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ABSTRACT 

DIET MONITORING THROUGH BREATHING SIGNAL ANALYSIS USING WEARABLE 

SENSORS  

By 

Bo Dong 

 

This dissertation presents a framework of wearable food and drink intake monitoring 

system that analyzes human breathing signal for identifying swallows during the intake process. 

The system works based on a key observation that a person’s otherwise continuous breathing 

cycles are interrupted by brief intra-cycle apneas during the swallows. This dissertation develops 

wireless wearable electronics for capturing and processing human breathing signal, and 

algorithms for identifying intake-related swallows via recognizing apneas extracted from 

breathing signal. A family of apnea detection mechanisms including matched filters and machine 

learning has been developed. Algorithms are developed for detecting various types of 

swallowing events including for solid and liquid in the presence of many artifacts presents in 

free-living conditions. It is demonstrated that using these algorithms and the electronics, run-time 

intake monitoring and analysis are feasible at acceptable accuracy levels. Further accuracy 

improvements were explored using a Hidden Markov Model (HMM) based mechanism that 

leverages known temporal locality in the human swallow sequence. Finally, it was demonstrated 

that by combining swallowing signatures from breathing signal with hand movement signatures 

using accelerometers, it is possible to train a hierarchical Support Vector Machine (SVM) 

classifiers and a Hidden Markov Model (HMM) for accurate mealtime and duration estimation. 

The developed wearable system, along with a smartphone App, was experimentally validated on 

tens of subjects with approval from MSU’s Institutional Review Board (IRB).
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Chapter 1: Introduction 

1.1 Background 

According to the data from World Health Organization, worldwide obesity increased over 

200% since 1980 [1]. Figure 1-1 shows the prevalence of obesity in different countries based on 

the data collected by International Association for the Study of Obesity. Observe that obesity is 

currently less prevalent in Asian countries such as China, India, Japan etc, while it is a severe 

problem in countries such as United States, Canada, Australia,etc. In particular, in 2010, 35.5% 

of men and 35.8% of women in US are obese.  

 

Figure 1-1: Prevalence of obesity worldwide (From International Association For the 

Study of Obesity) 

The prevalence of obesity in US is constantly increasing. Figure 1-2 depicts the increase in 

percentage of obesity in population from 1960 to 2010. Similar trends are also predicted for 

developing countries, such as China [2][3] and India [4][5]. 
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Figure 1-2: Increase of obesity in US 

The prevalence of obesity brings many health problems, both physical and mental, and 

social issues. Eckel et al [6] had proven that obesity is a major risk factor for coronary heart 

disease, and it is known that 5% to 10% weight reduction can decrease blood pressure and total 

blood cholesterol, improve glucose tolerance for patients with diabetes, and reduce the severity 

of obstructive sleep apnea. Visscher [7] mentioned that obesity can cause cardiovascular disease, 

type-2 diabetes mellitus, cancer, osteoarthritis, work disability and sleep apnea, and it has 

pronounced impact on morbidity. Moreover, Jia [8] has shown that obesity also affects health-

related quality-of-life (HRQL) [9], which is a multi-dimensional concept that includes domains 

related to physical, mental, emotional and social functioning, and assesses the positive aspects of 

a person’s life, such as positive emotions and life satisfaction. It is proved that people with 
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obesity had significant lower HRQL than those who had normal weight, and such low HRQL 

were also seen for people without chronic diseases caused by obesity. 

There are many factors found to be associated with obesity. Nielsen et al [10] 

demonstrated that short sleep duration was consistently associated with development of obesity 

in children and young adults. It has also been found out that environmental, perinatal and genetic 

factors induce neuroendocrine perturbation followed by abdominal obesity [11]. However, 

Astrup et al [12] pointed out that the prevalence of obesity we were facing should not be caused 

by genetic factors, because the development of obesity worldwide is too rapid to be associated 

with genetic changes, and there were only few humans had been shown to have genetic obesity. 

From an energy balance point of view, obesity is caused by the imbalance between the energy 

we derive from food and drink and the energy we expend for metabolism and physical activity 

[12][13].   

1.2 Objectives 

Diet control and physical exercise are the two most important components of obesity 

control. Traditionally, self-reported questionnaires were widely used by researchers for 

estimating both food intake and physical activity levels for high-risk individuals. In most such 

studies, participants have shown underreporting tendency. Additionally, self-reporting by elderly 

population is often unreliable due to poor memory situations. These make questionnaire-only 

based methods subjective and unreliable [14][15][16].  

In recent years, accelerometers, gyroscope, and pressure sensors have been widely utilized 

for instrumented physical activity monitoring with high detection accuracy [17][18][19][20]. 

However, not many efforts on instrumented diet monitoring are reported in the literature. Diet 
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monitoring can reduce the subjectivity [14] associated with questionnaire based self-reporting 

systems.  

An instrumented system can potentially detect each instance of food/drink intake, and can 

have significant impact on obesity and overall health monitoring and management. Together 

with self-reporting of dietary habits at a high level, the system can quantify calorie intake trends 

and estimates for its users. It has also been proven that such health monitoring can improve the 

effectiveness and quality of healthcare service [21].    

We present a wearable sensor system for solid food intake monitoring based on swallows 

detected in breathing signals. Using a wearable chest-belt, we detect swallows by the way of 

detecting apneas extracted from breathing signal captured by the chest-belt. Since the belt can be 

worn inside, outside, or between garments (it does not need skin contact), it has the potential for 

prolonged comfortable daily usage without raising any cosmetic and discomfort concerns.  

1.3 Summary of Proposed Solutions 

The sensor system and intake monitoring algorithms developed in this thesis works based 

on a key observation that a person’s otherwise continuous breathing process is interrupted by a 

short apnea during a swallow, which is a part of the swallowing process [22]. We first detect 

swallows by the way of detecting apneas extracted from breathing signal captured by a wearable 

wireless chest-belt. Afterwards, swallow pattern analysis is used for identifying solid/liquid 

swallows. Together with self-reporting at the high level of overall diet habits (i.e., the types of 

food and drinks etc.), the instrumented detection of swallow counts can offer an objective way 

to: 1) study the food and drink intake trends, and 2) estimate calorie intake. In this thesis, 

however, we only address the automatic swallow detection part of the process. 
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1.4 Dissertation Structure 

Figure 1-3 illustrates the structure of the thesis: 

 

Figure 1-3: Dissertation flowchart 

Chapter 1 introduces the prevalence of obesity and overweight, the causes, and the 

drawbacks of existing questionnaire based methods.  

Chapter 2 first investigates the existing invasive and non-invasive swallow detection 

methods, and analyzed their drawbacks. Then it talks about the proposed swallow detection 

mechanism, and its advantages over the existing methods.  
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Chapter 3 first introduces the physiological process of breathing and swallowing, and 

brings up the concept of swallow apnea. It then depicts the sensors and swallow detection system 

for diet monitoring.   

Chapter 4 introduces the matched filter method used for liquid swallow detection. Machine 

learning method is also proposed for comparison. Iterative template refinement, feature selection, 

and artifacts handling are also discussed in this chapter.  

Chapter 5 proposes a hierarchical classification algorithm for solid and liquid swallow 

detection. It compares the performance of different features and different popular machine 

learning algorithms. 

Chapter 6 provides the method of cascading Support Vector Machine (SVM) with Hidden 

Markov Model (HMM) for improving the accuracy of food intake detection. The modeling, 

processing, and performance of this method are discussed in details.  

Chapter 7 proposes a hierarchical classification method cascaded with HMM, diet time and 

duration analysis are performed to indicate the dietary habits. The algorithms are validated 

through least controlled experiments. Artifacts such as spontaneous swallows, talking, laughing, 

coughing and clearing throat are considered in the algorithm.     

Chapter 8 summarizes the thesis and discusses the future work that can be done. 
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Chapter 2: Related Works 

As mentioned in Chapter 1, diet control and physical exercise are the two most important 

aspects in obesity control. With the development of microelectromechanical systems (MEMS), 

accelerometers have been widely used in physical activity detection and energy expenditure 

estimation. Zhang et al [23] had shown that together with some other sensors (such as 

temperature sensors, heart rate sensors) the IDEEA
®

 (Intelligent Device for Energy Expenditure 

and Physical Activity) device is able to provide over 95% accuracy in energy expenditure 

estimation. In this disseration, we are focusing on the swallow detection, which is strongly 

correlated with food and drink intake. Existing swallow detection methods are generally 

classified into two groups: invasive and non-invasive.  

2.1 Invasive Swallow Detection 

Many patients with neurologic issues due to stroke, multiple sclerosis, trauma, bulbar palsy 

and other impairment may have difficulties in swallowing. Videofluoroscopy is therefore used in 

[24] to provide important information on impairment of the swallowing process, providing 

essential information to the doctors for arranging treatment accordingly. The paper (a) described 

the indications for videofluoroscopic swallowing studies by evaluating patients with neurological 

disorders affecting swallowing, (b) described the techniques for evaluating the swallow 

mechanism with videofluoroscopy in a standardized manner, and (c) used cine videofluoroscopy 

to illustrate the range of abnormalities that can be demonstrated for some of these conditions and 

discussed the effect of patient treatment. This method provides the images to demonstrate each 

stage of swallowing, and shows the movement of bolus in detail. However, it requires 

swallowing food or water mixed with barium, which labels the bolus under X-ray, and patients 
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need to be exposed under radiation. For those reasons, this method is not applicable for swallow 

detection for obesity control purposes. Perlman et al [25] analyzed the duration and temporal 

relationship of electromyographic activity from the submental complex, superior pharyngeal 

constrictor, cricopharyngeus, thyroarytenoid and interarytenoid muscles during swallowing 

saliva, 5ml and 10ml water. Bipolar, hooked-wire electrodes were inserted into the muscles 

mentioned above except the submental complex, which was analyzed with bipolar surface 

electrodes.  The experiment included 8 healthy subjects executing 5 swallows for saliva, 5ml and 

10ml water individually composing a 120-swallow data set. The total activation duration of all 

the muscles during pharyngeal phase of the swallow did not change with bolus size, but some 

muscles did demonstrate a difference in electromyograph duration and time of firing between 

saliva and 10ml water. Submental muscle activity was longest for saliva swallows. The 

interarytenoid muscle showed a significant difference in duration between the saliva and 10ml 

water swallow. Finally, the interval between the start of laryngeal muscle activity and pharyngeal 

muscle firing pattern decreased as the bolus volume increased. The muscle activation pattern 

showed a high correlation within dataset of each subject and high variance across different 

subjects. 

2.2 Non-Invasive Swallow Detection 

Non-invasive methods use accelerometers, microphones, surface electromyography, 

piezoelectric sensors etc, to collect physiological signals related to swallowing without involving 

tools that break the skin or physically enter the body. Comparing to invasive methods, the non-

invasive alternatives have some important advantages:  

Safety: invasive methods needs tools such as electrode needle to penetrate the skin to 

collect electromyography signal, or patients need to take barium to label bolus under X-ray, 
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which should be carried out by medical providers with special trainings. Incorrect operations, 

such as contaminated electrode needles and long-term exposure to X-ray, may severely impact 

health of the patient even cause death. However, non-invasive methods do not need to break the 

skin, and misplacement of the devices will not lead to negative impacts. 

Ease of use: experiments using invasive methods need to be executed in hospitals under 

the supervision of professionals, while the non-invasive devices can be even embedded into 

clothes [26] or packaged as hearing aid devices [27]. Swallowing detection algorithms can be 

implemented in microcontrollers, and results may be wirelessly transferred to health care 

providers for analysis.  

Long-term monitoring: as invasive experiments need to be carried out in health care 

facilities with the help of specially trained professionals, they are not suitable for long-term 

monitoring. However, non-invasive sensors can be designed to be portable and suitable for long-

term usage.  

Non-invasive sensors also have the drawback of not being able to provide as much 

information as invasive methods do, i.e., non-invasive methods cannot provide detailed 

information about the activation of muscles involved in swallowing process. But non-invasive 

sensors provide a suitable solution for the application of food intake monitoring for diet control, 

which mainly focus on the number and timing of swallowing events.  

2.2.1 Non-Invasive Swallow Detection using Chewing and Swallowing Sounds 

Takahashi et al [28] suggested that cervical auscultation in the evaluation of the 

pharyngeal swallow may become a part of the clinical evaluation of dysphagic patient. The 

presented study investigated three aspects of the methodology for detecting swallowing sounds: 

(1) the type of acoustic detector for the analysis of pharyngeal swallow, (2) the type of adhesive 
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suitable for attaching the sensor, (3) the optimal sites for detection. An accelerometer with 

double-side paper tape was selected as the optimal detector due to its wide range of frequency 

response and small attenuation level. Using this sensor, swallowing sounds and noises were 

collected at 24 sites on the neck for 14 healthy subjects. The optimal position for collecting 

swallowing sounds were selected with the largest signal to noise ratio and the smallest variance, 

and it was proven that the site over the literal border of the trachea immediately inferior to the 

cricoids cartilage is the optimal site. The site over the center of the cricoid cartilage and the 

midpoint between the site over the center of the cricoid cartilage and the site immediately 

superior to the jugular notch were also considered to be the most appropriate sites. This method 

provides some guidance to the study of swallowing detection using acoustic information, but the 

sensors are needed to be attached in the neck region, which brings cosmetic and safety issues.  

 

Figure 2-1: Schematic sensor positioning in [29] 

Cichero et al [30] presented a hypothesis of the cause of swallowing sounds. It was 

suggested that as pharynx contains a number of valves and pumps that produce vibrations and 
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reverberations within the pharynx to generate swallowing sounds. An analogy was proposed 

between swallowing sounds and heart sounds that propagate via vibration of muscles and valves. 

Therefore, many literatures use swallowing sounds as the metric of detection food intake. In 

order to derive clear swallowing sounds, microphones are normally attached to the neck region 

to be close to pharynx.   

Amft et al [29] presents an investigation to detect and classify normal swallowing during 

eating and drinking from surface electromyography (SEMG) and microphone sensors as shown 

in Figure 2-1. Gel electrodes were placed in the submental and infra-hyoid regions, and recorded 

at 24 bit 2kHz. Swallowing sound was recorded using an electrets condenser microphone placed 

inferior midline from the cricoid cartilage. The non-invasive sensors were selected to be 

integrated into a collar-like fabric for continuous monitoring of swallowing activity over long 

period. Feature similarity detection mechanism was applied for both SEMG signal and sound 

signal. Signals were first segmented using Sliding-Window And Bottom-up (SWAB) algorithm 

[31], which partitioned continuous stream of sensor data by sequentially testing the 

approximation of the signal through linear regression lines and using the boundaries of these 

approximations as segments. Each segment of sensor data was then compared to a trained pattern 

using Euclidean distance for calculating feature similarities. The detection results based on 

SEMG and sound signals are then fused using parameter training method. Overall 80% recall 

and 70% precision were achieved using the proposed methods. This paper further utilized 

machine learning algorithms to differentiate high vs. low volume swallows, and high vs. low 

viscosity bolus with normalized accuracy around 70%. This paper is one of the earliest works on 

swallow detection. However, as the electrode needs gel to guarantee the electric contact with the 

skin and the microphone needs to be closely attached to the neck, the system may not be 
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comfortable for prolonged usage. Moreover, because the sensor system is worn on the neck 

region, it will bring up some cosmetic issues.  

 Passler et al [32] proposed a method for non-invasive monitoring of human food intake 

behavior and long-term dietary protocol by using only chewing and swallowing sound sensors. 

The sensor system was belt using an in-ear microphone and a reference microphone integrated in 

a hearing aid case for recording chewing and swallowing sounds in the ear canal and 

environmental noise. It was observed that food intake sounds recorded by the in-ear microphone 

had slightly higher signal amplitude than the same sounds recorded by the reference microphone, 

while environmental sounds and speech of the participant have comparable signal energies in 

both records. Another parameter, magnitude squared coherence function (MSC), was also used, 

as the MSC of the environmental sound is high, while that of the food intake sound is low. It was 

demonstrated that the detection algorithm by comparing the signal energy of the two 

microphones outperformed the method using MSC, and the precision and recall can be 91.3% 

and 81.8% respectively. However, this method suffers from some drawbacks: (1) the experiment 

was done in quiet room or office without other disturbing environmental noise; (2) the 

performance of the system on differentiating swallowing sounds and chewing sounds was not 

illustrated. It is very common that some people chew food for longer time, while some other 

people swallow before food is fully crunched.  

Similarly, Nishimura et al [33] developed an in-ear microphone embedded into a common 

Bluetooth headset which is used to capture sound emission generated by chewing as shown in 

Figure 2-2. A two stage recognition algorithm was proposed. First, the “Chew-like” signal 

detection was performed by using the number of zero-crossings of the regression coefficients 

with a negative valued slope and the local peak of LPF output. Second, the chewing sound 
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verification was performed by comparing the extracted features of the testing sound signal with 

the training sound signal. High accuracy of 98.7% was reported for 5 food categories, including 

chips, salad, rice, wafers, and banana. However, details about the verification process were not 

provided. The author did not mention the details of the experiments either, such as the number of 

subjects, and how the training data set and testing data set were formed.    

 

Figure 2-2: In-ear microphone used in [33] 

 Makeyev et al [34] presented a fully automatic food intake detection methodology, with 

the aim of improving understanding of eating behaviors associated with obesity and eating 

disorders. The system proposed used a miniature throat microphone attached over the 

laryngopharynx, which had a dynamic range of 46±3dB with a frequency range of 20-8000Hz. 

The proposed method consisted of two stages. First, acoustic detection of swallowing instances 

based on mel-scale Fourier spectrum features and classification using support vector machines 

was performed. Principal component analysis (PCA) and smoothing algorithms were performed 

to improve detection accuracy. Second, the frequency of swallowing is used as a predictor for 

detection of food intake interval. Experiments were carried out on 12 subjects with different 
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degree of adiposity. Average accuracy of >80% and 75% were obtained for intra-subject and 

inter-subject models. However, similar to [29], the microphone attached to the neck may not be 

comfortable for long-term usage, and it also brings up cosmetic issues. External noise was not 

considered either during the experiments.  

Walker et al [35] also used the throat microphone system for collecting swallowing sounds. 

