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ABSTRACT

ESTIMATION FROM CENSORED MEDICAL COST DATA

By

ONUR BASER

Health care inflation is a concern in many industrialized countries. One response

is search for cost effective therapies which requires proper analysis of treatment cost

data. Common problem with medical cost data is censoring and statistical properties

of estimating medical cost from a censored data is not well developed. In my thesis, I

propose two method, one with an extension to panel data setting, to estimate medical

cost from censored data.

First chapter applies the inverse probability weighted least-squares method to pre-

dict censored total medical cost. Since survival time and medical costs may be subject

to right censoring and therefore are not always observable, the ordinary least-squares

approach cannot be used to assess the effects of certain explanatory variables. Inverse

probability weighted least-squares estimation provides consistent asymptotic normal

coefficients with easily computable standard errors. A test is derived to compare the

differences between the coefficients estimated by the ordinary least-squares approach

and the inverse probability weighted least-squares estimation. A study on the medical

cost of lung cancer is used as an application of the method.

Second chapter applies the inverse probability weighted (IPW) least-squares method

to predict total medical cost from panel data subject to censoring. Specifically, IPW

pooled ordinary-least squares(POLS) and IPW random effects(RE) models are used.

Because total medical cost is not independent of the survival time under administra—

tive censoring, unweighted POLS and RE cannot be used with uncensored data, to

assess the effects of certain explanatory variables. IPW estimation gives consistent

asymptotic normal coefficients with easily computable standard errors. A traditional



and robust form of Hausman test can be used to compare the coefficients estimated

by weighted and unweighted estimation methods. The method developed in this paper

are applied to lung cancer cost data.

In the third chapter, a method for testing and correcting for sample selection bias

for cross-sectional data is proposed. Specifically, this paper provides a systematic

treatment of the correction for nonrandom sample selection of medical cost data

where the selection rule is described by a censored regression model. We show that the

population parameters are identified, and provide straightforward x/N-consistent and

asymptotically normal estimation methods under the assumption that the selection

rule is governed by a censored Tobit Model. A study on the medical cost of lung

cancer is used as an application of the method.



Copyright by

ONUR BASER

2002

iv



For my wife, Deniz and my brother, Erdem



Table of Contents

LIST OF TABLES

LIST OF FIGURES

1 Estimation of Censored Medical Cost Data

1.1 IPW least squares .............................

1.2 Comparison Of The IPW And Unweighted Estimators ........

1.3 Application to the Lung Cancer Study .................

1.3.1 Data ................................

1.3.2 Variables ..............................

1.3.3 Descriptive Analysis .......................

1.3.4 Survival Curves ..........................

1.3.5 Regression Analysis ........................

1.4 Conclusions ................................

2 The Longitudinal Analysis of Censored Medical Cost Data

2.1 General Framework ............................

2.1.1 Pooled Ordinary Least Squares (POLS) Estimation ......

2.1.2 Random Effect Model ......................

2.2 Weighted or Unweighted Estimator? ...................

2.3 The Lung Cancer Study .........................

vi

viii

ix

10

12

12

13

15

16

18

22

25

27

28

36

39



2.3.1 The Data ............................. 39

2.3.2 Regression Analysis ........................ 40

2.4 Conclusion ................................. 47

3 Full Parametric Estimation of Censored Medical Cost 49

3.1 General Framework ............................ 51

3.2 Statistical Methods ............................ 52

3.3 Lung Cancer Study ............................ 59

3.4 Conclusion ................................. 63

APPENDICES 64

.1 Appendix for Chapter 1 ......................... 65

.2 Appendix for Chapter 3 ......................... 66

LIST OF REFERENCES 69

vii



1.1

1.2

2.1

3.1

3.2

List of Tables

Descriptive Statistics from the Lung Cancer Study ...........

Estimates of the Log(tcost) Equation by OLS and IPW ........

Estimation of Log of Total Medical Cost from Longitudinal Data . . .

Summary Statistics from the Lung Cancer Study ...........

Estimates of the Log(tcost) Equation by OLS, IPW and Procedure 3

viii

15

20

42



1.1

1.2

1.3

2.1

2.2

2.3

3.1

3.2

List of Figures

Survival functions according to disease stage level ...........

Survival functions according to hospitalization for reasons other than

lung cancer surgery ............................

Total medical cost distribution among the censored cases .......

Distribution of average monthly cost ..................

Distribution of absolute value of monthly dummy coefficients under

POLS and IPW POLS estimation. ...................

Distribution of absolute value of monthly dummy coefficients under

RE and IPW RE estimation........................

Administrative censoring when each individual has different starting

time ....................................

Starting time backed up to O for the individuals faced administrative

censoring ..................................

ix

17

19

44

46

54



Chapter 1: Estimation of Censored

Medical Cost Data

Introduction

The rising cost of health care is a concern in many industrialized countries.

One response is the search for cost-effective therapies, which requires proper

analysis of treatment cost data. Cost—effectiveness analysis (CEA) involves

estimating the net, or incremental, costs and effects of an intervention. Treatment

costs and health outcomes are compared with some alternative, which might be the

care that would be given if the interventions were not used at all. (Gold et al.,

1996). The first step in this important process is the estimation of costs. Costs can

be estimated from a variety of sources, including Medicare claims files. However,

censoring is a common problem with these administrative data.

Statistical methods applicable to censored cost are not well developed.

Nevertheless, the average total cost for a group of patients has been estimated in

one of three ways: (1) by estimating the sample mean of observed costs from all

cases, (2) by estimating the sample mean the uncensored subjects only, and (3) by

using modifications of standard survival analysis techniques (Lin, 1997). All of these

methods yield biased estimators. The sample mean from all cases creates a

downward bias because it does not account for the costs incurred after censoring.

The sample mean from uncensored subjects is biased toward the costs for patients

with a shorter survival time since a longer survival time is likely to be censored.

Standard survival analysis on costs is not valid if patients accumulate costs

with different rate functions over time. This technique assumes independence



between the cost at the survival time and the cost at the censoring time, whereas,

the two are generally positively correlated. To adjust for this dependency, Lin et al.

(1997) proposed a “partitioned estimator” method to assess average costs. This

method partitions the entire time period of interest into a number of smaller

intervals and calculates average cost and product-limit estimates for each interval.

The sum of the product of these two components becomes “product-limit sampling

average estimator” of total cost for the sample. An application by Sloan et al.

(1999) to health care costs of patients in a oncology clinical trial found Lin’s

variance estimation to be an arduous and untenable numerical programming

exercise. Instead, they used a straightforward application of the bootstrap method

to obtain variance estimates.

If we are interested in conditional average costs, all three estimation methods

incorrectly assume some homogeneity in the medical cost data in the sense that

they are independent of patient characteristics or the type of treatment. Since cost

can depend on patients’ age, disease stage, comorbid conditions, symptoms, type of

treatments received,etc., estimation should account for these control variables.

Multivariable regression analysis is required but no such method is available using

standard software programs. The two approaches developed by Lin (2000a, 2000b)

require a high level of computer programming and have not been emprically tested.

In this chapter, the inverse probability weighted (IPW) least squares method is

used to assess the effects of covariates (e.g., patient and clinical characteristics) on

medical cost with censored data. IPW has a long history in statistics (Horvitz and

Thomson (1952), Robins and Rotnisky (1992,1995), Robin, Rotzinky and Zhao

(1995), Horowitz and Manski (1998), Rosenbaum (1987) and Hirano, Imbens, and

Ridder (2000)). In more general framework, Wooldridge (1999, 2001) examined the

asymptotic properties of the IPW M—estimator for variable probability samples and

standard stratified samples and Wooldridge(2002b) provides an overview of IPW



M-estimation for cross-section applications.

IPW estimation produces consistent estimators with a covariance matrix that

can be calculated by most commercial statistics software programs. We also

developed a test to compare the coefficients estimated by IPW least squares and

ordinary least squares methods (OLS).

This chapter is organized as follows. The first section outlines IPW least

squares as applied to censored medical cost data, including the statistical properties

of the estimation and step-by-step procedures for implementation. The next section

introduces a Hausman type of test to compare the estimators calculated by using

IPW least squares and OLS over uncensored data. The third section describes an

application of our methods to a study on the medical cost in lung cancer patient.

The last section presents our conclusions.

1.1 IPW least squares

Suppose that we are interested in the total medical cost over period [0, L].

Since there is no further medical expense after death, the total cost over [0, L] is the

same as the cumulative cost at T“ = min(T, L), where T is the survival time. The

distribution of T is assumed to be continuous from 0 to L.

Assume that in the population of interest

3; = (CD + u, (1.1)

where y, a: and D are respectively the cumulative cost (or transformed cost) at T“, a

1 x K vector of explanatory variables, a K x 1 vector of unknown regression

parameters, and u is the unobservable random disturbance or error, whose

distribution is unspecified. The first component of a: is set to 1 so that the first



component of ,8 represents the intercept.

Assume that

EAL-'2.) = o. (1.2)

Under random sampling from the population, equation (1.2) is the crucial

assumption in obtaining consistency of the OLS estimator of ,3 in (1.1). With (1.2)

and the rank assumption E(a:’:c) =K, the OLS estimator using a random sample

will be consistent for D . The assumption that u is a zero-mean error term does not

guarantee consistency.

Survival time and medical costs may be subject to right censoring and therefore

are not always fully observable. Cost censoring occurs when a patient’s follow-up

time is less than L, and the patient is alive at the time of censoring. Since no

further expense is assumed after death, whether death occurs before L, or after L is

immaterial for cost estimation. Let C be the time of censoring.

Let Z = min(T, C), s = I(C 2 T), and 3* = I(C Z T“), where I(.) is the

indicator function. There are two types of censoring: time censoring if s = 0 that is,

T > C, and cost censoring if 3* = 0, that is, min(T, L) > C. A generic element from

the population can be denoted (y, at, 3*). Suppose that T and C are independent

given a: .

Assumption 1

(i) :1: and C are always observed, and T", y are observed when 3" = 1.

(ii) y can be ignored in the selection equation, conditional on :1: :

P(s“ =1|a:,y)= P(s‘ =1|m)= P(C 2 T‘la: ) = P(C 2 T“).

Assumption 1 indicates that a: is always observed and that, conditional on a: ,



the response variable does not affect the selection probability. Part (ii) of

Assumption 1 is crucial because of the requirement that the selection probability is

observable when 3* = 1. Since we can ignore y from the selection equation, having a

censored y value does not create a problem for estimating selection probabilities.

