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ABSTRACT

HEEGAARD FLOER HOMOLOGY AND L-SPACE KNOTS

By

Faramarz Vafaee

Heegaard Floer theory consists of a set of invariants of three- and four-dimensional man-

ifolds. Three-manifolds with the simplest Heegaard Floer invariants are called L-spaces, and

the name stems from the fact that lens spaces are L-spaces. The overarching goal of the

dissertation is to understand L-spaces better. More specifically, this dissertation could be

considered as a step towards finding topological characterizations of L-spaces and L-space

knots without referencing Heegaard Floer homology. We study knots in S3 that admit pos-

itive L-space Dehn surgeries. In particular, we give new examples of knots in S3 within

both the families of hyperbolic and satellite knots admitting L-space surgeries. It should

be pointed out that for satellite knot examples, we use Berge-Gabai knots (i.e. knots in

S1×D2 with non-trivial solid torus Dehn surgeries) as the pattern. Moreover, we study the

relationship between satellite knots and L-space surgeries in the general setting, i.e. when

the pattern is an arbitrary knot in S1 ×D2.
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Chapter 1

Introduction

In [OS04d], Oszváth and Szabó introduced Heegaard Floer theory, which produces a set

of invariants of three- and four-dimensional manifolds. One example of such invariants is

ĤF (Y ), which associates a graded abelian group to a closed 3-manifold Y . When Y is a

rational homology three-sphere, rk ĤF (Y ) ≥ |H1(Y ;Z)| [OS04c]. If equality is achieved,

then Y is called an L-space. Examples include lens spaces, and more generally, all connected

sums of manifolds with elliptic geometry [OS05b] (or equivalently, with finite fundamental

group by the Geometrization Theorem [KL08]). L-spaces are of interest for various reasons.

For instance, such manifolds do not admit co-orientable taut foliations [OS04a, Theorem 1.4].

A knot K ⊂ S3 is called an L-space knot if it admits a positive L-space Dehn surgery.

Any knot with a positive lens space surgery is then an L-space knot. In [Ber], Berge gave a

conjecturally complete list of knots that admit lens space surgeries. Therefore it is natural to

look beyond Berge’s list for L-space knots. Examples include the (−2, 3, 2n+1) pretzel knots

(for positive integers n) [BH96, FS80, OS05b], which are known to live outside of Berge’s

collection when n ≥ 5 [Mat00]. We should first note that the pretzel knots (2, 3, 1), (2, 3, 3),

and (2, 3, 5) are isotopic to the (2, 5), (3, 4), and (3, 5) torus knots, respectively. Torus knots,

a proper subfamily of Berge knots, are well-known to admit lens space surgeries [Mos71].

The hyperbolic pretzel knot (2, 3, 7) is also known to have two lens space surgeries [FS80].

The knot (2, 3, 9) has two finite, non-cyclic surgeries [BH96]. Finally, the remaining knots,

(2, 3, 2n + 1) for n ≥ 5, are known to have Seifert fibered L-space surgeries with infinite
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fundamental group [OS05b]. It is also proved in [LM13] that these 3-strand pretzel knots

are the only pretzel knots with L-space surgeries. Another source of L-space knots is within

the set of cable knots. By combining work of Hedden [Hed09] and Hom [Hom11a], the

(m,n) cable of a knot, K, is an L-space knot if and only if K is an L-space knot and

n/m ≥ 2g(K) − 1. Also, if K is a quasi-alternating knot with unknotting number one,

then the preimage of an unknotting arc in the branched double cover of K is a knot in an

L-space with an S3 surgery (see [OS05a, Section 8.3]). The dual to this curve is therefore

a knot in S3 with an L-space surgery, so either it or its mirror image is an L-space knot.

However, at present, there is no explicit parametrization of the knots that arise in this way.

Quasi-alternating knots were first introduced by Ozsváth and Szabó in [OS05c]. This class

of knots appeared in the context of the Floer homology of links as a natural generalization of

alternating links. This comes from the fact that the branched double cover of an alternating

link, and more generally a quasi-alternating link, is an L-space [OS05c, Proposition 3.3]. We

remind the reader that the branched double cover Σ(K) of a knot K with unknotting number

one can be obtained by doing Dehn surgery on a knot, K̃, in S3 [Mon73] (the Montesinos

trick). Therefore, for the case that K is quasi-alternating with unknotting number one, if

the surgery coefficient in the branched double cover is positive, then K̃ will be an L-space

knot.

L-space knots are those knots that admit positive Dehn surgeries so that the resulting

three-manifolds have the same Heegaard Floer homology as lens spaces. One of the most

prominent problems in relating Heegaard Floer homology to low-dimensional topology is to

find topological characterizations of L-spaces and L-space knots. Ghiggini proved in [Ghi08]

that genus one L-space knots are fibered (see also [OS05b]). Later, Ni [Ni07] showed that all

L-space knots are fibered. It was proved by Hedden [Hed10] that knots in S3 with positive
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L-space surgeries are strongly quasipositive. A strongly quasipositive knot is a knot that

has a particular type of Seifert surface, called a quasipositive surface. Quasipositive surfaces

are those surfaces obtained from n parallel disks by attaching positive bands. A knot or

link is strongly quasipositive if it can be realized as the boundary of such a surface. Note

that for a fibered knot K ⊂ S3, being strongly quasipositive is equivalent to having the

corresponding open book decomposition associated to (F,K), where F is the fiber surface,

inducing the unique tight contact structure on S3 [Hed10, Proposition 2.1]. In particular,

L-space knots induce the standard tight contact structure on S3. (We refer the reader to

[Etn06, OS04] for a review of contact geometry.) Unfortunately, it is not the case that every

strongly quasipositive fibered knot admits a non-trivial L-space Dehn surgery. An example

of such a knot is the (2, 1) cable of the right-handed trefoil. It is strongly quasipositive by

[Hed10, Corollary 1.3]. However, an exploration of its knot Floer homology groups (found

in [Hed05]) reveal that it cannot admit an L-space surgery.

In [Sch49], Schubert showed that every knot in S3 decomposes as a connected sum of

prime knots in a unique way (up to reordering). We also recall that every knot in S3 is

either hyperbolic, a satellite, or a torus knot. It is well-known that positive torus knots

admit positive lens space surgeries [Mos71], and therefore are L-space knots. In this work

we demonstrate new examples of L-space knots within both the families of hyperbolic and

satellite knots. (We should point out that L-space knots are prime [Krc13, Theorem 1.2].)

1.1 Hyperbolic L-space knots

The primary purpose of this section is to investigate L-space knots in the family of twisted

torus knots,K(p, q; s, r), which are defined to be, roughly speaking, the (p, q) torus knots with
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r full twists on s adjacent strands where 0 < s < p. See Figure 1.2. Twisted torus knots

are an interesting class of knots that have been studied in several contexts. These knots

represent many different knot types. Morimoto and Yamada [MY] and Lee [Lee12] have

constructed twisted torus knots which are cables. Morimoto has also shown that infinitely

many twisted torus knots are composite [Mor94]. Guntel has shown that infinitely many

twisted torus knots are torus knots [Gun12]. Also, a complete characterization of twisted

torus knots which are isotopic to the unknot has been done by Lee in [Lee13]. Moriah

and Sedgwick have shown that certain hyperbolic twisted torus knots have minimal genus

Heegaard splittings which are unique up to isotopy [MS09]. In terms of the relationship

between twisted torus knots and their Floer homology, however, not much was previously

known.

Watson proved in [Wat09] that the knots K(3, 3k+2; 2, 1) are L-space knots (k > 0). We

generalize this result in Corollary 2.2.3 by showing that all twisted torus knots K(3, q; 2, s),

for all q, s > 0, admit L-space surgeries (in order for a twisted (3, q) torus link to be a knot,

q must be an integer that does not divide 3).

In Chapter 2, we classify all the L-space twisted (p, q) torus knots with q = kp ± 1 (see

[Vaf14]). The question of what happens when q 6= kp±1 remains unanswered. Our examples

include the L-space pretzel knots as a proper subfamily since the (−2, 3, 2m+3) pretzel knot

is isotopic to K(3, 4; 2, m) for m ≥ 1.

We now state the main result of this section. For p ≥ 2, k ≥ 1, r > 0 and 0 < s < p:

Theorem 1.1.1. The twisted torus knot, K(p, kp± 1; s, r), is an L-space knot if and only if

either s = p− 1 or s ∈ {2, p− 2} and r = 1.

A key ingredient of the proof is the observation that all of the twisted torus knots being
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. . .

. . .

. . .

τ

(p, q)

torus knot

r

full twists

on

s strands

Figure 1.1 A (p, q) torus knot with r positive full twists on s adjacent strands. (Here, p denotes
the longitudinal winding.) The arc τ is a one-bridge, i.e. it divides the knot into two arcs, where
one arc is unknotted and the other arc can be trivialized (unknotted) by sliding one or both of
its endpoints along the a priori unknotted arc. In order to make sense of adjacency of strands,
we need to have the standard presentation of a torus knot. Note that where the twist occurs is
irrelevant.

studied in Theorem 1.1.1 are (1, 1) knots, that is, knots that can be placed in one-bridge

position with respect to a genus one Heegaard splitting of S3. Thus, the knot is comprised

of two properly embedded unknotted arcs, one in each of the two solid tori of the Heegaard

splitting. These arcs meet along their endpoints so that their union is equal to the knot.

