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ABSTRACT

FEEDBACK STABILIZATION OF
THE ROLLING SPHERE:
AN INTRACTABLE NONHOLONOMIC SYSTEM

By

Tuhin Kumar Das

A spherical rolling robot has several advantages over wheeled robots, such as en-
hanced mobility, orientational stability, compact and closed design, and capability of
operations in hazardous environments. However, advances in the design and applica-
tion of spherical mobile robots have been hindered due to complexity of their control
problems. Of particular interest is the problem of feedback stabilization of a rolling
sphere to an equilibrium configuration. The rolling sphere belongs to the class of
nonholonomic systems which has been a popular area of research in the control sys-
tems community over the last decade. Although nonholonomic systems are usually
controllable, they are not stabilizable to an equilibrium point using smooth static
state feedback. This problem has been circumvented by development of techniques
such as time-varying stabilization, discontinuous time-invariant stabilization, and hy-
brid stabilization. Nonetheless, the stabilization of a rolling sphere has remained an
unsolved problem since its kinematic model cannot be reduced to the chained form;
this renders all established nonholonomic motion planning and control algorithms
inapplicable.

In this dissertation we present a feedback control law for stabilization of a rolling

sphere to an equilibrium configuration. This control law, which to the best of our



knowledge, is the first solution to the problem, stabilizes the sphere about an equilib-
rium point defined by the two Cartesian coordinates and three orientation coordinates
of the sphere. In our formulation, the control inputs are two mutually perpendicular
angular speeds in the moving reference frame of the sphere. These control actions indi-
vidually cause the sphere to move in straight line and circular arc segments. Using an
alternating sequence of these rudimentary maneuvers we achieve stabilization of the
equilibrium configuration. We first develop an algorithm for partial reconfiguration
of the sphere where evolution of one of the orientation coordinates is ignored. This
algorithm, which we denote by the Sweep-Tuck algorithm, allows multiple solution
trajectories of the sphere. We utilize this flexibility in achieving complete reconfigu-
ration. In our discussion we first show the convergence of the configuration variables
to the equilibrium under the proposed feedback law. Subsequently, we prove that the
control algorithm stabilizes the equilibrium configuration of the sphere. Simulation

results are presented to demonstrate the efficacy of the control strategy.
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CHAPTER 1

Introduction

Mobile robots are typically designed with wheels, likely due to our kinship with
automobiles. Relying on traditional use of the wheel as a quasi-static device, mo-
bility and stability of the robots are enhanced using multiple wheels, large wheels,
multi-wheel drives, broad wheel bases, traction enhancing devices, articulated body
configurations, etc. The single-wheel robot proposed by Brown and Xu [10] repre-
sents a paradigm shift in mobile robot design. This robot, known as the Gyrover,
exploits gyroscopic forces for steering and stability, and has certain advantages over
traditional designs. Similar to the Gyrover, which differs from traditional quasi-static
models, a few designs have been proposed for spherical wheels with internal mecha-
nisms for propulsion (Koshiyama and Yamafuji, [25]; Halme, et al., [21]; Bicchi, et al.,
[4]; Camicia, et al., [12]; Bhattacharya and Agrawal, [3]; Mukherjee, et al., [30]). The
robot designed by Halme, et al. [21] incorporates a single-wheeled device constrained
inside the spherical wheel; the device generates motion by creating unbalance and
changes heading by turning the wheel axis. The design by Bicchi, et al. [4]) and
Camicia, et al. [12] is similar but employs a four-wheeled car to generate the un-
balance. The omnidirectional robot by Koshiyama and Yamafuji [25] has a limited
range of lateral roll due to its arch-shaped body. Naturally, it fails to completely

exploit the maneuverability associated with spherical exo-skeletons. The propulsion



mechanism by Bhattacharya and Agrawal [3] generates motion by angular momen-
tum conservation utilizing two perpendicular spinning rotors placed inside the sphere.
The mechanism can be easily modeled, however propulsion is limited in the presence
of external opposing torques or motions requiring constant acceleration.

We are independently engaged in research and development of a spherical mobile
robot. The propulsion mechanism proposed by Mukherjee, et al. in [30] is fixed to
the exo-skeleton. The mechanism consists of masses reciprocating along spokes fixed
to the exo-skeleton. The advantages of this mechanism are easy routing of sensory
information from the surface to the processor housed inside, availability of space inside
the robot for housing the processor, power supply, structural robustness due to the
presence of an internal truss formed by the spokes carrying the unbalanced weights,
etc. A detailed dynamic analysis of the proposed mechanism has been performed by
Das [14]. Two different spatial arrangement of spokes has been considered for the
proposed propulsion mechanism. In the first configuration, the spokes form a regular
tetrahedral structure with its center coinciding with the center of the sphere. In the
second configuration, the spokes are along the non-intersecting sides of an imaginary
cube centered at the center of the sphere. The dynamic analysis of the motion of the
spherical robot was preceded by a detailed study of the dynamics of a rolling disk
with unbalance masses, Das and Mukherjee [15]. This is a simpler, two dimensional
version of the motion of the rolling sphere and gave interesting results in terms of
bounded trajectories of unbalance masses while tracking acceleration profiles of the
disk and led to important theoretical insight into the dynamics of the rolling sphere.

The geometry of rotations is central to the analysis of diverse problems in me-
chanics involving rolling motion and the rolling sphere epitomizes the profundity of
the control problems of many of these systems. The rolling sphere is a classical ex-
ample of a nonholonomic mechanical system and is characterized by nonintegrable

differential constraints of motion [18]. Due to the nonintegrable nature of the con-



straints, it is possible to reconfigure nonholonomic systems in a space that has higher
dimension than the number of degrees of freedom of the system. In the case of the
sphere, the nonintegrable constraints provide the scope for reconfiguration of its two
Cartesian and three orientation coordinates using rolling motion corresponding to its
two degrees of freedom.

In comparison to holonomic systems, nonholonomic systems can access a larger
dimensional configuration space but the problems of motion planning and feedback
stabilization pose unique challenges. A majority of papers on stabilization of non-
holonomic systems deal with wheeled mobile robots and the rigid spacecraft with two
actuators. Here we summarize the results briefly but the references cited are not
extensive. A more extensive literature survey can be found in the review paper by
Kolmanovsky and McClamroch [24]. For nonholonomic systems, standard nonlinear
control methods do not lend themselves well for the common objective of stabilization
to an equilibrium state. This follows from Brockett’s theorem [9] which establishes
that there exists no smooth static state feedback which renders the equilibrium state
of the closed loop system asymptotically stable. To circumvent this problem, re-
searchers have developed strategies that may be classified under smooth time-varying
stabilization, piecewise-smooth time-invariant stabilization, and hybrid stabilization.
The work on time-varying stabilization was initiated by Samson [38] and a construc-
tive approach based on Lyapunov’s direct method was first developed by Pomet [35].
Smooth time-varying controllers suffer from slow rates of convergence [20] and faster
convergence can be achieved through the design of non-smooth controllers. The ex-
istence of a piecewise smooth stabilizing controller for nonholonomic systems was
shown by Sussmann [42], but the development of such control methods was initiated
by Bloch, et al. [7]. Subsequently, exponentially stable non-smooth controllers were
developed by Canudas de Wit and Sordalen [13] and Sordalen and Wichlund [41].

Other non-smooth control designs include the work by Aicardi, et al. [1], Astolfi [2],



Mukherjee and Kamon [29], Bloch and Drakunov [6], and Guldner and Utkin [19].
Hybrid controllers are based on switchings at discrete time instants between various
low level continuous time controllers and have been proposed by a few authors such
as Bloch, et al. [8] and Sordalen, et al. [40].

An important class of nonholonomic systems is the class of two-input nilpoten-
tizable systems that can be transformed into a special form known as the “chained
form” [33]. The necessary and sufficient conditions for existence of a feedback trans-
formation to chained-form was provided by Murray [32] and an algorithm for finding
the coordinate transformation was presented by Tilbury et al. [43]. An extension
of the chained-form to nonholonomic system with more than two inputs was later
presented by Bushnell et al. [11] and Walsh and Bushnell [44]. The chained-form,
by its very structure and construction, lends itself well to the development of mo-
tion planning and control algorithms and researchers have therefore largely focused
their efforts on such systems. Incidentally, chained-form system are differentially flat
[17] and therefore the methods developed by Rouchon, et al. [36] for differentially
flat systems can be profitably applied to chained-form systems. The nonholonomic
systems that cannot be converted to chained-form have intrinsic difficulties associ-
ated with design of stabilization strategies and render regimented control algorithms
developed for chained-form systems inapplicable. Such systems, often referred to as
“defective” or “intractable”, require stabilization strategies to be custom designed -
a good example is the work on planar space robots by Mukherjee and Kamon [29].
The kinematic model of the rolling sphere does not satisfy the necessary and suffi-
cient conditions for flatness [17] and hence cannot be converted to chained-form [28].
Therefore, similar to the space robot, the rolling sphere requires motion planning and
stabilization strategies to be custom designed.

The motion planning problem for the rolling sphere, a simpler problem than the

stabilization problem, has seen a few solutions till date. Li and Canny [27] used



differential-geometric tools to ascertain controllability of the sphere and proposed a
three-step algorithm. The position coordinates of the sphere are converged to their
desired values in the first step of the algorithm. In the second step, two of the three
orientation coordinates are converged using Lie Bracket-like motion. Such motion
generates an equatorial spherical triangle on the surface of the sphere. The third step
uses a polhode to converge the last orientation coordinate. Bicchi, et al. [5] proposed
a control input transformation to obtain a kinematic model of the rolling sphere with
a triangular structure. This structure simplifies integration of the state equations for
alternating inputs and arrives at a system of nonlinear equations that can be solved
by taking additional criteria into account, such as workspace limits and path length.
Their iterative solution however demands excessive computational time and may also
fail because of extremals encountered along the path. An optimal solution, which
minimizes the integral of the kinetic energy of the sphere along the path, was proposed
by Jurdjevic [23]. The results indicate that the optimal trajectories have a closed-
form solution described by elliptic functions. Mukherjee, et al. [30] recently proposed
two computationally efficient motion planning algorithms for the sphere. The first
algorithm is similar to the third step of Li and Canny’s algorithm [27] but is more
general and can reconfigure the sphere in fewer steps. The second algorithm is similar
to the second step of Li and Canny’s algorithm [27] but uses general spherical triangles
as opposed to equatorial triangles. The Gauss-Bonet theorem of parallel transport
[26] provides a basis for the second algorithm but the basis can be independently
established using spherical trigonometry [31].

Although many researchers have investigated control problems associated with the
dynamics of rolling contact, [22], [39] for example, the nonholonomic control problem
of the rolling sphere has been addressed only by a few researchers. Date, et al., [16]
used the time-state control form [37] to design a controller for the ball-plate system

described by eight states and three inputs. Although the controller was shown to



converge all states of the system to the equilibrium state, the stability property of
the equilibrium was not adequately investigated. Oriolo and Vendittelli [34] recently
showed that the equilibrium point of the sphere, modeled by five states and two
inputs, can be stabilized through iterative application of an appropriate open-loop
control law designed for the nilpotent approximation of the system. In the first phase,
they proposed steering three states of the sphere, which conform to chained-form, to
their desired coordinates. In the second phase, they proposed closed trajectories of
the three states to steer the other two states closer to their desired coordinates. The
algorithm relies on repeated application of closed trajectories of the three states such
that the remaining two states are converged to their desired values. In the presence of
perturbations, both the first and second phases of their controller have to be repeated.
This is significantly more complex than repeated application of alternate inputs, as
required by our stabilizing controller.

In this dissertation we develop a stabilizing feedback control algorithm for a sphere
rolling without slipping on a horizontal plane with the objective of completely re-
configuring the sphere from an arbitrary location and orientation to an equilibrium
configuration. In chapter 2, we introduce the kinematic model of the sphere in sec-
tion 2.1. The states in the kinematic model are the two Cartesian coordinates of the
center of the sphere and the three Euler angles representing the orientation of the
sphere. The two control inputs are angular speeds applied in mutually perpendicular
directions on the horizontal plane. An alternate kinematic representation that helps
in posing the complete reconfiguration problem is given in section 2.2. The effect of
the individual control inputs on the motion of the sphere is shown in section 2.3. We
establish that while one control action causes linear motion of the sphere, the other
causes the sphere to roll in a circular arc.

