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ABSTRACT

FEEDBACK STABILIZATION OF

THE ROLLING SPHERE:

AN INTRACTABLE NONHOLONOMIC SYSTEM

By

Tuhin Kumar Das

A spherical rolling robot has several advantages over wheeled robots, such as en-

hanced mobility, orientational stability, compact and closed design, and capability of

operations in hazardous environments. However, advances in the design and applica-

tion of spherical mobile robots have been hindered due to complexity of their control

problems. Of particular interest is the problem of feedback stabilization of a rolling

sphere to an equilibrium configuration. The rolling sphere belongs to the class of

nonholonomic systems which has been a popular area of research in the control sys-

tems community over the last decade. Although nonholonomic systems are usually

controllable, they are not stabilizable to an equilibrium point using smooth static

state feedback. This problem has been circumvented by development of techniques

such as time-varying stabilization, discontinuous time-invariant stabilization, and hy-

brid stabilization. Nonetheless, the stabilization of a rolling sphere has remained an

unsolved problem since its kinematic model cannot be reduced to the chained form;

this renders all established nonholonomic motion planning and control algorithms

inapplicable.

In this dissertation we present a feedback control law for stabilization of a rolling

sphere to an equilibrium configuration. This control law, which to the best of our



knowledge, is the first solution to the problem, stabilizes the sphere about an equilib-

rium point defined by the two Cartesian coordinates and three orientation coordinates

of the sphere. In our formulation, the control inputs are two mutually perpendicular

angular speeds in the moving reference frame of the sphere. These control actions indi-

vidually cause the sphere to move in straight line and circular arc segments. Using an

alternating sequence of these rudimentary maneuvers we achieve stabilization of the

equilibrium configuration. We first develop an algorithm for partial reconfiguration

of the sphere where evolution of one of the orientation coordinates is ignored. This

algorithm, which we denote by the Sweep-Tuck algorithm, allows multiple solution

trajectories of the sphere. We utilize this flexibility in achieving complete reconfigu-

ration. In our discussion we first show the convergence of the configuration variables

to the equilibrium under the proposed feedback law. Subsequently, we prove that the

control algorithm stabilizes the equilibrium configuration of the sphere. Simulation

results are presented to demonstrate the efficacy of the control strategy.
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CHAPTER 1

Introduction

Mobile robots are typically designed with wheels, likely due to our kinship with

automobiles. Relying on traditional use of the wheel as a quasi-static device, mo-

bility and stability of the robots are enhanced using multiple wheels, large wheels,

multi-wheel drives, broad wheel bases, traction enhancing devices, articulated body

configurations, etc. The single-wheel robot proposed by Brown and Xu [10] repre-

sents a paradigm shift in mobile robot design. This robot, known as the Gyrover,

exploits gyroscopic forces for steering and stability, and has certain advantages over

traditional designs. Similar to the Gyrover, which differs from traditional quasi-static

models, a few designs have been proposed for spherical wheels with internal mecha-

nisms for propulsion (Koshiyama and Yamafuji, [25]; Halme, et al., [21]; Bicchi, et al.,

[4]; Camicia, et al., [12]; Bhattacharya and Agrawal, [3]; Mukherjee, et al., [30]). The

robot designed by Halme, et al. [21] incorporates a single-wheeled device constrained

inside the spherical wheel; the device generates motion by creating unbalance and

changes heading by turning the wheel axis. The design by Bicchi, et al. [4]) and

Camicia, et al. [12] is similar but employs a four-wheeled car to generate the un-

balance. The omnidirectional robot by Koshiyama and Yamafuji [25] has a limited

range of lateral roll due to its arch-shaped body. Naturally, it fails to completely

exploit the maneuverability associated with spherical exo—skeletons. The propulsion



mechanism by Bhattacharya and Agrawal [3] generates motion by angular momen-

tum conservation utilizing two perpendicular spinning rotors placed inside the sphere.

The mechanism can be easily modeled, however propulsion is limited in the presence

of external opposing torques or motions requiring constant acceleration.

We are independently engaged in research and development of a spherical mobile

robot. The propulsion mechanism proposed by Mukherjee, et al. in [30] is fixed to

the exo—skeleton. The mechanism consists of masses reciprocating along spokes fixed

to the exo-skeleton. The advantages of this mechanism are easy routing of sensory

information from the surface to the processor housed inside, availability of space inside

the robot for housing the processor, power supply, structural robustness due to the

presence of an internal truss formed by the spokes carrying the unbalanced weights,

etc. A detailed dynamic analysis of the proposed mechanism has been performed by

Das [14]. Two different spatial arrangement of spokes has been considered for the

proposed propulsion mechanism. In the first configuration, the spokes form a regular

tetrahedral structure with its center coinciding with the center of the sphere. In the

second configuration, the spokes are along the non-intersecting sides of an imaginary

cube centered at the center of the sphere. The dynamic analysis of the motion of the

spherical robot was preceded by a detailed study of the dynamics of a rolling disk

with unbalance masses, Das and Mukherjee [15]. This is a simpler, two dimensional

version of the motion of the rolling sphere and gave interesting results in terms of

bounded trajectories of unbalance masses while tracking acceleration profiles of the

disk and led to important theoretical insight into the dynamics of the rolling sphere.

The geometry of rotations is central to the analysis of diverse problems in me-

chanics involving rolling motion and the rolling sphere epitomizes the profundity of

the control problems of many of these systems. The rolling sphere is a classical ex-

ample of a nonholonomic mechanical system and is characterized by nonintegrable

differential constraints of motion [18]. Due to the nonintegrable nature of the con—



straints, it is possible to reconfigure nonholonomic systems in a space that has higher

dimension than the number of degrees of freedom of the system. In the case of the

sphere, the nonintegrable constraints provide the scope for reconfiguration of its two

Cartesian and three orientation coordinates using rolling motion corresponding to its

two degrees of freedom.

In comparison to holonomic systems, nonholonomic systems can access a larger

dimensional configuration space but the problems of motion planning and feedback

stabilization pose unique challenges. A majority of papers on stabilization of non-

holonomic systems deal with wheeled mobile robots and the rigid spacecraft with two

actuators. Here we summarize the results briefly but the references cited are not

extensive. A more extensive literature survey can be found in the review paper by

Kolmanovsky and McClamroch [24]. For nonholonomic systems, standard nonlinear

control methods do not lend themselves well for the common objective of stabilization

to an equilibrium state. This follows from Brockett’s theorem [9] which establishes

that there exists no smooth static state feedback which renders the equilibrium state

of the closed loop system asymptotically stable. To circumvent this problem, re-

searchers have developed strategies that may be classified under smooth time—varying

stabilization, piecewise-smooth time-invariant stabilization, and hybrid stabilization.

The work on time-varying stabilization was initiated by Samson [38] and a construc-

tive approach based on Lyapunov’s direct method was first developed by Pomet [35].

Smooth time-varying controllers suffer from slow rates of convergence [20] and faster

convergence can be achieved through the design of non-smooth controllers. The ex-

istence of a piecewise smooth stabilizing controller for nonholonomic systems was

shown by Sussmann [42], but the development of such control methods was initiated

by Bloch, et a1. [7] Subsequently, exponentially stable non-smooth controllers were

developed by Canudas de Wit and Sordalen [13] and Sordalen and Wichlund [41].

Other non-smooth control designs include the work by Aicardi, et al. [1], Astolfi [2],



Mukherjee and Kamon [29], Bloch and Drakunov [6], and Guldner and Utkin [19].

Hybrid controllers are based on switchings at discrete time instants between various

low level continuous time controllers and have been proposed by a few authors such

as Bloch, et al. [8] and Sordalen, et al. [40].

An important class of nonholonomic systems is the class of two-input nilpoten-

tizable systems that can be transformed into a special form known as the “chained

form” [33]. The necessary and sufficient conditions for existence of a feedback trans-

formation to chained—form was provided by Murray [32] and an algorithm for finding

the coordinate transformation was presented by Tilbury et al. [43]. An extension

of the chained-form to nonholonomic system with more than two inputs was later

presented by Bushnell et al. [11] and Walsh and Bushnell [44]. The chained-form,

by its very structure and construction, lends itself well to the development of mo-

tion planning and control algorithms and researchers have therefore largely focused

their efforts on such systems. Incidentally, chained-form system are differentially flat

[17] and therefore the methods developed by Rouchon, et al. [36] for differentially

flat systems can be profitably applied to chained-form systems. The nonholonomic

systems that cannot be converted to chained-form have intrinsic difliculties associ—

ated with design of stabilization strategies and render regimented control algorithms

developed for chained-form systems inapplicable. Such systems, often referred to as

“defective” or “intractable”, require stabilization strategies to be custom designed -

a good example is the work on planar space robots by Mukherjee and Kamon [29].

The kinematic model of the rolling sphere does not satisfy the necessary and suffi-

cient conditions for flatness [17] and hence cannot be converted to chained-form [28].

Therefore, similar to the space robot, the rolling sphere requires motion planning and

stabilization strategies to be custom designed.

The motion planning problem for the rolling sphere, a simpler problem than the

stabilization problem, has seen a few solutions till date. Li and Canny [27] used



differential-geometric tools to ascertain controllability of the sphere and proposed a

three-step algorithm. The position coordinates of the sphere are converged to their

desired values in the first step of the algorithm. In the second step, two of the three

orientation coordinates are converged using Lie Bracket-like motion. Such motion

generates an equatorial spherical triangle on the surface of the sphere. The third step

uses a polhode to converge the last orientation coordinate. Bicchi, et al. [5] proposed

a control input transformation to obtain a kinematic model of the rolling sphere with

a triangular structure. This structure simplifies integration of the state equations for

alternating inputs and arrives at a system of nonlinear equations that can be solved

by taking additional criteria into account, such as workspace limits and path length.

Their iterative solution however demands excessive computational time and may also

fail because of extremals encountered along the path. An optimal solution, which

minimizes the integral of the kinetic energy of the sphere along the path, was proposed

by Jurdjevic [23]. The results indicate that the optimal trajectories have a closed-

form solution described by elliptic functions. Mukherjee, et al. [30] recently proposed

two computationally efficient motion planning algorithms for the Sphere. The first

algorithm is similar to the third step of Li and Canny’s algorithm [27] but is more

general and can reconfigure the sphere in fewer steps. The second algorithm is similar

to the second step of Li and Canny’s algorithm [27] but uses general spherical triangles

as opposed to equatorial triangles. The Gauss-Bonet theorem of parallel transport

[26] provides a basis for the second algorithm but the basis can be independently

established using spherical trigonometry [31].

Although many researchers have investigated control problems associated with the

dynamics of rolling contact, [22], [39] for example, the nonholonomic control problem

of the rolling sphere has been addressed only by a few researchers. Date, et al., [16]

used the time-state control form [37] to design a controller for the ball-plate system

described by eight states and three inputs. Although the controller was shown to



converge all states of the system to the equilibrium state, the stability property of

the equilibrium was not adequately investigated. Oriolo and Vendittelli [34] recently

showed that the equilibrium point of the sphere, modeled by five states and two

inputs, can be stabilized through iterative application of an appropriate open-100p

control law designed for the nilpotent approximation of the system. In the first phase,

they proposed steering three states of the sphere, which conform to chained-form, to

their desired coordinates. In the second phase, they proposed closed trajectories of

the three states to steer the other two states closer to their desired coordinates. The

algorithm relies on repeated application of closed trajectories of the three states such

that the remaining two states are converged to their desired values. In the presence of

perturbations, both the first and second phases of their controller have to be repeated.

This is significantly more complex than repeated application of alternate inputs, as

required by our stabilizing controller.

In this dissertation we develop a stabilizing feedback control algorithm for a sphere

rolling without slipping on a horizontal plane with the objective of completely re-

configuring the sphere from an arbitrary location and orientation to an equilibrium

configuration. In chapter 2, we introduce the kinematic model of the sphere in sec-

tion 2.1. The states in the kinematic model are the two Cartesian coordinates of the

center of the sphere and the three Euler angles representing the orientation of the

sphere. The two control inputs are angular speeds applied in mutually perpendicular

directions on the horizontal plane. An alternate kinematic representation that helps

in posing the complete reconfiguration problem is given in section 2.2. The effect of

the individual control inputs on the motion of the sphere is shown in section 2.3. We

establish that while one control action causes linear motion of the sphere, the other

causes the sphere to roll in a circular arc.

In chapter 3 we develop an algorithm for partial reconfiguration of the sphere.

In partial reconfiguration, while the Cartesian coordinates of the sphere are driven



to the origin, the orientation coordinates are not all reconfigured. Following the

problem statement in section 3.1, we present the Sweep-Tuck algorithm for partial

reconfiguration in section 3.2. The Sweep-Tuck algorithm forms the basis of complete

reconfiguration of the sphere presented in the later chapters. Special cases arising

from certain unique configurations of the sphere are discussed in section 3.3, and

simulation results corroborating the Sweep-Tuck algorithm are given in section 3.4.

The complete reconfiguration algorithm is discussed for the two general categories

of n > 1 and n < 1 separately in chapters 4 and 5 respectively. The parameter n,

a ratio arising from the initial condition of the sphere, is an important element of

the Sweep-Tuck algorithm. The general categories and special cases are distinguished

based on the value of n. Discussions for the general categories of n > 1 and n < 1

are similar, however they are presented separately for clarity and for highlighting

the differences between them. Chapters 4 and 5 investigate the flexibility in the

Sweep-Tuck algorithm and exploit the same in arriving at a scheme for complete

reconfiguration. Simulation results are presented for both categories

The necessary conditions for applying the Sweep-tuck algorithm are established in

chapters 4 and 5. These conditions can be satisfied by applying certain initial control

actions depending on the initial configuration of the sphere. Also, the special cases

are transformed, by certain initial control actions such as the Tuck-Out maneuver, to

the general categories of n > 1 or n < 1 before the Sweep-Tuck algorithm is applied.

These initial control actions are discussed in chapters 6. The stability analysis of

the entire control strategy, consisting of the Sweep-Tuck algorithm, the Tuck-Out

maneuver, and the initial control actions for th special cases, are detailed in chapter

7. This is followed by the concluding remarks in chapter 8 and finally the appendices

which give details of certain mathematical derivations.



CHAPTER 2

Background

2.1 Kinematic Model

The configuration of a sphere is best described by the two Cartesian coordinates of

its center and three coordinates that describe its orientation. In Figure 2.1(a), we

define the center of the sphere by point Q and orientation of the sphere by points

P and R; P is an arbitrary point on the surface of the sphere and R is an arbitrary

point on the equatorial circle defined with P in the vertically top position. Since P

and R together require three independent coordinates for description, they constitute

a valid choice of points that define the orientation of the sphere. With the position

and orientation of the sphere defined by points P, Q, and R, the task of complete

reconfiguration can be accomplished by converging Q to the origin of the Cartesian

coordinate frame, P to the vertically top position, and R on the positive x axis. This

configuration is shown in Figure 2.1(b).

