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ABSTRACT

NUMERICAL STUDY OF ROTATING CORE COLLAPSE SUPERNOVAE

By

Mark Tobias Bollenbach

The explosion mechanism of core collapse supernovae is still far from being un-
derstood. In this work, an overview of the current understanding of core collapse
supernovae and the history of numerical simulations that helped develop it is given.
While it is widely believed that neutrino heating and convection above the neutrino
sphere are the key processes to revive a stalled shock and thus obtain successful explo-
sions, it is still possible that other phenomena are crucial for the explosion mechanism.
For example, recent observations of the polarization of the light emitted by super-
nova explosions indicate that there are large deviations from spherical symmetry in

the very heart of the explosion.

In contrast to most of the previous simulations which were performed in one or
two dimensions, we use the different approach of a three dimensional test particle
based simulation. The underlying microphysics is crudely simplified to make this

computationally possible.

A systematic study of the influence of rotation mainly during the infall phase of
the collapse of a typical iron core is performed. Different equations of state and initial
conditions are used. Indications for significant deviations from spherical symmetry

are found in our simulations.
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Chapter 1

Introduction

Supernova explosions are among the most spectacular phenomena that we know of.
It seems that the supernova explosion is also one of the most challenging phenomena

as far as the understanding of the underlying physics is concerned.

The most famous recent supernova was observed in 1987 (therefore labeled SN
1987A). It could be seen with the naked eye and is particularly interesting because it
was the first supernova whose progenitor star had been observed before the explosion.
While such observations of supernovae (that we know of) date back almost 2000 years,
the theory of core collapse supernovae has rapidly developed in the last decades.
Several different explosion mechanisms have been suggested throughout the years.
Most of these turned out to be fundamentally wrong. Apart from being remarkable
optical events, supernovae are believed to play an important role in the synthesis of
heavier elements in the mass range 16 < A < 60 — core collapse supernovae are
especially relevant for the synthesis of oxygen. They are possibly also the origin of

the mysterious 7y-ray bursts [8].

In chapter 2 of this work the state of the art of the knowledge of the physics of
core collapse supernova explosions will be briefly reviewed. The relevant concepts and

processes will be explained. Due to the complexity of the problem numerical studies



play an outstanding role in the understanding of supernova events. An overview of
the history of these studies with a special focus on recent developments will be given.

Special attention will also be paid to the role of rotation in supernovae.

Our new approach to simulate core collapse supernovae will be presented in chap-
ter 3. The numerical techniques used, the necessary approximations and assumptions,
the implementation, and the differences of this method in comparison to previous sim-
ulations will be explained. The strengths and weaknesses of this technique will be
pointed out. At the current state of the art our method can be considered a good
model of reality only during the infall phase, i.e. until core bounce (these terms will

be explained in chapter 2).

In chapter 4 the results of several simulation runs (using different equations of
state for the core matter and a variety of initial conditions) that were performed
using the technique described in chapter 3 will be presented. Conclusions about the
effects rotation may have on supernovae in reality will carefully be drawn. Possible

improvements to our model will be suggested and discussed.
This whole work will be summarized and reflected in chapter 5.

A typographical convention will be to write important terminology in italic type

at the place where it occurs for the first time in this work.

We will further use standard symbols like c for the speed of light or M, for the
solar mass in text and equations. Other abbreviations and symbols will be introduced
and used throughout this work. For convenience a summary of all these is given in

appendix C.

Images in this thesis are presented in color.



Chapter 2

Overview of Type II Supernovae

In this chapter the physics of type II supernovae will be briefly reviewed. Supernova
explosions are labeled either type I or type II (yet both with several subdivisions).
This distinction was established due to observable differences: the most important
difference between the two is the absence of hydrogen lines in the spectrum of type Is
while these are present in the case of type IIs. The light curves! of the two phenomena

also differ significantly.

From a theoretical point of view, type Is and 1Is are almost utterly distinct phe-
nomena. While the power source of type Is is believed to be thermonuclear burning
initiated by the exceeding of a white dwarf’s? Chandrasekhar mass® due to the ac-
cretion of matter from a companion star, type IIs are powered by the gravitational
energy released during the collapse of a star’s iron core (note, however, that there are

also subclasses of type Is that are powered by core collapse).

We will only deal with type IIs in this work and most of the time only with the
typical case of a star in the ZAMS* mass region ~ 15M;. For more information

about type Is one may refer to [56, 11, 4]. Most of what will be said here remains

lie. the luminosity of the emitted light as a function of time

2a very dense star with a mass of approximately 1M but only the size of earth

3the maximum mass a white dwarf can have without collapsing (=~ 1.4M)

4Zero Age Main Sequence: denotes the star’s properties at the beginning of its stellar evolution



valid for stars with a ZAMS mass between ~ 11M; and =~ 40M,. This separation
is necessary because the properties of stars during and at the end of their stellar
evolution are essentially determined by their ZAMS mass (see [11, 4, 55, 20, 52] for
details on stellar evolution). A very light star like our sun for example will never
develop an iron core during its evolution and thus never produce a core collapse
supernova. Also note that for stars in the ZAMS mass region 8My < My, < 11M
type II supernovae are believed to occur but the details of these stars’ presupernova
evolution and the supernova event itself depend sensitively on their ZAMS mass and
are somewhat different than what will be dealt with in the rest of this work (see e.g.
[56]). Finally, stars more massive than = 40M, are believed to lose their hydrogen

mantle before the end of their life which disqualifies them as type IIs.

For simplicity, we will refer to a star with ZAMS mass ... Mg as just a ... Mg

star from now on.

2.1 Presupernova Stellar Evolution and Supernova
Progenitor for a 15M Star

As already mentioned the evolution of a star during its so-called main sequence’ is
mainly determined by its ZAMS mass. It is way beyond the scope of this work to
give a detailed account of the events and processes during the main sequence. Instead
we will briefly follow the evolution of a 15M,, star to the point shortly before core

collapse occurs.

Sthe long phase (possibly lasting billions of years) of the star’s life during which hydrogen-burning
is its dominant power source



2.1.1 Stellar Evolution

Just like our sun all stars “burn” hydrogen from the beginning of their main sequence,
i.e. sequences of nuclear reactions take place which ultimately lead to the fusion of

hydrogen to helium, e.g. by the proton-proton chain which results in the reaction

4 H—He+2e" +2 0, +217. (2.1)

The intermediate steps have been omitted here. Other reaction chains also con-

tribute to the conversion of hydrogen to helium.