Short Time Fourier Transform (STFT) was performed on the collected audio data, and it was 

found that swallow sounds have a stronger presence in the upper frequencies comparing with 

other sounds such as vocal cord activation (hum, whispering, and speaking), cleaning the throat, 

and coughing. Discrete Wavelet Transform (DWT) was then used to obtain higher temporal 

resolution than that offered by STFT at high frequency intervals. Windowed signal energy and 

windowed maximum are used to perform swallow event detection. The proposed mechanisms 

were tested on two male subjects. The main drawback of this work is that only two subjects were 

included in the experiments, and environmental noises are not fully considered.  

 

Figure 2-3: sensors used in [36] 

 Sazonov et al [36] developed a swallowing and chewing monitoring system to study the 

behavioral patterns of food consumption and producing volumetric and weight estimates of 

energy intake as shown in Figure 2-3. The system worked based on detecting swallowing by a 

sound sensor located over laryngopharynx or by a bone conduction microphone and chewing 

through a below-the-ear strain sensor. The system can be implemented in a wearable monitoring 
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device, thus suitable for monitoring ingestive behavior in free living settings. Experiments were 

carried out on 21 subjects during eating and quiet sitting. Video and sensor data were manually 

labeled by trained professionals. The reliability of manual labels was tested on 5 subjects and it 

was demonstrated that the intra-class correlation coefficients are 0.996 for bites, 0.988 for chews 

and 0.98 for swallows. The collected sensor signals and the resulting manual scores were left for 

future research.   

Aboofazeli et al [37] presented a Hidden Markov Model (HMM) based method for the 

swallowing sound segmentation and classification method. Swallowing sounds of 15 healthy and 

11 dysphagic subjects were studied. The swallowing sound signals were segmented into 25 ms 

segments, and 7 features were extracted. Trained HMM model classified the sound signals into 

three phases: initial quite phase, initial discrete sound (IDS) and bolus transit sound (BTS). 

Multi-scale products of wavelet coefficients were proved to be the most effective feature for 

HMM. HMM model was also built to differentiate the swallowing sound of healthy subjects and 

patients with disphagia, and accuracy of 85.5% was achieved. However, as the experiment was 

done in strictly controlled environment, and artifacts such as ambient noise, talking were not 

included, the method may not be used for everyday diet monitoring.    

2.2.2 Non-Invasive Swallow Detection using Other Modalities 

Other than sounds generated during chewing and swallowing, inertial sensors were also 

widely used to monitor other physiological phenomenon related to eating and drinking.  

Amft et al [38] proposed a two-stage recognition system for detecting food intake related 

arm gestures. Information derived from this system can be used for automatic food intake 

monitoring in the domain of behavioral medicine. It is demonstrated that arm gestures can be 

clustered and detected using inertial sensors on the arm. Experiments were carried out on 2 
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subjects with 384 gestures with 4 sensors attached to the right and left lower and upper arm. The 

subjects were asked to eat or drink using cutlery, spoon, hand and glass. An accuracy of 94% can 

be achieved by using HMM method. When analyzing the continuous data, an accuracy of 87% 

can be reached. However, the experiments were done on a limited data set, i.e., only two subjects 

were included in the experiments, and the type of food lacks variety. Moreover, the experiment 

was done in controlled environment, and there would be many false positives if gestures such as 

smoking, scratching the head or face, etc were analyzed.   

 

Figure 2-4: Sensor positioning in [39] 

Amft and Troster [39] proposed a dietary monitoring system using more than one 

modalities as shown in Figure 2-4. The on-body sensing approach was chosen based on three 

core activities during food intake: arm movement, chewing and swallowing. The arm and trunk 

movements associated with food intake were measured using inertial sensors, i.e., accelerometer, 

gyroscope and magnetometer, chewing sounds were recorded using an in-ear microphone, and 

swallowing activities were acquired by a sensor-collar containing surface electromyography 
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(SEMG) electrodes and a stethoscope microphone. In three independent evaluation studies, the 

continuous recognition of activity events had been investigated and performances were evaluated. 

An event recognition procedure was deployed that addresses multiple challenges of continuous 

activity recognition, including the dynamic adaptability for variable-length activities and flexible 

deployment by supporting one to many independent classes. The approach uses a sensitive 

activity event search followed by a selective refinement of the detection using different 

information fusion scheme. With experiments, four intake gesture categories from arm 

movments and two food types from chewing sounds were detected with a recall of 80-90%, and 

a precision of 50-64%. 68% of recall and 20% of precision was achieved for individual swallows. 

Although this work is one of the most comprehensive work in dietary monitoring to our best 

knowledge, it suffers from the following drawbacks: (1) the system used three groups of sensors 

on the arms, neck and in the ear respectively, which may not be convenient for everyday usage 

and cause cosmetic issues, (2) the proposed algorithms had low precision for swallow detection, 

meaning many false positives would be expected. 

Mioch et al [40] examined the patter of activity in masseter and temporalis muscles during 

mastication of different food samples with known textural properties and analyzed the inter-

individual variations. Surface electromyography (SEMG) signals were recorded from the right 

and left masseter and temporalis muscles in 36 young adults during free-living and side-imposed 

mastication. 5 different types of food with known rheological properties were used. Both 

masseter and temporalis activity increased with increased stress at measurements of food, which 

confirmed that the mastication process was adjusted according to the food texture. Temporalis 

muscle activity was more influenced by food texture than masseter muscles. Less muscle activity 

was observed to chew the food during free-living scenario. However, 25% of the subjects did not 
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show any differences between side-imposed mastication and free-living scenarios, indicating that 

they may have greater chewing efficiency on one side. Therefore, measuring the activities of 

masseter and temporalis muscles may be used for analyzing the food intake of subjects, however, 

there are cases that foods with the same texture have very different calorie densities, such as 

mushroom and meat.  

Nahrstaedt et al [41] investigated the use of a combined electromyography (EMG) and 

bioimpedance (BI) measurement at the throat to automatically detect swallowing events. The 

measured BI indicated the closure of larynx. There is a typical drop in BI during swallowing. 

The activations of the muscles involved were measured using EMG. Valley detection algorithm 

was used to segment BI signals. Additionally, only BI valleys that coincide with EMG 

activations are selected for feature extraction. Then the extracted features from BI and EMG 

signal were classified using Support Vector Machine (SVM) to identify BI valleys related to 

swallowing events. The proposed methods were tested on 9 healthy subjects. The data set 

contained 1370 swallow events with different bolus size with artifacts such as movement and 

speech. The combined BI/EMG segmentation detected 99.3% of all swallow events. The 

subsequent SVM classifier had a sensitivity of 96.1% and a specificity of 97.1%. However, 

similar to other methods based on EMG, skin contact using conductive gel is required and the 

suitability for long-term usage is questionable.  

Dong et al [42] proposed a method for measuring food or drink intake through automated 

tracking of wrist motion as shown in Figure 2-5. A watch-like device with 

microelectromechanical (MEMS) gyroscope was used to detect and record the motion of hand, 

which was believed to be related to food or drink intake. This method was found to have 94% 

sensitivity in controlled meal setting and 86% sensitivity in uncontrolled setting, and both had 
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one false positive out of every 5 bites. Preliminary data showed that bites measured by the device 

were positively related to calorie intake indicating the potential of the device to monitor energy 

intake. However, the watch was designed to be on during eating only.    

 

Figure 2-5: Prototype gyroscope sensor used in [42] 

Moreau-Gaudrey et al [43] proposed a user-friendly non-invasive bedside procedure for 

studying swallowing and swallowing disorders in the elderly considering the frailty of this age 

group. In this study, respiratory inductance plethysmography (RIP) was proposed. An automated 

process for the detection of swallowing was designed, and the first derivative of the breathing 

signal was used to pick up the apnea during breathing. An accuracy of 90% was reported given 

that an appropriate threshold had been selected. However, only 56 swallows from 14 subjects 

were recorded, and no artifacts, such as motion and speech, were considered. Moreover, people 

breathing at a lower rate may have longer apneas between consecutive breathing cycles, which 

can be detected as false positives using the proposed mechanism.   

Damouras et al [44] proposed a method of using an accelerometer for swallowing 

detection. A dual-axis accelerometer was attached to the participant’s neck (anterior to the 

cricoids cartilage) using double-sided tape. In the paper, the acceleration signal was considered 

as a stochastic diffusion where movement was associated with drift and swallowing with 

volatility. Consequently, a volatility-based online swallow event detector that operated on the 

raw acceleration signal was developed. With data from healthy subjects and subjects with 
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dysphagia, the proposed method is proved to be working as good as their previous work [45], 

where same data was used, but without preprocessing. However, the experiment was done in a 

more strictly controlled environment, and less artifacts were considered.   

 

Figure 2-6: Magnetic coils and microphone system proposed in [46] 

Kandori et al [46] developed a swallowing detection system that can detect swallowing 

sounds and measure the distance between two magnetic coils as shown in Figure 2-6. The coils 

were set on both sides of the thyroid cartilage, and the distance between them changes in 

accordance with the movement of the thyroid cartilage. Swallowing sounds were detected by a 

piezoelectric microphone attached to the neck. The coils and microphones were installed on a 

holding structure, which was positioned in the neck region. The system was validated using 

videofluorography (VF), and it was concluded that high correlation existed between the results 

from the proposed mechanism and VF. However, the paper did not consider artifacts such as 

motion and speech.  

2.2.3 Non-Invasive Diet Monitoring using Infrastructural Sensors 

Saeki et al [47] proposed a measuring system of food intake using image processing 

method as shown in Figure 2-7. The system was composed of 4 incandescent lamps, a USB 
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camera with 320×240 resolution and a computer running the proposed algorithm. A tray with 

plates and bowls on was taken a picture by the system before and after the food intake 

experiments. The software running on the computer consisted of two parts, i.e., the image 

processing program, and the data base program (DBP). The image processing program included 

the communication program, photography processing program, and the measuring processing 

program, while the DBP was composed of the dish database, food menu database, food database, 

food stuff database and personal database. When comparing the images before and after the 

experiment, the nutrition intake was calculated by referring to the detailed information from the 

database. This method has the advantage of being able to estimate the energy intake directly and 

not requiring any wearing devices. However, it also has some drawbacks: (1) the system is not 

portable, so that it cannot be used when the subjects eat outside; (2) the accuracy is expected to 

be much lower if the food is layered, as the camera only captures the image from the top; (3) the 

usage of database is questionable, because there are too many kinds of food around the world to 

be included completely, and people may even cook at will.           

 

Figure 2-7: Camera based system proposed in [47] 

 Chang et al [48] designed and implemented a diet-aware dining table that could track the 

type and volume of food the subjects had taken as shown in Figure 2-8. The dining table was 
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augmented with two layers of weighing and RFID sensor surfaces, where the RFID tag at the 

bottom of the container indicated the type of food, and the weighing sensor measured the 

changes in weight. A weight-RFID matching algorithm was proposed to detect and distinguish 

how people eat. Experiments were carried out to validate this method including scenarios such as 

live dining (afternoon tea and Chinese-style dinner), multiple dinning participants, and 

concurrent activities chosen randomly. An accuracy of 80% was reported through the 

experiments. This work is able to report the per-dinner energy intake, however, it has the 

following drawbacks: (1) it can only monitor energy intake when people always have food on the 

table; (2) food in the container is sometimes heterogeneous, for example, a dish may consist of 

low calorie vegetables and high calorie beef, thus measuring the weight of the whole dish may 

not indicate how much energy the subject has taken; (3) the system has the limitation that dishes 

should be placed in rather than cross cells where RFID antenna and weighing sensors were 

located, and subjects should not place their elbows or hands on the table.  

 

Figure 2-8: The embedded RFID and weighing table surfaces 

2.3 Proposed Mechanism 

This dissertation presents the design, system level details and algorithms of a wearable 

food and drink intake monitoring system that analyzes human breathing signal. Food and drink 
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intake can be detected by the way of detection a person’s swallow events. The system works 

based on a key observation that a person’s otherwise continuous breathing process is interrupted 

by a short apnea when she or he swallows as a part of the intake process. We detect the swallows 

via recognizing apneas extracted by a wearable sensor chest-belt. Such apnea detection is 

performed using matched filters and machine learning mechanisms, and further refined using a 

Hidden Markov Model (HMM) based mechanism that leverages known locality in the sequence 

of human swallows. This dissertation also demonstrates the effectiveness of the proposed 

mechanisms using experimental data.  

Comparing to the existing work using non-invasive sensors for food intake monitoring, our 

work has the following advantages: 

(1) Ease of Usage: the work [28]- [37] attached sensors on the neck region for collecting 

swallowing sounds using elastic bands or adhesive tapes, however, the elastic bands 

and wiring will cause cosmetic issue so that people may be reluctant to wear those 

systems. While our system used piezoelectric belts or RIP belts for collecting breathing 

signal, which can be worn inside or between garments, and no sign of wearing can be 

observed. Moreover, since the piezoelectric belt works solely on a small piece of 

piezoelectric sensor, which can be even embedded into clothes, it is very suitable for 

long-term diet monitoring.  

(2) Usage Comfort: in our experiments [49], a microphone and an elastic belt were 

initially used as control, however, subjects complained that the belt was uncomfortable 

and may affect their swallowing patterns, i.e., they may have more spontaneous 

swallows. Therefore, the long-term usage of microphone on neck region fixed using 

elastic belts can be questionable. In some other work [29] [39] [40] [41], SEMG 
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electrodes were used to collect EMG signal on the skin in the neck region, however, in 

order to provide reliable contact, conductive gel was normally used, which may 

contaminate the clothes and not comfortable for everyday usage. 
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Chapter 3: Instrumentation System 

This chapter first introduces the concept of apnea during swallow, which is the key 

observation that we leveraged for intake monitoring, and then compare a number of different 

sensors that can be used for breathing signal extraction in our system. Lastly, our proposed 

system is described in detail 

3.1 Breathing Process 

Breathing is the process during which air moves in and out of the lungs to deliver oxygen 

and remove carbon dioxide. The lungs can be expanded and contracted in two ways: (1) the 

human diaphragm moves up and down to lengthen or shorten the chest cavity, and (2) the ribs 

move back and forth to increase and decrease the anteroposterior diameter of the chest cavity 

[50]. It has been found that for healthy subjects, the movement of the rib cage contributes to 

around 75% of the tidal volume for both resting and exercising scenarios, while tidal volumes 

increase with the intensity of exercise [51]. For healthy people, chest and abdomen movements 

are synchronous with tidal air flow, but for some patients with chronic obstructive pulmonary 

disease (COPD), chest movement is synchronous with flow of air, but the abdomen moves 

asynchronously during parts of the breathing cycle [52].  

3.2 Swallowing Apnea 

Anatomically, breathing is inhibited in a part of the swallow process, thus causing a 

swallow apnea. The swallowing process is divided into three steps [53]: 1) the oral preparation 

phase, 2) the pharyngeal phase, and 3) the esophageal phase as shown in Figure 3-1. During the 

oral phase, food is chewed into a viscous bolus, and liquid is also considered as bolus with very 

high fluidity. The volume and viscosity of bolus is also sensed in this phase, so that the 
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swallowing apparatus can adapt to the bolus. In the pharyngeal phase, the bolus travels through 

the pharynx and passes the upper esophageal sphincter. A set of muscles are activated to propel 

the bolus and the epiglottis moves downward to cover the vocal folds and to protect the trachea 

from contamination. Finally, the bolus is pushed towards the stomach during the esophageal 

phase. During the pharyngeal phase, since the trachea is blocked by epiglottis, breathing is 

temporarily stopped, thus causing the apnea. 

 

Figure 3-1: 3 steps of swallowing 

Figure 3-2 shows the breathing signal of two subjects. The rising edges correspond to 

inhalations and the falling edges correspond to exhalations. As shown in the figure, a breathing 

cycle can be either normal (i.e. Normal Breathing Cycle or NBC) or elongated due to swallow-

triggered apnea. A cycle that is elongated due to an apnea at the beginning of an exhale (see the 

top figure on the left in Figure 3-2 for subject-1, session-1) is termed as Breathing Cycle with 

Exhale Swallow (BC-ES). For a second subject, the bottom figure on the left in Figure 3-2 shows 

swallows (i.e. apnea) during the inhale process which are termed as Breathing Cycles with Inhale 

Swallow (BC-IS). 

Swallow apnea localization with regard to breathing phases has been investigated in this 

dissertation. Martin et al [54] reported that swallow apnea happened during expiration with a 

probability between 0.94 and 1, and the swallow apnea was followed by expiration with a 

probability of 100% for 3, 10 and 20ml bolus size experimented. Klahn and Perlman [55] 
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reported similar results where swallow apnea occurs during expiration 93% of the time and was 

followed by expiration with probability 1 in their experiment with 5ml of water and applesauce. 

As a comparison, it was reported in [56] that the exhale-swallow-exhale pattern was 77% out of 

100 swallows.  Therefore, BC-ESs as shown in Figure 3-2 are much more common than BE-IS, 

which is validated in our following experiments.  

 

Figure 3-2: Breathing signal of two subjects in the experiments 

 By detecting swallow events, the food or liquid amount can be estimated. Nilsson et al 

[57] has reported that the average bolus volume for 292 healthy adults during single swallows is 

25.6±8.5 ml and 21.1±8.2ml during repetitive swallows. When gender was considered, they 

demonstrated that the mean bolus size for single swallows is 28.1±9.1 ml for males and 21.6±5.5 

ml for females, and for repetitive swallows, 23.2±9.2ml for males and 17.9±4.8ml for females.  
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3.3 Sensors for Collecting Respiratory Signal  

Generally, there are some popular non-intrusive breathing detection techniques for 

obtaining a respiratory signal.  Dietz [58] proposed a method using a flexible tube worn on the 

chest of the subject and connected to an external equipment measuring the airflow through the 

tube.  Corbishley et al [59] used a miniaturized microphone in an aluminum conical bell on the 

neck region, and they proposed algorithms to handle noises from the body, the sensor itself and 

environment. Chia et al [60] developed a UWB radar based system, which is able to detect 

breathing and heart beat remotely even through walls. Mukai et al [61] used a 40kHz ultrasonic 

transmitter and receiver installed into a bed mattress for monitoring respiration, cardiac vibration 

and movement. Masks are also widely used for extracting breathing signal, and by detecting the 

oxygen concentration, they are able to estimate the energy consumption of human subjects[62] 

[63].  Karlen et al used ECG and photoplethysmography (PPG) to estimate respiratory rate. A 

pressure sensor array was used in [64][65] to detect breathing signal during sleep and a algorithm 

was proposed to select proper sensor sets during movement in [65]. Bates et al [66] Jin et al [67] 

Hung et al [68] and Reinvuo et al [69] used accelerometer to detection breathing signal and 

proposed algorithms to handle the artifacts caused by body movements and speech. Koo et al 

[70] proposed using a piezoelectric polyvinylidene fluoride (PVDF) impedance sensor for 

measuring respiratory signal and compared its performance with respiratory inductance 

plethysmography (RIP) and nasal-oral pneumotachography. Conductive rubber [71] can also be 

used to measure respiratory signal. The sensor is made of a string of carbon black and carbon 

filled silicone rubber, whose resistance changes when it is stretched.  

