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ABSTRACT

THE APPLICATION AND DEVELOPMENT OF NUMERICAL METHOD FOR

MOVING BOUNDARY AND COMPLEX GEOMETRY PROBLEMS

By

Yanbing Li

Various methods have recently been introduced to alleviate the difficulties associated

with simulating moving boundary problems. Among them, the fictitious domain method

is explored and methods to mitigate the errors associated with this technique are

presented in this work. A summary of moving mesh strategies currently in use in

commercial computational fluid dynamics sofiware is first provided. Significant issues

associated with moving gn'd techniques such as the interpolation errors, the human cost

for mesh generation, and the quality of the resulting mesh are discussed by solving, with

the help of a commercial code, a variety of fluid dynamics problems assocrated with in-

cylinder flows of internal combustion engines. The Lagrange multiplier/fictitious domain

method is then discussed by solving simple heat transfer problems. The fictitious domain

method is based on the use of Lagrange multipliers that do not match with an underlying

mesh. Such an approach introduces errors on the adjacent nodes and a parametric study

of various factors affecting the quality of the results is performed. Two approaches for

reducing the errors are proposed. A first method uses modified boundary conditions to

reduce the errors on the adjacent nodes. The method is based on a predictor/corrector

scheme and is called the “fictitious constraint” method. A second method consists of

simply modifying the shape of the boundary by matching the complex boundary with the

underlying mesh. Improvements in the solutions by using these techniques are illustrated

with the help of one-dimensional and two-dimensional problems.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) still encounters difficulties when dealing with

geometrically complex and dynamically complex problems [4]. Among them, moving

boundary problems have been arising as a continuing challenging issue in a variety of

important engineering application areas [2]. Typical examples are heat transfer problems

and chemical reaction problems where there may be significant changes of material

properties, physrcal-chemical properties or flow features. In these situations, the

interfaces move under the interface of the flow field by internal or external forces and in

turn affect the behavior of the flow, and may subject to instabilities under certain

conditions [2,3]; the prediction of the mechanism in such moving boundary systems is ‘

very important but very difficult to analyze “numerically” due to existing of the

complicating mechanisms around the interface region [2].

Numerous techniques exist for tracking moving boundaries [2,3]. Among them,

Lagrangian methods, which are based on a moving grid technique, are widely used in

commercial soft wares. The use of a body-fitted grid system that conforms to the actual

geometry of the problem and is updated (redistribution and refinement) allows to track

the interface (moving boundary) explicitly. The boundary condition can be applied at the

exact location of the interface at each time step. Application of moving grid techniques to

problems with complex geometry and extensive interfacial activities (e.g. large

deformation and topological change) requires a strong remeshing; this corresponds to an

increase of the human cost and thus limits its applications (such as design evaluations



with various geometry configurations). The formulation of a moving grid technique is

reviewed and related issues such as geometric conservation law of the coordinate

mapping and solution interpolation are discussed in chapter 2.

In the context of transient IC engine simulations, moving grid techniques are widely

adopted in today’s most commercial (FIRE, FLUENT, Star-CD) and no-commercial

(Kiva) codes. Numerical simulations with such CFD platforms are performed to study the

in-cylinder flow activities and help the design evaluation [11, 13, 18-26]. In chapter 3, a

summary of the moving mesh strategies is provided; Simulations result using FIRE for an

Generic IC engine intake and compression stroke process are then preSented.

Experimental data are also employed to verify the results. Finally the major issues that

limit the application of moving gird technique are discussed based on the work of the in-

cylinder flow simulations for Generic 1C engine.

Fictitious domain methods, which can be term as one of the “combined Eulerian-

Lagrangian” methods, has been proposed as a way to reduce the complexity of meshing

for moving boundary problems. In this method, the original complex geometry associated

to the problem at hand is embedded into an extended simpler fixed domain (the fictitious

domain), the interface is tracked as an independent entities (either same order of

dimension or low order of dimension of the extended domain), the computations are

performed on the fixed fictitious domain mesh whose topology is independent of that of

the interface and the original boundary conditions on the interface are enforced in the

extended domain with the help of Lagrange multiplier [27-31] or by using a penalty

method [32]. Therefore the solution is transformed to a one-domain approach and the



meshing task is simplified into two independent geometries, the discretizations then can

be done separately and need not to be conform to each other. This obviates the need for

repetitive remeshing.

The use of Lagrange multiplier to enforce the boundary conditions however may

introduce errors [39]: the multipliers do not necessarily enforce the nodal boundary

conditions at nodal locations and may fall within elements. This can introduce significant

errors on the adjacent nodes when the extended solution involves a discontinuous

derivative across the embedded boundary, e.g. enforcing a Dirichlet boundary condition

within the extended domain. The errors are due to an inappropriate approximation of the

local gradient at the location of a multiplier. A one-dimensional model problem is first

used to study possible improvements. To reduce the errors, it is first possible to refine the

mesh. It is observed that a uniform reduction in the element size changes the relative

location of the Lagrange multiplier within an element and the errors are found to Oscillate

as the mesh is refined uniformly for a given extended domain. The errors are also

functions of the relative locations of the Lagrange multipliers within the elements for a

fixed element size. For fixed relative Lagrange multiplier position, the Lagrange

multiplier/fictitious domain methods (LM/FDM) result in a lower-order convergence rate

in L2 norm compared to a solution based on a body conforming mesh. The magnitudes

of the errors are related to the jump of the local solution gradient and the relative location

of the multiplier within the corresponding element. The errors are minimized as the jump

ofthe local gradients disappears. This is illustrated in chapter 4.



Finally in chapter 4, fictitious constraint method and shape reconstruction method are

proposed to mitigate the errors: With fictitious constraint methods, instead of satisfying

the original embedded Dirichlet boundary condition, a two-step predictor-corrector

procedure is adopted to adjust the local boundary conditions to values that reduce

significantly the errors. These local values are called the fictitious constraint and are

obtained based on the computed solution obtained from the standard Lagrange

multiplier/fictitious domain method. With the shape reconstruction methods, the

boundary conditions are adjusted to be applied on the nearest adjacent nodes (edges) to

the Lagrange multiplier, the LM/FDM computations are then performed with the

reconstructed boundaries of the problem. Computation of the errors shows that the

solutions obtained with these methods are less sensitive to the jump of the local gradients

and the relative location of the Lagrange multipliers within the elements than the

solutions of standard Lagrange multiplier/Fictitious domain method. A higher-order

convergence ratio for L2 norm can be achieved when the relative Lagrange multiplier

position is fixed. This is tested by solving simple one- and two-dimensional problems.



Chapter 2

An Introduction to Moving Grid Technique

In moving grid methods, the motion of the moving boundary is explicitly known at each

instant. a boundary fitted mesh (as shown in figure 2.1) is generated at each time step to

explicitly track the interface’s evolution. The corresponding grid motion can then be

incorporated into the numerical scheme via the geometric conservation law [10]. When

the motion of the interfaces begin to distort the mesh, regridding (grid

redistribution/refinement) is needed and consequently the solution obtained on the old

mesh needs to be interpolated onto the new mesh.

  

 

 

   

Figure l Discretization of the original problem (left) using a body fitted mesh (right)

There are three important issues related to moving grid technique. First the governing

equations need to be transformed into a body-fitted coordinate system. Second, the

geometric conservation law needs be satisfied to derive an equivalent differential relation

that can take the mesh movement into account. Finally, solution interpolations are needed

to transfer the data from the old grid to the new grid during a mesh regridding.



In this chapter, the fundamental fluid dynamics conservation laws are first presented for a

Newtonian fluid. We then discuss these three issues: coordinate transformation using

generalized curvilinear coordinates (Thompson et al. 1985), the geometric conservation

law and interpolations of the solution.

To simplify the presentation, we will use 2D cased to highlight the issues involved, an

extension to 3D geometrical geometry can follow the same concept without qualitative

modifications.

2.1 The Governing Equations

The governing equations in Cartesian coordinates for two-dimensional, compressible

flow can be written in dimensional form as:

 

Continuity:

_a_P_+ 600“) + 6C0") = 0 (21)

at 6): 6y .

x-momentum:

6,014 Bpuu apuv 6P 6 ( an) 6 Bu
=-—-+ —— — — — 2.2

at + 6x + 6y 6x [6x flax +6y flay +pgx ( )

 

y-momentum:

0/” 6W apw___6_’: 2. Q: 3 2

at + 8x + ay " ay+Iax[”axI+ay[”ay)I+pgy (2‘3)

 

For simplicity, we did not consider the source terms in the above equation.

2.2 Transformed Governing Equations in a Body-Fitted Coordinate System

Following W. Shyy’s work in [2,3], the coordinate transformations are discussed below:



In order to transform the governing equation to a moving, body-fitted coordinate system

using generalized curvilinear coordinates, we introduce a time-dependent invertible

mapping transformation (for a two-dimensional space case):

x =X(6,7],T)

y = y(€.77,r) (2-4)

I: 2'

The time varying irregular physical domain is then mapped to a fixed uniform

computational space. The flow equations are then recast in a body-fitted curvilinear

coordinate system (6,77) and are:

 

3(Jp)+a(pU)+a(pV)=0

 

 

6t 65 677 (2'5)

and

2 .6Wu) «ML- 6_P_ 6_P u _
atUpul 6: + a” {”75}; ygan}+a§[J(qlug qzuq)]+ (2.6)

a

5BR?” - (1214.13)] + pgx°J

2 WW) amp. (1’. 9: 1.41. _
64m” a: + an {Fan ””aéii'arid‘m‘ WWII“ (2.7)

6 p
‘3;[7(43V77 “ (12"; I] + Pgy 'J

where the subscripts 5 and 7] denote 6/66 and 6/677 , respectively; J is the Jacobian of

the coordinate transformation J = xgy” — xnyé: and represents the volume element in the

transformed coordinate.

and U and V are the contravariant velocity components

U =(u-5r)y,7 -(v—y)x,]

2.8

V=(v—y)x§-(u—5c)yé: ( )



where x§,x,7, yg, y” are the metrics of the coordinate transformation, and 5c, yare the

Cartesian components of the grid velocity vector defined as:

n n—l n_ n—l

x:_x__._x—, y=Z_—L_ 2.9

At At ( )

where the superscripts (n) and (n —1) denote the current time step and the previous time

step, respectively. The metrics ql , q2 , q3 are defined as:

m=%+fi

42 = xgxn +y§y77 (2.10)

2

‘13 = x; +y§

The contravariant velocity component and Cartesian velocity components at the boundary

are then computed to enforce mass conservation; and the kinematics condition can be

enforced at the interface (moving boundaries) via the conformed curvilinear coordinate

system.