From the perspective of knot Floer homology, (1,1) knots are particularly appealing. It

was first observed by Goda, Morifuji, and Matsuda [GMM05] that (1, 1) knots are exactly

those knots that can be presented by a doubly-pointed Heegaard diagram of genus one. The

chain complex for knot Floer homology is defined in terms of a doubly-pointed Heegaard

diagram. As shown by Ozsváth and Szabó [OS04b], for knots admitting a genus one diagram,

knot Floer homology can be computed combinatorially and efficiently.

Recall that the tunnel number of a knot K in S3 is the minimum number of mutually
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disjoint arcs with endpoints on K so that the exterior of the resulting 1-complex is homotopy

equivalent to a handlebody. It is known that all of the twisted torus knots of Theorem 1.1.1,

as well as all of the Berge knots, are (1, 1) knots (see, for instance, [MSY96] for the case

of twisted torus knots). It is also known that all (1, 1) knots have tunnel number one. In

[Mot14] Motegi shows that there exist infinitely many hyperbolic L-space knots with tunnel

number two (see also [BM14, Question 24]). We propose the following question:

Question 1.1.2. Is there a non-satellite L-space knot with tunnel number greater than two?

1.2 Satellite knots and L-space surgery

As stated previously, cabling an L-space knot, when the ratio n/m of the cabling parameters

is large enough, is an L-space satellite operation. (We recall that a cabled knot is a special

case of a satellite knot; namely, the pattern is an (m,n)-torus knot.) We generalize this

result by introducing a new L-space satellite operation using Berge-Gabai knots [Gab90] as

the pattern.

Definition 1.2.1. A knot P ⊂ S1×D2 is called a Berge-Gabai knot if it admits a non-trivial

solid torus filling.1

To see that this satellite operation is a generalization of cabling, it should be noted that

any torus knot with the obvious solid torus embedding is a Berge-Gabai knot [Sei33]. Note

also that any Berge-Gabai knot P which is isotopic to a positive braid, when considered as a

knot in S3, admits a positive lens space surgery; for if performing appropriate surgery on P

in one of the solid tori in the genus one Heegaard splitting of S3 returns a solid torus, then

1Berge-Gabai knots, in the literature, are defined to be 1-bridge braids in solid tori with non-trivial solid
tori fillings. We relax that definition to include torus knots as a proper subfamily.
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(a)

ℓ

m

Λ

µ

A

(b)

Figure 1.2 Berge-Gabai knots are knots in S1 ×D2 with non-trivial solid tori fillings. Such knots
are always the closure of the braid (σbσb−1 . . . σ1)(σw−1σw−2 . . . σ1)

t where 0 ≤ b ≤ w − 2, and
|t| ≥ 1. (a) An example of a braid in a solid cylinder I×D2 that closes to form a Berge-Gabai knot
with b = 2, t = 3, and w = 5. (The fact that the picture depicted above represents a Berge-Gabai
knot is verified in [Gab90, Example 3.8].) Recall that we write t = t0 + qw, where here t0 = 3 and
q = 0. (b) An immersed annulus A that can be arranged to be an embedded surface in V = S1×D2

joining P to T = ∂V by performing oriented cut and paste and adding a 2πt/w twist. Note that
the embedded surface A provides, in the exterior of P , a homology from wℓ + tm in T to Λ in
J = ∂nb(P ).

the corresponding surgery on the knot in S3 will result in a lens space. For positive braids,

this surgery is positive by Lemma 3.1.1 and [Mos71, Proposition 3.2].

It is shown in [Gab89] that any Berge-Gabai knot must be either a torus knot or a 1-

bridge braid in S1 × D2. More precisely, every Berge-Gabai knot P ⊂ V = S1 × D2 is

necessarily of the following form. (For a sufficient condition determining when a knot of this

form is a Berge-Gabai knot, see [Gab90, Lemma 3.2].) Let w denote the braid index of P .

In the braid group Bw let σi denote the generator of Bw that performs a positive half twist

on strands i and i + 1. Let σ = σbσb−1 . . . σ1 be a braid in Bw with 0 ≤ b ≤ w − 2 and let

t be a nonzero integer. Place σ in a solid cylinder and glue the ends by a 2πt/w twist, i.e.,
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form the closure of the braid word (σbσb−1 . . . σ1)(σw−1σw−2 . . . σ1)
t. We only consider the

case where this construction produces a knot, rather than a link. This construction forms

a torus knot if b = 0 and a 1-bridge representation of P in V if 1 ≤ b ≤ w − 2. We call b

the bridge width, and t the twist number of P . Note that the twist number can be written

as t = t0 + qw for some integers t0 and q where t0 can be chosen so that 1 ≤ t0 ≤ w − 1.2

See Figure 1.2(a). Also, note that if b 6= 0 then the possibility of t0 = w− 1 is disallowed as

otherwise we would obtain a link with at least two components [Gab90].

Remark 1.2.2. Note that if t < 0, then the braid σ = (σbσb−1 . . . σ1)(σw−1σw−2 . . . σ1)
t is

isotopic to a negative braid:

σ ∼ (σbσb−1 . . . σ1)(σw−1σw−2 . . . σ1)
t

∼ (σw−1σw−2 . . . σb+1)
−1(σw−1σw−2 . . . σ1)

t+1.

We are now ready to state the main result. Let P (K) denote a satellite knot with pattern

P and companion K.

Theorem 1.2.3. Let P be a Berge-Gabai knot with bridge width b, twist number t, and

winding number w, and let K be a non-trivial knot in S3. Then the satellite P (K) is an

L-space knot if and only if K is an L-space knot and b+tw
w2

≥ 2g(K)− 1.

Note that when b = 0, we can take w = m and t = n, and Theorem 1.2.3 reduces to the

cabling result of [Hed09, Hom11a]. A version of the “if” direction of Theorem 1.2.3 appears

2Our construction of Berge-Gabai knots, which enables us to define them up to isotopy of the knot in

S1 ×D2, is slightly different than that of Gabai [Gab90]. In Gabai’s original construction, he always took

q = 0 and considered knots in the solid torus up to homeomorphism of S1 × D2 taking one knot to the
other.

8



in [Mot14, Proposition 7.2].

The outline of the proof of Theorem 1.2.3 is as follows. By applying techniques developed

in [Gab90, Gor83] to carefully explore the framing change of the solid torus surgered along

P , we prove the “if” direction of the theorem. More precisely, surgery on P (K) corresponds

to first doing surgery on P (namely removing a neighborhood of P from S1 × D2 and

Dehn filling along the new toroidal boundary component) and, second, attaching this to the

exterior of K. Therefore, if one chooses the filling on P such that the result is a solid torus

(using that P is a Berge-Gabai knot), then the overarching surgery on P (K) corresponds to

attaching a solid torus to the exterior of K (performing surgery on K). Moreover, note that

by positively twisting P by performing a positive Dehn twist on S1 × D2 (i.e., increasing

q), we can obtain an infinite family of Berge-Gabai knots. Fixing an L-space knot K, for

sufficiently large q, the satellite P (K) will admit a positive L-space surgery. Finally, the

“only if” direction is proved by methods similar to those used in [Hom11a].

In order to prove Theorem 1.2.3, we establish the following lemma, which may be of

independent interest.

Lemma 1.2.4. Let P ⊂ S1 × D2 be a negative braid and K ⊂ S3 be an arbitrary knot.

Then the satellite knot P (K) is never an L-space knot.

We point out that Lemma 1.2.4 can be extended more generally to the case that P is a

homogeneous braid which is not isotopic to a positive braid [Sta78, Theorem 2]. The proof

of Lemma 1.2.4 was inspired by the arguments in [BM14].

We have the following corollary concerning the Ozsváth-Szabó concordance invariant τ

and the smooth 4-ball genus.

Corollary 1.2.5. Let P ⊂ S1×D2 be a Berge-Gabai knot and K ⊂ S3 be an L-space knot.
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If b+tw
w2

≥ 2g(K)− 1, then

τ(P (K)) = τ(P ) + wτ(K),

and

g4(P (K)) = g4(P ) + wg4(K),

where τ(P ), respectively g4(P ), denotes τ , respectively the 4-ball genus, of the knot obtained

from the standard embedding of S1 ×D2 into S3.

Proof. If J is an L-space knot, then τ(J) = g4(J) = g(J) by [OS05b, Corollary 1.6] and

[Ni07, Corollary 1.3]. Furthermore, by Lemma 3.2.4,

g(P (K)) = g(P ) + wg(K).

By assumption, K is an L-space knot. Since P is a Berge-Gabai knot with a positive

twist number, it follows that P is isotopic to a positive braid. Therefore, by the discussion

following Definition 1.2.1, P has a positive lens space surgery, and thus is an L-space knot.

Furthermore, by Theorem 1.2.3, we also have that P (K) is an L-space knot, and the result

follows.

1.3 Further results and discussion

Theorem 1.2.3 allows one to construct new examples of L-spaces as follows. First, begin

with any L-space knot and then satellite with a Berge-Gabai knot satisfying the conditions

in Theorem 1.2.3. Sufficiently large positive surgery will then result in an L-space. Using

this technique, we will construct L-spaces with any number of hyperbolic and Seifert fibered
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pieces in the JSJ decomposition.

Theorem 1.3.1. Let r and s be non-negative integers such that at least one is non-zero.

Then there exist infinitely many irreducible L-spaces whose JSJ decompositions consist of

exactly r hyperbolic pieces and s Seifert fibered pieces.

