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ABSTRACT

NATURAL RESONANCE REPRESENTATION OF THE TRANSIENT FIELD

REFLECTED BY A PLANAR LAYERED LOSSY DIELECTRIC

By

JONG CHAN OH

The impulse response of a conductor-backed or air-backed lossy dielectric slab with

frequency independent or dependent (Debye type) material parameters is evaluated

analytically. It is shown that the impulse response consists of a specular reflection

from the interface between free-space and the dielectric slab during the early—time

period, and a natural mode series, which is a pure sum of damped sinusoids whose

frequencies are determined by the poles of the complex s—plane reflection coefficient,

during the late-time period. Time—domain responses using a truncated Gaussian

pulse as an input with an arbitrary incident angle and with parallel or perpendicular

polarization are compared to responses found by the inverse fast Fourier transform.

The results may be applied to material characterization using the E—pulse method,

and also give physical insight into the nature of transient scattering by a layered

medium.
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Chapter 1: Introduction

Time domain electromagnetics has been utilized for various applications such as

target-signature analysis and the determination of the intrinsic properties of

materials [1], mainly due to its adaptability to the broadband signals. The

singularity expansion method (SEM) [2] which views the late-time period transient

response of a scatterer as a series of the residues at the poles of the Green function

[3], has been studied by many researchers for the target—signature analysis purpose.

Here, the late-time period refers to the time period after the forcing function

completely excites the entire body of a scatterer, whereas the early-time period

refers to the time period before the late-time begins. The applications of the

singularity expansion method and its limitations are found in [4H6].

On the other hand, the E-pulse method [7H9] which is one of the most

successful target identification schemes using the singularity expansion method, can

be used for non-destructive material testing [10], [11]. Here, the E—pulse refers to

the signal that is synthesized to annihilate the output response when it is convolved

with the late-time period target response, such that it can provide a measure to

determine the closeness of the unknown target signature to the library of the known

target signatures.

Layered materials are often applied to conducting surfaces for the purpose of

reducing the scattered field strength within specific frequency bands. Because of the

band-limited nature of the reflected field, a wideband pulse can be used to

interrogate the layered structure so as to characterize the materials or determine

whether the materials have degraded. The E—pulse method can be used to

determine whether the material properties have changed compared to baseline

values determined by previous measurements or constructed by analytically

obtained natural resonance series, provided that the late-time response can be



 

expressed as a natural resonance series. Therefore, it is important to identify the

natural frequencies, i.e., the poles of the reflection coefficient in the complex s-plane,

and to show that the late-time response is indeed a sum of damped sinusoids.

So far, there has been no detailed analysis of the transient response of a layered

medium as a resonance series, except the work done by Tihuis and Block in 1984

[12], [13]. They calculated the transient scattering of a normally incident plane wave

by an air-backed lossy dielectric slab using the singularity expansion method.

However, their approach was seII‘ii-analytic and did not clearly show that the

late—time response can be expressed as a pure natural resonance series, due to the

difficulty in evaluating the contributions from the branch out and the closing

contours at infinity when evaluating the Laplace inversion integrals.

In this thesis, we will consider a conductor—backed or air-backed lossy dielectric

slab with frequency independent or dependent (Debye type) material parameters,

and a plane wave excitation of both TE and TM polarization at arbitrary incidence

angle. It will be shown that the integral contribution from the closing contours at

infinity vanishes as long as the input waveform is at least APC (almost piecewise

continuous) and time limited [14]. When viewed as a functional, the delta function

can be considered APC, and thus the impulse response can be computed directly.

Also, it will be shown analytically that the branch-cut contribution for the current

problem vanishes.

By evaluating the impulse response, it will be shown that the transient field

reflected by a conductor-backed or air-backed lossy dielectric slab can be

represented as the sum of early-time and late-time components. The early-time

component consists of the specular reflection from the air-slab interface, which

persists until the arrival of the field reflected by the backing material. The ensuing

multiple reflections can be viewed as the late-time component, which is written as a

pure sum of natural resonance modes. The scattered field impulse response will be



determined as an inverse Laplace transform of the frequencydomain reflection

coefficient, and will be shown that the branch-cut contribution vanishes during the

late—time period, except for the residual contributions at the poles on the

branch-cut, allowing a pure natural resonance representation.

Results computed using the resonance formulation are verified by comparing to

the direct inverse fast Fourier transform (IFFT). The distribution of resonance

frequencies in the complex plane, and their dependence on conductivity and

incidence angle is examined.

This thesis is organized in 6 chapters. In Chapter 2, the frequency domain

formulation of plane—wave propagation in a. general planar layered medium is

presented. In particular, the interfacial reflection coefficient F (w) and the reflection

coefficient R(w) are distinctively defined, and the definitions are applied throughout

the thesis.

In Chapters 3 and 4, the transient. responses from the conductor-backed and

the air-backed cases with frequency independent material parameters are examined.

The complex s-plane poles of the reflection coefficient are found numerically and the

residues at the poles are calculated. The transient responses are constructed from

the residue series and they are compared to the responses obtained by the IFFT.

In Chapter 5, the formulation of the frequency domain reflection with a

frequency dependent Debye type permittivity [28]—[32] for both conductor—backed

and air-backed cases is presented. The transient responses from water with varying

conductivity are constructed and compared to the responses from the IFFT.

Finally, the conclusions and the proposed future research areas are presented in

Chapter 6.



Chapter 2: Frequency Domain

Analysis of Plane-Wave

Propagation in a General Planar

Layered Medium

The frequency domain rejn'esentation of plane waves in a planar layered

medium can be found in [15]. In this chapter, these representations will be reviewed

and specialized for the current problem. For the subsequent discussion, only

source—free, linear, isotropic, homogeneous materials are considered.

2.1 The frequency domain wave equation

In a source-free and simple material, Maxwell’s equations in terms of E and H

are

V x E = —jw,uH, (2.1)

V X H 2 waCE, (2.2)

V - E = 0, (2.3)

v - H = 0, (2.4)

where 6° is the frequency-dependent complex permittivity which is a combination of

the conductivity 0(w) and the permittivity 6(a)). The curl of (2.1) is then,

V x (V x E) = —jwn(V x H) = -jw,u(jw6°E).



Since, V X (V X E) = V(V - E) — V2E, using (2.3) gives

VQE + k2E = 0 (2.5)

Here, k = tin/p.66 is the wave number of the medium. Similarly, taking the curl of

(2-2),

V X (V X H) = jw6°(V X E) = jw6°(—jwnH),

and thus

V2H + 62H 2 0. (2.6)

Equations (2.5) and (2.6) are the homogeneous vector Helmholtz equations. Thus,

the rectangular components of E and H satisfy the scalar wave equation

V215) + [1721/] Z 0)

whose solution is a linear combination of the harmonic functions,

—jkr.

sinkr, coskgr, 62"”, 6

Consider a propagating-wave solution to the homogeneous vector Helmholtz

equation,

E _—_ EOE—jere—jkyye—jkzz

where E0 is the vector amplitude spectrum. If we define the wave vector

k = xk, + yr, + 216,,

then,

E = EOe-J‘k'r (2.7)



where

r = xx + yy + 2.2

If k is real, the vector phase constant 8', which is defined by B = —V<I> [16], where (1)

represents the phase of (2.7), becomes

8': —V(—k-r) = k.

Hence, the equiphase surfaces are planes perpendicular to k, and (2.7) represents a

uniform plane wave. If k is complex, it can be represented as

k = ('3 — ja,

where both [If and 62 are real vectors. Then, the wave propagation constant 7' is [16]

a: 479 = —V(—jk-r) =jk= a+j52

Therefore, the equiphase surface is perpendicular to ,6 and the eqiamplitude surface

is perpendicular to 6?. In general, it is not a uniform plane wave unless (Y and 6 are

in the same direction.

Now, from (2.1) and (2.7),

v x E = v x (Eoe‘jk'r)

z e-J‘” (v x E0) — E0 x (ye-3"")

2 "E0 X (“-jkC—jkir)

= —jk x E = —jw,u.H.



Therefore,

_kXE
 

  

 

 

H (2.8)

can

Taking the cross product. to (2.8) with k,

kXH= kx (kXE) = k(k-E)-E(k-k).

wit. wit.

Here, k - E = 0, since

v - E = v - (EUe—Jk'r)

—_— e-jk'rv . E0 — jk . Egg-1"" = 0

As a result,

k H

E = — X p . (2.9)
we

If we assume a uniform plane wave, i.e., k = kk, from (2.8) and (2.9)

k X E k E .

= = —x°e-J'”, (2.10)
77 I]

E = —nkXH, (2.11)

where 77 = CUM/k = ,/ n/ec. Clearly, these equations represent a TEM wave.

2.2 Reflection from a single interface

2.2.1 Perpendicular polarization

Consider a uniform plane wave incident on a planar interface between two lossy

regions of space as shown in Figure 2.1. Here, the incident wave is perpendicularly

polarized to the plane of incidence, which is defined as the plane containing the

wave propagation vector k and normal to the interface. At this point it should be



noted that, for a uniform plane wave, the field can be decomposed into two

orthogonal components, one parallel and the other perpendicular to the plane of

incidence. Therefore, the solutions from each case are sufficient to characterize any

arbitrary incident uniform plane wave. For the perpendicularly incident uniform

plane wave, the incident. fields are

Ei __: yEée—jkl(.rsin6,+zcos6,),

Hi _ _Q (_i COS 9, + E 8111 9i)e—jfi71(.’r 81116, + Z COS 6,)

"771

Although the reflected field and the transmitted field are not known at. this point,

they cannot have vector components not present in the incident field, in order to

satisfy the boundary conditions at the planar surface. Therefore, the reflected and

transmitted fields are

Er _ yESe—jk,(zsin6r—zcos6,.)
7

ET _ - ., . _ .

Hr = —0- (x cos 6,. + zs1n6r) e 31‘1” 51119,. 300° 6’”),

771

and

Et __ yE(t)e—jk2(.rsin6,+zcos6,),

E’ . . .

Ht = J(—xcos6,+zsm6,

772

)e_jl,~2(:r sin 6, + 2 cos 9:)
9

respectively. In order to satisfy the continuity of tangential E and H over the entire

interface, the Lit-variation of all three partial fields must be the same, i.e.,

k1 sin 6, = k, sin 6,. 2 k2 sin 6,.



As a result,

  

 

 

 

 

 

 

 

 

9,, = 9,, (2.12)

Sing’ = 5‘— : Eff“ . (2.13)
8111 6, k2 63,12

. . Ey . .
Also, z-du‘ected wave impedance Z = ——H— should be contnmous at the 1nterface,

that is

21 '320 = Z2lz=0 - (214)

erre,

(.1) i r

‘ Hf.” (E5 — 55) s a/m

Ei Er
T]l( Oil— 0) 3 (215)

cos 6,-(E6 —- E6)

E(2) l. 77‘)

Zr .: = ——-—-y—,—- =-——————==————“——-. 2.16
2L 0 H42) _0 — cos 6,/772 cos 6! ( )

From (2.14) - (2.16),

771(E6 + E6) = 712

cos 6,-(E’5 — E6) cos 6,3

or

E3072 cos 6, — 7), cos 6,) 2 E5072 cos 6, + 77, cos 6,).

Therefore,

E6 7);, cos 6, — 7}, cos 6,
1“ z __, =

E5 77;, cos 6, + 77, cos 6,

772 _ 771 (2) (1)

= cos 6, cos 6, : ii (2.17)

722 + 771 213+ zill'

cos 6, cos 6,

 



Here, F is the interfacial reflection coefficient, and 
771 772

and are the

cos 6, cos ,

z-directed wave impedances in region 1 and region 2 respectively. In order to find

the transmission coefficient T, use

 

2 X (E + ET)|,=0 = 2 X E’
 

 

2:03

and thus

Ef,(1 + F) 2 E5.

Therefore,

E"

T = —9. = 1 r. 2.18E5 + < )

Finally, collecting the results from (2.17) and (2.18),

2(2) __ Z“)

FI Z —‘L+———i—-, Ti 2 1 + F

2(2) + 2(1)

I I
(2.19)

. . . k,
2(1) _ 771 2(2) _ 772 _ 772 2

i cos 6,’ f

 

cos 6, k2,, ’

where 132,, 2 [62 cos 6, is the z-component of kg.

2.2.2 Parallel polarization

Analogous to the perpendicular incidence case, Figure 2.2 shows a uniform

plane wave incident on a planar interface between two lossy regions of space with

10



parallel polarization. In this case the fields are

D - A A . —,. I , V. . z ‘

E' 2 E6 (x cos 6, —- zsm 6,) e 1A1(.1:sm6, + (0°61),

Hi — y_Eie—jk1(rsin6, +
zcos 6,)

"71

Er = E6 (x cos 6, — zsin 6,.) e-JA'1(4L 51116,. — 4 cos 9r),

r , .

H' : _yflP—jkfirsmfi—zcosm)

7h

?

A A' _3
z:.‘

Et = E5(xcos6,—zsm6,)e
JAzil" 1116t+ cos6,),

Ht = ygdp—jkzfir sin 6, + 3 cos 6,)

772

As with the perpendicular polarization case, 6,. = 6,, and the z-directed wave

. E . . . .
Impedance Z = -H—‘T should be continuous at the Interface. In parallel polarization,

y

 

 

 

 

Z, ~=0 ___ Ejl) _ cosf),(E€, +
E6)

f
H51) 2:0 (E5 — E5l721

E' Er

: m (:0ngE'—+ E5
(2.20)

E?)
Z2lz=0 (2) = 772 cos 6,. (2.21)

Hy 2:0

 

Then, in order to satisfy the continuity of the tangential wave impedance at the

interface,

E1 + E6

7 cos6,—-— —' - c086,ll IEO_ E6 712 t

or

17, cos 6,(E(', + E6) = 772 cos 6,(E(’, — E6).

Hence,

E6 772 COS 6t _ 771 COS 6i 262) —
Z6:

E5 772 COS 9: + ’01 cos 6,- Zlig) + Zjl
 

11



In (2.22), 7], cos 6, and 772 cos 6, are the z-directed wave impedances in region 1 and

region 2 respectively. In order to find the transmission coefficient T, use

A 7 A t

Z X (El + Er)lz:0 : Z X E IZZOa

and thus

(1+ T) cos 6,-E5 = cos 6,E6.

Therefore,

t

T 1% (1+P)
cos 6, 2772 cos 6,

E0

 __ 2.23

cos 6, n2 cos 6, + 77, cos 6, ( >

Note that (2.23) is the ratio of the total electric fields at the interface. Hence, later

when we apply the tangential boundary conditions at the interfaces in order to

obtain the global reflection coefficients of the layered medium, we use

 ’”:1+F. 92%

This is the tangential ratio of the transmitted to incident electrical field.

Finally, collecting the results from (2.22) and (2.24),

 

F” =M T” 2 H p
(2) (1)’ ’

Zn + Zn (2.25)

. k: 2

2(1) 2 771 cos6,, 2(2) 2 772 cos6, = 772 2’ .
n n k,

2.3 Reflection from multiple layers

In this section, the approach used in [15] will be reviewed, and the results will

be specialized for the current problem.

Consider N + 1 regions of space separated by N plannar interfaces as shown in

Figure 2.3, and assume that a uniform plane wave is incident on the first interface

12



at angle 6,. Each region is assumed isotropic and homogeneous with a

frequency-dependent complex permittivity and permeability. As shown in the single

interface case, in order to satisfy the boundary conditions, each region, except

region N, contains an incident-type wave of the form

1' _ 2' —jk"-r
E — E06

and a reflected-type eve of the form

r _ r ,—jkr-r

E — 06 .