Suppose we have a random sample of size N from the population to estimate )6.

Thus {(mi ,y,): 2' = 1, 2, ..., N } are treated as independent, identically distributed

random variables, where m,- is 1 X K and y, is a scalar, and 3‘,“ is a corresponding

sample selector indicator. The underlying model is then,

311 = (Eta + Um (1.3)

The IPW least square estimators, Cw , solves

min 2 tit-(y, — (02,5)2, (1.4)

where w,- = (s?/P(C,- _>_ T,*)). Under assumption 1 and equation (1.2), Cw is

consistent with asymptotically normal distribution and the estimated asymptotic

variance V(,8:,, )=Aw-1 Eu, AID—1 /N, where

N

A}, = N-1 2211,3235, (1.5)

i=1

N

Bw = N—1 2 10312393223“ (1.6)

i-l

and 12,- : y,- — $1,810 are the residuals after IPW least squares estimation

(Wooldridge, 1999).



The objective function in (1.4) simply weights each observation (y,, m.) by the

inverse probability of appearing in the sample, that is, observations for which .3: = 0

do not appear in the optimization problem. Assumption 1 part (it) requires

P(C,- 2 Ti“) to be known whenever 32‘ = 1, so Cw is computable from observed data

assuming we know P(C,- Z 71*).

Note that neither ,5“, nor its covariance matrix estimator involves the

incomplete observations. In addition the estimated covariance matrix is the White

(1980) heteroskedasticity-consistent covariance matrix estimator applied to all

variables for observation 2' weighted by JIE. Note that even if there is no

heteroskedasticity in the potential model (1.3), we treat the model as

heteroskedastic due to censoring. Heteroskedasticity-robust standard errors after the

weighted regression provide the estimated asymptotic standard errors. Censoring,

then can be handled easily because most standard statistics software programs

compute a heteroskedasticity-consistent covariance matrix.

Another advantage of weighting the observations, other than solving the

censoring problem, is that we derive consistency with the weaker assumption (1.2)

rather than E(u|a:) = 0. Since w is independent of (:3, u),

E(wa:’u) = E(E(rw|u, a3)a:’u)) = E(E(w|y,a:)a:’u)) = E(E(w|:r)a:’u)) = o. (1.7)

The last equality follows because E(wlm) = 1.

So far, it has been assumed that the sampling probability function is known.

Usually, that function is unknown and needs to be estimated. We propose to

estimate the sampling probability function by the product-limit estimator (Kaplan

and Meier 1958), with the roles of C, and T,- reversed (i.e., T,- censors C,).

Assuming censoring is not covariate dependent, define p(t) = P(C 2 t), and let

13(t) be the product limit estimator of p(t) based on the data (2,3?) (2' = 1, ..., N),



where 3‘,- = 1 — 3,. Then,

 i: 1, N. (1.8)

Under standard regularity conditions 1 two step IPW least square estimator

that uses 1f),- instead of w,- in equation (1.4) consistently estimates Hm (Newey and

MacFadden 1994).

Exogeneous censoring implies that

13(wa ,T*,C) =E(y|$ )- (1-9)

It can be shown that under exogenous sampling the use of an estimate of the

probabilities for the second step yields a variance estimator that is asymptotically

equivalent to that estimated with known probability values. Therefore, define Cw ,

the two step IPW least squares estimator, as the solution to

N

min —a:;,8,- 2. 1.10e 9 gm > < >

Then Cu, is asymptotically normally distributed with estimated variance

1

I7... V(13~w): AI 8',” A'w‘l /N, (1.11)

where,

N

A}, = N-1 2103293,, (1.12)

i=1

 

1The conditions in which the uniform weak law of large numbers can be applied. For details; see

Theorem 12.1 in Wooldridge(2000a). Lemma 4.3 in Newey and McFadden (1994) shows that if w,-

is replaced with a consistent estimator, the convergence still valid.



N

8-", = N‘1 2 1032233232,, (1.13)

i=1

where II, = y,- — 31,810 are the residuals.

Under administrative censoring, for example, all censoring is caused by study

termination, and C is independent of y. However, unless we have short interval cost

values, such as monthly or weekly, we may expect that T“ and y are correlated. In

this case,T7w in (1.11) has to be adjusted for estimation of w, (for adjusted

covariance matrix, see Wooldridge (2002b)). The estimated covariance matrix of the

two-step IPW least squares estimator is the White (1980)

heteroskedasticity-consistent covariance matrix estimator applied to all variables for

observation 2' weighted by flu—1. Robust covariance matrix is built into most

statistical programs, adjustment for the I7“, in (1.11) requires programming. In

practice, it has been found that adjusting for the first-step estimators usually has

little effect on the asymptotic standard errors. Moreover, Wooldridge (2002b) shows

that using the estimated selection probability will produce smaller standard errors

than true estimated by using a known selection probability. In other words, if we

compute the asymptotic variance as if we have not estimated the probabilities,

inference is conservative. Adjustment for estimation of w,- requires programming in

the application. The main point of this paper is to suggest an easily applicable

method. By ignoring adjustment for simplicity, we produce higher standard errors,

however obtaining significant estimates using unadjusted standard errors leads to

larger t statistics after correction. This is somewhat unusual for two—step estimation

problems, where the prevailing wisdom is that larger standard errors occur by

adjusting standard errors for a first stage estimation.

The steps for deriving consistent two-step IPW least squares estimators and



their unadjusted asymptotic variance estimators can be summarized as follows.2

(i) Calculate the product-limit estimator, mi, based on data (Z,, 1 — s,-)

(i = 1, ...,N).

(ii) Generate p,- = m,- for the cases Z,- s L; p,- = l, were 1,: is the value of m,- at

Z,- = L.

(iii) Generate weight, w,- = si/p, (2' = 1, ..., N).

(iv) Generate weighted response and explanatory variables: y; 2 fly), in: =

\/u—),7 as,- (i=1,...,N).

(v) Run the OLS regression of y; on at: with the heteroskedasticity robust

option.

Total medical cost data are typically characterized by a skewed empirical

distribution of the nonzero realizations (Manning and Mullahy, 2001). The most

common method for analyzing such data is logarithmic transformation of the

response variable. In our estimation procedure, y,- can be chosen as the transformed

dependent variable. Retransformation then can be done using the smearing

estimator (Duan, 1983). The smearing estimator is the exponential of the expected

response on the log-scale multiplied by the average of the exponential cost.

Anderson et a1. (2000) developed the heteroskedastic smearing estimator for use

when the variances of the residuals are not constant.3

 

ZSTATA commands are in the Appendix

3In the method described above, a heteroskedastic-robust variance matrix is used. The ro-

bust variance matrix is needed because of stratification whether or not there is heteroskedasticity.

Therefore, homoskedastic smearing transformation can still be chosen after robust estimation if the

variance of the residuals are constant.



1.2 Comparison Of The IPW And Unweighted

Estimators

The OLS estimator for cases with complete data, called the unweighted

estimator, flu solves

N

,— ',)2. 1.14sneliliagsm wfi) ( )

It is well-known that selection under exogeneous sampling does not cause

problems if we impose the stronger assumption, E(u|a:) = 0. Then Cu is consistent

and asymptoticlally normally distributed and the usual variance matrix estimator

1/031; )—-— 1B,, Au—1/N is consistent, where

~ N

Au 2 N“1 2 3:32:13, (1.15)

‘21

N

= 1W: s*u',,-2a:’.a:,-, (1.16)

21,- = y, — TLC“ are the residuals after OLS estimation of uncensored sample.

If equation (1.9) is satisfied, then unweighted and weighted estimators are both

consistent. In such a case, theory suggests that an unweighted estimator is more

efficient under conditional homoskedasticity and weighted estimator is more efficient

under unknown heteroscedasticity (Wooldridge, 1999).

Because the unweighted estimator is inconsistent under the violation of

equation ( 1.9) and the weighted estimator is consistent with or without exogeneous

10



sampling, we can apply a Hausman (1978) test to determine exogeneity of sampling.

The traditional form of Hausman statistics can be used under homoskedasticity

assumption. We can state this assumption as follows: For the selected sample,

7;: 1, 2, ..., N0:

E(uf:c:a:,-) = agE(m;a:,-). (1.17)

When equation (1.17) holds, the unweighted least squares variance estimator is

N —1

T7,, E V(fi~u ) = [72 (N—1 23:21:13,) (1.18)

1:1

provided we have a consistent estimator of 62 of 08.

In general form, the Hausman test can be stated as:

~ ~ 1 ~ :-

H=(fiw —B.. W ’ (a... 41.), (1.19)

where T7 E T7,” — T7,, . V“, is defined in equation (11) and T7,, is defined in

equation (18).

In many cases we may want to use a Hausman test when the homoskedasticity

asssumption is violated. This requires a robust form that replaces T7 by

~ ~ N ~ ~

(A: l — A?) (N“ Z a, ) (A: | — Arr/N. (120)
1:1

and 6,- = (16,11,932 ,s;u,m; )I. Here 12,- and 11,- are the residuals after IPW least

squares and OLS estimations of the selected sample, respectively. 113,-, AZ”, A.“ are

defined in equation (1.8),(1.12),(1.15) respectively.

Under the null hypothesis the sampling scheme is exogenous, H ,3, Xi» If we

11



reject the hypothesis, IPW least squares method should be used. Since we have

endogenous sampling, OLS estimation using complete cases is not consistent. If we

fail to reject the hypothesis, the typical response is to conclude that the exogeneity

assumption holds and we should use OLS estimates. Unfortunately, we may be

committing a Type 11 error by failing to reject exogeneity assumption when it is

false. Therefore, we should report results from both estimation procedures.

1.3 Application to the Lung Cancer Study

1.3.1 Data

From 1994 through 1997, 202 patients with incident cases of lung-cancer were

recruited from 24 Michigan community hospitals and their affiliated oncology units.

Each patient provided written consent for researchers to acquire his or her Medicare

claim files; 189 patient had lung-cancer treatment.

We obtained Medicare claim files for the two years following lung cancer

diagnosis. The files included any reimbursement claims for inpatient or outpatient

care, physician provider services (including laboratory tests and diagnostics,

mammography, radiation, and intraveneously chemotherapy), home health care,

and/or skilled nursing facilities.