In chapter 3 we develop an algorithm for partial reconfiguration of the sphere.

In partial reconfiguration, while the Cartesian coordinates of the sphere are driven



to the origin, the orientation coordinates are not all reconfigured. Following the
problem statement in section 3.1, we present the Sweep-Tuck algorithm for partial
reconfiguration in section 3.2. The Sweep-Tuck algorithm forms the basis of complete
reconfiguration of the sphere presented in the later chapters. Special cases arising
from certain unique configurations of the sphere are discussed in section 3.3, and
simulation results corroborating the Sweep-Tuck algorithm are given in section 3.4.

The complete reconfiguration algorithm is discussed for the two general categories
of n > 1 and n < 1 separately in chapters 4 and 5 respectively. The parameter n,
a ratio arising from the initial condition of the sphere, is an important element of
the Sweep-Tuck algorithm. The general categories and special cases are distinguished
based on the value of n. Discussions for the general categories of n > 1 and n < 1
are similar, however they are presented separately for clarity and for highlighting
the differences between them. Chapters 4 and 5 investigate the flexibility in the
Sweep-Tuck algorithm and exploit the same in arriving at a scheme for complete
reconfiguration. Simulation results are presented for both categories

The necessary conditions for applying the Sweep-tuck algorithm are established in
chapters 4 and 5. These conditions can be satisfied by applying certain initial control
actions depending on the initial configuration of the sphere. Also, the special cases
are transformed, by certain initial control actions such as the Tuck-Out maneuver, to
the general categories of n > 1 or n < 1 before the Sweep-Tuck algorithm is applied.
These initial control actions are discussed in chapters 6. The stability analysis of
the entire control strategy, consisting of the Sweep-Tuck algorithm, the Tuck-Out
maneuver, and the initial control actions for th special cases, are detailed in chapter
7. This is followed by the concluding remarks in chapter 8 and finally the appendices

which give details of certain mathematical derivations.



CHAPTER 2

Background

2.1 Kinematic Model

The configuration of a sphere is best described by the two Cartesian coordinates of
its center and three coordinates that describe its orientation. In Figure 2.1(a), we
define the center of the sphere by point ) and orientation of the sphere by points
P and R; P is an arbitrary point on the surface of the sphere and R is an arbitrary
point on the equatorial circle defined with P in the vertically top position. Since P
and R together require three independent coordinates for description, they constitute
a valid choice of points that define the orientation of the sphere. With the position
and orientation of the sphere defined by points P, @, and R, the task of complete
reconfiguration can be accomplished by converging @ to the origin of the Cartesian
coordinate frame, P to the vertically top position, and R on the positive z axis. This
configuration is shown in Figure 2.1(b).

To obtain a kinematic model of the sphere, we denote the Cartesian coordinates of
the sphere center by @ = (z,y). We adopt the z-y-z Euler angle sequence (a, 8, @) to
represent the orientation of the sphere. We first translate the zyz frame to the center
of the sphere and rotate it about the positive z axis by angle a, —7 < a < 7, to

obtain frame x,y,2;. We rotate frame x,y,2, about the y, axis by angle §,0 < 8§ < 7,



Z,2y,25,2;
[

Yy Yo

Q & l¢X1,x2

equatorial circle, relative to P

Q=(0,0)

(b)

Figure 2.1. Initial and final configurations of sphere

to obtain frame z,y,25. The point P is located at the intersection point of the 2z,
axis with the sphere surface. The z,y,2, frame is rotated about the z, axis by angle
¢ to obtain frame z3y3z3. The point R is located at the intersection point of the z3
axis and the sphere surface. The frames ryz, ,y,21, Z2Y222, T3y323, and 2-y-z Euler
angles (a, 6, ¢) are all shown in Figure 2.1(a). Assuming the sphere to have unity

radius without any loss of generality, and denoting the angular velocities of the sphere

1
F A

about the z;, y;, 21 axes as w], w;, w}, respectively, the state equations for w! = 0

can be written as

& = w, cos o + w, sin (2.1)
Y =w,sina — w; cosa (2.2)
0 =w, (2.3)
& = —wlcoth (2.4)
¢ =wlcsch (2.5)



In the model above, the first three equations can be derived simply. The expression
for & can be obtained from the relative velocity of P with respect to ), when the
sphere rotates with angular velocity w}. The angular velocity é is simply the vector
sum of the angular velocities & and w!. Alternatively, Egs. (2.3), (2.4), and (2.5),
can be derived from the relation between the z-y-z Euler angle rates &, 9, gﬁ, and the

1 1
z U.)y,

angular velocities w w}, subject to the constraint w! = 0.

The reorientation of the sphere refers to the task of bringing P to the vertically
upright position, and R, which then lies on the diametrical circle in the zy plane,
to lie on the positive z axis. Indeed, this results in x3y;z3, the body-fixed axes, to
coincide with the inertially fixed axes zyz. This can be achieved with # = 0, and
a+ ¢ = 0, irrespective of the individual values of a and ¢, as shown in Figure 2.1(b).

Therefore, the sphere can be completely reconfigured by satisfying
z=0, y=0, =0, a+¢=0 (2.6)

The above equation may create the false impression that our objective is to converge
the sphere to a configuration manifold. However, it can be verified from Figure 2.1(b)

that Eq. (2.6) represents a unique configuration of the sphere.

2.2 Alternate Kinematic Representation

The last condition for complete reconfiguration of the sphere, given in Eq. (2.6)
depends on the sum of o and ¢ and not on their individual values. We therefore

define the new variable 3

B=a+¢ (2.7)

10



Thus, from Egs. (2.4) and (2.5),

B =w! tan g (2.8)

We now write an alternate kinematic formulation in which we replace Eq. (2.5) by
the equatvion of motion in the new state variable 5. We have the following alternate

kinematic representation

& = w, cosa + w, sina (2.9)
§ = w, sina — w, cos (2.10)
0=uw) (2.11)
&= —wlcoth (2.12)
B = w!tan g (2.13)

Using this kinematic model, complete reconfiguration is achieved by satisfying

=0, y=0, =0, =0 (2.14)

2.3 Control Actions

Consider the motion of the sphere, described by the kinematic model in Egs. (2.9),
(2.10), (2.11), (2.12), (2.13), for the individual control actions

(A) wy#0, wl=0
(B) wp#0, w,=0, 68#£0

The motion of the sphere for these actions are explained with the help of Figure 2.2.

For action (A), the sphere moves along straight line CF as 0 changes. Let F' be the

11



point on this straight line where the sphere would have § = 0. Since the sphere rolls
without slipping, this point remains invariant under control action (A). For control
action (B), the instantaneous radius of the path traced by the sphere on the zy plane

can be computed using Egs. (2.9) through (2.12) as follows

2’| =tand (2.15)
TY—YI

! = 0, 0 is maintained constant. This implies that the contact point of

Since w,

y
X4
2 T~
P~
RN N (0
X
(x,y) \
y F °
//
Q
0) X /:\%&\
)

Figure 2.2. Motion of the sphere under control actions (A) and (B)

the sphere moves along a circular path; the center of this circle is located at C in
Figure 2.2. Along with the contact point, points P and F' also move along circular
paths; the center of these paths lie on the vertical axis that passes through C. The
point C remains fixed under control action (B), but under control action (A) it moves

away from F', as 6 increases, and converges to F', as f converges to zero.

12



The variables a, ¢, and § in Egs. (2.4), (2.5), and (2.13) change during control
action (B) but remain invariant during control action (A). During control action (B),

the change in variable £ is given by the expression

AB = Aa+ A¢ = Aa(l — sech) (2.16)

This indicates that AS will be always opposite in sign to Aa for 0 < 6 < 7/2.

13



CHAPTER 3

Partial Reconfiguration of the

Sphere

3.1 Problem Statement

In this section we develop a simple algorithm for partial reconfiguration of the sphere.
This algorithm will provide the basis for the stabilizing controller for complete recon-
figuration, which we will design over the next few sections. Our objective for partial
reconfiguration is to converge the sphere from any initial configuration to a configu-

ration that satisfies

z=0, y=0, =0 (3.1)

Clearly, the goal of partial reconfiguration is to converge the center of the sphere,
Q, to the origin of the Cartesian coordinate frame and the point P to the vertically
top position. This leaves the sphere with only one degree-of-freedom that allows R
to be have an arbitrary orientation on the equatorial circle. In the context of the
kinematic model in section 2.2, this corresponds to arbitrary value of 3 in the final

configuration.
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3.2 Sweep-Tuck Algorithm: The Basic Approach

In this section we present an algorithm for partial reconfiguration of the rolling sphere.
The control actions (A) and (B) form the basic elements of the reconfiguration strat-
egy. Control actions (A) and (B) are applied repeatedly in pair and the process leads
to convergence of the states x, y, 6 to zero. For simplicity, we develop our algorithm
under the assumption that 6 satisfies 0 < § < 7/2 at the initial time. We will re-
move this restriction later when we develop the stabilizing controller for complete
reconfiguration. Now, consider an arbitrary configuration of the sphere as shown in
Figure 3.1, with the configuration defined only by the variables z, y, 6, and a. The

points C and F in Figure 3.1 were defined earlier in section 2.3 using Figure 2.2.

ol |

Figure 3.1. An arbitrary configuration of the sphere

The Cartesian coordinates of C, namely, C;, Cy, are related to the Cartesian

15



coordinates of @, namely z, y, as follows

C, =z —tanfcosa e z=C;+tanfcosa

(3.2)
C,=y—tanfsina = y=C,+tanfsina
Also, the distances CO and CF are given by the relations
CO = (C?+ )" CF = tanf — 0 (3.3)

where (tanf — 6) is a monotonicaly increasing function of # and equal to zero only

when 6 = 0. It readily follows from Egs. (3.2) and (3.3) that

(CF,CO) = (0,0) <= (z,4,0) = (0,0,0) (3.4)

The above result is summarized in the following remark.

Remark 3.1 The sphere in Figure 3.1, defined by points C, F, and Q, will be par-
tially reconfigured in the sense of Eq.(3.1) if and only if (CF,CO) converge to (0,0).

For partial reconfiguration of the sphere, we will therefore design an algorithm that
will converge both points C and F in Figure 3.1 to the origin O. The basis for our

algorithm lies in the theorem presented next with the help of Figure 3.2.