It is well known that during this fusion of hydrogen a lot of energy is released
because (for nuclei lighter than iron) the binding energy per nucleon increases with
increasing mass number of the nucleus. However, for fusion to occur the Coulomb
barrier of the (positively charged) participating nuclei (e.g. two protons) has to
be overcome which requires them to have large kinetic energies. Such energies are
available in the interior of stars where the temperature during the main sequence is

of the order of magnitude 107K.

After significant amounts of helium have been produced and only if the tempera-
ture in the core of the star has become sufficiently high helium itself starts “burning”

by the triple alpha process:

sHe +3He «— $Be (2.2)

!Be+3He — 2C+1.

Similarly, given the needed prerequisites, “burning” of (most importantly) H, He,
C, Ne, O, and Si occurs successively in the center of the star — sometimes even in its
shells. Because of the increasing Coulomb barriers higher and higher temperatures

(e.g. of the order of 4 x 10°K for Si-burning) are needed for these fusion reactions



and less and less energy is gained per participating nucleon. After carbon ignition the
energy losses of the star are huge (compared to the previous stages) and dominated
by neutrino emission since then the temperatures are high enough for the occurrence

of (among other processes) the electron capture reaction:

pt+e —n+v.. (2.3)

The neutrinos created in this reaction hardly interact with the matter of the star and

just radiate away. This way, energy is “carried” out of the star.

Thus the star develops a gigantic power using a much less effective power source
than before. Consequently the time scale of the burning stages becomes smaller with
increasing charge number of the fuel. For example, in a 20Mg, star the H burning lasts
for approximately 107 years, He burning 10° years, C burning 300 years, O burning

200 days, and Si burning merely 2 days (these numbers were taken from [11])!

The final product of these nuclear burning processes is either **Ni or 5*Fe after

which no more energy can be gained by fusion.

2.1.2 Supernova Progenitor

It shall be mentioned that the knowledge of main sequence stellar evolution is very
sophisticated and in fact much more profound than that of the supernova phenomenon
itself. An incredible effort has been put into numerical simulations of stellar evolution
and there is wide consensus on the development which stars pass through during their
main sequence. These efforts converged to the initial conditions for the core collapse
event of a 15 M, star illustrated in figures 2.1 and 2.2 and calculated by the simulations

of Woosley and Weaver [52, 56).
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Note that their progenitor was calculated using a one dimensional model assum-
ing spherical symmetry and neglecting possible effects due to rotation, which is the
case for almost all stellar evolution simulations (an exception including the effects of
rotation is e.g. [20]). Instead of the distance r = |Z| from the center of the star, the
interior mass M (r) in units of Mg, is used on the abscissa. If p(r) is the mass density

of the star as a function of the distance from its center

M(r) = /]‘|< d*zp(Z) = 4w /(: dr'r?p(r'). (2.4)

Note that the iron core consisting of all the heavy nuclei (48 < A < 65) formed in
the nuclear burning processes mentioned in 2.1.1 (denoted by “Fe” and 3*Fe in figure
2.2) whose collapse will get the main focus in this work ends in a relatively abrupt
way at an interior mass of approximately 1.35M; — a typical value as most stellar
evolution simulations for stars of various ZAMS masses greater than 11 M, yield iron
core masses between ~ 1.1My and = 2.5M (see table 2.1). Apart from the heavy
elements (“Fe”) very small amounts of free neutrons, protons and alpha-particles are
present in the iron core. Above the iron core, lighter elements are stratified in an

“onion-skin” structure.

Before collapse the iron core is almost a perfect v = % polytrope, i.e. the pressure

p inside the core is only a function of the density p satisfying

poxp’ (2.5)

ZAMS mass 12 15 20 25 35 50 | 100
Iron core mass || 1.31 | 1.33 | 1.70 | 2.05 | 1.80 | 2.45 | 2.3

Table 2.1: Iron core masses of different supernova progenitors (taken from [56], all
masses in units of M)



with v = 45 This is just due to the fact that the pressure comes mainly from the

gas of relativistic, degenerate electron gas inside the core for which it is known from

statistical mechanics that the pressure is independent of the temperature and follows
4

equation 2.5 with v = § (v is usually called adiabatic indez, n := -7 is called

polytropic inder).

As pressure comes mainly from the electrons it is important to mention that the
electron fraction® Y, in the iron core has dropped (mainly by reaction 2.3) to about
0.44 at the onset of collapse. Reaction 2.3 also leads to a drastic decrease of the
entropy per baryon in the iron core region where it is roughly just 1kp (where kp
denotes Boltzmann’s constant) directly before collapse compared to a value of about
23kp at the beginning of the main sequence. Entropy is “carried” from the iron core
to the envelope by neutrinos where an entropy per baryon of =~ 40kp is typical directly

before collapse (all these entropy values are taken from [56]).

2.2 Explosion Mechanism of Type II Supernovae

In this section the predominating theories for the explosion mechanism of a typical

core collapse supernova will be described.

2.2.1 Collapse

During Si burning the iron core obviously gains mass (as iron is produced in this
reaction). This essentially goes on until it reaches a mass that results in gravitational
forces which can no longer be supported by the pressure of the present degenerate
electron gas. Also note that the pressure at the edge of the iron core is not zero but

the outer layers (mantle and envelope) of the star help “squeezing” its core.

Sthe number of electrons per baryon where “baryon” is used here as a generic term for protons
and neutrons

10



Electron Capture and Photodisintegration

As soon as collapse begins, two instabilities are of importance. Ongoing electron
capture reduces the electron fraction in the core thus obviously further reducing the
pressure created by the electron gas. The neutrinos created in the electron capture
reactions are radiated away almost freely (at least before densities high enough for the
occurrence of neutrino trapping are reached) which ultimately results in a reduction of
entropy in the core — a phenomenon known as neutrino cooling. This helps the ongoing
collapse even further as a reduction of entropy leads to a reduction of temperature

which on its part implies a pressure decrease.

The second instability is due to a process called photodisintegration that is pos-
sible at the extremely high temperatures now present in the core: heavy nuclei are
fragmented to their constituents by extremely high energetic photons, for example

(and most importantly) by the following reactions:

eFe+v — 133He+4n (2.6)

sHe+vy — 2pt +2n.

These photodisintegration processes require a lot of energy (as they reverse the
nuclear “burning” reactions by which the star was powered during its whole life).
Therefore the temperature increase due to the increase of density in the core during
its collapse is intensely weakened resulting again in a pressure decrement: gravity
can no longer be compensated by pressure. In stars with ZAMS mass greater than
~ 20M,, photodisintegration is considered to be the dominant cause of collapse while

for lighter stars electron capture dominates.

11



Inner Core, Outer Core, and Neutrino Trapping

Once core collapse has begun, things develop very rapidly. The iron core matter
falls almost (never quite though) at free-fall velocity towards the center of the star.
Hence, the time scale for collapse is merely ~ 100ms what justifies the assumption of

an approximately adiabatic process.

