

This is to certify that the

dissertation entitled INVESTIGATION OF STOICHIOMETRIC AND CATALYTIC B-C BOND FORMATION BY GROUP 9 TRANSITION METAL BORYL COMPLEXES presented by Jian-Yang Cho

has been accepted towards fulfillment of the requirements for

Ph.D. degree in <u>Chemistry</u>

Major professor

Date 12-9-02

LIBRARY Michigan State University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

6/01 c:/CIRC/DateDue.p65-p.15

INVESTIGATION OF STOICHIOMETRIC AND CATALYTIC B-C BOND FORMATION BY GROUP 9 TRANSITION METAL BORYL COMPLEXES

Ву

Jian-Yang Cho

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirement
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

2002

ABSTRACT

INVESTIGATION OF STOICHIOMETRIC AND CATALYTIC B-C BOND FORMATION BY GROUP 9 TRANSITION METAL BORYL COMPLEXES

By

Jian-Yang Cho

C-H bond activation has attracted considerable attention since hydrocarbon feedstocks are ubiquitous. However, the catalytic functionalization of hydrocarbons still represents a long-standing challenge in homogeneous and heterogeneous catalysis. Since applications of arylboronate esters in cross-coupling chemistry are expansive, the transformation depicted below would have broad appeal.

$$Ar-H + H-BX_2 \rightarrow Ar-BX_2 + H-H$$

In 1999, our group demonstrated the first thermal, catalytic aromatic borylation reaction catalyzed by Cp*Ir(PMe₃)(H)(BPin). In order to understand this important transformation, detailed mechanistic studies were carried out. Through detailed investigations, a remarkably selective iridium catalyst system was discovered for aromatic borylation reactions.

Borylations of various mono-substituted arenes provide essentially a statistical distribution of m- and p-C₆H₄(X)(BPin). This unique steric directing effect in aromatic borylation provides a complementary means for regionselective functionalization of aromatic compounds. For example, 1,3-disubstituted benzene rings are selectively borylated at the 5-position. With the exception of electron-deficient arenes, this is typically the least activated site towards aromatic substitution. Using this new methodology, a variety of arylboronic esters can be synthesized in a relatively simple and

efficient way directly from corresponding arenes and pinacolborane or pinacol diboron catalyzed by the new iridium catalyst system.

The new iridium catalysts tolerate the entire range of aryl halides, ether, and ester functionalities and selectively functionalize aromatic C-H bonds. This remarkable selectivity broadens the potential applications for aromatic borylation.

Stoichiometric reactions of (PMe₃)₄Ir(BPin) and fac-(PMe₃)₃Ir(BPin)₃ with arenes were examined. Both Ir^{II} and Ir^{III} boryl complexes can effect benzene borylation. However, their reactions with iodobenzene differ substantially under both stoichiometric and catalytic conditions.

In order to further investigate the possibility that metal boryl complexes are intermediates in borylation reactions, several derivatives containing alkyl, aryl, or silyl ligands were synthesized and fully characterized.

Preliminary mechanistic studies on the new iridium catalyst system were carried out and presently a mechanism involving Ir^{III} and Ir^V intermediates in an Ir^{III/V} catalytic cycle is suggested. Correlations between the stoichiometric and catalytic reactions provided a deeper insight into the mechanism of aromatic borylation.

To my family and wife for their support and love

ACKNOWLEDGMENTS

First, I would like to thank my research advisor, Mitch Smith, for his guidance and assistance throughout my graduate career at Michigan State University. He taught me the qualities for pursuing the truth in science and gave me the opportunity to work on some exciting chemistry. Although the life for being a graduate student is tough, it equipped me with essential tools and knowledge to face future challenge. I will always appreciate that.

I am thankful to Dr. Odom and Dr. Maleczka for their stimulating discussions during our joint group meetings and Dr. Jackson and Dr. Pinnavaia for serving on my guidance committee.

My thanks also go out to Dr. Carl Iverson for his patient teaching and sharing of experiences during my first year here. I was very lucky to work with some talented postdoctoral associates, Dr. Man Kin Tse and Dr. Daniel Holmes. I learned a great deal from them. I will value the friendships I gained in my time at MSU. They are Chris Radano, Jim Ciszewski, Chen-Yu Yeh, Baixin Qian, Jie Fang, and Kuei-Fang Hsu. Their encouragement makes my graduate life more passable. Special thanks go to Jim and Kuei-Fang for their help in obtaining X-ray crystal structure. I also appreciate my best partners in Taiwan, Dr. Yih-Hsing Lo and Yi-Wei Chao, for their long-distance friendships.

Finally, I would like to thank my best friend, my soulmate, and my wonderful wife, Mi-Jin Chae, for her love, support, and sacrifice. Thank you for everything. I also

would like to express my appreciation and love to my family in Taiwan: Dad, Mom, my elder brother, and my younger sister for their love, encouragement, and emotional support. I could not have gotten through this without them. My appreciation also goes out to my father and mother in-law in South Korea for their caring and support. Thank you so much.

TABLE OF CONTENTS

LIST OF TABLESx
LIST OF FIGURESxii
LIST OF SYMBOLS AND ABBREVIATIONSxvii
CHAPTER 1
INTRODUCTION
C-H Bond Activation and Functionalization of Hydrocarbons
Thermodynamics of Borane Functionalization of C-H Bonds4
Stoichiometric and Catalytic Borylation Reactions5
Synthetic Routes to Arylboronic Esters9
CHAPTER 2
MECHANISTIC INVESTIGATION OF Cp*Ir(PMe ₃)(H)(BPin) CATALYZED BORYLATION REACTIONS
Comparison between Cp*Ir(PMe ₃)(H)(BPin) and Cp*Rh(η ⁴ -C ₆ Me ₆) Pre-catalyst Systems in Borylation of Various Substituted Arenes
Metathesis Reactions between $Cp*M(PMe_3)(Ph)(H)$ (M = Ir, Rh) and Pinacolborane in C_6D_6
Mechanistic Studies of The Original Iridium System
CHAPTER 3
CATALYTIC BORYLATION REACTIONS OF AROMATIC COMPOUNDS
Screenings of Phosphine Ligands, Other Donor Ligands, and Metal Complexes for Catalytic Benzene Borylation
Borylation of Substituted Benzenes42

Steric, Electronic, and Directing Effects in Aromatic Borylation
Competition Reactions5
CHAPTER 4
SYNTHESIS, CHARACTERIZATION, AND REACTIVITY OF IRIDIUM BORYL COMPLEXES
Synthesis and Characterization of an Ir ¹ Boryl Complex
Substitution and Oxidative Addition Reactions of Ir ¹ Boryl Complexes6
Synthesis and Characterization of an Ir ^{III} Boryl Complex
Synthesis and Characterization of Novel Metal Boryl Complexes Containing Alkyl, Aryl, or Silyl Ligands
Oxidation Chemistry of Ir ^I Complex with Boranes93
CHAPTER 5
PRELIMINARY MECHANISTIC STUDIES OF THE IRIDIUM/PHOSPHINI CATALYST SYSTEM FOR AROMATIC BORYLATION
Stoichiometric Reactions of Ir ¹ and Ir ¹¹¹ Boryl Complexes with Arenes90
Correlation between Phosphine Ligands and Catalytic Activity108
Stoichiometric and Catalytic Borylations of Iodobenzene110
Kinetic Isotope Effects in Aromatic Borylation112
Mechanistic Discussions118
CHAPTER 6
EXPERIMENTAL
General Considerations126
Syntheses128
Screening Experiments
NMR Tube Reactions137

Kinetic Isotope Effect Experiments	143
Arylboronate Ester Syntheses	146
Competitive Borylation Experiments	160
Kinetics Experiments	162
Crystal Structure Determinations and Refinement	164
APPENDIX A	
Summary of Crystal Data and Structure Refinement	167
APPENDIX B	
Derivation of Rate Expressions for Chapter 4	173
APPENDIX C	
Kinetic Details	176
BIBLIOGRAPHY	179

LIST OF TABLES

Table 1. Isolated yields (based on HBPin) and isomer distributions for catalytic borylation of aromatic hydrocarbons catalyzed by solutions of compounds 1 and 313
Table 2. Relative ratios of arylboronic esters for borylations of equimolar mixtures of substituted arenes catalyzed by compounds 2 and 3
Table 3. Selected bond lengths [Å] and angles [°] for 14
Table 4. Summary of borylation of benzene with HBPin in the presence of 2 mol% precatalyst at 150 °C
Table 5. Borylation reaction of benzene with HBPin in the presence of 2 mol% 13 and 2 mol% chelating phosphine ligand
Table 6. Borylation reaction of benzene with HBPin in the presence of 2 mol% 13 and nitrogen, oxygen, or sulfur containing ligands
Table 7. Borylation of benzene with HBPin in the presence of various metal precursors (M) and ligands
Table 8. Ir-catalyzed aromatic borylations. Reactions are run in neat arene, [Ir] = 2 mol%, [P]:[Ir] = 2:1, and yields are reported for isolated materials
Table 9. Borylations of unsymmetrical 1,2- and 1,4-disubstituted arenes with HBPin in the presence of 2 mol% 13 and 2 mol% dmpe. Reactions run in neat arene, and yields are reported for isolated materials
Table 10. Ligand repulsive energies (in kcal/mol) computed using the universal force field and A-values (in kcal/mol) for a variety of organic substituents50
Table 11. Comparison of isomer distribution between the experimental values and the calculated values derived from pure steric effect (E _R)
Table 12. Borylations of mono-substituted arenes with HBPin in the presence of 2 mol% 13 and 2 mol% dmpe. Reactions run in neat arene. Isomer distribution is obtained from area ratios in GC-FID chromatograms
Table 13. Comparison of isomer distribution between the experimental values and the estimated values derived from selectivity in borylation of mono-substituted arenes55

Table 14. Relative ratios of arylboronic esters for borylations of equimolar mixtures of substituted arenes catalyzed by 2 mol% 13 and 2 mol% dmpe
Table 15. Selected bond lengths [Å] and angles [°] for 17
Table 16. Selected bond lengths [Å] and angles [°] for 18
Table 17. Comparison of boryl resonances of complexes 15, 17, 22, 23 and 24 in ¹¹ B NMR spectra
Table 18. Selected bond lengths [Å] and angles [°] for 25
Table 19. Selected bond lengths [Å] and angles [°] for 28
Table 20. Selected bond lengths [Å] and angles [°] for 29
Table 21. Comparisons of X ₂ B- Ir-PMe _{3trans} to BPin bond distances of iridium boryl complexes
Table 22. Borylation reactions with HBPin in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 or 1,3,5- $C_6D_3H_3$ catalyzed by Ir ^I and Ir ^{III} sources at 150 °C, [Ir] = 2 mol%, [PMe ₃]:[Ir] = 2:1
Table 23. Stoichiometric borylation reactions of 18 and 25 with a molar ratio 1:1 mixture of C ₆ H ₆ /C ₆ D ₆ or 1.3.5-C ₆ D ₃ H ₃ at 150 °C

LIST OF FIGURES

Figure 1. Various pathways discovered for the activation of C-H bonds4
Figure 2. Functionalization of hydrocarbons by transition metal boryl complexes under photochemical conditions
Figure 3. Selective functionalization of alkanes by transition metal boryl complexes7
Figure 4. The first thermal, catalytic example of aromatic borylation reaction8
Figure 5. Reaction of B ₂ Pin ₂ in pentane catalyzed by Cp*Re(CO) ₃ 9
Figure 6. Traditional and direct routes to arylboronic esters from aromatic hydrocarbons
Figure 7. Resonance structures of ethyl benzoate and N,N-diethyl benzamide16
Figure 8. Initial proposed catalytic cycle for catalytic functionalization of hydrocarbon C-H bonds
Figure 9. The reaction between Cp*Ir(PMe ₃)(Ph)(H) (5) and HBPin in C ₆ D ₆ at 150 °C after around 37% conversion from Cp*Ir(PMe ₃)(Ph)(H) to Cp*Ir(PMe ₃)(H)(BPin): (a) ¹ H NMR spectrum of Cp* region; (b) ¹ H NMR spectrum of aromatic region
Figure 10. The metathesis reaction between compound 5 and HBPin in C ₆ D ₆ at 150 °C21
Figure 11. Thermolysis of Cp*Ir(PMe ₃)(H)(BPin) (1) in C ₆ D ₆
Figure 12. ¹ H NMR and ³¹ P{ ¹ H} NMR spectra of the thermolysis of compound 1 in C ₆ D ₆ 22
Figure 13. The reaction of compound 4 with HBPin in C ₆ D ₆ at elevated temperature23
Figure 14. Plot of $ln([4]_{1}/[4]_{0})$ vs. time (s) for the reaction of compound 4 with [HBPin] = 0.551 M and [HBPin] = 1.103 M in C_6D_6 at 95 °C, respectively
Figure 15. Eyring plot for the reaction of compound 4 with HBPin in C_6D_6 . ([4] _o = 0.046 M; [HBPin] _o = 0.551 M; T = 338.15 to 388.15 K, ΔH^{\ddagger} = 25.6 kcal/mol and ΔS^{\ddagger} = -5.3 e.u.)

Figure 16. Potential crossover products from pseudo double-labeling crossover experiment
Figure 17. Separation of compounds 2, 8, and 9 in a GC-MS chromatogram28
Figure 18. Pseudo double-labeling crossover experiment29
Figure 19-1. The chromatogram of the crude mixture from benzene borylation with pinacolborane in the presence of 10 mol% of compound 8 and 10 mol% of compound 9
Figure 19-2. The chromatogram of the crude mixture from benzene borylation with pinacolborane in the presence of 10 mol% of compound 8 and 10 mol% of compound 9
Figure 20. Borylation reactions of anisole with 20 mol% loading of compound 1 and compound 11, respectively
Figure 21. ORTEP diagram of (MesH)Ir(BPin) ₃ (14). Thermal ellipsoids are shown at 25% probability
Figure 22. Benzene borylation with HBPin catalyzed by 2 mol% 14 and 4 mol% PMe ₃
Figure 23-1. GC chromatogram of borylation of 1,3-dichlorobenzene catalyzed by the Rh pre-catalyst 3
Figure 23-2. GC chromatogram of borylation of 1,3-dichlorobenzene catalyzed by the Inpre-catalyst 13 and dppe
Figure 24. The calculated value of isomer distribution of the borylation of 1,4-C ₆ H ₄ (Cl)(CF ₃)
Figure 25. The estimated value of isomer distribution of the borylation of 2-chloroanisole
Figure 26. Two potential catalytic cycles for aromatic borylation: (Left) involving Ir ^{IIIIV} intermediates; (right) involving Ir ^{IIIVV} intermediates
Figure 27. Cyclometallation of tris(trimethylphosphine)neopentyliridium(I) complex60
Figure 28. The reaction between mer-(PMe ₃) ₃ Ir(BPin)(H)(Cl) (15) and KO'Bu60
Figure 29. Deborylhalogenation reaction between complex 16 and KO'Bu62

Figure 30. ORTEP diagram of mer, cis-(PMe ₃) ₃ Ir(BPin) ₂ Cl (17). Thermal ellipsoids are shown at 25% probability
Figure 31. Syntheses of mer, cis-(PMe ₃) ₃ Ir(BPin) ₂ Cl (17) and (PMe ₃) ₄ Ir(BPin) (18)66
Figure 32. ORTEP diagram of (PMe ₃) ₄ Ir(BPin) (18). Thermal ellipsoids are shown at 25% probability
Figure 33. The reaction between compound 18 and dppe
Figure 34. H ₂ , R ₃ SiH, and HX' oxidative additions to IrX(CO)(dppe) complexes71
Figure 35. Catecholborane (HBCat) oxidative additions to IrX(CO)(dppe) complexes71
Figure 36. Pinacolborane (HBPin) oxidative addition to compound 1872
Figure 37. Chlorocatecholborane (ClBCat) oxidative addition to compound 1873
Figure 38. Synthesis of <i>fac</i> -(PMe ₃) ₃ Ir(BPin) ₃ (25)74
Figure 39. ORTEP diagram of fac-(PMe ₃) ₃ Ir(BPin) ₃ (25). Thermal ellipsoids are shown at 25% probability. All oxygen and carbon labels are omitted for clarity. Hydrogen atoms are also omitted for clarity
Figure 40. Reported complexes containing a boryl ligand and a σ-bound carbon ligand
Figure 41. The reaction between (PMe ₃) ₄ Rh(Me) and B ₂ Cat ₂ 78
Figure 42. The reaction between (PMe ₃) ₄ Ir(Me) and HBPin in pentane79
Figure 43. The resonance of the methyl group of fac -(PMe ₃) ₃ Ir(Me)(H)(BPin) (26) in the ¹ H NMR spectrum
Figure 44. The resonances of PMe ₃ groups of fac-(PMe ₃) ₃ Ir(Me)(H)(BPin) (26) in the ¹ H NMR spectrum. The peaks denoted with an asterisk (*) are due to PMe ₃ and BPin resonances of compound 27
Figure 45. NOE experiments of compound 26 (Irradiation of the hydride resonance at -11.30 ppm)
Figure 46. NOE experiments of compound 26 (Irradiation of the Me resonance at 0.40 ppm)

Figure 47. The resonances of PMe ₃ groups of fac-(PMe ₃) ₃ Ir(Me)(H)(BPin) (26) in the ³¹ P{ ¹ H} NMR spectrum. The peaks denoted with an asterisk (*) are due to PMe ₃ resonances of compound 27
Figure 48. HETCOR experiment (¹ H, ³¹ P) to correlate the resonances of PMe ₃ groups in the ¹ H NMR spectra to those in the ³¹ P{ ¹ H} NMR spectra84
Figure 49. The reaction between (PMe ₃) ₄ Ir(Me) with 9-BBN
Figure 50. The NMR reaction of (PMe ₃) ₃ Ir(Ph) with HBPin in toluene-d ₈ at room temperature
Figure 51. ORTEP of mer-(PMe ₃) ₃ Ir(BPin)(H)(Ph) (28). Thermal ellipsoids are shown at 25% probability
Figure 52. The reaction between (PMe ₃) ₄ Ir(BPin) (18) and HSiEt ₃ 89
Figure 53. ORTEP of fac-(PMe ₃) ₃ Ir(H)(BPin)(SiEt ₃) (29). Thermal ellipsoids are shown at 25% probability91
Figure 54. The reactions of $Ir(PMe_3)_3(COE)(Cl)$ (30) with nitrogen-containing boranes including $H[B(NH)_2C_6H_4]$, $H[B(NH)_2C_{10}H_6]$ (HBDAN), and $H[B(NMe)_2C_6H_4]$ 95
Figure 55. Thermolysis of 18 in C ₆ D ₆ at 150 °C
Figure 56. Thermolysis of 18 in C ₆ D ₆ at 150 °C: ¹ H NMR spectrum before thermolysis
Figure 57. Thermolysis of 18 in C ₆ D ₆ at 150 °C: ¹ H NMR spectrum after thermolysis. Small peaks around 1.28-1.42 ppm and 1.57-1.60 ppm were not identified99
Figure 58. Plot of ln([18] ₁ /[18] ₀) vs. time (min) for the thermolysis of 18 in C ₆ D ₆ at 130 °C
Figure 59. Two potential pathways to account for the stoichiometric reaction between 18 and C ₆ D ₆
Figure 60. Plot of 1/k _{obs} vs. [PMe ₃] of the thermolysis of 18 in C ₆ D ₆ in the presence of various concentrations of PMe ₃
Figure 61. Our proposed mechanism for the thermolysis of 18 in C ₆ D ₆ 103
Figure 62. The process of thermolysis of 25 in C ₆ D ₆ at 150 °C
Figure 63. Concentration of each species relative to internal standard (C ₆ Me ₆) vs. time (min) for the thermolysis of 25 in C ₆ D ₆ at 150 °C measured by ¹ H NMR

Figure 64. Plot of $ln([25]/[25]_0)$ vs. time (min) for the thermolysis of 25 in C_6D_6 at 150 °C
Figure 65. The reaction of (PMe ₃) ₄ Ir(H) (37) with HBPin and B ₂ Pin ₂ 108
Figure 66. ¹ H, ¹¹ B, and ³¹ P{ ¹ H} NMR spectra of the off-white precipitate from the reaction between 18 and C ₆ H ₅ I
Figure 67. Thermolysis of 25 in iodobenzene
Figure 68. The process of reversible formation of π^2 -arene complexes
Figure 69. Observed k_H/k_D in the activation of a 1:1 mixture of C_6H_6/C_6D_6 by the intermediate [Cp*Rh(PMe ₃)]
Figure 70. A trisboryl complex [Ir((dtbpy)(COE)(BPin) ₃] isolated by Miyaura and coworkers
Figure 71. Possible mechanisms for Ir ^{III} borylation reaction
Figure 72. Thermolysis of compound 28 in C ₆ D ₆ at 50 °C
Figure 73. A putative mechanism for aromatic borylations catalyzed by iridium boryl complexes
Figure 74. Iridium tris(boryl) intermediate in borylation reactions

LIST OF SYMBOLS AND ABBREVIATIONS

Å Angstrom

BDAN $B(NH)_2C_{10}H_6$

B₂Pin₂ bis(pinacolato)diboron, Me₄C₂O₂B-BO₂C₂Me₄

ClBCat chloro-catecholborane

COD 1,5-cyclooctadiene

COE cyclooctene

Cp* pentamethylcyclopentadienyl, η^5 -C₅(CH₃)₅

°C degrees Celcius

d doublet

dddd doublet of doublet of doublet

D deuterium

e.u. entropy units

Et₂O diethyl ether

equiv. equivalent

fac facial

GC gas chromatography

h hour

HBPin pinacolborane, HBO₂C₂Me₄

Hz hertz

IR infrared

J coupling constant

k rate constant

K temperature in Kelvin

kcal kilocalorie

 k_H/k_D ratio of isotope effect on observed rate constant

k_{obs} observed rate constant

L liter, generic ligand

M multiplet

Me methyl, -CH₃

mer meridional

min minutes

mL milliliters

mmol millimole

mM millimolar

mol mole

MS mass spectrometry

NMR nuclear magnetic resonance

Ph phenyl, -C₆H₅

PMe₃ trimethylphosphine

PPh₃ triphenylphosphine

Pin pinacol, $1,2-O_2C_2Me_4^{2-}$

q quartet

s singlet, seconds

t triplet

thf tetrahydrofuran

 δ delta, ppm for NMR spectroscopy

 ΔH^{\ddagger} change in enthalpy

 ΔS^{\ddagger} change in entropy

 η^n ligand hapticity of number "n"

μL microliters

CHAPTER 1

INTRODUCTION

C-H Bond Activation and Functionalization of Hydrocarbons

The selective transformation of carbon-hydrogen bonds to other functional groups represents a long-standing challenge in homogeneous and heterogeneous catalysis, because C-H bonds are the most ubiquitous chemical linkages in Nature. Elucidating the requirements necessary to effect their cleavage or their transformation into other bonds is based on our fundamental understanding of their chemical reactivity. Over the past two decades, many examples of C-H activation at transition metal centers were reported. It has been a topic of great interest to the organometallic chemists. Saturated hydrocarbons are major constituents of natural gas and petroleum, but there are very few practical processes for converting them directly to more valuable chemicals. The lack of reactivity of alkane C-H bonds can be attributed to their high bond energies (typically 90-104 kcal/mol) and very low acidity or basicity. Despite the fact that C-H bonds are more difficult than other types of linkages to cleave, such as C-Cl and C-Br, they are not completely inert. Alkanes have been known to undergo a number of solution and gasphase reactions that involve free radicals as intermediates. They exhibit some preference for reaction of tertiary C-H bonds over primary or secondary. There are also some examples of alkane reactions with superacids² or ozone³; however, they are usually very unselective. In recent years, considerable work with stoichiometric activation of C-H bonds suggests that homogeneous organometallic systems can overcome some of these selectivity problems.⁴ Many examples suggest that a regioselectivity pattern with (i.e., $1^{\circ} > 2^{\circ} > 3^{\circ}$) can be obtained. Despite the success in this area, few systems are capable of subsequent substrate functionalization and regeneration of the metal species as required for catalytic turnover. Thus, developing a method not only to selectively activate but also functionalize C-H bonds of hydrocarbons has been a "Holy Grail" in synthetic chemistry.^{1c}

Selective catalytic hydrocarbon functionalization is not unknown. In fact, Nature performs ambient temperature alkane functionalization constantly, and sometimes with excellent selectivity, through the use of oxygenase enzymes. Those, which belong to the monooxygenase cytochrome P-450⁵ and methane monooxygenase⁶ (MMO) families, have received a considerable amount of attention. These enzymes catalyze the incorporation of molecular oxygen into alkane C-H bonds with the simultaneous loss of water and oxidation of NADPH or NADH. In the case of cytochrome P-450, the enzyme active site has been found to contain an iron porphyrin complex with a sulfur-bound cysteine, which mediates the cleavage of O₂ to generate an iron-oxo complex. This oxo complex is considered to be the active oxidant of alkane C-H bonds. The efficiency of biological oxygenase systems has stimulated a significant body of research devoted to developing both structural and functional mimics designed to oxidize alkane.⁷

Pathways discovered for activation of C-H bonds include (i) oxidative addition of R-H to transition metal, (ii) σ bond metathesis between M-R' and R-H, 1,2-addition of R-H to M=X (X=O, NR, CR₂), (iii) electrophilic activation in the reaction of M-X (X=halide, hydroxide, triflate, etc.) and R-H to generate M-R and HX, and (iv) metalloradical activation. Oxidative addition reactions are typical pathways for late transition metal

complexes. For example, $Cp*Ir(PMe_3)(H)_2$ (2, $Cp* = \eta^5-C_5Me_5$) loses H_2 under photo-irradiation to generate the reactive species " $Cp*Ir(PMe_3)$ ", which subsequently activate the C-H bonds of hydrocarbon substrates to form a metal alkyl hydride complex. 8 σ -Bond metathesis occurs mostly in early transition metal complexes. These reactions usually result in the interchange of metal and hydrocarbon alkyl fragments. 9 1,2-addition reactions involve the addition of an alkane to metal-nonmetal multiple bond. 10 However, the scope of this type reaction and its potential for alkane functionalization remains unclear. Electrophilic activation reactions involve an electrophilic metal center, which attacks C-H bonds of alkanes to form functionalized alkanes directly. This type of reaction is usually carried out in a strongly polar medium such as water or anhydrous strong acid. One example in which the reaction between the Rh (II) porphyrin complexes and alkane C-H bonds with the involvement of free alkyl radical, generated through abstraction of a hydrogen atom from alkane by the Rh center is classified as metalloradical activation (Figure 1). 11

Systems that can selectively and catalytically functionalize the C-H bonds of hydrocarbons are extremely rare. There are some examples of functionalization processes mediated by homogeneous transition metal complexes, including dehydrogenation of alkanes, ¹² carbonylation of benzene, ¹³ carbonylation of pentane, ¹⁴ and acceptorless dehydrogenation of cyclic alkanes by iridium complex with PCP type ligand. ¹⁵

Mechanistic insight into the fundamental processes and solutions of potential problems towards to the functionalization of hydrocarbons have been studied extensively and well developed in many stoichiometric reactions. Currently the biggest challenge in

this field is to develop better catalysts system to activate and functionalize the C-H bonds of hydrocarbons for practical applications.

Oxidative addition

$$L_nM^x + R-H \longrightarrow L_nM^{x+2}(R)(H)$$

Sigma-bond metathesis

$$L_nM^x-R + R'-H \longrightarrow L_nM^x-R' + R-H$$

1,2-addition

$$L_nM^x=Y + R-H \xrightarrow{\qquad \qquad} L_nM^x-Y \qquad (Y = O, NR, CR_2)$$

Electrophilic activation

$$L_nM^x-Y + R-H \longrightarrow L_nM^x-R + H-Y$$
 (Y = halide, hydroxide, triflate, etc.)

Figure 1. Various pathways discovered for the activation of C-H bonds.

Thermodynamics of Borane Functionalization of C-H Bonds

Since the importance of boryl complexes as proposed intermediates in the transition metal catalyzed functionalization of organic compounds, studies concerning the

fundamental properties and reaction chemistry of transition metal boryl complexes have been initiated since early 1990s. Transition metal-ligand covalent bond energies are important in understanding catalysis. However, there has been few data available for boranes and no thermochemical data for transition metal boryl complexes until 1994. In that year, Rablen and Hartwig¹⁶ reported calculation of B-H and B-C bond dissociation energies (BDEs) for a series of boranes. From the established thermochemical and computational data of borane reagents, the reaction in equation 1 is essentially thermoneutral. Moreover, from calculated BDE's for B-H, C-H, and B-C bonds, synthesis of aryl boronic esters directly from boranes and arenes should be thermodynamically feasible.

$$CH_4 + HBCat \longrightarrow CH_3BCat + H_2 \quad \Delta H^\circ = -2.1 \text{ kcal/mol}$$
 (1)

Stoichiometric and Catalytic Borylation Reactions

In 1995, Hartwig et al.¹⁷ reported the functionalization of hydrocarbons by the reaction of arenes and alkenes with (CO)₅Mn(BCat), (CO)₅Re(BCat), and CpFe(CO)₂(BCat) under photochemical conditions (Figure 2). Although dehydrogenative borylation of benzene has not been observed previously before this report, dehydrogenative borylation of alkenes has been observed in catalytic chemistry.¹⁸

$$(CO)_5M$$
—BCat + HBCat + M₂(CO)₁₀ + H₂ + Re₃(CO)₁₂H₃
M = Mn 45% 10-20%
M = Re 55%

Figure 2. Functionalization of hydrocarbons by transition metal boryl complexes under photochemical conditions.

Waltz and Hartwig¹⁹ in 1997 reported selective functionalization of alkane at terminal position to produce alkylboronate esters, which are common reagents in organic synthesis. They found that photochemical reaction of Cp*Fe(CO)₂(BCat') (Cp* = C₅Me₅, Cat' = 1,2,-O₂C₆H₂-3,5-(CH₃)₂), Cp*Ru(CO)₂(BCat'), and Cp*W(CO)₃(BCat') with a series of alkanes gives alkylboronate esters with functionalization of alkane exclusively at the terminal position (Figure 3). The boryl complexes are rare chemical reagents that react selectively at the terminal position of alkane to provide simple functionalized products. From their mechanistic analysis, they believe ligand dissociation is induced photochemically and that thermal reaction of the resulting intermediate occurs with alkanes. They pointed out that CpFe(CO)₂(BCat) can functionalize arenes but not alkanes, presumably because of the presence of sp²-hybridized C-H bond in the Cp ring, which is preferred to be functionalized than alkanes. Therefore, they prepared a derivative of this complex with the sp²-hybridized position blocked to solve the problem.

Indeed, the elimination of all accessible sp² positions on the metal boryl complex does account for the unusual reactivity observed. Reaction with pentane gave 1-pentylboronate ester as the only functionalization product in 85% yield. Reaction with ethylcyclohexane gave (2-cyclohexyl)-1-ethylboronate ester as the only functionalization product in 74% yield. Interestingly, selectivity for the two terminal position of isopentane was good. Functionalization at the less hindered position occurred in 55% yield, whereas functionalization at the more hindered terminal position occurred in only 2% yield.

Figure 3. Selective functionalization of alkanes by transition metal boryl complexes.

Hartwig et al.²⁰ also examined the photochemical reaction of CpFe(CO)₂(BCat) in a variety of mono-substituted arene solvents including C₆H₅(Me), C₆H₅(OMe), C₆H₅(Cl), C₆H₅(CF₃), and C₆H₅(NMe₂). They found the reaction of CpFe(CO)₂(BCat) with substituted arenes resulted in formation of only meta- and para-substituted arylboronate esters for all substituted except anisole, which showed substantial amounts of orthosubstituted product. For N,N-dimethylaniline, it showed a preference for reaction at the para position.

In 1999, Iverson and Smith²¹ reported the first thermal, catalytic aromatic borylation reaction to synthesize aryl boronic esters directly from arenes and pinacolborane by pre-catalyst Cp*Ir(PMe₃)(H)(BPin) (Figure 4). They demonstrated the catalytic viability of equation 2 for the first time.

$$C_6H_6$$
 + HBPin $\frac{17 \text{ mol}\%}{150 \text{ °C, 120 h}}$ C_6H_5BPin + H_2 53%

Figure 4. The first thermal, catalytic example of aromatic borylation reaction.

$$Ar-H \cdot HBX_2 \longrightarrow Ar-BX_2 \cdot H_2 \quad \Delta H^{\circ} \sim -3.1 \text{ kcal/mol}$$
 (2)

The findings was discovered in investigating stoichiometric B-C bond formation in reactions between Cp*Ir(PMe₃)(Ph)(H) and HBPin in C₆D₆. They noticed the substantial quantities of arylboron products were produced from catalytic solvent activation.

Aside from methane-to-methanol conversion,²² catalytic C-H functionalizations for unactivated hydrocarbons are extremely rare. Since applications of boronate esters in Miyaura-Suzuki cross-coupling chemistry are expansive,²³ the demonstration of catalytic viability of equation 2 is significant.

Later in the same year, Chen and Hartwig²⁴ reported catalytic, regiospecific endfunctionalization of alkanes by the rhenium complex, Cp*Re(CO)₃, under photochemical conditions. They suggested that the terminal boronate esters are kinetic products, and the selective functionalization most likely results from a regiospecific reaction of the rhenium bis-boryl complex with the alkane primary C-H bond (Figure 5).

Figure 5. Reaction of B_2Pin_2 in pentane catalyzed by $Cp*Re(CO)_3$.

Synthetic Routes to Arylboronic Esters

The palladium-catalyzed cross-coupling reaction between organoboron compounds and organic halides or triflates provides a powerful and general methodology for the formation of C-C bonds. Arylboron reagents are typically synthesized in a multistep process: (1) halogenations of arenes to form aryl halides, (2) treatment of aryl halides with magnesium to generate their Grignard reagents, (3) reactions of Grignard reagents with trialkyl borate to give final corresponding arylboronate esters. Miyaura et

al.²⁵ have described a clever arylboronate ester synthesis where the generation of Grignard and lithium reagents is avoided by using palladium catalysts to effect the desired transformation from borane reagents and halogenated arenes. Since halogenated arenes required for these approaches must be synthesized from hydrocarbon feedstock, direct routes to the arylboron reagents from hydrocarbons are attractive (Figure 6).

Figure 6. Traditional and direct routes to arylboronic esters from aromatic hydrocarbons.

Several research groups²⁶ including our group have achieved functionalization of hydrocarbons using a borane as an approach in stoichiometric and catalytic reactions under photochemical or thermal conditions. A milder reaction condition, higher turnover number, more efficient system is desirable. Furthermore, Knochel²⁷ and co-workers recently reported the kinetic and thermodynamic aspects in C-H bond activation by direct

borane-hydrocarbon dehydrogenation. On the basis of a better understanding of the role of transition metal boryl complexes in the organic transformation reactions, our ultimate goal is to develop a better catalytic system not only to activate but also functionalize hydrocarbon C-H bonds to well utilize ubiquitous hydrocarbon feedstock.

CHAPTER 2

MECHANISTIC INVESTIGATION OF Cp*Ir(PMe₃)(H)(BPin) CATALYZED BORYLATION REACTIONS

Comparison between Cp*Ir(PMe₃)(H)(BPin) and Cp*Rh(η⁴-C₆Me₆) Pre-catalyst Systems in Borylation of Various Substituted Arenes

In 1999, our group reported the first thermal, catalytic example of aromatic borylation reactions to generate arylboronic esters directly from unactivated arenes and boranes by pre-catalyst $Cp*Ir(PMe_3)(H)(BPin)$ (1, $Cp* = \eta^5 - C_5Me_5$).²¹ Subsequently, Hartwig and co-workers reported alkane and arene borylations with the use of much more reactive Rh pre-catalyst, such as Cp*Rh(η^4 -C₆Me₆) (3). Given the broad utility of arylboronic esters in Pd-catalyzed cross-couplings with aryl and alkyl halides.²³ we were curious as to the extent of regioselectivity and functional group compatibility for analogous transformations of substituted arenes.^{26b} In an initial borylations of substituted arenes, 20 mol% solutions of 1 or Cp*Ir(PMe₃)(H)₂ (2) were dissolved with HBPin in neat arene solvents, and the reactions were run at 150 °C. Once borylation has commenced. ³¹P NMR spectroscopy indicated that compound 1 is the predominant Ir species in solution with small quantities of compound 2 present in each case. Analogous borylations were also performed using the more active pre-catalyst 3. After the borane was consumed, product ratios were determined by GC analysis of crude reaction mixtures. Isolated yields of isomer mixtures are reported in Table 1, and the product assignments were corroborated by comparisons to authentic samples.

Table 1. Isolated yields (based on HBPin) and isomer distributions for catalytic borylation of aromatic hydrocarbons catalyzed by solutions of compounds 1 and 3.

Arene	Product(s)	% yield (para:meta:ortho), time*	% yield (para:meta:ortho), time ^b
	BPin	53, 120 h ^c	92, 2.5 h ^d
<u></u>	PinB	91 (33.9:62.0:4.1), ^e 51 h	72 (32.5:62.7:4.9), ^f 3.5 h
CF ₃	PinB CF ₃	99 (33.3:66.7:0.0), 17 h	84 (33.3:66.7:0.0), 1.5 h
OMe	PinB	55 (19.5:79.0:1.6), 65 h	65 (25.4:66.9:7.6), 1 h
NMe ₂	PinB NMe ₂		65 (42.9:54.9:2.1), 3.5 h
CHMe ₂	PinB CHMe ₂	52 (31.1:68.0:0.9), 142 h	67 (33.2:66.1:0.7), 2 h
F ₃ C	F ₃ C BPin	81, ^c 10 h	86, 3 h
	BPin	60, ^g 151 h	73, ^h 4 h
Z	N BPin		41,6 h
F F	F F	81, ¹ 18 h	41, ⁷ 0.5 h
F— F	F—BPin		46, ^{k,1} 0.5 h
OEt	PinBOEt		(33.0:57.4:9.6), ^m 1 h
NEt ₂	PinB NEt ₂		50 (14.0:27.7:58.3), 0.5 h

^a 20 mol% 1, generated *in situ* from compound 2 and HBPin at 150 °C. ^b 2 mol% 3 at 150 °C. ^c 20 mol% 1 at 150 °C. ^d GC yield reported in reference 18c. ^e < 1% of the isomer mixture is $C_6H_3CH_2BPin$. ^g 3% of the isomer mixture is $C_6H_3CH_2BPin$. ^g 3% of the isolated product is $m-C_6H_4(Me)(CH_2BPin)$. ^h 12% of the product is $m-C_6H_4(Me)(CH_2BPin)$. ^h 4% of the isolated product is isomers of $C_6F_4H(BPin)$. ^l 16% of the isolated product is isomers of $C_6F_4H(BPin)$. ^l Reaction was run in a 2:1 mixture of 1,3,5- $C_6H_3F_3$:p-xylene- d_{10} . ^l $C_6HF_3(BPin)_2$ (7%) and an isomer of $C_6H_3F_2(BPin)$ (6%). ^m Products were not isolated.