In region 71, the wave vectors are described as

Here, in order to satisfy the boundary conditions, Snell’s law of reflection should

hold. Therefore,

km 2 km 2 k0 sin 6,. (2.26)

For the case of perpendicular polarization, the electrical field in region n,

O_<_n_<_ N— 1, isE=Efl+Efl where

E; _ yan+le—Jk:r,nxe—Jkz,n(z—zn+1)
\

0

ET : ybn+1(“g—jkxmxe'l‘jkznxz _ Zn+l),

n

and the magnetic field is H = H; + H1”, where

 

 

H2, = —szl: + 2km (111+le—jkm,nate—jkz,n,(z -— Zn+1),

nnn

Hf, : +xk‘z; + zkm bnl+le—jkr,nate+jkrz,n(z — 2H,).

~n7ln

13



When n = N there is no reflected wave, therefore

EN = S’GNHB—JkI’Nle‘Jk‘zv-N(“ — “'N)
9

"" A f~ 7 AA‘ ’ r. A I '_ ,,

HN : xk.,.~ + Z “Vaw“e—ka,l~'-Fe—Jfrz,;v
(Z _ ZN).

knnn

 

Since (1.1 is the known amplitude of the incident wave, there are 2N unknown wave

amplitudes, and 2N simultaneous equations by applying the boundary conditions at

each of the interfaces. At interface n located at z = 2”, l S n S N — 1, from the

continuity of tangential electric field

an + b, = an+1e—jkzv"(z"— Zn“) + bn+le+jkzfi(z" — Zn“) (2.27)

while from the continuity of magnetic field

 

 

k n l A n 1 k n k 7
Z, — ‘z! — Z, -l » 4w - Z

_'an_:_—__ biz-if— : -(l,,+1 .. 6 J z,n( n n+1) +

kn— 1 Tin—1 An — 1 7711—1 A717)"

k. n ' ,. 7 _
er-l ‘ 6+]f'»z,n(~n Zn+1) . (228)

'n 11

Notng that the wave impedance of region 71 for the perpendicular polarization is

knnn

kz n
7

 
Zln :

and defining the region 71 propagation factor as

Pn = e_jkzv"A" (2.29)

14



where An = zn+1 — Zn, (2.27) and (2.28) become

anPn + ann 2 an.“ + bn+1f)3, (2.30)

Z n— Z n— .
—a,,P,, + w, = —a,,+1—i—1'- + (twp—#123. (2.31)

Zin 2111

When 2 = ZN, (2.30) and (2.31) hold if we set bN+1 = 0 and PN = 1. The 2N

simultaneous equations (2.30) and (2.31) may be solved using standard matrix

methods. However, through a little manipulation, these equations can be solved by

recursion. By subtracting (2.31) from (2.30),

  

 

 

Z n_ Z n-

2a,,Pn = a,+1 [1+ i 1] +bn+1P3 [1— i I] . (2.32)

in Z_Ln

Defining

Z n _ Z n—

,, i L 1 (2.33)

Zin + Z1n—1

as the interfacial reflection coefficient for interface 72., and

2Z1n

Z1n ‘1' 2171-1 ( )

as the interfacial transmission coefi‘icient for interface n, (2.32) can be written as

an.“ 2 anTnPn + bn+1Pn(—Fn)Pn. (2.35)

Finally, if we define the global reflection coefficient R, for region n as the ratio of

the amplitudes of the reflected and incident waves,

15



(2.35) can be written as

an+1 = a'nTnPn + an+an+1B1(—Fn)Pn- (236)

If we choose to eliminate an“ from (2.30) and (2.31) we find that

bn : (InFR + R‘Il+1Pn(1 _‘ Fn)(1,,+1. (2.37)

Equations (2.36) and (2.37) have nice physical interpretations. Consider Figure

2.4, which shows the wave amplitudes for region 77. We may think of the wave

incident on interface n + 1 with amplitude an“ as consisting of two terms. The first

term is the wave transmitted through interface n. This wave must propagate

through a distance An to reach interface n + 1 and thus has an amplitude anTnPn.

The second term is the reflection at interface n of the wave traveling in the —z

direction within region n. The amplitude of the wave before reflection is merely

b.,,+1P,,, where the term P" results from the propagation of the negatively-traveling

wave from interface n + l to interface 77.. Now, since the interfacial reflection

coefficient at interface n for a wave incident. from region n is the negative of that for

a wave incident from region n. - 1, and since the reflected wave must travel through

a distance An from interface n back to interface n + 1, the amplitude of the second

term is b.n+1Pn(—Fn)Pn. Finally, remembering that b,,+1 = R,,+1a,,+1, we can write

an+1 = anTnPn + an+1Rn+1Pn(_Pn)Pn-

This equation is exactly the same as (2.36) which was found using the boundary

conditions. By similar reasoning, we may say that the wave traveling in the ——z

direction in region n —- 1 consists of a term reflected from the interface and a term

transmitted through the interface. The amplitude of the reflected term is merely

16



anFn. The amplitude of the transmitted term is found by considering

b,,+1 = R,,+1a,,+1 propagated through a distance An and then transmitted

backwards through interface 72. Since the transmission coefficient. for a wave going

region n to region n — 1 is 1 + (—F,,), the amplitude of the transmitted term is

Rn+1P,,,(1 —— Fn)a,,+1. Thus

bn : Friar: + Rn+an(1 — P71)(l‘n+l)

which is identical to (2.37).

Now, from (2.34) and (2.36)

 

 

(1 + I‘n)P,,
..,, = , n. 2.38

a +1 1+ rrlR'n+1P,fa
( )

Substituting this into (2.37)

b + +1 " an. (2.39)
n = 1 '1‘ I‘11F2n+11jy?

Using this expression we find a recursive relatirmship for the gloval reflection

coefficient:

bn r71. + R71+1P2

R, = -— = n, . 2.40

an 1+ Pan-prf ( )

 

The procedure is now as follows. The global reflection coefficient for interface N is

obtained from (2.40) with RN+1 = 0. We next find RN_1:

2
1“IV—1+ RNP-v_1

I

R _ =
’ '

N 1
1+I‘N_1RNID,<'-1

 

This process is repeated until reaching R1, whereupon all of the global reflection

coefficients are known. We then find the amplitudes beginning with al, which is the

known incident field amplitude. From (2.40) we find I), = 0.1121, and from (2.38) we

17



find

(1 + F1)P1

0.2 = _———-—2a].

1 + FleP,

This process is repeated until all field amplitudes are known.

Note that the process outlined above holds equally well for parallel polarization

as long as we use the parallel wave impedances

 

when computing the interfacial reflection coefficients.

Now, specializing (2.40) for the problems of interest, first consider a

PEG-backed lossy slab. In this case N = 2 and R2 = ——1, thus from (2.40) the

global reflection coefficient in region 0, which is free-space, becomes

1‘, — P,2

R = ————.. 2.41

1 1 — 1“le ( )

Next, for an air—backed lossy slab where R2 = —F 1, the global reflection coefficient

in region 0 becomes

1‘1 (1 — P?)
R = ———.——. 2.42

1 1— rip; ( l
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. Z: 0

region 1: cf, n,

V

‘ C

reg1on 2: a, , u,

Figure 2.1: Uniform plane wave incident on a planar interface between two lossy

regions of space. Perpendicular polarization.
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z = 0

region 1: 810, u, region 2: 8;, u,

Figure 2.2: Uniform plane wave incident on a planar interface between two lossy

regions of space. Parallel polarization.
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2:2, 2:22

 
an+l

——>

<——

bn+l 
Z:le+l

a
__N,

{-—

bN

z=zN

 
Figure 2.3: Interaction of a uniform plane wave with a multi-layered material.
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('1)

2:2,

(n+1)

ZZZIHI

 

n+1

n+1

Figure 2.4: Wave flow diagram showing interaction of incident and reflected waves

for region n.
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Chapter 3: Natural Mode Analysis

of a Conductor-Backed Slab

3.1 Formulation of the frequency-domain

reflection

3.1.1 The frequency-domain reflection coefficient

Consider a plane wave of frequency w incident from free space onto an interface

between free space and a conductor backed slab of material with frequency

independent material parameters 6 = 6,60, 11,0, and a, and with thickness A, as

shown in Figure 3.1. In the figure, region 0 and region 1 correspond to free space

and the dielectric slab respectively. Likewise, for the subsequent discussion, the

subscripts 0 and 1 correspond to free space and dielectric, respectively. As seen in

(2.29), (2.33) and (2.41), the reflection coefficients have the general form

2 PM — PM

1 — I‘(w)P2(w)

 R(w)

where F(w) is the interfacial reflection coefficient, given in general form by

Z,(w) — Z0

”“2 =m

and P(w) is the propagation factor, defined by

P(w) = 6—].sz A.
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Since

.52 __ .2 .‘2

A'1 — kaml + Az,1

where

.. (7

[cf 2 wgnoec, 6C 2 e + —_-—,

3w

A7,, 2 k0 sin 6, = w 1106081116,,

the z—component of the wave number k, becomes

k3,, = Mk? — k3, = (AP/£06 — rug/.1060 sin2 6,

0'

= \flletok + —) — w2uueo sin2 6,

ya)

 

 

 

 

. 0 . .

= LUZ/1,060“, + _ — sm‘2 6,)

Jw’fo

a . w a

= k0\/6, + _ — sin2 6, = —\/e,. + , — sin2 6,. (3.2)

33160 c jwro

  

  

Defining E = 6,. — sin'2 6,, (3.2) can be written as

 

  

 

k3,, _ gFa), Fe») = 5+ .0 .
c wao

Hence, for perpendicular polarization

kim 770 720
Z ‘ E Z : = = . Z E Z = . 3.3

‘M M”) 1,, F(w)' 0 0t c056, ( l

and for parallel polarization

k, 7 F u)

Z1(w) E Z|](w) = _k1_771 = M, Z0 E Zn” 21706080,. (3.4)

1 6r + jwco
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As a result, (3.1) is written as

I‘(w) — 6’31”“)
 

R(w) = 1 _ I‘(w)6—jWT(“’), (3.0)

where

7(3)) 2 ZéF(w).

0

3.1.2 The impulse response

Since R(w) exists, its Laplace domain representation also exists [21H23] and is

given by

F(S) _ e—sr(s)

 

 

 

R(8) : R(wl)lg,v:s/j : 1 __ F(S)e—3T(s)l (3-6)

where

37(8) = jw7'(w)|w:S/j

2A 2A

= J'w—F(w)l..v=s/j = s— a + 3—
C C 860

2A

= _fifi S + ‘—_

C 606

2A
= _fim, (3 7)

21(8) — Z0

F . = —. 3.8

(9) 21(3) + Z0 ( )

Here 1/ = c/fi and so = —o/(€0E). For perpendicular polarization the z-directed

impedance 21(3) is

770 770

21(8) = F( > = _

w w=s/j e + f;

— "”3 (3.9) 
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and for parallel polarization

770, [6+ 33—0

_ 0

fr + 560

770117191)

0

6,. + jwéo

2.,(3) =

 w=s/j

‘Uofififl

ser+i

 (3.10)

Therefore, the interfacial reflection coefficient F(s) in (3.8) can be written as

scos 6, — 63/563 — so

P _ scos 6, + fifim' (_L p01.) 31

(s)— fififl—cos6,(ser+%) (ll 1) ( . 1)

p0.

fifivs — so + cos 6.,(56, + 203).

 

 

The reflection coefficient R(s) is the transfer function of the system. Thus, the

impulse response 'r(t) is obtained by

r(t)=£‘1{R(s)}— 1 R(s)eStds (3.12)
— .72” 87'

where Br indicates the Bromwich path. This integral can be evaluated by contour

integration. We must thus examine the singularities and define an appropriate

branch for the integrand.

3.2 Singularities and the branch cut

From the complex square roots in 8T(8) and Z1(s), the branch points are

located at s = 0 and s = so. In order to ensure the continuity of R(s), the branch

cut is taken along the negative real axis between the two branch points.

From (3.6), the poles are the roots of

1 — F(s)e—ST(3) = 0. (3.13)
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Taking the logarithm of this equation and rearranging gives

1n (“fie—37(3)] = 1n |F(s)e'ST(S)
 

+jarg [F(s)e—ST(S)] :l: j2mr = 0, (n. = 0, l, 2, - - - ).

Since —7r < arg [F(s)e‘”(5)] < 7r and the goal is to find roots, n can be set to 0.

Therefore, the poles should satisfy

ln |F(s)e_ST(5)
 
+ j arg [F(s)e‘ST(S)] = 0. (3.14)

Except for the lossless case (a = 0), wherein the poles can be calculated

analytically, the above equation needs to be solved numerically. For the lossless

case, both F(s) and T(s) are independent of s, and *1 < F < 0, i.e. arg(F) = 7r. As

a result, from (3.14), the lossless case poles are

1 .

s = —T- [111 IF] i 3(2n —1)7r], n = 1,2,3, - .. (3.15)

From (3.14) and (3.15), it is clear that the poles occur in complex conjugate pairs as

expected for real signals. Table 3.1 shows the lossless case poles, where 6, = 0°,

6,. = 9 and A = 2 cm. In the table, only poles in the upper-half complex plane are

shown.

When the conductivity is nonzero, equation (3.14) can be solved by 2-D root

search algorithms such as the Newton-Rahpson method [17], which was used in this

work using the lossless case poles as the initial guesses. At this point, it should be

emphasized that the real part of a pole should be less than or equal to zero for a

passive system. This can be shown to be true by noting that the magnitude of

I‘(s)e“"(s) in (3.14) is always less than 1 if Re{s} is greater than zero, since both

the magnitudes of F(s) and 637(3) are less than 1 as can be shown using (3.7) and

(3.11). Here, it should be remembered that so = ——0/(eoE) is a non-positive
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constant. As a result, no solution of (3.14) can exist if Re{s} is positive.

Figure 3.2 and Figure 3.3 show several pole trajectories obtained by the

Newton-Rahpson method when the conductivity 0 varies from 0 to 10 S/m for

perpendicular and parallel polarization respectively. When the conductivity reaches

a certain value, each pole becomes purely real. In the figures, the conductivity

values at which the poles become real are shown, and the corresponding pole

locations in the complex 3 plane are shown as the cross—marks. As shown in the

figures, when the conductivity increases, the magnitudes of the imaginary parts of

the poles decrease whereas those of the real parts increase until the poles approach

the real axis and become purely real. This phenomenon is clearly seen in Figure 3.4

and Figure 3.5. Note the difference between the mode 0 pole trajectories of the

perpendicular and parallel polarization cases.

These pole trajectories of both polarizations suggest that when the

conductivity becomes higher, the amplitude decay factors become larger, resulting

in a smaller contribution to the late-time response.

In Figure 3.6 and Figure 3.7, the pole trajectories for varying angle of incidence

are shown, where e, = 9 and 0 = 0.1 S/m. As seen in Figure 3.6, which depicts the

pole amplitudes of the perpendicular polarization case, as the angle of incidence

increases, the magnitudes of the real parts of the poles monotonically decrease

whereas those of the imaginary parts are relatively unchanged. At this point, it

should be emphasized that the pole locations do not solely determine the late-time

transient responses. In order to obtain the correct transient responses, the residues

corresponding to the poles should be considered. For the parallel polarization case,

as the angle of incidence increases, the magnitudes of the real parts of the poles

show a dip around 70° of incidence angle which approximately corresponds to the
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Brewster angle calculated as [15]

. _ E2 . _ 9

6 = 8111 1 2 sm 1 —— = 716°,

8“ 514,52 V 1+9

where we assume the dielectric material is lossless and 6,- : 9. Also, it should be

 

noticed that the mode 0 pole becomes real approximately at this angle. This

behavior evidently suggests that the late-time response may be affected by the

Brewster angle. Further discussions 011 this behavior will be made in the result

section of this chapter. The existence condition for the real poles and the algorithm

for finding such poles are examined next.

