(k, 6, wt_1) collapses

to a spike at 0 as k —+ 00. In contrast, for non-stationary time series the dispersion

of the distribution of GIy(k, 6,114-1) is positive for all k. Koop et al. (1996) suggest

that the dispersion of the distribution of GIy(k, 6,112,-1) at finite horizons conveniently

can be used to obtain information about the persistence of shocks. GIRFs can also

be used to assess the significance of asymmetric effects over time. One difficulty in

computing the GIRFs is that the analytic expressions for the conditional expecta-

tions are not available for k > 1. Therefore they need to be estimated. Koop et al.

(1996)discusses in detail simulation methods to estimate GIRFs. In particular Monte

Carlo or bootstrap methods are suggested for computation of GIRFs. In this study,

conditional expectations are simulated realizations that are obtained from iteration

of the estimated ESTAR model, randomly by drawing with replacement from the

estimated residuals of the model, and then averaging over 5000 random draws over
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h = 0,1,2, - ' - ,60. For each combination of history and initial shock, we compute

generalized impulse responses for horizons k = 1, 2, - - - , N with N = 60. More ex-

plicitly, the conditional expectations in (3.9) are estimated as the means over 5,000

realizations of Ag”), with and without using the selected initial shock to obtain Aqt

and using randomly sampled residuals of the estimated ESTAR models elsewhere.

All generalized impulse responses are initialized such that they equal i/a-u at k = 0.

There are different ways of obtaining GIRFs. One way is to estimate GIRFS for

each history vector. Alternatively one could estimate GIRFs by estimating condi-

tional expectations for each history wt_1 and then average the obtained sequences

over all possible drawings from wt_1. A third way is to estimate GIRFs by setting

the conditioning vector to w?_1 = E[w¢_1]. GIRFs from all of these strategies are

computed. The mean GIRFs from histories that correspond to the upper 10 per-

cent quintile of the estimated transition function are given in the panels of figure

3.2. GIRFs are computed for the levels of the real exchange rates by cumulating

the impulse responses from the logarithmic difference of the real exchange rates for

each horizon. Inspection of the generalized impulse response functions reveal that for

all of the series, shocks to innovations in real exchange rates do not dissipate as the

horizon increases. That is, consistent with a modulus that is around unity, a shock

will have quite persistent effects in that real exchange rates do not return to their

equilibrium path in a short period of time. This is in contrast to the argument that

real exchange rates should be mean reverting when deviations from the equilibrium

level implied by the PPP condition are large. This result indicates that although,

the presence of transaction costs may lead to nonlinear type of behavior that can be

modelled appropriately by ESTAR models, it does not necessarily imply that real

exchange rates are anti-persistent.
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3.6 Conclusion

The use of three different nonlinearity tests and their robustified variants against

heteroscedasticity and outliers indicated presence of STAR type nonlinearities at dif-

ferent transition variables for most of the currencies considered in this study. The

results from nonlinearity tests also revealed the importance of evaluating the esti-

mated STAR model in different respects, as a finding from nonlinearity tests may be

due to some other property of the data. In turn, several different diagnostic tests

are utilized in evaluating the estimated STAR models. For the Belgian franc, British

pound, and French franc rates, estimated models did not pass all the diagnostic tests,

especially tests of remaining nonlinearity and tests for serial correlation in the resid-

uals despite the evidence of nonlinearity from the LM tests.

Further evaluation of the dynamic behavior of real exchange rates from estimated

STAR models revealed that shocks to real exchange rates have quite persistent effects

which is consistent with a non-stationary process. This finding is consistent with the

results of the simulation experiments on the power and size of PP, ADF and KPSS

statistics which indicated that unit root and stationarity tests are capable of detecting

a globally stationary process even if the true DGP is a nonlinear one. The findings

here support the findings of O’Connell (1998b), in that small deviations from PPP

can be as persistent as large deviations. The identified threshold type of nonlinearity

may indicate that a certain component of real exchange rates may have the tendency

to behave as nonlinearly mean reverting but apparent persistence indicates that either

the nominal exchange rates or the relative prices converge too slowly. As such, the

presence of transaction costs by themselves are not able to induce real exchange

rates converge to long run equilibrium levels. The general equilibrium models that

incorporate transaction costs, such as Dumas (1992) and Sercu et al. (1995) indicate

that real exchange rates spend most of the time away from equilibrium. Still, they
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presume that relative prices and nominal exchange rates converge to the long run

equilibrium at the same rate. Since in these models adjustments in relative prices are

the main force that cause real exchange rates to revert to equilibrium, the findings

here raise the question of why adjustments in relative prices are not able to induce

real exchange rates to move to equilibrium faster? Perhaps, as argued by Engel and

Morley (2001) nominal exchange rates and relative prices have different speeds of

adjustment and persistence of real exchange rates can be explained by persistence

of nominal exchange rates rather than relative prices. An interesting issue that may

worth investigating is the persistence and nonlinear behavior of nominal exchange

rates and relative prices separately as this may reveal important information on the

adjustment dynamics and speed with which nominal exchange rates and relative prices

converge to their long run equilibrium levels. Given the observed strong correlation

between nominal and real exchange rates it is possibly the relative prices that have

the threshold type of mean reversion rather than the nominal exchange rates. This

issue is left for future research.
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Figure 3.1: Estimated Transition Function versus Time and Threshold Variable
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Figure 3.1 (cont’d).

(c) German Mark
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(e)W

Figure 3.1 (cont’d).

F-function vs. time
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Figure 3.2: Generalized Impulse Response Functions from estimated ESTAR models

(a) Canadian Dollar
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Figure 3.2 (cont’d)

(c) German Mark
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Figure 3.2 (cont’d).

(e) Japanese yen
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NotezThe mean GIRFs from shocks of 10%, (solid lines with star), 5%, dotted

lines with triangles), -5% (dots with squares), and -%10(dashes with circles) are

given for the histories that correspond to the outer regime. Note that shocks

are standardized by dividing the standard error of the residuals from estimated

models.
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Table 3.1: Empirical rejection frequencies of linearity tests, Sample size=305.

Model Design: yt = plyt_1 + p2y¢_2 + ut, ut ~ i.i.d.N(0, 1)

 

Parameter Rejection frequencies

LM2 LM3 LM4

p1 = 0.3, p2 = 0.6 0.077[0.041] 0.067[0.040] 0.064[0.044]

p1 = 1.0, p2 = 0.0 0.105[0.044] 0.098[0.039] 0.108[0.046]

p1 = 0.7, p2 = 0.3 0.110[0.047] 0.090[0.048] 0.097[0.049]

p1 = 0.3, p2 = 0.7 0.292[0.045] 0.262[0.043] 0.247[0.049]

p1 = 0.5, p2 = 0.5 0.193[0.046] 0.162[0.040] 0.165[0.045]

p1 = 0.7, p2 = 0.4 0.999[0.997] 1.000[1.000] 1.000[1.000]
 

Notes: The rejection frequencies are obtained computation F variants of LM tests and

corresponding p-values 5000 times. Since the true data generating model is linear these

frequencies indicate the empirical sizes of the tests. The nominal significance level taken is

%5. Squared bracketed values correspond to the first differenced series.

Table 3.2: Empirical rejection frequencies for ADF PP and KPSS tests

Model Design:

9: = 7F1,1yc—1(1 - F(yt—1,5,0)) + [7T1,2yt—1F(yt—1, 5, 0)] + at, at ~ “db/(0, 1)

Parameter specification Rejection frequency
 

 

KPSS PP ADF

m = 0.9, «1,2 = —0.5 0.067 0.990 0.970

m = 1,7”,2 = -0.5 0.071 0.899 0.900

«1,, = 1,1“,2 = —0.1 0.355 0.997 0.990

70.1 = 1.1.71.2 = —0.5 0.085 0.994 0.991

70.1 = 1.2, «1,2 = —o.5 0.120 0.991 0.995

70.1 = 1.0, «1,2 = 0.5 0.800 0.845 0.840

m =1.0,7r1,2 = 0.7 0.870 0.835 0.830

m = 1.0.01.2 = 0.95 0.850 0.540 0.520

m = 1.1,1r1,2 = 0.95 0.880 0.480 0.475
 

Model Design: yt =

7T2’2yt_2]F(y¢_1, 5,0) + Ug, at N ZZdN(0, 1)

[7&in + 771,2yz—2](1 — F(yt-1a5,0)) + [772,1yt—1

 

KPSS PP ADF

m = 0.6, 70.2 = 0.4, «2,1 = 0.4, «2,2 = —O.6 0.104 0.890 0.992

m = 0.4, 70.2 = 0.6, «2,1 = 0.4,«2,2 = —0.6 0.344 0.995 0.994

«1,1 = 0.7, «1,2 = 0.3, «2,1 = 0.4mm = —0.6 0.059 0.996 0.992

m = 0.3, «1,2 = 0.7, «2,1 = 0.4,«2,2 = —0.6 0.613 0.998 0.993

70.1 = 0.3, «1,2 = 0.7, 92.1 = 0.4.42.2 = 0.4 0.815 0.722 0.720

7T1’1 = 0.3, W13 = 0.7, 7T2'1 = 0.6, W22 = 0.3 0.828 0.718 0.715

 

NotezRejection frequencies are based on 5000 replications.
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Table 3.3: Rasults on unit root and stationarity tests:PP, and KPSS

 

 

Currency level first difference

PP KPSS PP KPSS

Belgian franc -1.351 0.997 -16.299 0.091

Canadian dollar -1.504 2.812 -14.253 0.180

French franc -1.534 1.354 -17.046 0.206

German Dmark -1.882 3.217 -16.259 0.166

Italian lira -2.589 3.239 -15.102 0.438

Japanese yen -0.483 3.695 -12.532 0162

Dutch guilder -1.397 3.088 -16.612 0.100

Swiss franc -2.226 3.205 -15.950 0.228

British pound -2.941 2.706 -11.586 0.312

 

Notes: The reported values for the PP test are based on the regression of the time series

on a constant and its lagged value. The lag truncation for the Bartlett kernel is obtained

from the formula floor(4(1-g5)2/9). The 1% and 5% critical values are -3.454 and -2.871

respectively for the PP tests. The reported values for the KPSS test are based on a

regression of the series on a constant only. The 1% and 5% critical values for the KPSS

tests are 0.739 and 0.463 respectively. PP statistic test the null hypothesis of a unit root

against the alternative of stationarity while the KPSS statistic has the null of covariance

stationarity against non-stationarity.
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Table 3.4: p-values of LM tests for star type of nonlinearity in monthly logarithmic

differences of real exchange rates.

Belgian franc, p = 2

 

 

d LS HCC OR

LM2 LM3 LM4 LM2 LM3 LM4 LM2 LM3 LM4

1 0.0094 0.0005 0.0040 0.3631 0.5446 0.2361 0.7686 0.5849 0.0290

9 0.0828 0.1255 0.0628 0.2762 0.4011 0.2579 0.0318 0.0182 0.0597

11 0.1208 0.2529 0.0912 0.1143 0.2820 0.0851 0.0134 0.0016 0.0188

British pound, p = 3

3 0.0478 0.1351 0.1260 0.5300 0.8183 0.3079 0.2695 0.0433 0.0671

5 0.0663 0.1536 0.0242 0.3113 0.5744 0.1923 0.3186 0.0492 0.4010

Canadian dollar, p = 1

8 0.0971 0.2434 0.0964 0.0699 0.1791 0.0728 0.2052 0.0797 0.3906

10 0.2462 0.0970 0.0792 0.3092 0.3097 0.1735 0.0778 0.0623 0.1340

Dutch guilder, p = 2

1 0.0199 0.0007 0.0096 0.4889 0.5581 0.3328 0.4807 0.1423 0.0790

9 0.2268 0.2120 0.1761 0.4380 0.7388 0.4993 0.0467 0.0640 0.0688

11 0.0740 0.1985 0.0468 0.1161 0.2429 0.0691 0.0350 0.0035 0.0477

French franc, p = 1

1 0.0575 0.0147 0.0575 0.1025 0.1153 0.1025 0.0453 0.0923 0.0627

5 0.4571 0.1114 0.3617 0.2203 0.0346 0.2047 0.0254 0.0514 0.0697

11 0.1462 0.0703 0.0468 0.3514 0.3636 0.2592 0.0108 0.0026 0.0288

German mark, p=1

1 0.0032 0.0001 0.0032 0.0723 0.1506 0.0723 0.0373 0.3271 0.0032

5 0.1411 0.0331 0.3912 0.0454 0.0404 0.3588 0.0383 0.4653 0.0863

9 0.1719 0.2021 0.2524 0.2533 0.4151 0.5244 0.0175 0.0632 0.0475

Italian lira,p=2

1 0.0278 0.0027 0.1901 0.1643 0.0422 0.5446 0.0023 0.0040 0.0021

7 0.0377 0.0150 0.0039 0.1813 0.1709 0.0863 0.0071 0.0043 0.0164

9 0.0228 0.0589 0.0450 0.1479 0.2457 0.0870 0.0217 0.0058 0.0360

11 0.0512 0.1480 0.0557 0.1044 0.2245 0.0787 0.0620 0.0166 0.0901

Japanese yen, p = 3

1 0.0387 0.0538 0.1588 0.0929 0.0768 0.2206 0.2055 0.2918 0.1987

8 0.1970 0.4093 0.1128 0.0814 0.2169 0.0500 0.1797 0.0255 0.2454

11 0.3895 0.1872 0.1080 0.1504 0.0931 0.0596 0.0746 0.0452 0.1076

Swiss franc,p=1

4 0.0294 0.0904 0.1872 0.1862 0.1262 0.1981 0.4382 0.5533 0.2568

12 0.2384 0.0445 0.2205 0.5011 0.1578 0.4964 0.0920 0.8255 0.1221
 

KeyzLS, HCC, and OR stand for Least squares, Heteroscedasticity (finsistent and Cut-her

Robust variants of the LM tests described in the paper. The column d gives those delay

parameters, and hence the transition variables, for which most of the p-values from three

variants of LM—type tests are less than 0.1.
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Table 3.5: Estimation Results from ESTAR models: Sample size: 291 (after adjusting

 

end points).

Parameters Parameter Estimates for each currency

CD DG GM IL JY

«1,0 0.003 -0.073

(0.001) (0.034) . . .

«1,1 0.271 -1.138 0.610 0.592 0.223

(0.103) (0.520) (0.158) (0.302) (.128)

«2,0 0.002 0.013 0.035 0.063 .

(0.001) (0.008) (.017) (0.026) .

p’ -0.024 -0.010 -0.034 -0.008 -0.002

(0.012) (0.007) (0.017) (0.004) (0.001)

«2,1 . . -0.385 . 0.425

. . (0.187) . (0.179)

7 25.091 21.473 15.508 12.578 6.661

(1.116) (0.935) (0.495) (1.494) (2.636)

c 0.016 -0.067 -0.002 0.077 0.046

(0.132) (0.483) (0.113) (0.594) (0.340)

Skewness -0.036 0.310 0.184 0.587 -0.558

Kurtosis 2.830 3.846 3.213 4.259 3.982

PLM(6) 0.385 0.408 0.681 0.348 0.491

PLM(12) 0.178 0.526 0.819 0.293 0.421

pARCH(6) 0.685 0.254 0.650 0.158 0.464

pARCH(12) 0.147 0.446 0.627 0.338 0.667

d 8 1 1 9 8
 

HCC standard errors are given underneath the parameter estimates. 'ITansition variable and

the transition function are indicated in the first row of the table along with the currency. (1

stands for the transition variable used in the estimation. The rows corresponding to puns)

and pLM(12) give p-values from LM, statistics for 6th and 12th order serial correlations in

residuals. The rows corresponding to pARCH(6) and PARCH(12) report the p—values for the

presence of ARCH effects up to 6th and 12th orders in the residuals. d gives the lag value

of the transition variable.
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Table 3.6: Tests for remaining nonlinearity and parameter constancy

p—Values from LMAMR test: HCC version

 

 

 

Tr. var CD DG GDM IL JY

yt—l 0.813 0.139 . 0.942 0.955

lit—2 0.670 0.027 0.141 0.372 0.561

tit—3 0.444 0.596 0.455 0.373 0.278

lit—4 0.012 0.129 0.060 0.705 0.680

yt—s 0.318 0.799 0.182 0.552 0.108

yt—s 0.367 0.688 0.702 0.331 0.717

yt—7 0.854 0.154 0.138 0.481 0.443

yt—B 0.914 0.908 0.600 0.763 0.642

yt—Q 0.644 0.688 0.853 0.664 0.738

yt—lO 0.282 0.367 0.917 0.569 0.477

yt—ii 0.100 0.392 0.721 0.165 0.072

yt-12 0.707 0.318 0.919 0.614 0.633

p—Values from LMEMR test: HCC version

yt—l 0.651 0.098 . 0.950 0.760

yt—2 0.304 0.106 0.251 0.519 0.241

lit—3 0.768 0.828 0.521 0.244 0.168

yt-4 0.042 0.288 0.173 0.872 0.454

lit—5 0.408 0.405 0.160 0.540 0.247

311-6 0.415 0.398 0.589 0.468 0.848

lit—7 0.779 0.427 0.339 0.194 0.441

yt—s . 0.746 0.751 0.890 0.460

tit—9 0.179 0.460 0.693 0.081 0.737

Sit—10 0.556 0.344 0.976 0.894 0.683

yt-ll 0.316 0.590 0.872 0.413 0.197

lit-12 0.729 0.432 0.694 0.843 0.477

p-Values from LMCJ tests for parameter constancy

Statistics p—Values

LMCI 0.869 0.544 0.406 0.379 0.854

LMcz 0.900 0.331 0.519 0.231 0.945

LMC3 0.529 0.305 0.456 0.140 0.987
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Table 3.7: Characteristic Roots in extreme regimes

 

 

Currency Regime Characteristic Roots Modulus

CD M 1.000, 0.271 1.000

O 0.976 0.976

DG M 1.000, -1.138 1.138

O 1.00, 0.077 1.00

GM M 1.000, 0.610 1.00

O 0.976, 0.395 0.976

IL M 1.000, 0.592 1.000

O 0.992 0.992

JY M 1.000, 0.285 1.000

O 0.967, 0.285 0.967

 

Nota'M stands for the middle regime, and C for the outer regime.
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CHAPTER 4

Long Memory in Commodity

Markets

4.1 Introduction

In accord with the efficient markets hypothesis, asset price returns and exchange

rate returns exhibit very little serial correlation. On the other hand their volatilities

contain a much richer structure in that certain transformations of asset price and

exchange rate returns have an extremely persistent distinct form of autocorrelation.