In a simple assay of regioselectivity, toluene borylation primarily gave a statistical distribution of m- and p-C₆H₄Me(BPin). In order to address the reversibility of the borylation reactions, the catalytic borylation of C₆D₆ by HBPin in the presence of m- $C_6H_4Me(BPin)$ was examined. Isomerization of m- $C_6H_4Me(BPin)$ to p- $C_6H_4Me(BPin)$ or generation of toluene would indicate that borylation is reversible. Under typical reaction conditions where C_6D_6 is converted to C_6D_5BPin , $m-C_6H_4Me(BPin)$ does not isomerize and toluene is not eliminated. Thus, the borylation products are kinetically determined. It is noteworthy that arene C-H bonds are functionalized in the presence of weaker benzylic C-H bonds. A range of monosubstituted arenes was examined to determine whether reaction conditions would tolerate heteroatom substituents and to assess the generality for statistical meta/para substitution. The results in Table 1 indicate that meta/para ratios are predominantly statistical with the largest deviations occurring for N,N-dimethylaniline, which favors para substitution, and anisole, which favors meta substitution. For Rhcatalyzed reactions, the deviations were relatively small, but meta borylation of anisole is pronounced for Ir system. Since cumene gave a statistical distribution of meta and para borylation products, electronic effects are responsible for enhanced para selectivity for N,N-dimethylaniline. Benzylic activation of toluene increased for Rh (~3 % PhCH₂BPin) versus Ir (~1 % PhCH₂BPin).

The aversion from borylation *ortho* to aromatic substituents suggested that selective borylation should be possible for 1,3-disubstituted arenes. We initially examined this possibility for $1,3-C_6H_4(CF_3)_2$ and found exclusive borylation at the 5-position in reactions catalyzed by solutions of 1 or 3. For the borylation of m-xylene mediated by compound 3, benzylic activation increases significantly relative to that for

toluene. It appears that steric directing effects will extend to heterocycles as aromatic borylation of 2,6-lutidine occurs exclusively at the 4-position. Directing effects based on steric effects in aromatic substitution are uncommon, and electronic effects generally dictate the substitution pattern. For example, in the Friedel-Crafts alkylation of 3-chlorotoluene, no meta-substitution products are observed since Me group is an ortho-and para-directing activator and Cl is an ortho- and para-directing deactivator. Generally, selective meta functionalization is difficult and requires strong electron-withdrawing groups for electrophilic or —donating groups for nucleophilic aromatic substitution, respectively. The unique steric directing effect in aromatic borylation provides a complementary mean for regioselective functionalization of aromatic compounds.

Fluorinated arenes were also tested for compatibility. Ir- or Rh-catalyzed borylation of C_6HF_5 gave C_6F_5BPin as the primary product. Similarly, compound 3 catalyzes borylation in a 2:1 mixture of 1,3,5- $C_6H_3F_3$ and p-xylene- d_{10} to yield $C_6H_2F_3BPin$ as the major product. Attempts to prepare the di- and triborated compounds, $C_6HF_3(BPin)_2$ and $C_6F_3(BPin)_3$, from stoichiometric amounts of 1,3,5- $C_6H_3F_3$ in p-xylene- d_{10} yielded significant quantities of $C_6H_3F_2(BPin)$ (~60% of the borylated products). The selectivity for C-H activation is significant considering that Rh-catalyzed reactions of silane with C_6HF_5 give C-F activation products exclusively.²⁸

For arenes bearing ester and amide functionality, reduction of the carbonyl groups could potentially compete with aromatic borylation. Since HBPin reacts sluggishly in uncatalyzed hydroborations, selective aromatic borylations of aryl esters and amides seemed possible. Hence, catalytic borylations of ethyl benzoate and diethyl benzamide by

compound 3 were examined. In both instances, the reactions gave primarily aromatic borylation. For ethyl benzoate, meta/para borylation dominates with a modest increase in ortho borylation (p:m:o = 1.00:1.74:0.29), whereas diethyl benzamide gave o- $C_6H_4(C(O)NEt_2)(BPin)$ as the major isomer (p:m:o = 1.00:1.98:4.17). The shift in substitution pattern is consistent with chelate-directed borylation at the ortho position. Since resonance structure B has a larger contribution for an amide relative to an ester (Figure 7), chelation of the amide oxygen to Rh or B in the catalytically active species is more favorable for the amide. The statistical meta:para ratio for the minor isomers suggests that chelate and sterically directed pathways compete.

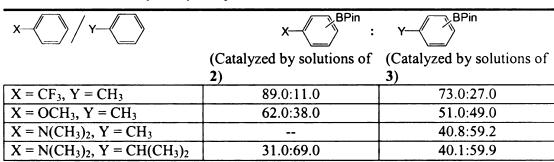
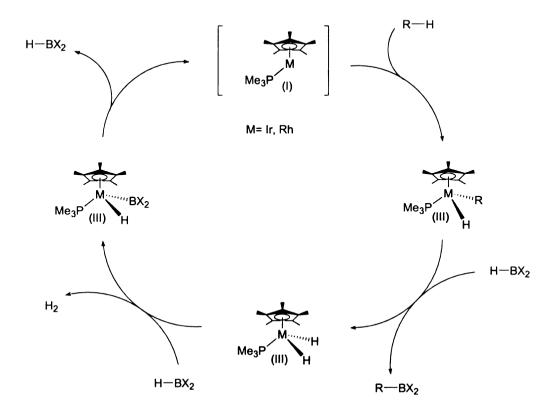

Ph E Ph
$$E \oplus E = NEt_2$$
, OEt

Figure 7. Resonance structures of ethyl benzoate and N,N-diethyl benzamide.

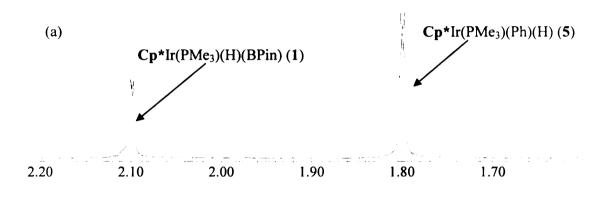
To probe the role of electronic effects, relative product ratios from catalytic borylations in equimolar mixtures of substituted arenes were determined (Table 2). Electron-deficient arenes are generally more reactive in both systems, and relative rate differences for Ir are slightly more pronounced than those for Rh. Ir-catalyzed borylation in neat *N,N*-dimethylaniline was extremely slow. Factors besides deactivation of the arene ring may be responsible for the reduced reaction rate; such as, possible coordination of the nitrogen lone-pair electrons of aniline to the Ir metal center, which

would block the active site around Ir. This may explain why cumene borylation in N,N-dimethylaniline/cumene mixtures was suppressed relative to borylation in neat cumene.


Table 2. Relative ratios of arylboronic esters for borylations of equimolar mixtures of substituted arenes catalyzed by compounds 2 and 3.

A comparison of pre-catalysts 1 and 3 in borylations of various substituted arenes revealed that the Ir system was more selective toward arene C-H activation. Given the importance of selectivity in chemical synthesis, these findings spurred a detailed investigation of the original Ir system.

Metathesis Reactions between $Cp*M(PMe_3)(Ph)(H)$ (M = Ir, Rh) and Pinacolborane in C_6D_6


Fundamental understanding of hydrocarbon activation by " $Cp*M(PMe_3)$ " (Cp* = C_5Me_5 , M = Ir, Rh) has been studied extensively by Jones' and Bergman's research groups. In the iridium system, Bergman^{1a} and co-workers showed that, upon irradiation, an excited state of Cp*Ir(PMe₃)H₂ is formed. This rapidly extrudes H₂, and leaves behind the reactive, coordinately unsaturated intermediate "Cp*Ir(PMe₃)". The intermediate inserts into a C-H bond of R-H via a three-center transition state, and leads to the formation of Cp*Ir(PMe₃)(R)(H) complexes. At the same period of time, Jones and coworkers studied the related rhodium complexes^{1b} to determine the relative stabilities of the Cp*Rh(PMe₃)(Alkyl)(H) and Cp*Rh(PMe₃)(Aryl)(H). They found a slight kinetic preference for benzene over propane and overwhelming thermodynamic preference for benzene oxidative addition. For the Cp*Rh(PMe₃)(Ph)(H) (4) complex, a reversible reductive elimination of benzene was found to occur at convenient rate upon heating to ~ 60 °C in C₆D₆ solvent, producing Cp*Rh(PMe₃)(C₆D₅)(D). With a detailed picture of transition metal mediated C-H activation established by several research groups, we chose a Lewis acidic reagent, boranes, as an approach to convert activated alkyl and aryl groups to functionalized organic products. Our initial proposed catalytic cycle is shown below (Figure 8).

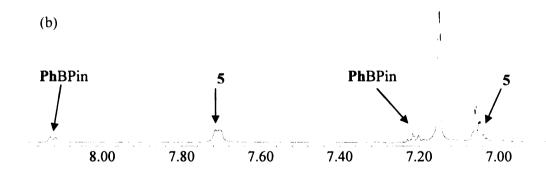


Figure 8. Initial proposed catalytic cycle for catalytic functionalization of hydrocarbon C-H bonds.

In the proposed catalytic cycle, the reactive unsaturated intermediate "Cp*M(PMe₃)" can activate the C-H bond of hydrocarbons to form Cp*Ir(PMe₃)(R)(H). Hopefully the metathesis reaction between HBX₂ and Cp*Ir(PMe₃)(R)(H) can release R-BX₂ and generate Cp*Ir(PMe₃)H₂. Then the dihydride complex can react further with HBX₂ to generate Cp*Ir(PMe₃)(H)(BX₂), followed by reductive elimination of HBX₂ to

regenerate the reactive 16 electron intermediate "Cp*M(PMe₃)" to complete the catalytic cycle. In order to test the viability of this proposed catalytic cycle, the metathesis reaction between Cp*M(PMe₃)(Ph)(H) (M = Ir, Rh) and HBPin in C₆D₆ were examined. For the reaction between Cp*Ir(PMe₃)(Ph)(H) (M = Ir) and HBPin in C₆D₆ at 150 °C, after around 37% conversion (based on M = Ir) NMR spectral from Cp*Ir(PMe₃)(Ph)(H) to Cp*Ir(PMe₃)(H)(BPin), the ratio between C₆H₅BPin and C₆D₅BPin was found to be around 1:23 (Figure 9).

Figure 9. The reaction between Cp*Ir(PMe₃)(Ph)(H) (5) and HBPin in C₆D₆ at 150 °C after around 37% conversion from Cp*Ir(PMe₃)(Ph)(H) to Cp*Ir(PMe₃)(H)(BPin): (a) ¹H NMR spectrum of Cp* region; (b) ¹H NMR spectrum of aromatic region.

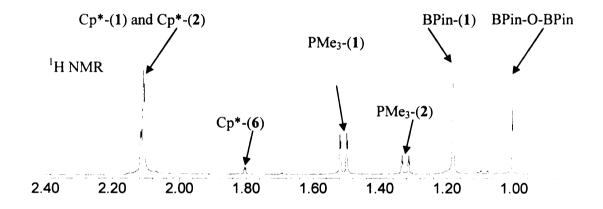

Substantial quantities of arylboron products were produced from catalytic solvent activation. Hence, we conclude that catalytic borylation is much faster than metathesis reaction between compound 5 and HBPin in C_6D_6 , even though the metathesis process is viable (Figure 10).

Figure 10. The metathesis reaction between compound 5 and HBPin in C_6D_6 at 150 °C.

Thermal borane elimination from Cp*Ir(PMe₃)(H)(BPin) (1) was assessed by heating C₆D₆ solution of the pure compounds. After two weeks at 200 °C and one day at 280 °C, the formation of C₆D₅BPin was not detected (Figure 11). If HBPin is reductively eliminated from compound 1, the reactive intermediate "Cp*Ir(PMe₃)" can activate C-D bond of C₆D₆ to form Cp*Ir(PMe₃)(C₆D₅)(D), which can react further with HBPin through metathesis process to generate C₆D₅BPin. Since only small quantities of Cp*Ir(PMe₃)(C₆D₅)(D) (6) were generated in the reaction after prolonged thermolysis, the HBPin reductive elimination pathway is not kinetically competent to account for catalysis. Therefore, a pathway involving HBPin reductive elimination to generate an active catalyst can be eliminated. The final ¹H NMR and ³¹P NMR spectra of the reaction are shown in Figure 12. The moderate quantities of BPin-O-BPin observed may result from the reaction between trace moisture and HBPin.

Me₃P
$$\stackrel{\text{Ir....}}{\text{(1)}}$$
 H excess C₆D₆ $\stackrel{\text{2 weeks}}{\text{200 °C}}$ $\stackrel{\text{1 day}}{\text{280 °C}}$ $\stackrel{\text{C}}{\text{6D}_5}$ BPin

Figure 11. Thermolysis of Cp*Ir(PMe₃)(H)(BPin) (1) in C₆D₆.

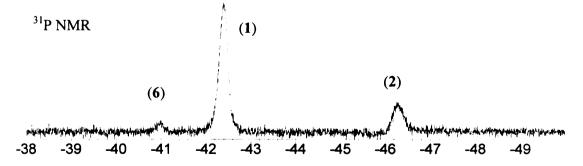


Figure 12. 1H NMR and $^{31}P\{^1H\}$ NMR spectra of the thermolysis of compound 1 in C_6D_6 .

The analogous reaction in the Rh system was also examined. Benzene reductive elimination from $Cp*Rh(PMe_3)(Ph)(H)$ (4) occurred before metathesis reaction took place. In the reaction of compound 4 with HBPin in C_6D_6 at elevated temperature, compound 4 reductively eliminated C_6H_6 , followed by oxidative addition of HBPin to form $Cp*Rh(PMe_3)(H)(BPin)$ (7) (Figure 13).

Simplified rate expressions can be derived by applying the steady-state approximation. Application of the steady-state approximation to Figure 13 gives the rate law and k_{obs} expression shown in Equations 3 and 4.

Figure 13. The reaction of compound 4 with HBPin in C_6D_6 at elevated temperature.

$$\frac{-d[4]}{dt} = k_{obs}[4] \tag{3}$$

$$k_{obs} = \frac{k_1 k_2 [HBPin]}{k_{-1} [C_6 H_6] + k_2 [HBPin]}$$
(4)

If
$$k_{-1}[C_6H_6] >> K_2[HBPin]$$
 $k_{obs} = \frac{k_1k_2[HBPin]}{k_{-1}[C_6H_6]}$ (5)

If $k_{-1}[C_6H_6] >> k_2[HBPin]$, k_{obs} is expected to exhibit a first order dependance on [HBPin] as shown in equation 5. This is indeed the case as shown in Figure 14. The kinetic data are consistent with this proposed rate law. The k_{obs} was measured from 65 to 115 °C, and activation parameters were determined from the temperature dependence of k_{obs}. From the Eyring plot (Figure 15) over this temperature range, activation parameters were obtained: $\Delta H^{\ddagger} = 25.6$ kcal/mol and $\Delta S^{\ddagger} = -5.3$ e.u. For a comparison, Jones and coworkers found that a reversible reductive elimination of benzene from compound 4 in C_6D_6 solvent at ~60 °C to form $Cp*Rh(PMe_3)(C_6D_5)(D)$ followed first-order kinetics over a 46-degree temperature range. From the Eyring plot of the first-order rate constants, they obtained the activation parameters for arene loss: $\Delta H^{\ddagger} = 30.5$ (8) kcal/mol and $\Delta S^{\ddagger} = 14.9$ (2.5) e.u. They stated that the positive value for the entropy of activation is consistent with the formation of an intact, dissociating benzene molecule in the transition state.²⁹ In the reaction of compound 4 with HBPin in C₆D₆, the small negative value for the entropy of activation suggests that the transition state of the reaction is more ordered than the ground state. From the activation parameters established by Jones and co-workers, the k_{obs} for benzene elimination at 75 °C is calculated to be 6.98 x 10^{-4} s⁻¹ and the k_{obs} for the reaction of compound 4 with HBPin in C_6D_6 at 75 °C is 5 x 10^{-5} s⁻¹. Since the overall rate k_{obs} for the reaction of compound 4 with HBPin at 75 °C (5 x 10^{-5} s⁻¹) is smaller than k_{obs} for benzene elimination at 75 °C (6.98 x 10⁻⁴ s⁻¹), the rate determining step must involve a process other than benzene elimination. This piece of evidence suggests that H-B activation is the rate-determining step in this reaction.

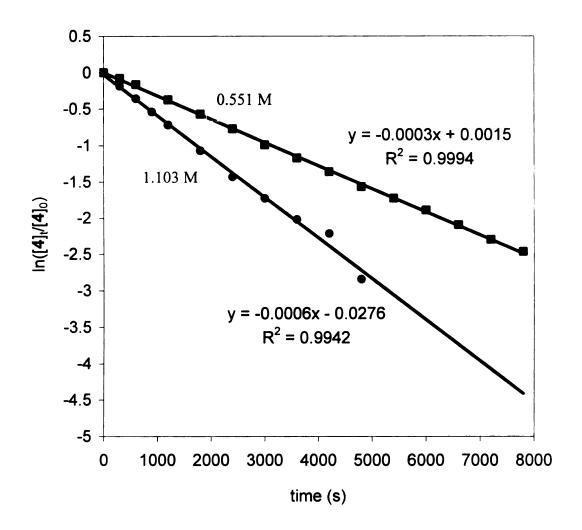


Figure 14. Plot of $ln([4]/[4]_0)$ vs. time (s) for the reaction of compound 4 with [HBPin] = 0.551 M and [HBPin] = 1.103 M in C_6D_6 at 95 °C, respectively.

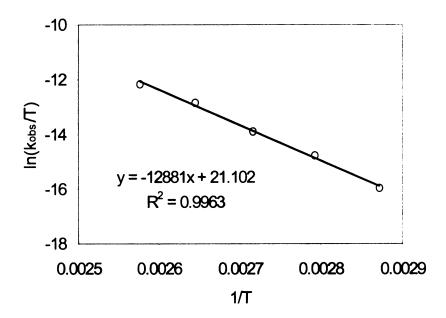
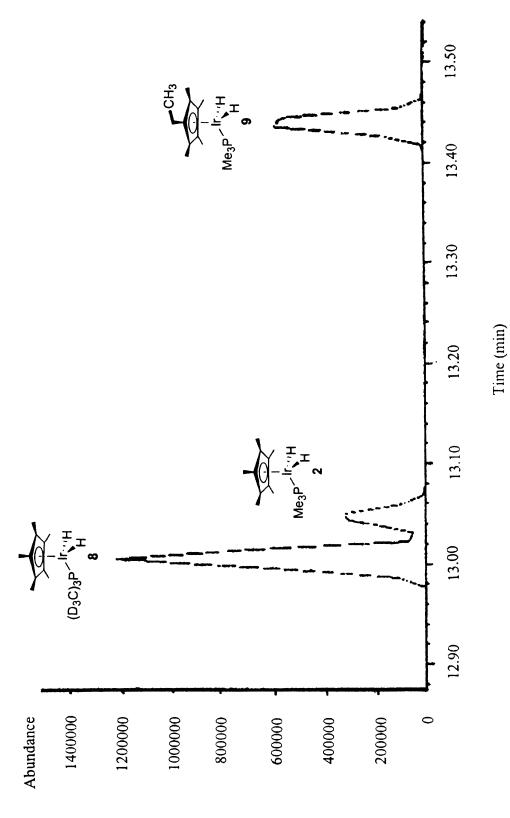


Figure 15. Eyring plot for the reaction of compound 4 with HBPin in C_6D_6 . ([4]_o = 0.046 M; [HBPin]_o = 0.551 M; T = 338.15 to 388.15 K, ΔH^{\ddagger} = 25.6 kcal/mol and ΔS^{\ddagger} = -5.3 e.u.).

Mechanistic Studies of The Original Iridium System


Compound 1 was stable in benzene solution after prolonged thermolysis, which excludes the pathway involving the elimination of HBPin from Cp*Ir(PMe₃)(H)(BPin) (1). Regarding the possibility of PMe₃ dissociation pathway to generate Cp*Ir(H)(BPin), an analog of Hartwig's proposed intermediate in the Rh system, ^{26a} we designed a pseudo double-labeling crossover experiment to probe the PMe₃ dissociation pathway. Two labeled complexes Cp*Ir(P(CD₃)₃)(H)₂ (8) and (C₅Me₄Et)Ir(PMe₃)(H)₂ (9) were prepared. If phosphine does dissociate from Cp*Ir(PMe₃)(H)(BPin), we expect to see the

two crossover products, Cp*Ir(PMe₃)(H)₂ (2) and (C₅Me₄Et)Ir(P(CD₃)₃)(H)₂ (10) (Figure 16). Surprisingly, those iridium complexes can be easily quantified by GC-MS (Figure 17).

$$(D_{3}C)_{3}P \xrightarrow{|I|} H + Me_{3}P \xrightarrow{|I|} H + Me_{3$$

Figure 16. Potential crossover products from pseudo double-labeling crossover experiment.

Figure 17. Separation of compounds 2, 8, and 9 in a GC-MS chromatogram.

Benzene borylation with pinacolborane in the presence of 10 mol% of compound 8 and 10 mol% of compound 9 was carried out (Figure 18). The reaction proceeded smoothly to generate C₆H₅BPin and H₂ as products. From the chromatogram of the crude mixture (Figure 19) there was no crossover products observed. Crossover during catalytic borylation was minimal. Therefore, phosphine dissociation pathway is unlikely.

HBPin +
$$C_6H_6$$
 $\xrightarrow{10 \text{ mol}\% \text{ 8 and } 10 \text{ mol}\% \text{ 9}}$ $C_6H_5BPin + H_2$

Figure 18. Pseudo double-labeling crossover experiment.

Figure 19-1. The chromatogram of the crude mixture from benzene borylation with pinacolborane in the presence of 10 mol% of compound 8 and 10 mol% of compound 9.

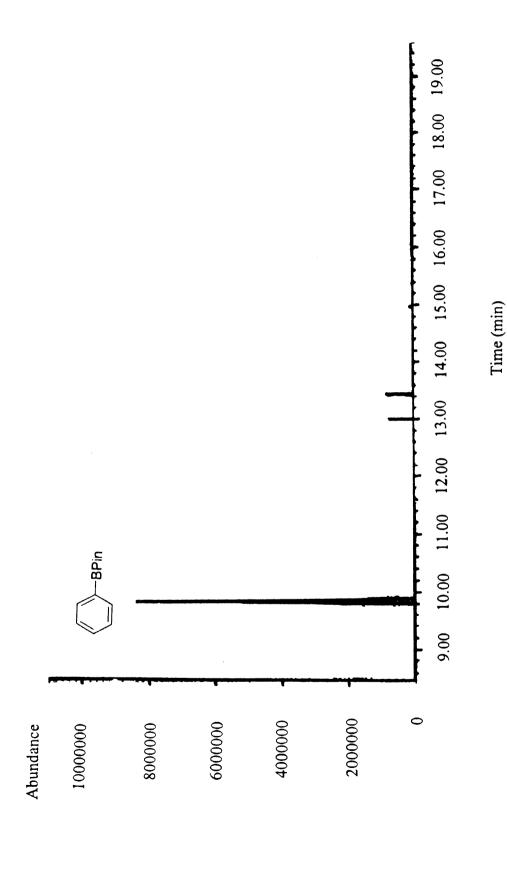
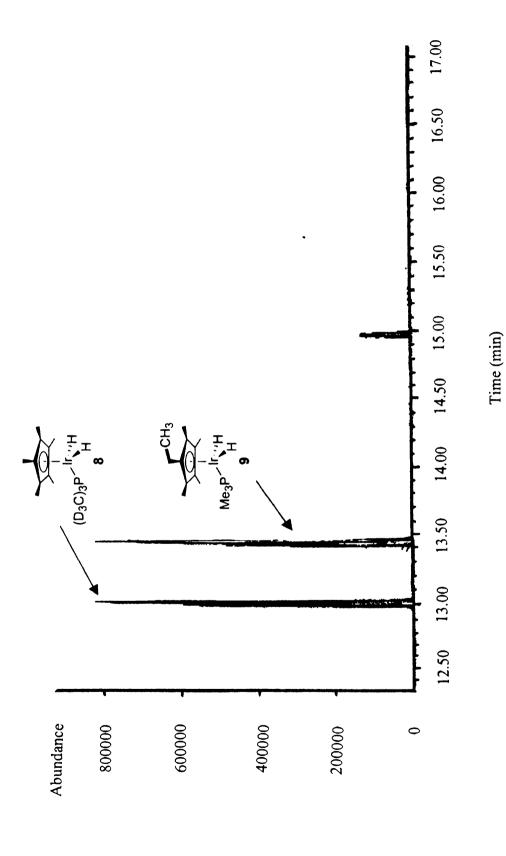



Figure 19-2. The chromatogram of the crude mixture from benzene borylation with pinacolborane in the presence of 10 mol% of compound 8 and 10 mol% of compound 9.

However, added PMe₃ strongly inhibited catalysis where HBPin was present. The finding raised possibility that small quantities of phosphine free Ir^V species could be active. $Cp*IrH_{4-X}(BPin)_X$ species³⁰ (where x = 1, 2) formed in the thermolysis of $Cp*IrH_4$ (11) and HBPin and $Cp*Ir(H)_2(BPin)_2$ (12) are Ir analogs of other intermediates proposed by Hartwig in the Rh system. Anisole borylation with 20 mol% loadings of compound 11 and 1 were compared (Figure 20). The isomer ratios for 11, o:m:p = 3:49:48; for 1, o:m:p = 2:79:19. From this experiment, $Cp*IrH_{4-X}(BPin)_X$ intermediates could be eliminated because the borylation regioselectivities for 11 and 1 differed substantially.

OMe + HBPin
$$\frac{20 \text{ mol}\% 1}{150 \text{ °C}}$$
 OMe + H₂

o: m: p = 2: 79: 19

OMe + HBPin $\frac{20 \text{ mol}\% 11}{150 \text{ °C}}$ OMe + H₂

Figure 20. Borylation reactions of anisole with 20 mol% loading of compound 1 and compound 11, respectively.

Exclusion of a simple phosphine dissociative pathway narrows the plausible catalysts to two choices: (1) Ir phosphine species arising from Cp* loss or (2) species where both Cp* and PMe₃ have been lost. The latter possibility is intriguing in light of Marder's synthesis of $(\eta^6$ -arene)Ir(BCat)₃ complexes (where Cat = *ortho*-catecholate) from (Ind)Ir(COD) (13, where Ind = η^5 -C₉H₇, COD = 1,5-cyclooctadiene) and HBCat in

arene solvents.³¹ Using an analogous route, we prepared (MesH)Ir(BPin)₃ (14, where MesH = η^6 -mesitylene) in 19% yield from compound 13 and HBPin in mesitylene solvent.^{26e} Single crystals of 14 were grown from pentane at -30 °C and the structure was further confirmed by single-crystal X-ray crystallographic analysis. The molecular structure of 14 is shown in Figure 21 and the distance from Ir(1) to the center of the mesitylene ring is 1.880 Å.

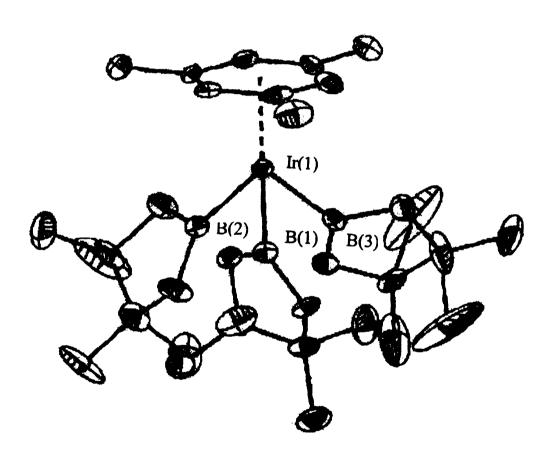


Figure 21. ORTEP diagram of (MesH)Ir(BPin)₃ (14). Thermal ellipsoids are shown at 25% probability.

Table 3. Selected bond lengths [Å] and angles [°] for 14.

Bond	Distance [Å]	Bonds	Angle [°]
Ir(1)-B(1)	2.051(1)	B(1)-Ir(1)-B(2)	80.6(4)
Ir(1)-B(2)	2.021(1)	B(1)-Ir(1)-B(3)	81.7(4)
Ir(1)-B(3)	2.039(1)	B(2)-Ir(1)-B(3)	83.8(4)

Compound 14 reacts with benzene at 150 °C to produce Ir metal and three equivalents of C₆H₅BPin, but it does not catalyze C₆H₅BPin formation from benzene and HBPin. Thus, it appears that phosphines or related donor ligands are required for catalysis. Using the lability of the mesitylene ligand in 14, Ir phosphine species can be generated *in situ* from 14 and appropriate phosphines. Borylation of benzene with the use of 2 mol% 14 and 4 mol% PMe₃ was found to be a viable pre-catalyst for aromatic borylation reactions (Figure 22).

Figure 22. Benzene borylation with HBPin catalyzed by 2 mol% 14 and 4 mol% PMe₃.

From the experiments discussed previously, we ruled out a H-B elimination pathway, PMe₃ dissociation pathway, and a pathway where the active species is generated from both Cp* and PMe₃ loss. The remaining candidates for active species are iridium phosphine boryl complexes. Syntheses of some model complexes to examine their stoichiometric reactions with arenes and screening for different metal complexes

and ligands combination for catalysis would hopefully help to determine the identity of the active species and understand the mechanism of the aromatic borylation in this system.

In this chapter, through detailed mechanistic studies of the original Ir pre-catalyst system, we suggest that active species are iridium phosphine boryl complexes.

CHAPTER 3

CATALYTIC BORYLATION REACTIONS OF AROMATIC COMPOUNDS

Screenings of Phosphine Ligands, Other Donor Ligands, and Metal Complexes for Catalytic Benzene Borylation

From mechanistic investigation of the initial Cp*Ir(PMe₃)(H)(BPin) (1) precatalyst system, it was found that the use of 2 mol% (MesH)Ir(BPin)₃ (14) and 4 mol% PMe₃ was a viable pre-catalyst for aromatic borylation reactions. The low isolated yield of 14 hampered screening efforts and precluded practical applications despite dramatic improvement in catalytic activity. Hence, we sought alternative means for generating active catalysts. Because NMR indicated virtually quantitative generation of 14 from (Ind)Ir(COD) (13), in situ generation of active catalysts by phosphine addition to 13 was examined.³² This approach was successful and we were able to conduct systematic studies of the effects of different phosphine ligands, various donor ligands, and metal complexes on catalytic activity.

First, as shown in Table 4 different ratios between PMe₃ and "Ir" were examined for catalytic activity. The results showed that borylation rates were appreciable when [P]:[Ir] < 3:1 but decreased dramatically when [P]:[Ir] ratio equaled or exceeded 3:1 (Entries 2-5). Several other mono-dentate phosphine ligands including PEt₃, P'Pr₃, P'Bu₃, PCy₃, and PPh₃ were also tested as ligands for the catalytic borylation of benzene giving moderate GC yields (Entries 6-10).

Table 4. Summary of borylation of benzene with HBPin in the presence of 2 mol% precatalyst at 150 °C.³³

Entry	Pre-catalyst	[P]:[Ir] Ratio	Reaction Time (h)	Yield (%)
1	14 PMe ₃	2:1	15	98
2	13 PMe ₃	1:1	5	87
3	13 PMe ₃	2:1	18	87
4	13 PMe ₃	3:1	57	0.4
5	13 PMe ₃	4:1	20	0
6	13 PEt ₃	2:1	13	79
7	13 P ⁱ Pr ₃	2:1	93	80
8	13 P'Bu ₃	2:1	21	71
9	13 PCy ₃	2:1	46	79
10	13 PPh ₃	2:1	58	69

Reactions run in neat benzene. GC yields based on HBPin.

In addition to mono-dentate phosphine ligands, chelating bidentate phosphine ligands were examined (Table 5). A dramatic increase in catalytic activity and turnover numbers were observed for the bidentate phosphines.

+ HBPin
$$\frac{2 \text{ mol}\% \text{ R}_2\text{P}}{\Delta}$$
 + HBPin $\frac{2 \text{ mol}\% \text{ R}_2\text{P}}{\Delta}$ + HBPin + H₂

Table 5. Borylation reaction of benzene with HBPin in the presence of 2 mol% 13 and 2 mol% chelating phosphine ligand.³³

Entry		and	Pre-catalyst Loading	Temperature (°C)	Reaction Time (h)	Yield (%)
1	Ph ₂ P	PPh ₂	2 mol%	150	2	95
2	Ph ₂ P	PPh ₂	2 mol%	150	16	87
3	Me ₂ P	PMe ₂	2 mol%	150	3	79
4	Me ₂ P	PMe ₂	2 mol%	150	2	84*
5	Cy₂P	PCy ₂	2 mol%	150	3	86
6	Ph ₂ P	PPh ₂	2 mol%	150	0.8	78
7	Ph ₂ P	PPh ₂	2 mol%	100	7	88
8	Me ₂ P	PMe ₂	2 mol%	100	77	18
9	Me ₂ P	PMe ₂	2 mol%	100	31	96
10	Cy ₂ P	PCy ₂	2 mol%	100	96	86
11	Me ₂ P	PMe ₂	0.2 mol%	150	9	85*
12	Me ₂ P	PMe ₂	0.02 mol%	150	61	90

Reactions run in neat benzene. GC yields based on HBPin.*Isolated yield.

Chelating phosphines as ligands substantially increased catalytic activity and TONs as highlighted for 1,2-bis(dimethylphosphino)ethane (dmpe) (Entry 12), where the effective TON of 4500 represents an improvement of more than 1000-fold over precatalyst Cp*Ir(PMe₃)(H)(BPin) (1). Furthermore, the borylation reactions can be run at

100 °C with a reasonable rate by using 1,2-bis(diphenylphosphino)ethane (dppe) as the ligand (Entry 7).

Besides phosphorous containing ligands, nitrogen, oxygen, and sulfur containing ligands were also screened for catalytic activity as shown in Table 6.

Table 6. Borylation reaction of benzene with HBPin (0.7 M) in the presence of 2 mol% 13 and nitrogen, oxygen, or sulfur containing ligands.

Entry	Ligand	Ligand Loading	Temperature (°C)	Reaction Time (h)	Yield (%)
1		4 mol%	100	31	69
2	S	4 mol%	150	15	8
3		2 mol%	150	0.2	85
4		2 mol%	150	<1	85
5	Me ₂ N NMe ₂	2 mol%	150	6	52
6	OMe	2 mol%	150	14	11
7	\°\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2 mol%	150	14	7
8		2 mol%	150	1	6
9	PPh ₂ NMe ₂	2 mol%	150	2.7	73
10	PCy ₂ NMe ₂	2 mol%	150	16.3	66
11		2 mol%	100	1.5	86

Entry	Pre-catalyst	Pre-catalyst Loading	Temperature (°C)	Reaction Time (h)	Yield (%)
12		2 mol%	100	1	82
13	N N	2 mol%	100	1	84
14		2 mol%	50	16	85

Reactions run in neat benzene. GC yields based on HBPin.

2,2'-bipyridine (bpy), 1,10-phenanthroline, 4,4'-di-*tert*-butyl-2,2'-bipyridine (dtbpy)^{26f} were found to be good ligands for borylation (Entries 3, 4, 11, 12, and 13). For bpy, the borylation occurred at relatively low temperature (50 °C) at an appreciable rate, and good yield (Entry 14, 85% yield). Attempts to reduce pre-catalyst loading to 0.02 mol% yielded significant quantities of decomposition and PinB-O-BPin. The use of thiophene, veratrole, DME, and 2,2'-bithiophene were inefficient as ligands for borylation of benzene (Entries 2, 6, 7, and 8). Ligands containing both "hard" N and "soft" P were also examined (Entries 9 and 10). Catalysts containing 2-(diphenylphosphino)-2'-(N,N-dimethylamino)biphenyl and 2-(dicyclohexylphosphino)-2'-(N,N-dimethylamino)biphenyl and advantages in catalysis over chelating phosphine ligands, dppe and dmpe, or chelating nitrogen ligands, bpy, 1,10-phenanthroline, and dtbpy. N,N,N,N-tetramethylethylenediamine (TMEDA) performed marginally as a ligand (Entry 5, 52% yield).

Besides 13, different metal complex precursors were investigated. Since the approach where we generated active catalysts in situ from (Ind)Ir(COD) (13) and phosphine ligands was successful, we were interested if the active catalysts can be

generated *in situ* from the precursor [Ir(COD)Cl]₂, which is the starting material for the preparation of 13, or even IrCl₃·xH₂O. In addition, some of the related Rh complexes were also screened for catalysis. The results are summarized in Table 7.

Table 7. Borylation of benzene with HBPin in the presence of various metal precursors (M) and ligands.

Entry	Pre-catalyst	Pre-catalyst Loading	Temperature (°C)	Reaction Time (h)	Yield (%)
1	[Ir(COD)Cl] ₂ dmpe	1 mol% 2 mol%	150	8	74
2	[Ir(COD)Cl] ₂ dppe	1 mol% 2 mol%	100	23	93
3	[Ir(COD)Cl] ₂ bpy	1 mol% 2 mol%	100	8	82
4	IrCl ₃ ·xH ₂ O dppe	2 mol% 2 mol%	150	63	1
5	[Rh(COD)Cl] ₂ dppe	1 mol% 2 mol%	100	15	
6	[Rh(COD)Cl] ₂ dppe	1 mol% 2 mol%	150	63	8
7	[Rh(COD)Cl] ₂ bpy	1 mol% 2 mol%	100	72	55

Reactions run in neat benzene. GC yields based on HBPin.

[Ir(COD)Cl]₂ is an air-stable, commercially available iridium(I) compound and has been demonstrated to be a good catalyst system in conjunction with dmpe,³³ bpy or dtbpy (Entries 1, 2, and 3).³⁴ In contrast, IrCl₃·xH₂O and [Rh(COD)Cl]₂ were poor metal precursors for catalytic borylation (Entries 4, 5, 6 and 7), and no borylation occurred for the [Rh(COD)Cl]₂/dppe pre-catalyst system after 15 hours at 100 °C (Entry 5).