As discussed, an L-space cannot admit a co-orientable taut foliation. Therefore, Theo-

rem 1.3.1 will yield irreducible rational homology spheres without co-orientable taut foliations

whose JSJ decompositions consist of any numbers of hyperbolic and Seifert fibered pieces.

We remark that all rational homology spheres with Sol geometry are L-spaces [BGW13].

It is also natural to ask in what sense Theorem 1.2.3 generalizes; in particular, given a

satellite knot which is an L-space knot, what must hold for the pattern or the companion?

We propose the following conjecture (see also [BM14, Question 22]).

Conjecture 1.3.2. If P (K) is an L-space knot, then so are K and P .

Similarly, we conjecture that the converse holds as well, contingent on the pattern being

embedded “nicely” in the solid torus (e.g., as a strongly quasipositive braid closure) and

sufficiently “positively twisted” (akin to the condition in Theorem 1.2.3). We will not attempt

to make these notions precise in the dissertation.

As supporting evidence for Conjecture 1.3.2, we will study it from the viewpoint of left-

orderability. Recall that a non-trivial group G is left-orderable if there exists a left-invariant

total order on G (see Section 3.5 for a more detailed discussion). We recall the conjecture

of Boyer, Gordon, and Watson relating Heegaard Floer homology to the left-orderability of

three-manifold groups.

Conjecture 1.3.3 (Boyer-Gordon-Watson [BGW13]). Let Y be an irreducible rational ho-

mology sphere. Then Y is an L-space if and only if π1(Y ) is not left-orderable.
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We point out that the computational strengths of Heegaard Floer homology and left-

orderability tend to be fairly different. It is hopeful that if Conjecture 1.3.3 is true then

the strengths of each theory could be combined to derive new topological consequences. We

utilize this philosophy to establish Conjecture 1.3.2 under the assumption of Conjecture 1.3.3.

Proposition 1.3.4. Assuming Conjecture 1.3.3, if P (K) is an L-space knot, then so are P

and K.

Conjecture 1.3.2 can be also viewed from the perspective of strongly quasipositive knots.

Recall that L-space knots are strongly quasipositive [Hed10, Proposition 2.1]. Therefore it

makes sense to ask that for a strongly quasipositive fibered satellite knot P (K), what must

hold for the pattern P and companion K? We propose the following:

Question 1.3.5. For a fibered satellite knot P (K) with pattern a non-trivial knot P ⊂

S1 ×D2 (i.e., not isotopic to the unknot when considered as a knot in S3) and companion

K ⊂ S3, is it true that strongly quasipositiveness of any of the two implies the strongly

quasipositiveness of the third.
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Chapter 2

Twisted torus knots and L-space

surgery

This chapter is mainly based on [Vaf14]. The focus of Chapter 2 is to prove Theorem 1.1.1.

Section 2.1 introduces the theory of (1, 1) knots and presents how to draw a genus one

Heegaard diagram for (1, 1) knots via an explicit example. Section 2.2 contains the proof

of the main result (Theorem 1.1.1), as well as the corollaries. In the final section, we state

some questions that address future research.

2.1 Background and preliminary lemmas

We start this section by showing that the knots K(p, kp ± 1; s, r) are (1, 1) knots. Next,

we explain an algorithm which produces genus one Heegaard diagrams for the twisted torus

knots with a (1, 1) decomposition. Finally, we assemble some preliminary facts needed to

prove Theorem 1.1.1.

2.1.1 (1, 1) knots and genus one Heegaard diagrams

Let p and q be relatively prime positive integers and let r and s be integers. We denote the

knot illustrated in Figure 1.2 by K(p, q; s, r). Let τ be the arc indicated in Figure 1.2. By

untying the crossings of the r full twists above the arc through edge slides along the arc, we
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τ

(a)

τ

(b)

Figure 2.1 A (3, 4) torus knot with two positive full twists on two adjacent strands. The one-bridge
is indicated by τ .

will show that τ becomes a one-bridge for K(p, q; s, r) provided that q = kp± 1. See Figure

2.1 for an explicit example. It has been a long standing question of whether or not any

twisted torus knot, with q that is not of the form kp±1, is a (1, 1) knot. In 1991, Morimoto,

Sakuma, and Yokota conjectured that the answer is negative:

Conjecture 2.1.1 ([MSY96], Conjecture 1.3). K(p, q; 2, r) admits no (1, 1) decomposition

unless either p ≡ ±1 (mod q), or q ≡ ±1 (mod p), or r = 0,±1.

Having s = 2 does not seem to play an important role in the conjecture and, in fact, we

expect a similar conjecture to hold when the twisting is on any number of strands. Bowman,

Taylor, and Zupan have proved this conjecture when the number of twists is large [BTZ14,

Theorem 1.1].

In the rest of this subsection, we give an explicit construction of a genus one doubly-
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pointed Heegaard diagram via a specific example, namely K = K(3, 4; 2, 2). See Figure 2.1.

This example should help clarify the strategy we use for our calculations.

We now describe a procedure to see that the arc τ (indicated in Figure 2.1) is a one-bridge,

i.e. it divides the knot K into two arcs, where one arc is a priori unknotted and the other

arc can be trivialized (unknotted) by sliding one or both endpoints of this arc along the bold

curve in Figure 2.1(b). (See [Ord06] for a detailed discussion on how to produce a genus one

Heegaard diagram for a certain family of (1, 1) knots.) The closed curve indicated in bold is

the union of the one-bridge, τ , and the a priori unknotted arc. Therefore, its neighborhood

is an unknotted torus. In Figure 2.2 we show, diagrammatically, how to use the one-bridge

and the unknotting process to obtain a Heegaard diagram for the knot K. (The red and

blue curves in Figure 2.2 (α and β curves respectively) are the boundaries of the meridional

disks corresponding to the two solid tori of the genus one Heegaard splitting of S3.) We do

this by trivializing the arc living in the complement of the torus. To begin, move the z base

point in the counterclockwise direction, making sure that the z base point passes to the left

of the w base point, as otherwise we would create more crossings rather than simplify the

arc. See Figure 2.2(b). Now move the w base point in the clockwise direction, passing to

the left of the z base point. See Figure 2.2(c). That completes the construction of the genus

one Heegaard diagram. See Figure 2.2(d).

This construction can be generalized to an algorithm with three steps to produce a genus

one Heegaard diagram for K(p, kp±1; s, r). Note that the number of longitudinal and merid-

ional windings is dictated by the arc living in the torus complement:

Step 1: Wind the z base point once around the torus in the counter clockwise direction.

Note that z traverses the torus (k + r) times meridionally.
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Step 2: Wind the w base point (s− 2) times in the clockwise direction. Note that each time

w traverses the torus (k + r) times meridionally.

Step 3: Finally, wind the w base point (p− s) times, longitudinally, to completely trivialize

the arc (in the sense that the planar projection of the arc no longer has any self-intersection).

Note that each longitudinal winding goes through k meridional moves.

Remark 2.1.2. To trivialize the part of the knot that lives outside of the torus, we isotope

the base points, z and w, on the torus which forces the α curve to be perturbed. Specifically,

in a neighborhood of the base points, the isotopy drags one (or more) sub-arc(s) of α.

Note that the Heegaard diagram in Figure 2.2(d) may be represented by a rectangle with

canonical identification implicit. See Figure 2.4(a).

2.1.2 Lifted Heegaard diagrams, L-space knots, and CFK−

For K ⊂ S3 a knot, let CFK−(K) denote the knot Floer complex associated to K [OS04b].

Fortunately, computing CFK−(K) for a (1, 1) knot K is purely combinatorial. We refer the

interested reader to [OS04b, p.89] and [GMM05] for further details. To analyze holomorphic

disks in the torus, it is convenient to pass to the universal covering space π : C → T . Given

the base points z and w in T , π−1(z) and π−1(w) lift to affine lattices Z and W , respectively.

Also let {α̃i} and {β̃j} be the connected components of π−1(α) and π−1(β), respectively.

Now, given two intersection points x and y between α and β, the element φ ∈ π2(x, y) is

a Whitney disk that has Maslov index one and admits a holomorphic representative if and

only if there is a bigon φ̃ ∈ π2(x̃, ỹ) with Maslov index one, where x̃ and ỹ are lifts of x and

y, intersection points between α̃i and β̃j (for some i and j). In particular, M(φ̃) ∼= M(φ).

See [OS04b] for the notation
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z

w

(c)

w

z 1

2
3 4 5 6

7

8
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(d)

Figure 2.2 The process of obtaining a genus one Heegaard diagram for the (3, 4) torus knot with
two positive full twists on two adjacent strands. In the algorithm discussed in Section 2.1.1,
Figure 2.2(b) corresponds to Step 1, and also Figure 2.2(c) corresponds to, simultaneously, imple-
menting Step 2 and Step 3. Note that the torus (in bold) corresponds to a neighborhood of the
bold curve of Figure 2.1(b). Note also that the α curve is drawn in red and the β curve is drawn
in blue.
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z w

(a)

z

w

(b)

z

w

(c)

z

w

(d)

Figure 2.3 The process of drawing a genus one Heegaard diagram for the (4, 5) torus knot with
two positive full twists on three adjacent strands. Figure 2.3(b), Figure 2.3(c), and Figure 2.3(d)
correspond to Step 1, Step 2, and Step 3, respectively, in the algorithm discussed in Section 2.1.1.
The α curve is drawn in red. The base points must pass to the left of each other, as otherwise we
would create more crossings rather than simplify the arc living in the torus complement.
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used above. Figure 2.6(b) shows a Heegaard diagram for K = K(3, 4; 2, 2) that has been

lifted to C. Also, Figure 2.7 represents CFK−(K). An L-space knot K can be thought of as

a knot with the simplest knot Floer invariants. To make sense of this fact, note that [OS04c]

∆K(T ) =
∑

m,s

(−1)mrk ĤFKm(K, s)T s, (2.1.2.1)

where ∆K(T ) is the symmetrized Alexander polynomial of K. We observe that the total

rank of ĤFK(K) is bounded below by the sum of the absolute values of the coefficients of

the Alexander polynomial of K. A necessary condition for K to be an L-space knot is for

this bound to be sharp. The following lemma turns out to be useful during the course of

proving Part (c) of Theorem 2.2.1. See [OS05b, Theorem 1.2] for the complete statement.

