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ABSTRACT
THE GONADOTROPIN RELEASING HORMONE (GnRH) SYSTEM
IN MALE SYRIAN HAMSTERS (MESOCRICETUS AURATUS):
ORGANIZATION AND REGULATION
Heather N.Brlichardson

Neurons that synthesize and secrete the decapeptide
gonadotropin releasing hormone (GnRH) are the highest order of the
hypothalamic pituitary gonadal (HPG) axis, and thus, govern the entire
reproductive system. Many internal (e.g., steroid hormones) and
external (e.g., chemosensory cues) factors influence GnRH neuronal
activity, but mechanisms underlying regulation of these cells remain
elusive. GnRH neurons exist as anatomically distinct subpopulations of
cells in (rostral to caudal forebrain) tenia tecta, medial septum (MS),
diagonal band of Broca/organum vasculosum of the lamina terminalis
(DBB/OVLT), and caudal preoptic area (cPOA). The experiments of
this dissertation confirmed that a robust developmental event
(puberty), an internal hormonal stimulus (testosterone), and an
external sensory stimulus (female pheromones) in male Syrian
hamsters all affect GhRH neurons in a brain region-dependent manner.

The most rostral cell groups were robustly affected by puberty

and testosterone. These same cells groups also had a higher

proportion of close appositions from GnRH fibers, suggesting more



abundant GnRH-GnRH communication within these cell groups. The
most caudal cells (cPOA) may be important for generating the
neuroendocrine response to female chemosensory cues, as this is the
brain area that has the highest proportion of close appositions from
fibers of the medial amygdala, a chemoensory processing nucleus.

In summary, there is heterogeneity within the GnRH system.
GnRH cell populations respond to puberty and to internal and external
stimuli differently depending on where they reside in the brain.
Communication within the GnRH system and between non-GnRH and
GnRH neurons also varies with brain region. Future work determining
the types of connections within the GnRH system (synaptic or non-
synaptic), the phenotype of neuronal or non-neuronal cells projecting
to the GnRH system, and changes in receptor expression within these
different GnRH subpopulations would advance understanding of how

these variables are integrated by GnRH system to impact reproduction.
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CHAPTER 1:

GENERAL INTRODUCTION

Gonadotropin releasing hormone (GnRH, also known as
luteinizing releasing hormone, or LHRH) is the primary endocrine
regulator of the reproductive system in mammalian species. Despite
their small number (less than 2000 in mammals) and scattered
distribution within the forebrain, GnRH-producing neurons are critical
to reproductive health. They ultimately determine not only the level of
gonadal steroids circulating in the blood but also whether sperm is
produced in males or ovulation occurs in females. Clinical conditions in
which the GnRH system develops abnormally, such as Kallmann's
syndrome (reviewed in Rugarli, 1999), result in failure to undergo
puberty and complete reproductive shutdown.
Hypothalamic-Pituitary-Gonadal Axis

GnRH cells govern reproductive status through the
hypothalamic-pituitary-gonadal (HPG) axis (Figure 1). GnRH is
released in a pulsatile manner into the median eminence of the
hypothalamus and travels through a portal system to the anterior

pituitary, where it induces pulsatile release of the gonadotropins,
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Gonadotropins
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Figure 1. Diagram of the hypothalamic-pituitary gonadal (HPG) axis.
follicle stimulating hormone (FSH) and luteinizing hormone (LH). FSH
and LH stimulate gamete production and maturation and steroid

hormone production and release.



Circulating gonadal steroid hormones, in turn, regulate the HPG
axis by negative feedback in males and by both negative and positive
steroid hormone feedback in females (Kalra and Kalra, 1989;Freeman,
1994). In males, high levels of testosterone resulting from increased
activation of the HPG-axis inhibit GnRH and LH secretion by action at
both the hypothalamic and pituitary levels. In females, both estrogen
and progesterone serve to inhibit HPG axis activity during the luteal
phase of the estrous (rodents) or menstrual (primates) cycle.
However, the high levels of estrogen present in the late follicular phase
exert positive feedback to induce the LH surge and subsequent
ovulation.

Development and Distribution of the GnRH system

The ontogeny of the GnRH neuronal system is unique from most
other cellular systems of the brain in that these cells originally arise in
the nasal placode (Schwanzel-Fukuda and Pfaff, 1989;Wray, Nieburgs,
and Elkabes, 1989;Daikoku-Ishido, Okamura, Yanaihara, and Daikoku,
1990;Ronnekleiv and Resko, 1990;Silverman, Livne, and Witkin,
1994). As gestational development ensues, GnRH cells migrate along
the nervus terminalis, enter the brain, and eventually come to reside

in @ number of different locations throughout the forebrain and



diencephalon. In rodent species the majority of cells are situated in
the more rostral regions such as the medial septum (MS) diagonal
band of Broca (DBB), and organum vasculosum of the lamina
terminalis (OVLT), whereas in carnivores and primates GnRH cells are
more numerous caudal to the optic chiasm (preoptic area,
hypothalamus, arcuate nucleus). The majority of GhRH neurons
project caudally to the median eminence of the hypothalamus (Jennes
and Stumpf, 1980;Silverman et a/., 1994). Thus, the hormonal signal
received by the anterior pituitary reflects integrated neurosecretory
activity of spatially and possibly functionally diverse populations of
cells.
GnRH and Puberty