Borylation of Substituted Benzenes

Since applications of boronate esters in cross-coupling chemistry are extensive,²³ a convenient way to expand the library of boronate esters is desired. With this goal in mind, borylations of a variety of arenes were carried out. The results are summarized in Table 8.

Table 8. Ir-catalyzed aromatic borylations. Reactions are run in neat arene, $[Ir] = 2 \mod \%$, [P]:[Ir] = 2:1, and yields are reported for isolated materials.³³

Entry	Substrate	Product	Arene:HBPin	Catalyst	Temp (°C)	Time (h)	Yield (%)
1	 F	F BPin	10:1	13/dppe	100	17	84
2	С	CI BPin	10:1	13/dppe	100	17	83
3	⊘ Br	Br BPin	10:1	13/dppe	100	17	90
4			10:1	13/dppe	100	60	
5		BPin	10:1	14/dppe	100	57	77
6	Br———F	Br—F BPin	4:1	13/dppe	100	14	81
7	F F	F—BPin	4:1	13/dmpe	150	1	63
8	F F	PinB F BPin PinB F	1:5	13/dmpe	150	62	76

Entry	Substrate	Product	Arene:HBPin	Catalyst	Temp (°C)	Time (h)	Yield (%)
9	C	CI BPin	1:1.5	13/dppe	100	14	89
10	Br Br	Br BPin	1:1.5	13/dppe	100	17	92
11	Me———Me	Me———Me BPin	12:1	13/dmpe	150	112	68
12	CI—CI	CI—CI BPin	4:1	13/dmpe	150	39	76
13	Me Me	PinB——Me	12:1	13/dmpe	150	10	85
14	CI	PinB———CI	9:1	13/dmpe	150	12	98
15*	OMe	PinB——OMe OMe	1:3	13/dmpe	150	95	62

Isolated yields based on HBPin. *Reaction run in cyclohexane.

13: (Ind)Ir(COD); 14: (MesH)Ir(BPin)₃; dppe: 1,2-bis(diphenylphosphino)ethane; dmpe: 1,2-bis(dimethylphosphino)ethane.

Dramatic differences in chemoselectivities between Ir and Rh catalysts were found for halogenated substrates, where the Ir catalysts preferentially activate C-H bonds. Thus, good yields of mono- or triborated products of 1,3,5-trifluorobenzene were obtained by adjusting the arene:HBPin ratio (Entries 7 and 8). In contrast, previous attempts to effect multiple borylations of 1,3,5-trifluorobenzene with the use of Rh catalysts 3 led to increased defluorination.^{26b} Ir-catalyzed borylations of 1,3-

dichlorobenzene and 1,3-dibromobenzene generate meta-functionalized products in high yields (Entries 9 and 10), whereas dehalogenation is the dominant pathway in Rhcatalyzed reactions.³⁵ A dramatic example of the difference between Rh- and Ir-catalyzed borylation is shown in Figure 23 where the GC chromatograms of 1,3-dichlorobenzene borylations catalyzed by a Rh pre-catalyst and catalyzed by a Ir pre-catalyst are compared. In the Rh-catalyzed borylation, dechloronation is a competitive side reaction pathway; on the contrary, in the Ir-catalyzed borylation a clean single product was obtained. The finding that aromatic C-Br bonds survive in the Ir-catalyzed reactions contrasts Pd-catalyzed reactions of boranes and aryl bromides, where the C-Br bonds are converted to C-B or C-H bonds.³⁶ Because aryl iodides have the weakest carbon-halogen bonds, they are susceptible to reductive cleavage by transition metals. Hence it is not surprising that the Ir catalysts generated from 13 are ineffective for the aromatic borylation of iodobenzene (Entry 4). However, iodobenzene and HBPin reacted smoothly to yield a mixture of C₆H₄(I)(BPin) isomers when active catalysts are generated from the Ir^{III} source, (MesH)Ir(BPin)₃ (14), and dppe (Entry 5). With the success in borylating iodobenzene, Ir catalysts have been shown to be compatible with the entire range of aryl halides.³³ We also demonstrated that cyclohexane can function as an inert solvent (Entry 15), which is useful in borylations of more valuable substrates.

Ir catalysts selectively borylate symmetrical 1,2-disubstituted arenes including o-xylene, 1,2-dichlorobenzene, and veratrole at the 4-position to give a single borylation product (Entries 13, 14, and 15). Symmetrical 1,4-disubstituted arenes can also be selectively borylated at the 2-position (Entries 11 and 12). Borylations of 1,4-disubstituted arenes proceed slower than the corresponding 1,2- and 1,3-disubstituted

arenes presumably due to steric bulkiness of the two substituents in 1,4-disubstituted arenes. Attempts to borylate 1,3,5-trichlorobenzene led to unidentified decomposition species and PinB-O-BPin. Borylation of 1,4-C₆H₄(Br)(F) occurred selectively at the postion *ortho* to F most likely due to the different steric bulkiness between Br and F (Entry 6).

Figure 23-1. GC chromatogram of borylation of 1,3-dichlorobenzene catalyzed by the Rh pre-catalyst 3.

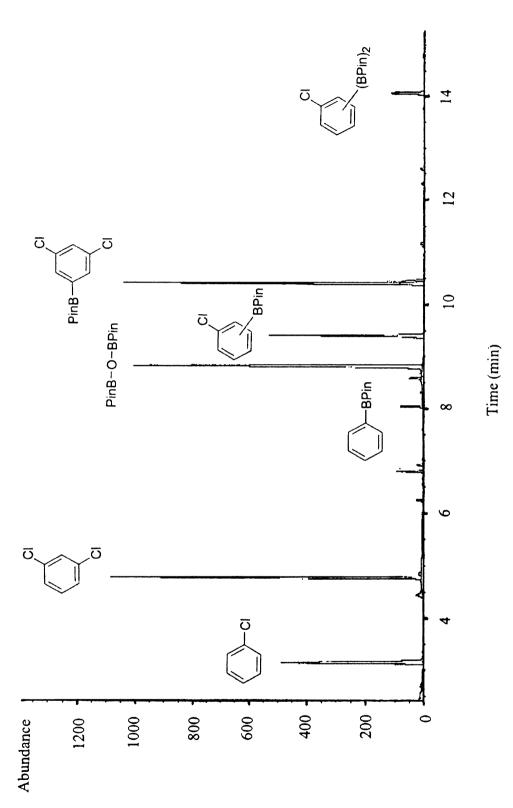
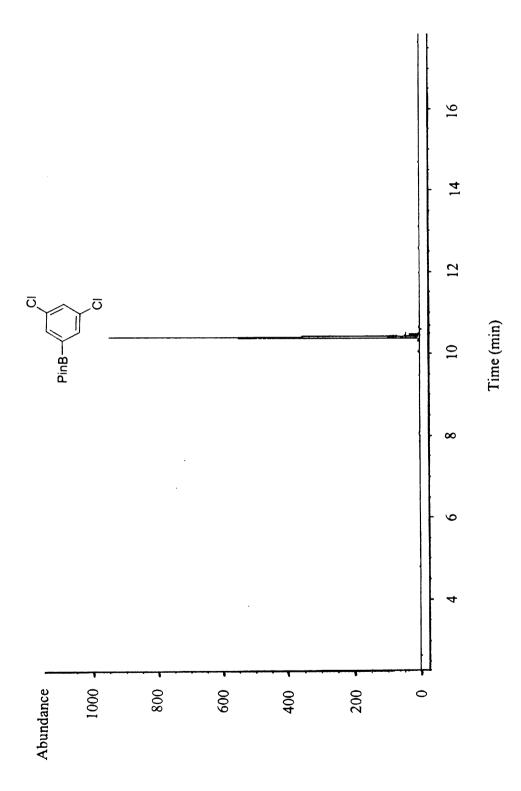



Figure 23-2. GC chromatogram of borylation of 1,3-dichlorobenzene catalyzed by the Ir pre-catalyst 13 and dppe.

Steric, Electronic, and Directing Effects in Aromatic Borylation

From previous studies as shown in Table 8, borylations of symmetrical 1,2- and 1,4-disubstituted arenes give a single borylation product. In order to study the roles of steric and electronic effects on the selectivity for the borylation reactions, borylations of unsymmetrical 1,2- and 1,4-disubstituted arenes were compared. The results are summarized in Table 9.

Table 9. Borylations of unsymmetrical 1,2- and 1,4-disubstituted arenes with HBPin in the presence of 2 mol% 13 and 2 mol% dmpe. Reactions run in neat arene, and yields are

reported for isolated materials.

Entry	Substrate	Product Distribution (%)*	Time (h)	Yield (%)
1	F ₃ C—CI	F_3C CI F_3C CI $BPin$	5	78
		11.8:88.2		
2	MeO—《F	MeO—F MeO—F BPin	23	62
		6.6:93.4		
3	MeO—CI	MeO————————————————————————————————————	23	62
		68.0:32.0		
4	CI——Me	CI———Me CI——Me PinB BPin	44	88
		43.5:56.5		

Entry	Substrate	Product Distribution (%)*	Time (h)	Yield (%)
5	CI OMe	PinB—OMe PinB—CI OMe 48.5:51.5	12	73
6	Me OMe	PinB————————————————————————————————————	12	77
		36.3:63.7		
7	Me CI	PinB————————————————————————————————————	16	89
		62.2:37.8		

^{*} The product distribution was determined from the area ratio of each isomer in the GC chromatogram of the crude reaction mixture. One of the products from borylation of an unsymmetrical 1,2- or 1,4-disubstituted arene was independently synthesized according to the literature.²⁵

Calculated ligand repulsive energies, E_R , have been demonstrated in White and co-workers report³⁷ to provide reliable steric parameters for ligands in organometallic systems. E_R is defined as the amount of pure steric repulsion between a ligand and the prototypical molecular fragment to which it is bonded [Cr(CO)₅] or [CpRh(CO)]. Other parameters such as Taft-Dubois steric parameter, E's, and A-values³⁸ are used as standard measures of steric effects in organic chemistry. However, the experimentally based measures, E's and A-values, are a product of both steric and electronic effects. Therefore, E_R values are applied here in order to assess the pure steric effect on borylation reactions. Selected E_R values and A-values are listed in Table 10.

Table 10. Ligand repulsive energies (in kcal/mol) computed using the universal force field and A-values (in kcal/mol) for a variety of organic substituents.

Substituent	E _R (kcal/mol)	A-value (kcal/mol)
F	0.28	0.25
Cl	1	0.53
Me	18	1.74
OMe	37	0.75
CF ₃	44	2.5

If only steric effects are considered, we can calculate and predict the isomer distribution for borylation of unsymmetrical 1,4-disubstituted arenes and compare that to experimental data. Since, for a 1,4-disubstituted arene, both substituents have two *ortho* sites, the calculated isomer distribution ratio can be determined by using the relative E_R values of the two different substituents. For present purposes, it was assumed that *ortho* substitution would preferably occur adjacent to the substituent with the smaller steric factor (E_R). For example, the E_R value for CF₃ group is 44 and the E_R value for Cl is 1; therefore, the isomer distribution for 1,4-C₆H₄(Cl)(CF₃) borylation is expected to be 1:44 (2.2:97.8) for 1,3,4-C₆H₃(Cl)(BPin)(CF₃) to 1,2,4-C₆H₃(Cl)(BPin)(CF₃) on the basis of E_R values as illustrated in Figure 24. The result differs from the experimental value of 11.8:88.2 (Entry 1). Apparently, other factors are also involved in determining the isomer distribution. In order to determine if a trend exists for various unsymmetrically 1,4-disubstituted arenes, their borylation chemistry was investigated. The comparison of isomer distribution between the experimental values and the calculated values derived

from E_R values for other unsymmetrical 1,4-disubstituted arenes are summarized in Table 11.

$$F_3C$$
 CI
 E_R value: 44 (CF₃) 1 (CI)

substitution *ortho* to CF₃ substitution *ortho* to CI

 F_3C CI F_3C CI BPin

Expected ratio: 1 : 44 = 2.2% : 97.8%

Figure 24. The calculated value of isomer distribution of the borylation of 1,4- $C_6H_4(Cl)(CF_3)$.

Table 11. Comparison of isomer distribution between the experimental values and the

calculated values derived from pure steric effect (E_R).

Entry	Substrate	Isomer Mixture (%)	Calculated (from E _R) (%)
1	F ₃ C—CI		-CI Pin 2.2:97.8
		11.8:88.2	
2	MeO———F	MeO—F MeO—FinB	—F 3Pin 0.8:99.2
		6.6:93.4	
3	MeO—CI	MeO————————————————————————————————————	—СI 3Pin 2.6:97.4
		68.0:32.0	
4	CI——Me	CI————————————————————————————————————	Me Pin 94.7:5.3
		43.5:56.5	

The data summarized above suggest that the electronic effects and other effects such as chelate-directed effects of substituents also contribute to the resulting isomer distributions. It was therefore seemed of interest to evaluate borylations of unsymmetrical 1,2-disubstituted arenes to assess the electronic effects of substituents for these aromatic borylation reactions. In order to obtain a qualitative understanding of electronic effects, the experimental data are compared to the calculated isomer distribution data, which are derived from the selectivities observed in borylation of mono-substituted arenes (Table 12).

Table 12. Borylations of mono-substituted arenes with HBPin in the presence of 2 mol% 13 and 2 mol% dmpe. Reactions run in neat arene. Isomer distribution is obtained from area ratios in GC-FID chromatograms.

Arene	Products	Isomer Distribution (para:meta:ortho) (%)	Selectivity (para:meta:ortho) (%)
ОМе	PinBOMe	19.1:76.0:5.0	32.1:63.8:4.2
Me	PinB	31.6:67.1:1.3	48.1:51.0:1.0
СІ СІ	PinB	23.1:76.9:0.0	37.5:62.5:0.0

The isomer distribution of borylation of each substrate including anisole, toluene, and chlorobenzene is determined from the area ratio of each isomer in the GC chromatogram. For present purposes, it was assumed that the response factors were similar because the molecules are isomers. Therefore, we deemed it unnecessary to make calibration curves for these screening experiments. In each mono-substituted arene, borylation can occur at either of two meta positions, two ortho positions, and one para position. The reported selectivities are obtained by dividing the GC isomer distribution for each isomer by the potential number of sites of borylation (e.g. for meta position divide by 2). Then the selectivity of para substitution is normalized to 1.00, and meta and ortho selectivities are based on the normalized value. For example, for anisole borylation the selectivity for para:meta:ortho is 1.00:1.99:0.13 (= 32.1:63.8:4.2) and for chlorobenzene borylation the selectivity for para:meta:ortho is 1.00:1.67:0.00 (= 37.5:62.5:0.0). The method for calculating the estimated value of isomer distribution for unsymmetrical 1,2-disubstituted arenes is illustrated for the borylation of 2-chloroanisole (Figure 25). For isomer (A), the borylation occurs at the position meta to Cl and para to OMe group, the estimated selectivity for isomer (A) is the sum of the two normalized selectivities of the mono-substituted arenes (1.67 and 1.00). For isomer (B), the borylation occurs at the position *meta* to OMe group and *para* to Cl, the estimated selectivity for isomer (B) is the sum of the two normalized selectivities of the mono-substituted arenes (1.99 and 1.00). The estimated selectivity for borylation of 2-chloroanisole is obtained as 2.67:2.99, which is equal to 47.2:52.8.

Figure 25. The estimated value of isomer distribution of the borylation of 2-chloroanisole.

Table 13. Comparison of isomer distribution between the experimental values and the estimated values derived from selectivity in borylation of mono-substituted arenes.

Entry	Substrate	Isomer Mixture	Observed (%)	Estimated (%)
1	CI OMe	PinB———OMe PinB———CI CI OMe	48.5:51.5	47.2:52.8
2	Me OMe	PinB—OMe PinB—Me Me OMe	36.3:63.7	40.8:59.2
3	—Me	PinB————————————————————————————————————	62.2:37.8	56.4:43.6

From the comparison in Table 13, the experimental isomer distribution data observed for those three 1,2-disubstituted arenes are similar to the estimated ones. The small deviations between the observed values and estimated values might result from the different dielectric constants of these substrates since the borylation reactions were carried out in neat arenes solvents (ϵ (chlorobenzene): 5.69; ϵ (anisole): 4.30; ϵ (toluene): 2.38; ϵ (2-chlorotoluene): 4.72; ϵ (2-methylanisole): 3.50; ϵ (2-chloroanisole): N/A).

The results for borylations of 1,2-disubstituted arenes give some indication of the electronic effects of various substituents. It is clear from assessing and comparing the electronic effects for borylation of 1,2-disubstituted arenes and the steric effects from the ligand repulsive energies, E_R , that the methoxy group has a *meta* directing effect contributing to the isomer distribution in borylation of 2-methylanisole and 2-chloroanisole.

Competition Reactions

To probe the role of electronic effects in the new Ir catalyst system (2 mol% 13 and 2 mol% of dmpe), relative product ratios from catalytic borylations in equimolar mixtures of substituted arenes were determined (Table 14).

Table 14. Relative ratios of arylboronic esters for borylations of equimolar mixtures of

substituted arenes catalyzed by 2 mol% 13 and 2 mol% dmpe.

Entry	Equimolar Mixtures of Substituted Arenes	Borylation Product Distribution
1	F ₃ C F ₃ C	BPin F ₃ C BPin
		3.5:96.5
2	CI F ₃ C	CI F ₃ C BPin F ₃ C
		48.5:51.5
3	$- F_3C - CF_3$	PinB PinB
		51.9:48.1
4	CI — CI / F_3C — CF_3	CI————————————————————————————————————
		99.3:0.7
5	CI————————————————————————————————————	CI————————————————————————————————————
		98.7:1.3

For borylation of 1,3-disubstituted arenes, steric effect directs borylation in the *meta* position. Therefore, in the competition reaction between m-xylene and 1,3- $C_6H_4(CF_3)_2$, the arene selectivity, 3.5:96.5 (Entry 1), is solely governed by the relative electronic nature of the two arenes. As mentioned previously, it was found that electron-deficient arenes borylate faster than electron-rich arenes. In the competition reaction between 1,3- $C_6H_4(CI)_2$ and 1,3- $C_6H_4(CF_3)_2$, the arene selectivity was found to be 48.5:51.5 (Entry 2). Switching substrates from 1,3-disubstituted arenes to 1,4-disubstituted arenes, dramatically different arene selectivities were observed. In the competition reaction between p-xylene and 1,4- $C_6H_4(CF_3)_2$, the selectivity changed from 3.5:96.5 for the 1,3-disubstituted variants to 51.9:48.1 (Entry 3). Similarly, in the competition reaction between 1,4- $C_6H_4(CI)_2$ and 1,4- $C_6H_4(CF_3)_2$, the selectivity is changed from 48.5:51.5 for 1,3-disubstituted variants to 99.3:0.7 (Entry 4). These results undoubtedly demonstrate that steric effects play a crucial role in the borylation of 1,4-disubstituted arenes.

The results from screening experiments show that any changes in phosphine ligands, other donor ligands, or metal complexes have dramatic effect on the catalytic activity. Steric effect governs the regioselectivity of aromatic borylation. For borylation of symmetric 1,2-, 1,4- and symmetric or unsymmetric 1,3-disubstituted arenes, a single borylation product is obtained. In addition, for borylation of unsymmetric 1,2- or 1,4-disubstituted arenes, product distribution is the result of steric, electronic, and some type of chelate-directed effect depending on the substituents such as a OMe group.

CHAPTER 4

SYNTHESIS, CHARACTERIZATION, AND REACTIVITY OF IRIDIUM BORYL COMPLEXES

Synthesis and Characterization of an Ir¹ Boryl Complex

In order to gain mechanistic insight into the Ir-catalyzed borylation reaction and establish the most likely overall mechanistic pathway, it is important to examine the viability and determine the rates of each individual stage. Halpern's⁴⁰ stepwise analysis of the mechanism by which Wilkinson's catalyst catalyzes olefin hydrogenation provides a significant "take home lesson"; namely, that the identification of a dominant or detectable species in a catalytic system may lead to incorrect interpretations of the reaction mechanism. Only when kinetic and thermodynamic measurements define the role of the complexes along the actual reaction path can the mechanism be defined. A multi-step reaction is very complicated, and the dominant mechanism changes when the nature of the pre-catalyst, the ligand, and/or the substrate is altered.

From a mechanistic standpoint, there are two potential catalytic cycles involving oxidative addition and reductive elimination from Ir^{IIII} and/or Ir^{IIIIV} intermediates with Ir^I and Ir^{IIII} boryl intermediates being the most likely C-H activating species in the Ir^{IVIII} and/or Ir^{IIIIV} cycles, respectively as shown in Figure 26.

Figure 26. Two potential catalytic cycles for aromatic borylation: (Left) involving Ir^{IIIIV} intermediates.

From competition reactions of mono-substituted arenes, it was found that electron-deficient arenes borylate faster than electron-rich arenes. The general observed trend suggests that the iridium metal center is electron rich, which implies that Ir¹ intermediates may be the active species in the catalytic borylation reactions. In order to examine that possibility, the Ir¹ boryl complex, (PMe₃)₄Ir(BPin), was first synthesized to evaluate its stoichiometric reaction with arenes.

Flood⁴¹ and co-workers' studies on the mechanism of cyclometallation, i.e. oxidative addition of a C-H bond of a ligand to form a chelate complex, of tris(trimethylphosphine)neopentyliridium(I) compound showed that the mechanism involves direct, concerted oxidative addition and reductive elimination of the C-H bond

interconverting the square-planar Ir¹ and octahedral Ir¹¹¹ centers without PMe₃ dissociation (Figure 27).

Figure 27. Cyclometallation of tris(trimethylphosphine)neopentyliridium(I) complex.

At first, the 16-electron square planar complex, [(PMe₃)₃Ir(BPin)], the proposed key intermediate in the borylation reactions, was the target complex to be synthesized. Initially, we attempted to use a dehydrohalogenation route to synthesize [(PMe₃)₃Ir(BPin)] from the reaction between *mer*-(PMe₃)₃Ir(BPin)(H)(Cl) (15)⁴² and KO'Bu (Figure 28). However, there was no reaction at room temperature, and at elevated temperature the reaction proceeded slowly to generate a complex mixture of Ir products. Several other reagents including NaN(SiMe₃)₂ and 'BuLi were also used and these attempts were unsuccessful. Presumably, [(PMe₃)₃Ir(BPin)], a coordinatively unsaturated 16-electron square planar complex, is unstable, thus rendering its isolation and characterization difficult.

$$\begin{array}{c} \text{BPin} \\ | \text{PMe}_3 \\ | \text{PMe}_3 \\ | \text{Me}_3 \\ | \text{PCI} \\ \text{(15)} \end{array} + \text{KO}^t \text{Bu} \qquad \begin{array}{c} \text{PMe}_3 \\ | \text{Me}_3 \\ | \text{Me}_3 \\ | \text{PCI} \\ | \text{Me}_3 \\ | \text{PCI} \\ | \text{Me}_3 \\ | \text{Me$$

Figure 28. The reaction between mer-(PMe₃)₃Ir(BPin)(H)(Cl) (15) and KO'Bu.

In 1997, Marder, Norman, and co-workers reported the synthesis of a low valent, electron-rich, late transition metal boryl complex, (PMe₃)₄Rh(BCat), 43 from the reaction between (PMe₃)₄Rh(Me) and B₂Cat₂ with MeBCat as byproduct. With this information in hand, we targeted (PMe₃)₄Ir(BPin), which is a coordinatively saturated 18-electron complex and is presumably more stable than the original 16-electron target. In 1982, Thorn and Tulip⁴⁴ reported the preparation of (PMe₃)₄Ir(H) from the reaction of [(PMe₃)₄IrH₂]Cl, which can be prepared at ambient temperature by purging dihydrogen gas into a THF solution of (PMe₁)₄Ir(Cl), and KO'Bu through a dehydrohalogenation route. A similar reaction was carried out to first synthesize [(PMe₃)₄Ir(H)(BPin)]Cl (16) by addition of HBPin instead of H₂ to the THF solution of (PMe₃)₄Ir(Cl). This attempt was successful and compound 16 was prepared in 71% yield. The structure of 16 was assigned according to ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. In the ¹H NMR spectrum, a doublet of quartet is observed in the hydride region at -13.16 ppm ($^2J_{HP}$ = 119.0 Hz, 18.7 Hz), indicating a trans relationship to a PMe₃ group and a cis to three PMe₃ groups. A singlet at 1.22 ppm integrating to 12 protons is assigned as the resonance of BPin group. There are two sets of doublets and one triplet corresponding to three different PMe₃ groups at 1.61 ppm (d, ${}^{2}J_{HP} = 8.2$ Hz, 9H), 1.63 ppm (d, ${}^{2}J_{HP} = 7.3$ Hz, 9H), and 1.74 ppm (t, ${}^2J_{HP} = 3.4$ Hz, 18H, two mutually trans PMe₃). In the ${}^{31}P\{{}^{1}H\}$ NMR spectrum, there are three different phosphorous resonances. A broad peak is observed at -67.2 ppm (the PMe₃ trans to BPin group), a quartet is observed at -60.1 ppm $(^2J_{pp} = 20.8 \text{ Hz}, \text{ the PMe}_3 \text{ trans} \text{ to hydride}), \text{ and a triplet is observed at -55.2 ppm } (^2J_{pp} =$ 22.9 Hz, two mutually trans PMe₃ groups). In the ¹¹B NMR, a broad peak is observed at 32.8 ppm. Unfortunately, its reaction with KO'Bu proceeded through an undesired

deborylhalogenation pathway instead of dehydrohalogenation pathway to give $(PMe_3)_4Ir(H)$ and 'BuOBPin as products (Figure 29). Presumably the formation of 'BuOBPin is thermodynamically favored. Since deborylhalogenation is a dominant reaction pathway, a process involving the synthesis of a diboryl complex in the first step, and the reaction with KO'Bu through the deborylhalogenation pathway to give a Ir^I boryl complex would be a possible synthetic route.

Figure 29. Deborylhalogenation reaction between complex 16 and KO'Bu.

mer,cis-(PMe₃)₃Ir(BPin)₂Cl (17) was prepared from the reaction between B₂Pin₂ and (PMe₃)₄Ir(Cl) in a THF solution at 70 °C for one day. The complex was purified by recrystallization from a pentane solution at -30 °C to give spectroscopically pure compound 17 in 74% yield (Figure 31). The ¹¹B NMR spectrum shows two boryl resonances at 28.0 and 36.5 ppm and the ³¹P{¹H} NMR spectrum exhibits a broad singlet at -51.4 ppm due to trans coupling to a boron nucleus (¹¹B, spin 3/2, 80.4% natural

abundance, 10 B, spin 3, 19.6% natural abundance) 45 and a doublet at -41.1 ppm ($^2J_{pp} = 26.9$ Hz). The catecholate analogue, mer, cis-(PMe₃)₃Ir(BCat)₂Cl, was previously prepared via a different route by Dai and co-workers. 46

Single crystals of 17 and B₂Pin₂ co-crystallized from pentane at -30 °C and the structures were established by X-ray crystallographic analysis. The molecular structure of 17 is shown in Figure 30. Selected bond distances and bond angles are given in Table 15. The molecular structure of 17 consists of an octahedral geometry with phosphines ligands in a *meridional* arrangement. The two BPin groups are *cis* to each other with the B(1)-Ir(1)-B(2) angle of 77.97(19). The boron *trans* to chloride has an Ir-B bond distance of 2.057(5) Å, which is the same (within statistical error) as that in the compound *mer*-(PMe₃)₃Ir(BPin)(H)(Cl) (15) (2.054(3) Å). The other Ir-B bond distance is 2.114(5) Å. Among those Ir-P bond distances in complex 17, the two trans phosphine ligands have Ir-P distances of 2.328(1) and 2.320(1) Å, respectively, which are very similar to the two *trans* Ir-P distances in compound 15 (2.3277(8) and 2.3147(8) Å). Furthermore, the PMe₃ ligand *trans* to BPin in compound 17 has a substantially longer Ir-P distance of 2.3921(13) Å. This suggests that the BPin group has a larger trans influence than a PMe₃ ligand.

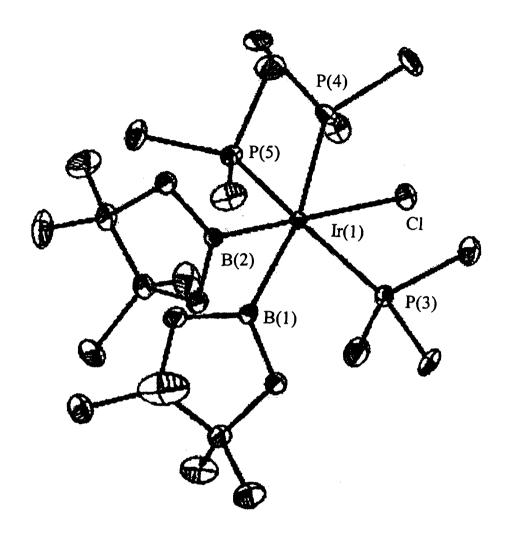


Figure 30. ORTEP diagram of mer,cis-(PMe₃)₃Ir(BPin)₂Cl (17). Thermal ellipsoids are shown at 25% probability.

Table 15. Selected bond lengths [Å] and angles [°] for 17.

Bond	Distance [Å]	Bonds	Angle [°]
Ir(1)-B(1)	2.114(5)	B(1)-Ir(1)-B(2)	78.0(2)
Ir(1)-B(2)	2.057(5)	B(1)-Ir(1)-P(3)	87.9(1)
Ir(1)-P(3)	2.328(1)	B(1)-Ir(1)-P(4)	164.3(1)
Ir(1)-P(4)	2.392(1)	B(1)-Ir(1)-P(5)	86.3(1)
Ir(1)-P(5)	2.320(1)	B(1)-Ir(1)-Cl	102.7(1)
Ir(1)-Cl	2.560(1)	B(2)-Ir(1)-P(3)	96.8(1)
• •		B(2)-Ir(1)-P(4)	86.5(2)
		B(2)-Ir(1)-P(5)	97.2(1)
		B(2)-Ir(1)-Cl	179.3(2)
		P(3)-Ir(1)-P(4)	96.0(4)
		P(3)-Ir(1)-P(5)	163.33(4)
		P(3)-Ir(1)-Cl	83.05(4)
		P(4)-Ir(1)-P(5)	93.84(5)
		P(4)-Ir(1)-Cl	92.88(4)
		P(5)-Ir(1)-Cl	83.03(4)

The reaction between compound 17 and KO'Bu in the presence of 2 equivalent PMe₃ was carried out at ambient temperature to give (PMe₃)₄Ir(BPin) (18) in good yield (The product always contained a small amount of (PMe₃)₄Ir(H) (ca. 3% by ¹H NMR) due to its considerable moisture sensitivity) (Figure 31). Complex 18 is fluxional in solution as evidenced by the appearance of a singlet at -57.5 ppm at 298.15 K (25 °C) in the ³¹P{¹H} NMR spectrum where it displays a doublet (-56.2 ppm, ²Jpp = 32.8 Hz, 3P) and a broad quartets (-57.7 ppm, 1P) at 213 K (-60 °C). The low temperature-limiting spectrum indicates a trigonal bipyramidal geometry with the BPin group occupying an axial site.

Figure 31. Syntheses of mer, cis-(PMe₃)₃Ir(BPin)₂Cl (17) and (PMe₃)₄Ir(BPin) (18).

Single crystals of 18 were grown from pentane at -30 °C and the structure was further confirmed by single-crystal X-ray crystallographic analysis. The molecular structure of 18 is shown in Figure 32. Selected bond distances and bond angles are given in Table 16. From the X-ray structure, the Ir(1)-P(1) distance of 2.334(2) Å, is significantly longer than Ir(1)-P bonds of the other equatorial PMe₃ ligands (Ir(1)-P(2), 2.287(2) Å, Ir(1)-P(3), 2.282(2) Å, and Ir(1)-P(4), 2.270(2) Å). The result can be rationalized by assuming a large trans influence of BPin group.

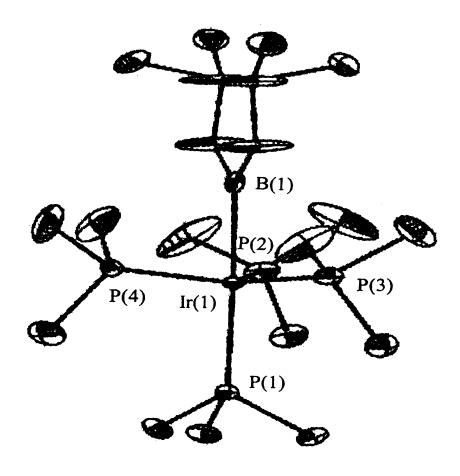


Figure 32. ORTEP diagram of (PMe₃)₄Ir(BPin) (18). Thermal ellipsoids are shown at 25% probability.

Table 16. Selected bond lengths [Å] and angles [°] for 18.

Bond	Distance [Å]	Bonds	Angle [°]	
Ir(1)-B(1)	2.147(9)	B(1)-Ir(1)-P(1)	178.0(2)	
Ir(1)-P(1)	2.334(2)	B(1)-Ir(1)-P(2)	85.1(2)	
Ir(1)-P(2)	2.287(2)	B(1)-Ir(1)-P(3)	85.0(2)	
Ir(1)-P(3)	2.282(2)	B(1)-Ir(1)-P(4)	82.2(2)	
Ir(1)-P(4)	2.270(2)	P(2)-Ir(1)-P(3)	119.8(1)	
., .,	. ,	P(2)-Ir(1)-P(4)	119.1(1)	
		P(3)-Ir(1)-P(4)	118.0(1)	
		P(1)-Ir(1)-P(2)	95.8(7)	
		P(1)-Ir(1)-P(3)	96.1(7)	
		P(1)-Ir(1)-P(4)	95.8(8)	

Substitution and Oxidative Addition Reactions of Ir^I Boryl Complexes

(PMe₃)₄Ir(BPin) (18) underwent a variety of substitution and oxidative addition reactions. It reacted with dppe in C₆D₆ at room temperature for 3 days to give Ir(PMe₃)₂(dppe)(BPin) (19) as the major iridium containing complex as shown in Figure 33. The reaction resulted in the replacement of 2 PMe₃ ligands with the chelating phosphine ligand, 1,2-bis(diphenylphosphino)ethane (dppe). The structure of 19 was assigned according to ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. In the ¹H NMR spectrum, a singlet at 1.10 ppm is assigned as the resonance of the BPin group. There is a triplet corresponding to two PMe₃ groups at 1.33 ppm ($^2J_{HP} = 3.3$ Hz, 18H) and a multiplet in the region of 1.92-2.18 ppm corresponding to four protons of the two CH₂ groups on the backbone of dppe ligand. In the aromatic region (6.98-7.12, 7.16-7.28, 7.72-7.89, and 7.91-7.98 ppm) there are 20 protons corresponding to the protons for the four phenyl groups of the dppe ligand. In the ¹¹B NMR, a broad peak is observed at 38.8 ppm. In the ³¹P{¹H} NMR spectrum, there are three different phosphorous resonances. A broad peak is observed at 46.1 ppm for the PPh₂ trans to BPin, a doublet of triplet is observed at 39.1 ppm (J = 141.6 Hz, 13.4 Hz) for the PPh₂ cis to BPin, and a doublet of doublet is observed at -58.9 ppm (J = 141.6 Hz, 26.8 Hz) corresponding to two PMe₃ groups.

Figure 33. The reaction between compound 18 and dppe.

Compound 18 reacted with HBPin in C₆D₆ to give mer, trans-(PMe₃)₃Ir(BPin)₂(H) (20) as the initial predominant species, and this kinetic product gradually isomerized to fac-(PMe₃)₃Ir(BPin)₂(H) (21) after heating at 70 °C for 11 hours. The structure of 20 was assigned according to ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. In the ¹H NMR spectrum, a doublet of triplet is observed in the hydride region at -12.36 ppm ($^2J_{HP}$ = 117.0 Hz, 21.7 Hz), indicating a trans relationship to a PMe₃ group and a cis orientation to two PMe₃ groups. A singlet at 1.22 ppm is assigned as the resonance of the two mutually trans BPin groups. A doublet is observed at 1.49 ppm (J = 8.0 Hz, 9H)corresponding to the PMe₃ trans to hydride and a triplet is observed at 1.74 (J = 3.4 Hz, 18H) corresponding to the two PMe₃ groups, which are trans to each other. In the ¹¹B NMR, a broad peak is observed at 38.9 ppm. In the ³¹P{¹H} NMR spectrum, there are two different phosphorous resonances. A triplet is observed at -59.6 ppm (J = 22.0 Hz) for the PMe₃ trans to H and a doublet is observed at -50.8 ppm (J = 22.0 Hz) for the two mutually trans PMe₃ groups. The structure of 21 was also assigned according to ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. In the ¹H NMR spectrum, a doublet of triplet is observed in the hydride region at -11.66 ppm ($^2J_{HP} = 118.1$ Hz, 18.1 Hz), indicating a trans relationship to a PMe₃ group and a cis to two PMe₃ groups. A singlet at 1.29 ppm is assigned as the resonance of the two chemically equivalent BPin groups. A virtual triplet is observed at 1.41 ppm corresponding to the two PMe₃ groups trans to BPin and a doublet is observed at 1.58 ppm (J = 8.0 Hz) assigned as the PMe₃ trans to hydride. In the ¹¹B NMR, a broad peak is observed at 38.6 ppm. The ³¹P{¹H} NMR spectrum of 21 displays a triplet at -56.6 ppm (J = 22.0 Hz) for the PMe₃ trans to H and a broad resonance at -61.8 ppm for the two PMe₃ groups trans to BPin.

