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ABSTRACT

VISION-BASED TRACKING OF FIDUCIALS FOR AUGMENTED REALITY

By

Paul W. Middlin

Visible fiducial images are a common method for supporting vision-based tracking in

augmented reality systems. This thesis describes algorithmic improvements in fiducial-based

tracking including an improved fiducial design, better fiducial location, and improved pose

computation. A set of criteria that are desirable in an optically-tracked fiducia] are presented

and a new fiducial image set is designed that meets these criteria. The images in this set

utilize a square black-border pattern with a 15% border width and an interior image that

supports orientation determination and unique identification. The interior image is

constructed from orthogonal Discreet Cosine Transform basis images chosen to minimize the

probability of misidentification and to be robust to noise and occlusion. This image could be

integrated into an Augmented Reality software system such as the well-known and widely

used ARToolKit to improve accuracy in identification of fiducials.

Piducial tracking involves more than simply creating a good fiducial image. The

tracking includes methods to accurately locate the fiducial in the image, then use this

information to calculate the location and orientation of the fiducial in relation to the camera.

This location and orientation is known as pose. The ability of this system to track and

calculate the pose of fiducials has been evaluated and compared to the ARToolKit as well.

The system has proved to be generally better than the ARToolKit in terms of locating,

identifying, and calculating the pose of a fiducial.



Dedicated to Stuart Griffin, whose ambition inspires us all.

iii



ACKNOWLEDGMENTS

I would like to thank Dr. Charles Owen for his extensive contributions in the

implementation of this project, as well as for his advice and direction.

I would also like to thank the students of CSE891, Augmented Reality, whose

ideas and discussion led to the adoption of the fiducial criteria used, and the eventual

DCT method itself.

Thanks go to Tony Lambert for helping set up the testing environment, and for

the use of his laptop and truck.

Michael Malinak was helpful when doing the background research necessary for '

this thesis.

iv



TABLE OF CONTENTS

Table of Figures ................................................................................................................ vii

Table of Tables ................................................................................................................... ix

1 Introduction ................................................................................................................. l

1.1 Background ......................................................................................................... 1

1.2 Contributions ....................................................................................................... 4

1.3 Outline of Chapters ............................................................................................. 4

2 Related Work............................................................................................................... 6

2.1 ARToolKit........................................................................................................... 6

2.2 CyberCode........................................................................................................... 9

2.3 HOM System..................................................................................................... 11

2.4 IGD System ....................................................................................................... 11

2.5 SCR System ...................................................................................................... 12

2.6 TRIP System ..................................................................................................... 13

2.7 Multi-resolution Colored Rings ........................................................................ 14‘

2.8 Other Systems ................................................................................................... 15

2.9 Pose Calculation Methods ................................................................................. 15

3 Criteria for a Good Fiducial ...................................................................................... 17

3.1 Fiducial Shape ................................................................................................... 17

3.2 , FiducialColor............ 20

3.3 Locating the Fiducial ......................................................................................... 21

3.4 Fiducial Identification ....................................................................................... 23

3.5 Fiducial Identification Range ............................................................................ 27

3.6 A Large Fiducial Identification Space .............................................................. 28

3.7 Human Identification......................................................................................... 28

3.8 Summary of Desirable Characteristics .............................................................. 29

4 A “Good” Fiducial Interior Image ............................................................................ 31

4.1 Deriving the Image ............................................................................................ 31

4.2 Detection ........................................................................................................... 35

5 A Functioning System ............................................................................................... 38

5.1 Finding the Border ............................................................................................ 39

5.2 Tracing the Border ............................................................................................ 40

5.3 Accounting for Camera Distortion .................................................................... 42

5.4 Locating the Quadrilateral Comers ................................................................... 43

5.5 Quadrilateral Test .............................................................................................. 45

5.6 Line Fitting ........................................................................................................ 45

5.7 Warping ............................................................................................................. 46

5.8 Identifying with the DCT .................................................................................. 50

5.9 Calculating Pose ................................................................................................ 50



6 Evaluation.................................................................................................................. 55

6.1 Distance and Rotation Test Setup ..................................................................... 55

6.2 Distance Results ................................................................................................ 58

6.3 Rotation results.................................................................................................. 59

6.4 Identification Results......................................................................................... 65

6.5 Speed ................................................................................................................. 73

6.6 Discussion of Results ........................................................................................ 74

7 Future Work .............................................................................................................. 76

7.1 Basis Set ............................................................................................................ 76

7.2 Pose Estimation ................................................................................................. 77

7.3 Finding Potential Fiducials ............................................................................... 78

8 Conclusions ............................................................................................................... 79

9 Appendix A -— Camera Frequency Response ............................................................ 81

9.1 Background ....................................................................................................... 81

9.2 Test Setup .......................................................................................................... 82.

9.3 Results ............................................................................................................... 84

9.4 Discussion ......................................................................................................... 92

10 Appendix B — Testing Data. .................................................................................. 94

11 Appendix C - Camera Calibration ......................................................................... 96

References ....................................................................................................................... 100

vi



TABLE OF FIGURES

Figure 2-1 - Example ARToolKit Fiducial ......................................................................... 7

Figure 2-2 - CyberCode recognition steps ........................................................................ 10

Figure 2-3 - Example HOM Fiducials............................................................................... 11

Figure 2-4 - Example IGD Fiducials ................................................................................. 12

Figure 2-5 - Example SCR Fiducials ................................................................................ 12

Figure 2-6 - TRIP Target representing 1160407 ............................................................... 13

Figure 2-7 - Multi-size color fiducials .............................................................................. 14

Figure 3-1 - Equivalence of interior images for orientation determination ...................... 23

Figure 3-2 - Example images for correlation tests ............................................................ 26

Figure 4—1 - Example DCT fiducial Images ...................................................................... 35

Figure 5-1- Region with extraneous pixels ....................................................................... 42

Figure 5-2 - (a) Estimated first, actual third (b) Finding 2 and 4 ...................................... 44

Figure 5-3 - Special Case .................................................................................................. 44

Figure 5-4 - Solution for special case................................................................................ 44‘

Figure 5-5 - Line fitting and intersection .......................................................................... 46

Figure 56 - Pseudo-code for Finding Warped Image....................................................... 50 '

Figure 5-7 - Finding the X axis ......................................................................................... 51

Figure 5-8 — Pose Finding Method Comparison ................................................................ 54

Figure 6-1 - Test Setup ...................................................................................................... 56

Figure 6-2 - Finding the Center of Projection ................................................................... 57

Figure 6-3 - DCT Test Fiducial ......................................................................................... 58

Figure 6-4 - ARToolKit Test Fiducial ............................................................................... 58

Figure 6-5 - Distance Error Comparison ........................................................................... 59

Figure 6-6 - Angular Error, All Images............................................................................. 61

Figure 6-7 - Angular Error, 0 Degrees .............................................................................. 61

Figure 6-8 - Angular Error, 15 Degrees ............................................................................ 62

Figure 6-9 - Angular Error, 30 Degrees ............................................................................ 62

Figure 6-10 - Angular Error, 45 Degrees .......................................................................... 63

Figure 6-11 - Angular Error, 60 Degrees .......................................................................... 63

Figure 6-12 - Angular Error, 75 Degrees .......................................................................... 64

Figure 6-13 - ARToolKit Misidentification, 3 foot, #1 ..................................................... 68

Figure 6-14 - ARToolKit Misidentification, 3 foot, #2..................................................... 69

Figure 6-15 - ARToolKit Misidentification, 6 foot........................................................... 70

Figure 6-16 - ARToolKit Correct Identification Using DCT, 3 feet ................................ 71

Figure 6-17 - ARToolKit Correct Identification Using DCT, 6 feet ................................ 72

Figure 6-18 - Example Test Image .................................................................................... 73

Figure 9-1 - Effect of point spread function ...................................................................... 82

Figure 9-2 - Testing pattern ............................................................................................... 83

Figure 9-3 -Ideal image, bands 165 through 179 (close to half the Nyquist frequency) .. 9O

vii



Figure 9-4 - Logitech Image.............................................................................................. 91

Figure 11-1 - Jig used for calibration ................................................................................ 97

Figure 11-2 - Radial Distortion ......................................................................................... 97

Figure 11-3 - Comer locations after calibration ................................................................ 98

viii



TABLE OF TABLES

Table 5-1 - Starting Directions for Tracing ....................................................................... 41

Table 6-1 - ARToolKit Fiducial Shape Associations........................................................ 65

Table 6-2 - Identification test results................................................................................. 67

Table 6-3 - Speed Test Results.......................................................................................... 74

ix



1 Introduction

1. 1 Background

Augmented reality (AR) is the blending of computer-generated virtual elements

with reality [1]. A common example AR application is rendering computer graphics onto

existing imagery such that the graphics appear to be seamless additions to or

augmentations of the real image, registered in space, matching in scale. One of the most

difficult challenges in this application is aligning the real and virtual worlds so as to

achieve this seamless registration. The parameters of the rendering environment must

exactly match those of the camera system that captured the image. Vision-based tracking.

uses images of the world to support this computation, either through tracking of natural

image features [2, 3] or through the use of markers or fiducials placed in the scene. This

thesis proposes a set of criteria to use when designing a fiducial and a vision-based

tracking system for the fiducial design, making arguments for a specific type of fiducial

that was created with optimization of these criteria in mind. Further, a system has been

designed that uses these fiducials for tracking, which has been optimized for performance

in a way that is consistent with the fiducial criteria.

Existing fiducial tracking systems use ad-hoc fiducial images based on either

comparison to a library of template images or simple bar-code-based mechanisms. The

designs are typically based on human, not machine, identification and ease of

identification at high resolutions. The images tend to be highly correlated and often are

misidentified.



This thesis recognizes the need for a set of fiducial images that can be

systematically produced, has a small chance of being misidentified, and can be easily and

accurately tracked. These images are two-dimensional forms of the Discrete Cosine

Transform (DCT) basis set. The shape, border width, color, and method of locating the

fiducial have been chosen after analysis of the criteria set forth in this thesis. The choices

were made in an attempt to satisfy the general majority of fiducial tracking needs, though

they will not be ideal for all situations. The fiducials will utilize a square shape with a

black border that is 15% of the width of the fiducial. The interior images are

monochrome and are based on the DCT basis set, with an orientation component built in.

The choices made in the design of the tracking system are shown to be

theoretically superior choices. However, theoretical superiority is not a guarantee of

performance in a real implementation. To verify the performance of this system, it has

been compared to the ARToolKit [4] with tests in pose calculation accuracy and fiducial

identification. The ARToolKit was used as a benchmark since it is one of the most

popular and widely used fiducial tracking systems for Augmented Reality. The

ARToolKit will in fact be mentioned numerous times throughout this thesis as a basis for

performance comparison.

The testing has shown that the system created for this thesis was more capable

both in terms of fiducial identification and pose estimation. Additionally, this system

executes much more quickly than the ARToolKit system, allowing more time to do the

three-dimensional rendering required in most AR applications.

The need for such an improved system stems from the wide variety of AR

applications that use such technology. For instance, Fjeld and Voegtli [5] have created a



system that uses fiducials to allow a user to view chemical models in a more interactive

way. A series of fiducials are used to identify different chemical compounds, and a

graphical overlay of a model for these compounds is placed over the fiducial. This

addition of graphics is done on a viewscreen. The user can interact with the models by

moving the fiducials, or by using another cube that has fiducials on it. This cube can be

rotated with a person’s hand, and will cause the chemical model to rotate synchronously.

Using a viewscreen is not the only option for displaying Augmented Reality.