Several cases had missing data. One case was missing age, and nine cases were

missing stage, nineteen cases did not reported comorbid conditions, three cases were

missing symptoms and six cases had no data on physical function. We first assumed

a completely random distribution of missing data,that is, cases with complete data

are not distinguisable from cases with incomplete data. We used mean substitution,

median substitution, pairwise deletion and regression methods to complete the data

set. We then assumed that complete data are different from cases with incomplete

12



data but a missing pattern is tractable. We used a multiple imputation method to

complete the data set. None of imputation methods yielded a significant estimate in

the regression model for the variables with missing values, therefore we used median

substitution without loss of generality.

1 .3.2 Variables

Total Cost. Total cost is the sum of inpatient, outpatient, and provider costs.

Medicare payments were used as a proxy for direct medical care costs rather than

billed charges. Medicare reimbursements formulas are designed to reflect an

underlying pattern of resource use, whereas charges inflate actual cost. Charges

were adjusted for inflation to 1997 prices by using the National Medical Care Price

Index, 1994-1997. The costs of prescription drugs, unpaid caregiver services paid by

other insurers or out of pocket were not included.

Age. Age is defined as continuous variable, patient’s age within two weeks of

initiating either radiation or chemotherapy.

Treatments. Surgical procedures were identified by the two medicare codes,

International Classification of Diseases version 9 (ICD—9) and Current Procedural

Technology (CPT) Codes. We used all ICD-9 and CPT codes avaliable in the

inpatient, outpatient, and physician supplier files to identify chemotherapy and

radiation. These data were coded as dichotomous variables with yes/no categories

for comparison purposes.

Hospitalization. The number of inpatient Medicare claims was used to derive

the number of hospitalizations for reasons other than lung cancer surgery.

Physical Function. Physical function three months prior to diagnosis was

assessed using the subscale from the SF-36 (Ware et a1. 2000). The 10-item subscale

asks questions about such activities as lifting heavy objects, participating in

13



strenuous sports, climbing stairs, walking various distances, and ability to bathe and

dress. Response categories are: limited a lot, limited a little, and not limited at all.

Scores are standardized and range from 100 (no limitation) to 0 (severe limitation).

Symptoms. Patients were asked if during the past two weeks they had

experienced any of 33 symptoms. A count of all symptoms was summed for each

patient.

Death. The Office of Vital Statistics,Michigan Department of Community

Health, Death Certificate Registry was used to identify the date of death.

Comorbid Conditions. Comorbid conditions were assessed with an

instrument from the Aging and Health in America Study, a national survey that

asks patients to indicate whether a health professional has ever told them they have

one of 15 problems. The total number of positive responses was summed for each

patient and sorted into one of two categories: zero to two,and three or more. A

comparison of patient reports of comobid conditions with medical record audits

indicates that patients are able to recall other diagnosed illnesses (Katz et al.,

1996). Restricting the categories for comorbid conditions does not result in lost

predictive power (Newschaffer, 1998).

Stage. Disease stage was determined using the American Joint Committee on

Cancer (AJCC) Tumor Nodes & Metastasis (TNM) staging system which was

applied to pathological data obtained from an audit of patients’ medical records.

Stage of cancer at diagnosis was collapsed into early (in situ and local) and late

(regional and distant).

Gender. The value is 1 for males; 0 for females.

Race. The value is 1 for whites, 0 for blacks.
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Table 1.1: Descriptive Statistics from the Lung Cancer Study

 

  
 

 

[ Uncensored(n=135) Censored(n=48)

Variables Mean Std Mean Std

total cost 63939 41680 62877 40114

lstage .67 .54

lcomo'rbi .64 .63

hospitalize .62 .54

chemo only .08 .06

radiation only .26 .25

chemo and radiation .36 .54

symptoms 11.13 5.14 10.12 4.72

physical functions 73.55 26.76 71.45 28.71

age 71.96 4.85 72.68 5.201

gender .57 .62

white .93 .91

death .53 0       
1.3.3 Descriptive Analysis

All analysis were done using STATA version 7. Table 1.1 shows the summary

statistics. Nineteen cases had no treatment related to lung cancer, so we dropped

these cases from the sample. Out of the remaining 183 patients, we had complete

data for 135 cases and incomplete data for 48 cases. So, approximately 26 percent of

the sample had cencored data.

As shown in Table 1.1, the patient sample can be described as predominantly

white and in their early seventies for both censored and uncensored cases. Two

thirds of the patients were diagnosed with late stage disease for complete cases

whereas half of the patients with incomplete data were diagnosed with late stage

disease. Eighty-three patients who have compete data were hospitalized for reasons

other than lung cancer surgery while 26 censored patients were hospitalized.

Most patients had three or more comorbidities and experienced some level of

symptoms related to cancer treatment. The patient sample is relatively high
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functioning in terms of physical health. Fifty-seven percent of the complete cases

were male relative to 62% percent of the cases in the censored data.

The last four rows of Table 1.1 show the categorical variables related to

treatment types. For censored and uncensored cases, we have similar percentages for

the patients who had radiation only or chemotherapy only, approximately 25% and

7% respectively. Twenty—four percent of the patients had surgery or surgery plus

adjuvant therapy in the complete cases whereas 35% had them in incomplete cases.

For chemotherapy and radiation, the ratios are 36% and 54% respectively for

censored and uncensored cases.

The dependent variable, total Medicare payments two years following diagnosis

is shown in the first row of Table 1.1. Considering the mean alone, we find that the

total cost of all care is $63,939 for the two years following a lung-cancer diagnosis

for complete cases and $62,877 for incomplete cases.

1 .3.4 Survival Curves

Figure 1.1 and Figure 1.2 show the separately estimated baseline survival

curves for the variable of interest after we conditioned on the explanatory variables.

For each graph, we estimated a separate Cox (1972) proportional hazards model on

the explanatory variables of interest so that we can compare the effects of certain

variables on survival time and total medical cost conditioning on the others. As

shown in Figure 1a, the patients with less aggressive disease have better survival

probabilities after we control for physical health three months prior to diagnosis,

age, gender,race, comorbidity conditions, hospitalization and the treatments. The

chances are approximately 90% for early stage and 30% for the late stage.

Interestingly, the patients who have hospitalizations for reasons other than lung

cancer surgery have a 30% chance of survival , compared to 95% for those who do
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Figure 1.1: Survival functions according to disease stage level
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not, conditioning on the other explanatory variables(Figure 1.2). For the other

categorical variables, comoribid conditions, race, and treatment types; we did not

observe differences in the base line curves after we controlled for the explanatory

variables.

1.3.5 Regression Analysis

Our aim is to determine how the variables age, gender, comorbid conditions,

stage of cancer, symptoms, death status, physical functions, hospitalization, and

treatment account for the total medical cost of lung cancer in the two years

following diagnosis.

We found that costs are skewed to the right, so we transformed the cost

equation to a log-linear scale. We started with the log-scale residuals from a

generalized linear model with a logarithmic link function and found that the

log-sealer residuals are dense at the tails. Following Manning and Mullahy (2001)

we considered an OLS—based model with a log-transformed dependent variable.

Table 1.2 shows the result of the regression analysis predicting total cost of care

for the two years following a lung cancer diagnosis. The first column of Table 1.2

shows the unweighted regression coefficients, while the second column shows

weighted regression results. The reference groups for treatment modalities are

surgery only and surgery plus adjuvant therapies.

Variables that reach statistical significance (p < .05) include hospitalization for

reasons other than lung cancer surgery, chemotherapy only, radiation only, and

chemotherapy and radiation.

Hospitalization for reasons other than lung cancer surgery increases total

medical cost during the period of interest by 107% according to the unweighted

estimation and by 114% according to the IPW least square estimation.
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Figure 1.2: Survival functions according to hospitalization for reasons other than lung

cancer surgery
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Table 1.2: Estimates of the Log(tcost) Equation by OLS and IPW

 

 

  

Explantory OLS IPW

constant 10.74 10.70

(1.06)" (1.04)"

hospitalize .72 .75

(.18)" (.18)”

chemotherapy only -.92 -.83

(.29)" (.31)"

radiation only -.79 -.73

(.23)" (.22)"

chemothrepay and radiation -.49 -.43

(.22)‘ (.21)‘

Death -.02 -.03

(.12) (.12)

symptoms .004 .009

(.014) (.014)

physical functions .001 .002

(.003) (.002)

age -.003 -.005

(.014) (.013)

gender .081 .12

(.12) (.12)

white .12 .23

(.20) (.19)

Observations 135 135

R-squared 0.13 0.15   
Robust standard errors are in parentheses.

*significant at 5% level;** significant at 1% level.

20

 



Whether or not a person receives radiation or chemotherapy separately or in

combination significantly decreased the total medical cost relative to the mean costs

for persons receiving surgery only or surgery plus adjuvant therapies. The estimates

with respec to the unweighted and weighted least squares are: for radiation only,

120% and 105%; for chemotherapy only, 148 % and 127%; for chemotherapy and

radiation, 65% and 55%.

As we demonstrated in Table 1.2, age, gender, physical functions, stage,

comorbid conditions, race and death status do not have a statistically significant

effect. Our models explain 13% of the variability in total costs the two years

following diagnosis according to unweighted estimation and 15% according to IPW

least squares.

A comparison of the weighted and unweighted estimations does not reveal

significant differences, although the former statistically corrects for potential bias.

The test developed in section 1.2 can be used to support this argument. We failed

to reject the hypothesis that sampling scheme is exogenous. In this case, there is a

chance that our unweighted estimators are consistent. Both estimators are reported

in Table 1.2 and are statistically and practically the same.

Adjusted means can be calculated using the smearing estimation. These are

shown below.

Method Mean Standard Deviation

Uncensored-Unadjusted $63,939 $41,680

Unweighted Estimation $64,043 $14,177

Weighted Estimation $64,563 $15,850

Whether the sample selection depends on the conditioning variables, or is

independent, then the weighted and unweighted estimators are consistent. Since we

have evidence of exogenous sampling with the robust form of Hausman Test, we

reached this conclusion. In this case, the theory suggests that the unweighted
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estimator is more efficient under conditional homoskedasticity. In our model, we do

not have heteroscedasticity,therefore the standard errors from the predicted means

are in the expected direction.

1 .4 Conclusions

Prior to Lin (2000a, 2000b) the methods of estimating censored costs

incorrectly assume some homegeneity in the medical cost data in the sense that they

are independent of covariates such as patient and clinical characteristics. In 2000,

Lin developed a technique for estimating censored costs. However, his approach,

while correct, is extraordinarily complex and not applicable using commercially

available statistical software programs. Therefore no empirical tests of this model

have been completed.