Eisenberg and co-workers⁴⁷ reported that the oxidative addition of catecholborane (HBCat) to the Ir(I) cis-phosphine complexes IrX(CO)(dppe) (X = Br, I; dppe = 1,2bis(diphenylphosphino)ethane) proceeds stereoselectively under kinetic control. In their original studies on H₂, R₃SiH, and HX' oxidative additions to IrX(CO)(dppe) complexes, 48 they reasoned that both H₂ and R₃SiH add to the IrX(CO)(dppe) complexes as nucleophiles. The addition occurs over the OC-Ir-P axis because the π^* orbital of CO is able to stabilize the developing transition state by reduction of electron density of the Ir d_z^2 orbital, thus minimizing the repulsive $4e^-$ interaction between the filled d_z^2 and σ^b orbitals of H₂ and R₃SiH. On the contrary, hydrogen halides (HX') approach IrX(CO)(dppe) in aprotic media as electrophiles. Therefore, interactions that retain or enhance electron density at the metal center will favor addition along that pathway. Thus, HX' addition is preferred by bending the X-Ir-P axis because this pathway leads to an antibonding interaction between an occupied p_z orbital of X and the d_z^2 orbital of Ir, thus enhancing the ability of Ir to donate electrons to the incoming electrophile (Figure 34).⁴⁹ Since oxidative addition of catecholborane to IrX(CO)(dppe) complexes (X = Br, I)resembles HX' additions, the result implies that catecholborane approaches the metal center as an electrophile in accord with the view that the vacant B p₇ orbital can overlap with the filled d_z^2 of Ir (Figure 35).

(nucleophile) H–Y

$$X = H, R_3Si$$
 $Y = H, R_3Si$
 $X = H, R_$

Figure 34. H₂, R₃SiH, and HX' oxidative additions to IrX(CO)(dppe) complexes.

(electrophile)

$$\lambda \rightarrow P$$
 $\lambda \rightarrow P$
 $\lambda \rightarrow$

Figure 35. Catecholborane (HBCat) oxidative addition to IrX(CO)(dppe) complexes.

Pinacolborane (HBPin) oxidative addition to compound 18 gives complex 20 as the kinetic product with the two BPin groups *trans* to each other. The result can be rationalized by assuming that pinacolborane (HBPin) approaches the Ir metal center as an electrophile in accord with the results for HBCat. Furthermore, the backbonding interaction between the filled Ir metal d_z^2 orbital and the empty B p_z orbital, as HBPin

adds in the P-Ir-B plane, provides additional stabilization to the five-coordinate species, as shown in Figure 36.

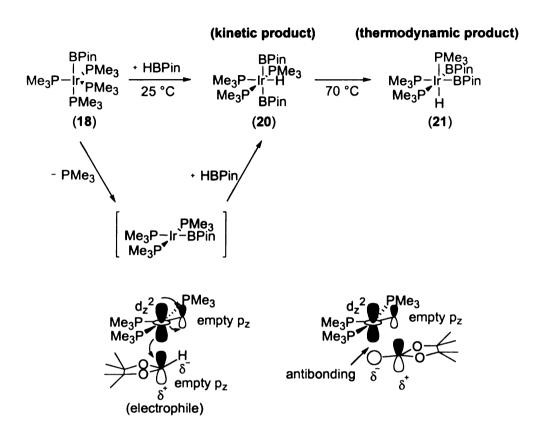


Figure 36. Pinacolborane (HBPin) oxidative addition to compound 18.

The reaction of 18 with chlorocatecholborane (ClBCat) proceeded at room temperature to give mer-(PMe₃)₃Ir(BPin)(BCat)(Cl) (22) as the major product with the BPin group trans to the chloride ligand as shown in Figure 37. The geometry of 22 was assigned according to ${}^{1}H$, ${}^{11}B$, and ${}^{31}P\{{}^{1}H\}$ NMR spectroscopy. In the ${}^{1}H$ NMR spectrum, a singlet at 1.18 ppm is assigned as the resonance of the BPin group. There is a doublet at 1.29 ppm (J = 7.3 Hz) corresponding to the PMe₃ trans to BCat and a triplet at

1.47 ppm corresponding to two mutually *trans* PMe₃ groups. An AA'BB' pattern is observed at 6.84 and 7.19 ppm in the aromatic region, which corresponds to the four protons of the catecholate. The ¹¹B NMR spectrum displays two well-separated resonances at 28.1 and 41.6 ppm, respectively. By comparing the resonances of boryl groups in compound 15, 17, mer-(PMe₃)₃Ir(BCat)(H)Cl (23),⁴² and mer.cis-(PMe₃)₃Ir(BCat)₂Cl (24)⁴⁶ as summarized in Table 17, we assigned the resonance at 28.1 ppm as the BPin group and the resonance at 41.6 ppm as the BCat group. The ³¹P{¹H} NMR spectrum of 22 displays a broad peak at -56.2 ppm assigned as the PMe₃ trans to BCat and a doublet at -39.3 ppm (J = 29.3 Hz) corresponding to two mutually trans PMe₃ groups.

Figure 37. Chlorocatecholborane (ClBCat) oxidative addition to compound 18.

Table 17. Comparison of boryl resonances of complexes 15, 17, 22, 23, and 24 in ¹¹B NMR spectra.

Complex	15	17	22	23	24
BPin trans to Cl (ppm)	28.5	28.0	28.1		
BCat trans to Cl (ppm)				32.8	32.6
BPin trans to PMe ₃ (ppm)		36.5			
BCat trans to PMe ₃ (ppm)			41.6		41.7

Synthesis and Characterization of an Ir^{III} Boryl Complex

The Ir^{III} boryl complex, fac-(PMe₃)₃Ir(BPin)₃ (25) can be easily prepared in essentially quantitative yield by addition of a slight excess of PMe₃ to (MesH)Ir(BPin)₃ (14) in benzene solution at ambient temperature (Figure 38).

Figure 38. Synthesis of fac-(PMe₃)₃Ir(BPin)₃ (25).

Crystals suitable for X-ray analysis of 25 were grown from pentane at -30 °C. The molecular structure of 25 is shown in Figure 39. Selected bond distances and bond angles are given in Table 18. The complex adopts a *facial* geometry with all three PMe₃ ligands *trans* to the BPin groups. The ¹¹B NMR spectrum shows only one boryl resonance at 36 ppm and the ³¹P{¹H} NMR spectrum shows one broad singlet at -64 ppm due to a trans coupling to the boron nucleus. A similar compound, *fac*-(PEt₃)₃Ir(BCat)₃, was previously prepared by Marder and co-workers via the displacement of the mesitylene ligand of (MesH)Ir(BCat)₃ with 3 equivalent of PEt₃. ³¹ *fac*-(PEt₃)₃Ir(BCat)₃ has similar spectroscopic properties as compound 25. In the ¹¹B NMR spectrum, a broad peak was observed at 44.7 ppm corresponding to the three BCat groups and in ³¹P{¹H}

NMR spectrum, a broad peak was observed at -32.1 ppm corresponding to the three PMe₃ groups.

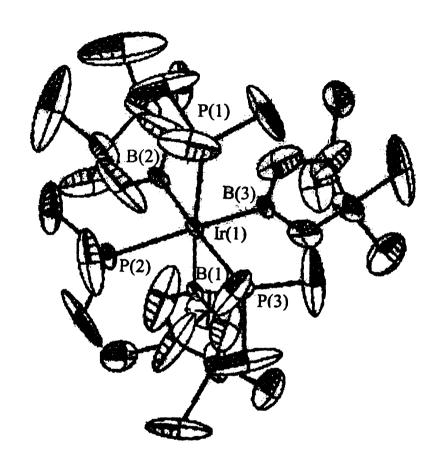


Figure 39. ORTEP diagram of fac-(PMe₃)₃Ir(BPin)₃ (25). Thermal ellipsoids are shown at 25% probability. All oxygen and carbon labels are omitted for clarity. Hydrogen atoms are also omitted for clarity.

Table 18. Selected bond lengths [Å] and angles [°] for 25.

Bond	Distance [Å]	Bonds	Angle [°]
Ir(1)-B(1)	2.106(2)	B(1)-Ir(1)-B(2)	82.3(7)
Ir(1)-B(2)	2.148(2)	B(1)-Ir(1)-B(3)	79.4(6)
Ir(1)-B(3)	2.082(2)	B(2)-Ir(1)-B(3)	81.9(7)
Ir(1)-P(1)	2.352(4)	B(1)-Ir(1)-P(1)	169.2(5)
Ir(1)-P(2)	2.353(4)	B(1)-Ir(1)-P(2)	91.5(5)
Ir(1)-P(3)	2.347(4)	B(1)-Ir(1)-P(3)	89.6(5)
. , , ,	, ,	B(2)-Ir(1)-P(1)	90.8(5)
		B(2)-Ir(1)-P(2)	90.9(5)
		B(2)-Ir(1)-P(3)	169.6(5)
		B(3)-Ir(1)-P(1)	91.4(5)
		B(3)-Ir(1)-P(2)	169.0(5)
		B(3)-Ir(1)-P(3)	90.1(5)
		P(1)-Ir(1)-P(2)	97.1(2)
		P(1)-Ir(1)-P(3)	96.2(2)
		P(2)-Ir(1)-P(3)	95.9(2)

Synthesis and Characterization of Novel Metal Boryl Complexes Containing Alkyl, Aryl, or Silyl Ligands

In transition metal catalyzed hydroboration of unsaturated hydrocarbons and borylation reactions of alkanes and arenes, an intermediate containing a boryl ligand and a σ-bound carbon ligand has been proposed. Several theoretical studies also support the intermediacy of such metal complex. However, only a few of this type of metal complexes have appeared in literature (Figure 40). One of them, reported by Crabtree⁵⁰ Ir^{IV} and co-workers in 1993, was an unprecedented boryl complex, [Ir(PMe₃)₃(biphBF)Cl]⁺I. Knorr and Merola⁴² reported the preparation and characterization of mer-(PMe₃)₃Ir(BCat)(trans-{CO₂CH₃}=CH{CO₂CH₃})(Cl) in which the vinyl group arises from insertion of dimethyl acetylenedicarboxylate into the Ir-H bond of *mer*-(PMe₃)₃Ir(BCat)(H)(Cl). Another case is the report by Roper, Wright, and co-workers of the synthesis of *cis*- and *trans*-[Os(BCat)(o-tolyl)(CO)₂(PPh₃)₂].⁵¹ The complex with o-tolyl and BCat groups *cis* to each other was unstable at room temperature. o-tolylBCat was slowly eliminated from the complex at room temperature in benzene solution to give the orthometallation product, [Os(C₆H₄PPh₂)(H)(CO)₂(PPh₃)]. On the other hand, the complex with o-tolyl and BCat groups *trans* to each other was stable under reflux in benzene for 2 hours. Their observations indicate that the requirement for facile reductive elimination is that the aryl and BCat ligands be adjacent to one another.

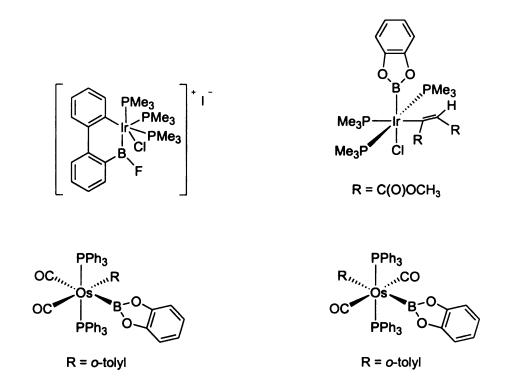


Figure 40. Reported complexes containing a boryl ligand and a σ -bound carbon ligand.

There are several cases where the authors imply the intermediacy of such a complex. For example, the reaction of (PMe₃)₄Rh(Me) with B₂Cat₂ resulted in the formation of MeBCat and (PMe₃)₄Rh(BCat).⁴³ The authors reasoned that the reaction proceeded via oxidative addition of the B-B bond followed by rapid reductive elimination of MeBCat (Figure 43).

$$(PMe_3)_4Rh(Me) + B_2Cat_2 \xrightarrow{-PMe_3} \begin{bmatrix} PMe_3 \\ CatB, PMe_3 \\ CatB & PMe_3 \end{bmatrix}$$

$$(PMe_3)_4Rh(BCat) \xrightarrow{+PMe_3} [(PMe_3)_3Rh(BCat)]$$

Figure 41. The reaction between (PMe₃)₄Rh(Me) and B₂Cat₂.

Although transition metal alkyl boryl complexes have been proposed as intermediates in stoichiometric and catalytic alkane borylation reactions, no such species have ever been isolated. In an attempt to synthesize this type of species in the "Ir(PMe₃)_n" system, we examined the reaction between (PMe₃)₄Ir(Me)⁵² and HBPin in pentane solution. The reaction occurred immediately at ambient temperature to generate an isomer mixture of *fac*-(PMe₃)₃Ir(H)(Me)(BPin) (26) (83%) and *mer*-(PMe₃)₃Ir(Me)(H)(BPin) (27) (17%) in 75% yield (Figure 42).⁵³

Figure 42. The reaction between (PMe₃)₄Ir(Me) and HBPin in pentane.

Complex 26 adopts a facial geometry with BPin, H, and Me groups all trans to a PMe₃ group. The geometry of 26 was assigned according to ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. In the ¹H NMR spectrum, a doublet of triplet is observed in the hydride region at -11.30 ppm ($^2J_{HP} = 140.4$ Hz, 18.9 Hz), indicating a trans relationship to a PMe₃ group and a cis to two PMe₃ groups. From 0.37 to 0.42 ppm, there is a peak with a dddd pattern corresponding to a methyl group which is cis to three different PMe₃ groups and a hydride ligand as shown in Figure 43. A singlet at 1.25 ppm is assigned as the resonance of BPin group, and there are three sets of doublets corresponding to three different PMe₃ groups at 1.17 ppm ($^2J_{HP} = 6.4$ Hz, PMe₃ trans to BPin), 1.35 ppm ($^2J_{HP} =$ 7.3 Hz, PMe₃ trans to hydride), and 1.47 ppm ($^2J_{HP} = 7.9$ Hz, PMe₃ trans to Me) as shown in Figure 44. In the ³¹P{¹H} NMR spectrum, there are three different phosphorous resonances for complex 26 as shown in Figure 47. A broad peak is observed at -63.3 ppm (the PMe₃ trans to BPin group), a doublet of doublet is observed at -56.83 ppm ($^2J_{pp}$ = 13.4 Hz, 23.2 Hz, PMe₃ trans to hydride), and a doublet of doublet is observed at -55.16 ppm ($^2J_{pp} = 13.4$ Hz, 18.3 Hz, PMe₃ trans to Me). The assignment of different PMe₃ groups in ¹H NMR spectra was established by one-dimensional Nuclear Overhauser Effect (NOE) experiments (Figures 45 and 46). In the NOE experiment, the hydride and

the methyl resonances of compound 26 were irradiated in order to establish the through space relationships to identify their *trans* PMe₃ groups. Irradiation of the hydride resonance at δ -11.30 resulted in enhancement of the peaks at 0.40, 1.17, 1.25, and 1.47 ppm. Therefore, the peak at δ 1.35 is the PMe₃ *trans* to hydride. Irradiation of the methyl resonance at δ 0.40 resulted in enhancement of the peaks at δ -11.30, 1.17, 1.25, and 1.35. Therefore, the peak at δ 1.47 is the PMe₃ *trans* to the methyl group. The assignment of the different PMe₃ groups in ${}^{31}P\{{}^{1}H\}$ NMR spectra is based on two-dimensional Heteronuclear Chemical Shift Correlation (HETCOR) experiment (${}^{1}H$, ${}^{31}P$) to correlate the resonances of PMe₃ groups in the ${}^{1}H$ NMR spectra to those in the ${}^{31}P\{{}^{1}H\}$ NMR spectra (Figure 48). The cross peak (a) presumably comes from a ${}^{3}J$ coupling. In two-dimensional heteronuclear NMR, couplings through two or more bonds are very much smaller than directly bonded couplings but do not necessarily fall off regularly with the number of bonds, ${}^{3}J$ being sometimes larger than ${}^{2}J$. To our knowledge, this is the first structural characterization of a transition metal alkyl boryl complex.

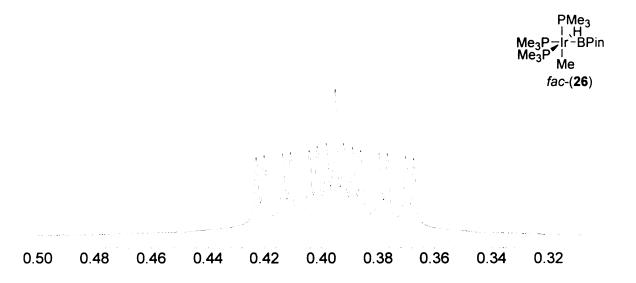


Figure 43. The resonance of the methyl group of fac-(PMe₃)₃Ir(Me)(H)(BPin) (26) in the ¹H NMR spectrum.

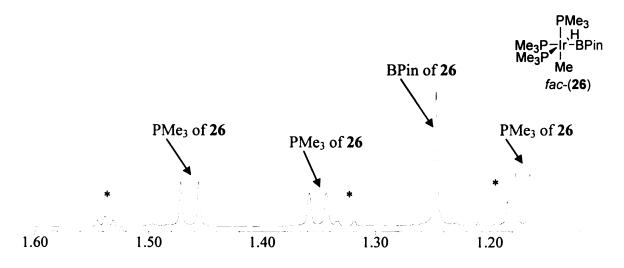


Figure 44. The resonances of PMe₃ groups of *fac*-(PMe₃)₃Ir(Me)(H)(BPin) (26) in the ¹H NMR spectrum. The peaks denoted with an asterisk (*) are due to PMe₃ and BPin resonances of compound 27.

Figure 45. NOE experiments of compound 26 (Irradiation of the hydride resonance at -11.30 ppm).

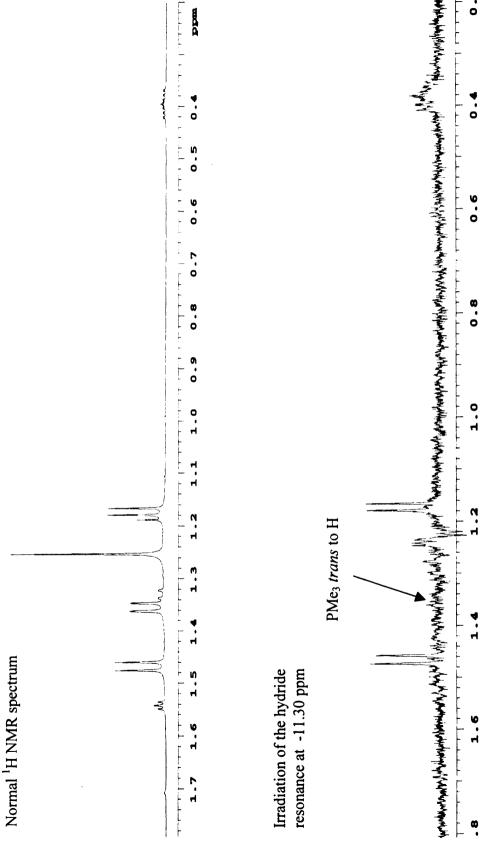


Figure 46. NOE experiments of compound 26 (Irradiation of the Me resonance at 0.40 ppm). resonance at 0.40 ppm Irradiation of the Me PMe3 trans to Me

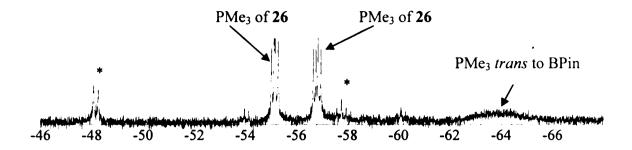


Figure 47. The resonances of PMe₃ groups of *fac*-(PMe₃)₃Ir(Me)(H)(BPin) (26) in the ³¹P{¹H} NMR spectrum. The peaks denoted with an asterisk (*) are due to PMe₃ resonances of compound 27.

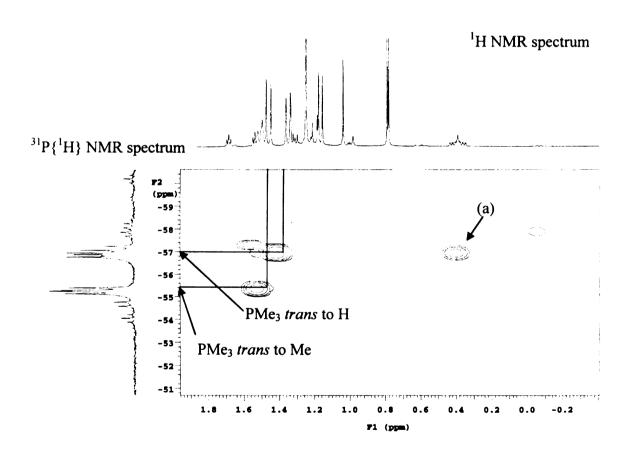


Figure 48. HETCOR experiment (¹H, ³¹P) to correlate the resonances of PMe₃ groups in the ¹H NMR spectra to those in the ³¹P{¹H} NMR spectra.

In the reaction of (PMe₃)₄Ir(Me) with 9-BBN reported by Baker and co-workers, the reaction led to the isolation of a boroethyl-metal compound, which most likely results from C-H activation of transient MeBC₈H₁₄, formed by borane oxidative addition and alkylborane reductive elimination or via a direct σ-bond metathesis pathway (Figure 49).⁵⁴

$$(\mathsf{PMe}_3)_4\mathsf{Ir}(\mathsf{Me}) \quad + \quad \mathsf{HBR}_2 \quad \xrightarrow{-\mathsf{PMe}_3} \quad \begin{bmatrix} \mathsf{PMe}_3 \\ \mathsf{H}, & \mathsf{PMe}_3 \\ \mathsf{R}_2\mathsf{B} & \mathsf{PMe}_3 \end{bmatrix}$$

Figure 49. The reaction between (PMe₃)₄Ir(Me) with 9-BBN.

A complex with the formula fac-(PMe₃)₃Ir(BPin)(D)(C₆D₅) was proposed as an intermediate in the stoichiometric reaction between (PMe₃)₄Ir(BPin) (18) and C₆D₆. Attempts to synthesize this target compound were undertaken. Therefore, a NMR reaction between (PMe₃)₃Ir(Ph)⁵⁵ and HBPin in toluene- d_8 was carried out. The reaction occurred immediately at room temperature to yield mer-(PMe₃)₃Ir(BPin)(H)(Ph) (28) (~95%), fac-(PMe₃)₃Ir(D)(H)(tolyl- d_7) (~5%), and less than 5% of PhBPin as byproduct. The trace amount of PhBPin was presumably formed by reductive elimination from the isomers with the BPin and Ph groups cis to each other (Figure 50). In a larger scale reaction in pentane, the product was isolated in 95% yield. The crude product can be further purified by recrystallization from pentane at -30 °C to give colorless crystals

suitable for X-ray analysis. From the ORTEP plot of complex 28 (Figure 51), the structure consists of an octahedral arrangement of ligands with the three PMe₃ groups in a meridional arrangement, the hydride trans to one of the PMe₃ groups, and the phenyl group trans to the BPin group. Examination of the ¹H NMR spectrum of the complex is consistent with the X-ray data. Thus, the hydride resonance shows as a doublet of triplet at -11.32 ppm ($^2J_{HP} = 131$ Hz, 20 Hz), indicating it is trans to a PMe₃ group and cis to two mutually trans PMe₃ groups. A singlet corresponding to the resonance of the BPin group is observed at 1.16 ppm, and an overlapped doublet and triplet is observed at 1.41 ppm, which corresponds to the resonance of the three PMe₃ groups. For the phenyl group protons, a multiplet from 7.17 to 7.20 ppm and a broad peak at 7.98 ppm integrate in a 3 to 2 ratio. Surprisingly, a broad peak at 7.98 ppm is observed, which may result from the hindered rotation about the iridium phenyl bond. The single crystal of 28 shows that the iridium atom is at the center of a distorted octahedral geometry with a P(2)-Ir(1)-P(3) angle of 166.29 (8) and C(41)-Ir(1)-B(5) angle of 167.7 (3). Selected bond distances and bond angles are given in Table 19. From the space-filling model of 28, it is clear that there is steric interactions between the protons of the phenyl group and the protons of the PMe₃ groups (P(2) and P(3)), which may impede rotation. The ³¹P{¹H} NMR spectrum shows a triplet at -57.8 ppm ($^2J_{PP} = 22.9$ Hz), which is the resonance of the PMe₃ trans to hydride and a doublet at -45.6 ppm (${}^2J_{PP} = 22.0$ Hz), which is the resonance of two mutually trans PMe₃ groups. This is a rare example of a stable transition metal complex containing boryl and σ -bound phenyl ligands.

Figure 50. The NMR reaction of $(PMe_3)_3Ir(Ph)$ with HBPin in toluene- d_8 at room temperature.

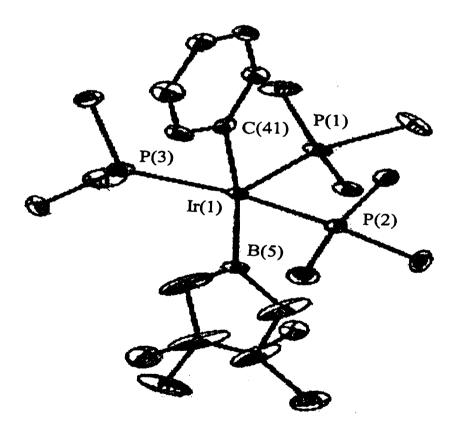


Figure 51. ORTEP of mer-(PMe₃)₃Ir(BPin)(H)(Ph) (28). Thermal ellipsoids are shown at 25% probability.

Table 19. Selected Bond lengths [Å] and angles [°] for 28.

Bond	Distance [Å]	Bonds	Angle [°]
Ir(1)-B(5)	2.097(6)	B(5)-Ir(1)-P(1)	94.6(2)
Ir(1)-P(1)	2.328(2)	B(5)-Ir(1)-P(2)	90.0(2)
Ir(1)-P(2)	2.288(2)	B(5)-Ir(1)-P(3)	90.5(2)
Ir(1)-P(3)	2.288(2)	B(5)-Ir(1)-C(41)	167.7(3)
Ir(1)-C(41)	2.194(5)	P(2)-Ir(1)-P(1)	96.8(7)
, , , ,	, ,	P(2)-Ir(1)-P(3)	166.4(6)
		P(3)-Ir(1)-P(1)	96.75(6)
		C(41)-Ir(1)-P(1)	97.7(2)
		C(41)-Ir(1)-P(2)	88.2(2)
		C(41)-Ir(1)-P(3)	88.4(2)

In their synthetic study of fac-(PMe₃)₃Ir(Me)(H)(SiR₃)⁵⁵ by Aizenberg and Milstein, they established the order of trans influence: SiEt₃ > SiPh₃ > H > CH₃ based on X-ray structural data. A good trans-influence ligand could weaken the bond between the metal and the *trans* ligand. This is a thermodynamic effect. The study shows that silyl group has stronger trans influence than hydride. Moreover, in the computational study by Sakaki and co-workers, ⁵⁶ they noted that the trans influence of the boryl group is stronger than the very strong trans influence of silyl group. We deemed it of interest to establish experimentally the stronger trans influence of a boryl group than that of a silyl group. Thus, we decided to explore the reaction between (PMe₃)₄Ir(BPin) (18) and HSiEt₃. The reaction proceeded slowly at room temperature over 2.5 days to give fac-(PMe₃)₄Ir(H)(BPin)(SiEt₃) (29) as the only observed product (Figure 52).

Figure 52. The reaction between (PMe₃)₄Ir(BPin) (18) and HSiEt₃.

The product was then recrystallized from a concentrated pentane solution at -30 °C to give 83 mg of colorless crystals in 86% yield. The structure of 29 was established by ¹H, ¹¹B, ³¹P{¹H} NMR spectroscopy. In the ¹H NMR spectrum, a doublet of triplet is observed in the hydride region at -12.30 ppm (hydride, 1H, $^2J_{HP} = 117.0$ Hz, 17.0 Hz), indicating that it is trans to a PMe₃ group and cis to two PMe₃ groups. A singlet at 1.29 ppm is assigned as the resonance of the BPin group. There are three sets of doublets corresponding to three different PMe₃ groups at 1.25 ppm ($^2J_{HP} = 6.7$ Hz, PMe₃ trans to BPin), 1.37 ppm ($^2J_{HP} = 7.3$ Hz, PMe₃ trans to SiEt₃), and 1.46 ppm ($^2J_{HP} = 7.6$ Hz, PMe₃ trans to Me). There is no symmetry about the Ir metal center, which renders the molecule chiral. Thus, the CH₂ groups of SiEt₃ are diastereotopic and should exhibit complex coupling patterns. Indeed, three diastereotopic protons of the CH₂ groups of SiEt₃ are observed from 0.84 to 0.95 ppm and there are twelve protons in the region of 1.35-1.45 ppm which include the other three diastereotopic protons of the CH2 groups of SiEt3 and nine protons from the CH₃ groups of SiEt₃. In the ³¹P{¹H} NMR spectrum, there are three different phosphorous resonances. A broad peak is observed at -66.4 ppm corresponding to the PMe₃ trans to BPin group, a doublet of doublet is observed at -64.2 ppm ($^2J_{pp}$ = 31.3 Hz, 19.8 Hz, PMe₃ trans to SiEt₃), and another doublet of doublet is observed at

-58.1 ppm ($^2J_{pp} = 19.8$ Hz, 19.8 Hz, PMe₃ trans to H). The assignment of the PMe₃ groups in the ¹H NMR spectrum is established by one-dimensional Nuclear Overhauser Effect (NOE) experiments and the assignment of the PMe₃ groups in the ³¹P{¹H} NMR spectrum is based on two-dimensional selective decoupling experiments (1H, 31P) to correlate the resonances of PMe₃ groups in the ¹H NMR spectrum to those in the ³¹P{¹H} NMR spectrum. Complex 29 adopts a facial geometry with BPin, SiEt₃, and H groups all trans to different PMe₃ groups. Single crystals of 29 were grown from pentane at -30 °C and the structure was further confirmed by single-crystal X-ray crystallographic analysis. The molecular structure of 29 is shown in Figure 53. Selected bond distances and bond angles are given in Table 20. From the single X-ray structure of 29, Ir(1)-P(3)_{trans to BPin} bond length is 2.359(2) Å, Ir(1)-P(4)_{trans to SiEt3} bond length is 2.334(2) Å, and Ir(1)-P(2)_{trans to H} bond length is 2.319(2) Å. The Ir-P bond length is directly proportional to the magnitude of the trans influence of the trans ligand; namely, the longer the Ir-P bond, the stronger the trans influence. It obviously shows that the order of trans influence is BPin> SiEt₃ > H. To our knowledge, this is the first structural characterization of a transition metal boryl complex containing a silyl group.

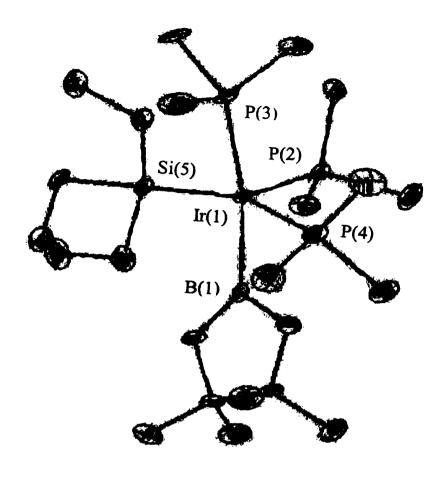


Figure 53. ORTEP of fac-(PMe₃)₃Ir(H)(BPin)(SiEt₃) (29). Thermal ellipsoids are shown at 25% probability.

Table 20. Selected Bond lengths [Å] and angles [°] for 29.

Bond	Distance [Å]	Bonds	Angle [°]
Ir(1)-B(1)	2.077(8)	B(1)-Ir(1)-P(2)	92.5(2)
Ir(1)-P(2)	2.319(2)	B(1)-Ir(1)-P(3)	166.5(2)
Ir(1)-P(3)	2.359(2)	B(1)-Ir(1)-P(4)	82.9(2)
Ir(1)-P(4)	2.334(2)	B(1)-Ir(1)-Si(5)	85.1(2)
Ir(1)-Si(5)	2.422(2)	P(2)-Ir(1)-P(3)	100.9(7)
		P(2)-Ir(1)-P(4)	102.6(8)
		P(2)-Ir(1)-Si(5)	94.5(7)
		P(3)-Ir(1)-Si(5)	91.9(7)
		P(4)-Ir(1)-P(3)	95.9(7)
		P(4)-Ir(1)-Si(5)	159.4(7)

Several novel iridium boryl complexes have been synthesized, and a strong trans influence of the boryl ligand has been observed in those complexes by comparing Ir-P bond distances to the Ir-P_{trans} to BPin bond distance. In those complexes, significantly longer Ir-P_{trans} to BPin bonds were observed compared to other Ir-P bonds in the complex. Ir-P_{trans} to BPin bond distances in those complexes are compared and summarized in Table 21 with the angles of PinB-Ir-PMe₃(trans).

Table 21. Comparisons of X₂B-Ir-PMe_{3trans} to BPin bond distances of iridium boryl complexes.

Complex	Bond	Bond Length (Å)	Trans Ligands	Angle (°)
17	PinB-Ir-PMe ₃	2.392(1)	PinB-Ir-PMe ₃	164.3(1)
18	PinB-Ir-PMe ₃	2.334(2)	PinB-Ir-PMe ₃	178.0(2)
24	CatB-Ir-PMe ₃	2.399(1)	CatB-Ir-PMe ₃	172.2(2)
	PinB-Ir-PMe ₃	2.352(4)	PinB-Ir-PMe ₃	169.2(5)
25	PinB-Ir-PMe ₃	2.353(4)	PinB-Ir-PMe ₃	169.0(5)
	PinB-Ir-PMe ₃	2.347(4)	PinB-Ir-PMe ₃	169.6(5)
29	PinB-Ir-PMe ₃	2.359(2)	PinB-Ir-PMe ₃	166.5(2)

Oxidation Chemistry of Ir¹ complex with Boranes

In contrast to the catecholboryl complexes, the corresponding compounds with other substituents (e.g. N, S) on boron are rather rare. In the past, B-H oxidative addition was exploited as a general synthetic method for preparing boryl compounds. A common theme in these reactions is the use of low-valent metal precursors containing readily dissociable ligands. This creates vacant sites in the metal coordination sphere, which allows for the oxidative addition of the boron reagents to the electron-rich metal center. This method was exploited to examine the reaction of several nitrogen-containing boranes including $H[B(NH)_2C_6H_4]$, $H[B(NH)_2C_{10}H_6]$ (HBDAN), and $H[B(NMe)_2C_6H_4]$ with (PMe₃)₃Ir(COE)(Cl) (30). The results are summarized in Figure 54. Similar to the reactions of compound 30 with HBPin and HBCat, H[B(NH)₂C₆H₄] reacts with compound 30 to give mer-(PMe₃)₃Ir[B(NH)₂C₆H₄](H)(Cl) (31) with the boryl group trans to Cl and H trans to PMe₃ as the only observed product. Since, as discussed earlier, the borane approaches the metal center as an electrophile, H-B addition is preferred by bending Cl-Ir-P axis to form compound 31. Therefore, compound 31 is the kinetic product of the reaction. Consideration of the trans influence for the various ligands in compound 31 suggests that it is also the thermodynamic product. Changing the borane source to HBDAN gives two isomers mer-(PMe₃)₃Ir(BDAN)(H)(Cl) (32) and mer-(PMe₃)₃Ir(H)(BDAN)(Cl) (33) in a 90.4:9.6 ratio. The geometries of these two complexes were determined by ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. The formation of the other isomer is presumably due to the bulkiness of the BDAN group, which might have interactions with methyl groups of a PMe₃ ligand. It is expected that replacing the H

atoms on the N atoms of -[B(NH)₂C₆H₄] with methyl groups would increase the steric bulkiness of the boryl group. We, therefore, examined the reaction of (PMe₃)₃Ir(COE)(Cl) (30) with H[B(NMe)₂C₆H₄]. This reaction produced an isomer mixture of *mer*-(PMe₃)₃Ir[B(NMe)₂C₆H₄](H)(Cl) (34) and *mer*-(PMe₃)₃Ir(H)[B(NMe)₂C₆H₄](Cl) (35) in a ratio of 14.4:85.6. The geometries of these two complexes were determined by ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. Characterization details of compounds 31, 32, 33, 34, and 35 are included in the experimental section. The reaction between compound 30 and H[B(NMe)₂C₆H₄] suggests that steric factors can influence the outcome of boryl complex formation.

(PMe₃)₄Ir(BPin) and fac-(PMe₃)₃Ir(BPin)₃ have been prepared in order to examine their viability to be the C-H activating species in the catalytic borylation reactions. Furthermore, Several novel Ir boryl complexes containing alkyl, aryl, or silyl ligands were synthesized and fully characterized.

Figure 54. The reactions of $(PMe_3)_3Ir(COE)(Cl)$ (30) with nitrogen-containing boranes including $H[B(NH)_2C_6H_4]$, $H[B(NH)_2C_{10}H_6]$ (HBDAN), and $H[B(NMe)_2C_6H_4]$.

CHAPTER 5

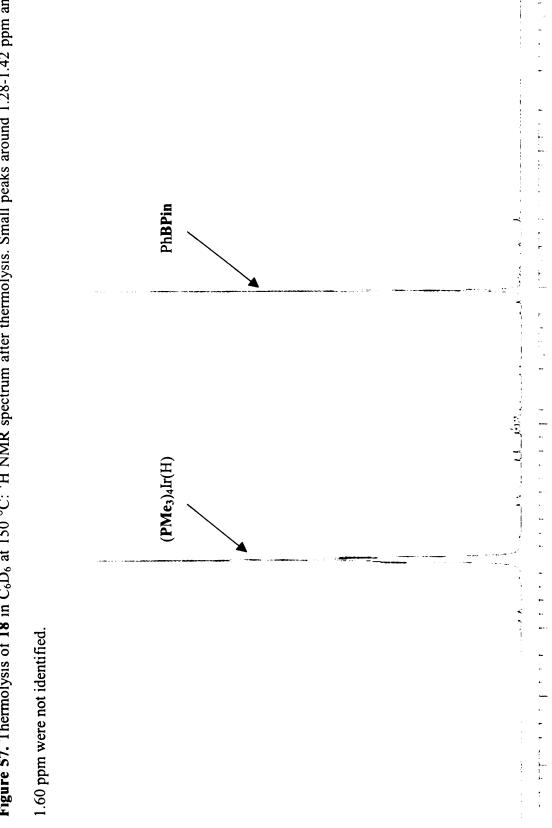
PRELIMINARY MECHANISTIC STUDIES OF THE IRIDIUM/PHOSPHINE CATALYST SYSTEM FOR AROMATIC BORYLATION

For many systems, catalysis by organometallic compounds is known to go through several of the following reactions: coordination of ligands to metals, oxidative addition, insertion and reductive elimination. In order to elucidate the mechanism of a homogeneously catalyzed reaction, it is a good idea to study the mechanism of each individual step in a series of relatively elementary chemical reactions by using tools such as kinetics, stereochemical studies, and spectroscopy. Importantly, each step must be shown to be kinetically and thermodynamically reasonable. Preliminary mechanistic studies of the Ir-catalyzed aromatic borylation were carried out and discussed in the previous chapter. Initially, it was deemed of importance to determine the viability of Ir¹ and Ir¹¹¹ boryl intermediates as the C-H activating species in the Ir^{1/111} and/or Ir^{1/11/11} cycles, respectively. Thus, the stoichiometric reactions of compounds 18nd 25 with benzene were examined.