Two regions in the iron core must be separated: the inner core and the outer core.
In the inner core, the infall velocity of the matter is proportional to the distance from
the center at any given time which obviously causes all the matter in the inner core to
finally arrive at the center of the star simultaneously. The collapse of the inner core
is homologous in the sense that the radial distributions of all important quantities
(like density, temperature, electron fraction etc.) remain similar to themselves during
collapse — just the respective scales change. A typical mass for the inner core is 0.6
to 0.8 M, i.e. the iron core is almost equally split [56]. The inner core ends at
the distance where the infall velocity of the matter exceeds the local sound velocity.
Figure 2.3 illustrates this showing the infall velocity of the matter and the local sound

velocity as a function of the radius approximately one millisecond before core bounce.

Beyond that (obviously time-dependent) distance the outer core falls towards the
center at supersonic velocities. It has decoupled from the inner core and arrives at

the center of the star later.

Contrary to what was believed before 1979 when the large heat capacities of
excitations of heavy nuclei were found which cause the matter to remain relatively
cool, this collapse does not stop before nuclear density is reached. It actually goes
on till the nuclei touch each other and even beyond that: it is believed that roughly

three times the density of isospin symmetric nuclear matter (i.e. 3 x 2.4 x 10140—513 ~

12
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Figure 2.3: Infall velocity of the core matter V and local sound velocity A approxi-
mately one millisecond before core bounce (taken from [4] who used the results of [1]
to create this plot).

7 x 10"-£3) is reached at maximum compression of the core’ [4, 3]. Note that
the matter is not isospin symmetric in the present situation: significant amounts of

protons have been converted to neutrons by electron capture.

However, due to a phenomenon called neutrino trapping the matter is not as
asymmetric as one might expect at first. Neutrino trapping occurs at densities higher
than ~ 10" _£;. As suggested by its name, it means that neutrinos can no longer
escape the core freely but are trapped in there since at these densities elastic scattering
of the neutrinos by the nuclei becomes relevant. The mean free path for the neutrinos
is so small now that they can only diffuse through this high density region. For the
density mentioned above the time scale for the diffusion of neutrinos out of the core
clearly exceeds the collapse time scale meaning that the neutrinos cannot get out of

the core fast enough - they are trapped.

"This value is just the result of most numerical simulations.

13



Note that because of the very low neutrino mass the presence of the trapped neu-
trinos hardly affects the nuclei at all in the sense that their pressure contribution is
negligible. However, they are able to heat the matter by neutrino-electron scattering
events. The cross section for these is (under the given conditions) roughly two or-
ders of magnitude smaller than that for neutrino scattering by heavy nuclei but the
electrons are so highly degenerate that they can virtually only gain energy in these

events (hence the matter can only be heated).

As electron capture results in the production of neutrinos and these cannot es-
cape anymore, their chemical potential rises rapidly thus obstructing further electron
capture. In fact reaction 2.3 occurs in both directions until (dynamic) equilibrium is
accomplished:

pT+e «—n+v. (2.7)

Note that there are also positrons present which enable the reaction
n+et «— pt + 7, (28)

also contributing to the neutrino production. After that, the total lepton fraction® Yy,
remains essentially constant (till core bounce, the end of collapse) at a value Y, =~ 0.36
(according to [2]). A realistic value for the electron fraction in the core’s center at

that time is Y, = 0.3 (according to [13]).

2.2.2 Core Bounce

As soon as a density greater than (the isospin dependent) nuclear matter saturation
density is accomplished, the strong interaction between the nuclei becomes repul-
sive as a consequence of the Pauli principle for neutrons (which are fermions). As

mentioned above, at a density of typically ~ 7 x 10“;‘;—; this repulsion becomes so

8the number of leptons (here mainly electrons and neutrinos) per baryon
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strong that the matter suddenly stiffens, the collapse is halted, and the inner core
rebounds - a little bit like a spring that is first compressed and then released. In
doing so, shockwaves are sent out to the infalling outer core. This event is known as

core bounce.

Theoretical predictions of the maximum density reached at bounce and its vigor-
ousness (i.e. the energy of the created shockwave) are certainly dependent on factors
like the inner core mass, temperature, electron fraction and others but most impor-
tant is the equation of state (EOS) of nuclear matter above nuclear density. The
nuclear matter EOS in the density and temperature region present at core bounce is
still unknown since it is extremely difficult to mimic these conditions experimentally.
However, an enormous theoretical effort has been invested in finding the correct EOS
and several theoretical predictions exist (see e.g. [3, 28, 43, 41, 39, 30]). Numerical
simulations have shown that a “softer” nuclear EOS results in the achievement of
higher densities at bounce and more vigorous shock waves in comparison to those

computed using a “stiffer” EOS — a somewhat intuitive result.

2.2.3 Prompt Shock Mechanism

During collapse an enormous amount of gravitational energy is released. The main
question is by which mechanism even a small fraction of this energy can be coupled
to the mantle and the envelope of the star in order to eject them. The gravitational
energy released is so immense that the coupling of just ~ 1% of it would be ample
to eject the outer layers of the star and explain the observed supernova explosion

energies of ~ 10%erg =: 1foe.

An appealing coupling mechanism, called the prompt shock mechanism was fa-
vored till the mid 1980s: after core bounce the created shockwave moves outward

through the infalling matter of the outer core. Analytical arguments and numerical
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simulations suggest that the energy of this shockwave is ~ 4 to 7 x 10%'erg [26] -
completely sufficient to power the explosion. So, after this shockwave has reached the
outer layers of the star, these get enough kinetic energy to escape, are ejected, and

the star explodes.

Unfortunately, things turned out to be not quite this simple: the problem is that
the shock loses enormous amounts of energy while it beats its way through the infalling
matter of the outer core. The densities and temperatures in the shock region are so
high that again electron capture resulting in neutrino losses (at least when these can
diffuse away fast enough) and photodisintegration occur massively. Large amounts of
heavy nuclei are broken up completely to free nucleons. This costs gigantic amounts
of energy (= 1.5 x 10%'erg for every 0.1My thus converted) that is taken from the
shock energy. Consequently, if the outer core is sufficiently large, the shock eventually
completely stalls (approximately at a distance of 100 to 300km from the center) and
never even reaches the outer layers — the explosion has failed. Note that possible
energy losses of the shock wave in the outer layers of the star are a lot smaller than
those suffered inside the core because densities and temperatures are too low there
for photodisintegration to occur massively. This is why a successful explosion can be

anticipated as soon as the shock wave managed to leave the iron core.

