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ABSTRACT

MEASURING AND MODELING THE SPATIAL PATTERN

OF UNDERSTORY BAMBOO ACROSS LANDSCAPES:

IMPLICATIONS FOR GIANT PANDA HABITAT

by

Marc Alan Linderman

Understory vegetation is a critical component ofbiodiversity and an

essential aspect of habitat for countless wildlife species. However, compared to

overstory, information about understory vegetation distribution is scant, available

mainly over small areas or through imprecise large area maps from tedious and

time-consuming field surveys. As a result, measuring and monitoring wildlife

habitat at the landscape level rarely include understory vegetation and has likely led

to serious misestimates of wildlife habitat and, consequently, biodiversity. As a

case study, we examined an approach to classifying understory bamboo, the staple

food of the giant panda (Ailuropoda melanoleuca), from remote sensing imagery in

the Wolong Nature Reserve, China. We also used these data to estimate the

landscape-scale distribution of giant panda habitat, and model the human effects on

forest cover and the spatio-temporal dynamics ofbamboo and the resulting

implications for giant panda habitat.

The spatial distribution of understory bamboo was mapped using an

artificial neural network and leaf-on remote sensing data. Training on a limited set

of ground truth data and using widely available Landsat TM data as input, a non-

linear artificial neural network achieved a classification accuracy of 80% despite the

presence of co—occurring mid-story and understory vegetation.



Using information on the spatial distribution of bamboo in Wolong, we compared

the results of giant panda habitat analyses with and without bamboo information. Total

amount of habitat decreased by 29 — 56% and overall habitat patch size decreased by 16 —

48% after bamboo information was incorporated into the analyses. The decreases in the

quantity of panda habitat and increases in habitat fragmentation resulted in decreases of

41 — 60% in carrying capacity.

Using a spatio—temporal model of bamboo dynamics and human activities, we found that

local fuelwood collection and household creation will likely reduce secondary habitat

relied upon by pandas. Human impacts would likely contribute up to an additional 16%

loss of habitat. Furthermore, these impacts primarily occur in the habitat relied upon by

giant pandas during past bamboo die-offs. Decreased total area of habitat and increased

fragmentation from human activities will likely make giant pandas increasingly sensitive

to natural disturbances such as cyclical bamboo die-offs.

Our studies suggest that it is necessary to further examine approaches to monitor

understory vegetation and incorporate understory information into wildlife habitat

research and management. The success here to map bamboo has important implications

for giant panda conservation and provides a good foundation for developing methods to

map the spatial distributions of understory plant species. Knowledge of the spatial

distribution of bamboo is necessary to accurately measure the quantity and landscape

characteristics of giant panda habitat. And integrating more specific habitat information

into models of the combined effects of land cover change and natural disturbances allows

more accurate assessments of habitat.
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CHAPTER 1

BACKGROUND AND RESEARCH TOPICS

1.1 Background

There is a long history of studying wildlife/habitat relationships (Leopold

1933; Morrison et a1. 1998). While some economically and socially relevant

species have been studied in extreme detail, surprisingly little is known of the exact

habitat requirements for many species, how their habitat is distributed, how

continued human activities will influence the current distribution of habitat, and

how the distribution of habitat influences the local and global distribution of

species. This is particularly problematic at scales larger than the typical plot or

patch scale at which most of the past ecological studies have operated. Broad-scale

analyses such as landscape and regional studies have almost always necessarily

relied on habitat information available from remote sensing data (Roughgarden et

al. 1991). If useful theories are to be developed for a better understanding of

wildlife/habitat interactions and to offer viable management options, more detailed

information is needed over larger areas. In addition, these data need to be examined

relative to species needs. And, the processes and degree to which humans are

impacting wildlife habitat need to be better understood.

Habitat loss is a principal threat to the local and global persistence of

terrestrial fauna] and floral species (Sala et a1. 2000). There has been much



discussion on the degree of humans have impacted natural areas around the world.

Estimates have ranged from 40% of the terrestrial surface having been directly co-

opted to 80% directly and indirectly influenced (Vitousek et a1. 1997). This large

degree of influence on natural areas, and consequently wildlife habitat, necessarily

effects the distribution and persistence of almost every species on this planet.

Knowing where these impacts are occurring, how they relate to wildlife habitat, and

understanding the process related to impacts are needed to mitigate further losses

and develop a more sustainable human-environment relationship.

Landscape ecology first emphasized the importance of the spatial

arrangement of resources relative to wildlife species and the need of examining

habitat at scales relevant to how species interact with the environment (Forman and

Godron 1986; Turner 1989). This was one of the first efforts to extend wildlife-

habitat relationships to include the influence of the surrounding environment on

habitat quality, movement, and population persistence. Expanding ecological

analyses from the traditional patch relationships broadened ecological theory, but

was very data, and potentially, computationally intensive. Three advancements

allowed landscape ecology to include analysis of real heterogeneity found in nature:

accessible computational power, remote sensing, and Geographical Information

Systems (GIS) (Roughgarden et a1. 1991). Increased computational availability

allowed increased modeling and quantitative analyses of large amounts of data,

remote sensing provided data corresponding to the arrangement of natural features,

and GIS provided a system to relate the separate data sources to one another for

more intensive and realistic analyses.



Modeling wildlife~habitat relationships is a mainstay of ecology (Turner

1990). Models have ranged from simple linear regressions to complex nonlinear

systems analyses. However, intensive modeling has only become increasingly

popular with the development of personal computers. Particularly, spatially explicit

models have become more commonplace with the availability of computational

power and geographically registered data (Dunning et a1. 1995). While

geographical analyses of socio-economic relationships with the environment have a

long history, it has only been the recent availability of detailed geo-referenced data

that has allowed coupling theoretical developments with observed distributions of

natural resources. Remote sensing data and hand-held Global Positioning System

(GPS) devices have led this boom in geo-referenced data. However, many

environmental variables found necessary to relate wildlife to habitat at the patch

level have not been available from remote sensing sources.

One example of this is past attempts to map giant panda (Ailuropoda

melanoleuca) habitat. Past analyses have been restricted in their ability to

accurately measure panda habitat over large areas by the lack of information on the

spatial distribution of bamboo, the principal food source for pandas (Schaller et a1.

1985; Morain 1986). Throughout most of the panda range, bamboo is found in the

understory. Efforts to map the distribution of bamboo through field surveys have

necessitated coarse estimates over large areas or detailed estimates restricted to

small areas. Attempts to map bamboo using aerial photography or remote sensing

have been unsuccessful in that conventional photo interpretation and digital image

analyses have difficulty categorizing understory vegetation (Morain 1986). This



lack of understory information, then, is likely leading to overestimates of panda

habitat. In addition, as bamboo is not correlated to forest cover or abiotic factors

(Linderman, unpublished data), the actual landscape distribution of panda habitat is

likely much different than if habitat is only calculated using traditional approaches.

Giant pandas historically extended across much of current China (Schaller et

a1. 1985). Fossils dating back to the Pleistocene era (approximately 3 million years

ago) have been found across China and in neighboring Burma. In the mid-1980’s.

MacKinnon and DeWulf (1985) estimated that the total available habitat has been

reduced to approximately 32,000 kmz. Drastic human population growth and

subsequent development and deforestation have led to the loss of much of the

panda’s former range. It is this extensive loss of habitat and isolation that has

resulted in the fragile nature of the current panda populations.

While rugged topography and isolation from humans protected the current

available panda habitat and populations, continued growth in human population and

development pose increasing risks to the remaining panda habitat. Currently,

pandas occupy only a portion of the remaining habitat, found only at the fringe of

their former range in Sichuan and Shaanxi provinces. Within the Min, Qionglai and

Min mountains, it is estimated that less than 1.000 pandas remain in the wild,

existing in isolated populations separated by topography and human development

(Zhang et a1. 1997). The isolation of distinct populations severely threatens the

genetic stability of the species (Lu et a1. 2001). However, other threats exist in the

form of incidental poaching, decreasing accessibility to quality habitat, and



continued development and human impacts of the remaining habitat (Schaller et al.

1985).

For example, between 1974 and 1989 it is estimated that the panda

population in Wolong Nature Reserve (one of the largest reserves dedicated to

protecting giant panda habitat) plummeted from 140 to approximately 74

individuals (Zhang et al., 1997). Schaller et al. (1985) suggest the loss of habitat

and incidental poaching most likely contributed to the attrition of the reserve’s

population. A more publicized explanation of the decrease of pandas in the reserve

was a mass-flowering of bamboo that occurred in 1982 (Schaller et al. 1985).

While pandas are obligate grazers of bamboo and the species (Bashaniafangiana)

which mass-flowered was the primary bamboo species for pandas in the reserve, it

is unlikely the loss of this species contributed significantly to the loss of any

pandas. Schaller et a1. (1985) noted that no pandas died of starvation and very few

pandas suffered malnutrition. This is in stark contrast to a similar situation in the

Min mountains where in 1982 a sudden die-off of several bamboo species resulted

in drastic number of pandas dying of starvation. The die-off of the principal

bamboo species in Wolong Nature Reserve did not result in similar impacts on

pandas because a contiguous secondary bamboo species (Fargesia robusta) was

accessible. However, continued human impacts threaten habitat throughout

Wolong with the most likely areas of development and use located in areas of

secondary bamboo. The loss of this habitat could result in drastic consequences for

the panda population in Wolong and poses a problem throughout much of the panda



range. The current fragmentation of habitat and inaccessibility to alternative

bamboo sources seriously threaten the remaining panda populations.

Bamboo is fairly unique in that it is a semelparous grass with a gregarious

flowering and subsequent mass die-off (Janzen 1979). Few environmental

associates or triggers have been found and few conclusive hypotheses on the cause

for flowering are available (Keeley and Bond 1999). The time between flowering

(or intermast time) varies considerably depending on the species. Interrnast times

for bamboo species range from 10 years to over 100 years, but seem to show

extremely consistent intermast times within species (Janzen 1979). Taylor et al.

(1991) found that environmental variables contributing to stress of the bamboo

limits areas of flowering. For example, large tracts of Bashaniafangiana (common

name: Arrow bamboo) flowered in 1983 in Wolong Nature Reserve. Patches of

Bashania at the extreme upper elevation range, on steep north-facing slopes, or in

large canopy gaps (and consequently different local moisture conditions) were less

likely to flower than patches not stressed. Reestablishment after mass-flowering is

difficult to predict based on environmental conditions. However, slight increases in

recruitment were noted in small canopy gaps (Taylor and Qin 1993). Growth in

canopied areas was slightly lower than in gaps with an average of 15 years for

Bashania to return to full cover in most areas (Taylor and Qin 1993). However,

even after 15 years, visible signs of the flowering and large tracts devoid of

Bashania can still be found throughout much of the range of Bashania (Linderman,

personal observation).



Bamboo’s unique life-history poses a significant threat to the current

distribution of giant pandas. Where pandas previously were able to move to areas

of alternative bamboo species, current habitat fragmentation limits movement and

restricts panda’s access to areas containing other bamboo species. The dependence

of pandas on secondary bamboo species was apparent in Wolong during the recent

Bashania die-off and the consequences due to the lack of secondary bamboo during

the simultaneous die-off of several bamboo species in the Min Mountains. This

problem has become increasingly acute as humans appropriate increasing amounts

of habitat, but more relevant is that habitat loss is occurring in areas that may have a

considerably higher impact on panda populations than total quantity of habitat loss

predicts alone. If pandas are excluded from an alternative bamboo resource during

the subsequent flowering of Bashania, the current panda population could be

seriously impacted. Furthermore, this points to wider problems and needs for

effective management of panda habitat and mitigation of human impacts. Current

knowledge on the spatial distribution of bamboo is inadequate relative to panda

needs, the spatial distribution of bamboo has a significant impact on panda habitat,

and human activities are increasingly occurring in areas vital to panda survival.

This situation is not confined to the giant pandas of China. Countless fauna,

as well as flora, depend on environmental conditions that exist below canopies.

Therefore, past attempts reliant upon remotely sensed data are likely misestimating

species distributions and landscape arrangements of habitat. Efforts to derive

species-relevant data from remotely sensed images at a scale that species are

interacting with the environment are needed to more accurately reflect the spatial



distribution of habitat, allow more robust analyses of wildlife/habitat relationships

over large areas, and permit the development of more viable policy alternatives.

This dissertation was developed with the principal goals of deriving

pertinent giant panda habitat information from remotely sensed data, studying the

impact of detailed bamboo information on the distribution of habitat, and projecting

future impacts from human activities on giant panda habitat. It was hoped this

study would allow a more accurate representation of panda habitat over large areas,

increase our understanding of the current habitat conditions, and provide additional

information to management officials to insure the protection of this endangered

species. To this end, I developed three primary areas of analysis: (1) I developed

methods to map the spatial distribution of bamboo from remote sensing data, (2)

analyzed the influence of the spatial distribution of bamboo on the landscape

distribution of giant panda habitat at the landscape scale, and (3) modeled the

spatial trends in human impacts relative to the spatial distribution of bamboo. A

review of the principal topics of this dissertation and the three research chapters

follows.

1.2 Research Topics

The first goal was to develop a viable method to classify the

presence/absence of bamboo from remote sensing. The impetus for this was the

lack of detailed information on the spatial distribution of bamboo. Past efforts to

map the distribution of bamboo have relied on ground surveys. Due to the cost and



effort required, this approach resulted in either coarse maps over large areas (e. g.

1000’s of square kilometers) or detailed maps constrained to small areas (e.g. 10’s

of square kilometers). The detail of the coarse maps, while sufficient for broad

estimates of giant panda habitat, were not nearly at the resolution at which pandas

interact with bamboo nor sufficient to predict habitat use and resulting influence of

bamboo on the spatial distribution of habitat. To achieve the detail as in the small

area maps would be very costly and time consuming endeavors. Therefore, I

examined the utility of remote sensing data to map the distribution of bamboo. A

significant obstacle to the successful classifications of bamboo from remote sensing

in the past is that throughout most of panda habitat bamboo is found as an

understory species (Morain 1986; Porwall and Roy 1991). Overstory cover reduces

the amount of irradiance at the understory, modifies irradiant downwelling light,

intercepts reflected light from the understory, and modifies upwelling reflected light

from the understory (Lillesand and Kiefer 1994). Therefore, the radiance measured

at a distant sensor is a complex integration of reflected energy with the main

contribution coming from the overstory features.

Irradiant energy obviously does reach the understory. Direct light from

canopy gaps, reflected light from overstory features, and transmitted light

(particularly near and shortwave infrared energy) interacts with the understory. The

ability of remote sensing then would be a matter of sufficient signal from the

understory reaching the remote sensor relative to noise (or a sufficient signal-to-

noise ratio). To examine this complex problem, we compared the utility of an

artificial neural network to parse the signal and classify the presence or absence of



understory bamboo. Using Landsat TM data as input and hundreds of ground

samples as training and validation data, we were able to achieve over 80% accuracy

in classifying the presence/absence of understory bamboo at a resolution of 30

meters for the entire Wolong Nature Reserve.

A subsequent study used the bamboo presence/absence data to examine the

effects of bamboo distribution on panda habitat throughout the reserve. Traditional

landscape studies have relied on remotely sensed data to map habitat. However,

information on the vertical and horizontal distribution of vegetation beneath

canopies is needed to accurately relate wildlife use and environmental conditions

(MacArthur and MacArthur 1961; James 1971). Theoretical studies and practical

application of landscape ecology then require more detailed environmental

information to more accurately predict the influence of the spatial arrangement of

habitat on wildlife species. A comparison was made between a reserve-wide

analysis on the distribution of habitat that did not use bamboo information (Liu et

al. 2001) and reserve-wide analyses including the spatial distribution of bamboo.

This has significant implications for future panda habitat monitoring and

management. In addition, the comparison suggests data requirements for other

landscape-level analyses.

Finally, it has been long recognized that wildlife species require access to

specific resources (e. g. watering holes, forage, trees of sufficient diameter, etc.) In

more general terms, landscape ecology is based on the principal that the

arrangement of resources influences ecosystem processes whether they are fire

disturbances, wildlife movement, or human impacts. In particular, it has been noted

10



that certain resources can be vital for wildlife species. The spotted owl controversy

centered on the owls’ requirement of large areas of old-growth forest. Low-

elevation graze areas are critical to elk and large mammals in Yellowstone (Turner

et al. 1994). And, the availability of alternative bamboo sources is vital to the

survival of giant pandas. Even limited impacts to habitat, then, can have drastic

implications for a wildlife species. This is occurring in Wolong Nature Reserve.

Local farmers, while only harvesting a small proportion of the total forest area. are

concentrating their resource use (e. g., fuelwood collection) on easily accessible

forests at lower altitudes corresponding to the current distribution of the secondary

bamboo utilized by pandas. Continued impacts in these areas could have drastic

consequences during the next die-off of the principal bamboo species in the reserve.

In an attempt to understand the driving factors for the spatial distribution of

fuelwood collection, predict impacts under different scenarios in the future, and

offer possible mitigation strategies, we have modeled human activities in Wolong

Nature Reserve. The study suggested that the spatial arrangement of human

activities is as important as the sheer quantity of activity when considering possible

impacts on native species.

Wolong Nature Reserve is unique in that it is one of only a handful of

reserves dedicated to the protection of an extremely high profile species, the giant

panda. However, the ecological problems occurring in Wolong are not unique at

all. Humans will continue to degrade habitat, more detailed information is needed

on specific habitat requirements such as understory vegetation, and more accurate

measurements of actual habitat area and spatial distribution are urgently needed for
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species around the world. The methods outlined in this dissertation hopefully

represent possible alternative approaches to developing these data, examining

ecological questions, and developing viable alternatives.