Stoichiometric Reactions of Ir and Ir Boryl Complexes with Arenes

Thermolysis of $(PMe_3)_4Ir(BPin)$ (18) was carried out in C_6D_6 at 150 °C, the reaction proceeded smoothly to give the corresponding iridium deuteride complex, $(PMe_3)_4Ir(D)$, and C_6D_5BPin (Figure 55).

$$\begin{array}{c} \text{BPin} \\ \mid \text{ PMe}_3 \\ \text{Ir} \mid \text{PMe}_3 \\ \text{PMe}_3 \\ \text{PMe}_3 \end{array} + C_6D_6 \xrightarrow{150 \text{ °C}} \begin{array}{c} D \\ \text{Me}_3P - \mid \text{r} \mid \text{PMe}_3 \\ \text{PMe}_3 \\ \text{PMe}_3 \end{array} + C_6D_5BPin$$


Figure 55. Thermolysis of 18 in C_6D_6 at 150 °C.

From 1H NMR spectra, more than 95% (PMe₃)₄Ir(D) was generated from stoichiometric reaction between 18 and C_6D_6 as shown in Figures 56 and 57.

1.0 $(PMe_3)_4Ir(BPin)$ 1.3 (PMe₃)₄Ir(BPin) 1.5 1.8

Figure 56. Thermolysis of 18 in C₆D₆ at 150 °C: ¹H NMR spectrum before thermolysis.

Figure 57. Thermolysis of 18 in C₆D₆ at 150 °C: ¹H NMR spectrum after thermolysis. Small peaks around 1.28-1.42 ppm and 1.57-

1.0 1.2

Kinetic studies of the thermolysis of 18 in C₆D₆ were carried out and the reaction rate of the thermolysis was found to follow first-order kinetics as shown in Figure 58.

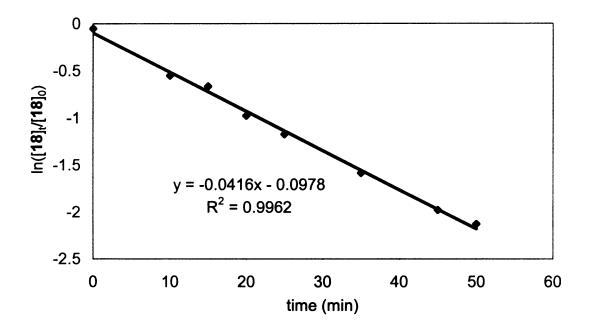


Figure 58. Plot of $\ln([18]_t/[18]_0)$ vs. time (min) for the thermolysis of 18 in C_6D_6 at 130 °C.

There are two potential pathways to account for the stoichiometric transformation between 18 and C_6D_6 (Figure 59). One of them involves dissociation of PMe₃ to generate a 16-electron intermediate, [(PMe₃)₃Ir(BPin)], followed by reaction with C_6D_6 to give products. The other potential pathway involves dissociation of two PMe₃ ligands and generation of a 14-electron intermediate, [(PMe₃)₂Ir(BPin)], which subsequently reacts with C_6D_6 to give the final products.

Figure 59. Two potential pathways to account for the stoichiometric reaction between 18 and C_6D_6 .

From the steady-state approximation, the rate law of the reaction is derived as below.

$$-\frac{d[18]}{dt} = k_{obs}[18]$$
 (6)

$$k_{\text{obs}} = \frac{k_1 k_{-2} k_3 [C_6 D_6] [PMe_3] + k_1 k_4 [C_6 D_6] (k_2 + k_3 [C_6 D_6])}{k_{-1} k_{-2} [PMe_3]^2 + (k_{-1} k_4 + k_{-2} k_3) [C_6 D_6] [PMe_3] + k_4 [C_6 D_6] (k_2 + k_3 [C_6 D_6])}$$
(7)

Phosphine inhibition experiments were carried out to determine whether the reaction goes through a 16-electron intermediate or a 14-electron intermediate. Experiments of thermolysis of 18 in C₆D₆ in the presence of various concentrations of [PMe₃] were examined. From 1/k_{obs} vs. [PMe₃] plot (Figure 60), 1/k_{obs} obviously shows first order dependence on [PMe₃]; therefore, the experimental data are consistent with the mechanism involving a 16-electron intermediate.

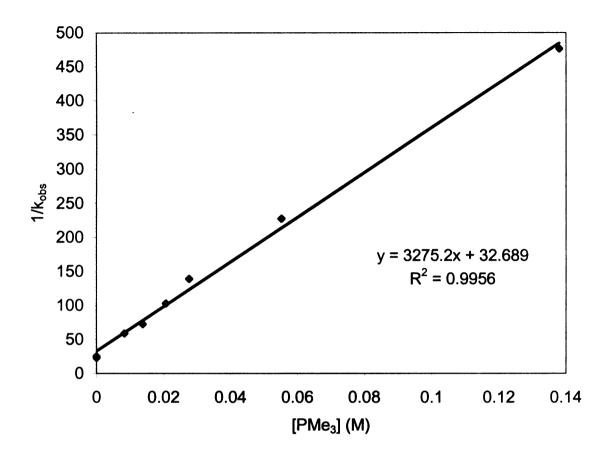


Figure 60. Plot of 1/k_{obs} vs. [PMe₃] of the thermolysis of 18 in C₆D₆ in the presence of various concentrations of PMe₃.

From the results of phosphine inhibition experiments, a mechanism of the stoichiometric transformation is proposed in Figure 61. In the proposed mechanism, the reaction goes through phosphine dissociation to generate a 16-electron intermediate, $[(PMe_3)_3Ir(BPin)]$, which can activate the C-D bond of C_6D_6 to form $[(PMe_3)_3Ir(BPin)(C_6D_5)(D)]$. This intermediate reductively eliminate C_6D_5BPin to generate $[(PMe_3)_3Ir(D)]$, which is followed by re-coordination of PMe₃ to form the observed product, $(PMe_3)_4Ir(D)$.

Figure 61. Our proposed mechanism for the thermolysis of 18 in C_6D_6 .

Stoichiometric reaction of 25 with arenes was investigated by the thermolysis of 25 in C₆D₆ at 150 °C. The thermolysis of 25 gave *fac*-(PMe₃)₃Ir(D)₃ as the final iridium containing product and generated 3 equivalents of C₆D₅BPin. The thermolysis of 25 proceeded in a stepwise procedure as shown in Figure 62.

Figure 62. The process of thermolysis of 25 in C_6D_6 at 150 °C.

The process of thermolysis of 25 was monitored by ^{1}H , ^{11}B , and $^{31}P\{^{1}H\}$ NMR spectra. Figure 63 displays the course of the reaction (the relative concentration of each species to $C_{6}Me_{6}$ (as an internal standard) versus time (in minutes)) as monitored by ^{1}H NMR.

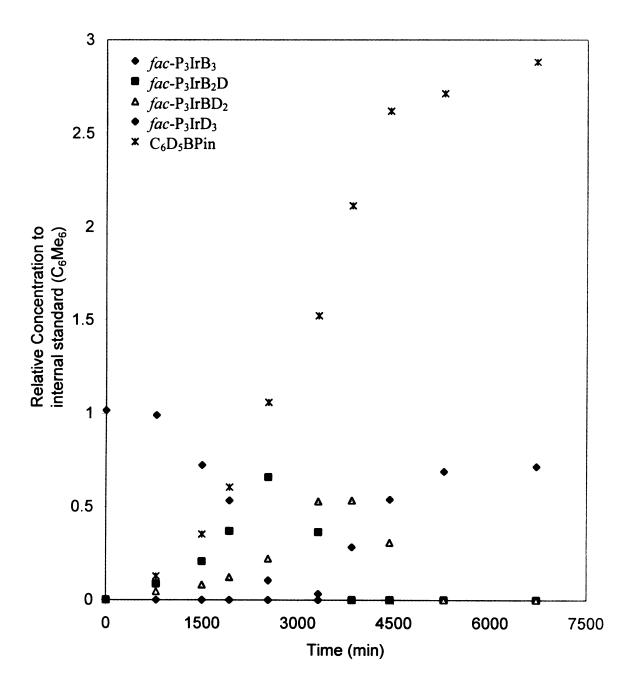


Figure 63. Concentration of each species relative to internal standard (C_6Me_6) vs. time (min) for the thermolysis of 25 in C_6D_6 at 150 °C measured by ¹H NMR.

The results showed that there was an induction period in the beginning of the thermolysis. Complex **25** was gradually converted to fac-(PMe₃)₃Ir(BPin)₂(D) (**21**- d_1) and generated 1 equiv. of C₆D₅BPin in the first step. Then fac-(PMe₃)₃Ir(BPin)₂(D) (**21**- d_1) was converted to fac-(PMe₃)₃Ir(BPin)(D)₂ (**36**- d_2) and the reaction generated a second equiv. of C₆D₅BPin. Finally, fac-(PMe₃)₃Ir(BPin)(D)₂ (**36**- d_2) was transformed to fac-(PMe₃)₃Ir(D)₃ as the final iridium containing product and the reaction generated the third equiv. of C₆D₅BPin.

The kinetic data for the thermolysis of 25 in C_6D_6 showed that the reaction did not follow first order kinetics (Figure 64). Furthermore, the thermolysis was strongly inhibited by external phosphine ligands. The inhibition phenomena are consistent with the observations in catalytic reactions where the reaction rate decreases dramatically when [P]:[Ir] ratio equals or exceeds 3:1. Detailed discussions will be included in the section followed by next paragraph.

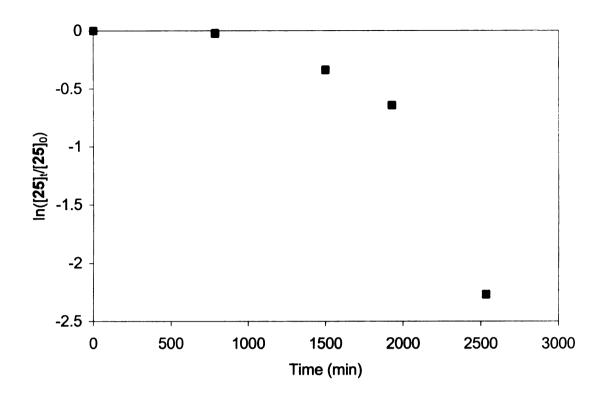


Figure 64. Plot of $ln([25]_t/[25]_0)$ vs. time (min) for the thermolysis of 25 in C_6D_6 at 150 °C.

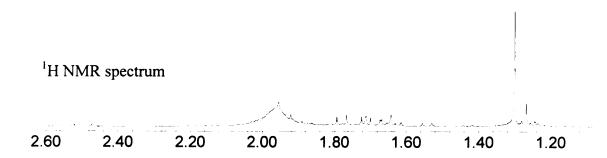
fac-(PMe₃)₃Ir(BPin)(H)₂ (36) and fac-(PMe₃)₃Ir(BPin)₂(H) (21) were prepared independently from the reaction of (PMe₃)₄Ir(H) (37) with HBPin and B₂Pin₂, respectively (Figure 65). Compound 37 reacted with HBPin at room temperature and generated a mixture of mer,cis-(PMe₃)₃Ir(BPin)(H)₂ (38) and fac-(PMe₃)₃Ir(BPin)(H)₂ (36). After 6 days at room temperature, compound 36 was the predominant species in the reaction mixture. Similarly, compound 37 reacted with B₂Pin₂ at 60 °C and yielded a mixture of mer,trans-(PMe₃)₃Ir(BPin)₂(H) (20) and fac-(PMe₃)₃Ir(BPin)₂(H) (21). Compound 21 was the predominant species after the temperature was increased to 100 °C for 7 hours. The geometries of 20, 21, 36, and 38 were determined by ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy and summarized in the experimental section.

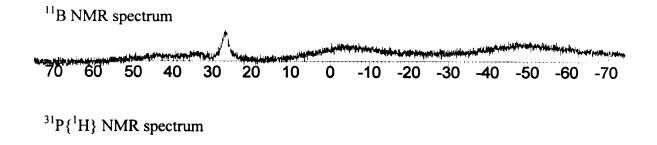
Figure 65. The reaction of (PMe₃)₄Ir(H) (37) with HBPin and B₂Pin₂.

Correlation between Phosphine Ligands and Catalytic Activity

Since both Ir¹ and Ir¹¹¹ boryl complexes can effect stoichiometric borylation of benzene, they are potentially viable candidates to be the C-H activating species for

catalytic borylation reactions. However, the stoichiometric reactions of (PMe₃)₄Ir(BPin) (18) and fac-(PMe₃)₃Ir(BPin)₃ (25) with benzene exhibit dramatically different reactivities in terms of phosphine dependence. The thermolysis of Ir^{III} complex 25 in C₆D₆ is strongly inhibited by external phosphine ligands, whereas the thermolysis of Ir¹ complex 25 shows inverse first-order dependence on [PMe₃]. For catalysis to occur it is usually required to produce vacant coordination sites in organometallic complexes. Since both compounds are coordinatively saturated 18-electron complexes, it is not surprising that the stoichiometric reaction of 18 or 25 with benzene proceeds slowly at elevated temperature. As previously mentioned it was shown that a phosphine dissociation pathway is responsible for generating active species to activate C-H bonds of benzene in the stoichiometric reaction of 18 with benzene. Furthermore, in the catalytic borylation reactions, the reaction rate was shown to be dependent on the nature of phosphine ligands and the relative concentration between phosphine ligands and iridium metal complex.⁵⁷ In particular, borylation rates were appreciable when [P]:[Ir] < 3:1 but decreased dramatically when [P]:[Ir] ratio equaled or exceeded 3:1. The fact that phosphine inhibition is observed in the thermolysis of complex 25, which contains three PMe₃ ligands, in the presence of external phosphine ligands is consistent with the inhibition phenomena seen in catalytic reactions when [P]:[Ir] ratio equals or exceeds 3:1. The thermolysis of Ir¹ complex 18, however, shows inverse first order dependence on [PMe₃]. The reaction rate decreases when the concentration of PMe₃ increases. Since the thermolysis of 18 is not completely shut down when [P]:[Ir] >> 3, the observation is not not consistent with that in catalytic reactions. These experimental observations support a


mechanism involving an Ir^{III} boryl intermediate being the C-H activating species in these catalytic borylation reactions.


Substantially improved catalytic activity was observed with the use of bidentate chelating phosphine ligands including 1,2-bis(diphenylphosphino)ethane (dppe) and 1,2-bis(dimethylphosphino)ethane (dmpe). This observation strongly supports the viability of bisphosphine intermediates. A further piece of evidence is that the 18-electron bisphosphine compound, (PMe₃)₂Ir(H)₅, is an effective pre-catalyst for aromatic borylation. Those data imply a mechanism involving Ir^{III} and Ir^V intermediates in a Ir^{III/V} catalytic cycle.

Stoichiometric and Catalytic Borylations of Iodobenzene

Previously it was found that iridium catalysts generated from an Ir¹ source, (Ind)Ir(COD) (13) and dppe, were ineffective for the aromatic borylation of iodobenzene. However, iodobenzene and HBPin reacted smoothly to yield an isomer mixture of C₆H₄(I)(BPin) when active catalysts were generated from an Ir^{III} source, (MesH)Ir(BPin)₃ (14) and dppe. Both the Ir^I boryl complex, (PMe₃)₄Ir(BPin) (18), and the Ir^{III} boryl complex, *fac*-(PMe₃)₃Ir(BPin)₃ (25) can effect stoichiometric reactions with benzene to produce PhBPin and the corresponding hydride complexes. However, the arene products from stoichiometric reactions of 18 and 25 with iodobenzene differ substantially. Specifically, compound 18 reacted rapidly with iodobenzene at room temperature to form an off-white precipitate, but isomers of C₆H₄(I)(BPin) were not detected, even after prolonged thermolysis. Analysis of the ¹H and ³¹P{¹H} NMR spectra of the off-white

precipitate from the reaction indicated that the material contained a number of species, which could not be identified (Figure 66). Presumably, the reaction proceeded via oxidative addition of iodobenzene to complex 18 to form [(PMe₃)₃Ir(I)(C₆H₅)(BPin)] followed by several potential reaction pathways to generate a variety of products. For example, [(PMe₃)₃Ir(I)(C₆H₅)(BPin)] could eliminate C-B or I-B bonds.

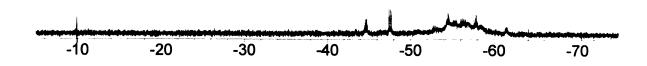


Figure 66. ^{1}H , ^{11}B , and $^{31}P\{^{1}H\}$ NMR spectra of the off-white precipitate from the reaction between 18 and $C_{6}H_{5}I$.

Conversely, thermolysis of 25 in iodobenzene at 150 °C produced, in addition to a 45% yield of PhBPin, m- and p-C₆H₄(I)(BPin) in 54% yield (Figure 67). The significant quantities of PhBPin formed were presumably generated from a competitive C-I activation pathway followed by PhBPin reductive elimination.

Figure 67. Thermolysis of 25 in iodobenzene.

The previous paragraph demonstrates that borylation products of iodobenzene are not obtained when Ir^I sources are used under stoichiometric and catalytic conditions, whereas, Ir^{III} complexes effect both stoichiometric and catalytic borylations. Furthermore, in situ generation of "Ir^{III} species" from an Ir^I source, compound 13, and dppe has been demonstrated to be a viable way to generate effective catalysts for borylation of iodobenzene. These experimental observations are consistent with a mechanism involving Ir^{III} and Ir^V intermediates.

Kinetic Isotope Effects in Aromatic Borylation

The isotope effects involved in the activation of arene C-H bonds by the intermediate [Cp*Rh(PMe₃)] have been investigated by Jones and Feher.⁵⁸ In their study of reductive elimination of arenes from aryl hydride complexes Cp*Rh(PMe₃)(Aryl)(H), they discovered that a low–energy pathway existed for the interconversion of the carbon attached to the metal. The isomerization was found to occur in a sequential [1,2] fashion, and it can be accommodated by the reversible formation of an π^2 -arene complex as shown in Figure 68.

Figure 68. The process of reversible formation of π^2 -arene complexes proposed by Jones and Feher.

The photolysis of $Cp*Rh(PMe_3)(H)_2$ offers a convenient method for the photoinduced generation of the coordinatively unsaturated intermediate $[Cp*Rh(PMe_3)]$ by elimination of dihydrogen. The active species is able to activate C-H or C-D bonds under conditions of kinetic control. Jones et al. conducted a kinetic isotope experiment by irradiating $Cp*Rh(PMe_3)(H)_2$ in a 1:1 (v:v) mixture of C_6H_6/C_6D_6 at 10 °C, which resulted in the evolution of H_2 and the formation of the benzene C-H/C-D activation products $Cp*Rh(PMe_3)(C_6H_5)(H)$ (4) and $Cp*Rh(PMe_3)(C_6D_5)(D)$. Quenching of the reaction with CCl_4 forms the corresponding chloro derivatives $Cp*Rh(PMe_3)(C_6H_5)(Cl)$

and $Cp*Rh(PMe_3)(C_6D_5)(Cl)$. Mass spectral analysis of this mixture revealed a 1.05:1 ratio of the products in which C_6H_6 versus C_6D_6 has been activated (Figure 69). Since benzene is not labile in the products $Cp*Rh(PMe_3)(C_6H_5)(H)$ and $Cp*Rh(PMe_3)(C_6D_5)(D)$ under the condition of the experiment (10 °C), this ratio reflects the kinetic isotope effect for arene complexation and/or C-H bond activation. This small value of $k_H:k_D$ was consistent with there being little or no C-H bond breaking in the rate-determining step.

Me₃P
$$\frac{h_0, 10 \text{ °C}}{C_6H_6/C_6D_6}$$
 $\frac{Rh_0}{Me_3P}$ $\frac{Rh_0}{C_6H_5}$ $\frac{Rh_0}{C_6D_5}$ $\frac{Rh_0}{C_6D_5}$ $\frac{Rh_0}{C_6D_5}$

Figure 69. Observed k_H/k_D in the activation of a 1:1 mixture of C_6H_6/C_6D_6 by the intermediate [Cp*Rh(PMe₃)].

In order to access the C-H bond-breaking step, Jones et al. carried out a similar kinetic isotope effect experiment with 1,3,5- $C_6D_3H_3$ and k_H/k_D was determined to be 1.4. Because complexation of [Cp*Rh(PMe₃)] to 1,3,5- $C_6D_3H_3$ can produce one possible π^2 -arene complex, the ratio k_H/k_D for this reaction reflects only the isotope effect involved in the cleavage of the C-H. Since both experiments involve bimolecular activation of the benzene C-H/C-D bond ([Cp*Rh(PMe₃)] + benzene), their observation of different kinetic isotope effects for these two experiments prove that a direct insertion of [Cp*Rh(PMe₃)] into the C-H bond of benzene is not occurring. In other words, they have

determined that the activation of arene C-H bonds by [Cp*Rh(PMe₃)] proceeds through an intermediate complex, [Cp*Rh(PMe₃)(η^2 -C₆H₆)].

In order to have a deeper understanding of the mechanism of borylation by (Ind)Ir(COD) (13)/2 PMe₃ or (MesH)Ir(BPin)₃ (14)/2 PMe₃ pre-catalyst system and hopefully identify the rate-determining step in the catalytic borylation reactions, borylation reactions in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 and separately in 1,3,5- $C_6D_3H_3$ were carried out. If a kinetic isotope effect is observed for the borylation reaction in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 , it may result from coordination of C_6H_6 vs. C_6D_6 or from the C-H/C-D bond breaking step. On the other hand, the kinetic isotope effect for the borylation reaction of 1,3,5- $C_6D_3H_3$ can only result from the C-H bond activation step since there is only one arene for coordination. The results from experiments of catalytic reactions are summarized in Table 22.

Table 22. Borylation reactions with HBPin in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 or 1,3,5- $C_6D_3H_3$ catalyzed by Ir^I and Ir^{III} sources at 150 °C, [Ir] = 2 mol%, $[PMe_3]:[Ir] = 2:1$.

Entry	Pre-catalysts	Substrate	Product Distribution ⁵⁹
1	(MesH)Ir(BPin) ₃ (14)	Molar ratio 1:1	C ₆ D ₅ BPin:C ₆ H ₅ BPin
	Ir ^{III}	C ₆ H ₆ /C ₆ D ₆	1.00:2.28 (100% conversion)
2	14	1,3,5,-C ₆ D ₃ H ₃	$C_6D_2H_3(BPin):C_6D_3H_2(BPin)$
	Ir ^{III}	1,5,5, 0,05,113	1.00:1.94 (100% conversion)
3	(Ind)Ir(COD) (13)	Molar ratio 1:1	C ₆ D ₅ BPin:C ₆ H ₅ BPin
	Ir ^I	C ₆ H ₆ /C ₆ D ₆	1.00:2.29 (100% conversion)
4	13	1,3,5,-C ₆ D ₃ H ₃	$C_6D_2H_3(BPin):C_6D_3H_2(BPin)$
	Ir ^I	1,2,2,	1.00:2.06 (100% conversion)

Comparison of the results in Table 22 shows similar k_H/k_D values for the borylations of C_6H_6/C_6D_6 (1:1) and of 1,3,5- $C_6D_3H_3$ by Ir^I or Ir^{III} . Furthermore, it appears that the kinetic isotope effect is essentially identical from the Ir^I and Ir^{III} pre-catalyst sources, which suggests a similar or same active species. The large observed kinetic isotope effect in borylations of C_6H_6/C_6D_6 (1:1), which is different from Jones' case, suggests that arene coordination cannot be the rate-determining step. If the arene coordination is the rate-determing step, we expect to see no or, at most, a very small kinetic isotope effect since it does not involve the C-H bond breaking event. However, current data cannot distinguish whether C-H bond breaking or reductive elimination of the arylboronic ester is the rate-determining step (see Figure 73). If reductive elimination

of the arylboronic ester were the rate-determining step, we would expect to see a small secondary isotope effect because the reaction does not involve cleavage of C-H/C-D bonds. The expected small isotope effect differs from relatively large observed k_H/k_D (2.06 and 1.94) for the borylations in 1,3,5-C₆D₃H₃ from Ir¹ and Ir¹¹¹ sources, respectively. However, it is important to remember that any step prior to the rate-determining step can contribute to the observed kinetic isotope effect. Therefore, the current data cannot definitely determine the actual rate-determining step in the borylation reactions.

Stoichiometric borylations of (PMe₃)₄Ir(BPin) (18) and *fac*-(PMe₃)₃Ir(BPin)₃ (25) in a 1:1 mixture of C₆H₆/C₆D₆ and separately in 1,3,5-C₆D₃H₃ were also examined. Thermolysis of 25 in a 1:1 mixture of C₆H₆/C₆D₆ and separately in 1,3,5-C₆D₃H₃ at 150 °C gave similar kinetic isotopes effect k_H/k_D as compared to the catalytic borylation reactions, whereas thermolysis of 18 in a 1:1 mixture of C₆H₆/C₆D₆ and separately in 1,3,5-C₆D₃H₃ at 150 °C gave relatively larger kinetic isotope effect k_H/k_D than those observed in catalysis as shown in Table 23.

Table 23. Stoichiometric borylation reactions of 18 and 25 with a molar ratio 1:1 mixture of C_6H_6/C_6D_6 or 1,3,5- $C_6D_3H_3$ at 150 °C.

Entry	Iridium Complex	Substrate	Product Distribution ⁵⁹
1	fac-(PMe ₃) ₃ Ir(BPin) ₃	Molar ratio 1:1	C ₆ D ₅ BPin:C ₆ H ₅ BPin
	(25)	C ₆ H ₆ /C ₆ D ₆	1.00:2.53 (100% conversion)
	Ir ^{III}		
2	25	1,3,5,-C ₆ D ₃ H ₃	$C_6D_2H_3(BPin) : C_6D_3H_2(BPin)$
	Ir ^{III}	-,-,-, - 0- 3.	1.00:1.93 (100% conversion)
3	(PMe ₃) ₄ Ir(BPin) (18)	Molar ratio 1:1	C ₆ D ₅ BPin:C ₆ H ₅ BPin
	Ir ¹	C ₆ H ₆ /C ₆ D ₆	1.00:2.67 (100% conversion)
4	18	1,3,5,-C ₆ D ₃ H ₃	$C_6D_2H_3(BPin):C_6D_3H_2(BPin)$
	Ir ^I		1.00:2.37 (100% conversion)

Mechanistic Discussions

The existence of an arene coordination step in the catalytic cycle of aromatic borylation by 13/2 PMe₃ or 14/2 PMe₃ pre-catalyst systems cannot be completely ruled out based on the present data. However, Miyaura^{26f} and co-workers reported the isolation of a trisboryl complex [Ir((dtbpy)(COE)(BPin)₃] as shown in Figure 70, which is chemically and kinetically competent to be an intermediate in the catalytic process in their pre-catalyst system (3 mol% 1/2[IrCl(COE)₂]₂/dtbpy). Based on a lesson from

Halpern's work in elucidating the mechanism of the hydrogenation reaction catalyzed by Wilkinson's catalyst, $(PPh_3)_3Rh(Cl)$, isolation of a stable olefin complex is inconsistent with an η^2 -arene complex pathway. Therefore, the arene coordination step prior to C-H bond activation seems unlikely.

Figure 70. A trisboryl complex [Ir((dtbpy)(COE)(BPin)₃] isolated by Miyaura and coworkers.

There are two potential pathways for the active species to react with an arene. One possibility is that it proceeds through oxidative addition of a C-H bond of an arene to give an Ir^V intermediate followed by reductive elimination of an arylboronate ester to give the corresponding hydride complex. Another option is that the corresponding hydride complex is formed in a one-step "σ-bond metathesis" reaction as shown in Figure 71. σ-bond metathesis has been confirmed only for d⁰ complexes of the early transition metal and lanthanides, where oxidative addition is precluded.

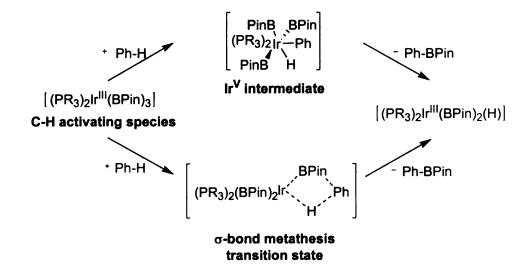
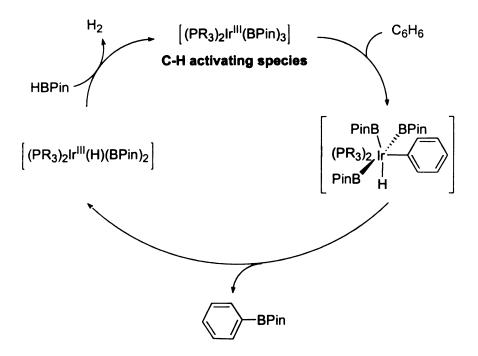


Figure 71. Possible mechanisms for Ir¹¹¹ borylation reaction.


Although we have not yet investigated the mechanism of the borylation extensively, we have obtained qualitative information regarding this question. From the kinetic studies of the stoichiometric reaction of (PMe₃)₄Ir(BPin) (18) with benzene, we established that the intermediate [(PMe₃)₃Ir(BPin)] activates the C-H bond of benzene. Furthermore, in the stoichiometric reaction of *fac*-(PMe₃)₃Ir(BPin)₃ (25) with benzene, a transient species similar to [(PMe₃)₂Ir(BPin)₃], presumably generated in the reaction mixture, activates the C-H bond of benzene. Therefore, oxidative addition of a C-H bond of an arene to an iridium boryl complex is a viable reaction pathway. In order to evaluate PhBPin reductive elimination, we examined the thermolysis of compound 28 in C₆D₆. Compound 28 has the BPin group *trans* to the phenyl group and it is stable at room temperature. Before reductive elimination of PhBPin occurs, compound 28 is expected to isomerize to another isomer with the BPin group and the phenyl group in a *cis* geometry. Thermolysis of compound 28 in C₆D₆ at 50 °C was carried out and the reaction was

monitored by ¹H, ¹¹B, and ³¹P{¹H} NMR spectroscopy. At 50 °C, compound **28** was converted to a mixture of *fac*-(PMe₃)₃Ir(C₆D₅)(D)(H) (**39**), *fac*-(PMe₃)₃Ir(BPin)(H)₂ (**36**), and (PMe₃)₄Ir(H) (**37**), and PhBPin was produced. After 55 hours, compound **28**, **39**, **36**, and **37** were in the ratio of 16:73:11:<1 (Figure 72).

Figure 72. Thermolysis of compound 28 in C_6D_6 at 50 °C.

Presumably reductive elimination of PhBPin from compound 28 generates an intermediate, [(PMe₃)₃Ir(H)], which can subsequently activate a C-D bond of C₆D₆ to form compound 39. Compound 36 most likely comes from the oxidative addition of HBPin to the intermediate [(PMe₃)₃Ir(H)]. HBPin could come from a minor pathway involving H-B reductive elimination from compound 28. The generation of PhBPin from

the thermolysis of compound 28 in C₆D₆ shows that PhBPin reductive elimination is a viable pathway as well. In addition to some other observations discussed previously: (1) Borylation products of iodobenzene are not obtained when Ir^I sources are used under stoichiometric and catalytic conditions, whereas Ir^{III} complexes effect both stoichiometric and catalytic borylations. (2) Improved catalytic activity is observed with chelating phosphines and inhibition is observed when [P]:[Ir] ratios equal or exceed 3:1, strongly supporting the viability of bisphosphine intermediates. (3) The 18-electron bisphosphine compound, (PMe₃)₂Ir(H)₅, is an effective pre-catalyst for borylation. Therefore, we presently favor the simple scheme which involves a direct oxidative addition of a C-H bond of an arene to the proposed active species, [(PR₃)₂Ir^{III}(BPin)₃] to form an Ir^V intermediate, [(PR₃)₂Ir^{III}(BPin)₃(H)(Ph)]. Reductive elimination of PhBPin from the Ir^V intermediate, [(PR₃)₂Ir^{III}(BPin)₃(H)(Ph)], gives [(PR₃)₂Ir^{III}(BPin)₂(H)], which converts to [(PR₃)₂Ir^V(BPin)₃(H)₂] in the presence of HBPin. After releasing H₂, the reaction regenerates [(PR₃)₂Ir^{III}(BPin)₃], the proposed C-H activating species, to complete the catalytic cycle as shown in Figure 73.

Figure 73. A putative mechanism for aromatic borylations catalyzed by iridium boryl complexes.

An interesting reactivity was observed in the thermolysis of fac-(PMe₃)₃Ir(BPin)₃ (25) in C₆D₆ in the presence of 10% of (MesH)Ir(BPin)₃ (14). The reaction proceeded at 100 °C instead of occurring at 150 °C to generate a mixture of fac-(PMe₃)₃Ir(BPin)₂(H/D) and fac-(PMe₃)₃Ir(BPin)(H)(D) in approximately 62:38 ratio and C₆D₅BPin after 33.5 hours. The hydride presumably comes from a PMe₃ ligand. As has been discussed earlier, the mesitylene ligand of compound 14 is very labile presumably due to the very strong trans influence of the BPin group, therefore, it is most likely that 14 acts as a phosphine trap, which facilitates the PMe₃ dissociation from compound 25 in the thermolysis

reaction of 25 in C_6D_6 . The actual role of complex 14 in the reaction and the difference in terms of reactivity require further elucidation.

Miyaura, Ishiyama, and co-workers⁶⁰ recently developed a new catalyst system (1.5 mol% [Ir(OMe)(COD)]₂/ 3 mol% dtbpy) for borylation of arenes at room temperature with a stoichiometric amount of boron reagent (B₂Pin₂) and arene to produce the corresponding arylboronates in high yield. This new system has extended the functional group tolerance to a CN group. The high catalyst efficiency of [Ir(OMe)(COD)]₂ can be attributed to the more facile formation of iridium boryl complexes. Iridium triboryl complexes have been implied as possible intermediates in the borylation of arenes. Presumably, the transmetallation reaction between B₂Pin₂ and [Ir(OMe)(COD)]₂ results in the formation of an Ir¹ boryl complex after releasing MeOBPin. The Ir¹ boryl complex then undergoes oxidative addition of B₂Pin₂ to yield an Ir¹¹ triboryl complex as shown in Figure 74.

$$[Ir]-OR + B_2Pin_2 \xrightarrow{+ B_2Pin_2} \frac{+ B_2Pin_2}{- MeOBPin} [Ir]-BPin \xrightarrow{+ B_2Pin_2} BPin \\ [Ir]-BPin \\ BPin$$

Figure 74. Iridium tris(boryl) intermediate in borylation reactions.

The results from preliminary mechanistic studies on the new iridium catalyst system indicate that a mechanism involving Ir^{III} and Ir^V intermediates in an Ir^{III/V} catalytic cycle is most likely. Correlations between the stoichiometric and catalytic reactions provided a deeper insight into the mechanism of aromatic borylation.

Our studies allow arylboron species to be prepared in an economical fashion and also demonstrate that C-H bond activation and functionalization can be developed into a practical synthetic tool. Future work is needed to further elucidate the mechanism for aromatic borylations catalyzed by iridium boryl complexes in order to have a deeper understanding for this important transformation. With the rapid advances in this area, we expect that Ir-catalyzed borylations of aromatics will certainly find acceptance in the synthetic arsenal of organic chemists.

CHAPTER 6

EXPERIMENTAL

General Considerations

All manipulations were performed using glove box, Schlenk, or vacuum-line techniques. Pentane, diethyl ether, and tetrahydrofuran were pre-dried over CaCl₂ and distilled from Sodium/benzophenone ketyl. Toluene and benzene were pre-dried over CaCl₂ and distilled from Sodium metal. Methylene chloride was pre-dried over CaCl₂ and distilled from CaH₂. Cyclohexane was purified and dried according to the method reported by Perrin and Armarego.⁶¹ Hexamethyldisiloxane, decane, and dodecane were distilled from sodium metal.

CDCl₃, tetrahydrofuran- d_8 , p-xylene- d_{10} , cyclohexane- d_{12} , and 1,3,5-C₆D₃H₃ were dried with and vacuum transferred from 3Å sieves. Benzene- d_6 and toluene- d_8 were dried with, vacuum transferred from 3Å sieves, and stored over a sodium mirror. CD₂Cl₂ was dried with 4Å sieves.

HBPin was purchased from Aldrich, further purified by stirring with PPh₃ to remove BH₃, and then vacuum distilled to give the borane as a clear viscous liquid. B₂Pin₂ was purchased from Frontier Scientific and used as received. PMe₃ and PMe₃-d₉ were purchased from Aldrich and vacuum transferred to an air-free flask respectively before use. PEt₃, PⁱPr₃, PⁱBu₃, PCy₃, PPh₃, 1,2-Bis(diphenylphosphino)ethane (dppe), 1,2-Bis(diphenylphosphino)propane (dppp), Bis(dimethylphosphino)methane (dmpm), 1,2-Bis(dimethylphosphino)ethane (dCype), 1,2-Bis(diphenylphosphino)benzene (dppb), 2,2'-dipyridyl (bpy), 4,4'-di-*tert*-butyl-2,2'-

dipyridyl (dtbpy), 2-(diphenylphosphino)-2'-(N,N-dimethylamino)biphenyl, 2-(dicyclohexylphosphino)-2'-(N,N-dimethylamino)biphenyl, 1,10-phenanthroline, and 2,2'-bithiophene were used as received from commercial sources. 1,2-dimethoxyethane, N,N,N,N-tetramethylethylenediamine (TMEDA), thiophene and triethylsilane were distilled prior to use.