There is considerable evidence that shows that conditional volatility of returns of asset

prices and returns of exchange rates display long memory. Ding et al. (1993), de

Lima and Crato (1993), Bollerslev and Mikkelsen (1996), Granger and Ding (1996),

have shown that asset price return volatilities have long memory property. On the

other hand, Baillie et a1. (1996) have shown that exchange rate volatility displays

long memory property. Previous literature has found daily commodity series to be

well described by martingale-GARCH(1,1) models, see for example, Baillie and Myers

(1991).

The purpose of this chapter is to examine daily commodity futures and cash re-

turns for several primary commodities and their volatilities, particularly, their squared
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and absolute returns as well as intra-daily ranges. The subject of this chapter is mod-

elling volatility in commodity markets. At a substantive level, one may be interested

in forecasting the volatility in these markets. Moreover, knowledge of the dynamic

properties of return volatilities may have implications on the dynamic nature of com-

modity prices, and forecasting optimal hedge ratios. This is because a finding of

time dependency in second conditional moments of cash and future commodity re-

turns will imply that Optimal hedge ratios should be time dependent as well. See

for instance Baillie and Myers (1991). The results of this study may be helpful in

comparing the dynamic features of commodity markets with that of stock and foreign

exchange markets. This in turn may have implications for theoretical modelling of

the prices in these markets. This study tries to answer the following questions. Do

daily commodity cash and future prices have long memory property, with cash and

future returns being approximately uncorrelated, and with very persistent autocorre-

lation in certain proxies for the volatility, such as, for example, squared and absolute

returns and intradaily ranges?

Granger and Ding (1995), using the results of Luce (1980), showed that the ex-

pected absolute return and any power transformation of this return, may be inter-

preted as a measure of risk. Hence, volatility literature routinely uses absolute or

squared returns as volatility proxies. In this chapter, following Garman and Klass

(1980), Parkinson (1980) and Anderson and Bollerslev (1998), we consider a third

proxy, namely range, defined here as the difference between the highest and lowest

log asset price during a discrete sampling interval. It is by now well known that the

conditional distribution of log absolute and squared returns are far from Gaussian.

On the other hand, Alizadeh, Brandt, and Diebold (1999)show both theoretically and

empirically that log range is approximately Gaussian, in sharp contrast to popular

volatility proxies, such as log absolute and/or squared returns. There is considerable

literature on both absolute and squared returns in stock and exchange rates markets,
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but little attention has been paid to extreme value volatility proxies. Range as a

proxy for volatility has been appreciated in the business press, which routinely dis-

plays high and low prices. One potential problem in the use of range as a proxy for

volatility is the downward bias in the range induced by discrete sampling (Rogers and

Satchel] 1991). However, as Alizadeh, Brandt, and Diebold (1999) and Anderson and

Bollerslev (1998) show on days with substantial price reversals, return-based proxies

underestimate daily volatility, as the closing price is not very different from the open-

ing price, despite the large intraday price fluctuations. The range in this sense may

better reflect the intraday volatility. In this chapter, the long memory property of

absolute and squared returns as well as intraday range will be analyzed. If intraday

log range exhibits long range dependence then this may support the findings of An-

derson and Bollerslev (1998) and Alizadeh, Brandt, and Diebold (l999)and motivate

consideration of intraday log range in modelling financial market volatility.

We utilize the Fractionally Integrated GARCH (FIGARCH) model of Baillie et al.

( 1996) to model the dynamics of volatility in commodity cash and futures returns.

Since the GARCH model attempts to account for volatility persistence, but has the

feature that persistence decays relatively fast, we use it as a benchmark and compare

its results with the FIGARCH model, as the latter model is capable of modelling

very long temporal dependencies in the conditional variance of a process. In order to

better asses the presence of long memory in the volatility of commodity future and

cash returns, this chapter also models absolute returns, squared returns, and intraday

ranges using the Fractionally Integrated Autoregressive Moving Average (ARFIMA)

model of Granger and Joyeux (1980), and Hosking (1981). Moreover, estimates of

the long memory parameter for the volatility proxies from semi-parametric methods

are also obtained. Particularly, the GPH estimator from Geweke and Portar-Hudak

(1983), and a local Whitlle estimator based on Fox and Taqque (1986) are used.

The rest of the chapter is organized as follows. Section 4.2 describes the data
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and examines the empirical autocorrelations of the series. Section 4.3 presents and

discusses the results from the estimation of the FIGARCH models for daily cash and

future return volatilities. Results from the estimation of the ARFIMA models and

nonparametric methods for squared and absolute returns are discussed in section 4.4.

The last section provides the conclusion.

4.2 The Data

We analyze cash and future prices on commodities, coffee, corn, gold, silver,

soybean, and unleaded gasoline. The data is obtained from the Chicago Mercan-

tile Exchange. The data set consists of the daily observations for each commodity.

The sample period differs for each commodity. The sample periods for each of the

commodities are the following; coffee, 03/20/84-12/29/00; corn, 03/20/85-03/14/01;

gold, 04/21/75—03/31/00; silver, 12/26/89-12/26/97; soybean, 03/20/80—12/29/00;

and unleaded gasoline, 04/25/86-12/29/00. Each contract starts trading well before

the delivery month. Except for gold and silver, for all commodities we consider the

contract that expires in March of each year. For gold, the December contract, and

for silver, the April contract are used.

Following the standard practice, the returns are defined as R, = 100 x Aln(Pt),

where B is the price (either cash or future) at date t, absolute returns as HM, and

squared returns as Rf. Daily returns are computed for each contract and then com-

bined to obtain a series of future returns. In estimation, dummy variables are included

to see if contract expiration dates have any statistically significant effect on the return

and volatility dynamics. For none of the commodities were the estimated coefficients

of dummy variables significant. Following Parkinson (1980), range is defined by

_ ln(P.") - 1MP!)

RR‘ _ 2ln 2 ’

 

where P,” and P,‘ are the highest and lowest prices at day t, respectively.
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Panels of figures 4.1 and 4.2 give the graphs of the daily cash and future returns,

absolute returns and squared returns, as well as intraday range for the commodity

futures over each sample period. It appears from the graphs that for all commodities,

relatively volatile periods, characterized by large price changes, alternate with more

tranquil periods in which prices remain more or less stable. This indicates that large

cash and future returns (both positive and negative) seem to occur in clusters and so

does volatility. The volatility clustering phenomenon which is typical of stock prices

and exchange rates, seems to occur in the commodity markets as well.

Summary statistics for the future and cash returns are given in table (4.1). The

table indicates that most of the series have small negative means and medians equal

to zero over their respective sample periods. One of the usual ways of getting an

idea of the distribution of a time series yt is to look at the kurtosis and the skewness

and compare them with that of a normal random variable. The last two columns

of table 4.1 indicate that the kurtosis of all returns are much larger than that of a

normal random variable. This reflects the fact that the tails of the distribution of

these return series are fatter than the tails of the normal distribution. This in turn

means that large realizations occur more often than one might expect for a normally

distributed variable.

Since any symmetric distribution has a skewness equal to zero, table 4.1 indicates

that the distribution of the daily cash returns has some asymmetry. Iii-om table

4.1 it is seen that all of the future returns and three out of six cash returns (silver,

soybean, and unleaded gasoline) have negative skewness. This implies that for those

commodities, the left tail of the distribution is fatter than the right tail, or large

negative returns tend to occur more often than large positive ones. The analysis here

indicates that daily future and cash return distributions are far from being normal.

This finding is consistent with the distributions of daily returns for stock price returns

and exchange rate returns.
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Table (4.2) gives the summary statistics for return based and range based volatility

proxies for the commodity futures. For almost all commodities, intraday volatility has

a lower sample variance and skewness compared with absolute and squared returns.

Squared returns always have the highest kurtosis. It seems that not only return based

volatility proxies but also log range is far from being normal, a result in contrast to

the findings of Alizadeh, Brendt, and Diebold (1999).

Table (4.3) reports the results from the Phillips-Perron test (PP) from Phillips

and Perron (1988), and the KPSS test, due to Kwiatoski et al. ( 1992). The PP tests

the null hypothesis of a unit root, I(1), against the alternative of I(0), while KPSS

tests the null of an I(0) against the alternative of an I(1) process. As shown in Lee

and Schmidt (1996) the KPSS test has power against the long memory alternative as

well. Both tests indicate that commodity futures and cash prices are non-stationary

and possibly have a unit root, while daily cash and future returns are stationary. The

PP test indicates that all of the volatility proxies are stationary. The KPSS test, on

the other hand, rejects the null of 1(0) for the squared future returns and absolute

returns for coffee, gold, soybeans, and unleaded gasoline. Combined with the results

of the PP test, this may indicate long memory behavior in the future squared and

absolute returns for these commodities. The KPSS test also rejects its null for coffee,

gold, silver, and soybeans intraday ranges. Hence, there is some evidence from the

unit root and stationarity tests that volatility proxies may have long memory behavior

for some of the commodity future returns. The KPSS test rejects its null for coffee

and gold squared cash returns, and for the absolute returns of coffee, gold, soybean

and unleaded gasoline at the 5 percent level. Hence, evidence of long memory for the

cash squared and absolute returns is not that strong compared to future squared and

absolute returns.

To gain further insight on the dependence structure of the series, panels of figures

4.3 and 4.4 display the first 100 autocorrelations for the daily log cash and future

134



returns, absolute returns, squared returns, and intraday range together with two-

sided 5 percent critical values (11.96/\/T) where 71 s the respective sample size.

It is seen that the autocorrelations of the future and cash returns are very small,

even at low lags and for a majority of lags they are within the 5 percent intervals.

Hence, autocorrelations of returns mimic the autocorrelation structure of a stationary

process. By contrast, for the absolute and squared returns, and the intraday ranges

the autocorrelations start off at a moderate level but remain significantly positive for

a substantial number of lags. Moreover, autocorrelation in the absolute returns is

generally somewhat higher than the autocorrelation in the squared returns and for

all commodities autocorrelations in absolute returns hardly become insignificant at

all lags considered. This illustrates what has become known as the ’Taylor property’

(see Taylor, 1986, pp.52-55), that is, when calculating the autocorrelations for the

series R: for various values of 6, one almost invariably finds that autocorrelations are

largest for 6 = 1.

As is evident from the graphs, autocorrelations for absolute returns are not only

larger than those of squared returns but also much more persistent in the sense that

they decay much more slowly. Moreover, autocorrelations for intraday range are usu-

ally higher than those of absolute and squared returns and more persistent. The

autocorrelations in absolute and squared returns and intraday range seem to mimic

the correlation properties of a long memory process rather than a short memory sta-

tionary process for which autocorrelations decay to zero at an exponential rate. As

is evident from the graphs, the autocorrelations in absolute and squared returns and

intraday range decay very slowly, indicating that the linear association between dis—

tant observations is persistent and autocorrelations decay at a hyperbolic rate. This

behavior of autocorrelations is consistent with time series models with long memory

or long range dependence. The above described characteristics of autocorrelations

in log commodity future and cash prices are in conformity with the findings from
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the stock and foreign exchange markets. For example, see Ding and Granger (1993),

Baillie et al. ( 1996), Bollerslev et al. (1996).

4.3 Results from GARCH and FIGARCH Models

A class of parametric models that is capable of modelling volatility clustering

and the persistence in the autocorrelations of absolute and squared cash returns is

the Fractionally Integrated Generalized Autoregressive Heteroscedastic (FIGARCH)

model of Baillie et al. (1996). The details of volatility models are discussed in chapter

2.

In the light of the discussion in chapter 2, conditional variance of commodity cash

and future returns are modelled by GARCH/FIGARCH processes. The robust Wald

statistic is used to check if the estimated FIGARCH model better represents the

long memory property of the data compared to a GARCH specification. Results of

the estimated ARMA(p, q) — FIGARCH(P, 6, Q) models for future and cash returns

are presented in tables (4.4)-(4.7). The conditional mean specification for cash and

future returns varies across different commodities. An MA(l) specification found

to be satisfactory for modelling the conditional mean of cash and future returns for

all commodities except coffee. For the conditional mean of coffee cash and future

returns an MA(3) found to be a better specification. The estimate of long memory

parameter, 6, for daily future and cash returns are significantly different from zero.

Various tests for specification of the models were performed. In particular, the last

row of the tables (4.5 and 4.7) give the robust Wald test values of a stationary

GARCH(1, 1) model under the null hypothesis against a FIGARCH(1, 6, 1) model

under the alternative hypothesis. In each of the commodities, the robust Wald test

values indicate clear rejection of the null hypothesis when compared with the critical

values of a xzdi stribution with one degree of freedom. For none of the commodities
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did the estimated GARCH models performed better than the FIGARCH models.

The sum of the estimates of a and B in the GARCH models are found to be close to

one for all commodities, indicating that the volatility process is highly persistent. In

all cases the standardized residuals exhibit less skewness and kurtosis than the returns.

Perhaps of greater importance, the Ljung-Box statistic, Q, fails to reject the null

hypothesis of independently and identically distributed standardized residuals and

squared standardized residuals for most of the commodities. One striking result from

table 4.7 is the finding of dual long memory in both conditional mean and conditional

variance of the coffee cash returns. As the table indicates, an ARFIMA(0, d, 1) —

FIGARCH(1, 6, 0) model seems to fit the coffee cash returns better than the other

specifications. Although the estimate of the long memory parameter is small, it is

significantly different from zero.

To obtain some insight into the volatility in the commodity markets, panels of

figure 4.5 present the commodity future returns together with the estimated condi-

tional variances from the FIGARCH models. As the figures indicate, the estimated

models do very well in describing in sample volatility in the commodity markets.

The FIGARCH models are quite accurate in estimating the time dependence and

clustering in the volatility.

In the FIGARCH model, taking out the mean parameters, the squared error term

coincides with the squared return. Hence, the FIGARCH model estimates provide

evidence that the squared returns exhibit long memory. As indicated in section 4.2 the

autocorrelations of squared returns, absolute returns, and intraday range seemed to

mimic the autocorrelation structure of a long memory process. Moreover, the results

of the unit root and stationarity tests indicated that the volatility proxies are neither

unit root nor stationary. A result that can be interpreted as evidence of long memory.

To further analyze the long memory in the proxies for the volatility tables 4.8 and

4.9 present the results from the GPH estimates for different number of periodogram
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ordinates and the table 4.10 reports results from the local Whittle estimation. The

results show that both cash and future squared returns and absolute returns exhibit

the long memory property with the estimates of the long memory parameter being

significantly greater than zero and less than one. In most cases, the estimate is less

than 0.5 indicating both long memory and stationarity. These findings are consistent

with the F1GARCH estimates. Interestingly, the intraday range also exhibits long

memory usually the long memory parameter estimates usually greater than those of

squared and absolute returns.