Let us assume a complex frequency 8 to be negative real and denote its

magnitude as :r, where :1: > 0. Then, ifs > so, i.e., a > —seo'€, from (3.7) and (3.11)

——j—\/_.\/—(1+ so), (3.16)

and the reflection coefficient becomes

—:rcos6, — jfiflV—(IE-l- so)

_srcos6,+jfifim
(i pol.)

m8) 2
(3.17)

jfifim—cw‘M-mfi) (n 01>
jfifimecos 611‘“? + €05). p '

 

It is now clear that the magnitudes of both 6""(3) and F(s ) are 1. As a result,

ln |I‘(s)e"“(3)| = 0, and the poles need to satisfy only the imaginary part of (3.14),

i.e., arg [F(s)e‘"(3)] = 0. Therefore, if we denote —(2A/z/)\/E\/—(.r + so), which is

—sr(s), as d), and arg [F(s)] as Q52, the poles need to satisfy

C61+¢2+2TL7T=0 n=0,1,2,--- (3.18)

Here, only the positive sign in front of n is necessary, since (1), is always negative,
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when 3 > so and —7r < gbg < 7r. The above equation, which we call the characteristic

function, can be solved by any l-D root search algorithm, such as the secant

method, which was used in this work. Here, it is very important to note that (3.18)

does not always have solutions, and that the number of solutions is dependent upon

the conductivity, permittivity and incident angle. In addition, great care should be

taken when finding the real roots, especially for the n = 0 case where the

characteristic function can have more than one root, which may cause the usual

secant method to fail. Figure 3.8 and Figure 3.9 show the amplitude of the

characteristic function versus the amplitude of s, which is purely real. In Figure 3.8,

the 0 amplitude line was crossed 3 times by the characteristic function, and the

corresponding values of s are the poles. Here, the left end point of the amplitude

curve of the n = 0 case corresponds to the removable pole located at s = so as

shown in the following discussion. On the other hand, there is no such crossing in

Figure 3.9 implying no pole exists for that case.

If s < so, ST(S) becomes negative real causing €_ST(S) to be greater than 1, and

F(s) becomes real. Therefore, in (3.14), arg [F(s)e”"(3)] = 0 can only be satisfied

when F(s) > 0. If s < so and F(s) > 0, the poles only need to satisfy

ln |F(s)e‘"(s)| = 0. Figure 3.10 shows the amplitudes of the reflection coefficients

for both polarizations, where s < so. As shown in the figure, for perpendicular

polarization, the reflection coefficient F(s) = 1 when 5 = so and monotonically

decreases as 3 decreases. In particular, it becomes negative when 8 < 60;, since
(1‘57')

the reflection coefficient has roots

0

= 0 —.

S 1 60(1— 61‘)

As a result, one additional real pole can exist when < s < so for
__£’_

60(1—Cr)

perpendicular polarization. Figure 3.11 shows the amplitudes of —sr(s), ln|l‘(s)|
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and their sum for perpendicular polarization. In the figure, the point where

ln|F(s)| — sr(s) crosses the 0 amplitude line represents the pole location. It should

be noted that the apparent pole s = so where both €_ST(S) and F(s) are 1 is a

removable pole, since the numerator of the reflection coefficient becomes identical to

the denominator.

For parallel polarization, F(s) = —1 when s = so, and it has two real roots at

0' 0'

s = —, .

eo(1 — 6,) eo(tan2 6, — 6,.)

 

Therefore, depending on 6,. and 6,, the amplitude of the reflection coefficient

increases initially, then stays positive or monotonically decreases as 3 decreases. As

a result, at most 2 real poles can exist when 3 < so for parallel polarization. Figure

3.12 shows the case where 2 real poles exist. However, it should be noted that the

contribution to the late time response from the real poles located where s < so are

dominated by the contributions from the other poles, since their real parts are much

smaller than those of the dominant poles.

A complete sketch of the poles is shown in Figure 3.13 and Figure 3.14. In the

figures, the solid lines represent the trajectories of the complex poles, and the

cross~marks represent the real poles. The real poles consist of the poles with

magnitudes less than so and those with magnitudes greater than so. Since the

complex pole trajectories from different modes follow approximately the same curve

in the complex 3 plane (before each mode becomes real and diverges), it is difficult

to resolve each complex pole trajectory from the figures. As previously discussed,

the complex poles gradually become real poles as the conductivity increases. Note

that, except for mode 0, each single complex pole splits into a pair of real poles.

31



3.3 Evaluation of 'r(t)

Since all poles and branch points lie in the left half plane including the

imaginary axis, the region of convergence is the right half plane. Therefore, the

Bromwich path is put in the right half plane and the Laplace inversion integral is

evaluated by contour integration. The evaluation is accomplished in two different

time intervals, corresponding to the early-time period and the late—time period. The

2A

beginning of the late-time period is To = 7, which represents the two-way transit

time of the wave inside the dielectric slab.

3.3.1 Case I: t > T0

W'hen t > To, the integration contour is closed in the left half plane as shown in

Figure 3.15. Inside the contour, the branch cut lies from 0 to so and there is a

closed path enclosing the branch cut and several possible real poles on the branch

cut (two of which are shown). We denote the outer integration contour which

includes the Bromwich path as Co and the closed path which encloses the branch

cut as C,, such that

Co _—; Br+Foo+L1+L2.

01 ’7'1+’)"2+"°+"f6+11+12+"‘+15.

Then, by Cauchy’s residue theorem,

/ R(s)eStds = fin: Res[R(s)eS‘, poles] (3.19)

Co+C1

Therefore, if the integral contribution from each path is known, the impulse

response r(t) can be determined.
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The contribution from [‘00

On Foo, from (3.7),

R€{T(S)} = Re{ lim 3A— 1+_0_}

Re{s}—»—oo z/ seoE

2A

— =71)

1/

I
2

If we let t1 = t — To, which is positive since we are evaluating the integral when

t > To, then

P , (8T0 _ —sr(s) ’37-0 .

/mR@M“mwi[x(?:p@;flwj €“mwj/mneeMs

Since f(s) —+ 0 on Foo, by Jordan’s Lemma [20], [21],

 

/ R(s)eS’~ d3 = 0 (3.20)

Foo

The contribution from L1 and L2

On L1 and L2, it is not possible to apply Jordan’s Lemma without imposing

some restrictions that will be introduced in subsequent discussion, since R(s) does

not approach zero over these paths. Fbrthermore, it would be very difficult to

evaluate the inversion integral directly. However, it is possible to apply Jordan’s

Lemma if we use the following theorem [14]:

Theorem Let f (t) be a function which is APC {almost piecewise continuous) and

which is identically zero fort greater than some number T. Then the Laplace

transform of f (t) approaches zero uniformly as 3 becomes infinite in a right half

plane,

wee—ans;

where co = oo + jwo is any complex constant in the 5 plane.
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In this theorem, the AFC function is piecewise continuous except at a finite

number of isolated points. Let the time response of the incident wave be given by

g(t), and let this function be AFC. Then the response of the system is given by

G(s)R(s), where 0(8) 2 £{g(t)}. Since C(s) approaches zero 011 L, and L2, we can

use Jordan’s Lemma to show that the contribution from L1 and L2 is zero for an

APC input waveform. W’hen considering the impulse. response, we view the delta

function as a. functional that is AFC [21], [24], and thus

/ R(s)cS' ds = 0 (3.21)

L1.L2

The contribution from C1

The segments of the contour C, enclosing the branch cut can be divided into

three groups. The first group consists of “y, and “/4 that enclose the branch points so

and 0 respectively. The second group consists of the straight lines immediately

below and above the branch cut, and those are designated 1,, [2, . - - , l6. The last

group consists of 72, 73, “/5 and ”)6 that enclose the real poles on the branch cut.

These groups will be examined separately.

Denote the radius of ”)1 as r, and let 6 to be the angle measured

counterclockwise from the real axis to the point on ”)1. Then, any point 011 ”)1 can be

represented as

s = so + r619.

The reflection coefficient on 7, with r -—> 0, i.e. s ——> so, becomes

3770 ’ Zo1\/_E\/§v3 '— 80

r( ) 8770 + Zufifi s — 80 (3 22)s = .

Thfl/fiJS—VS — 80 — 20]](86r + %)

nofifivs — so + Zo],(s€,. + %)

 

——> 1, _L- pol

 

——-> —-1. || -1)01
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Then,

 

I‘ _ ’—sr(s) est ’ _L _ p01

R<8>€St : 1 (51‘ ‘e —sr(s)68t =

_ (5)8 —es‘ . ll - p01

and

]R(S)€St] S (,(so+'r)t'

Therefore,

_<_ 27rre<s°+rlt —> 0, (r ——> 0).

  

/ R(s)e8’ ds

71

As a result,

/ R(s)e5" ds = 0. (3.23)

’71

Similarly, it can be shown

/ R(s)e3‘ ds = 0. (3.24)

A!

I4

For the second group, it. is necessary to determine F(s) and sr(s) along a path

immediately above the branch cut, which we denote as B+, and immediately below

the branch cut, which we denote as B“. If we denote the magnitude of s as :1:

(so +r < —:r < —r < 0), then on B+,

\/§vs— 30 =jfiV—1" “30,

and on B“,

\/-8-\/8 — 80 = —j\/.I'_-\/ —'$ — 80.

Now, let Z(s) on B+ be denoted as Z+, and Z(s) on B“ as Z“. Then, using (3.11),

it can be shown that

2+ = —Z“. (3.25)
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Since,

 

 

R l.

(S) 1 — I‘(s)c—ST(5)

_ [2(3) - Zak-28"” — [2(8) + Zola-lets)

[2(5) ‘1‘ 21)]833T(3) -
[2(3) — ZO]€—%sr(s) ’

we have,

2+ - Z J" — Z+ Z _i—m

R(3)]B+
:: [ 01( 1 + 0]?
 

[Z+ + Zo]eJ‘-" — [Z+ — Zo]e“j9”

jZ+ sin (b — Zo cos a)

jZ+ sin (b + Zo cos cb

 

where jrb 2 597(3), and

[Z“ — Zo]e“j‘l’ — [Z“ + Zo]cj‘l’

[Z“ + Zo]€“—7¢’ — [Z“ — Zo]eJ¢

—jZ“ singb — Zocoscb

—jZ‘ sin¢b+ Zocosqb

 

R(8)]B- =

 

Therefore, by (3.25)

3(8)|B+ = “fills--

As a result,

/ R(s)|B+ 6“ ds +/ R(s)|3— e” ds = 0 (3.26)

l1+12+13 l4+fs+16

The integral contributions from the third group and the other complex poles

can be determined by calculating the residues of R(s)e5‘ at the poles. It is found

that all of the poles of R(s) are of first order and thus

es' =Akesk’, (3.27) 

P _ —sr(s)

R68 [R(S)eStl [90188:] [328k = 3121511,.(8 — 8k) 1 E-S)F(5686—6266
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where

F(.Sk) _ e-SkT(-9k)

A, = — (3.23)

2143' [r(sle—ST(S)1 13:3,,

is the complex natural mode amplitude. Carrying out the details gives

 

. . . A 2. — -
Ak:e_%‘/;‘/5_‘SO G(s)——F(s)——S5° , (3.29)

where

2cos6\/:\/_\/S— COSQV—fim

32cos26,+2s\/§\;§\/8—80+68((8’80) 1

for perpendicular polarization and

C(s) =

0 2s — so

cos 6,(se,.++—)\/é'————— —26, cos 6,\/%\/s\/s — so

0(8) : V563 — so

Es(s——so)+2cos6,(ser+ 6(:))\/:\/s\/s—so+cos2 6,((se,++3)

60

2

for parallel polarization.

Collecting the results from (3.20)-(3.29), the impulse response r(t) becomes

1

r(t): Jt—QW/BXS)e—“ds— Z Akes” t > TO, (3.30)

Br

and thus the late-time period is a pure natural resonance series, and contains no

branch-cut contribution.

3.3.2 Case II: t < T0

For t < T0, r(t) is found by computing the inverse Laplace transform of

R(s) = 1(9) + B(s), where

 



Then

1 -—sr(s)

'
8

Z —_
F2 1" — 1

{st 1 ‘.

j27l- A
r[ (8)

1 1_ F(.S)€_
8T(3)P

( .5

To compute this integral, the integration contour is closed in the right half plane, as

so) = c’1{fi(s)}  

shown in Figure 3.16. On Foo, from (3.7),

213

Re {7(5)} = R0 {Elegy—Loo 7 1+ Ego—F}

2A

1’ -— = 7'0

1/

If we let t, = t — To, which is negative since we are evaluating the integral when

t < 7'0, then

—ST(.S)CST0

— S e 81 S] ,

/ R(s)e 'ds 2/ [F2(s) — 1] 1_ F(s)e—ST(S)6 ' ds = (s)e ’ ds

Foo

 

Here, it is not possible to apply Jordan’s Lemma directly, since f (s) does not

approach zero over the entire contour Foo. However, if we use the theorem

introduced earlier, it can be argued that

/ B(s)e3t ds = 0

00

The inverse transform of F(s), denoted as F(t), can be found in [26] and [27]. As a

result, when t < T0, r(t) becomes

r(t) = F(t), t < TO. (3.31)

Combining the results (3.30) and (3.31), the impulse response r(t) is

Z Akeskt, t > To

r(t) = (3.32)

F(t), t < 7'0.
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3.4 Results

It has been shown analytically that the early-time response is a specular

reflection from the interface between free-space and the dielectric slab, and the

late-time response is a pure sum of damped sinusoids. In order to verify these

results, the natural mode series is compared to the direct IFFT using a truncated

Gaussian pulse as the input waveform. This waveform is given by f (t) = e“"(‘“")2/72,

where r and u are 0.1 and 0.15 ns respectively, and is shown in the inset of Figure

3.17. Figures 3.17-3.25 show the transient responses calculated by the natural mode

series and the IFFT. In addition, the IFFT of the interfacial reflection coefficients

F(s) are also shown in order to explain the early-time behavior. The natural

resonant frequencies of the corresponding cases are shown in Table 3.1-3.9.

As an example of the results, in Figure 3.19 the incident wave is in

perpendicular polarization with an incidence angle of 20°, and the material

parameters are A = 2 cm, 6,. = 9 and o = 0.1 S/m. Therefore, the beginning of the

impulse response late-time, i.e., the two-way transit time of the wave inside the slab,

is To = 0.397 ns. As shown in Figure 3.19, during the early-time period, before To,

the IFFT of R(w)F(w) (where F(a) is the spectrum of the input waveform)

matches well with the IFFT of F(w)F(w), which is the specular reflection from the

interface. During the late-time, the IFFT of R(w)F(w) matches well with the

natural mode series. It should be noted that when t < To the response from the

natural mode series does not have any meaning; i.e., the natural mode series is valid

only when t > T0, the late—time period. Since the frequency band of the input

waveform is roughly 0 — 20 GHz, it was found that the first 7 natural modes, which

are shown in Table 3.3, are sufficient to represent the late-time reflected field.

Figure 3.17 shows the response from the lossless, normal incidence case. As

seen in the figure, there are equally spaced replicas of the input waveform with

gradually diminishing amplitudes during the late-time period. Note that the
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amplitude of the first peak is greater than that of the specular reflection in this case.