Comparing to other sensing methods, conductive rubber, piezoelectric PVDF and 

respiratory inductance plethysmography (RIP) have the advantages of (1) non-intrusiveness: 
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these sensors can be put on and off easily, (2) no skin contact: these sensors can be put between 

garments without causing any cosmetic issue, and (3) comfort: these sensors can be embedded 

into garments and worn all day long without causing any discomfort.  

In the following section, we compare the conductive rubber, piezoelectric PVDF and 

respiratory inductance plethysmography (RIP) solutions for respiratory signal detection, and 

discuss their advantages and disadvantages.  

3.3.1 Conductive Rubber Sensor 

An elastic belt on the chest or abdomen is able to capture the change in tension when the 

chest or abdomen expands or contracts. The tension is directly reflected as the change in the 

resistance, and it can be easily converted to voltage when put serially with another constant-

value resistor. 

 

Figure 3-3: Resistive stretch sensor (a) and its static response (b) 

In order to evaluate characteristics of the resistive belt, we choose the stretch sensor 

manufactured by Scientific Instruments as shown in Figure 3-3:(a). The diameter of the sensor is 

1.5mm, and the length is 15cm.  
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Static and transient property of the sensor is analyzed by stretching the sensor to different 

length. Figure 3-3:(b) demonstrates the static property of the sensor. In this experiment, the 

resistance of the sensor at each sample point is read 1 minute after it is stretched so that the 

impact of transient response is minimized. From Fig2, the sensor demonstrates good linearity in 

static experiments.  

To analyze the transient property, the sensor is first stretched for 5cm to make it tight so 

that the impact of slack is minimized. Then the sensor is stretched for another 5 cm, and the 

response is therefore recorded. After 1 minute, when the resistance of the sensor is stable, the 

sensor is release for 5 cm. Figure 3-4 shows the resistive response of the sensor when such an 

experiment is done.  

 

(a)                                                                    (b) 

Figure 3-4: Transient response of stretch sensors 

From Figure 3-4, when the sensor is stretched, a jump can be observed followed by decay. 

Similarly when the sensor is released, its resistance jumps up quickly before decaying to its 

resulting resistance.  

Generally, the resistive belt provides a cheap solution for breathing detection. However, its 

transient response deforms the breathing signal despite its linearity in static case.  
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3.3.2 Piezoelectric PVDF Sensor 

The device contains a piezoelectric sensor placed between two elastic strips. Stretching the 

belt exerts a strain on the sensor, which generates a voltage proportional to the strength of the 

force. Compared with other transduction principles, such as capacitive, inductive and 

piezoresistive sensors, piezoelectric sensors provide highest sensitivity [72] and excellent 

linearity over a wide amplitude range. 

 

Figure 3-5: Piezoelectric belt (a) and its static response (b) 

In order to evaluate the characteristics of the Piezo respiratory sensor, both static and 

transient response analysis is done as for resistive belt. Figure 3-5:b shows the static response of 

the piezo respiratory sensor, and the sensor exhibits good linearity in the experiment. 

The piezo electric devices have very high input impedance, and the equivalent circuit is 

shown in Figure 3-6. As the input resistances of normal oscilloscopes are around 1MΩ, and the 

Cs of the piezo respiratory belt we are using is 2.2µF, when the output of the sensor is directly 

injected into the oscilloscope, the time constant of the circuit is 2.2 second. Therefore, in order to 

analyze the transient response of the sensor when it is dragged or released, we need an isolate 

circuit for a larger time constant. Operational amplifier MAX406 is able to provide ~1011 Ω 
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input impedance, which would bring up the time constant to 2.2x105 seconds. Consequently, and 

isolation circuit shown in Figure 3-6:b is adopted to separate the oscilloscope and the sensor. 

 

Figure 3-6: Equivalent circuit of piezoelectric sensor (a), Isolation circuit (b), and 

Transient response of piezo respiratory sensor(c)  

Figure 3-6:c demonstrates the signal captured by the oscilloscope when the piezo 

respiratory sensor is stretched for 15mm and then released. The output signal is very clean and 

follows the mechanical input closely. Compared with resistive belt, the piezo respiratory belt has 

much better characteristics. 
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3.3.3 Respiratory Inductance Plethysmography (RIP) Sensor 

 

Figure 3-7: RIP sensor 

An inductance belt is relying on Farady’s Law and Lenz’s Law that a magnetic field will 

be generated when current flows through a loop of wire, and a change in the area enclosed by the 

loop would create current in the loop in the opposite direction proportional to the change in the 

area. When the inductance belt is used, a low amplitude sine wave of ~20 mV at ~300 KHz is 

injected through the belt. The inhalation and exhalation would change the area enclosed by the 

belt introducing an opposing current in the belt and thus deforming the applied current and 

changing the frequency. The frequency is then demodulated to produce analogy waveform 

reflecting the change of the area. It is reported that the output of the belt changes linearly with 

the cross-sectional area [73]. A RIP respiratory system is normally composed of two RIP belts, 

wearing on the chest and abdomen respectively.  

Consequently, a driver module is needed to measure the breathing signal, which consists of 

a frequency generator, signal processor and analog/digital converter. The price of an inductance 

belt set is therefore much higher than the other two sensors analyzed. 

As a conclusion, the conductive rubber sensor is inferior in terms of transient response. 

The piezoelectric belt provides a better solution with good linearity and transient response, yet its 
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position needs to be adjusted for each subject for optimum signal amplitude. RIP belt system 

provides the best signal quality and does not need position adjustment as it has a dedicated signal 

processing driver module and two belts wearing on the chest and abdomen individually, although 

it cost much higher than piezoelectric belts. Therefore, in this dissertation, we have done 

experiment using both piezoelectric belts and RIP belts for swallow detection. For the RIP belt, 

we used the sum output of the two belts, i.e., on the chest and abdomen. 

3.4 Swallow Detection System  

Based on the analysis from Section 3.2, we developed two systems using piezoelectric belt 

and RIP belts respectively. In the experiment carried out in Chapter 4, 5 and 6, piezoelectric 

sensor belt is used, while RIP belt is adopted in our future experiments. 

 

 

Figure 3-8: System architecture of swallow detection system using piezoelectric belt 
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The system architecture of swallow detection system using piezoelectric belt is shown in 

Figure 3-8. The embedded wearable sensor system is worn on the chest for collecting breathing 

signal and transmitting it to a smart phone through Bluetooth. The embedded belt system 

contains: 1) a piezo-respiratory belt for converting the changes of tension during breathing to a 

voltage signal, 2) an amplifier and signal shaping circuit for formatting the raw voltage signal to 

a format suitable for the ADC chip, 3) a processor and radio subsystem (EZ430-RF256x from 

Texas Instrumnet), and 4) a 3.7V 300mAH polymer rechargeable battery. The entire package 

weighs approximately 40 grams. The 300mAh polymer battery is able to support the system for 

more than 30 hours of continuous operation on a single charge. After the signal is received by the 

smart phone, it is stored on an SD card attached to the phone. 

 

Figure 3-9: System architecture of swallow detection system using RIP belts 

The swallow detection system using RIP belts is shown in Figure 3-9. Similar to the 

system based on piezoelectric belt, it includes: 1) a pair of RIP belts for collecting breathing 
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signal, 2) a signal shaping circuit for amplifying and filtering the raw signal from the sensor to 

cater the requirement of ADC stage, 3) a processor and Bluetooth subsystem (TI EZ430-

RF256x), which is able to sample the signal at 100Hz and transmit it over Bluetooth to the 

external smart phone, and 4) a 3.7V 300mAh polymer rechargeable battery. The whole packet 

weighs approximately 45 grams. The 300mAh polymer battery is able to support the system 

for around 20 hours. 

Due to the fact that the output signals from piezoelectric belt and RIP belts are very 

different in terms of output impedance, signal amplitude and signal to noise ratio (SNR), signal 

shaping circuits need to be designed individually to cater their characteristics. However, 

battery, µController and Bluetooth module, app on smart phones can be shared between the 

two systems.      

3.4.1 Signal Shaping Circuit  

The out of these sensors are noisy and weak, for example, the output of the piezoelectric 

belt on a subject during normal breathing is only about 10mV, while the corresponding output 

for RIP belt is only 20µV. Moreover, since the RIP respiratory belts are using high frequency 

current to drive the belt as discussed in 3.3.3, the output signal is also contaminated with those 

high frequency components. 

A. Signal Shaping Circuit for Piezoelectric Belts 

Signal shaping circuit is needed for the piezoelectric belt for two reasons. First, based on 

our observation, when people are breathing, the change in the circumference of the chest is 

normally within several millimeters, which makes the output of the belt by fluctuating within 10 

mV. In order to capture this signal using main stream ADCs on mobile sensors, amplification 
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circuit is necessary. Second, the output signal of piezo respiratory belt is proportional to the 

tension on the belt, so when the belt is worn on the chest or abdomen, a certain amount of 

electrons will be accumulated on the two sides of the sensor because of the tension. The 

electrons will become the DC part of the respiratory signal collected on the belt. This DC value 

may change from person to person depending on how they wear it, and it may also change from 

time to time when the tension on the belt changes slowly. The uncertainty of the DC value makes 

the design of the amplification circuit complicated. Therefore, this amplification circuit must be 

designed carefully to meet these two requirements.  

  

Figure 3-10: Signal shaping circuit for piezoelectric belt 

Amplification circuit as shown in Figure 3-10 is designed to meet the two requirement 

mentioned above. The circuit can be divided into four parts. The first part is drifting control. It 

adds an 8.2MΩ resister to the output of the belt, which is able to damp the DC drifting when the 

belt is worn by different people. The time constant introduced by the 8.2MΩ resistor is 18.04 
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seconds, which would reduce the impact of DC drifting while bringing minimum effect on 

respiratory signal. The second part is voltage shifting. It sets the default DC voltage to be 63mV, 

so that the output signal stays positive. The third part is impedance match. It isolates the previous 

parts from the amplification circuit. The last part is amplification. It is consisted of a low pass 

filter and an amplification circuit. The time constant of the low pass filter is 5.6 milliseconds, 

and it can filter out the noise caused by previous circuit. The amplification rate of the circuit is 

controlled by an adjustable resistor.  

B. Signal Shaping Circuit for RIP Belts 

Since the output signal amplitude of the RIP sensing module is very small (around 20µV 

peak-to-peak for normal breathing) during normal breathing, high amplification ratio is 

necessary for the signal shaping circuit. A low pass filter is also implemented to filter out the 

high frequency components in the breathing signal caused by the alternating current injected into 

the belts. Figure 3-11 shows the schematic of the circuit. The first op-amp (i.e., MAX412 (1) in 

the figure) is to provide a stable 1.5V reference to the input and the amplifier on the right. The 

second op amp (i.e., MAX412 (2) in the figure) forms the amplifier with an amplification ratio of 

10,000. The low pass filter accompanying the amplifier has a cutoff frequency of 28Hz. After the 

amplification, the breathing signal has a peak-to-peak value around 200mV. 

The MAX412 (MAX412BCSA+) op-amp is chosen because of its low input offset voltage 

and low input noise-current density, i.e., the input offset voltage VOS=±150µV, and input noise-

current density in=1.5nV/Hz
1/2

. 
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Figure 3-11: Schematic of signal shaping circuit 

3.4.2 µController and Bluetooth Module 

The processed signal from the signal shaping circuit module is fed into an ADC channel of 

a µController and Bluetooth module (EZ430-RF256x). The ADC converter has an accuracy of 

14 bits, and a sampling rate at 100Hz. For a breathing signal with 200mV peak-to-peak value, 

the SNR regarding the quantization noise is 60dB.   

The sampled data is then sent via Bluetooth to the Android smart phone for food intake 

monitoring application. 

In addition to the breathing signal from the belts, acceleration data collected from the 

accelerometer on the µController and Bluetooth module is also collected and transmitted to the 

smart phone for future usage.  

3.4.3 Breathing Signal Logging App 

An Android app, named LiveActive, is developed on the smart phone to perform food 

intake detection based on breathing signal received from Bluetooth. 
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Figure 3-12: Logic layering of LiveActive 

Figure 3-12 demonstrates the logic layering of the LiveActive. The LiveActive activity 

coordinates the other modules. Bluetooth connection module receives breathing signal from 

Bluetooth API provided by Android. Graphic User Interface (GUI) plots the breathing signal on 

the screen. Food intake detection module runs in background to perform the detection algorithm 

illustrated in Section 3. Webservice module updates the detection results to the server using 

either WIFI or cellular network. Currently, the food intake detection module and webservice 

module are still under development, and the collected data are stored in the microSD card in 

the smart phone for further processing.  The proposed design of the webservice module is 

shown in Figure 3-13. 
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Figure 3-13: Design of the webserve module 

 

Figure 3-14: Graphic User Interface (GUI) of LiveActive 

As shown in Figure 3-13, the breathing signal is first received through the Bluetooth 

interface as a constant data stream, which will then be packetized into data packets. The size of 

the packet is going to be optimized to achieve the shorter transmission delay and less memory 

usage. Json serializer is used to convert the data packet into a data array, which can be 
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transferred through the Ethernet to the server side. On the server side, the data is converted 

back to a continuous data stream, and the intake detection algorithm is launched to detect 

swallow events embedded in the breathing signal.   

Figure 3-14 shows the GUI of the app LiveActive. The GUI is mainly divided into three 

parts. The first part sits on the top of the screen showing the raw data received from Bluetooth 

interface, the second part plots the breathing signal, and the last part plots the acceleration data of 

three axes. All the three parts get updated when a new sample point is received.  
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Chapter 4: Swallow Detecting using Matched Filters 

The sensor system and detection algorithms developed in this chapter works based on a 

key observation that a person’s otherwise continuous breathing process is interrupted by a brief 

apnea during a swallow, which is a part of the intake process [74]. We first detect swallows by 

the way of detecting apneas extracted from breathing signal captured by a wearable wireless 

chest-belt with piezoelectric sensors as demonstrated in Chapter 3.4. Afterwards, swallow 

pattern analysis is used for identifying drinking swallows. Together with self-reporting at the 

high level of overall liquid intake habits (i.e., the types of drinks etc.), the instrumented 

detection of liquid swallow counts can offer an objective way to: 1) study the liquid intake 

trends, and 2) estimate calorie intake.  

4.1 Processing Methods 

Matched filters [75] are widely used in signal processing. A matched filter is implemented 

by correlation a known signal, or reference, with an unknown signal to detect the presence of the 

template signal in the unknown signal. This method is equivalent to convolving the time-

reversed reference signal to the unknown signal.  The matched filter is the optimal linear filter, 

which maximizes the signal to noise ratio (SNR).  

In this dissertation, we used matched filters to detect the presence of swallow apnea for 

swallow detection purpose.     

4.1.1 Breathing, Apnea and Swallow Signature 

Figure 4-1: Demonstrates two representative human breathing signal segments. The ADC 

readings in the figure are directly proportional to the elongation of the piezo-electric sensing 

belt shown in Chapter 3. A breathing cycle can be either normal (i.e., Normal Breathing Cycle 
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or NBC) or elongated due to a swallow-triggered apnea. A cycle that is elongated due to an 

apnea at the beginning of an exhale (see Figure 4-1:a) is termed as Breathing Cycle with 

Exhale Swallow (BC-ES). Figure 4-1:b shows swallows (i.e., apnea) during the inhale process 

which are termed as Breathing Cycles with Inhale Swallow (BC-IS). During our experiments, 

it was also found that BC-ES is much more prevalent than BC-IS, which also coincides with 

previous research in [54][55][56].   

 
Figure 4-1: Examples of Breathing Cycles (BC), Normal Breathing Cycles (NBC), 

Breathing Cycles with Inhale Swallow (BC-IS), Breathing Cycles with Exhale Swallow (BC-

ES) and apnea 

The objective in this chapter is to be able to classify NBC, BC-ES, and BC-IS with high 

accuracy. The challenges in detection stem from the fact that there is significant variability in 

breathing waveforms across different: 1) subjects, 2) measurement instances for the same 

subject, and most importantly, 3) the location and duration of the apnea with respect to its 
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breathing cycle. Moreover, breathing signal may also be contaminated by artifacts such as 

movement, speech, coughing and etc. 

4.1.2 Matched Filter Method 

In what follows we present the performance of a matched filter based template matching 

mechanism for swallow detection. The template signals for matched filters are chosen from 

NBCs, BC-ESs, and BC-ISs, so that a breathing cycle can be classified as one of those three by 

observing the similarity score produced by the respective filters. 

As shown in Figure 4-2, the signal sampled by ADC at 30Hz is first fed into a low-pass 

filter for removing any quantization noise. The second step is to extract individual breathing 

cycles through a peak and valley detector. The next module is for normalizing the extracted 

cycles in both time and amplitude, so that both input waveform and the reference waveforms of 

the matched filters have the same amplitude and the number of sample points. Each breathing 

cycle is normalized to be between 0 and 100 (ADC output units) vertically, and interpolated to 

128 sample points. Considering the average length of a breathing cycle of 3.77 seconds in our 

experiments, the normalized sampling rate after interpolation is approximately 34Hz. Note that 

the time-normalization provides a way to handle variable duration breathing cycles and 

variable duration apnea (i.e., caused by different amount of liquid intake in one swallow) by 

creating a uniform duration swallow signature. Such a uniform duration signature is then 

presented to the proposed matched filter and machine learning algorithms. 
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Figure 4-2: Detection process of matched filter based detection algorithm 

The normalized breathing cycle waveforms are fed into three separate filters, each with a 

specific type of reference template waveform. The filters use reference waveforms corresponding 

to NBC, BC-ES, and BC-IS. The similarity score outputs are compared in order to classify a 

breathing cycle as one of the above three types of BCs.  