4.4 Conclusion

In this chapter, we analyzed daily commodity cash and future returns for cer-

tain primary commodities. The returns are modelled through the GARCH and the

FIGARCH models. The chapter found evidence supporting the FIGARCH mod-

els in the sense that the FIGARCH models fit the data better than the GARCH

models. The FIGARCH specification is able to capture both long and short run dy-

namic characteristics of the volatility process. The estimates of the fractional degree

of integration parameter were found to be significantly different from zero. Robust

Wald tests are used to test the FIGARCH models against the GARCH models and

in all cases the tests rejected a GARCH(1, 1) model in favor of a FIGARCH(1, 6, 1)

model. This implies we need to consider time dependency and long term depen-

dence in forecasting optimal hedge ratios. On the other hand this requires a bivariate

FIGARCH modelling of cash and future returns. This is a potentially interesting

question that may also raise interesting econometric issues that need to be studied in

the future.

For each commodity the chapter also considered measures of risk or the volatility

proxies, namely, squared returns, absolute returns, and the intraday range (or volatil-
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ity). The sample autocorrelations, unit root and stationarity tests, and estimates

from the semi-parametric methods, namely, the GPH estimates and the local Whit-

tle estimates of the long memory parameter indicated presence of the long memory

component in the volatility proxies. The findings here indicate that, in addition to

squared returns and absolute returns, intraday range exhibits long memory property

and it seems to be more persistent than the squared and absolute returns. The find-

ings support the findings of Alizadeh et al. (1999) in that intraday range can be as

good a proxy for the volatility as the squared and absolute returns.

The findings in this chapter indicates that on a practical level, one need to take

into consideration the long memory in the conditional volatility of commodity cash

and future returns in assessing the risk and return relations in these markets. The

results also indicate that the optimal hedge ratios should be time dependent and one

needs to consider taking the long memory dynamics in the conditional volatility in

forecasting optimal hedge ratios. As shown in Baillie and Myers (1991) the optimal

hedge ratios should be time dependent when there are GARCH effects. The findings

in this chapter indicate that similar to Baillie and Myers (1991), one can improve in

forecasting hedge ratios by considering the long memory in the conditional variance

of cash and future returns.
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Figure 4.1: Cash returns, absolute and squared returns
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Figure 4.1 (cont’d).
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Figure 4.1 (cont’d).
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Figure 4.1 (cont’d).
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Figure 4.2: Commodity future returns, absolute returns, and intraday range
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C. Gold

Figure 4.2 (cont’d).



Figure 4.2 (cont’d).
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C. Soybean

Figure 4.2 (cont’d).
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f. Unleaded Gasoline

Figure 4.2 (cont’d).
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Figure 4.3: Autocorrelations for cash returns, absolute and squared returns
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Figure 4.3 (cont’d).
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Figure 4.3 (cont’d).
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f. Unleaded Gasoline

Figure 4.3 (cont’d).
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Figure 4.4 (cont’d).

b. Corn
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Figure 4.4 (cont’d).
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Figure 4.4 (cont’d).
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Figure 4.4 (cont’d).

Soybeane.

 

 
 

 

I
'
l
"
'
l
a
l

'
|
"
9
I
'
l
"
-

I

 

 

 

 

  
N
d

 
 

 
 

164



Figure 4.4 (cont’d).

f. Unleaded Gasoline
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Figure 4.5: Future returns and estimated conditional variances
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Figure 4.5 (cont’d).
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f. Unleaded Gasoline

Figure 4.5 (cont’d).



Table 4.1: Summary statistics for commodity future and cash returns

 

coffee

corn

gold

silver

soybean

u. gas.

mean

-0.020

-0.020

-0.022

-0.008

-0.018

0.008

-0.015

0.009

-0.002

-0.004

0.039

-0.018

med

0.007

0.000

0.000

0.000

-0.025

0.000

0.000

0.000

0.000

0.000

0.034

0.000

min

-14.247

-14.458

-5.264

-7.486

-9.909

-7.750

-9.776

-9.432

—6.172

-11.490

-14.618

-18.251

max

12.739

21.328

5.213

7.903

9.745

9.291

7.801

5.827

6.433

7.867

10.285

12.573

var.

4.453

4.544

1.416

2.168

1.580

1.591

2.082

1.805

1.591

1.936

2.754

6.189

skew.

-0.275

0.008

0.016

-0.334

-0.046

0.116

-0.241

-0.280

-0.070

-0.446

-0.202

-0.242

kurt.

7.289

12.950

5.098

6.068

10.056

9.928

7.709

7.128

5.201

7.049

7.768

6.882
 

Table 4.2: Summary statistics for commodity future absolute and squared returns

and intraday range

 

coffee

C01'11

gold

silver

soybean

mean

1.480

4.453

1.542

0.871

1.416

0.938

0.813

1.580

0.749

0.996

2.081

0.168

0.922

1.592

0.945

1.187

2.755

0.789

med

1.022

1.045

1.271

0.657

0.432

0.830

0.503

0.253

0.556

0.677

0.458

0.000

0.678

0.460

0.822

0.877

0.769

0.554

min

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

max

14.247

202.979

9.866

5.264

27.714

5.676

9.909

98.190

7.162

9.776

95.568

4.535

6.433

41.385

5.381

14.618

213.693

13.058

var.

2.263

124.949

1.303

0.657

8.215

0.262

0.919

22.619

0.542

1.090

29.124

0.213

0.742

10.656

0.293

1.347

51.209

0.872

skew.

2.368

7.693

1.838

1.855

4.326

1.857

2.842

8.755

2.469

2.440

7.934

4.300

1.898

4.537

1.763

2.462

kurt.

12.213

88.993

9.038

7.447

26.218

9.886

15.267

119.255

13.416

12.565

98.294

27.064

7.652

30.726

8.452

14.960

12.336 279.598

2.355 17.903
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Table 4.3: KPSS and Phillips-Perron test results for commodity future log prices

levels, returns, absolute returns, squared returns and intraday range

a. KPSS Test: Commodity Future Prices:

 

 

 

 

 

 

 

 

series coffee corn gold silver soybean u. gaso—

line

level 2.682 2.804 5.930 3.698 2.892 2.813

return 0.080 0.079 0.160 0.163 0.041 0.107

squared return 2.333 0.180 4.779 0.305 0.484 0.570

absolute return 3.633 0.245 9.202 0.414 0.798 0.653

intraday range 4.909 0.351 9.619 0.911 1.578 0.115

b. Phillips-Perron Test: Commodity Future Prices:

level -2.096 -2.551 -1.908 -2.400 -3.026 -3.254

return -64.127 -60.126 -79.168 -46.425 -71.684 -52.950

squared return -53.998 -51.024 -59.158 -41.983 -59.146 -43.791

absolute return -49.740 -51.875 -57.835 -40.487 -60.718 -43.756

intraday range -40.084 -46.548 -42.264 -35.396 -49.315 -28.550

c. KPSS Test: Commodity Cash Prices

level 2.401 1.856 6.459 4.643 1.663 1.238

return 0.089 0.054 0.270 0.145 0.044 0.063

squared return 6.055 0.278 4.952 0.295 0.375 0.412

absolute return 11.567 0.335 8.945 0.356 0.658 1.099

d. Phillips-Perron: Commodity Cash Prices

level -1.447 -2.065 -1.956 -2.019 -2.862 -3.004

return -61.993 -59.290 -82.966 -45.274 -73.017 -51.983

squared return -47.393 -49.861 -53.496 -39.515 -57.993 -47.105

absolute return -52.613 -48.496 -53.590 -39.029 -58.757 -44.989
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Table 4.4: Estimated MA — GARCH Models for the commodity future returns

 

 

coffee corn gold silver soybean u. gasoline

p -0.044 -0.018 0.036 -0.045 -0.028 0.028

(0.025) (0.016) (0.010) (-0.030) (0.014) (0.024)

(9 0.040 0.048 . . . .

(0.017) (0.018) . . . .

02 0.042 0.033 0.002 0.019 0.035 0.055

(0.015) (0.009) (0.001) (0.010) (0.008) (0.019)

a 0.110 0.096 0.053 0.026 0.085 0.097

(0.016) (0.012) (0.009) (0.007) (0.009) (0.017)

6 0.888 0.882 0.949 0.956 0.893 0.883

(0.016) (0.015) (0.008) (0.009) (0.011) (0.021)

ln(€) -8530.280 -6075.413 -8935.093 -3505.472 -8205.102 -5703.621

Skewness -0. 122 -0.318 -0.304 -0.166 0.045 -0.113

Kurtosis 4.900 7.026 7.183 7.118 4.381 4.355

Q20 22.544 26.091 28.905 28.300 21.135 28.822

Q30 30.579 19.145 29.009 11.033 36.399 17.683

T 4206 4055 6295 2002 5267 3153

 

Key: ln(€) is the maximized log likelihood. The number in parenthesis indicate the asymp—

totic robust QMLE standard errors of the corresponding parameter estimates. The Q20

and Q30 are the Ljung—Box statistics at 20 degrees of freedom based on the standardized

residuals and squared standardized residuals respectively. The skewness and kurtosis are

based on the standardized residuals. T is the sample size.
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Table 4.5: Estimated MA — FIGARCH Models for the commodity future returns

 

 

coffee corn gold silver soybean u. gasoline

p -0.037 -0.018 0.034 -0.042 -0.029 0.027

(0.025) (0.016) (0.010) (-0.030) (0.014) (0.024)

6 0.040 0.050 . . . 0.038

(0.018) (0.017) . . . (0.019)

6 0.533 0.582 0.424 0.241 0.546 0.541

(0.085) (0.121) (0.050) (0.040) (0.106) (0.089)

02 0.062 0.036 0.015 0.198 0.041 0.136

(0.024) (0.012) (0.006) (0.046) (0.014) (0.032)

6 0.684 0.653 0.691 0.579 0.650 0.451

(0.070) (0.097) (0.073) (0.024) (0.092) (0.095)

d 0.326 0.162 0.388 0.420 0.168 .

(0.062) (0.052) (0.066) (0.024) (0.045) .

ln(€) -8514.112 -6080.833 -8907.757 -3512.494 -8209.061 -5706.865

Skewness -0.148 -0.121 -0.318 -0.112 0.064 -0.130

Kurtosis 4.669 4.201 7.026 7.290 4.531 4.317

Q20 24.182 27.984 26.091 27.913 21.998 23.087

Q30 30.796 31.805 19.145 9.629 36.046 12.738

T 4206 4055 6295 2002 5267 3153

W5=o 39.351 23.206 73.116 36.644 26.358

 

Key: W5=o stands for the robust Wald test statistics testing the null of a (312011(1, 1)

model against a FIGARCH(1, 6, 1) model. The rest of the table is same as Table 4.4.
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Table 4.6: Estimated MA — GARCH Models for the commodity cash returns

 

 

coffee corn gold silver soybean u. gasoline

,u -0.066 0.019 0.008 -0.025 -0.010 0.036

(0.039) (0.019) (0.010) (-0.027) (0.015) (0.040)

6 0.151 . . . . .

(0.030) . .

9 -0.097 -0.060 0.080

(0.038) . (0.016) . . (0.019)

02 0.022 0.041 0.009 0.030 0.028 0.111

(0.013) (0.011) (0.009) (0.018) (0.007) (0.044)

a 0.094 0.107 0.081 0.041 0.084 0.076

(0.015) (0.013) (0.044) (0.015) (0.010) (0.017)

3 0.909 0.878 0.920 0.943 0.903 0.907

(0.014) (0.014) (0.045) (0.022) (0.011) (0.022)

ln(€) -7970.439 -6890.949 -9006.606 -3338.934 -8598.366 -7096.422

Skewness -0.381 -0.399 -0.023 -0.167 0.182 -0.088

Kurtosis 13.492 4.800 11.233 5.997 4.490 4.352

Q20 30.029 32.118 50.366 26.312 26.110 22.398

Q30 18.066 19.05 23.071 25.830 23.917 17.398

T 4206 4055 6295 2002 5267 3153
 

Key: (1 is the long memory parameter in the ARFIMA(0, d, 1) model that is fitted to

conditional mean of coffee cash returns. The rest of the table is same as Table 4.4.
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Table 4.7: Estimated MA —- FIGARCH Models for the commodity cash returns

 

 

coffee corn gold silver soybean u. gasoline

[1. -0.074 0.019 0009 -0.021 -0.012 -0.031

(0.034) (0.019) (0.009) (-0.027) (0.015) (0.040)

d 0.074 . . . . .

(0.017) . . .

6 0.074 0.030 -0.063 0.084

(0.022) (0.019) (0.014) . . (0.019)

6 0.367 0.499 0.342 0.268 0.668 0.438

(0.047) (0.144) (0.034) (0.046) (0.158) (0.097)

02 0.172 0.110 0.042 0.137 0.036 0.216

(0.077) (0.028) (0.022) (0.034) (0.010) (0.102)

6 0.235 0.396 0.500 0.570 0.738 0.602

(0.069) (0.164) (0.127) (0.025) (0.107) (0.127)

05 . . 0.313 0.429 0.151 0.280

. . (0.130) (0.025) (0.059) (0.084)

ln(€) -8013.027 -6887.237 -8824.516 -3335.056 -8604.379 -7098.089

Skewness -0.841 -0.380 -0.034 -0.111 -0.156 -0.089

Kurtosis 14.736 4.739 8.786 5.778 4.527 4.445

Q20 30.775 28.622 53.507. 29.054 25.693 22.824

Q30 22.495 32.006 7.564 20.588 27.344 11.748

T 4206 4055 6295 2002 5267 3153

W5=0 . 99.924 34.201 17.879 41.593

 

Key: W5=o stallds for the robust Wald test statistics testing the null of a GARCH(1, 1)

model against a FIGARCH(1, 6,1) model. The rest of the table is same as Table 4.4.
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Table 4.8: GPH estimation results the cash returns, squared and absolute returns

a. Cash Returns

 

 

 

 

 

 

m coffee corn gold silver soybean u. gaso-

line

TO'55 -0.002 0.132 -0.004 -0.071 -0.135 -0. 154

(-0.037) (2.023) (-0.077) (-1.313) (-2.220) (-2.206)

T065 0.078 0.081 0.082 -0.071 -0.037 -0.041

(1.838) (1.876) (2.193) (-1.313) (0.943) (-0.887)

T075 0.047 0.078 0.010 -0.027 -0.080 -0.057

(1.669) (2.732) (0.430) (-0.717) (-3.087) (-1.832)

b. Cash squared Returns:

TO'55 0.276 0.478 0.496 0.385 0.345 0.358

(6.467) (7.296) (8.536) (4.845) (5.663) (5.121)

T065 0.276 0.372 0.399 0.170 0.474 0.248

(6.467) (8.630) (10.668) (3.125) 11.971 (5.299)

T”75 0.247 0.210 0.355 0.146 0.337 0.211

(8.795) (7.393) (14.689) (3.925) 13.064 (6.730)

c. Cash absolute returns

7‘055 0.455 0.519 0.496 0.438 0.435 0.394

(7.020) (7.927) (8.542) (5.512) (7.143) (5.633)

T065 0.373 0.416 0.421 0.264 0.463 0.298

(8.755) (9.650) (11.260) (4.848) (11.681) (6.371)

T“75 0.277 0.281 0.370 0.164 0.334 0.249

(9.875) (9.860) (15.351) (4.423) (12.945) (7.944)
 

Key: m stands for the number of periodogram ordinates used in the GPH estimator.

The values in parentheses are the t statistics for testing the null of Ho : 6 = 0 versus the

alternative of H1 : 6 > 0. The t values are computed by using the theoretical variance of

n2/24m.
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Table 4.9: GPH estimation results the future returns, squared and absolute returns

and intraday range

a. Future Returns

 

 

 

 

 

 

 

 

m coffee corn gold silver soybean u. gaso-

line

TO'55 -0.023 0.039 -0.008 -0.055 -0.040 0.078

(-0.357) (0.599) (-0.133) (-0.692) (-0.659) (1.115)

T‘"65 0.045 0.096 0.078 -0.075 -0.020 0.029

(1.044) (2.219) (2.087) (-1.375) (-0.508) (0.629)

T075 -0.008 -0.021 0.009 -0.057 -0.033 -0.053

(-0.279) (-0.721) (0.360) (-1.548) (-1.268) (-1.680)

b. Future squared Returns:

To55 0.219 0.429 0.444 0.307 0.413 0.437

(3.377) (6.549) (7.655) (3.857) (6.783) (6.246)

T065 0.327 0.419 0.370 0.170 0.382 0.347

(7.673) (9.717) (9.901) (3.124) 9.638 (7.409)

T075 0.271 0.354 0.415 0.084 0.365 0.262

(9.652) (12.452) (17.191) (2.260) 14.152 (8.376)

0. Future absolute returns

T0'55 0.375 0.400 0.464 0.339 0.442 0.519

(5.796) (6.110) (7.993) (4.268) (7.257) (7.421)

7“"65 0.401 0.367 0.403 0.211 0.441 0.316

(9.411) (8.503) (10.779) (3.873) (11.137) (6.756)

51“"75 0.314 0.336 0.350 0.162 0.366 0.285

(11.170) (11.807) (14.487) (4.365) (14.194) (9.104)

(1. Future intraday ranges

T‘I55 0.468 0.421 0.483 0.415 0.476 0.558

(7.218) (6.429) (8.324) (5.219) (7.827) (7.979)

To"65 0.515 0.480 0.490 0.370 0.532 0.531

(12.079) (11.123) (13.115) (6.802) (13.440) (11.352)

To:75 0.415 0.374 0.409 0.239 0.395 0.501

(14.785) (13.156) (16.959) (6.448) (15.299) (16.014)
 

Key: Same as table (4.8).