Some systems use a Head-Mounted Display (HMD), which is like having two small

monitors in front of the user (one for each eye). HMDs come in two major forms: video

see-through and optical see-through. A video see through HMD uses a camera to record '

video, then passes this video to the eye with small LCD displays. In this case, the user is

seeing the video as the camera(s) see it. For fiducial tracking, this means that the

fiducials could be replaced with a virtual element before the video is seen by the user,

thereby augmenting the reality that the user sees.

An optical see-through display is similar, but the user can see the world directly

through the HMD. Here, graphics are overlaid using a half-silvered mirror and LCDs to

combine the computer display’s light with light coming from the actual objects. Again,

fiducials could be used to calculate where the user’s head is in relation to the objects he

or she is viewing so that the virtual elements can be registered with the real objects in the

user’s line of sight. This is also an example of a time when the fiducials being tracked do

not need to be in the same space as the virtual elements. That is, a separate camera can

be used strictly to track the user’s HMD, so the fiducial on the I-IMD would never be seen

by the user; the fiducial is never shown on the HMD display.



Fiducial tracking can be extended to many other media, such as video monitors,

handheld devices, or systems that do not use visual representations at all. The purpose

behind using the fiducials is for tracking, which implies that any application in which the

location and orientation of an object needs to be known can benefit from vision-based

tracking.

1.2 Contributions

Contributions of this thesis are as follows:

0 A set of criteria that define the qualities of a good fiducial tracking system

0 A set of fiducial design choices that optimize those criteria

0 A specific set of fiducial images based on the DCT that perform well with respect to

the given criteria

0 A system implemented using these fiducials, optimized for performance

0 Testing of the system and comparison to a well-established fiducial tracking system

(ARToolKit)

0 Evaluation results that demonstrate improved accuracy, stability, and reliability.

1.3 Outline of Chapters

Chapter 2 outlines a representative set of existing vision-based fiducial tracking

systems. Chapter 3 describes a set of criteria created based on the needs of such systems

as those described in Chapter 2. Chapter 4 utilizes these criteria to derive a new type of

fiducial that performs well relative to those criteria. Chapter 5 describes this system in

detail and Chapter 6 presents evaluation of the system performance. The fiducial system



created is still not necessarily ideal, and ideas for the improvement of this system are

described in Chapter 7.



2 Related Work

Fiducial-based tracking is a key enabling technology for a wide variety of

applications. The motion-picture industry uses fiducials to track camera movement in

support of augmented imagery. Manufacturing applications track fiducial images on

circuit boards and other components so as to support accurate assembly alignment.

Because of this general utility, there are many fiducial systems that have been proposed

in both commercial and research areas. Some systems exist only to support location of a

single point in an image. Others support only two axis of alignment for parts placement.

Only a limited number of systems support full pose computation as described in this

thesis. This chapter describes a set of the major systems described in the literature.

2. 1 ARToolKit

One of the most well known and widely used fiducial tracking systems is the

ARToolKit. It was created by H. Kato and M. Billinghurst at the University of

Washington in the Human Interface Technology Lab [4, 6] and supports full pose

calculation in addition to identification of a set of fiducials. The ARToolKit is widely

distributed as open source for a variety of target platforms. Between its free distribution,

documentation, and ease of use it has become the center of a wide variety of AR

applications that depend on vision-based tracking. It is used both for research and

commercial use, and for development of other systems in the form of its compiled

tracking libraries.

ARToolKit markers are square fiducial images with a fixed, black band exterior

surrounding a unique image interior. Figure 2-1 is an example ARToolKit fiducial. The



outer black band contrasts against a light background and is used to locate a candidate

fiducial in a captured image. The interior image enables the identification of the

candidate from a set of expected images and determination of the four possible

orientations. The four comers of the located fiducial are used to unambiguously

determine the position and orientation of the fiducial relative to a calibrated camera.

iro

 

Figure 2-1 - Example ARToolKit Fiducial

Design of the distinquising interior image is completely up to the user. This

content is ad hoc, in that there is no systematic process to generate it or to choose good

alternatives. Frequently, single letters or numbers are used.

The ARToolKit requires several steps to find and match a fiducial image. The

image is thresholded against a constant value and all connected components are labeled.

The edges of the connected regions are located using contour following. These contours

are then fitted to lines to form a quadrilateral. If a quadrilateral is found, then the pixels



in this quadrilateral is resampled into a 16x16 upright square image that is to be

compared with the fiducia] patterns registered with the system.

The comparison is done by calculating the correlation coefficient between the

captured candidate image and a stored template pattern. In the following equations, I(x,y)

is the candidate image and P(x,y) is the pattern.

First, the mean and standard deviations for the image and pattern are computed

(clearly the pattern data can be pre-computed). The following equations show how to

compute the standard deviation for the candidate image (or) and for each pattern (or). u;

and up from equation ( 2-1 ) and ( 2-2 ) are just substitutions into the standard deviation

equations in ( 2-3 ).

1

(2-1) #1 =3221(x,y)

x y

1

xy

(2'3) 0'1 = 22(I(x’Y)-#I) 0P = 22(P(xry)—Aap)

xy xy

Then, the correlation coefficient (p) is computed as:

ZZUU, y) -m )(P(x,y) -flp)

xy
(2-4) p=

UIOP



The correlation coefficient is a non-negative value such that larger values indicate

similarity of the image based on an L2 norm. If the coefficient for one image is maximal

for the image set and exceeds a fixed threshold (0.5), then the image is accepted.

Obviously, this process is a complex calculation. More importantly, using this

process means that to find a best match the system must calculate a coefficient between

the candidate image and each of the expected patterns, an O(N) operation. The more

patterns in the system, the longer it will take to perform this calculation. The ARToolKit

actually has a hard limit as to the number of fiducials that can be registered with the

system. This limit helps to prevent it from taking too long to match the fiducial, but

limits the flexibility of the system because of the small number of fiducials that can be

used.

2.2 CyberCode

The CyberCode system was created at Sony Computer Science Laboratories [7].

CyberCode is based on a two dimensional bar code fiducial. Here, the interest was more

in producing a large number of unique fiducials. A CyberCode fiducial consists of a

square area for the patterned code, with a black bar alongside the square region to help

determine orientation. There is no surrounding border as with the ARToolKit fiducials.

Figure 2-2(a) shows an example of a CyberCode fiducial. The guide bar is

pointed out in (b). The four comers of the square area are always black (c), so the code

pattern is the cross-shaped area inside of this (d).



 
Figure 2-2 - CyberCode recognition steps

The tags are found by adaptive thresholding the image, then applying a connected

components algorithm. The connected regions are then searched a specific second order

moment, indicating the guide bar. From there, the algorithm locates the four comers, and

uses these locations to account for distortion from tilt/angle. The last step is of course to

decode the bitmap inside the four comers.

Sony claims to be able to use 24 bits to encode the identification, meaning that

there are over 16 million possible CyberCode markers. This is a very wide space. Sony

published little about the performance of this system in terms of adaptability to different

lighting conditions, low resolution images, or 3D location accuracy.



2.3 HOM System

Similar to CyberCode, the HOM system created by Siemens uses a 2D code with

a side bar [8]. In this case, however, the sidebar also contains 6 bits of additional coding

information and the square part of the fiducial has a solid border. See Figure 2-3 as an

example.

 

Figure 2-3 - Example HOM Fiducials

2.4 IGD System

The IGD system is another coded fiducial system using a black border and a

bitmap in the middle [9]. The IDG marker system was implemented at the Institute for

Computer Graphics (Institut Graphische Datenverarbeitung) in Darrnstadt, which is an

ARVIKA partner. ARVIKA is the German government supported research project to

develop AR-related applications in industry. Many ARVIKA-related applications are

developed using the IGD marker system. An IGD marker is a square divided into 6x6

square tiles of equal size. The inner 4x4 tiles are used to determine the orientation and

the code of the marker. Figure 2—4 shows an example of this fiducial. The precompiled

libraries of the IGD marker system are available to ARVIKA participants [10].



 

Figure 2-4 - Example IGD Fiducials

2.5 SCR System

The SCR marker system was developed by Siemens Research Corporation for AR

applications [1 1]. It also uses a coded matrix to identify the fiducial, as seen in Figure

2-5. Additionally, it locates 8 feature points instead of the usual 4 found in most square

fiducial systems. The additional points might help to increase the accuracy of the

location of the fiducial, which in turn can help make 3D translations more accurate.

 

Figure 2-5 - Example SCR Fiducials



2.6 TRIP System

The TRIP (Target Recognition using Image Processing) system is a circle-based

system. It was developed at Cambridge University in the Laboratory for

Communications Engineering [12]. It uses a sector-based circular system of bar coding.

The innermost part of the target is a “bull’s-eye”. The bull’s—eye is used to locate

the fiducial. The TRIP algorithm thresholds the image, does edge detection, and then

edge following. The connected edges are examined and only those that are circular (or

ovular) are kept. Finally, the bull’s-eye is identified when two concentric circles are

found.

After finding the fiducial, the two concentric rings around the bull’s-eye are

examined. They are broken into 16 sectors, as shown in Figure 2-6. One of these is used

as a synchronization sector; two others are used for even-parity. The remaining 13

sectors are used as a ternary code. There are therefore 3'3 = 1,594,323 2 220 possible

codes.

 

I,“ I"; 1 —————— ‘1: ‘V~\‘, ‘

ring code I . ‘ '

ring code 2

.. even-parity sectors

  
synchronization sector

0   
10 2011221210001

Figure 2-6 - TRIP Target representing 1160407



Despite providing only one real location point, the TRIP system does indeed

calculate the 3D position of the target in relation to the camera. It does this using the

POSE_FROM_CIRCLE algorithm described by Forsyth et a1 [13]. The synchronization

sector is used to find the orientation of the circle.

2.7 Mum-resolution Colored Rings

Cho, Lee, and Neumann at the University of Southern California have created a

system that uses nested colored rings [14]. The purpose is to make fiducials that can be

found over a wide viewing range. Each fiducial consists of a center circle, then three

rings of increasing width surround the center (Figure 2-7).

a 0 0

First level Second level Third level

Figure 2-7 - Multi-size color fiducials

Their algorithm searches for the smaller rings first. If the center circle with a

single ring is found (first level), then there is no need to look for the surrounding rings. If

the center cannot be found, then the fiducial must be too far away to distinguish such a

small feature, so it will locate the second level instead. Likewise the third will be found

for a smaller fiducial.

The effective range for each level overlaps, but the smaller should be found first

in the case of an overlap because this requires less processing time. The range of sizes

for identifiable fiducials is about 24 to 56 pixels in diameter.

14



It should also be noted that each fiducial returns only a single point, so any

calculation of 3D location would require 3- or more fiducials in the scene. In fact, using

strictly the three points, there are often up to four solutions [15]. This implies that this

system employs some extra processing between frames to rule out other solutions, or that

it is sometimes inaccurate because of the lack of a fourth point for correspondence.

2.8 Other Systems

Many simple approaches using fixed color squares, circles, or cross patterns have

been demonstrated. Most projects approach the problem either from the standpoint of

selecting a set of images (as in ARToolKit) or choosing a way to encode data into images

(as in CyberCode). There are a plethora of other systems that do fiducial based tracking.

See the following references: [14, 16-19].

2.9 Pose Calculation Methods

Pose is the location and orientation of an object. The location implies three

degrees of freedom -— a point on an ‘X’, ‘Y’, and ‘Z’ axis. This alone does not reveal the

way the object is situated at that location, so the orientation component is needed as well.

Orientation is three degrees of freedom as well — rotations about the X, Y, and Z axes.

Therefore, pose involves six degrees of freedom.

There are many methods for calculating the 3D location of points in relation to a

calibrated camera given the screen coordinates of these points and the model of the object.

