
,{93‘. h

.
1

2
.
.
n
e
w
,

.
.

4
.

t
!

v

.
(
5

m
g
r

n
1
3
:
.
1
.

z
.

,
.
a
?

.s
«
:
3
.

.

.
3
.
.
.
.
2
3
?

u
A
n
x
i
g
u

..
swan...

.
2
«
.
1
8
.
?

,
1

.
2

.
.

.
a

.
.

V

.
..

«
h
i
m

.
‘

E
a
k
m
a
a
fl
.

.
4
:
”
:
a
?

{
.

.4
.
.

,
n
:

:
1
7

:

.

.
.

.
.

.
:

V
“
.
9
7
.
.
.
.

“
w
a
r
y
.

.
.

“*Efilij ,

E
1

Q '
-
J

L
r

LIBRARY

MiChlgcie .3 late ».

University '

This is to certify that the

dissertation entitled

VIRTUAL NETWORK PORTS

presented by

Vibhavasu Vuppala ,

has been accepted towards fulfillment T

of the requirements for 1

Ph.D. . Computer Science

degree in

fiajor professor ‘

22 August 2002 i

Date

MSU is an Affirmative Action/Equal Opportunity Institution 0- 12771

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/01 cleIRC/DateDue.p65-p.15

VIRTUAL NETWORK PORTS

By

Vibhavasu Vuppala

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2002

ABSTRACT

VIRTUAL NETWORK PORTS

By

Vibhavasu Vuppala

The sudden growth of Internet has exposed some of the problems with its architecture:

forwarding performance, traffic engineering, and quality of service. We address these

issues through the concept of a Virtual Network Port (VNP), which enables bypassing .of

the network layer, identifying traffic flows, and providing explicit routes. A VNP is an

abstraction for a set of remote network interfaces. We have applied this simple concept to

implement layer-3 switching. A VNP provides a conduit below layer-3 to remote nodes

and networks. Traffic through a VNP can be shaped, policed, encrypted etc.; a VNP’s

control procedure provides for generic packet processing. VNP paths are setup implicitly

by routing protocols, or explicitly based on QoS constraints. VNP domains are arranged

in a hierarchy to provide scalability at the core of an intemetwork. We compare VNP

with Multi-Protocol Label Switching (MPLS) quantitatively using simulation. Packets

through a VNP across multiple networks do not require fragmentation. VNP framework

is conceptually simpler, has better semantics, and is more efficient than MPLS. VNP has

applications in other domains as well; we describe the design of a scalable IP router using

VNP.

Copyright by

Vibhavasu Vuppala

2002

To Advaith

iv

ACKNOWLEDGMENTS

Words can never describe my sense of gratitude for Prof. Lionel M Ni. He helped me

when I was down, depressed, and discouraged. He believed in me when even I had lost

faith in myself. He was always there to guide me on technical and non—technical issues.

He is the best teacher I have ever had, and perhaps the best person I have ever known.

These few sentences are not good enough for what I want to say, but then nothing in

words would ever be.

I thank Dr. Matt Mutka and Dr. Richard Enbody for their guidance and support

throughout the academic program. I thank Dr. John Eulenberg for his inspirational work.

I am grateful to Dr. Anil Jain, Dr. Abdol Esfahanian, and Dr. Betty Cheng for their

support. I thank Hong Xu for suggesting the seminal idea of scalable IP routers.

I thank Quantech Global Services for supporting me financially, and providing me

with a flexible work environment without which this work would not have been possible.

I am very grateful to Dr. Mukesh Gandhi and Mala Gandhi for supporting my family

through the ebbs and flows of life. I thank my friends, Nateswara Rao Dhavala,

Ramakrishna Dhulipala, Amit Midha, Geetha Ramamurthy, Raja Sunderraman, Giri

Tiruvuri, Srinivas Tumbalam, and especially Satya Kudapa, for their support.

I feel blessed to have had the love and support of my parents (Smt Parvati and

Prof Ramamurthy Vuppala) and my sister (Smt Adurthy Aparna) throughout this arduous

journey. I am much thankful to my brother-in-law, Adurthy Phani Kumar, for his help

and support. Finally, I am very grateful to my wife, Radhika, for all that she has done for

me.

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... x

Chapter 1 Introduction .. 1

1.1 Internet’s Architecture ... 2

1.2 Motivation ... 5

1.3 Solutions .. 7

1.4 Virtual Network Ports ... 7

1.5 Organization .. 8

Chapter 2 Virtual NetworkPorts9

2.1 Network Port ... 9

2.2 Virtual Ports .. 10

2.3 Access Type .. 11

2.4 VNP Path ... 12

2.5 Generic VNP ... 14

2.6 VNP Attributes .. 15

2.7 VNP Table ... 18

2.8 A VNP Example .. 19

2.9 Switching ... 21

2.10 Cascading .. 24

2.11 MTU with Switching ... 26

2.12 A Multicast Example ... 27

vi

2.13 VNP Addressing .. 28

Chapter 3 VNP Architecture ... 30

3.1 VNP Domains ... 30

3.2 Setting up VNPs in a VNP-domain ... I........ 31

3.3 VNPs to External Destinations .. 37

3.4 Independent Mode ... 38

3.5 Reducing the number of VNPs in the core .. 39

3.6 Routing Updates .. 43

3.7 Host-to-Host VNPs ... 44

3.8 Propagating MTU changes .. 44

3.9 Implementation On IP Networks ... 46

3.10 Explicit Path .. 50

3.11 Constraint-based Path .. 51

Chapter 4 Implementation ... 52

4.1 VNP Frame format .. 52

4.2 Traffic Classes ... 54

4.3 VNP Software Components .. 55

4.4 Prototype ... 61

Chapter 5 Design Of A Scalable Router ... 62

5.1 Architecture ... 62

5.2 Prototype ... 65

5.3 Performance Measurement .. 65

5.4 Related Work... 7O

vii

Chapter 6 MPLS vs VNP .. 73

6.1 MPLS .. 74

6.2 Comparison ... 75

6.3 Quantitative Analysis Using Simulation ... 78

6.4 MPLS with VNP ... 90

Chapter 7 Conclusions .. 92

7.1 Future Work .. 92

7.2 Concluding Remarks ... 99

Bibliography .. 101

viii

LIST OF TABLES

Table 2-1 VNP Table .. 18

Table 2-2 VNP Table at N; ... 20

Table 2-3 Routing Table at N1 .. 21

Table 6-1 Simulation Options ... 84

ix

LIST OF FIGURES

Figure 1-1 Internet Growths .. 3

Figure 2-1 Virtual Network Port ... 11

Figure 2-2 Packet Transmission .. 13

Figure 2-3 Virtual Network Port ... 14

Figure 2-4 A VNP Example .. 19

Figure 2-5 VNP Switching .. 22

Figure 2—6 Packet Switching ... 23

Figure 2-7 VNP Cascading ... 24

Figure 2-8 Packet Cascading ... 25

Figure 3-1 VNP Domains .. 31

Figure 32 Procedure to setup a VNP inside a VNP-domain .. 33

Figure 3-3 Procedure to setup a VNP to an external destination 36

Figure 3-4 VNP to External Desitnation ... 37

Figure 3-5 Splitting VNP Domains ... 39

Figure 3-6 VNP Across Domains.. 40

Figure 3-7 Converting Core into VNP-Domain .. 42

Figure 4-1 VNP Frame Format ... 55

Figure 4-2 VNP Layer ... 56

Figure 4-3 VNP Software Components .. 57

Figure 4-4 VNP Packet Handler.. 58

Figure 4-5 Generic Transmit Function .. 59

Figure 4-6 Multi-cast Control Procedure .. 60

Figure 5-1 Block Diagram of the Proposed Router... 64

Figure 5-2 Test Configurations ... 66

Figure 5-3 Throughput .. 67

Figure 5-4 Latency .. 69

Figure 5-5 Architecture of a High Speed Router .. 70

Figure 6-1 Simulation Modules... 78

Figure 6-2 Simulation: Switching ... 80

Figure 6-3 Simulation: Aggregation ... 82

Figure 6—4 Simulation Results: Switching .. 87

Figure 6-5 Simulation Results: Aggregation ... 88

Figure 7-1 VNP Framework Vision .. 95

xi

Chapter 1

INTRODUCTION

The Internet was conceived as an experimental network in the late 19603 by the United

States Department of Defense’s Advanced Research Projects Agency (DARPA). It

started as a research and education tool with four nodes connected by 56 kilo-bits-per-

second lines. During the next two decades the lntemet grew steadily, inter-connecting

hundreds of thousands of nodes in more than 25 countries. The commercialization of the

lntemet and the introduction of the World Wide Web (W) in the early 19905 resulted

in an exponential growth, in its traffic, by the mid-19908. The current lntemet links more

than 150,000 networks comprising of more than 40 million nodes spanning more than

170 countries. The current backbone has links with bandwidths of up to tens of giga-bits-

per-second (DC-192C and above).

Figure 1-1 illustrates the growth in Internet’s infrastructure in the recent years.

Every aspect of its infrastructure, hosts, networks, domains, and web servers is increasing

at a rapid rate. Bandwidth-intensiveW has taken over File Transfer Protocol (FTP)

as the dominant lntemet application. For the first time in history data traffic has

surpassed the voice traffic. The communications industry has been successful in meeting

the perpetually increasing demand for bandwidth; technologies like Asynchronous

Transfer Mode (ATM), Synchronous Optical NETworks (SONET), and Dense Wave

Division Multiplexing (DWDM) are making gigabit networks feasible. As a result, the

traffic on the Internet is increasing at an exponential rate; it is doubling every six to nine

months. This sudden and unexpected growth of the lntemet during the end of the century

has exposed a number of limitations with its architecture and infrastructure. This work

proposes concepts that help in improving the solutions for some of these issues.

1.1 Internet’s Architecture1

lntemetworking is a method of connecting networks, irrespective of the technologies

used by the individual networks. For example, intemetworking allows hosts on an HIPPI

Local Area Network (LAN) to conununicate with hosts on an IEEE 802.6 LAN. The

TCP/IP protocol suite is the intemetworking protocol used on the lntemet. Its architecture

has the following basic layers:

1. Physical Layer

2. Data Link Layer

3. Network Layer (IP, ICMP)

4. Transport Layer (TCP, UDP)

5. Application Layer

The heart of this protocol suite is the Internet Protocol (IP). IP offers best effort delivery

of datagrams among the hosts on an intemetwork. It makes a reasonable effort to deliver

the datagram uncorrupted to the correct destination. It may drop the datagram, corrupt it,

‘ A more detailed understanding of the lntemet architecture is available in [27][l7].

deliver it to the wrong destination, or it may deliver it out-of-order. The objectives are to

minimize packet loss, maximize throughput, and minimize delay.

Each host on an IP intemetwork has at least one IP address; it may have more

than one IP address if it is connected to multiple networks. To direct a datagram to

another host, the sender sends the datagram to one of the recipient’s IP addresses. IP

Hogs Web Sewers

60,000,000 8000000

50,000,000 7,000,000

40,000,000 6-°°°'°°°
5,000,000

30,000,000 4.000.000

20,000,000 3.000.000

2’ !10,000,000 ,gg

0 0

9.3 63 33 3. '03 33 8. 33 3. i5 '07» 3 33

e a a s a % § § 5. i i i 5;

Networks Domains

160,000 1,400,000

140-000 1,200,000

129000 1000000

100000 ' '
' 800,000

80’0“) 600 000
60.000 '

40.000
400,000

20,000 200,000

0 0
a:

“3

3
a

J
u
l
-
9
4

J
u
L
9
5

J
D
’
0
9

L
I
I
-
9
0

t
i
l
—
9

1
1
—
9
2

0
0
"
9
3

1
1
—
9
4

#
9
5

.1
0

9
6

U
\
1
7

J
a
n
-
9
1

J
a
n
-
9
2

O
c
t
-
9
2

O
c
t
-
9
3

Figure 1-1 Internet Growths

addresses are 32 bits longz; they are generally written as four decimal numbers, one per

byte, separated by dots (eg 192,168.36). A part of this address identifies an individual

network or a group of them, whereas the complete address identifies a host on that

network.

For each physical network technology, there is a standard way to encapsulate IP

datagrams into its framing protocol, and map the IP address into the technology’s

addressing scheme. For example, Requestfor Comments (RFC) 894 defines how to carry

IP datagrams in Ethernet frames; RFC 826 defines a protocol to translate IP addresses

into Ethernet addresses.

Individual networks on the lntemet are connected using IP routers. The routers’

job is to forward IP datagrams among the networks. It is a device that accepts an IP

datagram from one network, determines the next network the datagram needs to traverse

to get to its destination, and places the datagram on that network using the next network’s

encapsulation.

The lntemet is divided into a set of disjoint Autonomous Systems (AS). An

autonomous system is a collection of routers, networks, and hosts under a single technical

administration. Routers inside an autonomous system run interior gateway protocol

(IGP) routing protocols. Examples of some popular IGPs are: OSPF, ISIS, and RIP.

Routing information among autonomous systems is exchanged using exterior gateway

protocols (EGP). The standard EGP on the current lntemet is Border Gateway Protocol

(BGP).

2 This work deals with IP version 4 only.

Routing is done hierarchically based on the IP address. Routers keep track of the

network topology by exchanging topology information using routing protocols. Starting

at the source, a packet hops through a number (possibly none) of routers before reaching

the destination. At each hop, the router consults its forwarding base to choose the next

hop for the packet. Each router makes this decision independently based on its analysis of

the packet’s network layer header. A router also uses the routing protocols to populate its

forwarding base.

1.2 Motivation

1.2.1 Forwarding Performance

If a router is unable to handle the incoming traffic volume, it simply drops the excess

packets. This results in packet retransmissions, wasted network bandwidth, and

application slow-down. Hence, it is important that the forwarding performance of routers

scale with the increase in traffic. However, the lntemet traffic is increasing at a rate well

above the growth-rate, as per Moore’s Law, of the processing elements in a router.

Therefore, changes in the traditional router architecture, forwarding algorithm, or

forwarding paradigm are needed.

1.2.2 Traffic Engineering

With this growth and popularity of lntemet, the Internet Service Providers (ISPs) feel the

need for maximizing the utilization of their networks. They want to deploy service

differentiation to maximize their revenues; they would like to offer higher quality service

at a premium. The current ISP networks do not support such capabilities. This is due to

inability of conventional IP technologies to support Traflic Engineering (TE). Traffic

engineering covers a diverse set of network performance optimization issues: guaranteed

quality of service (QoS), improving the utilization of network resources by spreading the

traffic evenly over the network, and providing features for quick recovery in cases of

node or link failures [23]. Traffic engineering is an essential component in the

architecture for providing end-to—end QoS guarantees.

Current IGPs are topology driven. Each router keeps track of the overall routing

area state database (in the case of link-state routing protocols). It makes independent

routing decisions based the shortest path between two nodes computed using a simple

metric that has been manually assigned to each link. This computation does not take into

account the current load on each link. This results in poor resource allocation. Even

though multiple paths may exist between two nodes the packets always follow a single

path, the current shortest path. This results in certain parts of the network to become

congested, and some others to remain under-utilized at the same time. It is not possible to

forward packets with the same destination through different paths based on constraints

like priority, fee, or quota.

Traffic engineering is concerned with Optimizing the utilization of network

resources. It helps network administrators give precise control over the flow of traffic

within the network. They can balance the traffic load among the paths and avoid

congestion on the network. With the help of TE, ISPs can offer categorized services to

their customers. They can provide faster or more reliable paths for customers who are

willing to pay more.

1.3 Solutions

During early 1997, when this work started, various solutions for forwarding performance

problems were being proposed. These solutions can be divided into three categories:

High Speed Routers (HSR), Fast Lookup Techniques (FLT), and Switching Techniques

(ST). HSRs use multiple forwarding engines, interconnected by high-bandwidth

switching fabric, to forward packets in parallel. FLTs propose new longest prefix match

algorithms that improve lookup time into the IP forwarding table. STs forward the

packets below Layer-3 by laying data-link switched paths. They use very simple direct

lookups for forwarding packets. IETF’s Multi-Protocol Label Switching (MPLS) working

group has been working towards a standard for switching technique.