Substrate: anisole, N,N-dimethylaniline, 2,6-lutidine, benzotrifluoride, N,N-diethylbenzamide, ethylbenzoate, 1,3,5-C₆H₃F₃, and 4-fluorobromobenzene were distilled and further dried by passing through a column of activated alumina prior to use. C₆HF₅ and 1,3-bis(trifluoromethyl)benzene were distilled and then dried over 4Å sieves, followed by vacuum transfer to an air-free flask. *m*-xylene, *p*-xylene, *o*-xylene, fluorobenzene, chlorobenzene, bromobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 4-chlorobenzotrifluoride, 4-fluoroanisole, 4-chlorotoluene, 2-chloroanisole, 2-chlorotoluene, and 2-methylanisole were distilled from Sodium metal. Veratrole and 1,4-bistrifluoromethylbenzene were distilled from CaH₂. 1,4-dichlorobenzene was sublimed prior to use.

Starting materials: $[Ir(COD)C1]_2$, 62 $[Ir(COE)_2C1]_2$, 62 (Ind)Ir(COD), 63 $(PMe_3)_4Ir(C1)$, 64 $(PMe_3)_4Ir(H)$, 44 $(PMe_3)_4Ir(Me)$, 52 $(PMe_3)_3Ir(Ph)$, 55 $Cp*Rh(\eta^4-C_6Me_6)$, 65 $Cp*Ir(\eta^4-C_6Me_6)$, 66 $Cp*Ir(PMe_3)(H)_2$, 67 $Cp*Ir(P(CD_3)_3)(H)_2$, 67 $(C_5Me_4Et)Ir(PMe_3)(H)_2$, 67 $(PMe_3)_2Ir(H)_5$, 68 $Cp*IrH_4$, 69 and $Cp*Ir(PMe_3)(H)(BPin)^{21}$ were prepared according to literature methods.

¹H and ¹³C{¹H} NMR spectra were recorded on Varian Inova–300, VXR-500, or Inova–600 spectrometers and referenced to residual proton solvent signals. ¹¹B, ¹⁹F, and ³¹P{¹H} spectra were recorded on Varian VXR–300 or Varian Inova–300 spectrometers,

operating at 96.29, 282.35, and 121.49 MHz respectively and referenced to external standards. Boron chemical shifts were referenced to a neat BF₃·Et₂O external standard. Fluorine chemical shifts were referenced to a neat CFCl₃ external standard. Phosphorous chemical shifts were referenced to an 85% phosphoric acid external standard. Elemental analyses were performed at Michigan State University using a Perkin Elmer Series II CHNS/O Analyzer 2400. GC-MS data were obtained using a HP G1800A GCD system.

Syntheses

(MesH)Ir(BPin)₃ (14). Complex 13 (2.54 g, 6.11 mmol) and HBPin (3.91 g, 30.55 mmol) were dissolved in 32 mL mesitylene. The light brown solution was then heated at 75 °C for 48 h. The reaction mixture turned to dark brown after 24 h at 75 °C. Mesitylene was removed under high vacuum to give viscous dark brown oil. The crude mixture was then triturated with hexamethyldisiloxane (3 x 2 mL). A white solid (797 mg, 19%) was obtained after filtration and washed with cold hexamethyldisiloxane. mp 140 °C (dec). ¹H NMR (600 MHz, C₆D₆) δ 1.33 (s, 36H, 3 BO₂C₆H₁₂), 2.24 (s, 9H, 3 CH₃), 5.62 (s, 3H, 3 CH). ¹¹B NMR (C₆D₆) δ 32.5. ¹³C{¹H} NMR (300 MHz, C₆D₆) δ 19.7 (s), 25.7 (s), 81.0 (s), 97.0 (s), 118.05 (s). Anal. Calcd for C₂₇H₄₈IrB₂O₆: C, 46.77; H, 6.98. Found: C, 47.13; H, 7.18.

mer-(PMe₃)₃Ir(BPin)(H)(Cl) (15). A solution of PMe₃ (102 mg, 1.34 mmol) in 2 mL THF was added dropwise to a solution of [Ir(COE)₂Cl]₂ (200 mg, 0.22 mmol) in 4 mL THF solution. The reaction mixture was stirred at room temperature for 2 h. The solvent was then removed under reduced pressure. The residue was redissolved in 6mL

THF and a solution of HBPin (65 μ L, 0.45 mmol) in 2 mL THF was added dropwise. The reaction mixture was stirred at room temperature overnight. Next day, the solution was filtered through celite to remove trace suspension. The filtrate was pumped down to give a spectroscopically pure white solid (243.0 mg, 93%). The product can be recrystallized from concentrated THF solution at -30 °C to give colorless crystals. mp 170-172 °C (dec). ¹H NMR (C₆D₆) δ -9.66 (dt, J = 136.4 Hz, 21.8 Hz, 1H, hydride), δ 1.04 (s, 12H, BO₂C₆H₁₂), 1.37 (d, J = 7.9 Hz, 9H, PMe₃ trans to hydride), 1.62 (t, J = 3.7 Hz, 18H, 2 PMe₃ trans to each other). ¹³C{¹H} NMR (C₆D₆) δ 18.4 (d, J = 26.7 Hz), 20.7 (dt, J = 3.5 Hz, 19.1 Hz), 25.8 (s), 80.8 (s). ¹¹B NMR (C₆D₆) δ 28.5. ³¹P{¹H} NMR (C₆D₆) δ -46.1 (t, J = 20.6 Hz, 1P, PMe₃ trans to hydride), -40.4 (d, J = 21.4 Hz, 2P, 2 PMe₃ trans to each other). Anal. Calcd for C₁₅H₄₀IrBClO₂P₃: C, 30.86; H, 6.91. Found: C, 30.91; H, 7.06.

mer,cis-(PMe₃)₃Ir(BPin)₂(Cl) (17). A solution of B₂Pin₂ (191 mg, 0.75 mmol) in 5 mL THF was added to a suspension of (PMe₃)₄Ir(Cl) (400 mg, 0.75 mmol) in 30 mL THF in a schlenk tube. The reaction mixture was heated at 70 °C for 1 day. The orange suspension gradually changed to a gray color suspension. The reaction mixture was cooled down and filtered through celite to remove gray precipitates. The filtrate was then pumped down to give a colorless crystalline solid. The crude product was recrystallized from pentane at -30 °C. The product was collected as colorless crystals (390 mg, 73%). mp 156-158 °C (dec). ¹H NMR (C₆D₆) δ 1.10 (s, 12H, BO₂C₆H₁₂), 1.22 (s, 12H, BO₂C₆H₁₂), 1.31 (d, J = 6.9 Hz, 9H, PMe₃ trans to BPin), 1.72 (t, J = 3.6 Hz, 18H, 2 PMe₃ trans to each other). ¹³C{¹H} NMR (C₆D₆) δ 15.9 (t, J = 19.1 Hz), 19.4 (d, J = 41.3 Hz), 25.4 (s), 81.9 (s). ¹¹B NMR (C₆D₆) δ 28.0, 36.5. ³¹P{¹H} NMR (C₆D₆) δ -51.4 (br,

1P, PMe₃ trans to BPin), -41.1 (d, J = 26.9 Hz, 2P, 2 PMe₃ trans to each other). Anal. Calcd for $C_{21}H_{51}IrB_2ClO_4P_3$: C, 35.53; H, 7.24. Found: C, 35.48; H, 7.60.

(PMe₃)₄Ir(BPin) (18). A solution of PMe₃ (161 mg, 2.12 mmol) in 4 mL THF was added to a solution of 17 (500 mg, 0.7 mmol) in 5 mL THF in a schlenk tube. A solution of KO'Bu (158 mg, 1.4 mmol) in 5 mL THF was then added to the reaction mixture. The reaction mixture was stirred at room temperature for 90 min. The solvent was removed under reduced pressure. The product was extracted with 8 mL pentane. The pentane filtrate was then pumped down to give a white solid (402 mg, 92%). The material always contained a small amount of (PMe₃)₄Ir(H) (37) (ca. 3% by ¹H NMR) due to its considerable moisture sensitivity). The product was recrystallized from a concentrated pentane solution at -30 °C to give colorless crystals. mp 130-137 °C (dec). ¹H NMR (C₆D₆, 25 °C) δ 1.24 (s, 12H, BO₂C₆H₁₂), 1.58 (br s, 36H, PMe₃). ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 26.8 (s), 28.9 (m), 81.0 (s). ¹¹B NMR (C₆D₆) δ 38. ³¹P{¹H} NMR (C₆D₆, 25 °C) δ -57.5 (br s, 4P). Anal. Calcd for C₁₈H₄₈IrBO₂P₄: C, 34.67; H, 7.76. Found: C, 34.76; H, 7.89.

fac-(PMe₃)₃Ir(BPin)₃ (25). A solution of PMe₃ (220 mg, 2.9 mmol) in 2 mL C₆H₆ was added a solution of 14 (400 mg, 0.58 mmol) in 4 mL C₆H₆ in a vial. The reaction mixture was stirred at ambient temperature for 30 min and the solvent was removed under reduced pressure to give a white solid (461 mg, 99%). The product was recrystallized from a concentrated pentane solution at -30 °C to give colorless crystals. mp 184 °C (dec). ¹H NMR (C₆D₆) δ 1.34 (s, 36H, BO₂C₆H₁₂), 1.52 (m, 27H, PMe₃). ¹³C{¹H} NMR (C₆D₆) 23.7 (m), 26.5 (s), 80.4 (s). ¹¹B NMR (C₆D₆) δ 36.0. ³¹P{¹H} NMR

 (C_6D_6) δ -64 (br, 3P). Anal. Calcd for $C_{27}H_{63}IrB_3O_6P_3$: C, 40.47; H, 7.92. Found: C, 40.72; H, 8.01.

fac-(PMe₃)₃Ir(BPin)(H)(Me) (26). A solution of HBPin (27 mg, 0.21 mmol) in 2 mL pentane was added to a solution of (PMe₃)₄Ir(Me) (100 mg, 0.21 mmol) in 4 mL pentane. The reaction mixture was stirred at ambient temperature for 5 min and the solvent was then removed under reduced pressure to give an isomer mixture of fac- $(PMe_3)_3Ir(BPin)(H)(Me)$ (26) and mer- $(PMe_3)_3Ir(Me)(H)(BPin)$ (27) in a ratio of 83:17 (94 mg, 75%), fac-(PMe₃)₃Ir(BPin)(H)(Me) (26). ¹H NMR (C₆D₆) δ -11.30 (dt, J = 140.4 Hz, 18.9 Hz, 1H, hydride), 0.40 (m, 3H, Me), 1.17 (d, J = 6.4 Hz, 9H, PMe₃ trans to BPin), 1.25 (s, 12H, BO₂C₆H₁₂), 1.35 (d, J = 7.3 Hz, 9H, PMe₃ trans to hydride), 1.47 (d, J = 7.9 Hz, 9H, PMe₃ trans to Me). ¹³C{¹H} NMR (C₆D₆) δ -36.3 (dt, J = 62.5 Hz, 7.6 Hz, Me), 19.9 (ddd, J = 24.7 Hz, 5.5 Hz, 2.7 Hz), 20.9 (dt, J = 21.3 Hz, 2.7 Hz), 22.0 (td, J = 18.5 Hz, 4.1 Hz), 25.8 (s), 25.9 (s), 80.1 (s), 80.2 (s). ¹¹B NMR (C₆D₆) δ 38.6. ³¹P{¹H} NMR (C₆D₆) δ -63.3 (br, 1P, PMe₃ trans to BPin), -56.83 (dd, J = 13.4 Hz, 23.2 Hz, 1P, PMe₃ trans to hydride), -55.16 (dd, J = 13.4 Hz, 18.3 Hz, 1P, PMe₃ trans to Me). $mer-(PMe_3)_3Ir(Me)(H)(BPin)$ (27). H NMR (C₆D₆) δ -11.98 (dt, J=131.9 Hz, 23.0 Hz, 1H, hydride), -0.06 (m, 3H, Me), 1.19 (s, 12H, $BO_2C_6H_{12}$), 1.14 (d, J = 29.9 Hz, 9H, PMe₃ trans to hydride), 1.54 (t, J = 3.4 Hz, 18H, 2 PMe₃ trans to each other). ¹¹B NMR $(C_6D_6) \delta 38.6$. ${}^{31}P\{{}^{1}H\} NMR (C_6D_6) \delta - 57.8 (t, J = 22.9 Hz, 1P, PMe₃ trans to hydride).$ -48.2 (d, J = 22.9 Hz, 2P, 2 PMe₃ trans to each other). Anal. Calcd for $C_{16}H_{43}IrBO_2P_3$: C, 34.11; H, 7.69. Found: C, 33.64; H, 7.70.

mer-(PMe₃)₃Ir(BPin)(H)(Ph) (28). A solution of HBPin (55 mg, 0.43 mmol) in 2 mL pentane was added to a solution of (PMe₃)₃Ir(Ph) (194 mg, 0.39 mmol) in 5 mL

pentane. The reaction mixture was stirred at ambient temperature for 30 min and the solvent was removed under reduced pressure to give mer-(PMe₃)₃Ir(BPin)(H)(Ph) (241 mg, 95%). The product was recrystallized from a concentrated pentane solution at -30 °C to give colorless crystals. mp 118 °C (dec). ¹H NMR (C₆D₆, 25 °C) δ -11.32 (dt, J = 131 Hz, 20 Hz, 1H, hydride), 1.16 (s, 12H, BO₂C₆H₁₂), 1.41 (m, 27H, PMe₃), 7.17-7.20 (m, 3H), 7.98 (br, 2H). ¹³C{¹H} NMR (C₆D₆, 25 °C) δ 21.5 (d, J = 24.7 Hz), 22.2 (dt, J = 4.5 Hz, 19.1 Hz), 26.0 (s), 80.0 (s), 120.7 (s), 126.9 (s), 148.2 (br), 150.6 (br). ¹¹B NMR (C₆D₆) δ 35.8. ³¹P{¹H} NMR (C₆D₆) δ -57.8 (t, J = 22.9 Hz, 1P), -45.6 (d, J = 22.0 Hz, 2P). Anal. Calcd for C₂₁H₄₅IrBO₂P₃: C, 40.32; H, 7.25. Found: C, 39.95; H, 7.38.

fac-(PMe₃)₃Ir(BPin)(H)(SiEt₃) (29). A solution of HSiEt₃ (17 mg, 0.15 mmol) in 2 mL C₆H₆ was added to a solution of 18 (92 mg, 0.15 mmol) in 3 mL C₆H₆. The reaction mixture was stirred at ambient temperature for 2.5 days and the solvent was removed under reduced pressure to give colorless solid. The product was recrystallized from a concentrated pentane solution at –30 °C to give colorless crystals (83 mg, 86%). mp 134-136 °C. ¹H NMR (C₆D₆) δ -12.30 (dt, J = 117.0 Hz, 17.0 Hz, 1H, hydride), 0.84-0.95 (m, 3H, diastereotopic CH of CH₂ groups of SiEt₃), 1.25 (d, J = 6.7 Hz, 9H, PMe₃ trans to BPin), 1.29 (s, 12H, BO₂C₆H₁₂), 1.37 (d, J = 7.3 Hz, 9H, PMe₃ trans to SiEt₃), 1.46 (d, J = 7.6 Hz, 9H, PMe₃ trans to hydride), 1.35-1.45 (m, 12H, diastereotopic CH of CH₂ groups and CH₃ groups of SiEt₃). ¹¹B NMR NMR (C₆D₆) δ 36.3. ¹³C { ¹H} NMR (C₆D₆) δ 10.7 (d, J = 1.9 Hz), 13.1 (dd, J = 5.8 Hz, 7.7 Hz), 24.6 (dt, J = 25.9 Hz, 4.8 Hz), 25.3 (dt, J = 22.1 Hz, 3.8 Hz), 25.4 (dt, J = 24.0 Hz, 3.8 Hz), 27.2 (s), 27.4 (s), 81.32 (s), 81.34 (s). ³¹P { ¹H} NMR (C₆D₆) δ -66.4 (br, 1P, PMe₃ trans to BPin), -64.2 (dd, J = 31.3 Hz,

19.8 Hz, 1P, PMe₃ trans to SiEt₃), -58.1 (dd, J = 19.8 Hz, 19.8 Hz, 1P, PMe₃ trans to hydride). Anal. Calcd for $C_{21}H_{55}IrBO_2P_3Si$: C, 38.00; H, 8.35. Found: C, 38.38; H, 8.52.

 $mer-(PMe_3)_3Ir[B(NH)_2C_6H_4](H)(Cl)$ (31). A solution of PMe₃ (102 mg, 1.34) mmol) in 2 mL THF was added dropwise to a solution of [Ir(COE)₂Cl]₂ (200 mg, 0.22 mmol) in 4 mL THF. The reaction mixture was stirred at room temperature for 2 h. The solvent was then removed under reduced pressure. The residue was redissolved in 6mL THF and H[B(NH)₂C₆H₄] (51.7 mg, 0.44 mmol) was added to the mixture. The reaction mixture was stirred at ambient temperature for 12 h and then filtered through celite to remove trace suspension The filtrate was pumped down to give a white solid (226 mg, 88%). mp 170 °C (dec). ¹H NMR (CD₂Cl₂) δ -9.90 (dt, J = 138.2 Hz, 20.9 Hz, 1H, hydride), 1.53 (t, J = 3.6 Hz, 18H, 2 PMe₃ trans to each other), 1.63 (dd, J = 7.5 Hz, 0.9 Hz, 9H, PMe₃ trans to hydride), 5.83 (br, 2H, 2 NH), 6.64-6.66, 6.81-6.83 (m, 4H, C₆H₄). 13 C{ 1 H} NMR (CD₂Cl₂) δ 19.3 (d, J = 26.9 Hz), 20.4 (dt, J = 4.3 Hz, 18.9 Hz), 108.7 (s), 117.5 (s), 139.0 (s). ¹¹B NMR (CD₂Cl₂) δ 24.9. ³¹P{¹H} NMR (CD₂Cl₂) δ -48.2 (t, J = 20.8 Hz, 1P, PMe₃ trans to hydride), -39.7 (d, J = 20.8 Hz, 2P, 2 PMe₃ trans to each other). Anal. Calcd for C₁₅H₃₄IrBClN₂P₃: C, 31.40; H, 5.97; N, 4.88. Found: C, 31.34; H, 5.79; N, 4.89.

mer-(PMe₃)₃Ir(BDAN)(H)(Cl) (32) and mer-(PMe₃)₃Ir(H)(BDAN)(Cl) (33). A solution of PMe₃ (102 mg, 1.3 mmol) in 2 mL THF was added dropwise to a solution of [Ir(COE)₂Cl]₂ (200 mg, 0.22 mmol) in 4 mL THF. The reaction mixture was stirred at room temperature for 2 h. The solvent was then removed under reduced pressure. The residue was redissolved in 6 mL THF and HBDAN (74.5 mg, 0.44 mmol) was added to the mixture. The reaction mixture was stirred at ambient temperature for 12 h and was

then filtered through celite to remove trace suspension. The filtrate was pumped down to give an isomer mixture of 32 and 33 in a ratio of 90.4:9.6 (200 mg, 72%). mer- $(PMe_3)_3Ir(BDAN)(H)(Cl)$ (32). H NMR (CD_2Cl_2) δ -10.60 (dt, J = 137.5 Hz, 20.8 Hz, 1H, hydride), 1.63 (d, J = 6.4 Hz, 9H, PMe₃ trans to hydride), 1.65 (t, J = 3.5 Hz, 18H, 2 PMe₃ trans to each other), 5.49 (br, 2H, 2 NH), 6.19 (d, J = 7.5 Hz, 2H, BDAN), 6.86 (d, J = 8.5 Hz, 2H, BDAN), 7.03 (dd, J = 7.6 Hz, 8.0 Hz, 2H, BDAN). ¹¹B NMR (CD₂Cl₂) δ 28.0. ¹³C{¹H} NMR (CD₂Cl₂) δ 19.0 (d, J = 26.8 Hz), 20.3 (dt, J = 3.4 Hz, 18.9 Hz), 104.0 (s), 115.8 (s), 118.4 (s), 128.0 (s), 136.8 (s), 142.7 (d, J = 1.4 Hz). $^{31}P\{^{1}H\}$ NMR $(CD_2Cl_2) \delta -49.2$ (t, J = 20.8 Hz, 1P, PMe₃ trans to hydride), -39.7 (d, J = 20.8 Hz, 2P, 2 PMe₃ trans to each other). mer-(PMe₃)₃Ir(H)(BDAN)(Cl) (33). ¹H NMR (CD₂Cl₂) δ -23.97 (td, J = 16.0 Hz, 10.1 Hz, 1H, hydride), 1.50 (d, J = 6.6 Hz, 9H, PMe₃ trans to BDAN), 1.56 (t, J = 3.3 Hz, 18H, 2 PMe₃ trans to each other), 5.74 (br, 2H, 2 NH), 6.18 (d, J = 7.3 Hz, 2H, BDAN), 6.82 (dd, J = 8.7 Hz, 12.4 Hz, 2H, BDAN), 6.99 (d, J = 8.0)Hz, 2H, BDAN). ¹¹B NMR (CD₂Cl₂) δ 38.6. ³¹P{¹H} NMR (CD₂Cl₂) δ -52.4 (br, 1P, PMe₃ trans to BDAN), -43.1 (d, J = 26.9 Hz, 2P, 2 PMe₃ trans to each other). Anal. Calcd for C₁₉H₃₆IrBClN₂P₃: C, 36.58; H, 5.82; N, 4.49. Found: C, 36.62; H, 5.87; N, 4.43.

mer-(PMe₃)₃Ir[B(NMe)₂C₆H₄](H)(Cl) (34) and mer-(PMe₃)₃Ir(H)[B(NMe)₂C₆H₄](Cl) (35). A solution of PMe₃ (102 mg, 1.3 mmol) in 2 mL THF was added dropwise to a solution of [Ir(COE)₂Cl]₂ (200 mg, 0.22 mmol) in 4 mL THF. The reaction mixture was stirred at room temperature for 2 h. The solvent was then removed under reduced pressure. The residue was redissolved in 6 mL THF and H[B(NMe)₂C₆H₄] (53.7 mg, 0.37 mmol) was added to the mixture. The reaction mixture was stirred at ambient temperature

for 12 h and then filtered through celite to remove trace suspension. The filtrate was pumped down to give an isomer mixture of 34 and 35 in a ratio of 14.4:85.6 (220 mg, 82%). $mer-(PMe_3)_3Ir[B(NMe)_2C_6H_4](H)(Cl)$ (34). H NMR (CD₂Cl₂) δ -10.75 (dt, J=139.0 Hz, 19.6 Hz, 1H, hydride), 1.47 (t, J = 3.5 Hz, 18H, 2 PMe₃ trans to each other), 1.68 (dd, J = 6.9 Hz, 0.8 Hz, 9H, PMe₃ trans to hydride), 3.28 (s, 3H, Me), 3.55 (s, 3H, Me), 6.77-6.85 (m, 4H, C_6H_4). ¹¹B NMR (CD₂Cl₂) δ 28.6. ³¹P{¹H} NMR (CD₂Cl₂) δ -54.9 (t, J = 22.0 Hz, 1P, PMe₃ trans to hydride), -39.4 (d, J = 22.0 Hz, 2P, 2 PMe₃ trans to each other). mer-(PMe₃)₃Ir(H)[B(NMe)₂C₆H₄](Cl) (35). ¹H NMR (CD₂Cl₂) δ -23.97 (td, J = 14.3 Hz, 12.2 Hz, 1H, hydride), 1.38 (t, J = 3.3 Hz, 18H, 2 PMe₃ trans to each other), 1.54 (d, J = 6.7 Hz, 9H, PMe₃ trans to [B(NMe)₂C₆H₄], 3.35 (s, 3H, Me), 3.68 (s, 3H, Me), 6.77-6.85 (m, 4H, C_6H_4). ¹¹B NMR (CD₂Cl₂) δ 38.3. ¹³C{¹H} NMR (CD_2Cl_2) δ 20.0 (dt, J = 5.5 Hz, 18.9 Hz), 20.3 (d, J = 22.0 Hz), 32.1 (s), 32.8 (s), 106.2 (s), 106.6 (s), 117.0 (s), 117.2 (s), 140.6 (d, J = 3.4 Hz), 141.8 (d, J = 4.8 Hz). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂) δ -50.6 (br, 1P, PMe₃ trans to [B(NMe)₂C₆H₄], -40.6 (d, J = 26.9 Hz, 2P, 2 PMe₃ trans to each other). Anal. Calcd for C₁₇H₃₈IrBClN₂P₃: C, 33.92; H, 6.36; N, 4.66. Found: C, 34.10; H, 6.35; N, 4.57.

Screening Experiments

The general procedure for the synthesis of phenylboronate esters, catalyzed by 13 or 14/a monodentate phosphine ligand, is illustrated by the following example. Decane (0.626 M in benzene, 50 μ L, 0.031 mmol), HBPin (51 μ L, 0.351 mmol) were charged into a J. Young NMR tube. 13 (3 mg, 7.3 x 10^{-3} mmol) was charged into a GC-vial and

dissolved in C₆H₆ (150 μL). PMe₃ (1.5 μL, 0.015 mmol) was added into the solution of 13 via a microsyringe. The mixture was then transferred into the J. Young NMR tube. Benzene (150 μL x 2) was used to wash the residue to the J. Young NMR tube. The reaction mixture was heated at 150 °C and monitored by ¹¹B NMR spectra. After HBPin was consumed, an aliquot of the reaction mixture was diluted with CH₂Cl₂ and a GC-FID chromatogram was obtained. From the calibration curve of PhBPin vs. decane, GC yield of PhBPin formation was obtained. The results of borylation of benzene catalyzed by 13 or 14/a monodentate phosphine ligand are summarized in Table 3.

The general procedure for the synthesis of phenylboronate esters, catalyzed by 13/a chelating phosphine ligand, is illustrated by the following example. Decane (0.626 M in benzene, 50 μL, 0.031 mmol), HBPin (51 μL, 0.351 mmol) were charged into a J. Young NMR tube. 13 (2.9 mg, 7.0 x 10⁻³ mmol) and dppe (2.8 mg, 7.0 x 10⁻³ mmol) were charged into two separate GC-vials and dissolved in C₆H₆ (150 μL x 2). The mixture was then transferred into the J. Young NMR tube. Benzene (150 μL) was used to wash the residue to the J. Young NMR tube. The reaction mixture was heated at 100 °C or 150 °C and monitored by ¹¹B NMR spectra. After HBPin was consumed, an aliquot of the reaction mixture was diluted with CH₂Cl₂ and a GC-FID chromatogram was obtained. From the calibration curve of PhBPin vs. decane, GC yield of PhBPin formation was obtained. The results of borylation of benzene catalyzed by 13/a chelating phosphine ligand are summarized in Table 4.

The general procedure for the synthesis of phenylboronate esters, catalyzed by 13/a nitrogen or oxygen or sulfur containing ligand, is illustrated by the following example. Dodecane (0.471 M in benzene, 50 μ L, 0.024 mmol), HBPin (51 μ L, 0.351

mmol) were charged into a J. Young NMR tube. 13 (2.9 mg, 7.0 x 10⁻³ mmol) and bpy (1.1 mg, 7.0 x 10⁻³ mmol) were charged into two separate GC-vials and dissolved in C₆H₆ (150 μL x 2). The mixture was then transferred into the J. Young NMR tube. Benzene (150 μL) was used to wash the residue to the J. Young NMR tube. The reaction mixture was heated at 100 °C or 150 °C and monitored by ¹¹B NMR spectra. After HBPin was consumed, an aliquot of the reaction mixture was diluted with CH₂Cl₂ and a GC-FID chromatogram was obtained. From the calibration curve of PhBPin vs. dodecane, GC yield of PhBPin formation was obtained. The results of borylation of benzene catalyzed by 13/a nitrogen or oxygen or sulfur containing ligand are summarized in Table 5.

NMR Tube Reactions

Metathesis reaction between Cp*Ir(PMe₃)(Ph)(H) (5) and HBPin in C₆D₆. Cp*Ir(PMe₃)(Ph)(H) (9 mg, 0.019 mmol) and HBPin (28.7 mg, 0.224 mmol) were dissolved in C₆D₆ (540 μ L) and the mixture was transferred to a J. Young NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹H, ¹¹B, and ³¹P{¹H} NMR.

Thermolysis of Cp*Ir(PMe₃)(H)(BPin) (1) in C₆D₆. Compound 1 (10 mg, 0.019 mmol) dissolved in C₆D₆ (550 μ L) was transferred to a J. Young NMR tube. The solution was heated at 200 °C in an oil bath for 2 weeks and 280 °C for 1 day. The reaction was monitored by ¹H, ¹¹B, and ³¹P{¹H} NMR.

Metathesis reaction between Cp*Rh(PMe₃)(Ph)(H) (4) and HBPin in C₆D₆. Cp*Rh(PMe₃)(Ph)(H) (10 mg, 0.026 mmol) and HBPin (39 mg, 0.305 mmol) were

dissolved in C_6D_6 (550 μ L) and the mixture was transferred to a J. Young NMR tube. The reaction mixture was heated at 95 °C in an oil bath and monitored by 1H , ^{11}B , and $^{31}P\{^1H\}$ NMR.

Crossover experiment. Cp*Ir(P(CD₃)₃)(H)₂ (8) (10 mg, 0.024 mmol), (C₅Me₄Et)Ir(PMe₃)(H)₂ (9) (10.1 mg, 0.024 mmol), and HBPin (15.5 mg, 0.121 mmol) were dissolved in C₆H₆ (550 μL) and the reaction mixture was transferred to a J. Young NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B NMR. After HBPin was consumed, an aliquot of the reaction mixture was diluted with CH₂Cl₂ and a GC-MS chromatogram was obtained. From the chromatogram of the crude mixture there was no crossover products observed. Therefore, crossover during catalytic borylation was minimal.

Anisole borylation catalyzed by Cp*IrH₄ (11). Cp*IrH₄ (11) (10 mg, 0.030 mmol) and HBPin (23 mg, 0.180 mmol) were dissolved in a 1:2 (V/V) anisole/cyclohexane solution (500 μL). The reaction mixture was transferred to a J. Young NMR tube, heated at 150 °C in an oil bath, and monitored by ¹¹B NMR. After HBPin was consumed, an aliquot of the reaction mixture was diluted with CH₂Cl₂ and a GC-FID chromatogram was obtained. The isomer ratio of C₆H₄(OMe)(BPin) (o:m:p) was determined to be 3:49:48.

Thermolysis of (MesH)Ir(BPin)₃ (14) in C₆H₆. (MesH)Ir(BPin)₃ (14) (15.2 mg, 0.022 mmol) dissolved in C₆H₆ (550 μL) was transferred to a J. Young NMR tube. The solution was heated at 150 °C in an oil bath and monitored by ¹¹B NMR. After complex 14 was consumed, an internal standard solution (decane/C₆H₆) was added to the reaction mixture. An aliquot of the mixture was diluted with CH₂Cl₂ and a GC-FID chromatogram

was obtained. Thermolysis of 14 in C₆H₆ produced 3 equivalents of PhBPin and black iridium metal.

14 + excess HBPin in C_6D_6 . Compound 14 (10 mg, 0.014 mmol) and HBPin (11 mg, 0.086 mmol) dissolved in C_6D_6 (550 μ L) was transferred to a J. Young NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B NMR. After 5 h at 150 °C, the reaction led to decomposition and PinB-O-BPin. No C_6D_5 BPin was observed.

14 + excess HBPin in C_6D_6 in the presence of 2 equiv. of PMe₃. Compound 14 (10 mg, 0.014 mmol) and HBPin (11 mg, 0.086 mmol) dissolved in C_6D_6 (550 μ L) was transferred to a J. Young NMR tube. PMe₃ (3 μ L, 0.029 mmol) was added to the NMR tube via a microsyringe. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B NMR. After 5 h at 150 °C, HBPin was completely converted to PhBPin.

14 + 2 equiv. PMe₃ in toluene- d_8 . Compound 14 (10 mg, 0.014 mmol) dissolved in toluene- d_8 (500 µL) was transferred to a J. Young NMR tube. PMe₃ (3 µL, 0.029 mmol) was added to the NMR tube via a microsyringe. The reaction was monitored by 1 H, 11 B, and 31 P{ 1 H} NMR at room temperature. The reaction generated a mixture of compound 25 and (η^6 -C₇D₈)Ir(BPin)₃ in a 2:1 ratio.

37 + HBPin in C_6D_6 . (PMe₃)₄Ir(H) (37) (15 mg, 0.030 mmol) dissolved in C_6D_6 (332 μ L) in a GC vial was transferred to a J. Young NMR tube. Additional C_6D_6 (166 μ L) was used to wash the residue into the NMR tube. HBPin (4.4 μ L, 0.030 mmol) was added into the NMR tube via a microsyringe. At room temperature, the starting material was gradually converted into a mixture of *mer, cis*-(PMe₃)₃Ir(H)₂(BPin) (38) and *fac*-

(PMe₃)₃Ir(H)₂(BPin) (**36**). The sample was allowed to stand at room temperature for 6 days to give compound **36** as the predominant species. mer, cis-(PMe₃)₃Ir(H)₂(BPin) (**38**). ¹H NMR (C₆D₆) δ -12.18 (dt, J = 114.7 Hz, 23.2 Hz, 1H, hydride trans to PMe₃), -10.46 (q, 1H, hydride trans to BPin), 1.21 (s, 12H, BO₂C₆H₁₂), 1.49 (d, 9H, PMe₃ trans to hydride), 1.69 (t, J = 3.5 Hz, 18H, 2 PMe₃ trans to each other). ¹¹B NMR (C₆D₆) δ 38.6. ³¹P{¹H} NMR (C₆D₆) δ -58.1 (t, J = 22.6 Hz, 1P, PMe₃ trans to hydride), -48.1 (d, J = 22.6 Hz, 2P, 2 PMe₃ trans to each other). fac-(PMe₃)₃Ir(H)₂(BPin) (**36**). ¹H NMR (C₆D₆) δ -11.83 (symmetrical second order m, 2H, hydride), 1.25 (s, 12H, BO₂C₆H₁₂), 1.32 (d, J = 7.0 Hz, 9H, PMe₃ trans to BPin), 1.69 (d, J = 7.6 Hz, 18H, 2 PMe₃ trans to hydride). ¹¹B NMR (C₆D₆) δ 38.6. ³¹P{¹H} NMR (C₆D₆) δ -62.0 (br, 1P, PMe₃ trans to BPin), -54.59 (d, J = 23.2 Hz, 2P, 2 PMe₃ trans to hydride).

37 + **B**₂Pin₂ in C₆D₆. B₂Pin₂ (7.9 mg, 0.031 mmol) dissolved in C₆D₆ (166 μL) was transferred to a J. Young NMR tube which was charged with (PMe₃)₄Ir(H) (37) (15.4 mg, 0.031 mmol) in C₆D₆ (166 μL). Additional C₆D₆ (166 μL x 2) was used to wash the residue into the NMR tube. The reaction mixture was heated at 60 °C and monitored by ¹H, ¹¹B, and ³¹P{¹H} NMR spectra. The starting material was gradually converted into a mixture of *mer,trans*-(PMe₃)₃Ir(BPin)₂(H) (20) and *fac*-(PMe₃)₃Ir(BPin)₂(H) (21). *fac*-(PMe₃)₃Ir(BPin)₂(H) (21) was the major species after the temperature was increased to 100 °C for 7 h. *mer,trans*-(PMe₃)₃Ir(BPin)₂(H) (20). ¹H NMR (C₆D₆) δ -12.36 (dt, J = 117.0 Hz, 21.7 Hz, 1H, hydride trans to PMe₃), 1.22 (s, 12H, BO₂C₆H₁₂), 1.49 (d, J = 8.0 Hz, 9H, PMe₃ *trans* to hydride), 1.74 (t, J = 3.4 Hz, 18H, 2 PMe₃ *trans* to each other). ¹¹B NMR (C₆D₆) δ 38.9. ³¹P{¹H} NMR (C₆D₆) δ -59.6 (t, J = 22.0 Hz, 1P, PMe₃ *trans* to hydride), -50.8 (d, J = 22.0 Hz, 2P, 2 PMe₃ *trans* to each other). *fac*-(PMe₃)₃Ir(BPin)₂(H)

(21). mp 120-122 °C. ¹H NMR (C_6D_6) δ -11.66 (dt, J = 118.1 Hz, 18.1 Hz, 1H, hydride trans to PMe₃), 1.29 (s, 24H, BO₂C₆H₁₂), 1.41 (vt, 18H, 2 PMe₃ trans to BPin), 1.58 (d, J = 8.0 Hz, 9H, PMe₃ trans to hydride). ¹³C{¹H} NMR (C_6D_6) δ 23.7 (dt, J = 26.9 Hz, 5.3 Hz), 25.1 (br), 25.8 (s), 26.3 (s), 80.3 (s). ¹¹B NMR (C_6D_6) δ 38.6. ³¹P{¹H} NMR (C_6D_6) δ -61.8 (br, 2P, 2 PMe₃ trans to BPin), -56.6 (t, J = 22.0 Hz, 1P, PMe₃ trans to hydride). fac-(PMe₃)₃Ir(BPin)₂(H) (21) was independently synthesized and isolated in 80 % yield. Anal. Calcd for $C_{21}H_{52}IrB_2O_4P_3$: C, 37.34; H, 7.76. Found: C, 37.35; H, 7.72.

18 + dppe in C₆D₆. Dppe (8 mg, 0.020 mmol) dissolved in C₆D₆ (166 μL) was transferred to a J. Young NMR tube, which was charged with 18 (12.5 mg, 0.020 mmol) in C₆D₆ (166 μL). Additional C₆D₆ (166 μL) was used to wash the residue into the NMR tube. The reaction mixture was allowed to stand at room temperature for 3 days to give $Ir(PMe_3)_2(dppe)(BPin)$ (19) as the predominant species. ¹H NMR (C₆D₆) δ 1.10 (s, 12H, BO₂C₆H₁₂), 1.33 (t, J = 3.3 Hz, 18H, 2 PMe₃), 1.92-2.18 (m, 4H, CH₂), 6.98-7.12, 7.16-7.28, 7.72-7.89, 7.91-7.98 (m, 20H, phenyl groups of dppe). ¹¹B NMR (C₆D₆) δ 38.8. ³¹P{¹H} NMR (C₆D₆) δ -58.9 (dd, J = 141.6 Hz, 26.8 Hz, 2P, 2 PMe₃), 39.1 (dt, J = 141.6 Hz, 13.4 Hz, 1P, PPh₂ cis to BPin), 46.1 (br, 1P, PPh₂ trans to BPin).