It is assumed that a single fiducial (or a set of fiducials in some systems) represents a

coordinate system. It is typical that a single comer of a fiducial image will be declared to

be the origin of the system and all points are considered to be in the (x,y) plane. Any

15



fiducial tracking system used for AR must use some form of pose calculation to estimate

the 3D location of the fiducial. Three particular methods are examined in this thesis (see

Section 5.9), but there are many methods in existence. The methods described here

relate mainly to those presented by Shapiro and Stockman [20] and that used by the

ARToolKit [4].

It seems valid to mention the work in this area by Ji et al [21] which describes

methods for doing pose calculation from a variety of geometric shapes. Also important is

the work of Quan and Lan [22], who have developed a linear method for pose calculation

(instead of an iterative approach as is described in Section 5.9). This method solves the

systems of equations using the classical Sylvester resultant [23] and quatemions. This

solution is not a perfect least-squared solution, it is an estimate. See also [24-29] for

examples of other methods and applications in the subject of pose calculation.
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3 Criteria for a Good Fiducial

Clearly there are tradeoffs among the criteria for a good fiducial image. Existing

designs for AR fiducials have been ad hoc and have not started with specific design

criteria other than support for some level of tracking (planer, pose, etc.). This thesis

approaches the problem by asking question and proposing answers consistent with many

applications in augmented reality and commonly available hardware. The questions

addressed in this section are:

c What is a good fiducial shape?

What colors should be utilized in a fiducial image?

How should a specific fiducial be located in an image?

How should a specific fiducial be identified?

Over what range of sizes should the fiducial be identified?

Should a human be able to decode/identify a fiducial?

The answers to these questions can vary depending on the application or domain

that the fiducials will be used in. Some applications may require fiducials with

anthropomorphic characteristics; others may be optimized for computer tracking only.

Care will be taken, however, to try to make the answers to these questions as generally

applicable as possible. Additionally, points that may influence one’s decision on the best

choice to meet a given criteria will be presented to help make this decision.

3. 1 Fiducial Shape

The purpose of a fiducial image is to provide automatic correspondences between

points in a camera frame and points in a captured image. Clearly, any visual feature can

17



be used as a fiducial if its location is known (or can be computed) and it can be

automatically identified. Indeed, tracking systems designed for use in unprepared

environments have been proposed that use regions, lines, and other natural environmental

features [30, 31]. Most applications for fiducial images, however, assume a prepared

space with specific images placed in the environment, with the assumption that the

relative transformation between a camera frame and frames indicated by the fiducials

needs to be determined. In tracking terminology, the position and orientation (six

degrees of freedom) of the frame marked by fiducials needs to be identified relative to the

camera. This problem is also commonly referred to as pose estimation.

Determination of position and orientation of a physical object relative to a camera.

frame requires the correspondence of at least four non-linear points. As an example,

estimating the pose of a camera relative to a physical environment will require the

identification of four 2D points in the camera image and knowledge of their 3D

coordinates in the world coordinate system. It is possible to compute pose from only

three points. However, the result is ambiguous, generally having two, and often three or

four, solutions [15]. Hence, any ideal fiducial solution supporting 6DOF pose estimation

should always emit a minimum of four located points, no three of which are colinear.

Additional points can be used to compute least-square solutions that can average out

errors and increase the estimate’s accuracy. Many fiducial methods utilize a single,

typically very simple, fiducial image such as a ring or disk with the requirement that

multiple fiducials must be simultaneously tracked [14].

Since the location of fiducials in camera images will always be permuted by noise

and quantization error, there is a clear advantage to tracking additional points, so
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fiducials that emit multiple tracking points seem advantageous. Also, many applications

require tracking of styli, independent marked locations, or multiple users, where

placement of a large number of fiducial images is prohibitive.

An assertion of this thesis is that an ideal fiducial image should emit at least four

points. Beyond that, it is clear that the points should approximate a square. The size of

the fiducial equates to resolution in the capture image. Four points not in the form of a

square will result in some elements of the image presenting a lesser resolution to the

camera than others, thereby decreasing tracking accuracy in corresponding orientations.

This requirement does not necessarily imply that the fiducial image itself must be

square. Any image that can emit four points would suffice. However, there are clear

computational advantages to simplicity, and a square fiducial image is the simplest

possible fiducial emitting four points. The straight edges of a square can be used to

compute best-fit lines allowing comers to be computed with greater, potentially sub-pixel

accuracy. Indeed, the ARToolKit standard fiducial image is a square image.

It should be noted that a circular marker can be used to determine pose if a point

on the circle can be determined. The POSE_FROM_CIRCLE algorithm provides a

robust solution given circle edge points [13]. However, an interior image for

identification is more difficult to implement and cannot be represented in a rectangular

array. Most implementations based on pose estimation from circles are based on

barcodes (or, more precisely, ringcodes) [12].
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3.2 Fiducial Color

The question of fiducial color is much more difficult to address. Clearly,

choosing a color fiducial as opposed to monochrome increases the possible set of fiducial

images. Indeed, both color and monochrome images have been utilized in existing

systems. However, there are several technical reasons to favor a monochrome fiducial:

o Varying chroma resolution in camera systems

0 Decreased image representation

0 Higher-perforrnance localization algorithms

The spatial frequency sensitivity of the human visual system for luminance

components is much greater than for chrominance components [32]. Unfortunately,

many imaging systems designed for computers mimic this characteristic, transmitting

chrominance information in lower bandwidth channels or representing chrominance

information with lower resolution. This neCessarily decreases the detection resolution for

color fiducials. Use of inexpensive web-cams has become very popular for fiducial-

based tracking. These cameras clearly exhibit decreased color resolution. Hence, for the

most accurate results using a wide range of cameras, a monochrome fiducial image is the

best choice. When high-quality cameras are available, color fiducial images can increase

the information available in the fiducial image.

Even if an RGB color presentation is captured at full resolution, the resulting

color image will increase the memory usage and, consequently, the analysis time, by a

factor of three (or four). This is a consequence of the increased memory bandwidth

requirements.
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An additional element in the choice of color or monochrome is the choice of

localization algorithms. High-performance algorithms have been developed for color

fiducials, but assume very simple shapes that can be identified by cross-sectional lines

[14]. One advantage of color fiducials is the use of color to identify the specific fiducial,

as in the multi-ring approach. However, the number of colors that can be uniquely

identified varies greatly depending on lighting conditions, and is likely to be small.

Specular reflection will not only affect the luminance of an image, but can also modify

the hue of imaged colors. Additionally, the colors must contrast with colors naturally

occurring in the scene.

One option for color is to utilize retro-reflective fiducials and infrared

illumination [33] or direct imaging of infrared emitters [34]. This option is a very

different technological approach from visible-image tracking, requiring special camera,

illumination, and reflective technologies. In addition, IR fiducials based on

retroreflective materials do not lend themselves well to patterned individual fiducials

other than simple binary patterns. As the focus of this thesis is visible image fiducials, IR

approaches are beyond the scope of this discussion.

3.3 Locating the Fiducial

The shape and color of a fiducial is directly related to the algorithm utilized to

locate it in the camera image. As mentioned previously, the ARToolKit contains a

fiducial tracking system using a square image with a black border as illustrated in Figure

2-1. An interior image contained within the border provides identification for the

particular fiducial image. It is assumed that the marker will contrast with a surrounding

region when converted to a binary image. Typically, this contrast can be achieved by
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simply ensuring that the fiducial is mounted on a white surface or is printed on a larger

white sheet of paper. More details of the ARToolKit approach will be included in later

sections. Kato and Billinghurst [4] allow for the fiducial corners to be rapidly and

accurately located in a camera image. The approach assumes a monochrome fiducial

image.

Is this the best fiducial design for localization, the location of the fiducial in an

image? There are several distinct advantages to this design. The shape is a square design

and yields four comer points for tracking purposes. The edges are straight between the

comer points. This allows the comers to be determined by line fitting to the edges,

yielding measurements that are less sensitive to noise in the vicinity of the comer and

quantization errors. The black border also yields a maximum contrast relative to the

background, particularly a white background. Once the comers have been located, the

interior can be warped to a common frame of reference (16 by 16 in the ARToolKit

approach) for comparison to a database of marker images.

This fiducial approach does not emit an orientation other than through analysis of

the interior image; hence, the offset of the interior text in the marker image in Figure 2-1.

Would it be better to design the outline to emit orientation independent of the interior text?

This design could be accomplished in a variety of ways, including offsetting the interior

image, adding an orientation image in addition to the interior image, or using varying

colors on the edge. Varying colors is not considered a good choice for the reasons

mentioned in the previous section and because it would eliminate the homogeneity of the

design. Detection performance would be determined by the least common denominator

of detection of the two types of borders. Offsetting the image or adding an image
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component for orientation is equivalent to using a larger interior image and determining

orientation from the interior image alone. Figure 3-1 illustrates this equivalence. When

either the interior image is offset or a special orientation pattern is added, the fiducial can

be considered equivalent to a simple border with a larger interior image, as indicated by

the dotted lines.

Equivalent interior region

 

Offset interior image Orientation pattern

Figure 3-1 - Equivalence of interior images for orientation determination

Given these criteria, the square ARToolKit fiducial outline seems to be a "good"

approach. The border width and the interior image will be adjusted in this research,

though.

3.4 Fiducial Identification

Once an individual fiducial image is located, it must be identified. The

identification of the interior image is simplified if a border has been located. The interior

image can then be warped to a square image with a fixed scale.
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Clearly, marking a space with identical fiducials would require the analysis of

relative placement for identification, so it is advantageous if fiducials are unique.

Uniqueness can be accomplished in a variety of ways, including color combinations, bar

codes, or patterns. The pattern must be unique and accurately identifiable at a variety of

resolutions. Several desirable characteristics for fiducial identification have been

collected:

- Orientation identification

Minimal inter-fiducial correlation.

Resistance to noise or partial obscuring.

A large identification range.

A large fiducial identification space.

As discussed, using a fixed monochrome square image, as in the ARToolKit

fiducials, is a preferred method. The identification image is then set inside this box. It is

also preferred that the orientation, and thereby the correspondence of detected image

comers with physical coordinates, is determined by an interior image. Consequently, the

image must support determination of a unique orientation. In ARToolKit, fiducials are

commonly designed with offset text or blocks that make the orientation unique. Then a

candidate image is compared to the known images in each of the four possible

orientations. This method of comparison necessarily limits what can be selected as a

fiducial, particularly if users desire fiducial images with visually perceptible meaning.

A key characteristic of fiducial images is that there is rrrinimal inter-fiducial

correlation in all orientations. A variety of methods are possible for comparing images.
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Mean squared error (MSE) is a common measure of image similarity, particularly when

measuring image degradation:

1/2

(34) c(I.P)= ZZ<I<x.y)—P(x.y»2

x y

In this equation, I(x,y) is the candidate image, P(x,y) is the pattern, and c(I,P) is a

measure of the dissimilarity between the two. For an MSE measure, small values

indicate similarity. This approach is not luminance invariant, however. A better approach

is the correlation coefficient. This is the approach that the ARToolKit uses, and was

explained in detail in Section 2.1.

Clearly, no guarantees can be made about inter-fiducial correlations when images

are chosen ad-hoc. As an example, consider the fiducial set in Figure 3-2. The Hiro and

Kanji images (first two images in the first row) are standard fiducials included with

ARToolKit. The remaining images illustrate an obvious idea of using alphabetic

characters as interior images.