HSRs use proprietary hardware, and are expensive. FLTs do not use simple

lookups like STs do. However, by 1999, HSRs and FLTs were making forwarding

throughput of giga-bits-per-second possible [41][50]; and MPLS was being successfully

applied towards addressing traffic-engineering issues [7][67].

1.4 Virtual Network Ports

This work falls in the category of switching techniques. It addresses the aforementioned

issues through the concept of Virtual Network Ports (VNP). The idea for VNP originated

in the design of a scalable cost-effective router [59]. The concept was later extended to

lay switched paths, and to identify flows [60]. It eliminates some of the drawbacks of

MPLS: stack operations, fragmentation, and passive labels. The VNP concept has been

implemented in a prototype using PCs running Linux.

When this work started, the focus was on the problem of providing scalable

forwarding performance. The solution was to design a router with multiple forwarding

engines working in parallel. While all the router architectures used proprietary hardware,

it was decided to use off-the-shelf commodity components to keep the cost low, and the

architecture open. Heterogeneous off-the-shelf systems were used as forwarding engines

and protocol processors. High throughput System Area Network (SAN) and Local Area

Network (LAN) technologies like Myrinet and ServerNet were available in the market.

They were used as the inter-connection or the switching back plane of the router. The

scalable router was implemented during the spring of 1997. The concept of Virtual

Network Port was used in this implementation to cohere the various forwarding engines

as one router. The VNP concept was later extended to enable sub Layer-3 switched paths

across routers. It now fell in the category of the switching techniques. It has all the

benefits of switching techniques, but is conceptually better and more efficient than

MPLS.

1.5 Organization

Chapter 2 introduces the concept of VNP. It describes how VNPs work, and how they are

combined to construct switched paths across networks. Chapter 3 describes how VNPs

are setup in a large intemetwork. It Chapter 4 presents the implementation details of a

VNP. Chapter 5 describes the design of a scalable router using VNP. Chapter 6 compares

our work with MPLS. Chapter 7 presents the concluding remarks.

Chapter 2

VIRTUAL NETWORK PORTS

The concept of Virtual Network Port (VNP) forms the motif of this work. It originated in

the design of a scalable IP router (see Chapter 6). It was necessitated by the desire to

avoid processing at layer-3 -IP in this case— in a cluster of forwarding engines. Initially

VNPs were restricted in their usage. They could not cluster nodes across physical

networks; the nodes involved in VNP had to be on the same physical network. The

concept was later expanded to cover nodes across networks and domains.

2.1 Network Port

A network port is a communication device in a computer system that can be used to

transmit and receive data; it is a data structure in a network subsystem that is used to

control transmission activities [31]. It is also called a network device, or a network

interface. There can be three types of network ports on a node: hardware, software, and

loopback.

A hardware network port is a physical device that attaches to a network. It is

housed in a hardware circuit board called network interface card (NIC) or line-card. A

software network port does not have an associated hardware device; it exists only as a

9

software module in the networking subsystem. It is mostly used to provide data services,

like encryption and tunneling, to upper layers while presenting them with the same

abstraction as a hardware port. A loopback port is a special instance of a software

network port. It is a network connection to the node itself. Packets sent on the loopback

port do not go out to any network; they loop back to the next layer (layer-3) on the same

node.

2.2 Virtual Ports

A Virtual Network Port3 is an abstraction for network port on a remote node. It is an

interface to a remote network. It makes a remote network appear directly connected to the

local node. A VNP is very similar to a hardware network interface in properties except

for the following:

0 There is no hardware interface card for a VNP.

o It is unidirectional; packets always flow out of this device but they never come in.

0 It does not have any physical or Media Access Control (MAC) address associated

with it.

o It is not involved in resolution protocols like Address Resolution Protocol (ARP)

3 The reason for not naming it Virtual Network Interface is that the term Virtual Interface has been used in

literature to denote something different; a Virtual Interface provides a user-space abstraction of a (kernel-

space) network interface. The term Remote Network Port may sound more appropriate to denote the

concept; we had actually used the term during the initial phases of this work. However, we found the term

virtual network port to be more suitable as the concept had expanded to cover more than just remote ports.

10

Figure 2-1 shows two nodes N1 and N2 connected to the same physical network. The two

nodes are connected directly at the data link layer (Layer-2) through ports NH and NzPl.

Node N2 has two physical network ports NzPl and Nsz. Node N1 has a physical port

N[PI and a virtual one Nle. The virtual port N1P2 is an abstraction of the remote physical

port N2P2. Packets transmitted through Nle actually come out through Nsz.

m Physical Port

Virtual Nework Port

Figure 2-1 Virtual Network Port

2.3 Access Type

A point-to-point data link connects exactly two nodes; a multi-access data link can

connect two or more nodes. A network port can be connected to a point-to-point link or a

multi-access network. A VNP is a point-to-point VNP if the corresponding remote port

connects to a point-to-point link; similarly it is a multi-access VNP if the remote port

connects to a multi-access network. Just like in the case of physical network ports,

transmission through a multi-access VNP requires the address of the destination node to

be specified with each packet; the destination address is not needed in the case of point-

to-point VNP. Multi-access VNPs help in reducing the number of flows through the core

11

of the network. We will see later that the processing overhead introduced by multi-access

VNPs is not all that significant.

2.4 VNP Path

Packets transmitted through a VNP are sent out through the remote port that the VNP

represents. This is accomplished by associating a path, to the remote port, with each

VNP. The path consists of three components: the address of the remote node, the local

port to reach the node, and the remote port on the remote node. It is a tuple of the form

(LP—>AN——>Rp) where

o Lp - Local Port - is the port on the local node, where the VNP is defined, to be

used to reach the next-hop node.

0 AN - Remote Node - is the address of the remote node. It can be a layer-2 or

layer-3 address. It is null if Lp is a point-to-point interface.

0 Rp - Remote Port - is the port on the remote node. It is the port that leads to

the destination. The access types of the remote port and the VNP it defines

should be the same.

A packet sent through a VNP is encapsulated in a VNP frame. The header of a

VNP frame contains an identifier for the remote port Rp. In case of a multi-access VNP,

the VNP frame header also contains the address of the destination node on the remote

network. A complete description of the VNP frame format is given in Chapter 5. The

VNP frame is enclosed in a layer-2 frame, and sent to the remote node AN through the

local port Lp. VNP layer on the remote node removes the VNP frame, resolves the

12

destination address if needed, and sends the packet through the remote port. VNP frames

are handled at the VNP-layer and do not go to Layer-3 at the remote node.

Figure 2-2 shows how a packet flows through a VNP. For the sake of simplicity,

we do not show Layer-2 frames; in reality any packet sent over a data-link gets

encapsulated in a Layer-2 frame. N1P2 is a virtual network port that represents the remote

port N2P2; its path is (N1P1—)N2—)N2P2). A packet for node N3 arrives at N1; N1 sends it

through the VNP N1P2. The VNP layer encapsulates the packet in a VNP frame. The

frame header contains the remote port identifier N2P2 and the destination address N3. The

VNP frame is then sent to the remote node N2 through the local port NIP]. The VNP

layer at N2 removes the VNP frame, resolves the address N3 if needed, and then sends the

packet through N2P2. The frame does not go through Layer-3 at node N2.

Figure 2-2 Packet Transmission

2.5 Generic VNP

The VNP defined so far was actually of a special type, called the unicast VNP. It

represents a single remote port, and it simply forwards the packets to the remote port. A

generic VNP has multiple remote ports associated with it. It may not simply forward the

packets to all the remote ports. It may forward them selectively; it may police them; it

may even mangle the packets. The type of a generic VNP is determined by how it handles

the packets.

Figure 2-3.shows a VNP that links to a set of remote network ports. It may

choose one or more remote ports for forwarding the packets. This choice can depend on a

m Physical Port

Virtual Nework Port

eer-to-pee

083

Figure 2-3 Virtual Network Port

14

number of factors: the load on the links, the source of the packets, the destination etc.

2.6 VNPAttributes

A physical network port has a number of properties: a port identifier, Maximum

Transmission Unit (MTU), access type etc. A VNP inherits some of these properties and

their values from the remote port in its path. In addition, it has some attributes of its own.

The following are the essential attributes of a generic VNP.

Port Identifier: It uniquely identifies a virtual port on the local node.

Access Type: It indicates whether the VNP is a multi-access or point-to-point

port.

Path-set: A non-empty set of VNP paths to the remote destinations.

Control Procedure: It is responsible for processing the in-coming packets and

forwarding them along the paths in the path set.

Maximum Frame Size (MFS): It is the largest VNP frame that can be transferred

through the port.

Type: A VNP’s type determines the control procedure and special attributes it can

have.

These form the core attributes of a VNP. Depending on its type, a VNP may have other

attributes associated with it. For example, a filter VNP will have rules associated with it

to choose the forwarding paths from the path set.

15

2.6.1 Port Identifiers

On a node that supports VNPs, each network port -physical or virtual- is uniquely

identified by an integer. The identifier Pmax demarcates physical ports from virtual ports;

values that are less than Pmax represent physical ports, whereas identifiers greater than

Pmax are for virtual ports. The loopback interface is always represented by the special

value zero". So a zero for Lp in a VNP path represents the local node, and a zero for Rp

represents the next-hop. The value for PM is specific to a node. It helps in determining if

a port is physical or virtual; this is used in the switching operation, as we will see later in

this chapter. Port identifiers are meaningful only to the local node. A node may not know

whether an identifier for a port on another node represents a physical or virtual port.

2.6.2 Path Set

Unlike a unicast VNP, which has a single VNP path associated with it, a generic VNP has

a set of VNP paths. Its control component decides how to forward the packets among the

paths. When a VNP has multiple remote ports associated with it, all the remote ports

must be of the same access type; either all of them must be point-to-point ports or all of

them must be multi-access ports. As we will see in the next chapter, simple vector-

distance routing protocols can be used for laying unicast VNPs in a domain. However, a

multi-path VNP needs more complex routing protocols, like QOS routing protocols, that

can deal with multiple paths.

4 In case there are multiple loopback interfaces, at least one of them is given the zero identifier.

l6

2.6.3 MTU

The Maximum Transfer Unit (MTU) of a network port is the maximum amount of data

that can be transferred through the port in a single frame. It depends on the physical

network, and is generally a constant for a physical network port. For example, the MTU

of most implementations of Ethernet is 1500 octets, whereas for FDDI it is 4470 octets.

The MTU of a VNP is not a constant because VNP header is of variable length.

The length of VNP header is dependent on the type of destination address used (DAM...)

and the type of payload transferred (PAtype). The complete format of a VNP frame is

detailed in Chapter 4.

Maximum Frame Size (MFS) of a VNP is the largest VNP frame that can be

transferred through the VNP. The size of the largest VNP frame that can be sent through

the VNP path Lp—2AN——>Rp is restricted by the MTUs Lp and Rp. . The MFS of a VNP is

the minimum of all the MFSs in its path-set. The MTU Of a VNP is the difference

between its MFS and header length. This is summarized below, where VHL is a function

that computes the VNP header length for a given payload and address type. An

application or a higher-layer protocol must calculate the corresponding MTU before

sending packets through a VNP.

MFS(T) = Min(MTU(L,,),MTU(Rp)) WhereT is the path LP ——) AN —) RP

MFS(V) = Min (MFS(T)) whereV is a VNP
Te PathSetof V

MTU(V) = MFS(V) - VHL(DAM” PLM.)

17

2.6.4 Control Procedure

The control procedure for a virtual port is its “device driver”. It is responsible for

transmitting the packets through the VNP. The control procedure may not forward the

packets on all the paths in the path set. It may choose a subset of its path set for

forwarding the incoming packets. The selection can be based on the contents of the

packet, the cost of the paths in the path set, or the service guarantees for the flow. In the

simplest and most oft-occurring case all the paths in the path set are chosen. The control

procedure may police the flow or even modify the packet.

2.7 VNP Table

The attributes of all the virtual network ports on a node are stored in the VNP table. Its

structure is shown in Table 2-1. It is indexed on the port identifier field, Port-ID. It could

be part of the device table that is already on the node.

Table 2-1 VNP Table

Port-ID Type Path Set MFS Status

18

2.8 A VNP Example

Part (a) of Figure 2—4 shows two nodes N1 and N2 connected through a network link.

Node N2 has two network interfaces N2P1 and N2P2 connecting to IP networks

192.168.2.0/24 and 192.169.0.0/16 respectively. Node N1 has one network interface NIP.

that connects it to node N2. Packets arriving at N but destined for any of the two

121002.024

1&16900’18

network

Node N,

(a) Without VNP

network

Node N,

192.1“.0fllfl

network

,‘\/r\\

\ .

_=;~:« ~. \ I L. _ 7 ‘-—:E:—E=‘
‘v— -\ {-2 -—————-r-«~ —

x“. _,‘\’/ 1&16911016

xx“ /, — \l a \\ ‘ .

\b ,/ k

.\ / \

1‘ members {I

(c) Layer-3 View \ 1,-1-
I

Figure 2-4 A VNP Example

networks are forwarded by IP to the next-hop N2 through the port N1P1. These packets go

through IP layer again at N2, and are sent to their destinations through the interfaces N2P1

or N2P2.

Part (b) of the figure shows the same two nodes with virtual-network ports

defined at node N1. The virtual network devices N1P2 and N1P3 form one-way conduits to

N2P1 is a multi-access VNP; its path-set isand N2P2 respectively. N1P2

{N1P1——>N2—>N2P1}. If the MTUs of N[P] and N2P1 are 1500 and 1492 respectively, the

MFS of N1P2 will be 1492 octets. VNP header length for IP packets is 8 octets. Hence,

the MTU for N1P2 is 1484 octets.

To the IP layer at N it appears that the two networks are local i.e. connected

directly through a hardware network interface as shown in part (c) of the figure. A packet

arriving at N; but with its destination on the network 192.168.2.0/24 is handed over to the

virtual port N1P2 with the target address. The remote-network device N1P2 uses its path-

set to send the packet with the target address to N2. At N2 the packet does not go to the IP

layer; it is sent out directly through the port N2P1. If needed, ARP is done for the target

address at node N2.

Table 2-2 VNP Table at N1

Port-ID Type Path Set MFS Length

NIP] Physical { } 1500 0

N1P2 Unicast {N1P1—>N2—>N2P1 } 1492 1

N1P3 Unicast {N1P1—>N2—>N2P2 } 1492 1

20

Table 2-1 shows the VNP table at node N. Table 2-3 shows some of the VNP

entries in the forwarding table at node N.

2.9 Switching

A virtual network port represents a set of network ports on remote nodes. The remote

nodes have to be on the same physical network; a VNP path cannot have multiple hops.

However, a number of single-hop VNPs can be linked together to form a multi-hop VNP

path. This linking allows packets to be switched across networks. It also enables

construction of traffic paths that are independent of Layer-3 paths.

The structure of a VNP is defined in terms of other network ports: the local port

Table 2-3 Routing Table at N1

Destination Next Hop Port

192.168.2.0/24 Local N1P2

192. 169.0.0/16 Local N1P3

192.169.l.10 N1P3

192.168.2.2 N1P2

Lp and the remote port Rp. Since a VNP is just like any other network port it can be used

to define other VNPs. So far, we have considered the remote port (Rp) to be a physical

network port. If the remote port is also a virtual port, the actual physical port being

represented is across two network links; the path length has grown to two. Similarly,

many single-hop VNP paths can be linked together to form a multi-hop VNP path. This

form of linking VNPs together is termed Switching.

21

192.168.2024

 I
\

l
‘ 192.168.2.0/24 ’l‘v N

\-‘ r! 1

.\ ’\

I

/\’\

I ¥

“9210820124“, . ..

\

1M

\
\ ,

Figure 2-5 VNP Switching

\ .. l'

\-(‘:1\¢’~I

Figure 2-5 illustrates this concept. Node N1 is directly connected to the network

192.168.2.0/24; node N2 has a VNP N2P2 to this network. Node N3 has a virtual port N3P2

to N2P2; N4 has a VNP N4P2 to N3P2. The VNP paths for N4P2, N3P2, N2P2 are:

N4P1——>N3——)N3P2, N3P1—)N2—-)N2P2, and N2P1—>N1—>N1P1 respectively. In the figure the

arrows show the VNP paths whereas the clouds show the view from Layer-3.