Theorem 3.1 (Dual-Point Theorem) Let C and F' be two points in the zy coor-
dinate frame that has its origin at O and suppose v = ZOCF 1is an acute angle. Let
the ratio of CF and CO be denoted by n = (CF/CO). If ¢ satisfies the condition

0< ¢ <cos~!(1/n) for ne(l,00)

0<y¥<cos~!(n) for ne(0,1)
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Figure 3.2. Dual-point theorem: The C — C’ pair for n > 1 and n < 1 cases

then there exists a point C' on the extended line CF such that for v = ZOC'F,

0<y <,
(C'F/C'O) = n,
0< (C'0/CO) < 1 (3.6)
v >,

Proof: Since ¢ is acute and we seek a point C' that will satisfy C'O < CO, C'
can only be located between C and F', as in Figure 3.2(a), or beyond F' as shown in

Figure 3.2(b). For both cases, OC" satisfics

0C” =0C?*+ CC” —20C.CC' cos (3.7)

For the two cases in Figures 3.2(a) and 3.2(b), the expression for CC" is different and
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is given below by Eqs.(3.8) and (3.9), respectively

CC'=CF-C'F = CC'=nCO-C'F (3.8)

CC'=CF+C'F = CC'=nCO+C'F (3.9)
Let us now assume (C'F/C'O) = n. Substituting this in Eqs.(3.8) and (3.9), we get

nC'O= (nCO-CC") (3.10)

nC'O = —(nCO — CC") (3.11)

Using Eq.(3.10) or Eq.(3.11) with Eq.(3.5) we eliminate C'O to obtain the following
non-trivial solution for CC’

_ 2nCO (ncosyy — 1)

ccC = 1)

(3.12)

When n € (1,00), we have (n?—1) > 0 and we can show from Eq.(3.5) that (ncosy —
1) > 0. Therefore, CC’ in Eq.(3.12) is positive. When n € (0, 1), we have (n2—1) <0
and cosy < 1 < (1/n). This again implies that CC’ is positive. Since CC’ is always
positive, our assumption (C'F/C'O) = n is correct. ¢ 0o

To prove the second assertion, we make use of the following inequality

(n—cosy)? +sin®yYy >0 = 2(ncosyp—1) < (n?-1) (3.13)

which is true for all n and ¢. Therefore, for n € (1, 0c) we can claim

2(ncosy — 1)

Z=1) <l = C0C'<nCO=CF (3.14)

Thus Figure 3.2(a), and Eqgs.(3.8) and (3.10), correspond to the case n € (1,00),
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where C’ lies between C and F. When n € (0,1), it follows from Eq.(3.12)

2(ncosy — 1)

>1 = CC'>nCO=CF (3.15)
(n? -1)

Thus Figure 3.2(b), and Egs.(3.9) and (3.11) correspond to n € (0,1), where C’ lies
beyond F. Using Egs.(3.8), (3.9), (3.12), and the relation C'F = nC'O, which we

have already established, we can show

co_{ -t b/ 0] el

co ~ [1-2(ncosy —1)/(n?—1)] forn € (0,1)

From Egs.(3.14), (3.15), and (3.16), we can directly show that C'O/CO > 0 for
both n € (1,00) and n € (0,1). For n € (1,oc) we have already shown that
(ncosyp —1)/(n* —1) > 0 and hence 0 < (C'O/CO) < 1. The same holds true
for n € (0,1) since cosyp > n = ncosyy > n? = 2(ncosyp — 1)/(n? —1) < 2. 000

From both Figures 3.2(a) and 3.2(b) we can write
C'Osiny’ = COsiny (3.17)

This implies sin ¢’ > siny because C'O < CO. Since ¢ is an acute angle, it follows

that ' > 1. ooo

We now derive an expression for the intermediate angle ¢’ in our Dual-Point

Theorem. From AOCC" in Figures 3.2(a) and 3.2(b) we can write

COcosy =CC"+ C'Ocos ¢ for n € (1,00)
(3.18)

COcosyy =CC'"—C'Ocos ' for ne€ (0,1)
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Using Egs.(3.12), (3.17), and (3.18) we get

, = |1=n®|siny
s Hu(l 1
e (1+n?)cosyy — 2n n € (0,1) U (1, 00) (3.19)

It can verified from Eq.(3.19) that

0<y<cos!(}) = cos!'(H) <y < for ne (1,00
) ()< 1)

0<v¢ <cos}(n) = cos'(n)<y/'<m for n e (0,1)
Since ' depends only on the values of n and 1, it attains the same value prior to
each intermediate RS-DPT maneuver pair. An important inequality which will be

later useful in our analysis is

py+y' <7 n € (0,1)U (1, 00) (3.21)

The proof of this inequality is provided in Appendix A.

Consider Figures 3.3(a) and 3.3(b) where C and F define arbitrary configurations
of the sphere for the cases n € (1,00) and n € (0,1), respectively, and suppose
Y = LOCF satisfies the conditions in Eq.(3.5). From Theorem 3.1, we know that
there exists a point C’ along the line C'F that satisfies the conditions in Eq.(3.6). Let
C’ in Figures 3.3(a) and 3.3(b) be this point. We are now ready to define two specific

maneuvers of the sphere.

Definition 3.1 (DPT Manuever) In reference to Figures 3.3(a) and 3.3(b), we
define a “Dual-Point Tuck” (DPT) Maneuver as control action (A) that moves the

sphere such that point C moves to C'.

From Theorem 3.1 we know that a DPT maneuver results in ¢’ > 1. For both cases
n € (1,00) and n € (0,1), ¢’ can therefore be restored to the value ¥ in one of two

ways as shown in Figure 3.3. This motivates the next definition.
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Figure 3.3. RS and DPT maneuvers for n > 1 and n < 1 cases

Definition 3.2 (RS Manuever) Following a DPT maneuver, a control action (B)
that moves the sphere to restore v' to v is defined as a “Restoring-Sweep” (RS)

Maneuver.

In the sequel, we will prove that a series of alternate RS and DPT maneuvers can
partially reconfigure the sphere. However, since the initial configuration of the sphere

may not satisfy ZOCF = ', we define one additional maneuver.

Definition 3.3 (PS Manuever) A control action (B) that moves the sphere at the

initial time to bring ZOCF to ' is defined as a “Preliminary-Sweep” (PS) Maneuver.

We now present the “Sweep-Tuck” algorithm with the help of the following theo-

rem.

Theorem 3.2 (Sweep-Tuck Algorithm) Consider a sphere whose partial config-
uration (z,y,0) is defined by the location of the points C and F. Suppose at the initial
time, 0 < 8 < 7/2 and (CF/CO) = n € (0,1) U (1,00). Depending on whether n
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is greater or lesser than unity, choose v in accordance with FEq.(3.5). Then, partial
reconfiguration of the sphere in the sense of Eq.(3.1) can be achieved through a PS

maneuver followed by repeated application of RS-DPT maneuvers.

Proof: The application of a PS maneuver at the initial time results in ZOCF = .
This sets the stage for repeated application of RS-DPT maneuvers. The application
of an RS maneuver does not alter the values of CF and CO but sweeps F about C
(in one of two ways for both cases n € (1,00) and n € (0,1), as shown in Figure 3.3
to bring ZOCF to the value v, which was earlier chosen in accordance with Eq.(3.5).
At the end of the RS maneuver, the new point F, or F,, is simply renamed F. Using

Theorem 3.1 we can show that a subsequent DPT maneuver results in

2(ncosy — 1)
(n? —1)

C'0 _C'F R

1- (3.22)

and change of ZOCF = ¢ to ZOC'F = ' > 1, as shown in Figures 3.2 and 3.3.
By renaming C’ as C, we can again execute the RS-DPT pair of maneuvers. Each
pair simply reduces the values of both CF and CO in geometric progression and
from Eq.(3.22) it can be readily shown that CF,CO — 0 as N — oo, where N
is the number of RS-DPT pairs. From Remark 3.1 it simply follows that repeated
application of RS-DPT maneuvers results in partial reconfiguration of the sphere.

000

Remark 3.2 From Egs.(3.14) and (3.15) we know that CC' < CF for n € (1,00)
and CC' > CF for n € (0,1). This implies that a does not change its value for
a DPT maneuver with n € (1,00) but for n € (0,1) it undergoes a discontinuous
change in value by 7 as the sphere goes through the configuration where § = 0. This

s consistent with the adopted convention that Euler angle 0 is positive.
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Corollary 3.1 The sequence of values assumed by 0 at the end of every DPT ma-

neuver of the Sweep-Tuck algorithm decreases monotonically and converges to zero.

Proof: Since 6 remains constant during RS maneuvers, its change can be attributed
to the DPT maneuvers. From Theorem 3.2 we know that DPT maneuvers cause
CF to decrease in geometric progression and converge to zero. Since (tanf — ) is a
monotonically increasing function of § and equal to zero only when 6 = 0, we claim
that the sequence of values assumed by 6 at the end of every DPT manecuver decreases

monotonically and converges to zero. oo o

Remark 3.3 It can be seen from both Figures 3.3(a) and 8.3(b) that the RS maneuver
1s not unique. To restore ZOCF to i, the RS maneuver can sweep F to the location
F, or F,. Furthermore, F' can be taken to both F, and F, via a clockwise (cw)
or a counter-clockwise (ccw) rotation about C. Although the partial reconfiguration
problem is not affected by the particular choice of F,, or F, and cw or ccw direction
of rotation since v in Eq.(26) is the same for all four choices, the flexibility will be
necessary for complete reconfiguration of the sphere. The complete reconfiguration

problem will be discussed over the nezt few sections.

3.3 Sweep-Tuck Algorithm: Special Cases

The Sweep-Tuck algorithm in Theorem 3.2 is applicable for n € (0,1) U (1, 00) but
inapplicable for the special cases where n = 0, n = 1, and n = oo. In this section we
discuss initial maneuvers that revert the special cases back to n € (0,1)U(1, 0o) such
that the sweep-tuck algorithm can be directly applied.

The special case n = 0 occurs when CF = 0 = 6 = 0. In this configuration,
shown in Figure 3.4(a), both control action (B) and angle 1 are undefined and the
sweep-tuck algorithm is inapplicable. The problem is remedied by changing the value

of n using control action (A). Since 6 = 0, « is arbitrary and point C can be made to
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Figure 3.4. The special cases: n=0,n =1, and n = o0

move in any arbitrary direction away from F. We choose to move C along the line
OF, towards or away from O, since this gives us the maximum flexibility in choosing
any value of n from the set (0,1) U (1, oc).

The special case n = 1 occurs when CF = CO, as illustrated in Figure 3.4(b).
From Eq.(3.22) it can be verified that r = oo when n = 1. Since this violates the
condition 0 < r < 1, the Sweep-Tuck algorithm is not applicable. The sphere can be
partially reconfigured by first applying control action (B) such that F' converges to
the origin and then applying control action (A) such that C converges to the origin.
These two maneuvers are however not the same as the RS and DPT maneuvers. If it
is desired that the Sweep-Tuck algorithm be used, control action (B) should be used
to sweep F onto line OC, but not at O, as shown in Figure 3.4(b). The value of n
should then be changed to any value in the set (0,1) U (1,00) using control action
(A).

When C lies at the origin O, we have the special case n = oo. It can be shown
from Eq.(3.22) that the condition 0 < r < 1 is violated when n = oo since r = 0. The
problem is remedied using control action (A), as shown in Figure 3.4(c), such that n
can have any value in the set (0,1) U (1,00). This enables us to subsequently apply

the Sweep-Tuck algorithm.
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Remark 3.4 In this section we presented the Sweep- Tuck algorithm for partial recon-
figuration of the sphere and discussed maneuvers that render the algorithm applicable
to special cases where it is inapplicable otherwise. We proved asymptotic convergence
of the configuration variables (z.y,6) — (0,0,0) but did not show stability of the
equilibrium. We will prove asymptotic stability of the equilibrium as well as remove
the restriction on the initial condition, namely 0 < 8 < 7/2, when we address the

complete reconfiguration problem.

3.4 Simulations

We present simulation results of partial reconfiguration, one each for the two cases
n € (1,00) and n € (0,1). The initial configuration of the sphere for these cases were

taken as follows

z=3.0 y =30 6 =1.35 a=1.05 (3.23)

z =10.0 y=2>5.0 6 =140 a = 0.52 (3.24)

where the units are meters and radians. Using the definition of n in Theorem 3.1 and
Egs.(3.2) and (3.3) we can show that the initial conditions in Eqgs.(3.23) and (3.24)
correspond to n = 2.691 and n = 0.816, respectively. To satisfy the constraints in
Eq.(3.5), we chose ¢ for the two cases to lie at 40% and 50% of their permissible
range, respectively. Among the four possible options for the RS maneuvers, we chose
ccw sweep to the Py configuration for both cases. The simulation results are shown in
Figures 3.5 and 3.6. Figures 3.5(a), 3.5(b), and 3.5(c) show the trajectories of points
C and F in the z-y plane, trajectory of point @ in the z-y plane, and evolution of 6
in time, respectively, for n = 2.691. The corresponding trajectories for n = 0.816 are
shown in Figure 3.6.

Both Figures 3.5(c) and 3.6(c) indicate that § remains constant for certain intervals
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Figure 3.5. Simulation results for n € (1, 00)

of time - these intervals correspond to RS maneuvers. The value of § changes during
the DPT maneuvers and in agreement with Corollary 3.1, value of 6 at the end of
each DPT maneuver is less than its value at start. The difference in the trajectories
of @ in Figures 3.5(c) and 3.6(c) during the DPT maneuvers can be explained with
Remark 3.2.