After discretization, the physical domain 0 then is covered by a grid consisting of a

fixed number of nodal points distributed over Q and along its boundary.

2.3 The Geometric Conservation Law (GCL)

For moving boundary problems, part of the boundaries of the physical domain moves in

time, the boundary-conforming character of the mapping transformation 2.4 implies a

corresponding motion of the grid points in physical domain. Ignoring this grid motion can

introduce errors in the computational flow fields with finite-difference method [5]. This

issue can be addressed via an auxiliary equation derived via the concept of “geometric

conservation law” (GCL) as discussed below:



Let Aebe an arbitrary, fixed element in the computational domain 06 enclosed by a

smooth boundary 6A , and let A(t) ={}|}=}(E,z)v5 e Ae}be the corresponding

element in the physical domain 0 under the time-dependent coordinate transformation

it: flat), then the change in volume of A(t) equals the total flux through the surface

6A(t) , which can be expressed as:

i j d; = Ia x_t-d6A(t) (2.11)
dt A(t) AG)

where E; is the element velocity).This is the integral form of GCL [5,6],satisfying the

differential GCL scheme that governs the special volume element under an arbitrary

mapping will eliminate numerical oscillations and instabilities for solutions on moving

grid [5].

In the differential scheme, grid motion and geometric conservation are handled in a

natural way through the contravariant velocities and the Jacobian evaluations [2,3], A

Jacobian transport equation is derived by considering a uniform density and velocity

field,under a time dependent coordinate transformation. The following identity derived

from the mass continuity equation results:

6.1 6 . . 6 . .
E+E£(-xyn+yxfl)+$(-yxg+xy§)=0 (2.12)

Integrating the above equations using the same time integration scheme over the same

control volume used for mass conservation leads to the following equation:

(Jn _Jn-1)

T+(—jyn +jrx”)e —(—5cy,, +yxn)w+(-yx; +595)" -(—yx; +595)? :0 (2.13)



This formulation ensures that the Jacobian is updated in every computational mesh

according to the time dependent grid movements to guarantee geometric conservation in

the discrete form of the conservation laws.

An alternative approach is using finite-volume method to interpret the metric and

Jacobian, which establishes a direct physical relationship as following [9]:

If A§=An=1,then:

_ area of element in 2—D (2 14)

_ volume of element in 3—D -

and

N§=J§xT+J§xF+J§xi€

(2-15)

= area vector of the element face(3—D)

This implies that with finite volume method, geometric conservation law is automatically

satisfied.

2.4 Solution Interpolations

Moving grid techniques require grid rearrangement (regridding) when the boundary

movement causes the grid to be skewed and unevenly distributed. At these situations,

solution interpolations are necessary to transfer the data from the old grid to the new grid.

The basis strategy for solution transfer is search and interpolate [10]: Each new grid is

first located within an element of the old mesh; the solution value is then interpolated

locally using element basis functions and element nodal values from the old grid.

For example, Assuming that the element ethat containing node p with coordinates

(xp: yp)has been identified, then the variable value a at p can be interpolated using the

10



nodal values and element basis functions in local reference element coordinates

(emefi:

Ne ,.

“(xp’yp)= Z“;V’j(5p”7p) (2°16)

F1

where Ne is the number of nodes for element e, the local reference coordinates

(5p ,7]p ) can be determined using the global value (xp , yp) , the element basis function

61- and nodal values (x; i) by the solving the following equation:

Ne A

xp " Z xiV’j(5p”’p) =0

1:1 (2.17)

Ne A

yp ‘ Zlyiy’j (5pi’7p) = 0
J:
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Chaper 3

The Application of Moving Grid Technique to the In-Cylinder Flow Simulation

3.1 In-Cylinder Flow Simulations of Internal Combustion Engine

Gas flow in a cylinder of an internal combustion engine has a profound influence on the

performance of the engine [17,18,19]: the flow into the cylinder through the inlet valve or

valves forms a impinging jet, and establishes organized motions in the cylinder (swirl -

about the cylinder axis- and tumble-orthogonal to the cylinder axis). These in-cylinder

flow characteristics are key issues to ensure stratification requirement (efficient

convective transport of fuel to the plug; high turbulence level to initiate combustion; a

stable and reproducible generated motion) and fimdamental considerations for the

exhaust emissions of an IC engine. To design an environmentally fiiendly (low emission)

IC engine, which would also operate smoothly and produce high power with low fuel

consumption, an improved understanding of these thermo and fluid dynamics of the in-

cylinder process is thus very important.

For decades, the investigation of the in-cylinder flow patterns for IC engines have been

achieved mame by traditional methods based on extensive experiments: Engineers

developed new combustion systems by making variations in previously successful

configurations. Given the IC engine’s high state of refinement and the physical

complexity of the in-cylinder processes, this cut-and-try process is not sufficient to create

the significant improvement now sought, plus the experiment set-up is time consuming

and expensive.
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The advent of computers and the possibility of performing ”numerical” experiments

based on computational fluid dynamics analysis provide a new way of the simulating and

designing internal combustion engines. By easily examining the various tradeoffs that

must be made to move current design toward the optimum, CFD enables the transient

analysis in the operation condition, which can yields detailed information on the flow

field in a timely and cost-effective manner, thus meets today’s performance targets

requirement.

However the three-dimensional flow numerical simulation about a helical/direct intake

port-vertical/canted valve-cylinder system is remaining as a challenge to the CFD group

The main reasons are as following [18, 19, 21]:

o It is extraordinarily difficult to generate computational grids of high quality due

to complicated port shape, chamber shape, valve position and the valve lift and

piston motion strategy.

0 The flow field in an internal combustion engine is turbulent and comprises many

time and length scales (from eddies that are essentially large enough to fill the

available engine cylinder space down to eddies often substantially below a

millimeters in size). It is impossible with present techniques and facilities to

obtain a detailed numerical solution of the Navier-Stokes equations that can

account for all the in-cylinder turbulence time and length scales, and proper

turbulence models need to be introduced.

Fortunately, there are a number of commercial and in-house CFD codes have been

developed today, each of employing one or more numerical methods and techniques to

13



circumvent these difficulties. Among them, FIRE, Star-CD, FLUENT and KIVA-3V are

the most widely used codes in industries and academics.

3.2 Moving Grid Strategy in Current CFD Codes

Almost all these CFD software (FIRE, Star-CD, FLUENT,KIVA-3V) use the Lagrange

based moving grid technique to track the valve and piston motion for the engine

simulation [13,14, 15,16, 25], that is, the mesh attaches to the moving boundaries (valve

surface and piston head) and deforms with the computational domain, and is subjected to

the topology changes in the course of its evolution. There is three mesh motion strategies

to accommodate the volume deformation associated with these in-cylinder motions:

spring deforming, local regridding and layering.

3.2.1 Spring Deforming

In the spring-based deforming method, a block ofmesh cells (single layer or multi-layers)

deforms like springs due to the movement of the mesh boundary: the edges between any

two mesh nodes are idealized as a network of interconnected a springs. A displacement at

a given boundary node will generate a force proportional to the displacement along all the

springs connected to the node, and so the displacement of the boundary node is

propagated through the whole block [26]. The displacement of each node can be

controlled by specifying different “spring coefficient” of each “springs” to get a better

control over some specific region (especially the boundary layer regions). A simple

example of the spring-based deforming is shown in Figure 2 for a cylindrical volume

where one end of the cylinder is moving.
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In the Spring Deforming Method, the connectivity of the mesh cells and nodes in the

corresponding block remains the same, the topology and the resolution of the grid system

do not change, only the nodes position may change due to the boundary motion. It is well

suited for the situation where the motion of the interested region (piston head or valve

surface) usually keeps the same (or reverse) direction and the displacement is not large

enough to cause some ill-shaped (such as high aspect ratio) cells.

Spring deforming allows the use of a low grid resolution during the early time steps thus

can speed the analysis through the initial transient behaviors. When the flow variables

settle, layering (as discussed in 3.2.3) to a higher grid resolution can obtain the necessary

accuracy.

Since this method always involves grid motions, it requires the Jacobin to be upgraded at

each time step to satisfy the GCL.

IIIIIII
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Figure 2 Spring deforming on a simple cylinder at the end of compression (Left: piston

head at BDC, right: piston head at TDC)



3.2.2 Local Regridding

When the boundary displacement is large, the moving boundaries can distort the cells too

much (especially for the gap region between valve surface and seat), which will create

bad quality cells (e.g. high aspect ratios, twisted faces, negative volumes, negative

volumes, etc.), which lead to a high degradation of a convergence rate and a poor

accuracy as the solution is advanced to the next time step. Local regridding is thus

necessary to adjust the mesh to the level with acceptable quality. This can be done either

by changing the local mesh topology (figure) or using smoothing algorithms and others

similar techniques to redistribute the grid nodes without changing the connectivity

information. An interpolation is thus needed to maps the corresponding boundary

conditions and flow variable data that is generated during the analysis from the old grid

to the new grid between two adjacent time steps. This method may lead to the change of

connectivity and grid resolution as topology adjustment is employed. Figure 3 gives such

an example.