By early postnatal life, GnRH cells have come to reside in their
permanent anatomical location, their axons have innervated the
median eminence, and their cellular machinery is fully capable of
producing the mature decapeptide form of GnRH, yet these cells
remain relatively quiescent in terms of neuosecretory activity until
puberty onset (reviewed in Plant, 1994;0jeda and Urbanski,
1994;Foster, 1994). Increased secretion of GnRH at puberty, through

its regulation of the HPG axis, begins a cascade of events that



ultimately lead to maturation of the endocrine and nervous system.
Factors Impacting the GnRH System

Puberty onset results in a dramatic change in GnRH secretion,
but this developmental step is not the only factor that influences GnRH
activity. As mentioned previously, gonadal steroids are strong internal
regulators of the GnRH system. Other internal and external
(environmental) cues also provide meaningful information about
whether conditions are optimal for reproductive success. Because the
GnRH system ultimately governs reproductive status, these cells must
respond to all of these signaling systems. For example, photoperiod
(Sisk and Turek, 1983a;Ronchi, Krey, and Pfaff, 1992b;Porkka-
Heiskanen, Khoshaba, Scarbrough, Urban, Vitaterna, Levine, Turek,
and Horton, 1997;Bernard, Abuav-Nussbaum, Horton, and Turek,
1999;Terasawa and Fernandez, 2001), pheromones (Meredith,
1991;Wysocki and Lepri, 1991;Romeo, Parfitt, Richardson, and Sisk,
1998), and nutritional cues (Foster and Olster, 1985;Berriman, Wade,
and Blaustein, 1992;I'Anson, Terry, Lehman, and Foster, 1997) all
influence the GnRH system. Details on how these different stimuli
regulate GnRH cells remain largely unknown.

Understanding how GnRH cells are regulated poses an



interesting neurobiological problem. The GnRH system is comprised of
a relatively small number of neurons that have a widespread
distribution. While these cells are regulated by many variables and
neurosecretory activity changes with development, investigations are
limited by the intractability of the system. Many of the standard
techniques of neuroscience (e.g., lesions, microinjections of
pharmacological agents, electrophysiology) cannot be readily used to
investigate the GnRH system, given its diffuse distribution and small
number of cells. These methodological limitations have left
neuroendocrinologists with many unanswered questions, despite years
of research.

One approach to understanding the GnRH system is to use its
unique characteristics as tools, rather than limitations, in study design.
By studying the various subpopulations of the GnRH system, one might
gain information and insight into the functional organization of the
entire system. Questions include how the different subpopulations of
GnRH neurons are regulated by so many factors and how is
information integrated within the system? Are all GnRH cells regulated
by all endogenous and exogenous signals? Or does their

responsiveness to different regulators depend on where they are



located in the brain? The local environment in which different
subpopulations of GnRH cells reside varies with neuroanatomical
location, suggesting that specialization among the different populations
is probable. More empirical evidence is needed, however, to validate
whether these different GnRH subpopulations are functionally
specialized. The following set of experiments investigates how the
GnRH system is organized, i.e., do various populations respond
differently to developmental changes such as puberty, or to regulation
by internal stimuli (e.g., steroids) or external stimuli (e.g.,
pheromones)? These experiments will determine whether testosterone
or female chemosensory stimuli impact expression of GhRH mRNA or
protein in a brain region-dependent manner. Tract tracing is also used
to address whether neurons in the medial amygdala, a chemosensory
integrating nucleus, project to GnRH neurons and, if so, whether this

neuronal input is unique to certain populations of GnRH cells.

Animal Mode/
The male Syrian hamster (Mesocricetus auratus) is an ideal
model species for addressing questions about GnRH subpopulation

organization and regulation for several reasons: 1) the neuroendocrine



and behavioral components of puberty have been well-established in
this animal model (Romeo, Richardson, and Sisk, 2002); 2)
distribution of the GnRH system has been described (Jennes et a/.,
1980;Lehman and Silverman, 1988); 3) steroid hormones are less
potent inhibitors of LH secretion in adult male than in juvenile male
hamsters (Sisk et al., 1983a), which suggests a differential response of
the GnRH system to steroid negative feedback before and after
puberty. Therefore, we can use pubertal status as tool to investigate
testosterone regulation of GnRH neurons; and 4) GnRH is known to
play a critical role in the display of male sexual behavior, and female
chemosensory cues elicit an elevation in testosterone in male Syrian
hamsters (Meredith, 1998). Investigating how pheromones affect the
GnRH system will aid in the understanding of how information about
the external environment is transduced within the nervous system to
impact reproductive hormone secretion and behavior. Therefore, this
animal model can be used to investigate differential regulation of GhnRH
subpopulations during puberty and by internal (steroid hormones) and
external (chemosensory) stimuli.

Overview of Chapters

The experiment described in Chapter 2 was designed to identify



which populations of GnRH cells likely contribute to the increased LH
release associated with pubertal maturation. To address this,
immunocytochemistry was used to identify and map out GnRH
containing cells before and after puberty and to investigate whether
particular subpopulations were associated with the onset of puberty.
This experiment is published in Brain Research (Richardson, Romeo,
and Sisk, 1999).