Clean, computer-generated images were compared using the correlation

coefficient. The Hiro pattern had a worst case correlation to the A pattern of 0.163. The

Kanji pattern has a worst case correlation to the A pattern of 0.498, just below the

standard threshold. The G pattern correlates to B with 0.637 and C with 0.820, both far

above the identification threshold. Obviously, the letters have too little difference to be

good choices, but even the Hiro and Kanji fiducials have correlations of 0.204. In a test

by Zhang et a] [10], the ARToolKit system identified a fiducial with the pattern “3” with

an 85% confidence as being a “2”, while at the same time giving only a 69% confidence

that the actual “2” pattern was “”.2 Clearly, the images that identify a fiducial must be
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carefully chosen or identification errors will result due to correlations among the

candidate set. If two possible candidate fiducials high correlation, it becomes difficult to

distinguish between them in a real application.

III

III
Figure 3-2 - Example images for correlation tests

  

This problem is accentuated in the presence of noise. Fiducial images need to be

robust in the presence of noise and partial occlusion. This need implies a potential

drawback of the ad hoc choices in Figure 3-2. Were a small part of the G obscured, it

would be indistinguishable from the C. This is even more of an issue when bar-codes are

applied to fiducials [7, 12]. The TRIP system, for example, requires 15 unique regions in

the cross-section of the image center. If reduced to a size of 25 pixels across, most

regions are one or two pixels and would be difficult to detect with edge detection

algorithms. Small errors will change the code, violating the ringcode parity and rejecting

the marker or falsely identifying it.

One way to describe this problem is that the features that make a fiducial unique

from the set are often highly decorrelated in the image. This places a high percentage of
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the information content into a minimum set of pixels, making the system much more

sensitive to perturbations of those pixels.

3.5 Fiducial Identification Range

The identification range of a fiducial depends on the camera resolution and

camera parameters. Some systems have been designed to have redundant identifiers at

multiple scales, so that larger images become available as the camera moves beyond the

range of smaller images [14]. Clearly, the same effect can be had by creating multiple

fiducials in the space of varying size and, indeed, size ratios of two are shown by Cho,

Lee, and Newmann to be an effective choice.

For the purposes of this research, the concern is with how small the image of a

fiducial may become and still be reliably recognized. This size determination is primarily

dependent on the native size of the identification image. To be consistent with current

systems like ARToolKit and with the goal of having a small fiducial, a 16x16

identification image size has been chosen. Therefore, the minimum dimension of the

identified image in any axis must be 16 pixels. This is not the size of the actual fiducial,

but rather the minimum size of the interior image.

Given this criteria, the question arises: how wide should the border be? To

ensure reliable outline location, the border must be wide enough to ensure the point

spread function of some pixel on the border will cover the region at every point along the

border. If the border is too narrow, the border may fall between pixels, leaving the pixels

a shade of gray too indistinct to allow edge following. So, the edge must be wider than

twice the distance between any two pixels. This distance is actually 2.83, because the

worst case distance between pixels is 1.41 for diagonal lines. Hence, the image must be
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at least 16 + 2.83 + 2.83 = 21.66 pixels wide in the recognized image. For design

purposes, this implies that the border must be at least 13% of the fiducial width. To be

conservative, a 15% border width was selected. Note that the border width should be

kept minimal in order to increase the size of the interior image and allow for a larger

recognition range.

3.6 A Large Fiducial Identification Space

The size of a marked space and the number of marked implements in that space is

limited by the number of unique fiducials that can be applied to the space. Marking each

two foot square ceiling tile in a twenty foot square room will require one hundred unique

fiducials. Clearly, a desirable characteristic of fiducials is a large space of identifiers.

While some of the bar code solutions claim ranges in the millions, this range is dependent

on recognition of 3 high-resolution code in camera images from varying distances.

Consequently, the images must be relatively large.

A 16x16 image can have up to 256 patterns that are orthogonal to each other, if

the minimal correlation criterion is desired, though the set is easily expanded to 512 if

maximum negative correlation is also allowed. Treating those 16 by 16 images as a 256

binary value would significantly increase the number of possible fiducial images at the

expense of highly correlated images.

3.7 Human Identification

It is sometimes advantageous to have fiducials that are anthropomorphic; can be

easily identified by a human. For instance, if a set of fiducials corresponded to a set of
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objects, then it would be easy for a person to pick up the object that they wanted because

the fiducial could be something that implies that object. A fiducial with an “A” on it,

could mean the “Antelope” object.

Identification by a computer, however, is much different. It may be the case that

a set of fiducial images is more easily recognized by the machine than by a person. Since

one of the main criteria is to create fiducials that are not easily confused by the machine,

this research will not consider human identification to be an important capability for the

fiducial system to have. Human identification can easily be added to any fiducial with a

simple label near the fiducial. Additionally, fiducials are often replaced in an AR

application by graphics, or could have this capability added to account for the human

identification factor. The prevalence of bar-code systems clearly indicates that

anthropomorphic characteristics are not important in many applications.

3.8 Summary of Desirable Characteristics

This is a summary of the chosen criteria as proposed in this thesis: An ideal

fiducial image should support the unambiguous determination of position and orientation

relative to a calibrated camera. The image should not favor some orientations over others.

The image must be a member of a set of images that are unlikely to be confused such that

a large space or set of objects can be uniquely marked. The image must be easy to locate

and identify using fast and simple algorithms. Images must function over a wide camera

capture range.

Given these criteria, arguments in this chapter have supported the design of a

square fiducial (Section 3.1) with a black border (Section 3.3) 15% of the width of the

image (Section 3.5) and some internal image suitable for identification of the fiducial
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(Section 3.4). The image will be monochrome (Section 3.2) and will be designed without

respect to human identification (Section 3.7). The next section will detail the design of a

suitable interior image.
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4 A “Good” Fiducial Interior Image

A "good" fiducial interior image set will have a large set of images from which to

choose, a means for accurate orientation determination, and a fast algorithm for

identification. A major contribution of this thesis is the design of a new fiducial interior

image that supports these requirements. The main goal is to select images such that the

correlation coefficient of any two images is minimal. The optimum selection, then,

would be a set of images wherein correlation coefficients among any two non-equivalent

images are null. Other obvious criteria are that the image can be represented using real-

valued images (no negative or complex pixel values), and that the intensity be maximal

(as bright as possible). This section describes the derivation of a new fiducial interior

image based on DCT basis functions and an associated algorithm for efficient

identification of instances of this fiducial design.

4. 1 Deriving the Image

A common method for comparing two images and producing a measure of

similarity is the use of the correlation coefficient. Of the alternatives, the correlation

coefficient is least sensitive to noise and provides a single measure of image similarity.

To get pattern images that are as different from one another as possible, the correlation

coefficient between any two images should be 0. Recall equation ( 2-4 ) shows how to

calculate the correlation coefficient. Setting the equation for the correlation coefficient to

zero for two images I. and 12:
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This equation ( 4-2 ) will be satisfied if I; and 12 each is the sum of a DC offset

and a member of a set of functions such that the dot product of any two non—equivalent

basis functions is zero. In other words, a good choice for fiducial interior images is a set

of orthogonal basis functions scaled to a peak-to-peak range equal to the pixel intensity

range and added to a DC offset sufficient to make the image non-negative.

There are a wide variety of basis function sets available. Most existing 2D linear

transforms, including Fourier, Hadarnard, Haar, and many others, emit sets of real-valued

basis images. Among the 2D sets with real values, we have chosen to use the basis

functions for the Discrete Cosine Transform (DCT), specifically DCT-II [35]. This N by

N 2D basis function set is defined by:

2x + 01472))CO4 (2y +1)v7r))
(4-3) B , =cos(

“U” ( 2N 2N

In this application, N=l6. Alternative sizes could be utilized, though larger

fiducial images would be required and the recognition range would be decreased.

One approach would be to construct a fiducial interior image as:

Bu,v(x, y)+1

2

 (4-4) Iu,v(x, y) =
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For simplicity, assume normalized pixel intensities in the range [0,1]. This

interior image set supports 256 combinations of (u,v) as fiducial interior images, all of

which have inter—correlation values of zero for non-equal interior images.

However, this solution does not satisfy one of the specified requirements: it does

not directly include orientation information. In fact, the images with even (u,v) values

are invariant under 180 degree rotation. The odd values could be utilized and do indicate

orientation, but that would reduce the set of fiducial images by 75%.

A solution to this problem is to consider the image as the sum of three parts: the

DC offset value (required to make a non-negative image), an orientation image, and an

identification image. The orientation image is the (1,0) basis image:

(2x + 1)”)
4-5 B x, = cos ——( ) 1,0( 1’) [ 2N J

This basis image is a bit less than a half cycle of a cosine wave (Tl/32 to 311r/32).

With proper scaling, the fiducial interior image is defined as:

Bu,v(xr Y) + Bl,O(x9 y) + 2

4

 (4-6) Iu,v(x, y) =

When the orientation component and the mean of the image (the DC component)

are subtracted, all images are orthogonal to each other, reducing the likelihood of false

fiducial identification. An advantage of a DCT basis function as a fiducial image is that

the pixels within the fiducial are highly correlated. This high correlation makes any

correlation-based detection less sensitive to partial occlusions and noise. Whereas some

fiducial systems store the information in edge data, particularly barcode-based systems,
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or within bounded regions as in CyberCode, the DCT basis approach embeds the

identification information in the entire interior image gradient.

The interior fiducial image equation assumes the creation of a 16 by 16 image.

However, the images used in a room are much larger than 16 by 16. In practice, a

fiducial image will be created at a high resolution for printing, sampled by the image

capture system, resampled by the warping, and compared to the basis set. In this

application, 3.5 inch square images printed by a 600dpi laser printer are commonly

utilized. So, the analysis fiducial image (16 by 16) must be resampled to the printer

resolution. The equation for creating a resampled fiducial image of arbitrary size is:

A xN 1 yN 1
(4-7) I x, =1 ———,———

“"’( y) “”(W 2 H 2]

In this equation, (x,y) are coordinates in a W by H image. This equation is used

to create the fiducial image at high resolution. The one half pixel offset ensures that the

high resolution image will properly resample if divided into 16 by 16 square regions and

sampled in the center of the region. This is important to ensure the fiducial image is not

offset.

Figure 4-1 illustrates several example fiducial images based on this system. The

lighter characteristic on the left side is due to the orientation image component. The

sinusoidal patterns of the basis functions are clearly visible in the images.
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Figure 4-1 - Example DCT fiducial Images

4.2 Detection

The choice of DCT basis functions as components of a fiducial image allows for

fast identification using the Discrete Cosine Transform. Fast algorithms exist for the

DCT, especially for the 16 by 16 size utilized in the MPEG video compression standard

[35]. Computing the DCT performs a simultaneous correlation with all 256 possible

basis images.

The 2D DCT-H N by N unnorrnalized transform is:

N—lN—l

_ (2x +1)” (2y +1)an
( 4-8) F(u, v) — XE=OyE=Of(x, y)cos(—2N)cos(———-—2N
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The DCT result is linearly dependent on the amplitude of the input signal. This

amplitude (effectively with a fixed scaling from the correlation coefficient equation) can

be directly determined by examining the F(0,0) (DC) term of the DCT result. Dividing

all other values by F(0,0) normalizes for intensity. (A threshold is used to reject images

less than a minimum intensity).

An interesting characteristic of the DCT-II is its behavior under rotation. Let I be

an original image and I' the image obtained by rotating I though 90 degrees counter

clockwise. Then, letting i = DCT(I) and 17': DCT(I'):

(4-9) i(u,v) = (— l)vI(v,u)

Applied recursively, it can be seen that the DCT of any orientation can be easily

derived from the DCT of any other orientation. The orientation is indicated by the

presence of the following DCT terms:

0 F(l,0) positive: No rotation.

- F(0,1) negative: 90° rotation.

o F(l,0) negative: 180° rotation.