Local regidding method is widely used in the regions (such as the upper portion of the

combustion chamber and port region around valve seat) that involve the valve movement

and extensively meshing effort is needed to match the geometries at the position where

the combustion deck is complex or a canted valve is involved in the motion. However,

the application of hybrid mesh techniques (such as hexahedron elements couples with

tetrahedral elements or pyramid element in FLUENT and Star-CD) can simplify this

process.
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Figure 3 Local regridding applied to the valve region during intake stroke (Left: valve

opening, right: valve closing)

3.2.3 Layering

When the boundary displacement is large, by simply adding or removing a cell layer in

the boundary motion direction, the grid resolution can be adjusted to obtain a block of

cells (single layer or multi-layers) with good aspect ratio and acceptable layer-thickness

(which is very import for the boundary layer regions). The layering method is particularly

suited in the cylinder region that is directly above the piston head, and can also be

utilized in the regions above the valve, including the valve seat region.

Layering changes the resolution of the grid system and it can maintain the topology of

grid system in the direction where there is no motion involved. An interpolation is also

needed to map the data between different data set at different time steps. Consequently,

the application of layering to a single layer block or multi-layers block determines the

level of interpolation. A simple layering example is illustrated in Figure 4.
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Figure 4 Layering applied to the valve region during intake stroke (Left: valve closing,

right : valve opening)

The spring deforming technique and local regridding technique can be viewed as grid

redistribution techniques while layering technique can be viewed as grid refinement

method. The reason that we term them separately is that each technique is employed at

specific situations for engine simulation.

The combination of these three techniques coupled with other meshing techniques (block

structure mesh, unstructured mesh, hybrid mesh, automatic mesh generation) to deal with

the meshing task in different portion of the computational volume enables the users to

generate an acceptable computational mesh. The meshing time usually varies from 2-day

to 2 weeks depending on the grid generator’s automatic level and user’s familiarity with

the codes.

3.3 Turbulence modeling

For low speed (laminar) flows without heat transfer, the equations governing the

conservation of mass and momentum can be used to describe the flow exactly for

incompressible flows. Turbulence however, leads to rapid velocity fluctuations in both
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space and time. So although these equations can properly describe the details of turbulent

motions, it’s too costly and often time consuming to obtain a solution with detailed

information about both the time and space variations of flow variables. This leads to the

concept of“ turbulence modeling” [7, 8].

Most engineering models of turbulent flow are based on the use of the Reynold’s

averaging technique [7, 8], which assumes that the quantities (that appears in the N-S

equations) at a given point in space and time are described as a superposition of some

mean part, which may vary slowly with time and a random component, which varies

rapidly. Mathematically, they can be expressed as:

at =17,“ +11,"

p=fi+p'

with u—,'- =,—o-' =27 = 0

Here the quantities with bar denote the mean values and those with primes are

fluctuations.

Then the ensemble-averaged mass and momentum balance equations are given as (for

incompressible fluids):

0 The ensemble-averaged continuity equation:

ga+%[m+fi]+-§y—[p—v+fl]=o (3.2)

o The ensemble -averaged momentum equation:
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The additional unknown terms in the momentum equations are know as the Reynolds

stress tensor expressed as:
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(3.4)

The modeling of Reynolds stress tensor with other variables introduces different

turbulence models (standard k—r: model, RNG model, k—co model.. .), among them

standard k -3 model is widely used in industry due to its numerical robustness and

economy.

In this method, the Reynolds stress tensor terms can be expressed in terms of the mean

rate of strain Sj and turbulence viscosity pt :

 

, r 2

-pui uj =2fltSzj-3P5g‘k (3.5)



with :

S" -1 §£+fi ' -C 53 and 6" is the Kroneche delta function

U26xj aye-”W ”ps’ ’1 '

The turbulence kinetic energy k and its dissipation s can be solved from the following

equation:

———= —£ +— +— —

th PU} ) 6xj [[fl 07‘]ij

_ (3.6)

D8 614k 8 a [It 65

—= C +C k—- a —+— +— —-th p[ 511’): .93 M £2 )1: axj[[# 01(13ij

where the production of turbulence energy is:

 

I r a ' . .

I), =—u,~ uj 319— and C51, C52, C63, 0k are empirical constants.
x o

It should also be noted that the application of k — e to engine simulations still has serious

limitations [18]: the model assumes that the turbulent transport is in the same direction as

the mean flow gradients and does not consider the effects of pressure-velocity

correlations on the k equation and 3 equations. And also the .9 equation does not have a

strong physical foundation.

3.4 Description of the Problem

A traditional direct port diesel engine (generic engine) was employed in the study; the

geometric shape and engine parameters are listed in Figure 5 and Table l:
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Figure 5 Geometry of the generic engine and the boundary definition

Table 1 Engine Specifications and Calculation Conditions

 

Bore x Stroke 80mm x 100mm
 

 

 

 

 

 

 

 

Squish 5.0 mm

Engine RPM 1500 Rpm

Compression Ratio 19.3

Connecting Rod 198 mm

Maximum Intake Valve Lift 8.68 mm

. 353.3 ATDC
Intake Valve Opening (after top dead center]

Intake Valve Closure 545.6 ATDC

Pstatic =1 an",

Boundary Conditions

Inflow Boundary

1:91am = 300K

,u, = Cllpk2 ls =100,u

I=J2k/3/U=0.l

 

  
U = f(Rpm)

Wall Boundary adiabatic wall, no slip

Symmetry Boundary Symmetry
 

 
Initial Conditions

 
u=v=w=0

Pstatic =1 atm,

Tstatic = 300K

p, =Cflpk2/£=100a

I=J2k/3/U=O.l

U = f(Rpm)  
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We assume a symmetry boundary across the engine symmetry plane thus there is no swirl

generation during the simulation and we can use half engine simulation to reduce the

computational time.

3.5 Numerical Setups of the Simulation

FIRE, a finite volume code that solves the ensemble averaged fully compressible

conservation equations for mass, momentum, and energy, was used to perform the

simulations. The Reynolds stresses are linked with the mean ensemble averaged

properties with the standard k —.9 model. The standard “ wall function” is used to bridge

the viscosity-affected region between the wall and the fully turbulent region.

The k — a model constants were left to their default settings as listed in Table :

Table 2: Values of standard. k — a model constants

 

Cy Cal Caz C53 O'k
 

     0.09 1.44 1.92 -0.373 1
 

The discretisation equations are solved by iteration following the SIMPLE velocity-

pressure coupling algorithm.

The second order central total variation-diminishing scheme (CTVD) with minmod

limiter was used for space differencing of all the variables. The first order fully implicit

scheme is adopted for the temporal differencing of all the variables [14].

The numerical model was made based on the geometry CAD data (surface mesh) from

another commercial code- Star-CD. The using of arbitrary multi-layer based spring

deforming and layering technique were used to handle the valve and piston motion, and

arbitrary local regriddings were employed to handle the valve seat region when the mesh
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screwed during the valve motion. The resulting numerical models are shown in Figure 6

Table 3shows a summary of the model data.

 

Figure 6 Computational Mesh of the generic engine

Table 3 Numerical model data

 

 

  

   

Total number of cells (maximum) 404,184

Number of cells in port and valve (maximum) 99,504

Number of cells in cylinder (maximum) 304,680  

3.6 Experiment Verifications

A validation based on the experiment data (provided by Dr. Shock) had been performed

to check the code quality.

The average in-cylinder pressure shows good agreement with the experimental data; the

difference is below 5%. (Figure 7)
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Figure 7 Average in-cylinder pressure comparision: dash line-numerical data, solid line-

experimental data

The flow vector distribution at the symmetry plan are also compared (Figure 8-11, due to

the limitation of the measurement, the experimental data only reflect a portion flow

distribution in the whole flow field): the agreements of numerical results with

experimental result at intake stroke (CA 450, 540 ATDC (after top dead center» are

satisfactory, but clear differences remain at compression stroke (CA 630, 660 ATDC):

the flow pattern is almost completely wrong. This behavior may be caused by the

inaccuracies or errors in either the numerical modeling or the experiments; currently there

is no solid explanation for this behavior of the code.
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Figure 10 Flow pattern comparision at CA 630 ATDC (left-experimental data, right-

numerical data)
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Figure 11 Flow pattern comparision at CA 660 ATDC (left-experimental data, right-

numerical data)

3.7 Simulation Results Discussion

Simulation results are presented here for flow analysis. Three plans are chosen here ( two

vertical plans: x-plan and y-plan and one horizontal plan: z—plan) to reveal the flow

pattern. These plans are defined in Figure 12: The x-plan cuts through the axis of the two
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intake valves and normal to the horizontal plan. The y-plan cuts through the axis of the

intake and outlet valves and normal to the horizontal plan. The z-plan is a horizontal plan

and cuts through the middle of the cylinder.

 

gig; i a;

y_—pl_an§: through

both valve centers

3:21am: through the

intake valve center

 

mime: at the

cylinder mid-height

 

Figure 12 Selected plans for the generic engine

Figures 13-34 show the flow field in the form of velocity vector distribution at different

degree ATDC along the vertical plans (Figuresl3-32) and horizontal plan (Figures 33,

34).

At the beginning of the intake stroke (Figure 13,14, CA 370,380 ATDC), with the valve

opening and piston moving down, the flow is induced into the cylinder and forms an

impinging jet around the valve seat region. As the valve lifi and piston speed are low, the

turbulence intensity level is not strong, the flow remains attached to the valve head and

seat and then separates fiom the valve at the inner edge of the valve seat, part of the flow
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will hit the cylinder wall, this results in the formation of obvious recircuilation motions

under the cylinder head and valve (Figure 14, CA 380 ATDC): Two couples of opposite

tumble motions are created-one couple that formed at the position between left side of

valve seat and the top-left cylinder corner and one formed in the opposite direction. Later

on we can see that the tumbles formed under the valve head have dominant influence on

the flow pattern.