The experiments described in Chapter 3 and 4 were designed to
investigate testosterone negative feedback upon the different
subpopulations of the GnRH system. In these experiments, pubertal
status was included as a variable to explore whether pubertal change
in responsiveness of the HPG axis to steroid negative feedback
involves differential regulation of GhRH mRNA by testosterone before
and after puberty. In the experiment described in Chapter 3, /n situ
hybridization histochemistry was used to investigate these questions.
This experiment is /n press in Journal of Neuroendocrinology
(Richardson, Parfitt, Thompson, and Sisk, 2002). As a follow up to the
experiment described in Chapter 3, an experiment (Chapter 4) was
designed to address similar questions using a more quantitative

approach to mRNA analysis, RNAse protection assay (RPA). GnRH



mMRNA and plasma LH dose-response curves to testosterone were
determined in pre- and postpubertal males to assess whether there
was differential regulation of GhRH mRNA and plasma LH between
juveniles and adults. These data will soon be submitted to
Endocrinology for publication.

Chapters 5 and 6 present experiments designed to investigate
how chemosensory information impacts the GnRH system in adults.
Female pheromones are essential chemosensory stimuli for the
expression of reproductive behavior in the male Syrian hamster. If
processing of this sensory information is curtailed, for example by
removing the vomeronasal organ or olfactory bulbs in the male, he
will not engage in mating behavior. At least part of this chemosensory
processing is thought to involve the GnRH system. Exposure to
chemosensory information causes a rise in plasma LH (Graham and
Desjardins, 1980;Coquelin, Clancy, Macrides, Noble, and Gorski, 1984)
and testosterone (Macrides, Bartke, Fernandez, and D'Angelo,
1974;Wirsig-Wiechmann, 1993;Romeo et a/., 1998). Furthermore, icv
administration of GnRH reinstates behavior in vomeronasalectomized
males (Meredith and Howard, 1992;Fernandez-Fewell and Meredith,

1995). Thus, pheromonal information must reach and impact the
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GnRH system through some mechanism. Experiments in Chapters 5
and 6 investigated how this external sensory stimulus impacts GnRH
cells. The first experiment in Chapter 5 was conducted to generate a
time course for the plasma LH response to pheromone exposure in
adult animals, which has not been well-documented in the literature.
The second experiment in this chapter investigated whether female
pheromones affect GhnRH mRNA in a brain region-dependent manner,
using /n situ hybridization to measure GnRH mRNA.

The experiment in Chapter 6 addressed whether a
chemosensory processing region of the amygdala directly projects to
GnRH cells in any of the various subpopulations. The neural circuitry
underlying chemosensory processing and male sexual behavior has
been well-documented (Gomez and Newman, 1992;Wood and Coolen,
1997;Coolen and Wood, 1998). The medial amygdala is important for
chemosensory and processing and has been shown to project to some
of the regions in which GnRH neurons reside (Coolen et a/., 1998).
Based on this knowledge, the experiment presented in Chapter 6 was
designed to investigate whether the medial amygdala projects to the
GnRH system, and if so, whether projections are specific to particular

populations of GnRH neurons. Anterograde tract tracing was utilized
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to answer this question.
Chapter 7 is a general discussion of the questions and various
outcomes of these experiments. Data are briefly summarized, and this

is succeeded by a discussion encompassing this entire body of work.
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CHAPTER 2:
DISTRIBUTION OF GnRH NEURONS AND PUBERTAL

CHANGES IN IMMUNOREACTIVITY

Introduction

Puberty onset is associated with increased activity of the GnRH
system (reviewed in (Plant, 1994;0jeda et a/., 1994;Foster, 1994).
The neural events underlying puberty activation of the GnRH system
are still being elucidated, and probably involve both decreased
inhibition and increased excitation of the GnRH system to become
active at puberty. The importance of activation occurring at this point
in development cannot be stressed enough. These maturational
processes not only induce reproductive fertility though activation of the
HPG axis, but the steroid hormonal events associated with this
increased activity are critical to pubertal maturation of the nervous
system.

With respect to the various subpopulations of GnRH cells, it is
not known if puberty arises from activation of the entire GnRH system
as a whole, or if there is some regional specificity to this

developmental change in activity. Immunocytochemical studies

13



provide evidence for a division of labor among the spatially diverse
subpopulations of GnRH cell bodies. There are several reports of brain
region-specific reductions in GnRH immunopositive (GnRH+) cell
number under conditions in which GnRH secretion is increased
(Shivers, Harlan, Morrel, and Pfaff, 1983;King, Kugel, Zahniser,
Wooledge, Damassa, and Alexsavich, 1987;Tang and Sisk,
1992;Ronchi, Aoki, Krey, and Pfaff, 1992a;Rubin and King,
1994;I'Anson et al., 1997). In general, these results have been
interpreted as evidence for involvement of specific subpopulations of
GnRH neurons in which somal stores of GnRH become undetectable
when secretory activity is high. For example, I’Anson et al (I'Anson et
al., 1997) demonstrated a higher number of GnRH+cells within the
medial basal hypothalamus in diet-restricted prepubertal female lambs
compared with well-fed prepubertal female lambs. The lower GhnRH+
cell number in the medial basal hypothalamus of normal growing
lambs suggests that the increase in LH pulse frequency characteristic
of these lambs (Foster et a/., 1985) is mediated by this particular
population of cells. Similarly, there is a brain region-specific change in
GnRH+ cell number in the arcuate nucleus of adult male ferrets

compared with prepubertal males (Tang, Kashon, and Sisk, 1997),
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suggesting that in this species the pubertal increase in GnRH may be
primarily mediated by GnRH cells located in the arcuate nucleus.