179



Table 4.10: Local Whittle Estimates of long memory parameter for commodity cash

and future returns and volatility proxies

a. Cash Series

 

 

 

 

Series coffee corn gold silver soybean u. gaso-

line

return 0.081 0.082 0.047 -0.072 -0.009 -0.180

(0.051) (0.051) (0.038) (0.076) (0.052) (0.053)

squared return 0.431 0.564 0.440 0.394 0.422 0.384

(0.044) (0.060) (0.035) (0.071) (0.048) (0.051)

absolute return 0.552 0.596 0.494 0.710 0.600 0.562

(0.039) (0.057) (0.032) (0.084) (0.044) (0.050)

b. Future Series

return 0.094 -0.018 0.048 -0.043 -0.045 0.057

(0.051) (0.045) (0.038) (0.075) (0.043) (0.055)

squared return 0.379 0.599 0.349 0.323 0.472 0.408

(0.043) (0.064) (0.031) (0.067) (0.049) (0.054)

absolute return 0.552 0.538 0.503 0.473 0.598 0.583

(0.041) (0.057) (0.032) (0.074) (0.044) (0.052)

Intraday range 0.562 0.491 0.567 0.452 0.644 0.774

(0.043) (0.052) (0.036) (0.065) (0.040) (0.078)
 

Key: The values in parentheses are the robust standard errors.
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CHAPTER 5

On the long memory properties of

Emerging Capital Markets:

Evidence from Istanbul Stock

Exchange

5.1 Introduction

The presence of long memory components in stock returns has important implications

for many of the paradigms of financial economics. If stock returns display long-term

dependence, then they exhibit significant autocorrelation between observations widely

separated in time. Since the series realizations are not independent over time, real-

izations from the remote past can help predict future returns, hence giving rise to

the possibility of consistent speculative profits. This is in contrast to the martingale

or random walk type behavior that many theoretical financial asset pricing models

usually assume. Therefore, optimal consumption/savings and portfolio decisions may

become sensitive to the investment horizon. The presence of long memory in asset

returns contradicts the weak form market efficiency hypothesis, which states that,
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conditioning on past returns, future asset returns are unpredictable. A finding of

long memory in asset returns calls into question linear modelling and invites the de-

velopment of nonlinear pricing models at the theoretical level to account for long

memory behavior. Mandlebrot (1971) observes that in the presence of long mem-

ory, the arrival of new market information can not be fully arbitraged away and

martingale models of asset prices can not be obtained from arbitrage. If the under-

lying continuous stochastic processes of asset returns exhibit long memory, then the

pricing derivatives by martingale models as well as statistical inference concerning

asset pricing models based on standard testing procedures (Yajima, 1985) may not

be appropriate.

Due to the theoretical and empirical importance of the issue, there is an extensive

literature on analyzing the long memory properties of financial asset returns in major

financial markets. Greene and Fielitz (1977), by using the R/S statistic of Hurst

(1951), test long-term dependence in the daily returns of 200 individual stocks on the

New York Stock Exchange from December 23, 1963, to November 29, 1968, and report

evidence of persistence. Aydogan and Booth (1988) used also the original R/S analysis

to test for long memory in common stock returns. Lo (1991), by using a modified

version of the R/S statistic which controls the possible short term dependencies in

the data, found no evidence in favor of long memory of the monthly and daily returns

on Center for Research in Security Prices (CRSP) stock indexes. Ding, Granger, and

Engle (1993) examined the long memory properties of several transformations of the

absolute value of daily returns on the Standard and Poor’s (S&P) 500, and obtained

considerable evidence of long memory in the squared and absolute returns. Crato

(1994), used the exact maximum likelihood method of Sowell (1992), and found no

evidence of long memory for the stock return series of G-7 countries. By using both

the modified R/S method of L0 (1991), and the Geweke and Porter-Hudak (1983)

(GPH) method, Cheung and Lai (1995) found no evidence of persistence in several
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international stock return series. Lobato and Savin (1998) test the presence of long

memory in daily returns and their squares on S&P 500 series by using semi-parametric

procedures. Their test results indicate no evidence for long memory in the levels of

daily returns but evidence of long memory in absolute and squared returns.

Despite the extant literature that analyzes the long memory properties of ma-

jor stock markets prices, there is little research done on the time series properties

of Emerging Markets asset prices. Outside the world’s developed economies, there

is a host of emerging capital markets (ECM) in Europe, Latin America, Asia, the

Middle East and Africa. As pointed out by Harvey (1995) compared to developed

markets, ECMs exhibit higher expected returns as well as higher volatility. Due to

low correlation with developed countries’ stock markets, the unconditional portfolio

risk of a world investor would be significantly reduced. These markets have attracted

a great deal of attention from investors and investment funds seeking to further diver-

sify their portfolios as these stock markets provide a new menu of opportunities for

investors of the world. Despite temporary setbacks, ECMs continue to be important

conduits of diversification, and a complete characterization and understanding of the

dynamic behavior of stock returns in ECMs is warranted. One may think that ECMs

are likely to exhibit characteristics different from those observed in developed capital

markets. Barkoulas et al. (2000) recently analyzed the long memory properties of

weekly Greek stock market data and obtained strong evidence of long memory in

the conditional mean process, a finding contrary to the results from developed stock

markets. One may expect biases due to market thinness and non-synchronous trading

that is possibly more severe in the ECMs. Moreover, in contrast to developed capital

markets, which are highly efficient in terms of the speed of information reaching all

traders, investors in Emerging Capital Markets may tend to react slowly and gradu-

ally to new information. All these may lead one to expect ECMs stock returns behave

differently and have distinct properties compared to developed capital markets.
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The purpose of this chapter is to analyze the long memory properties of stock price

returns in an emerging capital market; the Istanbul Stock Exchange (ISE). Specifi-

cally, the paper tries to answer the following question. Do daily and weekly ISE index

returns have the long memory property, with index returns being approximately un-

correlated, and with very persistent autocorrelation in squared and absolute returns?

To my knowledge, no study has analyzed the long memory dynamics of Istanbul Stock

Exchange market returns.

The ISE, the only stock exchange in Turkey, was formally inaugurated in late 1985.

The number of companies traded on the exchange increased from 80 at the end of 1986

to 262 at the end of 1998 (Yuksel 2000). The national market is the major component

of the ISE. The total market capitalization of the firms traded has increased from 938

million US dollars at the end of 1986, to 56 billion US dollars at the middle of 1999.

Turkey has one of the most liberal foreign exchange regimes in the world, with a fully

convertible currency as well as a policy that allows foreign institutional and individual

investments in securities listed on the ISE since 1989. Turkish stock and bonds

markets are open to foreign investors, without any constraints on the repatriation of

capital and profits. Just between the beginning of 1996 and the end of 1999 foreign

investment in ISE has more than tripled. According to Yuksel (2000) about half of the

floating equity in ISE is owned by foreign investors. These observations show that ISE

is one of the important ECMs in the world economy and a better understanding of the

dynamic properties of the ISE index returns will be useful not only for comparison

purposes, but also for the international investors whose portfolios include equities

from ISE.

This chapter uses the Fractionally Integrated Generalized Autoregressive Condi-

tional Heteroscedasticity (FIGARCH) model of Baillie et a1. (1996). Since the Gen-

eralized Autoregressive Conditional Heteroscedasticity (GARCH) model attempts to

account for volatility persistence, but has the feature that persistence decays rela-
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tively fast, we use the GARCH model as a benchmark and compare its results with

the FIGARCH model, as the latter model is capable of modelling very long temporal

dependencies in conditional variance of a process. In order to better asses the presence

of long memory in the volatility of index returns, this chapter also models absolute

returns and squared returns using Fractionally Integrated Autoregressive Moving Av-

erage (ARFIMA) model of Granger and Joyeux (1980), and Hosking (1981). More-

over, estimates of the long memory parameter for the volatilities of stock returns

from semi-parametric methods are also obtained. Particularly, the GPH estimator

from Geweke and Portar-Hudak (1983) and a local Whitlle estimator based on Fox

and Taqque (1986) are used. The findings of the this chapter indicate presence of

long memory in the volatility process of ISE 100 stock returns. Contrary to empirical

evidence from some other ECMs, the conditional mean of ISE 100 daily and weekly

dollar stock index returns do not posses the long memory component.

The rest of the chapter is organized as follows. Section 5.2 describes the data

and examines the empirical autocorrelations of the series. Section 5.3 presents and

discusses the empirical results. The last section provides the conclusion.

5.2 The Data

The data set consists of daily US dollar rIiirkish lira spot exchange rates and the

'Ihrkish stock index based on the closing prices of a value-weighted index comprising

the top a hundred listed firms on the ISE National Market by their market capital-

ization. Exchange rate data is obtained from the Central Bank of the Republic of

Turkey (CBRT), while ISE 100 index data is obtained from the ISE. In choosing the

stocks included in the index, the stocks are ranked in a descending order according to

market and daily average traded values. Those stocks that have the highest market

values and daily average trading values are included in the ISE National-100 index.
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The sample period spans 01/04/ 1988 to 09/28/2001 for a total of 3440 observations.

The index used in this study is expressed in terms of US dollars in order to avoid

the effect of local inflation risks. The base year for the index is adjusted so that the

index at 01/04/1988 is equal to 100. Then the following formula is used to convert

the index into dollar denominated base; 100 x £5850”, where P, is the index at time

t, S; is the spot exchange rate at date t and Sim,3 is the spot exchange rate at base

date. The weekly index series is constructed from the daily data by taking the in-

dex corresponding to Thursday of the week. In cases where data is not available for

Thursdays, Wednesday data is used.

Following the standard practice, the stock returns are defined as Rt = 100 x

Aln(Pt), where P, is the stock index at date t, absolute returns as |Rt|, and squared

returns as Rf. Figure 1 gives the graphs of the daily stock index returns, absolute

returns and squared returns over the sample period. It appears from the graphs that

relatively volatile periods, characterized by large price changes, alternate with more

tranquil periods in which the index remains more or less stable. This indicates that

large index returns (both positive and negative) seem to occur in clusters and so does

volatility. The volatility clustering phenomenon which is typical of asset prices and

exchange rates, seems to occur in the ISE as well.

Summary statistics for the index returns are given in table 5.1. The table indicates

that both daily and weekly stock returns have small negative means and medians over

the sample period. One of the usual ways of getting an idea of the distribution of

a time series y, is to look at the kurtosis and the skewness and compare them with

that of a normal random variable. The last two columns of table 5.1 indicate that

the kurtosis of both daily and weekly returns are much larger than that of a normal

random variable. This reflects the fact that the tails of the distribution of index

returns are fatter than the tails of the normal distribution. This in turn means that

large observations occur more often than one might expect for a normally distributed
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variable.

Since any symmetric distribution have skewness equal to zero, table 5.1 indicates

that the distribution of daily and weekly stock index returns have some asymmetry.

The negative values of skewness indicate that for the ISE stock returns over the sample

period considered, the left tail of the distribution is fatter than the right tail, or large

negative returns tend to occur more often than large positive ones. The analysis here

indicates that daily stock return distribution is far from being normal.

To gain some insight into the dependence structure of the series, figure 5.2 displays

the first 100 autocorrelations for the daily stock index, index returns, absolute returns

and squared returns together with two—sided 5 percent critical values (:l:1.96/\/T

where T is the sample size). The asymptotic critical values are not strictly valid for a

process with ARCH effects. Still they may be considered to be useful as guidelines. It

is clear from the figure that the ISE 100 log index has autocorrelations close to unity at

all selected lags and, hence, it seems to mimic the correlation properties of a random

walk process. There is a small, positive but significant first order autocorrelation

in the stock index returns, while higher orders are not significant at conventional

levels. On the other hand, for the absolute and squared returns, the autocorrelations

start off at a moderate level (about 0.32) but remain significantly positive for a

substantial number of lags. Moreover, autocorrelation in the absolute returns is

generally somewhat higher than the autocorrelation in the squared returns. This

illustrates what has become known as the ’Taylor property’ (see Taylor, 1986, pp.52-

55), that is, when calculating the autocorrelations for the series Rf for various values of

6, one almost invariably finds that autocorrelations are largest for 6 = 1. As is evident

from the figure autocorrelations for absolute returns are not only larger than those

of squared returns, but also much more persistent in the sense that they decay much

more slowly. The autocorrelations in absolute and squared returns seem to mimic

the correlation properties of a long memory processes rather than a short memory
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stationary process for which autocorrelations decay to zero at an exponential rate.

As is evident from the figure, the autocorrelations in absolute and squared returns

decay very slowly, indicating that linear association between distant observations is

somewhat persistent and autocorrelations decay at a hyperbolic rate. This described

behavior of autocorrelations in absolute and squared returns is consistent with the

time series models with long memory or long range dependence. The above described

characteristics of autocorrelations in the ISE 100 index, index returns, absolute and

squared returns are in conformity with the findings from developed stock markets .

For example, see Ding and Granger (1993).

5.3 Empirical Results

In light of the discussion in section 5.2, conditional variance of the ISE 100 stock

index returns are modelled by the FIGARCH process which allows one to model

persistence in the autocorrelations of index returns as well as volatility clustering

phenomenon. The robust Wald statistic is used to check if the estimated FIGARCH

model better represents the long memory property of the data compared to a GARCH

specification. Results of the estimated ARMA(P, Q) — FIGARCH(p, 6, q) models

for returns are represented in table 5.2. The estimate of long memory parameter, 6,

for daily data is 0.538 and for the weekly returns it is 0.319. These estimates are

significantly different from zero. Various tests for specification of the models were

performed. In particular, a robust Wald test of a stationary GARCH(1, 1) model

under the null hypothesis versus a FIGARCH(1,6, 1) model under the alternative

hypothesis has a numerical value of 35.060, which shows a clear rejection of the

null hypothesis when compared with the critical values of a xzdi stribution with one

degree of freedom. In none of the data frequencies the estimated GARCH models

performed better than the FIGARCH models, and the sum of the estimates of a and
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6 in the GARCH models were very close to one, indicating that the volatility process

is highly persistent. In both daily and weekly returns the standardized residuals from

the estimated models exhibit less skewness and kurtosis than the returns. The Box-

Pierce portmanteau statistic, Q fails to reject the null hypothesis of independently

and identically distributed squared standardize residuals at conventional significance

levels.

The results from the FIGARCH(1, 6, 0) indicate that the conditional variance

of ISE 100 index returns contain long memory. In the FIGARCH model the long

memory parameter corresponds to the squared error term. Hence, results from table

5.2 provide evidence that the squared stock returns exhibit long memory. To further

investigate this issue, table 5.3 gives the estimates of the long memory parameter

from the GPH, Conditional Sum of Squares (CSS), and the local Whittle estimation

as applied to the squared and absolute returns. The results from table 5.3 indicate

that both squared and absolute returns have statistically significant long memory.

This result is supported from all estimation methods. Moreover, the findings also

support the Taylor Effect. In general, the estimate of the long memory parameter is

higher for the absolute returns than that of the squared returns. The results are in

line with those of the FIGARCH estimates reported in table 5.2.

5.4 Conclusion

This chapter has investigated the volatility clustering and the long memory in

an emerging capital market, namely Istanbul Stock Exchange, by utilizing the

ISE National 100 daily and weekly index returns. The long memory MA(l) —

FIGARCH(1,6, 0) model is found to provide a good representation of the daily

returns while a Martingale-PIGARCH(1,6, 0) model is found to fit better for the

weekly returns data. Estimates of the long memory parameter are found to be sig-
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nificantly different from zero, indicating that the ISE 100 index volatility is a long

memory process, thus rejecting a GARCH specification.