2.9.1 Data Flow

Figure 2-2 showed how packets flow through a single-hop VNP, whose remote port is a

physical network port. When VNPs are switched together, i.e. the remote port is a virtual

network port, packets are forwarded in a slightly different fashion. Figure 2-6 shows the

22

flow of packets through a switched VNP. N1P2, N2P2, and N3P2 are point-to-point VNPs;

N1P2 represents N2P2, and N2P2 is linked to N3P2.

A VNP frame arrives at N. The VNP layer at N1 looks at the VNP header; the

frame has N1P2 as the remote port. If N1P2 were a physical port, as was the case in Figure

2-2, the VNP layer would remove the VNP frame, and transmit the data packet through

N1P2. Since N1P2 is a virtual port, the VNP layer simply replaces the port identifier in the

frame with the remote port in N1P2’s path i.e. N2P2; it then sends the packet to the next-

hop in N1P2’s path, N2. N2 similarly replaces N2P2 in the VNP header with N3P2, and

forwards the frame to N3, and so on. Finally at the egress node, where the remote port

would be a physical port, the VNP frame is discarded, and the data packet is delivered to

the destination. The following steps outline the forwarding of VNP frames.

6. Let P be the port in the VNP frame’s header [P=Frame.Header.PortID].

7. Lookup for P’s path in the VNP table; let (Lp-—)AN—)Rp) be the path.

8. Replace port in the frame header with Rp [Frame.Header.PortID=Rp].

9. Transmit the frame through Lp to AN,

Figure 2-6 Packet Switching

23

2.10 Cascading

A virtual port can be defined using another virtual port as the transport, i.e. as local-port

Lp. This cascading of VNPs can be used to reduce the number of virtual ports on a node

as illustrated in Figure 2-7. Node N4 has two VNPs defined for the two ports connected to

N1. One way to accomplish this is to define two VNPs corresponding to the two ports at

each intermediate node, as was done in the case of switching. The other way is to define a

virtual point-to-point port N4P3 to the loop-back port of N]. The intermediate nodes have

only one VNP defined, to the loop-back port of N1. At node N4, the VNPs N4P4 and N4P5

use the VNP N4P3 as the local port Lp. The paths for N4P3, MR; and N4P5 are

(N4P1—9N3—>N3P2), (N4P3—->null—>N1P1), and (N4P3—)null—-)N1P2) respectively.

Conceptually N4P3 is a local point-to-point connection to N1; N4P4 is the virtual

representation of NP] through this point-to-point connection.

192.150.2.0/24

F
r
a
u
e
n
g
.
i
q
‘
A
i
‘
T
fl
‘

4
‘

T
l

ril
l

1 ,

1 1921690016"

\ I

W I’

4
\ o
_1 \,I

Figure 2-7 VNP Cascading

24

2.10.1 Data Flow

Figure 2-8 shows frames through a cascaded VNP. Node N has two VNPs: N1P2 and

N1P3. N1P2 is a point-to-point VNP to node N4 i.e. to N4’s loopback interface. N1P3 is a

cascaded VNP to the remote port N4P2. It cascades over N1P2 to N4; its path is

(N1P2-)null-—>N4P2).

A VNP frame with port N1P3 in its header arrives at N. N1P3 is a virtual port, so

N1 replaces the port in the frame with the remote port in N1P3’s path i.e. N4P2. It then

hands over the frame to the local port, N1P2, for transmission. N1P2 treats the frame as

payload. It encapsulates the frame in another VNP frame, sets the port in the header as

N2P2, and sends it to the next-hop N2. To N2, it appears like just another VNP frame. It

switches N2P2 with N3P2, and forwards the frame to N3. N2 does not see the embedded

frame. Similarly N3 replaces the port in the header with N4Po, the loopback port of N4,

Figure 2-8 Packet Cascading

25

before forwarding it to N4.

VNP layer at N4 de-encapsulates the frame because N4P0 is not a virtual port;

otherwise the frame would be switched. The payload i.e. the inner VNP frame is then sent

through N4Po. N4Po is the loopback port; hence the inner frame is handed over to the VNP

layer again. This time it switches the frame to the next-hop because the port in the header,

N4P2, is a virtual port.

2.11 MTU with Switching

The MTU of a VNP is the difference between its MFS and header length. When the

remote port is a VNP, the packet is simply switched; no more headers are added to the

VNP frame. Hence the MFS of a VNP path is the minimum of MTU(Lp) and MFS(Rp);

and not MTU(Rp) as we had mentioned before.

In the case of cascading, Lp is a virtual port. Even though the MTU of a VNP is

variable the MTU of VNP Lp is fixed, for a given VNP path, because the header length

used over a VNP Lp can be determined from the VNP path. The header length of a VNP

Lp is VHL(Type(AN), VNP), where AN is the remote node’s address in VNP’S path. For a

VNP path, the destination address type, Type(A~), is fixed. The payload in this case is

always a VNP frame, so the payload type is also fixed (as VNP). Hence, taking switching

and cascading into consideration, the MTU of a VNP is:

MFS(P) = MTU(P) whereP is physical port

MFS(T) = Min(MTU(L,,), MFS(RP)) whereT is the path LP —> AN —) RP

MFS(V) = Min (MFS(T)) whereV is a VNP
T6 PathSetof V

MTU(V) = MFS(V) — VHHDAType’ PLOP?)

26

In Figure 2-5, the MFS of N2P2 is the minimum of MTU(N2P1) and MFS(N1P1).

Similarly the MFS of N3P2 is the minimum of MTU(N3P1) and MFS(N2P2). So the MFSs

of the VNPs at various nodes along the same VNP conduit will not be the same but will

be optimal i.e. it will be the maximum MFS that can be used without fragmenting the

packets flowing through the VNP conduit. This optimality is true only for unicast and

multicast VNPS. A generic VNP may choose different forwarding paths for different

packets; and hence the MFS may not be optimal for all the paths but the packets will still

be forwarded without fragmentation. In the case of cascading, MTU of VNP does take

into account the cascaded VNP headers; so the packets through a VNP need never be

fragmented, no matter how deep it is cascaded. In the next chapter we will see how MTU

of a multi-hop VNP is computed with changes in the VNP’S path.

2.12 A Multicast Example

As mentioned before, a VNP represents a set of multi-access networks or nodes. We now

illustrate this by defining a multi-cast group using VNPs in three different ways, as a set

of hosts, as a set of multi—access networks and as a set of routers. Just like labeled flows,

VNP flows are by nature protocol independent tunnels. They can be used to tunnel multi-

cast traffic over non-multicast networks. Referring to the example of Figure 2-7, suppose

certain hosts on the networks 192.168.2.0/24 and 192.150.2.0/24 are part of a multi-cast

group but nodes N3 and N2 do not participate in multi-casting. A multi-cast VNP can be

defined on N4 with the path-set as {N4P4—9M1—>0, N4P2—9M1-—>0} where M; is the layer-

3 multi-cast address. This defines the VNP as a collection of hosts that are part of the

27

multicast group. The first path in the path set, N4P4—>M1—)0, makes the packet switch

through to NIP]. At the node N1, M1 would be resolved to its Layer-2 address.

Another way to define the multi-cast VNP is with the path set

{N4P3—9null—>N1P1, 0—)null—9N4P2}. This defines the virtual port as a collection of

networks that lead to the multicast recipients. There is a third way to define the multicast

VNP, as a set of routers that lead to the multicast group. In this case the path set will be

{N4P3——>null—->0, 0-—>null—>0}. In the first and the last definitions a target address need

not be specified when transmitting a packet through the VNP because the destinations are

nodes, whereas in the second method the target address (M1) must be specified

2.13 VNPAddressing

VNP does not use any Special addressing mechanism to identify nodes on a network. It

uses the existing Layer-2 or Layer-3 addressing. We have come across two types of

addresses in dealing with virtual network ports: the next-hop address in a VNP path and

the destination address for packets through a multi-access VNP. The format of the next-

hop address depends on the local port in the VNP path. If the local port is a physical port,

then the next-hop address is a Layer-2 address. The destination address in packets

through a multi-access VNP is generally a Layer-3 address, especially in the case of IP

networks. However, it can be a Layer-2 address too. Cascading, over multi-access VNP,

is a special case of this kind of addressing. In this case, the next-hop address can be a

Layer-3 or Layer-2 address. We will see in the next chapter that Layer-3 addressing is

used for setting up VNPS across network domains.

28

Issues like this make it hard to place VNP in the 081 model hierarchy. As far as

packet flow is concerned, VNP layer falls between the data link layer (layer-2) and the

network layer (layer-3). However, it does use Layer-3 mechanisms for its operation.

29

Chapter 3

VNPARCHITECTURE

This chapter describes how Virtual Network Port paths are built in a large network. VNPS

are setup in a hierarchical fashion. The hierarchy is based on dividing the nodes into

disjoint sets called domains. A domain can be split into multiple sub-domains, or can be

contained in another domain. Non-cascaded VNPS are constrained to be within a domain;

these VNPS are used as transports by VNPS that straddle across multiple domains. The

VNPS that cross multiple domains are always cascaded. It is possible to use non-cascaded

VNPS across domains, but it is not generally done to avoid scaling problems.

3.1 VNP Domains

A set of interconnected nodes that understand VNP protocols forms a VNP-domain. The

members and boundary of a VNP-domain are setup manually, and are determined by

technical or administrative reasons. A VNP-domain has two disjoint parts: edge and core.

The nodes in a VNP-domain that connect to nodes outside of the VNP-domain form the

edge of the VNP-domain; they are called the edge nodes. The rest of the nodes in the

VNP-domain, that interconnect the edge nodes, form the core of the VNP-domain, and

are called the core nodes. Figure 3-1 shows two VNP-domains with respective core, edge,

30

and VNPS. The edge nodes connect to the edge nodes of other VNP-domains, or to the

nodes that do not follow VNP protocols. VNPS always originate and end at the edge

nodes.

3.2 Setting up VNPS in a VNP-domain

Inside a VNP-domain, a VNP is set from an edge node to destinations on other edge

nodes. The destination could be a port on the edge node, or the edge node itself. Figure

3-2 shows the procedure for setting up a VNP to a remote Destination in the same VNP-

domain. The Destination is used to generate a VNP identifier using the procedure Gen-

VIDO. The implementation of this procedure depends on the node. For most nodes it is a

function, which maps a Destination to a unique integer. However, for ATM switches it

Non-VNP Nodes

VNP Domain 02

VNP Domain D,

Figure 3-1 VNP Domains

31

may return different integers for the same Destination. If this VNP already exists, there is

nothing for the SetupVNP procedure to do. A set of next-h0ps to the Destination is

determined by the procedure NextHopsSetO. The following are performed for each next-

hOP (ANIiD-

o The local port to reach the next-hop is determined (PL[i]).

o The next-hop is then contacted to obtain VNP identifier (PR[i]) corresponding to

the Destination, and its MFS (MFSR[i]).

0 Size of the largest VNP frame that can be sent to the next-hop is calculated

(MFSPath[i])-

The MFS of the VNP is determined by finding the minimum, of all the MFSs of remote

ports (PR[i]) and MTUs of local ports (PL[i]). If a local port PL[i] is a VNP, its MTU is

calculated using the formula, MTU(PL[i]) = MFS(PL[i]) - HeaderLen(AN[i].Address’l‘ype,

VNP). The length of a VNP header depends on type of the destination address and type of

the load; the HeaderLenO procedure calculates this length. Finally, an entry is created in

the VNP Table with the VNP identifier, MFS and the path-set.

3.2.1 VNP Ends

The SetupAVNPO procedure lays a VNP path from a source to a destination. The source

triggers a chain of processes that follow the VNP path to the destination. Any node can

initiate this chain. However, the data always enter through edge nodes, hence initiation of

VNP paths is restricted to the edge routers.

Similarly, it is possible to create VNPS to all possible destinations in a domain but

it is not very efficient. Generally, VNPS are created only to destinations on the edge

32

routers, and then only to those edge nodes that need optimized data paths. Hence the

VNP paths are restricted to start and end with edge nodes of a VNP domain

3.2.2 Destination

A Destination can be any one of the four types: port, node, network, or group. When

Destination is a port, the VNP is setup to that remote port. For Destination as a node, the

VNP is setup to the loopback port of the node. When the Destination is a network, the

SetupAVNP(SourceNode, Destination, Constraint) {

Check for resources; if resources not available return Error;

Port = Gen-VID(SourceNode, Destination, Constraint);

if Port already exists then return Port;

if this is the egress node then return Port;

AN[0..Max] = NextHopSet(Destination, Constraint);

fori = 0, Max {

PL[i] = Local port to reach AN[i];

PR[i] = Get the VNP identifier for (SourceNode, Destination, Constraint)

from AN[i];

MFSR[i] = Get MFS of PR[i] from AND];

}

MFSVNP = Min(MTU(PL[i]), MFSR[i]);

Add an entry to the VNP-Table with ID=Port, MFs=MFSVNp and

PathSet={ PL[O]—)AN[O]—)PR[O], , PL[Max]—)AN[Max]—)PR[Max] };

return Port;

Figure 3-2 Procedure to setup a VNP inside a VNP-domain
33

VNP is setup to any port that connects to that network. Whereas when Destination is a

group, the VNP is setup to the loopback ports of the set of nodes that form the group.

The different types for Destination need to be identified uniquely, and are

represented differently. A node is identified by one of its IP addresses. Many a times, an

IP address is assigned to the loopback port of the node, and that IP address is used to

identify the node as a destination. A network is identified by the network-part of its IP

address and its prefix-length. For example, a network, the first 24 bits whose IP address

match 192.168.2.0, is identified by (192.168.2.0, 24). A group, as a destination, is

identified by an IP multi-cast address.

When Destination is a port, it is identified in one of two ways. All the ports that

have IP addresses associated with them are identified by the IP address. Unnumbered

point-to-point links and ports that do not have an IP-address associated with them, are

identified using (Node-ID, Port-ID) tuple. Node-1D is the IP address of the node, and

Port-ID is the SNMP MIB’s ifindex parameter or the IP address of the node at the other

end of the link.

It is possible to use (Node-ID, Port-ID) pair to represent all types of destinations.

This results in a generic addressing mechanism that does not use any layer-3 addressing.

It requires a completely new way of addressing, distribution, and aggregation, without

any dependence on Layer-3. However, it will not be very practical. VNPS are used in

networks that already have network layer addressing, mostly IP. Hence IP addressing is

used for uniquely identifying destinations in a VNP domain.

34

3.2.3 Access Type

The access type of the port, i.e. whether it is multi—access port or point-to-point port, is

determined from the Destination type. When Destination is a port, the access type of the

VNP will be the same as the access type of the remote port. The access type is ‘point-to-

point’ when the destination is a node or a group. When the Destination is a network, the

access type is ‘multi-access’.

3.2.4 Next Hops

Next-hops in a VNP path are determined based on various constraints. In the case of

traditional routing, the constraint is to find the next-hop that results in the shortest path.

With VNPS, the constraint can be to satisfy several QOS or traffic-engineering

parameters. Based on the constraint, the NextHopSetO procedure uses the underlying

routing methodology to find the set of next-hops; it does not advocate any new routing

protocols. In case of shortest-path constraint, it consults the routing information base. For

QOS constraints, it uses the information base of any of the underlying QOS routing

protocols. It is also possible to specify the nodes in the path explicitly. In this case, either

the complete path is specified (strict), or only some of the intermediate nodes are

specified (loose).

3.2.5 Control Type

The VNPS created by the above procedure generally have unicast control. The control

type can be 'load balancing’, 'de-aggregation', 'multi-cast’ etc. The control type is set by

the routing protocol's actions, or it is set manually.

35

3.2.6 Multi-Path

Certain link-state IGPS, like OSPF, identify multiple equal-cost paths to a destination. In

such cases, the NextHopSet() procedure may return a set of next-hops corresponding to

the multiple paths. The control type of the VNP is set to ’Load Balancing’ so that the

packets are striped across the paths.