The purpose of this experiment was to test the hypothesis that
specific populations of GnRH cells mediate the pubertal increase in
gonadotropin secretion in male Syrian hamsters.
Immunocytochemistry was used to identify GnRH cells in the brains of
adult and prepubertal males. Two different concentrations of primary
antiserum were used that were expected to result in detection of
different numbers of GnRH+ cells, depending on the somal level of
GnRH within these cells. This hypothesis predicted that when the
tissue was run with the lower (less sensitive) concentration of primary
antiserum, a reduced number of GhRH+ neurons in the adult males in

subpopulations contributing to the pubertal increase in GnRH release.

Methods
Animals

The male Syrian hamsters (Mesocricetus auratus) used in this
study were bred at Michigan State University (E. Lansing, MI) and
treated in accordance with the NIH Guide for the Care and Use of

Laboratory Animals. Protocols were approved by the MSU All-
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University Committee for Animal Use and Care. Following weaning,
they were singly housed in a 14 hr light/10 hr dark schedule in a
temperature-controlled (21 + 2° C) room with ad /ibitum access to
rodent chow (Teklad Rodent Diet No. 8640, Harlan, Madison, WI) and
water.
Study Design

At either 28 (juvenile; n=5) or 49 (adult; n=5) days of age
animals were weighed and given an overdose of Equithesin anesthetic
(80 mg/kg, ip). A cardiac blood sample was taken and plasma was
stored at -20° C until the radioimmunoassay was performed. Paired
testis and seminal vesicle weights were obtained. Animals were then
perfused intracardially with buffered saline followed by 0.4%
glutaraldehyde in 2% paraformaldehyde. The brains were stored in
20% sucrose before sectioning into consecutive sets of 40 ym thick
coronal sections. Brain sections were stored in cryprotectant at -20° C
until the immunocytochemistry was performed.
Testosterone Radioimmunoassay

Plasma concentrations of testosterone were measured using the
Coat-A-Count Total Testosterone Kit (Diagnostic Products, Los Angeles,

CA). This assay has been validated in our laboratory for the Syrian
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hamster. The lower limit of detectability was 0.1 ng/ml. The intra-
assay coefficient of variation (CV) was 14%.

GnRH Immunocytochemistry

Dilution Trials:

Several different dilutions (concentrations ranging from 1:7,000-
1:80,000) of LR-1 anti-GnRH antiserum (obtained from R. Benoit,
Montreal General Hospital) were used in pilot trials to determine the
conditions under which the experimental tissue was run. LR-1 binds to
amino acid residues 2-4 and 7-10 of GnRH, and recognizes both the
mature decapeptide and the preprohormone forms of GnRH. A
concentration of 1:40,000 resulted in a range of GnRH+ staining
intensities within a single brain and was therefore chosen for the low
concentration set of experimental tissue. Concentrations lower than
1:40,000 resulted in extremely light staining, which made accurate
microscopic analyses difficult. A concentration of 1:10,000 was chosen
for the high concentration set of experimental tissue because it
resulted in darker cell body staining than with the 1:40,000
concentration, without significantly increased background staining.
Concentrations higher than 1:10,000 produced elevated background

levels, which made accurate cell counting difficult.
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Experimental Tissue:

Every fourth section from each experimental brain was
processed with LR-1 at a concentration of 1:10,000 and an adjacent
set of sections was processed with LR-1 at 1:40,000, in two separate
ICC runs. Within a concentration, all tissue from both age groups was
processed simultaneously. Sections were rinsed five times in 0.1 M
phosphate buffered saline (PBS), followed by five rinses in PBS
containing 0.2% Triton-X (PBS-TX). The sections were then placed in
0.3% H,0,/MeOH at room temperature for 30 min to reduce
endogenous peroxidase activity, followed by three rinses in PBS-TX
and a 30 min incubation in normal horse serum (room temperature,
Vectastain ABC Rabbit Kit, Burlingame, CA). This incubation was
followed by 3 rinses in PBS-TX and a 24 hr incubation at 4° Cin LR-1
(at either 1:10,000 or 1:40,000) diluted in PBS-TX. Sections were
rinsed 3 times in PBS-TX and incubated at room temperature for 2 hr
in biotinylated secondary antiserum (1:200, Vectastain ABC Rabbit Kit,
Burlingame, CA). This was followed by three rinses in PBS-TX and a 1
hr incubation at room temperature in an avidin-biotin horseradish
peroxidase complex (1:100, Vectastain ABC Rabbit Kit, Burlingame,

CA). Sections were then rinsed twice in PBS-TX, once in 0.05 M tris
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buffered saline (TBS), and finally incubated in 1% 3,3'-
diaminobenzidine containing 0.0025% H,0, in TBS for 15 min at room
temperature. Sections were then rinsed once in TBS, five times in
PBS, and placed in vials containing dH,0 until they were mounted onto
gel-coated slides. Mounted sections were dehydrated in increasing
concentrations of alcohol, cleared in Hemo-De (Fisher, Pittsburgh, PA),
and coverslipped.
inin nt