To obtain a kinematic model of the sphere, we denote the Cartesian coordinates of

the sphere center by Q E (:c, y). We adopt the z-y—z Euler angle sequence (a, 0, gt) to

represent the orientation of the sphere. We first translate the :ryz frame to the center

of the sphere and rotate it about the positive .2 axis by angle 0, —7r 3 a 3 7r, to

obtain frame :rlylzl. We rotate frame :rlylzl about the yl axis by angle 6, 0 g 6 3 7r,



2,21 2,21,22,23
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Figure 2.1. Initial and final configurations of sphere

to obtain frame :rgygzg. The point P is located at the intersection point of the .22

axis with the sphere surface. The $231222 frame is rotated about the 22 axis by angle

d to obtain frame z3y3z3. The point R is located at the intersection point of the x3

axis and the sphere surface. The frames xyz, :rlylzl, $211222, 333/323, and z-y-z Euler

angles (01,9, ¢) are all shown in Figure 2.1(a). Assuming the sphere to have unity

radius without any loss of generality, and denoting the angular velocities of the sphere

about the x1, y1, 21 axes as (4231,, to], tag, respectively, the state equations for w; = O

can be written as

:i: = w; cosa+wi sina (2.1)

g} = a); sin a — w; cos a (2.2)

0 = w; (2.3)

a = —wi. cot 6 (2 4)

ab = w; csc 6 (2 5)



In the model above, the first three equations can be derived simply. The expression

for d can be obtained from the relative velocity of P with respect to Q, when the

sphere rotates with angular velocity w]. The angular velocity (15 is simply the vector

sum of the angular velocities d and w]. Alternatively, Eqs. (2.3), (2.4), and (2.5),

can be derived from the relation between the z-y-z Euler angle rates a, 6, d, and the

1

y, mi, subject to the constraint to; = O.angular velocities w], w

The reorientation of the sphere refers to the task of bringing P to the vertically

upright position, and R, which then lies on the diametrical circle in the my plane,

to lie on the positive :1: axis. Indeed, this results in $3y3z3, the body-fixed axes, to

coincide with the inertially fixed axes :ryz. This can be achieved with 0 = 0, and

a + (15 = O, irrespective of the individual values of a and 45, as shown in Figure 2.1(b).

Therefore, the sphere can be completely reconfigured by satisfying

117:0, y=0, 9:0, oz+¢=0 (2.6)

The above equation may create the false impression that our objective is to converge

the sphere to a configuration manifold. However, it can be verified from Figure 2.1(b)

that Eq. (2.6) represents a unique configuration of the sphere.

2.2 Alternate Kinematic Representation

The last condition for complete reconfiguration of the sphere, given in Eq. (2.6)

depends on the sum of a and qfi and not on their individual values. We therefore

define the new variable 6

fi=a+¢ (2-7)

10



Thus, from Eqs. (2.4) and (2.5),

- 6

,6 = a); tan 5 (2.8)

We now write an alternate kinematic formulation in which we replace Eq. (2.5) by

the equation of motion in the new state variable 6. We have the following alternate

kinematic representation

3': = w; cos a + w; sin a (2.9)

' = a); sin a — w; cos a (2.10)

6 = w; (2.11)

ct = —w; cot6 (2.12)

,6: a); tan g (2.13)

Using this kinematic model, complete reconfiguration is achieved by satisfying

33:0, 31:0, 6:0, 5:0 (2.14)

2.3 Control Actions

Consider the motion of the sphere, described by the kinematic model in Eqs. (2.9),

(2.10), (2.11), (2.12), (2.13), for the individual control actions

(A) w;7é0, cal—=0
I

(B) when, wlzo, 6750
y

The motion of the sphere for these actions are explained with the help of Figure 2.2.

For action (A), the sphere moves along straight line CF as 6 changes. Let F be the

11



point on this straight line where the sphere would have 6 = 0. Since the sphere rolls

without slipping, this point remains invariant under control action (A). For control

action (B), the instantaneous radius of the path traced by the sphere on the my plane

can be computed using Eqs. (2.9) through (2.12) as follows

= tan6 (2.15)

  

1 :Since wy 0, 6 is maintained constant. This implies that the contact point of

 

y F g

//

e

O x /:\q§‘

/ Q

/

C

Figure 2.2. Motion of the sphere under control actions (A) and (B)

the sphere moves along a circular path; the center of this circle is located at C in

Figure 2.2. Along with the contact point, points P and F also move along circular

paths; the center of these paths lie on the vertical axis that passes through C. The

point C remains fixed under control action (B), but under control action (A) it moves

away from F, as 6 increases, and converges to F, as 6 converges to zero.
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The variables a, gt, and 6 in Eqs. (2.4), (2.5), and (2.13) change during control

action (B) but remain invariant during control action (A). During control action (B),

the change in variable 6 is given by the expression

AB 2 Act + Ad 2 Acr(1— sec6) (2.16)

This indicates that AB will be always opposite in sign to Ad for O < 6 < 7r/2.
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CHAPTER 3

Partial Reconfiguration of the

Sphere

3. 1 Problem Statement

In this section we develop a simple algorithm for partial reconfiguration of the sphere.

This algorithm will provide the basis for the stabilizing controller for complete recon-

figuration, which we will design over the next few sections. Our objective for partial

reconfiguration is to converge the sphere from any initial configuration to a configu-

ration that satisfies

rzq y=q 6:0 (an

Clearly, the goal of partial reconfiguration is to converge the center of the sphere,

Q, to the origin of the Cartesian coordinate frame and the point P to the vertically

top position. This leaves the sphere with only one degree-of-freedom that allows R

to be have an arbitrary orientation on the equatorial circle. In the context of the

kinematic model in section 2.2, this corresponds to arbitrary value of ,6 in the final

configuration.

14



3.2 Sweep-Tuck Algorithm: The Basic Approach

In this section we present an algorithm for partial reconfiguration of the rolling sphere.

The control actions (A) and (B) form the basic elements of the reconfiguration strat-

egy. Control actions (A) and (B) are applied repeatedly in pair and the process leads

to convergence of the states :13, y, 6 to zero. For simplicity, we develop our algorithm

under the assumption that 6 satisfies 0 < 6 < 7r/2 at the initial time. We will re-

move this restriction later when we develop the stabilizing controller for complete

reconfiguration. Now, consider an arbitrary configuration of the sphere as shown in

Figure 3.1, with the configuration defined only by the variables x, y, 6, and a. The

points C and F in Figure 3.1 were defined earlier in section 2.3 using Figure 2.2.

yll

 

 

>
<
1
] 

Figure 3.1. An arbitrary configuration of the sphere

The Cartesian coordinates of C, namely, CI, Cy, are related to the Cartesian
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coordinates of Q, namely :13, y, as follows

szzr—tan6cosa => x=CI+tan6cosoz

(3.2)

Cyzy—tan6sina => y=Cy+tan6sina

Also, the distances CO and CF are given by the relations

00 = (Cf, + 05)”2 CF = tan 0 — 6 (3.3)

where (tan6 — 6) is a monotonicaly increasing function of 6 and equal to zero only

when 6 = 0. It readily follows from Eqs. (3.2) and (3.3) that

(CF, CO) 2 (0,0) 4:» (1:, y, a) 2 (0,0,0) (3.4)

The above result is summarized in the following remark.

Remark 3.1 The sphere in Figure 3.1, defined by points C, F, and Q, will be par-

tially reconfigured in the sense of Eq.(3.1) if and only if (CF, C0) converge to (0,0).

 

For partial reconfiguration of the sphere, we will therefore design an algorithm that

will converge both points C and F in Figure 3.1 to the origin 0. The basis for our

algorithm lies in the theorem presented next with the help of Figure 3.2.

Theorem 3.1 (Dual-Point Theorem) Let C and F be two points in the cry coor-

dinate frame that has its origin at O and suppose it : ZOCF is an acute angle. Let

the ratio of CF and CO be denoted by n : (CF/CO). [fl/J satisfies the condition

0 S it < cos—1(1/n) for n 6 (1,00)

0 3 ll) < cos‘1 (n) for n 6 (0,1)
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Figure 3.2. Dual-point theorem: The C — C’ pair for n > 1 and n < 1 cases

then there exists a point C’ on the extended line CF such that for 16’ = AOC’F,

OSMSW,

(C’F/C’O) = n,

0 < (C’O/CO) < 1 (3-6)

w>w.

Proof: Since it is acute and we seek a point C’ that will satisfy C’O < CO, C’

can only be located between C and F, as in Figure 3.2(a), or beyond F as shown in

Figure 3.2(b). For both cases, OC’ satisfies

oo'2 = 002 + (30’2 — 2 0000' cos a (3.7)

For the two cases in Figures 3.2(a) and 3.2(b), the expression for CC’ is different and
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is given below by Eqs.(3.8) and (3.9), respectively

CC' = CF — C’F :3 CC’ = nCO — C’F (3.8)

CC’ 2 CF + C'F :> CC’ = nCO + C’F (3.9)

Let us now assume (C’F/C’O) = n. Substituting this in Eqs.(3.8) and (3.9), we get

77. 0’0 = (n 00 — 00’) (3.10)

nC’O = —(nCO — oo') (3.11)

Using Eq.(3.10) or Eq.(3.11) with Eq.(3.5) we eliminate C’O to obtain the following

non-trivial solution for CC’

_ 2nCO (ncosib - 1)

CC (n2 _ 1) (3.12)

When n E (1, 00), we have (n2 — 1) > 0 and we can show from Eq.(3.5) that (n cos it—

1) > 0. Therefore, CC’ in Eq.(3.12) is positive. When n 6 (0,1), we have (n2— 1) < 0

and cos it < 1 < (1 /n). This again implies that CC’ is positive. Since CC’ is always

positive, our assumption (C’F/C’O) = n is correct. o o 0

To prove the second assertion, we make use of the following inequality

(n — cos it)2 + sin2 a > 0 => 2(n cosib — 1) < (n2 — 1) (3.13)

which is true for all n and 11’). Therefore, for n E (1, 00) we can claim

2(ncoszb — 1)

(n2 - 1)

 <1 =:> 00’ < nCO 2 CF (3.14)

Thus Figure 3.2(a), and Eqs.(3.8) and (3.10), correspond to the case n 6 (1,00),
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where C’ lies between C and F. When n 6 (0,1), it follows from Eq.(3.12)

2(ncosrb — 1)

(n2 - 1)

 >1 => CC’ > 72.00 = CF (3.15)

Thus Figure 3.2(b), and Eqs.(3.9) and (3.11) correspond to n 6 (0,1), where C’ lies

beyond F. Using Eqs.(3.8), (3.9), (3.12), and the relation C’F = nC’O, which we

have already established, we can show

(3.16) 

0,0 =[ [1- 2(ncosw — 1>/<n2— 1)] fom E (1:00)

CO — [1 — 2(ncost/2 —1)/(n2 — 1)] forn 6 (Oil)

From Eqs.(3.14), (3.15), and (3.16), we can directly show that C’O/CO > 0 for

both n 6 (1,00) and n 6 (0,1). For n 6 (1,00) we have already shown that

(n cosib —1)/(n2 — 1) > 0 and hence 0 < (C’O/CO) < 1. The same holds true

for n 6 (0,1) since COSi/J > n => ncostb > n2 :> 2(ncosz/2 —1)/(n2 — 1) < 2. 000

From both Figures 3.2(a) and 3.2(b) we can write

C’O sin tb’ = C0 sin 6) (3.17)

This implies sin 1/2’ > sin it because C’O < CO. Since 212 is an acute angle, it follows

that 1/1’ > 111.000

 

We now derive an expression for the intermediate angle 62’ in our Dual-Point

Theorem. From AOCC’ in Figures 3.2(a) and 3.2(b) we can write

COcosi/JzCC’+C'Ocosu’/i’ for 716 (1,00)

(3.18)

CO cos 1/) 2 CC’ — C’O cos 172’ for n 6 (0,1)
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Using Eqs.(3.12), (3.17), and (3.18) we get

_, —|1—n2[sinw

t.w= , ed101, 3w
anw (1+n2)cos1,b—2n n ( ) ( 00) ( )

 

It can verified from Eq.(3.19) that

0 g w < cos’1(%) => cos-1G) < w’ 3 it for n 6 (1,00) (3.20)

0 S w < cos—1(n) => cos—1(n) < w’ 3 7r for n 6 (0,1)

Since 61’ depends only on the values of n and w, it attains the same value prior to

each intermediate RS-DPT maneuver pair. An important inequality which will be

later useful in our analysis is

w+W£r nEmJMMLm) 820

The proof of this inequality is provided in Appendix A.

Consider Figures 3.3(a) and 3.3(b) where C and F define arbitrary configurations

of the sphere for the cases n 6 (1,00) and n 6 (0,1), respectively, and suppose

it = ZOCF satisfies the conditions in Eq.(3.5). From Theorem 3.1, we know that

there exists a point C’ along the line CF that satisfies the conditions in Eq.(3.6). Let

C’ in Figures 3.3(a) and 3.3(b) be this point. We are now ready to define two specific

maneuvers of the sphere.

Definition 3.1 (DPT Manuever) In reference to Figures 3.3(a) and 3.3(b), we

define a “Dual-Point Tuck” (DPT) Maneuver as control action (A) that moves the

sphere such that point C moves to C’.

 

From Theorem 3.1 we know that a DPT maneuver results in w’ > 1,1). For both cases

n E (1, 00) and n 6 (0,1), w’ can therefore be restored to the value 1/2 in one of two

ways as shown in Figure 3.3. This motivates the next definition.
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Figure 3.3. RS and DPT maneuvers for n > 1 and n < 1 cases

Definition 3.2 (RS Manuever) Following a DPT maneuver, a control action (B)

that moves the sphere to restore ib’ to w is defined as a “Restoring-Sweep” (RS)

Maneuver.

 

In the sequel, we will prove that a series of alternate RS and DPT maneuvers can

partially reconfigure the sphere. However, since the initial configuration of the sphere

may not satisfy KOCF = 112’, we define one additional maneuver.

Definition 3.3 (PS Manuever) A control action (B) that moves the sphere at the

initial time to bring ZOCF to w’ is defined as a “Preliminary-Sweep” (PS) Maneuver.

 

We now present the “Sweep-Tuck” algorithm with the help of the following theo-

rem.

Theorem 3.2 (Sweep-Tuck Algorithm) Consider a sphere whose partial config-

uration (:r, y, 6) is defined by the location of the points C and F. Suppose at the initial

time, 0 < 6 < 7r/2 and (CF/CO) = n 6 (0,1) U (1,00). Depending on whether it
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is greater or lesser than unity, choose w in accordance with Eq.(3.5). Then, partial

reconfiguration of the sphere in the sense of Eq.(3.1) can be achieved through a P5

maneuver followed by repeated application of RS—DPT maneuvers.

Proof: The application of a PS maneuver at the initial time results in ADCF = w’.

This sets the stage for repeated application of RS-DPT maneuvers. The application

of an RS maneuver does not alter the values of CF and CO but sweeps F about C

(in one of two ways for both cases n E (1, 00) and n 6 (0,1), as shown in Figure 3.3

to bring AOCF to the value it, which was earlier chosen in accordance with Eq.(3.5).

At the end of the RS maneuver, the new point Fp or E, is simply renamed F. Using

Theorem 3.1 we can show that a subsequent DPT maneuver results in

2(n cost/1 — 1)

1‘ (re—1)
(3.22)   

  

and change of AOCF = w to ZOC’F = w’ > w, as shown in Figures 3.2 and 3.3.

By renaming C’ as C, we can again execute the RS-DPT pair of maneuvers. Each

pair simply reduces the values of both CF and CO in geometric progression and

from Eq.(3.22) it can be readily shown that CF, C0 —> 0 as N ——> 00, where N

is the number of RS-DPT pairs. From Remark 3.1 it simply follows that repeated

application of RS-DPT maneuvers results in partial reconfiguration of the sphere.