SetupEVNP (SourceNode, Destination, Constraint) {

Check for resources; if resources not available return Error;

Port = Gen-VID(SourceNode, Destination, Constraint);

if Port already exists then return Port;

if this is the egress node then return Port;

From the VNP Edge database, find the boundary router E, that leads to Destination;

If the LocalNode and E are directly connected then

let V, be the physical link between them

else

VI = SetupVNP(LocalNOde, El, Constraint);

V2 = Get VNP ID for (SourceNode, Destination, Constraint) pair from E1;

MFSVNp = Min (MFS(VQ, MFS(V2));

Add an entry to the VNP-Table with ID=Port, MFS=MFSVNP and

PathSet = {VI—)null——>V2};

return Port;

Figure 3-3 Procedure to setup a VNP to an external destination

36

3.3 VNPS to External Destinations

The nodes at the edge of a VNP-domain connect to outside the VNP-domain. They

maintain information about destinations external to the VNP-domain. This is generally in

the form of aggregated IP prefixes. In an inter-network, the number of destinations

external to a VNP-domain may far exceed the number of destinations inside the VNP-

domain. Using the procedure of Figure 3-2 for setting up VNPS to external destinations

will create too many VNPS in the core of the VNP-domain because almost every VNP

has to go through the core. It does not scale well to the number of destinations. Instead,

another procedure is used to setup VNPS to external destinations.

This procedure is shown in Figure 3-3. In this procedure the egress node -E17,

which leads to the destination, is first identified. A VNP, V1 in Figure 3-4, is then setup

to the egress node from the ingress node. This VNP is used as the transport to the

external destination. The ingress node creates another VNP, V2 in Figure 3-4, which

VNP-Domain D1

Figure 3-4 VNP to External Desitnation

37

cascades over V1. The VNP-tables on the core nodes do not contain entries for V2; they

just have an entry for V1.

This procedure requires edge nodes to keep information about external

destinations that are reachable through other edge nodes. This information base is called

the VIVP Edge database, and is exchanged through VNP Edge protocol.

3.3.1 VNP Edge Protocol

The procedure of Figure 3-3 requires that all the edge nodes are aware of external

destinations reachable from one another. The edge nodes exchange the destination

information among themselves using VNP Edge Protocol. It is similar to a routing

exchange protocol. Each edge node periodically informs all the other edge nodes in the

VNP-domain, of all the external destinations reachable through it. The edge nodes use

this information to setup cascaded VNPS to external destinations. The VNP Edge

Protocol may become redundant if the edge nodes use a link-state protocol to exchange

routing information.

3.4 Independent Mode

Another way to setup VNPS is to distribute information about them in a manner similar to

Layer-3 routing updates. In this method, a node creates an entry in the VNP table but

does not ask the next-hop for any information about its corresponding VNP; so the path-

set and MFS are not known initially. Each node then distributes information about the

VNP -its identifier and the corresponding destination port- to its neighbors. The

information received from the neighbors is used to fill-up the gaps -path-set etc.- in the

38

VNP table. With this method, it is possible to have VNPS that are initially broken’ i.e. the

path from the source to the destination-port will not be complete. Packets traveling

through such VNPS are discarded at the break points’.

3.5 Reducing the number of VNPS in the core

The number of VNPS in the core of a VNP-domain may increase exponentially with the

number of VNPS on the edge. This puts a strain on the resources of the core nodes. There

are two ways to control this. In the first method, the VNP-domain is broken into smaller

VNP-domains to reduce the number of edge nodes. The core also gets broken into

smaller sizes. In the second method, the core of the VNP-domain, or parts of it, are

Edge

Core

VNP Domain D,

VNP Domain 0,2

VNP Domain 0,,

Figure 3-5 Splitting VNP Domains

39

converted into sub VNP-domains. The core of the VNP-domain now contains the edge of

the new VNP-domain.

3.5.1 Splitting a VNP-domain

In this method, a VNP-domain is divided into a number of disjoint VNP-domains. This is

shown in Figure 3-5. VNP-domain D1 is split into two smaller disjoint VNP-domains: D11

VNP-Domain D

AVNP

EVNP

~ ””liilllll
ll'illlgl]

ill:1llllllll

«'2’: .1

VNP-Domain D2

VNP-Domain D,

Figure 3-6 VNP Across Domains

4O

and D12. The edge and core nodes are split across the two new domains. Some of the

core nodes in the D1 have now become edge nodes in D11 and D12.

3.5.1.1 Intra-domain and Inter-domain VNP

When a VNP domain is split into a number of sub-domains, a VNP that was limited to

the VNP-domain now runs across multiple VNP-sub-domains. A VNP, the nodes in

whose path are confined to a single VNP-domain, is called an Intra-domain VNP

(AVNP). If the nodes in the path of a VNP belong to more than one VNP-domain, it is

called an Inter-domain VNP (EVNP). Inter-domain VNPS are generally cascaded over

multiple intra-domain VNPS to form conduits across VNP-domains. The core of each

new VNP-domain keeps track of AVNPs only. The cores do not see the EVNPs i.e. they

do not have entries in the VNP table for EVNPs. The edge nodes of the new VNP-

domains cascade the EVNPs over the AVNPS. Each of the new VNP-domains uses the

procedure of Figure 3-2 to setup AVNPS. The procedure of Figure 3-3 is used to setup

EVNPs.

Figure 3-6 shows a VNP-domain, D, which has a VNP, A1P2, from the edge node

A; to a port on the edge node C2. This VNP is setup using the procedure of Figure 3-2.

Domain D is then split in to VNP-domains D1, D2, and D3. The VNP A1P2 now runs

across the new domains, and is setup according to the procedure in Figure 3-3. Node A1

creates an AVNP, A1P1, to edge node A2. It then asks A2 for the VNP-ID to destination

C2P1. Node A2, in turn, asks the next-hop B1 for the VNP-ID to the destination. B1 notices

that it is an external destination, so it repeats the procedure by setting up an AVNP to the

edge node B2. This process continues till the destination is reached. Node C1 creates an

AVNP directly to C2P1 because it is an internal destination.

41

3.5.2 Core as VNP-Domain

Another way to reduce the size of VNP table on core nodes is to convert the core into

another VNP-domain. Once a core is converted into a VNP-domain, it gets split into the

partitions of edge and core. Figure 3-7 shows the VNP-domain D1, of Figure 3—5, with its

core converted to another VNP-domain D11. Some of the core nodes of D1 remain as its

core nodes, whereas the rest of them become the edge and core nodes of Du. New point-

tO-point AVNPs are setup among the edge nodes that previously were in the path of at

least one VNP. Only the newly formed edge nodes keep the entries for existing VNPs;

the newly formed core does not. The new core has entries only for the new point-to-point

VNPS among the new edge nodes, thus reducing the size of the VNP table on the core

nodes. The edge nodes cascade the existing VNPS over the new edge-to-edge VNPS.

With this method, it is possible to have a cascaded VNP path between two edge nodes of

a VNP-domain. For example, the edge node E1 may have a cascaded VNP, which goes

Edge

Core

Edge Domain 0,, Core

VNP Domain D,

Figure 3-7 Converting Core into VNP-Domain

42

through domain D“, to the edge node E2. Whereas when a VNP is split into smaller

domains, as shown in Figure 3-5, two edge nodes in the same domain do not have

cascaded VNPS between them.

3.6 Routing Updates

VNP paths in an inter-network must change with changes in the inter-network. The core

nodes in a VNP domain use routing updates to modify the intra-domain VNP paths. The

edge nodes in a VNP domain use the VNP edge protocol to update the inter-domain VNP

paths.

Whenever there is a change in the network topology, the IGP or EGP routing

protocols update the routing information bases. With every such update, the VNP core

node checks to see if any VNP in its VNP-table is affected by the update. This is done by

matching the destinations in the routing-updates with VNP destinations. If the next-hop

for a destination has changed, the path-set of an affected VNP is modified accordingly.

The new next-hop is asked for its VNP ID for the destination, as per procedure of Figure

3-2. For routing updates to the paths of intra-domain VNPS, the edge nodes do exactly

what the core nodes do.

However, VNP edge nodes do a little more with routing updates. They exchange

updates in routes, to destinations outside the VNP-domain, among themselves using the

VNP edge protocol. Hence they get updates from both core nodes and edge nodes. Since

the updates obtained through the VNP edge protocol are for external destinations only,

the inter-domain VNPS are checked for changes in the paths. The destination in the

update is matched against destinations of inter-domain VNPS. If the next-hop for a

43

destination has changed, a procedure similar to the one in Figure 3-3 is used to modify

the path-set of corresponding VNP.

3.7 Host-to-Host VNPS

So far, VNPS were considered in the context of core and backbone networks. They were

setup from an edge router to another edge router. The procedure for establishing VNPS

from a host to another host is similar. Hosts always use the procedure of Figure 3-2

irrespective of whether the destination is internal or external to the domain. The source

host checks with the next-hop router for the VNP-ID for the destination host. The router

uses the methods of Figure 3-2 and Figure 3-3 to lay the VNP to the destination host.

Once a host-to-host VNP is established, the source host uses it to transport other

VNPS, with different service constraints, to the destination. These cascaded VNPS can

then be used by different applications requiring different quality of service. The

destination generates an application VNP-port, and informs about it to the source host

using VNP Host Protocol. The source node then cascades a VNP to this remote VNP

port.

3.8 Propagating MTU changes

The procedures of Figure 3-2 and Figure 3-3 compute the MFS of the VNP that is being

setup. Whenever there is a change in the topology, the MFS of VNPS may get altered.

The method for updating MFS of a VNP, with changes in tOpOlogy, is different for inter-

domain and intra-domain VNPS.

3.8.1 For Intra-domain VNP

For intra-domain VNPS, the core nodes inform all the edge nodes in the domain regarding

any changes in the MFS. Whenever there is routing update, the core nodes re-compute

the MFS of VNPS affected by the updates. If there is a change in the MFS, the core nodes

inform the edge nodes. This is done in a number of different ways.

The core nodes multi-cast the destination of the VNPS whose MFS has changed,

to the edge nodes. The edge nodes then re-compute the MFS of corresponding VNPS by

probing the next-hops. This is similar to the way MFS is computed in the procedure of

Figure 3-2; the process starts at the source edge node and ends only at the destination

node. In this method, a core node does not need to keep track of the pre-hops, i.e. the

previous nodes in the VNP-path, of VNPS. However, on an edge node, there can be

multiple VNPS associated with a destination. Therefore, the edge nodes will have to re-

compute the MFS of all the VNPS corresponding to a destination, even though it need be

done only for one of them.

This is avoided in the second method, where the core nodes keep more state

information about the VNPS. Each core node, with every local VNP, keeps track of the

nodes to which it has sent the VNP-ID for that VNP. Whenever a core node receives the

request for a VNP-ID, it notes down the address of the requesting node. This requires

only a small change to the procedure of Figure 3-2. Whenever a core node detects change

in the MFS of a VNP, due to routing updates or a MFS-update from other nodes, it

informs all the corresponding previous-hops for that VNP. The pre-hops in turn follow

the same procedure, and inform their pre-hops, and so on. Finally, the chain stops with

the edge nodes. This method has two advantages. Only those edge nodes whose VNPS are

45

affected, are informed about the change. Secondly, the edge nodes do not have to probe

for the re-computation of the MFSS. They get the updated MFS automatically. Whereas

in the first method, the edge nodes are informed about the destinations for which the MFS

need to be recomputed; the edge nodes have to initiate the process of re-computing the

new MFS.

3.8.2 For Inter-Domain VNP

The edge nodes always keep track of the (external) nodes that have requested for VNP-

IDs. The change in MFS for an inter-domain VNP, at the edge nodes, is triggered by

three events

0 Next-hop of the VNP has changed

0 MFS of the intra-domain VNP that was used for cascading the inter-domain

VNP, has changed

0 There is an update from the next-hop indicating a change in the MFS

In all these events, the edge node re-computes the MFS of the VNP. It then informs all

the pre-hops of the VNP of the change in the MFS. The pre-hops in turn do the same.

This process goes on till the source nodes are reached.

3.9 Implementation On IP Networks

Even though VNPS can be implemented over any kind of networks, they are generally

implemented on IP networks. Such implementations depend on the underlying IP

infrastructure. An IP inter-network is divided into independent and disjoint Autonomous

Systems (AS). VNP-domains map directly into AS; each AS is represented as a VNP-

46

domain. An AS may use a link-state protocol or a vector distance protocol as its Interior

Gateway Protocol (IGP). When a link-state protocol is used, an AS may get further

divided into areas. In such cases, a VNP-domain may correspond to each area. It is not

necessary to have VNP-domain correspond to the divisions, i.e. AS and areas, in IP

networks. However, it makes the implementation of VNP-domains easier and more

efficient.

Autonomous systems currently use BGP, a vector-distance protocol, to exchange

routing information among themselves. All the destinations external to the AS are

represented by VNPS to the AS boundary routers. AS boundary routers become edge

nodes of a VNP-domain, and indicate the destinations for which inter-AS VNPS are to be

configured.

A combination of methods is used to setup VNPS inside an AS. If the AS uses a

link-state routing protocol, both the link-state database and the routing table can be used

to setup the VNPS. Only the routing table can be used to setup VNPS across autonomous

systems. If the AS is divided into areas, similar to OSPF areas, then link-state database is

used inside the area, and routing table is used to setup VNPS across areas.

3.9.1 Using Link State Database

In an autonomous system that uses link-state Interior Gateway Protocols like OSPF and

18-18, each router maintains a directed topological graph of the AS. The vertices of the

graph consist of routers and networks. An edge connects two routers if they are attached

via a point-to-point network. An edge connecting a router to a network indicates that the

router has an interface to the network. The graph is developed and updated through link

state advertisements. A router generates its routing table from this graph by calculating a

47

tree of shortest paths with the router itself as the root. The tree gives the entire route to

any destination network or node. The shortest-path tree is used to generate the next-hop

to the desired port over the shortest path. Destinations external to the domain appear as

stub networks connected to boundary routers.

Like any other node, each edge node has the complete topology of the domain.

This is used to several advantages in implementing VNPS. Modifications to VNP-paths

with routing updates, is made more efficient. Calculation of MFS with changes in VNP

paths also becomes efficient and simpler. Each edge node knows the external destinations

reachable through other edge nodes. Hence, the VNP Edge Protocol becomes redundant

when link state database is used.

3.9.1.1 Routing Updates

Routing updates result in the modification of VNP-paths. As described in Section 3.6,

both core and edge nodes participate in this process. However, when link-state IGP is

used in a VNP-domain, the participation of core nodes is eliminated. In this method, the

edge nodes initiate all the modifications to VNP paths.

Topological changes result in a new SPF tree. An edge router compares the new

SPF tree with the previous one, and finds the destinations for which the paths have

changed. For destinations inside the area, it executes the procedure of Figure 3-2 to re-

setup the corresponding AVNPS. For destinations outside the area, it executes the

procedure of Figure 3-3 to re-establish the corresponding EVNPS. The core nodes remain

passive to the routing changes from the perspective of VNPS.

48

3.9.1.2 MFS

The determination of the MFS of a VNP is more efficient if link-state database is used for

setting up the VNP. In this environment, a VNP is associated with the corresponding

destination edge node. The MTU of each link is maintained in the link-state database.

This is not usually propagated by link-state protocols, but it can be easily added to them.

This does not cause any increase in the advertisement traffic because the MTU of a link

hardly ever changes. The VNPS are always setup among edge routers, so it is very easy

for the edge routers to calculate the MFS of a VNP. An edge router knows the path of a

VNP, and the MTUS of all the links along the path. This information is available in the

link-state database. An edge router just calculates the minimum of all the MTUS along

the path. This will not work if a VNP was cascaded on to another one by a core router in

an area. However, note that cascading is not allowed in VNPS inside an area, but only

across areas. Any changes in the VNP path are immediately reflected in the determination

of the MFS. Hence, the calculation of MFS for VNPS inside an area is very efficient.

However, the method for calculating the MFS of an inter-domain VNP remains the same

as explained in Section 3.8.