It was discussed in Remark 3.2 that a discontinuously changes its value during
DPT maneuvers for n € (0,1). This explains the discontinuities in the derivative
of the trajectory of F' in Figure 3.6(a). In comparison, the trajectory of F' in Fig-
ure 3.5(a) has continuous derivatives since CC' < CF for DPT maneuvers with
n € (1,00), and CC' < CF ensures a constant value of a. The DPT maneuvers in

Figures 3.5(a) and 3.6(a) correspond to the straight line trajectory segments of C.
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Figure 3.6. Simulation results for n € (0,1)

Both the RS and DPT maneuvers are also obvious from the motion of the center of
the sphere, shown in Figures 3.5(b) and 3.6(b). The trajectory of @ in Figure 3.6(b)
is however self-intersecting unlike in Figure 3.5(b). Once again, this can be attributed

to the discontinuous change in o during DPT maneuvers for n € (0, 1).
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CHAPTER 4

Complete Reconfiguration:

Convergence Studies for n € (1, 00)

4.1 Problem Statement

For the kinematic model of the sphere described by Egs.(2.9) through (2.13), com-
plete reconfiguration refers to the task of converging (z,y,60,8) — (0,0,0,0), as
shown in Eq.(2.14). In chapter 3 we developed the Sweep-Tuck algorithm to con-
verge (z,y,0) — (0,0,0) and in this section we will extend it to converge § — 0 for
the case n € (1,00). As in chapter 3, the convergence algorithm in this section will
be developed under the restriction 0 < # < 7/2. In chapter 5 we will address the

complete reconfiguration problem for n € (0, 1).

4.2 Analysis of Quadruple Sweep Options in

Sweep-Tuck Algorithm

It was discussed in Remark 3.3 that the RS maneuver is not unique; it can sweep point

F to the location F, or F; in a cw or ccw manner. Although all four choices of sweep
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have the same effect on the partial reconfiguration problem, they result in different
values of 3, the additional variable we need to converge for complete reconfiguration.
To investigate the change in 3 for the four sweep options in a systematic manner, we

resort to the following definitions.

Definition 4.1 (P, Configuration) The partial configuration of a sphere defined
by the pair {C, F} is a P, configuration if CF x CO > 0 and cos ZOCF = cos .

Definition 4.2 (N, Configuration) The partial configuration of a sphere defined
by the pair {C, F} is a Ny configuration if CF x CO < 0 and cos ZOCF = cos.

According to Definitions 4.1 and 4.2, {C, F'} and {C', F,} are P, configurations in

Figure 4.1(a), {C', F} is a Py configuration and {C’, F,,} is a N,, configuration.

(a) (b)

Figure 4.1. Quadruple sweep options: n € (1, 00)

We now investigate the change in S for the four RS maneuvers that are possible
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Starting From P, Configuration
Ending at | Direction | Sweep angle/Aa | AS Value
P, cw —2r -y +v¢) | AB, | —(2m — ¥ + ¢)(1 — sech)
Ny cw —2m —¢' =) | ABy | —(2m — ¢’ — ) (1 — sech)
P, cew Y= ApB, (¥ —¥)(1 —sech)
Ny cew v+ AB, (V' + ¢)(1 — sech)

Table 4.1. Quadruple RS maneuvers starting from Py, configuration: n € (1, c0)

starting from Py: {C’, F} in Figure 4.1(a). These maneuvers, marked 1, 2, 3, and 4,

respectively, correspond to
1. a cw sweep ending at Py: {C', F,},
2. a cw sweep ending at Ny: {C', F, },
3. a ccw sweep ending at Py: {C’, F,}, and
4. a ccw sweep ending at Ny: {C', F,,}

It can be verified from Figure 2.2 that the angle of sweep during an RS maneuver is
equal to Aa. For the above maneuvers Af can therefore be computed using Eq.(2.16);
the results are summarized in Table 4.1 below. The results in Table 1 correspond to
the start configuration Py: {C', F}. When the start configuration is Ny: {C',F},
as shown in Figure 4.1(b), the change in 3 for the four different RS maneuvers can
be summarized by Table 4.2.

It was established in Theorem 3.1 that ' > ¢ for n € (1,00)U(0, 1). Furthermore
we know from Eq.(3.21) that ¢ + ¢’ < 7. Using these results we can establish the

following relations between the four possible sweep angles given in Table 4.1

—@r -y +Y) < -Q2r -y -¢) <0< (¥ —9) < (¥ +Y) (4.1)
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Starting From Ny Configuration
Ending at | Direction | Sweep angle/Aa | AfS Value
Py, cw - + ) ABy | —(W' +9)(1 —sech)
N, cw —(W =) | ABy | —(¥ —¥)(1—sech)
P, cew 2 — ' — ABs | (2 — ' — ¢)(1 — sech)
Ny cew 2 =Y + 9 AB, | 2 — ' +)(1 — sech)

Table 4.2. Quadruple RS maneuvers starting from N, configuration: n € (0, 1)

Similarly, the sweep angles in Table 4.2 satisfy the relationship

—W+Y) S - -¥) <0< 2r -y —y) < 2r =Y +Y) (4.2)

4.3 Compensating and Restoring Sweep (CRS)
Maneuver

Consider partial reconfiguration of the sphere based on the Sweep-Tuck algorithm.
Let the configuration variables of the sphere at the initial time be (zo, yo, 6o, @0, Bo)-
A PS maneuver is first invoked to set ZOCF = '. Suppose (z1,y1, 61,1, 31) are the
configuration variables at the end of the PS maneuver. Now denote all configuration
variables prior to the k-th RS-DPT pair using subscript k. Then (zi,y1,61,01,051)
denote the configuration variables prior to application of the first RS-DPT pair. The

change in 8 during the k-th RS-DPT pair can be expressed as

Br+1 = B + AB (4.3)

where Af takes the values in Tables 4.1 and 4.2 for start configurations Py and Ny,
respectively, based on the direction of sweep (cw or ccw) and type of end configuration

(Py or Ny). From the entries in Tables 4.1 and 4.2 it is clear that A is a function of
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6k, and parameters of the Sweep-Tuck algorithm, namely ¢ and v¥’, or n and 3. We

now define the Compensating and Restoring Sweep (CRS) maneuver.

Definition 4.3 (CRS Maneuver) Among the four choices for an RS maneuver in
a sweep-tuck sequence, the Compensating and Restoring Sweep (CRS) maneuver is

the one that minimizes the absolute value of 3.

Remark 4.1 Mathematically, for n € (1,00), the k-th RS maneuver (k > 1) of a

sweep-tuck sequence is a CRS maneuver if
Ben = min |G+ 881, S ={A8, A, Afy, A} (44)

where APy, ABy, AB3, and APy are the entries in Table 4.1 or Table 4.2 depend-
ing on whether the configuration variables, i, Yk, Ok, ok, define a Py or an Ny

configuration, respectively.

We now investigate the effect of a CRS maneuver for a P start configuration.
The entries of S in Eq.(4.4) are taken from Table 4.1 and shown in Figure 4.2 in their
relative order of magnitude, which was established in Eq.(4.1). The range of the set

is found to be

(& + ) (1 —secO) < S < —(2m — ¢ + ) (1 — secbg) (4.5)

Suppose S lies in the range that is a mirror image of the range of S in Eq.(4.5). This
implies

2m — ¢ + ) (1 —secl) < Br < — (¥ +¢¥') (1 — secby) (4.6)

Using Eqs.(4.5) and (4.6), the range of 3,4, can be obtained from Eq.(4.4). This

range, shown in Figured4.3(a), reveals that 8x,; = 0 when By = —AB;, ¢ = 1,2,3,4.
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ABy = (2m+y' - y)( 1 -sec ) i
ABp = (-2n+y' +y)( 1 -secB) S
Bk = _AB4
AB I l
0
AB3 = (W' - w)(1-secBy) ' Range of B,
ABgy = (W' +y)(1-secB) S
B, = — 4B

Figure 4.2. Range of j; for starting P, configuration

For other values of /3; in the range given by Eq.(4.6), Bry1 mostly varies linearly
and |Bk+1| reaches a local maxima of —¢ (1 — seci) when By = (—AB — AB2)/2
and S = (—Apf3y — ABy)/2, and the global maxima of (¢ — 7) (1 — sec ;) when
Bx = (—ABy — AB;3)/2. Since the global maxima of |Bk41| is (v — m) (1 — sec k),
we can reduce the conservatism of the range of fx in Eq.(4.6) by expanding it by
(¥ — ) (1 — secfx) on both sides. The expanded range, deduced from Figure 4.3(a),
is shown graphically in Figure 4.3(b). Mathematically, the expanded range can be

expressed as follows

(B — ') (1 —secby) < Bk < —(m + ') (1 — secby) (4.7)

and it guarantees

|Bk+1] < (m =) (1 — sec bx) (4.8)

The extended range of 3¢ in Eq.(4.7) pertains to a CRS maneuver with Py start
configuration. If the CRS maneuver has a Ny configuration, a similar set of results

can be deduced. To obtain these results, the entries of S in Eq.(4.4) are first taken
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Figure 4.3. Expanded range of j; for starting P, configuration

from Table 4.2 and plotted in Figure 4.4 in their relative order of magnitude using

Eq.(4.2). The range of the set is found to be

QCr—y' +¢)(1—sech) <S<—(¥+¢)(1—secb)

(4.9)

As in the previous case, we again assume [y to lie in the range that is a mirror image

of the range of S in Eq.(4.9). This implies

(¥ +¢') (1 —sec) < B < —(2m — ' + ) (1 — secby)

(4.10)

The application of Eq.(4.4) gives us the range of 8x4, when S is in the range given by

Eq.(4.10). This range, shown in Figure 4.5(a), indicates that Eq.(4.8) holds good for

Ny start configurations as well. The expanded range of 3, shown in Figure 4.5(b),

is obtained by increasing the range in Eq.(4.10) by (¢ — 7) (1 — sec 6x) on both sides.
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Figure 4.4. Range of j; for starting Ny configuration

The expanded range of i for the Ny configuration is thus obtained as

(m+ ") (1 —sect) < B < —(37m —¢') (1 — secby) (4.11)

We are now summarize the results obtained above with the help of the following

lemma.

Lemma 4.1 Consider a sweep-tuck sequence where the k-th RS maneuver (k > 1) is
a CRS maneuver. Then, if the configuration variables (zy, Yk, Ok, ok, Br), define a Py
configuration and satisfy Eq.(4.7), or define a Ny configuration and satisfy Eq.(4.11),

Br+1 will be bounded according to the relation given in Eq.(4.8).

Proof: The proof follows directly from the derivation above. ¢ oo
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Figure 4.5. Expanded range of j; for starting Ny configuration

4.4 Inequality Condition for Convergence

The bounds on Sk, in Eq.(4.8) are valid for the expanded range of §; in Egs.(4.7)
and (4.11) for Py and Ny start configurations, respectively. Instead of considering
the entire expanded range, we now consider the sub-intervals of 8, D,-D,, Dy-Dj3,
D3-Dy, and Dy-Ds, in Figures 4.3(b) and 4.5(b). The bounds on Bk, ; for these sub-
intervals are shown in Tables 4.3 and 4.4 for P, and Ny start configurations. The

values of p; and v in Figures 4.3(b) and 4.5(b) and Tables 4.3 and 4.4 are as follows

pr = (¢ —m) (1 — secby), vy = = (1 — secby) (4.12)

Our next result is stated in Lemma 4.2, which is an extension of Lemma 4.1.

Lemma 4.2 Consider a sweep-tuck sequence where the k-th RS maneuver (k > 1) is
a CRS maneuver. Then, if the configuration variables (zx, yk, Ok, ak, Bk), define a Py

configuration and satisfy Eq.(4.7), or define a Ny configuration and satisfy Eq.(4.11),
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Starting From Py Configuration
Expanded Range of 8 : (37 —¢') (1 —secbi) < Bx < — (m +¢') (1 — sec )
Sub-range Compensating Final | Direction | Range of Bk
of Bk Ap Form
D1 - D2 —(27T — 'l/)’ + ’(/1)(1 — SecC Gk) P¢, cw — Mk S ,Bk+l < vy
D2 - D3 —(27[ - 'l[)’ - 1,[))(1 — secC Ok) N¢ cw — Vg _<_ ,Bk+l < Mk
D; — D4 (¥ —¢)(1 — secb) P, cew —pr < Bry1 < v
Dy — Ds (¥ +)(1 — secby) Ny ccw ~Vg < By < pi

Table 4.3. CRS maneuvers for different values of ji for starting P configuration

Bri1 will be bounded according to the relation

—pik < Br1 < vk (4.13)

if the CRS maneuver ends in a Py configuration, and according to the relation

—k < Brs1 < Lk (4.14)

if the CRS maneuver ends in a Ny, configuration.