Note that the bottom part of Figure 4-2 shows how the shaped signal is used for feature 

extraction and swallow classification of using machine learning based methods as presented in 

Section 4.1.3. 

4.1.3 Machine Learning based Detection 

A machine learning approach with time domain features is applied using all 128 sample 
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points in a normalized breathing cycle. The Toolkit Weka [76] was used for implementing three 

different classifiers, namely, Support Vector Machine (SVM), Decision Tree (J48), and Naïve 

Bayes. The classifier parameters are optimized to provide the best accuracy. For SVM, 

polynomial kernel function is used and the features are normalized. All the other parameters are 

set to default values. A 10-fold validation approach is used in which the collected breathing 

cycles are randomly divided into 10 subsets of equal size and a classifier is run for 10 times. In 

each run, one subset is used for testing while the others are used for training. 10-fold validation 

method is used to avoid over-fitting [77]. 

Breathing signal power at different frequencies, computed using FFT, is also used as 

features in machine learning. Since FFT is applied on normalized 128-point breathing cycles 

with a normalized sampling frequency at 34Hz, it produces spectral coefficients for frequencies 

up to 34Hz with a granularity of 0.27Hz. As each normalized breathing cycle is a real finite 

length series, the resulting 128-point power spectrum are symmetric on f�/2	[78]. Therefore, the 

first 64 spectral power values are used as the features for driving the classifiers.   

4.1.4 Artifacts Handling 

Breathing signals may suffer from artifacts, and in this dissertation, we proposed methods 

for handling artifacts caused by moving and speech. 

Anatomically, it is not possible to swallow while talking, but people can talk right before 

or after swallowing. Therefore, it is necessary to detect talking so that swallow detection from 

breathing signal can be paused whenever talking is detected. Figure 4-3 demonstrates an 

exemplary breathing signal with speech artifacts. Observe that exhalation parts have larger 

slopes and more undulation, which is caused by modulated air flow through vocal folds. 

In this dissertation, we proposed using power spectral density analysis to identify breathing 
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cycle with speech.   

 

Figure 4-3: Breathing signal variability before, during, and after talking. 

When people are eating or drinking while sitting, slight upper body movement may be 

involved. Therefore, exaggerate upper body movement was also involved in the experiments to 

analyze its impact on breathing signal. 

4.2 Results 

Experiments using the piezoelectric chest belt system were carried out with seven subjects 

(five male and two female) without any known respiratory or swallowing disorders. The belt was 

worn immediately inferior to sternum, where best signal strength was derived across all subjects. 

Each subject performed three sessions, 10 minutes each. In the first 5 minutes, the subject was 

asked drink water from a flask with a swallow instruction given once in every 20 seconds. Then 

the subject conversed with the experimenter for 3 minutes, and in the last 2 minutes, the subject 

shook their upper body and drank every 20 seconds. Breathing signals from the first 5-minute 

phase were used for swallow detection, and that from the last 5 minutes were for artifacts 

handling. First phase of each session resulted in approximately 80 Normal Breathing Cycles 

(NBCs) and 20 breathing cycles with swallows (both BC-ESs and BC-ISs). Please note that 
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spontaneous swallows were also included. For the first phase of each session, approximately 100 

breathing cycles were recorded in total. For each subject, a library containing cycles from three 

such sessions (i.e., around 300 cycles) was then formed. 

4.2.1 Results for Matched Filter based Detection 

Templates or reference waveforms for the matched filters are computed based on cycles 

from the library as constructed above. A template for NBC is created by sample-by-sample 

averaging of three randomly chosen NBC breathing cycles from the library. Such randomness 

adds to the desired variability while forming the template. Similar process is adopted for 

constructing the templates for BC-IS and BC-ES breathing cycle types. One set of NBC, BC-IS 

and BC-ES cycles is referred to as a template combination.  

Figure 4-4 shows the performance of matched filter based swallow detection method while 

using a large number of template combinations as the reference signals (i.e., S(n)) for all three 

breathing cycle types. For each subject, 3500 different template combinations are first created 

from the library by choosing different random combinations of NBC, BC-IS and BC-ES cycles 

while forming the templates. Then, each waveform in the library is classified to be one of NBC, 

BC-IS or BC-ES using the matched filter-based detection. An ROC pair (True Positive Rate, 

False Positive Rate) is finally computed for each of the 3500 template combinations. Figure 4-4 

shows the resulting ROC distributions.  
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Figure 4-4: ROC Distribution for all seven subjects with arbitrary templates. 

The cluster of high value columns in Figure 4-4 indicates that even with arbitrarily chosen 
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template combinations, majority of them offer high True Positive and low False Positive rates. 

The spread in the distribution indicates that there exist NBC, BC-IS, and BC-ES waveforms 

which, if chosen to generate templates, can indeed degrade the system performance.  

We experimented with different number of cycles (i.e., three for the above results) for 

generating the matched filter templates. It was observed that with more cycles, the spread in 

ROC performance were relatively shorter. 

4.2.2 Performance for Machine Learning based Method with Time Domain Features 

Classification accuracies for machine learning based methods using time domain features 

are summarized in Table 4-1 on both per-subject basis and on combined data set from all seven 

subjects. In the subject specific case, SVM and J48 perform better in terms of both True and 

False Positive rates. In the combined case, J48 provides the best swallow detection performance. 

Subject Classifier True Positive 
Rate ±std (%) 

False Positive 
Rate ±std (%) 

Individual subject 

SVM 98.69±2.03 0.14±0.16 

J48 98.8±0.49 0.32±0.14 

Naïve Bayes 97.7±2.62 2.63±2.3 

Combined data set 

SVM 87.6 1.5 

J48 97.5 0.7 

Naïve Bayes 85.5 9.5 

Table 4-1: Performance of classifiers using time domain features 

4.2.3 Performance for Machine Learning based Method with Frequency Domain 

Features 

Table 4-2 shows the frequency domain detection performance of 3 classifiers on seven 

subjects using a 10-fold validation. Similar to the time-domain results, SVM and J48 provides 
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better True and False Positive rates for subject-specific classification. When classification is 

done on combined data from all seven subjects, J48 outperforms the other two.   

Subject Classifier True Positive 
Rate±std (%) 

False Positive 
Rate±std (%) 

Individual subject 

SVM 99.29±1.25 0.09±0.15 

J48 98.8±0.51 0.37±0.17 

Naïve Bayes 95.96±3.03 2.96±1.26 

Combined data set 

SVM 88.8 2.2 

J48 96.6 0.8 

Naïve Bayes 82.1 4.8 

Table 4-2: Performance of all three classifiers using frequency domain features. 

Performance on both individual dataset and the combined dataset are presented in this table. 

Note that in Tables 4-1 and 4-2, the standard deviation comes from the variation of true 

and false positive rates across the subjects. Since for the combined data set scenario in both the 

tables, the data from all seven subjects are combined into a single data set, standard deviation 

does not apply to that scenario.   

4.3 Discussion 

4.3.1 Iterative Template Refinement 

The performance of matched filter based detection method heavily depends on the 

selection of reference waveforms. As shown in Figure 4-4, improper selection of reference 

waveform can deteriorate the performance significantly. In this section we develop an iterative 

template refinement algorithm for incrementally improving the swallow classification 

performance. First, an NBC, a BC-IS, and a BC-ES waveform are chosen from the breathing 

cycle library. Second, all collected breathing cycles are classified using those three waveforms as 

the templates to the three matched filters. At this stage, each collected cycle is classified as NBC, 
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BC-IS, or BC-ES. Third, all cycles that are classified as NBC are sorted based on their similarity 

score obtained from the NBC matched filter in the second step. Now, the top 50% of those NBC 

cycles are sample-by-sample averaged to create the NBC template for the second iteration. The 

same process is also executed for BC-IS and BC-ES to form the templates for the second 

iteration. The second and third steps are iteratively repeated till the breathing cycles selected in 

the third step for generating templates stabilize.  

Stabilization is defined as when the differences between the matched filter similarity scores 

across consecutive iterations reduce below a pre-defined threshold, which in turn, dictates the 

overall error performance of the mechanism. The algorithm is summarized in Algorithm 1.  

Algorithm 1: Iterative template refinement algorithm 

Input: Initial templates TNBC, TBC-IS, and TBC-ES 

while (templates have not converged) 

      for (all collected breathing cycle ��) 

          Compute similarity scores ��
��� , ��

����� , ��
���	�	for ��   

            if (��
��� � 	
����

��� , ��
����� , ��

���	��) then 

                 �� is NBC; 

            if (��
����� � 	
����

��� , ��
����� , ��

���	��) then 

                 �� is BC-ES; 

            if (��
���	� � 	
����

��� , ��
�����, ��

���	��) then 

                 �� is BC-IS; 
      Generate a new set of templates as: 

      TNBC  = average (detected NBCs with top 50% ��
���) 

      TBC-ES = average (detected BC-ESs with top 50% ��
�����) 

      TBC-IS  = average (detected BC-ISs with top 50% ��
���	�) 

return 
 

The key concept here is that even when the initial matched filter template quality is poor, 

by choosing the top 50% of the cycles, the algorithm is able to iteratively refine the template 

quality, thus delivering good final detection performance. Figure 4-5 depicts the algorithm 

dynamics in the form of the similarity score state space at the start and at stabilization of 

template refinement. The top graph shows the location of all the collected breathing cycles in the 

similarity score space obtained from the starting template waveforms.  The graph has 247 points, 
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corresponding to 247 collected breathing cycles. The bottom graph corresponds to similarity 

score space obtained from the template waveforms when the algorithm stabilizes.  

Observe that the overlapping among the three types of breathing cycles is much less in the 

bottom graph compared to the top one. This indicates a clear improvement of the matched filter 

template quality, leading to improved separation of different classified cycle types. The tighter 

clustering of the points in the bottom graph provides additional indication to better template 

quality compared to the starting set. The patterns in Figure 4-5 have been consistently observed 

for a wide range of initial template quality applied to the data from all seven subjects. 

Figure 4-6 shows the representative performance of iterative template refinement for a 

specific subject (i.e., subject-2). The evolution of true and false positive rates are reported for 

three different starting template sets, termed as, Good Starting Point (GSP), Moderate Starting 

Point (MSP), and Poor Starting Point (PSP). GSP represents the NBC, BC-IS, and BC-ES 

combination in the breathing cycle library that provides the highest true positive rate and the 

lowest false positive rate as evaluated in Figure 4-4. PSP, on the other hand, represents the 

combination in the library that provides the lowest true positive rate and the highest false 

positive rate. Finally, MSP is chosen to be a combination for which the true positive and false 

positive rates are somewhere in between.  
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Figure 4-5: Similarity score space for: a) initial matched filter template used as a starting 

point, and b) the final template obtained at stabilization of the iterative algorithm. The tighter 

clustering of the points in the bottom graph indicates iterative improvement of the template 

quality. 

Observe that the true positive rate for PSP consistently improves with iterations. For MSP, 

such rates either improve or remain constant. With GSP, true positive rates go down slightly, 
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although the decrement is always observed to be much less than the improvements observed for 

PSP, thus establishing the effectiveness of the approach.  

 

Figure 4-6: Iterative template refinement performance; a) true positive rate, and b) false 

positive rate evolution with iterations. 

Note that for few PSPs with highly deformed BC-ES or BC-IS waveforms, the false 

positive rates temporarily go up with iterations before they settle down to lower values. This 

explains the temporary increase in the false positive rate in Figure 4-6:b. For the majority of the 

PSPs, however, the false positive rate remains acceptably low.  Results with waveforms from 

other subjects demonstrated very similar performance patterns.   

4.3.2 Discrimination Power of Time Domain Features 

The results of discrimination power analysis of the time-domain features (i.e., all 128 

sample points of a breathing cycle) are shown in Figure 4-7. Figure 4-7:a depicts the overall 

importance of each feature in swallow classification in terms of merit. The merit here refers to 

information gain [79], which is defined as the reduction in class entropy (i.e., (*)H ) with 

additional information provided by the feature about the target classes. Assuming A is the 
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feature, and C is the set of classes, the following two equations indicate the class entropy before 

and after providing the feature: 

∑
∈
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Figure 4-7: Utility of the time domain features for Subject-1; three peaks in the left figure 

are caused by different types of breathing cycles with feature distribution shown in the right 

figure. 

A feature with higher merit indicates lower class entropy when this feature is adopted. It 

also indicated higher utility of a feature, which can be used as a guidance factor when feature 

reduction is needed in the presence of limited computational and storage resources.  

There are three distinct utility peaks in Figure 4-7:a, which can be explained using the 

breathing cycles shown in Figure 4-7:b. The sample points in peak region A are instrumental in 

distinguishing NBC from BC-IS and BC-ES, and those in region B help distinguishing BC-IS. 

Finally, the sample points in region C distinguish all three breathing cycle types. The implication 

of these results is that if a feature reduction is needed, unimportant samples can be eliminated 
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from the areas not in the vicinity of the peaks in Figure 4-7:a. While the results in Figure 4-7:a 

are for subject-1, we have observed very similar patterns of discrimination power for all seven 

subjects.    

4.3.3 Discrimination Power of Frequency Domain Features 

Figure 4-8:a depicts the overall importance of the spectral power at each frequency. The 

power in the frequency range 0 (i.e., DC) to approximately 3Hz contains the most information 

for differentiating the three target breathing cycle types. Figure 4-8:b reports the ROC graph with 

both time and frequency domain features, when only up to 5 features are allowed. The feature 

sets are selected using the subset evaluation method [79] as follows.  

 

Figure 4-8: (a) utility of frequency domain features, (b) comparison between time and 

frequency domain features; results are presented with limited number of features that are chosen 

using a method as described. 

The first feature is selected using the method illustrated in Section 4.3.2 which ensures the 

largest possible reduction in class entropy. The resulting first features are the 10th sample point 

(out of 128) in time domain, and the DC spectral power in frequency domain. These first features 
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in time and frequency domains can be observed in Figure 4-7:a and Figure 4-8:a respectively. 

Using the same procedure as above, the rest of the four features are added iteratively while 

maximizing the reduction in class entropy [79]. 

With more features, the difference in detection performance between the time and 

frequency domain approaches is negligible. When only one feature is used, however, the 

frequency domain approach outperforms the time domain approach for the following reason. 

Figure 4-8:a demonstrates that the DC component has the highest discriminative power, which 

can be expressed as: 

���� � ∑ �� � �
����

�

�
�	�


��
 |��� � ∑ ��
	�

��
  , 

where ���� represents the area under curve of the breathing cycle waveform. For BC-ES, 

since the apnea is located at the beginning of an exhale, its area under curve is much higher than 

that of NBC and BC-IS. Moreover, majority of the swallows are found to be BC-ES, which is 

why  ���� alone can be used to achieve considerable detection accuracy. However, no single 

feature in time domain is able to provide similar discriminative power.  

Observe that machine learning can provide higher detection accuracy compared to the 

matched filters, although they require a-priori training. The matched-filters, on the other hand, 

can achieve acceptable performance using the iterative template refinement algorithm as 

presented in Section 4.3.1. 

It should be noted that both the presented mechanisms are subject-dependent and require 

personalized training. The subject-dependency stems from the wide diversity of the breathing 

signals across subjects and their inherently different breathing patterns. In spite of such diversity, 

however, the swallow signatures were found to be detectable through appropriate algorithm 

training as proposed for both the techniques. 
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4.3.4 Artifacts Handling 

We analyzed the undulated exhalation of breathing cycles during talking using power 

spectral density (PSD). Figure 4-9 shows the comparison between PSD of breathing signals 

during talking (solid lines) and those during NBCs and swallows (dashed lines). The density is 

computed over 4.27-second windows to facilitate 128-point FFT for the 30Hz sampling rate 

(4.27 second=128pts/30Hz). Observe that the PSDs with talking contain many more variations 

between 0 and 2Hz mainly because of the undulations during exhalation as illustrated in Figure 

4-3. This was consistently observed across a large number of subjects and sessions.  

 

Figure 4-9: Power spectral density (PSD) of breathing signals with talking and without 

talking, when normal breathing or breathing with swallows are executed. 

Using the variance of difference between the PSD of received breathing signal and the 

reference NBC signal, it is possible to identify talking so that swallow detection can be paused 

during talking. Detection of talking is accomplished by using a threshold (of variance of 
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difference), which can be either manually set or can be trained using variance of difference as a 

feature.  

In order to analyze the impacts of upper body movements, in the last 2 minutes of each 

session, the subject shook their upper body and drank every 20 seconds to simulate changing 

postures and rocking, which often occurs during food and drink intake sessions. Figure 4-10 

shows the breathing signals for a subject both with and without such upper torso movements 

while swallowing. Note that the signals belong to the same subject, but it is constantly observed 

for other subjects also. 

 

Figure 4-10: Breathing signal: (a) with upper body rocking movement, and (b) without the 
movement 

By comparing the signals with and without artifacts, one can observe that such movement 

artifacts do not introduce any noticeable changes to the breathing signal, mainly due to the fact 
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that such movement does not change the circumvent of the chest area where the belt is placed. 

Because of this very minimal impact, the swallow signatures are well preserved, and can still be 

clearly discerned using the mechanisms described earlier in the chapter. Therefore, the proposed 

mechanism for swallow signature detection does work even when natural upper body movements 

are present during a swallow process.  

4.4 Summary 

This chapter reported the algorithm design for a wearable liquid intake monitoring system 

using piezoelectric chest belt illustrated in section 3.4. A matched filtered based template 

matching framework, along with a number of template design mechanisms, both static and 

iterative, were developed for swallow detection with high true positive rate and low false 

positive rate performance. This paper also presented the preliminary results for classifier based 

detection using both time and frequency domain features. Finally, talking and upper body motion 

artifacts were analyzed.  