Whenever a new SPF tree is generated, due to routing updates, the edge nodes

calculate the MFS of VNPS independently just by consulting the new SPF tree. This can

be done for all the VNPS that originate at the edge node, or just those for whom VNP-

path has changed.

49

3.9.2 Using IP Routing Table

Using link-state database to setup VNPS has many advantages. It does not need Layer-3

addressing to identify ports. It is possible to create a completely independent VNP layer,

which any layer-3 can use. Physical links are part of the database; hence they can be

identified and addressed easily.

However, not every autonomous system uses link-state routing protocols. Many

autonomous systems use vector-distance IGPS like RIP and EGRIP. Vector-distance

protocols exchange connectivity and proximity information between routers and

networks. They do not exchange information regarding physical links. Hence, it is not

possible to identify physical ports from the information base collected through vector-

distance protocols. A

The AS can be still divided into VNP-domains to reduce the number of VNP

entries on the core nodes. However, the edge nodes cannot derive information about

external destinations from the routing table. Hence, the VNP Edge Protocol is needed in

this case, unlike with link-state database. The methods of dealing with routing updates

and MFS changes remain the same as described in sections 3.6 and 3.8.

3.10 Explicit Path

The VNP paths considered thus far were implicit i.e. they were derived from the network

topology through link-state database or routing table. They are the shortest paths, as per

the routing protocol, to the destination. Any change in the topology changes the path.

They ’follow’ IP routes. A VNP explicit path may not follow the paths set by routing

protocols. The hops along such a path are specified explicitly, and they may not change

50

with the topology. A strict explicit path specifies all the nodes along a path in an order;

the VNP path must cover all the nodes, in the order, and must not have any other nodes.

A loose explicit path specifies certain intermediary nodes along the path in an order; the

VNP path must cover all the nodes in the order but it may traverse other nodes. The

specification of an explicit path constitutes the type - loose or strict - of the path and the

intermediate nodes in an order.

The procedure for setting up of explicit VNP paths is similar to the one for

implicit paths. The path specification is given as Constraint. The NextHopSet()

procedure determines the next-hop according to the path specification. A new VNP

identifier is generated for each invocation of the procedure, unlike for implicit paths

where the identifier is associated with the destination.

3.11 Constraint-based Path

Routing is the process of finding paths among nodes, under certain constraints. The

constraint in common routing protocols is to find the shortest path between two nodes,

whereas the constraint in an explicit route is the nodes that can be traversed. Other

constraints, like bandwidth and delay, can also be imposed on the way a route is chosen.

The way to setup a constrained VNP path is the same as shown in Figure 3-2. The set of

next hops is dependent on the constraints. It is possible that a node cannot meet the

constraints. In such case, the VNP is not setup. All the nodes need to keep track of

resource allocations and check if the constraints can be satisfied. Another way is to have

the ingress node reserve the resources first and then setup an explicit path.

51

Chapter 4

IMPLEMENTATION

4.1 VNP Frame format

The format of a VNP data frame is shown in Figure 4-1. A VNP frame has the VNP

header followed by its payload i.e. the data. The payload can be data from an application,

a packet from another layer, or another VNP frame. VNP header is designed to be generic

so as to carry data from different protocol. But it is optimized to provide minimal

overhead for IP traffic. Hence the VNP header is of variable length.

The Port-ID field in the header is the identifier of the port through which the

packet needs to be delivered. The 2-bit PT (Payload Type) field in the header indicates

the type of the load. It can have the values: VNP, IP, Any or Unknown. The value of VNP

for PT indicates that the VNP frame contains another VNP frame. This value of PT is

used for VNP cascading. When PT has the value Any the Optional field SNAP ID

indicates the packet type. The SNAP ID field has the same format as the IEEE Sub

Network Access Protocol (SNAP) Identifier [31]. It is five octets long; the first three

octets contain a value assigned to a particular organization; the remaining two octets

identify a specific protocol defined by that organization.

52

The value of IP for PT indicates that the load is an IP packet. Even though SNAP

covers IP protocol the reason for having a special value in PT for IP is efficiency. The

bulk of traffic through VNPS is going to be IP packets, and SNAP identifier introduces an

overhead of five octets per packet. The special value for PT saves this overhead. It is

possible that certain non-1P applications also do not want to incur the overhead of SNAP

identifier. In such cases the egress node will associate the payload type with the VNP.

Such VNPS are application specific and carry data only for that application. For such

traffic PT is set to Unknown.

The VNP header has at least 4 octets but it can be longer depending on whether it

is carrying the destination address and the load type. A multi-access VNP requires a

destination address whereas a point-to-point VNP does not. The optional Destination

Address field in the VNP header indicates this address. The destination-address field is of

variable length. It has a SNAP identifier followed by the actual address. The SNAP

identifier indicates the protocol for the address because the destination address can

belong to various protocols. The SNAP identifier in the destination address field is not

required for IP addresses. The 1-bit DAP (Destination Address Protocol) field in the

header indicates whether the destination address is an IP address field or not. The SNAP

identifier for the destination address protocol may not be the same as the SNAP identifier

for the payload.

The six-bit Time-To-Live ('I'I‘L) field guards against wastage of resources in case

of routing loops. The TTL field is decremented by one at each hop; the packet is

discarded when it reaches zero. A 3-bit field represents the traffic class for the packet.

The variable length of a VNP header does not hinder the forwarding speed because most

53

of the nodes just swap the port-ID and forward the packet. Only the egress nodes need to

look at the Optional fields.

4.2 Traffic Classes

Virtual network ports support traffic classes. A 3-bit traffic class can be specified along

with the packet for transmission over a VNP. A value of ‘0’ for class indicates best-effort

traffic and ‘7’ indicates the highest priority. If the local physical port Lp supports traffic

classes, the 3-bit quantity is converted to an “equivalent” for the local port and the packet

transmitted with this equivalent class. Different physical ports may provide different

types of traffic classification so the conversion of the VNP traffic class to the equivalent

physical class is dependent on the node and the physical port. The 3-bit class is also put

in the header of the VNP frame so that all the hops in the path can classify the packet

using this field. If the underlying physical ports do not provide for traffic classes, the

VNP sends the packets as best-effort traffic. It is possible to implement Weighted Fair

Queues (WFQ) [40] in such cases (in the Devait function introduced later in this

chapter) but at the cost of degrading the forwarding rates. WFQs can also be

implemented as control procedures for certain VNP to provide classes on selected basis.

54

VNP Frame

VNP Header Data

VNP Header

3| l2 6 4 3 0

Port-ID TTL PT DAP Class

Destination Address

(Optional, Variable Length)

E SNAPID

? (Optional,5 Octets)

Destination Address

SNAPID Address

(5 Octets) (Variable Length)

SNAP Identifier

Organization ID Protocol ID

(3 Octets) (2 Octets)

Figure 4-1 VNP Frame Format

4.3 VNP Software Components

Figure 4-2 shows the organization of the VNP-layer in the TCP/IP layered architecture. It

falls between Layer-3 and Layer-2 of OSI’s 7-layer architecture. But it is difficult to

classify the VNP-layer among the 081’s 7 layers based on its functionality. It is used for

inter-networking (network layer) but does not have its own addressing; it uses the

addressing mechanisms of other network layers. At the same time, it can be used for

55

bridging. VNP control procedures can also provide higher-layer functionality like

encryption.

There are two major components in the VNP layer: VNP Packet Handler and

VNP Transmit Procedure. VNP Transmit Procedure is VNP’s “device driver” whereas

VNP Frame Handler is its “protocol processor”. A VNP uses the Transmit Procedure to

forward data. The Frame Handler processes any VNP frames that arrive at a node. Figure

4-3 shows the flow of IP datagrams through these software components on two nodes

connected through a VNP. In the figure, the ovals represent software components. VTP

is the Transmit Procedure; VPH is the Packet Handler.

Application Layer Application Layer -

Transport Layer Transport Layer

lP Layer IP Layer

VNP Layer VNP Layer VNP Layer VNP Layer

Datalink Layer Datalink Layer Datalink Layer Datalink Layer

«- ® «m»

Figure 4-2 VNP Layer

56

Datagrams headed for the network connected to N2P2 arrive at node N at Layer-2

(L2 in the figure). They are multiplexed by L2 over to IP layer. From its routing table, IP

finds that the datagrams are to be sent through the virtual port N1P2. It hands them over to

the Transmit Procedure (VTP) of N1P2. After consulting N1P2’s path-set, VTP invokes

the device driver for NIP] to send the datagrams to N2. When the datagrams arrive at N2

they are multiplexed over to the VNP Packet Handler (VPH). VPH looks at the port-ID in

the VNP header (it will be N2P2), and transmits the datagrams by invoking N2P2’S device

driver.

 — Physical Port

Virtual Nework Port

Figure 4-3 VNP Software Components

57

4.3.1 Packet Handler

Pseudo-code for VNP packet handler (VPH) is shown in shown in Figure 4-4. It looks at

the port-ID in the VNP header. If it is a virtual port then the frame is handed over to the

Switch function corresponding to the port. If the port is a loopback or a physical port then

the payload is given to the port for transmission. For transmission at link layer, the

payload type must be identified; this is determined by looking at the PT field in the VNP

header. If the port in the incoming frame is invalid then the packet is dropped.

VNPPacketHandler(Packet) {

switch Type(Packet.Head.Port) in {

case LOOPBACK:

case PHYSICAL:

Header = Packet.Head;

Packet = Packet — Packet.Head; /* Remove Top Header */

PacketType = LoadType(Header);

Devait(Header.Port, Header.Address, Header.Class, PacketType, Packet);

break;

case VIRTUAL:

Call the Switch function corresponding to the Port Type;

break;

default:

Drop the packet;

break;

Figure 4-4 VNP Packet Handler

58

4.3.2 Devait

Devait, shown as Figure 4-5, is the function to transmit data through any port. All

layers including IP and VNP use it for transmission through a port. For a virtual port, it

calls the Cascade function corresponding to the port. For the loopback port it passes the

packets over to the appropriate layer. For a physical port, it checks if the target is the

local node, in which case the packet is sent to Layer-3. Otherwise it calls the transmit

Devait(Port, Address, Class, PktType, Packet)

switch Type(Port) in {

case LOOPBACK:

if (PktType == VNP) then

VNPPacketHandler(Packet);

else

NetPacketHandler(PktType, Packet); // Send to upper layers

break;

case PHYSICAL:

if (Address 3 NULL)

ReportErrorO ;

else if (Address = LocalNode) then

NetPacketHandler(PktType, Packet); // Send to upper layers

else {

Resolve Address if needed;

Convert Class to an equivalent for Port;

Call Xmit function corresponding to the Port Type;

I;

break;

case VIRTUAL:

Call the Cascade function corresponding to the Port Type;

break;

default:

Drop the packet;

break;

Figure 4-5 Generic Transmit Function

59

function corresponding to the port. Before that it converts the traffic class for the packet

to the equivalent for that physical port.

4.3.3 'Ii'ansmit Procedure

Corresponding to each port type there is a control procedure. For a physical port the

control procedure is the device driver that transmits a packet through the port. A VNP

control procedure has two transmission functions: Switch and Cascade. The control

MultiCastSwitch(Packet) {

for Path in VNPI‘able[Packet.Port].PathSet {

Packet.Port = Path.Rp;

Devait(Path.Lp, Path.AN, Packet.Class, VNP, Packet);

MultiCastCascade(Port, Address, Class, PktType, Packet) {

VNPHeader Header;

Header.Class = Class;

Header.DAP = Address.Type == IP;

SetLoadType(Header, PktType); // Set PT field

for Path in VNP'I‘able[Port].PathSet {

Header.Port = Path.Rp;

If (Address != null) SetDestAddress(Header,AddreSS);

NewPacket = Header + Packet;

Devait(Path.Lp, Path.AN, Class, VNP, NewPacket)

Figure 4-6 Multi-cast Control Procedure

60

procedure for a multicast type VNP is shown in Figure 4-6. For each path in the path-set

of the incoming port, the Switch function swaps it with the remote port (Rp), and

transmits the frame through the local port (Lp) to the next hop (AN). The cascade function

forms a new header, attaches it to the top of the packet and then transmits the packet

through local port to the next—hop. For multicast VNP all the paths in the path set are used

and the packet is left as-is. For other types of VNPS only a subset of the path-set may get

used; the packet may be modified (e.g. encrypted), or the traffic class may be changed.

4.4 Prototype

A prototype for the framework was implemented on Pentium PCs running Linux. The

virtual network port’s software components, VPH and VTP, were implemented as one

Linux loadable kernel module. The Linux ifconfig(8) command was used to set the

attributes like MTU for the virtual ports. Another program, mconfig, was developed to

set other attributes of a virtual port. The module provides, through ioctl function, for

modifying and retrieving the various attributes of the virtual port. The VNP table is also

configured using the mconfig command. The maximum number of VNP devices that can

be configured is a parameter to the loadable module. The frame demultiplexor portion of

the Linux network kernel invokes the VNP packet handler. Hence, no changes to the

Linux kernel sources were needed. The virtual ports were configured manually. The

implementation of VNP setup protocol is under way. Linux’s network kernel has features

of adding new type of packet handlers, so no changes were required for the kernel. No

changes were made to the IP layer either. Only multicast VNPS were implemented;

implementation of other types of VNPS is underway.

61

Chapter 5

DESIGN OFA SCALABLE ROUTER

The very first application of virtual network ports was in the design of a scalable IP

router. VNPS were used to cluster off-the-shelf forwarding engines interconnected with

commodity high-speed switching fabric. Packets into the router would go through at least

two forwarding engines; and VNPS were used to avoid this multiple Layer-3 processing.

5.1 Architecture

The rapid growth in network data and bandwidths has put the focus on scalability as an

important aspect of a router’s features. It has been Observed that a tier-1 router’s

performance needs to double every 10 months [41]. Router scalability has been mostly

limited to forklift upgrades i.e. discarding the old router and buying a new one. This is

due to the limitations in router architectures. Scalability requires a fundamental change in

the design of a router.

There has been an emergence of very high speed, economical and scalable

SAN/LAN interconnects, such as Myrinet [7] and ServerNet [28]. These interconnects

provide bandwidths of gigabits per second. For example, a Myrinet link composed of a

full duplex pair of channels provides a bandwidth of 1.28 Gbps. These switches can be

62

incrementally expanded to provide higher aggregate throughput and thus scalability. A

Myrinet multi-port switch can be connected to host computers or other Myrinet switches,

resulting in a larger configuration.

The high bandwidth switching interconnects are used with off-the-shelf

processors to architect a highly scalable, high-throughput IP router. Figure 5-1 shows the

architecture of the proposed scalable router. It comprises of a set of autonomous routing

nodes connected by one or more high-speed switches. The routing nodes are general-

purpose computers. Each node has one or more of internal and external network

interfaces. The intemal network interfaces attach to the switching fabric, and the external

network interfaces attach to LAN or WAN networks. The external network interfaces of

different routing nodes may be attached to different networks or to the same network.

Packets enter the router through the external network interfaces of the routing nodes. A

node may have multiple internal interfaces for higher throughput or fault tolerance. The

switching fabric may have multiple parallel paths from Node-I to Node-2 through

independent switches.

The routing nodes route the input packets in parallel through the switching fabric

to the outbound routing nodes. The outbound nodes switch the packets out on to the

destination network without going through the IP layer. The architecture provides for

high degree of scalability. If more ports are required, more routing nodes or external

network interfaces can be added. More internal network interfaces or switches can be

added to handle higher aggregate bandwidth. High-end multiprocessors can be used as

routing nodes to accommodate larger bandwidth, such as OC-48 and above, at external

network interfaces.

63

The nodes of the proposed router use virtual network ports to work as a unit. Each

node in the router defines virtual network ports to the external network interfaces of all

the other nodes. An IP packet enters the router through one of the routing nodes. This

ingress node performs traditional IP routing5 to find the target address (the next hop

address or the destination address) for this packet.