The success of the prompt shock mechanism depends crucially on the iron core
mass: only if the outer core is small enough (that is essentially the case if the total
core mass is small enough) can the prompt explosion work. Numerical simulations
indicate that prompt explosions can only occur in stars with iron core masses smaller
than =~ 1.25M. Stellar structure calculations indicate that there are stars with
such light iron cores. The majority of type II progenitors however has iron cores too

massive for a successful prompt explosion.
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The prompt mechanism is more likely to succeed if a “softer” nuclear EOS is used

as it results in greater shock energies.

2.2.4 Delayed Shock Mechanism

So what happens once the shock has stalled? There is still an enormous amount
of energy in the core, mainly in the form of thermal excitations and neutrino and
electron chemical potentials. Due to large number density gradients the neutrinos
diffuse outward. As they reach regions with lower densities their mean free path

becomes larger and larger until they can finally radiate away almost freely.

Consequently, the whole matter above the neutrino sphere® (located at =~ 40km
from the center) is bathed in a very intense neutrino flux. This can actually help
to revive the stalled shock that, by now, has turned into a so-called accretion shock
(caused by the infalling outer core matter) in the following way (called the delayed
shock mechanism): the shocked matter above the neutrino sphere now contains a
lot of free nucleons which can absorb some of the neutrinos (the cross section for
these processes is small but not negligible). This ultimately leads to the heating
and expansion of the matter (neutrino heating) so that the shock can resume its way
outward. It shall be mentioned that neutrinos can also be absorbed by nucleons inside
nuclei but (for reasons that will not be discussed here in more detail) are re-emitted

shortly afterwards so that these events do not help in reviving the shock.

9the distance at which the optical depth for neutrinos is 1. The neutrinos can be considered to
radiate away freely approximately from there. More precisely, all this is dependent on the energy of
the neutrinos.
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(convective)

Figure 2.4: Shock revival by neutrino heating after the shock wave has stalled (taken
from [24]). The symbols are explained in the text.
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Figure 2.4 schematically shows the situation after the shock wave has stalled: the
gain radius is the distance from the center at which neutrino cooling is dominated
by neutrino heating (i.e. more neutrinos are captured than emitted), overturn means
essentially the same as convection, M denotes the infalling mass of the outer layers,
R, is the radius of the proto-neutron star!® (“PNS”), and R, denotes the neutrino

sphere.

This delayed mechanism was first suggested by Wilson in 1985 [53]. Today it is
the commonly accepted theory for core collapse supernova explosions. Still, there is
a lot of trouble with it: it depends crucially on the cross sections for neutrino capture
on nucleons, the neutrino production rates, the details of the neutrino transport, and
other factors many of which are not known with great certainty. In particular, the
simulation of neutrino transport in the “gray” region, i.e. at densities where neutrinos
are neither trapped nor able to freely radiate away is most problematic. Depending on
these input parameters, simulations of the delayed mechanism (performed by several
different groups) yielded successful explosions even for stars with very massive iron
cores while in other cases the explosions “fizzled” again. A more detailed overview of
these simulations will be given in 2.3. A very good summary of the delayed mechanism

and the skepticism about its correctness was recently done by Janka [24].
Convection

As just mentioned, the delayed mechanism is most likely not a completely satisfactory
explanation for supernova explosions as it has lead to failures in several (mostly one
dimensional) simulations that were performed since Wilson suggested it. That is why

the quest for a reliable explosion mechanism went on.

Given the more powerful computers that became available in the 1990s, it was

10the innermost part of the core that is believed to form a neutron star later
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an obvious approach to go to higher dimensions: several two dimensional simulations
have been carried out (see for example {23, 18, 22]|) in which especially the impact
of convection has been studied. Convection is going to occur for sure in the region
between the shock and the neutrino sphere where the shock leaves behind an entropy
profile that is instable to convection. This convection takes place very rapidly: large
amounts of matter move up and down between the hot proto-neutron star and the
colder outer regions — a little bit similar to the convection occurring when cold water
in a pot is put on a hot plate, yet on entirely different scales. A detailed discussion of
convection is clearly beyond the scope of this work. It shall be mentioned, however,
that it is widely believed today that convection helps the success of the explosion
by transporting energy from above the neutrino sphere (where the matter can be
heated by neutrino absorption in a relatively easy way) to the outer layers of the star.
Thus a larger fraction of the gravitational energy that was released during collapse is
made available for the explosion. Two dimensional simulations done by Herant et al.
[23, 22] for example resulted in successful explosions while their one dimensional ones,

that did not include convection but used the same microphysics otherwise, failed.

Apart from the convection between the neutrino sphere and the stalled shock there
is a possibility that convection in the proto-neutron star may help the explosion by

intensifying the neutrino luminosities [24].

Still, this is not necessarily the final solution to the supernova problem. In partic-
ular, it is conceivable that phenomena that can only occur in three dimensions play

a role.
Rotation

It is well known that stars carry angular momentum. The impact of this rotation

on the core collapse and the explosion mechanism has been studied relatively little
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(note however that studies including possible effects of rotation date back to 1970).
On the other hand, in the beginning there were ideas (now considered wrong) that
the explosion might actually be powered by the conversion of rotational energy via

magnetic fields [29)].

As simplifications are almost always a necessity to model real phenomena, it was a
most reasonable approach to neglect rotation for the beginning. Another reason why
relatively little attention has been given to rotation so far is a lack of computer power
that is needed because it can only be simulated sensibly in more than one dimen-
sion. Simulating convection and neutrino transport is computationally so expensive
that simulations including these effects are still restricted to one and two dimensions
nowadays. There is also a lack of rotating progenitor models, so the precise initial
conditions for simulations of rotating core collapse are relatively uncertain. Some

studies were made, however, that will be presented in 2.3.

Indications have been found by several groups that rotation does not affect the ex-
plosion mechanism dramatically (see for example [18, 57]). It appears that explosions

are slightly delayed and a little bit weaker if rotation is included.

It must be mentioned, however, that often rotation is mimicked in questionable
ways necessary because most simulations are performed in two dimensions. Well
known phenomena from earth such as vortices in flowing liquids or tornadoes in
the atmosphere could hardly occur in less than three dimensions. We would also
like to point out that rotation can become extremely rapid in the late stages of core
collapse because the inner core contracts more and more. This enforces higher angular
velocities as its angular momentum is essentially conserved which can at smaller radii

and equal mass only be assured by faster rotation.