000

 

Remark 3.2 From Eqs.(3.14) and (3.15) we know that CC’ < CF for n 6 (1,00)

and CC’ > CF for n 6 (0,1). This implies that a does not change its value for

a DPT maneuver with n 6 (1,00) but for n 6 (0,1) it undergoes a discontinuous

change in value by it as the sphere goes through the configuration where 6 = 0. This

is consistent with the adopted convention that Euler angle 6 is positive.
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Corollary 3.1 The sequence of values assumed by 6 at the end of every DPT ma-

neuver 0f the Sweep-Tuck algorithm decreases monotonically and converges to zero.

Proof: Since 6 remains constant during RS maneuvers, its change can be attributed

to the DPT maneuvers. From Theorem 3.2 we know that DPT maneuvers cause

CF to decrease in geometric progression and converge to zero. Since (tan6 - 6) is a

monotonically increasing function of 6 and equal to zero only when 6 = 0, we claim

that the sequence of values assumed by 6 at the end of every DPT maneuver decreases

monotonically and converges to zero. 0 o o

 

Remark 3.3 It can be seen from both Figures 3.3(a) and 3.3(b) that the RS maneuver

is not unique. To restore ZOCF to w, the RS maneuver can sweep F to the location

Fp or F". Furthermore, F can be taken to both Fp and E, via a clockwise (cw)

or a counter-clockwise (ccw) rotation about C. Although the partial reconfiguration

problem is not affected by the particular choice of Fp 0r Fn and cw 0r ccw direction

of rotation since r in Eq.(26) is the same for all four choices, the flexibility will be

necessary for complete reconfiguration of the sphere. The complete reconfiguration

problem will be discussed over the next few sections.

 

3.3 Sweep-Tuck Algorithm: Special Cases

The Sweep-Tuck algorithm in Theorem 3.2 is applicable for n 6 (0,1) U (1, 00) but

inapplicable for the special cases where n = 0, n = 1, and n = 00. In this section we

discuss initial maneuvers that revert the special cases back to n E (0, 1) U (1, 00) such

that the sweep-tuck algorithm can be directly applied.

The special case n = 0 occurs when CF 2 0 => 6 = 0. In this configuration,

shown in Figure 3.4(a), both control action (B) and angle 1)) are undefined and the

sweep-tuck algorithm is inapplicable. The problem is remedied by changing the value

of n using control action (A.) Since 6 = 0, a is arbitrary and point C can be made to
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   (a)n=0 0))n=l

Figure 3.4. The special cases: it = 0, n = 1, and n = 00

move in any arbitrary direction away from F. We choose to move C along the line

OF, towards or away from 0, since this gives us the maximum flexibility in choosing

any value of n from the set (0, 1) U (1, 00).

The special case n = 1 occurs when CF 2 C0, as illustrated in Figure 3.4(b).

From Eq.(3.22) it can be verified that r = 00 when n = 1. Since this violates the

condition 0 < r < 1, the Sweep-Tuck algorithm is not applicable. The sphere can be

partially reconfigured by first applying control action (B) such that F converges to

the origin and then applying control action (A) such that C converges to the origin.

These two maneuvers are however not the same as the RS and DPT maneuvers. If it

is desired that the Sweep-Tuck algorithm be used, control action (B) should be used

to sweep F onto line DC, but not at O, as shown in Figure 3.4(b). The value of it

should then be changed to any value in the set (0,1) U (1, 00) using control action

(A).

When C lies at the origin 0, we have the special case n = 00. It can be shown

from Eq.(3.22) that the condition 0 < r < 1 is violated when n = 00 since r : 0. The

problem is remedied using control action (A), as shown in Figure 3.4(c), such that n

can have any value in the set (0,1) U (1, 00). This enables us to subsequently apply

the Sweep-Tuck algorithm.
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Remark 3.4 In this section we presented the Sweep- Tuck algorithm for partial recon-

figuration of the sphere and discussed maneuvers that render the algorithm applicable

to special cases where it is inapplicable otherwise. We proved asymptotic convergence

of the configuration variables (:r.y,6) —> (0,0,0) but did not show stability of the

equilibrium. We will prove asymptotic stability of the equilibrium as well as remove

the restriction on the initial condition, namely 0 < 6 < 7r/2, when we address the

complete reconfiguration problem.

 

3.4 Simulations

We present simulation results of partial reconfiguration, one each for the two cases

it E (1, 00) and n E (O, 1). The initial configuration of the sphere for these cases were

taken as follows

2: = 3.0 y = 3.0 e = 1.35 a = 1.05 (3.23)

a: = 10.0 y = 5.0 6 = 1.40 a = 0.52 (3.24)

where the units are meters and radians. Using the definition of n in Theorem 3.1 and

Eqs.(3.2) and (3.3) we can show that the initial conditions in Eqs.(3.23) and (3.24)

correspond to n = 2.691 and n = 0.816, respectively. To satisfy the constraints in

Eq.(3.5), we chose it for the two cases to lie at 40% and 50% of their permissible

range, respectively. Among the four possible options for the RS maneuvers, we chose

ccw sweep to the P.) configuration for both cases. The simulation results are shown in

Figures 3.5 and 3.6. Figures 3.5(a), 3.5(b), and 3.5(c) show the trajectories of points

C and F in the :r-y plane, trajectory of point Q in the r-y plane, and evolution of 6

in time, respectively, for n = 2.691. The corresponding trajectories for n = 0.816 are

shown in Figure 3.6.

Both Figures 3.5(c) and 3.6(c) indicate that 6 remains constant for certain intervals
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Figure 3.5. Simulation results for n E (1, 00)

of time - these intervals correspond to RS maneuvers. The value of 6 changes during

the DPT maneuvers and in agreement with Corollary 3.1, value of 6 at the end of

each DPT maneuver is less than its value at start. The difference in the trajectories

of 6 in Figures 3.5(c) and 3.6(c) during the DPT maneuvers can be explained with

Remark 3.2.

It was discussed in Remark 3.2 that a discontinuously changes its value during

DPT maneuvers for n 6 (0,1). This explains the discontinuities in the derivative

of the trajectory of F in Figure 3.6(a). In comparison, the trajectory of F in Fig—

ure 3.5(a) has continuous derivatives since CC’ < CF for DPT maneuvers with

n 6 (1,00), and CC’ < CF ensures a constant value of a. The DPT maneuvers in

Figures 3.5(a) and 3.6(a) correspond to the straight line trajectory segments of C.
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Figure 3.6. Simulation results for n E (0, 1)

Both the RS and DPT maneuvers are also obvious from the motion of the center of

the sphere, shown in Figures 3.5(b) and 3.6(b). The trajectory of Q in Figure 3.6(b)

is however self-intersecting unlike in Figure 3.5(b). Once again, this can be attributed

to the discontinuous change in oz during DPT maneuvers for n E (0, 1).
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CHAPTER 4

Complete Reconfiguration:

Convergence Studies for n E (1, 00)

4. 1 Problem Statement

For the kinematic model of the Sphere described by Eqs.(2.9) through (2.13), com-

plete reconfiguration refers to the task of converging (:r,y,6,6) —> (0, 0,0,0), as

shown in Eq.(2.14). In chapter 3 we developed the Sweep-Tuck algorithm to con-

verge (113, y, 6) ——> (0, 0, 0) and in this section we will extend it to converge 6 —> 0 for

the case n E (1, 00). As in chapter 3, the convergence algorithm in this section will

be developed under the restriction 0 < 6 < 7r/2. In chapter 5 we will address the

complete reconfiguration problem for n E (0, 1).

4.2 Analysis of Quadruple Sweep Options in

Sweep-Tuck Algorithm

It was discussed in Remark 3.3 that the RS maneuver is not unique; it can sweep point

F to the location Fp or E, in a cw or ccw manner. Although all four choices of sweep
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have the same effect on the partial reconfiguration problem, they result in different

values of 6, the additional variable we need to converge for complete reconfiguration.

To investigate the change in 6 for the four sweep options in a systematic manner, we

resort to the following definitions.

Definition 4.1 (13¢ Configuration) The partial configuration of a sphere defined

by the pair {C, F} is a Pg, configuration if C-F x CD > 0 and cos ZOCF = cos 2(1.

 

Definition 4.2 (N,), Configuration) The partial configuration of a sphere defined

by the pair {C, F} is a Nd, configuration if C-F x CD < 0 and cos lOCF = 0081/).

 

According to Definitions 4.1 and 4.2, {C, F} and {C’, Fp} are P.) configurations in

Figure 4.1(a), {C’, F} is a PW configuration and {C’, Fn} is a N.) configuration.
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Figure 4.1. Quadruple sweep options: n E (1, 00)

We now investigate the change in 6 for the four RS maneuvers that are possible
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Starting From PW Configuration

Ending at Direction Sweep angle/Ad A6 Value

Pg, cw —(27r—2/)’+1,b) A61 —(27r—i()’+1/1)(1—sec6)

N), cw —(27r — 21/ — 16) as, —(27r — 16- 26)(1— sec 0)

P.) ccw «r — w A63 (21/ — 100 — 0)
Nw ccw w’ + 2)) A64 (w’ + w)(1 — sec 6)     

Table 4.1. Quadruple RS maneuvers starting from PW configuration: n E (1, 00)

starting from PW: {C’, F} in Figure 4.1(a). These maneuvers, marked 1, 2, 3, and 4,

respectively, correspond to

1. a cw sweep ending at Pg}: {C’, Fp},

2. a cw sweep ending at Nwz {C’, F,,},

3. a ccw sweep ending at Pw: {C’, Fp}, and

4. a ccw sweep ending at N,),: {C’, F,,}

It can be verified from Figure 2.2 that the angle of sweep during an R8 maneuver is

equal to Ad. For the above maneuvers A6 can therefore be computed using Eq.(2.16);

the results are summarized in Table 4.1 below. The results in Table 1 correspond to

the start configuration PW: {C’, F}. When the start configuration is NW: {C’, F},

as shown in Figure 4.1(b), the change in 6 for the four different RS maneuvers can

be summarized by Table 4.2.

It was established in Theorem 3.1 that w’ > 16 for n E (1, 00) U (0, 1). Furthermore

we know from Eq.(3.21) that v’) + 112’ 5 7r. Using these results we can establish the

following relations between the four possible sweep angles given in Table 4.1

“(27r — WWW S —(27T - 1/2' - it“) S 0 S (112' - 1(2) S WWI/i) (4-1)
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Starting From NW Configuration

Ending at Direction Sweep angle/Aa A6 Value

Pi cw —(w' + 2)) At. —(2)' + 2))(1 — sec 6)

Ni cw —(w' - 1)) M. —(w' — «he — sec 6)
Pg) ccw 27r — w’ — w A63 (27r — 16—- w)(1 — sec 6)

Nw ccw 2r — w’ + (l) A64 (2r — 112’ + WU — sec 6)       
 

Table 4.2. Quadruple RS maneuvers starting from NW configuration: n E (0,1)

Similarly, the sweep angles in Table 4.2 satisfy the relationship

—(i/)' + it) s —(i// — it) _ 0 3 (2w — 212’ — it) 3 (2r - 212’ +w) (4-2)

4.3 Compensating and Restoring Sweep (CRS)

Maneuver

Consider partial reconfiguration of the sphere based on the Sweep-Tuck algorithm.

Let the configuration variables of the sphere at the initial time be (2:0, yo, 60, (10,60).

A PS maneuver is first invoked to set AOCF = 11/. Suppose (231, yl, 61, 011, 61) are the

configuration variables at the end of the PS maneuver. Now denote all configuration

variables prior to the k-th RS-DPT pair using subscript 10. Then (2:1, y1,61,oq, 61)

denote the configuration variables prior to application of the first RS-DPT pair. The

change in 6 during the k-th RS-DPT pair can be expressed as

16k+1 = 6;: + A6 (43)

where A6 takes the values in Tables 4.1 and 4.2 for start configurations PW and NW,

respectively, based on the direction of sweep (cw or ccw) and type of end configuration

(R), or N11,). From the entries in Tables 4.1 and 4.2 it is clear that A6 is a function of
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6k, and parameters of the Sweep-Tuck algorithm, namely 2)) and w’, or n and it). We

now define the Compensating and Restoring Sweep (CRS) maneuver.

Definition 4.3 (CRS Maneuver) Among the four choices for an RS maneuver in

a sweep-tuck sequence, the Compensating and Restoring Sweep (CRS) maneuver is

the one that minimizes the absolute value of 6.

 

Remark 4.1 Mathematically, for n E (1,00), the k-th RS maneuver (k _>_ 1) of a

sweep-tuck sequence is a CRS maneuver if

fik+l : $1,132: I felt + AB [1 S : {Aflla A182, A183: Afi‘l} (44)

where A61, A62, A63, and A6; are the entries in Table 4.1 or Table 4.2 depend-

ing on whether the configuration variables, :rk, yk, 6k, 0),, define a PW or an NW

configuration, respectively.

 

We now investigate the effect of a CRS maneuver for a PW start configuration.

The entries of S in Eq.(4.4) are taken from Table 4.1 and shown in Figure 4.2 in their

relative order of magnitude, which was established in Eq.(4.1). The range of the set

is found to be

(it + 16’) (1 — sec 6),) g S g —(27r — 16+ 1(2) (1 — sec 6k) (4.5)

Suppose 6,, lies in the range that is a mirror image of the range of S in Eq.(4.5). This

implies

(27r — w’ + 1(1) (1 — sec 6),) 3 6;, g —(z/) + w’) (1 — sec 6),) (4.6)

Using Eqs.(4.5) and (4.6), the range of 6H1 can be obtained from Eq.(4.4). This

range, shown in Figure4.3(a), reveals that 6H1 = 0 when 6), = —A6,-, i = 1,2,3,4.
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Figure 4.2. Range of 6,, for starting PW configuration

For other values of 6;, in the range given by Eq.(4.6), 6k+1 mostly varies linearly

and |6k+1| reaches a local maxima of —i,t' (1 — sec 6),) when 6,, 2 (—A61 — A62)/2

and 6,, 2 (——A63 — A64)/2, and the global maxima of (1,6 — 7r) (1 — sec 6),) when

6;, = (—A62 — A63)/2. Since the global maxima of [6H1] is (w — 7r) (1 — sec 6),),

we can reduce the conservatism of the range of 6,, in Eq.(4.6) by expanding it by

(it — 7r) (1 — sec 6),) on both sides. The expanded range, deduced from Figure 4.3(a),

is shown graphically in Figure 4.3(b). Mathematically, the expanded range can be

expressed as follows

(37r — it") (1 — sec 6),) g 6,, 3 —(7r + ((2’) (1 — sec 6),) (4.7)

and it guarantees

|6k+1| S (7r - It) (1 - sec 0k) (4-8)

The extended range of 6,, in Eq.(4.7) pertains to a CRS maneuver with PW start

configuration. If the CRS maneuver has a NW configuration, a similar set of results

can be deduced. To obtain these results, the entries of S in Eq.(4.4) are first taken
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Figure 4.3. Expanded range of 6;, for starting PW configuration

from Table 4.2 and plotted in Figure 4.4 in their relative order of magnitude using

Eq.(4.2). The range of the set is found to be

(27r — 16+ it") (1 — sec 6),.) S S S —(i/) + w’) (1 — sec 6),) (4.9)

As in the previous case, we again assume 6,, to lie in the range that is a mirror image

of the range of S in Eq.(4.9). This implies

(16+ ((2’) (1 — sec 6),) _<_ 6,, g —(27r — 16+ 16) (1 — sec 6),) (4.10)

The application of Eq.(4.4) gives us the range of 6H1 when 6;, is in the range given by

Eq.(4.10). This range, shown in Figure 4.5(a), indicates that Eq.(4.8) holds good for

My start configurations as well. The expanded range of 6),, shown in Figure 4.5(b),

is obtained by increasing the range in Eq.(4.10) by (it: — 7r) (1 — sec 6),) on both sides.
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Figure 4.4. Range of 6),. for starting NW configuration

The expanded range of 6,, for the NW configuration is thus obtained as

(it + it”) (1 — sec 6),) g 6,, g —(37r — w’) (1 — sec 6),) (4.11)

We are now summarize the results obtained above with the help of the following

lemma.