- F(0,1) positive: 270° rotation.

Once the orientation is determined, identification of the fiducial consists of

determining the cell with the maximum absolute value (other than 0,0, 1,0 and 0,1). The

cell can then be trivially corrected for the image rotation by exchange of terms and/or

negating the correlation result.

Note that the DCT is only performed once. The orientation is determined and

then the index of the cell with the maximum absolute value in the current orientation can

be translated to the index for the cell in the normal orientation.
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The major contribution of this chapter is the use of DCT basis functions to

produce fiducial images with built-in orientation identification and excellent cross-

correlation characteristics and an associated algorithm that allows for rapid identification

of the fiducial. This is the first fiducial system to make effective use of the image

gradient to convey information. This is a significant contrast with existing systems that

utilize binary images, thereby not taking advantage of the range of pixel values other than

for antialiasing purposes.
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5 A Functioning System

The following is a description of a system created for this thesis by the author

(Paul Middlin) and Dr. Charles Owen [36] to use the method derived by examining the

important criteria for making a good fiducial. This DCT method was implemented as the

identification method for the fiducials, has a square fiducial with a black border, and can

calculate pose from the fiducial locations. During development, it has been the goal to

produce an accurate and reliable fiducial tracking system. Hence, many steps in the

process have been redesigned relative to existing systems or optimized for best processor

and evaluation performance. These are the major steps in the program, which will be

described in detail:

1.

2.

Search for the beginning of a border, using a threshold.

Trace the border to get an outline of the quadrilateral.

Account for camera distortion in the outline.

Locate the 4 comers of the quadrilateral.

Test to make sure it is a quadrilateral.

Fit lines between these corners to get sub-pixel accuracy on the actual comers.

Warp the square to a 16x16 candidate image

Do a DCT transform on the candidate image for identification.

Use the comers of the fiducial to calculate pose.
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5. 1 Finding the Border

To find where a fiducial might start, the system uses scan line techniques to

search for a point where the pixel values move from a background color to the fiducial

edge color. Rather than thresholding the entire image and then scanning each line for a

black pixel, the system utilizes a faster approach. The image is not thresholded ahead of

time, which will save time and memory by not having to create an intermediate image.

The grayscale value is calculated as the pixel is examined. If this value is above a

threshold, it is white, otherwise it is considered black.

The value of the threshold is chosen by taking a quick sample of the image (every

5th column in every 5th row). This provides an estimate of the average intensity in the

image. This is used as the threshold value.

The system also scans only every 5m line because any fiducial that we consider

large enough to be found will have to cross at least one of these scans. Remember that

we require the inner part of the fiducial to be 16x16 pixels at least, plus the 15% border

width for a total of a 25x25 pixel fiducial. It might in fact be possible to skip even more

lines to save time.

The threshold is one of the touchiest parts of the system in varied lighting

conditions. It is often possible to choose a good constant threshold for a particular image,

but this value might be completely ineffective for the next. In an effort to find a good

technique, other possibilities were examined and even implemented for comparison.

One technique tried was to look for a sudden change in pixel intensity while

scanning through the image. At the point where the intensity changed, that pixel value

was chosen as the base black value. Any pixel, then, within a smaller threshold range
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was taken as black as well. For instance, a pixel was found by searching for change of

100 in pixel intensity. That pixel’s intensity (say, 50) will be used, plus an additional

threshold amount equal to 1/4 of the initial threshold. So, for an initial threshold of 100,

and a pixel found with value 50, any pixel with an intensity of 75 or less would be

considered black.

This differencing technique tended to be more adept at finding the outlines in

varied lighting conditions; however it tended to jitter quite a bit. This is because the first

pixel found and used as the base black value could vary greatly in intensity from frame to

frame, causing the outline of the fiducial to grow or shrink depending on how black the

initial pixel was. The method was reliable in isolation, but did not produce effective

results in a system.

Other techniques, such as trying to trace using only differences in pixels were

tried, with little success. An image-wide edge detection could be done by using

something like a Canny filter. This technique would probably be much slower, and

would not necessarily produce connected outline regions the way the thresholding

technique does.

5.2 Tracing the Border

The pixels for the border are found by starting from the first pixel identified as a

border pixel (from step 1) and following the edge in a counter clockwise fashion. This is

a complex process, because the first direction that is tried for the current pixel being

tested depends on the direction of the last marked pixel. That is, if the algorithm got to

the current pixel from the right, it would try a different direction first than if it had arrived

at the pixel from the left.
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Table 5-1 shows which direction the algorithm tries first, given the direction that

was successful from the last pixel. The first column shows the direction that was tried

from the last pixel to find the current one. The second column is the first direction that

will be tried from the current pixel:

From First

 

Table 5-1 - Starting Directions for Tracing

The first starting direction will be the R direction (despite the fact that the very

first pixel was found coming from the left).

The algorithm will continue moving around the edge of the potential quadrilateral

until it reaches the starting point, in which case a loop has been created. The pixels are

marked as “visited” as they are added to the list of pixels in the outline. This is not so

that they won’t be visited again while tracing, but rather so that they won’t be retraced

later on during step 1 (scanning for starting edges). In fact, it may be necessary to revisit

a pixel while outlining to make the loop complete, such as in the following example:
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Figure 5-1- Region with extraneous pixels

In this example, there is no where to go from the bottom right pixel except for

back to the previous pixel. While this pixel is probably an extraneous error, it must of

course be accounted for and included in the outline.

There are a few final optimizations. Small regions are thrown out — if the outline

is less than 8 pixels in length it is discarded. Note also that not every pixel inside the

fiducial has to be processed. In fact, only the pixels along the border and the pixels

immediately surrounding those border pixels are examined. Region growing techniques

such as those in ARToolKit would require visiting every pixel in the image twice: once

for thresholding and once again for labeling of the region. Additionally, the edge pixels

in the region would be visited to do the outlining.

5.3 Accounting for Camera Distortion

The camera can add quite a bit of distortion to the pixels in the image, making

lines bend or stretching objects. If the camera being used has been calibrated (see

Section 11), then this can be accounted for in the outline pixels before trying to analyze

them. This is done at this stage, to help find better comers. It straightens the lines, so
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that the line fitting step is more accurate, and the initial corner finding is less likely to

find a bowed out edge instead of a comer. Roger Tsai’s method was used [37].

5.4 Locating the Quadrilateral Corners

The corners of the square are found by finding two vertices that are far apart,

drawing a line between them, and finding the vertices furthest away from this line on

either side.

The first step is to estimate where the first vertex is by taking the pixel in the

outline with the smallest X value. In the event of a tie, the one with the smallest Y value

will be used. This is not the actual first vertex, but is merely a means by which to find

the third vertex.

The third vertex is the pixel. from the outline that is the furthest from the estimated

first vertex using the Euclidean distance (Figure 5-2(a)). Once found, the algorithm

repeats the process of finding the furthest outline pixel from the third vertex, which will

be the actual first vertex (Figure 5-2(b)).

Next, draw a line from the first vertex to the third. There will be a one pixel on

each side of the line that is furthest away from the line, as seen in Figure 5-2(b).
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Figure 5-2 - (a) Estimated first, actual third (1)) Finding 2 and 4

This covers the majority of the cases; however there is one special case that must

be addressed separately. If the fiducial is viewed from a straight perspective angle, a

rhombus-like shape is produced as in Figure 5-3. In this case, there is no point found to

the right of the line drawn from vertex 1 to vertex 3. Therefore, the point found as vertex

4 is not necessarily a vertex at all. Also, vertex 3 from the previous steps must actually

be vertex 2.

Figure 5-3 - Special Case

This situation can be detected when a point is found more than a certain distance

away from the line on one side but not the other. In that event, a new line is drawn from

the point found (call it pivot) to the first vertex, and a second line is drawn from the third

vertex to the pivot. If a point is found to the right of each of these lines, then these are

the real points 3 and 4. If one of the two lines has no points to either side of the line, then

the pivot can be identified as being a vertex. See Figure 5-4:

4 M 3

Figure 5-4 - Solution for special case



If it is found that the quadrilateral is less than 25 pixels across in any dimension, it

is discarded. Fiducials of smaller size than this cannot be reliably identified because the

resolution prevents proper location of the lines. Additionally, the inner part of the

fiducial would be less than 16x16, the size of the base images.

5.5 Quadrilateral Test

After finding the four vertices, each of the four edges is tested for straightness.

This is done by creating an approximate line edge from the first vertex to the second, then

comparing each of the pixels along the edge to the line. If a pixel is above a certain ’

tolerance level of distance, then the line is not considered straight, and this is not a

quadrilateral.

5.6 Line Fitting

To find the true comers of the quadrilateral, a line is fitted between each of the

vertices using the pixels between each vertex from the outline. This produces four lines

that may actually intersect somewhere other than at the center of the supposed vertex

(Figure 5-5). This allows for sub-pixel accuracy of the comers of the quadrilateral. This

would also fix problems like the extraneous pixels in Figure 5-1. The comer points

themselves are actually excluded from the line fitting, because the comers jitter between

frames more than the rest of the line.
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Figure 5-5 - Line fitting and intersection

5.7 Warping

Now that the four points of the quadrilateral have been found, the image inside

the quadrilateral must be warped to a 16x16 square so that it can be identified. The

points on a fiducial as it appears in a captured image are subject to perspective projection

using a camera calibration matrix:

S“ t11 I12 ’13 '14

(5'1) 3" - ’21 I22 ’23 ’24

S t31 I32 I33 I34

l
-
‘
N
V
M

Here, x, y, and z are coordinates in the fiducial’s coordinate system. u and v are

coordinates on the screen (coordinates in the image that is to be warped). The matrix T

transforms the points from the fiducial coordinate system to the screen coordinates. s is a

scaling factor.
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This assumes that u,v are not subject to radial distortion. In this application it is

assumed that the radial distortion of u,v have been removed at an earlier step, so u,v are

undistorted values (Section 5.3).

The fiducial images are planer, so it is assumed that 2:0 for all points. Hence, the

problem can be reduced to an equivalent 2D perspective warp:

i-x'l

5“ ‘11 ’12 0 1141),

(5-2) SV = 121 I22 0 {24 O

S t31 ‘32 0 134-1

L   

This can be rewritten as:

S“

s 1

P11 P12 P13 x

P21 P22 P23 y

P31 P32 P33 1

(5-3)

This equation ( 5-3 ) describes the relationship between pixel locations in the

fiducial image coordinate system (omitting the z axis) and image coordinates. The

resulting pixel values are arbitrarily scaled and must be divided on a pixel-by-pixel basis

by the scale factor 3 to determine the results. Because the matrix P can be arbitrarily

scaled, a unique P is determined by setting p33=lz

S“ P11 P12 P13 1

(5-4) 8" = P21 P22 P23 y

S P31 P32 1 1
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Expanding this gives:

su=Pux+PUY+PB

(5-5) SV = P211ch P22)’ + P23

S = P3111+ P32y+1

Substituting s into su and sv:

(P31x+ P32)’ +1)u = P111+ P12Y+ P13

(545)

(P31x + P32y “W = P2111+ P22)’ + P23

Multiplying this out and solving for u and v on one side:

14 = Prrx+ P12)’ + P13 ‘ P313“! - P32yu

V = Pzrx+ P22)’ + P23 - P31xv— P32yv

(5-7)

Therefore, there are 8 unknown variables. There are four pairs of known (u,v) and

(x,y) coordinates, creating 8 equations. Therefore, there is an exact solution for P.