Another argument for studying the impact of rotation are recent observations
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of the polarization of the light emitted by supernovae made by Wang and Wheeler
[50, 49, 51]. Using a method in which they observe the polarization and the wavelength
of the light simultaneously (“spectropolarimetry”), they found that the light emitted
by type II supernovae (and actually all core collapse supernovae which also include e.g.
types Ib and Ic) is significantly polarized while this is not (or not nearly as strong) the
case for supernovae not powered by core collapse. They draw the conclusion that there
must be large asymmetries in the explosion mechanism to cause this polarization.
They also found that the polarization of the light gets greater the closer to the center
of the explosion they measure it. This gives even more support to the conclusion that

the asymmetry originates in the very heart of the explosion.

Rotation is a very good candidate (and the only obvious one) to explain such
deviations from spherical symmetry as it defines a direction — that of the rotation

axis.

2.3 Recent Numerical Studies of Core Collapse Su-
pernovae

The separate treatment of previous numerical studies of supernovae is a bit artificial as
it was hopefully made clear in the previous sections that the currently predominating
theories for the explosion mechanism were chiefly developed by the excessive use of

numerical simulations.

This section will mainly be focused on the techniques, assumptions, and simplifi-
cations used in specific recent simulations (performed in the last ten years) while the
previous sections primarily dealt with their results. Here, this can hardly be done in
great detail for which one may refer to the respective citations. This is not meant to

be a complete overview of the work that was done in the last decade, we just want to
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exemplify different approaches.

It shall be mentioned that there are also some attempts to deal with the supernova
problem on a more analytical level (not completely relying on numeric). The works

of Burrows and Goshy [9] or the very recent one of Janka [24] are examples for this.

2.3.1 Equation of State

An EOS describing the thermodynamic properties of the matter is a necessary input
for all supernova simulations. The purpose of an EOS is to make use of the fact that
the star is in (local) thermodynamic equilibrium. Thus only three thermodynamic
quantities (in core collapse simulations usually the temperature T, density p, and
electron fraction Y;) have to be calculated locally, all other quantities (the most
important among these the pressure and the specific internal energy) are given by the

EOS.

A great theoretical effort has been invested into finding a correct EOS, especially
the correct nuclear part of it (see for example 28, 42, 41, 43, 44]). The theory for this
is virtually a whole separate science (like several aforementioned aspects of supernova

theory). So we will again just give a brief account of the state of the art in this field.
Electron-Positron EOS

The electron-positron part of the EOS is less problematic than the nuclear part.
Its contribution is often just modeled by the EOS for a relativistic degenerate ideal
fermion gas, neglecting the Coulomb interaction, for which statistical mechanics pre-
dicts the temperature-independent pressure-density relation

p(p,Ye) = %(g) gﬁC(Ti)%pg, (2.9)
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where mp is the baryon mass [59]. If an adiabatic change (6Q = 0) is assumed (which
is reasonable at least for the infall phase) and the conversion of particle species is also
neglected (dN; = 0, where V; denotes the number of particles of species i), the first

law of thermodynamics reduces to

dU = 6Q — pdV + ) pdN; = —pdV (2.10)
i
and an expression for the internal energy density uf,‘,/,) = Q'VM can easily be derived

from equation 2.9 by integration:

W) (p, Y.) = —i—(%)ghc( Ye )3,,%. (2.11)

int

However, this is a crude approximation. There is a variety of more sophisticated
EsOS for the electron-positron gas which cannot be expressed by such simple analytic
expressions as equations 2.9 and 2.11. They are available in the form of data tables or
computer programs. Five different ones of these are compared in [47]. Sophistication
is achieved by adding effects due to such phenomena like the presence of antiparticles
(i.e. positrons), the interaction of the electrons with the ionized nuclei present in the
matter, and radiation pressure p,.q. The latter is usually done using the well-known

blackbody approximation that yields for the radiation pressure:

40
Prad = 52T4) (212)

where o denotes the Stefan-Boltzmann constant. The consideration of the former

effects is more complicated and will not be dealt with here.

In recent simulations, EsOS can be called over 10° times during a simulation run.
Hence, it is important for the applicability of these more sophisticated EsOS (more
precisely: the programs that calculate their output values or interpolate the tabulated

data) that they work reasonably fast. This is true for both the electron EOS and the
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nuclear EOS. As far as the electron EOS is concerned the so-called Helmholtz EOS
developed by Timmes and Swesty [48] can be considered a great compromise between

execution speed, thermodynamic consistency, and accuracy.
Nuclear EOS

As mentioned in 2.2.3, the nuclear EOS (in particular at densities above the nuclear
matter saturation density) is of crucial importance for key features of the explosion

mechanism — especially for the vigorousness of core bounce.

Mainly for the purpose of saving CPU time, various extremely simplified analytical
EsOS have been proposed by different groups. All these are not rigorously derived
from theory but simply mimic essential key features such as the drastic rise in pressure
and specific internal energy above nuclear saturation density. For example, Zwerger
and Miiller [59], Yamada and Sato [57], and Bonazzola and Marck [5] use a simple
polytrope EOS (see equation 2.5) imitating the stiffening above nuclear matter density

with a large adiabatic index like e.g. v = 2.5.

A very similar example is the high density EOS introduced by Baron et al. [3]:
Kopo [( P\
2(p z___[(_) —1], 2.13
() = S2[(£ (213)
where K is the compression modulus, py the nuclear matter density, and y a param-

eter. All these parameters are isospin dependent in their model.

Just as in the case of the electron EOS much more sophisticated EsOS are avail-
able in the form of computer programs (e.g. [27, 40]). In their derivation one has to
deal with a lot of difficulties: at lower densities during core collapse the matter forms
essentially a two phase system — a “gas” phase of free nucleons and alpha particles
and a “condensed” phase consisting of heavier nuclei. At densities around one-half

Po a so called “Swiss cheese” phase is formed: the nuclei touch each other uniformly
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filling large space regions except for certain holes. Finally, at very high densities, the
nuclei are “squeezed” beyond their saturation density. Thus, the nuclear matter goes
through phase transitions which does not make things easier. These more sophis-
ticated EsOS also rely on certain parameters (such as the nuclear incompressibility
modulus or the nuclear surface tension) for which no exact values (for the densities

and temperatures of relevance here) could be obtained from experiments so far.

The grand masters of these EsOS are Lattimer and Swesty whose EOS (from now
on referred to as “LS EOS”) [27] has been used in many recent simulations (see e.g.
(18, 31, 34, 32, 23, 33, 7, 37] just to name a few) and can be considered state of the art.
It is valid only when the matter is in nuclear statistical equilibrium which is achieved
at the high temperatures in a supernova core. The assumptions and techniques used

in the derivation of the LS EOS are described in great detail in [28].