Lemma 2.1.3. Assume that K ⊂ S3 is a knot for which there is an integer p such that

S3
p(K) is an L-space. Then

rk ĤFK(K, s) ≤ 1 ∀s ∈ Z.

In particular, all of the non-zero coefficients of ∆K(T ) are ±1.

Therefore, if the absolute value of one of the coefficients of ∆K(T ) is greater than one, then

K is not an L-space knot. We end this subsection by noting that a knot Floer complex with

a staircase-shape (as in Figure 2.7) represents an L-space knot. Such a complex has a basis
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{x1, x2, ..., xm} for CFK∞(K) (defined in [OS04b]) such that

∂xi = xi−1 + xi+1 for i even

∂xi = 0 otherwise,

(2.1.2.2)

where the arrow from xi to xi−1 is horizontal and the arrow from xi to xi+1 is vertical.

(We refer the reader to [Hom11b, Section 6] for the concept of a knot Floer complex with a

staircase-shape.) The following corollary is a consequence of [Hom11b, Remark 6.6].

Corollary 2.1.4. For a knot K ⊂ S3, if CFK−(K) has a staircase-shape, then K is an

L-space knot.

2.2 Proof of the main theorem

This section is devoted to the proof of the main result of this chapter. For the sake of the

proof, it will convenient to restate Theorem 1.1.1 in the following equivalent form:

Theorem 2.2.1. For p ≥ 2, k ≥ 1, r > 0 and 0 < s < p, we have that K(p, kp± 1; s, r):

(a) is an L-space knot if s = p− 1,

(b) is an L-space knot if r = 1 and s ∈ {2, p− 2}, and

(c) does not admit any L-space surgeries otherwise.

We prove part (a) by explicitly computing the knot Floer complex of K(p, kp ± 1; p −

1, r). Parts (b) and (c) are proved by focusing on the similarities and differences of the

corresponding complexes to those of K(p, kp ± 1; p − 1, r). The key to the proof is in

identifying whether or not the knot Floer complex associated to K(p, kp ± 1; s, r) has a

staircase-shape (Corollary 2.1.4).
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z
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1 2 3 4 5 6 7 8 9

(a) A Heegaard diagram for the (3, 4) torus
knot with two positive full twists on two ad-
jacent strands



.  .  .

.  .  .

.  .  .

.  .  .

z

w

(b) The general form of a Heegaard diagram
for K(p, kp ± 1; p − 1, r), where r is an ar-
bitrary integer

Figure 2.4 Heegaard diagrams on the torus, represented by a rectangle with opposite sides identified

Proof of Theorem 2.2.1(a). It will help to break the proof into two steps:

Proof Step 1: We show that K(p, kp ± 1; p − 1, r) can be presented by a genus one

Heegaard diagram with the general form given in Figure 2.4(b).

Case 1: We first consider the case K(p, kp + 1; p− 1, r). The case p = 2 is trivial. The

construction of a Heegaard diagram in the case when p = 3 was given in Section 2.1. Also

Figure 2.3 shows the process for K = K(4, 5; 3, 2).

To obtain a Heegaard diagram when p ≥ 5 we can follow a similar procedure. Note that

the w base point winds around the longitude of the torus once in the case p = 3, twice in

the case p = 4, and p − 2 times in general. Moreover, in each longitudinal winding, the

w base point traverses the torus k + r times meridionally, except for the last longitudinal

winding where α traverses the torus only k times meridionally. The latter fact holds since

we are twisting p − 1 strands of the (p, kp + 1) torus knot (set s = p − 1 in Step 3 of the

algorithm given in Section 2.1). Note that as a result of s = p− 1, we always drag only one
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Figure 2.5 By an isotopy, the shaded region disappears and the Heegaard diagram will have two
less intersection points.

sub-arc of α around the torus (Remark 2.1.2). Translating the resulting Heegaard diagram

obtained this way into the rectangular representation of the torus, we get the general form

of Figure 2.4(b).

Case 2: For the case q = kp − 1 we will have a similar setup, though the base points

have to pass to the right of each other, not to the left. In this case, there will always be two

intersection points of α and β that can be removed by an isotopy (see Figure 2.5(a)). To

indicate the general case, we consider K = K(3, 5; 2, 1). The resulting Heegaard diagram is

isotopic to a Heegaard diagram for K(3, 4; 2, 2) shown in Figure 2.5(b). As in Case 1, the

Heegaard diagram will have the general form of Figure 2.4(b).

Proof Step 2: In this step, the goal is to calculate the filtered chain complex CFK−(K)

for K = K(p, kp ± 1; p − 1, r). Figure 2.7 shows CFK−(K(3, 4, 2, 2)). We claim that, in

general, CFK−(K) has the same staircase-shape.

As in Section 2.1.2 we lift the diagrams, obtained in Step 1, to C . Fix a connected

component α̃ of π−1(α). We claim that such a component is a union of “N”-shapes (Fig-
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ure 2.6(a)). To see this fact, we notice that the lift of a genus one Heegaard diagram can be

obtained by gluing together infinitely many copies of the rectangular form of the Heegaard

diagram in the plane (gluing from the sides of the rectangles). Figure 2.6(b) represents a

portion of such a lift for a specific example. Pick an intersection point and start moving it

along the α̃ curve. (For example, pick the intersection point 9 on α̃ in Figure 2.6(b) and

start moving it upward.) The direction of the motion will reverse by turning around either

of the z or w base points. (In Figure 2.6(b), the direction of the motion will change from

upward to downward, and also from downward to upward, by going from 1 to 2, and from

3 to 4, respectively.) Note that the rectangular form of the genus one Heegaard diagram

of K, as depicted in Figure 2.4(b), consists of a single β arc, together with α arcs having

endpoints on the edge(s) of the rectangle. Note also that there are only two α arcs with both

of their endpoints lying on one edge of the rectangle (namely the arcs that turn around the

base points). Therefore, by thinking of the lift of the diagram in C as coming from infinitely

many rectangles glued together along the sides and fixing a connected component of π−1(α),

the change in the direction of the motion (equivalently, turning around either the z or w base

point) never happens twice in a single rectangle.1 Moreover, to recover all the intersection

points in the lift, only two changes of direction are needed. As a result, we get the shape of

the lifted digram as claimed.

Let us first consider the example, CFK−(K(3, 4; 2, 2)) whose Heegaard diagram is given

in Figure 2.6(b). Given a pair of intersection points x and y, the moduli space of holomorphic

representatives of Whitney disks φ ∈ π2(x, y) with Maslov index one, modulo reparametriza-

tion, is either empty or consists of one map. In what follows, we write x → y if the moduli

space consists of one such map, and if so, we record how many times it passes over the z

1Note that we do not distinguish between the z and w base points downstairs, and their lifts in C.
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and w base points:

• 2 → 1, 6 → 5, 8 → 7 using one z base point,

• 3 → 9 using two z base points,

• 6 → 7, 8 → 9, 3 → 4 using one w base point, and

• 2 → 5 using two w base points.

From Figure 2.6(b), it is easy to see that we need four β̃ lines to generate the whole nine

intersection points in the lifted Heegaard diagram, i.e. fixing α̃, by using only four connected

components of the lift of β we can obtain a lift of all the intersection points between α and

β. Starting from β̃4, See [OS04b] for the notation. By a similar method, we can find the

remaining Whitney disks in the list above and use them to complete the ordering of the

Alexander gradings. At this point, we can obtain the staircase-shape of Figure 2.7.

For the general case of Figure 2.6(a), it is straightforward to observe that our strategy

can be extended. Assume that {x1, x2, ..., xm} is the set of intersection points between α

and β curves coming from the genus one Heegaard diagram of K = K(p, kp + 1; p − 1, r)

(see Figure 2.4(b) and Figure 2.6(a)). Assume also that, fixing α̃ a connected component of

π−1(α), we need n connected components of π−1(β) to recover all the m intersection points

downstairs between α and β (Figure 2.6(a)). Our strategy is first ordering the generators

based on their Alexander gradings and, second, finding all the differentials. Using the “N”-

shape of Figure 2.6(a) and starting from β̃n, there are three intersection points (xm, xm−1

and xm−2) with one disk xm−1 → xm using one w base point and one other disk xm−1 →

xm−2 using the z base point(s). Note that there exists no other non-trivial Whitney disk

with Maslov index one connecting xm−1 to another intersection point of Figure 2.6(a). Also

on β̃n−1, there is one disk xm−3 → xm−2 using the w base point(s). Continuing this process,
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Figure 2.6 (a) A portion of the Heegaard diagram for K = K(p, kp±1; p−1, r) lifted to C, where r
is an arbitrary integer. Note that m is the number of intersection points in the genus one Heegaard
diagram of K. It is assumed, fixing α̃ a connected component of π−1(α), that we need n connected
components of π−1(β) to obtain a complete list of all the m intersection points between α and
β downstairs. (b) A portion of the Heegaard diagram for the (3, 4) torus knot with two positive
full twists on two adjacent strands, lifted to C. Note that the base points specified in the picture
depicted above are the only relevant base points needed to compute CFK−.
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Figure 2.7 CFK−(K(3, 4; 2, 2))
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we deduce that

A(xm) > A(xm−1) > A(xm−2) > A(xm−3) > ... > A(x1).