Lemma 4.1 Consider a sweep-tuck sequence where the k-th RS maneuver (k 2 1) is

a CRS maneuver. Then, if the configuration variables (:ck, yk, 6k, 0),, 6),), define a PW

configuration and satisfy Eq. (4. 7), or define a NW configuration and satisfy Eq. (4.11),

6k+1 will be bounded according to the relation given in Eq.(4.8).

Proof: The proof follows directly from the derivation above. 0 o o
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Figure 4.5. Expanded range of 6,, for starting NW configuration

4.4 Inequality Condition for Convergence

The bounds on 6k+1 in Eq.(4.8) are valid for the expanded range of 6,, in Eqs.(4.7)

and (4.11) for PW and NW start configurations, respectively. Instead of considering

the entire expanded range, we now consider the sub-intervals of 6, Dl-Dz, D2-D3,

D3-D4, and D4-D5, in Figures 4.3(b) and 4.5(b). The bounds on 6H1 for these sub-

intervals are shown in Tables 4.3 and 4.4 for PW and NW start configurations. The

values of ,uk and 12k in Figures 4.3(b) and 4.5(b) and Tables 4.3 and 4.4 are as follows

u), = (w — 7r) (1 — sec 6),), Vk = —7,b (1 — sec 6),) (4.12)

Our next result is stated in Lemma 4.2, which is an extension of Lemma 4.1.

Lemma 4.2 Consider a sweep-tuck sequence where the k-th RS maneuver (k 2 1) is

a CRS maneuver. Then, if the configuration variables (:rk, yk, 6k, 0),, 6),), define a PW

configuration and satisfy Eq. (4. 7), or define a NW configuration and satisfy Eq. (4 .11),
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Starting From Pg): Configuration

Expanded Range of 6,, : (37r — w’) (1 — sec 6),) S 6,, _<_ — (it + w’) (1 — sec 6),)

Sub-range Compensating Final Direction Range of 6H1

of 6;, A6 Form

D1 - D2 —(27T — "((2, + 1,6)(1— SEC 6k) Pg, CW —,uk S Bk+1 S 11],;

D2 — D3 —(27r — w’ — w)(1— sec 6),) N11) cw -I/k _<_ 6k+1 _<_ ,uk

03 — D4 (10’ — 2(J)(1— SEC 9k) Pip CCW “Mk S 5H1 S We

D4 — D5 (W + 11))“ — 590 9k) Nip CCW "Vk S ,Bk-l-l S #k    
 

Table 4.3. CRS maneuvers for different values of 6,, for starting P1): configuration

6H1 will be bounded according to the relation

“#k S 5H1 S Vic (4.13)

if the CRS maneuver ends in a P1), configuration, and according to the relation

_Vk S flk+1 S .111: (4-14)

if the CRS maneuver ends in a N112 configuration.

Proof: The proof follows directly from the entries in Tables 4.3 and 4.4. o o o

 

Theorem 4.1 (First Reconfiguration Theorem) Consider the Sweep-Tuck algo-

rithm for n E (1,00) and w satisfying Eq.(3.5). Assume 0 < 6 < 7r/2 at the initial

time, as required by the Sweep-Tuck algorithm. Let k, k 2 1, be any integer for which

the configuration variables (:ck,yk,6k,ak,6k) define a P,),/ configuration and satisfy

Eq.(4.7) or define a NW configuration and satisfy Eq.(4.11). Iffor all integer values

ofj, j 2 k, the j-th RS maneuver is a CRS maneuver and the inequality

(1 — sec 6))

(1 — sec 6,0,1)

(7r + W)

(7r - 1(1)

 
S
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Starting From NW Configuration

Expanded Range of 6,, : (7r + w’) (1 — sec 6),) g 6,, g - (37r — w’) (1 — sec 6),)

Sub-range Compensating Final Direction Range of 6H1

of 6,, A6 Form

D1 — D2 “(76’ + W(1 " 39C 9k) Pit CW ‘11}: S [Bk—+1 S We

D2 — D3 —(’i/1’ — WU — 89C 9k) Nib CW _Vk S 5H1 S Mk

D3 — D4 (27r - l’ - l/J)(1- 896 9k) Pix) CCW _Hk S ,Bk+l S Vic

D4 — D5 (27r — w’ -l— w)(1 — sec 6),) N), ccw —uk 3 6H1 3 uk     
 

Table 4.4. CRS maneuvers for different values of 6,, for starting NW configuration

is satisfied, then (rj,yj,6j,6j) —> (0,0,0,0) asj ——> 00 and the sphere is completely

reconfigured.

Proof: We first note from Eqs.(3.20) and (3.21) and the third assertion in Theo-

rem 3.1

w’ s r => (3r — 2r) 2 (r + w’) (4-16)

¢+w’_<_7r => 21/233 => (r—v)2w (4.17)

Using the identities in Eqs.(4.16) and (4.17) we can deduce that Eq.(4.15) implies

(1 — sec 6]) < (37r — w’)
 

 

—— 4.18

(1—sec0.+1) - (r—w) ( )
(1—sec6j) S (7r+tb) (4.19)

(1 — sec 6111) 2))

Using Eq.(4.12) we can show that Eqs.(4.18) and (4.19) imply

—uj Z (37r — w’) (1 — sec 6311) (4.20)

—I/j 2 (it + w’) (1 — see 6311) (4.21)

We know that the k-th RS maneuver is a CRS maneuver. Also, (ask, yk, 6k, 0),, 6k)
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define a PW configuration and satisfy Eq.(4.7) or define a NW configuration and satisfy

Eq.(4.11). Therefore, using Lemma 4.2 we claim that the CRS maneuver ends in a Pg)

configuration that satisfies Eq.(4.13) or an N), configuration that satisfies Eq.(4.14).

If the CRS maneuver ends in a Pg) configuration, we can deduce the following from

Eqs.(4.13) and (4.20)

flue S 5k+1 S Vic => (3n - 1(1’) (1 — SEC 91.41) S (3H1 S —(7r + W) (1 — 89C 9k+1)

(4.22)

The subsequent DPT maneuver, which results in a PW configuration, therefore sat-

isfies Eq.(4.7) for subscript k + 1. If the CRS maneuver ends in a Nw configuration,

we can deduce the following from Eqs.(4.14) and (4.21)

—Vk S 5H1 S Mk 2? (7T + W) (1 — 59C 6llc+1) S 3H1 S ‘(371' — 16’) (1 — sec 6k+1l

(4.23)

The subsequent DPT maneuver, which results in a NW configuration , therefore sat-

isfies Eq.(4.11) for subscript k + 1.

Since the j—th RS maneuver is a CRS maneuver Vj Z k + 1, Lemma 4.2 can be

applied iteratively to the configuration variables (23,-, yj, 61-, 09-, 61-), for integer values

ofj = k + 1, k + 2, - ~ - , 00. This implies that 5H1 will be bounded by one of the two

relations

_fl’gfi’HSV’ '=k+1,k+2,---,00 (4.24)

_Vj S 131+1 S #j

From Corollary 3.1 we know that the Sweep-Tuck algorithm guarantees 63- —> 0 as

j —+ 00. This implies 123,11]- —> O and hence 63- —-> 0 as j ——> 00. From Theorem 3.2

we already know that the Sweep-Tuck algorithm guarantees (:rj,yj,6j) —> (0,0,0)

asj —> 00. This implies (rj,yj,6j,6j) —> (0,0, 0,0) asj —+ 00 and the sphere is

completely reconfigured. o o o
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4.5 Range of it for Inequality Condition

In this section we establish that the inequality condition in Eq.(4.15) is always satisfied

for a subset of the range of if) in Eq.(3.5) for n E (1, 00). To this end, we first note

from Eq.(3.20) that w and w’ lie in the ranges 0 S 1)) < cos—1(1/n) and cos"1(1/n) S

112’ < 7r, respectively. Using Eq.(3.19) we can readily show that w’ = cos—1(1/n) when

w = cos‘1(1/n). Thus

(it + 1,6,) it + cos—1(1/n)

lim 2 > 1 4.25

tb—rcos‘IU/n) (7r — w) it — cos—1(1/n) ( )

  

Using Eq.(3.22) we can also show

 
 

  

C’F C’O

lim = lim = lim 1—2ncos —1 n2—1 =1
Ill—)COS_1(I/n) CF w—>cos—1(1/n) CO w—icos—IU/n) [ ( w )/( )]

(4.26)

From Eqs.(3.3) and (4.26) we can therefore deduce that for 2)) —> cos—1(1/n),

tan 0j+1 - 6j+1 I — SCC Oj-i-l
: 1 6 z 0.

= 1 4.27

tan 6}- — 6,- 2 ”I ’ => 1— sec 63- ( )

From Eqs.(4.25) and (4.27) we conclude that there exists a \II, 0 3 ‘11 < cos—1(1/n),

such that Eq.(4.15) is always satisfied for \II 3 w < cos-1(1/n). We discuss the

procedure for numerical computation of \II next.

To compute \II, we first determine the value of n from the initial conditions and

choose it in conformity with Eq.(3.5). The value of «(2’ is determined from Eq.(3.19)

and we compute the ratio (7r + 11/) / (7r — it). We determine the values to be assumed

by 6 in the sweep-tuck sequence and compute the ratios (1 — sec 63-) / (1 — sec 6,11),

j = 1, 2, - - . , N, where N is chosen based on the desired level of convergence. The
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particular choice of 1)) satisfies the inequality condition in Eq.(4.15) if

max [((1_Secgj) } g (WWI) (4.28)
jE[1,N] 1 — sec6j+1) (7r — it)

  

We start with an initial value of w z cos‘1 (1 /n) and verify the condition in Eq.(4.28)

for each value of w as we reduce it in small increments. The value of \II is the smallest

value of w for which Eq.(4.28) is satisfied. Since this procedure requires moderate

computation and the exact value of \II is not critical, we determine an approximate

value of \I' using the analysis presented below.

Using Taylor’s series expansion we can show (sec 6 — 1) z 1.5(tan 6 — 6) /6. Thus,

using Eqs.(3.3) and (3.22) and Corollary 3.1 we can write

(1— SCC 03') ~ 6j+1 (tan 03‘ — 63')

(I — SEC Bj-H) 01' (tan 0j+1 — 034,1)

  

 

 

 

  

(tan 01' — 93')

(tan 0j+1 — 6j+1l

__ CF

_ OF

1

= 4.29

[1— 2(n cosw —1)/(n2 — 1)] ( )

Hence, Eq.(4.15) is satisfied if

1 g (’T + w) (4.30)
[1 — 2(ncosw —1)/(n2 — 1)] (7r — w)

The value of \II can be computed easily from Eq.(4.30). Since 6 does not appear in

Eq.(4.30), \II can be computed apriori from the value of n alone and the data stored

in a look-up table for quick reference. We have provided the value of \II in radians for

specific values of n in Table 4.5 below.

We have also shown plots of the left-hand and right-hand sides of Eq.(4.15) for specific

values of n in Figure 4.6. These results match well with the results in Table 4.5.
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n 1.1 1.2 1.25 1.5 1.75 2.0 2.5 2.75 3.0 3.5 4.0

\II 0.371 0.473 0.505 0.580 0.584 0.552 0.411 0.293 0.0 0.0 0.0

Table 4.5. Numerical values of \II for various n E ( 1, 00)

Dashed Lines : (rt + w“) / (n — 111) Solid Lines : 1

1— 2(ncosw— 1)/(n2-1)

n=2.0 n=3.0 n=3.5

3 . A 3 3 - -

2.8 1 2.8 l 1 2.8.

2.6 , 2.6 . . 2.6.

2.4 ~ . 2.4 . 1 2.4)

2.2. 12.2. I,’ .22. ,, ’

2 c ‘ g , , 1 2 ______ ’ . 2 —————— ’

1.8. “ "’ .18. . 1.8

1.6 r 1 1.6. . 1.6.

1.4 \y . 1.4 . . 1.4. ,

\ ,AP - ‘P
1.21. \‘A I . 1% .A/ A # . 1,? ./ A A 1

0.5 ' 1 ' 1.5 0 0.5 1 1.5 o 0.5 1 1.5

w (rad) i w (rad) i w (rad) i

arccos(1/2) arccos(1/3) arccos( 1/3.5)

(a) (b) (C)

Figure 4.6. Angle \II for various values of n E (1, 00)

Based on the results above, we now state a corollary of Theorem 4.1:

Corollary 4.1 Consider the Sweep-Tuck algorithm for n E (1,00) and \II 3 1/2 S

cos‘1(1/n). At the initial time assume 0 < 6 < 7r/2, as required by the Sweep-

Tuck algorithm. Let k, k 2 1, be any integer for which the configuration variables

(22),, yk, 6k, 0),, 6),) define a Pg)! configuration and satisfy Eq.(4.7) or define 11 NW con-

figuration and satisfy Eq.(4.11). If for all integer values of j, j 2 k, the j-th RS

maneuver is a CRS maneuver, then (:rj,yj,6j,6j) —) (0,0,0, 0) asj —> 00 and the

sphere is completely reconfigured.

Proof: The proof follows directly from Theorem 3 and the results above. o o o
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4.6 Preliminary Sweep Maneuver and Merging

the Expanded Ranges

We assumed the initial configuration variables of the sphere to be (51:0, yo, 60, do, 60)

in section 4.3. We also assumed the configuration variables to be (231,111, 61, 011, 61)

after the PS maneuver which sets ZOCF = 1/2’ . In this section we first investigate

the change in 6, A6 = (61 — 60), due to the PS maneuver.

Since the maximum angle of pre-sweep can be 27r, the maximum change in 6 due

to the PS maneuver, A6max = max (61 —- 60), can be computed from Eq.(2.16) as

follows

A6,,“ = :l:27r(1 — sec 60) (4.31)

where the sign in Eq.(4.31) will be positive for ccw sweep and negative for cw sweep.

The expanded range of 6 for subscript k = 0, for both Eqs.(4.7) and (4.11) is

W = {(7r + 10’) + (37T — 16)} (1 — sec 60) = 47r(1— sec 60) Z 2 [A6] (4.32)

This implies that the direction of pre-sweep can be chosen suitably such that

(371 — w’) (1 — sec 60) g 60 3 —(7r + w’) (1 — sec60)

———> (37r — w’) (1 — sec 61) S 615 —(7r + 10’) (1 — sec61)

(4.33)

and

(71 +16) (1 — sec60) g 60 g —(37T — 1/2’) (1 — sec60)

=> (it + w’) (1 — sec61) g 613 —(37r —— w’) (1 — sec6))

(4.34)

Both Eqs.(4.33) and (4.34) are based on the fact that 6 remains constant during a

PS maneuver, that is, 61 = 60. We are now ready to define the “Proper Preliminary-
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Sweep” (PPS) maneuver.

Definition 4.4 (PPS Manuever) A PS maneuver that satisfies Eq.(4.33) or

Eq.(4.34) is said to be a “Proper Preliminary-Sweep” (PPS) maneuver.