Specificity of GnRH+ staining was determined using three
controls. The first two controls eliminated either the primary or
secondary antiserum. No staining occurred under either of these two
conditions. In the third control, the primary antiserum (1:10,000) was
preadsorbed with 1ug/ml of synthetic GnRH (Sigma, St. Louis, MO) at
4°C for 24 hr. While preadsorption eliminated GnRH+ staining in the
MS, DBB/OVLT, and cPOA, staining remained lateral to the DBB/OVLT
in both juvenile and adult males. This staining was not found near the
MS or cPOA GnRH cell populations. There were several differences
between the cells remaining after preadsorption (termed ambiguous
cells) and GnRH+ cells. First, nearly all of the ambiguous cells resided

lateral and somewhat ventral to GnRH+ cell populations in the
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DBB/OVLT. These cells were generally found around the olfactory
tubercle. In addition, these cells displayed poor staining quality in
comparison to the GnRH+ cells. While GnRH+ cell body staining was
punctate, staining in the ambiguous cells was hazy and light, making
the cells difficult to focus. The ambiguous cells also had remarkably
large nuclei and were often multipolar (Figure 2B), whereas the
GnRH+ cells had smaller nuclei and were unipolar or bipolar (Figure
2C). Finally, the ambiguous cells did not stain with the HU4H GnRH
antiserum (mouse anti-GnRH obtained from Dr. Henryk Urbanski,
Oregon Heath Sciences Center, used at 1:2000 with the Vectastain
ABC mouse kit) nor did they express GnRH mRNA (Parfitt, Thompson,
Richardson, Romeo, and Sisk, 1999), further indicating that they were
not GnRH producing cells. Any cells with the characteristics of the
ambiguous cells were not counted in the microscopic analysis.
Microscopic Analysis

One experimenter blind to the condition of the animals was
responsible for all of the microscopic analyses. Tissue was

microscopically examined under brightfield illumination. Cells were
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Figure 2. Camera lucida line drawings depicting the three
regions analyzed: DBB/OVLT, MS, and cPOA (A, dashed boxes).
Asterisks represent the location of GhnRH+ cells in a
representative animal. Abbreviations : CC, corpus callosum; LV,
lateral ventricle; AC, anterior commissure; II, optic nerve; 3V, 3™
ventricle; OVLT, organum vasculosum of the lamina terminalis;
OC, optic chiasm. Photomicrographs depicting
immunocytochemical staining of ambiguous cells (B, arrows) and
GnRH cells (C, arrows) using LR-1 (1:10,000). Bar, 100 pym.
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considered GnRH+ if they contained brown reaction product in the
cytoplasm, were unipolar or bipolar in shape, and displayed no
characteristics of the ambiguous cells. The average number of
sections analyzed per animal did not differ between ages (15.7 £ 1.17,
juveniles; 15.88 + 3.00, adults, p<0.05). Because there was variation
in the number of sections analyzed within groups (due to problems
with tissue processing), GhnRH+ cell number was expressed in
GnRH+cells/section. A regional analysis was performed on the number
of GnRH+ cells/section in three operationally defined areas: MS,
DBB/OVLT, and cPOA, which together contained more than 90% of the
total GnRH+ cells. Although the landmark-based boxes used to
delineate and standardize analysis of each area (Figure 2A) extended
beyond the Nissl-based boundaries of the areas, they were termed as
such because the majority of GnRH+ cells within these boxes resided
within these anatomical structures. One experimenter blind to the
condition of the animals was responsible for all of the microscopic
analyses.
Statistics

Group differences in plasma testosterone concentration and

testis and seminal vesicle weights were analyzed by two-tailed ¢ tests.

23



Anatomical data were analyzed using a mixed design two factor
analysis of variance [age (independent factor) X antiserum dilution
(repeated measure)]. Significant interactions and main effects were
probed using Tukey HSD and Fisher’s PLSD tests, respectively.
Differences were considered significant if p<0.05. All data are
presented as mean * SEM. Due to poor tissue quality, one adult was

eliminated from the microscopic and statistical analyses.

Resuits
Peripheral Measures

Adult males had significantly heavier paired testis (2.732 g +
0.137 vs0.684 g £ 0.053, p<0.05), seminal vesicle weights (0.209 g
+ 0.020 vs 0.028 g + 0.002, p<0.05), and higher circulating levels of
testosterone (2.215 ng/ml £ 0.361 vs0.376 ng/ml £ 0.156, p<0.05)
compared to juveniles.
Distribution of GnRH+ Cells

GnRH+ cells were distributed throughout the forebrain. Cells
were found in regions as anterior as the medial parolfactorial area and
posterior as the arcuate nucleus. Cells were also found in the vertical

and horizontal bands of the diagonal band of Broca, medial and lateral
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septum, organum vasculosum of the lamina terminalis, preoptic area,
and ventral medial hypothalamus. The largest number of cells was
found within the vertical band of the diagonal band of Broca, the
second largest in the MS, and the third largest within the cPOA.
Analysis of GnRH+ Cells

Within the DBB/OVLT, juveniles had more GnRH+ cells/section
compared with adults (Figure 3A, p<0.05). There was no effect of
antiserum dilution and no interaction in the DBB/OVLT. Within the MS,
there was an interaction between age and antiserum dilution (Figure
3B, p<0.05). Specifically, juveniles had more GnRH+ cells/section
than adults only under the 1:40,000 antiserum dilution condition. No
effects of age or antiserum dilution on GnRH+ cells/section were found

in the cPOA (Figure 3C).