Comparing Figures 3.20 and 3.21 to Figures 3.18 and 3.19, due. to the relatively

higher conductivity in the Figure 3.20 and 3.21 cases, relatively smaller late-time

responses are observed. The corresponding natural resonance frequencies for these

cases are shown in Tables 3.4 and 3.5, and it is seen that the first mode poles of

these cases are purely real.

The responses from both polarizations with the incidence angle 6., = 70°, which

is close to the lossless case Brewster angle, are shown in Figures 3.22 and 3.23. As

seen in Figure 3.22, the interfacial reflection is very small compared to the first peak

of the late—time response for the parallel polarization case. Also, note that no

subsequent late-time response is observed for this case. This property is not

observed for perpendicular polarization case, as shown in Figure 3.23.

Figures 3.24 and 3.25 show the responses when the incidence angle is large

(85°) for parallel and perpendicular polarization respectively. As seen in Table 3.8,

the parallel polarization case has a real pole with a relatively smaller amplitude. As

a result, the late-time response from the parallel case shows a slower decay rate

than the perpendicular case. On the other hand, it is observed that the late—time

response from the perpendicular case is smaller than the parallel case due to its high

interfacial reflection.
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Table 3.1: Poles and corresponding complex natural mode amplitudes (Ak), loseless

case (6,. = 9, A = 2 cm, 6, 2 0°)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.17329 x 1010 .78540 x 1010 .37500 x 1010 .70819 x 10“6

mode 1 —.17329 x 1010 .23562 x 1011 .37500 x 1010 .26797 x 10“5

mode 2 —.17329 x 1010 .39270 x 1011 .37500 x 1010 .29858 x 10“5

mode 3 —.17329 x 1010 .54978 X 1011 .37500 x 1010 .10715 x 10“5

mode 4 —.17329 x 1010 .70686 x 1011 .37500 x 1010 .58186 x 10“5

mode 5 -.17329 x 1010 .86394 x 1011 .37500 x 1010 .15007 x 10“4

mode 6 -.17329 x 1010 .10210 x 1012 .37500 x 1010 .64309 x 10-5
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Table 3.2: Poles and corresponding complex natural mode amplitudes (A1,), [I polar-

ization (6,. = 9, A = 2 cm, 6, = 20°, 0 = 0.5 S/In)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.52539 x 1010 .62604 x 1010 .50445 x 1010 .26990 x 1010

 

mode 1 -.50527 X 1010 .23232 X 1011 .41113 x 1010 .69726 x 109

 

mode 2 —.50419 X 1010 .39239 X 1011 .40715 X 1010 .41149 X 109

 

mode3 —.50390x1010 .55133x1011 .40610X1010 .29261x109

 

mode 4 —-.50378 X 1010 .70990 X 1011 .40567 X 1010 .22717 X 109

 

mode 5 —.50372 X 1010 .86830 X 1011 .40546 X 1010 .18569 X 109

        mode 6 ——.50369 X 1010 .10266 X 1012 .40534 X 1010 .15704 X 109
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Table 3.3: Poles and corresponding complex natural mode amplitudes (Ak), J. polar-

ization (e, = 9, A = 2 cm, 6, = 20°, 0 = 0.1 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.23079 X 1010 .77397 X 1010 .36509 X 1010 .32595 X 109

mode 1 -—.22824 X 1010 .23661 X 1011 .35377 X 1010 .11479 X 109

mode 2 —.22804 X 1010 .39494 X 1011 .35288 X 1010 .69136 X 108

mode 3 —-.22799 X 1010 .55315 X 1011 .35264 X 1010 .49433 X 108

mode 4 —.22797 X 1010 .71131 X 1011 .35254 X 1010 .38464 X 108

mode 5 —.22796 X 1010 .86946 X 1011 .35249 X 1010 .31477 X 108

mode 6 —.22795 X 1010 .10276 X 1012 .35246 X 1010 .26638 X 108
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Table 3.4: Poles and corresponding complex natural mode amplitudes (4),), I] polar-

ization (6,. = 9, A = 2 cm, 6, = 30°, 0 = 1.0 S/m)

 

 

 

 

 

 

 

 

 

 

       

Pole Amplitude Natural Mode Amplitude

Real Part Imaginary Part Real Part Imaginary Part

—.52600 X 1010 0.0 —.68433 X 1010 —.51876 X 103

mode 0

—-.12581 x 1011 .19393 x 1010 .10205 x 1011 —-.16967 x 1010

mode 1 -—.85250 x 1010 .22393 x 1011 .45539 x 1010 .16527 x 1010

mode 2 —.85010 X 1010 .38947 X 1011 .45153 X 1010 .94467 X 109

mode 3 —.84948 X 1010 .55133 X 1011 .45059 X 1010 .66634 X 109

mode 4 —.84923 X 1010 .71204 X 1011 .45022 X 1010 .51564 X 109

mode 5 —.84910 X 1010 .87223 X 1011 .45004 X 1010 .42081 X 109

mode 6 —.84903 X 1010 .10322 x 101'2 .44993 X 1010 .35555 X 109
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Table 3.5: Poles and corresponding complex natural mode amplitudes (Ak), _L polar-

ization (6,- = 9, A = 2 cm, 6, = 30°, 0 21.5 S/m).

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.33106 x 1010 0.0 —.13299 x 1010 .20254 x 102

mode 1 -—.11233 x 1011 .21104 x 1011 .32151 x 1010 .17600 x 1010

mode 2 —.11227 X 1011 .38219 X 1011 .32366 X 1010 .97606 X 109

mode 3 -.11225 x 1011 .54621 x 1011 .32421 x 1010 .68370 x 109

mode 4 —.11224 x 1011 .70808 x 1011 .32443 x 1010 .52763 x 109

mode 5 —.11224 x 1011 .86900 x 1011 .32454 x 1010 .43002 x 109

mode 6 —.11224 x 1011 .10294 x 1012 .32460 x 1010 .36305 x 109
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Table 3.6: Poles and corresponding complex natural mode amplitudes (Ak), [I polar-

ization (6,. = 9, A = 2 cm, 6., = 70°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 
  
 

mode 0 —.37966 x 1010 0.0 —.58702 x 1010 —.55113 x 103

mode 1 —.10993 X 1011 .21160 X 1011 .10655 X 1011 .48499 X 1011

mode 2 —.11619 x 1011 .39009 x 1011 .39566 x 1011 .45363 x 1011

mode 3 —.11821 x 1011 .56182 x 1011 .52026 x 1011 .36984 x 1011

mode 4 —.11908 x 1011 .73090 x 1011 .57936 x 1011 .30405 x 1011

mode 5 —.11953 x 1011 .89869 x 1011 .61121 x 1011 .25589 x 1011

mode 6 —.11979 x 1011 .10658 x 1012 .63104 x 1011 .22008 x 1011
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Table 3.7: Poles and corresponding complex natural mode amplitudes (Ak), _L polar-

ization (cr = 9, A = 2 cm, 6i = 70°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.41396 x 1010 .71833 x 1010 .13691 x 1010 .67111 x 109

mode 1 —.41206 x 1010 .24473 x 1011 .12906 x 1010 .18876 x 109

mode 2 —.41192 x 1010 .41150 x 1011 .12854 x 1010 .11193 x 109

mode 3 —.41188 x 1010 .57748 x 1011 .12840 x 1010 .79695 x 108

mode 4 —.41187 x 1010 .74320 x 1011 .12835 x 1010 .61904 x 108

mode 5 —.41186 x 1010 .90880 x 1011 .12832 x 1010 .50615 x 108

mode 6 —.41186 x 1010 .10743 x 1012 .12830 x 1010 .42811 x 108
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Table 3.8: Poles and corresponding complex natural mode amplitudes (Ak), || polar-

ization (e, = 9, A = 2 cm, 9,- : 85°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.11692 X 1010 0.0 -—.21180 X 1010 .20153 X 103

mode 1 —.50128 X 1010 .16532 X 1011 —.30588 X 1010 .57062 X 109

mode 2 ——.50326 X 1010 .33249 X 1011 —.31490 X 1010 .30084 X 109

mode 3 —.50365 X 1010 .49921 X 1011 -—.31678 X 1010 .20275 X 109

mode 4 —.50379 X 1010 .66584 X 1011 —.31745 X 1010 .15265 X 109

mode 5 —.50386 X 1010 .83242 X 1011 —.31777 X 1010 .12234 X 109

mode 6 —.50390 X 1010 .99899 X 1011 —-.31794 X 1010 .10205 X 109

 

 

 

 

 

        
 

48



Table 3.9: Poles and corresponding complex natural mode amplitudes (Ak), _L polar-

ization (Gr 2 9, A = 2 cm, 9,- = 85°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.36956 X 1010 .74632 X 1010 .33232 X 109 .15734 X 109

mode I —.36944 X 1010 .24705 X 1011 .32742 X 109 .46879 X 108

mode 2 —.36943 X 1010 .41468 X 1011 .32704 X 109 .27899 X 108

 

 

 

mode 3 —.36943 X 1010 .58168 X 1011 .32694 X 109 .19883 X 108

 

mode 4 —-.36943 X 1010 .7484? X 1011 .32690 X 109 .15451 X 108

 

mode 5 —.36943 X 1010 .91517 X 1011 .32688 X 109 .12636 X 108

mode 6 ——.36943 X 1010 .10818 X 1012 .32686 X 109 .10689 X 108
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Figure 3.1: A uniform plane wave. incident from free space upon a conductor-backed

lossy slab.
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Figure 3.4: The amplitude of the imaginary parts of poles vs. conductivity, _L polar-

ization (e, = 9, A = 2 cm, 0, = 30°, 0 = 0 ——> 10.0 S/m).
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Figure 3.5: The amplitude of the imaginary parts of poles vs. conductivity, H polar-

ization (6r : 9, A = 2 cm, 9,- = 30°, 0 = 0 ——> 10.0 S/m).
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Chapter 4: Natural Mode Analysis

of an Air-Backed Slab

In the previous chapter, the transient response from the conductor backed slab

has been discussed. For the air backed slab case, most of the previous developments

can be used with a few modifications. The main difference from the previous case is

that the reflection coefficient has the different form due to its different backing

material. For the detail of the following discussion, refer to the conductor-backed

case in the previous chapter. However, in some parts, the discussion will be

repeated in order to clarify the developments.

4.1 Formulation of the frequency-domain

reflection

Consider a plane wave of frequency w incident from free space onto an interface

between free space and an air backed slab of material with frequency independent

material parameters 6 = 6,60, 11,0, and a, and with thickness A, as shown in Figure

4.1. In the figure, region 0 and region 1 correspond to free space and the dielectric

slab respectively. Likewise, for the subsequent discussion, the subscripts O and 1

correspond to free space and dielectric, respectively. As shown in (2.41), (3.3) and

(3.4), the reflection coefficients have the general form

 

w _e—jmw
R(w) _ 1“( )l1 l

— 1 — F2(w)e‘j“”(“) (4'1)



where F(w) is the interfacial reflection coefficient, given in general form by

 

 

Z , -— Z
f(w) __. _1(_°‘J_)__0,

210.11) + 20

and

2A

7(6)) 2 ———F(w), F(w)= 6+ .0 .

c 30160

Since 1?(<.u) exists, its Laplace domain representation also exists [21], and is

given by

F(s)[1 — e‘STlsll

R(3) "‘ R(w)lw=s/j _ 1_ F2(S)€—ST(5), (42)

where

2A

ST(S) = TVSVS '— 80, (4.3)

21(3) — 20

21(8) ‘l' 20 l

as shown in (3.7) and (3.8). Here l/ = C/\/:€: and so = —0/(60€).

For perpendicular polarization the z-directed impedance Z1(s) is

 

 

 

 

 

77 77

Z.L('S) : F 0 = O

(W) w=s/j E + it

7708

— I 4.5

\/-€-\/§\/S — 80 ( )

and for parallel polarization

77013101) 710 E + fo-

Zu(8) = ——_0 = ___a
61‘ + T— 67“ + —

JWCO w=s/j SEQ

_ "ofifivs " 80 4 6

— 86 + 1 l ( ' )r 60
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Therefore, the interfacial reflection coefficient Us) in (4.4) can be written as

scos 9, — fifivs — so
 

P( ) — SCOS 91' + fifim . (J- pOI.) (4 7)'~ ‘ x/Efix/s—Ts—o — “Bails“ + i) (ll P01.)
.

 

«Rwy—TO + cosfizlser + 2%) l

The reflection coefficient R(s) is the transfer function of the system. Thus, the

impulse response r(t) is obtained by

r(t) = [1'1 {R(s)} — 1 [B R(s)es‘d3 (4.8)_E

where Br indicates the Bromwich path. This integral can be evaluated by contour

integration. We must thus examine the singularities and define an appropriate

branch for the integrand.

4.2 Singularities and the branch out

From the complex square roots in ST(S) and 21(8), the branch points are

located at s = O and s = so. In order to ensure the continuity of R(s), the branch

cut is taken along the negative real axis between the two branch points.

From (4.2), the poles are the roots of

1 — F2(s)e—ST(S) = 0. (4.9)

Taking the logarithm of this equation and rearranging gives

1n [F2(s)e"37(3)] = 1n |I‘2(s)e—ST(3)|+j arg [F2(s)e—ST(S)]:l:j2mr = 0, (n = O, 1, 2, ~ ~ - ).

Since —7r < arg [1‘2(s)e’37(8)] < 7r and the goal is to find roots, n can be set to 0.
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Therefore, the poles should satisfy

111 [r2(s)e-ST<3>| + j arg [1‘2(s)e‘“<8>] z 0. (4.10)

Except for the lossless case (a = 0), wherein the poles can be calculated

analytically, the above equation needs to be solved numerically. For the lossless

case, both F(s) and 7(3) are independent of s, and —1 < F < O, i.e. arg(F) = 7r. As

a result, from (4.10), the lossless case poles are

2 .
s: —[ln|F| :l: jmr], n=0,1,2,3,-~- (4.11)

T

Note that, unlike the conductor-backed case, (4.11) has a real pole even for the

lossless case. From (4.10) and (4.11), it is clear that. the poles occur in complex

conjugate pairs as expected for real signals. Table 4.1 shows the lossless case poles,

where 6,- : 0°, 6,. = 9 and A = 2 cm. In the table, only poles in the upper-half

complex plane including the real axis are shown.

When the conductivity is nonzero, equation (4.10) can be solved by 2-D root

search algorithms such as the Newton-Rahpson method [17] using the lossless case

poles as the initial guesses. Again, it should be emphasized that the real part of a

pole should be less than or equal to zero for a passive system. This can be shown to

be true by noting that the magnitude of F2(s)e'37(3) in (4.10) is always less than 1 if

Re{s} is greater than zero, since both the magnitudes of F(s) and 6’37“) are less

than 1 as can be shown using (4.3) and (4.7). Here, it should be remembered that

so = —0/(eoE) is a non-positive constant. As a result, no solution of (4.10) can exist

if Re{s} is positive.

Figure 4.2 and Figure 4.3 show several pole trajectories obtained by the

Newton-Rahpson method when the conductivity 0 varies from 0 to 10 S/m for

perpendicular and parallel polarization respectively. Here, only the complex poles
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are shown and the mode number 0 is assigned to the pole with the smallest

imaginary part and the mode number 1 for the next smallest, and so on. Similar to

the conductor—backed case, when the conductivity reaches a certain value, each pole

becomes purely real. In the figures, the conductivity values at which the poles

become real are shown, and the corresponding pole locations in the complex 8 plane

are shown as the cross-marks. As shown in the figures, when the conductivity

increases, the magnitudes of the imaginary parts of the poles decrease whereas those

of the real parts increase until the poles approach the real axis and become purely

real. This phenomenon is clearly seen in Figure 4.4 and Figure 4.5. Note the

difference between the mode 0 pole trajectories of the perpendicular and parallel

polarization cases.