By noting that there is no other non-trivial Whitney disk with Maslov index one, we see that

the set {x1, x2, ..., xm} forms a basis for CFK−(K) such that there are three intersection

points (3, 4 and 9) with one disk 4 → 3 using one w base point and one other disk 9 → 3

using two z base points. Thus, in terms of the Alexander gradings A(i) of the intersection

points, i ∈ {1, 2, ..., 9} , we have that:

• A(3)−A(4) = nz(φ̃)− nw(φ̃) = −1, and

• A(3)−A(9) = nz(φ̃)− nw(φ̃) = 2.

∂xi = xi−1 + xi+1 for i even

∂xi = 0 otherwise.

This formula for the differentials (which is the same as (2.1.2.2)), together with the exis-

tence of three intersection points on each β̃j line of Figure 2.6(a) with exactly two disks

using different base point types (i.e. z and w), gives the staircase-shape of CFK−(K) (see

the discussion about a knot Floer complex with a staircase-shape in Section 2.1.2). Now,

Corollary 2.1.4 completes the proof.

Proof of (b) and (c). Let K(p, q; s, r) be a twisted torus knot where 2 ≤ s ≤ p − 2. We

discuss the case when q = kp + 1 and leave the case q = kp − 1 to the reader. Since we

apply the same algorithm, as used in Part (a), to obtain a Heegaard diagram, we will only
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highlight the differences in this case. Recalling the algorithm explained in Section 2.1.1, we

first wind z once in the counterclockwise direction (Step 1). Then we wind the w base point

(s − 2) times in the clockwise direction, traversing the torus (k + r) times meridionally in

each winding (Step 2). Finally, we wind the w base point (p − s) more times around the

torus longitudinally (Step 3). Note that in the latter step, w goes through only k meridional

moves in each winding.

It will be convenient to pick an arbitrary orientation for the α curve. Note that, unlike

Part (a), more than one sub-arc will be dragged since 2 ≤ s ≤ p− 2 (Remark 2.1.2). With

the α curve oriented, either these sub-arcs will have all the same orientation or there will

be at least one pair of sub-arcs with opposite orientations. The case for only two sub-arcs

can be seen in Figure 2.9. Figure 2.8 shows the process of constructing a Heegaard diagram

for K(4, 5, 2, 1), which indicates the pattern, particularly in the case when s ∈ {2, p− 2}.

Claim. Unless s ∈ {2, p− 2} and r = 1, the trivializing process will drag oppositely oriented

sub-arcs.

Proof. Suppose r = 1. The first longitudinal traversal of Step 3 drags no additional sub-

arcs. The second traversal of Step 3, however, drags (s − 1) sub-arcs, all oriented in the

same direction. The next winding drags (s− 2) additional sub-arcs, all oriented in the same

direction but opposite to those of the first (s − 1) sub-arcs. This opposite orientation will

clearly not occur if s = 2. Suppose s = p − 2. Then in Step 3 the w base point is wound

longitudinally around the torus p− (p− 2) = 2 times (twice). Hence, only sub-arcs with the

same direction will be dragged. If r ≥ 2 the full twists of Step 1 create future oppositely

oriented sub-arcs in Step 3, i.e. the w base point will be dragging sub-arcs with opposite

orientations, starting the second longitudinal traverse of Step 3. More specifically, if the
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Figure 2.8 The process of drawing a genus one Heegaard diagram for K(4, 5; 2, 1). The α curve in
each step is oriented. This example indicates the pattern when s ∈ {2, p − 2} and r = 1. In general
when r = 1, to go from (c) to (d), w first drags (s− 1) sub-arcs, all oriented in the same direction.
In the next winding it drags (s − 2) additional sub-arcs, all oriented in the same direction but
opposite to those of the first (s−1) sub-arcs. Dragging oppositely oriented sub-arcs does not occur
in this example since s = 2. Note that the orientation is irrelevant once the Heegaard diagram is
completed.
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ww

Figure 2.9 The base point w drags more than one sub-arc of α. The picture depicted above is
schematic.

number of full twists is greater than one, each additional twist will create two oppositely

oriented sub-arcs and the w base point will drag both of these sub-arcs after the first (s− 1)

longitudinal windings.

Since the hypotheses of Part (b) imply that the sub-arcs have the same orientation, a

similar argument to Part (a), once we lift the diagram to C, shows that the ordering of the

Alexander gradings of the intersection points will follow the same manner as in the case s =

p−1. More precisely, if we think of the lift of the Heegaard diagram as coming from infinitely

many rectangles glued together, by picking an intersection point and moving it along a fixed

connected component α̃ of π−1(α), we see that the picked point, during its motion, never

turns around the z (or w) base point twice in a single rectangle. Therefore, although the lifted

diagrams are not looking the same as Part (a), we claim that the corresponding complexes

have the staircase-shape. In particular, for the case s = 2 (respectively s = p − 2), we

need four (respectively 2p− 4) changes of direction2 to recover all the intersection points of

downstairs. For the specific example of K(4, 5; 2, 1) depicted in Figure 2.13(b):

A(6) > A(5) > A(9) > A(8) > A(7) > A(4) > A(1) > A(11) > A(10) > A(3) > A(2).

Exploring the Whitney disks in the lifted diagram will give a staircase-shape for the asso-

2We remind the reader that by changing direction we mean turning around one of the base points (z or
w).
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ciated complex. To see this in the general case, note that the set of all intersection points

between α and β curves forms a basis for CFK−. Moreover, for every intersection point xi,

either the differential vanishes, or there exist two Whitney disks with Maslov index one con-

necting xi to another two distinct intersection points, using z and w base points alternatively.

(This shows that the differentials are of the form of (2.1.2.2).) That is, for each intersection

point xi, either there is no arrow joining it to another intersection point, or there are two

arrows joining xi to two distinct intersection points such that one arrow is horizontal and

the other is vertical. This gives us the staircase-shape of the knot Floer complex. Finally,

Corollary 2.1.4 completes the proof of Part (b).

To prove Part (c), note that if the arcs dragged by w have different orientations, then, after

lifting the diagram to C, the following phenomenon occurs:

z
1 2 3 4

β̃i

Figure 2.10 A portion of the knot complex lifted to C, when the sub-arcs with different orientations
have been dragged.

Claim: The associated complex does not represent an L-space knot.

Proof. As in the proof of Part (a), we can order the Alexander gradings of the intersection

points from the Whitney disks in the lifted Heegaard diagram. Let β̃1, ..., β̃k denote the lifts

of β needed to find all of the Whitney disks. Work from β̃k to β̃1 and stop at the first β̃i

that exhibits the phenomenon in Figure above. Then part of the diagram is as Figure 2.11.
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.

.

w

z
1 2 3 4

β̃k

β̃i+1

β̃i

Figure 2.11 A sub-diagram of a lifted Heegaard diagram, fixing one connected component of α̃

We analyze this by looking at the Whitney disks:

• 4 → 1, 3 → 2 using one z base point, and

• 1 → 2, 4 → 3 using one w base point.

As a result, the part of CFK− involving the intersection points, {1, 2, 3, 4}, on β̃i will look

like

1

2

3

4

Figure 2.12 Part of a knot complex, representing the phenomenon of having two generators in one
Alexander grading.

Note that the boundary map decreases the Maslov grading by one, and the U -action decreases

the grading by two. Combining these facts with the existence of the disks 1 → 2 and 4 → 3,

we find that the intersection points 2 and 4 both have the same Maslov gradings as well

as the same Alexander gradings. (We are assuming that there are no trivial Whitney disks

connecting two intersection points; if there is a bigon that does not pass over any of the base
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Figure 2.13 A genus one Heegaard diagram for K(4, 5; 2, 1), as well as its lift to C

points, we can isotop it away.) Thus,

rk ĤFK(K, s) ≥ rk ĤFKm(K, s) = rk ĈFKm(K, s) ≥ 2,

where s is the Alexander grading of the intersection points 2 and 4. Now, Lemma 2.1.3

completes the proof of the claim and Part (c).

The Heegaard diagrammatic observation in Figure 2.5 can be generalized. The author

suspects that the following corollary could have been proved differently, using braid words

for instance:

Corollary 2.2.2. The twisted torus knot, K(p, kp+1; p−1, r), is isotopic to K(p, (k+1)p−

1; p− 1, r − 1).

Proof. We start from the genus one Heegaard diagram of K1 = K(p, (k+1)p+1; p−1, r−1),

obtained from implementing the algorithm explained in Section 2.1.2. The proof is done by

first doing an isotopy to get rid of the two extra generators in the genus one Heegaard
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diagram of K1
3 and, second, tracking back the drag of the w and z base points in the torus.