CHAPTER 2

USING OPTICAL REMOTE SENSING DATA

TO CLASSIFY TI-IE PRESENCE/ABSENCE OF UNDERSTORY

BAMBOO IN A GIANT PANDA RESERVE

In collaboration with

Jianguo Liu, Jiaguo Qi, Li An, Zhiyun Ouyang,

Jian Yang, and Yingchun Tan
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Abstract

Understory vegetation is a critical component of biodiversity and an

essential habitat component for many wildlife species. However, compared to

overstory, information about understory vegetation distribution is scant, available

mainly over small areas or through imprecise large area maps from tedious and

time-consuming field surveys. A practical approach to classifying understory

vegetation from remote sensing data is needed for more accurate habitat analyses

and biodiversity estimates. As a case study, we mapped the spatial distribution of

understory bamboo in Wolong Nature Reserve (southwestern China) using leaf-on

remote sensing data. Training on a limited set of ground truth data and using widely

available Landsat TM data as input, a non-linear artificial neural network achieved

a classification accuracy of 80% despite the presence of co-occurring mid-story and

understory vegetation. These results suggest that understory vegetation influences

remote sensing data and classifying understory vegetation is feasible. The success

here to map bamboo has important implications for giant panda conservation and

provides a good foundation for developing methods to map the spatial distributions

of understory plant species.
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2.1. Introduction

Understory vegetation is a significant component of biological diversity and

critical habitat for countless wildlife species (MacArthur and MacArthur 1961,

Odum 1971, Schaller et al. 1985). However, monitoring of understory conditions

has been restricted to tedious and time-consuming ground surveys due to a lack of

alternative methods such as remote sensing. More specifically, whereas significant

advances in regional ecology have been made from overstory mapping

(Roughgarden et a1. 1991), extensive spatial distribution information of understory

vegetation has remained unavailable due to the limitations of traditional remote

sensing classification techniques. Thus, the development of a practical approach to

classify understory vegetation irrespective of canopy cover would significantly

increase knowledge of the spatial distribution of understory vegetation and assist in

modeling wildlife habitat for species-specific studies and biodiversity estimates.

Classification of vegetation from remote sensing data has typically relied on

multispectral optical data as variations in chemical, water and structural

composition between vegetation types all influence incident optical radiation

allowing differentiation between classes of vegetation (Asrar et a1. 1989). In sparse

forests or regions with significant canopy gaps, direct reflectance from the

understory certainly influences the optical reflectance response as measured by a

distant sensor. In fact, in the near-infrared region, understory can dominate the

overall reflectance from open-canopy stands (Nemani et al. 1993). Furthermore,

several studies have shown that canopy background features have a significant
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influence on optical radiance measured by remote sensors even under considerable

cover (Huete et a1. 1985, Ranson et al. 1986, Guyot and Riom 1989, Bausch 1993).

In particular, studies on the ability to retrieve Leaf Area Index (LAI) values from

optical data have shown that, even in canopies up to 89% closed, understory

vegetation characteristics have a measurable effect on the radiance response

recorded by a satellite sensor (Nemani et al. 1993, Law and Waring 1994, Spanner

et a1. 1994, Qi et a1. 2000). The influence from background features is due not only

to direct reflectance from gaps in the canopy, but also multiscattering between

understory and the overstory as well as transmission through the canopy and is

therefore a combination of linear and non-linear contributions (Borel and Gerstl

1994). The degrees of linear and non-linear contributions vary relative to the

understory and overstory cover, structure, and other variables. Therefore, while

understory vegetation and background features influence the response measured at

distant sensors, the understory contributions can often result in a complex signal

that has not been amendable to traditional classification techniques.

Attempts to use traditional methods to map understory vegetation, even a

coniferous understory with a leaf-off deciduous overstory, have had, at best, mixed

results (Stenback and Congalton 1990, Porwall and Roy 1991 , Ghitter et al. 1995).

Traditional approaches to classifying understory vegetation land cover from

multispectral data have been based on modeled categorizations of a discrete

thematic space using the statistical separability of pixel signatures (Jensen 1996).

These approaches are often restricted in their applications and accuracy for

classifying complex scenes. Topography, mixed classes and spectral similarities
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have all been shown to influence traditional classification accuracy (Lillesand and

Kiefer 1994). This becomes particularly relevant when considering the complex

contributions of understory vegetation. In addition, changes in canopy cover and

species composition, and understory species composition and cover from pixel to

pixel results in an extremely variable spectral signature, often with varying degrees

of non-linear contributions, that is difficult to classify using standard methods.

In order to utilize remote sensing data for classifying understory vegetation,

a method to parse the highly variable and complex understory influences (canopy

gap and sub-canopy) from the integrated radiance received at the sensor then must

be used. Artificial neural networks are essentially non-parametric data

transformations that can account for non-linear effects given a sufficiently complex

partitioning of the classification space (Atkinson and Tatnall 1997). To classify the

presence/absence of the variable spectral influence of understory vegetation, a non-

linear approach is almost certainly required as well. Understory contributions to the

radiance at the sensor are a mix of decreasing linear contributions from canopy gaps

as the overstory becomes increasingly dominant and increasingly non-linear

components due to multi-scattering and transmission. Furthermore, whereas

traditional classification techniques make assumptions on the underlying model of

the data, neural networks are a non-parametric method and are capable of learning

the complex trends in data necessary to parse the variable and subtle trends in areas

of more canopy (Foody and Arora 1997, Atkinson and Tatnall 1997). Neural

networks should therefore be able to more accurately classify sub-canopy gap

vegetation while considering non-linear components of understory contributions. In
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addition, this technique should be more capable of adapting to the variability in the

signature due to varying canopy and understory conditions. Therefore, to test the

practicality of classifying understory vegetation, we compared the ability of an

artificial neural network to predict the presence or absence understory vegetation

from optical remote sensing data based on limited ground-truth data relative to

traditional techniques.

2.2. Methods

The impetus for this study was the need for a practical method to classify

the spatial distribution of understory bamboo irrespective of the canopy conditions

over large regions. Bamboo plays a vital role in the survival of the endangered giant

panda (Ailuropoda melanoleuca) (Schaller et a1. 1985, Liu et al. 1999a). The impact

of the spatial distribution of bamboo on panda populations has been well-

documented (Johnson et a1. 1988, Taylor and Qin 1997). However, past panda

habitat analyses have been limited in their ability to conduct accurate habitat

assessments over large areas due to the lack of bamboo distribution maps with

sufficient detail or extent as shown in Figure 2.1. Remote sensing would be a

preferable method for data acquisition at larger scales. However, methods to map

the extent of bamboo, even employing aerial photography, have not been successful

(Morain 1986, De Wulf et a1. 1988, Porwall and Roy 1991). The main problem in

classifying bamboo in much of the panda range is that it is typically found as an

understory species under variable canopy species, percent cover and densities. We

required an approach that would be able to classify the presence/absence of
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presence/absence of understory bamboo irrespective of the overstory. Therefore, to

test the applicability of an artificial neural network to this problem, classifications

from a neural network and supervised classifications of the bamboo distribution

using limited training data were compared.

2.2.1 Study Area

Located between 102°52’ and 103°24’ E and 30°45’ and 31°25’ N in the

Qionglai Mountains of southwestern China, the reserve is approximately 200,000

ha in size and one of the largest parks dedicated to giant panda preservation (Liu et

al. 1999b, Liu et a1. 2001). It is estimated that over 10% of the remaining

worldwide panda population can be found within this reserve. The topographic

nature of Wolong directly relates to habitat preferred by panda. Within Wolong,

elevations range from 1200m to 6525m creating several climatic zones and

consequently high habitat diversity. This also provides cooler climatic conditions

that panda prefer coupled with precipitation levels necessary for bamboo of which

panda are obligate grazers. From the lowest elevation to approximately 1600

meters, the canopy consists mainly of evergreen broadleaf. From 1600 to 2000 m

there is an increasing mixture of the broadleaf and deciduous. The canopy is

dominated by deciduous vegetation from 2000 m to about 3600 m with an

increasing mix from conifer at the higher altitudes. Above this elevation, subalpine

conifers give way to alpine meadow at an elevation of approximately 4400 m.
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Throughout the reserve forest canopies averaged 56% closure and rarely exceed

90%, maintaining significant gap area for light penetration.

Within the reserve, bamboo occurs up to an elevation of 4500 m and is

typically an understory species. Up to eleven species of bamboo are found in

Wolong. Two species, Bashaniafangiana and Fargesia Robusta (Figure 2.2),

predominate. In forested areas, bamboo is distributed in patches ranging in size

from single plants to hundreds of meters across. Where bamboo does occur, it

averaged 41% of the ground cover. However, the spatial distribution of bamboo

seemingly does not follow any trends relative to overstory or abiotic factors (Reid et

al. 1989). Regression relationships based on ground samples of overstory cover,

slope, altitude and bamboo ground cover in forested areas are shown in table 2.1

and suggest that the prediction of bamboo presence/absence is independent of

within stand characteristics. The lack of correlation of the spatial distribution of

bamboo and environmental factors may be partly due to the unique episodic

synchronized die-offs of large areas of bamboo (Reid et a1. 1989, Keeley and Bond

1999). However, it is precisely this distribution that affects pandas.

The spatial distribution of bamboo is also influenced by human activities

and restricted environmentally (e.g. high-altitude permanent rock, alpine meadow).

Grazing and agricultural use have effectively removed bamboo from some areas.

Other regions have been clear-cut leaving a mixed midstory shrub layer and a lower

occurrence of bamboo. Finally, selective logging has changed the species

composition of the overstory and reduced canopy cover in some areas. Few forested

areas contained large gap areas. Selective logging has been characterized by
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random thinning. Clear-cuts and other land cover changes have typically been

larger than 60 x 60 m. While relatively limited in impact, these human activities are

transforming the landscape and introducing additional complexity in classifying the

land cover. The complex relationships between land cover and the lack of

substantial correlation between the presence of bamboo and canopy conditions

made prediction or classification using traditional methods difficult and required a

new approach for accurate classification. Knowledge of the distribution of bamboo

irrespective of land cover is needed to allow better classifications of the suitability

of panda habitat, test the implications of the spatial distribution of habitat on panda

populations, and provide recommendations for future restoration and conservation

management.

2.2.2 Data

Field data were collected throughout the reserve during the summers of

1998 and 1999 and included vegetation ground sampling plots for algorithm

training and validation and Ground Control Points (GCPs) to allow registration of

the remote sensing data. Landsat Thematic Mapper (TM) data acquired over

Wolong Nature Reserve in September 1997 were used for this study. The Landsat

TM scene was registered to UTM WGS-84 coordinates to allow co-registration of

the ground truth data. The remote sensing data were registered using the GCPs

collected to an RMSE of less than one pixel. To gather representative ground data,

stratified sampling of the land covers and understory conditions was conducted.
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Ground sample plots were located where access was possible and registered to the

remote sensing data through differential Global Positioning System (GPS) using

Trimble Pro XRS and Community Base Station receivers. Plots were selected

where the vegetation was relatively homogeneous over a 60m x 60m area. A

sample area was considered relatively homogeneous where similar percentages of

vegetation were distributed evenly throughout the entire sample plot. Therefore,

any 30m x 30m subplot would contain the same vegetation percentages regardless

where it was situated within the 60m x 60m plot. The 60m x 60m dimensions were

chosen as prior knowledge of the GPS position in relation to the remote sensing

grid was unknown and ensured one pixel of the Landsat TM data (30—meter

resolution) would be fully contained within a sample plot. For each plot,

information on the biota such as vegetation types for the overstory, midstory and

understory, as well as the corresponding percent cover, were recorded. Percentages

of vegetation cover in the overstory, > 5m, midstory, 2 — 5m. and understory, < 2m

were estimated visually for the 60m plots.

Training data for the artificial neural network were selected from the

vegetation ground truth data where positions were known at a suitable accuracy

(field data were filtered for GPS measurements with standard deviations greater

than 10 meters) and stratified to include a representative sample of vegetation

conditions. On this basis 189 sample plots were chosen. Approximately, two-thirds

of these data were used to train the neural network and the remaining third reserved

for validation. The data were categorized into presence/absence categories. If

bamboo cover was greater than 10%, the training value was assigned a 1 (presence),
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else if the bamboo cover was less than or equal to 10% within the sample area, the

training value was assigned a 0 (absence). Such categorization was done for three

reasons. First, sampling methods were limited in assigning absolute ground cover

percentages over large sample plots. Therefore, data were binned into 0, 25, 50, 75

and 100% categories. For example, a sample of between 0% and 10% was

categorized as 0%. If a sample fell between 15% and 35% it was categorized as

25%, etc. Therefore, samples estimated to have 25, 50, 75 or 100% bamboo ground

cover were considered presence. Second, at less than 10%, the cover was extremely

insignificant, did not provide any useable biomass for pandas, and was considered

to have a very limited influence on the spectral response. And third, it was

anticipated that a binary categorization would reduce data transformation

complexity.

2.2.3 Application ofArtificial Neural Networks

The multi-layer perceptron (MLP) is the most commonly used neural

network structure in remote sensing and was used in this study (Atkinson and

Tatnall 1997). The basic structure of an MLP is the existence of distinct data layers

through which the data are transformed (Figure 2.3). For example, the first layer

(input layer) could be represented by a series of nodes consisting of the separate

bands of remote sensing data, ancillary data or any combinations of these data. The

next layer(s) are referred to as hidden layer(s) as the user does not have access to

the values within the nodes of these layers. Each hidden node is a weighted sum of
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a function of the input vector. The final output layer is the weighted-sum of a

function of all hidden nodes. The learning process of the neural network occurs by

back-propagation and error minimization according to the training data.

The training data are composed of input data and corresponding known

output values. The input data for this study consisted of the single TM pixels fully

contained within the sixty-meter ground sample plots. The output data consisted of

the corresponding ground sampled bamboo absence/presence values of those plots.

Therefore, the output layer consisted of a single node with the expected values of 0

(absence of bamboo) or 1 (presence or bamboo). Typically when training neural

networks, the hidden functions are initially set with a random weight value. The

input values are then passed through the hidden layers for the first time and the

output from the hidden layers (the output layer) is compared to the expected

outcomes according to the ground sample training data. Learning algorithms then

modify the hidden layer weights to reduce the error between the training values and

algorithm outputs. This process is repeated as the individual hidden node weights

and biases are modified in an iterative process until acceptable error levels

compared to the training data are achieved. This repeated error minimization

essentially allows the algorithm to learn the nature of the training data (Atkinson

and Tatnall 1997). If the training data are perfectly representative, the algorithm

theoretically learns the nature of the full data set. However, it is often very difficult

to collect a training set that is completely representative of the whole data set.

Consequently, image data not seen by the algorithm or consistent with the training

data can result in variations from the expected output values.
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For this study, the neural networks were simulated in the Neural Network

module of Mathworks MATLAB (The MathWorks Inc. 1999). Several variations

of internal network structure, input data, and learning algorithms were tested to

determine optimal algorithm characteristics. Different combinations of the Landsat

TM (6 bands excluding thermal band) were examined as potential data input. As a

result, the input layer consisted of three to six input nodes depending on the layers

used. The structure of the hidden layers was also tested to determine the necessary

number of hidden layers and number of nodes per layer required. In addition,

generalization techniques, methods to reduce overfitting, were analyzed including

techniques such as early stopping by adjusting the training Mean Square Error

(MSE) goal and automated regularization utilizing the Bayesian Regularization

(BR) learning algorithm. Early stopping, as the term suggests, establishes a higher

error convergence threshold and thus stops the training process before full

convergence occurs. This can be done automatically by comparing an additional

reserved data set to determine when error minimization reduces generalization of

the full data set. However, since training data were limited, preset early stopping

error levels of 1x10'05 and 1x10’08 were tested relative to a full convergence level,

typically around lxlO'20 (known from preliminary trials).

Evaluation of individual algorithms was conducted by examining algorithm

performance through each of four stages: training, simulation, verification and

validation. The algorithms were first presented with training data (i.e. remote

sensing pixel values and corresponding ground-truth data presence/absence values).

If the algorithm was able to converge on the preset error goal, a 15 x 15km
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evaluation subset of the remote sensing data was fed through the trained data, or

simulated, to output a predicted map of bamboo presence/absence. This output

subset was then examined to determine how well the predicted values conformed to

the expected output values of O or 1. As in many practical applications, it was not

possible to collect a completely representative training sample. Therefore, the

output values of pixel values not seen in training are expected to vary relative to the

expected outputs and were categorized if they did not conform exactly to the

expected presence/absence values of 1 or 0. The prediction maps were then verified

with the training data and validated using independent data. The optimal algorithm

characteristics were chosen based on the validation accuracy and conformance to

expected output levels for the entire image. This algorithm was then used to

simulate the remaining 17 subsets to produce a full map of the reserve.

22.4 Comparison to Traditional Techniques

It was hypothesized that the underlying restrictions and assumptions of

traditional classification methodologies would not allow accurate classification of

understory features. To allow comparison to traditional techniques, supervised

classifications of bamboo distribution were conducted on the 15 x 15km validation

subset using Erdas Imagine v. 8.3.1 (Erdas 1999). The same training data used to

train the neural network within the validation subset were used to gather supervised

signatures. These signatures were categorized to allow Maximum Likelihood

classifications and retained as single signatures for a Minimum Distance
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classification. This allowed testing of the effects of classification algorithms and

merging of spectral signatures. Each method is a standard supervised classification

approach. However, it was anticipated that the extreme topography and overstory

variation would require more than one signature to obtain accurate results.

Utilizing different combinations of signatures allowed testing of these effects. The

resulting output classes from each method were recombined into presence and

absence categories. These binary classifications were then compared to the

independent validation data to determine classification accuracy.

2.3. Results

2.3.1 Evaluation Results

Evaluation and comparison of the simulations were initially conducted on a

15km x 15km evaluation subset. For each algorithm where convergence was

achieved, conformance to expected values, verification, and validation results were

examined. It was found that the full TM data set (all six bands) was required for

adequate convergence. Inputs using fewer bands converged more slowly or not at

all. Adequate convergence was also not possible using an algorithm structure

containing only one hidden layer. For comparison between algorithm structures

using more than one hidden layer, verification and validation results were

examined.
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Prior to verification and validation analyses, the outputs were categorized

into presence and absence values. This was necessary since the training data were

not a fully representative sample of all land covers, combinations of land covers,

topographic effects, and understory conditions. Therefore, variations in the output

value from the expected 1 or 0 were seen. For example, comparison of output

values corresponding to training data plots showed value ranges of 0.99-1.00 as

classification values for the presence of bamboo and only 0.00 for absence.

However, output values for pixels where ground samples were available but not

used for training showed a larger spread. In fact, for land covers (clouds, exposed

rock, snow) where training data were not available, output values were as high as

2.5. In addition, since complete control even within sampled vegetation types and

abiotic factors was not absolute, output values in vegetated areas ranged from 0 —

1.90. Therefore, when the entire image was simulated, output values from the

network less than 0.50 or greater than 1.50 were considered absence and values

greater than 0.50 and less than 1.50 were considered presence.

Algorithm verification was significantly higher when using at least 24

hidden nodes in the first layer and as high as 100% agreement for all convergence

levels tested when using at least 24 nodes in the first layer and 48 nodes in the

second hidden layer. The validation data for six algorithm architectures given in

table 2.2 show the basic trend in network training. Validation results ranged from

less than 50% from networks failing to fully converge (not shown) to 82% for the

most optimal method shown. As shown in table 2.2, learning algorithms (e. g.
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BFGS quasi-newton (BFG) and Levenberg-Marquardt (LM)) had less influence on

the overall accuracy compared to early stopping levels.