Proof: The proof follows directly from the entries in Tables 4.3 and 4.4. 00 o

Theorem 4.1 (First Reconfiguration Theorem) Consider the Sweep-Tuck algo-
rithm for n € (1,00) and ¢ satisfying Eq.(8.5). Assume 0 < 6 < /2 at the initial
time, as required by the Sweep- Tuck algorithm. Let k, k > 1, be any integer for which
the configuration variables (T, Yk, Ok, ak, Bi) define a Py configuration and satisfy
Eq.(4.7) or define a Ny configuration and satisfy Eq.(4.11). If for all integer values
of 7, 3 > k, the j-th RS maneuver is a CRS maneuver and the inequality

(1 —secb;)
(1 —sec;41)

(m +¢")
(=)

<
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Starting From N, Configuration
Expanded Range of i : (7 + ¢') (1 —secb;) < Br < — (37 — ') (1 — sec )
Sub-range Compensating Final | Direction | Range of x4
of Bx AB Form
D, - D, —'('(/)' + 1//‘)(1 — sec Hk) P,/, cw =tk < Bry1 < vk
Dy — D; — (' = ¥)(1 — secby) Ny cw —Vk < Bry1 < i
D3 — Dy | (2r — o' —¢)(1 —sechy) | P, ccw —pik < Brar S Y
Dy—Ds | 2mr — ¢ +9)(1 —secbi) | Ny ccw —V < Bry1 < ke

Table 4.4. CRS maneuvers for different values of 3, for starting /Ny configuration

is satisfied, then (x;,y;,0;,5;) — (0,0,0,0) as j — oo and the sphere is completely

reconfigured.

Proof: We first note from Eqs.(3.20) and (3.21) and the third assertion in Theo-

rem 3.1

Y<r = @Br-y)>(r+¢) (4.16)

pHv <t = W1 = (1-¥)2 (4.17)

Using the identities in Egs.(4.16) and (4.17) we can deduce that Eq.(4.15) implies

(1 —secH)) < (3m — ¢

4.18
(0 —secln) = (1) (4.18)
(1 —secb;) (m+ ')
< .1
(1—secl;41) = ¥ (4.19)
Using Eq.(4.12) we can show that Eqs.(4.18) and (4.19) imply

—p; > (37 — ') (1 —sec ;) (4.20)

—V; > (’/T + ’([)’) (1 — Sec 91‘+1) (421)

We know that the k-th RS maneuver is a CRS maneuver. Also, (zx, Yk, O, ok, Ok)
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define a Py configuration and satisfy Eq.(4.7) or define a N configuration and satisfy
Eq.(4.11). Therefore, using Lemma 4.2 we claim that the CRS maneuver ends in a P,
configuration that satisfies Eq.(4.13) or an N,, configuration that satisfies Eq.(4.14).
If the CRS maneuver ends in a P, configuration, we can deduce the following from

Egs.(4.13) and (4.20)

ik < Brr1 S = (31 =) (1 —secyr) < Bry1 < —(1+9') (1 —secbiyy)

(4.22)
The subsequent DPT maneuver, which results in a Py configuration, therefore sat-
isfies Eq.(4.7) for subscript k£ + 1. If the CRS maneuver ends in a Ny configuration,

we can deduce the following from Eqs.(4.14) and (4.21)

vk S B S = (T + ') (1 —secbiy) < Bryr < —(37 — ') (1 — secOryy)

(4.23)
The subsequent DPT maneuver, which results in a Ny configuration , therefore sat-
isfies Eq.(4.11) for subscript £ + 1.

Since the j-th RS maneuver is a CRS maneuver Vj > k + 1, Lemma 4.2 can be
applied iteratively to the configuration variables (z;,y;, 0}, @, B;), for integer values
of j=k+1,k+2,---,00. This implies that 3;;; will be bounded by one of the two
relations

TH S P s j=k+1,k+2,-,00 (4.24)
—v; < Biy1 < pj
From Corollary 3.1 we know that the Sweep-Tuck algorithm guarantees 8; — 0 as
J — oo. This implies p;,v; — 0 and hence 3; — 0 as j — co. From Theorem 3.2
we already know that the Sweep-Tuck algorithm guarantees (z;,v;,60;) — (0,0,0)
as j — oo. This implies (z;,y;,60;,5;) — (0,0,0,0) as j — oo and the sphere is

completely reconfigured. ¢ ¢ ¢
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4.5 Range of ¢ for Inequality Condition

In this section we establish that the inequality condition in Eq.(4.15) is always satisfied
for a subset of the range of ¢ in Eq.(3.5) for n € (1,00). To this end, we first note
from Eq.(3.20) that ¢ and ¢’ lie in the ranges 0 < ¢ < cos™!(1/n) and cos™!(1/n) <
Y’ < 7, respectively. Using Eq.(3.19) we can readily show that ¢’ = cos™!(1/n) when
¥ = cos™!(1/n). Thus

lim (m+9')  w+cos7!(1/n)
wocos-i(1/n) (T — 1) T —cos~1(1/n)

> 1 (4.25)

Using Eq.(3.22) we can also show

C'F C'O

lim = lim = lim 1-2(ncosyy —1)/(n?=1)] =1

Y—cos~1(1/n) CF Y—cos~1(1/n) CcO Y—cos~1(1/n) [ ( w )/( )]
(4.26)

From Eqgs.(3.3) and (4.26) we can therefore deduce that for ¥ — cos™1(1/n),
tanf;., — 60,44 1—secf;;,

= 1 . .., =80. — i R | 4.27
tan 0]' - 9]' I+l J 1 —sec 0]' ( )

From Egs.(4.25) and (4.27) we conclude that there exists a ¥, 0 < ¥ < cos~!(1/n),
such that Eq.(4.15) is always satisfied for ¥ < ¢ < cos™!(1/n). We discuss the
procedure for numerical computation of ¥ next.

To compute ¥, we first determine the value of n from the initial conditions and
choose 9 in conformity with Eq.(3.5). The value of ¢’ is determined from Eq.(3.19)
and we compute the ratio (7 + ¢')/(m — ¢). We determine the values to be assumed
by 6 in the sweep-tuck sequence and compute the ratios (1 — sec6;)/(1 — sec,41),

Jj=12,--- N, where N is chosen based on the desired level of convergence. The
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particular choice of 1 satisfies the inequality condition in Eq.(4.15) if

f (1 —sec;) } (m+ ')
jrerfﬁx]{(l —sectjy1) = (m —1)

(4.28)

We start with an initial value of ) & cos™'(1/n) and verify the condition in Eq.(4.28)
for each value of ¢ as we reduce 1 in small increments. The value of ¥ is the smallest
value of ¢ for which Eq.(4.28) is satisfied. Since this procedure requires moderate
computation and the exact value of ¥ is not critical, we determine an approximate
value of ¥ using the analysis presented below.

Using Taylor’s series expansion we can show (secf — 1) = 1.5(tan8 — 6)/6. Thus,

using Eqs.(3.3) and (3.22) and Corollary 3.1 we can write

(1 — Sec 0]) ~ 0j+1 (tan 0]' - 0_7)
(1 —sechjy1)  6; (tanBy —0;41)

(tan 0]' - OJ)
(tan 0]‘+1 - 0j+1)
_CF
- C'F 1
- 1 —2(ncosy —1)/(n? —1)] (4.29)
Hence, Eq.(4.15) is satisfied if
! < r+v) (4.30)

[1—-2(ncosyy —1)/(n?—=1)] = (7 — )

The value of ¥ can be computed easily from Eq.(4.30). Since § does not appear in
Eq.(4.30), ¥ can be computed apriori from the value of n alone and the data stored
in a look-up table for quick reference. We have provided the value of ¥ in radians for

specific values of n in Table 4.5 below.

We have also shown plots of the left-hand and right-hand sides of Eq.(4.15) for specific

values of n in Figure 4.6. These results match well with the results in Table 4.5.
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n| 1.1 1.2 1.25 1.5 1.75 2.0 2.5 2.75 [3.0]3.5]|4.0
¥ |0.371 | 0.473 | 0.505 | 0.580 | 0.584 | 0.552 | 0.411 | 0.293 | 0.0 | 0.0 | 0.0
Table 4.5. Numerical values of ¥ for various n € (1, 00)
Dashed Lines : (n+ y")/ (n - y) Solid Lines : 1
1- 2(ncosy—1)/(n2-1)
n=20 n=3.0 n=35
3 3 3
238 2.8 2.8
2.6 26 2.6
24 24 24
22 22 - 22 _--"
2L _ o 2 - = - -~ 2L -7
1.8 e 18 1.8
1.6 1.6 1.6
14} ¢ 14 14
~ . ¥ b4
1% “a 13 = 1? P
0 05’ 1, 15 0 0.5 1 15 o 05 1 15
v (rad) 4 yaad) A ved 4
arccos(1/2) arccos(1/3) arccos(1/3.5)

(@ (b) ©

Figure 4.6. Angle ¥ for various values of n € (1, 00)

Based on the results above, we now state a corollary of Theorem 4.1:

Corollary 4.1 Consider the Sweep-Tuck algorithm for n € (1,00) and ¥ < ¢ <
cos™!(1/n). At the initial time assume 0 < @ < 7/2, as required by the Sweep-
Tuck algorithm. Let k, k > 1, be any integer for which the configuration variables
(Tk, Yk, Ok, ak, Bk) define a Py configuration and satisfy Eq.(4.7) or define a Ny con-
figuration and satisfy Eq.(4.11). If for all integer values of j, j > k, the j-th RS
maneuver is a CRS maneuver, then (z;,y;,0;,5;) — (0,0,0,0) as j — oo and the

sphere is completely reconfigured.

Proof: The proof follows directly from Theorem 3 and the results above. o0 ¢
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4.6 Preliminary Sweep Maneuver and Merging
the Expanded Ranges

We assumed the initial configuration variables of the sphere to be (xg, yo, 6o, @, 50)
in section 4.3. We also assumed the configuration variables to be (z,,y;,0;, a;, 1)
after the PS maneuver which sets ZOCF = 9’. In this section we first investigate
the change in 8, AS = (51 — ), due to the PS maneuver.

Since the maximum angle of pre-sweep can be 27, the maximum change in 3 due
to the PS maneuver, AB,,,, = max (8, — 3), can be computed from Eq.(2.16) as
follows

ApB ez = £27(1 — sec by) (4.31)

where the sign in Eq.(4.31) will be positive for ccw sweep and negative for cw sweep.

The expanded range of S for subscript £ = 0, for both Eqs.(4.7) and (4.11) is
W= {(rm+¢)+ Br—¢)} (1 —sechy) =4n(1 —secy) > 2| AB]| (4.32)

This implies that the direction of pre-sweep can be chosen suitably such that

(3m — ') (1 —secby) < Bo < —(m+ ") (1 —secy)

= Br—-9Y)(1—-sech)<p < —(r+¢')(1—sech)
(4.33)

and

(m+ ') (1 —secy) < Bo < —(3m —4') (1 —secby)

= (mr+¢)(1—sech)<p <—Br—¢')(1—sech)
(4.34)

Both Eqs.(4.33) and (4.34) are based on the fact that # remains constant during a

PS maneuver, that is, 8; = 6,. We are now ready to define the “Proper Preliminary-
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Sweep” (PPS) maneuver.

Definition 4.4 (PPS Manuever) A PS maneuver that satisfies Eq.(4.33) or

Eq.(4.84) is said to be a “Proper Preliminary-Sweep” (PPS) maneuver.

We use the PPS maneuver to extend the results in Corollary 4.1 with Corollary 4.2

below.