Please note that this chapter only focused on the detection of liquid intake, although 

swallowing apnea is also present for solid food intake. Using the features extracted from 

breathing cycles, we may be able to distinguish solid and liquid intake using the proposed chest 

belts.   
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Chapter 5: Machine Learning Based Processing Algorithms 

In this chapter, we present a swallow detection algorithm based on machine learning 

methods. The system works based on the key observation that during swallowing, because the 

trachea is blocked, a person is not able to breathe, thus causing a temporary apnea. Using the 

wearable piezoelectric chest belt introduced in Chapter 3, we detect swallows by the way of 

detection apnea captured by the chest belt. After the swallow sequence is recorded, a swallow 

pattern analysis can potentially be used for identifying non-intake swallows, solid intake 

swallows, and drinking swallows.  

Comparing algorithms proposed in Chapter 4, where only liquid intake monitoring was 

tested, in this chapter, we demonstrate the algorithm and software extension of the same concept 

for monitoring both solid and liquid intakes.    

5.1 Processing Methods 

5.1.1 Machine Learning Algorithms 

Machine learning is a branch of artificial intelligence, and it provides methods and 

algorithms for building systems that can learn from the data. For example, a machine learning 

system can be trained on a large number of hand written digits to recognize them, and after 

training, the system can be used to classify new hand written digits.  

A number of machine learning algorithms have been developed, such as Artificial Neural 

Network (ANN), Support Vector Machine (SVM), Naïve Bayes, and Decision Tree.  

Artificial Neural Network: An ANN is composed of a network of inter connected neurons 

in different layers [80][81]. A typical ANN has three layers, the first layer has input neurons, 

which sends data via synapses to the second layer of neurons, and then via more synapses to the 
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third layer of output neurons. More complex systems will have more layers of neurons or more 

number of neurons in each layer. The synapses have parameters called weight that manipulate 

the data in the calculation. Each neuron has a transfer function which determines its output based 

on the weighted inputs. The output of a neuron can be expressed as: 
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Where: 

i
x  is the i

th
 input value, 

i
w  is the weight associated with i

th
 input value, 

b  is the bias, 

F  is the transfer function, 

y  is the output value. 

When the structure and transfer function of an ANN are predefined, by adjusting the 

weights and biases in an ANN, we can train the network to produce the output we want for 

specific inputs.  

Support Vector Machine: SVM is a classifier that constructs a hyperplane in a high 

dimensional space, which is able to classify the data with the largest separation, or margin 

between the two classes. For data sets that are not linearly separable, SVM maps the original 

space into a much higher dimensional space using a kernel function. The hyperplane is known as 

the maximum-margin hyperplane, and the classifier is also called the maximum margin 

classifier. The decision function can be expressed as: 
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Where: 
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 is the training set, 
k
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r

 is the features of instances in the training set, 

and 
k
c is the class label for training instance with feature 

k
d

r

 

k
a  and b are parameters trained using the training data set.  

In the case of classifying more than two classes, the method one-versus-all is normally 

used, in which one class is distinguished against all the other classes.  

Naïve Bayes: Naïve Bayes classifier is a probabilistic classifier based on Bayes’ theorem 

with the assumption of strong independence among the input features. The Bayes theorem 

shows: 
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 is the probability of an instance with feature vector d
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c , and it is 

also known as posterior, 
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 is the probability of generating an instance with feature vector d
r

 given class j
c , 

and it is also known as likelihood, 
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cP  is the probability of occurrence of class j
c , and it is also known as prior, 
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 is the probability of occurrence of an instance with feature vector d
r

, and it is also 

known as evidence, 
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In practice, as )(dP

r

does not depend on class j
c , in classification problem, it is a constant 

among classes, and it is therefore ignored. )|(
j

cdP

r

 and )(
j

cP  can be estimated based on the 

training data set. Therefore,  
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Decision Tree: A decision tree is a classifier expressed as a recursive partition of the 

feature space. A decision tree has 3 types of node:  

(1) Root node: the root node is the entry point of a decision tree, which have no input and 

multiple output, 

(2) Test node: a test node has exactly one input edge, and runs if-ifelse-..-else statement, it 

may have two or more output edges, 

(3) Leaf node: a leaf node has one input edge, and it demonstrates the class that an instance 

belongs to. 

We use J48 (also known as C4.5) in this dissertation. In each test node, J48 chooses the 

feature that most effectively splits the data set. The splitting criterion is the normalized 

information gain, which is discussed in Chapter 6. The feature with the highest normalized 

information gain is chosen to make the decision. The algorithm is then recursively applied on the 

smaller subsets.  

Decision trees can get undesirably complex and over-fitting, such that each training 

instance takes one node. Therefore, the stopping criteria are used by decision tree algorithms. 

The typical stopping criteria include [82]: 

• Number of cases in the node is less than a threshold 

• Percentage of instance belongs to a class exceed a predefined limit in a node 
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• Depth of the tree is within certain limit 

5.1.2 Breathing Apnea and Swallowing Signature 

 
Figure 5-1: Examples of Breathing Cycles (BC), Normal Breathing Cycles (NBC), 

Breathing Cycles with Inhale Swallow (BC-IS), Breathing Cycles with Exhale Swallow 

(BC-ES) and apnea 

Figure 5-1 demonstrates two representative human breathing signal segments. The ADC 

readings in the figure are directly proportional to the elongation of the piezo-electric sensing belt 

shown in Chapter 3. A breathing cycle can be either normal (i.e., Normal Breathing Cycle or 

NBC) or elongated due to a swallow-triggered apnea. A cycle that is elongated due to an apnea at 

the beginning of an exhale (see Figure 5-1:a) is termed as Breathing Cycle with Exhale Swallow 

(BC-ES). Figure 5-1:b shows swallows (i.e., apnea) during the inhale process which are termed 

as Breathing Cycles with Inhale Swallow (BC-IS). During our experiments, it was also found 
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that BC-ES is much more prevalent than BC-IS, which also coincides with previous research in 

[54][55][56].   

 

Figure 5-2: Example breathing signals for solid and liquid swallows 

Figure 5-2 shows example breathing signals with solid and liquid swallows. As can be 

seen, for solid swallows, breathings are deeper and contain more temporal fluctuations. The key 

objective is to be able to classify three types of breathing cycles, namely, NBC, BC-ES, and BC-

IS, and to detect if the swallow is a solid or liquid one. The challenges stem from the fact that 

there is significant variability in breathing waveforms across different: 1) subjects, 2) 

measurement instances for the same subject, and most importantly, 3) the location and duration 
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of the apnea with respect to its breathing cycle. Among other things, this depends a great deal on 

the swallowing habits and the texture of the material that is being swallowed.  

5.1.3 Detection Scheme 

Figure 5-3 depicts the logic for classifying breathing cycles towards swallow detection. 

The raw data sampled by ADC at 100Hz is first fed into a low-pass filter for removing 

quantization noise caused by the A-to-D conversion process. Because the power spectrum of 

breathing signal is mainly below 2.5Hz, 100Hz is obviously sufficient. The second step is to run 

the filtered data stream through a peak and valley detection module in order to extract the 

individual breathing cycles. The next module is used for normalizing the extracted cycles in both 

time and amplitude dimensions. Each breathing cycle is normalized to be between 0 and 100 

vertically, and interpolated to 128 sample points. Considering the average length of a breathing 

cycle of 3.77 seconds in our experiments, the normalized sampling rate after interpolation is 

mapped to 34Hz. The objective of normalization is to make sure that although different cycles 

may have different time and amplitude ranges (person-to-person or cycle-to-cycle for the same 

person), they can be effectively identified based on the apnea caused by swallowing.  

The normalized breathing cycle waveforms are fed into a feature extraction module which 

extracts time domain or frequency domain features.  These extracted features are then selected 

based on their discriminative power, and fed into a classifier for training or testing purposes. 

Number of features would affect the complexity and performance of classification. A classifier 

would be simple but with inferior performance if very few features are selected. Classifiers with 

a large number of features, however, are complex but do not necessarily provide superior 

performance [77].  
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Figure 5-3: Logic for swallow signature detection 

A hierarchical classification scheme is used for solid and liquid swallow detection. The 

first classifier detects if a breathing cycle is an NBC or a breathing cycle with swallow. The 

second classifier detects if a swallow is a solid and liquid when the output of the first classifier is 

a swallow. 

5.2 Experiments 

Experiments using the piezoelectric breathing belt were carried out for swallow detection 

with three subjects, including 2 male and 1 female. Each subject performed three liquid swallow 

sessions and three solid swallow sessions, each session lasting for five minutes. Each subject was 

asked to wear the instrumented chest-belt and sit still throughout the experiment. During the 

liquid swallow session, the subject drank water from a flask with a swallow instruction given 
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once in every 20 seconds. 20 ml of water was added to the flask for each swallow, ensuring the 

swallow volume to be 20ml. Each liquid swallow session resulted in approximately 80 Normal 

Breathing Cycle (NBC) and approximately 15 breathing cycles with swallows (both Breathing 

Cycle with Exhale Swallow (BC-ES) and Breathing Cycle with Inhale Swallow (BC-IS)). 

During the solid swallow sessions, the subject was asked to eat 6 grams of crackers each time at 

their comfortable rate, and noted the time when he or she swallowed. Considering that the 

cracker would be chewed and mixed with saliva, the formed bolus was roughly the same volume 

as 20 ml of water swallows. The resulting swallow signals are collected over the Bluetooth 

channel on a smart phone. 

    

  
NBC 

(Seconds) 

Solid swallow 

(Seconds) 

Liquid swallow 

(Seconds) 

Subject 1 

Maximum 5.61 6.81 7.56 

Minimum 2.36 2.91 3.36 

Average 3.24 4.86 4.79 

Subject 2 

Maximum 5.88 9 5.56 

Minimum 1.64 3.54 3.57 

Average 3.44 6.27 4.27 

Subject 3 

Maximum 4.51 9.33 6.64 

Minimum 1.93 4.26 2 

Average 3.05 6.22 4.27 

Table 5-1: Durations of different breathing cycle types 

Table 5-1 summarizes the duration of different types of breathing cycles. In addition to the 

spread of the cycle durations across subjects, it should be observed that the cycles with swallows 
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(i.e., both solid and liquid) are consistently longer than the normal breathing cycles. This is 

mainly due to the short apnea introduced by the swallow events. Moreover, it can also be 

observed that there is significant difference in the lengths of solid swallow and liquid swallow, 

which is mainly because of the different texture of the bolus in solid swallow and liquid swallow. 

5.3 Results and Discussion 

5.3.1 Feature Extraction and Selection 

As analyzed in our previous work [83], both time domain and frequency domain features 

can perform well in detecting liquid swallows. The discriminative power of those feature types, 

however, can be different. As shown in Figure 5-4:a, for time domain features, sample points 

with indices near 16 and 90 are more important than other sample points in classification. As 

shown in Figure 5-4:b, for frequency domain features, lower frequency components have more 

discriminative power. It was also found that the discriminative power distribution of frequency 

domain features are more consistent across subjects, which is why the time-domain features are 

used in this dissertation.     

 

Figure 5-4: Discriminative property of time and frequency domain features 
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The second set of classification features is derived from the first derivative of the breathing 

signal. As shown in Section III, it was found that the solid swallows generally create more 

fluctuations in the breathing signal compared to the liquid swallows. To capture such 

fluctuations, an additional classification feature was derived from the first derivatives of the 

breathing signal. More specifically, the number of ±10 crossings is used as the feature, which is 

defined as the number of points in the breathing signal at which the first derivative of the signal 

is exactly +10 or -10. Compared to the number of zero crossings, the number of ±10 crossings 

not only captures the fluctuations observed in solid swallows, but also helps detecting the 

swallows in the first place. Figure 5-5 shows an example of the benefits of ±10 crossings of first 

derivative in detecting swallows. In this case, the number of zero crossings of first derivative is 

1, which is the same as NBCs and is not sufficient in detecting the swallow, but the number of -

10 crossings of the first derivative is 2 instead of 1 in case of NBC, which helps to detect the 

swallow. 

 

Figure 5-5: Benefits of ±1 crossings as a classification feature 
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The third set of features is derived from various length distributions of the breathing 

cycles. Table 2 summarizes all the used features used in this paper. 

 Features 

Frequency 
domain 
features 

1
st
 order Fourier transform coefficient 

2
nd

 order Fourier transform coefficient 

3
rd

  order Fourier transform coefficient 

4
th

 order Fourier transform coefficient 

5
th

 order Fourier transform coefficient 

Features 
from 

waveform 

Number of +10 crossings in first derivative 

Number of -10 crossings in first derivative 

Breathing cycle length 

Inhalation length 

Exhalation length Inhalation depth 

Exhalation depth 

Table 5-2: Features selected for classification 

5.3.2 Swallow Detection 

All the above features are fed into the hierarchical classifier for solid and liquid swallow 

detection. In order to prove the generalizability, we adopt the leave-one-out method, in which 

case, data from all subjects are used for training except the one whose data is used for testing. 

Table 5-3 and Table 5-4 report the performance of the hierarchical classifier using the 

leave-one-out method. As can be seen, SVM provides the best performance among all the 

applied methods for both the classifier stages. For the first stage, for all subjects the true positive 

rates remained higher than 82.9% and false positive rates lower than 1.6%. The performance of 

the second stage classifier has accuracy ranging from 88% to 73.33% when SVM is applied. 

Testing the system with more subjects is under way. 
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True positive rate 

(%) 

False positive rate 

(%) 

Subject 1 

SVM 82.9 1.6 

J48 76 2.4 

Naïve Bayes 100 1.2 

Subject 2 

SVM 84 0 

J48 88.6 4.9 

Naïve Bayes 97.1 4.1 

Subject 3 

SVM 86.7 0 

J48 83.3 8.6 

Naïve Bayes 93.3 8.6 

Table 5-3: Performance of the first stage of the hierarchical classifier 

 

  Accuracy (%) 

Subject 1 

SVM 82.86 

J48 80 

      Naïve Bayes 76 

Subject 2 

SVM 88 

J48 80 

     Naïve Bayes 68.6 

Subject 3 

SVM 73.33 

J48 70 

    Naïve Bayes 70 

Table 5-4: Performance of the second stage of the hierarchical classifier 
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5.4 Conclusion 

This chapter reported the algorithm and performance of the machine learning based food 

and drink intake detection system. It presented the machine learning based swallow detection 

method using hierarchical classification scheme.  

During the experiment and analysis it was found that food intake swallows have very 

regular temporal patterns in lunch session. Such temporal information can therefore be used for 

improving the system detection accuracy, which is going to be analyzed in the next chapter.   
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Chapter 6: Support Vector Machine and Hidden Markov Model 

based Processing Algorithms 

This chapter presents a wearable solid food intake monitoring system that analyzes human 

breathing signal and swallow sequence locality for solid food intake monitoring. Food intake is 

identified by the way of detecting a person’s swallow events. A Support Vector Machine (SVM) 

is first used for detecting such apneas in breathing signals collected from a wearable chest-belt. 

The resulting swallow detection is then refined using a Hidden Markov Model (HMM) based 

mechanism that leverages known locality in the sequence of human swallows. The chapter 

experimentally demonstrates the effectiveness of such two-stage SVM-HMM based mechanism 

for solid food intake detection via analyzing breathing signal and human swallow sequence 

locality. 

In our previous work [83][84], we reported the effectiveness of such as system for 

detecting liquid-only intake monitoring using swallow signal analysis. As an extension to our 

previous work, in this chapter we focus on solid-only intake detection using a two stage SVM-

HMM processing strategy as follows. After the swallow sequence is recorded, a Support Vector 

Machine (SVM) is first used for detecting such apneas in breathing signals collected from a 

wearable chest-belt. The resulting swallow detection is then refined using a Hidden Markov 

Model (HMM) based mechanism that leverages known locality in the sequence of human 

swallows. In a future publication we plan to report processing mechanisms and their 

effectiveness for joint liquid-solid intake monitoring. 

The contributions of this chapter are: 1) combining SVM and HMM methods for 

processing breathing signals for solid food intake detection, and 2) experimentally demonstrating 
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the detection accuracy and effectiveness of the proposed system and the signal processing 

methods. 

6.1 Processing Methods 

 

Figure 6-1: Respiratory signal with swallow signature 

The piezoelectric belt based breathing signal collection system proposed in Chapter 3 is 

used in this chapter. Figure 6-1 demonstrates a number of experimentally obtained breathing 

signal segments from different human subjects.  The ADC readings in the figure are directly 

proportional to the elongation and contraction of the piezo-electric sensing belt. The rising edges 

correspond to inhalations and the falling edges correspond to exhalations. As shown in the 
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figure, a breathing cycle can be either normal (i.e. Normal Breathing Cycle or NBC) or elongated 

due to swallow-triggered apnea. A cycle that is elongated due to an apnea at the beginning of an 

exhale (see the top figure in Figure 6-1 for subject-1, session-1) is termed as Breathing Cycle 

with Exhale Swallow (BC-ES). For a second subject, the bottom figure in Figure 6-1 shows 

swallows (i.e. apnea) during the inhale process which are termed as Breathing Cycles with Inhale 

Swallow (BC-IS). 

 

Figure 6-2: Processing scheme for swallow detection 

Figure 6-2 depicts the logic for classifying breathing cycles towards swallow detection. 

Before sending the data to the ADC, an anti-aliasing analog low pass filter circuit with cutoff 

frequency of 30 Hz is applied. The signal is then sampled by ADC at 100Hz and fed into a 

software-based low-pass filter for removing quantization noise caused during the A-D 
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conversion. Because the power spectrum of breathing signal is mainly below 2.5Hz, 100Hz 

provides a fast enough sampling rate. The next step is to run the filtered data stream through a 

peak and valley detection software module in order to extract the individual breathing cycles. In 

order to perform peak and valley detection, the data stream is first divided into 30% overlapping 

10-second windows, and then a threshold based algorithm from [85] is used. The threshold is set 

to 
))(min)((max3.0 )()( ndmd

CndCmd ∈∈
−

, where C is the set includes all the data points in the 10-

second window, and )(md  and )(nd  are the mth and nth sample points in the 10-second 

window.  