More precisely, after removing the extra generators, if we track back the w base point, we see

that it passes, during its p−2 longitudinal windings, to the right of z. Now, by tracking back

the z base point once around the torus, we see that it also passes to the right of w. These

facts can be verified in the example depicted in Figure 2.5(b). (Thus, while implementing

the algorithm to obtain the diagram in the first place, the base points must have passed

by the left of each other). During this process, except for the first winding of w that goes

through k meridional moves, the rest of windings traverse the torus k+ r times meridionally.

Therefore, by noting that only one sub-arc of α has been dragged by the base points, we

get that the diagram obtained after doing the isotopy is a genus one Heegaard diagram for

K2 = K(p, kp+ 1; p− 1, r).

When p = 3 in Theorem 1.1.1, we obtain a generalization of [Wat09, Theorem 1.2]:

Corollary 2.2.3. All twisted (3, q) torus knots admit L-space surgeries.

2.3 Directions for future research

Closely related to the main result of this chapter, one can ask the question of which operations

on knots produce L-space knots. Satellite operations are the first in line. As pointed out

in Chapter 1, the (p, q) cabling is an L-space satellite operation [Hom11a]. More generally,

Hom, Lidman and the author introduced an L-space satellite operation, using Berge-Gabai

knots as the pattern [HLV14]. By definition, a knot P ⊂ S1 × D2 is called a Berge-Gabai

knot if it admits a non-trivial solid torus surgery. We also suspect that one can obtain

3Note that the phenomenon (of having two removable intersection points) in Figure 2.5, once we implement
the algorithm explained in Section 2.1.2, will always occur in the genus one Heegaard diagram of K(p, kp−
1; p− 1, r).
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more L-space satellite operations, choosing the patterns from the the list of L-space knots

of Theorem 1.1.1. Although classifying such operations does not seem to be an easy task to

do, there is an obstruction to obtaining L-space satellite knots (Lemma 2.1.3) which can be

appealing. Let P (K) be a satellite knot with pattern P ⊂ V = S1 ×D2 and companion K.

We recall the behavior of the Alexander polynomial of a satellite knot:

∆P (K)(T ) = ∆P (T )∆K(Tw)

where w is the geometric intersection number of the pattern P with a fixed meridional disk

of V (see for instance [Lic97]). So one can attack the following question by first examining

the obstruction of Lemma 2.1.3, using algebraic methods.

Question 1: Is there a classification of L-space satellite operations?

Another interesting direction one can pursue, encouraged by the computations done in

this chapter, is to calculate the Alexander polynomials ∆K(T ) of twisted (p, q) torus knots

with q = kp± 1 or more generally with q an arbitrary non-zero integer. In [Mor06], Morton

gives a closed formula for ∆K(T ) where K = K(p, q; 2, r) and p > q > 0.

Finally, notice that the (2, 2n + 1) torus knots have the particular property that they

admit lens space surgeries and also have branched double covers that are lens spaces. It

seems reasonable to ask what class of knots have this property. The following question was

first brought to the author’s attention by Allison Moore:

Question 2: What class of knots have surgeries and branched double covers that are lens
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spaces (or L-spaces)?
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Chapter 3

Berge-Gabai knots and L-space

satellite operations

This chapter is mainly based on [HLV14]. We start by providing background on 1-bridge

braids in solid tori and Dehn surgery on satellite knots. See [Ber91, Gab90, Gor83] for further

details. We then present the rank formula, found in [OS11], for the Heegaard Floer homology

of the surgered manifold obtained by doing Dehn surgery on a knot in S3. Theorem 1.2.3

is proved in Section 3.4. We end this chapter by clarifying the discussions in Section 1.3

and proving Theorem 1.3.1 and Proposition 1.3.4. Throughout the rest of the chapter, we

assume that P is a Berge-Gabai knot in V = S1×D2 (i.e., P admits a non-trivial solid torus

surgery) unless otherwise stated. We also consider the standard embedding of S1 ×D2 into

S3 such that S1 × {∗} bounds an embedded disk in S3. When it is clear from context, we

will not distinguish between the Berge-Gabai knot P ⊂ V and P ⊂ S3.

3.1 Berge-Gabai knots

The primary goal of this subsection is to highlight the Dehn surgeries on P ⊂ V that will

return a solid torus. In what follows, we provide a setup similar to that of [Gab90].

An arbitrary knot P in V is called a 1-bridge braid if P can be isotoped to be a braid

in V that lies in S1 × ∂D2 except for one arc that is properly embedded in V , and P is not
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a torus knot. Gabai [Gab89] showed that any knot in a solid torus with a non-trivial solid

torus surgery must be either a torus knot or a 1-bridge braid in S1×D2, and Berge [Ber91]

classified all 1-bridge braids in S1 × D2 with non-trivial solid tori fillings. We denote the

braid index of P by w.

We will consider V̂ , the exterior of P ⊂ V . Let T = ∂V and J = ∂nb(P ). We equip

T with the homological generators (m, ℓ) where ℓ is the longitude S1 × {∗} of T and m is

{∗} × ∂D2; therefore, ℓ becomes null-homologous after standardly embedding V in S3 and

removing nb(P ). We equip J with homological generators (µ,Λ) as follows. The generator

µ is the meridian of P . Note that m is homologous to wµ in V̂ . To define Λ, consider

the immersed annulus A connecting J to T with b arcs of self-intersection in Figure 1.2(b).

By doing oriented cut and paste to the arcs of self-intersection we can arrange A to be an

embedded surface in V̂ joining J to T . Define Λ to be A ∩ J . Orient m, ℓ, µ, and Λ as in

Figure 1.2(b). Note that A ∩ T = wℓ+ tm, and so wℓ+ tm is homologous to Λ in V̂ .

Let λ be the simple closed curve on J that is homologous to Λ−wtµ ∈ H1(J ;Z). Thus,

we have the following equalities in H1(V̂ ;Z):

[λ] = [Λ− wtµ]

= [wℓ+ tm− wtµ]

= [wℓ],

where the last equality follows from the fact that m is homologous to wµ. In particular, λ

becomes null-homologous after standardly embedding V in S3 and removing nb(P ). Now

the equation [λ] = [Λ−wtµ] can be used to switch from (µ,Λ)- to (µ, λ)-coordinates, where

(µ, λ) are the usual meridian-longitude coordinates on P when V is standardly embedded in
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S3.

We recall that a 1-bridge braid in S1 ×D2 with winding number w, bridge width b, and

twist number t can be represented via the braid word σ = (σbσb−1...σ1)(σw−1σw−2...σ1)
t

where |t| ≥ 1, and 1 ≤ b ≤ w− 2. The following lemma is a consequence of [Gab90, Lemma

3.2]:

Lemma 3.1.1. Let P be a 1-bridge braid in V and s a positive integer. If filling V̂ along a

curve α = dµ+ sΛ in J yields S1 ×D2, then s = 1, d ∈ {b, b+ 1}, and gcd(w, d) = 1.

In (µ, λ)-coordinates these possible exceptional surgeries are α = (tw + d)µ + λ where

d ∈ {b, b+ 1}.1

Note that when P is an (m,n)-torus knot in V , there are infinitely many surgeries on P

that will return a solid torus, including mn+ 1 = tw+ b+ 1; this follows, for instance, from

the proof of [Mos71, Proposition 3.2].

Let (P ;n1/n2) denote the result of filling V̂ along the curve n1µ + n2λ. Lemma 3.1.1

shows that if P is a Berge-Gabai knot, then (P ; pd) will be homeomorphic to S1 × D2 for

at least one of the coefficients pd = tw + d, d ∈ {b, b+ 1}.

Note that adding a positive full-twist to all of the w strands of P results in a new knot

P
′
where t changes into t+ w. Correspondingly, there exists a homeomorphism of the solid

torus (doing a positive meridional twist), which takes P to P
′
. Iterating this process q times,

we get the following:

Proposition 3.1.2. Let P be a Berge-Gabai knot in S1×D2, standardly embedded in S3, so

that (P ; p) is homeomorphic to a solid torus. Let P
′
be the knot obtained from P by adding

1We have stated Lemma 3.1.1 so that the orientation of (µ, λ) agrees with the standard convention that
µ · λ = 1. In Gabai’s paper [Gab90], µ is oriented opposite to that of Figure 1.2(b).
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q positive Dehn twists. Then

(P
′
; p+ qw2) ∼= S1 ×D2.

Hence if we have a Berge-Gabai knot P with twist number t, adding q full twists to all

w strands of P will produce a Berge-Gabai knot with twist number t+ qw.

3.2 Surgery on P (K)

Let P (K) be a satellite knot with pattern P ⊂ V and companion K. Let f : V → nb(K) be

a homeomorphism that determines the zero framing of K, i.e., [f(S1×{∗})] = 0 ∈ H1(X ;Z)

where X = S3 − nb(K). Thus P (K) = f(P ).

Recall that m, ℓ ∈ H1(T ;Z) are the natural meridian and longitude coordinates of T =

∂V , oriented such that m · ℓ = 1. Recall also that V̂ = V − nb(P ). Note that H1(V̂ ) =

Z〈ℓ〉 ⊕ Z〈µ〉 where µ is the class of the meridian of nb(P ). When P is viewed as a knot in

S3, let λ ⊂ ∂nb(P ) be the unique curve on ∂nb(P ) which is null-homologous in S3 − nb(P )

(i.e., the zero framing of P ). That is, if f is as above, then f(λ) is the zero framing of P (K).