Examples of the outputs from the neural network algorithm tests on the

15km x 15km study area are shown in Figure 2.4. Consistent areas of agreement

among the outputs can be seen (Figure 2.4 letterboxes) and represent trends in

landcover such as major clearings and agriculture areas. The differences are less

obvious. In tests run to convergence levels of 1x10’8 and 1x 10'20 (Figures 4b and

c), landcovers not represented in the training data are not classified within the

expected 0 — 1 range of values and are noted as very bright features. Compared to

the 1x 10'5 trials (Figure 2.4a), the latter image shows more consistent bamboo

classification and better conformance to expected trends in output values (0 - 1). In

addition, compared to overstory classifications and knowledge of the region, the

1x10"5 method seems to retain landuse features (i.e. human appropriated areas,

permanent rock, etc.) better. Based on these visual assessments and the validation

results shown in table 2.1, the algorithm with 2 hidden layers, 24 and 48 hidden

nodes, and convergence level of 1x10'5 with classification accuracy for the 15 x

15km study area of 80 - 82% was selected for full reserve analysis.

2.3.2 Supervised Classification

Performing supervised classifications of the validation subset yielded

consistently lower classification accuracy than the optimized neural network

methods. Merging the individual signatures into two, presence and absence,
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signatures and then performing a Maximum Likelihood (ML) classification yielded

a 71% classification accuracy based on the validation data set. Using each of the

individual signatures to perform a Minimum Distance classification resulted in a

69% classification accuracy of the bamboo. Subdividing the ML signatures into

spectrally similar categories (i.e. similar aspect, slope, overstory vegetation)

produced similar results of 71% accuracy.

2.3.3 Full Reserve Results

Full reserve images of outputs from the neural net stopped at 1x10‘5 are

presented in Figure 2.5. Figure 2.5 shows the mosaick of the 18 outputs. A

comparison between the bamboo predictions from the neural network to the field

survey map shows an excellent correspondence between the predicted and surveyed

distributions (Schaller et a1. 1985). Temporal differences of actual distribution

between the surveyed and predicted bamboo maps are expected from natural

dynamics and human disturbance, but since potential habitat is controlled by abiotic

factors such as altitude, precipitation, and slope, overall distribution should be

consistent through time. A confusion matrix of the full reserve output validation is

presented in Table 2.3. Overall accuracy based on all validation data was 80%.

The matrix shows more clearly the correspondence between predicted and ground

truth data and those pixels not being correctly categorized. Of particular note is the

technique’s inaccurate prediction of pixels containing bamboo as having an absence
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of bamboo, or false negatives. This category represents 75% of the incorrectly

assigned pixels.

Further analyses examining factors influencing the errors and these false

negatives in particular showed very interesting trends. For example, no relation

between the percent of canopy closure and prediction ability was found. In other

words, the distribution of canopy closure for the mis-categorized pixels was the

same as all the data. It should be noted, however, that complete canopy closure was

rare and bamboo was not found under 100% canopy closure. Nor was any relation

of mis—categorized pixels to the percent bamboo found. Again, the distribution of

mis-categorized pixels was similar to that of all the data. However, significant

trends were found in regards to co-occurring midstory and understory vegetation

within mis-categorized pixels. In the case of 90% of the false negatives, a midstory,

typically 2 — 5m deciduous sub-canopy trees and shrubs, either partially covered

and/or intermingled with the bamboo. In every case of the false positives, a grass

understory, with similar characteristics as Bashania, covered the forest floor.

Ground truth plots with co-occurring shrub in the case of false negatives and grass

in the case of false positives in all represent 92% of the mis—categorized pixels.

2.4. Conclusions and Discussion

Data and algorithm requirements were found through testing various

combinations of input, training data format, and algorithm architecture for

successful neural network prediction of understory bamboo presence/absence. The
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best results were obtained when using all six bands of the TM data as inputs.

Infrared wavelengths have a greater canopy penetration compared to shorter

wavelengths (Lillesand and Kiefer 1994). The TM sensor records information in

three bands in the infrared, one in the near and two in the shortwave infrared. In

addition, general application of the trained network was most accurate when

stopped from reaching full convergence. Using this information, we were able to

derive spatial distributions with significant correspondence to independent data.

The results showed as high as 82% correspondence between predicted bamboo

distribution and ground truth validation data.

In comparison to the supervised classifications, clear gains were made using

the neural network for bamboo classification. Relative to the observed distribution

of bamboo, the supervised classifications seem to be more closely related to the

general trends in the dominant vegetation. It is possible that the gains in the

bamboo classification using the neural network are due to the ability of the neural

net to more precisely learn trends in the dominant vegetation to that of the co-

existence of bamboo. However, based on field observations (Table 2.1) and

classification errors we do not believe this is the case. While not providing

conclusive evidence, trends in the classification and the lack of any discemable

correlation Of overstory vegetation in forested regions to the existence of bamboo

lead us to believe that the neural network is more capable of utilizing canopy gap

and sub-canopy influences to more accurately classify understory bamboo. The

neural network is probably more capable of classifying minority features, adapting

to the variable influences of changing canopy conditions, and accounting for the
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non-linear effects of sub-canopy vegetation. The misclassification trends discussed

in the results and shown in table 2.3 lead us to believe that the neural network

method is basing the classification, at least in part, on understory vegetation to

increase classification accuracy of understory bamboo. We believe, for example, in

the case of the false positives the neural network is falsely classifying other

understory grasses as bamboo. The grasses may be spectrally similar enough to the

bamboo as to cause false positive classifications. In the case of the false negatives,

it is possible that the co-occum'ng‘shrubs are simply masking understory features.

These pixels of co-occurring shrub and bamboo represent about 89% of the false

negatives. The neural net may also be training against shrub containing plots as

typically shrub dominated areas are devoid of bamboo. To test this, further data are

being collected with emphasis on samples where there is co-occurring vegetation.

Canopy cover rarely exceeded 90% in Wolong and was on average around

56%. Neural network classification of canopy gap vegetation is, therefore, very

feasible. The increased classification accuracy and correlation between mis-

categorized pixels and understory vegetation suggest this is probably occurring

here. The degree to which the neural net is capable of incorporating non-linear

effects such as multi-scattering and IR transmission due to sub-canopy vegetation is

unknown. Further studies are necessary to test this and utilize this information if it

is available. For example, to accurately classify the percent cover and density of

understory vegetation, important data for many habitat models and mapping studies,

the non-linear influences are most likely required. Much of the understory

vegetation occurs below the canopy. Determining the fraction of cover will require
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that the contribution of the sub-canopy vegetation be distinguishable and

proportional to the fraction of sub-canopy vegetation. To this end, we are

examining the relationship of the percent cover of bamboo to optical remote sensing

data using neural networks. However, further theoretical studies and controlled

experiments are needed as well.

Data from other types of sensors may also contribute to these analyses and

make parameterization of understory conditions more applicable. Significant

structural information (e.g. biomass and vertical distribution) can be inferred (and

consequently some differentiation between structurally distinct vegetation types)

from Synthetic Aperture Radar (SAR) (Luckman et a1. 1997, Treuhaft and Siqueira

2000) and lidar (light detection and ranging) (Lefsky et al. 1999). Classification of

sub-canopy vegetation is typically not possible from canopy penetrating SAR or

lidar data (e.g. confusion between understory shrub and bamboo). However, we

anticipate that the fusion of the increased biomass and structural information with

the signature information available from optical sensor data may allow enhanced

classifications and biophysical parameterization.

It is widely recognized that the understory contains significant biomass and

diversity of vegetation. However, it typically remains unclassified using traditional

remote sensing techniques. The use of artificial neural networks to extract the

complex information available from optical remote sensing data seems promising as

a method to accurately classify understory features. In addition, the neural

network’s ability to learn the complex trends in the data and to generalize across

land covers make this method broadly applicable. Practical approaches to
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classifying understory vegetation are needed for studies requiring more accurate

information of biomass, biodiversity, and habitat conditions, as in the case for the

endangered giant panda. We believe the results from this study at least point to a

need for further analyses on the influence of understory vegetation on remote

sensing data, information available from other data sets, and practical methods to

use these data to classify understory vegetation. Research in this area has the

potential to provide a practical approach to classifying understory vegetation and

developing information on the quantity and spatial distribution of understory

vegetation species on a scale previously prohibitive.
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Table 2.1: Relationship between overstory species and abiotic factors and

understory bamboo.

 

 

 

 

     

Bamboo (%) Canopy (%) Sloie (deg) Altitude (m)

Mean 41.2 i 36.2 55.6 i 20.8 23.0 i 10.7 2583 i 285

R 0.1 l 0.30 0.14

R2 0.01 0.09 0.02
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Table 2.2: Influences of early stopping and learning algorithms on validation

and verification accuracy (percent).

 

 

 

 

 

 

 

     

Learning Accuracy Accuracy

Algorithm MSE Goal (Verification) (Validation)

LM 111105 100.0 80.0

LM 1x108 100.0 62.2

LM 1x1020 1000 55.6

BFG 1x105 100.0 82.2

BFG 111108 100.0 75.6

Bro 1x102" 100.0 68.9
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Table 2.3. Confusion matrix showing ground truthed values compared to

predicted presence/absence from full-reserve analysis based on BFG 1x10'5

algorithm output using Landsat TM data. Numbers in parentheses represent

those absence and presence validation points containing co-occurring *grass

and Tshrubs, respectively.

 

 

 

 

(iround Truth Data

Absence Presence

of bamboo of bamboo Accuracy

Absence

of bamboo 31 9(8l) 78%

Presence

of bamboo 3(3*) 17 85%

Overall

Accuracy 91 % 65% 80%     
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Figure Legends. (Images in this dissertation are presented in color)

Figure 2.1. Examples ofpast bamboo distribution maps for Wolong Nature

Reserve. Figure 2.1a shows the full-reserve map derived from field survey work

conducted from 1979-1983 (Schaller et al., 1985). The inset shows the approximate

area of the map shown in Figure 2.1b, a higher detail, smaller extent map derived

from work done by Johnson et al. (Johnson et al., 1988) in response to a mass die-

off ofBasham'afangiana within the reserve.

Figure 2.2. Examples of (a) Bashaniafangiana beneath a typical overstory and (b)

Fargesia Robusta with co-occurring vegetation.

Figure 2.3. Representative schematic of an artificial neural network. The arrows

represent a feed-forward process of transforming input data, such as remote sensing

imagery, to an output space (e.g. bamboo existence/absence). Networks are trained

through a priori knowledge of output and input relations (ground-truth data and

corresponding remote sensing pixel values) and a reiterative back-propagation of

training errors to update the hidden layer weights.

Figure 2.4. Effects of algorithm structure are shown with variations in learning

algorithm and error goal. Figure 2.4a is the output map fiom BFG training

algorithm with convergence threshold ofMSE = 1x10'5. Figures 4b and c Show

output maps from training algorithms with convergence thresholds ofMSE = 1x10'
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8, and IX 1020, respectively. Effects of generalization are apparent between methods

using a 1x10'5 threshold (a) and LM 1x10‘8 and 1x10‘20 outputs (b and c). Better

delineation of an agriculture area (inset A) using a 1x10'5 threshold and decreased

generalization at 1x10"8 and 1x10’20 shown as brighter areas in 4b and c (inset B)

not conforming to expected output values.

Figure 2.5. Full-reserve output maps from optimal algorithm input and structure.

Input data were Landsat TM data excluding the thermal band and algorithm

characteristics included 2 hidden layers with 24 and 48 nodes. The BFG learning

algorithm with a convergence threshold of MSE = 1x 10'5 were used. Figure 2.5a

shows only the bamboo distribution with green areas representing bamboo and gray

areas the absence of bamboo. Figure 2.5b shows the good correspondence of the

neural network output as it compares to the full-reserve output. Neural network

bamboo prediction shown as green overlaying ground survey distribution (legend

corresponds to Figure 2.1b).
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Figure 2.2
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Figure 2.3
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CHAPTER 3

THE EFFECTS OF UNDERSTORY VEGETATION ON WILDLIFE HABITAT

ACROSS FRAGMENTED LANDSCAPES

In collaboration with

Scott Bearer, Li An, Yingchun Tan,

Zhiyun Ouyang and Jianguo Liu
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Abstract

Understory vegetation is an important component of biodiversity and habitat

for many wildlife species, but previous large-scale studies on biodiversity and

wildlife habitat have suffered from lack of detailed information about understory

distribution. Consequently, it is unclear how understory distribution influences the

analysis of habitat quantity and fragmentation. To fill this gap, we have recently

developed a method of mapping understory bamboo distribution using remote

sensing data (Landsat TM) and field data in Wolong Nature Reserve (China), one of

the largest reserves designated for conserving giant pandas (Ailuropoda

melanoleuca). In this paper, we compared the results from panda habitat analyses

with and without bamboo information. The results show that the spatial distribution

of bamboo has a substantial effect on the quantity and spatial arrangement of panda

habitat. Total amount of habitat decreased by 29 - 56% and overall habitat patch

size decreased by 16 — 48% after bamboo information was incorporated into the

analyses. The decreases in the quantity of panda habitat and increases in habitat

fragmentation resulted in decreases of 41 - 60% in carrying capacity. Our study

suggests that it is necessary to incorporate understory vegetation into wildlife

habitat research and management to avoid overestimation of habitat.
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3.1. Introduction

Understory vegetation is a significant component of wildlife habitat in

forested landscapes. Understory vegetation provides forage and cover for ground

birds (Estades and Temple, 1999), small and large mammals (Lindzey and Meslow,

1977; Dueser and Shugart, 1978), and invertebrate species (Ernest, 1989). For

example, lack of understory forage availability can limit white-tailed deer

(Odocoileus virginianus) ranges (McCaffery et a1. 1974), and berry-producing

understory shrubs are an essential component of the North American black bear’s

(Ursus americanus) diet (Powell et a1. 1997). As a result, it is widely recognized

that detailed knowledge of vertical structure and horizontal distribution of

understory flora is often necessary to predict wildlife-habitat relationships

accurately (MacArthur and MacArthur 1961, James 1971).

While the importance of understory vegetation has long been recognized

and often incorporated in fine-scale analyses, the influence of understory vegetation

on broad-scale analyses of habitat has not been quantified. We believe

incorporating understory information will have considerable implications for many

broad-scale theoretical ecological issues and practical applications. For example,

behavioral studies have shown that giant panda (Ailuropoda melanoleuca) habitat is

a function of forest cover, slope, altitude, and understory bamboo (Schaller et a1.

1985, Liu et a1. 2001). Previous efforts to collect information on the availability

and spatial distribution of understory bamboo. however, have been confined to

coarse estimates over large areas or more refined maps at fine scales (Schaller et a1.
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1985, Johnson et a1. 1989). Therefore, detailed information on the spatial

distribution of bamboo over large areas has not been available and past studies on

giant pandas have not been able to incorporate understory vegetation information in

analyses of the spatial distribution of habitat (De Wulf et al. 1989, Liu et a1. 2001).

As a result, Liu et a1. (2001) suggest it is probable these studies are leading to

conservative estimates of the loss and fragmentation of giant panda habitat.

However, to what degree understory vegetation influences broad-scale

habitat analyses has not been examined. The lack of detailed understory

information has forced past studies to base landscape analyses of habitat only on

features that can be measured easily over large areas such as obvious land cover and

topography. If understory vegetation, vertical vegetation structure, and other

difficult to measure factors are limiting or have a different spatial distribution

relative to measured features, estimates of total habitat and landscape metrics may

not accurately reflect the availability and spatial distribution of habitat. This is

likely the case for past analyses of giant panda habitat. Based on extensive ground

sampling and a recent classification of the distribution of understory bamboo using

remote sensing data and an artificial neural network, we have found that understory

bamboo is distributed independently of forest cover. Mapping giant panda habitat

based only on overstory and topography is, therefore, likely leading to an

overestimation of available habitat and underestimation of habitat fragmentation

and isolation.

To illustrate the importance of understory vegetation on the quantity and

spatial distribution of wildlife habitat, we examined the influence of understory
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bamboo on giant panda habitat. Specifically, we compared panda habitat with and

without recently developed high-resolution (30-meter) classification of the spatial

distribution of understory bamboo over a range of a couple hundred thousand

hectares. Given the importance of understory vegetation throughout forested

ecosystems around the world, our comparative approach offers an example of the

degree to which habitat may be over- or under-estimated and emphasizes the need

to incorporate understory vegetation in many broad-scale habitat analyses.

3.2. Methods

To assess the impact of understory vegetation information on the quantity

and spatial distribution of giant panda habitat, we compared the landscape

characteristics of habitat classifications with and without understory bamboo

information within a nature reserve in southwest China. Comparisons were made to

a previous multi-temporal analysis of landscape trends in giant panda habitat. Our

previous analysis (Liu et al. 2001) provided a good baseline for comparison as it

used common approaches to broad-scale habitat analyses, but due to the lack of

historical data was not able to incorporate information on the distribution of

understory bamboo. For the study presented here, the land cover, slope, and aspect

data used to derive the 1997 time-series habitat classification in Liu et a]. were

combined with recently developed bamboo data to reclassify habitat suitability.

The resulting habitat classifications were then compared to the original habitat

51



classification. Comparisons were made based on habitat quantity, habitat

fragmentation, and panda carrying capacity.

3.2.1 Study Area

Our study was conducted in Wolong Nature Reserve, in the Qionglai

Mountains of Sichuan Province, China (located between 102°52’ and 103°24’ E,

and 30°45’ and 31°25’ N). Wolong is one of the largest reserves (approximately

200,000 ha) dedicated to giant panda conservation, and is estimated to contain

~10% of the remaining wild panda population (c. 1,000 individuals; Zhang et al.

1997). Within Wolong, elevations range from 1,200 m to 6,525 m, creating several

climatic zones and consequently high habitat diversity.

Throughout Wolong and most of the panda range, bamboo is found

predominantly as understory species. The distribution of bamboo species present in

Wolong is restricted by elevation. The two predominant species, umbrella bamboo

(Fargesia Robusta) and arrow bamboo (Bashaniafangiana) (both utilized by

pandas), are typically found between 1,500 and 2,550 m and 2,550 to 3,500 m,

respectively. Bamboo is distributed in the understory in patches ranging in size

from a single plant to hundreds of meters across. However, predicting the spatial

distribution of bamboo within these elevation ranges has not been possible due to a

lack of any significant relationship between overstory and abiotic variables and the

presence or absence of bamboo (Linderman et al. in review).
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The distribution of overstory vegetation in the reserve is also related to the

elevation: from approximately 1,200 to 1,600 m, the canopy is composed primarily

of evergreen broadleaf (Quercus) with broadleaf shrubs and occasional grasses.