The first step in the warping process is to compute P given the comers of the

fiducial in the fiducial coordinate system and the corresponding points in the image. The

image is subject to an arbitrary rotation of some multiple of 90 degrees which will be

ignored at this point in the process. That rotation is removed in the later orientation

determination set. The points on the fiducial image are determined directly by the size of

the image: (0,0), (d,0), (d,d), (0,d), where dis the width (and height) of the fiducial

image in world coordinates. However, the actual scaling of dis arbitrary in this step, so

we may use 1 for d, simplifying the calculations. The points in the image are determined

by the comer finding process described in the previous section.
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Using the equations from ( 5-7 ) and substituting (x, y, u, v) with the coordinates

of each comer point (x1, y, 111, v. through x4, y4, u4, v4), we form a system of equations

represented as a matrix as follows:

(5-8) Ax = b

where:

Fxr Yr 1 O 0 O ‘xrur “Yr“r‘ PPM? _“1q

(1 0 0 E )h 1 "MW “RH M2 W

x2 Y2 1 0 O O -x2u2 - quz P13 “2

O 0 0 x2 Y2 1 -x2v2 -x2v2 P21 V2
A: ,x= ,b=

x3 Y3 1 0 0 0 -x3u2 " Y3“3 P22 “3

O 0 0 x3 Y3 1 -x3v2 -x3v3 P23 1’3

x4 Y4 1 0 O 0 "x4112 " Y4u4 P31 “4

_ O O 0 x4 Y4 1 -x4v2 -x4v4d _P32d _V4_      
Here, the arbitrarily scaled (x,y) coordinates will be: (0,0), (1,0), (1,1), (0,1). This

makes the A matrix simply:

0 0 1 0 0 0 0 0

0 0 O O 0 l 0 O

l 0 1 0 0 O -u2 O

0 0 0 l 0 1 —v2 0

(5-9) A:

l 1 l O 0 O -u3 -u3

0 0 0 l l 1 —v3 -v3

0 1 1 O 0 O 0 —u4

L 0 O 0 O 1 l 0 -v4‘  
Solving for x will reveal the values in the P matrix of equation ( 5-3 ). Now, the P

matrix can be used to warp the image.

Let the 16x16 warped image be W. W(x,y) is a pixel within this image, where x

and y are scaled from 0 to 1 (instead of 0 to 15). Let I be the original image from the
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camera, and let I(u,v) be a pixel in this image. To fill in the warped image W, use

equation ( 5—3 ) to get the corresponding (u,v) coordinate in I for each (x,y) in W.

Because the actual interior image is surrounded by a black border, the algorithm

must compensate by scaling and adding an appropriate amount to find (x,y).

That is:

 

for each (i,j) where (O<i<15) and (0<j<15)

{

x = (i+.5)/16 * .7 + .15

Y = (j+.5)/16 * .7 + .15

u = 1911x + D12}! + p13 - p31xu - p32Yu

V Pzrx + P22Y + P23 ' P31XV ‘ P32YV

Wfiqj)==luu,v)

 
 

fibumSfi-PHm¢muflehrmemg“hnndhmge

The last statement in Figure 5-6 is pseudo-code. In implementation, simple

bilinear interpolation is used to get a sampled value from the pixels surrounding (u,v).

5.8 Identifying with the DCT

The 16x16 image W will now be examined by taking the Discrete Cosine

Transform of these values as described in Section 4.2. Recall that both the orientation

and identification of the fiducial is done in this one step.

5.9 Calculating Pose

Calculation of pose from the points on the fiducial can be done in many ways.

The general problem of calculating pose from four points is called the P4P problem. As
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mentioned previously, pose can be calculated from only three points, but can have

multiple solutions [15]. In fact, it almost always has two solutions and can have up to

four [38]. This is called the three-point perspective problem or P3P. One available

option in this system is to calculate pose from just three of the points using an iterative

method described in [20] and adapted from code originally written by Dr. George

Stockman. This method runs in a reasonable amount of time but finds only one of the

two possible solutions, and therefore tends to find the wrong solution approximately 50%

of the time.

The ARToolKit uses a non-iterative vector based method for calculating pose.

This algorithm uses all four points to determine a rotation, then a translation that fits the

points. This method is sensitive to noise and tends to produce graphics with a large

amount of jitter. An imaginary triangle is created between the camera origin and each of

the comers to make 4 planes. The normals to these planes are then calculated. The cross

product of plane 1's normal with that of plane 3 determines the X direction. Likewise, the

cross product of the second and fourth plane normals determines the Y direction vector.

 

 
Figure 5-7 - Finding the X axis
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Because the positions of the pixels are not perfectly accurate, the X axis and Y

axis found may not be perfectly perpendicular. To fix this, the half vector between the

two is found and is used to find a true X and Y axis equidistant from the half vector. The

Z direction is then simply the cross product of the X and Y vectors.

Once the rotation has been established, a least squared solution for the translation

is found. It is important to note that this solution for a transformation is least squared

with respect to the translation only. It may have been possible to create a better rotation

that would give less error in the least squared sense.

This vector solution tends to be very jittery and noisy. More specifically, the

rotation tends to be noisy since it is calculated analytically and not in a least-squared

sense before taking translation into account. Small changes in comer locations between

frames create large rotational changes. If the only goal was to lay a flat polygonal model

onto the fiducial surface, this technique would suffice. If, however, a model with some

depth in the Z direction is necessary (such as a simple cube) then this method causes far

too much visible “dancing”.

Given the problems exhibited by a traditional P3P solution and the ARToolKit

P4P solution, an alternative solution was developed for this application based on

extension of the inverse Jacobian P3P to four points. This method utilizes all four points

to find the most probable 3D locations of the four points in relation to the camera. It

tends to converge quickly, using only about 5 iterations to get to an error less than 1E-6

per point.

This P4P method finds the 3D location of the fiducial in camera coordinates by

assuming that the 3D coordinates lie along four rays that point from the camera’s center
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of projection to the screen coordinates of the four comers of the fiducial on the view

reference plane. 80, what this algorithm really does is find distances along these rays

where the fiducial comers should be in the camera’s coordinates. These distances are a

least-squared error fit of the known distances between the fiducial comers and the

apparent screen coordinates of the comers.

Knowing the 3D location of these comers is not enough to know the pose of the

fiducial. The next step is to calculate a transformation between the fiducial’s coordinate

system and the camera coordinate system. This computation is done using a Singular

Value Decomposition (SVD) method to find a least-squared error transformation (in both

the rotational and translational sense). This was adapted from the algorithm presented by

K.S. Arun et al [39].

This P4P solution is extremely stable in comparison with the other two solutions.

There is some instability when the normal of the fiducial is pointing very close to the

camera. The iterative method may be finding locally ideal solutions instead of the best

solution, and in such a case will be sensitive to small changes in comer location.

Figure 5-8 shows a comparison of these three methods. The cubes in the P4P

vector solution are often times rotated poorly. Note that in the P3P method the fiducials

in the bottom and left corners are facing in entirely the wrong direction - these are the

extra solutions that come from using only three points. The P4P iterative method yields

straight polygons.
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P4P Vector P3P Non-linear P4P Non-linear

 

Figure 5-8 - Pose Finding Method Comparison
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6 Evaluation

The system was evaluated in a variety of ways as this research sought to improve

the performance of fiducial-based tracking. If fact, it is not this system so much as the

methods that it uses that need testing. To give the results more meaning, they are

compared to tests of the popular ARToolKit system. Three particular types of tests were

done: distance estimation, rotation estimation, and fiducial identification.

6. 1 Distance and Rotation Test Setup

A series of pictures were taken using the QuickCam Pro 3000 USB web-cam.

The idea was to take pictures at a variety of known distances and angles. This was done

by placing the fiducial such that it was in the center of the picture, at regular distance

intervals. Additionally, at each distance the fiducial was tipped away at regular angles.

A long, flat board was used to mark off the locations of the fiducial. The fiducial

was attached to the front of a rigid box. The box was placed every 1 foot along the board.

The box was then rotated about the left edge of the fiducial, such that the left edge

remained the same distance away from the camera. The right edge would be moving

away from the camera as this angle increases. A picture was taken every 15° from 0° to

75°. Figure 6-1 shows the picture taken when the fiducial was 4 feet away and at an angle

of 45°.

The distance to the camera is not technically at 1 feet, 2 feet, etc. This is the

distance from the end of the board. The camera is then an additional 1%” from the edge
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of the board. This still, however, is not the true distance, because the center of projection

(COP) is not at the front edge of the camera. For this camera, the COP is about 7/8” from

the front edge of the camera as determined by camera calibration.

 
Figure 6-1 - Test Setup

This measurement was determined by using the edge of the field of view as a

guide. To find the COP, objects (soup cans) were placed in a line just inside the field of

view of the camera. Drawing a line along these objects on both sides of the camera

reveals the COP where the two lines intersect. See Figure 6-2 for a diagram.
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Figure 6-2 - Finding the Center of Projection

Now that the distances and angles are known, they can be compared to results

from the DCT system and the ARToolKit system. The bottom-left comer of the fiducial

was used to calculate distance accuracy. The normal of the fiducial (compared with the

correct normal for each rotation) was used for rotation accuracy.

The fiducial used for testing the DCT system was #10, which is DCT #2 in both

directions (one cosine cycle). The ARToolKit fiducial was one of the 4 fiducials

included in the example program they distribute. Both fiducials were 3.5” in both

dimensions. Both systems were set up to expect fiducials of this size for accurate pose

calculation.
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Figure 6—3 - DCT Test Fiducial Figure 6-4 - ARToolKit Test Fiducial

  

6.2 Distance Results

When running the tests, fiducials could not always be found in the picture. For

instance, when the fiducial is far away and is at a sharp angle, the fiducial will not be 25

pixels across, and will be immediately rejected by the DCT system without further testing.

The ARToolKit will make an attempt to identify the fiducial at any size, but will often do

poorly in such situations, as would be expected. The following graph shows the error for

both systems as a percentage in relation to the correct distance. That is, the percentage

error is:

MeasuredDist - ActualDist

ActualDist

 (6-1 ) error = ABS( X100%]

Gaps in the DCT line are where there was no fiducial found. The numbering on

the bottom indicates the picture number that was being analyzed. Remember that 6

different angles were taken at each distance, so pictures 1 through 6 would be the 6

angles at the first distance. Also remember that the lower-left comer of the fiducial will

not change locations as the fiducial rotates.
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Figure 6-5 - Distance Error Comparison

The percentages shown could technically be shown as negative, because for both

systems the error was always on the short side. That is, both systems always

underestimated the distance to the lower left corner of the fiducial. Clearly, both system

exhibit a measurement bias that could be factored out in future work.

6.3 Rotation results

The same pictures were used for testing rotation as for distance. To test rotation,

the vector (0,0,1) was used as the normal to the fiducial in “world” coordinates. World

coordinates in this case are the coordinates according to the model, which is the fiducial.

The normal vector was multiplied by the transformation matrix generated from the pose

estimation done per fiducial. This results in a vector that is normal to the fiducial in the

camera’s coordinate system. At a 0° rotation, this normal should be pointing directly
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back at the camera. The normal would then be rotated 15° about the Y axis to get the

next normal.

The calculated normal of the fiducial was compared to the correct normal by

taking the dot product of the two normals, then taking the arcos() of this value to get the

number of degrees of error.