18 + HBPin in C₆D₆. Compound 18 (12.8 mg, 0.021 mmol) dissolved in C₆D₆ (500 μL) was transferred to a J. Young NMR tube. HBPin (3 μL, 0.021 mmol) was added to the NMR tube via a microsyringe. The reaction was monitored by ¹H, ¹¹B, and ³¹P{¹H} NMR at room temperature. *mer,trans*-(PMe₃)₃Ir(BPin)₂(H) (20) was the initial predominant species, and it gradually isomerized to *fac*-(PMe₃)₃Ir(BPin)₂(H) (21) after heating at 70 °C for 11h.

18 + ClBCat in C_6D_6 . Compound 18 (12.1 mg, 0.019 mmol) and ClBCat (3 mg, 0.019 mmol) dissolved in C_6D_6 (500 μ L) were transferred to a J. Young NMR tube. The reaction was monitored by 1 H, 11 B, and 31 P{ 1 H} NMR at room temperature. After 3 days at room temperature, the predominant species in the reaction mixture was *mer*-(PMe₃)₃Ir(BPin)(BCat)(Cl) (22) with BPin group *trans* to Cl. 1 H NMR (C_6D_6) δ 1.18 (s, 12H, BO₂C₆H₁₂), 1.29 (d, J = 7.3 Hz, 9H, PMe₃ *trans* to BCat group), 1.47 (t, J = 3.7 Hz, 18H, 2 PMe₃ *trans* to each other), 6.84, 7.19 (AA'BB', 4H, BCat). 11 B NMR (C_6D_6) δ 28.1, 41.6. 31 P{ 11 H} NMR (C_6D_6) δ –56.2 (br, PMe₃ *trans* to BCat), –39.3 (d, J = 29.3 Hz, 2 PMe₃ *trans* to each other).

Thermolysis of 18 in C_6D_6 . Compound 18 (10.2 mg, 0.016 mmol) dissolved in C_6D_6 (500 μ L) was transferred to a J. Young NMR tube. The reaction mixture was heated at 100 °C in an oil bath and monitored by ¹H, ¹¹B, and ³¹P{¹H} NMR. After 38 h at 100 °C, complex 18 was converted to (PMe₃)₄Ir(D) and C_6D_5 BPin.

Thermolysis of 25 in C_6D_6 . Compound 25 (15 mg, 0.019 mmol) dissolved in C_6D_6 (500 μ L) was transferred to a J. Young NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by 1 H, 11 B, and 31 P{ 1 H} NMR. The reaction gave fac-(PMe₃)₃Ir(D)₃ as the final iridium containing product and generated 3 equiv. of C_6D_5 BPin.

Thermolysis of 18 in C_6H_5I . Complex 18 (12 mg, 0.019 mmol) dissolved in C_6H_5I (500 μ L) was transferred to a J. Young NMR tube. The reaction resulted in immediate white precipitation. The reaction mixture was heated at 100 °C for 1 h in an oil bath. No isomer mixture of $C_6H_4(I)(BPin)$ was detected by GC-FID.

Thermolysis of 25 in C_6H_5I . Compound 25 (11.6 mg, 0.014 mmol) dissolved in C_6H_5I (500 μ L) was transferred to a J. Young NMR tube. The reaction mixture was heated at 150 °C for 29 h in an oil bath. The reaction produced m- and p- $C_6H_4(I)$ (BPin) in 54% GC yield, in addition to a 45% yield of PhBPin.

Kinetic Isotope Effect Experiments

Catalytic borylation in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 with the Ir^1 pre-catalyst (2 mol% 13 and 4 mol% PMe₃). A solution of (Ind)Ir(COD) (13) (6 mg, 0.014 mmol) in C_6H_6/C_6D_6 (1:1) (175 μ L x 2) was mixed with a solution of PMe₃ (3 μ L) in C_6H_6/C_6D_6 (1:1) (175 μ L x 2). The solution mixture was then transferred to a J. Young NMR tube. Additional C_6H_6/C_6D_6 (1:1) (175 μ L x 4) was used to wash the residue into the NMR tube. HBPin (104 μ L, 0.717 mmol) was added to the NMR tube via an autopipette. The reaction mixture was heated at 150 °C in a constant temperature oil bath (Cole-Parmer Polystat Constant Temperature Circulator). The reaction was monitored by 11 B NMR. The ratio of C_6D_5 BPin : C_6H_5 BPin determined from GC-FID after calibration was 1.00:2.29.

Catalytic borylation in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 with the Ir^{III} pre-catalyst (2 mol% 14 and 4 mol% PMe₃). A solution of (MesH)Ir(BPin)₃ (14) (10 mg, 0.014 mmol) in C_6H_6/C_6D_6 (1:1) (175 μ L x 2) was mixed with a solution of PMe₃ (3 μ L) in C_6H_6/C_6D_6 (1:1) (175 μ L x 2). The solution mixture was then transferred to a J. Young NMR tube. Additional C_6H_6/C_6D_6 (1:1) (175 μ L x 4) was used to wash the residue into the NMR tube. HBPin (104 μ L, 0.717 mmol) was added to the NMR tube via

an auto-pipette. The reaction mixture was heated at 150 °C in a constant temperature oil bath (Cole-Parmer Polystat Constant Temperature Circulator). The reaction was monitored by ¹¹B NMR. The ratio of C₆D₅BPin : C₆H₅BPin determined from GC-FID after calibration was 1.00:2.28.

Catalytic borylation in 1,3,5-C₆D₃H₃ with the Ir¹ pre-catalyst (2 mol% 13 and 4 mol% PMe₃). A solution of 13 (3 mg, 0.007 mmol) in 1,3,5-C₆D₃H₃ (166 μ L) was mixed with a solution of PMe₃ (1.5 μ L) in 1,3,5-C₆D₃H₃ (166 μ L). The solution mixture was then transferred to a J. Young NMR tube. Additional 1,3,5-C₆D₃H₃ (166 μ L) was used to wash the residue into the NMR tube. HBPin (52 μ L, 0.358 mmol) was added to the NMR tube via an auto-pipette. The reaction mixture was heated at 150 °C in a constant temperature oil bath. The reaction was monitored by ¹¹B NMR. The ratio of 1,3,5-C₆D₂H₃(BPin) : 1,3,5-C₆D₃H₂(BPin) determined by the ¹H NMR of the crude mixture was 1.00:2.06.

Catalytic borylation in 1,3,5-C₆D₃H₃ with the Ir^{III} pre-catalyst (2 mol% 14 and 4 mol% PMe₃). A solution of 14 (5 mg, 0.007 mmol) in 1,3,5-C₆D₃H₃ (166 μ L) was mixed with a solution of PMe₃ (1.5 μ L) in 1,3,5-C₆D₃H₃ (166 μ L). The solution mixture was then transferred to a J. Young NMR tube. Additional 1,3,5-C₆D₃H₃ (166 μ L) was used to wash the residue into the NMR tube. HBPin (52 μ L, 0.358 mmol) was added to the NMR tube via an auto-pipette. The reaction mixture was heated at 150 °C in a constant temperature oil bath. The reaction was monitored by ¹¹B NMR. The ratio of 1,3,5-C₆D₂H₃(BPin) : 1,3,5-C₆D₃H₂(BPin) determined from the ¹H NMR of the crude mixture was 1.00:1.94.

Thermolysis of 18 in a molar ratio 1:1 mixture of C_6H_6/C_6D_6 . Compound 18 (25 mg, 0.060 mmol) dissolved in C_6H_6/C_6D_6 (1:1) (166 μ L x 2) was transferred to a J. Young NMR tube. Additional C_6H_6/C_6D_6 (1:1) (166 μ L) was used to wash the residue into the NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B and ³¹P{¹H} NMR. The ratio of $C_6D_5BPin : C_6H_5BPin$ determined from GC-FID after calibration was 1.00:2.67.

Thermolysis of 25 in a molar ratio 1:1 mixture of C₆H₆/C₆D₆. Compound 25 (32 mg, 0.040 mmol) dissolved in C₆H₆/C₆D₆ (1:1) (166 μL x 2) was transferred to a J. Young NMR tube. Additional C₆H₆/C₆D₆ (1:1) (166 μL) was used to wash the residue into the NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B and ³¹P{¹H} NMR. The ratio of C₆D₅BPin : C₆H₅BPin determined from GC-FID after calibration was 1.00:2.53.

Thermolysis of 18 in 1,3,5-C₆D₃H₃. Compound 18 (25 mg, 0.060 mmol) dissolved in 1,3,5-C₆D₃H₃ (166 μL x 2) was transferred to a J. Young NMR tube. Additional 1,3,5-C₆D₃H₃ (166 μL) was used to wash the residue into the NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B and ³¹P{¹H} NMR. The ratio of 1,3,5-C₆D₂H₃(BPin) : 1,3,5-C₆D₃H₂(BPin) determined from the ¹H NMR of the crude mixture was 1.00:2.37.

Thermolysis of 25 in 1,3,5-C₆D₃H₃. Compound 25 (32 mg, 0.040 mmol) dissolved in 1,3,5-C₆D₃H₃ (166 μ L x 2) and transferred to a J. Young NMR tube. Additional 1,3,5-C₆D₃H₃ (166 μ L) was used to wash the residue into the NMR tube. The reaction mixture was heated at 150 °C in an oil bath and monitored by ¹¹B and ³¹P{¹H}

NMR. The ratio of 1,3,5-C₆D₂H₃(BPin): 1,3,5-C₆D₃H₂(BPin) determined from the ¹H NMR of the crude mixture was 1.00:1.93.

Arylboronate Ester Syntheses

The general procedure for the synthesis of arylboronate esters, catalyzed by solutions of compound 1, is illustrated for the synthesis of 1,3,5- $C_6H_3(CF_3)_2(BPin)$. Compound 1, (80 mg, 0.15 mmol) and HBPin (96 mg, 0.75 mmol) were dissolved in 4 mL 1,3-bis(trifluoromethyl)benzene and heated at 150 °C in a constant temperature circulator for 10 hours in a thick-walled, air-free flask. The solution was then transferred to a vial and the solvent was removed under vacuum at room temperature. The residue was chromatographed on a silica gel column, eluting with CH_2Cl_2 , to yield 1,3,5- $C_6H_3(CF_3)_2(BPin)$ as a colorless solid (182 mg, 81% based on HBPin). mp (65-66 °C). ¹H NMR (CDCl₃) δ 1.35 (s, 12H, BO₂C₆H₁₂), 7.92 (s, 1H), 8.22 (s, 2H). ¹³C{¹H} NMR (CDCl₃) δ 24.8, 84.9, 123.5 (J = 272.4 Hz, 2C), 124.7, 130.9 (J = 32.7 Hz, 2C), 134.7 (2C). ¹¹B NMR (CDCl₃) δ 30. ¹⁹F NMR (CDCl₃) δ -63. Anal. Calcd for $C_{14}H_{15}BF_6O_2$: C, 49.44; H, 4.45. Found: C, 49.55; H, 4.53. GC-MS (m/z) 340.

The general procedure for the synthesis of arylboronate esters, catalyzed by solutions of compound 1, generated *in situ* from compound 2, is illustrated for the synthesis of C₆H₄Me(BPin). Compound 2, (70 mg, 0.17 mmol) and HBPin (133 mg, 1.04 mmol) were dissolved in 4 mL toluene and heated at 150 °C in a constant temperature circulator for 10 hours in a thick-walled, air-free flask. The solution was then transferred to a vial and the solvent was removed under vacuum at room temperature. The residue

was chromatographed on a silica gel column, eluting with CH_2Cl_2 , to yield $C_6H_4Me(BPin)$. The reaction gave 3 isomers, m- $C_6H_4Me(BPin)$: p- $C_6H_4Me(BPin)$: o- $C_6H_4Me(BPin)$ in the ratio of 62:34:4 (173 mg, 91% based on HBPin). The identity of o- $C_6H_4Me(BPin)$ and p- $C_6H_4Me(BPin)$ were established by comparing spectroscopic data to those in the literature, 25 and by comparing GC-MS data for the mixture to data for the independently prepared pure isomers. The identity of m- $C_6H_4Me(BPin)$ was confirmed by independent synthesis of an authentic sample using the literature method. 2 m- $C_6H_4Me(BPin)$ was isolated as a colorless solid. mp 34-35 $^{\circ}$ C. 1 H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 2.34 (s, 3H, Me), 7.25 (m, 2H), 7.59 (m, 1H), 7.62 (s, 1H). 11 B NMR (CDCl₃) δ 30.7. Anal. Calcd for $C_{13}H_{19}BO_2$: C, 71.59; H, 8.78. Found: C, 71.36; H, 9.33. GC-MS (m/z) 218.

The general procedure for the synthesis of arylboronate esters, catalyzed by solutions of compound 3, is illustrated for the synthesis of 1,3,5- $C_6H_3(CF_3)_2(BPin)$. Compound 3, (5 mg, 0.013 mmol) and HBPin (90 mg, 0.70 mmol) were dissolved in 550 μ L 1,3-bis(trifluoromethyl)benzene and heated at 150 °C in a constant temperature circulator for 3 hours in a J. Young NMR tube. The solution was transferred to a vial and the solvent removed under vacuum at room temperature. The residue was chromatographed on a silica gel column, eluting with CH_2Cl_2 , to yield 1,3,5- $C_6H_3(CF_3)_2(BPin)$ as a colorless solid (203 mg, 86% based on HBPin).

C₆F₅(BPin). Catalytic addition of HBPin to C₆HF₅ using solutions of compounds

1 (generated *in situ* from compound 2) and 3 gave C₆F₅(BPin) as a colorless solid (205)

mg, 81% based on HBPin, and 85 mg, 41% based on HBPin, for 1 and 3, respectively). mp 35-36 °C. 1 H NMR (CDCl₃) δ 1.36 (s, 12H, BO₂C₆H₁₂). 11 B NMR (CDCl₃) δ 29. 19 F NMR (CDCl₃) δ -129.5 (m, 2F), -149.7 (m, 1F), -161.9 (m, 2F). Anal. Calcd for C₁₂H₁₂BF₅O₂: C, 49.02; H, 4.11. Found: C, 48.33; H, 4.59. GC-MS (m/z) 294.

C₆H₄(CF₃)(BPin) (isomer mixture). Catalytic addition of HBPin to benzotrifluoride using solutions of 1 gave 2 isomers, m-C₆H₄(CF₃)(BPin) : p-C₆H₄(CF₃)(BPin) in a 2:1 ratio (202 mg, 99% based on HBPin). HBPin addition catalyzed by solutions of 3 gave m-C₆H₄(CF₃)(BPin) : p-C₆H₄(CF₃)(BPin) in a 2:1 ratio (161 mg, 84% based on HBPin). The proton chemical shifts of the two isomers were determined by selective decoupling of peaks in the aromatic region. m-C₆H₄(CF₃)(BPin). ¹H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 7.47 (t, 1H), 7.68 (d, 1H), 7.96 (d, 1H), 8.05 (s, 1H). ¹¹B NMR (CDCl₃) δ 30.2. ¹⁹F NMR (CDCl₃) δ -62.9. p-C₆H₄(CF₃)(BPin). ¹H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 7.59 (d, 2H), 7.89 (d, 2H). ¹¹B NMR (CDCl₃) δ 30.2. ¹⁹F NMR (CDCl₃) δ -63.3. Anal. Calcd for C₁₃H₁₆BF₃O₂: C, 57.39; H, 5.93. Found: C, 57.48; H, 6.40. GC-MS (m/z) 272.

C₆H₄Me(BPin) (isomer mixture). Catalytic addition of HBPin to toluene using solutions of 3 gave 3 isomers, *m*-C₆H₄Me(BPin) : *p*-C₆H₄Me(BPin) : *o*-C₆H₄Me(BPin) in a 63:32:5 ratio (110 mg, 72% based on HBPin).

C₆H₄(OMe)(BPin) (isomer mixture). Catalytic addition of HBPin to anisole using solutions of 3 gave 3 isomers, m-C₆H₄(OMe)(BPin) : p-C₆H₄(OMe)(BPin) : o-C₆H₄(OMe)(BPin) in a 67:25:8 ratio (106 mg, 65% based on HBPin). The proton chemical shifts of the 2 major isomers were determined by selective decoupling experiments and by comparison to spectra of independently prepared authentic samples. m-C₆H₄(OMe)(BPin). 1 H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 3.82 (s, 3H, OMe), 7.25-7.44 (m, 3H), 7.00 (m, 1H). 11 B NMR (CDCl₃) δ 30.8. p-C₆H₄(OMe)(BPin). 1 H NMR (CDCl₃) δ 1.31 (s, 12H, BO₂C₆H₁₂), 3.81 (s, 3H, OMe), 6.88 (d, 2H), 7.74 (d, 2H). 11 B NMR (CDCl₃) δ 30.8. Anal. Calcd for C₁₃H₁₉BO₃: C, 66.70; H, 8.18. Found: C, 66.69; H, 8.50. GC-MS (m/z) 234.

 $C_6H_4(NMe_2)(BPin)$ (isomer mixture). Catalytic addition of HBPin to N,N-dimethylaniline using solutions of 3 gave m- $C_6H_4(NMe_2)(BPin)$: p- $C_6H_4(NMe_2)(BPin)$ in the ratio 55:43:2 (113 mg, 65% based on HBPin). The proton chemical shifts of p- $C_6H_4(NMe_2)(BPin)$ and m- $C_6H_4(NMe_2)(BPin)$ isomers were determined by selective decoupling and NOE experiments. Resonances in the aromatic region were assigned to m- and p- $C_6H_4(NMe_2)(BPin)$ isomers by selective decoupling experiments. Resonances for the methyl groups of NMe₂ in m- and p- $C_6H_4(NMe_2)(BPin)$ were assigned to each isomer based on one-dimensional NOE experiments. In the NOE experiment, the methyl resonances of the NMe₂ groups were irradiated in order to establish through space relationships with their respective aromatic protons. Irradiation of

the methyl resonance at δ 2.97 resulted in an enhancement of the peak at δ 6.68, corresponding to the aromatic protons assigned to $p\text{-}C_6H_4(\text{NMe}_2)(\text{BPin})$. Irradiation of the second methyl resonance at δ 2.95 resulted in enhancement of the peaks at δ 6.85 and δ 7.21, corresponding to aromatic protons assigned to $m\text{-}C_6H_4(\text{NMe}_2)(\text{BPin})$. The integration of the methyl resonances of NMe₂ by deconvolution of the peaks, indicates a higher percentage of the *meta* isomer with respect to the *para* isomer. From the integration of the ¹H NMR spectrum, the peaks in the GC-MS were assigned accordingly to each isomer. $m\text{-}C_6H_4(\text{NMe}_2)(\text{BPin})$. ¹H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 2.95 (s, 6H, N (CH₃)₂), 6.85 (m, 1H), 7.17-7.28 (m, 3H). ¹¹B NMR (CDCl₃) δ 31.1. $p\text{-}C_6H_4(\text{NMe}_2)(\text{BPin})$. ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 2.97 (s, 6H, NMe₂), 6.68 (d, 2H), 7.69 (d, 2H). ¹¹B NMR (CDCl₃) δ 31.1. Anal. Calcd for C₁₄H₂₂BNO₂: C, 68.04; H, 8.97. Found: C, 67.84; H, 9.11. GC-MS (m/z) 247.

 $C_6H_4(CHMe_2)(BPin)$ (isomer mixture). Catalytic addition of HBPin to cumene using solutions of 3 gave 3 isomers, m- $C_6H_4(CHMe_2)(BPin)$: p- $C_6H_4(CHMe_2)(BPin)$: o- $C_6H_4(CHMe_2)(BPin)$ in a 66:33:1 ratio (115 mg, 67% based on HBPin). The proton chemical shifts of the 2 major isomers were determined by selective decoupling experiments. m- $C_6H_4(CHMe_2)(BPin)$. 1H NMR (CDCl₃) δ 1.24 (d, 6H, 2Me), 1.33 (s, 12H, BO₂C₆H₁₂), 2.91 (m, 1H, CH), 7.27-7.33 (m, 2H), 7.62 (d, 1H), 7.65 (s, 1H). ^{11}B NMR (CDCl₃) δ 31.1. p- $C_6H_4(CHMe_2)(BPin)$. ^{11}H NMR (CDCl₃) δ 1.23 (d, 6H, 2Me), 1.32 (s, 12H, BO₂C₆H₁₂), 2.91 (m, 1H, CH), 7.22 (d, 2H), 7.73 (d, 2H). ^{11}B NMR (CDCl₃) δ 31.1. GC-MS (m/z) 246.

1,3,5-C₆H₃Me₂(BPin) Catalytic addition of HBPin to *m*-xylene using solutions of 3 gave 1 major product. 1,3,5-C₆H₃Me₂(BPin) was isolated as a white solid (119 mg, 73% based on HBPin). mp 90-91 °C. ¹H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 2.30 (s, 6H, 2Me), 7.09 (s, 1H), 7.42 (s, 2H). ¹³C{¹H} NMR (CDCl₃) δ 21.1, 24.8, 83.6, 132.4, 132.9, 137.1. ¹¹B NMR (CDCl₃) δ 30.9. Anal. Calcd for C₁₄H₂₁BO₂: C, 72.44; H, 9.12. Found: C, 72.38; H, 9.44. GC-MS (*m/z*) 232.

2,4,6-C₅NH₂Me₂(BPin) Catalytic addition of HBPin to 2,6-lutidine using solutions of **3** gave 2,4,6-C₅NH₂Me₂(BPin), isolated as colorless crystals after sublimation of the crude product under high vacuum at 70 °C (67 mg, 41% based on HBPin). mp 82-83°C. ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 2.49 (s, 6H, 2Me), 7.28 (s, 2H). ¹¹B NMR (CDCl₃) δ 30.8. Anal. Calcd for C₁₃H₂₀BNO₂: C, 66.98; H, 8.65; N, 6.01. Found: C, 66.79; H, 9.09; N, 6.40. GC-MS (m/z) 233.

 $C_6H_4(C(O)NEt_2)(BPin)$ (isomer mixture). Catalytic addition of HBPin to $C_6H_5(C(O)NEt_2)$ using solutions of 3 gave $m-C_6H_4(C(O)NEt_2)(BPin)$: $p-C_6H_4(C(O)NEt_2)(BPin)$: $o-C_6H_4(C(O)NEt_2)(BPin)$ in the ratio 28:14:58. The product was distilled from the reaction mixture using a Kugelrohr distillation apparatus and collected

as a colorless viscous liquid (106 mg, 50% based on HBPin). For isomer mixture: 'H NMR (CDCl₃) δ 1.04 (m, 3H, CH₃), 1.23 (m, 3H, CH₃), 1.28, 1.33, 1.34 (s, 12H, $BO_2C_6H_{12}$), 3.20 (m, 2H, CH₂), 3.55 (m, 2H, CH₂), 7.23-7.26, 7.30-7.74, 7.75-7.81 (m, 4H). ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃) δ 12.36, 12.78 (br), 13.56, 14.05 (br) (NCH₂CH₃), 24.76 (BO₂C₂(CH₃)₄), 39.04 (br), 39.64, 42.87, 43.16 (br) (NCH₂CH₃), 83.23, 83.52, 83.82(BO₂C₂(CH₃)₄), 125.27, 127.58, 128.08, 128.71, 130.34, 132.34, 134.64, 134.88, 135.16,136.60, 139.74, 142.20 (aromatic resonances), 171.02, 171.17, 171.50 (carbonyl resonances). ¹¹B NMR (CDCl₃) δ 28.7. IR (neat, cm⁻¹) 660 (m), 783 (w), 858 (m), 965 (m), 1103 (m), 1146 (s), 1223 (w), 1287 (m), 1321 (m), 1356 (s), 1428 (m), 1634 (s). Satisfactory combustion analysis has not been obtained. GC-MS (m/z) 303. The identity of isomer products was established by comparing spectroscopic data to the independent synthesis of authentic samples using the literature method, 25 and by comparing GC-MS data for the mixture to data for the independently prepared pure isomers. m- $C_6H_4(C(O)NEt_2)(BPin)$. ¹H NMR (CDCl₃) δ 1.07 (t, 3H, CH₃), 1.21 (t, 3H, CH₃), 1.32 (s, 12H, $BO_2C_6H_{12}$), 3.22 (br, 2H, CH_2), 3.52 (m, 2H, CH_2), 7.30-7.47 (m, 3H), 7.79 (s, 1H). $o-C_6H_4(C(O)NEt_2)(BPin)$. H NMR (CDCl₃) δ 1.04 (br, 3H, CH₃), 1.28 (br, 3H, CH₃), 1.28 (s, 12H, $BO_2C_6H_{12}$), 3.20 (q, 2H, CH_2), 3.56 (q, 2H, CH_2), 7.27 (d, 1H), 7.30-7.40 (m, 2H), 7.79 (d, 1H). $p-C_6H_4(C(O)NEt_2)(BPin)$. ¹H NMR (CDCl₃) δ 1.06 (br, 3H, CH₃), 1.23 (br, 3H, CH₃), 1.34 (s, 12H, $BO_2C_6H_{12}$), 3.19 (br, 2H, CH₂), 3.53 (br, 2H, CH₂), 7.34 (d, 2H), 7.81 (d, 2H).

 $C_6H_4(C(O)OEt)(BPin)$ (isomer mixture). Catalytic addition of HBPin to $C_6H_5(C(O)OEt)$ using solutions of 3 gave m- $C_6H_4(C(O)OEt)(BPin)$: p- $C_6H_4(C(O)OEt)(BPin)$: o- $C_6H_4(C(O)OEt)(BPin)$ in the ratio 57:33:10. The identity of isomer products were established by comparing GC-MS data for the mixture to data for the independently prepared pure isomers using the literature method. 25 m- $C_6H_4(C(O)OEt)(BPin)$. 1H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 1.38 (t, 3H, CH₃), 4.36 (q, 2H, CH₂), 7.42 (t, 1H), 7.96 (d, 1H), 8.11 (d, 1H), 8.44 (s, 1H). ^{11}B NMR (CDCl₃) δ 30.8. p- $C_6H_4(C(O)OEt)(BPin)$. 1H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 1.38 (t, 3H, CH₃), 4.36 (q, 2H, CH₂), 7.84 (d, 2H), 8.00 (d, 2H). ^{11}B NMR (CDCl₃) δ 30.9. GC-MS (m/z) 276.

2,4,6-C₆H₂F₃(**BPin**). 3 (5 mg, 0.013 mmol) and HBPin (90 mg, 0.70 mmol) were dissolved in 550 μ L of a 1:2 ratio of xylene- d_{10} and 1,3,5-C₆H₃F₃, and heated at 150 °C for 30 min in a J. Young tube. The solution was then transferred to a vial and the solvent removed under vacuum at room temperature. The residue was chromatographed on a silica gel column, eluting with CH₂Cl₂, to yield 2,4,6-C₆H₂F₃(BPin) (83 mg, 46% based on HBPin). ¹H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 6.58 (m, 2H). ¹¹B NMR (CDCl₃) δ 29.4. ¹⁹F NMR (CDCl₃) δ -103.8 (m, 2F), -97.1 (m, 1F). Anal. Calcd for C₁₂H₁₄BF₃O₂: C, 55.85; H, 5.47. Found: C, 56.08; H, 5.59. GC-MS (m/z) 258.

The general procedure for the syntheses of the following arylboronate esters: 13 (2.9 mg, 0.007 mmol) and dmpe (1 mg, 0.007 mmol) dissolved in an arene (166 μ L x 2)

were transferred to a J-Young NMR tube, which was charged with HBPin (51 μL, 0.351 mmol). Additional arene (166 μL) was used to wash the residue to the NMR tube. The reaction mixture was then heated at 150 °C for xx h. The reaction was monitored by the disappearance of the resonance of pinacolborane in the ¹¹B NMR spectra. After the reaction was done, an aliquot was taken for GC-FID and GC-MS analyses. The reaction mixture was then transferred to a vial and the substrate was removed under vacuum (in some cases with gentle heating). The residue was dissolved in CH₂Cl₂ and passed through a silica gel column using CH₂Cl₂ as eluting solvent. The filtrate was then pumped down to give the corresponding spectroscopically pure arylboronate esters.

1,2,4-C₆H₃(Cl)₂(BPin). The borylation product was isolated as colorless oil (93.9 mg, 98%). ¹H NMR (CDCl₃) δ 1.32 (s, 12 H, BO₂C₆H₁₂), 7.41 (d, J = 8.0 Hz, 1H), 7.57 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.84 (d, J = 1.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 24.8, 84.3, 130.0, 132.3, 133.8, 135.5, 136.6. ¹¹B NMR (CDCl₃) δ 30.0. Anal. Calcd for C₁₂H₁₅BCl₂O₂: C, 52.80; H, 5.54. Found: C, 53.09; H, 5.77. GC-MS (m/z) 273.

1,4,5-C₆H₃(Cl)₂(BPin). The borylation product was isolated as a colorless solid (72.6 mg, 76%). mp 46-48 °C. ¹H NMR (CD₂Cl₂) δ 1.35 (s, 12H, BO₂C₆H₁₂), 7.29 (d, J = 8.3 Hz, 1H), 7.33 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 7.67 (d, J = 2.4 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 24.8, 84.5, 130.7, 131.7, 132.1, 136.0, 137.7. ¹¹B NMR (CDCl₃) δ 29.9. Anal. Calcd for C₁₂H₁₅BCl₂O₂: C, 52.80; H, 5.54. Found: C, 53.19; H, 5.71. GC-MS (m/z) 273.

1,2,4-C₆H₃(Me)₂(BPin). The borylation product was isolated as colorless oil (69.2 mg, 85%). ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 2.25 (s, 3H, Me), 2.26 (s, 3H, Me), 7.12 (d, J = 7.3 Hz, 1H), 7.53 (d, J = 7.3 Hz, 1H), 7.57 (s, 1H). ¹³C{¹H} NMR (CDCl₃) δ 19.4, 20.0, 24.8, 83.5, 129.1, 132.4, 135.8, 135.9, 140.1. ¹¹B NMR (CDCl₃) δ 30.6. Anal. Calcd for C₁₄H₂₁BO₂: C, 72.44; H, 9.12. Found: C, 72.26; H, 8.98. GC-MS (m/z) 232.

1,2,4-C₆H₃(BPin)(Me)₂. The borylation product was isolated as colorless oil (55.4 mg, 68%). ¹H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 2.29 (s, 3H, Me), 2.48 (s, 3H, Me), 7.04 (d, J = 7.7 Hz, 1H), 7.11 (dd, J = 2.2 Hz, 7.7 Hz, 1H), 7.56 (d, J = 2.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 20.7, 21.7, 24.8, 83.3, 129.7, 131.5, 133.8, 136.3, 141.7. ¹¹B NMR (CDCl₃) δ 30.9. Anal. Calcd for C₁₄H₂₁BO₂: C, 72.44; H, 9.12. Found: C, 72.00; H, 8.59. GC-MS (m/z) 232.

 $C_6H_3(Cl)(BPin)(CF_3)$ (isomer mixture). The borylation product was isolated as colorless oil (375 mg, 78%). The ratio of 1,2,4- $C_6H_3(Cl)(BPin)(CF_3)$ to 1,3,4- $C_6H_3(Cl)(BPin)(CF_3)$, determined by GC-FID of the crude reaction mixture, was 88:12. 1,2,4- $C_6H_3(Cl)(BPin)(CF_3)$. ¹H NMR (CDCl₃) δ 1.36 (s, 12H, BO₂C₆H₁₂), 7.44 (d, J = 8.5 Hz, 1H), 7.56 (ddd, J = 8.3 Hz, 2.4 Hz, 0.7 Hz, 1H), 7.92 (d, 2.2 Hz, 1H). ¹³C{¹H}

NMR (CDCl₃) δ 24.8, 84.7, 124.0 (q, J = 272.0 Hz, 1C), 128.4 (q, J = 3.5 Hz, 1C), 128.5 (q, J = 32.9 Hz, 1C), 129.9, 133.3 (q, J = 3.5 Hz, 1C), 143.5. ¹¹B NMR (CDCl₃) δ 30.0. ¹⁹F NMR (CDCl₃) δ -62.8. Anal. Calcd for C₁₃H₁₅BClF₃O₂: C, 50.94; H, 4.93. Found: C, 51.27; H, 5.05. GC-MS (m/z) 306.

C₆H₃(F)(OMe)(BPin) (isomer mixture). The borylation product (55 mg, 62%) was isolated as colorless oil. The ratio of 1,4,6-C₆H₃(F)(OMe)(BPin) to 1,4,5-C₆H₃(F)(OMe)(BPin), determined by GC-FID of the crude reaction mixture, was 93:7. 1,4,6-C₆H₃(F)(OMe)(BPin). ¹H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 3.78 (s, 3H, OMe), 6.92 (m, 2H), 7.18 (m, 1H). ¹³C{¹H} NMR (CDCl₃) δ 24.8, 55.8, 83.9, 116.0 (d, ${}^2J_{CF} = 25.9$ Hz) 119.2 (d, ${}^3J_{CF} = 8.6$ Hz), 120.1 (d, ${}^3J_{CF} = 8.6$ Hz), 155.3 (d, ${}^4J_{CF} = 1.9$ Hz), 161.7 (d, ${}^1J_{CF} = 243.6$ Hz). ¹¹B NMR (CDCl₃) δ 29.8. ¹⁹F NMR (CDCl₃) δ -114.3. 1,4,5-C₆H₃(F)(OMe)(BPin). ¹H NMR (CDCl₃) δ 1.30 (s, 12H, BO₂C₆H₁₂), 3.88 (s, 3H, OMe), 6.88 (d, J = 8.2 Hz, 1H), 7.64 (dd, J = 8.2 Hz, 1.5 Hz, 1H), 7.77 (d, J = 1.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 24.8, 56.7, 83.7, 112.2 (d, ${}^3J_{CF} = 6.7$ Hz) 118.3 (d, ${}^2J_{CF} = 23.0$ Hz), 122.4 (d, ${}^2J_{CF} = 21.1$ Hz), 157.0 (d, ${}^1J_{CF} = 238.8$ Hz), 160.4 (d, ${}^4J_{CF} = 1.9$ Hz). ¹¹B NMR (CDCl₃) δ 29.8. ¹⁹F NMR (CDCl₃) δ -125.6. Anal. Calcd for C₁₃H₁₈BFO₃: C, 61.94; H, 7.20. Found: C, 61.83; H, 7.45. GC-MS (m/z) 252.

C₆H₃(Cl)(OMe)(BPin) (isomer mixture). The borylation product was isolated as colorless oil (58 mg, 62%). The ratio of 1,4,6-C₆H₃(Cl)(OMe)(BPin) to 1,4,5-

 $C_6H_3(Cl)(OMe)(BPin)$, determined by GC-FID of the crude reaction mixture, was 32:68. 1,4,6- $C_6H_3(Cl)(OMe)(BPin)$. ¹H NMR (CDCl₃) δ 1.35 (s, 12H, BO₂C₆H₁₂), 3.77 (s, 3H, OMe), 6.85 (dd, J = 8.6 Hz, 3.1 Hz, 1H), 7.17 (d, J = 3.3 Hz, 1H), 7.22 (d, J = 8.6 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 24.7, 55.5, 84.1, 117.9, 120.9, 130.2, 130.9, 157.6. ¹¹B NMR (CDCl₃) δ 30.2. 1,4,5- $C_6H_3(Cl)(OMe)(BPin)$. ¹H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 3.78 (s, 3H, OMe), 6.76 (d, J = 8.8 Hz, 1H), 7.30 (dd, J = 8.8 Hz, 2.9 Hz, 1H), 7.59 (d, J = 2.7 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 24.7, 56.1, 83.7, 112.1, 125.4, 131.9, 136.0, 162.7. ¹¹B NMR (CDCl₃) δ 30.2. Anal. Calcd for C₁₃H₁₈BClO₃: C, 58.14; H, 6.76. Found: C, 58.20; H, 6.97. GC-MS (m/z) 268.

C₆H₃(Cl)(OMe)(BPin) (isomer mixture). The borylation product was isolated as colorless oil (69 mg, 73%). The ratio of 1,2,4-C₆H₃(Cl)(OMe)(BPin) to 1,2,5-C₆H₃(Cl)(OMe)(BPin), determined by GC-FID of the crude reaction mixture, was 51:49. 1,2,5-C₆H₃(Cl)(OMe)(BPin). ¹H NMR (CDCl₃) δ 1.31 (s, 12H, BO₂C₆H₁₂), 3.88 (s, 3H, OMe), 6.88 (d, J = 8.3 Hz, 1H), 7.65 (dd, J = 8.1 Hz, 1.5 Hz, 1H), 7.78 (d, J = 1.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 24.8, 56.0, 83.8, 111.4, 122.3, 134.7, 136.5, 157.4. ¹¹B NMR (CDCl₃) δ 30.2. 1,2,4-C₆H₃(Cl)(OMe)(BPin). ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 3.91 (s, 3H, OMe), 7.31-7.35 (m, 3H). ¹³C{¹H} NMR (CDCl₃) δ 24.8, 56.1, 84.0, 117.7, 126.0, 127.9, 129.7, 154.6. ¹¹B NMR (CDCl₃) δ 30.2. Anal. Calcd for C₁₃H₁₈BClO₃: C, 58.14; H, 6.76. Found: C, 58.12; H, 6.84. GC-MS (m/z) 268.

C₆H₃(OMe)(Me)(BPin) (isomer mixture). The borylation product was isolated as colorless oil (67 mg, 77%). The ratio of 1,2,5-C₆H₃(OMe)(Me)(BPin) to 1,2,4-C₆H₃(OMe)(Me)(BPin), determined by GC-FID of the crude reaction mixture, was 64:36. 1,2,5-C₆H₃(OMe)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 2.24 (s, 3H, Me), 3.87 (s, 3H, OMe), 7.15 (d, J = 7.3 Hz, 1H), 7.23 (s, 1H), 7.33 (d, J = 7.1 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 16.4, 24.8, 55.4, 83.6, 115.5, 127.3, 130.2, 130.3, 157.4. ¹¹B NMR (CDCl₃) δ 30.6. 1,2,4-C₆H₃(OMe)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 2.22 (s, 3H, Me), 3.84 (s, 3H, OMe), 6.82 (d, J = 8.2 Hz, 1H), 7.59 (s, 1H), 7.65(d, J = 8.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 15.9, 24.8, 55.2, 83.5, 109.3, 125.9, 134.3, 137.2, 160.5. ¹¹B NMR (CDCl₃) δ 30.6. Anal. Calcd for C₁₄H₂₁BO₃: C, 67.77; H, 8.53. Found: C, 67.76; H, 8.39. GC-MS (m/z) 248.