From 1,600 to 2,000 m there is an increasing mixture of deciduous broadleaf

(Betula, Acer) overstory and understory vegetation. From 2,000 m to about 2,700

m, the canopy is a mixture of deciduous (Acer, Betula) and evergreen (Larix, Tsuga)

broadleaf. Above 2,700 subalpine conifers (Abies) dominate until about 3,600 m

where subalpine conifers, fern, and grass understory grade into alpine thickets and

meadow (Reid et a1. 1989, Schaller et a1. 1985).

In the past several decades, human activity has been a major force behind

forest loss and degradation of panda habitat (Liu et al. 1999, 2001 ). Grazing and

agricultural use have effectively removed forest cover and bamboo from some

areas. Other areas have been clear-cut, leaving a mixed midstory shrub layer and,

consequently, less bamboo. Finally, selective logging in other areas has changed the

species composition in the overstory and reduced canopy cover.

3.2.2 Comparison Study

Classification of habitat suitability for the Liu et a1. study was based on

previous giant panda behavioral research. For example, pandas are rarely seen

outside of forested areas. Sick and hungry pandas have been found in non-forested

areas and panda droppings have been found in canopy openings, but the vast

majority of their activity is in areas containing forest cover (Schaller et a1. 1985). In
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addition, studies have shown that the main altitude range of the panda is between

2,700 m and 3,200 m, but extends down to 2,000 m and occasionally up to 3,500 m

(Schaller et a1. 1985, Ouyang et a1. 1996, Liu et al. 2001). Pandas prefer gently

sloping regions, restricting their activity to slopes less than 45 degrees and

preferring areas with less than 15 degrees slope (Ouyang et al. 1996). Furthermore,

forest understory vegetation plays a particularly vital role. Bamboo comprises

~99% of the panda diet, and pandas spend up to 14 hours per day foraging due to

bamboo’s low nutrient and energy content (Schaller et a1. 1985). Because of

pandas’ obligate relationship with bamboo, panda habitat is strongly influenced by

bamboo availability and distribution (Johnson et a1. 1989, Reid et a1. 1989).

To analyze the spatio-temporal trends of giant panda habitat in Wolong

Nature Reserve over the past 32 years, Liu et a1. derived data corresponding to

pandas’ habitat preferences on data available from satellite images and topographic

maps. Images from 1965 (Corona satellite photographs), 1974 (Landsat MSS

imagery), and 1997 (Landsat TM imagery) were used to map the temporal

dynamics of the quantity and spatial distribution of forest cover in Wolong. The

photographs and imagery were used to derive classifications of forested/non-

forested for each time step. Slope and altitude values were derived from a digital

elevation model (see Liu et al. 2001 for details).

Detailed information on the spatial distribution of bamboo prior to 1997 was

not available. To be consistent over time and to provide a more conservative

estimate of habitat loss, bamboo information not was included in this previous

analysis. Therefore, habitat suitability was determined as a multiplicative
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combination of the three factors (forest cover, altitude, and slope) available for the

32-year time span. Since non-forested areas are considered unsuitable habitat for

the panda, forest and non-forest classifications were multiplicative factors of l and

0, respectively. Slope and altitude multiplicative factors were proportional to the

observed use by pandas. The final habitat classification was a categorized suitability

measure of four classes termed highly suitable, suitable, marginally suitable, and

unsuitable (Liu et al. 2001).

3.2.3 Bamboo Classification

Remote sensing is a preferable method for mapping the distribution of forest

overstory over large extents. However, methods to map the extent of understory

vegetation like bamboo, even employing aerial photography, have not been

successful (Morain 1986, De Wulf et a1. 1988, Porwall and Roy 1991). The main

problem in classifying bamboo from remote sensing data is that bamboo occurs as

an understory species. The overstory typically limits spectral information from

understory bamboo, thus restricting traditional remote sensing classification

approaches. To overcome this problem, we developed a new approach for

classifying the presence/absence of understory bamboo regardless of overstory

canopy (Linderman et al. in review). Using widely available Landsat TM imagery

as input and ground samples of understory and overstory conditions for training, a

non-linear artificial neural network achieved a bamboo classification accuracy of
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80% despite variations in canopy cover and the presence of co-occurring mid-story

and understory vegetation (Linderman et al. in review).

3.2.4 Incorporating Bamboo Information into Habitat Analysis

To examine the influence of bamboo information on landscape-level

analyses of panda habitat, we incorporated the above-mentioned bamboo data into

habitat analyses using the same procedures as those used in Liu et a1. (2001). For

consistency, we incorporated the bamboo data as an additional multiplicative factor

in addition to the three factors (forest cover, slope, and elevation) used in the

previous study.

The bamboo information was incorporated into habitat analyses in three

forms: unfiltered data and two filtered forms of these data. We incorporated the

unfiltered data as a binary coverage (presence = l and absence = 0) at the 30-m

resolution derived from remote sensing imagery. Like many other species (e.g.,

Pearson et a1. 1996), however, pandas may perceive bamboo availability differently

from the patterns of bamboo distribution at the 30-m pixel level. For example,

previous behavioral studies (Schaller et a1. 1985) have found that pandas spend up

to 14 hours/day foraging, with significant daily movement within and between

patches of bamboo. Typical distances traveled each day are around 300 m and

almost always <500 m. In addition, radio-tracking studies by Schaller et a1. (1985)

showed between-patch foraging distances were typically < 100 m. These studies

suggest that pandas perceive bamboo distribution at a scale of >30 m. Furthermore,
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while most activity is largely restricted to regions with significant amounts of

bamboo, pandas do use areas not containing bamboo, mainly for movement

between bamboo patches, territorial marking (primarily males) and travel to other

places (Schaller et a1. 1985). Thus, we used two filters (proportion filter and

majority filter) to reclassify the bamboo data to reflect pandas’ perceptions of

bamboo distribution, use of non-bamboo area, and the scale at which pandas

interact with bamboo. The bamboo data were filtered by reclassifying the center

pixel of a square window based on the conditions of other pixels within the

window. The window sizes ranged from 3 x 3 pixels (90 x 90 m) to 21 x 21 pixels

(630 x 630 m), representing the lower and upper extremes in daily foraging distance

by a panda.

In the proportion filter method, the center pixel of a window was reassigned

a value of the proportion of pixels with bamboo within the window. This

represented an estimate of bamboo availability in the surrounding area as perceived

by a panda. The estimates were then categorized into three classes: highly suitable

(>50%), suitable (ZS-50%), and unsuitable (<25%). In other words, if more than

half of the pixels within a filter window contained bamboo, the center pixel was

classified as highly suitable. If less than one quarter of the pixels contained bamboo,

the center pixel was reclassified as unsuitable. Otherwise, the pixel was classified

as suitable. This classification was based on bamboo availability as measured by

approximated panda use throughout the reserve and measured travel distance

between patches (Schaller et a1. 1985). Areas within Wolong known to historically

sustain high densities of pandas were used to represent high-quality bamboo habitat.
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The majority filter adjusts the value of the center pixel to reflect the

conditions of the majority pixels within the window. For example, if at least 5 of the

9 pixels in a 3 x 3 window were classified as bamboo, the center pixel would be re-

classified as bamboo regardless of its original classification. Like the proportion

filter, the majority filter maps the same areas of high-quality bamboo areas as

measured by the proportion filter. However, the proportion filter retains more

potential highly suitable, suitable, and marginally suitable habitat in areas of lower

levels of bamboo due to the relative influence of suitable bamboo habitat within the

proportion filter. The majority filter highlights only high-quality bamboo areas and

provided an alternative estimate of the impact of bamboo on habitat availability and

fragmentation.

Classifications of overall habitat suitability were generated as in Liu et a1.

(2001) with the inclusion of the additional multiplicative factor of bamboo

suitability. This resulted in the same four categories of habitat suitability as defined

in Liu et a1. (2001): highly suitable, suitable, marginally suitable, and unsuitable.

Highly suitable bamboo areas (multiplicative factor of 1) resulted in no change to

the original habitat classifications. Unsuitable bamboo areas changed all previous

habitat classifications to unsuitable. Depending on the quality of the other three

factors used in the multiplicative index, suitable bamboo areas from the proportion

filter could degrade original habitat classifications by as much as one suitability

category.
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3.2.5 Habitat Measures

Panda habitat under different methods of analysis was compared using three

measures: habitat quantity, fragmentation, and potential carrying capacity. Habitat

quantity included not only the total amount of all habitat classes (highly suitable,

suitable, marginally suitable), but also the amount of each suitability class.

Fragmentation measures the degree of discontinuity of habitat and is represented by

mean patch size. Potential carrying capacity was based on total quantity of core

habitat areas and density of pandas in the core habitat areas. A core habitat area was

designated as a habitat patch large enough to support at least one panda. Pandas’

home range varies from 3.0 to 6.0 km2 (Schaller et al. 1985). However, significant

overlap occurs between home ranges. Schaller et al. (1985) suggest that prime

habitat (equivalent to highly suitable habitat in this study) has an average density of

l panda per 1.7 kmz. Therefore, to reduce the chance of underestimating total core

habitat, we defined core habitat as any habitat (any combination of marginally

suitable, suitable, or highly suitable habitat) forming a contiguous patch of at least

1.7 kmz. Based on the frequency of observed use in different categories of habitat

(Ouyang et a1. 1996), we used density estimates of l panda per 3.4 and 5.1 km2 (2

and 3 times less population density than in highly suitable habitat) for suitable and

marginally suitable classes, respectively. Total area of each habitat suitability class

was then used to determine overall carrying capacity based on estimated population

densities for each habitat class.
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3.3. Results

Incorporation of bamboo information into habitat analysis substantially

reduced the amounts of panda habitat and drastically changed the spatial

distribution of panda habitat (Figure 3.2, Tables 3.1 and 3.2). The impacts varied

with filter methods and filter sizes that resulted in different amounts and

distribution patterns of bamboo (see examples in Figure 3.1). For instance, using the

majority filter, highly suitable bamboo areas decreased by 11.8% to 32.8% for 3 x 3

and 21 x 21 windows, respectively, while mean bamboo patch sizes (3.97 to 17.9

ha) were about 8 to 34 times larger than those from the unfiltered method (0.53 ha).

Total amounts of suitable and highly suitable bamboo areas derived from the

proportion filter were 59.9% to 92.6% more than those from the unfiltered method,

respectively.

Unfiltered bamboo data caused a considerable decrease in habitat quantity

and a marked increase in fragmentation (Table 3.1). While the amounts of all

habitat classes combined and each habitat class from the unfiltered method were

similar to those from the majority filter (Table 3.1), mean patch size from the

unfiltered method was considerably lower than the mean patch size based on the

two filter methods (Table 3.2). In other words, the filter methods resulted in larger

mean patch sizes and more contiguous habitat. As shown in Figure 3.2, the amount

of high-quality habitat (highly suitable habitat) was highest using the proportion

filter with filter sizes between 7 x 7 and 11 x 11 pixels. The quantity of high-quality

habitat using the majority filter was substantially lower for each filter size relative
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to the proportion filter (Table 3.2). With the majority filter, the number of patches

of high-quality habitat decreased and patch size increased asymptotically relative to

filter size (Table 3.2). Differences in habitat class area relative to habitat

classifications not including bamboo ranged from a decrease of 40.1% for high-

quality habitat using the 11 x 1 1 proportion filter to a decrease of 54.2% for

marginally suitable habitat incorporating the unfiltered bamboo data (Table 3.1).

Because results using different filter sizes varied considerably, determining

the appropriate filter size was necessary for comparisons of the results from

analysis without bamboo. For each filtering method, we chose the filter size of 1 l x

l 1 pixels (330 x 330 m) according to behavioral studies of daily foraging activities

of pandas (typical daily travel distance was approximately 300 meters, Schaller et

a1. 1985). In addition, patch sizes and number of patches derived using a window of

1 1 x l 1 pixels were relatively consistent with those from neighboring filter sizes

(e.g. 7x 7 — 15 x 15 pixels).

Using the filter size of 11 x 11 pixels, habitat distribution patterns with and

without bamboo information differed considerably (Figure 3.3). Total habitat

quantity decreased by approximately 29% under the proportion filter (Table 3.3).

More significantly, high-quality habitat was reduced by 34%. Patch size decreased

by 41% for suitable habitat and 18% for highly suitable habitat (Table 3.2). The

number of highly suitable patches decreased by 28%. Compared to the results from

analyses without including bamboo, bamboo information derived from the majority

filter (with filter size = l 1 x 11 pixels) also produced a smaller quantity of habitat

and a higher degree of fragmentation. Specifically, total habitat area decreased by
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52% (Table 3.3), and mean patch size decreased by 48% and 16% for suitable and

highly suitable patches, respectively (Table 3.2).

Estimates of the carrying capacity based on analyses with and without

bamboo information offer further insight into the accuracy of each method. In the

19705, there were 145 pandas (Giant Panda Expedition 1974). Panda population

size declined to 72 in the early 19805 (China’s Ministry of Forestry and WF

1989). A recent population survey of Wolong has suggested that the current number

of pandas within Wolong is 74 individuals (Zhang et al. 1997). However, based on

habitat analyses without bamboo, carrying capacity (220 individuals) far exceeded

the survey estimates of the past and current panda numbers (Table 3.4). Including

bamboo in these analyses substantially lowered the estimate of the number of

possible pandas the current habitat in Wolong can support. Potential carrying

capacity derived from habitat analyses using unfiltered bamboo data was only 27

pandas. However, the majority and proportion filter habitat classifications resulted

in estimates of 88 and 130 pandas, respectively (Table 3.4), falling within historical

and population range in Wolong (72 - 145). The fact that the carrying capacity

resulting from the majority filter method most closely matches current estimates of

panda numbers may suggest that pandas are concentrated in high-quality bamboo

areas .
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3.4. Conclusions and Discussion

Incorporating information about understory vegetation into habitat analyses

of Wolong Nature Reserve resulted in substantially lower estimates of panda habitat

(at least 30%), lower estimates of habitat patch size (16 — 48%), and lower

estimates of carrying capacity (at least 40%). These new estimates have enormous

implications for panda conservation. For example, De Wulf et a1. (1988) reported

that total distribution area of giant pandas without bamboo information was

approximately 13,000 km2 (including Wolong, other reserves, and non-reserves). If

overestimation due to the lack of detailed information on the spatial distribution of

bamboo is consistent across the entire panda range, the total amount of panda

habitat is at least 3,900 km2 less than reported by De Wulf et a1. ( 1988). In addition,

notable isolation occurs between large habitat patches when bamboo information is

included (Figure 3.4). Pandas are extreme K-strategists, have low reproductive

success, and are currently at 'very low numbers (about 1,000). Sub-population

isolation and inbreeding are already a concern for this endangered species (Lu et a1.

2001).

To accurately estimate habitat distributions at the landscape scale, we have

found that data derived from remotely sensed imagery must relate to how species

perceive the environment. For this study, information from behavioral research

(Schaller et a1. 1985, Ouyang et a1. 1996) offered insight into pandas’ bamboo use

and relevant scales of interaction. We chose the most appropriate filter size to

reflect pandas’ daily movement patterns. The proportion filter offers the most
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meaningful information relative to pandas’ perception of bamboo availability, as it

includes areas that have less than optimal bamboo still utilized by pandas. However,

the carrying capacity resulting from the majority filter most closely matches the

reserve’s current panda population size. Because the majority filter highlights

highly suitable bamboo area, this suggests current panda population size may be

below the potential carrying capacity as estimated by the proportion filter method.

Either habitat with less suitable bamboo is underused due to the low number of

pandas in the wild today, or some isolated patches of habitat are unavailable to

pandas.

The approach and results from this study have important implications not

only for panda conservation but also for biodiversity conservation and broad-scale

habitat analysis in general, as countless wildlife species depend on sub-canopy

structure and flora, which are integral components of biodiversity and forested

ecosystems. Fortunately, information on understory structure and species

composition of forested ecosystems is becoming increasingly available (Linderman

et al. in review). Furthermore, biomass and structural information are being derived

from synthetic aperture radar and optical satellite data (Baret and Guyot 1991,

Beaudoin et a1. 1994). Recently, lidar (laser induced distance and ranging) has been

used to measure vertical structure below canopies (Lefsky et a1. 1999). As detailed

data of understory vegetation become available from remote sensing images, we

believe it is necessary and feasible to examine the impacts these data have on

landscape-scale habitat analyses, conservation strategies, and management policies.
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Table Legends

Table 3.1. A comparison between not including bamboo and three filtered forms of

bamboo information in habitat classifications of giant panda habitat. The

differences in quantity of the four classes of habitat are shown based on habitat

classifications, including each of the four bamboo classifications (No Bamboo, N0

Filter, Proportion Filter, and Majority Filter). The influence of filter window size is

shown for ten window sizes (3 x 3 - 21 x 21 pixels).

Table 3.2. The influences of bamboo data and classification methodology (No

Bamboo, No Filter, Proportion Filter, and Majority Filter) and filter size (3 x 3 — 21

x 21 pixels) are shown for a) the number of habitat patches and b) the mean patch

size of habitat classes.

Table 3.3. The resulting quantity of total habitat is shown based on each of the four

bamboo classifications (No Bamboo, No Filter, Proportion Filter, and Majority

Filter) and ten filter sizes (3 x 3 — 21 x 21 pixels). Differences in total habitat

relative to the Liu et al. (2001) classification (No Bamboo) show a loss of 29 —

56% habitat by including bamboo information.

Table 3.4. Influence of filter method on core habitat and carrying capacity. Core

habitat is defined as contiguous areas of highly suitable, suitable, or marginally
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suitable habitat forming patches > 1.7 kmz. Carrying capacity is a function of the

total area of each habitat class and panda densities.
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Table 3.1. Influences of bamboo filter methods and filter sizes on habitat quantity.

 

 

 

 

    
 

 

 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

 

 

      

Filter Habitat Class Area (ha)

M6221: and Highly Suitable Suitable “Effigy Unsuitable

No Bamboo 1 1811 49329 991 1 135841

No Fm" 5764 23543 4542 173049

Proportion

Filter

3x3 6772 27411 12121 161318

5 x 5 6971 27884 14071 158696

7 x 7 7066 27908 14898 157750

9 x 9 7065 27713 15325 157518

11 x 11 7078 27447 15617 157480

13 x 13 7024 27140 15838 157619

15 x 15 6968 26808 15997 157848

17 x 17 6940 26479 16067 158136

19x19 6899 26159 16163 158401

21 x 21 6861 25818 16208 158735

Majority

Filter

3 x 3 6198 24404 4858 171429

5 x 5 6277 24209 4884 171522

7 x 7 6265 23931 4840 171856

9 x 9 6218 23608 4769 172296

11 x 11 6162 23234 4679 172817

13 x 13 6097 22825 4561 173409

15 x 15 6034 22384 4435 174039

17 x 17 6004 21982 4302 174604

19 x 19 5946 21585 4156 175205

21 x 21 5890 21206 4003 175792
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Table 3.2. Influences of filters on patch number and size.