These pole trajectories of both polarizations suggest that when the

conductivity becomes higher, the amplitude decay factors become larger, resulting

in a smaller contribution to the late—time response.

In Figure 4.6 and Figure 4.7, the pole trajectories for varying angle of incidence

are shown, where fr 2 9 and a = 1.0 S/In. As seen in Figure 4.6, which depicts the

pole amplitudes of the perpendicular polarization case, as the angle of incidence

increases, the magnitudes of the real parts of the poles monotonically decrease

whereas those of the imaginary parts are relatively unchanged. Again, it should be

emphasized that the pole locations do not solely determine the late-time transient

responses. In order to obtain the correct transient responses, the residues

corresponding to the poles should be considered. For the parallel polarization case,

as the angle of incidence increases, the magnitudes of the real parts of the poles

show a dip around 70° of incidence angle which approximately corresponds to the

Brewster angle calculated as [15]

1 9

= sin’ —— = 71.6°,

1

6 = sin—1

3” + 9
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where we assume the dielectric material is lossless and 6,- : 9. Similar to the

conductor-backed case, for the air—backed case, the mode 0 pole also becomes real

approximately at this angle. However, unlike the conductor-backed case where the

mode 0 pole remained real beyond this incidence angle, it becomes complex pole

again (in this case, it becomes real at 68° and becomes complex again at 72° of

incidence angle), and it follows the trajectory of the bottom arc of the higher mode

(mode 1) as shown in the top figure of Figure 4.7. The other modes also show the

similar behavior, i.e. at a certain angle of incidence, they follow the bottom are of

the trajectories of the next higher modes. It seems that this particular behavior is

due to the periodic nature of the arguments of the complex numbers. The behavior

of the parallel polarization case evidently suggests that the late-time response may

be affected by the Brewster angle. The existence condition for the real poles and the

algorithm for finding such poles are examined next.

Let us assume a complex frequency 5 to be negative real and denote its

magnitude as :r, where :r > 0. Then, ifs > so, i.e., a > —seoE, from (3.7) and (3.11)

8(8))=j—\/:?\/—(()a:+80 (4.12)

and the reflection coefficient becomes

( —:ccos€,- --jfifim

—mcos€,+j\/
Efim' (~L p01)

r(s) :
(4.13)

jff\/—(()a:+so)—cos€(—:re,.+ 695) (H 1)

. 0.

K j\/‘_€\/_ —(;1:+so)(+c080,-(—-:rer+ :—O) p

 

 

It is now clear that the magnitudes of both 63—87(3) and F(s) are 1. As a result,

In |F(s))2e‘msl)l—-- 0, and the poles need to satisfy only the imaginary part of (4.10),

i.e., arg [Us)2e‘ST(S)]—— 0. Therefore, if we denote —(2A/1/)\/:1—:\/—-(:r + so),)which
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is —ST(S), as (151 and arg [F2(s)] as do, the poles need to satisfy

gbl+g§2+2mr=0. n=0,1,2,--- (4.14)

Here, only the positive sign in front of 71 is necessary, since 6.51 is always negative,

when 8 > so and —7r < 9'92 < 7r. The above equation, which we call the characteristic

function, can be solved by any 1-D root search algorithm, such as the secant

method. Here, it is very important to note that (4.14) does not always have

solutions, and that the number of solutions is dependent upon the conductivity,

permittivity and incident angle. In addition, great care should be taken when

finding the real roots, especially for the n = 0 case where the characteristic function

can have more than one root, which may cause the usual secant method to fail.

If s < so, ST(8) becomes negative real causing 6‘37"“) to be greater than 1, and

F(s) becomes real. Therefore, in (4.10), arg [F(s)ze'”(3)] = 0. As a result, the poles

only need to satisfy 2 ln |F(s)| — 37(5) = 0. Figure 4.8 shows the amplitudes of the

reflection coefficients for both polarizations, where s < so. As shown in the figure,

for perpendicular polarization, the reflection coefficient F(s) = 1 when 3 = so and

monotonically decreases as 8 decreases. In particular, it becomes negative when

s < since the reflection coefficient has roots
___9__

60(1—er)’

0'

. = 0 —.

9 , 60(1— 6,.)

As a result, two additional real pole can exist when 3 < so for perpendicular

polarization. Figure 4.9 shows the amplitudes of -sr(s), ln|F(s)| and

2ln |F(s)| —— 37(3) for perpendicular polarization. In the figure, the points where

2ln IF (s)| -— 8T(S) cross the O amplitude line represent the pole locations (there are

2). It should be noted that the apparent pole s = so where both 6‘37“) and F2(s)

are 1 is a removable pole, since the numerator of the reflection coefficient becomes
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identical to the denominator.

For parallel polarization, F(s) = -1 when 3 = so, and it has two real roots at

0 0

60(1— 6,) eo(tan'2 6,- — 5,)

 8:

Therefore, depending on er and 9,, the amplitude of the reflection coefficient

increases initially, then stays positive or monotonically decreases as 3 decreases. As

a result, at most 4 real poles can exist when 8 < so for parallel polarization. Figure

4.10 shows the case where 3 real poles exist.

A complete sketch of the poles is shown in Figure 4.11 and Figure 4.12. In the

figures, the solid lines represent the trajectories of the complex poles, and the

cross-marks represent the real poles. The real poles consist of the poles with

magnitudes less than so and those with magnitudes greater than so. Since the

complex pole trajectories from different modes follow approximately the same curve

in the complex 8 plane (before each mode becomes real and diverges), it is difficult

to resolve each complex pole trajectory from the figures. As previously discussed,

the complex poles gradually become real poles as the conductivity increases. Note

that, except for mode 0, each single complex pole splits into a pair of real poles.

4.3 Evaluation of r(t)

Since all poles and branch points lie in the left half plane including the

imaginary axis, the region of convergence is the right half plane. Therefore, the

Bromwich path is put in the right half plane and the Laplace inversion integral is

evaluated by contour integration. The evaluation is accomplished in two different

time intervals, corresponding to the early-time period and the late—time period. The

2A

beginning of the late-time period is T0 = 7, which represents the two-way transit

time of the wave inside the dielectric slab.
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4.3.1 Case I: t > To

When t > 7o, the integration contour is closed in the left half plane as shown in

Figure 4.13. Inside the contour, the branch cut lies from 0 to so and there is a

closed path enclosing the branch cut and several possible real poles on the branch

cut (two of which are shown). We denote the outer integration contour which

includes the Brmnwich path as Co and the closed path which encloses the branch

cut as C1, such that

C0 2 Br+roo+L1+L21

C1 = "1’1+)2+"'+’)’6+11+12+"'+16-

Then, by Cauchy’s residue theorem,

/ R(s)eStds = j27rZ Res[R(s)es‘, poles] (4.15)

Co-l-Cl

Therefore, if the integral contribution from each path is known, the impulse

response r(t) can be determined.

The contribution from [‘00

011 Foo, from (4.3),

2A 0

R. . = R l" — 1 —

e {T(S)} C {Re{sl}IB—oc I/ + 860?}

2A

2 — 2 7o

1/
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If we let t1 = t — 7o, which is positive since we are evaluating the integral when

t > 7o, then

. I“(s)es'rO — F(s)e“°e’”(s)
, _Jst. _ __st1 ,_ stlfoo R(s)c ds _ [0° 1— 1‘2(s)e‘37(5) e d5 —./1‘oo f(s)c ds 

Since f(s) -—> 0 on Foo, by Jordan’s Lemma [20], [21],

/ R(s)e“ ds = 0 (4.16)

Foo

The contribution from L1 and L2

As seen in the conductor backed case, for L1 and L2, the same theorem [14] can

be used to apply Jordan’s Lemma. As a result, it can be shown that

/ R(s)eSt ds = O (4.17)

14,14

The contribution from Cl

The segments of the contour C] enclosing the branch out can be divided into

three groups as did in the conductor backed case. The first group consists of 71 and

74 that enclose the branch points so and 0 respectively. The second group consists

of the straight lines immediately below and above the branch out, and those are

designated ll, [2, - - . , lo. The last group consists of 72, ’73, 75 and yo that enclose the

real poles on the branch out. These groups will be examined separately.

Denote the radius of 71 as r, and let 0 to be the angle measured

counterclockwise from the real axis to the point on 71. Then, any point on '71 can be

represented as

s = so + r630.
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The reflection coefficient on 71 with r —> O, i.e. s —> so, becomes

5770 — ZOLfifiVS — 50

3770 + Zo1\/f\/§V3 — 30

 —> 1, _L-pol

 

 

 

I‘ s = -
a

( ) nofififl - ZOMSEr + a)
_-

0 ‘—_’ _11 ll - p0],]0\/;\/§\/3——5_o + Zoll(5‘r + 5)

Then,

F 1— 787(8) eat ’ "L I p01
R(5)€St : 1(S)i“2 6’ —sr(8)]88t :— (8)6

—eSt a ll ' p01

and

lR(s)eS‘ S €l$0+r)t-

Therefore,

_<_ 27rre(30+r)t —> O, (r ——> 0)../ R(s)c3t ds

 

As a result,

/ R(s)eS’ d3 = 0.

ll

Similarly, it can be shown

/ R(s)eSt ds = 0.

7’4

(4.18)

(4.19)

(4.20)

For the second group, it is necessary to determine F(s) and 37(3) along a path

immediatelv above the branch cut which we denote as B+ and immediately below
U 9 3 .

the branch cut, which we denote as B‘. If we denote the magnitude of s as I

(so + r < —:r < —r < 0), then on B+,

x/EVS—SozjfiV—x—So,

and on B‘,

WEE: —j\/E\/-—CE_‘?0-
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Now, let Z(s) on B”r be denoted as Z+, and Z(s) on B‘ as 2'. Then, using (4.7), it

can be shown that

 

 

2+ = —Z_'

(4.21)

Since,

1‘2(5)[1 —
62—87(8)]

12(5) — 1__ F2(3)€—
37(.s)

: [22(8)
" Zg]e%8

7(s)
__ [Z2(S)

+ Z§]e’%
37(8)

[2(8) +
ZO]2€%ST(

S) — [Z(s) —
Zol28’%8

7(s) ’

we have,

R(5)ls+
— [22+ _ Ziilc'm —

[Z2+ + gag—N,

 

[2+ + Zo]2ej¢ — [Z+ — Zo]Qe“J¢’

2j[Z2+ — 23] 81nd)

2j[Z2+ + Z3] sino + 2Z+Zo cosqb

 

where jgb = 557(3), and

[Z2‘ — 23k?” — [ZZ— + Z8]e’¢

[Z‘ + Zo]2e‘39’ — [Z’ —- Zo]‘~’ej¢

—2j[22- — 231mm

—2j[Z'2‘ + 231mm + 2Z“Zo cosqb

 

R(8)l3-

 

Therefore, by (4.21)

R(5)l8+ 2" R(S)l[3--

As a result,

/ R(s)|3+e“ ds +/ R(s)|B—e“ d3 = 0 (4.22)

11+12+13 14+15+16

The integral contributions from the third group and the other complex poles

can be determined by calculating the residues of R(s)263‘ at the poles. It is found
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that all of the poles of 1?.(3) are of first order and thus

2 3t _ - ,_ 'l l 3! _ 3),! r

Res [R(s)e ,pole3] lszsk — 312141,,“ 3),) 1_ F2(3)e‘37(3)e — Ake , (4.23) 

where

F(.9k)[1 — €_SkT(Sk)]

Ak = — . _ . (4.24)
% [F2(8)€—.57(s)] |S=Sk

 

is the complex natural mode amplitude. Carrying out the details gives

A 28 — 90

A, = ran-H8“ 2G()——-F(3))T—fm (4.25)

where

2cos6 \/f s,/s —cos9\/:———

f \/-\/898— 8()

.32 cos2 6,- + 23\/E_\/(js\/s — 80 + 68(8 — 80) l

for perpendicular polarization and

0(5) =

0 2s — so

cos 6,(ser+ O)\/:——— —2er cos 6,\/F\/s\/s — so

C(s) _ \/s\/s -— so
_ 0 2

’6s(3 — so) + 2cos06,-(36,.+ :0)\/:,\/—\/s — so + cos2 (86,. + —)

60

for parallel polarization.

Collecting the results from (4.16)-(4.25), the impulse response r(t) becomes

1

r(t): J2” 3)eS‘ ds—- Z Akew t > TO, (4.26)

Br

and thus the late-time period is a pure natural resonance series, and contains no

branch-cut contribution.
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4.3.2 Case II: t < T0

For t < 7o, r(t) is found by computing the inverse Laplace transform of

[f(s) = F(s) + Eb), where

 

Then

__ _ _ 1 . F(s)e“3T(3) .

R t = 1 R = —— F2 - 1 “Std“() L i (5)} j27T Ari (5) l 1_ P2(5)€—s7(s)e 9
 

To compute this integral, the integration contour is closed in the right half plane, as

shown in Figure 4.14. 011 Foo, from (4.3),

2A

Re{7(3)} = Re {R {lii}n — 1+;}

e 3 —+00 V seoe

2A

2 — = 7'0

1/

If we let t1 = t — 70, which is negative since we are evaluating the integral when

t < 7o, then

 

— . . F(s)e‘”(sle“°

R; 8&1 = 1‘21—1 st1d. = “Idfoo (s): s [00 [ (s) ] 1_ F2(3)e—ST(5)€ 3 Foo (s)e 3

Here, it is not possible to apply Jordan’s Lemma directly, since f (s) does not

approach zero over the entire contour Foo. However, if we use the theorem

introduced earlier, it can be argued that

/ Task“ d3 = 0

Foo
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The inverse transform of F(s), denoted as F(t), can be found in [26] and [27]. As a

result, when t < 7o, r(t) becomes

r(t) = F(t), t < 7o. (4.27)

Combining the results (4.26) and (4.27), the impulse response r(t) is

Z Akeskt, t > T0

r(t) = (4.28)

F(t), t < T0.

4.4 Results

As with the conductor—backed case, it has been shown analytically that the

early—time response is a specular reflection from the interface between free-space and

the dielectric slab, and the late-time response is a pure sum of damped sinusoids. In

order to verify these results, the natural mode series is compared to the direct IFFT

using a truncated Gaussian pulse as the input waveform. This waveform, which is

identical to the conductor—backed case, is shown in the inset of Figure 4.15. Figures

4.15-4.21 show the transient responses calculated by the natural mode series and the

IFFT. In addition, the IFFT of the interfacial reflection coefficients F(s) are also

shown in order to explain the early-time behavior. The natural resonant frequencies

of the corresponding cases are shown in Table 4.1-4.7.

As an example of the results, in Figure 4.17 the incident wave is in

perpendicular polarization with an incidence angle of 20°, and the material

parameters are A = 2 cm, 6, = 9 and a = 0.1 S/ 111. Therefore, the beginning of the

impulse response late—time, i.e., the two-way transit time of the wave inside the slab,

is To = 0.397 us. As shown in Figure 4.17, during the early-time period, before 7o,

the IFFT of R(w)F(w) (where F(to) is the spectrum of the input waveform)
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matches well with the IFFT of F(w)F(w), which is the specular reflection from the

interface. During the late-time, the IFFT of R(w)F(w) matches well with the

natural mode series. Again, it should be noted that when t < 7o the response from

the natural mode series does not have any meaning; i.e., the natural mode series is

valid only when t > 7o, the late-time period. Since the frequency band of the input

waveform is roughly 0 —— 20 GHz, it was found that the first 7 natural modes, which

are shown in Table 4.17, are sufficient to represent the late-time reflected field.