There are multiple graphs that follow to illustrate the angular errors. The first

graph, Figure 6-6, shows the results for all 48 pictures. Remember that the pictures were

taken in order by distance, so the angles kept changing from picture to picture (0, 15, 30,

45, 60, 75, 0, 15, 30, ...). To help make the comparison more clear, a graph is shown for

the 8 distances at a constant angle, for the 6 different angles in Figure 67 through Figure

6-12.
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Figure 6-7 - Angular Error, 0 Degrees
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Figure 6-8 - Angular Error, 15 Degrees

 

 

Angular Bror. 30 mgreea

70.000

60.1130

50.000

40.000

30.000

E
r
r
o
r
(
d
e
g
r
e
e
s
)

20.000

10.000

 

0.000

1 2 3 4 5 6 7 8

Instance (feet)  
 

Figure 6-9 - Angular Error, 30Degrees
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Figure 6-10 - Angular Error, 45 Degrees
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Figure 6-11 - Angular Error, 60 Degrees
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Figure 6-12 - Angular Fxror, 75 Degrees

 



6.4 Identification Results

The ARToolKit has a tendency to misidentify fiducials because they are not

significantly different from one another. Zhang et al pointed this out [10] and showed an

example, where one fiducial was mistaken for another. To see if the ARToolKit could

benefit from using orthonormal images instead of ad-hoc images, the following test was

set up. This is a test of the general idea of orthonormal images as proposed in this thesis,

rather than of a specific system and is intended to illustrate the superiority of this design

over ad hoc fiducial images even in an existing system.

Six fiducials were chosen and loaded into the ARToolKit. These were ad-hoc

images. The images chosen had the numbers 2,3, and 8 inscribed in the squares. The

letters C, G, and B were also chosen. A drawing shape was associated with each fiducial

(cone, cube, sphere, and torus). The associations were as follows:

 

 

 

 

 

 

 

Fiducial Associated Shape

2 Cube

3 Cone

8 Torus

B Sphere

G Cone

C Cube    
Table 6-1 - ARToolKit Fiducial Shape Associations

A few pictures were taken from about 3 feet. Figure 6-13, Figure 6-14, and Figure

6-15 show the rrrisidentification errors common with the ARToolKit. In the first picture,

it is apparent that the system has confused fiducials “2” and “3”. In the second picture the
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“8” has a specularity from the light, causing it not to be found as a square. With “8” out

of the way, “3” is now identified as “8”. “2” is still identified as “3”.

Figure 6-13, Figure 6-14 were taken at a distance of about 3 feet. Figure 6-15 was

taken at about 6 feet from the fiducials.

The ARToolKit was then tested using a different set of fiducials. Fiducials

generated with DCT patterns like those in the proposed system were used. The border

width was kept the same, as this is what the ARToolKit expects. The idea was to see if

the ARToolKit would fare better with orthonormal images instead of the ad-hoc images.

Technically, the DCT images are not completely orthonormal because they still have the

orientation component which will be common amongst all of the images.

Figure 6—16 shows a picture taken from 3 feet away. All 8 of the fiducials are

correctly identified, despite the fact that many of the DCT images are “close together”.

DCT images 10, 11, 12, 13, 14, 15, 100, and 105 were used. The lower-left portion of

each picture shows the original image, without overlays. The lower-right portion shows

the binarized image with identified fiducials shown in red outlines.

In the second picture, which was taken at 6 feet (Figure 6-17), there are 2

fiducials that were not identified (#11 and #14). The rest of the fiducials, however, are

identified correctly. While it is not good that 2 fiducials were not identified, it is good

that they were not mistaken for the wrong fiducials.

Table 6-2 summarizes the identification problems of these systems for each of the

pictures taken. The misidentified fiducials are highlighted.
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ARToolKit DCT System

Fiducial Figure Figure Figure Fiducial Figure Figure

6-13 6-14 6-15 6-16 6-17

B B B B 10 10 10

C C C - 11 1 1 -

G G G C 12 12 12

2 3 3 - 13 13 13

3 2 8 3 14 14 -

8 8 - 8 15 15 15

100 100 100

105 105 105      
 

Table 6-2 - Identification test results
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Figure 6-13 - ARToolKit Misidentification, 3 foot, #
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Figure 6-14 - ARToolKit M'sidentification, 3foot,#2
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Figure 6-15 - ARToolKit Misidentifleation, 6 foot
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Figure 6-17 - ARToolKit Correct Identification Using DCT, 6 feet
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6.5 Speed

The implementation from image input to fiducial identification with point

correspondence was timed on a 1.0GHz P3 with 512 MB of memory. The test image

used for timing was 320 by 240 pixels and had four fiducial images, as shown in Figure

6-18. The algorithm execution time was close to 2ms, well within the requirements of

real-time tracking. Using the same image and machine, ARToolKit averaged around 8ms.

The results are shown in Table 6-3. Note that the adaptive thresholding technique caused

the execution time to increase. This increase is not due to the adaptive thresholding itself

taking significantly longer, but rather is caused by an increase in the number of outlines

found in the image due to the different threshold value. The constant thresholding for the

DCT-system and ARToolKit were set to the same value (100 on a scale of 0-255).

 

Figure 6-18 - Example Test Image
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Method Average Time (ms)

ATK 8.142

DCT (constant threshold) 1.81 1

DCT (adaptive threshold) 2.368

Table 6-3 - Speed Test Results

 

 

 

    

6.6 Discussion of Results

It is important to note that the ARToolKit uses inter-frame processing to smooth

out errors or lost fiducials. When running these tests, the ARToolKit would use old

results for a frame if it could not find a fiducial, which would of course cause large errors.

When examining the graphs above, it would probably be fair to ignore ARToolKit results

where the DCT system did not find a fiducial. In these pictures, the size of the fiducial

should be considered too small for accurate processing. The ARToolKit could easily

ignore these fiducials as the DCT system does to avoid some of the larger errors.

The translations were surprisingly inaccurate in both systems. Distances were

always underestimated. The DCT system ranged from about 5% to 10%, which is still a

sizable error. The ARToolKit seemed to do much worse, with an average error around

30%.

One of the instances that the DCT system has trouble with is when the fiducial is

pointed directly at the camera. While the translation is still relatively accurate, the

rotation can be very erroneous. The ARToolKit had a similar problem (see Figure 6-7).

The ARToolKit was more accurate in this case at close distances, but worse at large

distances. Both systems, in fact, got worse as distances increased.
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The identification results seemed to be better when using more appropriate

images. The numbers “2” and “3” are not very similar, yet the ARToolKit seems to

confuse these two fiducials. Even the high-frequency fiducials seemed to do well, at least

at close ranges. It should be noted that the DCT system discussed in this thesis does not

suffer from this rnisidentification problem. While it is of course possible for this to

happen, it has been the experience of those who worked with the system that it has never

once incorrectly identified a fiducial. Part of this stems from the fact that the DCT

system never tries to identify fiducials that are too small, but the orthonormal property of

the images is clearly the main reason for the prevention of misidentification.
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7 Future Work

The system created was done so with the ideal fiducial criteria in mind. This does

not mean, however, that all of the courses of action taken are the best way to meet those

criteria. Further, these criteria might be met in many ways, or the criteria might change

depending on the needs of a specific application.

7. 1 Basis Set

The DCT was an obvious first choice for an orthonormal basis set, but it is not the

only possibility. The higher frequency components are more sensitive to errors in the

outline detection process and image warping. Cameras have decreased high frequency;

content as shown in Appendix A. In addition, image blurring impacts high frequency

content more than low frequency content.

In preliminary experiments, several custom basis image sets have been

constructed that may exhibit better high frequency and frequency spreading

characteristics. The trade-off is the lack of a fast transform for identification. However,

as the transform is separable, it may be possible to construct a custom transform that runs

fast enough for this application. Other known transforms, such as Fourier, Hadamard, or

Haar might have better suited basis vectors.

There is also ample opportunity to work in more advanced combinations of basis

vectors. Color could be used, for instance, to expand this set dramatically. A blue image

could be combined with a red image, immediately squaring the number of combinations

possible.
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It has been assumed that an orthogonal basis set is the best choice for this

application. However, the set can be supplemented using the negatives of the basis

functions. Negative correlation is, in fact, as good as zero correlation in an identification

system. The only correlation in the augmented set is between basis functions and their

negatives. This negative correlation is easily identified in the DCT result. Adding the

negative basis functions would not in any way decrease performance and effectively

doubles the set size for free.

The proportion of the orientation part of the image to the coded part of the image

rrright also be changed. Using 1/4 orientation, 1/4 DC offset, and 1/2 DCT code may not

be the ideal combination. It may be possible to decrease the contribution of the

orientation in order to get a better dynamic range with the coded part, and therefore a

better resolution. This might allow us to use more of the high-frequency fiducials, or do

a better job of finding fiducials in noisy images.

7.2 Pose Estimation

The P4P non-iterative method is clearly better than the others implemented for

most situations, but is not nearly perfect. The noisy results when the fiducial normal is

pointing close to the camera could be extremely detrimental in applications where this

happens often. It may be possible to improve this method by finding better starting

values for the iterations. This might be done by using the linear P3P technique, which

would be estimation but could start the P4P technique closer to the right results. This

might prevent the P4P process from finding locally ideal solutions and move more

quickly to the overall ideal solution [40].
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The P3P method by Stockman [20] actually only provides one of the solutions,

instead of finding all of the possible solutions. Huttenlocher and Ullman [41] devised a

method that will produce two solutions for computing the pose of a rigid configuration of

three points from a single weak perspective projection. It may be possible to choose

between these two solutions to get the right one, particularly if inter-frame information or

other such factors are used.

The pose could also benefit greatly from using multiple fiducials together [42].

Using all of the points for all of the fiducials at once would allow for a much less noisy

least squared fitting. Each individual fiducial may not line up as well with the

corresponding virtual parts, but there would be little noise and more overall accuracy.

7.3 Finding Potential Fiducials

The thresholding technique (and consequently, the edge finding) could be

improved to work under a wider range of lighting conditions. There are a variety of

techniques in existence, such as the modified homomorphic image processing method

used by InterSense Inc. in their circular fiducial system [16]. Most of these more

effective methods are, however, much more expensive operations. The method used in

this system is fast, since that was one of the goals set forth initially. Nevertheless, as PCs

get faster and custom hardware is created, more advanced algorithms become possible.
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8 Conclusions

This thesis has set forth a set of criteria by asking questions about what makes up

a good fiducial. Though the answers to these questions and the degree to which a fiducial

tracking system meets these criteria can differ, the answers to these questions are as

general as possible. This set of criteria sets forth a standard by which to judge the quality

of a fiducial tracking system, but more importantly creates guidelines which can be used

create a good system.

Given these criteria, a new type of fiducial image was created using the Discrete

Cosine Transform basis images which has proven to be an effective choice. Additionally,

a system using this type of interior image was created with fast algorithms taking 1

advantage of the choices made when examining the criteria for a good fiducial. The

speed increase is apparent in all areas: locating the fiducial, identifying the fiducial, and

calculating the pose of the fiducial.

Further, to prove the validity of such criteria and the decisions made using those

criteria, the system was tested and compared to a popular and effective system. The

results have shown significant performance increases in speed, identification accuracy,

and pose estimation.

Examining the real needs and purposes behind fiducial tracking has shed a great

deal of light on what systems work and why. More specifically, the individual parts of

the many systems can be evaluated for the effectiveness of their purpose. The focus of

this research is obviously on the science behind tracking technologies, not a specific
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implementation. The system discussed here was created to demonstrate the effectiveness

of the choices made when examining the identified criteria.

This system helps to validate how fast and reliable the fiducial tracking can be,

yet leaves the door open for improvements in many areas. If other technologies and

systems are reevaluated with the goals in mind they might be improved. It is the author’s

hope that this more analytical approach will lead to advancements in the theory behind

fiducial tracking rather than mild improvements in specific implementations.
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9 Appendix A — Camera Frequency Response

Camera imaging systems are not perfect. High frequency scenes cannot be

captured perfectly in any camera, and some cameras are worse than others. To better

understand what types of fiducials can be identified, the camera that is capturing the

images must be examined. This section focuses on testing the response of cameras to

images of varying pixel intensity.