After individual breathing cycles are extracted, they are normalized in both time and 

amplitude dimensions. Each cycle is normalized to be between 0 and 100 vertically, and 

interpolated to 128 sample points in time. Considering the average length of a breathing cycle of 

3.77 seconds in our experiments, the normalized sampling rate after interpolation is mapped to 

34Hz. Although different cycles may originally have different time and amplitude ranges 

(person-to-person or cycle-to-cycle for the same person), the normalization process removes 

such variance in duration and amplitude, thus making the cycles more suitable for the apnea 

detection process.  

Feature extraction module takes breathing cycles before and after normalization and 

extracts features including: 1) breathing cycle length, 2) inhalation duration and depth, 3) 

exhalation duration and depth of breathing cycles before normalization, and 4) ±10 crossing 

counts, 5) first 5 Fast Fourier Transform (FFT) coefficients of normalized breathing cycles. The 

details about the features extracted are demonstrated in Section 6.2.3. The features are then fed 

into the Support Vector Machine (SVM) detection module with posterior probability outputs, 

which are illustrated in more details in Section 6.1.2. At this stage, a posterior probability 
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indicates the SVM-detected probability of a given breathing cycle to be of types normal 

breathing or breathing with swallow. Information about swallow sequence locality is not utilized 

at this stage. Finally, the Hidden Markov Model (HMM) is applied to the posterior probability 

outputs of the SVM module to improve the detection performance by leveraging a-priori 

knowledge about swallow sequence locality. The HMM modeling is presented in Section 6.1.3.      

6.1.1 Two-tier Swallow Detection 

In our previous work [83][84], Support Vector Machine (SVM) was shown to be the best 

classifier for liquid swallow detection. Like in traditional usage of SVM [77], the classification 

output for each breathing cycle was a class label, which is normal breathing or breathing with 

swallow.  After analyzing the classification errors in [83][84], it was realized that many of those 

errors can be corrected by applying known locality information in human swallow sequences. 

For example, people rarely swallow in many consecutive breathing cycles. Thus, whenever the 

classification output shows many consecutive breathing cycles, errors can be suspected and the 

misclassified instances can be identified/removed by applying higher level techniques such as the 

Hidden Markov Model (HMM). This motivates the two-tier detection using SVM and HMM 

presented in the next subsections.  

6.1.2 SVM-based Swallow Detection with Posterior Probability 

Consider the following training set of size T:  

),(),...,,(),,(),,(
332211 TT

yxyxyxyx
 

In each training instance ),(
ii

yx , 
n

i
Rx ∈   represents a set if n input features, and i

y  is 

the corresponding class label. For a binary class system in our case, i
y  can be defined as 
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A traditional SVM decision function can be derived as [86]:   

bxxKayxD
kk

T

k

k
+=∑

=

),()(
1                (1)  

where  k
a  and b  are trained using the training dataset, T  is the number of training 

instances, and ),( xxK
k  is the kernel function of SVM. Classification for a test feature set j

x

using the decision function can be as follows:  

otherwisebreathingNormalx

xDifswallowswithcycleBreathingx

j

jj

,

0)(,
{

∈

>∈

 

The distance between j
x  and the decision boundary (i.e., that separates breathing cycle 

with swallows and normal breathing) with the maximum margin can be expressed as CxD
j
)(  

[86], where C is a positive constant depending on k
a ),...,2,1( Tk = , training feature set k

x

),...,2,1( Tk =  and the kernel function. Therefore, )( jxD  is positively correlated to the 

confidence of correct detection, meaning the closer to the decision boundary, the less confidence 

in correct classification.  

In order for the HMM to be able to process the SVM output, the latter needs to be in the 

form of posterior probability  ADDIN ZOTERO_ITEM CSL_CITATION 

{"citationID":"ptU5sHDL","properties":{"formattedCitation":"[32]","plainCitation":"[32]"},"cit

ationItems":[{"id":591,"uris":["http://zotero.org/users/642418/items/TWVH4M6A"],"uri":["http:

//zotero.org/users/642418/items/TWVH4M6A"],"itemData":{"id":591,"type":"paper-
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conference","title":"Food Intake Activity Detection Using a Wearable Microphone 

System","page":"298 -301","source":"IEEE Xplore","event":"2011 7th International Conference 

on Intelligent Environments (IE)","abstract":"A method for non-invasive monitoring of human 

food intake behavior and long-term dietary protocol has been developed by the sole use of 

chewing and swallowing sound sensors. A novel sensor system has been built containing an in-

ear microphone and a reference microphone integrated in a hearing aid case in order to record 

chewing and swallowing sounds in the ear canal and environmental noise, respectively. Using 

manual labeled records of the food intake sounds of 40 participants we developed an algorithm 

to detect food intake activity in sound data. Comparison between sounds from both microphones 

enables the discrimination between internal and external 

sounds.","DOI":"10.1109/IE.2011.9","author":[{"family":"Passler","given":"S."},{"family":"Fis

cher","given":"W.-J."}],"issued":{"date-

parts":[["2011",7]]}}}],"schema":"https://github.com/citation-style-

language/schema/raw/master/csl-citation.json"} [32][86] as opposed to class labels used by 

traditional SVM models [77] as described above. An appropriately designed SVM [86] can 

indicate the probability that a given input feature set correspond to a specific class. This 

probability is referred to as the Posterior Probability for that class. In what follows we describe 

the mechanisms for computing such probabilities which are the input for the swallow sequence 

based Hidden Markov Model presented in Section 6.1.4.  

Posterior probability for class-i is formally defined as 

)|1()|(
ii
xprobfeaturesinputclassprob ±= . This indicates the probability that a given input 

feature set i
x correspond to a breathing cycle with swallow or a normal breathing cycle. It 
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follows that 1)|1()|1( =−+
ii
xprobxprob . We use the following method for computing posterior 

probability using the SVM decision function )(
j

xD , as proposed by Wahba in [87]:  

))(*exp(1

1
)|1()|(

BxDA
xyprobfeaturesinputclassprob

i

++

===

    (2) 

where A and B are constants and estimated by minimizing the negative log likelihood of 

training data set using regression methods.   

6.1.3 Hidden Markov Model with Swallow Sequence Locality 

The key concept of HMM in swallow detection is as follows. A sequence of breathing 

cycles are represented by a discrete time Markov Chain consisting of two states (i.e., normal 

breathing cycles and breathing cycles with swallows) that are hidden from an observer, meaning 

that an observer cannot directly determine which state the system is in at any given point of time. 

However, the posterior probability out of the SVM, which indicates the likelihood of the system 

being in any state, is visible to the observer. The idea of HMM formulation is that if the locality 

in swallow sequence dynamics and the mapping between the system’s state and posterior 

probability observation are known (or measurable) to the HMM model, then by observing the 

posterior probability out of the SVM the current state in the Markov Chain can be estimated.  

Hidden State Space: As shown in Figure 6-3:a, a breathing cycle sequence can be modeled 

as a hidden state machine with two hidden states, namely, Normal Breathing and Breathing 

Cycle with Swallows. The states are hidden because they are not deterministically known from 

posterior probabilities computed out of the SVM processing.  
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Figure 6-3: (a) Hidden breathing state machine and (b) HMM processing components 
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It is assumed that k
q  depends only on 1−k

q , which means  

),...,,|()|(
1211
qqqqprobqqprob

kkkkk −−−

=

 

A is an 2×2 matrix for two breathing cycle types in our case. The transition probability 

matrix is constructed from the true swallow sequence detected by a video camera and push 

button. The probabilities in this matrix represent the swallow sequence locality information 

which is leveraged by the HMM processing   

Observation Matrix: Although the states are considered hidden, the SVM-computed 

posterior probability at each state can be considered as an observable parameter for HMM 

modeling purposes. For a given state-i, the posterior probability )|1(
ii
xyprob = , generated by 

the SVM detector, is utilized for constructing an observation bitmap i
O  in the following 

manner. 

The probability range [0, 1] is divided into N equal windows (we used N=10) and each 

window is presented as a bit in the N-bit long bitmap i
O

 The bit corresponding to the window in 

which the posterior probability )|1(
ii
xyprob =  falls on is set to 1, and all other bits in i

O  are 

set to 0.  For example, with N=10 and 71.0)|1( ==
ii
xyprob , the observation bitmap for 

state-i will be },0,0,1,0,0,0,0,0,0,0{=
i

O   

Now let jm
b  be the probability that if an observation bitmap’s mth bit is 1 (i.e., all other 

bits are 0s) then the system is in hidden state j.  Formally stated:  

)|,...}1,...,0{(
1 jmjm

SStatebitbitOprobb =====
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An observation matrix of size M×N (M: Number of states, N: number of bits in the 

observation bitmap) is constructed as }{
jm

bB = . In this case, a 2×10 matrix is constructed by 

combing the true swallow events detected by a video camera and push button, and the SVM 

outputs )|1(
ii
xyprob =   after processing the chest belt sensor data. This observation matrix, 

together with the transition probabilities and the following initial probability array, is used for 

HMM processing as described in Section 6.1.4. 

Initial Probability Array: The initial probability array is represented by a vector ][
i

ππ =  

of length M (i.e. 2), in which  

MiSqprob
ii

≤≤== 1)(
0

π
 

i
π  indicates the probability that the initial state of the hidden state machine is i

S . 

Therefore, by definition  

1

1

=∑
=

M

i

i
π

 

This array is formed using true swallow data gathered by the experimental system as 

described in Chapter 3.  The swallow system as modeled by HMM can be expressed as a tuple: 

),,( πλ BA= , where A, B, and π  represent the hidden state transition matrix (i.e. known 

swallow sequence locality), the observation locality, and the initial condition of the state 

machine respectively. 
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6.1.4 HMM Processing 

As shown in Figure 6-3:b, the processing model is fed by the HMM model  ),,( πλ BA=  

and the posterior probability observation sequence, and its outcome is an estimation of the 

current system state t
q̂ .  

The probability of observing a sequence for a given model )|( λOprob  can be expressed 

as [88]: 

∑=

Q

QprobQOprobOprob )|(),|()|( λλλ

     (3) 

where 
}...{

321 T
OOOOO =

 is a sequence of observations and }...{
321 T

qqqqQ =  is a 

sequence of states, and they have the same sequence length T.  Note that i
q  is the i-th state in 

the state sequence 
Q

 and it can represent any state MjS
j

≤≤1, (i.e. M=2).  ),|( λQOprob  

means the probability of having the observation sequence O  given the state sequence Q  and the 

model λ. )|( λQprob  indicates the probability of having the state sequence Q  for the model λ.   

),|( λQOprob  and )|( λQprob  can be expressed as: 

∏
=

=

T

i

ii
qOprobQOprob

1

),|(),|( λλ

                  (4) 

)|()...|()()|(
1121 −

=
TT
qqprobqqprobqprobQprob λ

    (5) 

where 
),|( λ

ii
qOprob

 is the probability of observing i
O

 in state i
q

, which 

corresponds to an element in the observation matrix B,  )(
1
qprob  is the initial probability of 

state 1
q  corresponding to an relevant element in initial probability array π , and 
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)|(
1 ii
qqprob

+  is the probability of transitioning from state i
q

 to state 1+i
q

, which corresponds 

to one element in transition probability matrix A.  

By substituting 
),|( λQOprob

 and )|( λQprob  in Equation (3) using Equation (4) 

and (5), 

)6(),|()|(...

)|(),|()()|(

1

,...,

12111

21

λ

λλ

TTTT

qqq

qOprobqqprob

qqprobqOprobqprobOprob
T

−
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It can 

be interpreted as follows. Initially the system is in state 1
q  with probability )(

1
qprob  and 

generates the observation 1
O  with probability

),|(
11
λqOprob

. At the next time slot, the state 

transitions from 1
q  to 2

q  with probability 
)|(

12
qqprob

and produces an observation 2
O

 with 

probability 
),|(

22
λqOprob

…. Finally 
)|( λOprob

is derived by summing the products over 

all possible state sequences.  

The Forward-Backward Procedure [89] is adopted to simplify the calculation. Consider the 

forward variable )(i
t

α  defined as: 

)|,...()(
21

λα
ittt

SqOOOprobi ==

 

where 
)(i

t
α

 indicates the probability of partially observing the sequence t
OOO ...

21  and 

state at time slot t is i
S

given the model λ. It can be proved [88] through induction that: 

∑
=
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T

i

T
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1
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Consider backward variable 
)(i

t
β

, defined as:  
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which represents the probability that partially observing the sequence from time slot t+1 to 

the end given the current state i
S

 and the model λ. Now another variable is defined as: 

),|()( λγ OSqprobi
itt

==

 

indicating the probability of being in state i
S

 at time slot t given the observation sequence 

O  and model λ. The equation can be reformatted in terms of forward and backward variables: 
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By maximizing 
)(i

t
γ

, the estimated state t
q̂

 at time stamp t can be detected using 

Tti
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The quantity t
q̂  is the estimated system state at the t-th instance of the state sequence of 

length T. 

6.2 Results and Discussion 

6.2.1 Experimental Methods 

During an experiment, a subject was instructed to press a button whenever she or he 

swallows, and the smartphone shown in Figure 6-4 was used to record the breathing signal 

sensed by the wireless chest belt. A video camera was connected to a computer to record the 

movement of mouth and laryngopharynx during the experiment for validation purposes. The 

computer, smartphone, and button recorder were synchronized before each experiment session. 

The experiment setup is shown in Figure 6-4.  
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Figure 6-4: Experimental setup 

Experiments were carried out on 6 subjects (2 female and 4 male) without any known 

swallow abnormalities. Each subject was asked to wear the instrumented chest-belt and have his 

or her lunch at his or her own pace. The lunch type was chosen by individual subjects based on 

their dietary preferences. It included diverse food types including rice, bread, salad, and cooked 

vegetarian and non-vegetarian items. Note that the subjects were allowed to drink during the 

experiments. However, since the results in this chapter are concentrated only for solid intake, the 

affected breathing cycles during drinking were first identified from video recording, and then 

removed during data processing. 

6.2.2 Performance Indices 

To evaluate the detection performance (i.e., both SVM-only and SVM followed by HMM), 

we adopted the metrics Precision and Recall, commonly used [27][53] in biomedical signal 

processing and information retrieval. Precision and Recall are defined as:  
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In this definition, recognized swallows (i.e., true positives, TP) indicates the number of 

swallow events that are correctly detected. Retrieved swallows correspond to the number of 

detected swallows including both the TPs and the incorrectly detected swallows (i.e., false 

positives, FP). Relevant swallows (i.e., positive, P) refer to the number of actual swallow events 

annotated from video observations reflecting the ground truth.  

6.2.3 Feature Extraction for Stage-1 Detection using SVM 

As reported in our previous work [83], both time domain and frequency domain features 

can be used for detecting liquid swallows. The discriminative power of those feature types, 

however, can be different. Figure 6-5 shows the discrimination power of time (Figure 6-5:a) and 

frequency (Figure 6-5:b) domain features in solid swallow detection using SVM classifier. The 

merit of a feature in Figure 6-5:a and Figure 6-5:b refers to information gain [90], which is 

defined as the reduction in classification entropy (i.e., H(*)) with additional information 

provided by the corresponding feature about the target classes. Assuming A as the feature and C 

as the set of classes, the following two equations indicate class entropies before and after using 

the feature: 

∑
∈
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Figure 6-5: Feature discriminative property and ±10 crossings as a classification 

feature 
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A feature with higher merit indicates lower class entropy when this feature is adopted. 

Merit can be also used when feature reduction is needed in the presence of limited computational 

and storage resources.  

For time domain features, as shown in Figure 6-5:a, where 128 sample points in 

normalized breathing cycles are used as features, sample points near the 27th and 53th sample 

points are more important than others in classification. For frequency domain features, as shown 

in Figure 6-5:b, where the first 64 FFT coefficients are used as features, lower frequency 

components have more discriminative power. It was also found that the discriminative power 

distribution of frequency domain features are more consistent across subjects, which is why the 

frequency-domain features were finally used in [83].  

The second set of SVM classification features is derived from the first derivative of the 

breathing signal. As shown in Section 6.1, it was found that the swallows generally create more 

fluctuations in the breathing signal compared to the normal breathing cycles. To capture such 

fluctuations, an additional classification feature was derived from the first derivatives of the 

breathing signal. More specifically, the number of ±10 crossings (NTC) is used as the feature, 

which is defined as the number of points in the breathing signal at which the first derivative of 

the signal is exactly +10 or -10. Compared to the number of zero crossings (NZC), NTC can 

better capture the swallow signatures.  

Figure 6-5:c and Figure 6-5:d show an example comparison between a representative 

normal breathing cycle and a representative breathing cycle with swallow and their 

corresponding NZC and NTC of the first derivatives. Observe that while for both types of 

breathing cycles the NZC is 2, the number of ±10 crossings (NTC) is 3 for the normal breathing 

and 5 for the breathing with swallow. The additional 2 NTCs (i.e., -10 crossings) are contributed 
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by the swallow event. Differences in NTCs were consistently observed between breathing cycles 

with and without swallows, thus indicating the usefulness of NTC of the first derivative as a 

useful classification feature for the SVM engine.    

The third set of features is derived from the duration and amplitude of the breathing cycles 

before normalization. In summary, the SVM features used in this chapter include: first 5 Fourier 

transform coefficient, NTC, inhalation duration, exhalation duration, total breathing cycle 

duration, inhalation amplitude, and exhalation amplitude. 

6.2.4 Swallow Detection with SVM 

The features mentioned above were fed into the posterior probability SVM classifier 

described in Section 6.1.2. The classifier was trained and validated using data collected through 

experiments outlined in Figure 6-4. We have used a leave-one-out validation approach. Meaning 

a subject’s data is excluded in training set if his or her data is used as the test set. 