It then hands over the IP packet with target address to appropriate the VNP

device. The VNP device sends the packet through the egress port on the egress node to

the target address. The packet does not go through the IP layer at the egress node. The

1 1 .1

0c. 12 TI

1 1

Node l

Node 0

4—Wsy SMP Pentium

Sparc

H Myrinet. ServerNet N "W 2

Pentium -H)Dl—->

Node 4 Node 3

DEC “1"“ SO! Indigo

‘1" 1' ”“1"“

Figure 5-1 Block Diagram of the Proposed Router

5 Unless the packet is coming from a VNP enabled node, in which case the packet does not go through IP

64

ingress node acts like a traditional router and the egress node similar to a switch. Note

that routing and fragmentation is done at the ingress node, and ARP is done at the egress

node.

The information about the egress node, the egress port, and the internal network

interface can be incorporated at various layers. For instance, it can be made part of the IP

routing table, but that will involve changes to IP layer. Instead we use VNP devices for

keeping this information. It has the advantage of using the intelligence of the IP layer to

discover information about the egress node but without any changes to the IP layer.

5.2 Prototype

A prototype router was implemented using four Pentium PCs running Linux

interconnected through a four-port Myrinet switch. The prototype VNP implementation,

described in Chapter 4, was used for setting up VNPS. The VNPS were configured

manually. The device driver for Myrinet was slightly modified to handle VNP frames.

5.3 Performance Measurement

The proposed router architecture has two stages: the ingress stage and the egress stage.

This separation of stages provides scalability but may affect the performance. SO we

looked at the effects of the egress stage on the performance rather than the overall

performance of the router. It was found that this separation of stages did not have any

layer.

65

effect on the throughput or frame loss rate but resulted in less than 5 percent increase in

latency.

Stage 0

Tester

Switch Fabric

Myrinet

Tester

Switch Fabric

Myrinet

Tester

Figure 52 Test Configurations

The various benchmarking test setup configurations are shown in Figure 5-2. The

Tester is used to generate network frames for the benchmarks. The reason for the three

66

configurations, Stage-O, Stage-1, and Stage-2 is to isolate the effects of the Tester, ingress

node, and egress node respectively. In Stage-2 the Device Under Test (the prototype

router) is connected to the transmitting and receiving ports of the Tester. In Stage-1 only

the ingress node is connected to the Tester whereas in Stage-0 the transmitting and

receiving ports of the Tester are connected directly. Any limitations of the Tester become

visible in the Stage-0 configuration; it was found that the Tester used could not generate

frames at the theoretical maximum for small frame sizes. In the Stage-1 configuration

effects of the IP implementation become evident. It was found that a major portion of the

latency was due to the ingress node. The Stage—2 configuration shows the overhead due

to the egress stage and the remote-network device. All the benchmarks were run for these

three configurations. A two-node router was used for these tests. A SparcStation-20

running Solaris 2.5.1 was used as the Tester. Only 10Mb/s Ethernet ports were used for

the benchmarks. Null (port 9) UDP packets were used for all the tests. Methodologies-

specified in RFC 1944 [11] were followed for performing the benchmarks.

16000

14000 -

12000

10000

PPS aooo ‘ . :st-o

6000 V.” _
lStagecl

4000 5 § §" ‘ {.- asap:

m § § § g 15 ’ ’ ~' r 'r ~

0 . . t .\ I! k I. .. e. x m

64 128 256 512 1024 1280 1514

FrameSizemytes)

Figure 5-3 Throughput

67

5.3.1 Throughput

Throughput is defined as the maximum rate at which none of the offered frames is

dropped by the device. Throughput for various test configurations and the theoretical

frame rates for 10Mb/s Ethernet are shown in Figure 5-3. It is seen that the egress stage

of the router does not have any impact on the throughput of the router. Note that the

Tester could not generate frames at the theoretical frame rate for smaller frame sizes.

Frames of size 1518 octets were getting fragmented and hence 1514 octet sized frames

were used.

5.3.2 Frame Loss Rate

Frame loss rate is defined as the percentage of frames, that should have been forwarded

by a network device under steady state load, that were not forwarded due to lack of

resources [12]. It was measured for frame sizes of 64, 128, 256, 512, 1024, 1280 and

1514 octets. No frame loss was noticed for all the test configurations.

68

5.3.3 Latency

Latency for store and forward devices is the time interval starting when the last bit of the

input frame reaches the input port, and ending when the first bit of the output frame is

3500

3000 g g

2500 M g g

Latency 2000 g E é

(microsec)1500
.3 Q g IStage-O

\g \g @ .\‘Stage-l

woo e e e\g: \g‘ \g wStage-Z

a \a a Re
500 a s. a Ne w

,,

64 128 256 512 1024 1280 1514

Frame Size (bytes)

Figure 5-4 Latency

seen on the output port [12]. The measurements shown in Figure 5-4 do not show the

latency as defined above. Instead it shows the difference between the time the frame was

transmitted, and then received by the Tester. This includes the transmission times on the

media. Note that Stage-l and Stage-2 involve an extra leg of transmission delay

compared to Stage-0. It is seen that there is less than 5 percent increase in this latency

due to the egress stage of the router. A good part of this increase is suspected on the

misaligned Linux network buffers in the implementation of VNP device.

69

 Network

Processor

Line Forwarding

<21) Card > < > Engine

Switch

1 Fabric 1

Line Forwarding

(22> Card ’ <r=>' Engine

Figure 5-5 Architecture of a High Speed Router

5.4 Related Work

5.4.1 High Speed Routers

Earlier router architectures were bus-based. They had a single processor that was

involved in forwarding and protocol processing. The network interfaces and the processor

were connected through a bus. It was not possible to scale the throughput due to the

bottlenecks of the processor and the bus. Recent architectures incorporate multiple

forwarding processors and protocol processors interconnected with the network interfaces

through one or more gigabit switches. Such a router has four components, line cards,

forwarding engines, network processors, and switching interconnects. The line card is the

interface to external data links. The forwarding engine inspects packet headers and

determines the outgoing line card to send the packets through. The network processors

70

compute the routing table by running the routing protocols. The switches are used to

interconnect the components of the router. Extensive use of Application Specific

Integrated Circuits (ASIC) is made to perform forwarding Operations in the hardware.

The various high-speed routers differ in the design of the switches, whether the line cards

also act as the forwarding engines or whether the routing table is kept at each forwarding

engine. Two early prototypes, IBM’s plaNET [l4] and Bell Labs gigabit IP router [6],

used specialized buses instead of switch fabric. Though not an IP router, plaNET was one

of the first gigabit switches and supported a number of routing schemes [40]. Recently

there have been a number of commercial implementations. Ascend’s GRF IP Switch,

Cisco’s GSR [15], BBN’s Multi-Gigabit Router [41][42], Torrent’s IP9000 [53] and

Pluris’ Massively Parallel Router [44] are some such examples. Tiny Tera [33] illustrates

the design of high-performance switches for high-speed routers.

5.4.2 Fast Lookup Methods

Classless Inter-Domain Routing [22] was introduced in the early 19908 to curtail the

growth of routing table entries. It required the longest prefix match of routing table

entries to determine the next-hop. This has turned out be the most compute expensive

part of forwarding. Initial implementations of longest prefix match used radix tries [53].

Content Addressable Memory (CAM) was used in [30] to speed up the matching process

through hardware. Caching has been shown to improve the lookup performance in [43].

Recently, an innovative data structure for collapsing the routing table into a very small

forwarding table was proposed in [17]. The forwarding base was small enough to fit into

the cache of a general-purpose processor to result in several million lookups per second.

Another new lookup algorithm using binary search on hash tables organized by prefix

71

lengths is described in [63]. With this approach, in the worst case, the number of lookups

required is log2 of the address length in bits. Torrent’s ASIK algorithm [57] is claimed to

be very fast but its details have not been made available.

72

Chapter 6

MPLS VS VNP

Switching techniques forward packets below Layer-3. They do this by establishing data-

link switched paths between ingress and egress nodes over the underlying hardware. This

is done either dynamically by identifying flows in the traffic, or statically based on

network topology, or both. At ingress node the incoming packet is mapped to a switched

path (or tree in case of multicast) based on certain forwarding criteria. From then on the

packet is forwarded along the switched path to the egress node, below Layer-3. The

intermediate nodes along the path perform ATM-like label swapping to forward the

packets. lpsilon’s IP-Switching [37][38][39], Cisco’s Tag-Switching [16]. IBM’s

Aggregate Route-Based IP Switching (ARIS) [58], Toshiba’s Cell Switch Router (CSR)

[29], NEC’s IPSOFACTO [1] and Cascade’s IP-Navigator [11] are some representative

switching techniques. They mostly differ in their protocols for setting up the switched

paths, the granularity of flows they support, and the underlying hardware they work on.

IETF’S Multi Protocol Label Switching (MPLS) Working Group [47] is currently

drafting a specification for a label-switching standard. A good comparison of the various

techniques is described in [20]. Our approach is conceptually very different from all the

73

other techniques but is close to MPLS in implementation. Therefore we now describe

MPLS in a little detail as per [47].

6.1 MPLS

A label is a short, fixed length locally significant identifier. A router that supports MPLS

is called a Label Switch Router (LSR). A set of contiguous LSRS under the same

administration defines a MPLS domain. A Label Switched Path (LSP) corresponding to a

class of packets is a sequence of LSRS <R1, R2,. .., Rn> such that

0 Each LSR Ri, 1< i _<_ n , allocates a label L, for the class

0 Each LSR R1, 15 i < n , is made known of the label (LN) of its downstream LSR

Rm-

0 The ingress LSR R1 checks if a packet belongs to the class. If so it attaches the

label L2 to the packet and forwards it to R2.

Classification of packets can be based on their network destination, domain egress node

or on some other criteria. MPLS forwarding works this way: when a packet labeled with

L, arrives at R, it replaces L, with Li“ and forwards the packet to Rm. A packet may

have a stack of labels attached to it but the forwarding is based exclusively on the label at

the top of the stack. An LSR maintains three data structures for the purpose. A Next Hop

Label Forwarding Entry (NHLFE) contains information about the next hop and label

stack operations. The Forwarding Equivalence Class to NHLFE (FTN) maps packet

classes to NHLFES. The Incoming Label Map (ILM) maps the incoming labels to

NHLFES. Each NHLFE contains the following information,

o The next hop for the packet

74

o The data link encapsulation to use when transmitting the packet

0 The way to encode the label stack when transmitting the packet

0 The operation to perform on the packet’s label stack, it is one of the following

Operations

0 Swap the label at the top with a specified new label

O Pop the label at the top

0 Swap the label at the top with a new label, and then push one or more

specified new labels onto the label stack.

The LSRS use Label Distribution Protocol (LDP) to distribute information about the

labels and to coordinate stack Operations.

6.2 Comparison

The use of high performance processors and special hardware in high-speed routers

makes them expensive. Even though improvements in table lookup methods are

impressive they are not as fast as the switching techniques. Switching techniques involve

a simple exact-match table lookup and hence provide very high forwarding speeds. They

can be implemented in the hardware and when implemented over switching fabrics like

ATM, they provide forwarding at physical line speeds. But switching techniques do not

scale well with the number of flows in the network. They need to keep track of the flows

through a router that has limited resources. Switching techniques require a set of routers

to run the switching protocol, whereas high-speed routers and fast lookup methods

improve the performance of individual routers and do not require any new protocols.

Switching techniques cannot completely eliminate the Layer-3 processing either. Ingress,

75

egress and aggregate routers still require packets to go through the network layer. Packets

that do not have the flow setup for them or have invalid labels will also need to go

through Layer-3. So the advantages of switching techniques over the other two

techniques for forwarding are debatable [35]. But most of the switching techniques have

the added benefits of identifying flows, explicit routing, and layer-2 tunneling. This helps

in providing for quality of service, traffic engineering and protocol independent tunnels.

Hence the switching techniques have an edge over the other two techniques in this

regard. The scaling issue in switching techniques is tackled by providing coarse-grained

aggregated flows. We envision all the three being deployed on an inter-network and even

on the same router.

Using virtual network ports seem to involve a lot more processing and memOry

than label switching techniques like MPLS. Looking at the procedures in Chapter 4 the

only extra processing needed, when compared to label-switching techniques, is

determining whether the port is loop-back, physical, or virtual. Having a fixed maximum

for physical port identifiers (Pm) can do this very efficiently. A node by design cannot

have more than a certain number of physical ports, and this can be the fixed maximum.

The more complex VNP header format does not affect the forwarding speed either. Only

the end-nodes look at the various fields in the packet, the intermediate nodes just look at

the port-ID, and forward the packet. The generic control procedures provide flow

processing, and should not be used at nodes where forwarding speed is desired. They are

to be used on nodes with adequate processing capabilities. VNPS need more memory

compared to labels for their attributes like MTU but do away with the stack operations.

These attributes provide extra functionality compared to labels, and can also be cached.

76

VNPS can calculate the attributes when needed; only the often—used ports will have the

attributes in the memory.

Our technique is a more generalized approach than MPLS. Using only point-to-

point VNPS and multicast control procedure results in more than the functionality of

MPLS. VNPS act as flows to networks and not just nodes. This facilitates Single-hop

paths to the destination. Conceptually VNPS are easier to discern than labels. Labels do

not define the ends (ingress and egress nodes) of a flow clearly, whereas VNPS do. This

makes label stacking implicit and efficient. The pop or push operations on labels are

explicitly listed in the NHLFE entry of MPLS whereas in VNP they are not. The pop

operation does not require a lookup into the VNP table whereas in MPLS the NHLFE

entry needs to be looked up to perform any stack operation. Even though the implicit

NULL label and penultimate hop popping of MPLS make the pop operation equally

efficient, it is not possible on all LSRS.

If the MTU of the outgoing port is smaller than the packet size, MPLS needs to

fragment the packet [49]. Since VNPS have the smallest MTU of the whole path

associated with them, fragmentation is not an issue. Moreover the MTU value is the

optimal one for multicast VNPS. A VNP is like any other physical network port on the

node so the interface between higher layers and VNPS is already there. For destination

based VNP flows, no change is needed to the IP layer at all.

Whereas labels are passive virtual ports are active, they do a lot more than

forwarding. They can filter, police, shape, encrypt or do almost anything with the traffic

flow. This helps with per-flow processing of packets at each node. Label switching fails

77

at route aggregates. The performance at aggregate routers can be improved with the

special aggregate VNP control procedures.

6.3 Quantitative Analysis Using Simulation

We simulated a network of MPLS and VNP nodes to analyze the overhead incurred by

VNP. We measured the times taken for the three basic operations involved: switch,

aggregate, and de-aggregate. For VNP, the corresponding operations are: switch, cascade,

and un-cascade; for MPLS, they are: switch, push, and pop respectively. The simulator

was written in C. All the experiments were run on an SGI Origin-200 with R10000

processor and 512MB of RAM.

Transmitter

Demultiplexor

Figure 6-1 Simulation Modules

78

6.3.1 Architecture

Each node in the simulator has four modules: Multiplexor, VNP, MPLS, and Transmitter.

This is illustrated in Figure 6-1. The Demultiplexor receives frames coming into a node

from a physical device. It checks the protocol field in the frame, and passes the frame to

the corresponding protocol handler. In our case, there are only two protocol handlers:

VNP and MPLS. The protocol handler modifies the frame, and gives it to the

Transmitter. The Transmitter sends frames out of a node through a network device. Since

a VNP is a network device too, the Transmitter may send the frame back to the VNP

module. This happens in the case of cascading and un-cascading. However, frames from

MPLS module are never sent to the VNP module because MPLS module always requests

the frames to be sent through a physical device. The Transmitter handles VNP and MPLS

frames differently; hence it needs to be notified of the frame type.

79

6.3.2 Methodology

The time taken for processing a frame is measured as the time the frame spends in the

respective protocol handler module. The clock starts when a packet leaves the

Demultiplexor, and stops when the packet enters the Transmitter. The VNP and MPLS

A: Point-to-Point

VNP-Domain

B: Multi-Access

Multi-access

Networj

VNP-Domain

Figure 6-2 Simulation: Switching

80

tables were setup manually before the start of the experiments. For each experiment, two

million packets were sent through the VNP and MPLS paths. The first million packets

were for bringing the system to a steady state; the time taken to process the last one

million packets was noted down.