2.3.2 One Dimensional Simulations

One dimensional simulations in which spherical symmetry is assumed still play an
important role in the process of better understanding the supernova explosion mech-
anism. They are still the only way to simulate the underlying microphysical processes
in great detail. However, while one dimensional simulations became more and more
sophisticated over the years, most of them failed to produce explosions. It thus
became clear that phenomena that can only appear in higher dimensions, such as
convection or rotation, are very likely to play an important role in the explosion

mechanism.
Mezzacappa, Liebendorfer et al. [34, 31]

A very recent example of such a “fizzle” are the state of the art one dimensional

simulations performed by Mezzacappa, Liebendorfer et al. [34, 31). They follow the
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whole explosion process of a 13M, star using Newtonian [34] and general relativistic
[31] gravity, explicitly not including convection (that is sometimes effectively included
in one dimensional models) and paying special attention to the details of neutrino
transport in order to make sure that the failure of previous simulations is not due
to approximations in this area. They use a method called multigroup fluz-limited
diffusion including effects due to different neutrino flavors and energies which can be
important because the cross sections for the interactions of neutrinos with the matter
strongly depend on these. The LS EOS (see 2.3.1) is used in their hydrodynamic
simulation that uses an adaptive grid. The latter means that the size of the cells for
which they calculate quantities like mass density, temperature, or neutrino density is
variable. This is used to obtain a preferably higher resolution in regions where one

or more of these quantities change rapidly by going to smaller cell sizes there.

As mentioned above, their main result is that they do not obtain an explosion

thus giving further support to the importance of higher dimensional effects.
Herant et al. [23]

Most of the recent work has been done in two dimensions. Quite often, however,
results from one dimensional simulations are used to simplify the two dimensional ones
by mapping data obtained from the former ones on the latter ones. One dimensional
simulations are also performed in order to compare their results to those achieved

with two dimensional ones.

An example for this is the simulation by Herant et al. [23]. They use a second
order Runge-Kutta hydrodynamic grid-based code with adaptive cell size without
including effects of convection in their one dimensional model. The way they model
neutrino transport is strongly simplified: cells in their grid are either labeled optically

“thick” or “thin” depending on the density currently available. In the “thick” regions
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neutrino transport is approximated by diffusion (see below) and in the “thin” regions
a so-called “central light bulb approximation” is used. This means that the matter
in these regions is bathed in a neutrino flux originating from the center of the star,
the magnitude of which is essentially determined by neutrino production rates in the
“thin” regions and the rate at which neutrinos diffuse from “thick” to “thin” regions.

They use the neutrino production rates calculated by Takahashi et al. [45].

For the diffusion they use a so-called “flux-limited” method. This means that

dn . (C
i m1n(§|Vn|, V. DVn), (2.14)

where n denotes the neutrino concentration in a cell and D is a diffusion coefficient.
This obviously sets an upper bound for the flux thus limiting it. If neutrino concen-
trations are very high, diffusion may be obstructed by their fermi properties which
disallow them to share identical quantum states. This effect is also included in their

model of neutrino transport.

Their one dimensional model does not explode.
Burrows et al. [10]

Finally, the work of Burrows et al. [10] shall be mentioned. They also ran both one
and two dimensional simulations using monopole Newtonian gravity in a hydrody-
namic grid-based code in which (contrary to the previously mentioned works where
the grid is fixed to the mass elements) the cells are fixed in space, which forces them
to use a higher cell resolution the closer they get to the center in order to get an
appropriate resolution of core bounce and shockwave formation. Neutrino transport
is approximated by assuming diffusion. Three different neutrino species (v, 7, and
v, where v, represents all remaining neutrino species) are treated separately. The

neutrino absorption and emission rates in the “gray” (semi translucent) regions are
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approximated by relatively simple analytic expressions. The EOS they use is a slightly

modified version of the LS EOS.

The results of their simulations will be discussed in 2.3.3.

2.3.3 Two Dimensional Simulations

Fryer and Heger [18]

The work of Fryer and Heger [18] is one of the most interesting with respect to our
own simulation as they study the core collapse of the rotating progenitor calculated
by Heger [20] and try to find possible explanations for the polarization measurements

by Wang and Wheeler [50, 49, 51].

The angular velocity profile they use is shown in fig. 2.5. The discontinuities
of the angular velocity are located at the boundaries of well-defined regions in the
progenitor model in which angular velocity is equilibrated by convection. They use
a numerical technique called smooth particle hydrodynamics [19, 21, 22, 23, 12] an
essential feature of which is that the star’s mass is represented by discrete particles.
Neutrino transport is treated in the same way as by Herant et al. (see 2.3.2). A
patchwork of different EsOS for the different density regions is used, among these the
LS EOS for high densities. Gravity is treated using general relativity and assuming
spherical symmetry. Cylindrical symmetry around the rotation axis but no equatorial
symmetry is assumed for the rest (the former is a requirement to reduce the number
of dimensions from three to two). Angular momentum conservation is enforced for

each particle separately.

They find that rotation limits the convection overall and restricts it to the polar
regions. This ultimately delays the explosion and also weakens it. Further, asym-

metries due to rotation are apparent: the mean velocity of the matter in the polar
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Figure 2.5: Angular velocity profile used by Fryer and Heger [18] compared to that
of different models used by Monchmeyer and Miiller (labeled “MM89”) [35]

regions is larger by a factor of 2 compared to the equatorial region. They speculate

that these asymmetries might explain the polarization of the emitted light.
Herant et al. [23]

The two dimensional model by Herant et al. [23] is very similar to the one of Fryer

and Heger just described (the latter can actually be considered an advancement of the
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former). Both use essentially the same numerical technique. Herant et al., however,
approximate gravity using the Newtonian limit assuming spherical symmetry. More
importantly, the effects of rotation are not studied in their work. They use a (non-

rotating) progenitor calculated by Woosley and Weaver.

Their main result is that convection above the proto-neutron star is the key to
obtaining an efficient and robust explosion mechanism. Their model turned out to be
insensitive to microphysical details like neutrino cross sections (for which they used
a variety of values). They compare the star in the phase after the shock has stalled
to a thermodynamic engine in which the convective matter transports energy from
the hot reservoir (the proto-neutron star) to the cold reservoir (the star’s envelope)
thus powering the explosion. Due to the large temperature difference between these
two reservoirs the efficiency of this “Carnot engine” is high. This leads to a self-
regulated explosion mechanism: the envelope is just heated enough to explode, which
is a possible explanation for the fact that all observed supernova explosion energies
are approximately between 1 and 2 x 10%'erg. However, they admit that there are
certain subtleties in simulating convection in two dimensions and call the possibility

that rotation may be important “a very real one”.
Burrows et al. [10]

Most of what was said (e.g. the way neutrino transport is treated) in 2.3.2 about the
one dimensional model of Burrows et al. remains valid for their two dimensional one.
Actually, they also use the one dimensional simulation to simplify the two dimensional
one by mapping data from the former on the latter. For example, they just use the
information for the inner core obtained from the one dimensional model in the two

dimensional one.