As the piston accelerates downside and the valve lift increases, (Figure 15-22, CA 390-

460 ATDC), much of the directed energy in the jet is converted into turbulence, the

turbulence level increases. The tumble in the right upside of cylinder corner can not find

enough space to grow and finally breaks up. The other three tumbles motions are

strengthened continuously as the distances from cylinder wall are far enough for them to

grow (e.g., the tumble at the left corner can shift it position downside as the piston moves

down). The structures of the two tumbles motions under the valve also changes as the

turbulence intensity evolves. The left side one (counterclockwise) continues to grow and

finally dominates the upper side in-cylinder flow field while the right side one does not

grow and finally looses most of its energy (break up in to turbulence). Another tumble

motion whose rotation direction is opposite the one under the valve is also created above

the piston head at around CA 450 ATDC (Figure 21,22, CA 450, 460 ATDC) and

dominates the lower part of the in-cylinder flow. At CA 460 ATDC, the turbulence level

is strongest as the engine approaches its maximum valve lift and piston speed.

During the second half of the inlet stroke (Figure 23-25, CA 480-540 ATDC), as the

piston slows down and the valve is going to close (which means the jet is coming to an

end with fewer directed energy introduced), most of the tumble motions decays: the
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intensity of the tumble that above the top of piston decreases markedly and finally

attenuates into two small tumbles around the center position of the cylinder (Figure 25

CA 540 ATDC). Viscosity will also have some effects on these phenomena.

During the compression stroke (Figure 26-32, CA 550-700 ATDC), the tumble motions

are amplified due to the increase of density and the changes in length scales (as engine

compressed, the charged geometry is changed). The two tumbles located at the center of

cylinder combine into one tumble motion that rotates in clockwise direction, and try to

move upside to find more space to grow, the intensity of the upper tumble also increases

and it shifts its location to the center position right below the valve head to get more

tumble axis-cylinder distance.

As the piston approaching TDC (Figure 31,32, CA 680,700 ATDC), the vortexes created

by the tumble cannot find sufficient room to maintain their form. They first combine into

one vortex at CA 680 ATDC and then break up into turbulence at CA 700 ATDC. A

crudely homogeneous condition can be observed at that time. The break up of the swirl

motions (strictly speaking, these motions are recirculations in the cylinder radius

direction since we assume a symmetry boundary condition across the cylinder symmetry

plane) in the compression stroke can also be observed (Figure 33, from CA 550 ATDC to

CA 660 ATDC). The breaking up of the tumble motions at CA 680 ATDC will also

result in a changing over to small swirl motions (Figure 34 CA 680 ATDC to CA 700

ATDC).
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Figure 15 Velocity distributions at 390 ATDC (x-plane and y-plane)
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Figure 16 Velocity distributions at 400 ATDC (x-plane and y-plane)

 
Figure 18 Velocity distributions at 420 ATDC (x-plane and y-plane)
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Figure 20 Velocity distributions at 440 ATDC (x-plane and y-plane)

 

Figure 21 Velocity distributions at 450 ATDC (x-plane and y-plane)
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Figure 24 Velocity distributions at 510 ATDC (x-plane and y-plane)
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Figure 27 Velocity distributions at 580 ATDC (x-plane and y-plane)
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Figure 30 Velocity distributions at 660 ATDC (x-plane and y-plane)
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Figure 31 Velocity distributions at 680 ATDC (x-plane and y-plane)

      

 
 

 

 
Figure 32 Velocity distributions at 700 ATDC (x-plane and y-plane)

 

 

 

distributions at 550(lefi) and 660 (right) ATDC (z—plane)Figure 33 Veloci
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Figure 34 Velocity distributions at 680(left) and 700 (right) ATDC (z-plane)

3.8 Issues with Moving Grid Technique for In-cylinder Engine Simulation

There are three issues closely related to the moving grid technique: interpolation errors,

human cost for mesh generation and the quality of grid system. Each of them will affect

the numerical modeling process and the corresponding solution.

The interpolation error is introduced by the solution mapping process: once there is a

need for local regridding or layering, the solution on old grid needs to be transformed into

the new grid. As we have seen in section 2.4, the interpolated solution on the new grid is

obtained from the local approximations using the nodal values of the corresponding

element on the old grid, since the accuracy of the local approximation is highly depended

on the chose of local basis function, it may not be a good representative of the actual

solution and thus introduce errors. Figure 35 gives a simple one dimensional example of

such interpolation: The numerical solution at the nodes on “old” grid agrees very well

with the exact solution, while the interpolated one on the “new” grid lose accuracy.
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— Exact Solution

49— Numerical Solution at Old Mesh

0.25 - ae— lnterpolated Solution at New Mesh  
 

    1 , ____L

"12‘ 1.3 1i4’”1f5x1i6 1.7 1.8 1.9 2

Figure 35 Solution interpolation from “old” grid to “new” grid introduces error

The second issue is related to the generation of computational grid to handle the

valve/piston motion in the context of complicated engine geometry. As we have

discussed earlier, moving grid technique requires the grid system to conform to the real

engine geometry at the corresponding time step as well as preserve suitable topology to

handle the valve/piston motion, it is usually done with a multiblock unstructured grid

system and the quality of the grid is very difficult to control: the grid system may be

skewed and unevenly distributed, especially in the region related to the valve motion. The

bad quality grid will introduce error to the numerical solution and the error will transport

and polluted others regions. Figure 36-38 give the example of a bad grid system and the

corresponding errors are obtained based on the comparison of the numerical solution for

a low-resolution grid (50k) with the one for a high-resolution grid (500k, we take it as the

exact solution here)-Figure 36 shows the gird system for a 50K engine at CA 460 ATDC

at selected x,y 2 plans and the corresponding velocity point-wise relative error and

absolute error contours were draw in Figure 37 and 38 respectively.
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Figure 36 Computational mesh at selected plans for a 50k generic engine numerical

model

  
Figure 37 Velocity absolute error distributions at selected plans for a 50k generic engine

numerical model

  
Figure 38 Velocity relative error distributions at selected plans for a 50k generic engine

numerical model

And also because such a limitation (geometrical confirmation) exists, we find that the

solution is highly sensitive to the grid topology and regridding strategy that were used in
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the numerical model-to illustrate this, we employed three methods here to generate a 50K

grid for the generic engine, each grid uses a different mesh strategy. In method I and II

the grid topology in horizontal plan is exactly the same while the moving mesh part for

the near-valve region are generated using different remeshing strategy (the time and

topology for regridding are different); Method 11 and III use the same remeshing strategy

for the near-valve region and differs from each other in the horizontal plan (different

topology). Figure 39-41 shows the grids’ difference of these three methods and Figure

42-47 show the different of the streamline contours for these methods (at CA460 and CA

630 ATDC).
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Figure 39 Computational mesh at selected plans for a 50k generic engine numerical

model (Method I)
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Figure 40 Computational mesh at selected plans for a 50k generic engine numerical

model (Method 11)



 

Figure 41 Computational mesh at selected plans for a 50k generic engine numerical

model (Method 111)

   
Figure 42 Streamline contours comparison (lefi: method 1, middle: method 11, right :

method IH) at selected plan (x-plan) for a 50k generic engine numerical model at CA 460

ATDC

/

”ll
Figure 43 Streamline contours comparison (lefi: method 1, middle: method 11, right:

) a

method H1) at selected plan (y-plan) for a 50k generic engine numerical model at CA 460

ATDC
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Figure 44 Streamline contours comparison (lefi: method I, middle: method 11, right:

method H1) at selected plan (z-plan) for a 50k generic engine numerical model at CA 460

   
 

ATDC

 

Figure 45 Streamline contours comparison (left: method 1, middle: method II, right:

method 111) at selected plan (x-plan) for a 50k generic engine numerical model at CA 630

ATDC

   
Figure 46 Streamline contours comparison (left: method I, middle: method II, right:

method III) at selected plan (y-plan) for a 50k generic engine numerical model at CA 630

ATDC
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Figure 47 Streamline contours comparison (left: method 1, middle: method H, right:

method 111) at selected plan (z-plan) for a 50k generic engine numerical model at CA 630

ATDC

We also compare the predicted turbulence kinetic energy for these three methods since

turbulence kinetic energy is also one of the most important issue for engine simulation:

an overproduction of turbulence kinetic energy changes spreading rate of the jet and

caused different mixing in the cylinder. The averaged turbulence kinetics energy

comparison is plotted in Figure 48, and the detailed TKE distributions at CA 460 and 630

are compared in Figure 49-52.

 

 

  
Figure 48 Average predicted in-cylinder turbulence kinetic energy comparison for three

moving mesh strategies



 

Figure 49 Turbulence kinetic energy distribution comparison (lefi: method 1, middle:

method H, right: method IH) at selected plan (y-plan) for a 50k generic engine numerical

model at CA 460 ATDC

  
Figure 50 Turbulence kinetic energy distribution comparison (lefi: method 1, middle:

method H, right: method HI) at selected plan (z-plan) for a 50k generic engine numerical

model at CA 460 ATDC

 

Figure 51 Turbulence kinetic energy distribution comparison (lefi: method 1, middle:

method H, right: method HI) at selected plan (y-plan) for a 50k generic engine numerical

model at CA 630 ATDC
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Figure 52 Turbulence kinetic energy distribution comparison (left: method 1, middle:

method H, right: method H1) at selected plan (z-plan) for a 50k generic engine numerical

model at CA 630 ATDC

This tremendous difference in the prediction of turbulent kinetic energy will surely affect

main engine parameters during a design process.