Figure 4.15 shows the response from the lossless, normal incidence case. As

seen in the figure, there are equally spaced replicas of the input waveform with

gradually diminishing amplitudes during the late—time period.

Comparing Figures 4.18 and 4.19 to Figures 4.16 and 4.17, due to the relatively

higher conductivity in the Figure 4.18 and 4.19 cases, relatively smaller late-time

responses are observed. The corresponding natural resonance frequencies for these

cases are shown in Tables 4.4 and 4.5.

The responses from both polarizations with the incidence angle 0,- = 70°, which

is close to the lossless case Brewster angle, are shown in Figures 4.20 and 4.21. As

seen in Figure 4.20, there is neither interfacial reflection nor the late-time response

for the parallel polarization case whereas both the interfacial reflection and the

late-time response are observed for the perpendicular polarization case, as shown in

Figure 4.21.
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Table 4.1: Poles and corresponding complex natural mode amplitudes (Ak), loseless

case (6,— = 9, A = 2 cm, 6,- : 0°)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —-.34657 X 1010 .15708 X 1011 .37500 X 1010 .14164 X 10"5

mode 1 —.34657 X 1010 .31416 X 1011 .37500 X 1010 .28327 X 10—5

mOde 2 —.34657 X 1010 .47124 X 1011 .37500 X 1010 .53593 X 10—5

mode 3 —.34657 X 1010 .6283? X 1011 .37500 X 1010 .56655 X 10"5

mode 4 —.34657 x 1010 .78540 x 1011 .37500 x 1010 .59717 x 10‘5

mode 5 —.34657 X 1010 .94248 X 1011 .37500 X 1010 .10719 X 10—4

mode 6 —.34657 X 1010 .10996 X 101‘2 .37500 X 1010 .21431 X 10—5

real -.34657 X 1010 0.0 .37500 X 1010 0.0
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Table 4.2: Poles and corresponding complex natural mode amplitudes (Ah), [I polar-

ization (6,. = 9, A = 2 cm, 6.,- = 20°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.70815 X 1010 .14659 X 1011 .44840 X 1010 .10437 X 1010

mode 1 —.69320 x 1010 .31060 X 1011 .41426 X 1010 .51448 X 109

mode 2 —.69078 X 1010 .47060 X 1011 .40902 X 1010 .34128 x 109

mode 3 —.68995 X 1010 .62965 X 1011 .40725 X 1010 .25549 X 109

mode 4 —.68957 X 1010 .78832 X 1011 .40644 X 1010 .20421 X 109

mode 5 —.68937 X 1010 .94680 X 1011 .40601 X 1010 .17009 x 109

mode 6 —.68925 x 1010 .11052 x 1012 .40575 X 1010 .14575 x 109

real -.10290 X 1011 0.0 .47555 X 1010 0.0
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Table 4.3: Poles and corresponding complex natural mode amplitudes (A1,), _L polar—

ization (6,. = 9, A = 2 cm, (9,- : 20°, 0 =2 0.1 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.39505 X 1010 .15660 x 1011 .35867 X 1010 .15824 x 109

mode 1 —.39292 X 1010 .31545 X 1011 .35399 X 1010 .84744 X 108

mode 2 —.39252 X 1010 .47382 X 1011 .35310 X 1010 .57184 X 108

mode 3 -—.39239 X 1010 .63206 X 1011 .35279 X 1010 .43069 X 108

mode 4 —.39232 X 1010 .79024 X 1011 .35264 X 1010 .34521 X 108

mode 5 —.39229 x 1010 .94841 X 1011 .35256 X 1010 .28799 X 108

mode 6 -.39226 X 1010 .11066 X 1012 .35252 X 1010 .24700 X 108

real —.46054 x 1010 0.0 .36268 X 1010 0.0
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Table 4.4: Poles and corresponding complex natural mode amplitudes (Ak), H polar-

ization (6,. = 9, A = 2 cm, 6, = 30°, 0 = 1.0 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.11099 x 1011 .30179 X 1011 .58349 X 1010 .16527 X 1010

mode 1 —.10616 X 1011 .30297 X 1011 .46827 X 1010 .12227 X 1010

mode 2 ——.10557 X 1011 .40767 X 1011 .45729 X 1010 .78779 X 109

 

 

 

mode 3 —.10538 X 1011 .62959 x 1011 .45384 X 1010 .58407 X 109

mode 4 —.10529 X 1011 .79044 X 1011 .45231 X 1010 .46481 X 109

mode 5 ——.10525 X 1011 .95077 X 1011 .45149 X 1010 .38624 X 109

mode 6 —.10522 X 1011 .11108 X 1012 .45100 X 1010 .33050 X 109

real ——.17321 X 1011 0.0 .63125 X 1010 0.0
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Table 4.5: Poles and corresponding complex natural mode amplitudes (Ak), _L polar-

ization (6,. = 9, A = 2 cm, 6,: = 30°, 0 21.5 S/m).

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.13152 X 1011 95409 X 1010 .41542 X 1010 .45363 X 1010

mode 1 —.12817 X 1011 .29278 X 1011 .33528 X 1010 .13039 X 1010

 

 

mode 2 —.12780 X 1011 .46117 X 1011 .32903 X 1010 .81773 X 109

mode 3 —.12768 X 1011 .62478 X 1011 .32709 X 1010 .60124 X 109

 

 

mode 4 —.12762 X 1011 .78662 X 1011 .32623 X 1010 .47670 X 1()9

mode 5 —.12759 X 1011 .94760 X 1011 .32578 X 1010 .39535 x 109

mode 6 —.12758 X 1011 .11081 X 1012 .32550 X 1010 .33790 X 109

 

 

 

real —.23152 X 1011 0.0 .49068 X 1010 0.0       
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Table 4.6: Poles and corresponding complex natural mode amplitudes (Ak), || polar-

ization (e.,. = 9, A = 2 cm, 6.,- = 70°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

  

mode 0 -.55910 X 1010 0.0 —.11317 X 1010 —.65568 X 101

mode 1 —.20677 X 1011 .26650 X 1011 .31069 X 1011 .77117 X 1011

mode 2 —.20636 X 1011 .45526 X 1011 .53730 X 1011 .50664 X 1011

mode 3 —.20624 X 1011 .63136 X 1011 .60330 X 1011 .37697 X 1011

mode 4 —.20619 X 1011 .80298 X 1011 .63188 X 1011 .30038 X 1011

mode 5 —.20616 x 1011 .97246 X 1011 .64693 X 1011 .24975 x 1011

mode 6 —.20614 X 1011 .11408 X 1012 .65584 X 1011 .21378 X 1011

 

 

 

 

 

 

 

 

        
—.37516 X 1011 0.0 .58574 X 1012 0.0

real —.21023 X 1011 0.0 —.15778 X 1012 0.0

—.39937 X 1011 0.0 .41373 X 1012 0.0
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Table 4.7: Poles and corresponding complex natural mode amplitudes (Ak), J. polar-

ization (6,. = 9, A = 2 cm, 6, = 70°, 0 = 0.5 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

 

 

mode 0 —.47744 x 1010 .15888 x 1011 .13251 x 1010 .29387 x 109

mode 1 —.47586 x 1010 .32760 x 1011 .12925 x 1010 .14088 x 109

mode 2 —-.47558 x 1010 .49408 x 1011 .12869 x 1010 .93218 x 108

‘mode 3 —.47548 x 1010 .66002 x 1011 .12850 x 1010 .69733 x 108

mode 4 —.47544 x 1010 .82574 x 1011 .12841 x 1010 .55719 x 108

mode 5 —.47541 x 1010 .99136 x 1011 .12837 x 1010 .46403 x 108

mode 6 —.47540 x 1010 .11569 x 1012 .12834 x 1010 .39758 x 108

real —.82716 x 1010 0.0 .13535 x 1010 0.0
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Chapter 5: Natural Mode Analysis

of a Single Layer with Debye

Material

In Chapter 3 and Chapter 4, a lossy slab of material with frequency

independent material parameters 6 = ereo, no, and 0 was considered. However, the

time and frequency dependence of the dielectric response necessitates the use of the

time and frequency dependent permittivity models such as the Debye and the

Cole-Cole models [28]-[31]. In this chapter, the Debye model, which is especially

suitable for representing liquid polar materials, will be considered. Note that the

primary purpose of this chapter is to show the validity and the applicability of the

natural resonance representation of the transient dielectric response, rather than to

discuss the theory of the dielectric properties. In the following discussion, both the

conductor-backed and the air-backed cases will be considered, and the developments

made in the previous chapters will be applied without discussing the details.

However, in some parts the discussions will be repeated in order to clarify the

developments.

5.1 Formulation of the frequency-domain

reflection

The geometry of the Debye material case is the same as the

frequency-independent material case except for the frequency-dependent
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permittivity represented by the Debye equation [15], which is written as

€S_€x

.:= w ————a r1(a) e-+1+5€, (a)

where s = jw, 5 is the relaxation time of the dielectric, 63 is the real static

permittivity obtained when w ——+ 0, and 600 is the real optical permittivity describing

the high frequency behavior. Note that 6, > 600 in order to describe the dielectric

loss. Also, note that both w and s will appear in the following discussions for

clarifying the develI’Ipn'Ients.

The Debye model often includes a conductivity term. Then the complex

permittivity becomes [29], [32]

1+3€ (56
66(8) 2 6x. +

Here, the last term represents the loss due to the conduction current. It cannot be

absorbed into (5.1), since they represent different processes. Hence, the 2 directed

wave number of the dielectric slab becomes

.. _ -2 .2

A” 1 _ A'1 _ A131“I

 

= \/w2,uoec(w) — w'zitoco sin2 6,

 

— sin2 6,

  

#060-

_ ——s 3(5S —€.30)+0'(1+SE)

— gal/00 in2,9 + 608(1+S€)

— 6081112,6)(S + 325) + 8(6S — 60¢) + 0(1+s£)

€o3(1+s§)

  

 

 

 

 

Z—J:

 

_ .3 826(600 — 50 SlIl“2 6,) + 8(63 + 0f __ 60 81112 61'.) _+_ 0

_ JC
€os(1 + sf)

 

 

= _fl—f \/s +Bs+C (53)
(«3+ 1/€
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where

 

coo , .

X = — — sm2 6i,

60

68 + £0 — 60 Bin2 Hit

{(600 — 6081112 6,) ’

a

5(600 — 60 sier 61)

 

 

The roots of the quadratic equation in (5.3) are

_ —B:l: 6132—40
_ 2 , 5

Here, it can be shown that these roots are non-positive real, since

(68 + £0 -— 60 sin2 61)‘2 — 460(600 —— 60 sin2 61)

62(600 -— (0 sin2 6&2 ’

132—40: 

and the. numerator of this equation becomes

(63 + £0 — EQSl112 61-)2 —— 450(600 — 60 sin2 6,)

= 6: + 268€U + £202 — 26360 sin2 61- — 25060 sin2 6i + (.3 sin4 61 — 450600 + 45060 sin2 6,-

—29 ”2 "29-2 '29- 2'464 4— (s — H6360 +€ a —— 65608111 1 + 60603111 1+ 608111 i— {0600 + csga

:: (Es — £0 — €08l112 6.1)2 + 4€0(Es — 600)»

which is always positive (63 > 600).

As a result,

 

 

)

k ___ _jngEVS—SIVS—Ss

21 C r_S—82 a
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where

 

—B+\/B2—4C

2

1

82 : _Ea

—B — x/B‘Z — 4C
83 = .
 

2

Here, it is found that .93 < 52 < 51 _<_ O by substituting 82 for 3 into the quadratic

equation in (5.3) and examining the Sign of the result.

Therefore, by (3.3), (3.4) and (3.2) from Chapter 3,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 2A 5 s — s s —— s

37(3) = ykz,12A = —X \/—\/ ll/ 3, (5.6)

c m

k 7

Z1(s) E Zy(s) : k1 71

2,1

: floSVS — 82
(5 7)

X\/3\/5 - 31\/~5' - 83’

’3 1771

21(8) E 2MB) 2 Z];

1

noeosg/R/s — 31\/s — 32¢s — s3

= . (5.8)

8(8630 -— 8263) + 0(5 — 32)

Hence for perpendicular polarization, the interfacial reflection coefficient is

written as

I‘ ( ) cos6,-\/§\/s—82—X\/8—81\/8—83 (.- 9)
s = , a.

L COSQi\/§\/8_82+X\/S_81\/8_83

and for parallel I.)olari7.ation

eoxfiws -— 81\/8 — sm/s — s3 — cos 6,[s(scx. — 8265) + 0(3 — 32)] r

FMS) = . (0.10)

60Xfi¢8 — sn/s — ng/s — 83 + cos 6,‘[s(se0c — 8268) + 0(3 — 32)]

The reflection coefficients 13(3) remain the same as in previous chapters, such that

__ r(s) —— €_ST(S)

_ 1 —- F(.S)(:’._ST(‘S),

 Ms) (5.11)
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for the conductor—backed case and

 R = _ .1
(8) 1 _ I‘Z(S)e—sr(s) (5 2)

for the air-backed case.

Thus, the impulse response r(t) is obtained by

1

r(t) .—_ £‘1{R(s)} = —/ R(8)€3td8 (5.13)

.7271. Br

where Br indicates the Bromwich path. This integral can be evaluated by contour

integration. We must thus examine the singularities and define an appropriate

branch for the integrand.

Comparison with the frequency—independent material parameters case

If we let the static real permittivity es be the same as the optical permittivity

600, then from (5.4),

 

 

_ _ '2 .2
32—40 : \/(€OO £0 eosm 6,)

€2(€oo — GO 81112 6&2

(6.00 —— £0 — £0 sin2 6,)

£(e00 — 60 31112 6,)

 

Therefore, 53 becomes

—B — \/ B2 - 4C 1

83 = 2 = —E, (5.14)
 

which is equal to 32, and

 

_—B+\/BQ-4C_ 0 0

81 —- , . = ——. ( .

2 600 — 60 $1112 6,- 60X

 

C
f
!

l
-
‘

0
1

v
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Here, X = \/Eoo/€0 —- sin2 6,- is same as fl, where E = 6,. — sin? 6., as defined in

Chapter 3, by letting 600/60 2 6,. Note thatm andm in (5.5) cancel

each other, since .93 = 82. As a result, (5.5)-(5.8) become the same as (3.2), (3.7),

(3.9) and (3.10) respectively; i.e., the current case becomes the frequency-

independent material parameters case if 6,. = 600.

On the other hand, if the DC conductivity 0 is 0, then 31 becomes 0 resulting in

(5.16)

It should be noted that there are only two branch points left for the above

special cases.

5.2 Singularities and the branch cut

From the complex square roots in ST(S) and 21(3), the branch points are

located at s = 0, s = 81, s = 32 and s = 33. These branch points are non-positive

real, and are related by 33 < 32 < 31 S 0. It should be noted that R(s) is continuous

about the negative real axis between 31 and 32, i.e., 57(5) and I‘(s) are continuous.

Therefore, unlike the previous cases, in order to ensure the continuity of R(S), two

separate branch cuts are made, such that one is taken along the negative real axis

between 0 and 81 and the other is taken along the negative real axis between 32 and

83.

r

From (0.11) and (5.12), the poles should satisfy

111|F(.9)e’8T(8)
 
+ j arg [F(s)e—ST(S)] = 0, (5.17)
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for the conductor backed case, and

111IF2(s)e_ST(s)[ + j arg [F2(s)e—3T(S)] : 0, (5.18)

for the air-backed case.