Corollary 4.2 Consider the sphere in its initial configuration (xg, Yo, 6o, o, Bo) with
configuration variables satisfying n € (1,00), 0 < 6y < 7/2, and By in the range
defined by Eq.(4.7) or (4.11) for subscript k = 0. The sphere can be completely
reconfigured using a PPS maneuver followed by repeated application of CRS-DPT

pairs with ¢ € [¥,cos™'(1/n)).

Proof: Since f lies in the range given by Eq.(4.7) or (4.11), a PPS maneuver brings
the sphere to a Py configuration with 3, satisfying Eq.(4.7) or a Ny configuration
with B, satisfying Eq.(4.11). The complete reconfiguration of the sphere can now be

proved using Corollary 4.1. 0o 0o

We conclude this section with Theorem 4.2, stated next.

Theorem 4.2 (Second Reconfiguration Theorem) Consider the sphere in its
initial configuration (o, yo, 6o, o, Bo) with the configuration variables satisfying n €

(1,00), 0 < 0y < 7/2, and By in the range

(B — ') (1 —sechy) < Bo < — (37 — ') (1 — secby) (4.35)

The sphere can be completely reconfigured by a PPS maneuver followed by repeated
application of CRS-DPT pairs with ¢ € [¥,cos™!(1/n)].

Proof: From Eq.(3.20) we know ¢’ < w. This implies (7 + ¢') < (37 — ¢') and
[—(Br—v¢"), Br—v¢")] = [(m+¥"), Br—¢")|]U[- (37 —9¢'), (1+%')]. Hence, satisfaction

44



of the condition in Eq.(4.35) guarantees (3, lies in the range defined by Eq.(4.7) or
(4.11) for subscript k£ = 0. The rest of the proof follows directly from Corollary 4.2.
000

The underlying idea for convergence of 3 can be understood with the help of the

following illustration in Figure 4.7. Figure 4.7 is not an exact depiction of the conver-

)

Bo
L,
1 \
BN\ o
@Fy - -1 <——»{ Sweep maneuver
?2) \\ with Ok+1
Lyr--- B
- T
Bz/ T ,/\\\,
Bm\1 / | ,& "

3F--\ a2 _ 1\
3) —

Width proportional to
|1 - secB|

// )] <«—| Sweep maneuver

@ with Ok
/!

Figure 4.7. Convergence of 3 in Sweep-Tuck algorithm

gence of 3 but an approximate illustration of convergence of 3. In figure 4.7 the steps
represent successive sweeps. The four levels at each sweep given by (1), (2), (3), (4),
represent the quadruple sweep options. The steps are diminishing in size since the
Sweep-Tuck algorithm causes 0;;; < 6;. The diminishing steps form a diminishing
envelope shown in figure 4.7. By imposing the range condition in Eq.(4.35) and by

satisfying the inequality condition in Eq.(4.15), 3 is restricted to lie within this enve-

45



lope and eventually converge to zero. This shown by the trajectory L;. On the other

hand if B does not satisfy Eq.(4.35), 8 converges to a non-zero value as shown in L,.

4.7 Simulation Results

We present simulation results for complete reconfiguration when n € (1,00). The

initial configuration of the sphere is taken as follows:

r=-20 y=05 =12 a=30 p=-30 (4.36)

where the units are in meters and radians. From the definition of n in Theorem 3.1
and Egs.(3.2) and (3.3) we obtain n = 2.436. We choose 1 at 30% of the permis-
sible range ¥ < ¢ < cos™!(1/n). The simulation results are given in Figure 4.8.
Figure 4.8(a) shows the simultaneous convergence of C' and F to the origin. Initially
3 satisfies Eq.(4.7) and hence a PPS maneuver sweeps F' in a cw sense to the point F}
whereby the sphere attains a Py configuration. Subsequently, CRS-DPT maneuvers
are successively applied. The point F' is not clear in Figure 4.8(a) since the CRS
manuever immediately after the PPS maneuver retraces the arc F'F} in a ccw sense
and goes beyond the point F. Figures 4.8(b), 4.8(c), and 4.8(d) show the convergence
of z and y coordinates of @, the convergence of 8, and that of S respectively, with
time to origin. Hence, from Eq.(2.14), this leads to complete reconfiguration of the
sphere.

In Figure 4.8(b), the linear and curved segments in the z and y plots are due to the
DPT and CRS maneuvers respectively. Also, in Figure 4.8(d), the intervals when S
remains constant correspond to DPT maneuvers. During CRS maneuvers 8 remains
constant, as shown in Figure 4.8(c), and S changes linearly which is consistent with

Eq.(2.16). The PPS maneuver causes the change of 3, to £;, however 6, = 6, which
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Figure 4.8. Complete reconfiguration: simulation results for n € (1, 00)

complies with the definition of PPS maneuver in Definition 4.4.
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CHAPTER 5

Complete Reconfiguration:

Convergence Studies for n € (0, 1)

5.1 Quadruple Sweep Options

Similar to our investigation in section 4.2, we first investigate the change in 3 for the
sweep options during an RS maneuver. For a Py: {C', F} start configuration, as

shown in Figure 5.1(a), the sweep options are
1. a cw sweep ending at Py: {C', F,},
2. a cw sweep ending at Ny: {C', F,,},
3. a ccw sweep ending at Py,: {C', F,}, and
4. a ccw sweep ending at Ny: {C', F,}

It can be verified that AS for these options are the same as the entries of Table 4.1,
which pertains to the case n € (1,00). For a Ny: {C', F} start configuration, as
shown in Figure 5.1(b), the values of AS are similarly identical to the entries of

Table 4.2, which pertains to the case n € (1, 00).
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Figure 5.1. Quadruple sweep options: n € (0,1)

5.2 CRS Maneuvers and Inequality Condition for
Convergence

Since values of AS for the quadruple sweep options of an RS maneuver are the same
for the cases n € (1,00) and n € (0, 1), for both Py and Ny start configurations, the
entire discussion in section 4.3 and part of the discussion in section 4.4 applies to the
present case of n € (0,1). By following the discussion in these sections it becomes

clear that
e Lemmas 1 and 2 are applicable to both cases n € (1,00) and n € (0,1).

e The statement of Theorem 3 is essentially applicable to the present case n €

(0,1), but the proof needs to be modified.
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Remark 5.1 The main difference between the cases n € (1,00) and n € (0,1) arises
from difference in their DPT maneuvers. From Egs.(3.14) and (3.15) we know that
CC' < CF forn € (1,00) and CC' > CF for n € (0,1). This implies that DPT
maneuvers change a Py configuration into a Py configuration and a Ny, configuration
into a Ny configuration for n € (1,00), but forn € (0, 1) it changes a P, configuration
into a Ny configuration and a Ny configuration into a Py configuration. For the case

€ (0,1), the effect of a DPT maneuver can be verified from Figures 5.1(a) and 5.1(b)
where Ny: {C, F} changes to Py : {C',F} and P,: {C, F} changes to Ny: {C', F},

respectively.

We now state and prove the equivalent of Theorem 4.1 for the case n € (0,1).

Theorem 5.1 (Parallel of Theorem 4.1) Consider the Sweep-Tuck algorithm for
n € (0,1) with ¢ chosen to satisfy Eq.(3.5). Assume 0 < 0 < w/2 at the initial
time, as required by the Sweep-Tuck algorithm. Let k, k > 1, be any integer for which
the configuration variables (xk, Yk, Ok, ok, Bx) define a Py configuration and satisfy
Eq.(4.7) or define a Ny configuration and satisfy Eq.(4.11). If for all integer values

of 7, 7 > k, the j-th RS maneuver is a CRS maneuver and the inequality

(1 —secH;)
(1 —secbj41)

< (5.1)

is satisfied, then (z;,y;,0;,05;) = (0,0,0,0) as j — oo and the sphere is completely
reconfigured.

Proof: Using the identities in Eqs.(4.16) and (4.17) we can deduce that Eq.(5.1)

implies

(1 —sec;) (7 + ')
(1 —secjiy) = (m — ) (5.2)
(1 —sechy) _ Br—¢) (5.3)

(1 —secly1) — WP
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From the definition of x and v in Eq.(4.12) we can show that Egs.(5.2) and (5.3)

imply

—pi > (m+¢) (1 —secj1) (5.4)

—v; > (3m —9') (1 —secB;41) (5.5)

We know that the k-th RS maneuver is a CRS maneuver. Also, (zx, Yk, Ok, @, Bk)
define a Py configuration and satisfy Eq.(4.7) or define a Ny configuration and satisfy
Eq.(4.11). Therefore, using Lemma 4.2 we claim that the CRS maneuver ends in a P,
configuration that satisfies Eq.(4.13) or an N,, configuration that satisfies Eq.(4.14).
If the CRS maneuver ends in a Py configuration, we can deduce from Eqs.(4.13) and

(5.4)

~k < B S = (4 Y) (1 —secbiyy) < Bry1 < —(3m — ') (1 —secry1)

(5.6)
The subsequent DPT maneuver, which results in a N, configuration, therefore satis-
fies Eq.(4.11) for subscript k£ + 1. If the CRS maneuver ends in an N,, configuration,

we can deduce from Egs.(4.14) and (5.5)

U < Bryr S = (31 —¢') (1 —secri1) < Brp1 < —(m+¢') (1 — sec i)

(5.7)

The subsequent DPT maneuver, which results in a Py configuration , therefore sat-
isfies Eq.(4.7) for subscript k + 1.

Since the j-th RS maneuver is a CRS maneuver Vj > k + 1, Lemma 4.2 can be

applied iteratively to the configuration variables (z;,y;, 6;, o, 3;), for integer values

of j =k+1,k+2,---,00. This implies that 5;;,; will be bounded by one the two
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relations
H S B sy, j=k+1,k+2,--,00 (5.8)
—v; < Biv1 < 1
From Corollary 3.1 we know that the Sweep-Tuck algorithm guarantees 6; — 0 as
J — oo. This implies p;,v; — 0 and hence ; — 0 as j — oco. From Theorem 3.2
we already know that the Sweep-Tuck algorithm guarantees (z;,y;,6;) — (0,0,0)

as j — oo. This implies (z;,y;,68;,5;) = (0,0,0,0) as j — oo and the sphere is

completely reconfigured. ¢ ¢ ¢

5.3 Range of ¢ for Inequality Condition

Here we establish that the inequality condition in Eq.(5.1) is always satisfied for a
subset of the range of v in Eq.(3.5) for n € (0,1). To this end, we first note from
Eq.(3.20) that ¢ and ¥’ lie in the ranges 0 < ¥ < cos™!(1/n) and cos™!(1/n) <
Y < 7, respectively. Using Eq.(3.19) we can readily show that ¢’ = cos™!(n) when

¥ = cos~!(n). Thus

fim (m + w') _ T+ cos™(n) o1 (5.9)

yocos—l(n) (T —1Y) ™ —cos~(n)

Using Egs.(3.16) and (3.22) we can also show

C'F C'O
lim —— = lim = lim —[1=2(ncosyy —1)/(n®*=1)] =1
Y—rcos~1(n) CF Y—cos~1(n) CcO Y—cos~1(n) [ ( v )/( )]

(5.10)
From Eqgs.(3.3) and (5.10) we can therefore deduce that for ¢y — cos™!(n),
tan 0j+l - OjH 1 —sec 0j+1
tan Oj - 01' = i+l J = 1 —sec HJ- ( )

From Eqs.(5.9) and (5.11) we conclude that there exists a ¥, 0 < ¥ < cos™!(n), such
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0.9 0.8 0.7 0.6 0.5 04 [033(03]025({0.2]0.1
0.387 | 0.505 | 0.569 | 0.588 | 0.552 | 0.411 | 0.0 | 0.0 | 0.0 | 0.0 0.0

|3

Table 5.1. Numerical values of ¥ for various n € (0,1)

that Eq.(5.1) is always satisfied for ¥ < 1 < cos™!(n). Using the same procedure in
section 4.5, ¥ can be numerically computed from the approximate relation

-1 (r + )

L= 2(ncos¢ — 1)/ —1)] = (5.12)

Equation (5.12) is very similar to Eq.(4.30) in section 4.5. The difference in sign can
be explained with the help of Egs.(3.16) and (3.22). As mentioned in section 4.5, the
value of ¥ can be computed apriori from the value of n alone and the data stored in
a look-up table for quick reference. We have provided the value of ¥ in radians for
specific values of n in Table 5.1 below. We have also shown plots of the left-hand and
right-hand sides of Eq.(5.1) for specific values of n in Figure 5.2. These results match
well with the results in Table 5.1.