The third issue is well known: moving grid technique has a strong requirement for

repetitive remeshing when intensive interface (moving boundaries) activity involved,

which is time consuming and costly. This had feature limits its application in engine

model evaluation since every geometrical (port, valve, combustion chamber)

configuration and possible lifi strategies, we need to generate a separated set of grids to

do the simulation, and such a human cost is huge.
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Chapter 4

An Introduction to Lagrange Multiplier/Fictitious Domain Methods (LM/FDM),

Methods for Reducing Errors in LM/FDM Applied to Heat Transfer Problems

4.1 Introduction

Fictitious domain methods offer the possibility of significantly reducing the difficulty of

meshing complex domains. This is achieved extending a complex domain into a much

simpler one that can be discretized easily (the extended domain is called the fictitious

domain). The original problem is preserved in the extended domain by enforcing the

original boundary conditions with the help of Lagrange multiplier [27-31] or by using a

penalty method [32].

The fictitious domain method is especially useful when dealing with moving boundary

problems. Two independent meshes can be then used: one fixed Cartesian mesh and an

independent boundary mesh that “follows” the boundary and enforces the boundary

condition. This obviates the need for repetitive remeshing. R.Glowinski et. al have

developed recently various approaches based on the use of Lagrange multiplier

distributed on the boundary of the moving object [27-29] and Lagrange multiplier

distributed over the entire domain associated to a moving object [30, 31, 33-35].

Given its easy-implementation capability that which enables a fast turn around time in

engineering modeling, Lagrange Multiplier/Fictitious domain methods can come to be a

powerful technique for the design evaluation and engineering analysis if it accuracy can

also be guaranteed. The use of multipliers to enforce an essential boundary condition

however may result in a discontinuity in the first derivative of the solution (e.g.
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temperature or velocity fields). This can introduce significant errors if the multipliers are

not coincident to nodes of the underlying mesh [39]. This situation arises since most

elements commonly used are C0 continuous i.e. a discontinuity of the first derivative is

allowed only at the boundaries of the elements. Errors are thus introduced on the adjacent

nodes due to the impossibility of obtaining a CO solution within an element. The use of

higher order polynomials as shape functions somewhat reduces the errors but such errors

are nonetheless still considerable compared to the use of a mesh fitted to the boundary

(see below in section 4.3 and 4.4)..

In this chapter, the Lagrange multiplier/fictitious domain method and its use in problems

with Dirichlet boundary conditions is discussed. A parametric study for the introduced

errors is conducted. Two possible approaches, Fictitious Constraint methods and Shape

Reconstruction method, are proposed to mitigate the errors associated to the use of

Lagrange multiplier with the corresponding element. For simplicity, we only consider

one-dimensional and two-dimensional steady state conduction heat transfer problems and

discuss the influence of the jump of local solution gradient and the presence of the

multiplier within an element.

4.2 Lagrange Multiplier/Fictitious Domain Methods and the Dirichlet Problem

4.2.1 A Model Problem

The following Dirichlet boundary value problem is first considered:
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1

Given feH_1(Q), T06L2(y),T1eL2(;/),

find a function T such that

—AT=f in (Ma), r (4.1)

T=T0,on F;

T=T1,on 7;  
 

  F
 

Figure 53 Illustration of the geometry associated to the Dirichlet problem presented in

(4.1)

In this problem, (2 is a bounded domain in Rd (d22) including an inclusion a) ,I‘ and y

are the boundaries of Q and a).

4.2.2 Lagrange Multiplier/Fictitious Domain Formulation

The Lagrange multiplier/fictitious domain formulation consists of:

I Extending the domain Q\a) to the larger square domain (2 , the original

boundary condition on the 7 becomes an embedded constraint for the extended

problem

- Extending fin H1(Q\a)) to fin 111(0), and Tin H1(Q\a)) to f in

H1 (a).

49

“
I
!

.
{
r
.
r
_
.



I Introducing Lagrange multipliers to enforce the embedded boundary condition on

7 and making the augmented functional stationary.

The following equivalent Lagrange multiplier/fictitious domain formulation is thus

obtained

Find TeH1(Q), lieL2(y) such that

a(T, v)+Iy/Lvdy= Llfvdfl \7’ veH(l)(Q)

LTM7=LT1pd7 V ,ueL2(7) (4-2)

~

T=T0 on F  
where a(T, v)s bVT-Vv d0

4.2.3 Finite Element Approximations

The approximation spaces for the discrete variables Th ,1}, , are chosen as following:

Th ={i‘i’lfii e[C°(a>]d ,TZIE elm" flesh}
(4.3)

Ah ={AhI/lhlE7 =const.,VE7 63;}

Where d=1,2, or 3. 3h is a regular discretization of the fictitious domain (2 , 3; is the

discretization of the embedded boundary 7 , E and E7 are the corresponding fictitious

domain element/embedded boundary element. 7:}; is assumed globally CO continuous

and locally (within each fictitious domain element) Cl continuous.

Problem (4.2) can be posed as:
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Find 7:},6T},, ,1}, EA}, such that:

a(1’:},, v)+Iy/i},vd7= £1]de V VET},

1,771.1”7: Irder V #EAh

”T240 on r

(4.4)

 J
R.Glowinski in 1994 [27] made the remark that the spaces T}, and A}, can be chosen to

be independent and suggested to define A}, from the intrinsic geometrical properties of

7. This approach enables the uses of non-matching mesh sets. For problem (4.4), the

discretization can be chosen as shown in Figure 54 i.e. two meshes are used, one

underlying mesh and one to capture the boundary on which to enforce the boundary

conditions.

  
Figure 54. Discretization mesh set (left), discretization of fictitious domain (2 (middle)

and embedded boundary y (right)

This treatment provides substantial simplifications to the meshing task, and is particularly

well suited to the situations where w is subjected to a rigid body motion [27,28]. Both R.

Glowinski et. al [27-31, 33-35] and Betrand et. a1 [32].employed this approach to

construct the approximation spaces and simulate the flow around moving rigid bodies of

various geometries.
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4.3 Effects of the Presence of a Multiplier Within an Element

The use of non-matching meshes to solve a problem with an embedded boundary

constraint ofien results in the Lagrange multipliers that are not located at the nodes of the

underlying Cartesian mesh. When the extended solution of the problem is discontinuous

(with respect to the first derivative of the variables) across the embedded boundary, the

original governing equations (Eq. 4.1) defined in (Na) are not valid for the extended

domain 0 even if the formulation of Eq. 4.2 still holds.

In a finite element approximation, the extended domain (2 is discretised into a collection

of preselected finite elements, the solution over each element then can be approximated

by a set of approximation functions derived from the interpolation theory [37]. These

approximation functions are often algebraic polynomials which are smooth and process

no discontinuities, which means when applied with LM/FDM, the solutions are still

assumed to be smooth in the interfacial regions where the corresponding Lagrange

multipliers is located, the approximation functions then can not track such a jump of the

local gradient and thus introduces local errors in the numerical solution (as the adjacent

nodes are adjusted to enforce the Dirichlet boundary conditions within the corresponding

element).

Figure 55 illustrates a LM/FDM implementation for one-dimensional steady state heat

conduction problem with non-matching mesh set. Obviously, the linear approximation of

the unknowns cannot capture a discontinuity of the first derivative within an element.
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— Exact Sch-lion

 

   7 Exact Solution ‘

-- LM/FDM Solution (linear)

 

Figure 55 A linear approximation of the solution enforces the embedded boundary

constraint but cannot capture a discontinuity in the first derivative at other location but

the nodes. The right figure is an enlargement of the solution near the location of the

multiplier.

In Figure 56, another example for a two dimensional case is provided. In this figure, the

absolute and relative errors are shown and it can be seen that the errors are very high on

the nodes surrounding the collocation points corresponding to the Lagrange multipliers.

 

Figure 56 Absolute error (Lefi) /Relative Error (right) introduced by the LM/FDM for 2-

D steady state heat conduction problem. Eabs and Ere] is defined as the point wise

errors with Eabs =|T —T},|,E,.e} =|T—T},I/ T , the LM/FDM solution is obtained using

gauss quadrature integration.

4.4 Parametric Study on the Sources of the Errors

Second order problems with single unknown and constant coefficients should have

almost no error between the exact solution and the body fitted finite element solution at

the nodes [37]. Clearly this is not the case for the Lagrange multiplier/fictitious domain
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methods as observed from figure 55 and 56. The finite element solutions do not coincide

with the exact solutions at the nodes.

To study the effect of a Lagrange multiplier located within an element, a simple one-

dimensional problem is considered. The problem is shown in Figure 57.

 

 

Figure 57 The extended problem possess discontinuity across the embedded boundary

xk: Original problem: —AT = x in (xa,xk)with boundary condition

TIxa = a and Tlxk =0; Extended problem: —AT =0 in (xa,x},)with embedded

boundary constraint: TIxk = 0 and boundary condition Tlxa = Ta ’Tlxb = T},;

The exact solution to the above problem is given by:

3
x + x+d xe x ,xT(x)= a1 3 01 1 (a k) (4.5)

azx +c2x+d2 xe(xk,xb)

where:
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01:02 :-——;

1 3 3 1 3 3
Ta+g(xa‘xk) Tb+g(xb_xk)

cl: ; 6‘2: ; (4.6)

xa"xk xb‘xk

  

1 3 1 3

dlzgxk_qu; dzzgxk—czxk;

This solution will be used below for studying the quality of the LM/FDM solution.

Two measures are used to estimate the quality of the solution: the energy norm and the

L2 norm. These two measures are defined as:

l

2 5
Energy norm: ||e||1=||T—T},"l ={E[%xl—%] {it} (4-7)

1

L, norm: ||e||0=||T-T},"O ={ E(T—T},)2 dx}2 (4.8)

Clearly, other factors other than the element size that can affect the accuracy of the

LM/FDM solution. It can be observed that by adjusting the relative position of the

Lagrange multiplier inside the element or the value of the applied Dirichlet boundary

condition at the auxiliary part, better LM/FDM solutions can be obtained: in Figure 58,

when the Lagrange multiplier locates on the nodes’ position of the corresponding element

(left) or the exact solution for the extended problem does not possess discontinuity across

the embedded boundary (right), there is no requirement of having a discontinuous slope

inside the corresponding element and the LM/FDM solutions coincide with the exact

solution at the nodes.