Discussion

The present study demonstrates a region-specific decrease in
GnRH+ cell number associated with pubertal maturation in the male
Syrian hamster. Adults have fewer GnRH+ cells in the DBB/OVLT and
MS than juveniles, but the number of GnRH+ cells within the cPOA

does not differ between adults and juveniles. The most likely
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Figure 3. Mean (£SEM) number of GnRH+ cells/section in the MS
(A), DBB/OVLT (B), and cPOA (C) of juvenile and adult males in which
brain tissue was stained with a low (1:40,000) or high (1:10,000)
dilution of LR-1 antiserum. Letters in panel A indicate a significant
main effect of age, with juvenile males (“a”) having significantly more
GnRH+ cells/section in the DBB/OVLT than adult males (“b”)
independent of antiserum dilution (p<0.05). Letters in panel B indicate
that juvenile males (“a”) had significantly more GnRH+ cells/section
than adult males (“b”) only with the 1:40,000 dilution of LR-1

(p<0.05).
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explanation of these data is that fewer GnRH neurons within the
DBB/OVLT and MS are detectable in aduits because increased
secretory activity of these neurons during puberty results in lower
somal levels of GnRH. Cells within the DBB/OVLT and MS of adult
hamsters could be undetectable because they no longer exist or no
longer produce GnRH in adulthood. However, the pubertal difference
in cell number was attenuated in the MS when the 1:10,000 dilution of
primary antiserum was used. Thus, it is probable that the cells within
the MS were not detected with the 1:40,000 dilution because somal
levels of GnRH were low in these cells. Furthermore, the number of
GnRH mRNA expressing cells within the DBB/OVLT is similar in juvenile
and adults animals (Parfitt et a/., 1999). Thus, the decrease in GhRH+
cells within the MS and DBB/OVLT in adults is in all likelihood not due
to cell death or a change in phenotype, but rather to a reduction in
GnRH somal stores resulting from increased GnRH release in
aduithood.

Celis in the cPOA did not show a pubertal reduction in number.
It is possible that cPOA cells contain higher amounts of GnRH than the
other populations and therefore remain detectable following GnRH

release. Thus, a pubertal decrease in cell number would not be found
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in this region even though it may also play a role in increased GnRH
release in adulthood. However, in situ hybridization indicates that
GnRH cellular mRNA is not significantly higher in cPOA cells than in the
MS and DBB/OVLT cells (Parfitt et a/., 1999). Thus, these data only
provide evidence for the MS and DBB/OVLT GnRH neurons being
involved in the pubertal increase in GnRH secretion.

In contrast to the present findings, Urbanski et al. (Urbanski,
Doan, and Pierce, 1991) did not find a pubertal decrease in GhRH+ cell
number in male Syrian hamsters. Variations in experimental method
could account for the difference between studies. For example, they
used a different antiserum (HU4H) than that used in the current study
(LR-1) recognizes only the mature decapeptide form of GnRH, whereas
LR-1 recognizes both the mature and the preprohormone forms. In
addition, the immunocytochemical conditions used in Urbanski et a/.
(Urbanski, Doan, Pierce, Fahrenbach, and Collins, 1992) may have
been sensitive enough to detect low somal stores of GnRH.

In female hamsters, many GnRH neurons in the caudal POA
express Fos-immunoreactivity (Fos-ir), a marker of neuronal activity
(Morgan and Curran, 1991), across the entire 4-day estrous cycle. On

the other hand, cells within the DBB and MS/rostral POA express Fos-ir
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only on day 4, just following the preovulatory LH surge (Berriman et
al., 1992). In another report, an increase in Fos-ir was observed in
the OVLT GnRH cells just following the LH surge in female hamsters
(Doan and Urbanski, 1994). Taken together, the two studies suggest
that rostral GnRH cells are recruited for the preovulatory LH surge in
females. These data from female hamsters and the present data from
males suggest that rostral populations of GnRH neurons in the hamster
are more likely to be involved in steroid-dependent dynamic changes
in GNRH secretion than are caudal populations. The reduction in
responsiveness to testosterone negative feedback, which occurs during
pubertal maturation in male hamsters (Sisk et a/., 1983a), may result
in increased release primarily from GnRH neurons residing in the MS
and DBB/OVLT.

In summary, we have demonstrated a brain region-specific
decrease in the number of GnRH+ neurons in the male Syrian hamster
as a result of pubertal maturation. These data suggest that
populations of GnRH cells in the MS and DBB/OVLT play an integral
role in the pubertal increase in GnRH release. Furthermore, these data
support the idea of inherent differences in regional populations of

GnRH neurons, raising interesting questions about when and how
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conditions dictate a change in GnRH release. Thus, GnRH neurons in
particular anatomical locations may be responsive to regulation by
certain stimuli, such as gonadal steroids, while other populations may

not.
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CHAPTER 3:

DOES TESTOSTERONE REGULATE GnRH mRNA?

Introduction

The last chapter provides evidence for heterogeneity among cells
within the GnRH system. In general, the more rostral populations of
cells showed a reduction in immunoreactive cell number with puberty,
indicating that they are involved in the pubertal increase in
gonadotropin release. In situ hybrdization data from our lab also
demonstrated an pubertal increase in GhRH mRNA in all GnRH
subpopulations, but it was more pronounced in the DBB/OVLT. These
data together suggest an important role of the more rostral GnRH cells
in puberty.