Just like the two groups just mentioned, they also find that convection is helpful
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to obtain a successful explosion. However, unlike Herant et al. they draw the conclu-
sion that the mechanism still significantly depends on the way neutrino transport is

modeled.
Yamada and Sato [57]

Yamada and Sato [57] follow a completely different approach than all the aforemen-
tioned works. They do not deal with neutrino transport, a realistic EOS, convection,
or other microphysical details but study the impact of rotation in a simple two di-
mensional model. Essentially, a polytrope EOS (equation 2.5) is used in which they
make the adiabatic index <y a function of density: at low densities (p < 4.0 x 109#)
and at densities at which neutrino trapping occurs but the nuclear forces can still be
neglected (10?3 < p < 2.8 x 10! _%;), v = 3 for the relativistic degenerate elec-
tron gas is used. At intermediate densities (4 x 10%_£; < p < 10'?_%;) the pressure
deficit due to electron capture and photodisintegration is mimicked by a drop of the
adiabatic index below § (e.g. 7 = 1.3). Finally, at densities greater than nuclear

(p > 2.8 x 10" _L;) the stiffening of the nuclear matter is modeled by y = 2.5. Their

EOS also contains an ideal-gas-like temperature dependence.

The main purpose of their model is to find deviations from spherical symmetry in
a two dimensional hydrodynamic simulation . They study the impact of rotation on
the collapse of the iron core by artificially adding angular velocity to a (non-rotating)

15M,, progenitor calculated by Woosley and Weaver.

According to their results, the maximum density at core bounce, the explosion
energy, and the ejected mass all decrease monotonically with increasing angular mo-

mentum of the core.
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Zwerger and Miiller [59]

The approach of Zwerger and Miiller [59] is very similar to that of Yamada and Sato as
far as the EOS and the treatment (or rather “non-treatment”) of neutrino transport is
concerned. However, as initial models Zwerger and Miiller use v = % - polytropes'! in
rotational equilibrium whose collapse is initiated by suddenly decreasing the adiabatic

index below g— (to values between 1.325 and 1.28).

Their main focus is on the gravitational wave signal of the supernova event, a topic
also studied by several other groups (e.g. [5, 58, 38]) that will not be discussed here
any further. An interesting result is that in some of their rapidly rotating models core

bounce occurs due to huge centrifugal forces even before nuclear density is reached.

This work must be seen in the context of a series of similar studies (among these
(38, 15, 25]) performed by different people at the Max Planck Institut fiir Astrophysik

in Garching, Germany.
2.3.4 Three Dimensional Simulations

Very few core collapse simulations have been done in three dimensions. The ones
we know of mainly deal with the gravitational wave signal [5, 38] emitted by the
explosion and use the simplified polytropic EOS described above (mimicking key fea-
tures by manipulating parameters in one way or another). The effects of rotation
are included in these models. To our best knowledge, there is currently no three
dimensional simulation of a core collapse supernova in which a realistic EOS, a real-
istic progenitor model, or even neutrino transport (to say nothing of convection) is
included. This situation is naturally due to the immense computational requirements

of such a simulation.

Hequilibrium solutions of the polytrope EOS 2.5
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It shall be mentioned, however, that Chris Fryer is currently working on such a

model [16, 17] but has not published any results yet.

34



Chapter 3

Our Three Dimensional Simulation

As pointed out in 2.3.4 there were hardly any core collapse simulations in three
dimensions so far. The basic idea of our own simulation is to simplify the underlying
microphysics, mainly by using input from one and two dimensional simulations, in
order to be able to follow the core’s dynamics in three dimensions during collapse
and bounce. The main focus is put on the impact of rotation during collapse. Our
hope was to thus find deviations from spherical symmetry that are so significant that
they may deliver alternatives to the currently favored complicated convection-driven
explosion mechanism. After all, it is well known that much weaker pressure gradients
(than those present during core collapse) and slower rotation can lead to very major
phenomena like tornadoes in the atmosphere or vortices in flowing liquids (yet on a

much larger time scale).

We think that the effects of rotation can truly only be studied in three dimensions
because adding rotation in a two dimensional model is always somewhat artificial. A
three dimensional approach is further motivated by the aforementioned polarization
observations by Wang and Wheeler [50, 49, 51] for which no satisfactory explanation
could be obtained from two dimensional simulations so far. The dependence of many

one and two dimensional models on such (uncertain) parameters as the viscosity of
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the matter and neutrino cross sections also raised our hope that there might be a

solution to the supernova problem that is largely independent of these details.

3.1 Test Particle Method

The method we use is similar to the so called test particle method or pseudoparticle
method that has been used extensively in nuclear physics [54]. Its original purpose
is to approximate the time-dependent Hartree-Fock equations in a way that allows

classical interpretation.

While in nuclear physics usually several thousand test particles represent one
nucleon, things are vice versa in our model for the collapse of an iron core with
a mass around 1.3M: (assuming that we use 10° test particles) one test particle
represents a mass of 1.3 x 1075M, =~ 2.5857 x 10%*kg - just a little less than the mass

of the entire earth!

In our model all NV, particles have the same mass M;c/N,, =: my,, where M;¢
denotes the mass of the whole iron core. For each individual particle, position 7
and momentum pj are tracked (as classical three vectors). The equations of motion
for the test particles are the relativistic versions of the Newtonian ones known from

classical mechanics:

. dF; D
Bl B (3.1)
at mf, + (2)?
(4
. dp; B (= = 2
p] = % = FG,j(Tlv ,Tth) +FEOS](T.7) (3 2)
j = 1,...,th,

where ﬁc ,j denotes the force on particle j due to gravity and ons,j the force due

to the equation of state. Gravity is modeled assuming spherical symmetry by using
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the Newtonian monopole approximation. This means that Fc,j is the gravitational
force test particle j would experience if the mass of all test particles located closer
to the center of the iron core (which is identical to the origin of the coordinates) was

combined in a point mass located at the center:

) mi, #{i€ {1, Ny} 17l < I751}

Foj=- BE

7. (3.3)

This approximation is only good as long as the deviations from spherical symmetry
(of the mass distribution) are sufficiently small. The calculation of F"Eos,j is a bit

more complicated and will be explained in 3.3.4.

3.2 Grid

In order to be able to locally define thermodynamic quantities, most notably the local

mass density, we introduced a spherical coordinate grid.