 

We use the PPS maneuver to extend the results in Corollary 4.1 with Corollary 4.2

below.

Corollary 4.2 Consider the sphere in its initial configuration (230, yo, 60, do, 60) with

configuration variables satisfying n E (1,00), 0 < 60 < 7r/2, and 60 in the range

defined by Eq.(4.7) or (4.11) for subscript k = 0. The sphere can be completely

reconfigured using a PPS maneuver followed by repeated application of CRS-DPT

pairs with it E [\II, cos—1(1/n)).

Proof: Since 60 lies in the range given by Eq.(4.7) or (4.11), a PPS maneuver brings

the sphere to a PW configuration with 61 satisfying Eq.(4.7) or a NW configuration

with 61 satisfying Eq.(4.11). The complete reconfiguration of the sphere can now be

proved using Corollary 4.1. o o o

 

We conclude this section with Theorem 4.2, stated next.

Theorem 4.2 (Second Reconfiguration Theorem) Consider the sphere in its

initial configuration (.130, yo, 60, C10, 60) with the configuration variables satisfying n 6

(1,00), 0 < 60 < 7r/2, and 60 in the range

(37r — w’) (1 — sec 60) g 60 S —(371 — 1))’) (1 — sec 60) (4.35)

The sphere can be completely reconfigured by a PPS maneuver followed by repeated

application of CRS-DPT pairs with 1)) E [\Il,cos‘1(1/n)].

Proof: From Eq.(3.20) we know 16’ 3 7r. This implies (it + 16’) S (37r — 1))’) and

l—(37T—1/1'), (37r—1))’)] = [(7r+1))’), (37r—1b’)]U[—(37r—1))’), (n+1,b’)]. Hence, satisfaction
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of the condition in Eq.(4.35) guarantees 60 lies in the range defined by Eq.(4.7) or

(4.11) for subscript k = 0. The rest of the proof follows directly from Corollary 4.2.

o o o

The underlying idea for convergence of 6 can be understood with the help of the

following illustration in Figure 4.7. Figure 4.7 is not an exact depiction of the conver-
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  Sweep maneuver

with 0k   (4)  
Figure 4.7. Convergence of 6 in Sweep—Tuck algorithm

gence of 6 but an approximate illustration of convergence of 6. In figure 4.7 the steps

represent successive sweeps. The four levels at each sweep given by (1), (2), (3), (4),

represent the quadruple sweep options. The steps are diminishing in size since the

Sweep-Tuck algorithm causes 6H1 < 6),. The diminishing steps form a diminishing

envelope shown in figure 4.7. By imposing the range condition in Eq.(4.35) and by

satisfying the inequality condition in Eq.(4.15), 6 is restricted to lie within this enve-
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lope and eventually converge to zero. This shown by the trajectory L1. On the other

hand if 6 does not satisfy Eq.(4.35), 6 converges to a non-zero value as shown in L2.

4.7 Simulation Results

We present simulation results for complete reconfiguration when n E (1, 00). The

initial configuration of the sphere is taken as follows:

:1: = —2.0 y = 0.5 6 21.2 01 = 3.0 6 = —3.0 (4.36)

where the units are in meters and radians. From the definition of n in Theorem 3.1

and Eqs.(3.2) and (3.3) we obtain n :2 2.436. We choose it at 30% of the permis-

sible range \11 g 1)) < cos-1(1/n). The simulation results are given in Figure 4.8.

Figure 4.8(a) shows the simultaneous convergence of C and F to the origin. Initially

6 satisfies Eq.(4.7) and hence a PPS maneuver sweeps F in a cw sense to the point F1

whereby the sphere attains a PW configuration. Subsequently, CRS-DPT maneuvers

are successively applied. The point F is not clear in Figure 4.8(a) since the CRS

manuever immediately after the PPS maneuver retraces the arc FF1 in a ccw sense

and goes beyond the point F. Figures 4.8(b), 4.8(c), and 4.8(d) show the convergence

of :1: and y coordinates of Q, the convergence of 6, and that of 6 respectively, with

time to origin. Hence, from Eq.(2.14), this leads to complete reconfiguration of the

sphere.

In Figure 4.8(b), the linear and curved segments in the :1: and y plots are due to the

DPT and CRS maneuvers respectively. Also, in Figure 4.8(d), the intervals when 6

remains constant correspond to DPT maneuvers. During CRS maneuvers 6 remains

constant, as shown in Figure 4.8(c), and 6 changes linearly which is consistent with

Eq.(2.16). The PPS maneuver causes the change of 60 to 61, however 61 = 60, which
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Figure 4.8. Complete reconfiguration: simulation results for n E (1, 00)

complies with the definition of PPS maneuver in Definition 4.4.
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CHAPTER 5

Complete Reconfiguration:

Convergence Studies for n E (0,1)

5.1 Quadruple Sweep Options

Similar to our investigation in section 4.2, we first investigate the change in 6 for the

sweep options during an RS maneuver. For a PW: {C’,F} start configuration, as

shown in Figure 5.1(a), the sweep Options are

1. a cw sweep ending at Pu): {C’, Fp},

2. a cw sweep ending at NW {C’, Fn},

3. a ccw sweep ending at Pwl {C’, Fp}, and

4. a ccw sweep ending at N11): {C’, Fn}

It can be verified that A6 for these options are the same as the entries of Table 4.1,

which pertains to the case n E (1, 00). For a NW: {C’,F} start configuration, as

shown in Figure 5.1(b), the values of A6 are similarly identical to the entries of

Table 4.2, which pertains to the case n E (1, 00).
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Figure 5.1. Quadruple sweep options: n E (0,1)

5.2 CRS Maneuvers and Inequality Condition for

Convergence

Since values of A6 for the quadruple sweep options of an RS maneuver are the same

for the cases 71. E (1, 00) and n E (0, 1), for both PW and NW start configurations, the

entire discussion in section 4.3 and part of the discussion in section 4.4 applies to the

present case of n E (0,1). By following the discussion in these sections it becomes

clear that

o Lemmas 1 and 2 are applicable to both cases 72 E (1, 00) and n E (0,1).

0 The statement of Theorem 3 is essentially applicable to the present case n 6

(0,1), but the proof needs to be modified.
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Remark 5.1 The main diflerence between the cases n E (1, 00) and n E (0,1) arises

from difierence in their DPT maneuvers. From Eqs.(3.14) and (3.15) we know that

CC’ < CF for n E (1,00) and CC’ > CF for n E (0,1). This implies that DPT

maneuvers change a P), configuration into a PW configuration and a N1) configuration

into a NW configuration forn E (1, 00), butfor n E (0,1) it changes a P.) configuration

into a NW configuration and a N), configuration into a PW configuration. For the case

n E (0,1), the efiect ofa DPT maneuver can be verifiedfrom Figures 5.1(a) and 5.1(b)

where N11): {C, F} changes to PW: {C’, F} and Pg: {C, F} changes to NW: {C’, F},

respectively.

 

We now state and prove the equivalent of Theorem 4.1 for the case n E (0,1).

Theorem 5.1 (Parallel of Theorem 4.1) Consider the Sweep- Tuck algorithm for

n E (0,1) with 1,0 chosen to satisfy Eq.(3.5). Assume 0 < 6 < 71/2 at the initial

time, as required by the Sweep—Tuck algorithm. Let k, k 2 1, be any integer for which

the configuration variables (rk,yk,6k,ak,6k) define a PW configuration and satisfy

Eq.(4.7) or define a NW configuration and satisfy Eq.(4.11). Iffor all integer values

ofj, j Z k, the j-th RS maneuver is a CRS maneuver and the inequality

(1 —sec6j) < (n+1)/)

(1 —S€C91+1) _ (W-it‘)

  (5.1)

is satisfied, then (rj,yj,6j,6j) -—> (0,0,0,0) asj —> 00 and the sphere is completely

reconfigured.

Proof: Using the identities in Eqs.(4.16) and (4.17) we can deduce that Eq.(5.1)

implies

(1 —sec6j) < (n+1))’)

(1 -sec6j+1) _ (7r—1,b)

(1 —sec6j) < (377 — w’)

(1’ 59C6j+ll — ll}
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From the definition of u and 1/ in Eq.(4.12) we can show that Eqs.(5.2) and (5.3)

imply

"Hj Z (77 + W) (1 ‘“ SEC 6j+1) (5-4)

—1/,- 2 (3n — 1))’) (1 — see 6311) (5.5)

We know that the k-th RS maneuver is a CRS maneuver. Also, (ark, yk, 6k, 01),, 6k)

define a PW configuration and satisfy Eq.(4.7) or define a NW configuration and satisfy

Eq.(4.11). Therefore, using Lemma 4.2 we claim that the CRS maneuver ends in a Pg

configuration that satisfies Eq.(4.13) or an N.) configuration that satisfies Eq.(4.14).

If the CRS maneuver ends in a P), configuration, we can deduce from Eqs.(4.13) and

(5.4)

“Mk S Bk+l S Vk => (77 + W) (1 — sec6k+1) S 5191 S —(37r - W) (1 — SEC 61c+1)

(5.6)

The subsequent DPT maneuver, which results in a NW configuration, therefore satis-

fies Eq.(4.11) for subscript k + 1. If the CRS maneuver ends in an N), configuration,

we can deduce from Eqs.(4.14) and (5.5)

‘Vk S 5k+1 S the => (371 — W) (1 — 50C 0k+1) S 5H1 S —(7T + W) (1 — 59C 6M1)

(5.7)

The subsequent DPT maneuver, which results in a PW configuration , therefore sat-

isfies Eq.(4.7) for subscript k + 1.

Since the j-th RS maneuver is a CRS maneuver Vj 2 k + 1, Lemma 4.2 can be

applied iteratively to the configuration variables (313,-, yj, 63-, 01,-, 63-), for integer values

ofj = k + 1, k + 2, - - - , 00. This implies that 6311 will be bounded by one the two
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relations

#7361713” j=k+1,k+2,---,00 (5.8)

‘Vj S l3j+1 S 111'

From Corollary 3.1 we know that the Sweep-Tuck algorithm guarantees 63- —> O as

j ——> 00. This implies )1], 1),- —> 0 and hence 6]— ——> O as j —> 00. From Theorem 3.2

we already know that the Sweep-Tuck algorithm guarantees (:rj,yj,6J-) —> (0,0,0)

asj ——> 00. This implies (:rj,yj,6j,6j) ——> (0,0,0,0) asj —+ 00 and the sphere is

completely reconfigured. o o o

5.3 Range of 1) for Inequality Condition

Here we establish that the inequality condition in Eq.(5.1) is always satisfied for a

subset of the range of 1)) in Eq.(3.5) for n E (0,1). To this end, we first note from

Eq.(3.20) that 1)) and 1))’ lie in the ranges 0 g 1)) < cos—1(1/n) and cos‘1(1/n) S

1))’ < 77, respectively. Using Eq.(3.19) we can readily show that 1))’ = cos—1(n) when

1)) = cos’1(n). Thus

(77 +1))’) 77 + cos—1(n)

1' = > 1 5.9

(twig-11m) (77 — w) 77 — c05‘1(n) ( )

  

Using Eqs.(3.16) and (3.22) we can also show

  

  

C’F C’O

lim = lim = lim —1—2ncos/—1 712—1 :1
1))—+cos‘1(n) CF 1))—>cos”1(n) CO w—ycos-lht) [ ( V )/( )]

(5.10)

From Eqs.(3.3) and (5.10) we can therefore deduce that for w ——> cos—1(n),

tan 67H — 6,11 1— sec6-+1

= 1 => 6- = 6- 2 J = l 5.11

tan 91‘ — 93' J“ J 1 — sec 63- ( )

From Eqs.(5.9) and (5.11) we conclude that there exists a ‘11, 0 3 \II < cos—1(n), such
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0.9 0.8 0.7 0.6 0.5 0.4 0.33 0.3 0.25 0.2 0.1

0.387 0.505 0.569 0.588 0.552 0.411 0.0 0.0 0.0 0.0 0.0

 

*
6
:

             
 

Table 5.1. Numerical values of \I’ for various n E (0, 1)

that Eq.(5.1) is always satisfied for W S 1)) < cos—1(n). Using the same procedure in

section 4.5, \II can be numerically computed from the approximate relation

-1 (7r + W)

[1 — 2(ncosy’) —1)/(n2 — 1)] S (77 _ 1W) (5.12)  

Equation (5.12) is very similar to Eq.(4.30) in section 4.5. The difference in sign can

be explained with the help of Eqs.(3.16) and (3.22). As mentioned in section 4.5, the

value of \II can be computed apriori from the value of 7). alone and the data stored in

a look-up table for quick reference. We have provided the value of \II in radians for

specific values of n in Table 5.1 below. We have also shown plots of the left-hand and

right-hand sides of Eq.(5.1) for specific values of n in Figure 5.2. These results match

well with the results in Table 5.1.

Based on the results above, we now state a corollary of Theorem 5.1:

Corollary 5.1 (Parallel of Corollary 4.1) Consider the Sweep-Tuck algorithm

for n E (0,1) and \I! S 1)) S cos—1(n). At the initial time assume 0 < 6 < 77/2, as

required by the Sweep-Tuck algorithm. Let k, k 2 1, be any integer for which the con-

figuration variables (zrk, yk,6k,ak, 6),) define a PW configuration and satisfy Eq.(4.7)

or define a NW configuration and satisfy Eq.(4.11). If for all integer values of j,

j 2 k, the j-th RS maneuver is a CRS maneuver, then (233-, y,-, 6], 63-) —> (0, 0,0,0) as

j —+ 00 and the sphere is completely reconfigured.

Proof: The proof follows directly from Theorem 5.1 and the results above. 0 o o
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Figure 5.2. Angle \II for various values of n E (0, 1)

5.4 Preliminary Sweep Maneuver and Merging

the Expanded Ranges

We use the PPS maneuver to extend the results in Corollary 5.1 with Corollary 5.2

below.

Corollary 5.2 (Parallel of Corollary 4.2) Consider ($0,y0,00,ozo,fio) to be the

initial configuration of the sphere satisfying n 6 (0,1), 0 < 60 < 7r/2, and flu in the

range defined by Eq.(4.7) or (4.11) for subscript k = O. The sphere can be completely

reconfigured using a PPS maneuver followed by repeated application of CRS-DPT

pairs with w E [\II, cos‘1(n)].

Proof: Since 50 satisfies lies in the range given by Eq.(4.7) or (4.11), a PPS maneuver

brings the sphere to a PW configuration with Bl satisfying Eq.(4.7) or a NW configu-

ration with 51 satisfying Eq.(4.11). The complete reconfiguration of the sphere can

now be proved using Corollary 5.1. o o o
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We conclude this section with Theorem 5.2, stated next.

Theorem 5.2 (Parallel of Theorem 4.2) Consider (:vo,y0,60,ao,fio) to be the

initial configuration of the sphere satisfying n 6 (0,1), 0 < 60 < 7r/2, and fig in

the range

(37r — w') (1 - sec 00) 3 B0 3 —(37r — w') (1 — sec 60) (5.13)

The sphere can be completely reconfigured by a PPS maneuver followed by repeated

application of CRS-DPT pairs with w 6 [\Il, cos"1(n)].