Further analysis of squared and absolute returns supports the presence of long

memory in the volatility process. In particular, autocorrelations of squared and ab-

solute returns, and estimates from GPH, local Whittle, and CSS methods all support

the findings from the FIGARCH model. Moreover, results from estimates of the long

memory parameter provide evidence of the so—called Taylor Effect. The evidence of

approximate Martingale behavior in the conditional mean of the ISE 100 index re-

turns and the presence of long memory in absolute and squared returns is similar

to that obtained from major capital markets in the literature. The finding of short

memory in returns is in contrast to the evidence of long memory in the conditional

mean of return process for some other Emerging Capital Markets. The evidence of the

long memory component presented in this study may indicate that financial security

prices are not immune to persistent informational asymmetries, especially over longer

time spans. Following Anderson and Bollerslev (1997), if we interpret the volatility

as a combination of heterogenous information arrivals then it may be argued that, de-

spite the short memory information arrivals, the conditional variance of stock returns

exhibit long memory characteristics. In this sense, the evidence of long memory is an

intrinsic feature of the returns generating process. The finding of long memory both

in daily and weekly frequency supports the argument that long memory is an intrin-

sic property of the return process rather than exogenous occasional shifts. To better

understand this issue, it may be worthwhile to study dynamics of individual stock

returns from Emerging Capital Markets. Moreover, use of high frequency data may

also reveal important information on the long memory component of stock returns.
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Series

Table 5.1: Summary statistics for ISE100 stock returns

mean med

 

daily returns -0.004 0.031

weekly returns -0.017 0.059

min max variance skewness kurtosis

-13.288 13.040 2.281 -0.348 10.730

-17.688 12.915 13.780 -0.261 5.143

 

Table 5.2: Estimated ARMA(P, Q) — FIGARCH(p, 6, q) Models for ISE 100 Index

 

returns

Daily Returns Weekly Returns

it 0005 0.0025

(0.025) (0.099)

81 0.131 .

(0.021) .

01 0.173 0.319

(0.040) (0.135)

,8 0.269 0.023

(0.123) (0.108)

6 0.538 0.319

(0.108) (0.135)

T 3339 686

ln(L) -5808.093 -1830.700

Skewness -0.227 -0.192

Kurtosis 5.337 4.004

Q(10) 27.432 23.217

Q2(10) 12.490 6.490

Q(20) 36.683 35.799

Q2(20) 21.720 15.119

 

Key: ln(L) is the value of the maximized Gaussian likelihood, and QMLE standard errors

are presented in parentheses below corresponding parameter estimates. The Q(10), Q2(10),

Q(20), and Q2(20) are the Ljung-Box test statistics with 10 and 20 degrees of freedom

based on the standardized residuals, and squared standardized residuals respectively. The

sample skewness and kurtosis are also based on the standardized residuals.
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Table 5.3: GPH, CSS and local Whittle estimates of long memory parameter for the

ISE100 stock squared returns and absolute returns

 

 

 

 

Ordinates R? IR, |

m Daily Weekly Daily Weekly

T05 0.226 0.154 0.365 0.180

(2.685) (1.227) (4.336) (1.435)

{-9.191] {-6.724] {-7.540} {-6.517}

T‘"6 0.183 0.324 0.334 0.287

(3.289) (3.576) (5.979) (3.164)

{-14.636] {-7.451] {-11.938] {-7.863}

T‘"7 0.133 0.220 0.266 0.265

(3.573) (3.368) (7.157) (4.044)

{-23.347] {-11.911] {-19.762] {-11.235]

TO'8 0.192 0.194 0.268 0.216

(7.759) (4.107) (10.856) (4.572)

{-32.725] {-17.103] {-29.629] {-16.638]

dcss 0.258 0.209 0.250 0.202

(0.0973) (0.095) (0.030) (0.051)

dWhillle 0.246 0.287 0.479 0.537

(0.050) (0.121) (0.049) (0.114)

 

Rey: m stands for the number of periodogram ordinates used in the (El—PH estimator. The

values in parentheses are the t statistics for testing the null of Ho : d = 0 versus H1 : d > 0,

and the values in square parentheses are the t statistics for testing the null of H0 : d = 1

versus the alternative of H1 : d < 1. The t statistics are computed by using the theoretical

variance of n2/24m. The dogs and dwmme are the estimate of long memory parameter

from CSS estimator, and local Whitlle estimator respectively. Values in the parentheses are

the robust standard errors.
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Figure 5.1: ISE National 100 Daily stock indices, index returns, absolute and squared

returns
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Figure 5.2: Correlograms of ISE 100 stock index returns
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CHAPTER 6

Revisiting the nonlinearity and

persistence in real exchange rates:

evidence from a new unit root test

and an ESTAR specification

6.1 Introduction

As discussed in chapter 3, there is a growing strand of research on nonlinear

behavior of real exchange rates. The findings of chapter 3 and the discussion of the

empirical and theoretical literature there indicated that in the presence of transaction

costs real exchange rates are expected to adjust to equilibrium in a nonlinear fashion.

It is also shown that the power of the standard unit root and stationarity tests is

based on the parametric specification of the STAR model. When the parametric

specification is one that indicates that the generated data has a unit root in the

middle regime while the root(s) in the outer regime(s) becomes closer to unity, (hence

the generated data is locally non stationary but globally remains stationary) the

Augmented Dickey-Fuller (ADF) (Dickey and Fuller 1984) and the Phillips-Perron
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(PP) (Phillips and Perron 1988) tests lack power in detecting the non-linear mean

reversion. The formal testing of the conjecture that the real exchange rate can be

mean reverting once the nonlinearity is controlled for remains a challenge for empirical

researchers. As discussed in chapters 1 and 3, the linearity tests and the estimation

of STAR models require the time series under consideration to be stationary. As the

simulation experiments in chapter 3 indicated, if the true data generating process

is a linear random walk, the linearity tests may spuriously indicate the presence of

nonlinearity. This finding implies that the distribution of the linearity tests possibly

differs for a non stationary process hence use of asymptotic X2 critical values may not

be appropriate. This issue deserves further analysis which is beyond the scope of this

chapter. To avoid this problem, the first difference of real exchange rates are used

in chapter 3. This chapter, develops a unit root test that is specifically designed to

test the random walk with or without drift against a globally mean reverting ESTAR

process.

Some recent studies also considered the issues pertaining to stationarity and non-

linearity within the context of STAR models and real exchange rates. Taylor et

al. (2001) show empirically the stationarity of real exchange rates from multivariate

tests before proceeding to their ESTAR model estimation. Killian and Taylor (2001)

use simulations to assess the level of their test of random walk against an ESTAR

alternative. These approaches are not totally satisfactory. Indeed, the Multivariate

ADF (MADF) and the Johansen Likelihood Ratio (JLR) tests of Taylor and Sarno

(1998) are not designed specifically to test unit root against mean reverting STAR al-

ternatives. Taylor et al. (2001) show by simulation that these tests have better power

properties compared to univariate ADF test when the true data generating process

is a mean reverting ESTAR model. The MADF test assumes that all the series have

a unit root under the null hypOthesis hence the test has the tendency to reject the

null when even only one of the series is stationary. This problem was also pointed
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out in Taylor and Sarno (1998). To avoid the pitfall of the MADF test, the JLR test

assumes that at least one of the series has a unit root under the null hypothesis. The

rejection of this null implies that all the series are stationary only if we assume that

each of the series is a realization of an I(0) or I(1) process. Otherwise, the rejection

of the null hypothesis in the JLR test will mean that at least one of the series is not a

unit root process. Hence, it will not be informative about the other series. Moreover,

the testing procedures in Taylor et al. (2001) departs from the original PPP criterion

by calling for further economic information about the other real exchange rates in

the testing step, but has the drawback that this additional information is left aside

in the univariate estimation of ESTAR models for the real exchange rate. Killian and

Taylor (2001) approach is relevant provided that the rejection of their null of the unit

root guarantees the stationarity of their nonlinear ESTAR representation under the

alternative, which in fact needs to be shown.

This chapter departs from chapter 3 in that it develops a unit root test, namely

a sup Wald test, (sup Wald), that has power against nonlinear mean reversion. Two

null hypotheses are considered; random walk without drift and random walk with drift

against mean reverting ESTAR alternative. The distribution of the test statistics are

derived and are conjectured to be nuisance parameter free. We apply the tests to G7

countries’ real exchange rates against the US dollar for the floating period. Findings

from the new tests support the nonlinear mean reversion of real exchange rates. The

empirical power and size of the tests are studied through simulations and are compared

with those of the standard unit root tests. The simulations indicate that sup Wald

tests have good size and power properties and perform better than the standard

unit root tests. This chapter also studies the dynamic adjustment mechanism of real

exchange rates to a shock by utilizing generalized impulse response functions. The

results from the estimated ESTAR models, the generalized impulse response functions

and the distributions of generalized impulse responses in the outer regimes reveal the
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nonlinear and persistent behavior of the real exchange rates in this study.

The rest of the chapter is organized as follows; the next section discusses the foun-

dations of nonlinear behavior of real exchange rates, and conditions for stationarity

in the ESTAR model. Section 6.3 introduces the sup Wald test and gives the asymp-

totic distribution of the tests. The empirical size and power of the tests are discussed

in section 6.4. Section 6.5 gives and discusses the empirical findings. Section 6.6

concludes the chapter. The proofs of the propositions are given in the appendix to

the chapter.

6.2 Foundations of nonlinear adjustment of real

exchange rates and ESTAR model

6.2.1 Motivation for a nonlinear adjustment in real exchange

rates

Similar to chapter 3 we chose to study the nonlinear dynamics in real exchange

rates by using ESTAR model that is discussed in chapter 1. As discussed in chapter

3, the nonlinear behavior of real exchange rate may result from transaction costs.

Dumas (1992), and Sercu et al. (1995) study a two-country model with trading

costs. The models in these papers predict that the presence of trading costs leads

to the existence of a region of no trade in which the real exchange rate may follow

a random walk as arbitrage does not take place. Outside the region, international

arbitrage takes place and brings the real exchange rate back to the nearest threshold

level which corresponds to the marginal cost of shipping. As a result, the exchange

rate is expected to behave discontinuously. Since in the real world, there are several

goods and transaction costs differ for each good, it is intuitive to think that the

shifts will be gradual rather than abrupt. Hence, a Smooth Transition Autoregressive
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model should better represent the shifts in the real exchange rates than the Threshold

Autoregressive models (TAR).

The presence of transaction costs alone could not account for many of the observed

very large movements in real exchange rates, either in terms of day-to-day volatility

or in terms of periods of substantial and persistent overvaluation or undervaluation of

real exchange rates. An example for this would be the overvaluation of the US. dollar

in the 1980s. Killian and Taylor (2001) propose a complementary explanation that

is based on the presence of heterogenous foreign exchange traders; noise traders and

rational speculators (or arbitrageurs). Noise traders’ demand for foreign exchange

is affected by beliefs that are not fully justified by news about the fundamentals.

Arbitragers on the other hand, form fully rational expectations about the return

on holding foreign exchange and they sell foreign exchange when noise traders push

prices up and buy when noise traders depress prices, thereby making a profit in

the process. In this model, the unpredictability of noise traders’ future opinions

creates risk to arbitrageurs that prevents complete arbitrage. The arbitrage is limited

by three types of risk; the future realizations of fundamental may turn out to be

higher than expected, because of the unpredictable swings in the demand of noise

traders a foreign exchange that is overpriced today may be even more overpriced

tomorrow, and lastly the equilibrium value of the exchange rate can not be observed

directly and hence arbitrageurs will have difliculty in detecting the deviations from

fundamentals. Assuming that agents assign less probability to levels of exchange rate

corresponding to large deviations from the fundamental level than the values close to

the fundamental (this is because larger deviations are increasingly implausible from

a theoretical point of view), few rational traders will be inclined to take a strong

position when the exchange rate is close to the fundamental value. Therefore, closer

to the unobserved equilibrium the exchange rate is driven mainly by noise traders.

As the exchange rate moves away from the unobserved equilibrium, a consensus will
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gradually be reached among the rational traders that the exchange rate is misaligned,

inducing them to take stronger positions against the prevailing exchange rate and

ensuring the ultimate mean reversion of the exchange rate toward the unobserved

true economic fundamental. As argued by Killian and Taylor (2001) this nonlinearity

may be described by 3 STAR model, in which the strength of mean reversion is an

increasing function of past deviations from the equilibrium.

Differently from chapter 3, we postulate an ESTAR model of the form for the real

exchange rates;

0. = ¢(L)Aqi + [i1 + pqi_1](1— F(zt; 7. 6)) + [14" + p‘qt—1]F(zi; '7. c) + u. (6.1)

where 03(L) = ¢1L+¢2L2 +- - °+ ¢p_1Lp‘1, F() is the exponential transition function

given in chapter 1 and 3, z, = q,_d for d E 1,2, - - -,d. As discussed in chapter 3,

the exponential form of the transition function makes good economic sense in this

application because it implies symmetric adjustment of the real exchange rate above

and below equilibrium (or positive and negative deviations from PPP). The transition

parameter 7 determines the speed of transition between the two extreme regimes,

with lower values of 7 implying slower transition. The middle regime corresponds to

q,_d = c, when F = 0 and (6.1) becomes a linear model;

Qt = ¢(L)AQt+ ll '1' Pqt—l + U:-

The outer regime corresponds, for a given 7, to limlq,_d_c]_,ioo F(q,_d;’y,c), where

(6.1) becomes a different AR(p) model;

Q: = ¢(L)A(1t + M * +P * Qt—l + Uta

with a correspondingly different speed of mean reversion so long as p aé par. In any

empirical application of STAR models, it is necessary to determine the dimension d

and the number of lagged values of the real exchange rate influencing the transition
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function, that is, the delay parameter d. In general, applied practice with ESTAR

models has favored restricting d to be a singleton (see e.g. Teriisvirta, 1994; Taylor,

Peel and Sarno, 2001; and Killian and Taylor, 2001). Granger and Teriisvirta (1993)

and Terasvirta (1994) suggest a series of nested tests for determining the appropriate

delay parameter. In the present application to monthly real exchange rate data,

similar to Taylor, Peel, and Sarno (2001), we found that the model that worked best

for each country (in terms of goodness of fit, statistical significance of parameters,

and adequate diagnostics) set the delay parameter to 1. The finding of the delay

parameter being 1 seems reasonably intuitive since it allows the effects of deviations

from equilibrium to affect the nonlinear dynamics with a shorter lag rather than larger

lags. This is because, there is no compelling reason why there should be very long

lags before the real exchange rate begins to adjust in response to a shock.

6.2.2 Stationarity of ESTAR model

Since, this chapter aims to test the random walk against a stationary ESTAR

alternative, we need to determine under which conditions the ESTAR model given in

(6.1) is a globally stationary process. For this end, consider the ESTAR(p) model

given in the following equation.

yt = WIJthl ‘ F(Zt; '1, Cl) + 1r":t,F(z,;'y, C) + ’04 (6-2)

where (13; = (1,y,_1, - - - ,y,_,,)’, F(z,;'y,c) = 1 — exp(—7(zt — c)2), z, = y,_d for d =

1, 2, - - - , pm. As for the disturbances, we have the following assumption.

Assumption 1: Assume that u, ~ iid, with E(u,) = 0, Elutl < 00 and indepen-

dent of yo. The distribution of u, is absolutely continuous and its density is positive

everywhere.

Note that Assumption 1 is satisfied for u, ~ iid(0, 02). As discussed in Tostheim

(1990) the stationarity properties of the ESTAR model given in (6.2) are dictated
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by what happens in the limit when 2, goes to infinity. As 2, goes to infinity (both

positive and negative infinity) F(:l:oo;'y,c) converges to 1. Therefore, as 2, goes to

infinity, y, becomes a two-regime self exciting threshold model;

y, = n'r,(1— I(|2,|> c)) + rr":rtI(|z,|> c) + u, (6.3)

The stationarity properties of general threshold models are not known. Chan et al.

(1985) give necessary and sufficient conditions for a multiple regime TAR(1) model

with d=1. At an intuitive level, we can expect that the process for y, given by (6.2)

be globally stationary when the roots of the autoregressive polynomial in the outer

regime lie outside the unit circle. In other words, the largest root in absolute value

of the characteristic polynomial in the outer regime, 1 — rrfé — «5&2 — - - - - «55” = 0

be less than 1. This means that the smallest root in the middle regime, 1 — 7715 —

77252 — - -- — 77,5” = 0 may be equal to one (having a unit root in the inner regime)

while the process stays globally stationary.