6.3.3 Switching

In the first experiment, we compared the time taken to switch packets using MPLS and

VNP. Figure 6-2 shows the network configurations we used for the simulation. Routers

E0 and E are edge routers, and Co is a core router. VNP and MPLS paths were so setup

that E0 is the ingress node, Co an intermediate node, and E1 the egress node. Packets were

generated so that they enter at E0, travel over the VNP or MPLS path, and exit at E1. We

measured the following processing times.

1. The time to add VNP or MPLS headers at node E0

2. The time to switch VNP or MPLS frames at node Co.

3. The time to remove MPLS or VNP headers at node E

In the first configuration, as shown in part A of the figure, we used a point-tO-point VNP.

81

6.3.3.1 Multi-access VNP

Multi-access VNPS help in reducing the number of VNPS in a node. They are useful in

the core, where the number of flows can get prohibitively large. Multi-access VNP

packets carry the next-hop address in their header, whereas point-to-point VNP packets

do not; this may introduce a processing overhead on the nodes. We measured the times

taken for each Operation on both point-to-point and multi-access VNPS. The next-hop

address in a multi-access VNP packet can be of any protocol including Layer-2 protocols.

For our experiments, we used only IP next-hop addresses. For the second part of the

A: Point-to-Polnt

VNP-Domain

B: Multi-Access

 Multi-access

VNP-Domain

Figure 6-3 Simulation: Aggregation

82

experiment, as shown in part B of the figure, we used multi-access VNPS, The test

packets were generated to have a node (not shown in the figure) on the multi-access

network as the destination.

6.3.3.2 MPLS

MPLS paths are always between two nodes i.e. point-tO-point, so the concept of multi-

access is not applicable to them. However a set of LSPs, from the ingress node to each

node on the multi-access network, can be used to provide the equivalent connectivity.

This results in an increase in the number of LSPs on the nodes along the LSPs, but does

not change the time taken for switch, push, or pop operations.

6.3.4 Aggregation and De-aggregation

Figure 6-3 shows the network configurations used for measuring the processing involved

in aggregation and de-aggregation. It is similar to the two configurations used in

switching. Nodes E0, Co, and E1 belong to a VNP-domain. Co is a core router, whereas E0

and E1 are edge routers. V1 is a point-tO-point VNP from E0 to E1; it passes through Co.

Ex and By are two other edge routers; they do not belong to the same VNP domain as E),

Co, and E1 do. V2 is a point-to-point VNP from Ex to By; it is cascaded over V1.

For MPLS, we created two LSPs: L1 and L2. L1 is an LSP with E; as the ingress,

and E; as the egress node, and has Coin its path. L2 is an LSP with E)(as the ingress node,

and Ey as the egress. MPLS tables on E0 and E1 were setup to push and pop labels

respectively such that L2 aggregates over L1.

Packets were generated to enter Ex, travel over V2 and L2, and finally reach E. E0

aggregates the packets over to V1 and L1 respectively; E1 de-aggregates them back to V2

83

and L2. The core router Q) is involved only in switching the packets. We measured the

following processing times.

1. The time to aggregate V2 and L2 over V1 and L1 respectively, at E0

2. The time to switch VNP or MPLS frames at node Co.

3. The time to de-aggregate into V2 and L2 at node E1

Table 6-1 Simulation Options

VNP MPLS

Switch Switch

Cascade Push

Operation

Un-cascade Pop

Add, Remove Header Add, Remove Header

Access Point-to-point, Multi-access Point-to-point

Payload IP, VNP, Any, Unknown IP

6.3.5 Payload

A VNP can carry packets of different types. An MPLS path can carry packets of only

one type, generally IP. To achieve the same functionality MPLS has to have multiple

LSPS, one for each packet type. This results in enormous wastage of resources on each

node along the LSP. However, this advantage of VNP comes at a cost; VNP frame has

complex header format. We wanted to check if the complex header format results in a

processing overhead.

84

In case of MPLS, only TCP/IP packets were used as the payload. However, we used four

different payload configurations for point-to-point and multi-access VNPS. These

configurations were:

1. IP: TCP/IP packets were used in the experiments

2. VNP: VNP frames were used as the payload (inside another VNP frame). This

is always the case during cascading.

3. Any: Any type of payload can be used in this case. We chose IPX packets. It

involved adding the SNAP identification to the header.

4. Uknown: This is similar to MPLS. VNP is unaware of the type of the payload

it is carrying; only the end nodes know about it. Even though any type of

packets can be used, X25 packets were tested as the payload.

6.3.6 Results

In summary, we measured processing efforts for five types of operations, four types of

payload, and two types of network access. These various options are shown in Table 6-1.

6.3.6.] Switching

Figure 6-4 shows the processing times for the switching experiments. Switching times for

point-to-point and multi-access VNP are the same, and are irrespective of the payload.

This is simply because the switching operation involves only swapping the port IDs; it

does not depend on anything else. Hence, VNP provides the advantage of low resource

usage, through multi-type payload and multi-access ports, at no extra switching cost. We

had expected this, even prior to the experiments. However, we were surprised that VNP

85

switching was faster than MPLS switching. We expected both of them to be almost the

same. The reason for this speedup is operation identification.

When a frame is given to the MPLS module, it has to determine what kind of

operation —switch, push, pop— to perform on the frame. It extracts the label off the frame,

and indexes into the MPLS table to identify the operation and the local port. It then

forwards the frame through the local port. The VNP module also has to do the first part

i.e. extracting the port ID off the frame. However, it identifies the operation just by

looking at the port ID and the local port. This saves few memory references, and results

in faster switching.

Processing efforts for the Add Header operation for VNP configurations look

unremarkable. As expected, it takes longer for multi-access VNPS compared to point-to-

point VNPs; payloads of type Any are more expensive than the others. This is due to the

longer VNP frame headers required by mulit-access VNP and the Any type payloads.

The Remove Header operation for MPLS is very fast. The MPLS header is of

fixed length. All that is needed is to offset the start pointer in the network packet buffer

by four octets. The variable length of the VNP header requires looking at the packet and

VNP table to determine the header size. This takes longer for multi-access VNP

compared to point-tO-point VNP. However, the payload type has no effect on this

operation.

86

6.3.6.2 Aggregation

Figure 6-5 shows the processing times for aggregation, switching, and de-aggregation at

the nodes E0, Co, and E1 respectively of Figure 6-3. As expected, the processing times for

switching, at C0, are exactly the same in both the aggregation and switching experiments,

for both MPLS and VNP. Hence, aggregation does not adversely affect the switching

operation in any way.

ELIE ’

“VNP (P2P - IP)

IVNP(P2P-VNP)

1.2 IVNP (P2P - Any)

DVNP (P2P - Unknown)

,
/
2

I: VNP (MA - IP)

HVNP (MA - VNP)

BVNP (MA . Any)

IVNP (MA - Urutnown)

P
r
o
c
e
s
s
i
n
g
T
l
m
e

||
||
||
||
||
||
||
||
|l
ll
|l
ll
||
||
|l
Il
ll
ll
ll
l

Operation

Figure 6-4 Simulation Results: Switching

The processing times for point-to-point VNP were lower than that for MPLS,. The

aggregation operation involves adding headers, and we have seen that multi-access VNP

takes longer to do it than MPLS. The reason for the discrepancy is operation

identification, as was the case in switching. It takes longer for MPLS to identify the

87

operation, than point-to-point VNP to add headers. As expected, the processing times for

multi-access VNP were higher than MPLS

The processing time is the same for all payload types for a given VNP. This

seems to contradict the processing times for adding headers; apparently aggregation time

for Any payload should be more. However, this is not the case because aggregation

always generates frames with payloads of type VNP. When a VNP frame, irrespective of

it becomes the payload for the encapsulating-3)!reaches E0 (Figure 6its payload type,

for aggregation, E0 always adds headers for VNP payload.frame. Hence

L V
/
/
/
/
fl
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
V
/
/
z
fl
/
/
/
/
/
/
/

t
V
\
\
\
\
\
\
\ \\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

1

0

0.6

0 4

0

0
5
:
.
9
5
3
0
0
0
.
.
.
.

Aggregate De-aggregateSwitch

Operatlon

Figure 6-5 Simulation Results: Aggregation

The processing times for de-aggregation operation follow a similar pattern. De-

aggregation mostly involves removing headers from frames. Point-to-point VNP takes

less time for de-aggregation than MPLS because it takes longer for MPLS to identify the

88

operation than VNP to remove headers. In the case of multi-access VNP, the remove

header operation dominates the operation identification. Hence it takes longer for multi-

access VNP to de-aggregate.

6.3.7 Summary

We simulated VNP and MPLS to estimate the overhead incurred by VNP due to its

relatively complex nature. We used both point-to-point and multi-access VNPS. Four

different types of payloads were used for VPN; MPLS was tested with a single payload

type. Three major operations were compared: switch, aggregate, and de-aggregate. Time

taken for adding and removing headers was also measured.

Point-to-point VNP was found to be as efficient or better for all operations except

adding and removing headers. It was the same case for multi-access VNPS, except for de-

aggregate operation where it was found to be slower than MPLS. Different payload types

had no affect on switching, aggregation and de-aggregation. But they did adversely

affect, in case of VNP, the header addition and removal operations. However such effects

are confined to the edges of the network; they do not degrade the core.

These results give a broad idea about the relative performances of MPLS and

VNP. They tell that VNP performance is comparable to MPLS, and sometimes even

better; and that it is not drastically different from MPLS’ performance. The actual

processing times are dependent on a number of factors that the simulator did not and

cannot take into account. For example, we did not try to align the packets to word-

boundaries because we did not try to simulate the underlying hardware. In real life,

packet alignment to word-boundaries plays a significant role in packet processing

performance. Programming style or tricks can significantly alter the performance too,

89

especially in our case where even a few memory accesses matter a lot. However, this in

itself is an indication of how close VNP’s performance is to MPLS’.

6.4 MPLS with VNP

Some of the ideas from VNP can be incorporated into MPLS without making a lot of

changes in the MPLS specification, or its implementations. An LSR should consider

certain labels to be special. Like the other labels these special labels have meaning only

to the LSR. The special labels should be discernible from the others very quickly and

efficiently. One way to do this is to have a node-dependent label value everything below

which is considered special. If an LSR is an egress LSR for an LSP, it distributes only a

special label up the LSP. So all the aggregate flows that terminate at an LSR always bring

packets with the special labels into the LSR. The LSR always pops out the label at the top

if it is a special label.

It should be possible to specify a local MPLS label as the data link transport in a

NHLFE entry. This label is always pushed onto the incoming packets that map to the

NHLFE entry. Then the packet is processed again according to the label on the top. These

changes in MPLS eliminate the need for explicit push and pop operations in the NHLFE

entries. An NHLFE entry with MPLS as data link implies push operation, and an

incoming packet with a special label implies pop operation.

To eliminate fragmentation, a field named MFS is added to each NHLFE. It

represents the maximum MPLS frame size that is allowed to transmit using a NHLFE.

The rules for calculating it are the same as those for VNP except that the Lp is the local

data link transport and Rp is the new swapping label in NHLFE. The MPLS and higher

90

layers should treat (MFS — 4) as the NHLFE entry’s “MTU”. The LDP protocol needs to

distribute the corresponding MFS value with each label.

91

Chapter 7

CONCLUSIONS

We have presented the preliminary work on virtual network ports. The concept originated

with the design of a scalable router to help scale the forwarding performance. It later

evolved into a connection-oriented switching methodology for addressing traffic

engineering and service-guarantee needs. However, a number of issues are still under

study.

7.1 Future Work

7.1.1 Generic Controls

We have looked at only unicast and multicast control procedures. A unicast remote-

network device conceptualizes the basic flow of packets in an inter-network. It forwards

packets along its path with no other processing. A generic control procedure on the other

hand is not restricted in how it handles the in-coming packets. It may forward the packets

selectively to the paths in its path-set, police the traffic or even may modify the packet

contents. The path selection can be based on the fields in the packet, the cost of each

92

path, or the service guarantees for the flow. A generic VNP is useful in traffic

engineering, de-aggregation, and implementing service guarantees among other things.

To remote nodes, the generic VNPS appear just like regular multi-cast VNPS or

physical ports. The Special attributes of the generic VNPS are not propagated along the

conduit. In a long VNP conduit there can be different type of VNPS, some may perform

simple switching while the others may involve extensive packet processing.

7.1.1.1 Filter VNP

A filter VNP selectively forwards the packets to one or more of the paths in its path-set

based on contents of the packet. If there are multiple physical paths to a destination, a

filter VNP encapsulates them into one path and chooses among them. A filter VNP’s

path-set contains the various paths to the destination, and the control procedure chooses

among them. The selection criterion can be based on the load on the path, or the source of

the traffic. It can also be used to extract out the flows from an aggregation to feed QOS

VNPS. A special attribute of filter VNP defines the selection criteria and the

corresponding paths. An ISP can setup a filter VNP to choose among multiple paths to

the same destination.

7.1.1.2 QOS VNP

VNP control procedures can help in supporting per-flow service guarantees as specified

in lETF’s Integrated Services mode [9]. A QOS VNP’s control procedure implements

traffic shaping and traffic policing based on methods like Token Bucket [40][66]. Each

path in the VNP’s path-set has an individual traffic reservation. A token bucket is

maintained for each path in the path set for traffic shaping. For policing, the control

93

procedure checks if the incoming packet is conformant to the traffic specifications of

each path. If the packet is conformant it is forwarded as-is otherwise it is forwarded over

that path with its class lowered. A VNP whose control procedure implements Weighted

Fair Queues (WFQ) will replace those physical ports of a node, which do not support

traffic classes.

Figure 7-1 shows the vision for VNP framework. VNPS implement the packet

classifier and packet scheduler of IETF’s Integrated Services model. A QOS flow will

contain a combination of filter, Q08, and regular VNPS along the same VNP conduit. The

resources along the path will be setup by a protocol like RSVP [10][64]. It will provide

the parameters for the Q08 VNPS along the conduit. A traffic-shaping QOS VNP will be

used at the source host or a customer router to shape the flow according to ‘the

reservation. Traffic-policing QOS VNP will be used to monitor the flow at each ISP’s

ingress router. The rest of the VNPS along the flow will be unicast or multicast VNPS. It

is possible to use multiple traffic shaping and policing VNPS along the conduit. A filter

VNP can be used near the source to classify the packets for the flow.

94

'lllll,I

Filter-VNP

TP-VNP

 CORE

Filter-VNP

TP-VNP

 TS-VNP

.=':¥‘|in

WPC

Figure 7-1 VNP Framework Vision

7.1.1.3 Aggregation

An aggregate VNP represents an IP aggregate route [22]. It allows destination-based

flows to continue across an IP route aggregation. Its path-set corresponds to the sub-

prefixes of the aggregate route. Its forwarding function de-aggregates the incoming

packet over the path-set. It looks at the destination address and sub-prefixes and chooses

the right path. This is similar to routing table lookup at Layer-3 but can be optimized

because it is on a considerable shorter and known range.

95

If none of the sub-prefixes of the aggregate route is a less—specific prefix of any

other, the longest prefix match becomes equivalent to exact match. In such case the

selection can be done by hashing, using only a portion of the destination address. Even if

the longest prefix match is needed, it will be done on a very small search space. If a VNP

represents the aggregate W.X.Y.Z/N, the forwarding function need not look at the first N

bits for choosing the right path. The VNP can use the relevant portion of the forwarding

table data structures for this purpose instead of having its own. Generally the forwarding

base is represented as a trie, and the VNP can have a pointer to the sub-trie corresponding

to the aggregate W.X.Y.Z/N at depth N.

7.1.2 Hardware Switches

Hardware switches like ATM are being used on the ISP and corporate backbones.

Architecturally, they are very different from conventional routers. Like router, a switch

has a number of ports. The forwarding table on a switch contains input port, input

channel, output-port and output channel. Incoming frames carry a channel identifier that

is used to index into the forwarding table. The input channel identifier is replaced with

the corresponding output channel identifier and the frame is sent through the output port.