        

  
  

 
 

 
 

 
 

 



Table 3.3. Influences of filter methods and filter size on total habitat.

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

  

Filter T % Change
otal “

Methods Habitat (ha) from No

and Slzes Bamboo”

No bamboo 71050

No filter 33848 -52.4

Proportion

Filter

3 x 3 46304 -34.8

5 x 5 48925 -3l.1

7 x 7 49872 -29.8

9 x 9 50104 -29.5

11x11 50141 -29.4

13 x 13 50003 -29.6

15 x 15 49773 -29.9

17 x 17 49485 -30.3

19 x 19 49221 -30.7

21 x 2| 48887 -31.2

Majority

Filter

3 x 3 35460 -50.1

5 x 5 35369 -50.2

7 x 7 35036 ~50.7

9 x 9 34596 -51.3

11 x 11 34075 -52.0

13 x 13 33483 -52.9

IS x 15 32853 -53.8

17 x 17 32288 -54.6

19 x19 31687 —55.4

21 x21 31100 -56.2  
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Table 3.4. Influence of filter method on core habitat and carrying capacity.

 

 

 

 

 

 

  

Core Habitat (ha)

Filter Highly Suitable Suitable NISalfifllbalgy 52:33;

No Bamboo 11335.0 46253.4 8900.5 220

No Filter 1767.6 5258.5 786.6 27

Proportion 6636.1 23655 .7 10847 .4 130

Majority 5182.1 17512.3 3049.6 88   
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Figure Legends. (Images in this dissertation are presented in color)

Figure 3.1. Classifications of bamboo suitability based on proportion and majority

filters. Filter sizes include 3x3, 11x11, and 21x21 for the majority filter (3.1a, c, e,

respectively) and for the proportion filter (3.1b, d, f, respectively). White represents

areas of high quality bamboo areas and black represents unsuitable areas in each of

the images. The gray regions in the proportion filter maps (3.1b, d, 0 represent

areas of suitable bamboo areas.

Figure 3.2. The effects of filter methods and filter sizes on highly suitable habitat

class.

Figure 3.3. Habitat distribution throughout Wolong based on classifications without

bamboo (3.3a), with bamboo (proportion filter with filter size = 11 x 11 pixels,

3.3b), and with bamboo (majority filter with filter size = 11 x 11 pixels, 3.30).

Highly suitable, suitable, and marginally suitable habitats are shown in red, yellow,

and green, respectively. Unsuitable habitat is shown in gray.

Figure 3.4. Maps of core habitat patches (> 1.7 kmz) based on classifications

without bamboo (3.4a), with bamboo (proportion filter with filter size = 11 x 11

pixels, 3.4b), and with bamboo (majority filter with filter size = 11 x 11 pixels,

3.4c). Highly suitable, suitable, and marginally suitable habitats are shown in red,

yellow, and green, respectively. Unsuitable habitat is shown in gray.
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Figure 3.1
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Figure 3.2
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Figure 3.3  
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Figure 3.4  
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CHAPTER 4

IMPACTS OF NATURAL AND HUMAN DISTURBANCES

ON FORESTS AND GIANT PANDA HABITAT

In collaboration with

Li An, Scott Bearer, Guangming He,

Zhiyun Ouyang, Jianguo Liu
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Abstract

Human modification of land cover has been a leading cause of floral and

fauna] species extirpation and loss of local and global biodiversity. As natural areas

become increasingly scarce, habitat becomes fragmented and animal and plant

populations become isolated. Thus, the spatial arrangement ofhuman impacts is of

increasing importance. This is particularly evident in systems experiencing regular

natural disturbances such as in the mountainous areas of southwest China

supporting the remaining population of giant pandas (Ailuropoda melanoleuca).

Giant panda populations have been restricted to remnants ofhabitat fi'om extensive

past land-cover change. We developed a spatiotemporal model ofbamboo

dynamics and human activities and their impacts on panda habitat. We found that

local fuelwood collection and household creation will likely reduce critical habitat

relied upon by pandas during times ofbamboo die-offs. Human impacts are

projected to result in up to 16% loss of habitat over the next 30 years. In addition,

we found that not only was it the accumulation of the loss of habitat, but also the

spatial location of the effects ofhuman activities that will have a significant impact

on giant pandas. The impacts primarily occur in habitat relied upon by giant pandas

during past bamboo die-offs. Therefore, human impacts are leading to decreased

total area of habitat and increased fragmentation and are likely making giant pandas

increasingly sensitive to natural disturbances such as the cyclical bamboo die-offs.
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4.1. Introduction

It is widely recognized that habitat loss is one of the leading causes of local

and global species extinction (Ceballos and Ehrlich 2002). Natural (e.g. fire,

drought, flooding) and human (e.g. logging, urbanization) disturbances alter the

quantity, quality, and spatial arrangement ofhabitat, and, consequently, affect

species distribution and persistence. While many species have adapted to natural

disturbance regimes and are often resilient to natural changes in land cover or even

rely on them (Romme et al. 1995), human influences on land cover have reduced

the total quantity of natural areas, decreased the connectivity between species

populations, and destroyed or restricted access to secondary habitats that can be

crucial in times of natural disturbances. Increased understanding ofthe

implications of the spatial arrangement ofhuman activities on landscapes relative to

the spatial arrangement ofhabitat are necessary to better predict habitat required by

species and allow mitigation of impacts on the remaining ecologically intact areas

at the earliest time possible.

Past studies of the impact of natural and human disturbances have

examined the total quantity of habitat lost (Sala et al. 2000), the resulting overall

fragmentation of habitat (Collins and Barrett, 1997), restrictions in habitat

connectivity (Diffendork et a1. 1995), and potential influences on meta-population

dynamics (Hess 1996). Models have also explored the implications of the spatial

arrangement of natural (Berjak and Heame 2002, Perry and Enright 2002) and

human (Liu 1993, Stéphenne and Lambin 2001) disturbances to natural systems.
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However, the spatial arrangement ofhuman impacts relative to natural disturbance

regimes has received less attention. As a result, species area requirements and the

impact ofhuman activities may be considerably underestimated or overestimated.

By not considering natural disturbances, past estimates may have misestimated not

only the total area necessary for many species, but also the relative importance of

habitat until now regarded as marginal or secondary habitat (Fahrig 2001). Further

studies on the arrangement ofhuman activities and estimates ofthe quantity and

spatial distribution of critical habitat for population maintenance are needed.

The idea that the spatial arrangement of habitat and/or components of

habitat play a crucial role in ecosystem function, habitat suitability, and biodiversity

is certainly not new (Leopold 1933, Forman and Godron 1986). Recent studies

have expanded on this to also Show that the spatial arrangement ofdisturbances can

have a disproportional level of impact when they are concentrated in locations of

seasonal, breeding, or other crucial habitats. For example, Turner et a1. (1994)

found that elk winter survival in Yellowstone National Park after the 1988 fires

were sensitive to the precise location and pattern of the burned areas. High-

elevation disturbance was less important than the loss of lower-elevation grasslands.

In addition, the removal of small wetlands surrounding larger wetlands has been

shown to critically impact populations in times ofdrought and even in non-drought

conditions (Takekawa and Beissinger 1989, Naugle et a1. 2001)

A similar situation exists for giant pandas in China. Once ranging across

most ofpresent-day China, giant pandas are now extremely endangered and

restricted to only the western fiinge of their former habitat (Schaller et al. 1985).
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Loss of habitat and poaching have reduced the panda population to its present level

of probably less than 1000 individuals (Zhang et al. 1997). While intentional and

incidental poaching have declined, land cover change pressures continue to threaten

vital habitat, even in designated protected areas (Liu et al. 2001). Decreasing

quantities of habitat are resulting in isolation of sub-populations of giant pandas and

may be increasingly restricting access to secondary habitats.

Past behavioral (Schaller et al. 1985) and more recent landscape studies

(Linderman et al. in review) have examined how pandas relate to the environment.

There is now an increased understanding of the local habitat requirements and the

scale at which pandas interact with the landscape. For example, Liu et al. (2001)

measured the aggregated landscape effects humans have had in the Wolong Nature

Reserve over time. However, little is known of the potential impacts local activities

will have in the future in terms of total area or spatial pattern of giant panda habitat

(Liu et al. 1999). In particular, little is known of the potential impact humans will

have on crucial panda habitat during periodic bamboo die-offs. Current policies

have mainly focused on protecting core habitat and have not incorporated the need

for secondary habitat in times of bamboo die-offs. Extensive human activity in

these areas following a die-off of the main bamboo might limit geographical groups

of pandas from required secondary habitat.

Fragmentation of panda habitat has resulted in isolation of sub-populations

and decreased genetic fitness of the overall population that will have significant

implications for long-term conservation of the panda (Lu et al. 2001). However,

continued fragmentation and degradation of habitat may also have more short-term
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implications. Similar to natural and human disturbances that have resulted in loss

of crucial habitat for other Species, the combined loss of habitat and the episodic

die-offs of bamboo increasingly threaten the panda. For example, in the mid-19708

several species of bamboo in the Min mountains mass-flowered and subsequently

died—off. Over 138 pandas died of starvation since secondary bamboo species were

not available (Johnson et al. 1988). In 1983, a mass die-off of the primary bamboo

species (Basham'afangiana) in the Wolong Nature Reserve also resulted in the loss

of the main food source for the local populations (Schaller et al. 1985). However,

at the time, pandas had access to secondary bamboo sources (Fargesia robusta)

adjacent to primary habitat and there were no reported starvation deaths of pandas

(Schaller 1987). Access to secondary bamboo resources, therefore, appears to be

essential to the persistence of panda populations as a result of these large, cyclical

die-offs of bamboo species.

Liu et al. (1999) found, however, that human activities continue to have

considerable impacts to panda habitat and may have profound consequences in the

future. Commercial logging has likely been the main cause of measured losses of

giant panda habitat. Household activities have had limited impact on forested areas

in areas of preferred giant panda habitat. However, increasing numbers of

households, expanding agriculture activity, and increased fuelwood needs have

resulted in more extensive impacts of low-elevation forests. These are the same

forests relied on by pandas for Spring forage of new bamboo shoots and,

particularly, during times of massive die-offs of preferred high-altitude bamboo.

82



Giant pandas have co-existed with bamboo, their primary food source, for at

least thousands of years. Bamboo naturally mass-flowers and synchronously dies-

off over extremely large areas every 3 — 120 years, depending on the species. In the

past, these die-off events were followed by a brief dormancy before the bamboo

regenerated to pre-flowering biomass and distribution (Figure 4.1). Pandas

typically responded to die-off events by moving to other species of bamboo while

the die-off species regenerated. However, human activities are likely increasingly

interfering with the natural bamboo cycles and pandas interaction with bamboo.

For example, human activities are decreasing the total area of habitat. In addition, it

is likely that changes in forest structure and composition are also affecting the

ability of bamboo to regenerate to pre-flower conditions (Figure 4.1). This leads to

two problems. First, humans are likely causing more loss of habitat than even

previously measured. Second, the spatial arrangements of the impacts may be

restricting pandas from secondary habitat relied upon during past bamboo die-offs.

In this study, we examined the dynamics of human impacts on forest cover

and bamboo distribution within Wolong Nature Reserve in southwest China (Figure

4.2). Similar to many reserves worldwide, local residents continue to rely on

natural resources in Wolong. For example, the population of local farmers residing

within the reserve has increased from approximately 2500 people in 1975 when the

reserve was established at its current size to about 4500 people in 2001. The rapid

rise in the number of local residents and an increased tourist industry within

Wolong have resulted in increased development and demand for natural resources

such as fuelwood, timber, and traditional medicinal plants. The combination of past
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commercial logging and fuelwood collection has resulted in decreased quantity and

quality of panda habitat. Specifically, Liu et al. (2001) found that fuelwood

collection occurs primarily at low elevation areas in the general proximity of

households resulting in significant loss of habitat pandas relied on in the 19808

during the last die-off of the primary bamboo Species. In addition, as fuelwood is

exhausted at low elevations, impacts are increasingly occurring at higher elevations

and core habitat areas.

Our model combines the spatiotemporal effects of household fuelwood

collection, new household creation, forest regrowth, and bamboo on giant panda

habitat. The objectives of this research were to (l) examine the relationship of

households to the environment, (2) examine the landscape effects of fine-scale

household activities on giant panda habitat, and (3) predict future impacts of

different scenarios of household activities, combined with the dynamics of bamboo.

on giant panda habitat.

Using this model we examined the driving factors influencing the spatial

distribution of human activities including fuelwood collection and household

creation. Sub-models of household activities were then coupled with the

spatiotemporal distribution of forest cover and understory bamboo die-off models to

determine the potential impacts to panda habitat. Specifically, we focused on the

loss of habitat from bamboo die-offs, the spatial arrangement of human impacts,

and the potential implications for giant panda habitat.
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4.2. Methods

4.2.1 Study Area

The study was conducted in Wolong Nature Reserve, which is located

between 102°52’ and 103°24’ E and 30°45’ and 31°25’ N covering approximately

200,000 ha (Figure 4.2). Wolong is one of the largest reserves dedicated to giant

panda conservation and is estimated to contain about 10% of the remaining wild

panda population (Zhang et al. 1997).

Approximately 40% of the reserve is currently forested (Linderman,

unpublished data). Elevations range from 1200 m to 6525 m creating several

climatic zones and consequently high biological diversity. The distribution of

overstory vegetation in the reserve is related to the elevation: from approximately

1,200 to 1,600 m, the canopy is composed primarily of evergreen broadleaf

(Quercus) with broadleaf Shrubs and occasional grasses. From 1,600 to 2,000 m

there is an increasing mixture of deciduous broadleaf (Betula. Acer) overstory and

understory vegetation. From 2,000 m to about 2,700 m, the canopy is a mixture of

deciduous (Acer, Betula) and evergreen (larr’xfsuga) broadleaf. Above 2,700

subalpine conifers (Abies) dominate until about 3,600 m where subalpine conifers,

fern, and grass understory grade into alpine thickets and meadow (Schaller et al.

1985, Reid et al.1989). Most forests in the reserve were logged (either clear cut or

selectively-cut) from 1916 until the reserve was established in 1975, reaching peak

intensity between 1961 and 1975 (Schaller et al. 1985).
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Commercial logging typically resulted in relatively large clearcuts

distributed throughout the reserve. Logging has been officially banned in the

reserve since 1975; however, to varying degrees illicit logging does continue (M.

Linderman, personal observation). Other human activities have also been a major

contribution to forest loss and, consequently, the Spatial distribution of habitat (Liu

et al. 1999, 2001). In 2001, 4,440 local residents in 1098 households resided within

the reserve. The majority of these residents are farmers with the primary economic

activities consisting of farming maize and vegetables, raising livestock such as pigs

and yaks, and collecting wild herbs. A household usually relies on fuelwood for

heating, cooking, and livestock feed preparation using 8 — 30 m3 of wood each year

(An et al. 2001). Selective logging for fuelwood collection typically changes the

species composition in the overstory and reduces canopy cover until all overstory

vegetation is removed. In some areas, forest cover is also removed by grazing and

agricultural use. Land tenure is through assignment by the local government and

typically limits agriculture to 0.5 — 1.0 hectares per household. Grazing areas are

seemingly local commons and are maintained by heavy grazing activity.

Wolong also contains up to 4000 plant Species including up to 11 species of

bamboo, two of which constitute the significant portion of the total biomass,

Fargesia robusta and Bashaniafangiana. F. robusta grows to a height of 4 — 6

meters often in dense clumps spread through the elevational range of 1500 — 2600

meters. Pandas often migrate down the mountains in late spring to eat the new

shoots and were shown to rely on F. robusta during times of mast-seeding of the

primary bamboo, B. fangiana. B. fangiana is a smaller, thinner bamboo growing to
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heights of l —- 1.5 meters. However, it often grows as large carpets of dense growth

as large as several hectares area at elevations of 2600 — 3600 m.

Most bamboo species in China are semelparous and are characterized by a

synchronized mast-seeding occuning every 3 — 120 years, depending on the species

(Janzen 1976). Mast-seedings of B. fangiana are estimated to occur every 45 years.

In 1983, a B. fangiana mast-seeding and corresponding mass die-off occurred over

an extensive area within the reserve. Pandas in Wolong continued to utilize small

patches that did not flower and old stems, but were forced to migrate to lower

elevations in the winter of 1986 to forage on F. robusta. It is estimated that another

mast-seeding of B. fangiana will occur between 2025 — 2030. The intervals

between mast-seedings of F. robusta are unknown, but estimated at 60 — 80 years

(Schaller et al. 1985). The last mast-seeding of F. robusta is believed to have

occurred in 1949 (Wolong Administration, personal communication).

4.2.2 Model Description

The model was developed in the SELES (Spatially Explicit Landscape

Event Simulator) framework (Fall and Fall 2001, Fall et al. 2001). SELES is a high-

level programming language that facilitates modeling of the temporal and spatial

dynamics of gridded landscapes. SELES also allows the incorporation of

georeferenced raster data, the design of sub-systems that interact on the landscape,

and temporal and spatial dynamics.
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This model is intended to provide insight into the landscape-level interaction

between forest, humans, and understory bamboo. It seeks to balance parsimony and

realistic landscape driving factors for each aspect of the model and to examine the

influence of each of the model processes. The model included four sub-models:

household fuelwood activities, household creation, forest regrowth, and bamboo

growth and die-offs. The resulting impacts of the distribution of human activities

and bamboo spatiotemporal dynamics are integrated directly into giant panda

habitat suitability models and allow model predictions to be measured in terms of

changes to landscape indices of panda habitat. The four sub-models and their

interactions are shown in Figure 4.3. Each of the human activities influences the

spatial distribution of forest cover. Forest regrowth allows for forest re-

establishment and annual growth of non-climax forests. The spatial distribution of

forest cover influences the spatiotemporal dynamics of bamboo regrowth and die-

off. The suitability of giant panda habitat is then determined from forest cover

along with abiotic factors. Bamboo is incorporated into habitat models as

presence/absence of bamboo and, consequently, giant panda habitat.