Based on the results above, we now state a corollary of Theorem 5.1:

Corollary 5.1 (Parallel of Corollary 4.1) Consider the Sweep-Tuck algorithm
forn € (0,1) and ¥ < ¢ < cos™!(n). At the initial time assume 0 < 6 < 7/2, as
required by the Sweep-Tuck algorithm. Let k, k > 1, be any integer for which the con-
figuration variables (xk, yk, Ok, ok, Bx) define a Py configuration and satisfy Eq.(4.7)
or define a Ny configuration and satisfy Eq.(4.11). If for all integer values of j,
J > k, the j-th RS maneuver is a CRS maneuver, then (z;,y;,6;,8;) = (0,0,0,0) as

J — oo and the sphere is completely reconfigured.

Proof: The proof follows directly from Theorem 5.1 and the results above. ¢ ¢ ¢
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Figure 5.2. Angle V¥ for various values of n € (0,1)

5.4 Preliminary Sweep Maneuver and Merging
the Expanded Ranges

We use the PPS maneuver to extend the results in Corollary 5.1 with Corollary 5.2

below.

Corollary 5.2 (Parallel of Corollary 4.2) Consider (x,yo, 6o, a0, Bo) to be the
initial configuration of the sphere satisfying n € (0,1), 0 < 6y < 7/2, and By in the
range defined by Eq.(4.7) or (4.11) for subscript k = 0. The sphere can be completely
reconfigured using a PPS maneuver followed by repeated application of CRS-DPT

pairs with ¢ € [¥,cos™!(n)].

Proof: Since f satisfies lies in the range given by Eq.(4.7) or (4.11), a PPS maneuver
brings the sphere to a Py configuration with j, satisfying Eq.(4.7) or a Ny configu-
ration with 3, satisfying Eq.(4.11). The complete reconfiguration of the sphere can

now be proved using Corollary 5.1. oo o
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We conclude this section with Theorem 5.2, stated next.

Theorem 5.2 (Parallel of Theorem 4.2) Consider (zo, Yo, 80, @0, 50) to be the
initial configuration of the sphere satisfying n € (0,1), 0 < 6y < /2, and By in
the range

(B — ') (1 —sechy) < By < — (37 — ¢¥') (1 — secby) (5.13)

The sphere can be completely reconfigured by a PPS maneuver followed by repeated

application of CRS-DPT pairs with ¥ € [¥,cos™'(n)].

Proof: The proof is based on the results of Corollary 5.2 and is exactly similar to

the proof of Theorem 4.2 which is based on the results of Corollary 4.2. 0o

5.5 Simulations

We present simulation results for complete reconfiguration when n € (0,1). The

initial configuration of the sphere is chosen as follows:

=55 y=15 6=12 a=7/2 f=25 (5.14)

where the units are in meters and radians. From the definition of n in Theorem 3.1 and
Eqs.(3.2) and (3.3) we obtain n = 0.244. We choose v at 50% of the permissible range
¥ < 9 < cos™!(n). The simulation results are given in Figure 5.3. Figure 5.3(a) shows
the simultaneous convergence of C' and F to the origin. Initially 3 satisfies Eq.(4.7)
and hence a PPS maneuver sweeps F' in a cw sense to the point F; whereby the sphere
attains a Py configuration. Subsequently, CRS-DPT maneuvers are successively
applied. Figures 5.3(b), 5.3(c), and 5.3(d) illustrate the convergence of z and y
coordinates of @), the convergence of 6, and that of 3 respectively, to the origin.

Hence, from Eq.(2.14), this leads to complete reconfiguration of the sphere.
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Figure 5.3. Complete reconfiguration: simulation results for n € (0, 1)

In Figure 5.3(b), the linear and curved segments in the x and y plots are due to the
DPT and CRS maneuvers respectively. The linear segments are steeper and longer
as compared to those in Figure 4.8(b). This is justified since, for n € (0,1), DPT
maneuvers are longer (as can be inferred from Remark 3.2) and in the simulation
we choose to apply a faster angular speed wj to execute them. In Figure 5.3(d),
the intervals when [ remains constant correspond to DPT maneuvers. The choice
of higher angular speed for the DPT maneuver is again apparent from the small

intervals. During CRS maneuvers 6 remains constant, as shown in Figure 5.3(c), and
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B changes linearly which is consistent with Eq.(2.16). The PPS maneuver causes
the change of 3y to f;, however 6, = 6y, which complies with the definition of PPS

maneuver in Definition 4.4.
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CHAPTER 6

Tuck-Out Maneuver and Special

Cases

6.1 Tuck-Out Maneuver

From Theorem 4.2 and Theorem 5.2 we know that for completely reconfiguring the
sphere by a PPS maneuver and repeated CRS-DPT pairs, Eq.(5.13) must be satisfied.

Let us define € such that

c cos7' (1) forn € (1,00)
cos~!(n) forn € (0,1)

6.1)

The range in Eq.(5.13) is a function of ¢, and is a maximum when ¢’ is minimum.
From Eq.(3.20), for a given n, ¢’ is minimum when 3’ = £ Thus, the maximum

range of (3, for a given n, is

(3m — &) (1 —secby) < By < — (37— &) (1 — sec ) (6.2)
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If 3y lies in this range then there always exists a sub-range of ¥ given by

1

Sy <é (6.3)

U < 9, where Eq.(5.13) is satisfied. Hence if the initial configuration of the sphere
satisfies Eq.(6.2) then the conditions for complete reconfiguration, in Theorem 4.2 or
Theorem 5.2 are satisfied for n € (1,00) or n € (0, 1) cases respectively. However, if

Bo lies outside the range of Eq.(6.2), that is, if
|B0] > (31 — €)(secfp — 1) (6.4)

then Theorem 4.2 or Theorem 5.2 are not applicable.
Without any loss of generality we can assume that |3;| < 7. Let us define 6* such
that

|Bol = (3m — €)(sec 6™ — 1) (6.5)

Since |5y| satisfies Eq.(6.4), therefore 8* > 6,. Also, let us define |3*| such that
8% = (3m — &) (seco — 1)

From the expression of |3*| clearly |5*| < |5]. In order to satisfy Eq.(6.2), we must
either reduce || to |3*| or increase 6 to 6*. The former can be achieved by a control

action (B). During the control action (B), recalling Eq.(2.16),
AB = Aa(l — sec )

and if A is finite, then
. AB
lim

— = 4~
60—0 1 — sec 6,
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We infer that for a given Af, as 6, reduces Aa increases which leads to greater angular
sweep of F about C. Further, if 8, = 0, this control action becomes ineffective. On the
other hand, a control action (A) can be applied to increase 6, to §* while maintaining

B at By. This is shown below in Figure 6.1. To increase @, the point C moves away

Figure 6.1. The tuck-out maneuver

from F. However, we observe in Figure 6.1 that (CF/CO) # (C'F/C'O) and hence
the value of n changes during this maneuver. It is therefore incorrect to determine 6*
using the relation in Eq.(6.5), where £ is a function of n given by Eq.(6.1). However,

we can choose a conservative value of 8* such that

|B0] < (3m —&)(sec* —1) Vn

We set £ = Z,i.e,n = 0 or n = co. Then we have the maximum and the most

s
2

60



conservative value of 6* for a given 3, as follows

5ol = (37 — = = e L
13| = (37r 2) (sec*—1) = 6" =cos (2‘57“'_ |ﬁ0|> (6.6)
If 6, > 6* then Eq.(6.2) is satisfied for any value of n. Note that |53||,,, = 7. Hence,
0* oz = cos™! _25m ) _ 0.7752 rad = 44.4153° (6.7)
25m+m

If 6, < 6%, an initial control action (A) is required. If 8y > 6*, the initial control
action (A) is not required and if in addition 6y > 6* ., then Eq.(6.2) is satisfied for
any [ and irrespective of the value of n. We observe that the maximum change in
6 during this control action (A) can be A8 = 6*,,,; — 0 = 44.4153°, which implies a
finite motion and a relatively small distance of travel for the sphere. We define this

special control action (A) below:

Definition 6.1 (Tuck-Out Maneuver) If at the initial time 6y and By are such
that 6y < 6%, where 6* is given by Eq.(6.6), a control action (A) is applied to increase

the value of 0 to 8*. We define this control action as the “Tuck-Out” (TO) maneuver.

At the end of a TO maneuver, Eq.(6.2) is satisfied which ensures that the conditions
on [y in Theorem 4.2 and Theorem 5.2 are satisfied and complete reconfiguration can
be achieved. The effect of the TO maneuver can be understood clearly with the help
of the following illustration in Figure 6.2 which is similar to Figure 4.7. In figure 6.2,
(3 is initially outside the range V)V, defined by Eq.(6.2) for the initial conditions. This
will result in 3 converging to a non-zero value as shown by the trajectory in L;. A
TO maneuver widens the range to W;W, by increasing the value of 6 to 6*. This
gives rise to a wider envelope and causes j to lie within it. Further, a PPS maneuver
followed by a sequence of CRS-DPT maneuver converges S to the origin, as shown in

trajectory L,.
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I~ B converges to non-zero value - no Tuck-Out

i / B converges to zero following Tuck-Out

Wz/ Sweep maneuver
Tuck Out

Figure 6.2. Convergence of 3 following the TO maneuver

We now state the third reconfiguration theorem which relaxes the condition on G,

in Theorems 4.2 and 5.2 by incorporating the TO maneuver.

Theorem 6.1 (Third Reconfiguration Theorem) Consider the sphere in its ini-
tial configuration (xq, Yo, 60, g, Bo) with the configuration variables satisfying n €

(0,1) U (1,00), 0 < by < m/2. If By lies within the range

(3m —€) (1 —sechy) < Bo < —(31 — &) (1 — sechy) (6.8)

the sphere can be completely reconfigured by a PPS maneuver followed by repeated
application of CRS-DPT pairs with ¥ € [¥,€]. If By lies outside this range, the sphere
can be completely reconfigured by first applying a TO maneuver followed by a PPS

maneuver followed by repeated application of CRS-DPT pairs with ¢ € [max(¥,1),£).
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Proof: The proof follows directly from the discussion on the TO maneuver and from

Theorems 4.2 and 5.2. o0

6.2 Special Cases

Until now we have considered the cases where the values of n due to initial conditions
satisfy n € (0,1) U (1,00). The following special cases arising from initial conditions
on the sphere require initial maneuvers that transform them to the general category
of n € (0,1) U (1,00) whereby the result established in Theorem 6.1 can be applied
for complete reconfiguration of the sphere. These initial maneuvers for the special

cases are finite in number. The special cases are:

e (4) n : undefined

e (5) 6y > (2 — €) where € is an arbitrarily small number.

6.2.1 Case: n=1

We categorize our discussion of this special case into two sub-classes. They are:
o Gy <0
[ ] 00 2 9*

If 6, < 6*, we apply a TO maneuver. This increases the value of 6 from 6, to 6*.

Although the value of n changes during this maneuver, Eq.(6.2) is satisfied for any
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final value of n. Subsequently, with n # 1 and S, satisfying Eq.(6.2), complete
reconfiguration can be achieved.

If 8, > 6*, we do not require a TO maneuver. At the same time, from our
discussion in section 3.3 we note that when n = 1, the Sweep-Tuck algorithm can not
be applied for partial reconfiguration. We change the value of n using the following

two steps:
(1) Use control action (B) to make O, C, F co-linear and in that order.
(2) Use control action (A) to change the value of n.