Except for the lossless case (es = 600 and 0 = 0), wherein the poles can be

calculated analytically, the above equations need to be solved numerically. \Vhen

calculating the poles 111.11nerically, it is very important to have good initial guesses

and to know the approximate pole behavior. In this work, the lossless case poles

were used as the initial guesses. In order to trace the poles correctly, first the poles

are traced by gradually increasing the conductivity while keeping es the same as 600.

When the conductivity reaches the target value, 63 is then increased to its desired

value.

Figures 5.1-5.3 show the pole trajectories obtained by the Newton—Rahpson

method for the conductor-backed, parallel polarization case, when the 63 varies from

5.060 to 78.360, where 6.30 = 5.060, £ = 9.6 x 10"12 sec and 0 = 0.5 S/m. In the

figures the amplitudes vs. the ratios of 63 to 600 are shown. As seen in the figures,

when the real static permittivities 65 become larger, the magnitudes of the real and

imaginary parts of the poles become smaller suggesting that the amplitude decay

factors become smaller.

The pole trajectories for the air-backed, perpendicular polarization case with

the same conditions are shown in Figures 5.4-5.6. The air-backed case also shows

the same behavior as the conductor-backed case. The existence condition for the

real poles and the algorithm for finding such poles are examined next.

Let us assume a complex frequency 3 to be negative real and denote its
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magnitude as :13, where 1: > 0. Then, ifs > 81, from (5.6), (5.9) and (5.10)

 

_2A ;r(;1:+81)(;r+s3)

8T(8) = J—,X\/ ,
(r —(.T + 82)

 

and the reflection coefficient becomes

r()— jcos6,—:L\/(H52) —X\/(a:+31(1+91)
_LS

jcos62,/—.1:(£+52))+X\/(SC+81))(113‘1'33)

for perpendicular polarization, and

 

 

 

j€0H\/‘((.1: + 51)(;r. + .92)(17 + .93) — cos 6, [11:(4r600 + 8263) — 0C? + 32)]

13(5):
I j€0X\/—.r (.1: + 81) (.1: + 52)(3: + 33) + cos 6.,[.r(;r€oo + 826,.) — 0(1‘ + 82)]

 

 

for parallel polarization.

As seen from the above equations, the magnitudes of both 6’3““) and 1(9) are

1. As a iesult, the real parts of (5.17) and (5.18) become 0, i..,e 111]I‘(s)e‘37(3)| = 0

and 1n |F(s)28‘ST(S)[ = 0. Therefore, the poles need to satisfy only the imaginary

part of (5.17) or (5.18), i.e., arg [F(s)e‘57(s)] = 0 or arg [I‘(s)ze““(3]—- 0 for the

conductor-backed and the air-backed case respectively. Here, if we denote —ST(S) as

(3)1 and arg [1(9)] or arg [F2(s)] as (.62 for the conductor—backed or the air-backed case

respectively, the poles need to satisfy

951+c52+2n7r=0. 71:0,1,2,--- (5.19)

Here, only the positive sign in front of n is necessary, since (151 is always negative,

when 5 > 81 and —7r < 6.52 < 71’. The above equation, which we call the characteristic

function, can be solved by any l-D root search algorithm, such as the secant.

method. Again, it is very important to note that (5.19) does not always have

solutions, and that the number of solutions is dependent upon the conductivity,
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permittivities and incident angle.

If 32 < .9 < .91, i.e., —.91 < I < —s2,

 

 

37(3) 2 —  
C $+82

2A /\/l‘(1‘ + 51)(I + 83)

and the reflection coefficient becomes

1‘ (9) cos6\/—I(I+.92) X\/—((I+.91)(I+.93)

_L‘ =

cos6,,/—II+s2+)X()\/—I+.91()(I+.93)

for perpendicular polarization, and

 

 

 

—€0X\/17((I + .91)(I + .92)(I + .93) — cos 6i[$($€oo + 8265) — 0(I + 82)]

—€0X\/l‘(.T+ .91) (I + .92)(I + .93) + cos 6,(-I(Iec>0 + 826.3) — 0(I + 32)]

 

 11(8):

for parallel polarization.

As seen from the equations, when 92 < .9 < .91, ST(S ) becomes negative real

causing 6737(8) to be greater than 1, and F(.9) becomes pure real. Therefore, the

imaginary parts of (5.17) is zero as long as F(.9) is positive, whereas that of (5.18) is

always zero regardless of the sign of 1(9). When the imaginary parts of (5.17) and

(5.18) are zero, the poles only need to satisfy the real parts of the equations, i.e.

ln ]F(s)e’3”8)-——|— 0 and In [I‘(.9))26‘3“3)] = 0 for the conductor-backed and the

air-backed case respectively.

The cases where .93 < .9 < .92 and .9 < .93 are analogous to the cases where

.91 < .9 < O and .92 < .9 < .91 respectively. Figure 5.7 and Figure 5.8 Show the

amplitudes of the interfacial reflection coefficients for the perpendicular and the

parallel polarization case, where 6, = 5.060, 6.00 = 3.060 and 0 = 1.0 S/ In. From the

figures, it can be observed that F(.9) follows the above discussion.

Finally, it should be emphasized that the real poles in the region where s > .91

dominate the other real poles due to their relatively smaller magnitudes. The
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greatest care should be given to calculating these poles.

5.3 Evaluation of r(t)

Since all poles and branch points lie in the left half plane including the

imaginary axis, the region of convergence is the right half plane. Therefore, the

Bromwich path is put in the right half plane and the Laplace inversion integral is

evaluated by contour integration. The evaluation is accomplished in two different

time intervals, corresponding to the early—time period and the late—time period. The

beginning of the late-time period is To = 2? X. It should be emphasized that, unlike

with the previous cases, 7'0 does not represents the two-way transit time of the wave

inside the dielectric.

111 this section, the evaluation will be done for the conductor-backed case. The

air-backed case follows the same procedure giving similar results; for the details

refer to Chapter 4.

5.3.1 Case I: t > To

When t > T0, the integration contour is closed in the left half plane as shown in

Figure 5.9. Inside the contour, the branch cuts lie from 0 to .91 and from .92 to 33,

and there are corresponding closed paths enclosing the branch cuts. Note that the

possible real poles are not shown in the figure. We denote the outer integration

contour which includes the Bromwich path as CO and the closed paths which enclose

the branch cuts as Cl, such that

Cl 1 71+72+73+74+11+12+13+l+
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Then, by Cauchy’s residue theorem,

/ R(.9)e3td.9 = j27rZ Res[R(s)eSt, poles] (5.20)

C0+C1

Therefore, if the integral contribution from each path is known, the impulse

response r(t) can be determined.

The contribution from F,”

011 Foo, from (5.6),

2A . ._. _(

R9{37(5)} = Re{ lirn —X‘/3\/S
51\/3 93}

2A

2 S—X = 870

C

 

 

If we let t1 = t — 7'0, which is positive since we are evaluating the integral when

t > T0, then

I‘ 2 (.970 _ ——.9'r(s) [.970 ‘

/oc R(.9)es’ ds = [so (51): F(s)ee‘37(3)€ 6"“ ds = /00 f(s)eSt1ds

Since f(9) ——> 0 011 Foo, by Jordan’s Lem-ma [20], [21],

 

/ R(s)es" ds = O (5.21)

F00

The contribution from L1 and L2

As seen in the previous chapters, for L1 and L2, the same theorem [14] can be

used to apply Jordan’s Lemma. As a result, it can be Sl’lOWD that

/ R(.9)e“" ds = 0 (5.22)

1.1.1.2
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The contribution from 01

The segments of the contour C1 enclosing the branch cut can be divided into

three groups. The first group consists of 71, 7'2, 73 and 74 that enclose the branch

points .93, .92, .91 and 0 respectively. The second group consists of the straight lines

immediately below and above the branch cut, and those are designated ll, [2, [3 and

14. The last group consists of the paths that enclose the real poles on the branch cut

which are not shown in Figure 5.9. For the third group, refer to the previous

chapters. The first two groups will be examined separately. F-

Denote the radius of 71 as r, and let 6 to be the angle measured

counterclockwise from the real axis to the point on 71. Then, any point on 71 can be

represented as

s = so + re”.

The reflection coeflicient 011 71 with r -—> 0, i.e. s —> .90, becomes —1 for parallel

polarization and 1 for perpendicular polarization. Then,

19(3) — e-sfls) 6“ , 1 — pol
R c 68' = e“ =

(9) 1 -— F(s)e—ST(S) st

 

and

[R(8)€St[ S e(so+r)t.

Therefore,

3 27n~e(~‘>‘0+">t —> 0, (r —+ 0).

  

/ R(s)es‘ ds

91

As a result,

/ R(s)es‘ ds = 0. (5.23)

11

130



Similarly, it can be shown

/ R(3)es‘ d3 = o. (5.24)

72173174

For the second group. it is 1'1ecessary to determine F(3) and 37(3) along a path

immediately above the branch cut, which we denote as 8+, and immediately below

the branch cut, which we denote as 3‘. Also, if we let Z (9) on B+ be denoted as

2+, and 2(3) on B” as Z‘, using (5.7) and (5.8), it can be shown that

2+ = ——Z". (5.25)

Since,

 

 

R ‘_
_

(.) 1_ mac-w

_ [Z(b) - Z{)](’%ST(S) _ [2(6) + Zo]€—%ST(S
)

[2(9) + Z0]( 337(3) _ [Z(s) _ Zo]e—%37(s)
’

we have,

Z+—Z
.j¢—— Z+ Z (_jq')

R(3)|B+ _ l 016 l + 0].»
 

[Z+ + Z0]ej¢ — [Z+ — Z0]e‘j¢

jZ+ sin 96 — Z0 cos I

jZ+ sin (15+ 20 cos (,9

 

37(3), and

M
I
»
—

where jgb =

[Z‘ — Zak—34’ -— [Z— + Z0]ej¢

[Z‘ + Zo]e‘1¢ — [Z‘ — Zo]cJ¢’

—jZ‘ sin (,5 — Z0 cos (5)

—jZ‘ sin¢5+ Zocoscj)

 

Rislie- =

 

Therefore, by (5.25)

R(8)|B+ = R(8)|B—-
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As a result,

/ R(8)|]3+ 88" C18 ‘1‘] R(8)]B— 88’ (18 = 0 (5.26)

11+12 13+l4

The integral contributions from the third group and the other complex poles

can be determined by calculating the residues of 1?,(3)eS’ at the poles. It. is found

that. all of the poles of 17(3) are of first order and thus

 

I“ _ —37(3)

Res [R(.9)e‘9t, poles] [5:8, = lim (.9 — 3k) (8) e
”.9! =A skt, 527

s—.sk 1 _ r(s)e—ST(S)€ 1e ( l

where

F(3k) — 63—SkT(Sk)

dis [r(3)e_ST(S)l [8:81.-

A2:— 

is the complex natural mode amplitude. In this chapter, Ak is calculated by using

the numerically obtained Jacobian at the pole locations.

Collecting the results from (5.21)-(5.27), the impulse response r(t) becomes

1

r(t) = fi/R(s)est d3 = Z Akesk‘, t > 70, (5.28)

B.

and thus the late—time period is a pure natural resonance series, and contains no

branch-cut contribution.

5.3.2 Case II: t < 70

For t < 70, r(t) is found by computing the inverse Laplace transform of

R(s) = F(3) + 77(3), where

 

Then

 



To compute this integral, the integration contour is closed in the right half plane, as

shown in Figure 5.10. 011 Foo, from (5.6),

. _ .‘ 2A \/.§\/3-81\/§_53
Re{ST(b)} _ RC {Refilr-Loo C X \/S_—52 }

 

 

If we let t1 = t — 70, which is negative since we are evaluating the integral when

t < 70, then

 

__ q. 6—37(s) 8.970 3 s

/ R(3)e‘tds 2/ [F2(s) — 1] 1_ F(3)e“3T(S)€ ‘1 d3 = r f(3)e ‘1 d3

Here, it is not possible to apply Jordan’s Lemma directly, since f (.9) does not

approach zero over the entire contour FOO. However, if we use the theorem

introduced in the previous chapters, it can be argued that

/ TB-(s)e3‘ d3 = 0

F00

The inverse transform of F (3), denoted as F (t), is the interfacial reflection coefficient

and can be obtained numerically. Note that we are interested in the late-time

responses, rather than the early-time specular reflections. As a result, when t < 70,

r(t) becomes

r(t) = F(t), t < 70. (5.29)

Combining the results (5.28) and (5.29), the impulse response r(t) is

Z Akesk‘, t > T0

F(t), t < To.
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5.4 Results

As with the frequency-independent parameter cases, it has been slmwn

analytically with the Debye material that the early-time response is a specular

reflection from the interface betwee1‘1 free-space and the dielectric slab, and the

late-time response is a. pure sum of damped sinusoids. 111 order to verify these

results, the natural mode series is compared to the direct IFFT using the same

input waveform used for the previous cases. Figures 5.11-5.16 show the transient

responses calculated by the natural mode series and the IFFT. In addition, the

IFFT of the interfacial reflection coefficients F(s) are also shown in order to explain

the early-time behavior. The natural resonant. frequencies of the corresponding

cases are shown in Table 5.1—5.6.

Figure 5.11 and Figure 5.14 show the responses from the pure water at room

temperature from the conductor-backed and the air-backed case respectively, where

e, = 78.360, 600 = 5.060, £ = 9.6 x 10‘12 sec, 0 = 0 S/1n,6.,-= 0° and A = 2 cm. For

these cases, the beginning of the impulse response late-time is 70 = 0.291 ns. As

shown in figures, during the early-time period, before 70, the IFFT of R(w)F(w)

(where F(I) is the spectrum of the input waveform) matches well with the IFFT of

F(w)F(w), which is the specular reflection from the interface. During the late-time,

the IFFT of R(w)F(w) matches well with the natural mode series. Note that, even

though 70 = 0.291 us, the first amplitude peak during the late-time occurs at about

1.3 113 due to the high real static permittivity 6,. Again, it should be noted that

when t < 70 the response from the natural mode series does not have any meaning;

i.e., the natural mode series is valid only when t > 70, the late-time period. Since

the frequency band of the input. waveform is roughly 0 — 20 GHz, the first. 7 natural

modes, which are shown in Table 5.1 and Table 5.4, are sufficient to represent the

late—time reflected field.

Figure 5.12 and Figure 5.15 show the responses from the same material except
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for nonzero conductivity 0 = 0.1, and with the incidence angle 6,- : 30° for

perpendicular polarization. Figure 5.13 and Figure 5.16 represent the responses

obtained with the same condition except for a higher conductivity 0 = 0.5 and for

parallel polarization.