The probability of a landscape event (e.g. fuelwood collection) occurring at

each cell is determined by the current state of the pixel (e.g. slope, aspect, forest

cover) and proximity to cells of a specific state (e.g. pixel containing a household).

The number of landscape events is determined by the sub-model characteristics

(e. g. total number of households) with the location of the event stochastically

determined relative to the cell probability. The event probabilities for each cell

(depending on the specific landscape event) could be determined by forest cover (%
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pixel), slope and aspect (degrees), elevation (meters), agriculture cover (% pixel),

distance to households or roads. The modeling framework also allows for

landscape events to spread to neighboring cells (e. g. if a cell does not contain

sufficient fuelwood for the annual collection of a household fuelwood needs,

fuelwood collection can spread to a neighboring cell to meet the annual needs of the

household).

The four sub-models and habitat suitability model are described below along

with examples of probability functions:

0 Fuelwood Collection - It was assumed that households collect fuelwood

based on availability, accessibility, and previous fuelwood collection

activity. Typically, fuelwood is collected around the household. AS these

areas are diminished, foraging extends to the neighboring areas

characterized by easy accessibility (Liu et al. 2001). Many households have

been forced to travel several kilometers to collect annual stocks of fuelwood

(An et al. 2001). Accessibility is characterized in this model by the distance

to collection site, slope, and elevation and is summarized as a cost function

relative to the distance to roads and main paths and topographic variability

(i.e. slope and elevation difference along path to the pixel). The probability

function was a linearly decreasing function of increasing cost:

P(fuelwood 1 cost) = (l — (cost/maximum cost))
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Pixel forest cover and average yield per hectare determined availability.

Households are also more likely to return to the same pixel, if sufficient

forest volume exists (An, unpublished data), or neighboring cells of

previous fuelwood extraction. Therefore, a higher probability of collection

was assigned to cells previously harvested and neighboring cells. The

overall probability of fuelwood extraction for each forested pixel is then a

multiplicative combination of these factors.

Household Creation — Since 1965 new households were established as

children moved out of their parents’ home or through immigration into the

reserve. Immigration is now restricted to new spouses of current residents.

Each new household is presumed to also establish its own agriculture land,

clearing the forest area or occupying previously deforested area. New

household establishment is based on suitable agriculture land and proximity

to transportation routes and other households (An, unpublished data). The

precise X,Y location of the actual residence is not included in this model.

Rather, households including the physical residence, agriculture land,

garden area, and surrounding edge are presumed to occupy cells of the

landscape. Suitable agriculture areas were based on abiotic factors: slope,

aspect and elevation. While agriculture activity occurs on Slopes up to 40

degrees, low slope areas are preferred. Preference for low elevation areas

was also noted. For example, relative probabilities for household placement

based on elevation were empirically measured as:
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{ 0.00 (h > 2500) }

P(household l h) = { 0.08 (2250 < h S 2500) }

{ 0.82 (1750 < h S 2250) }

{ l.OO(hS 1750)}

In areas of higher elevation, preference is given to south-facing slopes to

maximize sunlight. Households were also more likely to develop land

adjacent to previously established houses within short distances (typically

less than 2 kms) to major transportation routes.

Forest Regrowth — Four forest types (Figure 4.4) were identified throughout

the reserve based on elevation and species distribution (Schaller et al. 1985).

Regrowth models were derived for each of the predominant species within

each elevational zone from published and empirical data (Yang and Li

1992). Initial stand volume was estimated for each elevational zone based

on approximate time and intensity of commercial logging activity. Regrowth

is calculated based on succession age and logistic regrowth of total volume.

Bamboo — The spatial distribution of bamboo was derived from 1997

remote sensing data and extensive field surveys conducted from 1998 —

2000 (Linderman et al. in review). Regrowth and spatial and temporal die-

off characteristics were obtained from the literature (Janzen 1976, Schaller

et al. 1985, Reid et al. 1991, Taylor et al. 1991, Taylor and Qin, 1993). For

example, Taylor and Qin (1993) noted that while small forest gaps have

higher recruitment and growth rates, it is unlikely that bamboo will recover
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from a mast-seeding in clearcuts (likely due to microclimate differences).

Reid et al. (1991) found that bamboo in the middle of its altitudinal range

had faster growth rates. This was included as a normal probability

distribution function defined by the middle of the known altitudinal range

and known altitudinal range. And, Taylor et a1. (1991) found correlations

between the spatial distribution of B. fangiana die-off and environmental

conditions such as elevation, aspect and forest cover. For example, due to

the additional stress of steep, north-facing slopes bamboo was ten times less

likely to flower during mass die-offs:

{0.1 (aspect _>_ 330 & slope > 40)}

P(dieoff | aspect,slope) = {0.1 (aspect S 30 & Slope > 40)}

{ 1.0 (30 < aspect < 330 & slope S 40)}

Habitat Suitability -The final habitat classification was a categorized

suitability measure of four classes termed highly suitable, suitable,

marginally suitable, and unsuitable (Liu et a1. 2001). The impacts from

human activities are reflected in the habitat suitability model as impacts

from fuelwood activity and agriculture development. Bamboo was

incorporated by measuring habitat containing bamboo. Measures of habitat

quantity and suitability allow analysis of the temporal and spatial dynamics

in terms of giant pandas, the influence of household characteristics, and
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possible future scenarios on the likely landscape implications for giant

panda habitat.

Landscape events occurred on an annual time frame. The first landscape event

each year is the establishment of new households and associated agricultural

development. Each household then collects its annual fuelwood volume. At the

end of the year, forest regrowth occurs for each forested cell and the suitability of

panda habitat updated.

4.2.3 Data and Parameterization

Several sources of data were used to parameterize, for input, and to validate

the model. Satellite data and topographic maps were used to describe the landscape

distribution of human activities, vegetation, and abiotic features throughout the

reserve. Socio—economic and demographic data were collected from local

government agencies and a household survey that was conducted from 1998 — 2001

(An et al. 2001). Literature on panda habitat and bamboo (particularly relating to

the 1983 B. fangiana die-off) were used for further parameterization of sub-models.

Georeferenced data used for this model included remote sensing

measurements of forest cover, topographic maps, and remote and ground surveyed

household distributions within Wolong. Additional layers were created by the

model relative to the initial layers such as distance to households. Each of these

layers was updated as the model progressed (e.g. forest cover was modified) where

applicable based on landscape events. Information on the landscape-level
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distribution of forest was obtained from classification of four dates of remote

sensing data, 1965, 1974, 1987, and 1997. The 1965 data are Corona stereo-pair

photographs acquired as part of the Corona photo-reconnaissance satellite project

(USGS Eros Data Center, Sioux Falls, South Dakota). The 1974 data are Landsat

MSS images and the 1987 and 1997 data are Landsat TM images. To account for

the spectral and spatial differences between the data, each image was visually

interpreted into forest and non-forest areas (for classification details see Liu et a1.

2001). Topographic data were derived from a Digital Elevation Model (DEM).

Examples of these data are shown in Figure 4.4. The 1997 digital classification of

the forest cover is a supervised classification of the Landsat TM data based on over

300 ground samples. The bamboo distribution was derived from field surveys

conducted from 1998 — 2000 and 1997 Landsat TM data (Linderman et al., in

review).

Location of each household was measured through the use of field

measurements and Ikonos l-m resolution satellite imagery. Ikonos imagery

acquired in 2000 by Spacelrnaging was georeferenced using ground control points

measured using a Global Positioning System with sub-meter accuracy (Trimble

Pathfinder Pro XRS receiver and Community Base Station). Households were then

identified in the images and the location recorded. All households created on or

before 1965 were used to create the initial distribution of households corresponding

to the initial forest cover information. New households have been added to the

reserve at a steadily decreasing rate each year between 1965 and 1997.

Approximately twenty-four new households were created each year.
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A household survey was conducted from 1998 — 2001 and included each of

the households within Wolong (An et al. 2001). Households were queried on

fuelwood use, fuelwood collection, agricultural activity, household creation, and

other associated socioeconomic and demographic information. Additional

socioeconomic and demographic information was obtained from local government

records. Census information was obtained from each township within the reserve.

Local governments also maintain information on land allocated to each household.

From these data it was found that each household maintains on average 0.7 ha of

agricultural land. Including the area of the physical house, garden area, and

surrounding edge, the typical total area is approximately 0.8 hectares. Therefore,

the scale of the model was chosen to be 90 x 90 meters (0.81 hectares).

Fuelwood use was determined by surveying over 50 households and

physical measurements of daily use (All et al. 2001). The volume of wood varied

between 8 and 30 m3 and averaged 15 m3. An annual volume of wood used by each

household in the model was then 15 m3. Preference for fuelwood collection and

household creation sites was derived from comparing DEM and slope coverages,

and house locations and fuelwood sites. Distance to fuelwood collection sites varied

from 50 meters to over 5 kilometers. The average distance for 100 households

surveyed was 500 meters (Li An, unpublished data). Households preferred to

collect fuelwood in flat areas (< 20° slope) and had a decreasing probability relative

to elevation.

Uncertainty in the 1965 stand volume of the various forest types posed the

most difficult parameterization problem. While basic coverage information was
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available from satellite photographs, data on the average volume throughout the

reserve were scant. Quantitative information dating back 35 years is difficult to

obtain or non-existent. Schaller et al. (1985) suggest that much of the reserve was

commercially logged from the 1916 until 1975. Measurements taken in the late

1990’s found much of the lower altitude forests to be well below old-growth

volumes. Average volumes for broadleaf forests below 2600 m were approximately

80 m3/ha (Ouyang et al., unpublished data). It is likely that these forests were the

first to be harvested in the first half of the century and have regrown to current

volume levels. Based on regrowth data for the broadleaf forests in Wolong, we

estimated the average volume for 1965 to be approximately 45 m3/ha. Stand

volume for subalpine conifers was on average approximately 300 m3/ha (Ouyang et

al., unpublished data). Subalpine stand volume was high enough such that

variations in estimates would not significantly influence the model.

Forest regrowth was included in the model to allow for previously logged

regions to regenerate and the addition of biomass and regrowth in selectively

logged cells. Separate logistic regrowth models were developed for each forest type

based on species composition, stand age, and altitudinal zone (Figure 4.4b). Model

parameters were derived from over 30 plots distributed throughout the reserve (Liu

et al. 1999) and Species regrowth and yield models derived by the Sichuan

Department of Forestry (Yang and Li 1992).

The spatiotemporal trends of the two dominant bamboo Species in Wolong,

B. fangiana and F. robusta, were included in models running from 1997 to 2030.

Bamboo was not included in models begun in 1965 as data on the distribution of
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bamboo are not available prior to 1997. The initial spatial distribution of the

presence or absence of bamboo in 1997 was derived from remote sensing data and

extensive ground surveys (Linderman et al. in review). Species delineation was

based on altitudinal range and field surveys (Schaller et al. 1985). B. fangiana and

F. robusta make up approximately 80% of the total bamboo within the reserve and

are the primary food sources for pandas in the reserve. Therefore, three classes of

bamboo are included in the model: B. fangiana, F. robusta, and all others (Figure

4.5b). However, because detailed life-history information of other species is

unavailable and to provide a conservative estimate of habitat impacts from bamboo

dynamics, die-offs for only the two main bamboo species were included in the

model.

Growth functions of each bamboo species and environmental influences on

regrowth and die-off characteristics were gathered from the literature (e.g. Taylor et

al. 1994). In 1983, approximately 85% of B. fangiana throughout the study area

died after flowering. The areas of die-off were non-randomly distributed across the

landscape with bamboo patches experiencing environmental stress (altitudinal

limits, steep north facing slopes, and in large clearings) were more likely to not

flower. Analyses of B. fangiana recovery after a mass-flowering showed that

typical patches require 15-20 years to regenerate with an initial dormancy of 0 — 5

years. In addition, Taylor and Qin (1993) found lower seedling establishment and

poor overall regeneration in large forest clearcuts.

Behavioral studies have shown that panda habitat is a function of forest

cover, slope, altitude, and understory bamboo (Schaller et al. 1985, Ouyang et al.
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1996). Ultimately, then, pandas are constrained by canopy cover while understory

bamboo strongly influences the quantity, quality, and distribution of habitat within

forested areas (Johnson et al. 1989, Reid et al. 1989). While both overstory and

understory forest components are known constraints, past estimates of the

availability and distribution of panda habitat over large extents have been based

solely on overstory features and abiotic factors, not on understory bamboo

distribution (De Wulf et al. 1988, Liu et al. 2001). Therefore, we determined habitat

suitability using a multiplicative combination of the three factors (forest cover,

altitude, and slope) available for the 30-year time span per Liu et al. (2001).

Because non-forested areas are considered unsuitable habitat for the giant panda,

forest/non-forest classifications were multiplicative factors of l or 0, respectively.

Slope and altitude multiplicative factors were proportional to the observed use by

pandas. For model scenarios run from 1997 — 2030, bamboo presence or absence

was included as an additional multiplicative factor of l or 0, respectively.

4.2.4 Model Validation and Sensitivity Analyses

Variations in individual parameters such as the rate of new household

creation, fuelwood use, and forest characteristics were made to test the validity of

each parameter and the sensitivity of impacts to each individual parameter. Exact

correspondence between the model predictions and the measured distributions was

not expected as the model is stochastic with the probability of a landscape event

(e. g. fuelwood collection, bamboo die-off) occurring in a cell based on the
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biophysical parameters of the cell. Based on the variability of initial tests, the

model was run 20 times for each scenario to account for the stochastic processes.

To examine the influence of various parameters on the model predictions,

parameters from each of the sub-models were tested to examine the relative

influence on the related landscape event for model runs from 1965 - 1997. The

overall influence of each component of household submodel (abiotic, proximity,

and cost function) was examined by comparing various model scenarios (e. g. model

predictions excluding multiplicative factors) and the actual household distribution.

This was done to show the overall influence each function had on the model

selection of new households and as some functions could not be varied

systematically (e.g. abiotic influences were based on conditional probabilities).

Accuracy and landscape metrics were calculated based on the average accuracy and

indices of the final output from each of the 20 simulations. Systematic analyses of

parameter sensitivity of individual parameters were also conducted for the fuelwood

model such as the propensity to return to previous fuelwood collection sites and

distance to fuelwood collection sites. Since parameterization of stand volumes for

broadleaf forests below 2600 meters contained relatively large uncertainty, several

average stand volumes for the broadleaf forests were tested including 30, 45, 60, 75,

and 90 m3/ha. Accuracy assessments and landscape measures of fuelwood

activities were based on forest cover within the 5 km buffer.

The model was validated based on Simulations started in 1965 with the

initial distribution of forest based on the classification of forest/nonforest categories

from these photos. The original distribution of households was based on all
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households established prior to or in 1965. Validation Simulations were run for 32

years to correspond to the latest remote sensing data available. Two validation

methods were used. First, predicted fuelwood impacts on forest cover were

compared to visual delineations of forest cover from 1974, 1987, and 1997 satellite

imagery (Liu et al. 2001). Visual delineation of the four time steps provided a

consistent methodology for forest classification relative to the forest classification

used for the 1965 Corona photographs. The 1974, 1987, and 1997 data were used

for visual comparison of the multitemporal trends in predicted versus the measured

forest changes. Second, measurements of the distribution of households and digital

classifications of forest cover as measured in 1997 were compared to final outputs

from the model. Digital classification of the 1997 forest cover was possible with

extensive ground sample data and provided a more detailed snapshot of the current

distribution of forest cover. Household locations as measured in 1997 were

compared to locations of predicted households at the end of the 32-year simulations.

Comparisons between the simulated landscapes and measured landscapes

included a direct comparison between predicted change areas and measured change.

In addition, comparisons were made in the differences in the quantity of forest area

and disturbed areas and landscape metrics such as patch size, Shape, and

complexity. Timber logging activities continued after the establishment of the

reserve in 1975 and there is little information available on the total quantity or area

affected. To minimize the effect of natural and external influences on the accuracy

assessments, analyses were constrained to regions within 5 kms of the current

household distribution. This distance corresponds to the maximum distance

100



households travel to collect fuelwood. The accuracy of the model is reported as the

percentage of predicted pixels that correspond to measured pixels (e. g. predicted

non-forest vs. measured non-forest pixels). This ignores possible omission errors

and was used because of the difficulty in distinguishing natural variability in and

external impacts on forest cover from household activities even within 5 kms of the

households. Visual comparisons of model predictions and measured forest cover

change are Shown for comparison between commission and omission errors.

Given the difficulty distinguishing between timber logging, fuelwood

collection, and natural variability in forest cover, accuracy assessments of the model

predictions relative to measured landscape trends (particularly those from the

detailed classification) do not provide a complete picture. Additional measures and

indices are used to compare the outputs of the model to measured impacts. The

impacts measured from projection simulations are reported as the landscape indices

relative to the impact of interest (e. g. household distribution and forest cover).

Indices were chosen relative to Riitters et al. (1995) and included total number of

patches, mean patch Size, corrected perimeter to area (p/a) ratio (Baker and Cai

1992), connectivity between patch centroids (Forman and Godron, 1986), and the

aggregation index (He et al. 2000).

4.2.5 Household Impacts

To examine the relative influences of different household scenarios on the

landscape, a variety of scenarios were run from 1965 until 2030 with 1965 baseline
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parameters and 1965 land-cover and household data used until 1997. Model

parameters were then varied for 1997 to 2030 to examine possible changes in

household characteristics. These scenarios represent situations where new policies

are introduced after 1997. Parameters examined included fuelwood consumption

per household and the household growth rate (or immigration/emigration rate).

Varying household characteristics was done to examine the effects of household

parameters on model outputs in the absence of natural and external (e. g.

commercial logging) variability. This allowed relative comparisons between

models and to highlight scenarios of interest to be run in the 1997 - 2030 scenarios

described below. Model scenarios were compared based on impacts to giant panda

habitat as deforestation for fuelwood and household construction removed habitat

and forest regrowth returned land to potential habitat.

Several levels of fuelwood consumption (30, 15, 10, 5, and 0 m3/yr) and

household growth (36, 24, 12, 0, -12, and —24 new houses created or removed each

year) were examined. Several combinations of these parameters were also

examined (Table 4.3). These levels were chosen to reflect possible future

household characteristics resulting from new policies and management efforts such

as subsidies, forest restrictions, and/or increased accessibility to electricity. For

example, efforts to eliminate fuelwood collection and reclaim agriculture land were

initiated in 2000. Subsidies have been offered in exchange for managing forests.