Figure 6-6 reports the distribution of the SVM-produced posterior probabilities (i.e., of 

probability of a cycle containing swallow signature) for breathing cycles with swallows and 

normal breathing cycles. The distribution was plotted from all classification data obtained during 

the experiment. In the absence of classification errors, there would have been only one bar at 

probability 1 for the cycles with swallows. Similarly, there would have been only one bar at 

probability 0 for the cycles without swallows. In Figure 6-6, it can be observed that in spite of 

some classification errors (i.e., indicated by the scattered bars over the probability axis) the SVM 

is able to separate the two cycle types fairly distinctly. Such errors are often caused by swallow 

signatures that are too short (in time) to be captured by the specified features, and by breathing 

cycle modulation by adjacent swallows [49].   
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Figure 6-6: Distribution of posterior probabilities with and without swallows 

Applying a probability threshold Pth to the SVM-produced posterior probabilities it is 
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Figure 6-7: Comparison between SVM-only and two-tier SVM+HMM mechanism 

Figure 6-7 shows the SVM-only classification accuracy (i.e., precision and recall) while 

the threshold Pth is changed in the range from 0.1 to 0.9. In Figure 6-7, each SVM-only 

performance point on the curve for a given subject corresponds to one threshold value and its 
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corresponding precision and recall performance pair. When the threshold varies from low to 

high, the precision increases, while the recall reduces, indicating fewer false positives and true 

positives. Since the breathing signal during lunch is imbalanced, meaning there are much more 

normal breathing cycles than breathing cycles with swallows, a higher threshold gives more 

preference over normal breathing cycles and therefore reduces the false positives, thus increasing 

the precision and decreasing the recall. The reverse effect was observed while lowering the 

detection threshold Pth. The SVM-only performance lines in Figure 6-7 provide a means for 

choosing an appropriate Pth for a required balance between precision and recall. Table 6-1 

presents the precision and recall performance for all six subjects when an even threshold of 0.5 is 

chosen for swallow classification.    

 SVM SVM+HMM 

 Precision (%) Recall(%) Precision (%) Recall(%) 

Subject 1 68 86 74 82 

Subject 2 67 100 74 96 

Subject 3 49 90 81 81 

Subject 4 54 98 72 93 

Subject 5 45 91 66 87 

Subject 6 80 80 83 74 

Table 6-1:  Comparison between fixed threshold SVM-only and two-tier SVM+HMM 

mechanism 

6.2.5 Improved Detection using HMM 

Hidden Markov Model processing, as outlined in Section 6.1.4, was applied to the 

posterior probabilities output of SVM for improving detection performance. Such improvements 

are accomplished via correcting some of the SVM errors by the way of leveraging known 
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locality information in human swallow sequences. As described in Section 6.1.3, for each 

subject, both A (2x2) and B (2x10) matrices in the HMM model were computed based on 

experimental observations using video camera, push button, and data from the wireless chest-belt 

system.  As an example, for Subject-1 the A matrix was found to be:  
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and the B matrix was found to be: 
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Swallow detection performance of the SVM+HMM approach is presented in Table 6-1 and 

in Figure 6-7. For each subject, there is one point for the SVM+HMM approach indicating the 

corresponding precision and recall performance. Observe that for subjects 1, 2, 3, and 6, the 

SVM+HMM point is situated higher and on the right in comparison to the line for the SVM-only 

approach. This indicates better performance of SVM+HMM compared to the SVM-only 

approach with all possible posterior probability thresholds. For the remaining two subjects (i.e., 4 

and 5), the SVM+HMM performance point is on the SVM-only line, indicating that with certain 

posterior probability threshold, SVM-only can perform as good as the SVM+HMM approach. 

These results validate the overall usefulness of the proposed HMM processing by leveraging 

known swallow sequence locality information for removing certain classification errors that are 

introduced by the SVM-only approach. 

6.3 Conclusion 

In this chapter, we have presented a wireless and wearable solid food intake monitoring 

system. A novel support vector machine (SVM) and Hidden Markov Model (HMM) based 
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processing mechanism, which analyzes collected breathing signal and previously known swallow 

sequence locality information, was also presented. The system and processing mechanism was 

experimentally proven to be effective for solid food intake detection. Ongoing work on this topic 

includes: 1) developing an unsupervised swallow (both solid and liquid) detection mechanism for 

generalizability, 2) developing a detection and filtering mechanism for artifacts introduced by 

movement and speech, and 3) implementing a real-time swallow detection system that can be 

used by health researchers for retrieving dietary information from targeted population.  
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Chapter 7: Mealtime and Duration Monitoring  

In this chapter, we present a wearable sensor system for estimating mealtime (i.e., time of 

the day for a meal) and meal duration based on those swallow-triggered apneas detected in 

breathing signals. Using two Respiratory Inductance Plethysmography (RIP) belts worn on the 

chest and abdomen as shown in Figure 7-1, swallow-triggered apneas are detected. Since the RIP 

belts do not rely on pressure or skin-contact to pick up breathing signal, they can be suitable for 

prolonged usage without minimal cosmetic and comfort issues.  

Time and duration of meals were shown to be highly correlated with obesity. Ma et al [91] 

analyzed the mealtime of 499 people for 1 year and concluded that a greater number of eating 

episodes each day was associated with lower risk of obesity, whereas practices such as skipping 

breakfast was linked with higher obesity risk. Gluck et al [92] conducted experiments on 55 

subjects and demonstrated that nighttime eaters, who consume considerable amount of food at 

night frequently tend to gain weight faster than non-nighttime eaters. Cleator [93] also showed 

that 52% of obese nighttime eaters reported normal weight before the onset of their nighttime 

eating habit. Andersen et al [94] carried out experiments lasted for 10 years, and reported that 

obese women with nighttime eating experienced a weight gain of 5.2kg on an average over 6 

years.  

Improper mealtime can have other negative impacts. Rogers et al [95] showed that subjects 

with night eating syndrome had less stage 2 and stage 3 sleep, which contributed to shorter total 

sleep time and lower sleep efficiency, and they are more likely to suffer from depression. 

Sassaroli et al [96] also found that night eating syndrome is highly correlated with anxiety. 

In addition to the wearable belt, an accelerometer on the wrist of the dexterous hand has 

also been used to improve the swallow detection performance. The hand movement helps 
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improving detection accuracy by supplying side information, so that when there is confusion due 

to uncertainties in detection using breathing signal, the hand movement information helps. The 

accelerometer is able to capture the characteristics of hand movement during eating, drinking, 

sitting, and talking artifacts.  

In our previous work [97][98], we presented an early stage swallow detection system and 

algorithms for detecting liquid and solid food intake in the absence of artifacts. This chapter 

builds on those core system capabilities and leverages those algorithms in order to develop a 

system specifically for estimating the meal intake time and duration. 

Specific contributions of this chapter include: 1) developing algorithmic solutions for 

handling artifacts including spontaneous swallows, talking, laughing, coughing and clearing 

throat, and 2) experimentally demonstrating the effectiveness of the proposed system and 

algorithms in a semi-controlled environment.   

7.1 System Architecture 

Figure 7-1 demonstrates the wearable sensor system, which is an extension of what was 

reported in [98]. The wearable system includes: 1) a pair of RIP belts and their associated control 

box (from zRIP Durabelt sum kit, Pro-Tech, Murrysville, PA) for collecting breathing signal, 2) 

a signal shaping circuit for amplifying and filtering the raw signal from the sensor to optimize 

signal-to-noise ratio (SNR) of ADC stage, 3) a µController and Bluetooth subsystem equipped 

with 14-bit ADC channels and an 8-bit accelerometer for sampling and transmitting breathing 

and hand movement signal over Bluetooth to an external Android smart phone, and 4) a 3.7V 

340mAh polymer rechargeable battery.  
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Figure 7-1: Components of the mealtime and duration monitoring system 

The signal shaping circuit, µController and Bluetooth subsystem, and battery are placed in 

a 4cm×2.5cm×2cm 3D-printed watch-like wrist unit worn on the wrist of the dexterous arm of a 

subject. The system is able to collect data continuously for over 20 hours on a single battery 

charge. 

7.2 Processing Methods 

Figure 7-2 depicts the overall logic and algorithmic architecture for the proposed mealtime 

and duration monitoring. The overall logic can be divided into three parts, namely, 

preprocessing, food intake detection, and meal intake analysis.  

The preprocessing stage takes respiratory signal and wrist acceleration signal, and 

generates feature vectors. Each feature vector contains a number of features, which represent the 

unique characters of breathing in a cycle-by-cycle manner and of the wrist acceleration signal. 
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More specifically, features from breathing signal capture the signature of swallow apnea, 

whereas those from wrist acceleration represent hand movement during eating, drinking, sitting, 

talking, and other artifacts.  

The food intake detection module utilizes a 3-stage hierarchical classifier, where the first 

classifier differentiates normal breathing cycles from non-normal breathing cycles (i.e., cycles 

with talking, solid swallow, and liquid swallow). The second classifier detects talking and 

swallowing (i.e., both solid and liquid swallows), and the third classifier differentiates between 

solid and liquid swallows.  

The final architectural component (in Figure 7-2:  The mealtime and duration detection 

scheme) is the meal intake analysis stage that estimates the time and duration of each meal intake 

episode based on the detected solid swallows from the previous food intake detection stage.  

In the preprocessing stage, the respiratory signal from the from RIP sensors and the wrist 

acceleration signal, as described in Section 7.1, are sampled at 100Hz and fed into a digital low 

pass filter for removing quantization noise caused during the A-D conversion. The respiratory 

signal then passes through a breathing cycle extraction module, which performs a threshold 

based peak and valley detection operation as described in [85] on 33% overlapping 30-second 

windows.  

The peak-valley detection algorithm selects peaks and valleys alternatively, such that the 

amplitude difference between each neighboring pair is larger than a threshold. The threshold is 

set to ))(min)((max3.0 )()( ndmd
CndCmd ∈∈

− , where C is the data set that includes all the data 

points in the target 30-second window, and )(max )( md
Cmd ∈

 and )(min )( nd
Cnd ∈

 are the amplitudes 

of the highest and the lowest sample points in the window respectively. In case of fluctuations 

below the threshold near a peak or valley, the highest or lowest points are selected. A threshold 
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of ))(min)((max )()( ndmd
CndCmd ∈∈

−  is also applied in order to detect improper wear of the 

respiratory belts, in which case the received respiratory signal contains only low amplitude noise 

caused by its electronic components and the ADC 

 

Figure 7-2:  The mealtime and duration detection scheme 

Each separated breathing cycle is normalized amplitude-wise and interpolated in time. The 

normalized and interpolated breathing cycles span between 0 and 100 amplitude-wise and have 
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128 sample points each. More specifically, the normalization of a cycle is performed for the 

valley-to-peak (inhale) and peak-to-valley (exhale) data segments individually. Each valley-to-

peak and peak-to-valley data segment is normalized as follows: 

)(

100])([
)(

valleypeak

valleyidata
inormalized

−

⋅−

=

 

where data(i) corresponds to a data point in the valley-to-peak (inhale) or peak-to-valley (exhale) 

data segment, normalized(i) is the normalized data point corresponding to data(i), and peak and 

valley are the peak and valley points of the segment. Linear interpolation is adopted to 

interpolate each breathing cycle.  

Considering the average length of a cycle of 3.77 seconds in our experiments, the 

normalized sampling rate after interpolation is 34Hz (128 sample points/3.77 seconds result in 

34Hz). Although each cycle may have different time and amplitude ranges caused by various 

tidal volume [97] and respiratory frequency (i.e., variable person-to-person or cycle-to-cycle for 

the same person), the normalization process removes such variances, thus improving the 

generalizability of the proposed system in handling respiratory signals with various amplitude 

and frequency. The Feature Extraction module takes both the breathing signal and wrist 

acceleration data and generates 29 features from breathing signal and 12 features from wrist 

acceleration signal. Details about the features are provided in Section 7.3.3.  

In the food intake detection phase, we used a 3-stage hierarchical classifier, which contains 

3 individual classifiers: Classifier-1 for detecting normal breathing cycles and non-normal 

breathing cycles (including breathing cycles with talking, solid swallows and liquid swallows), 

Classifier-2 for identifying swallows (including both solid and liquid swallows) from breathing 

cycles with talking, and Classifier-3 for detecting solid and liquid swallows.  
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For all three classifiers, Support Vector Machine (SVM) with posterior probability [99] are 

used. A posterior probability indicates the SVM-detected probability of a given breathing cycle 

to be either one of the two classes that the classifier is designed to differentiate. Details about the 

SVM with posterior probability are introduced in Section 6.1.2.  

Hidden Markov Model (HMM) is applied to the posterior probability outputs of Classifier-

1 and Classifier-2 in order to improve the detection performance by leveraging a-priori 

knowledge about any temporal locality present in the swallow and talking sequence. HMM is not 

applied to Classifier-3 (which differentiates solid and liquid swallows), because based on our 

experiments and observations, solid and liquid swallows do not demonstrate strong temporal 

locality. Meaning, swallows (i.e., solid or liquid) are generally not likely to happen in 

consecutive breathing cycles. Details about HMM modeling and its processing are discussed in 

Sections 6.1.3 and 6.1.4.  

All 3 classifiers in the hierarchical classifier system use features extracted in the 

preprocessing module. Classifier-2 and Classifier-3 are triggered by the output of HMM-1 and 

HMM-2 respectively. Meaning Classifier-2 is deployed only when a breathing cycle is classified 

as non-normal (i.e., cycles with talking, solid swallows and liquid swallows), and Classifier-3 is 

applied when it is classified a swallow (i.e., both solid and liquid swallows). 
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Figure 7-3:  Meal intake analysis algorithm 

In our previous work [97][98], Support Vector Machine (SVM) was shown to be the most 

effective classifier for swallow detection. Like most commonly used SVM [77], the classification 

output for each breathing cycle is a class label, which is normal breathing cycle or breathing 

cycle with swallows. After analyzing the classification errors, it was found that many of those 

errors could be corrected by applying known temporal locality information in human swallow 
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applying higher level techniques such as Hidden Markov Model (HMM). This motivates the 

cascading of SVM and HMM, as shown in Figure 7-2.  

The meal intake analysis module takes the detected solid swallows from the food intake 

phase. Empirically, people execute solid swallows periodically during a meal. Therefore, when N 

(i.e., a threshold count) or more of solid swallows are detected in a window of M breathing 

cycles, those M cycles are categorized as the part of a meal intake episode. The detailed 

algorithm is illustrated in Figure 7-3. When a moving window is centered at a breathing cycle 

with solid swallows, and the number of solid swallows in the window exceeds the threshold N, 

the cycles among the solid swallows are classified as part of the meal intake episode.    

7.3 Results 

7.3.1 Experimental Methods 

The experiments were carried out on 14 subjects (5 female and 9 male) without any known 

swallow abnormalities. The experiments were approved by Michigan State University’s 

Institutional Review Board. Subjects were required to participate at least 3 sessions of 

experiments. The first 2 sessions were Type-1, and the last session was Type-2.  
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Figure 7-4: Experimental setup 

During a Type-1 session, a subject was asked to have lunch first without talking, then drink 

water from a flask every 20 seconds for 10 times, and then rest for 10 minutes, and lastly 

converse with the experimenter freely for 10 minutes. A Type-2 session was the same as a Type-

1 session except that the subject was allowed to talk when having lunch. Coughing, clearing 

throat, and other activities that impact breathing were also allowed and constantly observed 

during the whole experiment (both Type-1 and Type-2), and laughing was allowed during the 

10-minute conversation of each experiment session. The food for lunch during the experiment 

included rice, bread, salad, fruit, cooked vegetarian and non-vegetarian items. Among the 14 

subjects, 4 of them executed 3 Type-1 sessions and 1 Type-2 session, and the rest performed 2 

Type-1 sessions and 1 Type-2 session. Each Type-1 or Type-2 session lasted around 45 minutes, 

and in total, approximately 34 hours 30 minutes of data were collected. 

The experimental setup is shown in Figure 7-4. During an experiment, a subject, wearing 

the instrumented system as described in Figure 7-1, was instructed to press a button whenever 
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she or he swallows during lunch or drinking, and the smartphone was used for recording the 

respiratory and hand movement signal captured by the system. A video camera was connected to 

a computer to record the movement of mouth and laryngopharynx during the experiment to 

indicate when the subject was talking and to validate the swallows. The computer, smartphone, 

and button recorder were synchronized before each session of experiment. The push-button and 

video information was used as a ground truth for verification purposes. 

Note that the method of using a press button and video camera is more natural compared to 

the observer-based experiments as reported in [29][36], where an observer recorded the swallow 

events. Such observer-based method suffers from the observer-expectancy effect [100], meaning 

the expectation of experimenter affects the behavior of participants. In our experiment, we used a 

press button to indicate the ground truth, and a camera for verification purposes to avoid such 

observer-expectancy effect.  

Normal breathing cycles, breathing cycle with talking, solid swallows, and liquid swallows 

were labelled correspondingly. Laughing, coughing, clearing throat and other artif1acts were 

labelled as talking. Data collected during the 10-minute rest were only used in the meal intake 

analysis phase as described in Section 7.3.5 for analyzing the impact of spontaneous swallows.  

7.3.2 Performance Evaluation 

 To evaluate the performance of the SVM-only and the SVM-followed-by-HMM 

arrangements, we have used commonly used [29][32] biomedical signal processing and 

information retrieval performance indices, namely, Precision, Recall, and F-measure. They are 

defined as follows: 

)( PositivesFalsePositivesTruePositivesTruePrecision +=
  (11) 
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)( NegativesFalsePositivesTruePositivesTruecallRe +=
  (12) 

)(2 callReecisionPrcallReecisionPrmeasureF +⋅⋅=−
     (13) 

For Classifier-1 and HMM-1 (see Figure 7-2), which classify normal breathing cycles and 

non-normal breathing cycles (i.e., breathing cycle with talking, solid swallows and liquid 

swallows), True Positives indicate the non-normal breathing cycles that are correctly detected, 

False Positives means the normal breathing cycles that are mistakenly classified as non-normal 

breathing cycles, and False Negatives correspond to those non-normal breathing cycles that are 

wrongly detected as normal breathing cycles.  

For Classifier-2 and HMM-2, which differentiate breathing cycles from talking and 

swallows (i.e., solid swallows and liquid swallows), True Positives means the swallows that are 

correctly detected, False Positives indicate those breathing cycles with talking that are 

mistakenly classified as swallows, and False Negatives are swallows detected as breathing cycles 

with talking.   