In order to gain some insight into the stationarity of the data generated from an

ESTAR process with parameter specification that satisfy the conditions stated in the

last paragraph, a simulation experiment is conducted. The data, y,, for t = 1, - - - , T

from the ESTAR model. 9. = rut—10 - F(yr—17.6)) + p * yt—1F(yt—1.r.6)) + at.

with p = 1, par: 0.8, 7 = 3, 5, 10, 20, and u, ~ iidN(O, 1) are generated. The

threshold parameter, c is kept at 0. The data is generated N=10,000 times and in

each replication, first 100 simulated data points are discarded. The sample sizes of

T = 300, 500, 1000 are used. Letting y” be the value of y, in simulation replication i

for t = 1, ---, T; and i = 1, ~-, N. The j-step ahead covariance across replications,

6,4- : fizllymyhfi, for t =j+1, ---, Tandj = 1,2,3,~-, J = 10, are estimated

and graphed against time t for each j. The purpose of this simulation is to see

whether 6,,1- does or does not depend on t. For a covariance stationary process we

should expect that 6,0- stay approximately constant, over time t. Since the estimated
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6,08 for any given j do not differ across the different specifications of '7 and sample

size T, the results from '7 = 10 for j = 2, 5, 7,9 and T = 1000 are given in panels of

figure (6.1). As it can be see from the graphs, 6,08 stay almost constant over time

for any given j. This indicates that the data generated from ESTAR model has on

average covariances that do not depend on time, implying covariance stationarity.

6.3 Testing Unit root against stationary ESTAR

alternatives

Following Micheal et al. (1997) we can rewrite the ESTAR model given in (1.1)

as follows;

y, = ¢(L)Ay, + [H + pvt—11(1- F(Zt17)C))+ [If ‘1‘ P‘yt—llFVti’LC) '1' “ti (6-4)

where ¢(L) = ¢1L + ¢2L2 + - -- + ¢p_1I}"1. We can re—parameterize the transition

function by first letting A = fic. This parameterization will be useful in proving the

asymptotic behavior of the unit root tests. Note that we can write F() as F(2,; A, c) =

1— exp (—(%zt — A)2). In model (6.4) we can test H3 : p = pa: = Oandp = p* =1,

random walk without drift, and H3 : p = p a: and p = pa: = 1, random walk with drift

against the alternative H1 : y, follows a stationary ESTAR process. Under the null

hypotheses we assume that the roots of 1 — 0115 — a2€2 — — apép‘l = 0, where

a, = (1 + (b), a, = d),- for i odd and a,- = ¢,- —— 06,--1 for i even, lie outside the unit

circle. Under both null hypotheses the parameters A and c are not identified. Thus

it is impossible to obtain consistent estimates of A and c under both null hypotheses.

The proposed unit root test is the Wald test which test the parameter restrictions

given in the above null hypotheses. The unrestricted model is given by equation (6.4).

The restricted model is given by

y. = ¢(L)Ayt '1' 91—1 + at, (6-5)
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y. = ¢(L)Ayz + 1‘ + yt—l + at

under H3 and H3 respectively.

As noted by Leybourne et al. (1998) the ESTAR model given in (6.4) is linear in

autoregressive parameters for given A and c. Hence, for given A and c we can estimate

the unrestricted and restricted models by OLS. Denoting the vector of residuals from

the unrestricted model by 0 and the vector of residuals from the restricted model

by i2, we can write the Wald test in terms of the residual sum of squares under

homoscedasticity as;

Proposition 1: Let d = J = 1 be fixed. Let .\ > 0 and a = c/x/T > 0 be fixed.

Suppose (A,E) belongs to A where A is a compact set of R”. Under H3, the Wald

test satisfies

wens»-.. i C(cp) (6.7)

poinwise in (A,c), where cp = (A,5, 6), 6: o/(l — 011 — a2 — — ap_1) and ((90)

is a function of Brownian motions given in the proof of the proposition. Under the

alternative the statistic diverges.

Since, under the null hypothesis ’7 and c are not identified we can make any

assumptions about them. The assumption c = x/TE is reminiscent of the assumption

made in the structural change literature where the break point is hypothesized to be

equal to TT where r is in (0,1). Under H3, yt/x/T converges to a Brownian motion

6B(r) with r = t/T. Note that since 2, = y,_d the the behavior of the transition

function in the limit will be characterized by the behavior of y, as T goes to infinity.

If we assume that 'y andc are fixed, then the transition function,

F(z¢;7,c) =1—e
xp (—(fizt— WW

)
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as T —> 00. This means that for fixed 7 and c the process becomes linear asymptoti-

cally and hence the test statistic will lose its power in detecting nonlinear stationarity

of the time series under consideration. On the other hand if we assume that (A, 6)

are fixed, then we have;

2 2

F(z,;7,c) =1—exp l:— («Eu-($7: — A) ] L1—exp[—(%6B(r)— A) ]asT —> 00.

The following proposition gives the distribution of the Wald test under the null hy-

 

pothesis of H3. As noted in Hamilton (1994) the distribution of ADF and PP tests

differ under “random walk without drift” and under “random walk with drift”. In a

similar fashion, proposition 2 shows that the distribution of the Wald test is diflerent

from the distribution one obtains under H3.

Proposition 2:Let d = d = 1, and E = -%, and A be fired. Suppose (A, 5) belongs to

A, is a compact set of R”. Under the null hypothesis H8 the asymptotic distribution

of Wald test given in equation (6.7) is a x2(<p) variate with (p is given in the proof of

the proposition. Under the alternative the statistic diverges.

Note that under H3, when (7, c) are fixed,

2

F(z,;'y,c)=1—exp(—7T2(%—%) ) —L—+1asT—>oo.

When we assume that (A, E) are fixed, then

A z, 2 A z, 2

F(z,;'7,c)=1—exp —(-C—TT-—A) =1—exp —(E—T—TT_)‘)

A 2

—L—il—exp(—(Eu—A))asT—>oo.

The proofs of propositions 1 and 2 are given in the appendix.
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Note that the limiting distribution of the Wald test under both null hypotheses

depends on the unknown parameters (A, c). As these parameters are not identified

under the null hypotheses, the choice of (A, c) is arbitrary. Hence the limiting dis-

tribution of the test statistic is not nuisance parameter free. One way to get away

from this problem and gain power is to use the same testing strategy as in testing lin-

earity against self exciting threshold autoregressive model (SETAR) (see for instance

Hansen (1997, and Caner and Hansen 2001)), namely taking the supremum of the

test statistic with respect to the nuisance parameters. The sup Wald test then will

be given by:

supW E sup(A,c)ngcWT(/\, c), (6.8)

wherefl= [L a andC= [g, E]aresuchthat0<£< A <2, and0<g< g <‘c’. Since

the test will have power for any A, any fixed (2 can be chosen. Obviously the test will

have power even if we choose one single value for A, but the use of a range of values

will increase the power of the test. One important issue is not to make the interval

too wide as a very large A may make the transition function F to be flat. As for the

choice of C, we can follow the same approach taken in the SETAR literature (see for

instance Hansen 1997,and Caner and Hansen 2001) and select the c corresponding to

the ordered values of lztl and discard 15% of the highest and smallest values. This will

guarantee that the boundaries g and E do not depend on any unknown parameter. We

conjecture that the distribution of sup Wald tests will be nonstandard in the sense

that it is going to be the supremum of a number of random functions, but nuisance

parameter free. Unfortunately, for a rigorous proof of this conjecture, we need a

uniform convergence in A = Q x C which we haven’t been able to prove. To our best

knowledge, there is no result in the econometrics literature that we can use to prove

our conjecture. If we had a uniform convergence of Wald tests discussed above the

proof of our conjecture for the sup Wald tests would be trivial in the sense that our

conjecture would follow by continuous mapping theorem. In the rest of the chapter
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we assume that our conjecture is true and following Caner and Hansen (2001) we

compute critical values by simulation.

6.4 Empirical Critical Values and size and power

properties of the sup Wald tests

To compute the empirical critical values we have generated data from (6.5). When

fitting (6.5) to real exchange rates p was found to be statistically indistinguishable

from zero for most of the real exchange rates and it was around 0.05 for some of

the rates. Hence data is generated with p = 0 and with p = 0.05 in computing.

the critical values. In generating the data, disturbances, u, in (6.5), are drawn from

iidN(0,1). Table 6.1, reports the empirical critical values from 20,000 replications

of sample size 312 since 312 corresponds to the sample size in this study. The two

dimensional grid search in 7 and c was performed for the following sets of values:

7 E (0.25,0.5,0.75,1,1.25,- -- , 15) and c E [925] with g and '6 such that 15% of the

smallest and highest values of ly,_1| are excluded from the grid. In addition to the

standard version, heteroscedasticity- robust versions of the tests are also computed.

In order to analyze the size and power properties of the proposed tests, a finite

sample study is performed. The empirical critical values reported in table 6.1 are used

in the simulation experiments. Therefore, the power is actually a size-corrected power.

In computing the size of the tests, the data is generated under the null hypotheses of

H3 and H3 with ,u = 0 and p = 0.05. The disturbances are drawn from iidN(0,1).

The standard error is normalized to unity in all of the experiments. Table (6.2)

reports the empirical rejection frequencies from 5,000 Monte Carlo replications with

T = 312. For comparison purposes, the empirical size of the Augmented Dickey-

Fuller (ADF) and Phillips-Perron (PP) statistics are also reported. The empirical

size of the sup Wald test is quite accurate and comparable with the size of ADF and
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PP. The heteroscedasticity robust versions, supWh and supWhp, seem to be slightly

more conservative than the standard versions.

The power of the tests is examined by generating 5,000 series under the alternative

(6.1) for various parameters values. Throughout the experiments, p is kept fixed at

unity, while the autoregressive parameter in the outer regime, pair, was varied to see the

effect of having an autoregressive root in the outer regime that changes from values

in the stationary range to values closer to unity. This parameterization is consistent

with the fitting of ESTAR models to the data as we will see in the next section. The

data is generated under p = pair = 0 and p 76 pair. Since the results did not vary

significantly, only p = pair = 0 and ,u = 0.05, pair = —0.05 are reported in table 6.3.

The smoothness parameter, 7, was varied to see the influence of the change in the

curvature of the transition function on the power of the tests. The values reported

are closer to the smoothness parameter estimates obtained in the empirical section.

Since, it did not have any significant effect on the power of the tests, the threshold

parameter, c, is set at 0.05. Again for comparison purposes, the power of ADF and

PP tests are also reported. As can be observed from the table, as the autoregressive

parameter, pair, in the outer regime approaches unity, the power of all tests declines.

However, the fall in the power of ADF and PP is more than that of the sup Wald

tests. For instance, the power of ADF and PP tests is about 40 percent, while that

of supW“ is about 83 percent in the case given in panel (1 of the table. In cases

where pair = 0.95 the sup Wald tests outperform the ADF and PP tests. Moreover,

the power of sup Wald tests in general increases with 7.
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6.5 Empirical Results

6.5.1 The data

The data set comprises monthly observations on consumer price indices for the

US, the UK, Canada, Germany, Italy, Japan, and Switzerland, and end-of-period

spot exchange rates for the UK pound (BP), German mark (GM), Canadian dollar

(CD), Italian lira (IL), Japanese yen (JY), and Swiss franc (SF) against the US dollar.

The data covers the sample period from 1973:01 to 1998:12, and is taken from the

International Monetary Fund’s (IMF) International Financial Statistics data compact

discs. Real exchange rate series are constructed with these data in logarithmic form

as in chapter 3. The data is centered around sample mean.

6.5.2 Unit root test results

Table (6.4) gives the results from standard unit root tests, namely ADF (Dickey and

Fuller, 1981) , and PP (Phillips and Perron, 1988), stationarity test of Kwiatkowski

Phillips, Schmidt, and Shin (1992) (KPSS) together with the results of sup Wald

tests applied to real exchange rates. The PP and ADF tests reject the unit root null

for only BP and IL only at 10 percent level. For all other series, ADF and PP tests

indicate the presence of a unit root at the 10 percent significance level. ADF and PP

fails to reject the null hypothesis of a unit root for all of the real exchange rates at

the 5 percent level. KPSS rejects the null of stationarity in all real exchange rates.

Since we have seen that ADF and PP tests lose power when the autoregressive

parameter in the outer regime becomes closer to unity, we can argue that these

results can not constitute a strong evidence for non-stationarity of real exchange rates.

According to the sup Wald tests reported in table 6.4 the random walk hypothesis

is rejected strongly for all of the real exchange rates in favor of a globally stationary

ESTAR model. Note that except IL and JY for none of the real exchange rates in our
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sample we were able to obtain constant term estimates in the fitted ESTAR model.

Therefore, we did not test the null hypothesis of random walk with a drift, (H3). For

the JY and the IL sup Wald tests reject the null of random walk with drift at the 5

and 10 percent levels, respectively. Given the results from the sup Wald tests we can

argue that real exchange rates in our sample are globally stationary, although they

may exhibit random walk behavior locally. This result indicates that once a threshold

type of nonlinearity is taken into consideration, real exchange rates are stationary.

After empirically showing that real exchange rates are stationary, the next task is to

model the nonlinear behavior of real exchange rate under the alternative of a globally

stationary ESTAR model.

6.5.3 ESTAR model estimation and persistence of real ex-

change rates

While the results of sup Wald tests impart some idea of the mean reverting nature

of real exchange rates, a sensible way to gain a full insight into the mean-reverting

properties of real exchange rates is to model this behavior by the nonlinear model

that is assumed under the alternative hypothesis, and also to look at the propagation

mechanism with which the adjustment process takes place after a shock to the level

of real exchange rates. Thus, table 6.5 reports the estimated ESTAR models of the

form given in (6.1). The estimation of the ESTAR model given in (6.1) was performed

using the constrained maximum likelihood method. The CML library in Gauss with

the Newton-Raphson optimization algorithm is used in estimation. The constraints,

7 > 0 and c E [9, E], with g and E such that 15% of the observations in absolute value

are below _c_ and 15% are above 6, are imposed. Following, Leyboune et al. (1998) the

objective function is concentrated so that optimization is carried out for 7 and 0 only.

For details, see Leyboune et al. (1998) or chapter 1 of this dissertation. The starting
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values are obtained from a two-dimensional grid search over 7 and 0. Following the

suggestion of Teriisvirta (1998), the transition function is reparameterized as follows:

 

F(Zi;%0) = 1 — exp (3.1912,) (2. _ c)2) ,

where s.e.(z,) is the sample standard deviation of the transition variable, so as to

make 7 approximately scale-free. The grid for 7 was set arbitrarily to 0.1, 0.2, - - - , 20,

while the grid for c is set as explained above.

For each of the estimated ESTAR models, we could not reject the hypothesis of

no remaining nonlinearity of ESTAR form for values of d ranging from 2 to 12 on

the basis of the p-values of Lagrange multiplier (LM) tests (table 6.5 reports only

the p—values corresponding to the maximal value of the LM statistic, pNLESm).

Neither could we reject the hypothesis of remaining nonlinearity of LSTAR variety

with values of delay parameter in the range of 1 to 12 (pNLLSm in the table). This

procedure suggests setting d = l. The residual diagnostic statistics are satisfactory

in all cases (Eithrehim and Terasvirta, 1996). The estimated transition parameter in

each case appears to be strongly significantly different from zero both on the basis of

the individual t—ratios as well as in terms of the empirical marginal significance levels

reported in the square brackets. Since under the null hypothesis that 7 = 0, each of

the real exchange rate series follow a unit root process, the usual t — ratios should

be interpreted with caution. In the presence of a unit root under the null hypothesis

we can not assume that the distribution of t — ratio will be given by student’s t

distribution. Following Taylor, Peel, and Sarno (2001), the empirical p—values are

computed by Monte Carlo methods assuming that the true data generating process for

the logarithm of the real exchange rate series was a random walk with the parameters

of the data generating process calibrated using the actual real exchange rate over the

sample period. The empirical p— values are based on 5,000 simulations of length

412, initialized at 0, from which the first 100 data points were discarded in each case.
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At each replication ESTAR of the form reported in table (6.5) was estimated. The

percentage of replications for which a t—ratio for the estimated transition parameters

was greater in absolute value than that reported in table (6.5) was obtained was then

reported as the empirical p-value in each case. Note that since this test can also be

considered to be a unit root test against a nonlinear mean reverting alternative, the

results also support the findings from sup Wald tests reported in the previous section.

As can be seen from panels of figure 6.1, the estimated models fit the data very well

and real exchange rate visit both inner and outer regimes in each case. The graph

of the transition function against time reveals that BP, DG, GM, and SF (European

zone except IL) series tend to stay closer to the outer regime until 1985 and stay

closer to inner the regime between 1986 and 1993 and then again tend to stay closer

to the outer regime after the early 19908. On the other hand, CD, IL, and JY tend

to stay closer to the outer regime for most of the time during our sample period.