The threshold for steroid negative feedback regulation of the
HPG axis varies with reproductive status. Responsiveness to negative
feedback is particularly high prior to puberty in many species. For
example, in hamsters, when testosterone is experimentally clamped at
physiological levels in juvenile males, gonadotropin secretion is
completely suppressed. However, as the males enter puberty, plasma

gonadotropin levels rise despite the constantly maintained levels of
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testosterone (Sisk et al., 1983a). Thus, a change in the negative
feedback set point is involved in the pubertal rise in gonadotropin
secretion in hamsters.

The cellular mechanisms underlying negative feedback inhibition
of GnRH neuronal activity are not well understood, nor is it known if
they change during development. One reason for this lack of
understanding is related to the diffuse distribution of GnRH neurons
throughout the forebrain, a feature that makes it difficult to study the
system as a whole. Since GnRH neuronal phenotype and afferents
vary with brain region (Hoffman, Lee, Attardi, Yann, and Fitzsimmons,
1990;Wu, Segal, Miller, Gibson, and Silverman, 1992;Mitchell, Bouret,
Prevot, Jennes, and Beauvillain, 1999;Prevot, Bouret, Croix, Takumi,
Jennes, Mitchell, and Beauvillain, 2000), the cellular level at which
steroids regulate GnRH neurons may also vary with brain region.

Regulation of GhRH mRNA is one cellular level at steroids exert
feedback effects on the HPG axis. The effects of steroids on GnRH
mRNA are brain region-dependent (Selmanoff, Shu, Petersen,
Barraclough, and Zoeller, 1991;Porkka-Heiskanen, Urban, Turek, and
Levine, 1994;Petersen, McCrone, Keller, and Shores, 1995;Spratt and

Herbison, 1997). Thus, the goals of the current experiment were two-

32



fold: 1) to conduct a brain regional analysis of testosterone regulation
of GnRH mRNA, and 2) to determine whether a change in the specific
cell groups in which GnRH mRNA is decreased by testosterone is a
correlate of the pubertal decrease in steroid negative feedback.

In some of the sections analyzed in the experiment presented in
chapter 2, an interesting phenotype of GnRH cells was found (Figure
4). These cells were quite rostral, were more clustered together, and
were embedded within a plexus of GnRH fibers. At that time, they
were considered to be the most rostral aspects of the DBB/OVLT and
MS. However, several atlases define the region in which these cells
reside as the tenia tecta. Thus, from this point on, those cells were
separated out from the other GnRH cells and analyzed as a distinct
population of GnRH neurons. These subdivisions are shown in figure 5.
Little is known about tenia tecta GnRH neurons, but they appear to be
activated by sensory stimuli to produce the preovulatory luteinizing
hormone (LH) surge in the musk shrew, a reflex ovulator (Dellovade
and Rissman, 1994;Dellovade, Hunter, and Rissman, 1995a;Dellovade,

Ottinger, and Rissman, 1995b).
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Figure 4. A: Drawing of an anatomical section (adapted from Morin
and Wood, 2001) delineating the location of GnRH cells in the tenia
tecta. B: GnRH-immunoreactive cells and fibers in the tenia tecta
(see Chapter 2 for details on GnRH immunocytochemistry methods).
C: GnRH-mRNA labeled cells in the tenia tecta. Differences in
section thickness (40 ym for immunocytochemistry vs. 10 ym for
ISSH) likely account for the different number of cells in the two
photomicrographs. Bar, 20 ym.
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Figure 5. Drawing of a sagittal view of the male Syrian hamster brain
summarizing four GnRH subpopulations: tenia tecta (TT), medial
septum (MS) diagonal band of Broca/organum vasculosum of the
lamina terminalis (DBB/OVLT), and caudal preoptic area (cPOA). Red
boxes delineate the boundaries of each subpopulation.
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In situ hybridization histochemistry was performed to measure
GnRH mRNA in the tenia tecta and MS, DBB/OVLT, and cPOA in
testosterone-treated gonadectomized juvenile and adult male Syrian
hamsters. We provide evidence for the first time that GhRH mRNA in
neurons in the tenia tecta is reduced by testosterone in both juvenile
and adult males. While GnRH mRNA is only modestly regulated by
testosterone overall in the brain, this regulation is most pronounced in

tenia tecta neurons.

Methods
Animals, Experimental Design, and Tissue Collection

One day after arrival from Charles River (Kingston, NY), twelve
prepubertal (23 days old) and twelve adult (60 days old) male Syrian
hamsters (Mesocricetus auratus) were anesthetized with
methoxyflurane (Metofane, Mallinckrodt Veterinary Inc., Mundelein, IL,
USA), castrated, and implanted subcutaneously with either a placebo
(blank) or a 2.5 mg timed-release testosterone pellet (n=6 per
treatment group, Innovative Research, Sarasota, FL). Following
treatment, all animals were singly housed in clear polycarbonate cages

(37.5 X 33 X 17 cm) with wood chips (Aspen Chip Laboratory Bedding,
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Warrensburg, NY). Throughout the experiment room temperature was
maintained at 21 + 2°C and the light-dark schedule was 14 hr light/10
hr dark (lights on at 0600 hr EST). Animals had ad /ibitum access to
rodent chow (Teklad Rodent Diet No. 8640, Harlan, Madison, WI) and
water throughout the study. Animals were treated in accordance with
the NIH Guide for the Care and Use of Laboratory Animals and
protocols were approved by the Michigan State University All-
University Committee for Animal Use and Care.