This is followed by application of the complete reconfiguration algorithm. Since
6o > 0%, Eq.(6.2) is valid. It may be argued here that the action (B) can cause

B1, the value of g after this control action, to go out of the range

(B3m — &) (1 —secby) < 31 < — (31— &) (1 —sechy) (6.9)

However we note that the sweeping action (B) can be performed in a clockwise or
counterclockwise sense giving rise to two options and hence two possible values of ;.
This is shown in Figure 6.3. The control action ends with ZOCF = 7. The width of

the permissible range of 3, is

(6m —28)(secfp — 1) > (6w —2F)(secfy — 1)

> 5m(secfy — 1)

The maximum change in 3, |AfB|maz = 27(secfy — 1), since the maximum angle of
sweep can be 27. Hence we conclude that of the two options there exists at least one
that keeps [, within the range in Eq.(6.9).

Next we apply a control action (A) to change the value of n. We consider the

cases By > 6* and 6y = 0* separately. If 6, > 0* we choose to apply a control action
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YA

=Y

Figure 6.3. Preliminary control action (B) for n =1

(A) to decrease 6 from 6y to 8*. This is because besides achieving n # 1 and 6, > 6*
at the end of this control action, we also wish to impose an upper limit on the value

of @ from where the reconfiguration algorithm is initiated. We impose

0 (-9

where, we can choose € to have an arbitrarily small value. As we shall see in our
discussion on stability, the introduction of the upper bound 8;;,, is especially helpful
in proving stability of the equilibrium configuration. Thus, decreasing 6 to 6* ensures
that 6, < 0y, since from Eq.(6.7), 0%,z = 0.7752 < 7/2. On the other hand, if

6o = 6* we increase 0 such that 6, < (7/2 — €¢). We choose 6, as follows

m/2—€ m/2—¢
= k0" where 1<k <k = -
6, | where < ki < Kimary  Kimae 0* oz 0.7752

(6.10)

The choice of k, is done such that at the end of the control action (A) n # oc.
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6.2.2 Case: n = ©

This case implies that initially the point C is coincident with the origin O so that

CO =0 and CF # 0. This is illustrated in Figure 6.4

yA
F.

C>

=V

Figure 6.4. Preliminary control action (A) for n = oo

As with n = 1, we categorize our discussion into two cases:
[ ] 00 < 0*
[ ] 00 2 0*

If 6y < 6%, we apply the TO maneuver. This changes the value of n while increasing 6
from 6y to 6*. Subsequently the sphere can be completely reconfigured. On the other
hand, if 6, > 6* we still require an action (A) to change the value of n. If, 6, > 6,
the control action (A) decreases 6 from 6, to 8* and if 6, = 6*, the control action (A)
increase 6 from 6, to 6,, where 6, is given by 0, = k0*. k is given by

_m[2—€¢ m[2—¢
0%z 0.7752

koo (6.11)

which is the same as ki,,,, defined in the previous discussion on the special case of

n=1.
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6.2.3 Case: n =20

This special case occurs when the points C' and F' are coincident, i.e. CF = 0, and
CO # 0. This implies that 6, = 0. If |55] # 0 then we require a TO maneuver to
increase 6y to 8*. Note that, here CF = 0, hence a can be chosen arbitrarily and the
point C' can move in any direction. We choose the direction along OF which makes
C to move toward or away from the origin O. Consider Figure 6.5, which shows that

C moves either to C; or to C,. We prefer C, since it ensures that the TO maneuver
p

YA

0

Figure 6.5. Preliminary control action (A) forn =0

will not end with a special case of n =1 or n = oo.
If initially Sy = 0, we still require a control action (A) to change the value of
n since the Sweep-Tuck algorithm is not applicable to n = 0. This control action

increases the value of € from zero to 6,, where we choose 6, such that

—e)

(% - 6) if ko|zo, yo| > (% - 6)

(]

kolzo, yo| if ko|zo, yo| < (

=
Il

(6.12)

where |z¢, yo| = /0% + yo? and kg is any chosen positive number. Choosing 6; and

hence the control action in this way ensures that 6, < (-’5 —€). Here again it is
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preferred to move C to C, to prevent the final n from going to n =1 or n = oo.

6.2.4 Case: n undefined

This case occurs when C, F and the origin O are coincident but 3y # 0. We apply
a TO maneuver to increasc 6 from zero to *. Since a is arbitrary, C can move any

arbitrary direction as shown in Figure 6.6. Also, note that after the TO maneuver,

Figure 6.6. Preliminary control action (A) when n is undefined

we have n = 1 and hence the steps described in subsection 6.2.1 are applied to change

n from unity.

6.2.5 Case: 6> (5 —¢)

We have mentioned before that we restrict 6 to 8 < (I — €). Consider the case when
60 > (% —¢). This shown in Figure 6.7 below. A preliminary control action (A)

s

is applied that simply decreases 6 from 6 to 67,az < 6 < (3 —€). Since after the
control action (A), 8 > 6*,,.., hence we do not require a subsequent TO maneuver
after this control action. The choice of final 6 is made so that at the end of the

preliminary control action, the special cases of n = 0, n = 1, n = 00, and undefined
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Figure 6.7. Configuration of sphere showing the case when 6, > (% - e)

n are avoided.

6.3 Complete Reconfiguration Algorithm

In this section we assimilate the third reconfiguration theorem for n € (0,1) U (1, 00)
and the special cases in the form of a flow diagram as shown below. This flow diagram
takes into account all possible initial conditions and gives a detailed illustration of
how the complete reconfiguration algorithm functions. The preliminary maneuvers
for the special cases are designed such that the special cases are transformed to the
general category in finite number of control actions. The thicker lines in Figure 6.8
show the flow diagram for the general category of n € (0,1) U (1, 00).

We now categorize all possible configurations of the sphere into finite number
of “states” or configuration sets. We denote the vector of state variables by X =

[z,9,0, a, 8], noting that X € R>. We categorize the configuration sets as follows:
(1) S, : {X|z=y=6=p8=0} : Equilibrium configuration.
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/ Initial Conditions: x,y, 6, a, B /

> »—{ Calculate: x, y, 6, o, B Calculate: n, C, F
4
* : Yes
Tuck-outto 6 =0 Control action (A) Is 8> (W2 —¢)?
to make 0 = (W2 - €)

No

| N\ < Control action (A) | Yes
tomake 8=k|x,y|

Yes Yes Isn=0orn=1
orn=oo or
n : undefined ?
No
- No
No
Yes
- No “s030% No >
Is6>0"?
e
Yes No
Yes
Sweep to make No
O, C, F collinear Choose y appropriately
in that order
Yes

Control action (A)
<« tomake6=k0*
k>1

Yes

Is6>0% Py or Ny

configuration?

§

No

| P\ Control action (A) No

to make 6 = 6* PPS maneuver

Apply a CRS-DPT pair
- with parameters n and y

No
- Converged ?

Yes

Figure 6.8. Flow diagram of the complete reconfiguration algorithm
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(2) S : {X|6>7/2)

(3) S5 : {X|0<0 <7/2, ne(0,1)U(l,o00)}
(4) Sy : {X|6*<O<7/2 ne(0,1)U(1,00)}
(5) Ss : {X|n =0}

(6) S5 : {X|n=1}

(1) Sr : {X|n=oc)

(8) Ss : {X|n undefined}

Based on the definitions of the configuration sets S; through Sg we can readily infer
that

S US,US;US,US;USsUS;USs =R

The objective of complete reconfiguration is to drive the sphere from any on the
configuration sets to S;. It can be verified by the reader that with finite and few
transitions between the configuration sets S, through Sg, the sphere achieves conver-
gence to the equilibrium state given by S;. All possible transitions from individual
states to the equilibrium configuration S; are illustrated in Figure 6.9. It is clear from
Figure 6.9 that the intermediate states in transitions depend on the initial configu-
ration set to which the sphere belongs. Moreover, the number of transitions to reach
the equilibrium from any configuration set is finite and do not lead to any infinite
loop. The expressions indicated between transitions are the conditions under which
those transitions take place. For example, when the sphere is initially at state Sj,
the TO maneuver leads to either Sy, Sg, or S; with @ = 6* at the end of the tran-
sition. Whereas S; automatically leads to S; in the following transition, Sg and S

first change to S; due to the condition # = 6*, which further transitions to Si.
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Figure 6.9. Diagram illustrating possible transitions from any initial configuration
set to the equilibrium
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6.4 Simulations

6.4.1 Tuck-Out Maneuver

We present simulation results to illustrate the TO maneuver followed by complete

reconfiguration. The initial configuration of the sphere is chosen as

r=10 y=04 0#=07 a=05 g=-30 (6.13)

where the units are in meters and radians. From the definition of n in Theorem 3.1
and Egs.(3.2) and (3.3) we obtain n = 0.545. From Eq.(6.6), we obtain 8* = 0.76
and hence by Definition 6.1 an initial TO maneuver is necessary. The necessity of
TO can also be confirmed by checking that Eq.(6.2) is not satisfied for the chosen
initial conditions of this simulation. This is shown in the simulation results given in
Figure 6.10.

In Figure 6.10(a) the TO mancuver can be identified as the motion of ¢ to C; with F
remaining unchanged during the maneuver. This is followed by the PPS maneuver
when C is fixed and F sweeps to F}. Subsequently, the CRS-DPT pairs converge
C and F simultaneously to the origin. Figure 6.10(b) shows the convergence of z
and y coordinates of the center of the sphere @ to the origin. In Figure 6.10(c) the
TO maneuver is best illustrated through the initial increase of @ to 6,. Although
0* = 0.76, we increase 6 to 1.10* = 0.84. The extra increment is to ensure that
Eq.(6.2) is not satisfied just marginally and is helpful for computational purposes.
remains unaltered during the TO maneuver, as shown in Figure 6.10(d). At the end
of the TO maneuver, the value of n changes to 2.111. With n = 2.111 and 6 = 0.76
we can verify that Eq.(6.2) is satisfied. We choose ¢ at 20% of the permissible range

U < ¢ < cos™!(1/n) for completely reconfiguring the sphere.
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Figure 6.10. Tuck-Out maneuver and complete reconfiguration

6.4.2 Special Cases

We present simulation results to show complete reconfiguration from special cases.
The first simulation has an undefined n as the initial condition. The initial configu-

ration of the sphere is

=00 y=0.0 6=00 o«=arbitrary 3=3.0 (6.14)
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where the units are in meters and radians. This configuration implies that initially C

and F are at the origin but 3 is non-zero and hence the sphere is partially reconfigured.

From Figure 2.2 we observe that o is the angle formed by the line CF with the z

axis. In this special case since C and F' are coincident, « is initially arbitrary. The

simulation results are shown in Figure 6.11.

0 (rad)

Cy, Fy (m)

0.2 C,F
0.1 %
0
JJ —
-0.1} ] E
P oy
-0.2 C, <
-03 C,
-04} F,
-0.5— : — .
-06 -04 -02 0 0.2
Cx,Fx (m) time (s)
(a) (b)
1 ~ -
3 1
0.8
2
06! V] ) ~ ﬁ
ﬂ =)
8
0.4 = 1
AN
0.2 0 V AV 2ia At
0 , " -1 . . . R
0 10 20 30 40 0 10 20 30 40
time (s) time (s)
(c) (d)

Figure 6.11. Complete reconfiguration from the special case of undefined n

In Figure 6.11(a) C and F are initially at the origin. a is arbitrarily chosen as
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7/4 and a control action (A) is applied which increases 6 from zero to 0.84 and C
moves to C; as shown in Figure 6.11(c) and Figure 6.11(a) respectively. For |3| = 3.0,
the value of 6* is 0.76 from Eq.(6.6). We modify the TO maneuver to increase 6 to
1.16* = 0.84 instead of 6*. This helps in computation and maintains the stability
of the equilibrium. At this stage the configuration of the sphere is transformed to
the special case of n = 1 with # > 6* since F' continues to lie at the origin and
6*(= 0.76) < 0.84. Now O, C and F are made co-linear and in that order using a
control action (B) as mentioned in section 6.2.1. This sweeps F about C) to the point
Fy. Since 8 > 6%, a control action (A) is applied that decreases 6 to 8* and the point
C, goes to Cy as shown in Figure 6.11(a). This changes the value of n from unity to
0.54. Now ¥ is chosen as 0.7 which lies in the r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>