9. 1 Background

Cameras use a CCD to convert the visual signal into an electronic pattern. The

CCD is an array of receptors (640x480 in many cases) that each capture some part of the

scene that the camera is taking a picture of. Unfortunately, these receptors are somewhat

interdependent. If a black piece of paper with a single white dot was held in front of a

camera, the dot would not register on only one receptor. Even if perfectly aligned, there

would be one sensor that receives most of the stimulation while the sensors surrounding it

have some smaller stimulation as well. The amount of spillover from pixel to pixel is

referred to as the point spread function.

Cameras with a wide point spread function will have trouble viewing high

frequency images. That is, images with pixels that change drastically in intensity are

difficult to identify. An image that goes back and forth between black and white tends to

be blurred and grayed out, as in Figure 9-1. An image that should be alternating pixels of

pure black then white becomes shades of gray.
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Blurry Image

Figure 9-1 - Effect of point spread function

9.2 Test Setup

The purpose of this test is to see how well cameras will respond to changing

frequency images. To quantify the frequency, images were printed in bands 1/2” wide as a

cosine function. The cosine function of course was scaled to range from black to white

instead of -1 to 1. Figure 9-2 is an example image, which was printed with fifteen 1/2”

bands on an 81/2” by 11” paper with a laser printer. The images printed were very high

resolution (6000x4500 pixels). The first band has 0 cycles, the second has 1, the third

has 2, and so on.
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Figure 9-2 - Testing pattern

A total of 22 images were printed in order to print out 320 different bands. The

320’h band has 320 complete cosine cycles, which means that on a 640x480 image the

values would be exactly 255,0,255,0,... through the whole band. This is the Nyquist

frequency for the 640 width image; doing bands with more than 320 cycles would be

pointless.

Each printed image was photographed with a camera, and the camera was moved

(or zoomed) so that the edges of the image were right at the edges of the camera’s picture.

Care was taken to get a straight alignment. These images were then processed for

frequency response.

The frequency response was measured using the Root-Mean-Square (RMS)

method. RMS works by taking the sum of the squared difference of each pixel from the

average, divided by the number of pixels squared:

N (P"P)2
(9-1) RMS=Z:'—2

r=1 N
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where p, is the pixel intensity value (0-255) for the ith pixel in a row, and ‘p’ is the

average pixel intensity for the row.

The pixels to use for each band are chosen by taking three rows from the middle

of each band, then averaging the three pixels vertically for each column. That is, p, is

really an average of three pixels from the ith column in the middle three rows of that band.

The RMS was chosen because it should remain constant for all frequency bands.

The RMS value of a perfect 640x480 image is about 12.6. This is the ideal value that

each of the camera captured images should get.

9.3 Results

Four cameras were tested. The first is a Logitech QuickCam Pro 3000, which is a

medium priced web-cam and is also the camera used during development of this system.

This camera has very little distortion, and is capable of providing 30 non-interlaced

frames per second. To do this, however, the frames are compressed before being sent to

the PC from the camera.

The second camera was a Sony DCR-VXlOOO Digital Video camera. This

camera is normally used for video capture, but is non-interlaced as is the standard for DV

cameras. Also standard is the 720x480 resolution, so the top of these pictures was

slightly cropped off. This is a somewhat expensive video camera.

The third camera was a Sony DXC-LSl lipstick camera. This is also a more

expensive camera. While the picture quality is high, it is interlaced and has a great deal

of radial distortion in comparison with the other cameras.
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The fourth camera was an older IBM webocam, purchased for about $20 over 2

years before these tests. This camera is very low quality, and can only provide up to

320x240 images.

The following are graphs of the average pixel intensities and RMS values of the

images taken by each of the four cameras. Remember that the ideal RMS value is 12.6,

and the idea average pixel intensity should be about 128 out of 255.
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Logitech image: 
Figure 9.4 - Logitech Image
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9.4 Discussion

The most obvious trend is that for each camera, the RMS value decreases as the

number of bands increases. This confirms that cameras do not react equally to high

frequency noise. As the frequency increases, the spillover from pixel to pixel (result of

the point spread function) has a more drastic affect on the pixel intensities. Figure 9-3

and Figure 9-4 show a comparison between an ideal image and that of the Logitech

camera.

The Logitech images have the additional disadvantage of being compressed into

jpeg images. All of the other cameras offered the ability to take an uncompressed frame.

Jpeg was actually designed to remove high-frequency information in favor of

compression. In most photographic applications this is not noticeable, but in this case it

made a significant difference.

Another interesting trend is that both the averages and RMS values tend to have

“bumps”. These bumps occur every 15 bands — which is how many bands are on each

page. This implies that both the average image intensity and the frequency response are

higher across the center of the image than they are towards the edges. 80, the camera is

more capable towards the center of the image.

The cameras tend to have a high average pixel intensity — the original image

would have an average of 128, whereas the pictures taken by the cameras would often be

above 140. This varied throughout the picture, despite the ample and constant lighting

when the images were taken. Most of these cameras provide some type of automatic gain

control, exposure setting, or white balance. The automatic adjustment of these features
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was turned off when possible, though it seemed that often times there was still some

processing out of the user’s control.

These results make it clear that high-frequency fiducials, while orthogonal during

creation, will not remain orthogonal when processed by the camera. The cameras’ built

in smoothing from their point-spread functions will smooth out the image as a sort of

low-pass filter. This makes high-frequency fiducials a bad choice as they will become

correlated from the camera noise. This reduces the set of usable DCT basis vectors.
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10 Appendix B — Testing Data.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Real Data DCT-based System Estimates ARToolKit Estimates

Angular Angular

IMG Angle RealDlst Dlst Err %DlstErr Dlst Err %DlstErr

1 0 14.125 12.990 2.563 8.035 10.040 0.000 28.920

2 15 14.125 13.140 4.283 6.973 10.130 4.237 28.283

3 30 14.125 13.100 2.929 7.257 10.110 3.144 28.425

4 45 14.125 13.130 3.206 7.044 9.980 2.374 29.345

5 60 14.125 13.140 3.413 6.973 9.850 1.616 30.265

6 75 14.125 13.040 3.055 7.681 9.660 4.291 31.611

7 0 26.125 23.620 6.280 9.589 17.910 5.732 31 .445

8 15 26.125 23.960 2.403 8.287 18.130 6.141 30.603

9 30 26.125 23.920 3.076 8.440 18.150 3.661 30.526

10 45 26.125 23.900 3.206 8.517 18.080 2.374 30.794

11 60 26.125 23.840 2.735 8.746 17.890 1.596 31.522

12 75 26.125 23.830 3.000 8.785 17.470 3.755 33.129

13 0 38.125 34.290 9.249 10.059 25.970 5.126 31 .882

14 15 38.125 35.000 0.000 8.197 26.440 6.483 30.649

15 30 38.125 34.870 2.775 8.538 26.300 4.107 31.016

16 45 38.125 34.830 2.374 8.643 26.470 2.374 30.570

17 60 38.125 34.680 3.281 9.036 26.150 0.000 31.410

18 75 38.125 25.720 2.435 32.538

19 0 50.125 45.870 7.252 8.489 33.990 14.760 32.190

20 15 50.125 45.800 2.100 8.628 34.870 9.107 30.434

21 30 50.125 45.700 2.817 8.828 35.370 7.487 29.436

22 45 50.125 45.430 2.374 9.367 35.470 6.178 29.237

23 60 50.125 45.490 3.41 3 9.247 34.950 2.060 30.274

24 75 50.125 33.850 1 .693 32.469

25 0 62.125 56.040 9.249 9.795 41.910 18.195 32.539

26 15 62.125 57.090 2.859 8.105 43.170 8.559 30.511

27 30 62.125 56.850 1 .576 8.491 42.220 2.668 32.040

28 45 62.125 56.590 3.206 8.909 42.860 2.374 31 .010

29 60 62.125 42.140 2.892 32.169

30 75 62.125 42.280 2.435 31 .944

31 0 74.125 66.750 1 1.187 9.949 48.560 24.632 34.489

32 15 74.125 68.530 2.108 7.548 48.980 29.724 33.922

33 30 74.125 68.130 3.216 8.088 51 .990 1.959 29.862

34 45 74.125 67.510 3.863 8.924 53.120 2.374 28.337

35 60 74.125 50.710 5.282 31 .589

36 75 74.125 50.710 10.295 31.589

37 0 86.125 78.390 10.263 8.981 56.520 30.231 34.374

38 15 86.125 80.690 28.498 6.31 1 57.760 29.1 18 32.935

39 30 86.125 81 .930 57.855 4.871 59.060 6.997 31 .425

40 45 86.125 59.040 7.536 31 .448

41 60 86.125 63.570 2.485 26.189

42 75 86.125 63.570 17.537 26.189         
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43 0 98.125 90.390 1 1 .763 7.883 64.960 30.345 33.799

44 15 98.125 94.130 26.101 4.071 72.760 14.038 25.850

45 30 98.125 93.700 0.000 4.510 71 .770 5.299 26.859

46 45 98.125 68.550 6.178 30.140

47 60 98.1 25 76.050 1 1 0.553 22.497

48 75 98.125 76.050 125.545 22.497

AVERAGE: 6.876 8.1 05 12.458 30.441

STANDARD DEV: 10.666 1.401 23.801 2.61 1 
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11 Appendix C - Camera Calibration

In order to get accurate pose calculations, it is helpful to have a calibrated camera

model. Using the assumed pin-hole camera model is not accurate with many cameras,

and will result in creating inaccurate pose estimations. Since camera calibration need

only be done once for a camera, a complicated computation is not daunting.

This system uses Roger Tsai’s method [37] for camera calibration, adapted from a

book by Shapiro and Stockman [20] (with some corrections). This method calculates

both the extrinsic camera parameters (translation, rotation) and the intrinsic parameters.

Intrinsic parameters include finding the principal point, scale factors, aspect distortion

factor, focal length, and lens distortion factor for the camera.

The calibration is done using a jig (see Figure 11-1) onto which was printed 72

fiducials of known location. With four key points (comers) per fiducial, this allowed up

to 288 points from which to do the calibration. The photograph seen in Figure 11-1 was

taken with the Sony DXC-LSl lipstick camera. This camera has a significant radial

distortion factor. Figure ll-2 shows a blown up version of the upper-right portion of the

picture, with two straight red lines drawn along the edges of two rows of fiducials. It is

clear that the image bows out, away from the straight lines.
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Figure 11-2 - Radial Distortion

After using Tsai’s calibration technique, 3D translation is much more accurate.

Figure 11-3 is the same jig as above, with the corners marked with a red +. These

locations came from translating the known 3D location of the comers into 2D screen
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coordinates, using the calibrated camera matrix. The yellow outlines are the outlines of

the fiducials as found by the system. The comers match quite accurately.

 
Figure 11-3 - Corner locations after calibration

One significant advantage of using fiducial tracking is that a camera calibration

such as the one described here can be done automatically. In most systems, camera

calibration has to be done by forcing the user to associate points in the image with points

in the real world. This can be a painstaking process, involving much wasted time on the

part of the user. Additionally, users rarely will take the time to input as many

associations as are used in the example above.
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With fiducial identification and tracking, the comer points are found

automatically, and the identification of the fiducials allows the system to know what the

camera coordinates of those points are. A robust camera calibration can now be done

simply by pointing the camera at a jig, instead of using an error-prone, heavily user-

interactive process.
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