Proof: The proof is based on the results of Corollary 5.2 and is exactly similar to

the proof of Theorem 4.2 which is based on the results of Corollary 4.2. o o o

5.5 Simulations

We present simulation results for complete reconfiguration when n 6 (0,1). The

initial configuration of the sphere is chosen as follows:

2325.5 y=1.5 0:1.2 a=7r/2 B225 (5.14)

where the units are in meters and radians. From the definition of n in Theorem 3.1 and

Eqs.(3.2) and (3.3) we obtain n = 0.244. We choose w at 50% of the permissible range

‘11 S w < cos-1(n.) The simulation results are given in Figure 5.3. Figure 5.3(a) shows

the simultaneous convergence of C and F to the origin. Initially fl satisfies Eq.(4.7)

and hence a PPS maneuver sweeps F in a cw sense to the point F1 whereby the sphere

attains a PW configuration. Subsequently, CRS-DPT maneuvers are successively

applied. Figures 5.3(b), 5.3(c), and 5.3(d) illustrate the convergence of 2: and y

coordinates of Q, the convergence of (9, and that of B respectively, to the origin.

Hence, from Eq.(2.14), this leads to complete reconfiguration of the sphere.
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Figure 5.3. Complete reconfiguration: simulation results for n E (0, 1)

In Figure 5.3(b), the linear and curved segments in the :1: and y plots are due to the

DPT and CRS maneuvers respectively. The linear segments are steeper and longer

as compared to those in Figure 4.8(b). This is justified since, for n 6 (0,1), DPT

maneuvers are longer (as can be inferred from Remark 3.2) and in the simulation

we choose to apply a faster angular speed wi’ to execute them. In Figure 5.3(d),

the intervals when fl remains constant correspond to DPT maneuvers. The choice

of higher angular speed for the DPT maneuver is again apparent from the small

intervals. During CRS maneuvers 6 remains constant, as shown in Figure 5.3(c), and
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B changes linearly which is consistent with Eq.(2.16). The PPS maneuver causes

the change of 50 to 61, however 61 = 60, which complies with the definition of PPS

maneuver in Definition 4.4.
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CHAPTER 6

Tuck-Out Maneuver and Special

Cases

6. 1 Tuck-Out Maneuver

From Theorem 4.2 and Theorem 5.2 we know that for completely reconfiguring the

sphere by a PPS maneuver and repeated CRS-DPT pairs, Eq.(5.13) must be satisfied.

Let us define 5 such that

cos‘1(%) for n 6 (1,00)

4 = (6.1)
cos’1(n) for n 6 (0,1)

The range in Eq.(5.13) is a function of w’, and is a maximum when w’ is minimum.

From Eq.(3.20), for a given 72, w’ is minimum when w’ = 6. Thus, the maximum

range of fig, for a given n, is

(37r—§)(1—sec60) 3,60 _<_ —(37r—.f)(1—sec60) (6.2)
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If 1% lies in this range then there always exists a sub-range of w given by

vsw<€ WS

\I1 S ”([3, where Eq.(5.13) is satisfied. Hence if the initial configuration of the sphere

satisfies Eq.(6.2) then the conditions for complete reconfiguration, in Theorem 4.2 or

Theorem 5.2 are satisfied for n E (1, 00) or n 6 (0,1) cases respectively. However, if

,80 lies outside the range of Eq.(6.2), that is, if

lfiol Z (37r — {)(sec 60 — 1) (6.4)

then Theorem 4.2 or Theorem 5.2 are not applicable.

Without any loss of generality we can assume that |fl0| g 77. Let us define 9" such

that

l/3ol = (37r - €)(S€C 9* - 1) (6-5)

Since lflol satisfies Eq.(6.4), therefore 0* > 00. Also, let us define |fi*| such that

|,B*| = (Br — §)(sec 00 — 1)

From the expression of |,[3*| clearly |fl*| g l/30l- In order to satisfy Eq.(6.2), we must

either reduce lfiol to |fi*| or increase 60 to 6*. The former can be achieved by a control

action (B). During the control action (B), recalling Eq.(2.16),

A6 = Aa(1— sec 60)

and if AB is finite, then

AB

lim ———-4— = $00

00—>0 1 — sec 90
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We infer that for a given A6, as 60 reduces Aa increases which leads to greater angular

sweep of F about C. Further, if 60 = 0, this control action becomes ineffective. On the

other hand, a control action (A) can be applied to increase 60 to 6* while maintaining

6 at 60. This is shown below in Figure 6.1. To increase 6, the point C moves away

 

 
Figure 6.1. The tuck-out maneuver

from F. However, we observe in Figure 6.1 that (CF/CO) 76 (C'F/C'O) and hence

the value of n changes during this maneuver. It is therefore incorrect to determine 6*

using the relation in Eq.(6.5), where 5 is a function of n given by Eq.(6.1). However,

we can choose a conservative value of 6* such that

I60] S (37r — {)(sec6* — 1) V n

We set 6 = 325, i.e, n = O or n : 00. Then we have the maximum and the most
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conservative value of 6* for a given 60 as follows

I, _ _ Z * _ * _ _1 2.57r

Idol — (3r 2) (sec6 1) :> 6 — cos (_——2.57r+ lflol) (6.6)

If 60 Z 6* then Eq.(6.2) is satisfied for any value of 77.. Note that [60Hme 2 7r. Hence,

2.

6*max = cos—1 (i) = 0.7752 rad E 44.4153° (6.7)

2.57r + 7r

If 60 < 6*, an initial control action (A) is required. If 60 2 6*, the initial control

action (A) is not required and if in addition 60 2 6*max, then Eq.(6.2) is satisfied for

any 60 and irrespective of the value of n. We observe that the maximum change in

6 during this control action (A) can be A6 = 6*max —— 0 = 44.4153°, which implies a

finite motion and a relatively small distance of travel for the sphere. We define this

special control action (A) below:

Definition 6.1 (Tuck-Out Maneuver) If at the initial time 60 and 60 are such

that 60 < 6*, where 6* is given by Eq.(6.6), a control action (A) is applied to increase

the value of 6 to 6*. We define this control action as the “Tuck-Out” (T0) maneuver.

 

At the end of a T0 maneuver, Eq.(6.2) is satisfied which ensures that the conditions

on 60 in Theorem 4.2 and Theorem 5.2 are satisfied and complete reconfiguration can

be achieved. The effect of the TO maneuver can be understood clearly with the help

of the following illustration in Figure 6.2 which is similar to Figure 4.7. In figure 6.2,

B is initially outside the range VII/2 defined by Eq.(6.2) for the initial conditions. This

will result in B converging to a non-zero value as shown by the trajectory in L1. A

TO maneuver widens the range to W1W2 by increasing the value of 6 to 6*. This

gives rise to a wider enve10pe and causes 60 to lie within it. Further, a PPS maneuver

followed by a sequence of CRS-DPT maneuver converges 6 to the origin, as shown in

trajectory L2.
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Figure 6.2. Convergence of 6 following the TO maneuver

We now state the third reconfiguration theorem which relaxes the condition on 50

in Theorems 4.2 and 5.2 by incorporating the TO maneuver.

Theorem 6.1 (Third Reconfiguration Theorem) Consider the sphere in its ini-

tial configuration (11:0,y0,60,a0,60) with the configuration variables satisfying n E

(0,1) U (1,00), 0 < 60 < 77/2. If 60 lies within the range

(37r—€)(1—sec60) S 60 g —(37r—§)(1—sec60) (6.8)

the sphere can be completely reconfigured by a PPS maneuver followed by repeated

application of CRS-DPT pairs with w E [‘11, f]. If Bo lies outside this range, the sphere

can be completely reconfigured by first applying a T0 maneuver followed by a PPS

maneuver followed by repeated application of CRS-DPT pairs with w E [max(‘Il, 21-2), 6).
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Proof: The proof follows directly from the discussion on the TO maneuver and from

Theorems 4.2 and 5.2. <> o o

6.2 Special Cases

Until now we have considered the cases where the values of n due to initial conditions

satisfy n E (0, 1) U (1, 00). The following special cases arising from initial conditions

on the sphere require initial maneuvers that transform them to the general category

of n E (0,1) U (1, 00) whereby the result established in Theorem 6.1 can be applied

for complete reconfiguration of the sphere. These initial maneuvers for the special

cases are finite in number. The special cases are:

c (4) n : undefined

o (5) 60 > (325 — e) where e is an arbitrarily small number.

6.2.1 Case: n = 1

We categorize our discussion of this special case into two sub-classes. They are:

0 00 < 6*

O 60 Z 6*

If 60 < 6“, we apply a T0 maneuver. This increases the value of 6 from 60 to 6*.

Although the value of it changes during this maneuver, Eq.(6.2) is satisfied for any
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final value of n. Subsequently, with n # 1 and 50 satisfying Eq.(6.2), complete

reconfiguration can be achieved.

If 60 2 6“, we do not require a T0 maneuver. At the same time, from our

discussion in section 3.3 we note that when n = 1, the Sweep-Tuck algorithm can not

be applied for partial reconfiguration. We change the value of n using the following

two steps:

(1) Use control action (B) to make 0, C, F co-linear and in that order.

(2) Use control action (A) to change the value of n.

This is followed by application of the complete reconfiguration algorithm. Since

60 2 6*, Eq.(6.2) is valid. It may be argued here that the action (B) can cause

61, the value of fl after this control action, to go out of the range

(37r — 5) (1 — sec 60) S 613 — (37r — g") (1 —- sec 60) (6.9)

However we note that the sweeping action (B) can be performed in a clockwise or

counterclockwise sense giving rise to two Options and hence two possible values of 61.

This is shown in Figure 6.3. The control action ends with éOCF = 7r. The width of

the permissible range of 61 is

(67r — 2§)(sec 60 — 1) > (6n — 2%)(sec 60 — 1)

> 57r(sec 60 — 1)

The maximum change in B, lAfilmax = 27r(sec 60 — 1), since the maximum angle of

sweep can be 27r. Hence we conclude that of the two options there exists at least one

that keeps [31 within the range in Eq.(6.9).

Next we apply a control action (A) to change the value of n. We consider the

cases 60 > 6“ and 60 = 6* separately. If 60 > 6* we choose to apply a control action
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Figure 6.3. Preliminary control action (B) for n = 1

(A) to decrease 6 from 60 to 6*. This is because besides achieving n # 1 and 61 2 6*

at the end of this control action, we also wish to impose an upper limit on the value

of 6 from where the reconfiguration algorithm is initiated. We impose

awe—e)

where, we can choose 6 to have an arbitrarily small value. As we shall see in our

discussion on stability, the introduction of the upper bound 6am is especially helpful

in proving stability of the equilibrium configuration. Thus, decreasing 6 to 6* ensures

that 61 < 61,-,” since from Eq.(6.7), 6*mam = 0.7752 < 7r/2. On the other hand, if

60 = 6* we increase 6 such that 61 3 (7r/2 — e). We choose 61 as follows

7r/2 — e 7r/2 — e

92kg" wh 1 k<k k —_ =—
1 l. ere < 1 _ 17710.13? Imam 9* am 0.7752

 (6.10)

The choice of k1 is done such that at the end of the control action (A) n 31$ 00.

65



6.2.2 Case: n 2 00

This case implies that initially the point C is coincident with the origin 0 so that

CO = 0 and CF 75 0. This is illustrated in Figure 6.4

YA

F,

C2

 

 x
l
l

Figure 6.4. Preliminary control action (A) for n = 00

As with n = 1, we categorize our discussion into two cases:

0 60 < 6*

O 60 Z 6*

If 60 < 6*, we apply the TO maneuver. This changes the value of n while increasing 6

from 60 to 6*. Subsequently the sphere can be completely reconfigured. On the other

hand, if 60 2 6* we still require an action (A) to change the value of 12. If, 60 > 6*,

the control action (A) decreases 6 from 60 to 6" and if 60 2 6*, the control action (A)

increase 6 from 60 to 61, where 61 is given by 61 = koo6". koo is given by

7r/2—€_7r/2—€
km 2 _

6*max 0.7752

(6.11)

which is the same as klmax defined in the previous discussion on the special case of

n=1.
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6.2.3 Case: n = 0

This special case occurs when the points C and F are coincident, i.e. CF 2 0, and

CO % 0. This implies that 60 = 0. If |60| 75 0 then we require a T0 maneuver to

increase 60 to 6*. Note that, here CF 2 0, hence a can be chosen arbitrarily and the

point C can move in any direction. We choose the direction along OF which makes

C to move toward or away from the origin 0. Consider Figure 6.5, which shows that

C moves either to C1 or to C2. We refer C1 since it ensures that the TO maneuverP

YA

  >
.
v

Figure 6.5. Preliminary control action (A) for n = 0

will not end with a special case of n = 1 or n :2 00.

If initially 60 = 0, we still require a control action (A) to change the value of

n since the Sweep-Tuck algorithm is not applicable to n = 0. This control action

increases the value of 6 from zero to 61, where we choose 61 such that

01: kOIl‘anOl if k0|$07y0| < (% — 5) (6.12)

(g — E) if k0|$07y0| Z (12'- — 6)

where I130, yo! = (#502 + yo2 and k0 is any chosen positive number. Choosing 61 and

hence the control action in this way ensures that 61 S (g — 6). Here again it is
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preferred to move C to C1 to prevent the final n from going to n = 1 or n = 00.

6.2.4 Case: n undefined

This case occurs when C, F and the origin 0 are coincident but 60 75 0. We apply

a T0 maneuver to increase 6 from zero to 6*. Since a is arbitrary, C can move any

arbitrary direction as shown in Figure 6.6. Also, note that after the TO maneuver,

YA

[37:0

fl3

y<9

CI

>
<
V

 

Figure 6.6. Preliminary control action (A) when n is undefined

we have n = 1 and hence the steps described in subsection 6.2.1 are applied to change

72. from unity.

6.2.5 Case: 60 > (725 —- e)

We have mentioned before that we restrict 6 to 6 g (g — 6). Consider the case when

60 > (g — c). This shown in Figure 6.7 below. A preliminary control action (A)

is applied that simply decreases 6 from 60 to 6;,asz: g 6 g (g — 6). Since after the

control action (A), 6 Z 6*max, hence we do not require a subsequent TO maneuver

after this control action. The choice of final 6 is made so that at the end of the

preliminary control action, the special cases of n = 0, n = 1, n 2 co, and undefined
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YA

 

  

Figure 6.7. Configuration of sphere showing the case when 60 > (g — e)

n are avoided.

6.3 Complete Reconfiguration Algorithm

In this section we assimilate the third reconfiguration theorem for n E (0, 1) U (1, 00)

and the special cases in the form of a flow diagram as shown below. This flow diagram

takes into account all possible initial conditions and gives a detailed illustration of

how the complete reconfiguration algorithm functions. The preliminary maneuvers

for the special cases are designed such that the special cases are transformed to the

general category in finite number of control actions. The thicker lines in Figure 6.8

Show the flow diagram for the general category of n E (0, 1) U (1, 00).