This paper examines the IPW least squares method to solve for inconsistencies

due to censoring and is easily applicable using most statistical software programs.

Under the key assumption that selection is ignorable, the inverse probability

weighting scheme identifies the population parameters.The regression method

introduced can handle large numbers of continuous and discrete explanatory

variables.

The application of the method is a two-step estimation process where at first

step, we estimate selection probabilities by using the product limit estimation where

the role of censoring and survival time is reversed. At the second step, we estimate

heteroskedastic robust OLS on the uncensored data set where each variable is

weighted with the inverse of the square root of the estimated selection probabilities

from first stage.

We also developed a test to compare the coefficients estimated by the IPW

least squares and by OLS. This test can be used to asses efliciency improvement
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between two models. Specifically, if we reject the null hypothesis that the sampling

scheme is exogenous, IPW least squares method should be used because the other

method yields inconsistent estimates. Failing to reject the null hypothesis could be

used to support unweighted estimation under conditional homoskedasticity.

We also applied the proposed method to an inception cohort of patients newly

diagnosed with lung cancer. The findings from the lung cancer study can be

summarized as follows. Although lung cancer stage does not affect the total medical

cost, it decreases survival time. Comorbid conditions are not significant for the

estimation of total medical cost and do not effect survival time. Hospitalization for

reasons other than lung cancer surgery decreases survival time and it also doubles

the total medical cost during the period of interest.

Several limitations should be discussed. The lung cancer study does not

demonstrate the full power of the IPW least squares method. First, the sample size

is small and all of the results demonstrated in the first two sections are

asymptotically valid. Second, the censored observations in the data set are relatively

homogeneous. Applying OLS to the cases with complete data yields an unbiased

estimator toward the cost of the patients with shorter survival time because a longer

survival time is more likely to be censored. Since a longer survival time tends to be

associated with higher medical cost, the cost values of the censored case should be

well above the mean value for cases with complete data. Figure 1.3 shows that is

not the case for data in this study. All the censored cases cluster around the mean

of uncensored cases. With the available data set, where the number of observation is

large and deviation between censored and uncensored observations is significant, we

would see the full power of the IPW least squares method over OLS.
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Figure 1.3: Total medical cost distribution among the censored cases
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Third, for the exact asymptotic variances adjustment for the first stage

estimation should be made. So marginally insignificant variables should be

interpreted with the caution since with the adjustment they may turn out to be

significant.

In conclusion, our study improves upon previous studies by propose a

multivariate regression analysis that solves for inconsistencies due to censoring and

a statistical test to asses the efficiency improvement between the old methods and

the more easily replicatable proposed method. Furthermore, an application of lung

cancer study shows how the method can be applied by using most of the statistical

software programs, including step~by-step procedures.
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Chapter 2: The Longitudinal

Analysis of Censored Medical Cost

Data

Introduction f

Proper analysis of treatment cost data is more challenging than is generally

 recognized. A common problem is that censoring and statistical methods applicable

to estimation of medical cost from censored data are not well developed. f

Until recently the methods (Lin et al. 1997, Bang and Tsiatis 2000) for

analyzing censored medical cost assumed homogeneity in the data, which in practice

is rare. Proper analysis requires multivariate regression analysis. The two

approaches developed by Lin (2000a, 2000b) require a high level of computer

programming and have not been fully empirically tested.

Analysis of censored data under exogenous sampling can be done easily by

using the ordinary least-squares (OLS) method for uncensored data. It produces

consistent estimators which we refer as unweighted estimators throughout the

paper. Exogenous sampling in the context of estimation from censored medical cost

means that once explanatory variables are selected, such as patient characteristics

or the type of treatments, total medical cost does not depend on the censoring time

and survival time.

Under administrative censoring, that is when all censoring is caused by study

termination, it is reasonable to assume that total cost is independent of censoring

time. Exogenous sampling assumptions are violated; if total cost and survival time
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are correlated after we condition on explanatory variables. Since longer survival

time may be associated with higher medical cost, the unweighted method yields an

estimator biased toward the cost of patients with shorter survival times.

In the first chapter, I applied the inverse probability weighted (IPW)

least-squares method to predict total medical cost in patients with lung cancer two

years after diagnosis. In more general framework, Wooldridge (1999, 2001)

examined the asymptotic properties of the IPW M-estimator for variable probability

samples and standard stratified samples and Wooldridge(2002b) provides an

overview of IPW M-estimation for cross-section applications. IPW produces

consistent asymptotically normal coefficients with easily computable standard errors

under the violation of the exogenous sampling assumption. With small data sets the

resulting estimator may be unstable if the censoring is heavy (Bang 2000). It is

necessary to ensure that sufficient follow-up is available during the period for which

we wish to compute medical costs.

In this chapter, we extend first the method described in the first chapter to

handle data with extensive censoring. The method covers the partitioned estimation

suggested by Lin (2000a), that estimator can be used only for time independent

regressors. Our method can be applied for both time dependent and independent

explanatory variables. We use weighted estimation specifically, IPW pooled

ordinary-least square (POLS) and IPW random effects (RE) models. The choice

between the two depends on whether unobserved heterogeneity is present. If

present, IPW RE should be used, otherwise the simpler IPW POLS will produce

consistent asymptotically normal coefficients.

Second, since an unweighted estimator is inconsistent when exogenous sampling

is violated and the weighted estimator is consistent with or without exogenous

sampling, traditional and robust form of the Hausman (1978) test will be applied to

determine systematic differences in the models in a panel data. setting.
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The third section of the chapter describes a study on the medical cost for lung

cancer that is used to demonstrate the methods. The last section presents

conclusions.

2. 1 General Framework

Suppose that we are interested in the total medical cost over period [0, L]. If

data on cost and explanatory variables are available in multiple intervals such as

every month or every year, we can set up the data into a panel format by dividing

the entire time period of interest into C intervals: 0 = to < t1 < < ta = L. Since

there is no further medical expense after death, the total cost over (tg_1, t9] is the

same as the cumulative cost at Td = min(T, tg), where T is the survival time.

Distribution of T is assumed to be continuous on [0, L].

Survival time and medical costs may be subject to right censoring and therefore

are not always fully observable. Censoring of cost occurs when a patient’s follow-up

time is less than t0 and the patient is alive at the time of censoring. Because no

further expense is incurred after death, for all observed deaths the total costs are

known.

One advantage of dividing the total period into intervals is that we can consider

the ith individual as uncensored in the gth interval whenever the censoring time C

exceeds the maximum T and tg. Therefore, some individuals counted as censored in

our previous work can be considered uncensored in some interval during the period

of interest. The increase in the sample size allows more precise estimators and test

statistics with more power.

For ith individual, let Z,- = min(T,-,C), s’,’ = I(C Z T,), and 3,9 = I(C Z 71;),

where I() is the indicator function. There are two types of censoring: time

censoring if s; = 0; that is, T,- > C,, and cost censoring if 3,9 = 0, that is,
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min(T,,tm) > C,.

Let y,,, be the total medical (or log transformed) cost for ith individual for the

interval (tg_1, t9]. If there is initial cost at t = 0, we include that cost in the first

time interval.

2.1.1 Pooled Ordinary Least Squares (POLS) Estimation

The properties of POLS for the linear data can be summarized as follows.

Assume that the model is the usual linear model for i.i.d cross-sections: for any i,

y; = X,- fi +11,- i = 1,2, ...,N (2.1)

where X,- = (cc;l ,mgz , ..., 51:26. )’ is G x K matrix of explanatory variables, )6 is

the K x 1 vector of unknown regression parameters, u,- is a G x 1 vector of

unobservables which has unspecified distribution. Let S,- be a G x G matrix in

which gth diagonal 3,9 = 1 if (93,9 ,y,g) is observed, zero otherwise. Generally we

have an unbalanced panel. Then we can define our explanatory variables and a

response variable for selected sample as X,- = S,- X, ,3},- = S, y,- .

Assumption 1 :

(i) E(ui iSi ,Xz' ) = Efui IXi ) = 0-

(ii) E02; )2,- ) has rank K.

It is well known that under the assumption 1, the unweighted POLS estimator

.BUP iS

N

3UP = A5}: (IV—1:32,, 371 ); (22)

1:1
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where

N ~ ~

Aw. = (Iv-12X; X,- ) (2.3)

i=1

on the unbalanced panel is consistent; and its asymptotic robust variance matrix is

V(aup )zAl—Jf’ BU]: AB}; /N, where

N

BU}: = N_1 :2: (3,11%) (85,124), X; (2.4)

i=1

and i1,- = y,- — XiBUP (\Nooldridge, 2002).

The key exogenous sampling assumption underlying the validity of the

unweighted POLS estimator on the selected sample is given in assumption 1(i).

Exogenous sampling in this setup implies that

E(y,-g|:1:,-g ,T-" C,) = E(y,-g|:c,-g) g =1,2,...C i = 1,2, ...,N. (2.5)
19’

Under administrative censoring C,- is independent of y,g but we would expect

that 7”,; and My may be correlated. Correlation increases with the length of the

interval. Violation of equation (2.5) would yield an inconsistent POLS estimator.

IPW estimation produces consistent and x/N asymptotically normal estimators

even under the violation of equation (2.5) with the following assumption. Suppose

that T and C are independent given 2:.

Assumption 1’ :

(i) E(X£ u,- ) = 0.

(ii) Same as assumption 1 part (ii).

(iii) 33,9 ,y,g, T5, are observed when 3,9 = 1, C,- is always observed.
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(iv) 3,9 and y,_,, can be ignorable in the selection equation

P(S;g Z “1ng ,yigaCi T-tI9) = P(ng =1|C,~,T,-"g) = P(C, Z 71;)-

Another advantage of weighting the observations, other than solving the censoring

problem, is that we derive consistency with the weaker assumption 1’(i) rather than

assumption 1(i). Assumption 1’(iii) simply defines when the data are observable.

Part (iv) requires that the selection probability is observable when 3,9 = 1.

Under Assumption 1’, the IPW POLS estimator is, Bwp :

N

41131» (1)/"Zr 17.- ), (2.6)

i=1

where

A N A A

AWP = (Iv-12X; X,- ), (2.7)

i=1

X,- = W,- X, , g, = W,- y,- , and W,- is a G x G diagonal matrix in which the gth

diagonal element is , /w,-g where

111,, = Sig/P(C? 2 T52.)- (2-8)

pr is consistent, asymptotically normal and its asymptotic robust variance

matrix is

WBWP ) = AWP BWP *1va /N, (29)
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where

N A

BWP = N-1 Ex; (W,a,-) (W,a,-)' X,- (2.10)

i=1

and a,- = y,- - Xfiwp (Wooldridge, 1999).