55



 

»———~ Exact Solution 1

_-~- LM/FDM Solution (linearL‘
 

    —— Exact Solution

_,_. LM/FDM Solution (linear) j
 
 

(2). 7; =0], 7; =0 7;, =—1

Figure 58 LM/FDM solutions coincide with the exact solution at nodes when no

discontinuity locates inside the corresponding element: Lagrange multipliers locate on the

adjacent element nodes (case-1); no discontinuity exists across the interface region (case-

2)

Three influence factors are studied here: the element size (h), the relative location of the

multipliers within the corresponding element (xkrd , where xkre} = (xk—x1)/ h

with xk the location of the Lagrange multiplier and x1 the adjacent node’s location), and

the value of the applied auxiliary Dirichlet boundary conditions (here a nondimensionless
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parameter—the ratio of both the Dirichlet boundary conditions, a = Tb ITC, is first used

to study the boundary condition’s effect) which determines the jump of the local gradient

of the solution.

4.4.1 Auxiliary Boundary Condition Influence

By adjusting the value of the auxiliary boundary condition (Figure 59), it can be observed

that both the errors reach the minimum values at the specific condition a = —10 , which is

compatible to the results of the body fitted finite element method (BFM methods, we

employ this method in this article for the comparison, both methods use the linear

elements here), and then gradually increase when a(correspond to the auxiliary

boundary condition) changes in both directions.

 0.4 __ Ilello (LM/FDM Solution. h=0.2) 4

0.35 ||e||1(LM/FDMSolution,h=0.2)

, __ "eno (BFM Solution, h=0.22)

_. _ ||e||1 (BFM Solution, h=0.22)

.
0

r
.

  

r
e
n
o
w
n
”
;
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a.-

s
1:.»

p 5?

  
 

 

Figure 59. The influence of the auxiliary boundary condition (xkrel = 0.5 ).

As already mentioned in section 4.3, through domain extension the exact solution may

possess a jump of the local gradient across the embedded boundary 7, it usually cannot

be avoided in the 2-D and 3D case. By adjusting the auxiliary boundary condition, the

magnitude of the jump varies. To make this clearer, another parameter 0 (Figure 60) that
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represents the magnitude of such a jump is introduced and its relationship with the errors

is studied.

 

 

Figure 60. Definition of 49

Figure 61 shows the relationship between (9 and the auxiliary boundary condition. At

a = —10 , the exact solution smoothly across the embedded interface (6 = 180°).

Changing auxiliary boundary condition in both direction(a < —10 and a > —10), cross-

boundary discontinuity exists and varies.

 

 
   

Figure 61. a — 0 relation (where a = —10 corresponds to 6 = 180°)

In LM/FDM methods, when the boundary mesh is not conformal to the underlying

Cartesian mesh, this discontinuity will locate inside the corresponding fictitious domain
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element (the interfacial element), which means the Lagrange multiplier is located within

that element. For this local element region, the use of smooth weighting function

approximations is inadmissible. It is very difficult to capture features of such a

discontinuity thus introduces error. From figure 62 it can be seen that (in the case of the

Lagrange multiplier locates inside element) when 6? = 180° (corresponds to a = —10),

which means the exact solution is smooth in the local interfacial region, minimum errors

can be achieved. The errors increase gradually when the angle becomes sharp (0 < 180°)

 

  

     

or blunt (0 > 180° ).

”5 __ ||e||0 (LMIFDM Solution. h=0.2)

0,3. - - - ||e||1(LMIFDM Solution. h=0.2)

. _ neuo (BFM Solution. h=0.22)

0.25» __ _ ||e||1 (BFM Solution, h=0.22)

E 0.2 ‘,

.—_-90 15k

g

0.1 ~

0.05»

0'- 1 .1 . l. ._ I l q

60 120 140 160 240

 

0 (degree)

Figure 62. The influence of the local gradient jump ( xkre} = 0.5 ).

4.4.2 Mesh size and relative Lagrange multiplier inner element position influence

A decrease in the element size should significantly improve the precision. But from

figure 63,64, it can be observed that the absolute error does not linearly change but

exhibits some “oscillation” as the mesh is refined. A continuous reduction in the element

size (here we assume uniform discretization) will change the relative location of the

Lagrange multiplier within the corresponding interfacial element. This affects the

accuracy of the local finite element approximations and the errors are greater than the
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ones for the body-fitted finite element solutions except under some specific condition for

which they are equal.

For a fixed fictitious domain, a change in the element size (here we assume uniform

discretization) will cause the change of the relative location of the Lagrange multipliers

within the corresponding interfacial element, it also oscillates with the element size

(Figure 65). This oscillation is synchronous to the error-element size oscillation.
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Figure 64 Energy norm oscillates with the mesh refined (compared with BFM solution,

a=1)
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Figure 65 xkre} oscillates with the mesh refined (a = 1)

Thus the relative position of Lagrange multiplier also plays a key role in affecting the

solution accuracy. It is then necessary to study the influence of element size and relative

location of Lagrange multiplier within an element separately.

For fixed relative location of the Lagrange multiplier (figure 66,67), it can be seen that

error linearly changed with element size. Plots of log||e||0 and log||e||l versus logh

show that:

1. When Lagrange multiplier located inside elements (xkrel e(0,l)), the errors can

be expressed as:

log N e ”0: logh + log Co + log f0 (xkrd) (4.9)

log ll elll= 10gh+10g61 +logf1(xkrez) (4.10)

which means convergence ratio of the LM/FDM solution is 1 in the L2 norm and 1

in the energy norm. In this case, the errors are greater than the ones in the body-

fitted finite element methods and the convergence ratio is smaller than in the

body-fitted finite element methods (which equals 2).
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2. When Lagrange multiplier located on the boundary of the correspond elements

(Xkrel = 0 ), then:

log ||e||0=210gh+logc0 (4.11)

log ||e|l1=logh+logcl (4.12)

which is exactly the same errors as the body-fitted finite element methods: the

convergence rate is 2 in the L2 norm and 1 in the energy norm. Generally, such

situation is very difficult to obtain in 2-D and 3-D when LM/FDM is employed

with independent discretization for the fictitious domain and embedded boundary.
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Figure 66. Plots of the L,norm of error versus element size. The log-log plots give the

rates of the convergence in the L2 norm. The rates of convergence are given by the slopes

of the lines (the plots shown are for linear elements).
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Figure 67. Plots of the energy norm of error versus element size. The log-log plots give

the rates of the convergence in the energy norm. The rates of convergence are given by

the slopes of the lines (the plots shown are for linear elements).

If the element size get fixed (figure 68), it can seen that the error is a parabolic-like

function of the Lagrange multiplier relative location: It will reduce to the minimum value

as it approaches the nodes of the corresponding element but will gradually increased and

finally reach the peak value as it approaches the center of the element.

 

||e||0= f0(h)+ f(xk,e}) = f0(h)+Za,-(xkre} —0.5)‘ (4.13)

i

llel|1=f1(h)+f(xkre1)=f1(h)+2bj(xkrel -0-5)1 (4-14)

1'
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Figure 68. Plots of the L2 /energy norm of error versus the relative location of Lagrange

multiplier xkre} .
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The jump of the local gradient of the solution across the immersed boundary in the

extended domain and the presence of the Lagrange multiplier within an element influence

the accuracy of the LM/FDM solution. As a result, the numerical solution is very

sensitive to relative location of the Lagrange multiplier within an element, the LM/FDM

solution then cannot achieve the same level accuracy as the body fitted method’s

(BFM’s) solution if the same type of element is used (figure 69).

 

—-—— ExactSolution

-«-—- LMIFDM Solution

-w— BFM Solution
   

 

A

r ‘r v v 1 T"

‘I

Figure 69. Solution comparison of the LM/FDM methods and BFM methods (both use

linear element) : BFM solution possess no error at the node while LM/FDM introduces

errors

4.5 Reducing the error

There are several ways to reduce the errors, obviously include mesh refinement (figure

70), and adjusting the Dirichlet boundary condition for the auxiliary domain in the

extended problem (figure 72). But as shown already, the LM/FDM solution is very

sensitive to the location of the Lagrange multiplier inside element, mesh refinement for

the fixed fictitious domain may not produce an improved solution (figure 71). And also,

as we have discussed in section 4.4, even the relative location of Lagrange multiplier

within an element is fixed, LM/FDM methods converge slower than the body fitted

methods. Regarding the auxiliary boundary condition adjustment, it only works for the



external domain-extending problem and the correct direction of the adjustment is not

known in most cases.

Exact Solution 

_-_.LM/FoM Somflon(h=02,xh“=05)

_s- LM/FDM Somuon(h=008.xgfl=015)

 

 

Figure 70. Mesh refinement may get a better solution

ExactSolutlon

_ .__ LMIFDM Solution (h=0.2.xkn'=0.5)

—o— LMIFDM Solution (h=0.22. xk"'=0.95)

 

 

 

Figure 71. Mesh refinement may produce a worse solution: with a coarser mesh (h=0.22),

we can even get a better solution (compared with h=0.2)

_ ExactSolution

_,_ LM/FDM SoMfion(a=1)

_o- LMIFDM Solution (a=-1)

 

 

Figure 72. By adjusting auxiliary boundary condition adjustment from

Tb = 0.1 (corresponds to a =1) to T}, = —0.1(corresponds to a = —1), a better solution

can be obtained

High-order element can also provide a better solution because it use high-order

polynomials which can approximate the discontinuity much more accurate than linear
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element (figure 73). But the error analysis shows it also is sensitive to the relative inner

element location of the Lagrange multiplier and the L2 norm does not show much

improvement compared to the BFM solution and LM/FDM linear element solution. Thus

in LM/FDM employing high-order elements is also not a featherable way for reducing

error(figure74 and 75), plus, both mesh refinement and high order element is expensive.