We now categorize all possible configurations of the sphere into finite number

of “states” or configuration sets. We denote the vector of state variables by X =

[12, y, 6, a, 6], noting that X E R5. We categorize the configuration sets as follows:

(1) 51 : {X | :1: = y = 6 = 6 = 0} : Equilibrium configuration.
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tomake8=k6* Pw' O'Nw'

k > 1 configuration?
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: Converged ?
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Figure 6.8. Flow diagram of the complete reconfiguration algorithm
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(2) S2 : {XIQZr/Q}

(3) 53 : {X|6<6* <7r/2, nE (O,1)U(1,oo)}

(4) s4 : {xlw £6<7r/2, 716(0,1)U(1,oo)}

(5) 55 : {XInzO}

(6) s6 : {X|n=1}

(7) 57 = {Xln=00}

(8) 58 : {xm undefined}

Based on the definitions of the configuration sets 51 through 5'8 we can readily infer

that

SlUSQUS3US4US5USGUS7USB=R5

The objective of complete reconfiguration is to drive the sphere from any on the

configuration sets to 31. It can be verified by the reader that with finite and few

transitions between the configuration sets S2 through SS, the sphere achieves conver-

gence to the equilibrium state given by 51. All possible transitions from individual

states to the equilibrium configuration 51 are illustrated in Figure 6.9. It is clear from

Figure 6.9 that the intermediate states in transitions depend on the initial configu-

ration set to which the sphere belongs. Moreover, the number of transitions to reach

the equilibrium from any configuration set is finite and do not lead to any infinite

loop. The expressions indicated between transitions are the conditions under which

those transitions take place. For example, when the sphere is initially at state S3,

the TO maneuver leads to either S4, S5, or 57 with 6 = 6* at the end of the tran-

sition. Whereas S4 automatically leads to 51 in the following transition, S5 and S7

first change to S4 due to the condition 6 = 6*, which further transitions to SI.
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Figure 6.9. Diagram illustrating possible transitions from any initial configuration

set to the equilibrium
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6.4 Simulations

6.4. 1 Tuck-Out Maneuver

We present simulation results to illustrate the TO maneuver followed by complete

reconfiguration. The initial configuration of the sphere is chosen as

51:21.0 3120.4 620.7 020.5 62—30 (6.13)

where the units are in meters and radians. From the definition of n in Theorem 3.1

and Eqs.(3.2) and (3.3) we obtain 71 2 0.545. From Eq.(6.6), we obtain 6* 2 0.76

and hence by Definition 6.1 an initial TO maneuver is necessary. The necessity of

T0 can also be confirmed by checking that Eq.(6.2) is not satisfied for the chosen

initial conditions of this simulation. This is shown in the simulation results given in

Figure 6.10.

In Figure 6.10(a) the TO maneuver can be identified as the motion of c to C1 with F

remaining unchanged during the maneuver. This is followed by the PPS maneuver

when C is fixed and F sweeps to F1. Subsequently, the CRS-DPT pairs converge

C and F simultaneously to the origin. Figure 6.10(b) shows the convergence of :1:

and y coordinates of the center of the sphere Q to the origin. In Figure 6.10(c) the

TO maneuver is best illustrated through the initial increase of 6 to 61. Although

6* 2 0.76, we increase 6 to 1.16* 2 0.84. The extra increment is to ensure that

Eq.(6.2) is not satisfied just marginally and is helpful for computational purposes. 6

remains unaltered during the TO maneuver, as shown in Figure 6.10(d). At the end

of the TO maneuver, the value of n changes to 2.111. With n 2 2.111 and 6 2 0.76

we can verify that Eq.(6.2) is satisfied. We choose 16 at 20% of the permissible range

‘11 S w < cos“1(1/n) for completely reconfiguring the sphere.
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Figure 6.10. Tuck-Out maneuver and complete reconfiguration

6.4.2 Special Cases

We present simulation results to show complete reconfiguration from special cases.

The first simulation has an undefined n as the initial condition. The initial configu-

ration of the sphere is

:2: 2 0.0 y 2 0.0 6 2 0.0 a 2 arbitrary 6 2 3.0 (6.14)
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where the units are in meters and radians. This configuration implies that initially C

and F are at the origin but 6 is non-zero and hence the sphere is partially reconfigured.

From Figure 2.2 we observe that a is the angle formed by the line CF with the :1:

axis. In this special case since C and F are coincident, a is initially arbitrary. The

simulation results are shown in Figure 6.11.
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Figure 6.11. Complete reconfiguration from the special case of undefined n

In Figure 6.11(a) C and F are initially at the origin. a is arbitrarily chosen as
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71/4 and a control action (A) is applied which increases 6 from zero to 0.84 and C

moves to C1 as shown in Figure 6.11(c) and Figure 6.11(a) respectively. For | 6 | 2 3.0,

the value of 6* is 0.76 from Eq.(6.6). We modify the TO maneuver to increase 6 to

1.1 6* 2 0.84 instead of 6*. This helps in computation and maintains the stability

of the equilibrium. At this stage the configuration of the sphere is transformed to

the special case of n 2 1 with 6 > 6* since F continues to lie at the origin and

6*(2 0.76) < 0.84. Now 0, C and F are made co-linear and in that order using a

control action (B) as mentioned in section 6.2.1. This sweeps F about C1 to the point

F1. Since 6 > 6*, a control action (A) is applied that decreases 6 to 6* and the point

C1 goes to C2 as shown in Figure 6.11(a). This changes the value of n from unity to

0.54. Now 11/) is chosen as 0.7 which lies in the range 212 E [max(\Il,16),§). The rest

of the simulation proceeds similar to the general category of n 6 (0,1) U (1, 00) by

applying a PPS maneuver followed by a series of CRS-DPT pairs. The convergence

of a: and y, 6, and 6 are shown in Figures 6.11(b), (c) and ((1) respectively. 11:, y, and

6 converge back to zero from their initial values of zero and in the process 6 is driven

to zero resulting in complete reconfiguration from an initial partially reconfigured

condition.

Next we present a simulation where initial conditions lead to the special case of

n 2 0. The initial configuration of the sphere is

:1: 2 0.5 y 2 0.5 6 2 0.0 a 2 arbitrary 6 2 —3.0 (6.15)

where the units are in meters and radians. This configuration implies that initially

C and F are coincident and hence, from Figure 2.2, a is initially arbitrary. The

simulation results are shown in Figure 6.12.

In Figure 6.12(a), initially C and F are coincident. A control action (A) is applied

that increases 6 from zero to 0.84 as shown in Figure 6.12(b). Similar to the previous
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simulation, the initial TO maneuver is modified to increase 6 to 1.16* and hence

the final value of 6 after TO maneuver is 0.84 instead of 0.76 which is the value of

6* for |6| 2 3. The point C moves to C1 during this control action, and results

in n 2 0.63. 1/2 is chosen as 0.667 which lies within the range 16 E [masc(\I/,z/3),£)

for n 2 0.63. A PPS maneuver is applied that sweeps F to F1 and subsequently a

sequence of CRS-DPT pairs converges the states :13, y, 6, and 6 to zero. This is shown

in Figures 6.12(b), (c) and (d).
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Figure 6.12. Complete reconfiguration from the special case of n 2 0
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Finally we present a simulation where initial conditions lead to the special case of

n 2 00. The initial configuration of the sphere is

:1: 21.5 y = 0.0 6 = 0.98 a = 0.0 6 = —3.0 (6.16)

where the units are in meters and radians. The simulation results are given in Fig-

ure 6.13. With this initial configuration, the point C coincides with the origin as
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Figure 6.13. Complete reconfiguration from the special case of n 2 oo
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shown in Figure 6.13(a). The value of 6* for |6| 2 3.0 is 0.76 and hence initially

6 > 6*. Hence an initial TO maneuver is not necessary. Instead a control action (A)

is applied that decreases 6 to 6* as shown in Figure 6.13(c). The point C moves to

C1 in Figure 6.13(a) and the value of n changes from infinity to 0.59. The angle 16 is

chosen as 0.6 which lies within the range ([2 6 [7116133011, 26), g) for n 2 0.59. With these

values of n and 1/2 a PPS maneuver is first executed followed by a sequence of CRS-

DPT pairs for complete reconfiguration of the sphere as shown in Figures 6.13(b),

(c), and (d).
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CHAPTER 7

Stability Analysis

7.1 Modified Governing Equations

In this chapter we shall prove that the equilibrium configuration given by Eq.(2.14)

is stable under the complete reconfiguration algorithm developed in the previous

chapters. The notion of stability adopted here is the following: The equilibrium

configuration of the rolling sphere is considered stable if there exists a constant K

such that

IIX llgsKllXo H2 v we (7.1)

where X is the state vector and in our case, from Eq.(2.14), we have

X 2 [1),y,6,6]T (7.2)

X0 is the arbitrary initial state vector, and H X ||2 represents the two-norm of X given

as follows

 

H X “2 = «5:2 + ’62 + 92 + 132 (7.3)

The analysis of the stability of the equilibrium using the state vector given in Eq.(7.2)

is complex and hence we propose a transformation to an equivalent system of equa-
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tions. The modified governing equations, discussed below, greatly facilitate in proving

stability of the equilibrium configuration.

From Eq.(2.14) we observe that both :1: and y are simultaneously driven to the

origin under the repeated sequence of CRS—DPT maneuvers and the preliminary

control actions discussed before. Hence effectively, the distance of the sphere center

from the origin given by

r = (11:2 +312)

is driven to zero. In the modified system we replace a: and y by their polar coordinate

counterparts 'r and a, where

:132rcosa, y2rsino (7.4)

However, instead of considering the states 7' and 0 in place of :1: and y we consider

the states R (2 7'2), 0. This can be done without any loss of generality since r 2 0.

Moreover, in the new governing equation we consider the states 9 (2 62), a, 6 instead

of 6, a, 6. Again, this is done without any loss of generality since in our Euler angle

representation of the sphere orientation, 0 g 6 _<_ 71, as mentioned in section 2.1. This

leads us to the following states for the modified system of equations

R, 0” 9) a’fl

We now show the derivation of the modified system equations from the original equa-

tions of motion given in Eqs.(2.9), (2.10), (2.11), (2.12), (2.13). Multiplying Eqs.(2.9)

and (2.10) by x and y respectively and adding, we have:

(7‘2) 2 (.2: sin 01 —- y cos aha; + (SE cos ()1 + ysin aha; (7.5)
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Hence using Eq.(7.4), Eq.(7.5) can be written as

(1
EU?) 2 2r (sin(a — 0M; + (303(0 ‘ 0W6)

To write the equation of motion in a we have

:17 2 rcosa 2> 3': 2 rcosa — rsinad

which upon simplifying, results in

1

rd 2 — cos(a —- (7)612; + sin(a - (1)6123]

The modified governing equations are as follows:

R = 2\/F {sin(a —— o)w.,1, + COSW - 0W6}

. 1 1 - 1
02— —cosoz—0wr+sma—0wfi{ ( ) ( ),

C22féw;

62—w;cot\/C

- K9
_ 1

6—than 2

From Eq.(2.14), the equilibrium configuration for the transformed system is

(7.7)

(7.10)

(7.11)

(7.12)

(7.13)

and retaining the notion of stability in Eq.(7.1), the resulting state vector for stability

analysis is

x = [12, e, filT
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7.2 Stability of Equilibrium under PPS followed

by CRS-DPT sequence

We first prove stability of the equilibrium configuration in Eq.(7.13 under the Sweep-

Tuck algorithm consisting of a PPS maneuver followed by CRS-DPT pairs. We

assume that the parameters 71 and 1b are such that 50 and 60 satisfy Eq.(6.2) and (,0

satisfies (1; 6 [\Il,€) F) M, g). This is when the TO maneuver, if necessary, is already

performed and n E (0, 1)U(1, 00). Considering Figure 7.1, applying triangle inequality

  

y A Q

/

/

F 9

tan(9) - e

C

o i

Figure 7.1. Typical configuration of sphere used to illustrate the triangle inequality

for AOCQ

we have

0Q g 00 + CQ (7.15)

Let us consider a CRS-DPT pair in which the DPT maneuver causes the point

C to move to C’, as shown in Figure 7.2. Let us consider an intermediate point C1
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(a) (b)

Figure 7.2. Variation of 0C during a DPT maneuver

between C and C’ during the DPT maneuver where ZOCCI 2 1m. In Theorem 3.1

we have established that 112/ > 2». Hence we infer that

(17> $1 > w (7.16)

Also, from Eq.(3.17) we have

sin ([2! > sin (b (7.17)

since OC’ < 0C. From Eqs.(7.16) and (7.17 we conclude that that

sin $1 > sin 11) (7.18)

From Figure 7.2 we can write

OCI sin 1,01 2 0C sin 11’)
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Hence we conclude from Eq.(7.18) that 0C1 < 0C. Thus, during a DPT maneuver,

0C continuously decreases. During a CRS or a PPS maneuver 0C remains constant.

l\-"Ioreover, in a sequence of CRS-DPT maneuvers, the distance 0C at the beginning of

each CRS-DPT pair decreases in a geometric progression as established in section 3.2.

Hence we infer that at any time during a PPS maneuver followed by a CRS-DPT

sequence

00 < och:0 (7.19)

where t 2 0 represents the initiation of the PPS maneuver. Consider the distance

CQ given by CQ 2 tan 6. At any arbitrary point C1 between C and C’, as shown in

Figure 7.2,

C'F < CF 2 (AF < CF

Therefore, upon denoting the angle 6 at C and C1 as 6 and 61 respectively, we infer

that at any arbitrary C1, 61 < 6. Hence,

tan 61 < tan6 => ClQ < CQ

Moreover, 6 remains constant during a CRS or a PPS maneuver and hence we infer

that during a PPS maneuver followed by a sequence of CRS-DPT pairs,

CQ < CQIH) (720)

Hence, combining Eqs.(7.15), (7.19), and (7.20) we have,

062 s 001.20 + 0621.20 (7.21)
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From triangle inequality we also have

OCltzo S OQlt20 + CQltzO (7-22)

Combining Eqs.(7.21) and (7.22) we have:

0Q S OQltz0 + 2 CQlt:0 (7.23)

Now,

0Q = 1:22.11 (= \/—+y—) , 0%, = 1% yo), and CQI.=0 = taneo

Hence from Eq.(7.23) we have

|:L', yl 3 I130, yol + 2 tan 00 (7.24)

As mentioned before, we invoke the reconfiguration algorithm only when 6’ 3 (—’2E — 6).

Also, considering that 6 never increases during a Sweep-Tuck algorithm, we write the

 

following

2 tan 00 g (977171190 where knm 2 2ta217r(/772/2 86)

Therefore,

I173: yl S IIO: yol + kmaxgo (7.25)

Also,

0 g 00 (7.26)

During a PPS maneuver or a sequence consisting of CRS-DPT pairs, change of B
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occurs only during a PPS or a CRS maneuver. During a PPS maneuver we have,

Ifil S (377 — wl)(sec 60 — 1) => l/3l g 377(sec 60 — 1) (7.27)

and considering the k-th CRS maneuver we can write

[5| 3 (37r — 1/2I)(sec 6k — 1) 2> |/3| g 377(sec 6k — 1) (7.28)

Since 0,, < 60 we can combine Eqs.(7.27) and (7.28) to write

(Bl S 3W(SEC 60 — 1)

from which write the following

lfil S cma$9§ (7.29)

where,

sec6—1

02

cm” 2 377

 27r/2—e

1 5

2 — —6l2377 (2+24 + )

 0:7r/2—6

From Eq.(7.25) we write

(2:2 + y2) g 2 (2:3, + yfi) + 2113,,”63

2 (~732 + 92V S 8(933 + :73)2 + 817371.193

2 r4 S 871‘; -I-8k4
'maa:

93 (7.30)
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Combining Eqs.(7.26), (7.29) and (7.30) we have

74 + 6“ + B2 s (81!:4 + cg,” + 9) [73 + 193 + W]
17101?

 

:> ITQ’OQWBI S \/8k;1naa: +672na2: +9|T37637160l

 

2 IR, 9,31 3 78/7... + at... + 9117033501 (7.31)

We write the following for a PPS maneuver followed by a sequence of CRS-DPT pairs

lRaeafil S Kseq lR01909fl0| (7.32)

This proves the stability of the equlibrium under the Sweep-Tuck algorithm consisting

of the PPS maneuver and a sequence of CRS-DPT pairs where the sphere motion is

represented by the modified system of equations in Eqs.(7.8) through (7.12).