However, it is unlikely that fuelwood collection will completely cease. As

economic opportunities increase and demand for meat products increases, farmers

may increase the production of livestock and, consequently, actually increase

102



fuelwood consumption. Electricity prices are also currently unaffordable for most

local farmers, particularly for energy consumptive needs such as heating and

cooking. In addition, efforts to encourage emigration out of the reserve are being

instituted. However, an increasing preference by younger adults to establish new

households and in response to subsidy opportunities, new households have

increased at higher rates than in past years. To reflect the possible range of values,

fuelwood consumption levels were chosen based on the current maximum known

household consumption (to reflect increased livestock production) to no fuelwood

use. Household creation rates ranging from increases in household establishment to

a net emigration were examined to reflect the possible policy influences on

household activities.

4.2.6 Integrated effects ofhousehold activities and bamboo dynamics

Projection scenarios were run for 33 more years (1997 — 2030) to examine

the combined effects of human activities and potential bamboo die-offs. The model

was run for 33 years starting from 1997 with the latest available household and

forest cover data. These models were coupled with the spatiotemporal trends of

understory bamboo (information on the spatial distribution of bamboo is available

only from 1997). This coupled model was used to predict actual impacts on forest

cover, possible bamboo dynamics and associated interactions with forest cover, and

possible implications for giant panda habitat.
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The latest household and forest data as measured from satellite imagery and

collected in the field were used to develop the final model. Figure 4.5a shows the

measured forest cover based on digital classifications of Landsat TM data acquired

in 1997. Figure 4.5b shows the measured distribution of bamboo in 1997. These

data, as well as measured household locations, were used in the scenario runs from

1997 — 2030 to examine potential impacts on giant panda habitat from the coupled

human activities and bamboo dynamics.

Four scenarios of household creation and fuelwood consumption were

chosen from the scenarios tested above. These included household creation rates of

24, 12, -24 and 0 houses per year. Fuelwood consumption levels of 15, 10, and 0

mg/year were also used. The scenario of 0 houses/year and fuelwood consumption

of 0 m3/year was used as a baseline for comparison. The other scenarios were

chosen to represent the responses found in section 3.2 above and represent ranges in

predicted future possibilities under business as usual and management actions to

reduce fuelwood use and household creation. The parameters of 12 houses/year and

10 m3/year, representing efforts to encourage emigration and decreased reliance on

fuelwood, were used as the most likely conditions for the next 30 years.

Three bamboo scenarios are presented. First, habitat availability is

measured if neither B. fangiana nor F. robusta- die-off during the model run. B.

fangiana has a fairly well known intermast period of 45 years with the next die-off

predicted to occur approximately in 2027. Therefore, two die-off times of F.

robusta in addition to a B. fangiana die-off occurring in 2027 were coupled with the

above mentioned household parameters, a B. fangiana die-off occurring twenty
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years prior to the B. fangiana and a simultaneous die-off. Twenty years was chosen

as recovery time as studies of past die-offs in the reserve suggest 15 — 20 years until

complete reestablishment. However, as forest cover affects the probability of

reestablishment of bamboo, the dynamic interaction between human activities and

bamboo flowering may affect the reestablishment of bamboo to its former

distribution.

4.3. Results

4.3.] Model Validation and Sensitivity

Figure 4.6 shows a multitemporal comparison of the predicted 32-year

simulation of household activity and the measured forest cover within 5 km of all

households. There appears to be a good correspondence between the model outputs

and measured forest distribution. The basic trends in forest cover are comparable

between measured and predicted distribution of forest cover though some

differences from extraneous activities are apparent. In addition, the 1997 modeled

household distribution, based only on the initial 1965 distribution of households, is

very similar to that of the measured distribution from ground surveys and satellite

imagery for 1998 — 2000 (Figure 4.7a).

Various model scenarios resulted in distinct differences in the distribution of

household locations. Considering all household factors resulted in a slight increase

in the number of patches and p/a ratio, a 44% larger mean patch Size, and slightly
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higher connectivity and aggregation indices (Table 4.1). Not including topographic

preferences resulted in 71% more patches of households (Table 4.1) and in house

placement in regions of distinct topographic relief (e. g. areas of extreme slope)

(Figure 4.7b). Excluding the distance and topographic variation from main

transportation routes resulted in a wide distribution of households (Figure 4.7c).

The number of patches was more than three times the measured distribution. Mean

patch size and p/a ratio were both considerably lower (Table 4.1). And, the lack of

a proximity factor results in decreased clumping of households (low connectivity

and aggregation indices), smaller patch size and an increase in the number of

patches relative (Table 4.1) to the measured distribution of households (Figure

4.7d).

Accuracy in terms of predicted household locations agreeing precisely with

measured locations of household distribution varied from 20 — 27% (Table 4.2).

Precise prediction of the 90 x 90 meter plot was not the intention of this model.

Foremost, this is not saturated system. This leads to quality areas not being

occupied and complex edges that are difficult to predict empirically. In addition,

the model has a stochastic decision process and also does not include household-

level influences on household placement. However, as the spatial arrangement of

households may have an impact on habitat, particularly crucial secondary habitat,

we examined the percent of predicted households falling in close proximity (l, 2,

and 3 pixels) of measured households. Over 88% of the predicted households from

the complete model were within three pixels of the measured locations (Table 4.2).

This suggests that the model was predicting households essentially within the same
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areas as those measured to also contain households. Not including the distance

function resulted in the lowest accuracy of 63% for predicted households within 3

pixels of measured households. Not including a preference to create new

households next to existing households resulted in an accuracy of 80%. Excluding

the selection based on abiotic factors (i.e. slope and elevation) resulted in an

accuracy of 81%. The complete sub-model had an accuracy of 27, 68, 82, and 88%

for predicted households within 0, l, 2, and 3 pixels from measured households

(Table 4.2).

Analyses conducted for each of the fuelwood parameters Showed expected

influences from variations in the distance and proximity factors (Table 4.3).

Relaxing the tendency for households to collect fuelwood from previously cleared

areas resulted in more fragmented impacts and is reflected in the landscape metrics.

Variation of the proximity factor three times more or less likely to return to

previous sites resulted in 35% fewer and 52% more patches and 54% larger and .

34% smaller patch sizes, respectively (Table 4.3). In addition, perimeter and

connectivity indices Show increasing clustering as the proximity factor is increased.

Accuracy of predicting impact areas, however, only varies by less than two percent.

Varying the cost factor by 20% resulted in similarly expected results. Easing the

influence of the distance factor resulted in more dispersed impact occurring in

smaller patches. This is seen in the patch characteristics with more and smaller

patches and decreased p/a ratios and decreased connectivity (Table 4.3). Increased

probability of using near areas conversely increased patch size, decreased patch

number, and increased connectivity between patches. Patch Size varied by 17.9% to
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33.7% and patch number varied by 24.1% and 20.5% for a twenty percent decrease

and increase in the cost factor, respectively (Table 4.3).

Expected trends in deforestation relative to initial stand volume were

decreasing area of impact and decreased fragmentation Since more volume was

available in preferred collection areas (Table 4.3). While the outputs using each of

the above mentioned initial volumes shown in Figure 4.8 do seemingly conform

largely to these expectations, increased peripheral impacts occur at both increased

initial volumes and decreased volumes. Landscape metrics and overall model

accuracy also Show this trend in the model (Table 4.3). The lowest number of

patches was at initial forest stand volumes of 45 m3/ha. Decreasing stand volume

resulted in larger overall impact patch size, particularly the core area nearest to

households; however, smaller peripheral impacts were more common. As initial

stand volume was increased, the overall impact decreased, however small pockets

of impact emerged where more continuous impacts previously existed. These

trends are clearly shown in the decreasing patch perimeter and mean patch size.

The accuracy of predicted impact sites relative to measured impact also reflects

more concentrated impacts as initial volume is increased (Figure 4.8). AS fuelwood

activity is focused on core areas near households, model accuracy increases. At an

initial stand volume of 30 m3/ha, the overall prediction accuracy is approximately

55%. As the volume is increased, model accuracy increased to 64% when using

90m3/ha (Table 4.3). The increase in accuracy is largely a result of smaller areas

being affected only near households and decreased influence of stochasticity in

choosing distant fuelwood Sites.
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4.3.2 Household Impacts

Projected household impacts on panda habitat are shown in Table 4.4.

Current levels of household creation and fuelwood consumption resulted in nearly

10% more habitat loss below 2600 meters. An increase in fuelwood consumption

(30 m3/yr) could impact up to 16% of the low-elevation forest. Reducing fuelwood

consumption by two-thirds reduced habitat loss by 59% compared to current trends.

However, to maintain levels of habitat as measured in 1997, the removal of

households at a rate of at least 50% the current level of creation or complete

cessation in fuelwood collection is required. However, as seen from a 50% increase

in household creation with no fuelwood collection, increased population and

resulting household creation contributed little to habitat loss because considerable

areas around households are already cleared of forest cover. Most likely estimates

(due to recent policy and management changes) for future new household creation

and fuelwood consumption (12 households/year and 10 m3/year) resulted in

approximately 30% less forest loss than current levels of new household creation

and fuelwood consumption.

4.3.3 Combined effects ofhousehold activities and bamboo dynamics

Human impacts on available giant panda habitat are shown in Figure 4.9a.

Increased impacts around households and near main transportation routes are

evident. The magnitude of these impacts for the four scenarios is shown in Table
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4.5. Decreased area of impact relative to the 1965 to 1997 time period is expected

as forests recover biomass. However, up to 6.5% of all habitat is still predicted to

be lost relative to the current forest conditions in the near future from fuelwood

collection. And, these losses take place in a relatively small area of the reserve

with over 95% of the impacts occurring below 2600 meters of elevation. A

disproportion percent of habitat below 2600 meters will be impacted with up to

17% of low elevation habitat being lost (Table 4.6). Particularly worrisome is that

up to 15% of highly suitable habitat is impacted.

The total area of habitat containing bamboo if no die-offs occur is

approximately 30,000 ha. Up to 52% of this habitat may be lost during a

simultaneous die-off of B. fangiana and F. robusta (Table 4.7, Figure 4.9b).

Human impacts on habitat are relatively small compared to the loss from bamboo

die-offs. However, the total habitat available when considering possible bamboo

die-offs is only 14,000 — 16,500 ha. Human impacts are predicted to result in up to

1500 ha of loss of bamboo habitat representing approximately 10% of the

remaining habitat below 2600 meters (Table 4.8). In addition, mean patch sizes

were considerably lower after bamboo die-offs compared to the landscape without

bamboo die-offs (Table 4.9). In addition, the cumulative long-term effects of

human activities on habitat (the relatively permanent land-cover changes and spatial

location of these changes) now make pandas increasingly vulnerable to bamboo

dynamics. Human impacts have further reduced the size of the mean patches of

habitat suggesting that timing of bamboo die-off and human activities will influence

access to habitat (Table 4.9). AS human impacts are focused in areas of F. robusta
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habitat, areas relied on by pandas during the 1983 mass-flowering of B. fangiana,

loss of access to these habitats may have considerable impact on local panda

populations. The model predicts that up to over half of the initial bamboo habitat

will be lost given the coupled impacts of human activities and a simultaneous

bamboo flowering. Even if F. robusta flowers with a sufficient time for recovery

(~20 years) prior to B. fangiana flowering, total habitat remaining is only about half

the original habitat. Figure 4.10 shows the distribution of these impacts. Even with

conservative estimates of flowering rate of F. robusta, total habitat in certain areas

is severely reduced. This is particularly noticeable in the north and west edges of

the extent of habitat in the reserve (Figure 4.10).

4.4. Conclusions and Discussion

The landscape approach to modeling the human and biological dynamics of

Wolong Nature Reserve provided considerable insight into the historical trends and

conditions of the reserve, the driving factors of human causes of land cover change,

and the potential consequences of human alterations of land cover and bamboo

dynamics on panda habitat. In addition, this particular model can be used to predict

conflicts between human activities and species’ habitat requirements and more

specifically suggests human modification of secondary habitat can have

considerable ecological consequences.

A lack of detailed historical information for Wolong posed problems for

accurately modeling the human interface with the environment. Except for the
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Corona photographs used for this study, very little information on the state of the

forest in 1965 was available. However, by comparing projections of household

activities from 1965 to a time where we have more detailed information permitted a

more detailed estimate of forest conditions and insight into factors contributing to

habitat loss. Comparisons of predicted forest loss from 1965 to 1997 to measured

forest conditions in 1997 for several scenarios of the average starting volume of

low-elevation forest confirmed that these forests were already at relatively low

volumes and magnified human impacts since 1965. It is possible that large-scale

logging ocurred concurrently with household fuelwood collection from 1965 until

1975 or later. While timber activities almost certainly continued after 1975, no

large-scale logging was noted by researchers present in the reserve from 1983 to the

1990’s. Forest loss after 1975 until 1997 are likely due to a combination of

households and finer-scale timber activities and exacerbated by already low average

stand volumes from previous large-scale activity. As these forests are increasingly

lost, fuelwood activities move to higher elevation forests with increasing losses of

core habitat.

The model is relatively parsimonious. The placement of new households is

explained by only four factors: distance to roads, proximity to other households,

slope, and elevation. Using only these four factors, however, the model accurately

predicts household creation nearly 90% of the time within 3 pixels of the measured

distribution of households. Fuelwood collection also is only based on a few

landscape variables: distance to roads, previous fuelwood collection locations,

slope, and elevation. Again, the model captures the trend in household reductions
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in forest cover. This simplicity and success of the model suggests basic landscape-

level factors have considerable influences on the spatial distribution of human

activities. Households were present in the reserve prior to the establishment of the

current transportation routes. These roads and the introduction of mechanized

transportation have likely led to increased agricultural activity along these routes

and increased access to forests near the roads. In addition, as the reserve is situated

in a relatively mountainous area, topography plays a significant role in shaping the

spatial distribution of household activities. Agricultural activity requires relatively

flat land and easy access to transportation. While fuelwood collection is less

dependent on the collection site qualities than the cost factor of the distance to

roads, the slope, elevation change, and overall accessibility influence the location of

collection sites.

This model also provided means to examine the role of household

characteristics on possible future impacts to giant panda habitat. Most notably,

considerable changes in fuelwood consumption and/or household creation rates

were required to maintain the current area of forest. While an increase in household

creation itself led to only small decreases in forest area, even limited fuelwood

consumption resulted in relatively large losses in habitat. This is likely because

areas around existing households have already been deforested. Therefore, the

placement of new households is likely not to result in further loss of forest.

However, even small amounts of fuelwood required for the large number of

households already in the reserve results in increased impacts on forest cover. A

decrease in the number of current households such as through emigration does limit

113



the loss of forest from agricultural activity. However, very large decreases in the

number of households or simultaneous decreases in average household consumption

rates are needed to retain the current forests. These results are similar to estimates

as measured by Liu et al. (1999) who showed that relatively high rates of

emigration were necessary to restore habitat and suggest that most efforts should

focus on reducing fuelwood collection and providing alternative energy sources for

the current households while providing viable means and incentives to encourage

emigration.

In this study, we further examined the landscape-level factors governing the

spatial distribution of human impacts on forests and its implications for giant panda

habitat in light of episodic die-offs of bamboo. The continued removal of low-

elevation forests considered less important than core habitat areas may seriously

restrict current sub-populations of giant pandas within Wolong from necessary

secondary habitat when the next B. fangiana die-off occurs. Simultaneous or near-

simultaneous flowerings of B. fangiana and F. robusta will be detrimental to panda

populations. Even with a sufficient interval between flowerings to allow biomass

recovery (15 — 20 years for both species (Taylor and Qin, 1993)), decreasing access

to F. robusta in the future may have similar consequences for the remaining pandas

in Wolong. In 1983, pandas had direct access to significant amounts of F. robusta.

Pandas eventually shifted to secondary food sources after the last B. fangiana die-

off. The availability of F. robusta during the mast-seeding of B. fangiana in 1983

likely buffered the studied populations from the mass-Starvations faced by pandas in

the Min Mountains. Landscape models are useful in describing the basic driving
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factors control events occurring at the landscape level. Abiotic, transportation, and

biophysical variables can strongly control the location and distribution of human

activities. However, by coupling the multitemporal spatial dynamics of bamboo

with human activities, the implications of even limited impacts to critical habitat

can be seen.

The success of the model to predict similar distributions of households and

local land-cover change suggest basic landscape features such as topography and

accessibility can play a large role in Shaping the spatial distribution of human

activities. The limitations of the model point to areas where further study is needed.

Most decisions such as consumption level, propensity to use alternative energy

sources, emigration rates and new household formations are made at the household-

level and are not included in this landscape model. Furthermore, more detailed

information on the biophysical characteristics such as total available biomass,

growth rates, and efficiency of conversion of biomass to fuelwood are needed.

Even with these limitations, however, the model does provide insight into

the causes and driving factors leading to past habitat loss, future impacts, and the

spatial arrangement of these impacts. Past studies have identified the impacts of

broad-scale logging and household fuelwood collection on giant panda habitat

(Schaller et al. 1985, Mackinnon and DeWulf 1989), however, few studies have

noted the combined influences of these activities. We found that broad-scale

logging is likely providing conditions that exacerbated impacts from households to

low-elevation forests. Regrowth following clearcutting of these forests provided

trees preferred for fuelwood consumption.
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In addition, lower volumes resulting from logging activity led to larger areas

required to meet household demands. Similar to past studies (Liu et al. 2001), this

study found that access to giant panda habitat increases the likelihood and quantity

of losses of habitat. However this study also points out that access clearly plays a

role in determining the Spatial distribution of household activities. Households

require access to roads to transport cash crops to local cities and the ease of access

to preferred fuelwood also seemingly shapes fuelwood collection decisions. The

distribution of roads had a considerable impact on the past distribution of

households and associated activities. Future development of and providing

additional access to Wolong and other reserves will likely make these areas

vulnerable to similar impacts. Lastly, found as previous studies (Liu et al. 1999)

that extensive changes in household characteristics are needed to maintain habitat.

The model suggests that the number of new households and the average volume of

fuelwood consumed by each household has a strong influence on the quantity of

future impacts. Decreases on the order of 150% in new households or a complete

cessation of fuelwood collection are needed to preserve habitat at current levels.

Providing viable energy alternatives to the local population will likely considerably

decrease impacts, particularly the fringe habitat adjacent to primary habitat.