Thus, S3
p1/p2

(P (K)) ∼= X ∪f (P ; p1/p2), where the notation means ∂X and ∂(P ; p1/p2) are

identified via the restriction of f to ∂(P ; p1/p2) = ∂V . With the above notation:

Lemma 3.2.1 ([Gor83, Lemma 3.3]). For relatively prime integers p1, p2, and P ⊂ V with

winding number w:

(a) H1((P ; p1/p2);Z) ∼= Z⊕ Zgcd(w,p1)
.
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(b) If w 6= 0, the kernel of H1(∂(P ; p1/p2);Z) → H1((P ; p1/p2);Z) is the cyclic group

generated by

p1
gcd(w, p1)

m+
p2w

2

gcd(w, p1)
ℓ.

Note that Lemma 3.2.1 is valid regardless of whether or not P is a Berge-Gabai knot.

However, when P is a Berge-Gabai knot, we can use Lemma 3.2.1 to relate surgeries on K

and P (K) in the following sense.

Corollary 3.2.2. Let P be a Berge-Gabai knot in V with winding number w so that (P ; p) ∼=

S1 ×D2. Then

S3
p(P (K)) ∼= S3

p/w2
(K).

Proof. The result essentially follows from the fact that

S3
p(P (K)) ∼= X ∪f (P ; p).

By assumption, (P ; p) is homeomorphic to a solid torus. Therefore, in order to find the

corresponding surgery coefficient on K, one needs to determine the slope of the meridian of

∂(P ; p) under the canonical identification with ∂V , and where it is sent under f .

Note that the slope of the meridian of (P ; p) is precisely the generator of

ker
(
H1(∂(P ; p);Z) → H1((P ; p);Z)

)
.

Using the identification of ∂V and ∂(P ; p), we have that the slope of the meridian, in (m, ℓ)-

coordinates, is given by (p, w2) by Lemma 3.2.1. Since f sends m (respectively ℓ) to the
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meridian (respectively longitude) of K, the result follows.

Combining Lemma 3.1.1 with Corollary 3.2.2, we deduce the following:

Proposition 3.2.3. Let P be a Berge-Gabai knot with bridge width b 6= 0, winding number w,

and twist number t, and let K be an arbitrary knot in S3. Then for at least one d ∈ {b, b+1},

S3
d+tw(P (K)) ∼= S3

d+tw
w2

(K).

Note that gcd(d+ tw, w2) = 1 (see Lemma 3.1.1). We end this subsection by stating the

following lemma, which will be useful in the proof of Theorem 1.2.3. Let ∆K(T ) denote the

symmetrized Alexander polynomial of K. Recall the behavior of the Alexander polynomial

for satellites (see for instance [Lic97]):

∆P (K)(T ) = ∆P (T )∆K(Tw). (3.2.0.1)

Lemma 3.2.4. Let P (K) be a fibered satellite knot where P has winding number w. Then

g(P (K)) = g(P ) + wg(K).

Furthermore, if P is a Berge-Gabai knot as above with t > 0, then

g(P ) =
(t− 1)(w − 1) + b

2
. (3.2.0.2)

Proof. Since P (K) is a fibered knot, we deduce that deg ∆P (K)(T ) = g(P (K)). It also
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follows that K and P are both fibered [HMS08]. Combining these two facts with (3.2.0.1),

we see that g(P (K)) = g(P ) + wg(K).

In order to calculate g(P ), notice that P is a positive braid if t > 0. Hence, the Seifert

surface R obtained from Seifert’s algorithm is a minimal genus Seifert surface for P [Sta78].

Then

χ(R) = 1− 2g(P ) ⇒ w − b− t(w − 1) = 1− 2g(P ).

3.3 Input from Heegaard Floer theory

In this subsection we mainly use the notation of [Hom11a]. Recall that an L-space Y

is a rational homology sphere with the simplest possible Heegaard Floer homology, i.e.,

rkĤF (Y ) = |H1(Y ;Z)|. We say that a knot K in S3 is an L-space knot if it admits a

positive L-space surgery.

We let τ(K) denote the integer-valued concordance invariant from [OS03]. Let P denote

the set of all knots K for which g(K) = τ(K). (Recall from [Hed10] that for fibered knots,

g(K) = τ(K) is equivalent to being strongly quasipositive.) If K is an L-space knot, then

K ∈ P. This follows from [OS05b, Corollary 1.6] and the fact that L-space knots are fibered

[Ni07, Corollary 1.3].

Let

sK =
∑

i∈Z

(
rkH∗(Â

K
i )− 1

)
,

where ÂK
i is the subquotient complex of CFK∞(K) defined in [OS08]. It is proved in

[Hom11a] that rkH∗(Â
K
i ) is always odd, and so sK is always a non-negative even integer.
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For a pair of relatively prime non-zero integers m and n, n > 0, let

t
m/n
K = 2max(0, n(2ν(K)− 1)−m). (3.3.0.3)

Observe that

t
m/n
K = 0 if and only if m/n ≥ 2ν(K)− 1. (3.3.0.4)

The term ν(K) is another integer-valued invariant of K, defined in [OS11, Definition 9.1],

which is bounded below by τ(K) and above by g(K). In particular, if K ∈ P, then ν(K) =

g(K).

Let m and n be as above, and suppose that ν(K) ≥ ν(K) where K denotes the mirror

of K. (This condition is automatically satisfied for K ∈ P.) If ν(K) > 0 or m > 0, then

rkĤF (S3
m/n(K)) = m+ nsK + t

m/n
K (3.3.0.5)

by [OS11, Proposition 9.6].

By (3.3.0.5), when m > 0 we have that

S3
m/n(K) is an L-space if and only if t

m/n
K = 0 and sK = 0. (3.3.0.6)

By [OS04b, Theorem 4.4], the group H∗(Â
K
i ) is isomorphic to ĤF (S3

N (K), [i]) for N ≫ 0

and |i| ≤ N/2. Thus, we have that

K is an L-space knot if and only if sK = 0. (3.3.0.7)

In fact, if K is a non-trivial L-space knot, S3
m/n

(K) is an L-space if and only if m/n ≥
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2g(K) − 1. This follows from (3.3.0.4), (3.3.0.5), and the fact that for K a non-trivial L-

space knot, ν(K) = g(K) > 0. (The original argument for the forward direction is given in

[KMOS07].)

3.4 Proof of Theorem 1.2.3

This subsection is devoted to the proof of Theorem 1.2.3. We begin with the proof of

Lemma 1.2.4. We do not review the concept of a quasipositive Seifert surface but instead

refer the reader to [Hed10, Rud98].

Proof of Lemma 1.2.4. Suppose for contradiction that P (K) is an L-space knot. Recall that

L-space knots are fibered [Ni07, OS05b]. It is also a well-known fact that a minimal genus

Seifert surface for a negative braid can be expressed as a plumbing of negative Hopf bands

[Sta78, Theorem 2]. (See also [AO01, Theorem 1] for an explicit construction in the case of

torus knots.) Since P (K) is fibered, this implies that K is fibered and P is fibered in the

solid torus [HMS08], so the fiber for P (K) is constructed by patching the fiber for P in the

solid torus to w copies of the fiber for K. As a result, when P is a negative braid, the fiber

surface for P (K) contains (at least) as many negative Hopf bands as the one for P .

By the above description of the fiber surface, we can deplumb a negative Hopf band.

This means we can decompose the fiber surface for P (K) as a Murasugi sum, where one of

the summands is not a quasipositive surface. By [Rud98], if a Seifert surface is a Murasugi

sum, it is quasipositive if and only if all of the summands are quasipositive. Thus, the fiber

surface for P (K) is not a quasipositive surface. However, since P (K) is an L-space knot, it

is strongly quasipositive [Hed10], which gives a contradiction.

We prove Theorem 1.2.3 only for the cases where b 6= 0 (consequently 1 ≤ t0 ≤ w − 2)
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and refer the reader to [Hed09, Hom11a] for the case b = 0.

Proof of Theorem 1.2.3. (⇐) The proof of this direction follows from Proposition 3.2.3,

which tells us that

S3
d+tw(P (K)) ∼= S3

d+tw
w2

(K).

Since K is a non-trivial L-space knot and b+tw
w2

≥ 2g(K)− 1 > 0, it follows that S3
d+tw
w2

(K)

is an L-space. Here we are using that d ≥ b. Therefore, P (K) is an L-space knot.

(⇒) For the case that t < 0 (see Remark 2.1.2), we apply Lemma 1.2.4 to see that P (K)

cannot be an L-space knot. Therefore, we can assume that t > 0 and P (K) is an L-space

knot. For simplicity of notation, we set m = d+ t0w+ qw2 where d ∈ {b, b+ 1} is such that

(P ;m) ∼= S1 ×D2. Again from Proposition 3.2.3 we have

rkĤF (S3
m(P (K))) = rkĤF (S3

m/w2
(K)). (3.4.0.8)

Since P (K) is an L-space knot, it follows that g(P (K)) = τ(P (K)), and we see that

tmP (K) = 2max(0, 2g(P (K))− 1−m). (3.4.0.9)

We first suppose that ν(K) ≥ ν(K). Since m > 0, we may combine (3.3.0.5), (3.3.0.7),

and (3.4.0.8) to obtain

m+ tmP (K) = m+ w2sK + t
m/w2

K ,

or equivalently

tmP (K) = w2sK + t
m/w2

K . (3.4.0.10)
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Note that by Lemma 3.2.4, (3.2.0.2), and (3.4.0.9), we have that

tmP (K) = max(0, 4wg(K)− 2w − 2t0 − 2qw + 2b− 2d). (3.4.0.11)

Claim. The equality in (3.4.0.10) does not hold unless both sides are identically zero.