The ESTAR estimates reported in table 6.5 indicate that the autoregressive pa-

rameter in the inner regime is, for all series, either unity or above unity, implying a

unit root behavior in the inner regime. This is consistent with the theoretical foun-

dations given above in the sense that whenever the deviation from the equilibrium is

small real exchange rates behave as a random walk. On the other hand, the autore-

gressive estimate for the outer regime is, although less than unity for all series, close

to unity, implying near unit root behavior in the real exchange rates even globally.

This finding is consistent with the findings of chapter 3 in that it implies that devi-

ations from equilibrium should persist for a long time. This finding also motivates

the need to evaluate estimated models on the basis of impulse response functions as

the estimated parameters indicate that the real exchange rates may reveal persistent

deviations from equilibrium. To this end, the panels of figure 6.2 give the estimated

generalized impulse response functions (GIRF). The GIRFs are calculated as in chap-

ter 3. For a linear univariate model, the impulse response function is equivalent to
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a plot of the coefficients of the moving average representation (see e.g. Hamilton,

1994, p. 318). As discussed in chapter 1 estimating the impulse response function

for a nonlinear model raises special problems both of interpretation and of compu-

tation, ( see also, Koop, Peseran, and Potter, 1996). In particular, with nonlinear

models, the shape of the impulse response function is not independent with respect

to either the history of the time series at the moment the shock occurs, the size of

the shock considered, or the distribution of future exogenous innovations. In this

sense, impulse response functions are themselves random variables. As discussed in

chapter 1, the distribution of impulse responses can be utilized to gain insight about

the persistence of shocks in STAR models. It is intuitive to think that if a time

series process is stationary and ergodic, the effects of all shocks eventually converge

to zero for all possible histories of the process. Hence the distribution of impulse

responses collapses to a spike at 0 as the horizon approaches to infinity. In contrast,

for non-stationary time series the dispersion of the distribution of impulse responses

is positive for all horizons. Koop Peseran and Potter (1996) suggest use of dispersion

of the distribution of generalized impulse responses at the finite horizons as a tool in

obtaining information about the persistence of shocks.

In this chapter we compute history- and shock-specific generalized impulse re-

sponses for all observations in the sample period as discussed in chapters 1 and 3.

The values of the normalized initial shock equal to (./&u = 1, 5, 10, 20, 40, where 6,,

denotes the estimated standard deviation of the residuals from the ESTAR model.

For each combination of history and initial shock, we compute generalized impulse

responses for horizons l: = 1, 2, - - . , N with N = 120. The conditional expectation in

(1.42) are estimated as the means over 5,000 realizations of qt“, with and without

using the selected initial shock to obtain q, and using randomly sampled residuals

of the estimated ESTAR models elsewhere. All generalized impulse responses are

initialized such that they equal i/éu at k = 0.
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The estimated generalized impulse responses that correspond to the histories as-

sociated with the average value of the transition function, are graphed in the panels

of figure 6.2 for each of the real exchange rates. These impulse response functions

very clearly illustrate the nonlinear nature of the adjustment, with the impulse re-

sponse functions for larger shocks decaying much faster than those for smaller shocks.

Careful analysis of the panels of figure 6.2 indicate that shocks to the level of real

exchange rates are although decays for all shocks, in all cases the speed with which

the impulse responses decays and becomes half of the original normalized value of

the initial shock changes with the magnitude of the initial shock. For even moderate

size shocks it takes several months for the shocks to revert back to half of the initial

magnitude. Since, impulse response functions are random variables that depend on

the shock and the initial history of the series considered, the distribution of impulse

responses for those histories corresponding to the value of the transition function be-

ing in the upper 95 quartile are given in the panels of figure 6.3. Note that these

impulse responses correspond practically to periods where the real exchange rate is in

the outer regime. Therefore we expect that the real exchange rate to be mean revert-

ing and hence the distribution of generalized impulse responses accumulate around

zero at finite horizons. The panels of figure 6.3 illustrate clearly that as the horizon

increases the distribution of generalized impulse responses tend to pile up around

zero. However, in none of the cases, the distribution of generalized impulse responses

do not form a spike around zero even for horizons of 120 months which correspond

to 10 years after an initial shock occurs. These results support the findings in chap-

ter 3 and lead us to reach a similar conclusion in that despite the evidence of mean

reverting nonlinearity in real exchange rates, they are very persistent in terms of the

response to shocks.
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6.6 Conclusion

The high persistence of the deviations from PPP is well documented in the

literature. This chapter explored the nonlinear mean reversion of deviations from

PPP within the context of an exponential smooth transition autoregressive model.

The chapter proposes sup Wald tests to test the random walk hypothesis against

globally stationary ESTAR alternatives. Results from standard unit root tests and

the KPSS test indicate non-stationarity of real exchange rates while results from

sup Wald test revealed stationarity of real exchange rates once nonlinearities are

controlled for. The Monte Carlo experiments on the power of sup Wald and standard

unit root tests indicated that for parametric specifications that are closer to the fitted

ESTAR models in the data, sup Wald tests have better power properties than the

standard unit root tests. Estimation, and further analysis of real exchange rates

by generalized impulse response functions, indicated the nonlinearity and persistence

of deviations from the PPP. Although, the larger deviations tend to decay more

rapidly, the half-life estimates seem to be consistent with the studies that do not take

nonlinearity into consideration, see for instance, Rogoff (1996).
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6.7 Appendix: Proof of propositions 1 and 2

For the sake of completeness, in the following we first reproduce the definition of

a regular transformation and the theorem 3.1 of Park and Phillips (1999).

Definition 6.1: (Definition 3.1 of Park and Phillips, 1999) A transforma-

tion T is said to be regular if and only if,

(a)it is continuous in a neighborhood of infinity, and

(b) on every compact set 11, there ezist L, Te and 6,5 > 0 for each 6 > 0 satisfying

110:) S T(y) S Tit)

for all z, y E C such that la: — y| < 6,, and In (Te - L) (z)dx—+ 0, as e ——> 0.

According to Park and Phillips (1999) the class of regular transformations includes

all continuous functions on a compact support. For that reason, the exponential

function is a regular function for any given value of A and c. Since in the proofs

we assume that the parameter space for (A, E) is compact the exponential function

indexed by the parameters (A, 0) satisfies the regularity conditions given in definition

3.2 of Park and Phillips. Moreover, since any regular transformation is closed under

addition, subtraction, and multiplication the transformations obtained by addition,

subtraction and multiplication of the exponential function is regular. For details, see

Park and Phillips (1999) pages 810.

Definition 6.2 (Definition 3.1 of Park and Phillips 1999) We say that for

the function T(x,w) (defined on a compact set of parameter space, II) is regular if

(a) T is regular for all 1r 6 II

(b) for all a: E R, T(x, .) is equicontinuous in a neighborhood of 9:.

Since the exponential function is continuous for all a: and (7, c) it should satisfy

the regularity conditions stated above.

Theorem: (Theorem 3.1 of Park and Phillips, 1999) Under certain regu-

larity conditions on the disturbances of the time series process given in (6. 2) (u, being
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a Martingale difierence sequence is enough) and under a regular transformation T on

a compact set II

1 n yt 1

— — —’a e B i in;T(\/fi,n) ”/0‘ T( (r) 1r)dr

uniformly in 77 E II. Moreover, if T(., it) is regular, then

fig; T (% 7r) 21,—r, f01T(B(r),rr)dB(r) as n —. 00.

The proofs of propositions use these results frequently.

Proof of Proposition 1: The proof of the proposition follows the similar steps

given in Hamilton (1994, chapter 17) and uses theorem 3.1 of Park and Phillips (1999).

Letting v, = y, — y,_1, the model in (6.2) can be written as

y. = xifi + u. (6.9)

where

I. = (vi—1. - . - . 121—p“. (1 — Ft).y¢-1(1- F1). F1. yt—IE)I1

fl = (<81. - - are-1.11.10. 11*.p*)’.

u, ~ iid(0, 0,2,) and for notational simplicity the dependence on t of transition function

is denoted by F,. Note that 9:, depends on A and E which we have assumed to be

fixed. Given the representation in (6.9), the deviation of OLS estimates (,8) from the

true value (B) is

B — fl = [Z 13334-1 Z xtut (6.10)

These can be written as follows:

A I

Em; = 1’ 2’ (6.11)

A21 A22

where;

- a

E 1112.1 2: Ut-1vt—2 ' '° 2 vt—i'Ut—p+1

2 12.—2121-1 2 v3, ° ° . Z v1-2v¢_p+1

  L : 'U¢_p+1’Ut_1 Z vt—p-I-lvt—Z ° ' ° 2 Utz-p-I-l
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' Z (1 —. Ftl’Ut—i °'- 2 (1 — F,)v,-p+, I

A21 _ Elli—10‘ Fil’Ui—i '-- 2311-10 — F,)vt_p+1

Z FtUt-l ' ' ' Z FtUt—p+1

E yt-IFtvt-l ' ' ' Z yt—IF‘tvt—p-l-l  
and A22 is a symmetric matrix given by;

p

20‘ F02

Elli—10 — F02 23112—10 — F02

251(1 — F,) ZFtl/t-IU - Ft) 2th

L 2311—1171(1 — Ft) 23112—150 " Ft) Elli-11:12 21112—11712 .

A22 =

  
The vector in the second expression of (6.10) is;

l 2 vt—lut

2 ’Ui-2ut

th—p-l-lut

mm, = (6.12)

2 Z (1 ‘ F,)ut

Elk—1(1— F,)u,

2: Eu,

Elli—111110  1.

Under Hg, since the true process is a random walk without drift, following Hamil-

ton (1994) we can use the following (p — 1 + 4) x (p — 1 + 4) diagonal scaling matrix

(TT) with diagonal elements (x/T, - - - , x/T, VT, Tx/T, T).

Premultiplying (6.10) by TT, we can obtain;

TT (3 — fl) = [Tel [2 ml] Tel] ‘1 {T51 [2ml} (5.13)

Now consider the matrix [T711 [2 50,231] T551]. Elements in the upper left (p — 1) x

(p — 1) block of Earn; (i.e. elements of All) are divided by T. The first and third
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row of A21 (similarly, first and third column of A3,) are divided by T. The second

and fourth row of A21 are divided by T3”. On the other hand, those entries that has

not y,_1 in the sub-matrix A22 are divided by T, those that has y,_1 are divided by

T3”, and those entries with y,2_lare divided by T2. By the Law of Large Numbers,

1

. .

TZ v1-1‘U1—j ‘1’ E lvt—ivt—jl = Cl2 "' 3"

Note that under H3, y, is a random walk without drift and y,/\/T converges

to 6B(r), r = t/T, where B(.) is a standard Brownian motion. Note also that

f 2;)1 u, converges to oB(r), where (Tr)i s the largest integer that is less than

or equal to Tr. Since the continuous transformations of the exponential transition

function F(z; A, E) = 1 — exp [— (g2 — A)2] are themselves continuous in zand in

(A, E) e A they are regular in the sense of the definition given in Park and Phillips

(1999). Therefore we can apply their theorem 3.1 to the remaining terms of the (6.13).

For this purpose denote;

F(r) = 1 — exp [— (édBU) — if]

where B(r) is a standard Brownian motion on [0,1]. By theorem 3.1 of Park and

Phillips (1999),

%Z Ft'Ut—i L 0

1

‘7‘. 2(1“ Ftlvt—i "it 0

1 yt—1(1— Ft)’U¢_1 L 0\/T

TZTlit-1 F P

- — rut—1 —->0

:3"11411—19, L:/(B(T)F1(r)—F(r)))dr

TZyJ—g-n—Fyiwfo B(r)((1—F(r))2dr

%ZZ:;1-n(1—r;) 1.82/01 B(r)2F(r) (1—F(r)) dr
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%ZL}‘1(1’1‘02—’52/01(T)2 (1—F(r))2dr

29111,.2P (SQ/0‘30))2F(r)Zdr

pointwise in (A,c') E A. The convergence here is pointwise rather than uniform as

the theorem 3.1 of Park and Phillips (1999) applies here for fixed values of A and 5.

Ideally, we would like to have a uniform convergence in A which is very difficult to

prove. To our knowledge, there does not exist a result that extends Park and Phillps’s

theorem 3.1 to the case where convergence is uniform in A. Applying Theorem 3.1 of

Park and Phillips to the rest of the terms;

%ZF,(1—F,)—P+/ol(F(r)((1—F(r))) dr

TZF2—4/1F()r2dr

%Z(1—F,)2LAI((l—F(r))2dr

uniformly in (A,E) E A.

Hence, we have shown that

  

V 0

r-1 as; ’r-1 —L» (6.14)1.1: 1.1 0,

where _ _

C0 C1 ' ' ' Ctr—2

V = C1 C0 ' ' ' Ctr-3

] Cp—2 CP-3 ' ' ' C0 _

Q = Q11 Q21

Q21 Q22

with

f0 (1F— (r))dr 60f’B(r) (1 —F(r))2dr

50f B(r) (l-F(r)) dr rfos(r)2(1—-F(r))2dr
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_ In F(l (1 — ”"021" 5 f01 B(r)F‘(r) (1 — Fm) dr

Q21 _ ~

61.1 B(r)F() (1 — F(>) dr 62 1,3(7)2126) (1 - F(.)) .1.

IS F(2)1dr 6 f8 B(r)F(r)2dr
Q22 =

6 (,1 B(r)F(r)2dr 52 [,1 B(r)2F(r)2dr

Now consider the vector, T711 [2 mm] , in (6.13). Following Hamilton (1994, pages

520-21) this term can be decomposed into two parts. Using the result from Hamilton

(1994), the first (p — 1) elements of this vector satisfy the usual central limit theorem

and hence;

% th—lut

‘—1"' 12.11

“7‘: ‘ 2 t in). ~N(0,02V) (6.15)

  . 71% 222-2222122 1

The asymptotic behavior of the last four elements can be obtained by using the results

in Hamilton and Park and Phillips (1999). For any given (A, 6) we have;

    

fl,— 2(1—Ft)ut - r 0‘]: (1— F(r)) dB(r) -

1 ..

7z; y.-. (1 - F.) u. i) I12 N 06 f0 3(1) (1 — Fm) dB(r) (6.16)

fl2 Ftut 0‘ fol F(r)dB(7‘)

% Z yt—1Ftut ‘ _ 06 1.013()F(r)dB(r)

Substituting (6.15) through (6.16) into (6.13) results in

-1

. V II V‘lh

Tr (B — H) —L—2 0 l = 1 (6.17)

0 Q ’12 Q-lhz

The null hypothesis Hg : p = p.21: = 0, p = p* = 1 can be represented by Rfl = q,

I

whereR= [0 I4],q=(0,1,0,1),withObeinga4x(p—1)zeromatrix
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and 14b eing the 4 x 4 identity matrix. The Wald test is then

. I -1 ‘1 .

W7: (6 — 6) R’ [6212(Zx,x;) R] R (6 — (3) (6.18)

Define T} be the following (4 x 4) matrix:

r- ..

«T 0 0 0

- 0 T 0 0

0 0 «if 0

0 0 0 T
L. -  

Notice that (6.18) can be written

W7: (6‘ — fl), RTT [5217,52, (Z xtx;)—1 Rh] 4 TTR (B —- fl) (6.20)

Observe that the matrix TT has the property that

ha = RTT

for R = [ 0 I4 ] and TT the (p + 3) x (p + 3) diagonal scaling matrix given above.

From (6.17),

RrT ((9 — (3) —1—» 2%.

Therefore, (6.20) implies that

W7: ([3 — fl), (121T) [6231). (Z ztx;)—1TTR]—l TTR (,6 — fl)

—"—> (621221 [21621]“ (Q4222)

= (1262—1’12/‘72 E (W) (621)

Note that under the alternative hypothesis y; follows a stationary ESTAR process for

p21: is strictly less than 1. Under the alternative parameters [3 will converge asymp—

totically in x/T to their pseudo true values that are functions of 7 and 0. Hence, the

test statistic should diverge.
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Proof of Proposition 2: Note that under H8 since the process is a random

walk with drift (i.e. y; = u + 311-1 + at) we need to use the following diagonal matrix

with the diagonal elements (x/T, - - . , x/T, VT, T3”, x/T, T3”). Note also that under

H8 yt/T converges to p as T ——1 00. Since under the null the OLS estimate of p is

consistent we can act as if we know u. Denote

F(6) =1— exp (— (€11 — A)2).