Each observation of (y,, 3,) is weighted by the inverse probability of appearing

in the sample. Assumption 1’ part (iv) requires P(C,- > 71;) to be known whenever

3;, = 1, so Bwp is computable from observed data assuming we know P(C,- > 71;).

Usually the sampling probability function, 211,9, is unknown and needs to be

estimated. We propose to estimate the unknown survivor function by the

Kaplan-Meier (1958) estimator, with the roles of C and T reversed.

Define p(t) = P(C Z t), and let p(t) be the product limit estimator of p(t)

based on the data (Z,,s‘-') (i = 1, ...,N), where 5,7 =1— sf. Then,
1

A Sig .

w, = . i =1,...,N; =1,...,K. 2.11

9 pm.) 9 ( ’
 

Lemma 4.3 in Newey and McFadden (1994) shows that if my in (8) is replaced

with consistent estimator “113,9, under the conditions in which the uniform weak law

of large numbers can be applied, then ,pr consistently estimates 3 in equation

(2.1).

The estimated covariance matrix in (2.9) is the White (1980)

heteroskedasticity-consistent covariance matrix applied to all variables for

observation i at the gth interval and weighted by m. Censoring therefore can be

handled fairly easily because most standard statistics software programs compute a

heteroskedasticity-consistent covariance matrix.

This simplicity does not work when 10,9 is replaced with 221,, for variance of

IPW POLS because it should be adjusted for estimation of selection probabilities.
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Fortunately, Wooldridge (2002b) shows that estimating the selection probabilities

leads to a more efficient estimator than using known probabilities. In other words, if

we compute the asymptotic covariance matrix as if we have no estimated

probabilities and if we get significant estimators by using the easily computable

matrix in (2.9), we know that they would have smaller standard errors under

corrected covariance matrix calculation. This is somewhat unusual for two—step

estimation problems. Estimating (2.9) by using 121,9 instead of 211,9 results in a

conservative inference.

The steps for deriving consistent two—step IPW least-squared estimators and

their unadjusted asymptotic variance estimators can be summarized as follows.

(i) Calculate the product-limit estimator, m,, based on data (Z,, 1 — s?)

(i = 1, ...,N).

(ii) Generate p,_,, = m,g; where mm is the value of m,- at T,g* and s,g = 1 if

(y,g,:r,-g) is observed at (tg-1,tg].

(iii) Generate weight, 111,9 = Sig/pig (i = 1, ..., N).

(iv) Generate weighted response and explanatory variables: y:g = M359, 1::9

= M (13,9 (i = 1, ...,N).

(v) Compute the OLS regression of yfg on 3:9 with robust option.

2.1.2 Random Effect Model

Panel data usually provides the researcher with a large number of data points

that increases the degrees of freedom and reduces collinearity among explanatory

variables. Panel data also provides a way to resolve or reduce the magnitude of an

econometric problem that often arises in empirical studies, namely, omitted variables

that are correlated with explanatory variables. By using information on both the

intertemporal dynamics and the individuality of the entities being investigated, one
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is better able to control for the effects of unobserved variables (Hsiao, 1999).

Let us first investigate assumptions under which the random effects estimator is

consistent under exogenous selection. The model is the unobserved effects model for

any 2',

gm = wig fl + a,- + uig g =1,2,...,G, (2.12)

where a,- is unobserved effect, wig is 1 X K; and fl is the K x 1 vector of interest.

We can write the model as

311' = X; g + '01 (213)

by defining y,- = (1),], ya, ..., y,G)’ and v,- = 01,-jg + u,- , where jg is the C x 1 vector

of ones, 11.,- = (u,1,u,2, ...,'u,-G)’ and X,- = (5811 ,a312 ,...,a:1G )’.

Define the variance matrix of 1),- over uncensored cases as

(2,,- = S,- E('0, v1 )5, , a C x G matrix that we assume to be positive definite.

Assumption 2:

(I) E(’U,; IX; ,3; ) = E(’Ui IX; )20

(ii) rank E(X,-’ (2;? X,- ) = K

Under assumption 2, generalized least squares (GLS) over uncensored data is

consistent and it can be shown that a consistent estimator of the RE model is

~ ~ _1 ~ _ ~

3R3 =ARE (N-lzi,xgn,,1 3),); (2.14)
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where

N

ARE = N42130:)?“ (2.15)

i=1

with variance matrix

V(1§RE)=A;,E1 BEE/1R; /N, (2.16)

where

N ~

2(z’n;1<S-fi.)(S.-fi.)'n: Xi); (2.17)

and fl,- = g, — X1335 is the vector of residual i.

As mentioned previously, correlation between survival times and medical costs

violates the exogenous sampling assumption. Violation of assumption 2(i) makes

ORE defined in (2.14) inconsistent.

Inverse probability weighted estimation with the following assumption produces

consistent and W asymptotically normal estimators under violation of the

exogenous sampling assumption.

Define the (unconditional) weighted variance matrix of v,- as

flw, = W,E('v,~'v1)W,- and T." = (711,713, *G).

Assumption 2’:

(I) E(X1’Ui ) = 0

(ii) rank E(X,-’ 01:11 X,- ) = K

(iii) 3,9 ,y,g, T; are observed when 3,:9-— 1, C, is always observed.
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(iv) a),- and y,- can be ignorable in the selection equation

P(8:g =1|a:,- ,yi,Ci,T1-*) = P(S:g = 1401,7112) = P(C, 2 T13).

Under assumption 2’ GLS is consistent, however, obtaining GLS requires

knowing 0,”,- up to scale. In feasible GLS (FGLS) estimation, we replace unknown

matrix (2w, with a consistent estimator and get asymptotic properties that are

identical to those of the GLS estimator.

Since the sampling probability function is unknown, we can use a proposed

consistent estimator of 112,9 to find the IPWRE estimator:

A A —l “ “— A

fiwns = AWRE (N—l 2.111)“ nun-191') ; (2-18)

where

N

AWRE = N‘1 Z X; 631?, ; (2.19)

i=1

provided that Ow,- is consistent estimator of 0,0, .

The unajusted robust variance of the IPWRE estimator is

V(BWRE ) = AFVIRE BWRE AFVRE /N, (2-20)

where

A N I

BWRE = N—1 Z (Xi 93(W,fi,)(W,-fi,)’X,- ) , (2.21)

i=1

and 17,; = y,- — X,,CWRE is the vector of residual i.
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V(£§w33 ) is unadjusted because it should be adjusted for the first-stage

estimation of W,. .As in the IPW POLS estimation, we also know the direction. By

using an unadjusted covariance matrix, we can get a conservative inference. The

estimated covariance matrix in (2.20) is the White (1980)

heteroskedasticity-consistent covariance matrix after random effect estimation,

applied to all variables for observation 2' at the gth interval weighted by [112.

Based on the results of Wooldridge (2002b), we know that any significant variables

determined by this easily computable method will have more power under the

adjusted variance matrix.

The steps for deriving consistent IPW RE estimators and their unadjusted

asymptotic variance estimators are the same as the steps described earlier for IPW

POLS; with the following exception:

(v) Compute the RE regression of yg‘g on mg with robust option.

2.2 Weighted or Unweighted Estimator?

It has been shown that the unweighted estimator is no less efficient than the

weighted estimator under homoskedasticity and exogenous sampling (Wooldridge

1999, 2001). For a linear regression model, the Gauss-Markov Theorem for

independent observation implies that an OLS estimator is the best linear unbiased

estimator. It is better than a weighted estimator, which is linear and unbiased.

Because the unweighted estimator is inconsistent when the sampling scheme is

not exogenous and the weighted estimator is consistent with or without exogenous

sampling, we can apply a Hausman(l978) test to determine exogeneity of sampling.

The traditional form of Hausman statistics can be used under the

homoskedasticity assumption. We can state this assumption for the POLS estimator
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as follows:

E(X;s,-u.-u;s,x, ) = 035(ng, ) (2.22)

When (2.22) holds, estimation of the unweighted POLS variance estimator is

simplified further:

my.» > = 62.4.7}: , (223)

provided we have a consistent estimator 62 of 03.

The homoskedasticity assumption under RE is

E(X,-’ nilvgvfi: X,- ) = E(x,’n;,1 X,- ). (2.24)
81

Then, the unweighted RE variance estimator becomes

V(fi£fi£ ) = 1117:}: - (225)

In general form, the Hausman test can be stated as:

H = (6,, — éu) V-1 (6,, — é") . (2.26)

For weighted and unweighted POLS, choose 9,”, an as ,éwp, 3UP, respectively.

I7 E 9;, — V“, where Vw is defined in equation (2.9) and V“ is defined in

equation (2.23) under the homoskedasticity assumption.

For the RE model, 9,”, Ba is BWRE , fiRE . Vw is as in equation (2.20); and

Va is as in equation (2.25).

In many cases we may want to use a Hausman test when the homoskedasticity
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assumption is violated. This requires a robust form that replaces V for the POLS

estimation:

(Aw. I — A51.) (Iv-12:Z éig ézg ) (21:3,. I — Astr/N, (2.27)
i=1 9:1

I

where éigz (“(1AJ,-gfl,-_q:r:’ig , 5,911,9329 ) . 21,9 and {rig are the residuals after weighted and

unweighted POLS estimation. For RE estimation,

4. N A ~

(Av—VIM: | — ARE) (1)"1 Zéi éi ) (AG/RE | — Aggy/N, (228)

i=1

where éiz (Xi, figv‘vim, 32,-, (2: 8,17,), and iii, fig are the residuals after

weighted and unweighted RE estimation (Wooldridge, 1995).

The methods described are easily applicable using standard commercial

statistical software programs. The traditional Hausman test is built in to most

statistical programs, but the robust form Hausman requires programming. We can

use an alternative approach, the regression-based Hausman test, for easy

computation of the robust form. Ruud (1984) and Wooldridge (1990) examine this

issue. Since the Hausman test compares systematic differences in the coefficients, if

we regress the independent variables on weighted and unweighted explanatory

variables and the coefficients are not different, then the F test for the coefficients on

weighted explanatory variables should result in an insignificant value. It can be

shown that the statistics obtained from this procedure are asymptotically equivalent

to Hausman statistics that compare the difference of weighted and unweighted

estimators. To obtain the traditional form of the Hausman test:

(i) Compute the POLS(RE) regression of gig on wig and 1:39 with the

heteroskedasticity robust option.
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(ii) Compute the F test for the coefficients of 32:9.