Exact Solution
 

-«--- LM/FDM Solution (linear elements)

—o— LM/FDM Solution (quadratic elements)

 

  
(2) local zoom in

Figure 73 High order element can get a better solution (1) because it can approximate the

discontinuity much more accurate (2).
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4.6 Fictitious Constraint Methods

The multipliers enforce specified constraints within the elements but induce errors on the

adjacent nodes. A possible approach to mitigate the errors on the adjacent nodes might

consist of adjusting the embedded boundary condition to a value that reduces the error

locally. This approach thus introduces artificial boundary conditions that are referred to

here as the fictitious constraints. In this method, the embedded boundary condition is

adjusted to an arbitrary value that can be predicted from the standard LM/FDM solution.

This approach can be illustrated by considering a linear approximation T', which

satisfies a specific embedded boundary condition Txk :17: (T; is the “Fictitious

Constraint ”), that coincides with the exact solution at the nodes (Figure 76), then

obviously TI: = T1 *(1— xkrel) + T2 *kaI (T1,T2 are the nodal values for the interfacial

element [X1, X2 ]) and may not be the actual embedded boundary condition Txk =Tk if

a discontinuity in the first derivative of the solution exists.

Exact Solution

-4“ LMIFDM Solution T'

 

 

Figure 76. A LM/FDM Solution which satisfying a specific embedded boundary

condition (“Fictitious Constraint”) coincides with the exact solution at nodes
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Such a bridge up with a proper value for “Fictitious Constraint ” I]: modifies the

extended problem as following:

Find TeH1(Q), 161.2(7) such that

a('i‘, v)+IrAvd7= [)fvdn v veH,1,(r2)

LTpdy=IlTk*,ud7 V ,ueL2(7) (4-15)

~

T=T0 on r  
where 61(2', v) 2' LIVi-Vv dQ

The solution for this modified equation can coincide with the solution for equation 4.2 in

most regions except the interfacial region.

Knowledge of the exact solutions for the two different non-interfacial regions [X01X1]

and [X2,Xb] of Figure 76 makes it simple to construct a smooth solution define on

~

5
[X1,X2] that satisfies the governing equation a(T v)+ led7= bfvdfl with

boundary condition [T1,T2] and the corresponding fluxes at position Xl , X2. The

combined solution of these three regions [Xa,X1],[X1,X2] and [X2,Xb] also

satisfied the governing equation 4.2 and the corresponding boundary condition, only the

embedded constraint is different from the original problem. Its value can be adjusted

depending on the selection of the element type.

In this case the “Fictitious Constraint ” can be adjust to the theoretical condition

Tx = T}: because the exact solution of [Ti , T2] is already known, but in practice, a two-
k

step predictor-corrector procedure based on the solution obtained for standard LM/FDM

allows to find the appropriate value of the fictitious constraint.
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The procedure consists of first assuming that the exact solution in the neighborhood

(must cover at least 2 elements) of the interfacial region (in both the original domain side

and auxiliary domain side) is smooth, almost linear and does not possess any other

discontinuity (Figure 77). It can then be assumed that the solution near the multiplier is

linear (such as in zone 1 defined in [X0, Xk] and zone 2 defined in [Xk,X3]).

Linear

Zone 2

/

 

 
 

 

 

 

Linear

Zone 1

fl“‘\

\\

.....

33). ..............if3.-- Xk x2 it-    

Figure 77. Linearity assumption of the boundary-neighboring zones: Variable

distributions in each separated boundary-neighboring zones (such as zone 1 and zone 2

which belong to different domain-original domain or auxiliary domain) have similar

slope.

In second it is assumed there are sufficient number of elements in each zone so that the

variable distribution in the interfacial region such as [X1,Xk] ( [Xk,X2] can be

predicted from the neighboring element region [X0,X1] ([X2,X3] in the same linear

zone.

Third, the derivative of the LM/FDM solution is assumed to approximate the derivative

of the exact solution in regions except near the interfacial element region (Figure 78).
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The slope computed near the multiplier is extrapolated from each sides to the slope

within the element associated to a multiplier (such as regions [X0, X1] and [X2 , X3]).

 

;— ExactSolution

_ + — LM /F D M s o In tio n_ _(_l_inewa_r)__

Regiok

 

 

 

 

    
I---------------‘---—'----‘

Figure 78. Derivative similarity assumption: Variable derivative of the LM/FDM solution

in each region (region 1 or region 2) is similar to the exact solution.

The predicted solution from standard LM/FDM then can be used to obtain more accurate

nodal values for the interfacial elements! and the “Fictitious Constraint” can be obtained

by the corrections based on these nodal values. This is described in detail below with

Figure 79 for the problem described in Figure 57 as following:

 

 
Figure 79. Implementation of fictitious constraint method in 1-D(The solid line is the

exact solution; the dotted line is the LM/FDM solution and dashed line the fictitious

constraint solution).
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1. First computing, using LM/FDM method (enforcing the original boundary

condition) a solution T* (which takes value 71*]; at nodal X1,X2 respectively).

For this solution the derivative in the non-interfacial region is similar to the one of

the exact solution (assumption 3). Hence the derivatives (in the LM/FDM solution)

for regions [X0, X1] (corresponds to the derivative k1) and [X2,X3] (corresponds

to the derivative k2) can be estimated.

2. Once k1 and k2 are known, from assumptions 1 and 2, the derivative of the

solution in region [X1,Xk] ([Xk,X2]) is similar to that in region

[X0,X1]([X2,X3]), with assumption 3, it can be treated as the same value

obtained from the LMIFDM solution in region [X0,X1]( [X2,X3]), which implies

the slopes in the interfacial regions [X1,Xk] ([ Xk,X2]) is k1(k2 ). The nodal

values T1,T2 for this interfacial element then can be approximated by a linear

extrapolation from the boundary condition to the adjacent nodes as:

T1 =k1xkre} +Tk (416)

T1 =k2(1-xkre})+Tk .

3. The fictitious constraint thus can be computed based on the adjusted nodal value

and the relative location of the Lagrange multiplier inside [Xl , X,] :

a:

Tk =Tk+T1(l—xkrel)+T2xkre, (4.17)

4. The computed fictitious constraint is finally used as boundary condition and the

problem is solved again.
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A much more accurate can then be obtained (Figure 80).

    

——- ExactSolution g

_.- BFM Solution 1

---- Standard LMIFDM Solution

—o- Fictitious Constraint LMIFDM Solution 

 

 

 

Figure 80. “Predict-Correct Fictitious Constraint” methods obtaines better solution. Note

0

the boundary constraint is adjust from original position A to A.

The error analysis also reflects such improvements: The L2 norm and energy norm is

smaller than that obtained fiom the standard LM/FDM methods (figure 81, 82) but still

shows some oscillations. They do approach nonetheless the results for standard body

fitted finite element methods. When compare to the standard LM/FDM method, the

errors are not very sensitive to relative location of the Lagrange multiplier inside

elements (figure 83 84); the convergence ratio for L2 norm is also improved (figure 85),

and the errors are also not sensitive to the adjustment of the boundary condition (figure

86).

We also need to point out that when the discontinuity angle satisfy some specific

condition (6 e[160°,195°] for this problem), the standard LM/FDM solution is more

accurate than the fictitious constraint method. The solution is then almost smooth across

the boundary so LM/FDM can approximate well the exact solution.
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Figure 81. L2 norm comparison for three methods : Standard LMIFDM, Fictitious

Constraint LM/FDM, Body Fitted methods
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Figure 82. Energy norm comparison for three methods: Standard LM/FDM, Fictitious

Constraint LM/FDM, Body Fitted methods
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Figure 83. L2 norm is not very sensitive to relative location of the Lagrange multiplier

inside elements for Fictitious Constraint LMIFDM methods
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Figure 84. Energy norm is not very sensitive to relative location of the Lagrange

multiplier inside elements for Fictitious Constraint LMIFDM methods
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Figure 85. Plots of the LGorm of error versus element size. The log-log plots give the

rates of the convergence in the L2 norm. The rates of convergence are given by the slopes

of the lines (the plots shown are for linear elements).
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Figure 86. L2 norm and energy norm is not very sensitive to the local gradient jump for

Fictitious Constraint LMIFDM methods

4.7 Shape Reconstruction Method

Since the embedded boundary condition on 7 imposes a very strong constraint on the

solution, properly relaxation of this constraint may also reduce error. One of the easiest

way to realize this idea is shifting the location of Lagrange multiplier to the nearest nodal

points in the corresponding interfacial element. Figure 87 illustrates this idea. Since we
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assume that the mesh is fine enough and no great variations near the interface region, the

modified solution should approach the original solution.

 

— Original Solution (exact) W

— — — Modified Solution (exact) j ,' ' \\
 

  

 
Exact Solution

- + — Standard LMIFDM Solution

#0.. Shape Reconstruction LMIFDM Solution
/,._

 

(b)

Figure 87. Shifting the location of Lagrange multiplier from xk to the nearest node x1 in

the corresponding interfacial element (a) will obtain a better solution (b).

The errors analysis also shows such improvement under some specific conditions: The

L2 norm and energy norm still Show the oscillation but they are smaller than that

obtained from the standard LM/FDM methods and greater than the fictitious constraint

methods (figure 88); Compare to the standard LM/FDM method, the errors are not very

sensitive to relative location of the Lagrange multiplier within elements (figure 89) and

the discontinuity angle (figure 90), but much more sensitive if compared with the one

from Fictitious Constraint methods. When the discontinuity angle satisfy some specific
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condition (06 [1300,2100] for this problem), the solution of standard LMIFDM is more

accurate than that of Shape Reconstruction method.
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Figure 88. Energy norm (a) and [Q norm (b) comparisons for three methods: Standard

LMIFDM, Fictitious Constraint LMIFDM, Shape Reconstruction LMIFDM
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Figure 90. Energy norm (a) and L2 norm (b) are not very sensitive to relative location of

the Lagrange multiplier inside elements (compare to the standard LM/FDM methods) but

much more sensitive (compare to the fictitious constraint LMIFDM) for Shape

Reconstruction LM/FDM methods

4.8 LMIFDM in Two Dimensions

The essential concepts about stand LM/FDM, Fictitious Constraint LM/FDM and Shape

Reconstruction LM/FDM that are outlined in the above sections do not change in two or

three dimensions. The only difficulties that emerge are related to the computation of the

boundary integrations associated with the embedded boundary 7 ( ledy , Liudr and

LTlpdy in equation 4.2 for example) and the implementation of the Fictitious

Constraint and shape reconstruction ideas in a higher dimension space.