Using the theorem 3.1 in Park and Phillips (1999) and proceeding as in the proof of

the proposition 1 we can show that;

121”“(1-12.))L/(m —F(d11)))F10)

$4sz —’-’—» /)(F(u)2dF(11)

%Z(1—F1)2L/(l-FMDZFM)

uniformly in (A,E) E A. The rest of the terms converges in probability pointwise in

01,5) 6 A. That is,

1

T 2 17101—1 "5+ 0

1

a; E (1 — Ft)vt—i L 0

W2y—t1( _)FtUt— 1 ‘—* 0

111-1 P

T12 TFt'Ut—l —“’ 0

1T: Fla-1122.6 — F.) i» /EF(11)(1— Fm) dFm)

%Zy_‘-1(1-)F.21’ ff; (1—F<))zdFm)

—.).: g’2-—1F.(1— F.) i» [3-"—F(11)(1 —(F611) dF<11>

.). 315:2—3-(1-F1)>L/1—‘3- (1—F<11))dF()
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1 313-1 2 P fl‘z” 2 "

T: 12 F: 3 F02) 11(1).

pointwise in (A, E) E A. In the above, integration is over the support of 11. Applying

the similar steps in the proof of proposition 1 we can obtain:

1211122111211 12 :2
where now, V is the same as above and Q becomes:

Q: Q11 621.]

Q21 Q22

with

Q11— 1(1—”(11))2f”(u) f%(1-F(u))2d17"(u)

5 1—F()1) 611502) 1"?” (l-F(u))2d13(u)

112(1) ram) (1 — F(m) 1112(1)

1112(1) f 2312(1) (1 — F611) 112(1)

f 1500261151 (12) f £151(F)2d2‘
Q22 = ~ ~ 2 ~ ~

I 15F((2)2211?(12) F61"(u)2dF(u)

(6.22)

The limiting distribution of the first (p — 1) x (p — 1) elements of the vector,

T771 [2: $111,] , is given in (6.15). The last four elements of this vector follows asymp-

totically,

. - fig“,

fiEU-de 2

1 Z 1-1701) “t

T—gfiz y.-1(1—F.)u. P 7'1" ( )

1 2312.11. ..

7? 717~ZF(u)u1

_ 7:375 23 #(t - U13(1016
  #72 Z yt—IFtut
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Combining each component of 6.13, it follows that

. V‘lh ,

11 (F — F) —"2 ‘ (6.24)

N (0, 020-1)

Under the null H8 consider the following selection matrix;

.40...)

where 0 is a (4) X (p — 1) zero matrix, and

  

0 0 0 0

1 0 —1 0

R4 =

O 1 O 0

L O O 0 1 _

and define TT now to be

[7: 0 0 0

- 0 T3/2 0 0

T7: (6.25)

0 0 JT 0

_ 0 0 0 T3/2 .  
Proceeding in a similar fashion to the proof of the proposition 1 we can show that

the asymptotic distribution of WT is

WT— —2 $11(0,02Q“)'Q“N(0,02Q“) -—2 X2012) (6-26)

By the same argument given in the proof of proposition 1, under the alternative the

Wald test should diverge. This completes the proof.

229



BIBLIOGRAPHY

[1] Caner, M. and B. E. Hansen (2001), Threhold autoregression with a unit root,

Econometrica 69 1555-1596.

[2] Chan, K.S., J.D. Petrucelli, H. Tong, and S.W. Woolford (1985), A multiple

threshold AR(1) model, Journal of Applied Probability 22, 267—279.

[3] Dickey, D. and W. Fuller, (1981), Likelihood ratio statistics for autoregressive

time series with a unit root, Econometrica 49, 1057-1072.

[4] Dumas, B. (1992), Dynamic equilibrium and the real exchange rate in a spatially

separated world, Review of Financial Studies 5, 153-180.

[5] Eitrheim O. and T. Terasvirta (1996), Testing the adequacy of smooth transition

autoregressive models, Journal of Econometrics 74, 59-76.

[6] Granger, C.W.J. and T. Teréisvirta (1993), Modelling Nonlinear Economic Re-

lationships, Oxford: Oxford University Press.

[7] Hamilton, J. (1994), Time Series Analysis, Princeton, New Jersey: Princeton

University Press.

[8] Hansen, B. E. (1997), Inference in TAR models, Studies in Nonlinear Dynamics

and Econometrics 1, 119-131.

[9] Killian, L. and M. Taylor (2001), Why is it difficult to beat the random walk

forecast of exchange rates? Mansucrpipt, Department of Economics, University

of Michigan.

[10] Koop, G., M. H. Pesaran and S. M. Potter (1996), Impulse response analysis in

nonlinear multivariate models, Journal of Econometrics 74, 119—147.

[11] Kwiatkowski, D., P.C.B. Phillips, P. Schmidt, and Y. Shin, (1992), Testing the

null hypothesis of stationarity against the alternative of a unit root: How sure

are we that economic time series have a unit root? Journal of Econometrics 54,

159—178.

230



[12]

[13]

[14]

[15]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

Micheal, P., R.A. Nobay, and D.A. Peel (1997), Transactions costs and nonlinear

adjustment in real exchange rates: an empirical investigation, Journal of Political

Economy 105, 862—879.

O’Connel, P.G.J. (1998), Market frictions and real exchange rates, Journal of

International Money and Finance 17, 71—95.

Park, J. Y. and P. C. B. Phillips (1999), Nonlinear regressions with integrated

time series, working paper, Department of Economics, Yale University.

Phillips, P. and C.B.P. Perron (1988), Testing for a unit root in time series

regression, Biometrika 75, 335—346.

Rogoff (1996), The purchasing power parity puzzle, Journal of Economic Liter-

ature 34, 647-668.

Sercu, P., R. Uppal, and C. Van Hulle (1995), The exchange rate in the presence

of transaction costs: implications for tests of purchasing power parity, Journal

of Finance 10, 1309—19.

Taylor, M. P. and L. Sarno (1998), The behavior of real exchange rates during the

post-Bretton Woods period, Journal of International Economics 46, 281-312.

Taylor, M.P., D.A. Peel, and L. Sarno (2001), Non-linear in real exchange rates:

towards a solution of the purchasing power parity puzzles, Working Paper, Centre

for Economic Policy Research, London, UK.

Tera'svirta, T. (1994), Specification, estimation and evaluation of smooth transi-

tion autoregressive models, Journal of the American Statistical Association 89,

208—218.

Terasvirta, T. (1998), Modelling economic relationships with smooth transition

regressions, in A. Ullah and D.E.A. Giles (editors), Handbook of Applied Eco-

nomic Statistics, New York: Marcel Dekker, pp. 507—552.

Tj¢stheim, D. (1990), Nonlinear time series and Markov Chains, Advances in

applied probability 22, 587-611.

231



Figure 6.1: Estimated j-step ahead covariances from the simulated ESTAR model

(a) 61,2
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Figure 6.2: Real exchange rate series and fitted values, residuals, and estimated
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Figure 6.3: Generalized Impulse Response Functions from Estimated ESTAR Models
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Figure 6.3 (cont’d).
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Figure 6.3 (cont’d).
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Figure 6.3 (cont’d).
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Figure 6.4: Distribution of Generalized Impulse Responses
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Figure 6.4 (cont’d).
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Figure 6.4 (cont’d).
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Figure 6.4 (cont’d).
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Table 6.1: Empirical critical values of the unit root tests

1% 5% 10% 15% 20%

supW 0.912 1.972 2.756 3.370 3.950

supWh 0.960 2.094 2.941 3.590 4.230

supW” 0.244 0.945 1.621 2.207 2.733

supWhp0.286 1.040 1.741 2.391 2.984

80% 85% 90% 95% 99%

13.140 15.084 17.860 23.849 44.077

14.548 16.732 20.268 26.817 45.915

11.430 13.247 15.886 21.631 41.532

12.514 14.427 17.537 23.868 42.473

Notes:supW and supWh stand for the standard and heteroscedasticity robust version of sup Wald

test for testing random walk without drift against a stationary ESTAR alternative while 311qu

and supWhp stand for the standard and heteroscedasticity robust versions of the sup Wald tests of

random walk with drift against stationary ESTAR alternative. Critical values are computed from

20,000 replications and p = 0.05 and errors are drawn from iid R(0 1).

Table 6.2: Empirical size of the unit root tests
 

 

Theoretical ADF PP supW supWh supW“ supWh,‘

Size

1% 0.013 0.012 0.011 0.010 0.011 0.010

5% 0.050 0.051 0.054 0.052 0.044 0.041

10% 0.102 0.102 0.106 0.100 0.078 0.077

 

NoteszThe columns corresponding to supW and sup-WI: give the rejection frequencies of true null

hypotheses of random walk without drift, while the columns corresponding to supW” and supWhu

give the rejection frequencies of true null of random walk with drift. The data is generated under the

nulls of H3 and Hg with p = 0 and AA = 0.05.The rejection frequencies for ADF and PP corresponds

top=0.
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Table 6.3: Empirical power of the unit root tests

a. 7=2.5,c=0.05,p=p*=0

 

 

 

Test p=1.0p* = —0.5 p=1.0p* =0.5 p=1.0p* =0.95

1% 5% 10% 1% 5% 10% 1% 5% 10%

ADF 0.970 0.975 0.978 0.835 0.850 0.865 0.410 0.445 0.450

PP 0.968 0.977 0.980 0.805 0.844 0.866 0.400 0.425 0.448

supW 1.000 1.000 1.000 0.995 0.998 0.999 0.479 0.685 0.803

supWh 1.000 1.000 1.000 0.995 0.996 0.997 0.446 0.633 0.750

371pr 1.000 1.000 1.000 0.996 0.998 0.999 0.507 0.712 0.813

supWh,‘ 1.000 1.000 1.000 0.993 0.995 0.997 0.481 0.666 0.787

b.7=15, c=0.05,p=p*=0

Test p =1.0p* = —0.5 p = 1.0 p* = 0.5 p = l.0p* = 0.95

1% 5% 10% 1% 5% 10% 1% 5% 10%

ADF 0.961 0.970 0.972 0.828 0.839 0.855 0.3850 0.411 0.420

PP 0.962 0.975 0.977 0.788 0.812 0.846 0.378 0.405 0.417

supW 1.000 1.000 1.000 0.998 0.998 1.000 0.499 0.715 0.817

supWh 1.000 1.000 1.000 0.996 0.997 0.998 0.476 0.673 0.785

supWfl 1.000 1.000 1.000 0.995 0.998 0.999 0.538 0.740 0.833

supWhp 1.000 1.000 1.000 0.994 0.996 0.998 0.494 0.688 0.801
 

c. 7 = 2.5, c = 0.05, p = 0.05;“: = —-0.05

 

Test p=1.0p*=—0.5 p=l.0p*=0.5 p=1.0p*=0.95

1% 5% 10% 1% 5% 10% 1% 5% 10%

ADF 0.935 0.950 0.958 0.810 0.822 0.835 0.377 0.400 0.414

PP 0.932 0.950 0.960 0.776 0.811 0.836 0.375 0.400 0.413

supW 1.000 1.000 1.000 0.997 0.996 0.998 0.500 0.714 0.820

supWh 1.000 1.000 1.000 0.995 0.996 0.998 0.488 0.675 0.790

371pr 1.000 1.000 1.000 0.999 1.000 1.000 0.667 0.814 0.885

supWhp1.000 1.000 1.000 0.996 0.999 0.999 0.628 0.773 0.850
 

c. 7 = 15, c = 0.05, p = 0.05/1* = —0.05

 

Test p=1.0p* = —0.5 p=1.0p* =0.5 p=1.0p* =0.95

1% 5% 10% 1% 5% 10% 1% 5% 10%

ADF 0.935 0.950 0.958 0.812 0.820 0.837 0.377 0.400 0.414

PP 0.930 0.948 0.956 0.789 0.817 0.837 0.375 0.400 0.413

supW 1.000 1.000 1.000 0.998 0.998 0.998 0.524 0.746 0.834

supWh 1.000 1.000 1.000 0.995 0.997 0.999 0.488 0.713 0.820

supWp 1.000 1.000 1.000 1.000 1.000 1.000 0.679 0.829 0.890

supWh,‘ 1.000 1.000 1.000 0.999 1.000 1.000 0.645 0.794 0.861
 

Notes:The rows corresponding to supW and supWh give the rejection frequencies of false null

hypotheses of random walk without drift, while the rows corresponding to supW“ and supWhfl give

the rejection frequencies of false null of random walk with drift. The data is generated under the

alternative hypothesis of globally stationary ESTAR model.
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Table 6.4: Results on unit root and stationarity tests:PP, supWald and KPSS tests

 

PP KPSS ADF supW supWh supW” supWhp
 

BP -2.571 2.242 -3.009 24.505 29.024 n.a. n.a.

CD -1.192 2.357 -1.382 1462.232 1749.536 n.a. n.a

GM -2.126 2.675 -1.784 2547.000 2617.812 n.a. n.a.

IL -2.697 2.675 —2.785 49.679 55.319 13.058 19.663

JY -0.376 3.041 -0.136 58.269 65.303 34.965 33.632

DG -1.536 2.570 —1.311 3030.276 3191.674 n.a. n.a.

SF -2.440 2.665 -2.112 249.205 269.036 n.a. n.a.

Key: The reported values for the PP test are based on the regression of the time series on a

constant and its lagged value. The lag truncation for the Bartlett kernel is obtained from the formula

floor(4(-l%:5)2/9). The 1%, 5% and 10% critical values are -3.454, —2.871, and -2.570 respectively

for the PP tests. The reported values for the KPSS test are based on a regression of the series

on a constant only. The 1%, 5%, and 10% critical values for the KPSS tests are 0.739, 0.463 and

0.347 respectively. The size of the Bartlett window for KPSS is obtained by using floor(8(%)1/‘).

ADF test is based on the regression of first diflerenced real exchange rate on a constant, lagged real

exchange rate and p — 1 lags of the first difl'erenced real exchange rate. The lag length is chosen

according to the Ljung-Box statistic and for all real exchange rates found to be 1. The 1%, 5%, and

10% critical values for ADF test are -3.454, -2.871, and —2.570.
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Table 6.5: Estimation Results from ESTAR models: Sample size: 312

 

BP CD DG GM IL JY SF

8, 0.004 0.002 0.001 0.003

(0.001) (0.001) (0.000) (0.001)

52 -0002 . .

(0.001) . .

p . 0.024 -0017

. . . . (0.007) (0.009)

p 1 .054 1.002 1.035 1.042 0.946 1.065 1.037

(0.053) (0.007) (0.034) (0.036) (0.028) (0.093) (0.022)

,1... . . . . 0.004 -0.004

. . . . (0.002) (0.002)

p... 0.983 0.996 0.984 0.981 0.993 0.996 0.978

(0.007) (0.020) (0.008) (0.007) (0.003) (0.003) (0.006)

7 9.049 14.011 10.466 11.736 5.120 10.480 16.436

(0.730) (1.157) (1.792) (1.673) (0.420) (0.835) (1.582)

[0.032] [0.007] [0.025] [0.021] [0.028] [0.018] [0.013]

c . -0140 -0017 -0.169 -0.456 -0215

. (0.038) (0.150) (0.143) (0.040) . (0.120)

Skew 0.344 0.078 0.030 0.050 0.542 -0.694 -0015

Kurt 3.737 0.210 4.053 3.663 4.229 3.905 3.706

pLM(1 — 6) 0.139 0.136 0.444 0.234 0.236 0.242 0.453

pLM(1 — 12) 0.390 0.064 0.593 0.396 0.277 0.291 0.534

pNLESm 0.185 0.873 0.767 0.753 0.205 0.163 0.470

pNLLSm 0.114 0.149 0.027 0.389 0.243 0.306 0.072

SSR 0.173 0.034 0.315 0.321 0.277 0.230 0.406

pLMc 0.326 0.797 0.659 0.692 0.091 0.153 0.57_4___
 

fieteroscedasticity robust standard errors are given underneath the parameter estimates. The values

in squared parentheses are the computed marginal significance levels. The rows corresponding to

pLM(1 - 6) and pLM(1 — 12) are the p-values from Lagrange Multiplier test statistics for up

to 6th and 12th order serial correlations in residuals respectively, constructed as in Eitrheim and

Teriisvirta (1996). pNLESmM is the p-value for maximal Lagrange multiplier test statistic for no

remaining ESTAR nonlinearity with delay in the range from 2 to 12 (Eitrheim and Teriisvirta, 1996).

pNLLSma, is the p-value corresponding to no remaining LSTAR nonlinearity with delay in the range

1 to 12 (Eitrheim and Teriisvirta, 1996). SSR is the sum squared residuals of regression. pLMc

is p-value for Lagrange multiplier test statistic for parameter constancy in the estimated ESTAR

model (Eitrheim and Teriisvirta, 1996).
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