We can also obtain the traditional Hausman test statistics if we repeat (i)

without the heteroskedasticity robust option.

If the Hausman test indicates rejection then the exogeneous sampling

assumption is violated; and the unweighted estimator are inconsistent. A failure to

reject means the coefficients from unweighted and weighted estimators are not

systematically different and can be used as evidence of exogeneous sampling.

2.3 The Lung Cancer Study

2.3.1 The Data

The data are from a project entitled “Family Home Care for Cancer: A

Community-Based Model from: the National Institute of Nursing Research and

National Cancer Institute (grant No. NR1915-06)” ,which studied 202 Medicare

beneficiaries over age 65 who were diagnosed with lung cancer from 1994 through

1997. Among them, 183 subjects who had some kind of treatment, whether surgery,

radiation, or chemotherapy.

Medicare claim files for each patient for two years following diagnosis were

obtained. These files revealed monthly cost values, treatment types, hospitalization,

and death status during the 24 months. Payments by Medicare were used as a

proxy for direct Medicare costs as opposed to bill charges. Costs are adjusted for

inflation to 1997 prices by using the National Medicare Price Index, 1994-1997.

Patient information (such as age, sex, race) was obtained through interviews.

In addition, we collected data on patients’ physical function three months prior to

diagnosis as measured by the short form 36 (SF-36). Comorbid conditions were

assessed by questions from the Aging and Health in America Survey (1996), which
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documents 15 diseases and health problems other than lung cancer. Disease stage

was determined by the American Joint Commitee on Cancer (AJCC) Tumor Nodes

& Metastasis (TNM) staging system, which was applied to pathological data

obtained from an audit of patients’ medical records.

The medical costs are censored for patients alive at the end of 1997 and when

patient follow-up is less than two years. Because censoring is solely caused by the

limited study duration, it is reasonable to assume that censoring is independent of

all other random variables.

The distribution of average monthly cost values for uncensored cases is given in

Figure 2.1. It shows that medical care expenditures for lung cancer patients spike in

the first month after diagnosis, during the surgical period. The interventions such as

surgery and radiation incur large costs within the first couple of months; whereas

chemotherapy may be administered over a much longer time.

2.3.2 Regression Analysis

Two analyses were performed to examine how patient- and treatment- related

variables explain total medical cost for older persons newly diagnosed with lung

cancer. Total medical cost is the expenditure incurred from initiation of treatment

until death or during two years, whichever comes first.

Following Manning and Mullahy (2001), our cost values satisfied the conditions

in which an OLS-based model with a long-transformed dependent variable is

suitable.

Table 2.1 shows the results of the regression analysis predicting the total cost of

care. The first two columns present the regression results estimated by POLS and

IPW POLS. As emphasized throughout this paper, POLS is likely to suffer from

omitted variable problems.Therefore, RE and IPW RE models were estimated as an
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Figure 2.1: Distribution of average monthly cost
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Table 2.1: Estimation of Log of Total Medical Cost from Longitudinal Data
 

 

     

Variables POLS IPWPOLS RE IPWRE

constant 6.67 6.47 6.80 6.23

(1.52)" (0.68)" (1.57)" (1.54)"

late stage —1.10 —1.17 —1.02 —1.12

(0.20)” (0.09)" (0.20)" (0.20)"

late comorbidity 0.48 0.51 0.49 0.53

(0.20)‘ (0.09)" (0.21)’ (0.19)"

hospitalize 3.61 3.71 3.50 3.45

(0.23)" (0.17)" (0.21)" (0.20)"

radiation 4.05 4.08 3.88 3.83

(0.16)“ (0.17)" (0.16)" (0.16)”

radiationl 1.02 1.06 0.90 0.87

(0.18)" (0.22)" (0.18)" (0.18)"

radiation; 0.90 0.90 0.71 0.64

(0.22)” (0.21)" (0.21)" (0.21)"

chemothrapy 2.95 2.99 2.78 2.73

(0.22)" (0.18)" (0.21)“ (0.21)“

chemothrapyl 1.11 1.16 1.04 0.99

(0.18)" (0.21)" (0.18)" (0.17)"

chemothrapyg 0.96 0.94 0.88 0.77

(0.19)” (0.19)" (0.19)" (0.18)"

other 2.97 2.07 2.93 2.90

(0.21)" (0.21)" (0.21)" (0.20)”

otherl 1.35 1.40 1.30 1.26

(0.22)" (0.24)" (0.23)” (0.22)"

0th67'2 0.65 0.64 0.57 0.49

(0.24)" (0.24)“ (0.24)" (0.23)“

death 0.02 0.06 0.20 0.18

(0.19) (0.09) (0.19) (0.18)

physical functions 0.008 0.008 0.007 0.007

(0.003)‘ (0.002)" (0.003)‘ (0.03)‘

age —0.02 —-0.02 -0.02 -0.01

(0.02) (0.01)‘ (0.02) (0.02)

sex —0.33 —0.32 —0.30 —0.30

(0.18) (0.18) (0.19) (0.19)

white —0.29 —0.34 -—0.21 ——0.27

(0.36) (0.17)‘ (0.19) (0.34)

observations 4000 4000 4000 4000

r - squared 0.61 0.59 0.60 0.61
 

Robust standard errors are in parentheses.

‘significant at 5% level;“ significant at 1% level.
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alternative way to use panel data to view the unobserved factors affecting the

dependent variable. Almost all models explained 60% of the variation in total cost.

The population may have a different distribution in different periods, therefore

we allow the intercept to differ across months. We chose the first month after

diagnosis as the base month and included dummy variables for all but the first

month after diagnosis. The coefficients were all negative and statistically significant

(p < .05). Figure 2.2 shows the pattern of the absolute value of the coefficients

under POLS and IPW POLS estimation. For example, after we control for patient

and treatment related variables, a patient’s total medical cost 4.3 less in month 24

after diagnosis than in first month after diagnosis. As shown in Table 2.1, the

control variables are age, gender, race, comorbid conditions, stage of cancer,death

status, physical function, and treatment-related variables. We divided treatment

into four categories: no treatment, radiation only, chemothrapy only and, others

which includes chemo and radiation, surgery only, and surgery plus other therapies.

N0 treatment was chosen as the reference group. Our time independent variables

are gender, race, comorbid conditions, stage of cancer and physical function.

The only variables that did not reach statistical significance under POLS and

IPW POLS estimation is death. The coefficients for physical functioning and age,

while statistically significant, are small in magnitude. On average, expenses for male

patients were almost 31% less than for female patients. Race is also significant. The

costs for whites is 34% less than black peOple.

Disease severity measures, such as comorbid condition and stage, have different

and statistically significant effects. As shown in columns 1 and 2 of Table 2.1,

having three or more comorbid conditions increase cost by almost 48% and 51%,

respectively. Disease stage has a large negative effect on costs. Regional stage

decreased total cost of care almost 1.1 times compared to in situ or local stage

cancer according to POLS and IPWPOLS.
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Figure 2.2: Distribution of absolute value of monthly dummy coefficients under POLS

and IPW POLS estimation.
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Hospitalization for reasons other than lung cancer surgery increases total

medical cost 3.6 times (column 1) and 3.7 times (column 2) during the period of

interest.

A two—period lag effect is found treatment-related variables. If a person receives

radiation in a particular month; on average cost increases almost 4 times relative to

the ones who have no treatment in that month according to both weighted and

unweighted POLS estimation. If the same person has radiation one month prior, the

effect becomes almost 5 times. To see the effect of radiation alone relative to no

treatment, we need to add three coefficients. So overall, if a person receives a

radiation, total cost is 6 times more than for someone who had no treatment. The

effects for chemothrapy only and the others category are almost 5 times.

Note that the coefficients estimated by POLS and IPW POLS are not

practically different. Since the exogenous sampling assumption is violated, however,

POLS estimators are inconsistent. The traditional and robust Hausman test

described in section 2.2 reject the null that sampling scheme is exogenous (pvalue is

0 for five decimal points).

Figure 2.3 shows the distribution of absolute value of monthly dummy variable

coefficients when the first month after diagnosis is the base month. The variation of

the coefficients between weighted and unweighted RE estimation is relatively smaller

than that of POLS. As revealed in columns 3 and 4 of Table 2.1, death status, race

and age are not statistically significant and physical functioning is practically

insignificant. Gender has a significant effect. The cost for male patients is 29 % and

27% less than for female patients according to RE and IPW RE, respectively.

We can see differences for disease severity measured under weighted and

unweighted RE models. Regional stage decreases total cost of care by 1.3 times

according to IPW RE and by 1 time according to RE estimation. A patient with

late comorbidity conditions paid 50% to 60% more on average; depending on the
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Figure 2.3: Distribution of absolute value of monthly dummy coefficients under RE

and IPW RE estimation.
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estimation method.

Hospitalization other than for lung cancer surgery increases total medical costs

almost 3.5 times, which is very similar to the POLS estimation.

The two-period lag effect persists under RE estimation methods. The

permanent effects of radiation only, chemotherapy only, and others are 5.4, 4.5, and

4.7 times greater relative to nontreatment under unweighted RE estimation and are

5.7, 4.7, 4.8 times more under IPW RE estimation.

Since survival times are correlated with total cost, values in column 4 of Table

2.1 are the consistent estimators. Unweighted RE estimators, given in column 3, are

consistent under exogenous sampling. However, both traditional and robust form of

the Hausman Test as in the case of POLS reject the null hypothesis (pvalue is 0 for

five decimal place). So consistent estimators are in the one in column 4.

2.4 Conclusion

The IPW least—squares method was applied to longitudinal data to illustrate

how the censoring problem can be solved. The main motivation for developing

regression methods is to handle a large number of continuous and discrete covariates.

POLS and RE models were analyzed and their statistical properties examined

under censoring. Usual POLS and RE estimation will create an inconsistent

estimator without exogenous sampling. Since survival times are correlated with

total medical cost, the exogenous sampling assumption is violated. IPW estimators

produce consisted and W asymptotically normal estimators. The method is easy

to apply and can be done with most statistical software programs on the market.

Step by step procedures were provided.