C₆H₃(OMe)(Me)(BPin) (isomer mixture). The borylation product was isolated as colorless oil (67 mg, 77%). The ratio of 1,4,6-C₆H₃(OMe)(Me)(BPin) to 1,4,5-C₆H₃(OMe)(Me)(BPin), determined by GC-FID of the crude reaction mixture, was 70:30. 1,4,6-C₆H₃(OMe)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.34 (s, 12H, BO₂C₆H₁₂), 2.26 (s, 3H, Me), 3.78 (s, 3H, OMe), 6.74 (d, J = 8.4 Hz, 1H), 7.16 (ddd, J = 8.4 Hz, 2.4 Hz, 0.7 Hz, 1H), 7.45 (d, J = 2.4 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 20.2, 24.8, 56.1, 83.3, 110.8, 129.2, 132.8, 137.0, 162.4. ¹¹B NMR (CDCl₃) δ 30.7. 1,4,5-C₆H₃(OMe)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 2.45 (s, 3H, Me), 3.78 (s, 3H, OMe), 6.85 (dd, J = 8.4 Hz, 3.1 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 2.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 21.1, 24.8, 55.3 (d, J = 2.0 Hz), 83.4, 117.0, 120.3, 130.8, 136.8, 156.9. ¹¹B

NMR (CDCl₃) δ 30.7. Anal. Calcd for C₁₄H₂₁BO₃: C, 67.77; H, 8.53. Found: C, 67.50; H, 8.61. GC-MS (m/z) 248.

C₆H₃(Cl)(Me)(BPin) (isomer mixture). The borylation product was isolated as colorless oil (74 mg, 84%). The ratio of 1,4,5-C₆H₃(Cl)(Me)(BPin) to 1,4,6-C₆H₃(Cl)(Me)(BPin), determined by GC-FID of the crude reaction mixture, was 57:43. 1,4,5-C₆H₃(Cl)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 2.47 (s, 3H, Me), 7.06 (d, J = 8.3 Hz, 1H), 7.24 (dd, J = 8.3 Hz, 2.4 Hz, 1H), 7.69 (d, J = 2.4 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 21.5, 24.9, 83.8, 130.5, 130.8, 131.2, 135.4, 143.1. ¹¹B NMR (CDCl₃) δ 30.9. 1,4,6-C₆H₃(Cl)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.35 (s, 12H, BO₂C₆H₁₂), 2.28 (s, 3H, Me), 7.11 (ddd, J = 8.3 Hz, 2.0 Hz, 0.7 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 7.46 (d, J = 2.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃) δ 20.6, 24.8, 84.1, 129.2, 132.5, 135.4, 136.6, 136.9. ¹¹B NMR (CDCl₃) δ 30.9. Anal. Calcd for C₁₃H₁₈BClO₂: C, 61.83; H, 7.18. Found: C, 62.15; H, 7.22. GC-MS (m/z) 252.

 $C_6H_4(Cl)(Me)(BPin)$ (isomer mixture). The borylation products (79 mg, 89%) were isolated as colorless oil. The ratio of 1,2,5- $C_6H_3(Cl)(Me)(BPin)$ to 1,2,4- $C_6H_3(Cl)(Me)(BPin)$, determined by GC-FID of the crude reaction mixture, was 62:38. 1,2,5- $C_6H_3(Cl)(Me)(BPin)$. ¹H NMR (CDCl₃) δ 1.32 (s, 12H, BO₂C₆H₁₂), 2.38 (s, 3H, Me), 7.20 (d, J = 7.5 Hz, 1H), 7.52 (dd, J = 8.8 Hz, 0.9 Hz, 1H), 7.76 (s, 1H). ¹³C { ¹H } NMR (125 MHz, CDCl₃) δ 20.2, 24.9, 84.0, 130.5, 132.8, 134.3, 135.2, 139.2. ¹¹B NMR

(CDCl3) δ 30.9. 1,2,4-C₆H₃(Cl)(Me)(BPin). ¹H NMR (CDCl₃) δ 1.33 (s, 12H, BO₂C₆H₁₂), 2.37 (s, 3H, Me), 7.32 (d, J = 8.0 Hz, 1H), 7.55 (dd, J = 7.5 Hz, 0.9 Hz, 1H), 7.65 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 19.7, 24.9, 83.9, 128.6, 133.5, 135.3, 137.3, 137.8. ¹¹B NMR (CDCl3) δ 30.9. Anal. Calcd for C₁₃H₁₈BClO₂: C, 61.83; H, 7.18. Found: C, 61.94; H, 7.42. GC-MS (m/z) 252.

Competitive Borylation Experiments

Competition between Toluene and Anisole Using Solutions of 2

Cp*Ir(PMe₃)H₂ (2) (15 mg, 0.037 mmol) was weighed in a test tube, and a pre-mixed 1:1 mole ratio of toluene (256 mg) and anisole (300 mg) was added to dissolve the catalyst. Then HBPin (27 μL, 0.185 mmol) was added to the test tube via syringe. The solution was transferred to a J. Young NMR tube, and the reaction was heated at 150 °C in a constant temperature circulator. The conversion of the reaction was monitored by the disappearance of the resonance for pinacolborane in the ¹¹B NMR spectrum. The isomer ratios were determined by integrating the peaks in the GC-MS spectra, after correcting for the response factors determined from equimolar mixtures of independently synthesized arylboronate esters. The ratio of *o*-, *m*-, *p*-C₆H₄Me(BPin) : *o*-, *m*-, *p*-C₆H₄(OMe)(BPin) is 38:62.

Competition between Toluene and Benzotrifluoride Using Solutions of 2

The procedure is the same as that in the competition between toluene and anisole using solutions of 2. Toluene (242 mg) and benzotrifluoride (383 mg) were used. The ratio of o-, m-, p-C₆H₄Me(BPin): m-, p-C₆H₄(CF₃)(BPin) is 11:89.

Competition between Cumene and N,N-Dimethylaniline Using Solutions of 2

The procedure is the same as that in the competition between toluene and anisole using solutions of 2. Cumene (280 mg) and N,N-dimethylaniline (282 mg) were used. The ratio of C₆H₄CH(CH₃)₂(BPin) : o-, m-, p-C₆H₄(NMe₂)(BPin) is 69:31.

Competition between Toluene and Anisole Using Solutions of 3

Cp*Rh(η^4 -C₆Me₆) (3) (5 mg, 0.013 mmol) was weighed in a test tube, and a pre-mixed 1: 1 mole ratio of toluene (256 mg) and anisole (300 mg) was added to dissolve the catalyst. Then HBPin (90 mg, 0.70 mmol) was added to the test tube via syringe. The solution was transferred to a J. Young NMR tube. The reaction was heated at 150 °C in a constant temperature circulator, and the reaction was judged to be complete by monitoring the disappearance of the resonance for pinacolborane in the ¹¹B NMR spectrum. The isomer ratios were determined by integrating the peaks in the GC-MS spectra, after correcting for the response factors determined from equimolar mixtures of independently synthesized arylboronate esters. The ratio of o-, m-, p-C₆H₄(OMe)(BPin) is 46:54.

Competition between Toluene and Benzotrifluoride Using Solutions of 3

The procedure is the same as that in the competition between toluene and anisole using solutions of 3. Toluene (242 mg) and benzotrifluoride (383 mg) were used. The ratio of o-, m-, p-C₆H₄Me(BPin): m-, p-C₆H₄(CF₃)(BPin) is 27:73.

Competition between Cumene and N,N-Dimethylaniline Using Solutions of 3

The procedure is the same as that in the competition between toluene and anisole using solutions of 3. Cumene (280 mg) and N,N-dimethylaniline (282 mg) were used. The ratio of C₆H₄CH(CH₃)₂(BPin) : o-, m-, p-C₆H₄(NMe₂)(BPin) is 60:40.

Competition between Toluene and N,N-Dimethylaniline Using Solutions of 3

The procedure is the same as that in the competition between toluene and anisole using solutions of 3. Toluene (250 mg) and N,N-dimethylaniline (329 mg) were used. The ratio of o-, m-, p-C₆H₄Me(BPin): o-, m-, p-C₆H₄(NMe₂)(BPin) is 59:41.

Competition Experiments Using Solutions of 13 and dmpe

The general procedure is illustrated by the competition reaction between m-xylene and 1,3-bis(trifluoromethyl)benzene using solutions of 13 and dmpe. (Ind)Ir(COD) (13) (2.9 mg, 0.007 mmol) and dmpe (1 mg, 0.007 mmol) were weighed into two separate GC vials, and a pre-mixed 1:1 molar ratio of m-xylene and 1,3-bis(trifluoromethyl)benzene solution (166 μ L x 3) was added to dissolve the catalyst. The solution was transferred to a J. Young NMR tube, which was charged with HBPin (51 μ L, 0.351 mmol) and the reaction mixture was heated at 150 °C in a constant temperature circulator. The conversion of the reaction was monitored by the disappearance of the resonance for pinacolborane in the 11 B NMR spectrum. The product ratios were determined by integrating the peaks in the GC-FID spectra. The ratio of 1,3,5-C₆H₃Me₂(BPin): 1,3,5-C₆H₃(CF₃)₂(BPin) is 3.5:96.5. The results of borylation of equimolar mixtures of two different substituted arenes catalyzed by 13 (2 mol%)/dmpe (2 mol%) are summarized in Table 13.

Kinetics Experiments

A typical experimental run for the reaction of Cp*Rh(PMe₃)(Ph)(H) (4) with 12 equiv. of HBPin in C₆D₆ is described as follows: Two samples were prepared at the same

time. In a drybox, compound 4 (18 mg, 0.046 mmol) and HBPin (80 μ L, 0.55 mmol) were placed in a 1 mL volumetric flask and the flask was filled with C_6D_6 to the mark. The solution in the volumetric flask was mixed well and distributed equally to two J. Young NMR tubes. The kinetic experiments were run twice at different temperatures to ensure the reproducibility. The temperature range is from 65 °C to 115 °C. The kinetics was carried out at 65, 75, 85, 95, 105, and 115 °C. The reactions were heated in a constant temperature oil bath (Cole-Parmer Polystat Constant Temperature Circulator). At specific intervals the NMR tubes were removed from the oil bath and quenched by rapid cooling in an ice bath. The ¹H NMR spectra were then recorded at 25 \pm 0.5 °C on a VXR-500 spectrometer. The progress of the reaction was monitored to 3 half-lives by measuring the ratio of the intensity of the Cp* of 4 versus the total "intensity" of the Cp* resonances of 4 and Cp*Rh(PMe₃)(H)(BPin) (7).

A typical experimental run for the phosphine dependence on the thermolysis of 18 in C_6D_6 is described as follows: Four samples were prepared at the same time. In a drybox, compound 18 (60 mg, 0.096 mmol) was placed in a 1 mL volumetric flask and the flask was filled with C_6D_6 to the mark. The solution in the volumetric flask was mixed well and a 200 μ L portion of the solution was added to four J. Young NMR tubes respectively via an auto-pipette (100 μ L x 2). C_6Me_6 (15.6 mg, 0.096 mmol) was placed in a 1 ml volumetric flask and the flask was filled with C_6D_6 to the mark. The solution in the volumetric flask was mixed well and a 200 μ L portion of the solution was added to the four J. Young NMR tubes respectively via an auto-pipette (100 μ L x 2) as an internal standard. Pre-calculated amount of C_6D_6 was added into each of the four NMR tubes to make the total volume of the solution to 700 μ L. In the end, different quantities of PMe₃

were added to the four NMR tubes respectively via a microsyringe. The experiments were carried out at 130 °C in a constant temperature oil bath (Cole-Parmer Polystat Constant Temperature Circulator). At specific intervals the NMR tubes were removed from the oil bath and quenched by rapid cooling in an ice bath. The 1H NMR spectra were then recorded at 25 \pm 0.5 °C on a Inova-600 spectrometer. The concentration range of PMe₃ is from 0.00828 M to 0.828 M. The progress of the reaction was monitored to 3 half-lives by measuring the ratio of the intensity of the PMe₃ of 18 versus the total "intensity" of the PMe₃ resonances of 18 and 37- d_1 .

Crystal Structure Determinations and Refinement

Crystals grown at -30 °C were covered in Paratone N and moved quickly from a scintillation vial to a microscope side. A suitable crystal was chosen and mounted on a glass fiber. The data collection were carried out at a sample temperature of 173(2) K on a Bruker AXS three-circle goniometer with a CCD detector. The data were processed and reduced utilizing the program SAINTPLUS supplied by Bruker AXS. The structure were solved by direct methods (SHELXTL v5.1, Bruker AXS) in conjunction with standard difference Fourier techniques. The figures shown were produced using ORTEP and ellipsoids are at the 25% probability level. Tables of pertinent data collection parameters for all compounds crystallographically characterized are given in appendix A.

Single crystals of 14 were grown from a pentane solution at -30 °C and the structure was further confirmed by single-crystal X-ray crystallographic analysis.

Single crystals of 17 and B_2Pin_2 co-crystallized from a pentane solution at -30 °C and the structures were established by X-ray crystallographic analysis.

Single crystals of 18 were grown from a pentane solution at -30 °C and the structure was further confirmed by single-crystal X-ray crystallographic analysis.

Crystals suitable for X-ray analysis of 25 were grown from a pentane solution at -30 °C.

Single crystals of 28 were grown from a pentane solution at -30 °C to give colorless crystals suitable for X-ray analysis.

Single crystals of 29 were grown from a concentrated pentane solution and the structure was further confirmed by single-crystal X-ray crystallographic analysis.

APPENDICES

Appendix A. Summary of crystal data and structure refinement for compound 14.

Empirical formula	$C_{27}H_{45}B_3IrO_6$
Formula weight	690.26

Temperature (K) 173(2)
Wavelength (Å) 0.71073

Crystal system Monoclinic

 Space group
 P2(1)/n

 a (Å)
 10.211(3)

 b (Å)
 16.822(4)

 c (Å)
 18.362(5)

α, deg 90

 β , deg 92.907(5)

γ, deg 90

Volume ($Å^3$) 3150.2(14)

Z

Density (calculated) (Mg/m³) 1.455
Absorption coefficient (mm⁻¹) 4.273
F(000) 1388

Crystal size (mm³) $0.32 \times 0.30 \times 0.28$

Theta range for data collection, deg 1.64 to 23.28

Index ranges -11 <= h <= 10, -18 <= k <= 18, -20 <= l <= 14

Reflections collected 14167

Independent reflections 4535 [R(int) = 0.1070]

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 4535 / 0 / 349

Goodness-of-fit on F² 0.944

Final R indices [I>2sigma(I)] R1 = 0.0453, wR2 = 0.1056 R indices (all data) R1 = 0.0715, wR2 = 0.1146

Largest diff. peak and hole (e.Å⁻³) 1.604 and -1.635

Appendix A (cont). Summary of crystal data and structure refinement for compound 17.

Empirical formula $C_{21}H_{51}B_2CIIrO_4P_3$

Formula weight 557.84

Temperature (K) 173(2)
Wavelength (Å) 0.71073

Crystal system Monoclinic

Space group P2(1)/c

a (Å) 11.4474(13)

b (Å) 17.2608(19)

c (Å) 19.579(2)

 α , deg 90

 β , deg 92.162(2)

γ, deg 90

Volume (Å³) 3865.9(8)

Z 6

Density (calculated) (Mg/m³) 1.438 Absorption coefficient (mm⁻¹) 3.681

F(000) 1708

Crystal size (mm³) $0.42 \times 0.40 \times 0.38$

Theta range for data collection, deg 1.57 to 23.28

Index ranges -12<=h<=12, -19<=k<=19, -21<=l<=21

Reflections collected 31832

Independent reflections 5555 [R(int) = 0.1432]

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5555 / 0 / 391

Goodness-of-fit on F^2 1.052

Final R indices [I>2sigma(I)] R1 = 0.0320, wR2 = 0.0874

R indices (all data) R1 = 0.0363, wR2 = 0.090

Largest diff. peak and hole (e.Å⁻³) 1.786 and -1.656

Appendix (cont). Summary of crystal data and structure refinement for compound 18.

Empirical formula	$C_{18}H_{48}BIrO_2P_4$
Formula weight	311.73
Temperature (K)	173(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	P-1
a (Å)	9.290(3)
b (Å)	12.408(5)
c (Å)	12.458(5)
α, deg	90.107(5)
β, deg	99.436(6)
γ, deg	90.221(6)
Volume (Å ³)	1416.4(9)
Z	4
Density (calculated) (Mg/m ³)	1.462
Absorption coefficient (mm ⁻¹)	4.949
F(000)	628

Crystal size (mm³) $0.43 \times 0.31 \times 0.28$

Theta range for data collection, deg 1.64 to 23.31

Index ranges $-10 \le h \le 7, -13 \le k \le 13, -12 \le l \le 13$

Reflections collected 6368

Independent reflections 4039 [R(int) = 0.0226]

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 4039 / 0 / 252

Goodness-of-fit on F² 1.103

Final R indices [I>2sigma(I)] R1 = 0.0380, wR2 = 0.1022

R indices (all data) R1 = 0.0394, wR2 = 0.1035

Largest diff. peak and hole (e.Å⁻³) 2.484 and -1.546

Appendix (cont). Summary of crystal data and structure refinement for compound 25.

Empirical formula C₂₇H₆₃B₃IrO₆P₃

Formula weight 801.31
Temperature (K) 173(2)
Wavelength (Å) 0.71073

Crystal system Monoclinic

Space group P2(1)/c a (Å) 17.808(4)

b (Å) 11.073(3)

c (Å) 19.023(5)

 α , deg 90

 β , deg 90.106(4)

γ, deg 90

Volume ($Å^3$) 3751.0(15)

Z 5

Density (calculated) (Mg/m³) 1.774
Absorption coefficient (mm⁻¹) 4.651

F(000) 2050

Crystal size (mm 3) 0.44 x 0.28 x 0.26

Theta range for data collection, deg 2.13 to 23.28

Index ranges $-19 \le h \le 18, -12 \le k \le 12, -12 \le l \le 21$

Reflections collected 16587

Independent reflections 5396 [R(int) = 0.0595]

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5396 / 0 / 362

Goodness-of-fit on F² 1.037

Final R indices [I>2sigma(I)] R1 = 0.0743, wR2 = 0.1796

R indices (all data) R1 = 0.1012, wR2 = 0.1971

Largest diff. peak and hole (e.Å⁻³) 3.058 and -1.864

Appendix (cont). Summary of crystal data and structure refinement for compound 28.

Empirical formula C₂₁H₄₄BIrO₂P₃

Formula weight 499.59
Temperature (K) 173(2)
Wavelength (Å) 0.71073

Crystal system Monoclinic

Space group P2(1)/n a (Å) 10.740(2)

b (Å) 16.687(3) c (Å) 15.145(3)

 α , deg 90

 β , deg 90.069(4)

γ, deg 90

Volume ($Å^3$) 2714.3(10)

Z 5

Density (calculated) (Mg/m³) 1.528

Absorption coefficient (mm⁻¹) 5.109

F(000) 1252

Crystal size (mm³) $0.42 \times 0.35 \times 0.24$

Theta range for data collection, deg 1.82 to 23.28

Index ranges -11 <= h <= 11, -17 <= k <= 18, -16 <= 1 <= 16

Reflections collected 12074

Independent reflections 3908 [R(int) = 0.0288]

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 3908 / 0 / 266

Goodness-of-fit on F^2 1.119

Final R indices [I>2sigma(I)] R1 = 0.0282, wR2 = 0.0647

R indices (all data) R1 = 0.0346, wR2 = 0.0669

Largest diff. peak and hole (e.Å⁻³) 1.110 and -0.912

Appendix A (cont). Summary of crystal data and structure refinement for compound 29.

Appendix A (cont). Summary of crysta	ai data and structure refinement for compound
Empirical formula	$C_{21}H_{54}BIrO_2P_3Si$
Formula weight	530.12
Temperature (K)	173(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2(1)/c
a (Å)	19.733(8)
b (Å)	10.280(4)
c (Å)	16.119(7)
α , deg	90
β, deg	110.168(7)
γ, deg	90
Volume (Å ³)	3069(2)
Z	5
Density (calculated) (Mg/m ³)	1.434
Absorption coefficient (mm ⁻¹)	4.559
F(000)	1348
Crystal size (mm³)	0.36 x 0.34 x 0.26
Theta range for data collection, deg	2.20 to 23.28
Index ranges	-21<=h<=21, -7<=k<=11, -16<=l<=17
Reflections collected	9405

Reflections collected 940

Independent reflections 4175 [R(int) = 0.1122]

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 4175 / 0 / 278

Goodness-of-fit on F² 1.056

Final R indices [I>2sigma(I)] R1 = 0.0472, wR2 = 0.1208

R indices (all data) R1 = 0.0506, wR2 = 0.1238

Largest diff. peak and hole (e. Å⁻³) 3.122 and -2.075

APPENDIX B. Derivation of Rate Expressions for Chapter 5

From the Figure above, the time dependent concentrations for 18, B, and C are governed by the Equations B1, B2, and B-3:

$$-\frac{d[18]}{dt} = k_1[18] - k_1[B][PMe_3]$$
(B1)

$$\frac{d[\mathbf{B}]}{dt} = k_1[\mathbf{18}] - k_1[\mathbf{B}][PMe_3] - k_2[\mathbf{B}] + k_2[C][L] - k_3[\mathbf{B}][C_6D_6]$$

(B2)

$$\frac{d[C]}{dt} = k_2[B] - k_2[C][L] - k_4[C][C_6D_6]$$
(B3)

Application of the steady state approximation to [C] yields Equation B4, and combination of the steady state expression for [B] and Equation B4 gives B5.

$$\frac{d[\mathbf{C}]}{dt} = 0 \implies [\mathbf{C}] = \frac{k_2[\mathbf{B}]}{k_2[\mathsf{PMe}_3] + k_4[\mathsf{C}_6\mathsf{D}_6]}$$

$$\frac{d[\mathbf{B}]}{dt} = 0 \implies k_1[\mathbf{18}] = k_{-1}[\mathbf{B}][PMe_3] + k_2[\mathbf{B}] + k_3[\mathbf{B}][C_6D_6] \frac{k_{-2}k_2[\mathbf{B}][L]}{k_{-2}[PMe_3] + k_4[C_6D_6]}$$
(B5)

Rearrangement of Equation B5 gives Equation B6. The first order rate law in Equation B7 follows from substitution of the expression for [B] (Equation B6) in Equation B1:

$$[\mathbf{B}] = \left(\frac{k_1(k_{-2}[\mathsf{PMe}_3] + k_4[\mathsf{C}_6\mathsf{D}_6])}{k_{-1}k_{-2}[\mathsf{PMe}_3]^2 + (k_{-1}k_4[\mathsf{C}_6\mathsf{D}_6] + k_{-2}k_3[\mathsf{C}_6\mathsf{D}_6])[\mathsf{PMe}_3] + k_4[\mathsf{C}_6\mathsf{D}_6](k_2 + k_3[\mathsf{C}_6\mathsf{D}_6])}\right) [18]$$

$$(\mathbf{B}6)$$

$$-\frac{d[\mathbf{18}]}{dt} = \left(\frac{k_1 k_2 k_3 [C_6 D_6] [PMe_3] + k_1 k_4 [C_6 D_6] (k_2 + k_3 [C_6 D_6])}{(k_1 k_2 [PMe_3]^2 + (k_1 k_4 [C_6 D_6] + k_2 k_3 [C_6 D_6]) [PMe_3] + k_4 [C_6 D_6] (k_2 + k_3 [C_6 D_6])}\right) [\mathbf{18}]$$
(B7)

From Equation B7, k_{obs} (Equation B8) and 1/k_{obs} (Equation B9) can be extracted:

$$\mathsf{k}_{\text{obs}} = \frac{\mathsf{k}_1 \mathsf{k}_{\text{-}2} \mathsf{k}_3 [\mathsf{C}_6 \mathsf{D}_6] [\mathsf{PMe}_3] + \mathsf{k}_1 \mathsf{k}_4 [\mathsf{C}_6 \mathsf{D}_6] (\mathsf{k}_2 + \mathsf{k}_3 [\mathsf{C}_6 \mathsf{D}_6])}{\mathsf{k}_{\text{-}1} \mathsf{k}_{\text{-}2} [\mathsf{PMe}_3]^2 + (\mathsf{k}_{\text{-}1} \mathsf{k}_4 + \mathsf{k}_{\text{-}2} \mathsf{k}_3) [\mathsf{C}_6 \mathsf{D}_6] [\mathsf{PMe}_3] + \mathsf{k}_4 [\mathsf{C}_6 \mathsf{D}_6] (\mathsf{k}_2 + \mathsf{k}_3 [\mathsf{C}_6 \mathsf{D}_6])} \tag{B8}$$

$$\frac{1}{k_{obs}} = \frac{1}{k_1} + \frac{k_{-1}k_{-2}[PMe_3]^2 + k_{-1}k_4[C_6D_6][PMe_3]}{k_{-1}[C_6D_6](k_{-2}k_3[PMe_3] + k_4k_2 + k_4k_3[C_6D_6])}$$
(B9)

If the reaction only goes through intermediate **B** to yield products ($k_4 = 0$), $1/k_{obs}$ can be derived in Equation B10. If the reaction only passes through intermediate **C** to yield products ($k_3 = 0$), $1/k_{obs}$ can be derived in Equation B11.

$$\frac{1}{k_{obs}} = \frac{1}{k_1} + \frac{k_1}{k_1 k_3 [C_6 D_6]} [PMe_3]$$
(B10)

$$\frac{1}{k_{obs}} = \frac{1}{k_1} + \frac{k_1 k_2 [PMe_3]^2 + k_1 k_4 [C_6 D_6] [PMe_3]}{k_1 k_2 k_4 [C_6 D_6]}$$
(B11)

APPENDIX C. Kinetic Details

Data for the reaction of Cp*Rh(PMe₃)(Ph)(H) (4) with 12 equiv. HBPin in C₆D₆.

The progress of the reaction was monitored to 3 half-lives by measuring the ratio of the intensity of the Cp* of 4 versus the total "intensity" of the Cp* resonances of 4 and 7. The experiments were performed at various temperatures in a constant temperature oil bath.

$$[4] = 0.046 \text{ M}; [HBPin] = 0.551 \text{ M}$$

Temperature (°C)	k _{obs} (sec ⁻¹)
65	1.27 x 10 ⁻⁵
75	4.0 x 10 ⁻⁵
85	1.38 x 10 ⁻⁴
95	3.37 x 10 ⁻⁴
105	9.8 x 10 ⁻⁴
115	2.0 x 10 ⁻³

Data for the reaction of Cp*Rh(PMe₃)(Ph)(H) (4) with 24 equiv. HBPin in C₆D₆.

The progress of the reaction was monitored to 3 half-lives by measuring the ratio of the intensity of the Cp* of 4 versus the total "intensity" of the Cp* resonances of 4 and 7. The experiments were performed at 95 ± 0.5 °C in a constant temperature oil bath.

[HBPin]	k _{obs} (sec ⁻¹)
0.551 M	3.37 x 10 ⁻⁴
1.103 M	6.80 x 10 ⁻⁴

Data for the phosphine dependence on the thermolysis of (PMe₃)₄Ir(BPin) (18) in C_6D_6 at 130 °C.

The progress of the reaction was monitored to 3 half-lives by measuring the ratio of the intensity of the PMe₃ of 18 versus the total "intensity" of the PMe₃ resonances of 18 and 37- d_1 . The experiments were performed at 130 ± 0.5 °C in a constant temperature oil bath.

$$[18] = 0.0275 \text{ M}; [C_6\text{Me}_6] = 0.0275 \text{ M}$$

[PMe ₃] (M)	k _{obs} (sec ⁻¹)
0	0.0417
0.0083	0.0170
0.0138	0.0138
0.0207	0.0097
0.0276	0.0072
0.0552	0.0044
0.1380	0.0021

BIBLIOGRAPHY

BIBLIOGRAPHY

- (1) (a) Bergman R. G. Science 1984, 223, 902-908. (b) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91-100. (c) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154-162. (d) Crabtree R. H. Chem. Rev. 1995, 95, 987-1007. (e) Bengali, A. A.; Arndtsen, B. A.; Burger, P. M.; Schulta, R. H.; Weiller, B. H.; Kyle, K. R.; Moore, C. B.; Bergman, R. G. Pure Appl. Chem. 1995, 67, 281-288. (f) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. Engl. 1998, 37, 2180-2192. (g) Crabtree R. H. J. Chem. Soc., Dalton Trans. 2001, 2437-2450. (h) Labinger J. A.; Bercaw, J. E. Nature 2002, 417, 507-514.
- (2) Olah, G. A.; Schleyer, P. v. R.;, Eds. "Carbonium Ions"; Wiley: New York, Vol. 1, 1968; Vol. 2, 1970; Vol. 3, 1972; Vol. 4, 1973; Vol. 5, 1976.
- (3) Olah, G. A.; Yoneda, N.; Parker, D. G. J. Am. Chem. Soc. 1976, 98, 5261-5268.
- (4) (a) Selective Hydrocarbon Activation (Eds.: Davies, J. A.; Watson, P. L..; Liebman, J. F.; Greenberg, A.), VCH, New York, 1990. (b) Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes, Reidel, Dordrecht, 1984. (c) Labinger, J. A., Fuel Process, Technol. 1995, 42, 325-338. (d) Shilov, A. E.; Shul'pin Chem. Rev. 1997, 97, 2879-2932.
- (5) (a) Farinas, E. T.; Schwaneberg, U.; Glieder, A.; Arnold, F. H. Advanced Synthesis & Catalysis 2001, 343, 601-606. (b) Costas, M.; Chen, K.; Que, L., Jr. Coord. Chem. Rev. 2000, 200-202, 517-544. (c) Mansuy, D.; Battioni, P. Act. Funct. Alkanes 1989, 195-218. (d) Atkins, W. M.; Sligar, S. G. J. Am. Chem. Soc. 1989, 111, 2715-2717.
- (6) (a) Neimann, K.; Neumann, R.; Rabion, A.; Buchanan, R. M.; Fish, R. H. *Inorg. Chem.* 1999, 38, 3575-3580. (b) Rabion, A.; Chen, D. S.; Wang, J.; Buchanan, R. M.; Seris, J.-L.; Fish, R. H. J. Am. Chem. Soc. 1995, 117, 12356-12357.
- (7) Kitajima, N.; Fukui, H.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1988, 485.
- (8) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 352-354.
- (9) (a) Watson, T. L. J. Am. Chem. Soc. 1983, 105, 6491-6493. (b) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203-219.
- (10) (a) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731-8733. (b) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729-8731. (c) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119,

- 10696-10719. (d) Schaefer, W. P.; Wolczanski, P. T. J. Am. Chem. Soc. 1998, 120, 4881-4882.
- (11) (a) Sherry, A. E.; Wayland, B. B. J. Am. Chem. Soc. 1990, 112, 1259-1261. (b) Wayland, B.B.; Sherry, A. E. J. Am. Chem. Soc. 1991, 113, 5305-5311.
- (12) Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738-7739.
- (13) (a) Fisher, B. J.; Eisenberg, R. Organometallics 1983, 2, 764-767. (b) Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am. Chem. Soc. 1990, 112, 7221-7229.
- (14) Sakakura, T.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1987, 10, 758-759.
- (15) (a) Jenson, C. M. J. Chem. Soc., Chem. Commun. 1999, 2443-2449. (b) Liu, F. C.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J. Am. Chem. Soc. 1999, 121, 4086-4087.
- (16) (a) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 4121-4122. (b) Rablen, P. R.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 4648-4653.
- (17) Waltz, K. M.; He, X.; Muhoro, C.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11357-11358.
- (18) (a) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. 1992, 114, 8863-8869. (b) Burgess, K.; van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T. Calabrese, G. C. J. Am. Chem. Soc. 1992, 114, 9350-9359. (c) Brown, J, M.; Lloyd-Jones, G. C. J. Chem. Soc., Chem. Commun. 1993, 710.
- (19) Waltz, K. M.; Hartwig, J. F. Science 1997, 277, 211-213.
- (20) Waltz, K. M.; Muhoro, C. N.; Hartwig, J. F. Organometallics 1999, 18, 3383-3393.
- (21) Iverson, C. N.; Smith M. R. III J. Am. Chem. Soc. 1999, 121, 7696-7697.
- (22) (a) Periana, R. A.; Taube, D. J.; Evitt, E. R.; Loffler, D. G.; Wentrcek, P. R.; Voss, G.; Masuda, T. *Science* 1993, 259, 340-343. (b) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. *Science* 1998, 280, 560-564.
- (23) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168.
- (24) Chen, H; Hartwig, J. F. Angew. Chem. Int. Ed. Engl. 1999, 38, 3391-3393.

- (25) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508-7510.
- (26) (a) Chen, H; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science, 2000 287, 1995-1997. (b) Cho, J.-Y., Iverson, C. N.; Smith, M. R. III J. Am. Chem. Soc. 2000 122, 12868-12869. (c) Tse, M. K.; Cho, J.-Y.; Smith M. R. III Org. Lett. 2001 3, 2831-2833. (d) Shimada, S.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Angew. Chem. Int. Ed. Engl. 2001, 40, 2168-2171. (e) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E. Jr.; Smith, M. R. III Science 2002, 295, 305-308. (f) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002 124, 390-391. (g) Takagi, J.; Kazuaki, S.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N. Tetrahedron Lett. 2002 43, 5649-5651.
- (27) Goldfuss, B.; Knochel, P.; Bromm, L. O.; Knapp K. Angew. Chem. Int. Ed. Engl. **2000**, 39, 4136-4139.
- (28) Aizenberg, M.; Milstein, D. Science 1994, 265, 359-361.
- (29) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1984, 106, 1650-1663.
- (30) Kawamura, K.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8422-8423.
- (31) Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329-9330.
- (32) The approach was first demonstrated by Dr. Man Kin Tse.
- (33) Some of the experiments were carried out by Dr. Man Kin Tse.
- (34) Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391.
- (35) Ezbiansky, K.; Djurovich, P. I.; LaForest, M.; Sinning, D. J.; Zayes, R.; Berry, D. H. Organometallics 1998, 17, 1455-1457.
- (36) Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164-168.
- (37) White, D. P.; Anthony, J. C.; Oyefeso, A. O. J. Org. Chem. 1999, 64, 7707-7716.
- (38) Winstein, S.; Holness, N. J. Am. Chem. Soc. 1955, 77, 5562-5578.
- (39) CRC Handbook of Chemistry and Physics, 83rd Edition 2002, Lide, D. L. CRC Press.
- (40) (a) Dawans, F.; Morel, D. J. Mol. Catal. 1977-78, 3, 403. (b) Halpern, J.; Okamoto, T.; Zakhariev, A. J. Mol. Catal. 1976, 2, 65. (c) Chan, A. S. C.; Halpern, J. J. Am. Chem.

- Soc. 1980, 102, 838. (d) Halpern, J. Inorg. Chim. Acta. 1981, 50, 11. (e) Halpern, J.; Riley, D. P.; Chan, A. C. S.; Pluth, J. J. Am. Chem. Soc. 1977, 99, 8055. (f) Halpern, J. Science 1982, 217, 401.
- (41) Harper, T. G. P.; Desrosiers, P. J.; Flood, T. C. Organometallics 1990, 9, 2523-2528.
- (42) Knorr, J. R.; Merola, J. S. Organometallics 1990, 9, 3008-3010.
- (43) Dai, C; Stringer, G; Marder, T. B.; Scott, A. J.; Clegg, W; Norman, N. C. *Inorg. Chem.* 1997, 36, 272-273.
- (44) Thorn, D. L.; Tulip, T. H. Organometallics 1982, 1, 1580-1586.
- (45) Harris, R. K. In Nuclear Magnetic Resonance Spectroscopy. Longman Scientific and Technical, Essex, U.K. 1986
- (46) Dai, C.; Stringer, G.; Marder, T. B.; Baker, R. T.; Scott, A. J.; Clegg, W.; Norman, N. C. Can. J. Chem. 1996, 74, 2026-2031.
- (47) Cleary, B.; Eisenberg, R. Organometallics 1995, 14, 4525-4534.
- (48) (a) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 3148-3160. (b) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 6531-6540.
- (49) Sargent, A. L.; Hall, M. B.; Guest, M. F. J. Am. Chem. Soc. 1992, 114, 517-522.
- (50) Lu, Z.; Jun, C.-H.; de Gala, S. R.; Sigalas, M.; Eisenstein, O; Crabtree, R. H. J. Chem. Soc., Chem. Commun. 1993, 1877-1880.
- (51) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. Angew. Chem. Int. Ed. 1999, 38, 1110-1113.
- (52) Thorn, D. L. Organometallics 1982, 1, 197-204.
- (53) The ratio was determined from the integrations of pinacol resonance in the ¹H NMR spectrum.
- (54) Baker, R. T.; Ovenall, D. W.; Calabrese, J. C.; Westcott, S. A.; Taylor, N. J.; Williams, I. D.; Marder, T. B. J. Am. Chem. Soc. 1990, 112, 9399-9400.
- (55) Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 6456-6464.
- (56) Sakaki S.; Satoru, K.; Manabu, S. Organometallics 1999, 18, 4825-4837.

- (57) See Table 4 in the Chapter 3.
- (58) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1986, 108, 4814-4819.
- (59) The product distribution between C₆D₅BPin and C₆H₅BPin was determined by integrating the peaks in the GC-FID spectra, after correcting for the response factors determined from equimolar mixtures of independently synthesized arylboronate esters. The product distribution between C₆D₂H₃(BPin) and C₆D₃H₂(BPin) was extracted from ¹H NMR spectrum of the crude mixture. T1 measurement experiments were conducted before acquiring ¹H NMR spectra.
- (60) Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem. Int. Ed. 2002, 41, 3056-3058.
- (61) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, Butterworth Heinemann.
- (62) Herde, J. L.; Lambert, J. C.; Senoff, C. V. Inorg. Synth. 1974, 15, 18-20.
- (63) Merola, J. S.; Kacmarcik, R. T. Organometallics 1989, 8, 778-784.
- (64) Herskovitz, T. Inorg. Synth. 1982, 21, 99-102.
- (65) Bowyer, W. J.; Merkert, J. W.; Geiger, W. E. Organometallics 1989, 8, 191-198.
- (66) Bowyer, W. J.; Geiger, W. E. J. Am. Chem. Soc. 1985, 107, 5657-5663.
- (67) Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc. 1983, 105, 3929-3939.
- (68) Barefield, E. K. Inorg. Synth. 1974, 15, 34-38.
- (69) Gilbert, T. M.; Bergman, R. G. Organometallics 1983, 2, 1458-1460.