For Classifier-3, which classifies solid and liquid swallows, True Positives depict the solid 

swallows that are corrected classified, False Positives indicate liquid swallows that are 

incorrectly detected as solid swallows, and False Negatives are solid swallows detected as liquid 

swallows.  

F-measure is the harmonic mean of Precision and Recall, and it is used in the case of 

contradictory conclusions based on Precision and Recall individually when compared to the 

performance of two different classifiers. For example, when comparing two classifiers A and B, 

Precision of A is higher than that of B, whereas A’s Recall is lower than B’s, F-measure can then 

be used to draw a conclusion.  
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7.3.3 Feature Extraction 

Category Features 

Respiratory 

signal 

related 

Based on non-

normalized 

breathing 

cycles 

Duration of inhalation and exhalation (4) 

Amplitude of inhalation and exhalation (4) 

Breathing cycle duration and frequency (3) 

Standard deviation of breathing signal in a cycle (1) 

Based on 

normalized 

breathing 

cycles 

Number of local peaks (1) 

Hist-60 (1) 

Mean and standard deviation of breathing signal in a  cycle (2) 

First 10 FFT coefficients (10) 

Energy of high frequency (>3 Hz) components (1) 

±10 crossing of first derivative(2) 

Hand 

movement 

related 

Mean and standard deviation of X and Y axis acceleration in the current breathing 

cycle (4) 

Mean and standard deviation of X and Y axis acceleration in the previous breathing 

cycle (4) 

Mean and standard deviation of X and Y axis acceleration in the breathing cycle 

before previous one(4) 

Table 7-1: Features Extracted For Svm Classifiers 

Table 7-1 demonstrates the 41 features extracted for SVM classifiers for food intake 

detection (numbers in the parenthesis indicate the number of features for each category). Note 

that the first 3 sets of features, i.e., duration of inhalation and exhalation, amplitudes of 

inhalation and exhalation, and breathing cycle duration, include both absolute and relative 
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numbers. For example, both absolute duration of inhalation and exhalation and the proportion of 

inhalation and exhalation as part of the whole breathing cycle are used as features. Absolute 

breathing cycle duration and the ratio between the duration and average duration of 2 

neighboring breathing cycles are also used.    

Hist-60 is derived as follows: 1) first divide the amplitude of the normalized breathing 

cycle into 10 equal intervals with ID 1 to 10, and then 2) set the number of samples falling into 

interval i as bin-i, i=1,2,…,10. Hist-60 is set to i when  

∑∑
−

==

−>⋅>−

1

11

)(6.0
i

j

i

j

jbinsintposampletotaljbin

  (8) 

±10 crossing of first derivative is defined as the number of sample points whose first 

derivatives are either +10 or -10. ±10 crossing of first derivative has been used in [98] and 

proved to be effective in swallow detection.  

7.3.4 Performance of Food Intake Detection 

Food intake detection module as described in Figure 7-2 utilizes the features extracted 

from the preprocessing module, and detects normal breathing cycles, breathing cycles with 

talking, solid swallows, and liquid swallows. The food intake detection module uses the 

extracted features as shown in Table I from the preprocessing stage, and performs SVM and 

HMM classification. The detected normal breathing cycles, breathing cycles with talking, solid 

swallows, and liquid swallows are then fed in to the meal intake analysis module for meal intake 

episode detection.  

SVM classifiers (i.e., Classifier-1, 2, and 3) can be used without involving the HMMs. As 

presented in Section 6.1.2, Classifier-1, 2 and 3 produce the posterior probability of each 

breathing cycle of being non-normal breathing cycle, swallow, and solid swallow respectively. 
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By comparing the posterior probability with a predefined threshold, detection results can be 

derived. For unbiased classifiers, which have no preference on any class, the threshold 0.5 can be 

adopted. For example, if the posterior probability produced by Classifier-1 is 0.3, the 

corresponding breathing cycle can be classified as a normal breathing cycle. 

Figure 7-5 shows the performance measures as defined in Section 7.3.2 of this SVM-only 

food intake detection method with and without the hand movement features as illustrated in 

Table 7-1. Results are reported both for subject dependent and subject independent models. 

 

Figure 7-5:.  Performance of SVM-only food intake detection method 

Subject dependent model: SVM classifiers were tested with data from one session and trained on 

the data from other sessions for each subject. 
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Subject independent model: SVM classifiers were trained using the data collected from all 

subjects except the one whose data was used for testing. 

Note that results shown in Figure 7-5 were based on the Type-1 experiments during which 

talking was not allowed during lunch. Figure 7-5:(a) shows the precision, recall and F-measure 

for Classifier-1, Classifier-2 and Classifier-3, when evaluated with subject dependent and 

without hand movement scenarios. Figure 7-5:(b) is for subject dependent and with hand 

movement scenarios. Finally, Figure 7-5:(c) is for subject independent and with hand movement 

case.  

As expected, by providing useful side information, the optional hand movement feature did 

improve the overall detection performance. As shown in Figure 7-5:(a) and (b), when the hand 

movement features are used, the performance of Classifier-2 improved significantly. However, 

the hand movement features have very limited impacts on the performance of Classifiers-1 and 

3. The Subject-independent model has performance similar to the subject dependent model 

according to Figure 7-5:(b) and (c), which proves the good generalizability of the proposed 

method for food intake detection.  

Table 7-2: Comparison Between Svm-Only And Svm+Hmm Solutions 

Classifier 

SVM only SVM+HMM 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

1 86.6 76.6 81.3 85.1 81.7 83.4 

2 60.4 80.4 69.0 72.8 71.3 72.0 

HMM modeling and processing, as introduced in Section 6.1.3 and 6.1.4, were applied on 

the posterior probability produced by the SVM classifiers to improve the performance by 

leveraging the temporal locality present in human swallowing and talking behavior. Table 7-2 

demonstrates the comparison between SVM-only solution and SVM+HMM solution on Type-2 



117 

 

dataset, in which subjects can talk during lunch. The F-measure of SVM+HMM mechanism, 

which represents a harmonic mean of precision and recall, is constantly higher than that of the 

SVM-only solution. 

 

Figure 7-6: An example temporal dynamics of the meal intake analysis process 
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7.3.5 Performance of Meal Intake Analysis 

As the final step of mealtime and duration analysis, the meal intake analysis module as 

described in Figure 7-2, analyzes the detected solid swallows from food intake monitoring 

module and detects the meal intake episodes. Since people generally execute solid swallows 

periodically during a meal, a subject is considered to be within a meal when a more than a 

threshold number of solid swallows (i.e., N) are detected in a window of M breathing cycles. The 

detailed algorithm is depicted in Figure 7-3. 

 
Figure 7-7: Threshold selection for different window sizes 
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episodes for an actual meal.  Figure 7-7 shows the optimum threshold selection for example 
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window size is 140 seconds, the threshold needs to be adjusted to 4 breathing cycles. Note that 

the optimized M and N can be different for different subjects or even the type of food, but the 

analysis here provides a general guidance in selecting the parameters. In our experiments, 

window size of 100 seconds and threshold 3 were selected across all subjects and experiments.  

Figure 7-6 shows an example of meal intake analysis with average food intake detection 

performance. Figure 7-6:(a) shows the results for Type-1 experiments, in which talking was not 

allowed during meal, and Figure 7-6:(b) depicts the results for Type-2 experiments, when talking 

was allowed. Figures on the top indicate the ground truth recorded by button pressing and the 

video camera. For instance, each solid swallow (SS) point during lunch corresponds to a solid 

swallow recorded by the button pressing. Similarly, each point during the drinking phase was a 

liquid swallow (LS), which was recorded by a button pressing, and the video record was used to 

verify the boundary between lunch and drinking and to indicate breathing cycles with talking. 

Detection results from food intake detection module are shown in the middle graphs in Figure 

7-6. Each point in this section corresponds to a normal breathing cycle, breathing cycle with 

talking, solid swallow or liquid swallow detected by the food intake detection module as 

described in Figure 7-2. The graphs at the bottom of fig. 8 are the detected meal intake episodes 

by the meal intake analysis module in Figure 7-2. Each point in these graphs corresponds to a 

breathing cycle which either belongs to the meal intake episode (MIE) or not (Non-MIE). It can 

be seen that although there are quite a few detection errors in the food intake detection module, 

the meal intake analysis module can still detect the time and duration of meal intake episodes 

with fairly high accuracy.  
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Figure 7-8:  Performance of meal intake analysis module 

More specifically, in Figure 7-6:(a), few breathing cycles are mistakenly classified as 

talking during meal. However, since the meal intake analysis module relies only on solid 

swallows, those few misdetections do not reduce the number of solid swallows in the window 
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correctly at the beginning of the experiments, thus the detected meal intake episode is slightly 

shorter than the actual episode. Observe that many spontaneous swallows are detected during the 

resting session. At the beginning of talking session, three breathing cycles are erroneously 

classified as solid swallows, thus a short false positive is observed.  

Figure 7-8 demonstrates the actual and detected duration of meal intake episode for both 
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7.4 Discussion 

7.4.1 Restrictive Feature Selection 

In the analysis in Section 7.3, we have used all the features listed in Table 7-1. While using 

all the features yields the best detection performance, it may not be desirable in situations where 

the available computational power is limited on devices such as smart phones, sensors, etc. In 

order to evaluate the proposed algorithms in such limited resource scenarios, the features can be 

ranked based on their discrimination power, which refers to information gain [90] defined as the 

reduction in classification entropy (i.e., H(*)) with additional information provided by the 

corresponding feature about the target classes. Assuming A as a feature and C as the set of target 

classes, the following equations indicate class entropy before and after using the feature:  

∑
∈

−=

Cc

cpcpCH )(log)()(
2              (9) 

∑∑
∈∈

−=

CcAa

acpacpapACH )|(log)|()()|(
2     (10) 

A feature with high discrimination power brings low class entropy when the feature is 

utilized. This information gain-based feature selection algorithm has been used in [101] [102], 

and proven to be effective.  
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Figure 7-9: Performance of Classifier-1, 2 and 3 with different feature count 

Figure 7-9 demonstrates the performance of Classifier-1, 2 and 3 when the number of 

adopted features is changed. Note that the HMM stage is bypassed in this analysis, and SVM 

[99] is used as the machine learning algorithm. Features are added into the feature set one by one 

based on their discrimination power evaluated based the mechanism suggested in [101] [102]. 

More specifically, the feature with highest discrimination power is first used, and then the feature 

with second highest discrimination power is added. The results in the figure represent the 

average performance for all the subjects using the Subject dependent model as described in 

Section 7.3.4.  

As shown in Figure 7-9, performance of Classifier-1 stabilizes with 25 or more features, 

while performance of Classifier-2 stabilizes with 20 or more, and performance of Classifier-3 

stabilizes with 10 or more features.  
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These results can be used to determine how many and which features should be used based 

on how much computational resources are available in the target platform such as a smart phone 

or sensor mote. 

7.4.2 Benefits of Hierarchical Classifier 

We have evaluated the performance difference between the proposed hierarchical classifier 

in Section 7.2 and a corresponding single-stage classifier with same classification objective. In 

the 3-stage hierarchical classifier, the first classifier detects normal breathing cycle and non-

normal breathing cycles (includes breathing cycles with talking, solid swallow and liquid 

swallow). The second classifier detects talking and swallowing (both solid and liquid swallow), 

and the third classifier identifies solid and liquid swallows.  

A corresponding single stage classifier would classify normal breathing cycles, breathing 

cycles with talking, solid swallows, and liquid swallows. Such a classifier would use the features 

extracted by the Preprocessing module in Figure 7-2, and apply them to a single machine 

learning algorithm. We have used SVM for both the hierarchical classifier and the single stage 

classifier for their performance comparison as reported in Table 7-3.   

Table 7-3: Comparison of 3-Stage Hierarchical Classifier And Single Classifier 

Classifier 

3-stage hierarchical classifier Single classifier 

Precision 

(%) 

Recall (%) 

F-measure 

(%) 

Precision 

(%) 

Recall (%) 

F-measure 

(%) 

1 84.5 79.6 82.0 85.7 70.9 77.5 

2 82.1 82.9 82.5 73.2 84.6 78.5 

3 87.0 87.5 87.2 64.7 96.2 77.4 
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Performance of each classifier in the 3-stage hierarchical classification method is reported 

individually. For the single classifier, the performance is mapped to the corresponding stages of 

the hierarchical method. For example, performance of the single classifier compared to 

Classifier-1 (i.e., the one differentiates between normal breathing cycle and non-normal 

breathing cycle) in hierarchical method was computed by combining breathing cycles with 

talking, solid swallow and liquid swallow as a single category of non-normal breathing cycle. By 

comparing the F-measures of the two solutions, it can be observed that the proposed 3-stage 

hierarchical classifier constantly outperforms the single classifier solution, and justifies its 

additional complexity.  

7.4.3 Performance of Existing Research 

Passler et al [32] achieved 91.3% precision and 81.8% recall with an in-ear microphone, 

although only solid swallows were considered, and artifacts were excluded in their work. Amft et 

al [39] used inertial sensors to track the movement of arm and trunk, an ear microphone to record 

the food break down sound, and surface Electromyography (SEMG) electrodes and stethoscope 

microphone to detect swallowing activities. The derived detection of individual swallows 

resulted in 20% for precision and 68% for recall. Makeyev et al [34] deployed a throat 

microphone located over the laryngopharynx to detect swallow events, and the average accuracy 

is 66.7% for inter-subject model (cross-validation). In this paper, the cascading of Classifier-1 

and Classifier-2 using the SVM+HMM scheme detects swallows, for which the combined 

precision and recall (i.e., derived using the method described in [103][104]) are 71.3% for 

precision and 60.6% for recall. Based on these observations, it can be concluded that the 

proposed detection algorithms in this paper offer a competitive mealtime estimation method with 

a brand new modality of sensing.     
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7.4.4 Spontaneous Swallows 

Spontaneous swallows were identified and handled in this reported system. Spontaneous 

swallow is a protective aero-digestive reflex for airway protection, and it is caused by 

accumulated saliva and/or food remnants in the mouth [105]. For healthy subjects, the frequency 

of spontaneous swallows is about 1.22 times per minute [106].  

In our experiments, the 10-minute rest within each experiment session was used to 

evaluate the performance for handling spontaneous swallows. As shown in Figure 7-6:(a), 

spontaneous swallows during resting were sometimes misdetected as talking, and as shown in 

Figure 7-6:(b), majority of those were detected as liquid swallows. However, as spontaneous 

swallows are less frequent and the meal intake analysis module only depends on solid swallows, 

spontaneous swallows did not impact on the detection performance of the of meal intake 

episodes, in general. 

7.5 Conclusion 

This paper presents a wearable sensor system for mealtime and duration detection based on 

breathing signal and hand movement analysis. Different from previous research, the proposed 

mechanism not only detects each individual swallows, but also detects the mealtime and duration 

information. Experiments were carried out on 14 subjects considering various artifacts that affect 

breathing signal, such as spontaneous swallows, talking, laughing, coughing, and clearing throat. 

Experimental results show that the proposed system and mechanism is an effective method for 

mealtime and duration monitoring.  
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Chapter 8: Proposed Work 

In this thesis it was demonstrated that piezoelectric and RIP based sensor systems, and the 

proposed intake monitoring algorithms are able to detect swallow events, mealtime, and duration 

by observing a person’s breathing signal. We first detect swallows by the way of detecting 

apneas extracted from breathing signal captured by a wearable wireless chest-belt. Afterwards, 

swallow pattern analysis is used for identifying swallows. Lastly, mealtime and duration 

detection is performed. Together with self-reporting at the high level of overall diet habits (i.e., 

the types of food and drinks etc.), the instrumented detection of swallow counts can offer an 

objective way to: 1) study the food and drink intake trends, and 2) estimate calorie intake. 

Building on the work done so far, we propose the following future search items.  

8.1 Diet Volume Detection 

To the best of our knowledge, most of the existing diet monitoring methods and algorithms 

focus on detecting the swallowing events. The evaluation metrics includes precision, recall and 

sensitivity. Although swallowing counts are generally correlated with volume of food consumed, 

the actual volume of bolus for each swallow may vary over time and across different subjects. 

Consequently, detecting swallow events without considering the volume of food intake may 

bring inaccuracy in estimating energy intake.  

According to our experiments in Chapter 7, the volume for each swallow varies 

significantly across subjects, and also depends on the nature of the food. The following methods 

may be adopted for volume detection: 

1) Performing controlled experiment on subjects with various types of food to get the 

volume per swallow 



127 

 

2) Using the swallow detection mechanism proposed to count the number of swallows. 

Together with the self-report of food type, the total volume of food can be estimated.   

8.2 Choking and Coughing Detection 

According to National Safety Council [107], choking is the third leading cause of home 

injury death for adults over 76, and second for people over 89. Choking is also fatal to children 

under 1 year old. Many factors can lead to choking, such as improperly chewed food, drinking 

alcohol, Parkinson’s disease, etc.  

Choking is the obstruction of the flow of air into lungs, and it prevents breathing. 

Prolonged choking time can result in asphyxia which leads to anoxia and is potentially fatal. 

Measures need to be taken within minutes before oxygen stored in the blood and lungs is 

depleted.  

As shown in Chapter 3, holding breathe can cause constant output from the proposed chest 

belt systems. While choking, a victim may move irregularly causing motion effects. Therefore, 

by analyzing the component of breathing signal at different frequencies, choking can be detected.  

Coughing is a protective reflex that clears the respiratory passages. It can be divided into 

three phases: (a) inhalation, (b) forced exhalation against closed glottis, and (c) violent release of 

air from lungs with opening of the glottis. Coughing is a common symptom of many diseases, 

such as virus and bacterial infection, respiratory tract infection, asthma, gastroesophageal reflux 

disease and etc. 
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Figure 8-1: Anticipated output of chest belts during coughing (a) one coughing within a 

breathing cycle (b) two consecutive coughs in a breathing cycle 

Figure 8-1demonstrates the anticipated output of the chest belts during coughing based on 

the fact that coughing has three phases. If similar breathing signal can be observed during data 

collection, we should be able to detect coughing using matched filter based mechanism or 

machine learning mechanism.    
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