Proof of the Claim. If tm
P (K)

6= 0 then we have two cases:

Case 1. Suppose t
m/w2

K = 0. Using (3.4.0.11), we see (3.4.0.10) is equivalent to

4wg(K)− 2w − 2t0 − 2qw + 2b− 2d = w2sK .

It follows that w divides 2t0 + 2d − 2b. Since d − b ∈ {0, 1} and 1 ≤ t0 ≤ w − 2, we

conclude that w = 2t0 + 2d− 2b. Since

4wg(K)− 2w − w − 2qw = w2sK ,

then

4g(K)− 3− 2q = wsK .

The right side is an even number and the left side is odd which is a contradiction.

Case 2. Suppose t
m/w2

K 6= 0. By expanding both sides of (3.4.0.10) and again using (3.4.0.11),

we see that

4wg(K)− 2w − 2t0 − 2qw + 2b− 2d = w2sK + 4w2ν(K)− 2w2 − 2d− 2t0w − 2qw2.

46



By rearranging terms, we get

4wg(K)− 2w + 2(b− t0)− 2qw + 2t0w = w2(4ν(K)− 2− 2q + sK).

Therefore w divides 2(b − t0). Since b and t0 are both bounded above by w − 2, we

have either 2(b− t0) = ±w or b = t0.

Recall that we described P as a braid closure in Chapter 1. Viewing this braid as

a mapping class of the disk with w punctures, it is straightforward to verify that if

b = t0, the (t0 + 1)th puncture is fixed. Therefore, in this case P has at least two

components, which contradicts P being a knot. Thus, we must have 2(b− t0) = ±w.

Substituting and dividing by w gives:

4g(K)− 2± 1− 2q + 2t0 = w(4ν(K)− 2− 2q + sK).

As in Case 1, comparing the parities of each side gives a contradiction.

Having proved the claim, all the terms in (3.4.0.10) are identically zero. Since sK = 0,

(3.3.0.7) gives that K is an L-space knot. Also, tm
P (K)

= 0 together with (3.4.0.11) implies

t0 + qw + d− b

w
≥ 2g(K)− 1. (3.4.0.12)

Since 1 ≤ t0 ≤ w − 2 and (d − b) ∈ {0, 1}, we have that 0 ≤ t0 + d − b < w. Note that

2g(K)− 1 is an integer, so we deduce that (3.4.0.12) holds if and only if

q ≥ 2g(K)− 1,
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which implies that

b+ t0w + qw2

w2
≥ 2g(K)− 1,

as desired.

Now suppose that ν(K) < ν(K). We claim that in this case, P (K) is not an L-space

knot, which is a contradiction. Recall from [OS11, Equation (34)] that ν(K) is equal to

either τ(K) or τ(K) + 1, and from [OS03, Lemma 3.3] that τ(K) = −τ(K). Thus, when

ν(K) < ν(K), it follows that ν(K) > 0. By [OS04c, Proposition 2.5], the total rank of

ĤF (Y ), for a closed three-manifold Y , is independent of the orientation of Y , i.e.,

rkĤF (Y ) = rkĤF (−Y ). (3.4.0.13)

By combining (3.4.0.13), Proposition 3.2.3, and the fact that

S3
m/n(K) ∼= −S3

−m/n(K), (3.4.0.14)

we deduce that

rkĤF (S3
m(P (K))) = rkĤF (S3

−m/w2
(K)). (3.4.0.15)

By combining (3.3.0.5), (3.3.0.7), and (3.4.0.15), since P (K) is an L-space knot, we have

m+ tmP (K) = −m+ w2sK + t
−m/w2

K
. (3.4.0.16)

Using (3.3.0.3) and the fact that ν(K) > 0, we observe that t
−m/w2

K
6= 0.

Claim. The equality in (3.4.0.16) never holds.
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Proof of the Claim. We prove the claim by considering the following two cases:

Case 1. Suppose tm
P (K)

6= 0. Using (3.4.0.11), by expanding both sides of (3.4.0.16) we get that

d+ t0w + qw2 + 4wg(K)− 2w − 2t0 − 2qw + 2b− 2d

= −d− t0w − qw2 + w2sK + 4w2ν(K)− 2w2 + 2d+ 2t0w + 2qw2.

A similar reasoning as in Case 1 of the previous part of the proof shows that this

equality gives a contradiction.

Case 2. Suppose tm
P (K)

= 0. Using (3.4.0.11), we see that (3.4.0.16) is equivalent to

d+ t0w + qw2 = −d − t0w − qw2 + w2sK + 4w2ν(K)− 2w2 + 2d+ 2t0w + 2qw2.

This equation reduces to 2w2 = w2sK + 4w2ν(K). However, this equation has no

solutions, since ν(K) > 0 and sK ≥ 0.

Having proved the claim, it follows that if ν(K) < ν(K), then P (K) could not have been an

L-space knot. This completes the proof.

3.5 Left-orderability

Recall that a non-trivial group G is left-orderable if there exists a left-invariant total order

on G. Examples of left-orderable groups include Z and Homeo+(R), while any group with

torsion (e.g., a finite group) is not left-orderable. It is natural to ask which three-manifold

groups can be left-ordered. Such groups are well-suited for this study due to the following

theorem.
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Theorem 3.5.1 (Boyer-Rolfsen-Wiest [BRW05]). Let Y be a compact, connected, irre-

ducible, P 2-irreducible three-manifold. If there exists a non-trivial homomorphism f : π1(Y ) →

G where G is left-orderable, then π1(Y ) is left-orderable. In particular, if there exists a non-

zero degree map from Y to Y ′, where π1(Y
′) is left-orderable, then π1(Y ) is left-orderable.

Rather than define P 2-irreducible, we simply point out that if Y is orientable, then

irreducibility implies P 2-irreducibility. For compact, orientable, irreducible three-manifolds

with b1 > 0, it then follows that their fundamental groups are always left-orderable. However,

there are more interesting phenomena for rational homology spheres; for example +3/2-

surgery on the left-handed trefoil has left-orderable fundamental group, while −3/2-surgery

has torsion-free, non-left-orderable fundamental group (this can be deduced for instance

from [BRW05, Theorem 1.3]). Surprisingly, the left-orderability of the fundamental groups

of three-manifolds is conjecturally characterized by Heegaard Floer homology. The following

conjecture was made in [BGW13]:

Conjecture 1.3.3 (Boyer-Gordon-Watson). Let Y be an irreducible rational homology sphere.

Then Y is an L-space if and only if π1(Y ) is not left-orderable.

There exists a large amount of support for this conjecture, as it is known to be true

for manifolds with Seifert or Sol geometry, branched double covers of non-split alternating

links, graph manifold integer homology spheres, and many other families of examples (see

for instance [BB13, BGW13, Pet09]). We also remark that irreducibility is necessary, as

Σ(2, 3, 7)#Σ(2, 3, 5) has non-left-orderable fundamental group, but is not an L-space.

In the proof of Proposition 1.3.4 below, we remind the reader that we will be assuming

Conjecture 1.3.3.

Proof of Proposition 1.3.4. Suppose that P (K) is an L-space knot. Then for all α ∈ Q
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with α ≥ 2g(P (K)) − 1, we have S3
α(P (K)) is an L-space. For all but finitely many such

α, we have that S3
α(P (K)) is irreducible as well. Thus, by Conjecture 1.3.3, we have that

π1(S
3
α(P (K))) is not left-orderable for α ≫ 2g(P (K))− 1.

We first study the pattern P . By [CW11, Proposition 13], for such α, π1(S
3
α(P )) is not

left-orderable. Furthermore, for all but finitely many α, we have that S3
α(P ) is irreducible.

Therefore, we appeal to Conjecture 1.3.3 to conclude that P is an L-space knot.

We modify the argument of [CW11, Proposition 13] to study the companion K. Recall

that w represents the winding number of P in the solid torus V . We also consider the basis

(m, ℓ) for H1(∂V ;Z) as given in Section 3.1. We choose n ∈ Z such that gcd(w, n) = 1

and n ≫ 2g(P (K))− 1. As discussed, we have S3
n(P (K)) is irreducible and π1(S

3
n(P (K))

is not left-orderable. We consider the manifold (P ;n). We have that the kernel of i∗ :

H1(∂(P ;n);Z) → H1((P ;n);Z) is generated by nm+w2ℓ by Lemma 3.2.1. Since gcd(w, n) =

1 by assumption, we have that the element nm + w2ℓ is represented by a simple closed

curve on ∂(P ;n) which bounds in (P ;n). It then follows that there exists a degree one map

φ : (P ;n) → S1×D2, which restricts to a homeomorphism on the boundary (see for instance

[Ron95, Lemma 2.2]). Since nm+w2ℓ bounds in (P ;n), we must have that φ(nm+w2ℓ) is

isotopic to {∗} ×D2.

By extending φ to be the identity on the exterior of K, one obtains a degree one map

from S3
n(P (K)) to S3

n/w2
(K). Since S3

n(P (K)) is irreducible and π1(S
3
n(P (K))) is not left-

orderable, we have that π1(S
3
n/w2

(K)) is not left-orderable by Theorem 3.5.1. Since w is

fixed, by choosing sufficiently large n with gcd(w, n) = 1, we can arrange that S3
n/w2

(K) is

irreducible as well. Again, by Conjecture 1.3.3, K is an L-space knot.
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