Since unweighted POLS and RE estimators are consistent under exogenous

sampling and more efficient under the homoskedasticity assumption, the Hausman
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test can be used to compare the systematic differences in coefficients between

weighted and unweighted estimators. Traditional and robust forms of Hausman test

described to determine between the models.

The lung cancer study, although it does not demonstrate the full power of the

IPW least squares method, served as an example of how to use proposed regression

methods and test statistics. We create artificial panel data by dividing two years

after diagnosis into the months. The better estimates can be obtained if the data

set originally was set in panel data format. That would be an interesting research

topic to explore.

48



Chapter 3: Full Parametric

Estimation of Censored Medical

Cost

Introduction

Due to escalating cost of medical care it is important that costs of health care

interventions and treatments are carefully assessed. A common problem with

medical cost data is censoring since not all patients are followed until the endpoint

of interest.Therefore, their medical costs are not fully observed.

The estimation of medical costs might be addressed through multivariate

regression analysis. Multivariate analysis can control for patient and clinical

characteristics to estimate medical cost. Using regression methodology estimating

medical cost is a relatively new technique. The regression methodology would be

particularly valuable in identifying cost-effective intervention programs. These

intervention programs require that treatment costs are compared with alternatives

that requires proper analysis of conditional means.

Although there have been several non-parametric approaches (Lin, 2000a) and

a semi-parametric approach (Lin, 2000b) suggested for handling censored data,

currently there is not a valid full parametric regression method for assessing the

effects of covariates (e.g. patient and clinical characteristics) on censored medical

costs.

Non parametric methods are often not as efficient as parametric statistics.

Parametric methods are the “best practice” for estimation. They provide speed,
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accuracy and flexibility to estimating processes.

This chapter suggests a full parametric method for estimating the parameters

in linear structural equations when the selection rule is governed by the Tobit

model. The resulting estimators are shown to be consistent and asymptotically

normal. The procedure introduced in this paper involves a two stage estimation. In

the first stage, the selection equation is estimated by Tobit and in the second stage,

an additional variable estimated by Tobit parameters is included in the structural

equation to correct for possible sample selection bias. The resulting model in this

paper could be estimated by full maximum-likelihood estimation (MLE). However,

the two-stage approach has the advantage of being easier to compute and is usually

more robust than full MLE. The drawback to our approach is that the asymptotic

variance matrix is cumbersome to estimate; although it can be done by using the

general methods in Newey and McFadden (1994).

This chapter is organized as follows. Section 1 outlines the general framework

to show the conditions under which the ordinary least squares (OLS) estimator

using selected sample is consistent. The next section demonstrates how to apply

this framework to the cases for which the selection rule is determined by the Tobit

model with the specific example of estimating censored medical cost data, including

statistical properties of the estimation and step-by-step procedures. Section 3

describes an application of our methods to a study on medical costs with a

comparison of non-parametric method results in the first chapter. Concluding

remarks are given in Section 4. The appendix contains proofs of the propositions in

the main text.
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3. 1 General Framework

Assume that there is a population represented by the random vector (2:, y)

where a: is a 1 x K vector of explanatory variables, y is the scalar response variable.

Suppose that the population model of interest is

31:51+fl2$2+...+fikxk+u=mfi+u,
(3.1)

where we define 2:1 2 1 and u as the error term.

Let s be a binary indicator such that s = 1 if (m, y) is observed and s = 0

otherwise. Assume that s = h(m) for some non-random function h(.).

Let ((0,, y,), i = 1, 2, ..., N, be a random sample from the population and let

3,- 2 Man). Then OLS estimator using the selected subsample can be written as

N ‘1 N

[BA : (IV—1 2 8103223) (IV-12 3,32%) . (3.2)

i=1 i=1

Theorem 1:

In model (1), assume that E(u2) < oo, E(2:,-2) < 00; i = 1,2, ...,K. Lets = h(m)

be a binary indicator for non-random function h(..) Assume that E(ulm) = 0 and

E(33’m) = K, then the OLS estimator using the selected sample, given by equation

(2) is consistent for B. All proofs are given in the Appendix.

In the next section, we show how to apply this framework for cases where

selection is determined by a censored selection variable.
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3.2 Statistical Methods

Suppose that we are interested in the total medical cost over period [0, L].

Since there is no further medical expense after death, the total cost over [0, L] is the

same as the cumulative cost at T‘ = min(T, L), where T is the survival time.

Assume that the population model of interest is defined as (1), where y, (13,,5

are respectively a scalar representing cumulative cost (or transformed cost) at L or

T, a 1 x K explanatory variables (patient characteristics, treatment types, others),

a K x 1 unknown regression parameters.

Medical costs may be subject to right censoring and therefore are not always

fully observable. Let C be the time of censoring. Suppose individuals enter the

study at different times and terminal point of the study is predetermined by the

researcher, so that censoring times are known when an individual is entered into the

study. This form of censoring is called administrative censoring. From figure 3.1, we

can see that cases subject-2 and subject-4 is subject to administrative censoring. A

convenient representation of such data is to rescale each individual’s starting time to

0 as described in the figure 3.2. Since we are interested in the total medical cost

over period [0, L]; we impose a second type of censoring which we will call artificial

censoring for some cases. From figure 3.2, cases such as subject-1 or subject-3, who

are not censored due to administrative censoring, will be artificially censored

because their duration on study is greater than L. Subject-2 is both artificially and

administratively censored. Note that in such cases, artificial censoring precedes

administrative censoring. Subject-5 is neither artificially nor administratively

censored.

Let s = 1(C > T‘), where 1(.) is indicator function. So y is observed when

3 = 1 (all cases except subject-4 in figure 3.2). We calculate the expected value of y
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Figure 3.1: Administrative censoring when each individual has different starting time
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Figure 3.2: Starting time backed up to 0 for the individuals faced administrative

censoring

 

 

 

 

 

  
 

Subject 1

>

Subject2 1;

- t1
Subject3 s u-

; o

s 1:
Subject4 ; c

3 III

Subject 5

Months I-

54



conditional on m,T“,C; that is;

E(y|a:, T’, C) : :cfi + E(u|a:,T*, C) = mfi + E(u|:z:,T‘). (3.3)

Since C is caused by study termination and L is determined by the research

question (e.g., a week, a month, a year). Both are independent of y and 3:.

However, survival time depends on patient characteristics, treatment types ,and

other factors. Let log(T) = ma + 2). Therefore, OLS estimation of y on :0 yields

inconsistent estimators because E(u|:1:) is not equal to 0.

The problem described so far can be transformed into the following statistical

model:

y = wfl+u (3.4)

log(T*) = min (logL, ma+v) (3.5)

where :1: is always observed in the population but y is observed only when

log(T"‘) < logC.

Equation (3.4) and (3.5) are known as the censored Tobit Model (after Tobin,

1956). We refer equation (3.4) as the “structural regression equation” and equation

(3.5) as the “selection equation.” With the following assumption we show how to

estimate fl and its asymptotical covariance matrix consistently.

Assumption 1

(i) a: is always observed in the population but y is observed only when T" < C.

(ii) (u, v) is independent of x with zero mean.

(iii) v ~ Normal(0, 72)

(iv) E(u|v) = pi)
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Assumption 1 part(i) defines the particular sample selection problem. y is not

observable unless T“ < C. Part (ii) is a standard form of exogeneity of 11:. Part (iii)

is the most restrictive assumption, but it is needed to derive a conditional

expectation given selected sample. Part (iv) requires linearity in the population

model u on 1). Under bivariate normality it always holds. However, the normality of

u is not necessary.

Under assumption 1,

E(u|:1:,T“) = pE(v|m,T*). (3.6)

Equation (3.3) can be written as,

E(y|a:,T*, C) = (3,3 + pE(v|:c, T“). (3.7)

If we calculate E(vlax, T*), then from Theorem 1, we could consistently

estimate ,3 and p from the regression y on a: and E(u|a:, T*).

From (3.5), for the uncensored cases, 1[logT < logL],

E(v|m, T”) = logT — ma = v, (3.8)

and for the censored cases,1[logT 2 logL],

E(v|a:,T*) = E(v|a:,a:a + v 2 logL),

2 TE (14:13,; 2 _logL— ma)
7.

z “b (logL—ma) N) (logL—ma)

T T

= m (@512) (3.9)
7.
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where /\ is the inverse Mills Ratio. Equation (3.8) and (3.9) can be written

succinctly,

.. logL — ma

E(v|a:,T ) = 1[logT < logL]v + 1[logT 2 logL]r)\ —_—r_— (3.10)

Estimation of equation (3.5) with Tobit, replaces the unknown variables in

equation (3.10) with their consistent estimators. In other words, replacing v with i),

residuals, T with f, estimated standard error, a with (i, estimated coefficients, of

the equation (3.5) after the Tobit estimation does not effect consistency of the

parameters of equation(3.7), fl and p. This result follows from Newey and

McFadden (1994).

Therefore, for each i in the selected sample, if we define;

(3.11)
A

1 L — ,- *
2), = 1[logT,- < logL]i1,+1[logT,~ 2 109L122,» (37—3-3)

and g,- = (mg, 7),), then OLS estimator of ('9 = (fi’, p’) using selected sample can be

written

N ’1 N

e = (N-1 Z s,g,’g,) (N-1 2 3.913),) . (3.12)

i=1 i=1

Theorem 2:

Under the Assumption 1, OLS estimator given equation (3.12) is consistent for

0; and a consistent estimator of Avar((:)) is

N ‘1 N '1
A ,. I A ..

(Xian/9*.) (§j(s.gzé.-+2Cv=.) (s.gzé.+2ce)) (2:22:92) (3.13)
i=1 i=1 i=1
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where C = fi 2:” 3,92, e,- = y, — (11,3 — pfi, (for s,- = 1), and

~ __ —1
7"i '— 7.11:,)2 —V;.;,77iH Zaia

where ’7: (01,,1") v.97],- = (%(fi), %;($'),... ,—‘”—"—L(’y)>, H is the P x P Tobit

hessian and d,- is the score of the censored tobit log likelihood for observation i

valued at estimated parameters.

Since the term with the generated regressor i7,- does not appear in the variance

matrix (3.13) when p = 0, the usual variance matrix for 0 is valid under

homoskedasticity and the robust version is valid under heteroskedasticity. Therefore

testing p = 0 is just usual t-statistics or its heteroskedastic robust version.

The steps for deriving consistent estimators in the structural equation can be

summarized as follows.