7.3 Stability of Equilibrium under TO Maneuver

Next we consider the stability of the equlibrium under the TO maneuver. The T0

maneuver is a preliminary maneuver that is applied before the Sweep—Tuck sequence

if 60 < 0*. The maneuver increases 6 from 00 to 0* as shown in Figure 7.3. From

triangle inequality,

IOQ’I S mm + lQQ’l => l$1yl S l$0,yol + 9* — 90 => ICCJJI S l$07y0l 479*

(7.33)

Also, during a T0 maneuver,

6 g 9* and 73 = a, (7.34)
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V 

Figure 7.3. Triangle inequality on AOQQ’: TO maneuver

Now, from Eq.(6.6)

3 1
If Ol 6:112 l

24

[,80 2 2.577 (sec 0* — 1) 2.5” — 2

Hence, from Eq.(7.34) we can write

4

92 S —5 lfiol
77

From Eq.(7.33) we have

. 4 2
7'4 g 876 + 8 (377) 53

Combining Eqs.(7.34), (7.35), and (7.36), we have the following

4 2

IT2’62’flIS3 1+(EE) l7g’639/80lleaeafllS3
1+( )

89

5 4
0*4 + => 9*? g ——|)30|

577

(7.35)

(7.36)

|R07 90) 60'



Thus the equilibrium configuration is stable under the application of a T0 maneuver.

We write the following for a TO maneuver

IR) 69 [3| S KTO IR07901BOI (737)

7.4 Stability Analysis for the Special Cases

The special cases described in section 6.2 involve preliminary maneuvers that change

the value of n. We now prove the stability of the system under the application of the

initial maneuvers when 60 Z 0* for the special cases.

7.4.1 Case: n 2 1

When 00 2 0*, we initially apply a control action (B) to align the points 0, C and

F as discussed in section 6.2.1. For this control action we can write Eq.(7.25) which

can be simplified to Eq.(7.30). Also, during control action (B)

0 2 60 (7.38)

Here we consider 90 2 0* and hence

lfiol S 377(sec 90 — 1)

as shown in section 7.2. We have shown in section 6.2.1 that this control action (B)

maintains 8 within the same range, that is, for any 5 during the control action (B)

we can write

|/5’| S 377(sec 60 — 1) 2> |fi| g cmaxflg (7.39)
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from Eq.(7.29). Combining Eqs.(7.30), (7.38), and (7.39), we have the following

 

IR’ 9’6l S \/8k71710,1' + 6727101: + 9 IRO’ eo’flol

Thus, the equilibrium is stable under the initial control action (B) when n 2 1. Next

a control action (A) is applied to change the value of 71.. As discussed in section 6.2.1,

if 60 > 6* we decrease 6 from 60 to 6*. Applying triangle inequality we have

737‘04-60—6‘2>r§ro+602>74§873+863 (7.40)

Also since 6 decreases and 13 remains unchanged, we write

6 S 60 and ,3 2 50 (7.41)

Combining Eqs.(7.40) and (7.41) we can show that

lRagafil _<_ 3lROaGO1f30l (7'42)

Thus the equilibrium is stable under the preliminary control action (A).

Now we consider the case when 60 2 6*. In this case the control action (A)

increases 6 from 6* to 1316* as mentioned in section 6.2.1. Applying triangle inequality

we have

7‘ S 7'0 + [£16.11 — 6* i 7' E To +(k1—1)60 => 7‘4 S 87": + 8(k1—1)463 (743)

Also since 6 reaches a maximum of 17160 and )6 remains unchanged, we have

6 S [C160 and ,8 :- 50 (7.44)
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Combining Eqs.(7.43) and (7.44) we have

 

Ute/3| _<_ \/3(/.-, — 1)“ +6: ”1120.90.60! (7.45)

Thus, the equilibrium is stable under the preliminary control actions required for the

special case of n 2 1. We observe that there can be two pairs of preliminary control

actions:

(1) Sweep followed by a decrease in 6 (if 6 > 6*): For this pair, we can write

 

IR, 9, 6| 3 3\/8k4 + cam, + 9 mo, 90, 60| (7.46)
max

which is written as

leehfil S KdecllR01601fi0l (7.47)

(2) Sweep followed by an increase in 6 (if 6 2 6’“): For this pair, we can write

 

 

|R,@,6| g \/8(k1—1)4 + 63 +9 631.3%, +63%, + 9|R0,(-)0,/30| (7.43)

which we write as

IR, eafil S Kinc1|R01601180| (7-49)

7.4.2 Case: n 2 00

This special case involves a single control action (A) that either decreases 6 from 60

to 6* if 60 > 6* or increases 6 from 6* to 1616* if 60 2 6*. The proof stability of the

equilibrium under these control actions are similar to those for the n 2 1 case and

hence are not repeated here.

During the control action (A) that decreases 6, we obtain Eq.(7.42). Denoting
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Kdecoo 2 3, we have

IR.@,6| 3 K38... IRo,@o,fiol (7.50)

Similarly during the control action (A) that increases 6, we obtain Eq.(7.45). Denot-

 

ing Kim” 2 \/8(k1 — 1)4 + k? + 9, we have

lRaea/Bl S Kincoo IRanOaIBOI (7-51)

7.4.3 Case: n 2 0

In this case lzro,y0| 2 O and 60 2 0. When 60 75 O, a preliminary TO maneuver is

applied and the stability of the equilibrium under this maneuver has already proved

in section 7.3. Here we consider the case when 60 2 0. The change in 6 due to the

initial control action (A) is based on the value of 70 as explained in section 6.2.3. We

have the following relations

0 S koTo and ,8 = ,80 (7.52)

where 160 is defined in section 6.2.3. Also, from triangle inequality we have

T S 7'0 + koTO — 60 Z} T’ S (k0 +1)7'0 (since 60 = 0) (7.53)

Combining Eqs.(7.52) and (7.53) we can write the following

 

|R,e,6| 3 \/(ko +1)2 + k3 |R0,(-)0,60| (7.54)

93



This proves the stability of the equilibrium under the preliminary control action (A)

 

in case of n 2 O. Denoting K0 2 \/(k0 + 1)2 + k3 we have from Eq.(7.54)

IR, QBI S K0 lR01901fi0l (7-55)

7.4.4 Case: n 2 undefined

The initial control action (A) for this case is a T0 maneuver that takes 6 from zero

to 6*. The stability of equilibrium under this TO maneuver is discussed in section 7.3

and is not repeated here. This TO maneuver leads to an n 2 1 case which has been

discussed above.

7.4.5 Case: 60 > (g — e)

In this case we apply a control action (A) to decrease 6 from 60 to 6, 5 (77/2 -— 6).

From triangle inequality we have

7 3 "7'0 + (60 — 6,) 2> r 3 7‘0 + 60 (7.56)

Also, since 6 decreases and 6 remains constant during the control action (A), we have

6 S 60 and 6 2 60 (7.57)

Hence, from Eqs.(7.56) and (7.57) we can write

lR1916lS 3lR01901430l => lR1915l S K0 l30190450l (7-58)

This proves the stability of the equilibrium under the initial control action (A) applied

when 60 > (77/2 — e).
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7.5 Stability of Equilibrium under Complete Re—

configuration Algorithm

In Figure 6.9 we have shown all possible state transitions of the sphere to the equilib-

rium from arbitrary initial conditions, where the states 31 through Sg are explained

in section 6.3. In the sections above we have established stability of the equilibrium

for each of the elementary transitions. This was done by deriving the expressions of

the constant K, given in Eq.(7.1), for each transition. In this section, we first asso—

ciate each transition with their corresponding values of K. This is shown with the

help of Figure 7.4. In the process of complete reconfiguration the sphere undergoes

a series of transitions to different configuration sets before it ends at the equilibrium

configuration. Consider the case in Figure 6.9 when the sphere initially belongs to the

configuration set S3 and transitions through 56, S4 and finally reaches the equilibrium

configuration S1. For this series of transitions we have from Figure 7.4

IR: 9175' S KTO Kincl Ksequ01901fi0l

We denote

K32 : KTO Kincl Kseq

since the starting configuration is 5;; and it is the second series of transitions for 83.

Proceeding similarly, we determine the constants K’s for all series in Figure 7.4 as

follows

511 K1121 SQ: K21=K0Kseq

K31 : KTO Kseq

S3: K32 : KTO Kincl Kseq S4: K41 : Kseq

K33 = KTO Kincoo Kseq
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S52

S72

Let us denote

,

A max :

 

1‘51 : ATO Aseq

Se:

K52 : K0 Kseq

K71 : KTO Kseq

K72 : Kincoo Kseq

K73 : Kdecoo Kseq S8 2

K74 : Kdecoo Kincl Kseq

K75 : Kdecoo I(0 Kseq

 

K61 = Kdecl Kseq

K62 = KTO Kseq

K63 = Kine] Kseq

K64 = KTO Kincoo Kseq

K65 = Kdecl K0 Kseq

K81 : KTO Kseq

ma..r{K11, K21. K311K321K33, K411K511K52,

K619hf6‘29K631 K647K651K71)K729K739K747K751K81}

Thus, for the complete algorithm we have

IR) 9: 6' S KmazrlROv @0178”
(7.59)

This implies that for any arbitrary initial condition of the sphere the equilibrium

configuration is stable under the complete reconfiguration algorithm by satisfying the

Eq.(7.59).
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Kseq Kse ' K0 Kseq

  

Kseq Kseq

Figure 7.4. The constant K’8 associated with each transition
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CHAPTER 8

Conclusion

Research on the feedback stabilization of nonholonomic systems has gained popular-

ity over the recent years. Although, nonholonomic systems cannot be stabilized by

smooth static state feedback, alternative control strategies have been implemented

for systems that can be reduced to the chained form. These control strategies fail

for nonholonomic systems that cannot be reduced to the chained form. The rolling

sphere belongs to this category of nonholonomic systems. The problem has been ad-

dressed by few researchers without much success. A feedback law for stabilizing the

sphere to an equilibrium has remained elusive from literature.

In this dissertation we address the problem of reconfiguring a rolling sphere to an

equilibrium configuration from arbitrary initial conditions using state feedback. The

kinematic model of the sphere consists of two Cartesian coordinates and three Euler

angles representing the position and orientation of the sphere respectively. Within this

choice of coordinates we define two control inputs that are mutually perpendicular

angular speeds. The control inputs are defined in the moving coordinate frame of

the sphere. The control inputs individually lead to two control actions that cause

the sphere to move in linear or circular segments. These control actions form the

basis of our proposed feedback control strategy. The feedback law essentially applies

these control actions alternately in a sequence for stabilization to the equilibrium.
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We identify two points C and F based on the geometry of motion under these control

actions. The points C and F defines the configuration of the sphere partially. The

individual control actions either cause C to move rectilinearly or F to move in a

circular arc about the center C.

We first address the problem of partial reconfiguration of the sphere. In partial

reconfiguration, convergence of one of the orientation coordinates is ignored. Partial

reconfiguration is shown to be equivalent to converging the points C and F simul-

taneously to the origin. Based on the geometry of the motion of the sphere under

the two control actions, we define the DPT and RS maneuvers. Repeated application

of an RS-DPT pair leads to partial reconfiguration and this forms the Sweep-Tuck

algorithm. The ratio n 2 CF/C0, is an important element in the development of the

Sweep-Tuck algorithm. Our analysis categorizes the n E (O, 1) and n E (1, 00) cases

in the general category. Cases such as 77. 2 O, n 2 1, n 2 00 are treated separately.

The special cases require certain preliminary control actions that transform them into

the general category of n 6 (0,1) and n E (1, 00).

Complete reconfiguration also requires convergence of 6 to the origin and we wish

to utilize the Sweep-Tuck algorithm to attain this additional objective. The Sweep-

Tuck algorithm allows multiple trajectories of the sphere between its initial and final

configurations. This is due to the flexibility of executing the RS maneuver in each

RS-DPT pair. The RS maneuver provides quadruple options each of which leads to a

different change in the value of 6. We propose a method of choosing among the four

RS options such that the selected RS maneuver leads to the minimum magnitude of 6.

We call this the CRS maneuver. Thus the complete reconfiguration algorithm consists

of a series of CRS-DPT pairs. We deduce two conditions that must be satisfied for

complete reconfiguration, of which one is a range condition that must be satisfied by

the initial value of 6 and the other is an inequality condition that must be satisfied at

each CRS-DPT pair. we further show that the inequality condition is not restrictive
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and can be satisfied for any value of n E (0, 1) U (1, 00).

If the range condition on 6 is not satisfied initially, we propose to perform the

TO maneuver, at the end of which the range condition is satisfied. Subsequently the

sphere can be completely reconfigured using CRS—DPT pairs. The T0 maneuver and

certain other preliminary maneuvers are required to transform the special cases to

the general category. These preliminary control actions maintain the stability of the

equilibrium. The reconfiguration algorithm, consisting of the preliminary maneuvers

and the main sequence of CRS-DPT pairs, is shown to stabilize the equilibrium under

the proposed feedback law.
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APPENDIX A

Proof of Inequality 3.21

First consider the case 71 6 (1,00). Using Eq.(3.19) and the trigonometric identity

tan(A -+— B) 2 [tan(A) + tan(B)]/[1 — tan(A) tan(B)], we obtain

sin (21/1) — 2n sin 1/2

t ' ' ' =
an(1,L + 4)) n2 + cos (21/1) — 2n cost/1

 (A.1)

Taking derivative with respect to 11’), we get

2 [1 + 2n.2 —- 71(3 + 71.2) cos 1]) + n2 cos (216)]

[n2 + cos (21,0) — 2n cos 1,19]2

 

d

—(w + 11") = c0826) + 11’) (A2)
d4}

We show that the right hand side of the above equation is negative as follows

1+ 271.2 + n2 cos (21.6) < 71(3 + n2)cos1/J 4:) 2(712cos2 1/2 — 1) < (3 + n2)(n c0316 — 1)

4:) 2(ncos112—1— 1) < (3+n2)

«22> 2ncos1/J < 1 +712

42> (1 — n)2 > 0 (A.3)

In the above derivation we used the inequality (71 cos1,/) — 1) 2 0 from Eq.(3.5). For

n E (0, 1) we have

712 sin (21,6) — 271. 811116

712 cos (21p) — 2n cos 6) + 1

 tan(16 + 16') 2 (A.4)

and the following expression for the derivative

_d_
(11/)

2n [—(1 + 3712) cos 4 + (cos (29) + 2 + 72>]
2 ’ A.

[n2 cos (24/2) - 27). cos .1 +1]? COS (1/2 + 1/2 ) ( 5)(w + 71’) =
 

Using the inequality (cos 1)") — n) 2 0 from Eq.(3.5), the right hand side of the above

equation is shown to be negative as follows

n(cos(216) + 2 +712) < (1+3n2)cos1/) 4:) 271(cosz1p — 712) < (1 +3n2)(cos16 — 71.)

42> 2n(cos1/1+n.) < (1 +3712)

<:> 2ncos1/J <1+712

42> (1 — 71)2 > 0 (A6)

102

  
 



Clearly, the function (16 + 1/2’) is a monotonically decreasing function of 1,0 for n E

(1, 00) U (0,1). Furthermore, from Eq.(3.19) we can show that 16’ 2 77 when 16 2 0

and hence the function (1/) + 111’) has a maximum value of 77 at 1/2 2 0. This proves the

inequality in Eq.(3.21).
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