4.8.1 Boundary integrations

Typically these embedded boundary integration can be evaluated through Gauss-

Legendre Quadrature [27] which is summarized as following (2-D case):

Suppose the function for boundary 7 take the following forms:{x=x(s) , then the

y = y(s)

integration I, f(x, y)d7 can be evaluated through the formula:
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LfOCJVY = £912 f(X(S), y(s))\/x2 (s) + y2 (s)ds , which changes to the one dimensional

problem EF(x)dx which then can be approximated using Gauss-Legendre quadrature

pending on the degree of function F(x) .

Another alternative approach developed by Betrand et a1 [32] in 1997 is the collocation

methods which employs the Dirac delta function to enforce the embedded boundary

constraint T = T04), pointwisely, in this method, the space for A}, is defined as a

collection of control points {7,} which discretized the embedded boundary 7, then

i=1

Ah can be expressed as:

Ah ={A},

where 6(-) is the Dirac delta function. The boundary integration then can be easily

 

N

11}, = Z&§(i-E),21,lz,mljv 6 R2} , (4.18)

i=1

obtained as:

4mm” LEMtX—innxwpzzinxi) (4.19)

i=1 i=1

This treatment simplify the computation process, but introduces errors since it only

enforce the boundary condition at the collocation points. Figure 88 ,89 show the different

between these two approach.

81



 

Figure 91 Absolute errors (lefi) and relative error (right) for the stand LMIFDM using

Gauss Legendre quadrature

 

Figure 92 Absolute errors (left) and relative error (right) for the stand LM/FDM using

Collocation method

4.8.2 Implementation of Fictitious Constraint LMIFDM in 2-D

The application of fictitious constraint methods in 2-D is straightforward. A heat transfer

example is provided to illustrate the implementation in the context of linear element

combined with the using of collocation method ( the integration using Gauss-Legendre

quadrature method is similar):

Suppose we have an interfacial element E0 with a collocation point xk locates inside

(Figure 93). A numerical solution 731d is already obtained from standard LMIFDM.
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Figure 93 Illustration of the implementation fictitious constraint LM/FDM

Then the fictitious constraint T* at location xk can be obtained from the following

formula:

I! 4 E0

T lxk = TO + Z 7i—pre¢i

i=1

 

 
Y=Xkre1 . (4.20)

 

4

E0 _ l Ek Ek __
where Ii—pre';§ 7; —ZITJ- ¢j|X=Xkre1

J:

Where the following are defined:
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71.11261: Solution obtained from the standard LM/FDM for the ith (i=1,2,34)

node of element Ek ;

Tigre: Predicted solution for the ith (i =1 ,2,34) node of interfacial element E0;

37:; : the collocation points xk ’3 relative position in element’s local

coordinate;

n: the total number of similarity neighboring elements;

k = N1, N2,...Nn is the corresponding similarity neighboring element.

For example, node 1 in interfacial element E0 has four neighbors (E0 , E1, E2 , E4),

among these neighbors only the one located in the non-interfacial region can be used for

computations, these elements are referred as the similarity neighbors (E2 ,.E4 ). A more

accurate nodal value (for node 1 in E0) then can be predicted from following:

 

4

E0 _1 Ek Ek ._

Tam—3 2: T1 —ZT,~ Name, (421)
k=2,4 j=l

Table 4 lists all the relative information for the correction of the fictitious constraint at

location xk in E0.
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Table 4 Computing the fictitious constraint
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Figure 94 and 95 show the errors obtained for the Fictitious Constraint method with the

collocation approach and Gauss-Legendre quadrature approach, respectively. We can see

the fictitious constraint method for these two approaches provides significantly more

accurate results than previous LM/FDM.
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Figure 94 Absolute errors (left) and relative error (right) for the Fictitious constraint

LM/FDM using Gauss Legendre quadrature

 

Figure 95 Absolute errors (lefi) and relative error (right) for the Fictitious constraint

LMIFDM using collocation method

4.8.3 Implementation of Shape Reconstruction LMIFDM in 2-D

The implementation of shape reconstruction LM/FDM in 2-D is much more easier. This

can be shown in Figure 96. For collocation approach, the location of the Lagrange

multiplier at xk can be simply moved to the nearest nodal position x2. For the Gauss-

Legendre quadrature approach, the edge that connects the two neighboring Lagrange

multipliers needs to be reconstructed, one simple way to do that is just use the edges that
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connect the nearest node in the corresponding interfacial element. Other approaches may

also be feasible.

 

 
 
 

*

x3

i. ‘3 X3

 7
.
x

 

.
"

    

Figure 96 Illustration of the Shape Reconstruction in 2-D, where xk represents the

location of the Lagrange multipliers and x]: represents the reconstructed location (the

nearest nodal position), the thick-solid line represents the original boundary, and the

thick-dashed line represents the reconstructed boundary.
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Figure 97 and 98 show the errors obtained for the Shape reconstruction method with the

collocation approach and Gauss-Legendre quadrature approach, respectively. The results

with gauss Legendre quadrature approach provide good results than the one from

standard LMIFDM. With the collocation approach, the results are not good.

 

Figure 97 Absolute errors (left) and relative error (right) for the shape reconstruction

LM/FDM using Gauss Legendre quadrature

 

Figure 98 Absolute errors (left) and relative error (right) for the shape reconstruction

LM/FDM using collocation method
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Chapter 5

Conclusions

This project explored the applicability and use of moving grid technique in simulating in-

cylinder flows for internal combustion engine. Current CFD codes use three strategies:

spring deforming, local regridding and layering to handle the moving mesh for engine

simulation. Simulations for a generic IC engine intake and compression stroke process

have been performed using FIRE- an engine simulation code based on the above moving

mesh strategies. The in—cylinder flow process are studied and analyzed. Three major

issues that limit the application of moving gird technique: interpolation errors, human

cost for mesh generation and the quality of grid system, are discussed based on the work

of the in-cylinder flow simulations for Generic IC engine.

Fictitious domain methods reduce the complexity ofmeshing by using a simpler auxiliary

domain and augmenting a functional to implement the original boundary conditions in the

extended auxiliary domain. A possible fictitious domain approach, attractive for its

simplicity in 2-D and 3-D, is based on using Lagrange multipliers combined either with a

“collocation-like” method or the Gauss Legendre quadrature based boundary integration.

The presence of a Lagrange multiplier within an element in LM/FDM introduces

significant errors on the adjacent nodes when the extended problems process

discontinuity across the embedded boundary, the magnitude of the errors is related to the

jump of the local gradient across the embedded boundary and the relative location of the

multiplier with respect to the adjacent nodes. Compared to the body fitted methods, this

reduces the convergence ratio in L2 norm with fixed relative Lagrange multiplier position
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for the LM/FDM methods. Either adjusting the boundary condition with the factitious

constraint or changing the location of the Lagrange multiplier to the adjacent nodes can

provide improved numerical solutions for 1-D and 2-D steady state heat conduction

problem. Further investigations and improvement methods are desired.
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APPENDIX

Turbulence Boundary Layer

1. The Concept of y+

The dimensionless symbol y+ is related to the characteristics of near-wall turbulence

flows. In flows along solid boundaries, there is a region of intertia-dominated flow far

away form the wall and a thin layer within which viscous effects are important. Close to

the wall, viscous effects dominate the flow and the mean flow velocity only depends on

the distance from the wall:

u

u+ =—=[M]=f(y+)
“r 4“

The above equation is termed law of the wall and contains definitions for the two

dimensionless group y+ and u+. u, is the friction velocity and is defined as :

y+ provides a useful measure of the influence of the viscous layer (near the wall) given a

flow velocity. The near-wall region can be largely subdivided into three layers. In the

innermost layer (viscous sublayer), the flow is almost laminar and viscosity plays an

important role in the momentum transfer. In the outer layer (fully turbulence layer),

turbulence plays a major role. This region is also called the log-law region as u+ is a

straight-line function of y+. There is an intermediate region between these two layers

where the effect of viscosity and turbulence are equally important.
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2. Wall Function

Two approaches available to model the near-wall region. In one approach, the viscous-

affected inner region (viscous sublayer and buffer layer) is not resolved. Instead, semi-

empirical formulas called “wall functions” are used to bridge these regions between the

wall and the fully turbulent region. With wall functions, the need to modify the

turbulence models to account for the presence of the wall is obviated. Another approach

modifies the turbulence models to enable the viscosity-affected region to be resolved with

a mesh all the way to the wall, including the viscous sublayer.

The wall function approach saves considerable computational resources because the

viscosity-affected near wall region, where the solution variables change most rapidly,

does not need to be resolved. This provides a practical option for turbulence flow

simulations.

However, the wall function approach is inadequate in situations where low Reynolds

number effects prevail in the flow domain and the assumptions underlying the wall

functions cease to be valid. Such situations require near-wall models that are valid in the

viscosity-affected region and hence can be integrated all the way to the wall.

3. Near Wall Mesh Generation for Wall Functions

The region near the wall is meshed finer than the rest of the cross section, as it contain

the maximum amount of gradients, The distance form the wall at the wall-adjacent cells

must be determined by considering the range over which the log-law is valid. The first

grid point away form the wall is usually placed in the log-law region with y+ 6 [30,300] .

At least five points must be placed in the boundary region to resolve the gradients

sufficiently for most flow situations.
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