(i) Estimate equation (3.5) by Tobit using all N observations. For logT < logL,

define

v1, = logT - 1),-(i

For logT 2 logL, obtain

’02 = ’M (M)r

(ii) Using observations for which logT“ < logC, estimate )8, p by OLS regression

31. on an, 7‘2.- (3.14)

where f), = 1[logT < logL](v‘1,~ + 1[logT 2 logL]v§,)’.
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Equation (3.14) produces consistent, \/TV_ asymptotically normal estimators of

fl and p under the assumption 1.

The statistic to test censoring bias is just the usual t statistics on f},- in

regression (3.14). If it is statistically insignificant usual variance matrix in

regression (3.14) can be used under homoscedasticity, and the robust version is valid

under heteroscedasticity. Otherwise, standard errors should be adjusted as

described in Theorem 2. In practice, it has been found adjusting for first-step

estimators has usually has little effect on the asymptotical standard errors. It is not

surprising to find little effect of the adjustment for modest amounts of sample

selection since no correction is needed when p = 0.

3.3 Lung Cancer Study

We apply our procedure on lung cancer treatment cost data. The data set was

in our study of inverse probability weighted estimation of censored medical cost

data. This data set consists of an inception cohort of 183 lung cancer patients, 48 of

whom are subject to administrative censoring, 65 of whom are subject to artificial

censoring. Seventy of the cases are neither administratively nor artificially censored.

The dependent variable was the log of total medicare payments two years following

diagnosis. The exogenous variables include late disease stage (lstage), late comorbid

conditions (lcomorbi), hospitalization for the reasons other than lung cancer surgery

(hospitalize), treatment types (chemotherapy only, radiation only, chemotherapy

and radiation with the reference group as combination of surgery only and surgery

plus adjuvant therapy), death, symptoms, physical functions, age, sea:(=1 if

male), race (=1 if white). Table 3.1 shows the summary statistics for the

administratively censored, artificially censored and uncensensored groups.

Table 3.2 shows the results of the regression analysis predicting total cost of
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Table 3.1: Summary Statistics from the Lung Cancer Study

 

  

 

 

 

Administratively Artificially Uncensored

Censored Censored

n=48 n=65 n=70

Variable Mean Standard Mean Standard Mean Standard

Deviation Deviation Deviation

total cost 62878 40115 63344 44646 64490 39075

[stage .54 .52 .78

n=26 n=34 n=55

lcomorbi .62 .65 .64

n=30 n=42 n=45

hospitalize .54 .46 .76

n=26 n=30 n=53

chemo only .06 .06 .1

n=3 n=4 n=7

radiation only .25 .20 .31

n=12 n=13 n=22

chemo and radiation .33 .31 .31

n=16 n=20 n=28

symptoms 10.12 28.71 10.68 5.19 11.56 5.11

phsical functions 71.46 28.71 75.70 27.08 71.57 26.51

age 72.68 5.21 71.91 4.72 72.01 4.99

sea: .62 .54 .61

n=30 n=35 n=43

race .92 .92 .94

n=44 n=60 n=66       
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care for the two years following a lung cancer diagnosis. For comparison, we also

obtain the estimates using OLS and using IPW procedure in the chapter 1. The

results are obtained using the statistical package Stata. The robust standard errors

are given in parentheses; no adjustment has been made to account for the generated

regressor, 7?, since there is little evidence of sample selection bias. H0 : p = 0 cannot

be rejected at even 40 percent significance level for any specification. As we showed

in section 2, robust standard errors on all explanatory variables are valid when

p = 0.

We found no sample selection bias with the data set in chapter 1. The results

by using Procedure 3 supports that outcome. The same variables, hospitalization

for reasons other than lung cancer surgery, chemotherapy only, radiation only, and

chemotherapy and radiation reach statistical significance (p < .05). The coefficients

are closer to OLS estimates relative to IPW estimators.

Hospitalization for reasons other than surgery increases the total medical cost

during the period of interest by 109% according to our procedure, 114% according

to IPW least squares estimation and 107% according to OLS.

The total medical cost relative to the mean costs for persons receiving surgery

only or surgery plus adjuvant therapies decreased for the patients who receive

radiation or chemotherapy separately or in combination. The estimates with respect

to OLS, IPW least squares and our procedure are: for radiation only, 120%, 105%,

118%, for chemotherapy only 151%, 129%, and 146%, for chemotherapy and

radiation, 63%, 54%, 63%.

Age, gender, physical function, stage, comorbid conditions, and race do not

have a statistically significant effect in all three estimation methods.

Our procedure explained 14% of the variability in total costs for the two years

following diagnosis. This value is somewhat in the middle of the values calculated

by OLS (13%) and by IPW least squares (15%).
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Table 3.2:

 

 

  

Estimates of the Log(tcost) Equation by OLS, IPW and Procedure 3

Explantory OLS IPW Procedure

Variable 3

constant 10.74 10.70 10.73

(1.06) (1.04) (1.07)

late stage .02 -.06 .05

(.16) (.16) (.17)

late comorbidity .004 -.046 -.001

(.132) (.136) (.131)

hospitalize .72 .75 .74

(.18) (.18) (.17)

chemotherapy only -.92 —.83 -.90

(.29) (.31) (.29)

radiation only -.79 -.73 -.78

(.23) (.22) (.23)

chemothrepay and radiation -.49 -.43 -.49

(.22) (.21) (.22)

symptoms .004 .009 .005

(.014) (.014) (.014)

physical functions .001 .003 .003

(.002) (.003) (.003)

age -.003 -.005 -.003

(.013) (.012) (.013)

sex .08 .12 .09

(.12) (.12) (.12)

race .12 .23 .13

(.20) (.19) (.21)

i7 .04

(.05)

Observations 135 135 135

R-squared 0.13 0.15 0.14    
Robust standard errors are in parentheses.

"significant at 5% level;" significant at 1% level.
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3.4 Conclusion

This paper shows a new method for testing and correcting for sample selection

bias for cross-section data under the assumption that the selection rule is governed

by a censored regression model. The method is easily applicable by using standard

software programs. Application the method to censored lung-cancer medical cost

data illustrates its simplicity.

Several limitations should be discussed. The first and obvious one is the strong

distributional assumption on the selection equation to derive a conditional

expectation given a selected sample. It is possible to derive a semi-parametric

extension for selection equation. If we write equation (3.3) as

E(y|:c, T‘, C) = xfi + h(.), (3.15)

where h is an unknown function of sample selection variables, then h(.) can be

estimated without specifying distributional assumption. Powell (1987), Robinson

(1988), Newey (1988), Coslett (1991) offers different ways of dealing with the

presence of the function h(..) The second limitation is that we assume E(ulv) is

linear in 12. We can also relax this assumption by adding quadratic terms in

assumption 1 part (iv), and the formulas can be adjusted accordingly.

It will be useful to extend the methods for a longitudinal data setting. The

results in section 3.2 are easily modified to panel a data setting.
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APPENDICES
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.1 Appendix for Chapter 1

Stata Commands

(i) stset z,failure(1 — s)

stset gen m = k

(ii) gen p=m if Z << L

stbase, at(L)

stset gen l = I:

replace p = l if Z >2 L

(iii) gen w=s/p

(iv) gen ys = sqrt(w) >1: :c

gen 2:3 2 sqrt(w) * :1:

(v) reg ys :rs,robust
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.2 Appendix for Chapter 3

Proof of Theorem 1 :

Substituting y, = mifi + u, into equation (3.2) gives

N ’1 N

3 = )3 + (N‘1 2: 33%,) (N’1 2: 3,391,.) .

i=1 i=1

Under E(u|a:) = 0, since 3,3,- : h(m,):c, is just some function of mi:

E(s,a:£u,-) = E(E(s,~:c;u,-|m,-)) = E(s,-a:£E(u,-,|a:,)) = 0

With the rank condition and the second moment conditions which is necessary

to apply the law of large numbers, consistency follows.

Proof of Theorem 2 :

Substituting y,- = mifi + p77,- + e E g,e + e = 91-6 + p(n, - in) + e,- in equation

(3.12) gives

x/N(O 9) —(N2829391) {NZpag,'— ii.))‘§+N23,936,} (1)

1— 1

Since each estimator is VN-consistency of each estimators for its plim, it can be

shown that

N

N'2 2:: s,g;e,-= N 2Z s,g’. e,- +op(1(2)

where g,- = (3;, 77,). Also, by an application of the UWLLN (see Newey and

McFadden (1994, Lemma 4.3))

N

N“ 2: 3.5319“. 1* E(sz'g:g.-) s A (3)
i=1
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which is nonsingular by identification assumption that E(gggils, = 1) has rank

K + 1.

Since E(e,-|a:,-, 17,-) = 0, 9‘; depends on 23,-, T,- and with equations (2) and (3),

consistency of Q can be read off from equation (1).

When p aé 0, second term at the right hand side of equation (16), contributes to

the asymptotic variance of G. Let 7 = ((1,7) be a P x 1 vector of unknown

parameters where P = K + 1. Then ‘9, a W- asymptotically normal estimator of '7

has representation;

W(’7—7)=N‘iH“Zaz-+op(l) (4)

i=1

where H is the P x P tobit hessian, a,- is the score of the censored tobit

log-likelihood for observation 2'. The formulas are given in Wooldridge (2002, section

16.4).

From mean value expansion;

fir = 714+ Wyn-(7)0? — ‘7) (5)

where V7n,~('y) is the 1 X P gradient of 724(7).

By combining equations (2) to (4), it can be shown that

W(é — G) —£—> Normal(0,A_lBA’1) (6)

where B = Var(p,°) = E(p§p,-) is defined as p; = sigi’ei + psigi’r, where

Ti = —V‘7ni(7)H_l 2:104-
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To estimate Avar(é) E A_IBA‘1/N, first define

N N A A I A A

A E N—1 23,939“,- and B a N—1 (Z (3,933i + 53,993) (3,935.- + page,» (7)

i=1 i=1

where r, = r,(‘y) = —V7ni(5’)H-1 Z?! (1,, in which gradient of 7).:(7), tobit hessian

and the score of the censored tobit likelihood for observation 2' evaluated at 5';

éi = 311‘ — (13,3 — x373.- (fOf 3i = 1) and fii = (“child-

The asymptotic variance of 9 is estimated as Avar((:3) = [14314—1/N, and

the asymptotic standard errors are obtained as the square roots of the diagonal

elements of this matrix. When testing exclusion of the generated regressors, then

one can take 6 E 0.
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