3.2.1 Cells and Boundaries

The boundaries between the cells of this grid are defined by the surfaces of constant
r, constant ¢, and constant 6 in spherical coordinates (r,¢,6) using the standard
notation (r = |Z|, ¢ = azimuth angle, § = polar angle). For the ¢ coordinate the

boundaries are located at

2m 2T 2m
1x — —, ., (Ny—1 —
01 X N¢, 2 x N¢, ) ( [ )X N¢’

where Ny denotes the total number of boundaries (for the ¢ coordinate). For the
6 coordinate the boundaries are chosen so that the difference between cosé of two

arbitrary neighboring boundaries is constant, i.e.
| cos B, — cos 6,| = const.
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if 6,, 0, are neighboring boundaries (for the 6 coordinate). This is made so to make
the volume of a grid cell independent of 8. Finally, for the r coordinate the boundaries

are usually chosen equidistant so there are boundaries at

R R R
1XF’_,2XF’_,“',N’.XN:_R,

where R denotes the radial location of the edge of the spherical grid and N, the
number of boundaries for the r coordinate. Note that this way the volume of the cells
depends only on r (not on ¢ or #) and increases with increasing distance from the

center.
Radial Cell Width Feature

However, an option which enables us to use non-equidistant r-boundaries is included
in our code: a monotonic growing function f(y) : [0: 1] — [0: 1], y — f(y) satisfying
f(0) = 0 and f(1) = 1 can be defined. The boundaries are then located wherever
(f(%) x N;) € N. For example, f(y) = y°* yields a higher grid resolution near the

center. f(y) = id(y) = y gives equidistant r-boundaries as before.

3.2.2 Grid Coordinates

Recapitulating, we have a spherical grid consisting of Nceis := Ny X Ny X Neosg cells.
These are conveniently labeled by three integers n, € {1,..., N}, ny € {1,..., Ny},
Neoss € {1,..., Neoss} where increasing ny corresponds to increasing X for X €
{r, ¢,cos0}!. These three integers (n,, ng, Neoss) Will be referred to as grid coordinates

from now on.

Given a point inside the grid in spherical coordinates (7, ¢, ), we can find its grid

'In the C++ code, these integers run from 0 to Nx — 1.
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coordinates using the following trivial relations:

[r
n, = ﬁNr]+1 (3.4)
I
ne = -27rN"’]+1 (3.5)
Necoss = COSGT—*—lNCOSOJ‘*'lv (36)

where the squared brackets [Y] denote truncation of the quantity Y. Note that

increasing n..s¢ corresponds to increasing cos but to decreasing 6.
Cell Volume

Using this, we can now explicitly give the volume of a grid cell as a function of its

grid coordinates:

Vol(rr ey ame) = Vlln) = 30— {7 (3e) = 2 (252)) 6
or for the most important case f(y) = f~!(y) = id(y) = y:
vol() = = {(32) - (52) 8)
Innermost Cell
The volume of the cells with n, = 1 is usually very small. Numerical problems

also arise from the “wedge shape” of these cells. These problems will become more
transparent in 3.2.3 and 3.2.4. Anyway, all these cells at the center are treated as one

(spherical) cell.
Grid Scaling

During a core collapse simulation an enormous change in the length scale occurs: the

inner iron core contracts roughly by a factor of 102 to 103. Even if N, is chosen very
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large? (e.g. N, = 500) the inner core at core bounce would still be almost completely
in the innermost cell if the grid were fixed in space (as long as f(y) = id(y) is chosen).
This way an appropriate resolution of core bounce and other phenomena would be
destroyed. That is why we chose to scale down the grid simultaneously with the core.
More precisely the size of the grid (which is given by R, the distance of its outer
edge from the center) is modified during collapse as follows: in every time step, the
distance of the %’{fth outermost test particle is determined and multiplied by a factor
slightly larger than 1 (e.g. 1.12). The advantage of this apparently odd procedure
is that it proved to be very functional: almost all test particles remain in the grid
during collapse and fill a reasonable portion of it, and if a few particles are “lost”
(what this means more precisely and how it can happen will be illuminated in 3.4)

the simulation is not ruined (which can be the case if just the outermost test particle

is used to define the size of the grid).

3.2.3 Calculation of Densities

A mass density p(n,,ng, nesg) can be calculated for each cell of the grid using the
following evident way. The number of test particles in the cell Ny (n,,ng, Neose) is
counted, multiplied by the mass of a test particle m,,, and divided by the cell volume
Vol(n,):

N (nrvn 7ncos0) m
p(nrandz,ncosG) = 2 V:l(n ) tp. (39)

In order to minimize errors due to fluctuations and to smooth the density distribution,
we decided to use a slightly more sophisticated method in which the test particles’
mass is smeared over the cell it is in and the seven (well-defined) neighboring cells
which are located nearest to the test particle. Figure 3.1 illustrates this method for

the two dimensional case: first, the cells which are closest to the test particle are

ZNote that the total number of cells is clearly limited by the condition Ncens < Nip.
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Figure 3.1: Smearing of test particles for density calculation

determined by detecting in which of the sub cells I.a through I.d it is located. Then

the number fractions x of the test particle these cells “get” are calculated as follows:

R e e s ) (.10
a = (-5 (35 —0) @11
an = (3570) (35— 5) @12
w = (355 =70) (- 5= (3.13)

where r and ¢ are the coordinates of the test particle and rg, r¢, ¢ and ¢¢ denote the
coordinates of the boundaries of cell .a (with 75 > r¢ and ¢p > ¢c¢). Zf: (xi=1is

ensured. It is obvious how this generalizes to three dimensional spherical coordinates.

The method yields for example that a test particle that is located exactly in
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the corner of a cell is uniformly shared among the eight adjacent cells (in the three
dimensional case), and belongs completely to the cell it is located in if it is exactly in

its center.

The procedure may seem artificial and unjustified because if you visualize the
smearing as being caused by giving the test particles a finite size, the technique just
described implies that the size of the test particles depends on the distance from the
center (as the cell size depends on it). But the use of the grid is only sensible if the
grid resolution can be chosen high enough for the variations of the density (and other
quantities defined for each cell) in neighboring cells to be small. Thus the smearing
is just a technique to smooth possible fluctuations the details of which should not

significantly affect our results.

3.2.4 Calculation of Derivatives

To follow the dynamics of core collapse, the calculation of (spacial) derivatives of
thermodynamic quantities is necessary. More precisely, this is needed to calculate

F gos,j from equation 3.2 which will be explained in 3.3.4.

Let © be a thermodynamic quantity defined on the grid (meaning that for each
cell (n,,ny, Neose) a real number Q(n,, ng, Neosg) € R is defined). To approximate the
gradient VQ(r, ¢, 6), we use a modification of the standard technique for calculating
numerical derivatives described in [36] and the well known expression for the gradient

in spherical coordinates [6]:
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