Bamboo die-offs will occur in Wolong every 40 — 60 years. These die-offs

reduce total habitat available to pandas until regrowth. We found that even though

human impacts on forests in Wolong are relatively small compared to losses of

habitat from bamboo die-offs, losses of habitat from bamboo are temporary and

have not historically Significantly affected the overall panda population. The
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current extent and spatial distribution of human impacts may, however, have

considerable consequences on panda populations, particularly during these

temporary losses of bamboo. In addition, human reductions in forest cover reduce

the likelihood of bamboo regeneration to previous levels. This model offers insight

into the importance the Spatial arrangement of even limited human impacts can

have on giant panda habitat. Worldwide, human impacts may be underestimated as

the combined effects of human and natural disturbances have not frequently been

considered. Simultaneous examination of natural and human disturbances may be

necessary to assess total habitat area requirements for species persistence.

Examining the spatial distribution of human activities in conjunction with natural

disturbances further highlights the relevance of examining the consequences of

human activities in other areas and the implications for species persistence.
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Table 4.1. Landscape characteristics of the measured households in 1997

(Households 1997) compared to model scenarios. Landscape indices include the

perimeter to area ratio (P/A Ratio), centroid connectivity index (Connectivity) and

aggregation index (Aggregation).

 

 

 

 

 

 

Mean

No. of . PIA .. .

Patches Patch Size Ratio Connectrvrty Aggregation

(ha)

H°“Seh°'ds 94.00 40931 1.49 0.046 0.423
1997

All Parameters 110.35 59101 1.50 0.053 0.513

N0 memmy 261.00 24905 1.41 0.015 0.271
Factor

N0 Ab‘°"° 161.90 40229 1.46 0.034 0.426
Factor

No Cost Factor 280.60 23152 1.29 0.009 0.337       
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Table 4.2. Accuracy of the predicted household locations for the model scenarios

relative to the measured households in 1997 (Households 1997). Accuracy as

predicted household locations occurring at measured household locations (titled 0)

and predicted locations within 1, 2, and 3 pixels (labeled 1, 2, and 3, respectively)

of measured household locations. Uncertainties represent one standard error of the

accuracies of the 20 simulations conducted for each scenario.

 

 

 

 

 

 

Accuracy (%)

0 1 2 3

N0 COS‘ 20.6 :1: 1.3 47.3 a 2.4 57.1 :1: 2.6 63.0 :1: 2.4
Factor

N0 Prox‘m‘ty 21.2 :1; 1.1 54.3 :1: 1.7 70.6 :1: 1.3 79.8 a 1.4
Factor

N0 Abmm 22.4 1 1.4 55.8 a 2.4 71.8 :1: 2.0 81.2 :1: 2.3
Factor

A" 27.4 a 0.7 67.9 5; 1.5 82.5 1 1.9 88.3 :1: 1.9
Parameters     
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Table 4.3. Comparison of the influence of variations in individual parameters for

each multiplicative factor used within the fuelwood sub-model. Landscape

characteristics of the model results are also given for various levels of initial

volume per hectare for low-elevation forests.

 

 

 

 

 

 

 

 

 

Parameter Number of 1:51:23 P/A Connectivity Aggregation

Patches . Ratio Index Index

Size (ha)

Proximity 0.33 125.2 75.8 1.668 0.719 0.858

Factor 1 192.2 49.2 1.606 0.336 0.829

3 291.5 32.7 1.538 0.170 0.794

Distance 0.8 145.8 65.8 1.630 0.546 0.848

Factor 1 192.2 49.2 1.606 0.336 0.829

1.2 231.6 40.4 1.587 0.277 0.816

30 21 1.4 51.9 1.567 0.365 0.830

Initial 45 192.2 49.2 1.606 0.336 0.829

Volume 60 258.7 33.6 1.540 0.212 0.812

(ml/ha) 75 265.9 30.3 1.502 0.161 0.805

90 246.3 30.5 1.502 0.167 0.802
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Table 4.4. The influence of household characteristics on habitat over 65 years

(1965 — 2030) relative to a baseline scenario of 0 new households per year and 0

m3/yr of fuelwood consumed after 1997.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Home F“e’w°°.d Total Habitat Habitat <
Growth Rate Consumption

(houses/yr) (m3/yr) (%) 2600 m (%)

24 0 -0.06 -0.18

24 5 -l .34 ~3.79

24 10 -2.61 -7.36

24 15 -3.32 -9.33

24 30 -6.06 - 1 5 .84

0 15 -2.77 -7.74

12 15 -3.21 -8.99

24 15 -3.32 -9.33

36 15 -4.31 -l 1.74

0 0 0.00 0.00

-12 15 0.01 0.03

-24 15 0.05 0.13

12 10 -2.26 ~6.4l

36 0 -0.11 -0.45      
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Table 4.5. The influences of household characteristics on habitat for models run

from 1997 to 2030 based on digital classifications and measured household

locations.

 

 

 

 

 

 

Fue'xwmd 0 10 15 15
(m /yr)

Parameter

Household

(households/yr) O 12 24 '24

Marginal 7669. 9 7662.5 7657.1 7663.9

Total Suitable 41 863.2 40227.8 38881.8 40606.4

Habitat .

(ha) Highly 9659.3 9199.1 8780.3 9309.9

Total 59192.4 57089.4 55319.2 57580.2       
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Table 4.6. The influences of household characteristics on habitat below 2600

meters of elevation for model runs from 1997 to 2030 based on digital

classifications and measured household locations.

 

 

 

 

 

 

      

Fuel3vvood 0 10 1 5 15

(m lyr)

Parameter

Households

(households/yr) 0 l 2 24 -24

Marginal 72.1 65.0 59.3 66.1

Habitat Suitable 16523.2 14929.4 13636. 7 15296.3

(ha) Highly 5391.4 4958.3 4580.2 5063.9

Total 21986.6 19952.8 18276.1 20426.3   
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between 2007 and 2027.

Table 4.7. The combined influences of bamboo die-offs and household impacts. B.

fangiana die-offs are held constant at 2027 while F. robusta die-offs are varied
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2027 while F. robusta die-offs are varied between 2007 and 2027.

Table 4.8. The combined influences of bamboo die-offs and household impacts on

habitat below 2600 meters of elevation. B. fangiana die-offs are held constant at



Table 4.9. The combined influences of bamboo die-offs and household impacts on

habitat fragmentation.

 

 

 

 

 

 

 

 

Fuelwood

(“fl/yr) 0 0 0 24 24

Household 0 0 0 15 15

P (households/yr)
arameter F I) l

.' ’0. “S 3 N/A 2007 2027 2007 2027
(dle-otfjear)

B: fang'ana N/A 2027 2027 2027 2027
(die-off year)

Marginal 2.85 2.47 2.49 2.48 2.47

M63“. Suitable 4.16 1.96 1.80 1.89 1.73
Patch 8126

(ha) Highly 2.33 1.88 1.81 1.80 1.72

All 6.88 3.06 2.86 2.93 2.71        
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Figure Legends. (Images in this dissertation are presented in color)

Figure 4.1. A conceptual depiction ofprevious bamboo dynamics effects on habitat

(solid line) and the combined bamboo and land-use effects on habitat (dashed line)

based on model predictions and projected continued effects.

Figure 4.2. Wolong Nature Reserve lies in the Qionglai Mountains between the

Tibetan plateau and Sichuan basin.

Figure 4.3. A conceptual flow schematic diagram of the model.

Figure 4.4. Figure 4.4a shows the digital elevation model (DEM) and Figure 4.4b

shows the distribution of forest types.

Figure 4.5. Examples of spatial data used for post-1997 simulations. Figure 4.53 is

the digital classification of forest cover from 1997 Landsat TM data and Figure 4.5b

shows the classification ofpresence/absence ofbamboo throughout the reserve.

Species delineation ofbamboo is based on elevational differences and ground

surveys.

Figure 4.6. Comparisons between visual classifications of satellite data from

1965, 1974, 1987, and 1997 and predicted forest cover due to household activities

of corresponding years.
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Figure 4.7. Comparisons of the influence of the three multiplicative factors

contained within the household sub-model. Accuracy of each scenario is shown

relative to the measured households with corresponding predicted households and

measured households shown in black, incorrectly predicted households are shown

in dark gray, actual households where no households were predicted are shown in

white. Figure 4.7a Shows the predicted household distribution in 1997 relative to

the actual distribution. Figure 4.7b is without abiotic preferences, Figure 4.7c

without cost factors, and Figure 4.7d without proximity influences.

Figure 4.8. Predicted forest cover due to fuelwood collection compared to the

digital classification at various starting volumes for low-elevation forests. Figure

4.8a — e are with starting volumes of 30,45, 60, 75, and 90 m3/ha, respectively.

Figure 4.9. Impacts from household activities and bamboo dynamics. Figure 4.8a

shows impacts from household growth of 24 houses per year and an annual

fuelwood consumption of 15 m3/yr. Figure 4.8b Shows the remaining habitat after

a simultaneous die-off of F. robusta and B. fangiana while other bamboo species

remain.

Figure 4.10. The impacts of household activities and bamboo die-offs to habitat

below 2600 meters are shown. Figure 4.10a shows the impacts from households

alone while Figure 4.10b includes loss of habitat from bamboo die-offs.
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Figure 4.1

 Bamboo and Land-Use Effects on Habitat
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Figure 4.2

    Wolong Nature Reserve

   

131



Figure 4.3
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Figure 4.4
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Figure 4.5
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Figure 4.6
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Figure 4.8
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Figure 4.10
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1. Summary

Considerable research has been conducted on giant panda behavior and

habitat requirements. As with all other species, however, viable conservation

options will only come from detailed studies of habitat requirements, human

impacts, and spatio-temporal dynamics of the environment at the time and spatial

scales relevant to long-term conservation. For this dissertation, I examined three of

these issues: the spatial distribution of the primary food source of pandas, bamboo,

the implications of the distribution of bamboo on spatial characteristics of habitat at

the landscape scale, and the combined impacts of human activities and bamboo

spatiotemporal dynamics on giant panda habitat across a 200,000 ha nature reserve.

The lack of detailed information on the spatial distribution of bamboo has

been a problem for panda conservation. Pandas rely on bamboo for over 99% of

their diet, must feed for up to 14 hours a day, and require an average of 12.5 kg of

bamboo each day. Pandas are therefore completely restricted to habitat with easy

access to plentiful supplies of bamboo. Measuring and modeling panda habitat then

requires knowledge of the spatial distribution of understory bamboo.
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The results from the neural network classification are promising. We found

the artificial neural network improved classification accuracy by 11 - 13% over

maximum-likelihood classifications and resulted in a reserve-wide classification

accuracy of 80%. It is difficult to assess the significance of the improvements in

accuracy. The increases in accuracy may be in part to the improved classification

performance of neural nets found in other classification studies. However, a 12%

increase in accuracy of a binary classification is relatively large. In addition, we

found evidence that the neural network classification was being influenced by

understory vegetation. Co-occurring understory vegetation was strongly correlated

with the misclassifications. False positives were almost always associated with the

presence of other grass species. False negatives largely corresponded to significant

mid-story cover. Further studies on this approach are needed. Studies on the

influencing factors and the ability of the neural net to distinguish between variable

vegetation conditions are needed. However, the study does point to a promising

approach to understory vegetation detection from remote sensing data.

The detailed information gained from these analyses improved our ability to

measure the distribution of panda habitat at a landscape scale. More accurate

estimates of the quantity of habitat are now possible. In addition, more detailed

assessments of the landscape characteristics of giant panda habitat in Wolong are

available. Compared to previous estimates of total habitat available to pandas in

Wolong, including bamboo in habitat estimates reduced the total available habitat

by 29 — 56%, patch size by 16 — 48%, and carrying capacity by 41 — 60%. These

results suggest that panda habitat has been overestimated. Not including bamboo
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into habitat analyses not only overestimates total habitat, but also underestimates

fragmentation. Particularly notable is the increased isolation of larger patches. The

isolation and fragmentation of habitat my lead to increased isolation of and

decreased contact between groups of pandas in the reserve. However, more studies

are needed on the movement patterns and dispersal abilities of pandas. Ideally,

tracking devices capable of recording several positions each day to examine how

pandas are interacting with the environment and long-term monitoring to examine

range and dispersal tendencies of pandas are needed.

Finally, we combined predictions of the spatio-temporal dynamics of the

measured distribution of bamboo with human impacts in the reserve. Commercial

logging, household fuelwood collection, and agricultural activities have seriously

degraded habitat throughout Wolong. Using socioeconomic characteristics of

households and measured characteristics of the spatial distribution of household

activities from 1965 — 1997, we were able to project future human impacts on forest

cover through the year 2030. The immediate impacts from households are

relatively limited compared to past commercial logging. However, when these

impacts are coupled with the temporary loss of bamboo during times of die-off, the

Spatial distribution of household impacts may have considerable impact to panda

populations.

Giant panda populations have been restricted to remnants of habitat from

extensive past land-cover change and are now extremely sensitive to natural die-

offs of bamboo. Continued human activities may have considerable impacts on

giant panda populations in the near future. Using a spatio-temporal model of
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bamboo dynamics and human activities, we found that local fuelwood collection

and agricultural activity will likely reduce critical habitat relied upon in past

bamboo die-offs. According to the model, a simultaneous die-off of the two

predominant bamboo species would result in up to 52% of the current area of

habitat to be lost. Human impacts would likely only contribute up to an additional

16% loss of habitat. However, these impacts primarily occur in habitat relied upon

by giant pandas during past bamboo die-offs. The spatial distribution, as well as the

total quantity, of human impacts on giant panda habitat must be taken into

consideration. Future policies need to take into consideration where households are

being placed and fuelwood collection is taking place. A first step to protecting

panda habitat would be to absolutely restrict new households in areas in these

crucial areas, including secondary habitat needed by pandas in times of losses of

bamboo. Second, priority should be placed on relocating current households in

crucial habitat. Finally, fast growing forest plantations have been placed near

households and there are areas in the reserve where pandas have been extirpated

and which are unlikely to be used by pandas in the near future. Increased reliance

on plantations and areas not important to pandas for fuelwood is critical to decrease

pressure on panda habitat.

The coupled model of the spatiotemporal dynamics of bamboo and human

activities Showed that even limited impacts to critical habitat may have significant

implications. Continued removal of forests considered less important as core

habitat areas will seriously restrict current sub-populations of giant pandas within

Wolong. The model predicts fuelwood collection alone will reduce access in many
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areas of prime panda habitat. Relatively large areas of low-elevation highly suitable

and suitable habitat adjacent to prime habitat are predicted to be lost to household

activities. Any additional impacts, as seen from 1975 to 1997, will likely

considerably add to the impacts from households alone.

The model, however, also suggests other causes and driving factors leading

to past habitat loss and future impacts. Past broad-scale logging likely provided

conditions that exacerbated impacts from households by providing trees preferred

for fuelwood collection. In addition, lower volumes resulting from logging activity

led to larger areas required to meet household demands. Access also clearly plays a

role in determining the spatial distribution of household activities. Households

require access to roads to transport cash crops to local cities and the ease of access

to preferred fuelwood also seemingly Shapes fuelwood collection decisions.

Finally, the model suggests that the average volume of fuelwood consumed by each

household largely controls the quantity of future impacts. Providing viable energy

alternatives to the local residents will likely considerably decrease impacts,

particularly the fringe habitat adjacent to primary habitat.

Landscape models are useful in describing the basic driving factors of

events occurring at the landscape level. Abiotic and biophysical variables can

strongly control the location and distribution of human activities. However,

examining the spatial distribution of human activities in conjunction with natural

disturbances further highlights the relevance of these activities and potential

influence on the biotic system and permit more accurate estimates of the overall

habitat requirements for species persistence.
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5.2 Conclusions

These studies point to the need for considerable information on

environmental conditions relevant to a species for more accurate estimates of

quantity, quality, and spatial arrangement of habitat. Combining these more

detailed habitat assessments to dynamic models of human activities allow improved

estimates of human impacts and potential consequences otherwise not available.

From these studies, it is clear that more research is required on remote sensing

techniques to gather relevant biophysical data and methods to incorporate these data

into habitat analyses. Furthermore, studies on the coupled effects of continuing

human appropriation of habitat and natural disturbance regimes would contribute to

the current literature on the minimum area concept, landscape dynamics, population

persistence, and the impacts socioeconomic activities on biodiversity.

Remote sensing has provided a wealth of information not available through

traditional approaches. Remote sensing data have provided global land cover

classifications, long-term monitoring of biophysical attributes, and even

socioeconomic data. As sensors become more appropriate for measuring

biophysical properties that are relevant to floral and fauna] species, ecosystem

processes, and human needs, more research is required on methods to extract these

necessary data. For this study it was clear we need detailed information on the

spatial distribution of understory bamboo, however, traditional techniques did not

lend themselves to these analyses. The application of an artificial neural network

provided increased classification accuracy and seemingly relied on understory
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vegetation. More intensive and controlled studies, however, are needed.

Particularly, controlled field studies on understory contributions to the radiance

measured by a distant sensor are needed. Also, field studies with well controlled

overstory and understory conditions would contribute to this approach. In addition,

this specific approach can be applied to the detection of other understory vegetation.

The general approach, however, needs to be further developed in the application of

remote sensing data to ecological studies. More accurate estimates on vegetation

characteristics are needed for quantitative assessments of habitat.

More detailed biophysical data would allow more accurate assessments of

habitat for particular species and biodiversity in general. Current estimates likely

overestimate available habitat. Categorizing habitat based on basic land-cover

information almost definitely overlooks necessary structural (cover, biomass, etc.)

information, less dominant vegetation species, and sub-canopy species. These

attributes have been Shown repeatedly by local studies to significantly influence .

species presence and behavior. Certainly other variables may contribute to Species

distribution, persistence, or movement at broader scales (such as the landscape

scale), however, ignoring these variables, as shown in this study, can result in

serious misestimates of the quantity and spatial characteristics of habitat.

Viable management options will not be possible without accurate estimates

of habitat. Knowledge of the spatial distribution of habitat is necessary to gauge

and mitigate human impacts. For example, the spatial distribution of bamboo and

location of human activities in Wolong have particular importance to pandas. More

accurate assessments of habitat will have considerable implications for predicting

146



panda population trends, palticularly in light of metapopulation theory. It is now

clear that there is far less habitat available to giant pandas than previously

estimated. The fragmentation and isolation estimated in this study suggests pandas

are likely more vulnerable than previously believed. In addition, more accurate

estimates of habitat are needed to derive the full impact of human activities and

viable mitigation options. We now see that the cumulative human effects to habitat

in Wolong Nature Reserve may have considerable impacts on giant pandas.

Management must take into consideration not only the total quantity of the impacts,

but also the spatial distribution of the activities in developing viable policy

alternatives. This study shows the need for more detailed landscape-scale habitat

information to more accurately monitor habitat and biodiversity. In addition, these

data would allow more accurate estimates of human impacts on species and more

viable management alternatives.
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