Seven days following gonadectomy and steroid treatment (at 30
or 67 days old), animals were anesthetized with Metofane and
decapitated. Trunk blood was collected for measurement of plasma
concentrations of testosterone and LH. Brains were rapidly removed
and snap frozen in an isopentane/dry ice bath. Frozen brains were
stored at -80°C until sectioning on the cryostat. Every other coronal
section (10 pm) was collected and thaw-mounted onto poly-L-lysine
coated slides to produce a total of four sets. Slides were stored with
desiccant at -80°C until /n situ hybridization histochemistry was
performed.

GnRH mRNA In Situ Hybridization Histochemistry

One set of sections from each brain was processed for /n situ
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hybridization using a 3°S-cRNA probe generated from Syrian hamster
GnRH cDNA (generously donated by Dr. Heiko Jansen, Washington
State Univ.). The antisense probe was transcribed in a reaction
mixture containing 1 pg of linearized DNA (BamH I linearized plasmid),
5x transcription buffer (Epicentre Technologies, Madison, WI, USA), 80
HCi [*SJUTP, 120 uCi [**S]ICTP, 150 uM ATP, 150 uM GTP, 12.5 mM
dithiothreitol, 20 U RNAse inhibitor, and 6 U T7 RNA polymerase
(Epicentre Technologies). Following an incubation at 37°C for 2 h,
unincorporated nucleotides were separated by Sephadex G50-50
chromatography and the antisense probe diluted in 50% hybridization
buffer (Amresco, Solon, OH, USA) to obtain ~1.0 x 10° CPM/70 pl of
buffer. Slides were removed from the -80°C freezer and placed
immediately in 4% paraformaldehyde for 1 h. They were then washed
several times in 2x NaCl/Na citrate (SSC) before a 10 min incubation in
0.1 M triethanolamine (TEA) containing 0.25% acetic anhydride.
Slides were washed in dH,0 and dehydrated through a series of
alcohols.

Diluted probe (70 pl) was applied onto each slide and a glass
coverslip was gently placed over the sections to prevent evaporation of

the probe during hybridization. Slides were placed in plastic boxes
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lined with filter paper saturated with 50% formamide. The boxes were
covered with plastic lids, wrapped with plastic wrap, and incubated at
55°C for 16 h. Following hybridization, the coverslips were removed
by washes in 2x SSC and the slides were then incubated in RNAse A
buffer (200 pg/mil) for 1 h at 37°C. This incubation was followed by
several washes in decreasing concentrations of SSC (2x, 1x, 0.5x, and
0.1x) and an incubation in 0.1x SSC for 1 h at 70°C. Afterwards,
slides were washed in 0.1x SSC and dH,0 rinses, dehydrated in graded
alcohols, and air-dried. Once completely dry, slides were exposed to
XAR film (Eastman Kodak, Rochester, NY, USA) for 14 days. After
removal from film, they were emulsion-dipped (NTB2 emulsion from
Eastman Kodak diluted 1:1 in distilled water), stored in light-tight
boxes at 4°C for 3 days, and developed using standard procedures
(Parfitt et al., 1999) for microscopic analysis of silver grains. Sections
were then lightly counterstained with thionin to visualize cell bodies,
dehydrated in alcohols, cleared, and coverslipped. Incubation of tissue
sections with a sense probe does not result in labeling of cells (Parfitt
et al., 1999).

Redefining GnRH Subpopulations and Microscopic Analysis

Four populations of GnRH neurons were analyzed: tenia tecta,
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DBB/OVLT, MS, and cPOA. These brain regions are operationally
defined in Figure 6. All analyses were carried out by one investigator
blind to the treatment conditions using a Leitz Laborlux S microscope
equipped with a CCD video camera (Sony, XC-77). Labeled cells were
located under darkfield microscopy at 100x or 200x magnification and
then were analyzed individually at a magnification of 400x in
brightfield microcopy. Images were captured through a blue no. 47
filter used to subtract Nissl staining (Tiffen, Hauppauge, NY, USA), and
analyzed using NIH Scion Image 1.57 on a Power Macintosh 7100
computer. Each cell profile was first traced and Nissl| area was
measured. After the cell profile was traced and Nissl area measured, a
threshold was set so that only silver grains were visualized, and the
area (pm?) covered by silver grains was measured. Although silver
grains over intensely labeled cells were not confined to the Nissl
boundary, we quantified only silver grain labeling over Nissl stain
because it provided an objective definition of the cell. Thus, this
measurement is a conservative estimate of the amount of silver grain
labeling associated with the cell. The cell tracing was then moved to a

nearby region without specific hybridization to determine
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Figure 6. Camera lucida drawings of the most anterior and posterior
sections of the four brain regions analyzed: tenia tecta, medial
septum (MS), diagonal band of Broca/organum vasculosum of the
lamina terminalis (DBB/OVLT), and caudal preoptic area (cPOA). The
area within which the GnRH cells reside is indicated by shading.
Abbreviations: 11, optic nerve; 3V, 3" ventricle; AC, anterior
commissure; CC, corpus callosum; LV, lateral ventricle; OC, optic
chiasm.
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background silver grain area. A GnRH-mRNA expressing cell was
defined as a cell in which the area covered by silver grains was >5x
that of background. Background grain area was subtracted from the
Nissl cell grain area to obtain GhRH mRNA grain area for individual
cells. The silver grain area of all cells within each brain region was
averaged for each animal. Finally, mean silver grain area for each
region was averaged across animals within each treatment group to
obtain mean sliver grain area for the tenia tecta, MS, DBB/OVLT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>