Comparing Figures 5.12 and 5.14 to Figures 5.13 and 5.16, due to the relatively

higher conductivity in the Figure 5.13 and 5.16 cases, relatively smaller late-time

responses are observed. The corresponding natural resonance frequencies for these

cases are shown in Tables 5.3 and 5.6. Note that there is one real pole for each

air-backed case.
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Table 5.1: Poles and corresponding complex natural mode amplitudes (Ak),

conductor-backed case, normal incidence (6, = 78.360, 600 = 5.060, £ = 9.6 x 10~12

sec, A = 2 cm, 6,- : 0°, 0 = 0.0 S/m)

 

Pole Amplitude Natural Mode Amplitude

 

Real Part Imaginary Part Real Part Imaginary Part

   

mode 0 —-.22382 x 109 .26557 x 1010 .38655 x 109 .13994 x 108

mode 1 ——.47802 x 109 .79638 x 1010 .38497 x 109 .41972 x 108

mode 2 —.98686 x 109 .13262 x 1011 .38180 x 109 .69914 x 108

mode 3 —.17512 x 1010 .18543 x 1011 .37703 x 109 .97797 x 108

mode 4 —.27725 x 1010 .23801 x 1011 .37063 x 109 .12560 x 109

mode 5 —.40525 x 1010 .29028 x 1011 .36264 x 109 .15329 X 109

mode 6 —.55934 x 1010 .34217 x 1012 .35291 x 109 .18084 x 109
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Table 5.2: Poles and corresponding complex natural mode amplitudes (A1,),

conductor-backed case, _L polarization (6, =- 78.360, 60, =2 5.060, £ = 9.6 x 10‘12

see, A = 2 cm, 62 = 30°, 0 = 0.1S/m)

 

Pole Amplitude [[ Natural Mode Amplitude

 

Real Part Imaginary Part I] Real Part Imaginary Part

  

 

mode 0 —.27087 x 109 .26527 x 1010 .33517 x 109 .21358 x 108

mode 1 —.52625 x 109 .79695 x 1010 .33277 x 109 .39472 x 108

mode 2 —.10379 x 1010 .13273 x 1011 .32992 x 109 .62452 x 108

mode 3 —.18065 x 1010 .18559 x 1011 .32573 x 109 .86082 x 108

mode 4 —.28333 x 1010 .23820 x 1011 .32013 x 109 .10987 x 109

mode 5 -.41202 x 1010 .29050 x 1011 .31316 x 109 .13366 x 109

mode 6 —.56692 x 1010 .34240 x 1011 .30466 x 109 .15738 x 109
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Table 5.3: Poles and corresponding complex natural mode amplitudes (A1,),

conductor-backed case, I] polarization (6, = 78.360, 600 = 5.060, £ = 9.6 x 10~12

see, A = 2 cm, 6,- = 30°, 0 = 0.5 S/m)

 

Pole Amplitude [[ Natural Mode Amplitude
 

Real Part Imaginary Part [I Real Part Imaginary Part

 
 

mode 0 -.61336 x 109 .25908 x 1010 .45231 x 109 .79609 x 108

mode 1 —.86535 x 109 .79163 x 1010 .44129 x 109 .69074 x 108

mode 2 —.13741 x 1010 .13202 x 1011 .43689 x 109 .92938 x 108

mode 3 —.21385 x 1010 .18466 x 1011 .43112 x 109 .12148 x 109

mode 4 —.31597 x 1010 23704 x 1011 .42357 x 109 .15149 x 109

mode 5 -—.44396 x 1010 .28911 x 1011 .41418 x 109 .18208 x 109

mode 6 —.59800 x 1010 .34078 x 1011 .40280 x 109 .21285 x 109
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Table 5.4: Poles and corresponding complex natural mode amplitudes (Ak), air-

backed case, normal incidence (63 = 78.360, 600 = 5.060, 5 = 9.6 x 10~12 sec, A = 2

cm, 61- : 0°, 0 = 0.0 S/m)

 

 

 

 

 

 

 

 

 

 

       

Pole Amplitude Natural Mode Amplitude

Real Part Imaginary Part Real Part Imaginary Part

mode 0 —.51014 x 109 .52968 x 1010 .38462 x 109 .27874 x 108

mode 1 —.89043 x 109 .10587 x 1011 .38225 x 109 .55725 x 108

mode 2 —.15250 x 1010 .15864 X 1011 .37830 x 109 .83529 x 108

mode 3 —.24149 x 1010 .21120 x 1011 .37274 x 109 .11126 x 109

mode 4 —.35617 X 1010 .26350 x 1011 .36554 x 109 .13889 x 109

mode 5 —.49676 x 1010 .31545 x 1011 .35676 x 109 .16641 x 109

mode 6 —.66349 x 1010 .36699 x 1012 .34621 x 109 .19376 x 109

real —-.38345 x 109 0.0 .38540 x 109 0.0
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Table 5.5: Poles and corresponding complex natural mode amplitudes (Ak), air—

backed case, _J_ polarization (63 = 78.360, 600 = 5.060, g =2 9.6 x 10“12 sec, A = 2

cm, 6i 2 30°, 0 : 0.1 S/m)

 

 

 

 

 

 

 

 

 

 

      

Pole Amplitude U Natural Mode Amplitude

Real Part Imaginary Part ii Real Part Imaginary Part

mode 0 -.53216 x 109 .15660 x 1010 .33307 x 109 .28773 x 108

mode 1 —.91452 x 109 .10598 x 1011 .33058 x 109 .50640 x 108

mode 2 —.15528 x 1010 .15882 x 1011 .32704 x 109 .73977 x 108

mode 3 —.24479 x 1010 .21145 x 1011 .32215 x 109 .97629 x 108

mode 4 —.36014 x 1010 .26379 x 1011 .31585 x 109 .12134 x 109

mode 5 —.50153 x 1010 .31579 x 1011 .30818 x 109 .14503 x 109

mode 6 —.66918 x 1010 .36735 x 1011 .29896 x 109 .16859 x 109

real —.47724 x 109 0.0 .33412 x 109 0.0  
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Table 5.6: Poles and corresponding complex natural mode amplitudes (Ak), air-

backed case, l| polarization (63 = 78.360, 600 = 5.060, g = 9.6 x 10’12 sec, A = 2

cm, 02: = 30°, 0 = 0.5 S/m)

 

 

 

 

 
 

 

 

 

 

 

       

Pole Amplitude Natural Mode Amplitude

Real Part Imaginary Part Real Part Imaginary Part

mode 0 —.92647 x 109 .52329 x 1010 .44466 x 109 .63070 x 108

mode 1 —.13048 x 1010 .10523 x 1011 .43808 x 109 .79647 x 108

mode 2 —.19388 x 1010 .15784 x 1011 .43277 x 109 .10647 x 109

mode 3 —.28282 x 1010 .21022 x 1011 .42603 x 109 .13578 x 109

mode 4 —.39743 x 1010 .26230 x 1011 .41752 x 109 .16599 x 109

mode 5 -—.53792 x 1010 .31403 x 1011 .40719 x 109 .19656 x 109

mode 6 —.70450 x 1010 .36532 x 1011 .39484 x 109 .22720 x 109

real —.11590 x 1010 0.0 .44881 x 109 0.0
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Figure 5.1: The amplitude of the real parts of poles vs. the ratio of es to 600, ||

polarization (65 = 5.060 ——> 78.360, 600 = 5.060, (E = 9.6 x 10‘12 sec, A = 2 cm,

61- = 30°, 0 = 0.5 S/In).
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Figure 5.2: The amplitude of the imaginary parts of poles vs. the ratio of es to 600,

II polarization (es 2 5.060 —~> 78.360, 600 = 5.060, 5 = 9.6 x 10‘12 sec, A = 2 cm,

()1- : 30°, 0 = 0.5 S/m).
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Figure 5.3: Pole trajectories of the reflection coefficient, || polarization (63 = 5.060 —->

78.360, 600 = 5.060, E = 9.6 x 10‘12 sec, A = 2 cm, 61- : 30°, 0 = 0.5 S/m).
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62- :: 30°, 0 = 0.5 S/m).
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Figure 5.5: The amplitude of the imaginary parts of poles vs. the ratio of es to 600,

_L polarization (63 = 5.060 —> 78.360, 600 = 5.060, E = 9.6 x 10‘12 sec, A = 2 cm,

61- = 30°, 0 = 0.5 S/m).
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Figure 5.11: Time domain response, conductor-backed case, normal incidence, (63 —

78.360, 600 = 5.060, E = 9.6 X 10”12 sec, A = 2 cm, 9,- : 0°, 0 = 0.0 S/m).
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Figure 5.12: Time domain response, conductor-backed case, .1. polarization, (es

78.360, 600 = 5.060, E = 9.6 x 10’].2 sec, A = 2 cm, 6,- = 30°, 0 = 0.1 S/in).
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Figure 5.13: Time domain response, conductor-backed case, M polarization, (6,

78.360, 600 = 5.060, f = 9.6 x 10“12 sec, A = 2 cm, 6.,- = 30°, 0 = 0.5 S/m).
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Figure 5.14: Time domain response, air-backed case, normal incidence, (63 = 78.360,

600 = 5.060, g = 9.6 x 10‘12 sec, A = 2 cm, 0,- : 0°, 0 = 0.0 S/In).
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Figure 5.16: Time domain response, air-backed case, [I polarization, (68 = 78.360,

600 = 5.060, g = 9.6 x 10‘12 sec, A = 2 cm, 6,- : 30°, 0 = 0.5 S/m).
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Chapter 6: Conclusions

The natural mode representations of the field reflected by conductor-backed

and air—backed lossy layers with frequency independent or dependent (Debye type)

material parameters have been analyzed and obtained numerically. It has been

shown that the late time response can be represented as a pure series of damped

sinusoids. These results are not only useful in the practical application to material

characterization using the E—pulse method, but also give us a significant physical

insight into the nature of the transient scattering.

In this thesis, a complete set of complex 3 domain poles was determined for each

case. In particular, the existance conditions of the real poles that are indispensable

for calculating the transient response were analyzed, and the determining equation

was formulated and numerically implemented. It should be emphasized that, when

calculating the poles numerically, it is very important to have good initial guesses

and to know the approximate pole behavior in order to bound the pole locations.

Unlike in the previous work [12], [13], the evaluation of the Laplace inversion

integral was accomplished analytically without resorting to numerical evaluation. It

was clearly justified that the contributions from the deformation contour located at

infinity and the branch cuts along the negative real axis vanishes. Here, it should be

noted that the assumption of a practically realizable signal which belongs to the

class of almost piecewise continuous (APC) signal [14] is fundamentally crucial in

evaluating the Laplace inversion integrals. In the previous work [12], [13], the

assumption of an unrealistic signal (a rectangular pulse with instant rising time) led

to inaccurate and computationally expensive results.

Also in this thesis, the transient responses from the frequency dependent Debye

type material were evaluated analytically showing the natural resonance

representation works equally well for the frequency dependent material parameters
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case. This result can be used for developing different permittivity models.

In future work, a multiple layer material can be examined with the reflection

coefficient formulated in Chapter 1. Also, it may be possible to develop a different.

permittivity model that can better represent a general class of dielectrics. For this

purpose, a series of known permittivity models such as the Debye model can be

considered [32]. As a common structure, a curved structure also deserves to be

examined. Finally, the parameter extraction problem, which is to find material

parameters from a known time-domain response, is worthy of investigation.

159



 

BIBLIOGRAPHY

160



Bibliography

[1] C. L. Bennett, “Time-domain electromagnetics and its applications,” Proc.

IEEE, vol. 66, no. 3, pp. 299-318, 1978.

[2] L. B. Felsen, ed., Transient Electromagnetic Fields, Springer-Verlag, Berlin,

1976, Chapter 3 (C. E. Baum).

[3] A. G. Alexander, “Theoretical and practical aspects of singularity and

eigenmode expansion methods,” IEEE Trans. Antennas Propagat., vol. AP-28,

no. 6, pp. 897-901, Nov. 1980.

[4] M. A. Morgan, “Singularitiy expansion representations of fields and currents in

transient scattering,” IEEE Trans. Antennas Propagat., vol. AP-32, no. 5, pp.

466-473, May 1984.

[5] L. B. Felson, “Comments on early time SEM,” IEEE Trans. Antennas

Propagat., vol. AP-33, no. 1, pp. 118-119, Jan. 1985.

[6] D. G. Dudley, “Comments on SEM and the parameter inverse problem,” IEEE

Trans. Antennas Propagat., vol. AP-33, no. 1, pp. 119-120, Jan. 1985.

[7] C. E. Baum, E. J. Rothwell, K.M. Chen and D. P. Nyquist, “The singularity

expansion method and its application to target identification,” Proc. IEEE, vol.

79, no. 10, pp. 1481-1491, 1991.

[8] E. J. Rothwell, D. P. Nyquist, K. M. Chen, and B. Drachman, “Radar target

discrimination using the extinction-pulse technique,” IEEE Trans. Antennas

Propagat., vol. AP-33, pp. 929-937, Sept. 1985.

[9] E. J. Rothwell, K. M. Chen, D. P. Nyquist and W. Sun, “Frequency domain

E—pulse synthesis and target discrimination,” IEEE TIans. Antennas Propagat.,

vol. AP-35, pp. 426-434, Apr. 1987.

[10] G. J. Stenholm, E. J. Rothwell, D. P. Nyquist, L.C. Kempel, and K. M. Chen,

“E-pulse diagnostics for layered materials,” URSI Radio Science Meeting,

Boston, Mass, 2001, p. 190

[11] D. Batrakov, S. Shulga, and N. Zhuck, “Application of the extinction pulse

technique to non-destructive control of dielectric materials,”, in IEEE AP-S

Int. Symp. Dig., Ann Arbor, MI, 1993, vol. 2, pp. 880-883.

[12] A. G. Tihuis and H. Block, “SEM approach to the transient. scattering by an

inhomogeneous, lossy dielectric slab; Part 1: the homogeneous case,” Wave

Motion, vol. 6, pp. 61-78, 1984.

161

 

 



[13] A. G. Tihuis and H. Block, “SEM approach to the transient scattering by an

inhomogeneous, lossy dielectric slab; Part 2: the inhomogeneous case,” ’ave

Motion, vol. 6, pp. 167-182, 1984.

[14] W. R. LePage, Complex Variables and the Laplace Transform for Engineers,

McGraw-Hill, New York, 1961, pp. 353-357.

[15] E. J. Rothwell and M. J. Cloud, Electromagnetics, CRC Press, Boca Raton,

Florida, 2001.

[16] R. F. Harrington, Time—Harmonic Electromagnetic Fields , McGraw-Hill, New

York, 1961.

[17] W. H. Press et al., Numerical Recipes in FORTRAN 90, 2nd ed. Cambridge

University Press, Cambridge, New York, 1996.

[18] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, 5th ed.

Addison-W'esley, lV'Iassachusetts, 1994.

[19] S. J. Chapman, Fortran 90/95 for Scientists and Engineers, McGraw-Hill, New

York, 1998.

[20] T. W. Gamelin, Complex Analysis, Springer-Verlag, New York, 2001, pp.

216-219.

[21] A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New

York, 1962.

[22] EA. Guillemin, The Mathematics of Circuit Analysis, John Wiley & Sons,

New York, 1958.

[23] B. J. Ley, S. G. Lutz and C. F. Rehberg, Linear Circuit Analysis, l\r’IcGraw-Hill,

New York, 1959.

[24] D. H. Griffel, Applied Functional Analysis, Ellis Horwood Limited, Chichester,

England, 1981.

[25] D. S. Jones, Generalised Functions, McGraw-Hill House, hilaidenhead,

Berkshire, England, 1966.

[26] J. W. Suk and E. J. Rothwell, “Transient Analysis of TE-Plane W'ave

Reflection from a Layered Medium,” Journal of Electromagnetic Waves and

Applications, vol. 16, no. 2, pp. 281-297, 2002.

[27] J. W. Suk and E. J. Rothwell, “Transient Analysis of TIV'I-Plane Wave

Reflection from a Layered Medium,” Journal of Electromagnetic Waves and

Applications, vol. 16, no. 9, pp. 1195-1208, 2002.

[28] V. V. Daniel, Dielectric Relaxation, Academic Press, New York, 1967, Chapter

2.

162



[29] A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press,

London,1983.

[30] J. C. Anderson, Dielectrics, Reinhold Publishing Corporation, New York, 1964.

[31] H. Frbhlich, Theory of Dielectrics, Oxford University Press, London, 1958.

[32] M. Mrozowski and M. Stuchly, “Parameterization of Media Dispersive

Properties for FDTD,” IEEE Trans. Antenas Propagat., vol. 45, no. 9, pp.

1438-1439, 1997.

163



llll]|l[][[l]ll[[l][[]l]l[[1111

 