A set of channels that is switched together forms a virtual path. The switch may or may

not allow virtual channels to merge. Implementation of VNPS on such switches needs to

be explored.

7.1.3 Reduction

The virtual port structures and their processing can be optimized. For example if Rp in the

path for a packet is ‘0’ (loop-back) and the Lp is a physical port then the packet need not

96

be switched, it can be directly delivered to the target. The VNP frame can be removed,

and the packet delivered through Lp because the packet is anyway destined for that node

7.1.3.1 Multicast

A multicast VNP with the path-set {Ll—2A1—>R1, L1—)A2—>R2, ..., Ll—eAn—ar} should

be possibly reduced to {Ll—>M—rR} where M is a multicast address which groups A1,

A2, A... This involves negotiation among all the concerned nodes to agree upon the

same value for the remote port R. One way to facilitate this is to differentiate unicast and

multicast port-identifiers, similar to [35]. Another way is to allocate unicast port-

identifiers from the beginning of the identifier space in increasing fashion, and multicast

port-identifiers from the end in decreasing order. In some cases it may not be possible to

reduce it to a single path and it may be reducible to {Ll—eMr—aGr, L1—>M2—>G2, ...,

Ll—er—er} where k < n. The attempts for reduction may be driven by time, traffic, or

demand.

7.1.3.2 Aggregation

If a node N has a number of virtual ports, Vi, with corresponding path-sets as

{L—rA—>R,}, it may aggregate them through cascading. The decision depends, among

others, on whether it originates traffic for any V, or not. In case of aggregation it does the

following

o It creates a virtual port V with the path-set {L—rA—>O}

o It informs its neighbors to replace any port having path-set {P—>N—>Vi} with

{Pn—rnull—)Ri} where Pn is a new virtual port with the path-set {P—)N—->V}

o It then removes all V1, 15 i S k.

97

The neighbours still have the same granularity of flows but N has reduced the number of

ports by cascading the incoming flows.

Similarly, multi—access network ports can be used to aggregate flows. Consider a

node N with virtual ports, V,, 15 i S k, and corresponding path sets as {L—eAr—rRi},

where L is a multi-access network port. The node N may choose to aggregation in the

following way

0 It informs its neighbors to replace any port having path-set {P——>N—)Vi} with

{Pu—>Ai—9Ri} where Pn is a new virtual port with the path-set {P—iN—>L}

0 It then removes all Vi.

7.1.4 Virtual Private Networks

Connecting geographically disparate corporate private networks through WAN links Can

get very expensive. Such private networks can be connected over cheaper public network

links using VNPS, thus implementing Virtual Private Networks [23][36][48]. A VNP is

setup between the gateways to the public network. Further VNPS are setup between the

private networks; these VNPS are cascaded over the VNP on the public network. A

control procedure that encrypts its payload is used for the VNP over the public network.

7.1.5 IP as 'II‘ansport

A VNP generally uses the data link layer to transport packets. For cascading it uses the

VNP layer as the transport. It is possible to define a VNP with the complete Layer-3 as its

control procedure. This allows for using Layer-3 as the transport, and providing Layer-3

tunnels. This helps with connecting VNP domains that are separated with networks that

98

do not support VNP protocols. When used on the edge nodes of intranets connected by a

shared intemetwork, it helps in setting up virtual leased lines

7.1.6 Bi-directional multi-access VNP

A physical network port is bi-directional in nature. It was simpler to think of multi-access

VNPS as unidirectional; they were easier to implement too. Multi-access VNPS should

emulate their physical counterparts in this regard. TO accomplish this, a point-to-point

VNP has to be setup from egress node to the ingress node; the remote port should also

accept packets for the ingress node, and respond to for ARP queries for the ingress node.

7.2 Concluding Remarks

The sudden growth of lntemet has exposed some of the problems with its architecture:

forwarding performance, traffic engineering, and quality of service. MPLS provides a

solution by bypassing the network layer, identifying traffic flows, and providing explicit

routes. But it has some drawbacks. The label stacking Operations need to be specified

explicitly. Switching over interfaces with different MTUS may require fragmentation.

The labeled flows are passive and require external processing for traffic manipulation.

The prOposed method provides a better switching framework through the simple concept

of virtual network port. A VNP provides a conduit to a set of remote network ports below

Layer-3. VNPS can be combined in different ways for hierarchical routing and label

reduction. A VNP’s control procedure provides for generic packet processing. Virtual

network port framework is conceptually simpler, has better semantics, and is more

efficient than labels. It has the following advantages

99

Automatic and efficient label stacking

No fragmentation, since a VNP has the minimum MTU over its path

Multi-access VNPS help with reduction in memory and other resources

Payloads from different protocols can use the same VNP

Active control procedures

Almost no changes required at IP layer for destination based VNPS.

Captures more attributes of flow paths, like cost and status

One less hop, the packet does not go through Layer-3 even at the egress edge

router

Better conceptualization of flows than labels

No significant processing overhead (due to its complex headers)

100

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

ACHARYA Arup, Rajiv Dighe and Furquan Ansari, “IPSOFACTO: IP Switching

Over Fast ATM Cell Transport”, IETF lntemet Draft, July 1997.

AHMED T., Zitterbart Martina, “Multiprocessing in High Performance IP routers”,

Protocols for High-speed Networks 111 (C-9), Elsevier Science Publishers B. V.

(North Holland), 1993.

AHMED T., Koufopavlou O, Zitterbart M, Abler J, “On the Design of a Multigigabit '

IP Router”, Journal of High Speed Networks, Vol. 3, No. 3, 1994.

ARNAIZ Alejandro, Doug Sherman and Bob Gohn, “Fast IP: Enhancing

Performance and Control in Switched Networks”, White Paper,

http://www.3com.com, October 1997.

Ascend Inc., “GRF IP Switch”, http://www.ascend.com

ASTHANA A., C. Delph, H.V. Jagadish, and P. Kryzanowski, “Towards a Gigabit IP

Router”, Journal of High Speed Networks, Vol. 1, No. 4, pp. 281-288.

AWDUCHE Daniel 0., “MPLS and Traffic Engineering in IP Networks”, IEEE

Communications Magazine, Dec 1999, pp. 42-47.

BODEN N. J., D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, I. N. Seizovic

and W. Su, “Myrinet - A Gigabit-per-second Local-area Network”, IEEE Micro,

Feb 1995.

101

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BRADEN R., D. Clark, and S. Shenker, “Integrated Services in the Internet

Architecture: an Overview”, RFC 1633, June 1994.

BRADEN R., L. Zhang, S. Berson, S. Herzog and S. Jamin, “Resource Reservation

Protocol”, RFC 2205, September 1997.

BRADNER 8., “Benchmarking Methodology”, RFC 1944.

BRADNER 8., “Benchmarking Terminology”, RFC 1242.

Cascade Communications Corp, “IP Navigator”, White Paper,

http:l/www.casc.com/, December 1996

CIDON I., I. Gopal, P. M. Gopal, R. Guerin, J. Janniello, and M. Kaplan, “The

plaNET/ORBIT high speed network”, Journal of high speed networks, vol. 2, no. 3,

pp. 1-38, Sept. 1993.

Cisco’s Gigabit Switch Router, http:l/www.cisco.com/gsr

Cisco Systems, “Scaling the lntemet with Tag Switching”, White Paper,

http:l/www.cisco.com

COMER Douglas E., “Internetworking with TCP/IP Volume 1: Principles, Protocols,

and Architecture”, Prentice Hall, 1995.

COMER Douglas E., David L Stevens, “Intemetworking with TCP/IP Volume 11:

Design, Implementation, and Internals”, Prentice Hall, 1991.

DEGERMARK Mikael, Andrej Brodnik, Svante Carlsson and Stephen Pink, “Small

Forwarding Tables for Fast Routing Lookups”, ACM SIGCOMM 97, September

1997.

DAVIE B, P. Doolan, and Y. Rekhter, “Switching in IP Networks”. San Mateo, CA:

Morgan Kaufmann, 1998.

102

[21]

[22]

[23]

[24]

125]

[26]

[27]

[28]

[29]

[30]

DEMIZU Noritoshi, “Multi Layer Routing”, http:l/infonet.aist-

nara.ac.jp/member/nori-d/mlr

FULLER V., T. Li, J. Yu and K. Varadhan, “Classless Inter-Domain Routing: an

Address Assignment and Aggregation Strategy”, RFC 1519, September 1993.

GHANWANI Anoop, Bilel Jamoussi, Dan Fedyk, Peter Ashwood-Smith, Li Li, and

Nancy Feldman, “Traffic Engineering Standards in IP Networks Using MPLS”,

IEEE Communications Magazine, Dec 1999, pp. 49:53.

GLEESON Bryan, Arthur Lin, Juha Heinanen and Grenville Armitage, “A

Framework for IP Based Virtual Private Networks”, IETF Internet Draft,

September 1998.

GUPTA Pankaj, S. Lin, and N. McKeown, “Algorithms for Packet Classification”,

IEEE Network, Vol. 15, No. 2, March 2001.

GUPTA Pankaj, S. Lin, and N. McKeown, "Routing lookups in hardware at memory

access speeds," Proc. IEEE INFOCOM, Apr. 1998, pp. 1240-1247.

HALABI 8., “Internet Routing Architecture,” Cisco Press, New Riders Publishing,

1997.

HORST Robert W. and Dave Garcia, “Servemet SAN I/O Architecture”, Hot-

interconnects V, Stanford, 1997.

KATSUBE Y. et a1, “Toshiba’s Router Architecture Extension for ATM :

Overview”, RFC 2098.

LAMPSON Butler, Venkatachary Srinivasan, George Verghese, “IP Lookups using

multiway and multicolumn search”, IEEE/ACM Transactions on Networking, June

1999, Vol. 7, No. 3. PP. 324-334

103

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

MARTIN James, Kathleen Kavanagh Chapman, Joe Leben, “Enterprise Networking:

Data Link Subnetworks”, Prentice Hall, 1996.

MCAULEY Anthony J. and P. Francis, “Fast routing table lookup using CAMS”,

Proceedings of INFOCOM, pp 1382-1391, March-April 1993.

MCKEOWN N., M. Izzard, A. Mekkittikul, B. Ellersick and M. Horowitz, “The Tint

Tera: A packet switch core”, IEEE Micro, January 1997, vol. 17, pp. 26-33.

MOY J., “OSPF Version 2”, RFC 1853, March 1994.

MPLS Working Group, “MPLS Mailing List Archive”, IETF MPLSWG,

ftp://ftpeng.cisco.com/mpls/mpls

MUTHUKRISHNAN Karthik and Andrew Malis, “Core IP VPN Architecture”, IETF

lntemet Draft, Oct 1998.

NEWMAN Peter, T. Lyon and G. Minshall, “Flow Labeled IP: A connectionless

approach to ATM”, Proceedings of IEEE Infocom, March 1996.

NEWMAN Peter, G. Minshall, T. Lyon and L. Huston, “IP Switching and Gigabit

Routers”, IEEE Communications Magazine, Jan 1997.

NEWMAN Peter, Greg Minshall and Thomas L Lyon, “IP Switching — ATM Under

IP”, IEEE/ACM Transactions on Networking, vol 6, no 2, April 1998, pp 117-129.

PARTRIDGE Craig, “Gigabit Networking”, Addison-Wesley, April 1995

PARTRIDGE Craig, Philip P. Carvey et al, “A 50-Gb/s IP Router”, IEEE/ACM

Transactions on Networking, vol 6, no 3, June 1998, pp 237-248.

PARTRIDGE Craig, W. Milken, J. Rokoaz and S. Storch, “BBN’s Multi Gigabit

Router”, http:l/www.net-tech.bbn.com

104

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

PARTRIDGE Craig, “Locality of route caches”, NSF Workshop On lntemet Statistics

Measurements and Analysis, San Deigo, CA, USA, February 1996.

PERLEMAN Radia, “Interconnections: Bridges and Routers”, Addison-Wesley,

1992.

Pluris Inc, “Pluris Massively Parallel Routing”, White Paper,

http:l/www.pluris.com

REKHTER Y., B. Davie, D. Katz, E. Rosen, G. Swallow, “Cisco Systems’ Tag

Switching Architecture Overview”, RFC 2105, February 1997.

ROSEN Eric C., Arun Viswanathan, Ross Callon, “Multiprotocol Label Switching

Architecture”, IETF lntemet Draft, March 1998.

ROSEN Eric C. and Yakov Rekhter, “BGP/MPLS VPNs”, IETF lntemet Draft,

November 1998.

ROSEN Eric C., Yakov Rekhter, Daniel Tappen, Dino Farinacci, Guy Fedorkow,

Tony Li and Alex Conta, “MPLS Label Stack Encoding”, IETF lntemet Draft,

September 1998.

RUIZ-SANCHEZ Minguel A., Ernst W. Biersack, and Walid Dabbous, “Survey and

Taxonomy of IP Address Lookup Algorithms”, IEEE Network, Vol. 15, No. 2,

March 2001.

SHENKER S. and C. Partridge, “Specification of Guaranteed Quality of Service”,

RFC 2212, September 1997.

PARULKAR Guru, D.C. Schmidt and IS. Turner, “IF/ATM: A Strategy for

integrating IP with ATM”, Proceedings of ACM SIGCOMM, Cambridge MA,

September 1995, pp 49.

105

[53]

[54]

[55]

[56]

[57]

[58]

[59]

I60]

[61]

[62]

SKOWLER Keith, “A tree-based routing table for Berkeley Unix”, Technical Report,

University of California, Berkeley, 1993.

STALLINGS William, “Data and Computer Communications”, Prentice Hall, 1997.

SWALLOW George, “MPLS Advantages for Traffic Engineering”, IEEE

Communications Magazine, December 1999, pp 54-57.

Torrent Networking Technologies Corp, ”The IP9000 Gigabit Router

Architecture”, Technical Paper, http://www.torrentnet.com.

Torrent Networking Technologies Corp, “High Speed Routing Table Search

Algorithms”, Technical Paper, http://www.torrentnet.com.

VISWANATHAN A., N. Feldman, R. Boivie and R Woundy, “ARIS : Aggregate

Route-Based IP Switching”, IETF Internet Draft, March 1997.

VUPPALA Vibhavasu and L. M. Ni, “Design of a Scalable IP Router”, Hot

Interconnects V, Aug 1997.

VUPPALA Vibhavasu and L. M. Ni, “Virtual Network Ports: A New Switching

Framewor ”, International Conference on Computer Communications (ICCC’99),

Tokyo, September 1999.

VUPPALA Vibhavasu and L. M. Ni, “Implementing Layer-3 Switching Using

Virtual Network Ports”, International Conference on Computer Communications

and Networking (ICCCN), Boston, October 1999.

VUPPALA Vibhavasu and L. M. Ni, “Virtual Network Ports: Design,

Implementation, and Applications”, The fifth IEEE Symposium on Computer

Communications (ISCC), Antibes-Juan le Pins, France, July 2000.

106

[63]

[64]

[65]

[66]

[67]

[68]

[69]

WALDVOGEL Marcel, George Verghese, Jon Turner, and Bernhard Plattner,

“Scalable High Speed IP Routing Lookups”, ACM SIGCOMM 97, September

1997.

WRIGHT Gary R., W. Richard Stevens, “TCP/IP Illustrated Volume 2: The

Implementation”, Addison Wesley, 1995.

WROCLAWSKI J., “The use of RSVP with IETF Integrated Services”, RFC 2210,

September 1997.

WROCLAWSKI J., “Specification of the Controlled-Load Network Element Service”,

RFC 2211, September 1997.

XIAO Xipeng, Alan Hannan, Brook Bailey, and Lionel M. Ni, “Traffic engineering

with MPLS in the Internet”, IEEE Network, Vol. 14, No. 2, March 2000, pp 28-33. '

YEHUDA Afek, Anat, Bremler-Barr, Sariel Har-Peled, “Routing with a clue”, ACM

Transactions on Networking, Vol. 9, No. 6, December 2001.

ZI'ITERBART M., “A Multiprocessor Architecture for High Speed Network

Interconnections”, IEEE INFOCOMM, 1989.

107

_. _. -- . . _ , 1' _ 31293023288214

